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ABSTRACT

Receding Horizon based Cooperative Vehicle Control with Optimal Task

Allocation

Mohammad Khosravi

The problem of cooperative multi-target interception in an uncertain environment

is investigated in this thesis. The targets arrive in the mission space sequentially at a

priori unknown time instants and a priori unknown locations, and then move on a priori

unknown trajectories. A group of vehicles with known dynamics are employed to visit

the targets as quickly and efficiently as possible. To this end, a time-discounting reward

is defined for each target which can be collected only if one of the vehicles visits that

target. A cooperative receding horizon scheme is designed, which predicts the future

positions of the targets and maximizes the estimate of the expected total collectible

rewards, accordingly. The problem is initially investigated for the case when there

are a finite number of targets arriving in the mission space sequentially. It is shown

that the number of targets that are not visited by any vehicle in the mission space

will be sufficiently small if the targets arrive sufficiently infrequently. The problem is

then generalized to the case of infinite number of targets and a finite-time convergence

analysis is also presented. A more practical case where the vehicles have limited sensing

and communication ranges is also investigated using a game-theoretic approach. The

problem is then solved for the case when a cluster of vehicles is required to visit each

target. Simulations confirm the efficacy of the proposed strategies.
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Chapter 1

Introduction

The last two decades have witnessed an ever-increasing interest in multi-agent sys-

tems [1–12] inspired by and applied to a wide variety of fields of science and technology

such as biology [13–17], control [18–22], robotics [23–27], computer science [28,29], econ-

omy, marketing and finance [30,31]. The main goal of multi-agent systems is to achieve a

global objective with a set of simple and limited components and the proper use of infor-

mation exchange between the agents. Multi-agent systems and methods are explored for

a variety of applications related to control design problems such as surveillance [32,33],

search and rescue [34–36], reconnaissance missions [37, 38], sensor networks [39, 40], au-

tomated highway systems [41], environmental sampling [42, 43], motion coordination

of robots [44–46], formation control of satellite clusters [47, 48], air traffic control [49],

consensus [50], network connectivity control [51], target assignment and cooperative
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multi-target interception [52–54], to name only a few.

The multi-target interception problem with multiple vehicles is an emerging topic

in the cooperative control literature. The problem is concerned with a group of vehicles,

which are desired to cooperatively visit some targets that appear in the mission space

at random time instants.

The pursuit-evasion problem is a well-known and vastly studied topic in the con-

texts of computer science, mathematics, artificial intelligence, robotics, control, physics,

etc. [55–59]. In the literature, the problem has been investigated under different titles

such as cop and robber [60], lion and man [61, 62], graph searching [63], lady and ban-

dit [64, 65],and chases and escapes [57]. Usually, this type of problem is analyzed using

multifarious formulations [55–57]. In all variants of the pursuit-evasion problem, a group

of pursuers attempting to track down a group of evaders [55]. In addition to pursuer(s)

and evaders(s), a set of one or more defenders like missiles or bodyguards may also be

considered which are supposed to defend the evader(s) against the attacker(s) [66]. The

environment, on the other hand, can be a discrete space like a graph [67] or a contin-

uous space like a manifold [55]. Similarly, the pursuit and evasion procedure can be

discrete-time [68] or continuous-time [69]. The information of the pursuer(s), evader(s)

and possible defender(s) on each other as well as the environment is not necessarily

perfect [70, 71]. The motions of targets are sometimes independent of the strategies of
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pursuers, while some other times, the pursuers and evaders may have conflicting objec-

tives [72]. Formulations of pursuit-evasion problems may differ by the constraints and

the level of maneuverability considered for the pursuers and evaders [73,74]. In particu-

lar the main focus of this thesis is directed towards the multi-pursuers and multi-evaders

problem with perfect information knowledge, continuous-time procedure and continuous

space, where evaders moves possibly independently of pursuers. In [74] a practical ad-hoc

pursuit algorithm is introduced for the pursuers to capture a finite number of evaders

and super-evaders (the evaders with greater velocities compared to the pursuers). It is

to be noted the pursuit-evasion procedure in [74] is in the discrete-time framework, and

also the magnitude of the velocity of each pursuer and each evader is assumed to be

constant. Moreover, no justification or theoretical proof is provided in [74] for the opti-

mality or sub-optimality of the algorithm. In [75], a hierarchical approach is introduced

to tackle the problem using the combinatorial optimization. In order to hierarchically

decompose the problem and obtain a suboptimal engagement between the pursuers and

evaders, the authors in [72] derive a combinatorial optimization problem. Most of the

results in the literature on pursuit-evasion games suffer from the curse of dimensionality,

significant computational loads and lack of practical on-line implementations [72, 75].

Moreover, in order to define the game in pursuit-evasion problems, it is assumed that

the evaders are intelligent and rational, which implies that their behaviors and policies

are known [72]; this is not the case, however, in many applications.
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The target interception problem has also been investigated in the operations re-

search and computer science. One of the most widely studied related problems in this

area is the famous Traveling Salesman Problem (TSP), where it is desired to find the

shortest tour passing through a number of cities assuming that the list of cities and their

mutual distances are given [76]. It is shown in [77] that TSP is an NP-complete com-

binatorial optimization problem. Different formulations are proposed for the problem,

including one in the context of integer programming optimization [78]. The multifari-

ous variations of the TSP are extensively studied in the literature. In the Asymmetric

Traveling Salesman Problem (ATSP), the distance between any pair of cities depends

on the traveling direction [79]. In the formulation of time-constrained TSP, a time win-

dow is considered for any city in which the corresponding city is to be visited [80]. In

another variant of problem, a profit is associated with visiting each city and the ob-

jective is to find a subset of cities for simultaneously maximizing the collected profits

and minimizing the travel costs [81]. Similarly, in the orienteering problem, a reward is

considered for each city and it is desired to determine a length-limited path for visiting

a set of cities and collecting the corresponding rewards such that the total collected

rewards is maximized [82]. The multiple TSP (mTSP) is an extension of the problem

with more than one salesman [83]. The Vehicle Routing Problem (VRP) is another

extension where there are a number of visiting points, referred to as way-points, and
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a number of vehicles in a depot; the vehicles are to visit the way-points in an opti-

mal fashion [84, 85]. The vehicle routing problem has many variants including VRP

with Pickup and Delivery (VRPPD) [86], VRP with Time Windows (VRPTW) [87],

Capacitated VRP (CVRP) [88], VRP with Multiple Trips (VRPMT) [89], Open VRP

(OVRP) [90] and Dynamic VRP (DVRP) [91]. In all of these problems, the target

points are located inside the space from the beginning of the operation. In the m-vehicle

Dynamic Traveling Repairman Problem (m-DTRP), on the other hand, is one of the

most general forms of VRP, where a number of vehicles travel with bounded velocity

in a bounded environment. The vehicles are supposed to service a set of demands with

stochastic arrival times and stochastic location [92–97]. For m-DTRP, adaptive and

receding-horizon-based policies are introduced in [97] and their optimality is proved for

the cases of light and heavy demand loads. In addition to the above papers where only

static points are considered, in [98] a different type of traveling salesman problem is

introduced where each target point moves with a constant velocity. The Moving-Target

VRP is studied in [99], where each target appears on a line and then moves in the space

with a constant velocity. A variant of TSP is discussed in [100], where the targets move

with the same constant velocity, and then a robotic arm moves in the space to collect the

targets and deliver them to a certain depot. A similar case is discussed in [101], where

the arm is assumed to have a limited capacity. The problem of dynamic vehicle routing

with moving targets is investigated in [102], where each target should be visited in a
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certain time window. In [103, 104], DVRP with moving targets is investigated, where

each target appears on a disc according to a spatiotemporal probability distribution and

moves radially with constant speed toward escaping the disc while a single vehicle aims

at capturing them before they escape. In all of the above papers, it was assumed that

either the target points are fixed, or if they are moving, their velocities are known and

fixed.

Reward collection in multi-agent systems provides a framework for a variety of

problems such as coverage, data collection and multi-target interception [105–109]. In

operations research, on the other hand, the prize-collecting TSP [110] and orienteering

problem [82] are addressed. In this framework, one or more agents are collect rewards by

accomplishing a number of tasks. The reward of each task can be fixed or it can depend

on some other parameters and variables such as time or location [107–109,111,112]. They

may also be some constraints in this type of problems to introduce a feasible space for

collecting rewards. For example, in [105] it is assumed that some obstacles of polygonal

shape exist, imposing physical constraints on the motions of vehicles, and consequently

on reward collection. In the target interception problem, the rewards can be properly

associated with the targets. In [108], the cooperative multi-target interception problem

is tackled, with no a priori knowledge about the arrival times of the target points, using

a cooperative receding horizon (CRH) control scheme. In [113], the authors further

improve the reward-collection-based controller developed in [108], overcoming some of
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its limitations such as poor performance and instability in target trajectories.

In addition to the reward-collection frameworks discussed above, there are some

other approaches [114]. In [115], the moving objects with known kinematics are assigned

to the vehicles using dynamic Voronoi partitioning. The multi-target interception prob-

lem for a set of homogeneous moving targets with unicycle model is addressed in [116]

by means of a distributed cooperative strategy. In [117], a Mixed-Integer Linear Pro-

graming (MILP) approach is used to find trajectories for a group of vehicles such that

they visit a set of fixed way-points with some time constraints. Similar to [117], a MILP

formulation is also used in [118] to provide a cooperative control approach for guarding

a defense zone from a group of invaders.

In all of the above-mentioned papers, some restrictive assumptions are made: the

targets are assumed to be stationary points in [92,108]; the targets move with constant

velocity [99, 103, 104]; only a single agent is to accomplish the mission in [103, 104]; the

arrival times of the targets are assumed to be known in [115,116], and certain conditions

are imposed on targets’ dynamics [72,74]. Moreover, no performance metric is considered

for the target-vehicle assignments in [74], and the designed algorithms in [117, 119]

are computationally demanding. Considering these restrictions and drawbacks, it is

desired to utilize a time-decomposition-based method, such as a receding horizon scheme,

for designing a controller for an uncertain multi-target interception systems where the

targets arrive in the mission space sequentially at a priori unknown time instants, in a
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[74] � � � � � � � �
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[115] � � � � � � � �

[107], [113], [108], [109] � � � � � � � �

Table 1.1: Comparison Table

priori unknown position, and then move on a priori unknown trajectories. A comparison

between the main characteristics of the existing results discussed above is summarized

in Table 1.1.

1.1 Outlines of Thesis

In Chapter 2, a cooperative receding horizon controller (CRHC) is designed to track

moving targets with unknown dynamics using a team of vehicles. Each target is assigned
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a time decreasing reward, which is collectible only if the target is visited by some vehicles,

and the team objective is to maximize the total collected rewards. At each iteration,

the vehicles face multiple targets, some of which may be new in the target space. Each

target has an a priori unknown trajectory with a bounded velocity. As the targets may

arrive sequentially in time, vehicles should visit them in minimal time to avoid a burst

of unvisited target population and at the same time to have a stationary state.

In Chapter 3, a Receding Horizon-based Dynamic Decision-making Controller

(RHDDC) is designed for heading control of a single vehicle toward intercepting tar-

gets which arrive in the mission space sequentially, moving with unknown dynamics.

Similar to [103], a single vehicle is used to capture the sequence of targets with arrival

times modeled stochastically. The mission space, on the other hand, is assumed to be

a compact set in an Euclidean space (as opposed to a disk). The arrival times of the

targets are modeled by a renewal process which is a generalization of the Poisson pro-

cess. One of the important characteristics of the present problem setting is that no

spatial distribution for the initial positions of targets is considered. Furthermore, target

trajectories and dynamics are assumed to be a priori unknown. Similar to Chapter 2,

the designed strategy is based on assigning rewards for capturing the targets, and pre-

dicting the future target positions. Convergence analysis is provided, and simulations

for different scenarios concerning frequent and infrequent target arrivals are presented.

In Chapter 4, a Cooperative Receding Horizon Controller is designed for heading

9



control of a set of vehicles toward intercepting targets, arriving the mission space in a

priori unknown times and a priori unknown positions, and also moving with a priori

unknown dynamics. Here, similar to Chapter 2, a team of vehicles are supposed to cap-

ture a set of targets moving with a priori unknown trajectories, and further generalize

it by assuming that the arrival positions and times are a priori unknown. Moreover,

vehicles have limited ranges for sensing the targets and also limited ranges for commu-

nication, i.e., each vehicle can only sense the targets located in a region around it and

also communicate only with vehicles with distance less than a prescribed range. Dealing

with this level of uncertainties in the environment and vehicles limitations, a distributed

on-line controller using receding horizon is required. Toward this goal, the method in-

troduced in Chapter 2 has been extended by exploiting recent developments in games

theory. In this approach, each of the targets is assigned a time decreasing reward, which

is collectible only if the target is visited by some vehicles, and considering these rewards

and problem constraints, a utility function is designed with respect to each vehicle. The

resulting structure forms a potential game with total collectible reward as its potential

functions. Using appropriate learning dynamics, vehicles decide upon their strategies

and consequently on their headings.

Next, in Chapter 5, the cooperative multi-target interception problem in uncer-

tain environment with double-integrator vehicles is investigated. Similar to Chapter 2,

the problem is reformulated as a maximum reward collection problem which maximize

10



the expected reward collectible from the set of available targets in the mission space.

The reward function is a time discounting function assigned to each target and can be

collected only if the target is visited by a vehicle. However, since targets are assumed

to be moving objects with a priori unknown arrival times and trajectories, the existing

uncertainties in the environment render the one-shot optimization rather impractical.

Therefore, a cooperative receding horizon controller is utilized toward maximizing the

collected reward and based on the prediction of the future positions of targets with the

given limited information.

In Chapter 6, a Cooperative Receding Horizon (CRH) controller is presented,

where agents are dynamically clustered and assigned to the targets to collect the re-

spective rewards. Similar to [120–122], the proposed controller sequentially solves an

optimization problem with a payoff function and a set of constraints. The constraints

are updated in each iteration using the existing limited information over a planning hori-

zon. The payoff function accounts for the estimation of maximum total reward expected

to be collected by the end of mission, the clustering and assignments strategies, uniform

configurations of agents in vicinity of the targets and finally, the imperfection of clusters.

In the designed scheme, the agents are not forced to be committed to fixed clusters or

targets, which is desirable for the uncertain environments.

Finally, the contributions of thesis are reviewed and summarized in Chapter 7.

Also, further research directions are referred and introduced in Chapter 7.
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Chapter 2

Cooperative Receding Horizon

Control for Multi-Target

Interception in Uncertain

Environments

In this chapter, the problem of cooperative dynamic vehicle routing for tracking a set

of moving objects with a priori unknown trajectories and dynamics is investigated.

The notion of “visiting a target” is defined to describe the tasks and a cooperative

receding horizon controller is designed to address the problem. The design is based on

the prediction of the future positions of targets with limited information, and a reward
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allocation strategy for accomplishing the defined tasks. A target tracking scenario is

considered, where a sequence of targets arrive in the mission space. It is shown that the

number of targets which are not visited by any vehicle will remain sufficiently small in

time, if the arrival of the targets is sufficiently infrequent.

2.1 Problem Formulation

Consider a set of N moving targets and a set of M vehicles in a mission space, denoted

by M, which is a closed convex subset of R
d. Let IT = {1, 2, 3, . . . , N} and IV =

{1, 2, 3, . . . ,M} be the index sets for targets and vehicles, respectively. Let also xj(t) ∈

R
d and yi(t) ∈ R

d be respectively the position vectors of vehicle j and target i at any

given time t ∈ [0, T ], for any j ∈ IV and i ∈ IT , where T is a finite final time horizon for

the accomplishment of the mission.

The dynamics of the jth vehicle for j ∈ IA is given by

ẋj(t) = uj(t) = Vj(t)dj(t), ∀j ∈ IV , (2.1)

where dj(t) ∈ Sd−1 = {d ∈ Rd; ‖d‖ = 1} is the control input for the direction of the

velocity vector and Vj(t) ∈ [0, Vj] is the control input for its magnitude, for any j ∈ IV .

The trajectory of each target is a C1 curve in the mission spaceM which is assumed

to satisfy the following two geometric conditions.
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Assumption 1. (Global Geometric Condition) If yi(τ) ∈ M for some τ ∈ [0, T ] and

any i ∈ IT , then yi(t) ∈ M for all t ∈ [τ, T ].

The global geometric condition on targets’ trajectories guarantees that once a

target is detected in the mission space, it will remain inside it until the end of the

mission. Not only is this property dependent on the targets’ trajectories, it also depends

on the geometry of the mission space. In the special case when M = R
d, then the global

geometric condition is satisfied automatically.

Assumption 2. (Local Geometric Condition) There exists non-negative scalars v, B

such that for any i ∈ IT and τ ∈ [0, T ],

‖ d

dt
yi(τ)‖ ≤ v, (2.2)

and

sup
t∈(τ,T ]

‖αi(t, τ)‖ ≤ B, (2.3)

where αi(t, τ) is a C1 function satisfying the following equality

yi(t) = yi(τ) +
d

dt
yi(τ)(t− τ) +

1

2
αi(t, τ)(t− τ)2. (2.4)

Assume that yi(t) is a C2 function, and that there exist non-negative scalars v, B
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such that for any i ∈ IT and τ ∈ [0, T ], the following conditions hold:

‖ d

dt
yi(τ)‖ ≤ v, ‖ d2

dt2
yi(τ)‖ ≤ B. (2.5)

Then, from Taylor’s theorem with mean-value form of the remainder [127], yi(t) satisfies

Assumption 2.

Assumption 3. The position and velocity vectors are available at the beginning of each

time horizon (i.e., at time instant τ in (2.4)).

As a result of Assumption 3, one can estimate the positions of the targets at any

future instant within the finite horizon. Let this estimate be denoted by ŷi(·) for any

i ∈ IT . Then

ŷi(t) = yi(τ) + vi(τ)(t− τ), t ∈ [τ, T ]. (2.6)

Definition 1. Given a positive scalar si, i ∈ IT , the jth vehicle is said to visit the ith

target at time t, if ‖xj(t)− yi(t)‖ ≤ si.

Remark 1. The scalar si in Definition 1 is introduced mainly for practical considerations

in relation to the size of the target. More precisely, while the dynamic equation of each

target is implicitly expressed as a point mass, the scalar si is used to account for the size

of the ith target as a rigid body. For instance, if the ith target has a spherical shape with
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radius r1 and each vehicle also has a spherical shape with radius r2, then si := r1 + r2.

Corresponding to each target, a task is defined which is completed only if the target

is visited by at least one vehicle.

2.2 Cooperative Receding Horizon Scheme

In order for the vehicles to track the targets, a time-decreasing reward is assigned to each

task which can be collected only if the target is visited (i.e., the task is accomplished).

The goal of the team is to maximize the collected rewards. The vehicles plan their

paths iteratively, where at the beginning of each iteration they calculate their headings

and the size of movements such that an estimation of the future collectible rewards is

maximized.

Let Ri be the maximum reward considered for task i before any deprivation results

due to the passage of time. Let also ρi : [0, T ] → [0, 1] be a decreasing function of time

representing the rate of reward loss over time. One can now form a function Riρi,

called reward function, which satisfies the desired properties discussed earlier. There

are different candidate functions for ρi which model scheduling and time priorities. In

particular, consider the following discount function

ρi(t) = 1− fi
T
t, i ∈ T (2.7)

18



where fi ∈ (0, 1] is a target-specific loss parameter which is chosen to reflect different

cases of interest.

2.2.1 Cooperative Structure

Given the positions of the targets and vehicles in the mission space M, it is desired to

properly assign tasks to the vehicles. More precisely, the objective is to find a set of

assignments, each one denoted by

aij : MM ×MN → [0, 1], ∀i ∈ IT , ∀j ∈ IV (2.8)

reflecting the amount of interest of vehicle j in target i being assigned to it, for any

i ∈ IT , j ∈ IV .

There are a variety ofvisited hods for designing the function in (2.8) . For instance,

one can use a Voronoi-based assignment, where each vehicle is typically assigned to one

of its nearest targets. In this case, a map π : IV → IT given by

π(j) ∈ argmin
i∈IT

‖xj − yi‖, ∀j ∈ IV ,

one can define aij = δπ(j)j, where δ is the Kronecker delta function. The competition-

based assignment, on the other hand, considers two nearest vehicles whose index belongs
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to B(yi) ⊂ IV for each target i [108]. A relative distance function is then defined as

δj(yi) =

⎧⎪⎪⎨
⎪⎪⎩

‖xj−yi‖∑
k∈B(yi)

‖xk−yi‖ , j ∈ B(yi),

1, j /∈ B(yi),
∀j ∈ IV .

The assignment function is subsequently chosen as aij = q(δj(yi)), for any i ∈ IT and

j ∈ IV , with

q(δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, δ ≤ Δ,

1
1−2Δ [(1−Δ)− δ], Δ ≤ δ ≤ 1−Δ,

0, 1−Δ ≤ δ,

where Δ ∈ [0, 1/2) is a prespecified parameter which can represent the capture radius

in [108]. The second assignment scheme is more general than the first one.

Both of the assignment schemes described above suffer from two deficiencies: i) In

the assigning procedure, they do not consider all the vehicles and targets at the same

time. As a consequence, in the Voronoi-based assignment some targets may be remained

unassigned to any vehicle, and in the proximity-based assignment some vehicles may be

assigned to no target; ii) since the assignments are, to some extent, designed explicitly

and are set to have a special structure, they may not constitute an optimal solution.

Before introducing the (implicit) optimal assignment, it is required to investigate

the structure of task allocation. First, in order for every vehicle to be fully devoted to
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the tasks, the sum of its task assignments must be equal to one, i.e.

∑
i∈IT

aij(x, y) = 1, ∀j ∈ IV , (2.9)

where x = [x1, x2, . . . , xM ] and y = [y1, y2, . . . , yN ]. As for the targets, there are two

possibilities: i) M ≥ N and ii) M ≤ N . In the first case, in order to increase the

chances of task accomplishments, it is reasonable to act generously and over-assign the

targets to the vehicles, as there is at least one vehicle for each target, i.e.

∑
j∈IV

aij(x, y) ≥ 1, ∀i ∈ IT . (2.10)

when M < N , on the other hand, since the number of vehicles is less than the number

of targets, in order to manage the resources efficiently and accomplish the tasks as much

as possible, it is more preferable to act cautiously and under-assign the targets to the

vehicles, i.e.

∑
j∈IV

aij(x, y) ≤ 1, ∀i ∈ IT . (2.11)

Note that the equality in (2.10) holds when M = N .

Relations (2.9), (2.10) and (2.11) form a set of constraints that the optimal assign-

ment {aij}i∈IT ,j∈IV should satisfy. Denote by AIT ,IV the set of the assignments which
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satisfy these constraints, i.e.

AIT ,IV = {A = (aij(x, y))|IT |×|IV | : M|IV | ×M|IT | → [0, 1]|IT |×|IV | ; AT1|IT | = 1|IV |,

|IV | ≥ |IT | ⇒ A1|IV | ≥ 1|IT |, |IV | ≤ |IT | ⇒ A1|IV | ≤ 1|IT |},
(2.12)

where 1n represents an n dimensional column vector of ones.

It is straightforward ro show that a Voronoi-based assignment satisfies (2.9), while

a proximity-based assignment satisfies (2.10) and (2.11).

2.2.2 Cooperative Receding Horizon Trajectory Construction

The cooperative receding horizon controller (CRHC) iteratively generates a set of head-

ings, step sizes and optimal assignments for each vehicle such that the resulting trajec-

tories guide the team toward maximizing the collected rewards. Let the time instants

at which the CRHC is applied be denoted by {tk}∞k=0 ∈ [0, T ]. At any time instant

tk, an optimization problem is solved, which provides an estimation of the collectible

rewards in the future. The problem composition is based on the current positions of the

vehicles and targets, and also predicted future positions of the targets. The solution of

the problem provides the optimal control input uk = [u1(tk), u2(tk), . . . , uM(tk)] as well

as the optimal assignment {aij(x(tk+1), ŷ(tk+1))}i∈IT ,j∈IV .

Let Hk be the CRHC planning horizon. Here, for the case of simplicity, take action

horizon the same as planning horizon. Therefore tk+1 = tk + Hk. Assuming that the
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control input uj(tk) is applied to vehicle j, for any j ∈ IV . Then the planned position of

vehicle j at time tk+1 is given by

xj(tk+1) = xj(tk) + uj(tk)Hk, j ∈ IV .

Due to the current positions of targets and vehicles, and also the control input uk, the

predicted earliest possible time that vehicle j can visit target i is

τij(u
k, tk) = (tk +Hk) +

‖xj(tk +Hk)− ŷi(tk +Hk)‖
Vj + v

.

The above prediction will be true if the estimate ŷi(tk +Hk) is exact, and vehicle j and

target i move toward each other with maximum speed. Thus, if aij(x(tk+1), ŷ(tk+1)) is

the optimal assignment, it is expected to remain unchanged until vehicle j visits target

i. Therefore, one have

aij(x(τij(u
k, tk)), ŷ(τij(u

k, tk))) = aij(x(tk+1), ŷ(tk+1)). (2.13)

Accordingly, at the time tk+1 one can estimate the maximum reward which the team

is expected to collect by the time the mission is accomplished. Denote this predicted

expected reward by Rk+1.
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In order to formulate Rk+1, let ρ̃ij(u
k, tk) = ρi[τij(u

k, tk)] and

ãij(u
k, tk) = aij(x(τij(u

k, tk)), ŷ(τij(u
k, tk))).

From the definition of Rk+1, we have

Rk+1(uk, tk) =
∑

i∈IT (tk)

∑
j∈IV (tk)

Riρ̃ij(u
k, tk)ãij(u

k, tk), (2.14)

where the time-dependency of the targets set and vehicles set is explicitly shown by

using argument tk in the corresponding index set. Note that Rk(uk, tk) is in fact an

estimation performed at the current time, tk, for the total reward that the team can

expect at the next time instant tk+1 to be capable of collecting by the final time T .

Now, one can present the optimization problem Pk, as follows:

max Rk+1(uk, tk)

s.t. Ã(uk, tk) ∈ Ak,

uk ∈ Uk.

(2.15)

where Ak = AIT (tk),IV (tk) and Uk = {u = [u1, u2, . . . , uM ]

∈ R
Md; uj ∈ R

d, ‖uj‖ ≤ Vj, ∀j ∈ IV} is the set of admissible heading control.

For convenience of notation, xj(tk), yi(tk) and ŷi(tk) will hereafter be denoted by

xkj , y
k
i and ŷki , respectively, for any i ∈ IT and j ∈ IV . Accordingly, the corresponding
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vectors are represented by xk, yk and ŷk.

2.3 Stationary Analysis of Paths in Cooperative Re-

ceding Horizon

In this section, a theoretical analysis on the vehicles’ trajectories in the presence of

infinite number of temporally-rare targets appearing sequentially in the mission space is

presented.

Assume the mission space M is compact, and let {Ti}∞i=0 be a sequence of strictly

increasing non-negative real numbers with T0 = 0, where Ti represents the arrival time

of the ith target, for any i ∈ N. Given a non-negative scalar Δ and and an integer k ∈ N,

the sequence {Ti}∞i=0 is (Δ, k)-rare, if Tn+k − Tn > Δ, for all n ∈ N ∪ {0}. As will be

demonstrated in the sequel, for any (Δ, 1)-rare sequence {Ti}∞i=0, there exists a positive

scalar Δ0 such that if Δ > Δ0, then with two vehicles in the mission space and at

most two targets at the initial time T0, the number of unaccomplished tasks will always

remain less than or equal to two.

Definition 2. The trajectory x(t) = [x1(t), x2(t), . . . , xM(t)] ∈ Md is called a stationary

trajectory if ‖xj(t)− yi(t)‖ ≤ si for some th ∈ [0, T ], refered to as the hitting time, and

some indices i ∈ IT , j ∈ IV .

Lemma 1. Consider the vectors p, q, v ∈ R
d and the set of non-negative real numbers

25



V,H,B ∈ R>0. Assume that ‖v‖ < V , and that α : [0, H] → R
d is a bounded vector-

valued function defined over the interval [0, H] with maxt∈[0,H] ‖α(t)‖ ≤ B. Define the

set

Ωq,H = {(w, t) ∈ R
d × R; t ∈ [0, H], ‖w − q‖ ≤ V t}, (2.16)

which is a convex compact subset of R
d, and let z : [0, H] → R

d be given by z(t) =

p + vt+ 1
2
α(t)t2. Define also

H < min{ ‖p− q‖
V + ‖v‖ ,

V − ‖v‖
B

}, (2.17)

and

(w∗, t∗) = argmin
(w,t)∈Ωq,H

1

2
‖w − p− vt‖2. (2.18)

Then

i) t∗ = H, ‖w∗ − q‖ = V H;

ii)

‖p− q‖ − ‖w∗ − z(H)‖ ≥ f(H) (2.19)

where f(h) = h(V − ‖v‖ − 1
2
Bh), and

iii) ‖w̃∗ − q‖ = V H and ‖p− q‖ − ‖w̃∗ − z(H)‖ ≥ f(H), where

w̃∗ = argmin‖w−q‖≤V H‖w − p− vH‖. (2.20)
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Proof. Proof of part (i) Since (2.18) presents a convex optimization problem, it admits

a unique solution which can be calculated using Karush-Kuhn-Tucker (KKT) theorem

[128], [129]. Rewriting the problem in a standard form yields

(w∗, t∗) = argmin 1
2
‖w − p− vt‖2,

s.t. ‖w − q‖2 − (V t)2 ≤ 0,

t−H ≤ 0,

−t ≤ 0.

Now, there exist non-negative real Lagrange multipliers μ1, μ2, and β such that

0 = w∗ − p− vt∗ + β(w∗ − q), (2.21a)

0 = (p + vt∗ − w∗)Tv − βV 2t∗ + μ1 − μ2, (2.21b)

0 = β(‖p∗ − q‖2 − (V t∗)2), (2.21c)

0 = μ1(t
∗ −H), (2.21d)

0 = −μ2t
∗. (2.21e)
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From the inequality (2.17) and on noting ‖v‖ < V , it is concluded that

‖w∗ − p− vt∗‖ = ‖(w∗ − q) + (q− p)− vt∗‖

≥ ‖q− p‖ − ‖w∗ − q‖ − ‖v‖t∗

≥ ‖q− p‖ − V t∗ − ‖v‖t∗

≥ ‖q− p‖ − (V + ‖v‖)H

> 0.

This means that w∗ − p − vt∗ �= 0, which implies β > 0 and w∗ − q �= 0. On the other

hand, it results from the equations in (2.21), that ‖w∗ − q‖ = V t∗. If t∗ = 0, then

w∗ − q = 0, which is a contradiction. Therefore t∗ �= 0, and consequently, μ2 = 0. From

the equations in (2.21), one can also deduce

μ1 = −(p + vt∗ − w∗)Tv + βV 2t∗

= −β(w∗ − q)Tv + βV 2t∗

= β(V 2t∗ − (w∗ − q)Tv).

Now, using the Cauchy-Schwartz inequality [130], one arrives at

μ1 ≥ 2β(V 2t∗ − ‖w∗ − q‖‖v‖)

≥ 2β(V 2t∗ − V ‖v‖t∗)

≥ 2βV t∗(V − ‖v‖) > 0.
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It follows from (2.21d) and the above inequality that t∗ = H, and therefore ‖w∗ − q‖ =

V H. These completes the proof of part (i).

Proof of part (ii) Since

w∗ =
β

β + 1
q +

1

β + 1
(p + vH),

and β > 0, thus w∗ is on the line connecting the points q and p+vH in R
d, which yields

in

‖(q− w∗) + (w∗ − p− vH)‖ = ‖q− w∗‖+ ‖w∗ − p− vH‖.

This results in

‖q− p‖ = ‖(q− p− vH) + vH‖

≥ ‖q− p− vH‖ − ‖vH‖

= ‖(q− w∗) + (w∗ − p− vH)‖ −H‖v‖

= ‖q− w∗‖+ ‖w∗ − p− vH‖ − ‖v‖H

= V H + ‖w∗ − p− vH‖ − ‖v‖H,

(2.22)

and hence

‖q− p‖ − ‖w∗ − p− vH‖ ≥ (V − ‖v‖)H. (2.23)

On the other hand, it results from the relations z(t)−p−vt = 1
2
α(t)t2 and maxt∈[0,H] ‖α(t)‖ ≤
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B, that ‖z(H)− p− vH‖ ≤ 1
2
BH2, which along with the relation

‖w∗ − z(H)‖ ≤ ‖w∗ − p− vH‖+ ‖p + vH − z(H)‖,

leads to

‖w∗ − z(H)‖ ≤ ‖w∗ − p− vH‖+ 1
2
BH2. (2.24)

By combining (2.23) and (2.24), one arrives at

‖p− q‖ − ‖w∗ − z(H)‖ ≥ H(V − ‖v‖ − 1

2
BH). (2.25)

This concludes the proof of part (ii).

Proof of part (iii) As the first step of the proof, note that

w̃∗ = argmin‖w−q‖≤V H

1

2
‖w − p− vH‖2. (2.26)

Now, let

w∗(t) = argmin
‖w−q‖≤V t

1

2
‖w − p− vt‖2.

for some t ∈ [0, H], which means w̃∗ = w∗(H). Moreover,

min
(w,t)∈Ωq,H

1

2
‖w − p− vt‖2 = min

0≤t≤H
min

‖w−q‖≤V t

1

2
‖w − p− vt‖2.
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Thus

1

2
‖w∗ − p− vt∗‖2 ≤ 1

2
‖w̃∗ − p− vH‖2. (2.27)

From (2.26) and on noting that t∗ = H and ‖w∗ − q‖ = V H (according to part (i) of

the lemma), it is concluded that

1

2
‖w∗ − p− vt∗‖2 ≥ 1

2
‖w̃∗ − p− vH‖2. (2.28)

It follows from (2.27) and (2.28) that

1

2
‖w∗ − p− vt∗‖2 = 1

2
‖w̃∗ − p− vH‖2. (2.29)

Since (2.18) and (2.20) are strictly convex, thus w∗ = w̃∗. The proof of part (iii) follows

immediately from parts (i) and (ii).

Remark 2. The function f(h) = h(V −‖v‖− 1
2
Bh) introduced in Lemma 1 is a concave

quadratic function which is: (i) non-negative only in the interval I = [0, 2(V −‖v‖)/B];

(ii) zero only at the endpoints of interval; (iii) strictly increasing in interval [0, (V −

‖v‖)/B], and (iv) attains its maximum at the midpoint of the interval I. Therefore,

f(H) is positive, and if

‖p− p‖ ≥ V 2 − ‖v‖2
B

,
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then the function f takes its maximum value at H, i.e.

f(h) ≤ f(H) =
(V − ‖v‖)2

2B
, ∀h ∈ R.

For simplicity of the analysis, it is assumed hereafter that f1 = f2 = 1 and V1 =

V2 = V .

Theorem 1 (Convergence of the scheme). Consider the optimal cooperative receding

horizon problem presented in (2.15), and let (M,N) ∈ {(2, 1), (2, 2)}. Let also

Hk = min{min
j∈IV

||xj(tk)− yi(tk)|| − 1
2
si

v + V
,
V − v

3B
}. (2.30)

and assume that v < V . Then for any initial choice of A satisfying (2.9), (2.10) and

(2.11), the cooperative receding horizon algorithm is finite-time convergent, i.e., the ve-

hicles reach the targets in finite time.

Proof. During the time interval [tk, tk +Hk] the control input u
k is constant. Therefore,

the assignment maps ãij(u
k, tk), i ∈ IT , j ∈ IV , are constant in this time interval. Denote

these assignment maps by ak+1
ij , and consider the two possible scenarios (M,N) = (2, 1)

and (M,N) = (2, 2) separately.

Case I: In this case, IT = {1} and IV = {1, 2}. It results from equations (2.9),
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(2.10) and (2.11), that ak+1
11 = ak+1

21 = 1. Hence

∑
i∈IT

∑
j∈IV

Riρ̃ij(u
k, tk)ãij(u

k, tk) = R1ρ11(u
k, tk)

+R1ρ12(u
k, tk).

(Recall that R1 is the maximum reward for the target). Since

ρij(u
k, tk) = 1− 1

T
(tk +Hk +

‖xj(tk +Hk)− ŷi(tk +Hk)‖
V + v

). (2.31)

One can write

∑
i∈IT

∑
j∈IV

Riρ̃ij(u
k, tk)ãij(u

k, tk) = 2R1(1−
1

T
(tk +Hk))

− R1

T (V + v)

∑
j∈IV

‖xj(tk +Hk)− ŷ(tk +Hk)‖.

Since 2R1(1− 1
T
(tk+Hk)) is constant, the optimization problem (2.15) can be simplified

to

min
∑

j∈IV ‖x
k+1
j − ŷk+1‖

s.t. xk+1
j = xkj + uk

j , j ∈ IV ,

uk ∈ Uk.

(2.32)
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From the definition of Uk, the above problem can be reformulated as

min ‖wk
1 − ŷk+1‖+ ‖wk

2 − ŷk+1‖

s.t. ‖wk
j − xkj‖ ≤ V Hk, j ∈ IV ,

where wk
j := xkj + uk

j , j = 1, 2. The above problem is equivalent to

w∗,kj = argmin‖wk
j−xkj ‖≤V Hk

‖wk
j − ŷk+1‖, j ∈ IV .

Using Lemma 1, equation (2.4) and Assumption 2, the following relation is obtained

‖xkj − yk‖ − ‖xk+1
j − yk+1‖ ≥ f(Hk), j ∈ IV .

Define Jk = ‖xk1 − yk‖+ ‖xk2 − yk‖. Then

Jk − Jk+1 ≥ 2f(Hk). (2.33)

If the trajectory [x1, x2] ∈ R
2d is non-stationary, i.e., for all k ∈ N and j ∈ IV , ‖xkj−yk‖ ≥

s, then

Hk ≥ s = min

{
min
i∈IT

si
2(v + V )

,
V − v

3B

}
> 0. (2.34)

Thus, it results from Remark 2, that Jk−Jk+1 ≥ 2f(s) > 0. It can be prove by induction
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that

J0 − Jm ≥ 2mf(s), m ∈ N . (2.35)

Since J0 and f(s) are strictly positive, hence limm→∞ Jm = −∞ which contradicts the

fact that Jm ≥ 0, for all m ∈ N. Thus, the trajectory is stationary, i.e., there exist a

finite k and some j ∈ IV such that ‖xkj − yk‖ < s. This completes the proof.

Case II: In this case, IT = {1, 2} and IV = {1, 2}. From (2.12), it is straightforward to

show that in this special case ak+1
12 = ak+1

21 = 1− ak+1
11 and ak+1

22 = ak+1
11 or equivalently

Ak =
{
⎛
⎜⎜⎝

a 1− a

1− a a

⎞
⎟⎟⎠ ; a ∈ [0, 1]

}
.

As a result

∑
i∈IT

∑
j∈IV

Riρ̃ij(u
k, tk)ãij(u

k, tk) = R1ρ11(u
k, tk)a

k+1
11 +R1ρ12(u

k, tk)(1− ak+1
11 )+

R2ρ21(u
k, tk)(1− ak+1

11 ) +R2ρ22(u
k, tk)a

k+1
11 .

It follows from the above result and equation (2.31) that

∑
i∈IT

∑
j∈IV

Riρ̃ij(u
k, tk)ãij(u

k, tk) = (R1 +R2)(1−
1

T
(tk +Hk))

− 1

T (V + v)
J(xk+1

1 , xk+1
2 , ŷk+1

1 , ŷk+1
2 , ak+1),
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where the function J is defined below

J(x1, x2, y1, y2, a) = R1a‖x1 − y1‖+R1(1− a)‖x2 − y1‖

+R2(1− a)‖x1 − y2‖+R2a‖x2 − y2‖.
(2.36)

Since (R1 + R2)(1 − 1
T
(tk + Hk)) is constant, the optimization problem (2.15) can be

written as

min J(xk+1
1 , xk+1

2 , ŷk+1
1 , ŷk+1

2 , ak+1)

s.t. xk+1
j = xkj +Hku

k
j , j ∈ IV ,

ak+1 ∈ [0, 1],

uk ∈ Uk.

(2.37)

Similarly to the previous case, the above problem can be reformulated as

min J(wk
1 ,w

k
2 , ŷ

k+1
1 , ŷk+1

2 , a)

s.t. ‖wk
j − xkj‖ ≤ V Hk, j ∈ IV ,

ak+1 ∈ [0, 1].

(2.38)

Let (w∗,k1 ,w∗,k2 , a∗,k+1) be the solution of (2.38). Also, for any a ∈ [0, 1], let

(w∗1,a,w
∗
2,a) = argmin J(w1,w2, ŷ

k+1
1 , ŷk+1

2 , a)

s.t. ‖wj − xkj‖ ≤ V Hk, j = 1, 2.

(2.39)
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Note that for a = 0,

J(x1, x2, y1, y2, 0) = R1‖x2 − y1‖+R2‖x1 − y2‖, (2.40)

and for a = 1,

J(x1, x2, y1, y2, 1) = R1‖x1 − y1‖+R2‖x2 − y2‖. (2.41)

It results from equations (2.40) and (2.41) that for any a ∈ {0, 1}, the optimization

problem (2.38)

(w∗,k1,a,w
∗,k
2,a) = argmin R2−a‖wk

1 − ŷk+1
2−a‖+Ra+1‖wk

2 − ŷk+1
a+1‖,

s.t. ‖wk+1
j − xkj‖ ≤ V Hk, j ∈ IV .

(2.42)

which can be decomposed to the following two optimization problems

w∗,k1,a = argmin‖wk
1−xkj ‖≤V Hk

R2−a‖wk
1 − ŷk+1

2−a‖,

and

w∗,k2,a = argmin‖wk
2−xkj ‖≤V Hk

R1+a‖wk
2 − ŷk+1

1+a‖.
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Using Lemma 1, equation (2.4) and Assumption 2, it is concluded that

‖xk1 − yk2−a‖ − ‖w∗1,a − yk+1
2−a‖ ≥ f(Hk), j ∈ IV ,

and

‖xk2 − yk1+a‖ − ‖w∗2,a − yk+1
1+a‖ ≥ f(Hk), j ∈ IV .

Therefore, for any a ∈ {0, 1}, the following relation holds

J(xk1, x
k
2, y

k
1 , y

k
2 , a)− J(w∗1,a,w

∗
2,a, y

k+1
1 , yk+1

2 , a) ≥ (R1 +R2)f(Hk). (2.43)

On the other hand, from the definition of J , for any x1, x2, y1, y2 ∈ R
d and a ∈ [0, 1],

one can write

J(x1, x2, y1, y2, a) = (1− a)J(x1, x2, y1, y2, 0) + aJ(x1, x2, y1, y2, 1). (2.44)

Define āk = argmina∈{0,1} J(x
k
1, x

k
2, y

k
1 , y

k
2 , a) to obtain

J(xk1, x
k
2, y

k
1 , y

k
2 , a

k) ≥ J(xk1, x
k
2, y

k
1 , y

k
2 , ā

k). (2.45)

Since for any i ∈ IT the relation |yki − ŷki | ≤ 1
2
BH2

k holds, using the definition of J
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(equation (2.36)), it is straightforward to show that

|J(x1, x2, ŷk1 , ŷk2 , a)− J(x1, x2, y
k
1 , y

k
2 , a)| ≤

1

2
(R1 +R2)BH2

k , (2.46)

for all x1, x2 ∈ R
d and a ∈ [0, 1]. Therefore, if Jk = J(xk1, x

k
2, ŷ

k
1 , ŷ

k
2 , a

k), then for every

k ≥ 0

Jk ≥ J(xk1, x
k
2, y

k
1 , y

k
2 , a

k)− 1

2
(R1 +R2)BH2

k , (2.47)

and consequently

Jk ≥ J(xk1, x
k
2, y

k
1 , y

k
2 , ā

k)− 1

2
(R1 +R2)BH2

k . (2.48)

Thus, it results from (2.43) that

Jk ≥ J(w∗1,āk ,w
∗
2,āk , y

k+1
1 , yk+1

2 , āk) + (R1 +R2)(f(Hk)−
1

2
BH2

k). (2.49)

Now, (2.46) and (2.49) yield

Jk ≥ J(w∗1,āk ,w
∗
2,āk , ŷ

k+1
1 , ŷk+1

2 , āk) + (R1 +R2)(f(Hk)− BH2
k). (2.50)
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Since (w∗,k1 ,w∗,k2 , a∗,k+1) is the solution of (2.38), it can be concluded that

J(w∗1,āk ,w
∗
2,āk , ŷ

k+1
1 , ŷk+1

2 , āk) ≥ Jk+1, (2.51)

and therefore

Jk ≥ Jk+1 + (R1 +R2)(f(Hk)− BH2
k). (2.52)

If the trajectory [x1, x2] ∈ R
2d is non-stationary (i.e., for k ∈ N, i ∈ IT and j ∈ IV , the

relation ‖xkj − yki ‖ ≥ si holds), then

Hk ≥ s = min

{
min
i∈IT

si
2(v + V )

,
V − v

3B

}
> 0. (2.53)

Let g(h) = f(h)−Bh2 or equivalently g(h) = h(V −v− 3
2
Bh). One can show that similar

to f , the function g is also a concave quadratic function which is: (i) non-negative only

in the interval I = [0, 2(V − v)/(3B)]; (ii) zero only at the endpoints of the interval I;

(iii) strictly increasing in the interval [0, (V − v)/(3B)], and (iv) attains its maximum

at the midpoint of the interval I. Therefore, g(Hk) ≥ g(s) > 0, which implies that

Jk − Jk+1 ≥ (R1 +R2)g(s) > 0. It can be shown by induction that for all m ∈ N

J0 − Jm ≥ m(R1 +R2)g(s), m ∈ N . (2.54)
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Thus, the inequalities g(s) > 0, R1 +R2 > 0 yield

lim
m→∞

Jm = −∞, (2.55)

which contradicts the fact that Jm ≥ 0, for all m ∈ N. This means that the trajectory

is stationary, i.e., there is a finite k and some i ∈ IT , j ∈ IV , such that ‖xkj − yki ‖ < s.

This completes the proof.

Corollary 1. Let th be the hitting time introduced in Definition 2, and

Hmin := min

{
min
i∈IT

si
2(v + V )

,
V − v

3B

}
> 0.

Then

th ≤ 2 diam(M)

V − v
, (2.56)

where diam(M) = supm1,m2∈M ‖m1 −m2‖ is the diameter of the set M.

Proof. The proof follows directly from equations (2.35) and (2.54), and the fact that

f(s) > s(V − v)/B and g(s) > s(V − v)/(3B).

It follows from Corollary 1 that if Δ > 2diam(M)/(V − v), then at any time

instant before the arrival of the next target, at least one of the present targets will be

visited. Therefore, the number of unaccomplished tasks is non-increasing and remains

less than or equal to two.
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Figure 2.1: The target tracking for the vehicles and sequentially arriving targets of
Example 1, using the proposed control strategy.

2.4 Simulation Results

In this section, simulations are performed for an example involving two vehicles and a

set of targets arriving sequentially in the mission space illustrated in Fig. 2.1.

Example 1. Let the mission space, fig 2.1 be a M = [−60, 60]× [−60, 60] closed convex

set in the 2D plane. Let also two vehicles be inside the mission space. Assume that

initially there exist two targets in M with some a priori unknown trajectories satisfying

Assumptions 1 and 2, and that new targets arrive sequentially in the mission space
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afterwards. For generality, the targets trajectories are chosen randomly. The maximum

magnitude of the velocity vector for the vehicles is assumed to be V = 5, and the upper

bound on the magnitude of targets velocities is given as v = 4, while the bound introduced

in Assumption 2 is chosen as B = 1. The arrival time of targets, on the other hand, is

given by the sequence {Ti}∞i=1 = {0, 5.0851, 9.2216, . . .} (which is generated randomly).

To illustrates the results, a snapshot is shown at time T = 20, and four targets, including

initial targets, arrive in the mission space by this time. At the time instants when there

is no target in the mission space, the vehicles remain at their last position until the

arrival of new targets. Using the cooperative control approach developed in this chapter,

the results obtained in Fig. 2.1 are obtained. As it can be observed from this figure,

all targets are visited by the vehicles and the tasks are accomplished accordingly. This

demonstrates the efficacy of the proposed strategy for the system given in this example.
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Chapter 3

Stability Analysis of Dynamic

Decision-Making for Vehicle

Heading Control

In this chapter, the problem of dynamic decision making for vehicle heading control to

intercept moving targets is investigated. It is assumed that the targets arrive in the

mission space sequentially. More precisely, there exist infinite number of targets that

arrive the mission space one by one. The arrival times and positions of the targets are

modeled using stochastic models. Furthermore, targets are assumed to move with a

priori unknown dynamics and a priori unknown trajectories. Due to the probabilistic

nature of the problem, it is desired to use a model predictive approach to control the
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heading of the vehicle. A reward allocation strategy is adopted for dynamic decision

making and control design in order to move the vehicle toward the targets. Finite-

time convergence analysis is presented for the case where the arrivals of targets occur

sufficiently infrequently.

3.1 Preliminaries and Notations

3.1.1 Notations

Throughout this chapter, N,Z,R denote the set of natural numbers, integers and real

numbers, respectively, and the index inequalities in R≥0,R>0,Z≥0 and other sets repre-

sent inequalities imposed over the elements of the corresponding set. Also, Nn denotes

natural numbers less than or equal to n. The symmetric difference of a pair of sets A

and B is defined as (A ∩ Bc) ∪ (Ac ∩ B) and denoted by AΔB, where the superscript

”c” represents the complement operator. Given a set A, the Kronecker delta function,

denoted by δ, maps A×A to {0, 1}, where δ(a, b) = 1 if and only if a = b. For simplicity

of notation, δ(a, b) is δab. The indicator function for any subset B of A, denoted by 1B,

is a function from A to {0, 1} , defined as

1B(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if x ∈ B,

0, if x /∈ B.
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Let I be the index set. Then (ai)i∈I represents a point in AI with entries ai. If J is a

non-empty index set such that J ⊆ I, then for any point in a ∈ AI , a•J represents a

point in AJ which is obtained by eliminating the entries with indices not listed in J .

The d dimensional Euclidean space is denoted by R
d. Moreover, 0 and 1 represents

all-zero and all-one vectors in R
d. The notation a ≥ 0 says that all entries of a are non-

negative. For any compact set M ⊂ R
d, the diameter of M, denoted by diam(M), is

defined as

diam(M) = sup{‖x− y‖ | x, y ∈ M}. (3.1)

For any scalar r ∈ R≥0 and any point x ∈ R
d, the closed ball with radius r centered at

x is defined as

B(x, r) = {y ∈ R
d | ‖x− y‖ ≤ r}. (3.2)

For any vector v ∈ R
d, the perpendicular complement of v, denoted by v⊥, is a (d− 1)-

dimensional subspace of Rd defined as

v⊥ := {y ∈ R
d | vTy = 0}. (3.3)
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3.1.2 Mathematical Preliminaries

Let (Ω,F ,P) be a probability space, where Ω, F , P represents sample space, σ-algebra

of events and probability measure, respectively. Then, the sequence of random vari-

ables (vectors) {Xn}n∈N converges P-almost surely to a random variable (vector) X if

P(Xn →n→∞ X) = 1. This convergence is denoted by

Xn →n→∞ X, P-a.s. (3.4)

Definition 3. A stochastic process N = {N(t)}t≥0 is a renewal process if there exists

a sequence of independent identically distributed (i.i.d.) non-negative random variables

{Xm}n∈N such that N(t) = max{n ∈ Z≥0 |
∑n

i=1 Xi ≤ t}. Without loss of generality,

let
∑0

i=1 Xi := 0.

Theorem 2. [131] In a renewal process, let μ = 1/EXi, where E denotes the expectation

operator. Then

N(t)

t
→ μ P-a.s. (3.5)
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3.2 Problem Formulation

Consider a closed convex subset of Rd as the mission space, denoted by M, and a vehicle

inside it with dynamics described by

ẋ(t) = u(t) = V (t)d(t), (3.6)

where V (t) ∈ [0, Vmax] is the control input for the magnitude of the velocity vector, and

d(t) ∈ S
d−1 = {d ∈ Rd; ‖d‖ = 1} is the control input for its direction.

Assume the mission starts at time t = 0 and let a sequence of moving targets arrive

in the mission space randomly in time and space. The arrival process can be described

using a spatial model and a temporal model. Let N0 ∈ N0 be a random variable with

EN0 < ∞ representing the initial number of targets in the mission space, and {Ti}i≥1 be

the sequence of random variables representing time between consecutive targets arrival,

called interarrival times, where Ti = 0 for any 1 ≤ i ≤ N0, if N0 > 0, and {Ti}i>N0 be

i.i.d. non-negative random variables independent of N0. The arrival time of ith target

can then be defined for any i ∈ N as following

τ̌i =

⎧⎪⎪⎨
⎪⎪⎩

0, i ≤ N0,

∑i
j=N0+1 Tj, i > N0,

(3.7)
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Let ǏT (t) denote the set of indices of targets arrived up to time moment t, i.e.

ǏT (t) := {i ∈ N | τ̌i ≤ t}. (3.8)

Let also {Yi}i≥1 be a sequence of i.i.d. random vectors in R
d, independent of N0 and

{Ti}i>N0 , with probability density function φ, a compact support absolutely continuous

spatial distribution, such that supp(φ) ⊆ M. Having these all, one can say the ith target

arrives in the mission space at time τ̌i and at point Yi, for any i ∈ N.

Definition 4. Given a positive scalar si, i ∈ N, the vehicle is said to visit the ith target

at time t, if ‖x(t)− yi(t)‖ ≤ si.

Remark 3. The scalar si in Definition 4 is introduced due to practical considerations

regarding the physical size of the target. More precisely, while the dynamic equation of

each target is expressed as a point mass, the scalar si is used to account for the size of

the ith target. For example, if the ith target has a spherical shape of radius ri and also

the vehicle has a spherical shape with radius r, then si := ri + r.

A task is defined for every target, which is completed if the target is visited by the

vehicle. Let τ̂i be the completion time of ith task if the ith target is visited in finite-time,

and infinity if the ith target is never visited by the vehicle. Similar to ǏT (t), one can
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define the set of indices of targets visited up to time t as

ÎT (t) := {i ∈ N | τ̂i ≤ t}, (3.9)

and the set of indices of targets arrived in the mission space but not visited up to time

t by

IT (t) := ǏT (t)\ÎT (t) = {i ∈ N | τ̌i ≤ t < τ̂i}. (3.10)

Let N(t) = |IT (t)|, Ň(t) = |ǏT (t)| and N̂(t) = |ÎT (t)|. It is to be noted that Ň(t) =

N̂(t) +N(t) and 0 ≤ N(t) ≤ Ň(t). Note also that Ň(t)−N0 is the counting process for

the renewal process defined by {Ti}i≥N0 .

The trajectory of each target is a C1 curve in the mission space M, and is assumed

to satisfy the geometric conditions given below.

Assumption 4. For any i ∈ N and any s ∈ [τ̌i, τ̂i), it is assumed that

• (Global Geometric Condition) If yi(τ) ∈ M, then yi(t) ∈ M for all t ∈ [τ, τ̂i).

• (Local Geometric Condition) There exist non-negative scalars v,B such that

∥∥∥ d

dt
yi(τ)

∥∥∥ ≤ v, (3.11)

and

sup
t∈[τ,D]

‖αi(t, τ)‖ ≤ B, (3.12)
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where αi(t, τ) is a C1 function satisfying the following equality

yi(t) = yi(τ) +
d

dt
yi(τ)(t− τ) +

1

2
αi(t, τ)(t− τ)2. (3.13)

The global geometric condition on targets’ trajectories guarantees that once a

target is detected in the mission space, it will remain inside it throughout the rest of the

mission. This property is dependent on the targets’ trajectories as well as the geometry

of the mission space. In the particular, the global geometric condition is satisfied when

M = R
d.

Regarding the local geometric condition, if yi(t) be a C2 function and there exist

non-negative scalars v, B such that for any i ∈ N and τ ∈ [τ̌i, τ̂i) the following conditions

hold:

∥∥∥ d

dt
yi(τ)

∥∥∥ ≤ v,
∥∥∥ d2

dt2
yi(τ)

∥∥∥ ≤ B. (3.14)

then, from Taylor’s theorem with mean-value form of the remainder [127], yi(t) satisfies

the local geometric condition in Assumption 4.

Assumption 5. The position and velocity vectors are known at the beginning of each

time horizon (i.e., at time τ in (3.13)).

It follows from Assumption 5, that the positions of the existing targets can be

estimated with sufficient accuracy at any future instant within the finite horizon. Let
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this estimate be denoted by ŷi(·) for any i ∈ N. Then

ŷi(t) = yi(τ) + vi(τ)(t− τ), t ∈ [τ, τ̂i). (3.15)

3.3 Receding Horizon Dynamic Decision-Making

Scheme

In order to track the targets, a time-decreasing function called “reward” is assigned to

every task which can be collected only if the target is visited. It is desired to plan vehicle’s

trajectory via dynamic decision-making such that the collected rewards are maximized.

To this end, vehicle’s trajectory is planned iteratively, where at the beginning of each

iteration the heading and size of movement are calculated such that the estimate of the

future collectible rewards is maximized.

3.3.1 Reward Functions

For any i ∈ N, consider the reward function Riρi, where Ri denotes the initial reward

for task i, the maximum reward considered for the target i, and ρi : [0,∞) → [0, 1] is a

decreasing function representing the rate of reward loss over time. Various candidates

can be used for function ρi to model scheduling and time priorities. In particular, one
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can use the following discount function

ρi(t) = e−γit, ∀ i ∈ N (3.16)

where γi ∈ R>0 is a target-specific loss parameter reflecting different cases of interest.

One can now define the total reward function denoted by R : R → R as

R(t) :=
∑
i∈N

Riρi(t)1[τ̌i,τ̂i)(t), (3.17)

representing the net reward available at time t ∈ R≥0.

3.3.2 Dynamic Assignment Structure

Given the positions of the vehicle and available targets in the mission space M, it is

desired to properly assign tasks to the vehicles. For any i ∈ N, one can generalize the

bivalent assignment, where target i is either (fully) assigned to the vehicle or not assigned

to it at all, to define the grade of assignment denoted by ai ∈ [0, 1]. More precisely, for

any t ∈ [0,∞) and i ∈ N, one can define functions

ai : [0,∞) → [0, 1], i ∈ N (3.18)
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reflecting the grade of assignment of target i to the vehicle, for every i ∈ N at any time

instant. The function ai(t) is, in fact, the level of interest of the vehicle in target i being

assigned to it at time t ∈ [0,∞).

Since the assigning strategy described above is only for existing targets, if the ith

target has not arrived yet or is visited before, then ai(t) = 0, i.e., for any i ∈ N and

t ∈ R≥0, one have ai(t) = 1[τ̌i,τ̂i)(t)ai(t). Also, since there is only one vehicle, it is

expected that when there are some targets, the vehicle net assignment should be equal

to one, i.e., at any time t for which N(t) �= 0,

∑
i∈IT (t)

ai(t) = 1 (3.19)

or equivalently

∑
i∈IT (t)

ai(t) =
∑
i∈N

ai(t)1[τ̌i,τ̂i)(t) = 1− δ0N(t), (3.20)

where δ is the Kronecker delta function. For any I ⊂ N, define the set

AI := {(ai)i∈N ∈ R
N

≥0 |
∑
i∈N

ai = 1− δ0|I|, ai = 1I(i)ai}. (3.21)

Then, equation (3.20) can be rewritten as

(ai(t))i∈N ∈ AI(t). (3.22)
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Now, define the total assigned reward function R : R → R as

R(t) :=
∑
i∈N

ai(t)Riρi(t)1[τ̌i,τ̂i)(t), (3.23)

which represents the net assigned reward available at time t ∈ R≥0. One can easily

verify that

R(t) =
∑

i∈IT (t)

ai(t)Riρi(t). (3.24)

The vehicle needs to dynamically perform the optimal assignment and trajectory plan-

ning such that the collected rewards are maximized.

3.3.3 Receding Horizon Trajectory Construction

It is desired to develop a receding horizon-based dynamic decision-making controller

(RHDDC), which iteratively controls the headings of the vehicle, step size and optimal

assignment such that the collected rewards are maximized. Let {tk}∞k=0 ∈ R≥0 denote

the time instants at which the RHDDC is applied. At any tk, an optimization problem

is solved, which provides an estimate of the collectible rewards in the future. The

optimization problem is formulated based on the current positions of the vehicle and

targets as well as the predicted future position of the targets. The solution of the problem

provides the optimal control input uk := u(tk) along with the optimal assignment {aki =

ai(tk)}i∈IT .
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Let Hk be the planning horizon for RHDDC. For simplicity, the action horizon is

chosen to be the same as the planning horizon and consequently, tk+1 = tk +Hk. Under

control input u(tk) the planned position of the vehicle at time tk+1 is given by

x(tk+1) = x(tk) + u(tk)Hk.

with the current positions of the vehicle and targets, the earliest possible time that the

vehicle can visit target i is predicted to be

τi(u
k, tk) = (tk +Hk) +

‖x(tk +Hk)− ŷi(tk +Hk)‖
Vmax + v

.

τi(u
k, tk) given above will be the exact visiting time of vehicle and target i if they move

toward each other with maximum speed, and also the estimate ŷi(tk + Hk) is exact.

Under these conditions, if ai(tk+1) is the optimal assignment, it is expected to remain

unchanged until the vehicle visits target i. This implies that

ai(τi(u
k, tk)) = ai(tk+1). (3.25)

Similarly, one can estimate the maximum total reward that the vehicle is expected

to collect at the time tk+1. Denote this predicted expected reward by Rk+1(uk, tk).

Let ρ̃i(uk, tk) = ρi[τi(uk, tk)] and ãi(u
k, tk) = ai(uk, tk). It follows the definition of
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Rk+1(uk, tk) that

Rk+1(uk, tk) =
∑

i∈IT (tk)

Riρ̃i(uk, tk)ãi(uk, tk). (3.26)

Note that Rk(uk, tk) represents an estimation at the current time tk of the total reward

that the vehicle can expect at the next time instant tk+1 to collect throughout the

mission.

One can now present the optimization problem at the kth iteration Pk, as follows:

max Rk+1(uk, tk)

s.t. ã(uk, tk) ∈ Ak,

uk ∈ Uk.

(3.27)

where Ak = AIT (tk) and Uk = {u ∈ R
d; u ∈ R

d, ‖u‖ ≤ Vmax} is the set of admissible

heading control.

For convenience of notation, x(tk), yi(tk) and ŷi(tk) will hereafter be denoted by

xk, yki and ŷki , respectively, for any i ∈ IT . The corresponding vectors are represented

by yk and ŷk, accordingly.
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3.4 Trajectory Analysis in Receding Horizon Con-

trol

In this section, theoretical analysis on the vehicle’s trajectory in the mission space is

presented. It is assumed that the mission space M is compact with diameter diam(M).

Definition 5. The trajectory x(t) in M is called a stationary trajectory if for all i ∈ N,

the ith target hitting time or ith task completion time are almost sure finite, i.e. one has

P(τ̌i < ∞) = 1.

In order to investigate the behavior of the system and showing the stationarity of

vehicle’s trajectory, one needs to analyze the optimization problem presented in (3.27),

and also the asymptotic behavior of solutions sequence resulted from (3.27), given a

stochastic process which models targets arrivals. To this ends, some lemmas and theo-

rems are presented in the sequel.

3.4.1 Equivalent Optimization Problems

In order to present the stationarity analysis of the vehicles trajectory, an equivalency

theorem for the optimization problem (3.27) is required first.

Lemma 2. Let Ω be a compact subset of Rd with non-empty interior. Let also fi : R
d →

R≥0 be a continuous function, for any i ∈ Nn and A = {a ∈ R
n | a ≥ 0, aT1 = 1}.
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Define the function g1 : Ω×A → R as

g1(x, a) =
n∑

i=1

aie
−fi(x), (3.28)

and the function g2 : Ω×A → R as

g2(x, a) =
n∑

i=1

aifi(x). (3.29)

Then,

argmax
(x,a)∈Ω×A

g1(x, a) = argmin
(x,a)∈Ω×A

g2(x, a). (3.30)

Moreover, for any (x∗, a∗) in the aforementioned sets, there exists some i ∈ Nn such that

g1(x
∗, a∗) = g1(x

∗, ei) , g2(x
∗, a∗) = g2(x

∗, ei) and (x∗, ei) also belongs to these sets.

Proof. Since A is a closed and bounded subset of Rd, it is a compact set. Also, Ω is a

compact set, and hence Ω × A is a compact set. Define E1 = argmax(x,a)∈Ω×A g1(x, a)

and E2 = argmin(x,a)∈Ω×A g2(x, a). Then, from the continuity of g1 and g2, and also the

compactness of Ω × A, it follows that E1 and E2 are nonempty sets. In order to prove

that E1 = E2, it is suffices to show that E1 ⊇ E2 and E1 ⊆ E2.

Before proceeding with the proof, define f(x) = mini∈Nd
fi(x), I(x) = argmini∈Nd

fi(x)

and i(x) = min I(x). Thus, for any x ∈ Ω and i ∈ I(x), one can conclude that
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f(x) = fi(x), and also,

max
a∈A

g1(x, a) = max
a∈A

n∑
i=1

aie
−fi(x) = e−f(x) (3.31)

and

min
a∈A

g2(x, a) = min
a∈A

n∑
i=1

aifi(x) = f(x). (3.32)

Now, let (x∗, a∗) ∈ E1. Therefore, for any (x, a) ∈ Ω × A, one has g1(x
∗, a∗) ≥

g1(x, a). On the other hand

g1(x
∗, a∗) = max

a∈A

n∑
i=1

aie
−fi(x∗) = e−f(x

∗). (3.33)

Thus, for any i ∈ Nn and x ∈ Ω, it follows that e−f(x
∗) ≥ g1(x, ei) = e−fi(x), i.e.,

x∗ ∈ argminx∈Ω f(x). Also, for any i ∈ Nd\I(x∗), a∗i = 0. Let a = a∗ − a∗i ei + a∗i ei(x∗), to

obtain a ∈ A and

0 ≥ g1(x
∗, a)− g1(x

∗, a∗) = a∗i (e
−fi(x∗)(x∗) − e−fi(x

∗)). (3.34)

From the definition of i(x∗), it results that fi(x∗)(x
∗) < fi(x

∗), and consequently e−fi(x∗)(x
∗) >

e−fi(x
∗). Therefore, the equation (3.34), yields that ai = 0. As a result, for any (x, a) ∈
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Ω×A, one obtains

g2(x
∗, a∗) =

∑
i∈I(x∗)

a∗i fi(x
∗) = f(x∗) (3.35)

and also

f(x∗) =
∑

i∈I(x∗)

aifi(x
∗) ≤ g2(x, a). (3.36)

Thus, for any (x, a) ∈ Ω×A, one has g2(x
∗, a∗) ≤ g2(x, a), and consequently (x∗, a∗) ∈ E2,

and as a result E1 ⊆ E2.

Using a similar argument, one can show that E1 ⊇ E2, which yields E1 = E2.

Let E = E1, which also means E = E2. From the definition of i(x) and also equations

(3.31) and (3.32), for any (x∗, a∗) ∈ E ,

g1(x
∗, a∗) = e−f(x

∗) = g1(x
∗, ei(x∗)) (3.37)

and

g2(x
∗, a∗) = f(x∗) = g2(x

∗, ei(x∗)). (3.38)

This completes the proof.

Corollary 2. Let r be a real positive scalar, M ⊆ R
d be a compact set with non-empty

interior, w be a vector in M, and {yi}i∈Nn be n arbitrary points in M. Then, for any
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i ∈ Nn and any choice of γi ∈ R>0, the following optimization problems

max
∑n

i=1 aie
−γi‖x−yi‖

s.t.
∑n

i=1 ai = 1,

ai ≥ 0, ∀i ∈ Nn

‖x− w‖ ≤ r,

x ∈ M,

(3.39)

and

min
∑n

i=1 aiγi‖x− yi‖

s.t.
∑n

i=1 ai = 1,

ai ≥ 0, ∀i ∈ Nn

‖x− w‖ ≤ r,

x ∈ M,

(3.40)

are equivalents, i.e. (x∗, a∗) is a solution for problem (3.39) if and only if it is a solution

for problem (3.40). Moreover, for any such solution (x∗, a∗), there exists some i ∈ Nn

such that (x∗, ei) is also a solution of problems (3.39) and (3.40) with the optimal values

e−γi‖x
∗−yi‖ and γi‖x∗ − yi‖, respectively.

Proof. Let Ω = M ∩ {x ∈ R
d | ‖x − w‖ ≤ r}, and for any i ∈ Nd, define function

fi : R
d → R≥0 as fi(x) = γi‖x − yi‖. Then Ω is a compact set and fi is a continuous

function, for any i ∈ Nd. The proof follows immediately from Lemma 2.
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In the remainder of this chapter, for simplicity of the analysis, it is assumed that

Ri = R and γi = γ, for any i ∈ N and some positive scalars R and γ.

Theorem 3. Let Jy : R
d × R

n → R≥0 be defined as

Jy(x, a; Γ) =
d∑

i=1

aiγi‖x− yi‖ (3.41)

where Γ = (γi)i∈Nn are n scalars in R≥0. Furthermore, {yi}i∈Nn are n points in R
d and

y = (yi)i∈Nn. Then, if IT (tk) �= ∅, the optimization problem Pk, presented in (3.27) is

equivalent to

min Jŷk(x, a; Γ
k)

s.t. a ∈ Ak, x ∈ Ωk.

(3.42)

where ŷk is the position vector of the current targets, Γk = γ/(Vmax + v)1N(tk), and

Ωk = B(xk, V Hk) ∩M.

Proof. Let control input uk ∈ Uk be applied over time interval [tk, tk + Hk). It follows

from the dynamics of vehicle that xk+1 = xk+ukHk. Therefore, since Uk = {u ∈ R
d; u ∈

R
d, ‖u‖ ≤ Vmax}, it results that

xk+1 ∈ Ωk = B(xk, V Hk) ∩M. (3.43)

From the above relation and the definition of Ak, the optimization problems (3.27) and

(3.42) have the same domain. Consider now the reward function Rk+1(uk, tk) in (3.27).
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For any i ∈ N, one has ρi(t) = e−γit and

τi(u
k, tk) = tk+1 +

‖xk+1 − ŷk+1
i ‖

Vmax + v
.

Hence, it follows that

ρ̃i(uk, tk) = γk
t e
−γk

v ‖xk+1−ŷk+1
i ‖,

where γk
t = e−γtk+1 and γk

v = γ/(Vmax + v). Therefore, one obtain

Rk+1(uk, tk) = R γk
t

∑
i∈IT (tk)

ãi(uk, tk)e
−γk

v ‖xk+1−ŷk+1
i ‖.

Thus, using Corollary 2, the proof is concluded.

3.4.2 Bounds for Sensitivity of Cost Function

The next two lemmas describe sensitivity of the function J, defined in (3.41), with respect

to its arguments.

Lemma 3. Let n be a natural number, I1 and I2 be two index set where I1, I2 ⊆ Nn,

Ω and M be compact sets in R
d such that Ω ⊆ M, {yi}i∈Nn be n points in M, the set

A be defined as A = {a ∈ R
n | a ≥ 0, aT1 = 1} and function Jy : Rd × R

n → R≥0 be
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defined as in (3.41). For i ∈ {1, 2}, define

(x∗i , a
∗
i ) = argmin Jy(x, a; Γ)

s.t. x ∈ Ω,

a ∈ A ∩ (∩j∈Nn\Iie
⊥
j ).

(3.44)

where Γ = (γi)i∈Nn are n scalars in R≥0. Then

|Jy(x∗2, a∗2)− Jy(x
∗
1, a

∗
1)| ≤ 2|I1ΔI2| diam(M)max(Γ). (3.45)

Proof. If I1 = I2, the proof is straightforward, since for both i = 1 and i = 2, one has the

same problems in (3.47). Now consider the case I1 �= I2. For any i ∈ {1, 2}, let AIi =

{a ∈ R
|Ii| | a ≥ 0ni

,1T
|Ii|a = 1}. Subsequently, one can see that a ∈ A ∩ (∩j∈Nn\Iie

⊥
j ) if

and only if a•Ii ∈ AIi . Also, for any such a, one has

Jy(x, a; Γ) = Jy•Ii (x, a•Ii ; Γ•Ii). (3.46)

Therefore, the optimization problem (3.47) is equivalent to

argmin Jy•Ii (x, a•Ii ; Γ•Ii)

s.t. x ∈ Ω,

a ∈ AIi ,

(3.47)
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with solution (x∗i , a
∗′
i ). From Lemma 2, there exits standard vectors eji in R

|Ii| such that

ji ∈ Ii and

Jy•Ii (x
∗
i , a

∗′
i ) = Jy•Ii (x

∗
i , eji) = γji‖x∗ − yji‖. (3.48)

Therefore, from equation (3.46), non-negativity of γjs and triangle inequality, it follows

that

|Jy(x∗2, a∗2)−Jy(x
∗
1, a

∗
1)| = |γj2‖x∗−yj2‖−γj1‖x∗−yj1‖|

≤ γj2‖x∗−yj2‖+γj1‖x∗−yj1‖

As ‖x∗ − yj2‖, ‖x∗ − yj1‖ ≤ diam(M) and |I1ΔI2| ≥ 1, one obtains

|Jy(x∗2, a∗2)− Jy(x
∗
1, a

∗
1)| ≤ 2 diam(Ω)max(Γ)

≤ 2|I1ΔI2| diam(M)max(Γ).

This concludes the proof.

Lemma 4. Consider cost function Jy : Rd × R
n → R≥0 defined in (3.41). Also, let

{yi}i∈Nn and {y′i}i∈Nn be two sets of n points in R
d, and y = (yi)i∈Nn , y

′ = (y′i)i∈Nn.

Then, for any x ∈ M and any a ∈ A, one has

|Jy′(x, a; Γ)− Jy(x, a; Γ)| ≤ max(Γ)max
i∈Nn

‖y′i − yi‖. (3.49)
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Proof. Due to definition of Jy, one has

Jy′(x, a; Γ)−Jy(x, a; Γ)=
n∑

i=1

aiγi‖x−yi‖−
n∑

i=1

aiγi‖x−y′i‖

=
n∑

i=1

aiγi (‖x− yi‖ − ‖x− y′i‖).

Subsequently, from triangle inequality and non-negativity of ais and γis, it follows that

|Jy′(x, a; Γ)−Jy(x, a; Γ)| ≤
n∑

i=1

aiγi |‖x− yi‖ − ‖x− y′i‖|.

According to triangle equality and γi ≤ max(Γ), for any i, one has

|Jy′(x, a; Γ)−Jy(x, a; Γ)| ≤ max(Γ)
n∑

i=1

ai ‖yi − y′i‖.

From
∑

i ai = 1, it yields that

|Jy′(x, a; Γ)−Jy(x, a; Γ)| ≤ max(Γ)max
i∈Nn

‖y′i − yi‖,

which proves the claim.

3.4.3 Stationarity Analysis of Vehicle’s Trajectory

The following Lemma is borrowed from Chapter 2.
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Lemma 5. Consider the vectors p, q, v ∈ R
d and the set of non-negative real numbers

V,H,B ∈ R>0. Assume that ‖v‖ < V , and that α : [0, H] → R
d is a bounded vector-

valued function defined over the interval [0, H] with maxt∈[0,H] ‖α(t)‖ ≤ B. Define the

set

Ωq,H = {(w, t) ∈ R
d × R; t ∈ [0, H], ‖w − q‖ ≤ V t}, (3.50)

which is a convex compact subset of R
d, and let z : [0, H] → R

d be given by z(t) =

p + vt+ 1
2
α(t)t2. Define also

H < min{ ‖p− q‖
V + ‖v‖ ,

V − ‖v‖
B

}, (3.51)

and

(w∗, t∗) = argmin
(w,t)∈Ωq,H

1

2
‖w − p− vt‖2. (3.52)

Then

i) t∗ = H, ‖w∗ − q‖ = V H;

ii)

‖p− q‖ − ‖w∗ − z(H)‖ ≥ f(H) (3.53)

where f(h) = h(V − ‖v‖ − 1
2
Bh), and
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iii) ‖w̃∗ − q‖ = V H and ‖p− q‖ − ‖w̃∗ − z(H)‖ ≥ f(H), where

w̃∗ = argmin‖w−q‖≤V H‖w − p− vH‖. (3.54)

Remark 4. The function f(h) = h(V −‖v‖− 1
2
Bh) introduced in Lemma 5 is a concave

quadratic function which is: (i) non-negative only in the interval I = [0, 2(V −‖v‖)/B];

(ii) zero only at the endpoints of the interval; (iii) strictly increasing in the interval

[0, (V −‖v‖)/B], and (iv) attains its maximum at the midpoint of the interval I. There-

fore, f(H) is positive, and if

‖p− p‖ ≥ V 2 − ‖v‖2
B

,

then the function f takes its maximum value at H, i.e.

f(h) ≤ f(H) =
(V − ‖v‖)2

2B
, ∀h ∈ R.

Following the equivalency results presented in Theorem 3, the stationarity analysis

is presented now. Regarding {tk}∞k=0 ∈ R≥0, time instants at which the RHDDC is

applied, note that one has tk+1 = tk + Hk. In order to construct this time instance
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sequence, let Ik = IT (tk) and

Hk = min
i∈Ik

{
||x(tk)− yi(tk)|| − 1

2
si

v + V
,
V − v

B
}. (3.55)

Note that as for any t ∈ R≥0, the set IT (t) is finite and also for any i ∈ Ik, one has

||x(tk)− yi(tk)|| > si, then

Hk ≥ min{ s

2v + 2V
,
V − v

B
}, (3.56)

where s = mini∈N si > 0. Therefore tk ↑ ∞ and RHDDC can operate at all times in a

real-time fashion.. Now let

Jk := Jyk
•Ik

(xk, ak) =
∑
i∈IT

aki γi‖xk − yki ‖, (3.57)

where (xk, ak) is derived from the (3.27) or equivalently (3.42) (see Theorem 3).

Lemma 6. For any k ∈ N, one has

Jk − Jk+1 ≥ γ

Vmax + v
[f(Hk)−2 diam(M)ΔNk

− BH2
k−1 − BH2

k ],

(3.58)

where ΔNk = N̂(tk+1)− N̂(tk) + Ň(tk+1)− Ň(tk).
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Proof. Let (x∗, a∗) be defined as follows

(x∗, a∗) = argmin Jŷk+1

•Ik
(x, a; Γk)

s.t. a ∈ Ak, x ∈ Ωk.

(3.59)

where ŷk is the vector of positions of current targets, Γk = γ(Vmax + v)−11N(tk) and

Ωk = B(xk, V Hk) ∩M. Then from Lemma 4, one has

|Jŷk+1

•Ik
(x∗, a∗; Γk)− Jyk+1

•Ik
(x∗, a∗; Γk)| ≤ γB

2Vmax + 2v
H2

k . (3.60)

Also, from the same Lemma, it follows that

|Jŷk
•Ik

(xk, ak; Γk)− Jyk
•Ik

(xk, ak; Γk)| ≤ γB

2Vmax + 2v
H2

k−1. (3.61)

Moreover, Lemma 3 results in

|Jyk+1

•Ik
(x∗, a∗; Γk)− Jyk+1

•Ik+1
(xk+1, ak+1; Γk+1)| ≤ 2|IkΔIk+1|γ diam(M)

Vmax + v
. (3.62)

Since ΔNk = |IkΔIk+1|, if one has

Jŷk
•Ik

(xk, ak; Γk)− Jŷk+1

•Ik
(x∗, a∗; Γk) ≥ γ

Vmax + v
[f(Hk)−

1

2
BH2

k−1 −
1

2
BH2

k ], (3.63)
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then using triangle inequality and equations (3.60-3.63), one obtains

Jk − Jk+1 ≥ γ

Vmax + v
[f(Hk)− 2 diam(M)ΔNk − BH2

k−1 − BH2
k ], (3.64)

which is the claim. Now, in order to bridge the gap, one has to prove (3.63). From

Theorem 3, one can see that there exists ik ∈ Ik such that

Jŷk
•Ik

(xk, ak; Γk) = Jŷk
•Ik

(xk, eik ; Γ
k) =

γ

Vmax + v
‖xk − ŷkik‖. (3.65)

Since ‖ŷk
ik
− yk

ik
‖ ≤ 1

2
BH2

k−1, it follows that

Jŷk
•Ik

(xk, ak; Γk) ≥ γ

Vmax + v
[‖xk − ykik‖ −

1

2
BH2

k−1]. (3.66)

Also, from equation (3.59) one can see

Jŷk+1

•Ik
(x∗, a∗; Γk) ≤ γ

Vmax + v
‖w∗ − ŷk+1

ik
‖, (3.67)

where w∗ = argminw∈Ωk ‖w − ŷk+1
ik

‖. From Lemma 5, it yields that

‖xk − ykik‖ − ‖w∗ − yk+1
ik

‖ ≥ f(Hk). (3.68)
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Note that as ‖ŷk+1
ik

− yk+1
ik

‖ ≤ 1
2
BH2

k−1, one has

‖xk − ykik‖ − ‖w∗ − ŷk+1
ik

‖ ≥ f(Hk)−
1

2
BH2

k−1. (3.69)

From the these, one can easily see that the inequality (3.63) holds. This concludes the

proof.

Lemma 7. As t → ∞, Ň(t)/t converges P-almost sure to λ = 1/ET , i.e.

P( lim
t→∞

Ň(t)

t
=

1

ET
) = 1. (3.70)

Proof. From EN0 < ∞, one can see that P(N0 < ∞) = 1. Subsequently, it follows that

P( lim
t→∞

Ň0

t
= 0) = 1. (3.71)

Also, as Ň(t)−N0 is the counting process for the renewal process with parameter 1/ET ,

from Theorem 2, one can see that

P( lim
t→∞

Ň(t)−N0

t
=

1

ET
) = 1. (3.72)

Subsequently, from equations (3.71) and (3.72), it follows that

P( lim
t→∞

Ň(t)

t
=

1

ET
) = 1. (3.73)
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This concludes the proof.

The main result of this work, stated in the next theorem, follows from Lemma 7

and the above discussion.

Theorem 4. Consider the receding horizon problem presented in (3.27). Let

1

ET
= λ <

V − v

4 diam(M)
, (3.74)

and Hk sets due to

Hk = min
i∈Ik

{
||x(tk)− yi(tk)|| − 1

2
si

v + V
,
V − v

3B
, 2

V − v − 4 diam(M)(λ+ ε)

5B
}, (3.75)

where 0 < ε is a scalar such that λ + ε < (V − v)/(4 diam(M)). Then with probability

one there exist a time t ∈ R>0 such that N(t) = 0.

Proof. Assume that for any time t ∈ R>0, one has N(t) ≥ 1. Then for all k ∈ N, it

follows that

Jk − Jk+1 ≥ γ

Vmax + v
[f(Hk)− 2 diam(M)ΔNk − BH2

k−1 − BH2
k ]. (3.76)
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Therefore, for any K > 0, letting H−1 = 0, it is concluded by induction that

J0 − JK+1 ≥ γ

Vmax + v
[

K∑
k=0

f(Hk)− 2 diam(M)
K∑
k=0

ΔNk −
K∑
k=0

BH2
k−1 −

K∑
k=0

BH2
k ].

(3.77)

Hence, as f(h) = h(V − v − 1
2
Bh) and ΔNk = N̂(tk+1)− N̂(tk) + Ň(tk+1)− Ň(tk), one

obtains

J0 − JK+1 ≥ ν[κ
K∑
k=0

Hk − Ň(tK+1)− 5η
K∑
k=0

H2
k + 2ηH2

K ]. (3.78)

where

ν =
4γ diam(M)

Vmax + v
, κ =

V − v

4 diam(M)
, η =

B

8 diam(M)
. (3.79)

Therefore, it follows that

J0 − JK+1 ≥ ν[κ
K∑
k=0

Hk − Ň(tK+1)− 5η
K∑
k=0

H2
k ]. (3.80)

Due to (3.75), one can see κ−λ−ε−5ηHk ≥ 0 and Hk > 0, for any k ∈ N. Subsequently,

it follows that
K∑
k=0

Hk(κ− λ− ε− 5ηHk) ≥ 0.
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Since tK+1 =
∑K

k=0 Hk, one has

1

ν

J0 − JK+1

tK+1

≥ ε+ (λ− Ň(tK+1)

tK+1

). (3.81)

From equation (3.57), it is concluded that ‖Jk‖ ≤ max(Γ) diam(M). Therefore, one has

lim
K→∞

1

ν

J0 − JK+1

tK+1

= 0, (3.82)

Meanwhile, it follows from Lemma 7 that

ε+ (λ− Ň(tK+1)

tK+1

) →K→∞ ε > 0, P-a.s. (3.83)

which says that the probability of the event that the inequality N(t) ≥ 1 holds for any

time t ∈ R>0 is zero. Hence, there exist almost surely a finite time τ ∈ R>0 such that

N(τ) = 0.

Definition 6. For any j ∈ N, let the jth reseting time and jth restarting time be random

variables, denoted by τ j and σj, respectively. Let also τ 0 = 0 and σ0 = 0, and define by

τ j = inf{t ∈ R≥0 | N(t) = 0, t ≥ σj} and σj = inf{t ∈ R≥0 | N(t) �= 0, t ≥ τ j−1}, for

any j ∈ N.

Remark 5. Theorem 4 states that P(τ 0 < ∞) = 1, and it guarantees that after finite

time the mission space resets to the state with no present target. This implies that
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P(τ j − σj < ∞) = 1, for any j ∈ Z≥0.

Definition 7. For any i ∈ N, time window of the ith task is a non-negative random

variable denoted by wi, and is defined as wi = t̂i − ťi.

Remark 6. The time window of the ith task represents the time interval between the ith

target arrival and being visited by the vehicle.

Theorem 5. Under the assumptions of Theorem 4, for any i ∈ N, the time window of

the ith task has a finite value, i.e. P(wi < ∞) = 1, with probability one.

Proof. For any i ∈ N, due to Definition 6, there exits a unique j ∈ Z≥0 such that

σj ≤ ťi ≤ τ j and consequently, σj ≤ t̂i ≤ τ j. Thus, wi = t̂i − ťi ≤ τ j − σj, and from

Theorem 4 and Remark 5, one can conclude that P(wi < ∞) = 1.

3.5 Simulation Results

Simulations are presented in this section to verify the effectiveness of the proposed

receding horizon dynamic decision-making scheme in target tracking.

Figure 3.1 illustrates the case where a vehicle (blue trajectory) with maximum

velocity V = 7 is supposed to visit a sequence of four arriving targets (red trajectories)

with v = 5 and B = 1 (see (3.11) and (3.12)). Here, the initial number of targets is

two and λ−1 = 10. The vector of arrival times and vector of task completion times are

[ť1, ť2, ť3, ť4] = [0, 0, 22.4, 22.8] and [t̂1, t̂2, t̂3, t̂4] = [7, 17, 28, 38.8], respectively. Thus, the
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Figure 3.1: The vehicle’s trajectory (the blue curve starting from the blue bullets in
the origin) and targets’ trajectory (the red curves, starting from the red circles). The
positions where the vehicle visited the targets is shown by asterisks.

vector of time windows is [w1, w2, w3, w4] = [7, 17, 5.6, 16]. Note that in the time instants

where there is no target in the mission space (e.g., [t̂2, ť3] = [17, 22.4]), the vehicle does

not move.

Three scenarios are considered in Figure 3.2, representing infrequent target arrivals,

medium rate of target arrivals, and frequent target arrivals case, corresponding to small,

medium and large λ. The simulation parameters are N0 = 4,M = [−90, 90]2, V = 7, v =

2, B = 1 and ri + r = 0.5. Under the proposed control strategy, the results depicted

in Figure 1 are obtained. Figure 3.2(a) provides the results for the case of infrequent

targets, where λ−1 is assumed to be 10. The figure demonstrates that the number of
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Figure 3.2: The number of targets in the mission space in the case of infrequent target
arrivals (top figure), medium rate of target arrivals (middle figure), and frequent target
arrivals (bottom figure).

remaining targets N(t) in the mission space becomes equal to zero at some moment of

time intervals throughout the operation of the system. This means that the vehicle can

visit every arriving target.

Figure 3.2(b) presents the case of medium rate of target arrivals,, and in particular

λ−1 in this case is chosen to be 2.5. The figure shows that in this scenario there is a

balance in the operation of the system, in terms of target arrivals and vehicle’s ability

to visit them.

Figure 3.2(c) gives the results for the case of frequent target arrivals, where λ−1 is

assumed to be equal to 1. As can be observed from this figure, the rate of target arrivals
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is too high for the vehicle to visit them, and hence the number of targets increases

continuously.

80



Chapter 4

Cooperative Control for

Multi-Target Interception with

Sensing and Communication

Limitations: A Game-Theoretic

Approach

In this chapter, the problem of multi-vehicle cooperative interception of moving objects

with a priori unknown arrival times, trajectories and dynamics is investigated. The

vehicles are assumed to have limited sensing and communication ranges. Therefore,
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centralized approaches are not feasible, specially when there are a large number of vehi-

cles and targets. A game-theoretic cooperative receding horizon controller is proposed,

which predicts the future positions of targets with limited information. It uses a reward

allocation policy for accomplishing the target interception task. To learn the optimal

strategy in the resulting potential game, the generalized regret monitoring is used and

its effectiveness is demonstrated by simulation.

4.1 Background

Throughout the chapter, N,R,R≥0 denote the set of natural numbers, real numbers, and

non-negative real numbers, respectively. Also, the set of natural numbers less than or

equal to k is denoted by Nk. For a given set A, and some subset of it B, the indicator

function of B is denoted by 1B, which is a binary function from A to {0, 1} as follows:

1B(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x ∈ B

0, x /∈ B

(4.1)

For any index set I, the AI represents the set of points like (ai)i∈I where each of its

entries belongs A. In the case that I is the set Nn, the AI is simply shown by An. For

any point in a ∈ AI , the a•J , where J be a non-empty subset of I, represents a point in

AJ , obtained by eliminating the entries with indices not listed in J . The d dimensional

Euclidean space is denoted by R
d. Also, an all-zero vector and an all-one vector in R

d
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are respectively represented by 0d and 1d. For any vectors a and b in R
d, the inequality

a ≥ b means that all entries of a− b are non-negative. For any point x ∈ R
d and any

scalar r ∈ R≥0, a closed ball of radius r centered at x is denoted by B(x, r), and is

defined as {y ∈ R
d | ‖x− y‖ ≤ r}, where ‖.‖ represents the Euclidean norm. Denote by

Cp
R≥0

(Rd) the set of piecewise continuous functions defined over R≥0 and taking values

in R
d. A bipartite graph G = (U ∪ V , E) is a graph whose vertex set is the union of two

disjoint subsets U and V , with no pair of adjacent vertices in each one. The biadjacency

matrix of a bipartite graph G(U ∪ V , E) is defined as a |U| by |V| matrix B = (bij) of

binary entries, where the (i, j) element is one if the ith vertex in U is adjacent to the jth

vertex in V , and zero otherwise.

A game of n players is represented by(Nn,×i∈NnAi,{Ui}i∈Nn), where Nn is the play-

ers’ index set, and for any i ∈ Nn, Ai is the action set,
Ś

i∈Nn
Ai is the set of action

profiles, and Ui :
Ś

i∈Nn
Ai → R is the utility function. For any i ∈ Nn and any action

profile (aj)j∈Nn ∈ ×j∈NnAj, let a−i and (ai, a−i) denote (aj)j �=i and (aj)j∈Nn , respectively.

Definition 8 ([132]). The game (Nn,
Ś

i∈Nn
Ai,{Ui}i∈Nn) is called a potential game, if

there exists a function φ : ×i∈NnAi → R, called potential function, such that for any

i ∈ Nn, any actions a′i, a
′′
i ∈ Ai and any a−i ∈ ×j �=iAj, the following relation holds

Ui(a
′
i, a−i)− Ui(a

′′
i , a−i) = φ(a′i, a−i)− φ(a′′i , a−i).
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4.2 Problem Formulation

Define the mission space as a closed convex subset of Rd, and denote it byM. Consider a

finite number of objects, referred to as targets, arriving in the mission space sequentially.

One can specify the targets with respect to their arrival order by indices in IT = Nn,

where n is the number of targets. Without loss of generality, it can be assumed that the

mission starts at time t = 0, where n0 ∈ {0} ∪ N|IT | is the initial number of targets in

the mission space. Let T1 denote the arrival time of the first target, and set the finite

sequence of non-negative real scalars {Ti}|IT |i=2 as the time interval between the arrival

times of consecutive targets i−1 and i, for any i ∈ N|IT |. From the above definition, the

arrival time of target i, denoted by τ̌i, is
∑i

j=1 Tj for any i ∈ IT . Also, for any t ∈ R≥0,

denote by ǏT (t) the set of indices of targets arrived up to time t, i.e.

ǏT (t) := {i ∈ IT ; τ̌i ≤ t}. (4.2)

For any i ∈ IT , let yi ∈ M be the initial position of target i as it arrives in the mission

space. Thus, {yi}i∈IT is the finite sequence of the initial positions of targets. Also, since

the targets are assumed to be a set of moving objects in the mission space, by a slight

abuse of notation, one can represent by yi(·) the trajectory of the ith target after its

arrival, for any i ∈ IT (note that yi = yi(τ̌i)). The arrival times are not known a priori,
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and no information is available about the target trajectories. In other words, τ̌i and yi(·)

are not known at any t < τ̌i.

In addition to the targets, there are a finite number of vehicles in M whose indices

belong to the set IV = Nm, where m is the number of vehicles. For any j ∈ IV , denote

by xj(t) the position of vehicle j in the mission space at time t. Also, let the dynamics

of xj(t) be described by

ẋj(t) = uj(t). (4.3)

The input vector uj in the above equation belongs to the set of admissible controls Uumax ,

defined as

Uumax ={u:R≥0→R
d ; u ∈ Cp

R≥0
(Rd), ‖u‖sup≤umax}, (4.4)

where Cp
R≥0

(Rd) is the set of piecewise-continuous functions defined over R≥0, taking

values in R
d. Note that here umax is a positive real scalar. It can be seen that for

some piecewise continuous functions uj and dj, one has uj(t) = uj(t)dj(t), where uj(t) ∈

[0, umax] is the control input for the magnitude of the velocity vector of vehicle j, and

dj(t) ∈ S
d−1 = {d ∈ R

d; ‖d‖ = 1} is the control input for its direction, for any j ∈ IV at

any time t ∈ R≥0.

For any j ∈ IV , define the sensing region of vehicle j at time t ∈ R≥0 as

Sj(t) = {x ∈ R
d ; ‖x− xj(t)‖ ≤ rs j} = B(xj(t); rs j), (4.5)
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where rs j ∈ R̄≥0 is a scalar representing the sensing radius of the vehicle. Similarly, for

any j ∈ IV and at any time t ∈ R≥0, define the communication region of vehicle j as

Cj(t) = B(xj(t); rc), (4.6)

where rc ∈ R̄≥0 is a scalar representing the communication radius of the vehicle. For

any i ∈ IT and j ∈ IV , vehicle j is capable of sensing target i at time t, if the target

is in the sensing region of the vehicle (i.e. yi(t) ∈ Sj(t)). Also, for any pair of vehicles

j1, j2 ∈ IV at any time t, vehicle j2 can receive information sent by vehicle j1, if vehicle

j2 is in the communication region of vehicle j1 (i.e. xj2(t) ∈ Cj1(t)).

Remark 7. Note that for any j1, j2 ∈ IV at any time t, xj2(t) ∈ Cj1(t) if and only if

xj1(t) ∈ Cj2(t). This means that the sensing network is symmetrical.

Definition 9. For any i ∈ IT and j ∈ IV , vehicle j is said to visit target i at time t, if

‖xj(t)− yi(t)‖ ≤ dij, where dij is a given positive real scalar.

Remark 8. It is worth noting that the scalar dij in Definition 9 is introduced to account

for the physical size of target i and vehicle j in a practical setting, because every target

and vehicle is mathematically describes as a point mass. For instance, if target 1 and

vehicle 2 both have a spherical shape in R
d with radii r1 and s2, respectively, then d12 =

r1 + s2.

Definition 10. For any i ∈ IT , define the first visit time of target i, denoted by τ̂i ∈ R̄≥0,

86



as the time the target is visited by one of the vehicles for the first time, i.e.

τ̂i = inf{t ∈ R≥0 ; min{‖xj(t)− yi(t)‖ − dij; j ∈ IV} ≤ 0}. (4.7)

Note that for any i ∈ IT , if the first visit time of target i is infinity, i.e. τ̂i = ∞,

this means that none of the vehicles visits that target.

Accordingly, one can define the set of indices of targets visited up to time t as

follows

ÎT (t) = {i ∈ IT | τ̂i ≤ t}. (4.8)

Similarly, denote by IT (t) the set of targets arrived but not visited up to time t, i.e.

IT (t) = ǏT (t)\ÎT (t) = {i ∈ IT ; τ̌i ≤ t < τ̂i}. (4.9)

For any i ∈ IT , the trajectory of target i is assumed to be a function yi : [τ̌i, τ̂i] → R
d,

satisfying the local and global geometric conditions introduced next.

Assumption 6. (Geometric Conditions)

1. (Global Geometric Condition) For any i ∈ IT and τ ∈ [τ̌i, τ̂i], one has yi(τ) ∈ M,

i.e. yi([τ̌i, τ̂i]) ⊂ M.

2. (Local Geometric Condition) For any i ∈ IT , yi : [τ̌i, τ̂i] → M is a continuously

differentiable function. Moreover, there exist non-negative scalars ṽ and ã such
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that for any τ ∈ [τ̌i, τ̂i], the following inequality holds

∥∥∥ d

dt
yi(τ)

∥∥∥ ≤ ṽ . (4.10)

Let αi(t, τ) be a function satisfying the following equality

yi(t) = yi(τ) +
d

dt
yi(τ)(t− τ) +

1

2
αi(t, τ)(t− τ)2, (4.11)

where t ∈ [τ, τ̂i]. Then

sup
s∈(τ,τ̂i]

‖αi(s, τ)‖ ≤ ã. (4.12)

The global geometric condition ensures that once a target enters in the mission

space, it will always remain in it. Note that not only does this property depend on

the target trajectories, it also depends on the geometry of the mission space. The local

geometric condition, on the other hand, ensures that the speed and acceleration of a

target cannot exceed some prescribed values.

Assumption 7. The position and velocity vectors of every target are available at the

beginning of each time horizon, i.e. τ in (4.11).

Assumption 7 provides grounds to estimate the position of target i at any future
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time t ∈ [τ, τ̂i]. For example, a first-order estimate is expressed as

ŷi(t) = yi(τ) + (t− τ)
d

dt
yi(τ). (4.13)

Remark 9. It follows immediately from (4.12) that

‖ŷi(t)− yi(t)‖≤
1

2!
(t−τ)2sup

t∈(τ,τ̂i]
‖αi(t, τ)‖=

1

2!
(t−τ)2ã (4.14)

for any t ∈ [τ, τ̂i]. Thus, the closer t is to τ , the more precise the above estimation is.

Corresponding to each target, one can define a task which is accomplished if one

of the vehicles visits that target in finite time. By a harmless abuse of notation, let IT

be the set of all tasks, ǏT (t) be the set of tasks started by time t, ÎT (t) be the set of

tasks accomplished by time t, and IT (t) be the set of tasks in process at time t. The

mission is said to be accomplished when all tasks are accomplished.

Given the limitations of the vehicles in terms of information exchange and the

unpredictable nature of the environment discussed earlier, it is desired to design a near-

optimal cooperative control law in order to accomplish the mission. This problem will

be investigated in the subsequent sections.
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4.3 A Game-Theoretic Cooperative Receding Hori-

zon Scheme

As an incentive for the vehicles to visit the targets, corresponding to each task a de-

creasing reward function is defined for every target which can be collected only if the

task is accomplished (i.e., the target is visited). The vehicles dynamically make their

decisions toward maximizing the total collected rewards. The decision-making process of

every vehicle, which is iterative, consists of planning their paths and deciding upon their

strategies for visiting the targets in an efficient fashion. At the beginning of each itera-

tion, every vehicle updates its information by checking its sensing region, communicating

with its neighbours, and then calculating the heading accordingly.

4.3.1 Reward Allocations

For any i ∈ IT , let Ri be the initial reward considered for accomplishing task i. Define

di(·) : R≥0 → [0, 1] as the time discount function, which is a decreasing function reflecting

the rate of reward loss over time. The reward function of task i is then equal to Ridi(t),

for any i ∈ IT . There are various choices for the time discount function in order to

model different aspects of timing and scheduling such as deadlines and priorities. As a
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simple example, one can consider the following function

di(t) = e−γit, ∀i ∈ IT (4.15)

where γi ∈ R>0 is a parameter reflecting the degree of importance of target i.

4.3.2 Cooperative Structure

For any i ∈ IT and j ∈ IV , the assignment of target i to vehicle j is characterized

by a real scalar in [0, 1], denoted by aij. This parameter reflects the level of interest

of vehicle j in target i being assigned to it, and depends on the potential rewards to

be collected as well as the positions of the vehicles and targets. At each step of the

decision-making process, every vehicle is required to plan its task assignment based on

available information. Note that these assignments highly depend on the sensing and

communication capabilities of vehicles. More precisely, some of the vehicles may sense

only a subset of targets, not all of them. Moreover, some of the vehicles may not be

able to communicate with each other directly. These constraints need to be addressed

in the assignment functions. To this end, the notion of virtual targets is introduced,

and the definitions of target set and vehicle set are modified accordingly to take the

communication and sensing limitations into account.

For any j ∈ IV , denote by ∅j a virtual target which, if existed, it could be detected
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only by vehicle j. Let ĨT represent the set of all virtual targets, i.e. ĨT = {∅j}j∈IV .

Then, at any time t ≥ 0, the set of targets in the sensing range of vehicle j, denoted

by IT ,j(t), and the set of vehicles communicating with vehicle j, denoted by ĨV,j(t), are

defined respectively as

IT ,j(t) = {i ∈ IT (t) ; yi(t) ∈ Sj(t)} ∪ {∅j}, (4.16)

and

ĨV,j(t) = {j̃ ∈ IV ; xj(t) ∈ Cj̃(t)}. (4.17)

Similarly, for any i ∈ IT ∪ ĨT , the set of sensing vehicles for target i is defined below

IV,i(t) = {j ∈ IV ; i ∈ IT ,j(t)}. (4.18)

One can similarly define the set of sensible targets as a group of targets, each of which

lies in the sensing region of at least one of the vehicles. This set can be expressed as

IT (t) =
⋃
j∈IV

IT ,j(t). (4.19)

Remark 10. Since ∅j ∈ IT ,j(t), for any j ∈ IV , one can write

{∅j ; j ∈ IV} ⊆
⋃
j∈IV

IT ,j(t) = IT (t), (4.20)
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which implies that |IV | ≤ |IT (t)|.

Note that at any point in time, each assignment depends on the positions of all

vehicles and targets, for any i ∈ IT ,j(t) and j ∈ IV . Thus, assignment aij can be

expressed as a function of the following form:

aij : M|IV,i(t)| ×M|IT ,j(t)| → [0, 1]. (4.21)

Note also that assignment aij depends on the vehicles that sense target i as well as the

targets which are sensed by vehicle j, at any time t ≥ 0.

The desired assignment is required to satisfy certain conditions. For example, each

vehicle should normally consider all the targets inside its sensing region. Hence, for each

vehicle, the sum of target assignments in its sensing region at any time t, should be

equal to one, i.e.

∑
i∈IT ,j(t)

aij(xi,yj) = 1, ∀j ∈ IV , (4.22)

where xi = (xj̃)j̃∈IV,i(t), yj = (yi)i∈IT ,j(t) are the vectors of vehicles’ positions and targets’

positions, respectively. On the other hand, it is desired to accomplish as many tasks as

possible, and also the number of targets in the sensing regions at any point in time is

more than or equal to the number of vehicles. Therefore, with respect to to each vehicle,

it is important to be conservative and under-assign the targets in its sensing regions to
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it, i.e.,

∑
j∈IV,i

aij(xi,yj) ≤ 1, ∀i ∈ IT ∪ ĨT . (4.23)

Definition 11. Define sensing bigraph, denoted by Gt = (Tt∪Vt, Et), as a bipartite graph

with vertex partitions Tt = IT (t) and Vt = IV , and the edge set defined as Et = {(i, j) ∈

Tt × Vt ; i ∈ IT ,j(t)}. Let Bt be the biadjacency matrix of Gt.

For anym,n ∈ N, m ≤ n, define the set An×m as {A∈ [0,1]n×m;AT1n = 1m,A1m ≤

1n}. Given a sensing bigraph Gt, note that equations (4.22) and (4.23) introduce a set of

constraints that any desired assignment A(x,y) = (aij(x,y))i∈IT (t),j∈IV should satisfy

them. More precisely, A(x,y) belongs to the set AIT (t),IV defined as

AIT (t),IV ={A : M|IV|×M|IT(t)|→A
|IT(t)|×|IV|,A ≤ Bt}.

4.3.3 Cooperative Receding Horizon Trajectory Construction

It is desired now to develop a cooperative receding horizon controller (CRHC), which

iteratively generates a set of headings, step sizes and optimal assignments for each ve-

hicle such that the final collected rewards are maximized. The controller is applied at

time instants denoted by {tk}∞k=0 ∈ R≥0, where an optimization problem, estimating

the collectible rewards in the future, is solved at each time instant. The solution of the

optimization problem is based on currently available information, which are the current
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positions of the targets and vehicles, along with the predicted future positions of the tar-

gets. The solution of the optimization problem is used to obtain the optimal control input

uk = (uj(tk))j∈IV as well as the optimal assignments {aij(x(tk+1), ŷ(tk+1))}i∈IT (tk),j∈IV .

Let the action horizon of CRHC be denoted by Hk (Note that Hk is a strictly

positive real scalar). For any j ∈ IV , apply the control input uj(tk) to vehicle j, in the

time interval (tk, tk+Hk). Then, it follows from equation (4.3) that at time tk+Hk, the

position of vehicle j is

xj(tk +Hk) = xj(tk) + uj(tk)Hk, (4.24)

for any j ∈ IV . Similarly, based on the available information at time instant tk, one can

use equation (4.13) to estimate the position of target i at time instant tk +Hk as

ŷi(tk +Hk) = yi(tk) +Hk
d

dt
yi(tk), i ∈ IT (tk). (4.25)

Denote by τmin,k the earliest time that the next target can be visited, using the estimates

obtained based on the information available at time tk, i.e.

τmin,k = tk + min
i∈IT (tk),j∈IV

‖xj(tk)− yi(tk)‖(umax + ṽ)−1.

The CRHC path planning continues until either the next immediate target is visited or

a new target arrives, and then updates the position information of the targets. Thus,
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the following relation holds

Hk≤ηk(τmin,k−tk)=ηk min
i∈IT (tk),j∈IV

‖xj(tk)−yi(tk)‖
umax + ṽ

, (4.26)

where ηk ∈ (0, 1) is a coefficient used to model uncertainties. For simplicity, let the

action horizon be chosen equal to the planning horizon. Therefore, tk+1 = tk + Hk,

which by substituting in equation (4.26) yields

τmin,k − tk+1 = (τmin,k − tk)−Hk > 0. (4.27)

The position of target i at any time t ≥ τmin,k is

yi(t)=yi(tk)+
d

dt
yi(tk)(t− tk)+

1

2
αi(t, tk)(t− tk)

2, (4.28)

for any i ∈ IT (tk). Now, it follows from equation (4.25) that

yi(t)= ŷi(tk+1)+
1

2
E k
t (t−tk)

2ã, (4.29)

where E k
t is defined as

E k
t = αi(t, tk)ã−1+2(t−tk+1)

d

dt
yi(tk)[(t−tk)

2ã]−1.
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Since t− tk > t− tk+1, it is concluded that

‖E k
t ‖ < 1 + 2‖ d

dt
yi(tk)‖[(t−tk)ã]−1. (4.30)

The second term in the right hand side of equation (4.30) satisfies the following inequality

‖
2 d
dt
yi(tk)

(t−tk+1)ã
‖≤‖ d

dt
yi(tk)‖

2

(τmin,k−tk)ã
. (4.31)

Note that the denominator in the right side of (4.31) is sufficiently large if the targets

and vehicles are very far from each other, or ã is sufficiently large. In that case, the right

hand side of (4.31) will be negligible, and hence

‖2 d

dt
yi(tk)[(t−tk+1)ã]−1‖ � 1. (4.32)

Note that while the trajectory of target i is a priori unknown, it is uniformly distributed

and bounded by ã. Define Ē k
t = ã−1αi(t, tk), and let it be a uniformly distributed random

vector, taking magnitudes between 0 and ã and different directions, such that (4.30) and

(4.32) yield E[E k
t ] = 0|IT (t)|. Using this equality and (4.29), one can estimate yi for large

values of t as ŷi(tk+1). From this estimation and also the current positions of targets

and vehicles as well as the control input uk, the time that vehicle j visits target i can
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be estimated as

τ̂ij(u
k, tk)=(tk+Hk)+‖xj(tk+1)− ŷi(tk+1)‖umax

−1 , (4.33)

for any j ∈ IV . Note that in the above equation it is assumed that the control input uj

remains unchanged after the time instant tk+1 until the vehicle reaches the position of

target ŷi(tk+1). Note also that CRHC updates the estimates (including the ones given

above) in each iteration to reduce the estimation error. Similarly, if aij(x(tk+1), ŷ(tk+1))

is the optimal assignment, regardless of uncertainties, one can expect that this assign-

ment remains unchanged until vehicle j visits target i. Therefore

aij(x(τ̂ij(u
k, tk)), ŷ(τ̂ij(u

k, tk)))=aij(x(tk+1), ŷ(tk+1)).

Consequently, one can estimate the maximum total reward which the vehicles are ex-

pected at time tk+1 to collect by the end of the mission. Denote by Rk+1 this esti-

mated expected reward. For simplicity of notations, let d̃ij(u
k, tk) = di[τ̂ij(u

k, tk)] and

ãij(u
k, tk) = aij(x(τ̂ij(u

k, tk)), ŷ(τ̂ij(u
k, tk))). Then

Rk+1(uk, tk) =
∑
j∈IV

∑
i∈IT,j(tk)

Rid̃ij(u
k, tk)ãij(u

k, tk). (4.34)
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From (4.43), the kth iteration in the CRHC, represented by Pk, can be written as

Pk :

⎧⎪⎪⎨
⎪⎪⎩

max Rk+1(uk, tk)

s.t. Ã(uk, tk) ∈ A k,uk ∈ Uk,

(4.35)

where A k = AIT (tk),IV (tk) and Uk = {u = (uj)j∈IV ; uj ∈ R
d, ‖uj‖ ≤ umax, ∀j ∈ IV} is

the set of admissible heading control.

For convenience of notation, xj(tk), yi(tk) and ŷi(tk) will hereafter be denoted by

xkj , y
k
i and ŷki , respectively, for any i ∈ IT and j ∈ IV .

4.3.4 Extension To Game Theoretic Formulation

It is desired now to develop a distributed cooperative receding horizon controller (DCRHC)

based on the proposed CRHC. For simplicity, assume that there is no target priority

and set for any i ∈ IT , γi = γ and Ri = R , for some γ,R ∈ R≥0.

Theorem 6. Consider the performance index Jŷk+1
•IT(t)

: M|IV | × A
|IT(t)|×|IV| → R≥0 as

Jŷk+1
•IT(t)

(x,A) =
∑
j∈IV

∑
i∈IT,j(t)\ĨT

aije
−γ̄‖xj−ŷk+1

i ‖, (4.36)

where γ̄ = γu−1max. Then, if IT (tk)\ĨT �= ∅, the optimization problem Pk presented in

99



(4.35) is equivalent to

max Jŷk+1
•IT(tk)

(x,A),

s.t. A ∈ A
|IT(tk)|×|IV |,

‖xj − xkj‖ ≤ umaxHk, ∀j ∈ IV .

(4.37)

Proof. See Section 4.5.1.

For any j ∈ IV and i ∈ IT (tk), denote by aj the jth column of A and by AT
i its

ith row. Define the penalty function p(A) = max(0,AT1|IV | − 1), for any A ∈ R
|IV |. One

can show that as λ → ∞, the solution of the following maximization problem

max Jŷk+1
•IT(tk)

(x,A)− λ
∑

i∈IT (tk)\ĨT p(Ai),

s.t. ‖xj − xkj‖ ≤ umaxHk, ∀j ∈ IV ,

aTj 1|IT(t)| = 1, ∀j ∈ IV ,

aj ≥ 0|IT(t)|, ∀j ∈ IV ,

A ≤ Btk .

(4.38)

converges to that of (4.37). Now, for any j ∈ IV and i ∈ IT (tk),j\ĨT , define x̂k+1
j→i as

x̂k+1
j→i = xkj +

ŷk+1
i − xkj

‖ŷk+1
i − xkj‖

umaxHk, (4.39)

which is, in fact, the future position of vehicle j as it is aimed to move towards predicted
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position of target i, and let

dkij = e−γ̄‖x̂
k+1
j→i−ŷ

k+1
i ‖. (4.40)

For any tk, define the finite game Gk = (IV ,
Ś

j∈IV IT (tk),j,U = (Uj)j∈IV ), where

Uj

(
(aj̃)j̃∈IV

)
=

∑
i∈IT(tk),j

\ĨT

( ∑
j̃∈IV,i

aij̃d
k
ij̃ − λp((aij̃)j̃∈IV )

)
.

Note that the set of action profiles here is the same as the set of assignments with values

0 or 1. Similarly, it can be verified that each assignment is a strategy profile for the

game Gk.

Theorem 7. The game Gk is a potential game with the following potential function

P
(
(aj̃)j̃∈IV

)
=

∑
j∈IV

∑
i∈IT,j(tk)\ĨT

aije
−γ̄‖x̂k+1

j→i−ŷ
k+1
i ‖ − λ

∑
i∈IT (tk)

p((aij̃)j̃∈IV ). (4.41)

Proof. See Section 4.5.2.

Theorem 8. There exists a constant λ such that for any λ ≥ λ, the optimization problem

(4.38) has a solution (x∗λ,A
∗
λ) with the entries of A∗

λ being 0 or 1 which is a solution of

(4.37). Furthermore, this solution, A∗
λ, is a maximizer for the potential function (4.41),

and hence a pure Nash equilibrium for Gk.

Proof. See Section 4.5.3.
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Remark 11. Since the vehicles are capable of communicating with each other, they

can share with their neighbors their actions on the targets located in the intersection of

their sensing regions. Based on this information exchange, a method such as generalized

regret monitoring (GRM) [132] or spatial adaptive play (SAP) [133] which guarantees

sufficiently fast convergence to a pure Nash equilibrium can be applied to obtain a Nash

equilibrium.

4.4 Simulation Results

In this section, the performance of the proposed method with GRM and SAP dy-

namic learning approaches is investigated by simulations involving two vehicles and

a set of five targets arriving sequentially in the mission space. The sensing range for

both vehicles is rs = 5m, and the mission space is a closed convex set in the plane

M = [−20, 20] × [−20, 20]m2. Targets have a priori unknown trajectories (randomly

chosen in the simulation) with the maximum velocity ṽ = 1.5m/s and the upper bound

on the magnitude of vehicles’ velocity is umax = 2m/s. Initially, along with the two ve-

hicles, two targets are also present in the mission space, and the remaining three targets

arrive sequentially at 3s, 4s, 6s.

Case 1 (SAP). In this learning method [133], vehicles negotiate with each other to

reach the pure Nash equilibrium by computing a utility function, where intercepting a

target is rewarded while selection of one target by more than one vehicle is penalized by
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Figure 4.1: An example of target tracking with two vehicles and sequentially arriving
targets, using the spatial adaptive play (SAP) as a game learning mechanism.

a negative term with a sufficiently large magnitude. Figure 4.1 shows the result of this

learning mechanism, where it can be observed that other than target 2 that has been out

of the sensing region of the vehicles, all other targets are intercepted by a vehicle in a

cooperative manner.

Case 2 (GRM). In the GRM learning method [132], a fading memory and inertia mech-

anism are also utilized to enable fast convergence to pure Nash equilibrium, where the
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Figure 4.2: An example of target tracking with two vehicles and a set of five sequentially
arriving targets, using the generalized regret monitoring (GRM).

forgetting factor is set to ρ = 0.99 and the inertia is α = 0.95. Figure 4.2 depicts the re-

sult of this simulation, which demonstrates that targets 2 and 5 do not enter the sensing

region of any of the two vehicles but all other targets are intercepted by the vehicles. As

a result of negotiation in the game played by two vehicles in this example, they switch

their selected targets 3 and 4 at some point in time. It is worth noting that the vehicles

stop moving when there is no target in their sensing region. This is a result of the extra

virtual target that was added for each vehicle which can be selected when no target is

sensible.
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4.5 Appendices

4.5.1 Proof of Theorem 6

For any fixed Hk ∈ R≥0, the equation (4.24) gives a one-to-one correspondence between

Uk and B(xk, umaxHk). Considering (4.15) and (4.33), for any i ∈ IT (t) and any j ∈ IV ,

one has

d̃ij(u
k, tk) = e−γi(tk+Hk+

‖xk+1
j

−ŷk+1
i

‖
umax

)

= e−γi(tk+Hk)e−γiu
−1
max‖xk+1

i −ŷk+1
i ‖.

(4.42)

Since for any i ∈ IT , it is assumed that γi = γ and Ri = R , it yields

Rk+1 = R e−γ(tk+Hk)
∑
j∈IV

∑
i∈IT,j(tk)

ãije
−γ̄‖xk+1

i −ŷk+1
i ‖, (4.43)

where the arguments (uk, tk) are omitted for brevity. Hence, from (4.36), it concludes

that

Rk+1(uk, tk) = R e−γ(tk+Hk)Jŷk+1
•IT(t)

(xk+1,Ak). (4.44)

Therefore, as R e−γ(tk+Hk) > 0, the optimization problem (4.35) is equivalent with

max Jŷk+1
•IT(tk)

(xk+1,Ak),

s.t. Ak ∈ A
|IT(tk)|×|IV |,

‖xk+1
j − xkj‖ ≤ umaxHk, ∀j ∈ IV .

(4.45)
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Changing names of the variables, the optimization problem (4.37) yields.

4.5.2 Proof of Theorem 7

Consider vehicle j. Let i′, i′′ be indices of two targets in IT(tk),j and the standard vectors

ei′ , ei′′ ∈ R
|IT(tk)

| be the respective action vectors, i.e. a′j = ei′ and a′′j = ei′′ . Also,

let a−j ∈
Ś

j �=i R
|IT (tk)| represents actions for the vehicles with indices in IV\{j}, i.e.

a−j = (al)l∈IV\{j} where al = eil is the action vector for vehicle l and il ∈ IT(tk),l is the

target with respect to action vector al, for any l ∈ IV\{j}. Now, set A′ = (a′ij) as

(a′j, a−j) and A′′ = (a′′ij) as (a
′′
j , a−j). In order to show that Gk is a potential game, one

needs to verify that

P (a′j, a−j)− P (a′′j , a−j) = Uj(a
′
j, a−j)− Uj(a

′′
j , a−j).

First, let i′, i′′ /∈ ĨT . From (4.41) one has

P (A′)− P (A′′) =

(∑
l∈IV

∑
i∈IT,l(tk)\ĨT

a′ild
k
il − λ

∑
i∈IT (tk)

p((a′il)l∈IV )
)
−

(∑
l∈IV

∑
i∈IT,l(tk)\ĨT

a′′ild
k
il − λ

∑
i∈IT (tk)

p((a′′il)l∈IV )
)
.

(4.46)
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Since, A′ and A′′ differ only in jth column and in rows i′, i′′ ∈ IT (tk),j, it yields that

P (A′)− P (A′′) = dki′j − dki′′j − λ
(

p((a′i′l)l∈IV )− p((a′′i′′l)l∈IV )
)
. (4.47)

Similarly, from (4.3.4) one has

Uj(A
′)−Uj(A

′′) =

( ∑
i∈IT(tk),j

\ĨT

∑
l∈IV,i

a′ild
k
il − λ

∑
i∈IT(tk),j

\ĨT

p((a′il)l∈IV )
)
−

( ∑
i∈IT(tk),j

\ĨT

∑
l∈IV,i

a′′ild
k
il − λ

∑
i∈IT(tk),j

\ĨT

p((a′′il)l∈IV )
)
,

(4.48)

and also, as A′ and A′′ differ only in jth column and in rows i′, i′′ ∈ IT (tk),j, one can see

that

Uj(A
′)−Uj(A

′′) = dki′j − dki′′j − λ
(

p((a′i′l)l∈IV )− p((a′′i′′l)l∈IV )
)
. (4.49)

From (4.47) and (4.49), it concludes that

P (a′j, a−j)− P (a′′j , a−j) = Uj(a
′
j, a−j)− Uj(a

′′
j , a−j). (4.50)

In the case that i′ ∈ ĨT or i′′ ∈ ĨT , with a similar discussion one can show that (4.50)

holds. This proves that the game Gk is a potential game.
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4.5.3 Proof of Theorem 8

Preliminary Definitions and Theorems

Let n,m ∈ N and G = (U ∪ V , E) be a bipartite graph with vertex partitions U and V

where |U| = n and |V| = m. Also, let BG be biadjacency matrix of the bipartite graph

G. Define

AG = {A∈ [0,1]n×m;A∈A
n×m,A ≤ BG}, (4.51)

and

BG = AG ∩ {0, 1}n×m. (4.52)

Similarly, define

ÃG = {A∈ [0,1]n×m;A ≤ BG,A
T1n=1m}, (4.53)

and

B̃G = ÃG ∩ {0, 1}n×m. (4.54)
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Now, let I be a set of natural numbers such that I ⊆ Nn and define

AG,I={A∈ [0,1]n×m; A ≤ BG,A
T1n=1m,

A = (Ai)
T
i∈Nn

,

∀i ∈ I,Ai
T1m≥1,

∀i ∈ Nn\I,Ai
T1m≤1},

(4.55)

and

BG,I = AG,I ∩ {0, 1}n×m. (4.56)

Theorem 9. For any bipartite graph G, one has that

i. AG = convBG,

ii. ÃG = conv B̃G,

iii. AG,I = convBG,I.

Proof of Theorem 8

Define function J̃ŷk+1
•IT(tk)

: M|IV | × [0, 1]|IT(tk)|×|IV| → R≥0 as

J̃ŷk+1
•IT(tk)

(x,A) = Jŷk+1
•IT(tk)

(x,A)− λ
∑

i∈IT (tk)\ĨT

p(Ai), (4.57)
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and note that

Jŷk+1
•IT(tk)

(x,A) =
∑

i∈IT (tk)\ĨT

∑
j∈IV,i(tk)

aije
−γ̄‖xj−ŷk+1

i ‖. (4.58)

Denote by Ωtk as
Ś|IV |

j=1 B(xkj , Hkumax). Take (x∗,A∗) such that

(x∗,A∗) ∈ argmax
(x,A)∈Ωtk

×ÃGtk

J̃ŷk+1
•IT(tk)

(x,A), (4.59)

and let IA∗ ⊆ IT (tk)\ĨT be the set of indices like i such that A∗Ti 1m ≥ 1 where A∗i is

the ith row of A∗. One can see that AGtk ,IA∗ ⊆ ÃGtk and A∗ ∈ AGtk ,IA∗ . Hence

(x∗,A∗) ∈ argmax
(x,A)∈Ωtk

×AGtk ,IA∗

J̃ŷk+1
•IT(tk)

(x,A). (4.60)

Define function J̄ŷk+1
•IT(tk)

: M|IV |×[0,1]|IT(tk)|×|IV| → R≥0 as

J̄ŷk+1
•IT(tk)

(x,A) = Jŷk+1
•IT(tk)

(x,A)− λ
∑

i∈IA∗\ĨT

(AT
i 1m − 1), (4.61)

where A = (Ai)i∈IT (tk). For any (x,A) ∈ Ωtk × AGtk ,IA∗ , one can simply verify that

J̃ŷk+1
•IT(tk)

(x,A) = J̄ŷk+1
•IT(tk)

(x,A). Therefore,

argmax
(x,A)∈Ωtk

×AGtk ,IA∗

J̃ŷk+1
•IT(tk)

(x,A) = argmax
(x,A)∈Ωtk

×AGtk ,IA∗

J̄ŷk+1
•IT(tk)

(x,A). (4.62)
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Since J̄ŷk+1
•IT(tk)

depends linearly on A and AGtk ,IA∗ is a polytope with etreme points

belonging to BGtk ,IA∗ , there exists A∗∗ ∈ BGtk ,IA∗ such that

A∗∗ ∈ argmax
A∈AGtk ,IA∗

J̄ŷk+1
•IT(tk)

(x∗,A), (4.63)

and therefore

A∗∗ ∈ argmax
A∈AGtk ,IA∗

J̃ŷk+1
•IT(tk)

(x∗,A). (4.64)

Note that for any x∗∗ ∈ Ωtk such that

x∗∗ ∈ argmax
x∈Ωtk

J̄ŷk+1
•IT(tk)

(x,A∗∗), (4.65)

one has

x∗∗ ∈ argmax
x∈Ωtk

J̃ŷk+1
•IT(tk)

(x,A∗∗). (4.66)

From (4.64) and (4.66), it yields that

J̃ŷk+1
•IT(tk)

(x∗,A∗) ≤ J̃ŷk+1
•IT(tk)

(x∗,A∗∗) ≤ J̃ŷk+1
•IT(tk)

(x∗∗,A∗∗). (4.67)
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Since (x∗∗,A∗∗) ∈ Ωtk×AGtk ,IA∗ , it concludes from (4.60) and (4.67) that J̃ŷk+1
•IT(tk)

(x∗,A∗) =

J̃ŷk+1
•IT(tk)

(x∗∗,A∗∗) and

(x∗∗,A∗∗) ∈ argmax
(x,A)∈Ωtk

×ÃGtk

J̃ŷk+1
•IT(tk)

(x,A). (4.68)

This shows that (x∗∗,A∗∗) is a solution of (4.38) with the entries of A∗∗ being 0 or 1.

Let A = (aij) be a |IT (tk)| by |IV| matrix with the property that aij is 1 only if i

is the index according to ∅j, for any i ∈ IT (tk) and any j ∈ IV. Then, one can see that

(xk,A) ∈ Ωtk × ÃGtk and J̃ŷk+1
•IT(tk)

(xk,A) = 0, and subsequently, J̃ŷk+1
•IT(tk)

(x∗∗,A∗∗) ≥ 0.

Set λ ∈ R>0 as 1 +
∑

j∈IV
∑

i∈IT,j(tk)\ĨT dkij and let λ ≥ λ. Then, one has A∗∗Ti 1m ≤ 1,

where A∗∗Ti denotes ith row of A∗∗, for any i ∈ IT (tk). Since, if there exists i ∈ IT (tk)

such that A∗∗Ti 1m > 1, as each entry of A∗∗ belongs to the set {0, 1}, it follows that

A∗∗Ti 1m ≥ 2, and subsequently, p(A∗∗i ) ≥ 1. From this, it yields that

J̃ŷk+1
•IT(tk)

(x∗∗,A∗∗) ≤
∑

i∈IT (tk)\ĨT

∑
j∈IV,i(tk)

aije
−γ̄‖xj−ŷk+1

i ‖ − λ

≤
∑

i∈IT (tk)\ĨT

∑
j∈IV,i(tk)

dkij − λ

< 0,

which contradicts J̃ŷk+1
•IT(tk)

(x∗∗,A∗∗) ≥ 0. Thus, for any i ∈ IT (tk), one has A∗∗Ti 1m ≤ 1,
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i.e.

(x∗∗,A∗∗) ∈ Ωtk × AGtk . (4.69)

From (4.68), (4.69) and Ωtk × AGtk ⊆ Ωtk × ÃGtk , it yields that

(x∗∗,A∗∗) ∈ argmax
(x,A)∈Ωtk

×AGtk

J̃ŷk+1
•IT(tk)

(x,A). (4.70)

This shows that (x∗∗,A∗∗) is a solution of (4.37).

With a similar discussion, one can show that if λ ≥ λ then there exists Ā∗∗ ∈ BGtk

such that

Ā∗∗ ∈ argmax
A∈ÃGtk

P (A). (4.71)

It can be easily seen that for any (x,A) ∈ Ωtk × ÃGtk , one has

Jŷk+1
•IT(tk)

(x,A) ≤ P (A), (4.72)

and hence

Jŷk+1
•IT(tk)

(x∗∗,A∗∗) ≤ P (Ā∗∗). (4.73)

Now, consider the map x : B̃Gtk → Ωtk such that x(A) = (xj(A))j∈IV and for any j ∈ IV ,
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xj(A) is defined as

xj(A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
xkj +

ŷk+1
ij

−xkj
‖ŷk+1

ij
−xkj ‖

umaxHk, if ij /∈ Ĩ

xkj , if ij ∈ Ĩ

(4.74)

where ij ∈ IT (tk) is the index of the row that jth column of A is 1 in that row. Hence,

for any A ∈ B̃Gtk , it yields that J̃ŷk+1
•IT(tk)

(x(A),A) = P (A). Thus, according to the

definition of (x∗∗,A∗∗), it can be noticed that

J̃ŷk+1
•IT(tk)

(x∗∗,A∗∗) = J̃ŷk+1
•IT(tk)

(x(A∗∗),A∗∗) = P (A∗∗), (4.75)

and subsequently,

P (Ā∗∗) = J̃ŷk+1
•IT(tk)

(x(Ā∗∗), Ā∗∗) ≤ J̃ŷk+1
•IT(tk)

(x∗∗,A∗∗) = P (A∗∗). (4.76)

Considering equations (4.73), (4.75) and (4.76), it follows that P (Ā∗∗) = P (A∗∗), i.e.

A∗∗ ∈ argmax
A∈ÃGtk

P (A). (4.77)

This shows that A∗∗ is a maximizer for the potential function (4.41) and hence a pure

Nash equilibrium for Gk.
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Chapter 5

Cooperative Receding Horizon

Control of Double Integrator

Vehicles for Multi-Target

Interception

In this chapter, the cooperative multi-target interception problem in an uncertain en-

vironment with double-integrators vehicles is investigated. A time-discounting reward

function is defined for each target which can be collected only if it is visited by a vehicle.

This function is used to formulate the problem as an optimization problem which aims to

maximize the expected reward collectible from the set of available targets in the mission
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space. A cooperative receding horizon controller is designed to solve the problem based

on an estimate of the future position of every targets with the available information. It

is shown that a solution for this optimization problem exists, and that the vehicles visit

the targets in finite time. The effectiveness of the proposed algorithm is demonstrated

by simulation.

5.1 Notations

Throughout the paper, the set of real numbers and the set of non-negative real numbers

are denoted by R and R≥0, respectively. Also, let N and Nn denote respectively the set

of natural numbers and the set of natural numbers less than or equal to n. For a given

set A and a subset of it B, the indicator function of B, denoted by 1B, is a function

from A to {0, 1}, which is non-zero only when its argument belongs to the set B. For

any index set I, the notation AI represents the set of points like (ai)i∈I whose entries

belong to A. In the case when I is the set Nn, the set AI is simply denoted by An. Let

J be a non-empty subset of I. For any point a ∈ AI , the term a•J represents a point in

AJ , obtained by eliminating the entries with indices not listed in J . The d-dimensional

Euclidean space is denoted by R
d.

Let n be a natural number. Then, Rn denotes the n-dimensional Euclidean space.

Also, 0n and 1n represent all-zero and all-one vectors in R
n, respectively. For any vector

a, b ∈ R
d, it is said that a ≥ b only when a− b ∈ R

n
≥0, i.e., all entries of a− b are
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non-negative. Let x be a point in R
d and r be a scalar in R≥0. Then, B(x, r) denotes

the closed ball in R
d with radius r centered at x, i.e.

B(x, r) = {y ∈ R
d | ‖x− y‖ ≤ r}. (5.1)

Let q̄ and ū be scalars in R≥0, and I be an interval in R. Denote by Cp
I (R

d) the

set of piecewise continuous vector-valued functions defined over I with values in R
d.

Accordingly, define UI(ū) as a set of functions in Cp
I (R

d) like u such that supt∈I ‖u(t)‖ ≤

ū. In the case where ū is known from the context, the arguments will be omitted for

brevity.

5.2 Problem Formulation

Let the mission space, denoted by M, be a closed convex subset of d-dimensional Eu-

clidean space, and IV = N|IV | be the set of indices for a finite number of vehicles inside

M. For any j ∈ IV , let pj(t) ∈ R
d and qj(t) ∈ R

d represent the position vector and

velocity vector of vehicle j, at time t ∈ R≥0, whose dynamics is described by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ṗj(t) = qj(t),

q̇j(t) = uj(t),

(5.2)
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where uj belongs to the set of admissible controls, denoted by U and defined here as

UI(umax) where umax is the bounds of acceleration for the vehicles. For any j ∈ IV ,

denote by xj the state vector of vehicle j, which is defined as [pT
j , q

T
j ]

T and belongs to

the set M× R
d. Accordingly, x = (x)j∈IV is the state vector of the entire system. The

set M× R
d is the state space for each of the vehicles and X = ×j∈IV (M× R

d) is the

state space for the entire system.

Remark 12. It is to be noted that uj(t) = uj(t)dj(t) for some piecewise continuous

functions uj and dj, where dj(t) ∈ S
d−1 = {d ∈ R

d; ‖d‖ = 1} is the control input for

the direction of the acceleration vector and uj(t) ∈ [0, umax] is the control input for its

magnitude, for any j ∈ IV and any t ∈ R≥0.

Let IT = N|IT | be a finite set of natural numbers representing indices of a non-zero

finite number of targets sequentially arriving in the mission space. Assume that the

mission starts at t = 0, and let n0 ∈ {0} ∪N|IT | be the number of targets in the mission

space initially. Let also T1 be the arrival time of the first target, and {Ti}|IT |i=2 be a finite

sequence of non-negative real scalars representing targets inter-arrival times, i.e., the

time between consecutive targets’ arrival. Note that if n0 > 0, then for any 1 ≤ i ≤ n0,

one has Ti = 0. For any i ∈ N|IT |, one can define the arrival time of the ith target as

τ̌i =
∑i

j=1 Tj, and also the set of indices of targets arrived up to time instant t, denoted

by ǏT (t), as

ǏT (t) := {i ∈ IT ; τ̌i ≤ t}. (5.3)
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It is worth noting that {τ̌i}i∈IT is an increasing finite sequence. Besides the arrival time

of targets, one can define a sequence of vectors {ri}i∈IT , belonging to M, as the initial

positions of targets in the mission space as they arrive. The arrival times and initial

positions of targets are not known a priori. More precisely, at any time t < τ̌i, none

of the vehicles has the information of τ̌i and ri. In other words, for any i ∈ IT , the ith

target arrives in the mission space at an a priori unknown time τ̌i and in an a priori

unknown point ri. In addition, the vehicle moves on an a priori unknown trajectory,

denoted by ri(t).

Definition 12. For any i ∈ IT and j ∈ IV . and a prescribed positive scalar dij, it is

said that the jth vehicle visits the ith target at time t, if ‖pj(t)− ri(t)‖ ≤ dij.

Along with Definition 12 and for any i ∈ IT , one can define τ̂i ∈ R̄≥0 = [0,∞] as

the first time that target i is visited by one of the vehicles, i.e.

τ̂i = inf{t ∈ R≥0 ; min
j∈IV

(
‖pj(t)− ri(t)‖ − dij

)
≤ 0}. (5.4)

Note that τ̂i = ∞ if and only if none of the vehicles visits target i. The set of indices of

targets visited up to time t, denoted by ÎT (t), is defined as

ÎT (t) = {i ∈ IT | τ̂i ≤ t}. (5.5)

One can also define the set of indices of targets arrived in the mission space but not
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visited up to time t, as

IT (t) = ǏT (t)\ÎT (t) = {i ∈ IT ; τ̌i ≤ t < τ̂i}. (5.6)

For any i ∈ IT , the trajectory of target i is a C2 curve in the mission space M,

defined by ri : [τ̌i, τ̂i] → M, satisfying the following two geometric conditions where one

describes the global behavior of trajectories of targets and the other one describes the

local behavior of trajectories of targets.

Assumption 8. (Global Geometric Condition) For any i ∈ IT and any τ ∈ [τ̌i, τ̂i],

ri(τ) ∈ M.

Global geometric condition guarantees that once a target arrives, it will remain

inside the mission space until the end of the mission. Note that the property stated in

Assumption 8 depends both on trajectories of targets and also on the geometry of the

mission space. For example, in the case where M is the whole d-dimensional Euclidean

space, one can verify that the global geometric condition is satisfied automatically.

Assumption 9. (Local Geometric Condition) For any i ∈ IT , ri : [τ̌i, τ̂i] → M is a C2

function, i.e. ri is two times continuously differentiable. Also, there exist non-negative

scalars ãi, J̃i, c̃i such that for any i ∈ IT , τ ∈ [τ̌i, τ̂i] and t ∈ (τ, τ̂i], one has

‖ d2

dt2
ri(τ)‖ ≤ ãi, sup

τ̃∈(τ,τ̂i]
‖ji(τ̃ , τ)‖ ≤ J̃i, (5.7)
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and

‖ji(t, τ)‖ ≤ c̃i|t− τ |, (5.8)

where ji(t, τ) is a C2 function satisfying the following equality

ri(t) = ri(τ) + (t− τ)
d

dt
ri(τ) +

1

2!
(t− τ)2

d2

dt2
ri(τ) +

1

3!
(t− τ)3ji(t, τ). (5.9)

Assumption 10. The position, velocity and acceleration vectors of any current target

(targets that have arrived but not visited yet) are available at the beginning of each time

horizon (i.e., at time instant τ in (5.9)).

For any τ ∈ R≥0 and any i ∈ IT (τ), define yi(τ) as the vector of available infor-

mation of target i at time instant τ , i.e.

yi(τ) =
(
ri(τ),

d

dt
ri(τ),

d2

dt2
ri(τ)

)
. (5.10)

This information vector belongs to the information space of target i, which is defined as

Yi = M×R
d ×B(0d, ãi). Accordingly, one can define the information vector of targets

at time τ as

y(τ) =
(
ri(τ),

d

dt
ri(τ),

d2

dt2
ri(τ)

)
i∈IT (τ)

, (5.11)
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and also, the information space of targets as

Yτ =
ą

i∈IT (τ)

(
M× R

d × B(0d, ãi)
)
. (5.12)

Considering Assumption 10, for any τ ∈ R≥0 and any i ∈ IT (τ), the position of target

i can be estimated at any future instant within the time horizon of its presence in the

mission space using the information available at time τ . Denote this estimate by r̂i(·),

and describe it by

r̂i(t) = ri(τ) + (t− τ)
d

dt
ri(τ) +

1

2!
(t− τ)2

d2

dt2
ri(τ), (5.13)

where t ∈ [τ, τ̂i].

With respect to each target, a task is defined which is completed if the target

is visited by one of the vehicles. By slight abuse of notation, denote by IT , ǏT (t),

ÎT (t) and IT (t), the total set of tasks, the set of tasks started by time t, the set of

tasks accomplished by time t, and the set of tasks in progress at time t, respectively.

Subsequently, the mission is to accomplish all of the tasks in finite time. Here, it is

desired to obtain a near-optimal cooperative algorithm to accomplish the mission in the

presence of uncertainties and limited information.
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5.3 Cooperative Receding Horizon Scheme

As an incentive for the vehicles to accomplish the tasks (i.e. visit the targets), let a time-

decreasing reward be assigned to each target, which can be collected only if the vehicle

completes the corresponding task and visits the target. Vehicles intend to maximize the

total collected reward, which entails cooperation to minimize the visit time. Toward

this goal, each vehicle should decide upon its next immediate target in a cooperative

manner, during the decision-making process, and subsequently plan its own path. Due

to uncertainties in the environment and changes in the required information, the coop-

erative decision-making and path planning process should be performed iteratively. At

the beginning of each iteration, the vehicles calculate their control inputs based on the

tasks and their corresponding rewards, such that their estimation of the total collected

reward is maximized.

5.3.1 Structure of Reward Functions

For any i ∈ IT , let Ri be the initial reward considered for the task corresponding to the

ith target at its arrival moment. In order to take into account the reward loss over time,

define a continuous decreasing function ρi : [τ̌i, τ̂i] → [0, 1], called discount function, and

form the reward function as Riρi. Assuming that ρi(τ̌i) = 1, the reward function satisfies

the desired properties discussed earlier. By properly selecting the initial rewards and
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discount functions amongst their possible candidates, one can model aspects such as

scheduling, time priorities and deadlines. For example, in the case that there is no final

deadline for visiting the target i, one can consider the discount function as follows

ρi(t) = e−γi(t−τ̌i), ∀ i ∈ IT , (5.14)

where γi ∈ R>0 is the reward discount rate parameter for the target i. Also, in the case

that there is a final hard deadline for task i, denoted by tif ∈ R≥0, one may consider the

following discount function

ρi(t) = max{1− t− τ̌i
tif − τ̌i

, 0}, i ∈ IT . (5.15)

Moreover, one may consider finite number of soft deadlines after which the corresponding

target is not as interesting as it was before the deadline. For this case, one may choose

the discount functions as continuous piecewise-defined functions formed by some other

discount functions as its sub-functions, i.e.

ρi(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρi,0(t), if t ∈ [τ̌i,Di1),

ρi,1(t), if t ∈ [Di1,Di2),

...
...

ρi,d i(t), if t ∈ [Did i , τ̂i],

(5.16)
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where {Did }d i

d =1 are the soft deadlines and {ρi,d (·)}d i

d =1 are the discount sub-functions.

Since ρi(t) is a continuous function, it is required that for any d ∈ Nd i , one has

limt→Did ρi,d−1(Did ) = ρi,d (Did ). Note that some of these soft deadlines may be con-

sidered based on the unpredicted events occurring in the mission and thus, they are a

priori unknown.

5.3.2 The Minimum Reaching Time and The Maximum Re-

ward Estimation

Let {tk}kmax
k=1 ∈ [0, τ̂ ] denote the time instants when the iterative decision-making pro-

cedure is supposed to be performed where kmax ∈ N ∪ {∞} represents the number of

iterations. Note that it is implicitly assumed that t1 = 0 and the sequence (tk)
kmax
k=1 is

a strictly increasing sequence. Accordingly, for any k ∈ N such that k < kmax, one can

define the kth time-interval of procedure as Ik = [tk, tk+1).

For any j ∈ IV , from (5.2), one can represent the dynamic of vehicle j in matrix

form as follows

d

dt
xj = Adxj +Bduj (5.17)

where Ad and Bd are 2d by 2d matrices defined as

Ad =

⎛
⎜⎜⎝
0d Id

0d 0d

⎞
⎟⎟⎠ ,Bd =

⎛
⎜⎜⎝
0d

Id

⎞
⎟⎟⎠ . (5.18)
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Similarly, the dynamics of the all system is derived in matrix form as following

d

dt
x = (Im ⊗Ad)x+ (Im ⊗Bd)u. (5.19)

For any j ∈ IV , let uk
j (·) be a function in UIk , the set of admissible controls defined over

Ik the control input applied by the vehicle j for time interval [tk, tk+1). Subsequently,

let uk denote the vector of all control inputs (uk
j )j∈IV . Under these control inputs, the

state of vehicle j at time instant tk+1 is obtained as

xj(tk+1) = eAd(tk+1−tk)xj(tk) +

∫ tk+1

tk

eAd(tk+1−s)Bdu
k
j (s)ds. (5.20)

Now, let i ∈ IT (tk) be the index of an arbitrary existing target. Let τ kij be the time

estimate when the vehicle j can reach target i, based on the information given at time

instant tk and the control input uk
j (·) applied by the vehicle j for time interval [tk, tk+1).

Denote rki , v
k
i and aki as ri(tk),

d
dt
ri(tk) and

d2

dt2
ri(tk), respectively. From these, one can

model the trajectory of target i, for t ≥ tk as

r̂i(t) = rki + (t− tk)v
k
i +

1

2!
(t− tk)

2aki . (5.21)
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Consequently, one can obtain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r̂k+1
i = rki + (tk+1 − tk)v

k
i +

1
2!
(tk+1 − tk)

2aki ,

v̂k+1
i = vki + (tk+1 − tk)a

k
i ,

âk+1
i = aki ,

(5.22)

where r̂k+1
i , v̂k+1

i and âk+1
i are the prediction of the position, velocity and acceleration of

target i at tk+1, respectively, based on the information given at time instant tk. Having

these predictions, one can obtain the following theorem based on minimum time optimal

control theory.

Theorem 10. Consider the vehicle j ∈ IV , the time instant tk, the target i ∈ IT (tk)

and the trajectory model given in (5.21) for the target i. Let the control input uk
j (·) be

applied for time interval Ik. Also, consider the following equation

⎧⎪⎪⎨
⎪⎪⎩

1
2
uij τ̄

2
ij = 1

2
âk+1
i τ̄ 2ij + (v̂k+1

i − qj(tk+1))τ̄ij + (r̂k+1
i − pj(tk+1))

‖uij‖ = umax,

(5.23)

where r̂k+1
i , v̂k+1

i and âk+1
i are the predictions given in (5.22) and also, pj(tk+1) and

qj(tk+1) are the position and velocity of vehicle j, respectively, given the control input

uk
j (·) is applied for time interval Ik. Then, equation (5.23) has a solution for τ̄ij in R≥0,

and subsequently, a corresponding solution for uij. Also, if one has that tk+1 − tk ≤ z
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where z is smallest positive solution of following equations

1

2
(umax + ã)z2 = ‖(qj(tk)− vki )z + pj(tk)− rki ‖, (5.24)

then τ kij = tk+1 + τ̄ij, where τ̄ij is the smallest non-negative solution of equation (5.23).

Corollary 3. Let the conditions in Theorem 10 hold. Then the maximum reward which

vehicle j can collect from target i, assuming that the control input uk
j (·) is applied for the

time interval Ik, can be estimated as Riρi(τ
k
ij) where τ kij is the estimation of the reaching

time introduced in Theorem 10.

The Theorem 10 and Corollary 3 say that based on the given information, the

vehicles can estimate the minimum reaching times and subsequently, the final maximum

rewards where each of them can extract from each of the targets. However, in order

to maximize the total collected reward, the vehicles are required to cooperate in an

appropriate manner. The structure of this cooperation is discussed in the sequel.

5.3.3 Structure of Cooperation Strategy

In each step of decision-making, once the vehicles estimate the final maximum reward

of each target using the given information of the targets and vehicles, each of them is

required to decide upon its next immediate target. Based on the possible differences in

the value of estimated final maximum rewards of different targets, vehicles may have
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different levels of interest in the tasks. However, they should cooperate in order to max-

imize the final total rewards collected from all the targets. In this regard, a cooperation

strategy is required which is discussed here. Consider the step of decision making cor-

responding to the time instant tk. For any i ∈ IT (tk) and j ∈ IV , an assignment of task

i to vehicle j is characterized as a real scalar in [0, 1], denoted by πk
ij, which reflects the

amount of interest of vehicle j in being target i assigned to it during the time interval

Ik. Also, denote by Πk the assignments matrix which is defined as (πk
ij)i∈IT (tk),j∈IV . It

is expected that the value of assignment πk
ij depends implicitly on the information given

at time instant tk via the estimation of final maximum rewards and also the cooperation

policy constraints. More precisely, for any i ∈ IT (tk) and j ∈ IV , the assignment πk
ij is

a function of the form πk
ij : X × Ytk → [0, 1] where X × Ytk is the information space at

time instant tk. The proper assignments are required to have some desired structures

reflecting cooperation policy constraints which are discussed in the sequel.

If tk is a time instant such that IT (tk) = ∅, there is no target in the mission space

and no issue for cooperation and assignment. Therefore, let tk be a time instant at

which IT (tk) �= ∅. Since the vehicles are required to consider all the current tasks, it is

expected that for each vehicle the sum of its assignments be equal to one, i.e.

∑
i∈IT (tk)

πk
ij(x

k,yk) = 1, ∀j ∈ IV , (5.25)

where xk and yk are vectors for states of vehicles and the available information of targets,
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respectively, at time instant tk. Also, in the case that the number of current tasks is at

least equal to the number of vehicles, it is reasonable to manage the resources efficiently

to accomplish as many tasks as possible by acting cautiously. Hence, it is required to

under-assign the targets to the vehicles, i.e.

∑
j∈IV

πk
ij(x

k,yk) ≤ 1, ∀i ∈ IT (tk). (5.26)

Similarly, in the case that the number of vehicles is at least equal to the number of cur-

rent tasks, according to the possible uncertainties in the environment, it is expected to

increase the chance of collecting more amounts of reward by acting generously. There-

fore, it is required to over-assign the targets to the vehicles, i.e.

∑
j∈IV

πk
ij(x

k,yk) ≥ 1, ∀i ∈ IT (tk). (5.27)

Remark 13. It can be shown that the inequalities in equations (5.26) and (5.27) turn

to equalities when |IV | = |IT (tk)|.

Equations (5.25), (5.26) and (5.27) introduce a set of constraints that should be

satisfied by any desired assignment. More precisely, if one defines the set Pn×m as

P
n×m={Π∈ [0,1]

n×m

;ΠT1n=1m,m≥n ⇒ Π1m≥1n,m≤n ⇒ Π1m≤1n}, (5.28)
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for any n,m ∈ N, then the assignment matrix Πk(xk,yk) is required to belong to the

set PIT (tk),IV which is defined as PIT (tk),IV = {Π : X × Ytk → P
|IT(tk)|×|IV|}.

5.3.4 Cooperative Receding Horizon Controller

The cooperative receding horizon (CRH) controller performs the iterative procedure

of cooperative decision-making and path planning. The controller generates the control

inputs for each vehicle as well as the matrix of optimal assignments such that the vehicles

collect maximum possible rewards. Toward this goal, an estimation of the remaining

collectible rewards is given as a payoff function in an optimization problem, at any time

instant tk, and the solution of the problem is obtained. The payoff function depends

on the control inputs and assignments for the current time step. The constraints in the

optimization problem and also the payoff function are mainly based on the information

given at time instant tk. The solution of the problem provides the optimal control input

uk.

Let tk be a time instant such that IT (tk) �= ∅, and (uk
j (·))j∈IV be the control inputs

applied to the vehicles for time period Ik = [tk, tk+1). Therefore, the states of the vehicles

at time instant tk+1, the vector xk+1, is derived as in (5.20). Moreover, equation (5.22)

provides the vector of predictions of position, velocity and acceleration of targets at tk+1,

the vector ŷk+1. Consider the estimation of the final maximum rewards introduced in

Corollary 3, i.e. Riρi(τ
k
ij(u

k, tk)) which is the estimation of the maximum value of reward
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that vehicle j expects at time instant tk+1 to collect from target i given that the control

input uk
j (·) is applied for time interval Ik = [tk, tk+1), for any i ∈ IT (tk) and j ∈ IV . Also,

consider the expected optimal assignment matrix for time instant tk+1, denoted by Π̃k+1,

defined as the optimal assignment matrix. This matrix is determined based on the state

vector xk+1 as well as the prediction vector ŷk+1 which itself depends on the information

provided at tk. Accordingly, one can say that the expected optimal assignment matrix is

a function of control input uk and time instant tk, i.e. Π̃
k+1 = Π̃k+1(uk, tk). Given the

estimation of rewards, the expected optimal assignment matrix, the states of vehicles and

the vector of predictions regarding the targets, all at time instant tk+1, one can estimate

at tk+1, the maximum reward the team expects to collect until the end of mission. This

total expected reward is denoted by Rk+1(uk, tk) and formulated as following

Rk+1(uk, tk) =
∑

i∈IT (tk)

∑
j∈IV

Riρi(τ
k
ij(u

k, tk))π̃
k
ij(u

k, tk), (5.29)

where π̃k
ij(u

k, tk) is the entry of matrix Π̃k+1(uk, tk) in row i and column j, for any

i ∈ IT (tk) and j ∈ IV .

Now, let Pk be the optimization problem for CRH controller corresponding to kth

step. According to the discussion above, one has

Pk :

⎧⎪⎪⎨
⎪⎪⎩

max Rk+1(uk, tk)

s.t. Π̃(uk, tk) ∈ Pk,uk ∈ U k,

(5.30)
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where Pk and U k denote PIT (tk),IV and ×j∈IVUIk , respectively.

The behavior of CRH controller which constructs the state trajectory of the sys-

tem, depends on the parameters of the problem and the level of uncertainties in the

environment. Given the parameters introduced in the problem formulation, the time

of arrivals and trajectories of targets, it is required to decide upon the value of planing

horizons. In fact, the convergence of system is guaranteed only under special conditions,

such as the proper choice of planing horizons.

Theorem 11. Consider the receding horizon problem presented in (5.30). Assume that

ã < umax. Then for any initial x in mission space and any Π belonging to (5.28), there

exists a sequence of planning horizons for the cooperative receding horizon controller

where the vehicles visit targets in finite steps.

5.4 Simulation Results

In this section, a scenario is designed to assess the performance of the proposed algorithm

for an example involving two double-integrator vehicles and a set of four targets arriving

at the mission space sequentially. The scenario shows the effectiveness and flexibility of

the proposed method in meeting various dynamic decision criteria solely by modifying the

reward functions to the most appropriate. The square M = [−200, 200]× [−200, 200] is

taken as the mission space which is a closed convex set. The initial position and velocity

of vehicles and targets are generated randomly. Also, each of the targets have an a priori
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Figure 5.1: The target tracking for the vehicles and sequentially arriving targets using
exponential reward function.

unknown trajectory and arrival time; however, at each time instant t the information

vector of the targets y(t) (see (5.11)) are updated. The maximum acceleration of vehicles

and targets are bounded by umax = 2m/s and ã = 1m/s, respectively. It is assumed that

the targets always satisfy Assumptions 8 and 9. Initially two targets are present in the

mission space along with the vehicles, and the remaining two targets arrive sequentially

at {τ̌i}4i=3 = {2, 4}. The initial reward of each target is the same and equal to {Ri = 1}4i=1.

The targets have the same reward function which are in the form of equation (5.14) with

reward discount rate parameter {γi = 1}4i=1. Fig. 5.1 depicts the position of vehicles and
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targets when the proposed algorithm is initialized with the above mentioned parameters

and simulated until no targets remained in the mission space (Sampling time: Ts = 0.05).

The result of this example shows that all of the targets are visited in finite time as follows:

{τ̂i}4i=1 = {1.05, 2.85, 4.05, 6.05}. Moreover, a total reward of R = 0.568 is collected in

this mission. Note that the assigned targets of vehicles 1 and 2 are changed to the best

when new targets appears in the mission space at time moments t = 1 and t = 2.

With the help of the aforementioned simulation study, one can see the merits and

efficiency of CRH controller with expected reward maximization scheme in generating

the optimal assignment Πk and control input uk.

Remark 14. From Fig. 5.1, it might seem from the positions of vehicles 1 and 2

that target 3 should be assigned to vehicle 1 and target 4 should be assigned to vehicle

2. However, this is not the case because the assignment strategy takes the movement

dynamics of the vehicles and targets into consideration. More precisely, not only does

the strategy depend on the positions of targets and vehicles, it also depends on their

velocity and acceleration vectors.
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Chapter 6

Maximum Reward Collection

Problem : A Cooperative Receding

Horizon Approach for Dynamic

Clustering

In this chapter, the Maximum Reward Collection Problem (MRCP) in uncertain envi-

ronments is investigated where multiple agents cooperate to maximize the total reward

collected from a set of moving targets in the mission space with a priori unknown arrival

times, trajectories and dynamics. The reward with respect to each of the targets has a
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time discounting value and can be collected only if a cluster of agents with proper num-

ber of elements visits the targets.Meanwhile, in each cluster, it is assumed that agents

are able to extract a larger fraction of reward when their configuration in the cluster is

close to specific configuration around the respective target. The inherited uncertainty in

the environment and the dynamic clustering factor render the one-shot optimization in

MRCP rather impractical. Therefore, a Cooperative Receding Horizon (CRH) controller

is utilized toward maximizing the collected reward and based on the prediction of the

future positions of targets with the given limited information. Some analytical aspects

of problem is discussed and the effectiveness and advantages of the proposed algorithm

is demonstrated via numerical simulations.

In section 6.1 the MRCP is formulated and in section 6.2 an optimization overview

of the MRCP is presented. The proposed controller is introduced and formulated in

section 6.3. In section 6.4 an illustrative simulation is presented.

6.0.1 Notations

Throughout the chapter, N,R,R≥0 respectively denote the set of natural numbers, real

numbers, and non-negative real numbers. Also, the set of natural numbers less than or

equal to n is denoted by Nn. For a given set A and its subset B, the indicator function of

B is denoted by 1B is a function from A to {0, 1} and is one over B and zero elsewhere.

The d dimensional Euclidean space is denoted by R
d. Also, all-zero and all-one vectors
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in R
d are respectively represented by 0d and 1d. For any vectors a and b in R

d inequality

a ≥ b indicates that all entries of a− b are non-negative. For any point x ∈ R
d and

any scalar r ∈ R≥0, the sphere with radius r centered at x is denoted by B(x, r), and is

defined as

B(x, r) = {y ∈ R
d | ‖x− y‖ ≤ r}. (6.1)

6.1 Problem Formulation

Let the mission space be a closed convex subset of Rd, denoted by M. Consider a finite

number of dynamic agents, also known as vehicles, inside M with indices from the set

IV = N|IV |. For any j ∈ IV , let the dynamics of vehicle j be described by ẋj = uj(t),

where xj(t) is the position of vehicle j in the mission space at given time t and uj is

the control input for the vehicle which belongs to the set of admissible controls, denoted

by Uumax and defined as the set of continuous functions, like u : R≥0→R
d, bounded by

umax and with bounded piecewise continuous derivative.

Along with the vehicles, there exist finite number of targets with indices from

IT = N|IT | which arrive the mission space sequentially and move inside M. For any

i ∈ IT , let the target i at mission space in the a priori unknown point yi ∈ M at the a

priori unknown time instant τ̌i ∈ R≥0 and move afterward inside the mission space on

the a priori unknown trajectory yi(t). Without loss of generality, one can assume that

the targets are indexed with respect to their arrival order, i.e. 0 ≤ τ̌1 ≤ τ̌2 ≤ · · · ≤ τ̌|IT |.
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Also, in the case that there exist initially n0 ∈ N targets in the mission space, one has

τ̌1 = · · · = τ̌n0 = 0. Accordingly, for any t ∈ R≥0, one may define the set of indices of

targets arrived up to time t, denoted by ǏT (t), as ǏT (t) := {i ∈ IT ; τ̌i ≤ t}.

Each of the existing targets can be visited by a vehicle when their mutual distance

is almost equal to a predetermined real scalar defined as the visiting radius of the target.

In other words, for any i ∈ IT and any j ∈ IV , vehicle j can visit the target i at time

t if ri − δri ≤ ‖xj(t) − yi(t)‖ ≤ ri + δri where ri> 0 denotes the visiting radius of the

target i and δri ∈ (0, ri) is the radius tolerance factor. Also, assume that with respect

to the target i there exists a time-dependent reward which can be collected if the target

i is visited by a cluster composed of mi number of vehicles. Here, mi ∈ N, the size

of proper cluster, is the predetermined number of vehicles required for collecting the

reward. Let the reward of target i be defined as the function Riρi(t) where Ri is the

initial maximum reward and ρi : R≥0 → [0, 1] is the time discount function, which is a

decreasing function capturing the rate of reward loss over time. By using appropriate

time discount functions, one can model different aspects of timing and scheduling such

as deadlines and priorities for reward collection. As a simple example, one can consider

the following function

ρi(t) = e−γit, ∀ i ∈ IT , (6.2)

for the case that there is no final hard deadline for reward collection of target i where

here γi ∈ R>0 is the reward discount rate parameter for the target i. For the case that
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the hard deadline tif is imposed on collecting the reward of target i one can take the

function

ρi(t) = max{1− t

tif
, 0}, ∀ i ∈ IT . (6.3)

In this case the reward becomes zero when the deadline is passed.

With respect to each of the targets, a task is defined as collecting the respective

reward which can be accomplished only by a proper cluster of vehicles. For any i ∈ IT ,

one may define ith tasks accomplishment time, denoted by τ̂i ∈ R̄≥0, as the time instant

that the task i is accomplished. Note that τ̂i = ∞ happens in the situations where no

cluster of mi vehicles visit target i throughout the mission time. Based on the definition

of tasks accomplishment times, for any t ∈ R≥0, one can define the set of indices of

accomplished tasks up to time t as following

ÎT (t) = {i ∈ IT | τ̂i ≤ t}. (6.4)

By abuse of notation, one can denote ǏT (t) as the set of indices of initiated tasks up to

time t. Also, denote IT (t) as the set of indices of current tasks as following

IT (t) = ǏT (t)\ÎT (t) = {i ∈ IT ; τ̌i ≤ t < τ̂i}. (6.5)

Regarding the trajectories of targets, note that for any i ∈ IT , the trajectory of ith
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target, yi : [τ̌i, τ̂i] → R
d, is assumed to be a continuously differentiable function satisfying

geometric properties introduced in the sequel.

Assumption 11. (Global Geometric Condition) For any i ∈ IT and any τ ∈ [τ̌i, τ̂i],

one has yi(τ) ∈ M.

The global geometric condition ensures that once a target arrives in the mission

space, it will remain inside it. This property depends not only on trajectories of targets,

but also on the geometry of the mission space. For the particular case where mission

space is the d-dimensional Euclidean space, the global geometric condition is immediately

satisfied.

Assumption 12. (Local Geometric Condition) There exist non-negative scalars ṽ , ã,

such that for any i ∈ IT and any τ ∈ [τ̌i, τ̂i], one has

∥∥∥ d

dt
yi(τ)

∥∥∥ ≤ ṽ , sup
s∈(τ,τ̂i]

‖αi(s, τ)‖ ≤ ã, (6.6)

where αi(t, τ) is the continuously differentiable function that for any τ ∈ [τ̌i, τ̂i] and any

t ∈ [τ, τ̂i] the following equality holds:

yi(t) = yi(τ) +
d

dt
yi(τ)(t− τ) +

1

2
αi(t, τ)(t− τ)2. (6.7)

If function yi(·) is twice continuously differentiable and there exist non-negative
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Figure 6.1: Uniform configuration of six vehicles around a target in two and three
dimensional space.

scalars ṽ , ã such that for any τ ∈ [τ̌i, τ̌i] one has

‖ d

dt
yi(τ)‖ ≤ ṽ , ‖ d2

dt2
yi(τ)‖ ≤ ã, (6.8)

then it can be seen from Taylor’s theorem with mean-value form of the remainder [127],

that yi(t) satisfies Assumption 12.

Assumption 13. For any τ ∈ R≥0 and i ∈ IT (τ), the position and velocity vectors of

target i are given at the beginning of each time horizon, i.e. at time instant τ in (6.7).

Remark 15. For any τ ∈ R≥0 and i ∈ IT (τ), using the Assumption 13, one can

estimate the positions of the target i for any future instant t ∈ [τ, τ̂i] as ŷi(t) = yi(τ) +

(t− τ) d
dt
yi(τ).

The vehicles collect some amount of reward by accomplishing each of the tasks.
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It is assumed that the amount of each of these collected rewards depends on the con-

figuration of the vehicles around the target and the time instant. In other words, the

vehicles collecting the reward of a target can collect larger fraction of that when their

configuration is closer to the uniform distribution over the sphere centered at the target

and with radius equal to the visiting radius (Figure 6.1). More precisely, for anym ∈ IT ,

let fm :
Śm

j=1 R
d → [0, 1] be a function such that for any z1, . . . , zm ∈ R

d. The value

of fm(z1, . . . , zm) shows the proximity of distribution of the points z1, . . . , zm to uniform

distribution of m points on the unit sphere in R
d and also, it becomes equal to one and

takes the maximum when the distribution of the points z1, . . . , zm be exactly as uniform

distribution of m points on the unit sphere in R
d. Accordingly, for any i ∈ IT , one can

define the function fi for the fraction of reward collected at the ith task accomplishment

time as following

fi(x(τ̂i;x0, u)) = max
J⊆IV ,|J |=mi

fm(
1

ri

(
xj(τ̂i)− yi(τ̂i)

)
j∈J ), (6.9)

where x(·;x0, u) is the solution of total system, starting from x0 and applying the control

input u.

Now, one can define the mission as the procedure of controlling the vehicles for

cooperatively collecting the maximum possible rewards from the targets. Considering

the uncertainties and the limitations on information in the introduced paradigm, it is

desired to obtain a near-optimal reward collection cooperative control policy for mission
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accomplishment, which is discussed in subsequent sections.

6.2 An Optimization Overview

Let the total reward function, denoted by RΣ, be a function like RΣ : R≥0 → R≥0 where

for any t ∈ R≥0, the RΣ(t) accounts for the net reward available at the time t and

defined as following

RΣ(t, u) :=
∑
i∈IT

Riρi(t)1[τ̌i,τ̂i)(t). (6.10)

The dependency of the total reward function on u is through the (τ̂i)i∈IT which itself

depends on trajectories of targets and also trajectories of vehicles that are subsequently

dependent on u. Considering the initial conditions and the uncertainties in the problem,

one should note that collecting all of the total rewad may not be feasible. To maximize

the total reward, one can define the total collected reward as a function of control u as

R∞(u) :=
∑
i∈IT

Riρi(τ̂i)fi(x(τ̂i;x0, u)). (6.11)

where the function fi(·) measures the closeness of the vehicles distribution to the uniform

distribution of mi points over a sphere centered at yi(τ̂) with radius ri, for any i ∈ IT .

Equation (6.11) shows that the maximum reward collection problem can be formulated

as an optimization problem defined as maxu∈U R∞(u), where U denotes the set of ad-

missible control inputs for all the vehicles, i.e. U =
Ś

j∈IVUuj
max

. Note that (τ̂i)i∈IT not
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only depends on x and subsequently on u, but also on y(·). This dependency renders the

optimization problem intractable since the feasible set is infinite-dimensional and there

exists uncertainty in the problem. Therefore, it is preferred to obtain a less computa-

tionally demanding alternative to the introduced optimization problem, such as the time

decomposition based method of receding horizon scheme. Subsequently, it is essential

to design an alternative payoff function accounting for estimation of total reward and

also clustering strategy and uniform configuration in vicinity of the targets. The design

of relative receding horizon scheme, the payoff function and the respective appropriate

feasible sets are presented in the next section.

6.3 Cooperative Receding Horizon Scheme

In this section, a proper cooperative receding horizon (CRH) controller is developed

to generate the paths for the vehicles and obtain desired configurations. The controller

generates headings and step sizes for the vehicles iteratively. At each time instants,

{tk}k∈K ∈ R≥0, the information relative to targets and the vehicles is updated and

also, an optimization problem is formulated with a payoff function which estimates

the collected reward by the end of mission and assesses deviation of clustering and

configuration of vehicles from proper ones. Finally, the desired control input at time

instant tk, denoted by uk = (uj(tk))j∈IV , is provided from solution of the optimization

problem, for any k ∈ K.
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6.3.1 Reward Prediction

Denote Hk as the planing horizon in kth of CRH controller, i.e. Hk := tk+1 − tk, for any

k ∈ K. Let the control input uk = (uj(tk))j∈IV be applied to the vehicles, in the time

interval [tk, tk + Hk). Then, for any H ∈ [0, Hk], it follows from dynamics of vehicles

that the positions of vehicles at the time tk +H are given by

x(tk +H) = x(tk) + u(tk)H. (6.12)

Also, from Remark 15 and the available information at time instant tk, one can estimated

the positions of targets at time tk +H, as following

ŷ(tk +H) = ŷ(tk) +H
d

dt
ŷ(tk). (6.13)

Remark 16. One might note that the error of the estimation given in (6.13) is bounded

by 1
2
H2

k ã for each entry of y(tk+H). Hence, for desired estimation accuracy, it is enough

to set Hk small enough. More precisely, being 1
2
H2

k ã comparatively smaller than Hkṽ , or

equivalently Hk � 2ṽ ã−1, one can disregard the estimation error term 1
2
H2

k ã.

Let τ ∈ R≥0 be a time instant such that τ ≥ tk+1. Considering the uncertainties

in the trajectories of targets, and also the fact that the available information on them

is very limited, for any i ∈ IT , one may model yi(τ) as sum of yi(tk+1), the position of
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targets i at time tk+1, and a random vector, denoted by E k+1
i (τ), with radially symmetric

distribution and values in B(0d, (τ− tk+1)v). From properties of E k+1
i (τ), it follows that

E[E k+1
i (τ)] = 0d. Based on this, one can best estimate yi(τ) by yi(tk+1).

For any i ∈ IT and j ∈ IV , define the expected reaching time of vehicle j to target

i, denoted by τij(u
k, tk), as the estimation of the time that vehicle j is expected to reach

the target i, assuming that the control inputs uk is applied at time tk for a planned

horizon Hk and, from the time instant tk+1, the vehicle j takes the responsibility of the

target i and be assigned to it. From the given estimations, it follows that

τij(u
k, tk) = tk +Hk +

‖xj(tk +Hk)− ŷi(tk +Hk)‖ − ri
Vj

, (6.14)

when ‖xj(tk+Hk)− ŷi(tk+Hk)‖ > ri, and otherwise τij(u
k, tk) = tk+Hk. Subsequently,

the vehicle j expects to collect the respective reward from the target i, estimated as

Riρ̃ij(u
k, tk) where ρ̃ij(u

k, tk) is defined as

ρ̃ij(u
k, tk) := ρi[τij(u

k, tk)]. (6.15)

This gives the reward prediction for a pair of vehicle and target. Reward prediction for

the whole team is discussed next.
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6.3.2 Clustering and Task Assignments

In each iteration of CRH controller, vehicles are expected to decide on their clusterings

and the task assignment strategies, based on the available information, and subsequently,

plan their paths. In order to characterize this decision-makings procedure, the notions

of clustering strategy and task assignment are discussed below.

Clustering Strategies

For any i ∈ IT , the clustering strategy factor for the target i is characterized as a real

scalar in [0, 1], denoted by ci, which reflects the level of responsibility of vehicles for

configuring a proper clustering around the target i in order to collect its reward. Note

that at any point in time, each of the clustering strategy factors depends on the positions

of all the vehicles and targets. More precisely, for any i ∈ IT (t), the clustering strategy

ci can be represented as a function of the following form:

ci : M|IV | ×M|IT (t)| → [0, 1]. (6.16)

Note that the vehicles should not accept responsibilities more than they can handle.

More specifically, for any k ∈ K, one must have that

∑
i∈IT (tk)

mici(x
k,yk) ≤ m, (6.17)
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where mi is the required number of vehicles for the cluster respective to target i, for

any i ∈ IT (tk), and xk,yk are the positions of vehicles and positions of targets at tk,

respectively. For convenience in the notations, denote cki as ci(x
k,yk) and ck as the

vector (cki )i∈IT (tk).

Task Assignments

Similar to the clustering strategy factors, for any i ∈ IT and j ∈ IV , an assignment of

task i to vehicle j is defined as a real scalar in [0, 1], denoted by aij which shows the

amount of interest of vehicle j in being task i assigned to it and depends on the positions

of vehicles and the positions of targets. Specifically, for any i ∈ IT (t), the assignment

aij is the following function:

aij : M|IV | ×M|IT (t)| → [0, 1]. (6.18)

Various methods such as Voronoi-based assignment policy [134] and competition-based

assignment [108] can be exploited to design the assignment functions. The assignments

are required to have some desired structures. First, each of the vehicles is expected to

consider all of the current tasks and also, the option of being assigned to none of the

tasks. Subsequently, the sum of task assignments for each vehicle must be less than or
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equal one, i.e.

∑
i∈IT (tk)

aij(x
k,yk) ≤ 1, ∀j ∈ IV , (6.19)

where the sum is zero if IT (tk) = ∅. Also, the vehicles are expected to adapt their

assignments to each of the targets in accordance to the responsibility accepted for the

target and also, the required number of vehicles to collect its reward. More precisely,

the assignments and the clustering strategy factor are required to satisfy the following

identity:

∑
j∈IV

aij(x
k,yk) = mici(x

k,yk), ∀i ∈ IT (tk). (6.20)

For convenience of notation, aij(x
k,yk) and the matrixA(xk,yk) having aij(x

k,yk)

as its entry at ith row and jth column, for any i ∈ IT (tk) and j ∈ IV , are shown by akij

and Ak.

6.3.3 Potential Function

Here, the design of potential function for the optimization problem in the receding

horizon scheme is introduced. The potential function consists of two main parts, one for

the maximum total reward expected to be collected by the end of mission, and one for

proper configurations of vehicles.
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Total Expected Reward

Let i ∈ IT and j ∈ IV and also the control inputs uk be applied at time tk for a planned

horizon Hk. Similar to discussion given in section 6.3.1, one can estimate the aij(x(τ̂ij

(uk, tk)), ŷ(τ̂ij(u
k, tk))) byaij(x(tk+1), ŷ(tk+1)). Define the function ãij(u

k, tk) as follow-

ing:

ãij(u
k, tk) = aij(x(τ̂ij(u

k, tk)), ŷ(τ̂ij(u
k, tk))). (6.21)

Define Rk+1 as the maximum total reward which the vehicles expects at time

tk+1 to collect by the end of the mission. Considering the equations (6.15), (6.21), the

assignments and the clustering strategy factors, one can estimate Rk+1 as

Rk+1(uk, tk) =
∑
j∈IV

∑
i∈IT,j(tk)

Ri

mi

c̃i(u
k, tk)ρ̃ij(u

k, tk)ãij(u
k, tk), (6.22)

where c̃i(u
k, tk) is defined similar to ρ̃ij(u

k, tk) and ãij(u
k, tk), i.e.

c̃i(u
k, tk) = c̃i(x(τ̂ij(u

k, tk)), ŷ(τ̂ij(u
k, tk))) (6.23)
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Proper Configurations

The main objective, when the vehicles are distant from their intended targets, is the

interception, and when they are in the vicinity of them, is to obtain the proper config-

uration. Therefore, we define the mollifier distance function, denoted by φ, as

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e
− x2

1−x2 , if |x| < 1,

0, if |x| ≥ 1,

(6.24)

and the smooth step function, denoted by ψ, as

ψ(x) =
χ(x)

χ(x) + χ(1− x)
, (6.25)

where the function χ is defined as following

χ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e−

1
x , if x > 0,

0, if x ≤ 0.

(6.26)

These functions are shown in Figure 6.2. Note that the functions φ, ψ and χ are non-

analytic infinite-time differentiable functions. Based on these functions, for any i ∈ IT
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Figure 6.2: The mollifier and smooth step function.

and δri ∈ R>0, one can define the function φi : R
d → R as

φi(x, δri) = φ(
‖x− yi‖ − ri

δri
). (6.27)

The value of φi(x, δri) is always non-negative and non-zero only if ‖yi−x‖ ∈ (ri−δri , ri+

δri). Similarly to φi, the function ψi can be defined, for any i ∈ IT and δri ∈ R>0, as

following

ψi(x, δri) = 1− ψ(
‖x− yi‖ − ri

δri
). (6.28)

Note that for any x ∈ R
d, one has ψi(x, δr) ∈ [0, 1], and also, ψi(x, δr) = 0 if and only if

‖yi − x‖ ≥ ri + δri and ψi(x, δri) = 1 if and only if ‖yi − x‖ ≤ ri.
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For any i ∈ IT , let di be a function defined as

di(x) =
(
1 + (‖x− yi‖ − ri)

2
)−1

.

It can be easily verified that di takes its maximum value only if ‖x− yi‖ = ri, i.e. when

x has the desired distance from yi. A proper potential function can be obtained in order

to force the vehicles to take the desired distances from the targets during the reward

collection. Consider the function d̃i as d̃i(u
k, tk) = di(x

k
j +Hku

k
j ), where u

k is the control

inputs applied at time tk for a planned horizon Hk. The desired potential function is

defined as

Dk+1(uk, tk) =
∑

i∈IT(tk)

∑
j∈IV

c̃i(u
k, tk)ãij(u

k, tk)d̃i(u
k, tk)ψ̃ij(u

k, tk), (6.29)

where ψ̃i is defined as ψ̃ij(u
k, tk) = ψi(x

k
j +Hku

k
j , δri) for a given δri ∈ R>0.

The vehicles, besides taking the desired distances from their intended targets, are

supposed to configure so as to have an almost uniform distribution over the sphere cen-

tred at respective the intended targets. Note that the distribution of a set of points on a

sphere is uniform distribution when the sum of their mutual distances is maximum. One

can obtain an appropriate potential function forcing the vehicles for the configurations

having the uniform distribution. Given that the control inputs uk are applied at time tk
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for a planned horizon Hk, one can define the proper potential function as following

Fk+1(uk, tk)=
∑

i∈IT(tk)

∑
j,l∈IV

c̃i(u
k, tk)ãij(u

k, tk)ãil(u
k, tk)φ̃ij(u

k, tk)φ̃il(u
k, tk)

‖xkj−xkl +Hk(u
k
j−uk

l )‖,

(6.30)

where φ̃ij and φ̃il are defined as φ̃ij(u
k, tk) = φi(x

k
j +Hku

k
j , δri) and φ̃il(u

k, tk) = φi(x
k
l +

Hku
k
l , δri), respectively, for a given δri ∈ R>0.

Clustering Imperfection

The vehicles are allowed to collect the reward of a target only if the respective cluster has

the required number of vehicles, i.e. the respective cluster is perfect. Hence, the vehicles

are supposed to establish only perfect clusters. To this end, one can define a potential

function, as a cost for imperfect clustering, which considers the imperfection in each

of the established clusters and the grade of responsibility accepted for their respective

targets. Accordingly, one can define the imperfection cost function as

Ik+1(uk, tk) =
∑

i∈IT(tk)

c̃i(u
k, tk)

(
mi −

∑
j∈IV

ãij(u
k, tk)

)
(6.31)

where c̃i and ãij are defined as before and also, it is assumed that the control inputs uk

are applied at time tk for a planned horizon Hk.
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6.3.4 Cooperative Receding Horizon Trajectory Construction

The receding horizon scheme controller provides the inputs by solving an optimization

problem in each iteration. The formulation of this optimization problem is discussed

below.

Considering the potential functions introduced, one can define the payoff function

as

Jk+1(uk, tk) = ωRR
k+1(uk, tk) +ωDD

k+1(uk, tk)+ωFF
k+1(uk, tk)−ωII

k+1(uk, tk), (6.32)

where ωR, ωD, ωF and ωI are the non-negative real-valued weights for the respective

terms. In addition, ‖uk
j‖ ≤ umax, for any j ∈ IV , i.e. uk belongs to the set of admissible

control inputs denoted by Uk and defined as

Uk = {u = (uj)j∈IV ; uj ∈ R
d, ‖uj‖ ≤ umax, ∀j ∈ IV}. (6.33)

Besides these explicit constraints, there are other implicit constraints imposed on uk

through Ã and c̃, where Ã is defined as

Ã(uk, tk) =
(
ãkij(u

k, tk)
)
i∈IT(tk),j∈IV

, (6.34)
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and c̃ is defined as

c̃(uk, tk) =
(
c̃ki (u

k, tk)
)
i∈IT(tk)

. (6.35)

Specifically, if one defines the set F k as

F k = {(A, c) ∈ [0, 1]|IT(tk)|×|IV | × [0, 1]|IT(tk)|;A1|IV | = 1|IT(tk)|, AT1|IT(tk)| = mk}, (6.36)

where mk is defined as (mi)i∈IT(tk), then it is supposed to have

(
Ã(uk, tk), c̃(u

k, tk)
)
∈ F k. (6.37)

Note that the implicit dependency of Ã and c̃ on uk is through the optimization problem.

From the given discussion, the kth iteration in CRH scheme, Pk, can be written as

Pk :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max Jk+1(uk, tk)

s.t. uk ∈ Uk,

(
Ã(uk, tk), c̃(u

k, tk)
)
∈ F k.

(6.38)

The control input uk is obtained by solving the optimization Pk, given in (6.38).
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6.3.5 Analysis of CRH Scheme

The trajectories of vehicles are constructed iteratively from the solutions of (6.38).

Hence, the behavior of the system depends on the optimization problem presented in

(6.38).

Definition 13. The trajectory x(t) is called a stationary trajectory if for all i ∈ IT , the

ith target hitting time or ith task completion time is finite, i.e. one has τ̌i < ∞.

Regarding the behavior of the system, the stationarity of vehicle’s trajectory can

be guaranteed under some assumptions and conditions given in the sequel.

Assumption 14. There exists positive real scalars δri such that for any t ∈ R>0 and

any distinct i, i′ ∈ IT (t), one has

‖yi(t)− yi′(t)‖ > ri + ri′ + δri + δri′ . (6.39)

Proposition 1. Let Assumption 14 hold, ṽ < umax and positive real scalars ωR, ωD, ωF

and δri, for any iIT , be given. Then, there exist ωI ∈ R>0 such that for any ωI ≤ ωI,

one can obtain K ∈ N and {Hk}Kk=1 where the trajectories of vehicles constructed by the

resulting CRH scheme are stationary.
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6.4 Simulation Results

In this section, the performance of the proposed method is investigated through a sim-

ulation study. The simulation scenario involves eight vehicles and a set of four targets

arriving sequentially in the mission space which is a closed convex set in a flat plane

M = [−200, 200] × [−200, 200]. The initial position of the vehicles and targets are

produced randomly with uniform distribution. The arrival time of the targets is also

assumed to be a random variable with exponential distribution and the rate parame-

ter λ = 1. Targets have a priori unknown trajectories with the maximum velocity of

ṽ = 15m/s and the maximum velocity of vehicles is umax = 30m/s. For generality, the

targets’ trajectories are chosen randomly. Initially, along with the vehicles, two targets

are also present in the mission space, and the remaining two targets arrive sequentially

at {τ̌i}4i=3 = {1.24, 2.62}. The number of vehicles needed to cluster around each target

is {mi}4i=1 = {5, 4, 5, 4}. The vehicles should both maintain a distance of {ri}4i=1 = 30

from the targets with δr = 1.5 and try to surround it uniformly i.e. the distance between

each two neighbour vehicles in the cluster should be the same. The weights of the payoff

function (6.32) are set to ωR = ωD = 1, ωF = 10, ωI = 5000 and the finally reward

function of all of the targets are the same and in the form of (6.3) with initial reward

{Ri = 100}4i=1 and deadline of {tif}4i=1 = 50.

159



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.3: The result of cooperative recoding horizon maximum award collecting prob-
lem solved for eight vehicles marked by ˙̇̇ and four targets. The first and second target,
depicted by � and �, are appeared in the mission space from the start. The third and
fourth targets, represented by �, arrived subsequently

Figure 6.3 shows snap shots of different stages of solving the maximum reward col-

lecting problem. Only the critical decision making act of the vehicles are demonstrated

in this figure. Part (a) shows the initial state of the targets and vehicles in the mission

space. The transition between part (a) and (b) of this figure demonstrates the effect of

Ik+1 with such a high ωI coefficient in the payoff function which led to c̃1 = 0, c̃2 = 1.

This happened because with the available number of vehicles at that moment, either

the first or the second target could be visited and in that state of the mission space, the

second target offered more reward because it was closer. After visiting the second target

the vehicles aimed to the first target in part (c), however, target number three appeared

in the mission space and the vehicles changed their behaviour and first surrounded target
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three. This flexibility in selecting a cluster to join and a target to visit happens again

when the fourth target arrived in the mission space in part (e) and the vehicles abandon

the first target again and visit the fourth target. As one can see, in the first target is the

last one to be visited and this can be explained by the fact that rewards are decreasing

in time and the vehicles are insufficient to intercept two targets.
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Chapter 7

Summary and Extensions

This chapter provides a brief summary of the contributions of the thesis in Section 7.1,

and then some suggestions for future research direction in this area are given in Sec-

tion 7.2.

7.1 Summary of Contributions

In this thesis, a cooperative receding horizon scheme is developed, which uses a time

decomposition approach to design a controller for the multi-target interception problem

in an uncertain environment where each of the targets arrive in the mission space se-

quentially at a priori unknown arrival times, in a priori unknown positions and moving

on a priori unknown trajectories.

In Chapter 2 of the thesis, a time decreasing reward was assigned with each target
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which can be collected only if the target is visited by at least one vehicle. The team

objective is to maximize the total collected rewards. At each iteration, the vehicles

encounter multiple targets, some of which could be new in the mission space. Each target

has an a priori unknown trajectory with a bounded velocity. As the targets arrive in

the mission space sequentially, vehicles aim at visiting them in minimum time to avoid

a burst of unvisited target population and at the same time to have a stationary state.

Accordingly, a cooperative receding horizon controller is designed to collect maximum

possible rewards, and hence, to track moving targets with a priori unknown dynamics

using a team of vehicles by maximizing the expectation of total collectible rewards.

In the Chapter 3, the paradigm introduced above is extended to a receding-horizon-

based dynamic decision-making controller for control of a single vehicle toward intercept-

ing a group of infinite number of targets which were arrive in the mission space sequen-

tially in a priori unknown locations. They then move with unspecified trajectories and

unknown dynamics. The arrival times of the targets are modeled stochastically by a

renewal process. Convergence analysis is provided, and simulations results are given for

different scenarios, e.g., frequent and infrequent target arrivals.

Then, the cooperative receding horizon controller designed in the first part is ex-

tended in Chapter 4 to the case where vehicles have limited ranges for sensing the targets,

and also limited ranges for communication. This is accomplished using a game-theoretic

approach. In this method, a utility function is designed for each vehicle, which depends
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on the rewards as well as the vehicles’ constraints. The resulting structure forms a

potential game, where the the total collectible reward is the potential function. Using

appropriate learning dynamics, vehicles decide upon their strategies and move in proper

directions accordingly.

In Chapter 5, using some important concepts from optimal control theory, the

reward assignment strategy is extended to double-integrator vehicles. At each iteration,

a time optimal control problem is considered for each pair of vehicles and targets, and

then solved by Pontryagin’s maximum principle. Using the solution of these optimal

control problems, an estimation of the total collectible reward is obtained and introduced

as the payoff function for reward maximization. It is shown that control inputs obtained

from the solution of the resulting optimization problems generate stationary trajectories.

In Chapter 6, the cooperative receding horizon scheme introduced in Chapter 2 is

extended to case where agents are dynamically clustered and assigned to the targets to

collect rewards. The introduced payoff functions account for the estimation of maximum

total reward expected to be collected by the end of mission, the clustering and assignment

strategies, uniform configurations of agents in the vicinity of the targets, and finally, how

imperfect the cluster are.
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7.2 Suggestions for Future Work

It would be interesting to consider one or more defenders which defend the targets

by attacking the vehicles. This would extend the problem investigated in this thesis

to the pursuit-evasion framework, where the vehicles need to account for the risk of

being hit by the defenders in their decision-making process. As another extension to

the problem investigated in this thesis, one can consider a zone that the targets aim to

enter and the vehicles are to protect by attacking the targets approaching it. In some

applications, the targets can only be visited in certain time intervals due to different

constraints such as limited availability of targets or time-sensitivity of visiting targets.

Considering a specific time window for each target during which the vehicles are allowed

would also be an important extension of the present problem statement. Moreover, in a

practical setting, there are some limitations in terms of energy consumption of vehicles,

there communication and sensing ranges, memory size, computational capability. Some

of such limitations, can be addressed using a distributed decision-making strategy. In

addition, sometimes different targets may not have the same level of importance. Also

sometimes the targets may become more important when they are in certain regions in

the mission space. Prioritizing different targets or regions in the mission space can be

formulated by using appropriate weighting functions, which can be time-dependent in

the most general case.
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It would also be important to investigate the case where the locations of the tar-

gets are not known. This type of problem arises, for example, in search and rescue

operations. In an adversarial environment, one the other hand, it may not be possi-

ble to guarantee the elimination of the targets. One can use a probabilistic framework

to formulate this type of scenario, by considering a probability of success during the

vehicle-target engagement. Moreover, in an uncertain environment and also in the case

where the communications and sensing signals are prone to noise, it would be of practi-

cal importance to consider the problems such as false alarms, soft attacks and jamming.

In all of the problems discussed above, a receding horizon approach similar to the one

proposed in this thesis can be most effective.
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