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Abstract

The Development of a New Model for Predictions of

Urban Water Demand

Seyed Alireza Eslamian

Population growth, rapid urbanization and climate change have been producing an ever
increasing stress on the limited resources of fresh water. This situation makes prediction models
of water demand an important tool for decision making regarding urban water management and
conservation. However, there is still the need for improvement of the predictions of the existing
models, especially in their estimations of base water use. The purpose of this thesis is to develop
a more reliable water demand prediction model which gives a better understanding of water use
behaviour. The employed techniques represent a new approach to predictions of daily water use;
its base use component is predicted using a function of socioeconomic factors, as opposed to a
function of time as in existing approaches. The prediction by the model proposed in this thesis is
compared with those by two other existing models, in an application to the city of Brossard in
Quebec. Time series of predicted daily urban water use captures observed characteristics very
well and improves the results of the weighted coefficient of determination, the relative index of
agreement and the root mean square error from the existing approaches. Water use in the city
exhibits a downward trend possibly due to an increasing annual charge for water use. The
analysis procedures reported in this thesis can be applied to analyze water use in any other cities.
The new approach would be a useful tool for decision makers to manage water use by adjusting

water consumption policies and price.
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1. Introduction

1.1. Motivation of Study

Water is essential for all life on the planet, and therefore is one of the most important natural
resources. However, such important resources of fresh water are finite and do not equally
distribute globally. Furthermore, with the ever growing population and rapid urbanization, along
with climate change and pollution contributing to increasing water demand, stress on limited
resources of fresh water is increasing day by day. Traditionally, water shortages have been
deemed as an issue for drier, less water-abundant regions. Now, they have become a global
concern, even for water-abundant countries. For example, Canada has one fifth of the world's
fresh water and this perception of fresh water abundance in the society has resulted in an increase
in the rate of water consumption. However, a large amount of fresh water in Canada is trapped
inside distant glaciers and ice caps or is found in remote water bodies that are not easily
accessible to populated regions thus, making it very costly and difficult to exploit (Brandes and

Ferguson, 2003).

In order to avoid/alleviate problems related to water shortages, it is necessary to establish
and implement scientifically sound measures, which requires a good understanding of water use
behaviour. This means that factors with the biggest impact on water use must be identified, and

accurate predictions of future water demand must be made.

1.2. Statement of the Problem

Through the analysis of water use time series, models for the prediction of water demand can be
developed. Urban water use series may be considered as a sum of stochastic, periodic and trend
components (Araghinejad, 2014; Hyndman, 2014). The challenge is how to realistically
decompose a time series of water use into the components mentioned above. A realistic
decomposition provides key information needed for the development of models for predicting

water demand.




The detection of trend in time series has recently become one of the most significant
components of time series analysis in water resources and environmental engineering
(Araghinejad, 2014) and has received a great deal of research attention. In the field of urban
water use, the trend of water use time series is regarded as base water use. It is the component of
water use that changes gradually over long periods of time with variations in socioeconomic
factors such as population size and water price. Base water use is believed to be climate-
independent, as opposed to seasonal water use, the component of water use that is dependent on
climatic variations. However, a water demand prediction model that can accurately capture the
trend of water use as a completely climate-independent base water use has not yet been
developed. Furthermore, the existing models commonly assume base water use as a function of
time; while in reality, it is dependent on socioeconomic factors. Therefore, there is still the need
for improvement of the water demand prediction models, especially in their estimation of base

water use.

1.3. Objectives of the Research Work

The objectives of this study are:

= To develop a more reliable water demand prediction model than the existing models,
which gives more accurate estimations of base water use.

= To reveal the structure and the behaviour of urban water use, and the effect of different
factors on each of its components.

= To compare the performance of previously developed water demand prediction models
with that of the model developed in this study, in order to determine the most accurate

approach for the prediction of base water use.

1.4. Scope of the Work

The chosen city for this study is the city of Brossard, a part of Montreal metropolitan area
located in the south shore of St. Lawrence River. The study requires a number climatic and
socioeconomic data which were acquired from Environment Canada and Statistics Canada

respectively. The daily water consumption data for the city of Brossard was obtained upon




requesting from the City of Longueuil. Using the acquired data as input, statistical methods such
as linear regression, Fourier series fitting and autoregression are employed to develop a model

that can accurately predict each component of urban water use.

With the aim of effectively assessing the performance of the newly developed model, its
performance is compared with that of two other previously proposed models. A number of model

accuracy criteria are chosen and employed in order to achieve this.

1.5. Highlight of Research Contribution

The water demand prediction model developed in this study separates urban water use into
distinct components and offers the most accurate yet simple method for predicting each of the
components. The model can be applied for any other cities as well, providing an effective tool
for understanding water use behaviour and decision making regarding the implementation of

effective water demand management measures.

In the next section, a review of previous studies in the area of urban water use and some
of their shortcomings is done. The area of study and the data used in the research are described in
section 3. In section 4, the methodology is introduced and explained. Results are shown and

discussed in sections 5 and 6 respectively, and conclusions are highlighted in section 7.




2. Literature Review

In this section, research previously conducted in the area of urban water use is explored. The
main purpose of majority of the studies in this area has been to facilitate the prediction of future
municipal water demand; either by identifying the various factors that may have an impact on

water use, or by analyzing the urban water use time series.

There are simpler methods for estimating future water demand, such as using demand
growth models as done by Van Rooijen et al. (2009). However, these methods assume that water
use per capita stays constant throughout time, which is almost never true. Furthermore, according
to these models, change in water consumption is only dependent on population growth. These
basic assumptions make estimates of future water use very unreliable, especially for long-term

water use predictions.

Unlike statistical methods such as regression where the goal is to predict water use based
on a wide variety of factors (section 2.1), some studies focus on optimization techniques.
Examples of optimization in the literature are determining what percentage of irrigators need to
be retrofit in order to maximize benefit as a single family residential irrigation demand
management strategy (Friedman et al., 2014); or minimizing total operation and scarcity cost in a

region (Medellin-Azuara et al., 2007).

Other purposes of study in urban water use include: evaluating the efficiency or
effectiveness of water use measures (Bian et al., 2014; dos Santos and Benetti, 2014) and simple
case studies for analyzing urban water use conditions in different areas (Cahill and Lund, 2013;

Furumai, 2008; Hurd et al., 2006; Rai, 2011; Wu and Tan, 2012).

Since the focus of this thesis is on developing a new urban water demand prediction
model, the literature review focuses on studies that aimed to make the prediction of future urban
water demand possible; which as mentioned earlier, make up the majority of studies in urban

water use.




2.1. Identifying Factors That Impact Urban Water Use

Since climate change and socioeconomic driving forces have the biggest impact on future global
water stress (Alcamo et al., 2007), the factors that have received the most attention range from
climatic variables, e.g. air temperature, precipitation (Adamowski et al., 2012; BallingJr. and
Gober, 2006; Guhathakurta and Gober, 2007; Gutzler and Nims, 2005; House-Peters et al., 2010;
Mini et al., 2014; Stoker and Rothfeder, 2014; Wong et al., 2010), and seasonality (Ben Zaied
and Binet, 2015; Polebitski and Palmer, 2010; Rathnayaka et al., 2015) to socioeconomic
variables such as water price and household income (Abrams et al., 2012; Ben Zaied and Binet,
2015; De Mouche et al., 2011; Kenney et al., 2008; Martinez-Espineira, 2002; Mini et al., 2014;
Panagopoulos, 2014; Romano et al., 2014; Schleich and Hillenbrand, 2009; Sohn, 2011; Turner
and Ibes, 2011). Another set of factors that are often included are physical property
characteristics such as lot size and dwelling age (House-Peters et al., 2010; Kenney et al., 2008;
Rathnayaka et al., 2014; Sohn, 2011; Stoker and Rothfeder, 2014). Identifying the effect of
different factors on water use in urban areas has become the predominant aim of study in
researches involving urban water use. Because of that, when reviewing the previous work in this
area, studies are often categorized by the variables they’ve taken into account (Arbués et al.,

2003; Ferrara, 2008).

2.1.1. Climatic Factors

Climatic factors refer to weather-related variables. These factors are known as the variables that
are beyond control, since they are independent of human manipulations. However, this doesn’t
mean that they have no effect on water use. Climatic factors usually appear as controlling factors
when investigating the effect of certain variables on urban water use. Studies in the past decade
that solely focus on the effect of climatic factors on urban water use are discussed in this sub-

section.

Gutzler and Nims (2005) showed that the year-to-year change of water demand is highly
correlated to the year-to-year change of temperature and precipitation in Albuquerque, New
Mexico. In their study, only data from the summer months were included in the ordinary least

square (OLS) model and the relation between changes in water demand and changes in




temperature and precipitation wasn’t determined for winter months. In addition, they couldn’t
determine which climate variable is the optimum predictor of urban water use. The data used in
the study was based on monthly averages whereas using daily averages might help better

determine the relation between climatic factors and water consumption.

BallingJr. and Gober (2006) investigated how annual water use in the city of Phoenix,
Arizona is influenced by climatic variables. They argued that since mean annual temperature and
total annual precipitation are highly correlated, they can’t be used in multiple regression with
both as predictors. Therefore, de-trended per capita annual water use was regressed against mean
annual temperature and total annual precipitation separately. The results show that water use
increases as temperature increases and precipitation reduces. Since the data used is on an annual
timescale and the predictors of the regression analysis are very limited (only a few climatic
factors such as air temperature and precipitation amount), the actual amounts of correlation
between water use and the climate variables obtained in the study are very unreliable, even for
the city of study itself. Furthermore, the city was undergoing water restriction policy
implementations during the time period of study, but this factor was not taken into account,

making the analysis inadequate.

Guhathakurta and Gober (2007) studied the effect of urban heat island on water use in the
city of Phoenix, Arizona during June 1998 on a census-tract level. Using log-linear regression,
the effects of nighttime temperature on residential water use, controlling for the presence of
pools, vegetation type, size of house and lot, number of residents, and other socioeconomic,
demographic, and housing variables were analyzed. The results showed that the effect of
temperature (difference between high and low temperatures) was statically significant. The data
included in the study is cross-sectional, making results valuable for analytical purposes rather

than water demand prediction purposes.

Adamowski et al. (2012) chose the daily maximum temperature, daily total precipitation
and daily water demand for the current day, the previous day, two days before, three days before
and four days before, during the summer period, as the variables for forecasting future water
demand in Montreal. Furthermore, the performance of different models including linear
regression, nonlinear regression, artificial neural networks and wavelet artificial neural network

were compared. Precipitation was not found to be a predictor of water demand in any of the




models which is in contradiction with many other studies, where precipitation is usually proven
to have a rather significant negative correlation with water consumption (Billings and Day, 1989;
Bougadis et al., 2005; Gaudin, 2006; Gutzler and Nims, 2005; Polebitski and Palmer, 2010;
Romano et al., 2014; Woodard and Horn, 1988). The models are for short-term water demand
forecasting, since only climatic variables are accounted for. For long-term water demand
prediction, socioeconomic variables need to be added (Adamowski et al., 2012). Furthermore,
no models were developed to forecast water demand for the winter season. It has been reported
that the occurrence of rainfall or even its forecast, regardless of its amount, affects water use
(Maidment and Miaou, 1986; Martinez-Espineira, 2002; Rathnayaka et al., 2015; Schleich and
Hillenbrand, 2009; Woodard and Horn, 1988) (but not always, see Bougadis et al. (2005));
therefore, rainfall occurrence may also be an important factor for short-term water demand

forecasting.

2.1.2. Physical Property Characteristics

Since a big portion of urban water use belongs to residential water use, the effects of different
variables that are related to the built environment are often of interest. It should be noted that
built environment and demographic factors are usually included when the data is cross-sectional,
as the change in property characteristics are usually not very significant throughout time. This
makes the inclusion of this group of variables unnecessary for some studies that aim to predict

future urban water demand.

Rathnayaka et al. (2014) used a set of physical property characteristics to investigate
their effect on household water use. The variables were typology of dwelling, appliance
efficiency, tenancy, dwelling age, the presence of swimming pool, evaporative cooler, and
dishwasher, along with household size and the presence of children with respect to their age.
OLS regression analysis showed that all variables except for tenancy, dwelling age and the
presence of children between 12 and 18 years old affect water use in households. However, only
few demographic factors’ effect on household water use was investigated and no climatic

variables were included in the study.




Stoker and Rothfeder (2014) assumed that water use is a function of climate (temperature
and precipitation), built environment (number of bedrooms, number of kitchens, total bathrooms,
lot size, the year the building was built, number of units in a building, number of stories in a
building, turf fraction and number of lots on a commercial property) and demographic variables
(value of the property and number of families in each building). They used an OLS regression
model to investigate whether the relative importance of these variables changes for common
urban land use types (single family residential, semi attached residential, apartments, and
commercial). They were able to carry out this research for Salt Lake City, Utah, thanks to the
availability of a rich database. Such disaggregate data is not usually available in other regions,
making their methodology inapplicable for other areas. Moreover, water price was not included
and the use of the value of property as an indicator of income might not always be accurate; thus,
the model lacked two socioeconomic factors that had proven to be an important driver of water
use (Ben Zaied and Binet, 2015; Kenney et al., 2008; Mini et al., 2014; Schleich and
Hillenbrand, 2009). Stoker and Rothfeder (2014) found seasonality to be the greatest driver of
urban water use. The characteristic of built environment with the greatest effect was revealed to
be the size of the parcel. Seasonality has proven to be the major factor influencing urban water
use in other researches as well (Salvador et al., 2011; Wong et al., 2010), along with lot size and

outdoor irrigation area (Cleugh et al., 2005; Nakayama, 2011; Turner and Ibes, 2011).

2.1.3. Socioeconomic Factors

Among the socioeconomic factors that have received the most attention are population size,
average household income and water price. Since certain socioeconomic variables are under
utility control (such as water price), their effect on water use is important from water demand
management perspectives. As water has no substitute for some basic uses, the relation between
water price and water demand is often inelastic. However, as long as the elasticity is different
from zero, water price can play an important role in water demand management (Arbués et al.,
2003). Household income plays a role in this effect on urban water use as well. According to a
study by Florke et al. (2013), as average income increases, water users at first tend toward a
more water-intensive lifestyle. Eventually, after a maximum level is reached, per capita water

use is either stable or declines. National gross domestic product (GDP) has been studied as a




driver of water demand as well (Cole, 2004; Wada et al., 2011). While Alcamo et al. (2007)
argued that higher GDP increases urban water use, Hughes et al. (2010) showed that, in general,
water uses per capita are greater in developing than developed countries due to low-tech water
delivery and industrialization (Nazemi and Wheater, 2015). A big portion of studies on urban
water use is dedicated to investigating the effect of socioeconomic variables on water use. Some

of the most recent studies are discussed in this sub-section.

Kenney et al. (2008) postulated that water demand is a function of two sets of factors:
factors under utility control (pricing and non-price strategies), and factors beyond the control of
the water utility (weather related and economic-demographic variables) and investigated their
effect on water demand in Aurora, Colorado. A major issue when dealing with the price variable
is the endogeneity issue. This is because the price of water is often dependent on the amount of
water consumed, making the predictor dependent on the dependent variable. Therefore, Kenney
et al. (2008) used a fixed effect-instrumental variables (FE-IV). The Instrumental variables (IV)
approach was also used by Schleich and Hillenbrand (2009) when dealing with price as a
variable in their model. Both studies found water demand to be influenced by water price and

consumers’ income.

Sohn (2011) attempted to identify the effect of a large quantity of factors, predominantly
socioeconomic, on urban water use for the southeastern part of the U.S. Since a large number of
variables were to be included in the regression, factor analysis (FA) was carried out at first in
order to group the variables that are highly correlated with each other into single factors. Since
studies in urban water use often include a large number of regressors, FA has become a
somewhat common solution to multicollinearity issues between the independent variables
(Panagopoulos, 2014; Turner and Ibes, 2011). The findings in Sohn (2011) show that higher
population size brings with it higher water consumption, and that water use decreases as density
falls. Results also show that that water price is only effective for cities with light water use and
not for cities that are heavy users of water. However, the opposite has been observed in some
other areas as well (Ben Zaied and Binet, 2015). What is worth considering is that each region
responds to price changes in a unique way with respect to given conditions. For instance, Zhang
and Shao (2010) argued that cities with low economic levels that are more prone to water

shortage are more sensitive to water price compared to richer, more water abundant cities.




Abrams et al. (2012) investigated the effectiveness of water usage pricing as a water
demand management measure by estimating the short-run and long-run price elasticity of water
demand in Sydney, Australia. They used household by household panel data and divided
households by their tenancy type and size. To overcome endogeneity issues, generalised method
of moments (GMM) was employed, which is a prominent method used in dynamic panel models
with endogenous regressors. The results showed that long-run price elasticity is higher than
short-run price elasticity, and that owner-occupied households are more responsive to price
changes. The study was carried out during a time period when mandatory drought restrictions
were enforced, which means the real effect of water price on water demand might have not been
captured. However, the study shows that price has a bigger effect on log-term trend of water use,
which is worth consideration. This has been proven in later studies as well. For instance, in a
study for Tunisia, Ben Zaied and Binet (2015) found that at higher water consumption levels, the

long-run elasticity of water price becomes significant.

Romano et al. (2014) attempted to estimate the determinants of residential water use in
Italy using a linear mixed model. The variables included temperature, precipitation, water tariff,
income, altitude and population. Their findings demonstrated that increasing water tariff causes
reduction in the consumers’ water consumption. A positive relationship was revealed between
consumers’ income and water use. It was also observed that cities with larger population have a
higher water demand. They also investigated whether there is a difference in water consumption
between areas where water utilities are publicly owned and areas where water utilities are
privately owned. They found that the effect of water price prevailed the effect of water utilities
ownership. When price variable was excluded, it was revealed that water consumption was
significantly higher for areas where water utilities where publicly owned. However, this finding
is not reliable because cities with publicly and privately owned water utilities differed in a
variety of other characteristics as well. For instance, cities with privately owned water utilities

usually had a higher population.

Mini et al. (2014) investigated the effectiveness of increasing block rate structure of
water pricing in Los Angeles, California. The pricing consisted of an increasing block rate
structure with a lower first tier rate corresponding to a specified water allotment, and a second

higher tier rate for every additional billing unit. In the first tire, water charges were based on lot
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size and temperature zone; whereas in the second tire, water charges were directly tied to the
amount of water consumed. Other controlling factors included income and household size,
percentage grass cover, landscape greenness, air temperature and precipitation. Findings showed
that price elasticity is higher in the first tire than the second tire. They also noted that higher
water user and higher income census groups are slightly more sensitive to increases in the first

tire rate than lower water user and lower income groups.

Panagopoulos (2014) employed FA in order to analyze demographic variables such as
the number of active urban water connections and the population of the city, socio-economic
factors including marginal price of water and the annual income of residents, and climatic
variables that affect urban water use. It was found that the number of active connections,
population size and annual income of residents have a significant and positive relationship with

urban water use.

While the aforementioned studies aim to determine the amount of correlation between
different factors and water use (predominantly by multiple regression), none of them reveal the
structure of urban water use and its pattern over time. Furthermore, since water use is usually
regressed against a large set of factors all at once in these studies, a long record of observed data
is required (see Siauw and Bayen (2015)), which might not always be available. In order to be
able to predict the pattern of water use over time, time series analysis is required (Maidment and

Parzen, 1984b).

2.2. Water Use Time Series Analysis

In studies involving time series analysis, urban water use is usually decomposed into
separate components in order to facilitate the analysis, and to illuminate the inherent structure of
urban water use as well. In the literature, the most general and common decomposition of urban
water use is into base water use and seasonal water use. As mentioned in section 1, base water
use is the component of urban water use that is independent of weather and seasonal variations,
and only dependent on socioeconomic factors such as population growth and water price;
whereas seasonal water use is the component of water use that is dependent on weather and

seasonality. Since the focus of this thesis is on the prediction of the trend of urban water use,
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previous studies are categorized by their assumptions about the base use component of urban

water use time series here.

2.2.1. Base Use as Water Use in the Winter Season

House-Peters et al. (2010) defined base water use as the average water consumption in the winter
season, equal to indoor water use, and defined seasonal use as total water use minus base use.
They also introduced climate sensitivity as the ratio of seasonal use to water use. The dependent
variables in the study were base use, seasonal use, drought sensitivity (ratio of 2006 seasonal use
to 2004 seasonal use) and inter-annual climate sensitivity, with income, education, household
size, population age, outdoor size, property lot size, age of the building and property value as
independent variables. The results of OLS regression for Hillsboro, Oregon showed that indoor
(base) use is dependent on household size whereas outdoor (seasonal) use is dependent on
education level and the size of outdoor space. However, the influence of climate and water price

was not analyzed which was a major limitation.

Although the definition of base water use introduced by House-Peters et al. (2010) as the
average or lowest water use in the winter months has been used in previous studies as well
(Maidment et al., 1985; Syme et al., 2004; Zhou et al., 2000), some studies have shown that
indoor water use and water demand in the winter season are actually dependent on climatic
variations. Rathnayaka et al. (2015) investigated whether seasonality affects indoor water use in
addition to outdoor water use in Melbourne, Australia by regressing different end-uses against a
set of climatic variables including minimum and maximum daily temperature, average rainfall
and number of days with no rainfall. The end-uses included as dependent variables of the model
were shower, bath, toilet, tap, dishwasher, clothes washer and irrigation end-uses. Using an OLS
regression model, they came to the conclusion that shower and irrigation, which are the main
end-uses, are significantly different between winter and summer. Their results also suggested
that shower water use may increase with extreme weather conditions as cooler weather increases
shower duration while hot weather increases shower frequency. The results are limited to the city
where this research was carried out on, since indoor water use is greatly dependent on culture,

attitudes and the built environment which can vary from one region to another. However, it must
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be considered that indoor use might be dependent on seasonality in other areas as well. In a study
carried out by Gato et al. (2003), it was revealed that water use in the winter months may include
outdoor water use such as garden watering. Furthermore, Gato et al. (2007) showed that base
water use defined as the minimum water consumption in the winter is actually weather-
dependent. Therefore, defining base water use as either indoor water use or water demand in the

winter season might not be accurate all the time.

Gato et al. (2007) postulated that total water use is made up of base water use and
seasonal water use. Base water use was calculated by two different methods and then compared.
In the first method, the month with the lowest monthly water use was selected for each year to
predict base use as a polynomial function of time, as done traditionally in previous studies
(Maidment et al., 1985; Salas-La Cruz and Yevjevich, 1972; Zhou et al., 2000). The second
method involved determining the temperature and rainfall thresholds at which water use is no
longer dependent on temperature and rainfall. Water use on days with temperature below the
temperature threshold and rainfall above the rainfall threshold were then considered as base
water use. Base use estimated by the second method proved to be independent of air temperature
and rainfall whereas the base use calculated by the first method proved to be dependent on
climate variables when regressed against total daily rainfall and maximum air temperature. Base
use obtained by the second method was then used in the water demand prediction model.
Although base use is said to follow a trend dependent on socioeconomic factors, no
socioeconomic variables were used in the regression of base water use. It was assumed that a
regression against the day number and a dummy variable representing weekday or weekend, can
be a proper substitute. Seasonal use was assumed to be made up of potential water use (smooth
variation over the year with normal temperature) and climatic effects. Potential water use was
represented by a Fourier series as done by Zhou et al. (2000) and the effects of climate were
obtained by deducting potential use from seasonal use and regressing it against daily maximum
temperature, daily rainfall, number of days after rainfall, day of the week and days with
temperature above 35 °C. An autoregressive equation was fit to the daily residuals to account for
the dependence of water use on its past values. The model yielded an R’ of 83% during

validation.
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In a modelling study of urban water demand, Wong et al. (2010) introduced calendrical
use as a component of total water use in Hong Kong; the other components were seasonal use
and base use. Base water use was again equated as the lowest monthly water use in the winter
season and modeled as a first-order polynomial function of time, assuming it can represent the
trend in base water use caused by socioeconomic factors. Seasonal use was modeled as a
combination of seasonal cycle and climatic effects. Fourier technique was used for characterizing
the seasonal variations. Climatic effects were formulated by the removal of seasonal cycle from
seasonal use followed by a regression against a number of substitute variables for air temperature
and rainfall including daily maximum temperature, lagged maximum temperature, number of
previous consecutive days with air temperature over 33 °C, number of days after rainfall and
antecedent precipitation index (API). Calendrical water use was assumed to describe the effects
of day of the week and holidays on water use. It was obtained by subtracting base use and
seasonal use from the daily total water use. The day-of-the-week effect was formulated by
regression against seven dummy variables each representing one day of the week. After
subtracting base use, seasonality, climatic effect and day-of-the-week effect from water use, the
remaining was regressed against dummy variables representing one day, two days and three days
before a holiday, the day of holiday, one day, two days and three days after the holiday. Finally,
an autoregressive procedure was fit to the water use residuals. Residuals were obtained after all
of the previously estimated components of water use were subtracted from daily total water use.
The model yielded an R’ of 76% when validated with an independent dataset. The major factor
influencing water use in Hong Kong was found to be seasonality. The results also showed more
water use on the weekdays than the weekends, and reduction in water use on holidays as well as
on one and two days after it, especially for the lunar new year. The holiday and day-of-the-week
effect on water use may be subject to change significantly from a region to another as it depends
on the culture, attitude and lifestyle of people. It was also not explored whether certain
socioeconomic variables such as water price and consumers’ income can improve base water use
prediction. The model included the traditional polynomial function of time for base use although

it was proven to be possibly climate dependent (Gato et al., 2007).
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2.2.2. Base Use as a Function of Socioeconomic Factors

None of the aforementioned studies have used socioeconomic variables to predict base water use.
Maidment and Parzen (1984a) estimated the trend of water use by regressing annually-averaged
monthly water use against population, water price, household income and the number of water

connections. Annually-averaged monthly water use was calculated as
L &
Wr(y) == > Wr(m,) 21
m=1

where W7 (y) is the annually-averaged water use and Wy (m,y) is the total water use in month m
of year y. However, using average of total annual water use rather than average of annual base
water use as the dependent variable in the regression will not give a clear and accurate estimation
of the trend of water use. Furthermore, not only it won’t ensure a climate independent base water
use, but it will also result in the overestimation of base use. Moreover, using this approach, the

de-trending process will become more complex which is as follows

Wr(m,y)

iy Wr + W) (22)

Wb (m, y ) =
where Wy(m,y) is the base water use, Wris the grand mean of total water use and W, is the
residual of the aforementioned regression. In addition, this method of detrending is only
appropriate for monthly water use data and isn’t practical for data with a shorter time interval

(i.e. weekly and daily data).

Only a few studies (Maidment and Parzen, 1984a, b) have discussed base water use as a
function of socioeconomic factors rather than time; and few attempts were made to acquire a
completely climate-independent base use (Gato et al., 2007). The review of the literature has

highlighted the following knowledge gaps:
=  There is a lack of models needed for reliable estimates of base water use.

= No comparisons of performance between socioeconomic-variable-based models of base

water use and time-dependent function types of models have been made.
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= [t is not known how well the direct use of certain socioeconomic variables as base water

use regressors will improve predictions of the trend of future water use.

This thesis will present a new model (referred to as Model C) for predictions of urban water
demand, with application to the City of Brossard (in the greater Montreal region) in the Province
of Quebec, Canada. The modelling results will help fill the above-mentioned knowledge gaps.
The results will include a comparison of performance between the new model and two existing

models (referred to as Model A and Model B) of different types.
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3. Site of Study and Data

City of Brossard was chosen as a site of study mainly because of the completeness of required
data and its characteristic urban development. Its longitude and Latitude are 45°28” and 73°27°
respectively. The city is a part of the metropolitan area of Montreal on the south shore of the

Saint Lawrence River, which is the source of drinking water for the city [Figure 3.1].
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Figure 3.1. Location map of City of Brossard in the metropolitan area of Montreal (Source: 2006

census of Canada. Produced by the Geography division, Statistics Canada, 2011)

According to the most recent census conducted in 2011, the city had a population of 79273,
representing a percentage growth of 11.4% from 2006 (the year of the previous census), in
comparison to Canada’s national average growth of 5.9%. In 2011, the city had a population
density of 1,753.9 persons per square kilometre, compared to Quebec’s provincial population
density of 5.8 persons per square kilometre. From 2006 to 2011, there was an increase of 16.3%

in private dwellings occupied by usual residents in the city, compared to 7.1% in Canada as a

17

—
| —



whole. The main land use types in Brossard are residential and commercial with many parks

scattered through the city.

For model input and validation, the required data, which has been obtained from a number of

sources, includes:

3.1 Water Use Data

Water supply to Brossard has been being served by the Le Royer water filtration plant, located in
Brossard’s neighbouring City of Saint Lambert [Figure 3.1], and operated by the City of
Longueuil. Daily supply of water (in litres) to Brossard, covering a time period of about 54
months (represented by sequential number m = 1, 2, 3,...54) from May 2011 (m = 1) to October
2015 (m = 54) was provided by City of Longueuil. The water supply data is the total amount of
water produced daily by the plant for distribution in Brossard. Presumably there are some water

losses in the distribution network. This study has assumed that the losses are negligible.

Volumetric flow meters are installed in individual households as well as in public,
commercial and industrial buildings in the City of Brossard. Annual readings of the meters are
taken to give the actual amounts of water used by the users (all being referred to as households in
this study). Details about the actual amounts of water used in individual households are not
available to us. As an approximation, we divide the daily total supply of water to the city by its
population to give the daily amount of water used per person, Wr. Time series of Wr is plotted in
Figure 3.2(a). The duration of the time series is 1610 days (represented by sequential number d =
1, 2, 3,...,1610), including both the starting date (May 15, 2011) and the ending date (October
10, 2015). The first 44 months-or 1327 days (May 15, 2011 to December 31, 2014)-are chosen as
the raining period and the remaining (January 1, 2015 to October 10, 2015) as the testing period.

In each of the four calendar years, the lowest water use occurred in November (the
corresponding sequential number is m = 7, 19, 31 and 43), whereas the highest value of Wr

occurred in July (m =3, 15, 27, 39 and 52).

18

—
| —



3.2. Climatic Data

Daily maximum air temperature, 7, and precipitation amount, P, for the Montreal region,
covering the same time period as daily water use listed in this section was obtained from
Environment Canada. Time series of 7 and P are plotted in Figures 3.2(b) and 3.2(c)

respectively.

3.3. Socioeconomic Data

Population size, P,, and household income, /, were acquired from Statistics Canada. Population
data is only available in 5 year intervals. Therefore, assuming that annual population has a

geometric growth rate, population for years with no population data available were calculated as
P,(y) = P,(2011) =t (3.1
with

(R,(2011)\ /5
r= <P0(2006)>

where 7 is the geometric growth rate and t is the number of years between 2011 and year y.

For an individual household, the annual charge for water consumption is calculated by
multiplying the actual amount of water used during the whole year by the price for water
consumption. In Brossard, the pricing has an increasing block structure; where the price (rate) of
water consumption increases for every 200 cubic meters. The water use rates were obtained from

City of Brossard.

The average of the annual payments made by the individual households in the city, along

with its population and average household annual income are listed in Table 3.1.
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Figure 3.2. Time series of (a) metered daily water use (in litre per person per day) in the City of
Brossard in the metropolitan area of Montreal, Quebec; (b) observed maximum air temperature;
and (c) observed precipitation amount. The temperature and precipitation observations were
made in the Montreal area. The duration of the time series is 1610 days. The starting date is May

15, 2011 and the ending date is October 10, 2015.
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Table 3.1. A summary of population size (P,) in the City of Brossard, average household annual

income (/) and average household annual payment (B) for water consumption.

Year Po I (CAD/household) B (CAD/household)

2011 79,273 67,933 191.31

2012 81,005 69,108 197.19

2013 82,774 70,283 201.99

2014 84,582 71,458 205.47

2015 86,430 72,633 227.50
(=)



4. Methodology

Following Wong et al. (2010), we express the total daily urban water use, W7 (in litres per person
per day) as a sum of three main components, namely the base use W}, the seasonal use W, and

the calendrical use W,
Wi(d) = W, + W, + W, (4.1)

In Equation (4.1), W, is intended to describe the long-term trend in water use. W, is the
component of water use that is dependent on weather and climatic effects. It is split into two

terms:
W = Wee(d) + Wee (d) (4.2)

where the first term is an estimate of water use with a seasonal cycle, and the second term is an
estimate of water use due to climatic effects. The seasonal cycle is the water use pattern due to
variations in the normal temperature over the year, whereas the climatic effect is the short-term

effect of climatic variability such as the occurrence of rainfall. J7, is also split into two terms:
W, = Wy (d) + Wpe(d) (4.3)

where the first term is an estimate of water use due to weekday/weekend effect, and the second

term is an estimate of water use as the persistence component.

The decomposition of Wr as described above is schematically shown in Figure 4.1(a).
The result of the decomposition of Wy as described above is an expansion of Equation (4.1),

given by
Wr(d) = Wy(d) + Wee(d) + Wee(d) + Wiy (d) + Wy (d) (4.4)

where Vf/h(d ) is the estimated base use. All three water demand prediction models in this study

will follow the same assumption regarding the decomposition of daily urban water use, with the
main difference between them being the method and the definition employed in determining base

water use.
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Figure 4.1. Decomposition of daily water use into several components for prediction. The

component of base water use is predicted using: (a) model A (the lowest-monthly-average-water-
use approach) and model C (the socioeconomic factors approach); and (b) model B (the climatic

thresholds approach).

4.1. Base Water Use

As mentioned in section 1, base water use is the component of water use which is independent of
changes in weather and climate. Base water use represents the long-term trend in water use

caused by changes in socioeconomic factors such as change in population and water price.
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4.1.1. Lowest-Monthly-Average-Water-Use Approach (LMAWUA Model A)

In model A, it is assumed that the base water use, W, in Equation (4.4) is represented by the
lowest monthly average water use of each year. This assumption was used in Wong et al. (2010),
Salas-La Cruz and Yevjevich (1972), and Zhou et al. (2000). W} is estimated from a polynomial

function of time of the general form

W,(m) = ag + aym + aym? + - + a,m" (4.5)
where oy, a1, @,..., &, (in litre per person per day) are regression coefficients, m is month

number and 7 is the order of the function. Regression analysis can be performed to estimate the
regression function with the lowest monthly-averaged water use in each year as the dependent
variable, and the corresponding month number as the independent variable. One should try

different orders in the regression analysis to minimize the residual.

In the case of the City of Brossard, the daily water use in November [Figure 3.2(a)] gives
the lowest monthly average in each calendar year; the corresponding sequential number m is 7,
19, 31 and 43, representing the month of November of the years of record. Applying the

regression model [Equation (4.5)] to the case will produce the following specific equations

( W,(7) =ayg+a; X7+ ay, x 72
W,(19) = ay + a; X 19 + a, X 192
W,(31) = ay + a; X 31 + a, X 312

LWb(43) =y +ay X 43 +a, X 432

(4.6)

where the term on the left hand side of each of the equations is the monthly-averaged daily water
use in each November of the years of record. The use of the second order (or n = 2) gives the
lowest residual. The system of equations (4.6) describes a linear regression problem. Once
estimates of the regression coefficients o, @ and o, are obtained, the regression model
[Equation (4.5)] can be used to determine base water use for other months. Following the same

procedure for daily water consumption, daily equivalent of equation (4.5) is then obtained as
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Wy(d) = Bo + Brd + Bod* + -+ + Prd" (4.7)

where f,, f,,..., 5, (in litre per person per day) are the new coefficients in the daily equivalent

of equation (4.5) and d is the day number.

4.1.2. Climatic Thresholds Approach (CTA Model B)

In model B, the base water use, W, in Equation (4.4) is treated as a function of time and is
estimated by determining climatic thresholds. For any given day d, the daily base water use, W,

(in litre per person per day) is expressed as
Wy (d) = yo +v1d +¥25(d) (4-8)

where 7, 71 and » (in litre per person per day) are regression coefficients; S(d) is a

weekday/weekend dummy variable. When the daily time index 4 is on a weekday, S = 0;
otherwise, S = 1. Since I/f/b is regressed against S at this stage, there is no separate calendrical

water use component in model B. Thus, Equation (4.1) will be reduced to

Wr(d) = Wy + W (4.9)
And, equivalently, Equation (4.4) to

Wr(d) = Wy(d) + Wee(d) + Wee(d) + Wy (d) (4.10)

Equation (4.8) is intended to give estimates of the base water use that are independent of weather
parameters (daily maximum air temperature, 7, and precipitation amount, P, in this study). It has
been assumed that there exist a certain threshold of temperature, 7., and a certain threshold of

precipitation amount, P.. When both the daily maximum air temperature 7 is lower than 7. and
the precipitation amount P is higher than P., the base water use, Vf/,, , 1s no longer sensitive to the

actual values of 7 and P, as suggested by Gato et al. (2007). The determination of 7, and P, is

discussed below.

One way to identify 7. is to make a scatter plot of metered Wy versus observed 7. Note

that time series of Wy and T are shown in Figures 3.2(a) and 3.2(b), respectively. The scatter plot
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of (Wr, T) as data points uses Cartesian coordinates to display Wy values on the horizontal axis
and T values on the vertical axis. A typical feature of the data points in the plot would be that W7
tends to increase with increasing 7, at T exceeding a certain value. This value can be visibly
identified from the plot, as is the case in this study. This value can be taken as the temperature
threshold 7. (Adamowski et al., 2013). At T < T, the data points in the plot are more or less

randomly distributed, without any identifiable trend.

To determine P., we make a scatter plot of metered W7y versus observed P. In the plot, Wr
values are displayed on the horizontal axis, and P values on the vertical axis. Often, it is not
feasible to visibly identify P, from the plot. It is better to determine P, through curve fitting. In
this study, a polynomial function that has the best fit to (W7, P) data points is constructed. The
peak value of the function is taken as P, (Gato et al., 2007).

From a time series of daily water us, those data points that satisfy the threshold
conditions that 7 < T, and P>P, are selected as input data to regression analysis using Equation

(4.8). This analysis gives output of », 71 and » values.

4.1.3. Socioeconomic Factors Approach (SFA Model C)

In model C, the base water use, W), in Equation (4.4), is formulated as a function of
socioeconomic factors. In this study, the socioeconomic factors include: population, P,, average

household annual income, /, and average household annual payment, B, for water consumption.
For any given year y, the annually-averaged daily base water use, Wb( y) (in litre per person per

day), is formulated as
Wy(y) = 8 + 8:1(y) + 86,B(y — 1) + 85P, (y) (4.11)

where dy (in litre per person per day), 0, (in litre per person per day normalised by income), o,
(in litre per person per day normalised by water-consumption charge), and s (in litre per person
per day normalised by population) are regression coefficients; /(y) is the average household

income for year y; B(y — 1) is the average household annual payment for water consumption for
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the previous year; P,(y) is the population for year y. We can drop the last term on the right hand

side of Equation (4.11) by using per capita daily water use, and reduce the equation to
Wy (y) = 8 +8,1(y) + 8,B(y — 1) (4.12)

Usually, socioeconomic factors change from year to year (rather than from month to month or
from day to day). Thus, regression analysis is performed for estimating the relationship
[Equation (4.11)] between the annually-averaged daily base water use as the dependent variable

and the socioeconomic factors as independent variables.

It is assumed in model C (like in model B) that air temperature threshold, 7., and
precipitation amount threshold, P., exist. The procedures for determining the temperature and

rainfall thresholds have been explained in the previous section (Section 4.1.2).

From a time series of daily water use, those data points that satisfy the threshold
conditions that 7<7, and P>P, are selected as input data to regression analysis using Equation

(4.12). This analysis gives output of dy, J; and d, values.

As noted in section 2, concerns about endogeneity issues arise whenever water price is
used as one of the predictors of water use in OLS regression because water price itself is often
dependent on water use (Kenney et al., 2008; Schleich and Hillenbrand, 2009). The price
variable used in this regression represents the average annual payment per household for the total
water consumed throughout the year and therefore is not dependent on the daily base water use.

Furthermore, B corresponds to the previous year. Therefore, there is no endogeneity issue

between B(y — 1) and Vf/b (¥) and OLS regression can be applied.

4.2. Seasonal Water Use — Seasonal Cycle

Seasonal water use is associated with a seasonal cycle and climatic effects, expressed as the
second and third terms, respectively, on the right hand side of Equation (4.4). The seasonal cycle

presumably repeats itself in 365 days.

There are various methods for capturing the seasonal cycle. These methods include:

formation of twelfth differences of data (Box et al., 2008), The heat function approach which
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involves regressing daily seasonal water use W, during rainless periods against normal daily air
temperature (Maidment et al., 1985), and estimation of seasonal cycle by fitting a Fourier series
to seasonal water use. A Fourier series can adequately represent a seasonal cycle within the 365-
day period, and the Fourier coefficients can easily be obtained from observed data, as pointed out
in Zhou et al. (2000). Furthermore, the method is less complicated to apply than the heat function
approach.Therefore, this study follows the Fourier series approach as done by Zhou et al. (2000)
for the estimation of seasonal cycle for all models. Seasonal cycle represented by a Fourier series

1s as follows

W (i) = +ZK: 27Tj'+b Ly 4.13
se(l) = ag . 1(ajcos365l jsm3651) (4.13)
]=

where i = 1, 2, 3,... 365, representing the consecutive days of the year; ao, a; and b; are the
Fourier coefficients; K is the number of harmonics. The number of harmonics to be included in
the analysis should be adjusted to achieve that the data of daily water use fits the statistical

model well, with a satisfactory value for the coefficient of determination, R”.

A

Data of daily water use, W (z’), as input to regression analysis using Equation (4.13) are
derived in three steps: First, calculate the base water use Wb, using Equation (4.7), (4.8) or
(4.12). Then, subtract Wb from the total daily water use Wr to yield de-trended daily water use

W, —W, . Finally, take the average of W, — W, values for the same calendar date of different

years. These average values give Wsc (i ) withi=1, 2, 3,... 365. The regression analysis produces

output of ao, a; and b; values. For any given date of the year, Equation (4.13) permits the

determination of daily water use due to a seasonal cycle.

4.3. Seasonal Water Use — Climatic Effects

The climatic effects component, Vf/w, of the daily water use represents the short-term memory

effect of climatic condition on water use. This component is expressed as
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Wee(d) = o + HAT(d) + $P(d) + {P(d — 1) + {P(d — 2) + {sP(d — 3) + {gJ(d) (4.14)
With AT(d) = T(d) — T,(d)

where ¢, ¢, ... ¢ are regression coefficients; 7,(d) is the normal daily maximum air
temperature; d — 1 refers to the previous day, d — 2 refers to two days before and d-3 refers to
three days before; J is a dummy variable. J = 1 for days with rainfall, and J = 0 for days without
rainfall. In this study, 7, is taken as the monthly-averaged daily maximum temperatures for 2000
throughout 2012. Since the effect of variations in normal temperature is assumed to have been

captured by seasonal cycle, AT(d) has been used as a predictor here rather than 7(d) itself.

Data of water use Vf/w as input to regression analysis using Equation (4.14) are the daily total
water use minus the base water use [calculated using Equation (4.7), (4.8) or (4.12)] and minus
the seasonal water use [calculated using Equation (4.13)]. The analysis produces output of ¢,

Gl,... G values.

4.4. Calendrical Water Use due to Weekday/Weekend Effect

This component, VK , of water use refers to the component of water use that depends on the day
of the week. This component appears in models A and C, but not in model B, which has

incorporated the effect in estimation of the base water use. I/f/ 1s formulated as
W, (d) = no +n:S(d) (4.15)

where 7 and 7, are the regression coefficients. Data of water use W‘ as input to regression
analysis using Equation (4.15) are the daily total water use minus the base water use [calculated
using Equation (4.7), (4.8) or (4.12)], minus the seasonal cycle [calculated using Equation
(4.13)], and minus the climatic effects [calculated using Equation (4.14)]. The analysis produces

output of 79 and 7, values.
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4.5. Persistence Component

The subtraction of the water use components, Vf/b W Vf/w and VK from the total daily water

sc

use produces residuals of daily water use. An autoregressive procedure is fit to the water use
residuals to determine the dependence of water use on its past values. The autoregressive model

is given below
Wpe(d) = @o + @1R(d — 1) + 9,R(d — 2) + -+ ¢,R(d — p) (4.16)

where ¢y, @1, ¢,...¢, are the autoregression coefficients, R is water use residual and p is the
order of the autoregressive procedure. The optimum number of lags p is determined by using the

partial autocorrelation function (PACF).

4.6. Model Accuracy Criteria

In order to compare the performance of the three models, a number of accuracy criteria were

chosen.

4.6.1. Coefficient of Determination

The coefficient of determination (R’) is often employed to show the amount of correlation
between the observed and predicted values. However, it is advised to also take into account the
slope of the fit trend line between observed and predicted values. This is because R’ only
describes how much of observed dispersion is explained by the prediction; meaning that it might
not always capture how much the model over- or under-predicts (Krause et al., 2005). The closer
the slope is to 1, the better the predictions are. In other words, the closer the slope of the trend
line is to the y = x line, the closer the predictions of the model to actual observed values are.
Weighted R’ (R2) is used to combine R’ and the slope for a better model assessment (Krause et

al., 2005)
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|bl.R?, ifb<1

Ib|"L.R? ifb>1 (4.17)

R, =|

where b is the slope of the trend line.

4.6.2. Index of Agreement

Proposed by Willmott (1981), The index of agreement (D) represents the ratio of mean square
error and the potential error (Willmott, 1984). It was meant to overcome the insensitivities of R’
to differences in observed and predicted means and variances (Legates and McCabe Jr., 1999). It

is defined as

7100, — P)?
NP, =Ul+10; = U])?

(4.18)

where O; is the i-th observed value, P; is the i-th predicted value, U is the mean value of the
observed time series and N is the number of observations. The index of agreement has the same
range as R° with 0 implying no correlation and 1 implying a perfect fit. However, D has also
proven to not be sensitive to systematic model over- or under-prediction (Krause et al., 2005).
Therefore, instead of D, the relative index of agreement (D,) is used to compare the performance
of the models. D, not only greatly reduces the influence of the absolute differences during high
water consumption periods, but it is also more sensitive to systematic over- or under-predictions

(Krause et al., 2005). It is formulated as

2

N (Oi=P
Ot
D, =1— _ (4.19)
N (|Pi—U|+|0i—U|)
i=1 i
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4.6.3. Root Mean Square Error

A good and common measure for comparing the accuracy of models is the root mean square
error (RMSE). It measures the average difference between observed and predicted values and is

formulated as

N (0; — P)?
RMSE = J =1 N ) (4.20)

It should be noted that RMSE is only applicable for comparing different models on the same set
of data, as its scale depends on the scale of data (Hyndman and Koehler, 2006). Since the
predictions from the three different models are compared to the same set of observations, there is

no data-scale issue. A perfect prediction will have an RMSE of zero.
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5. Results

5.1. Base Water Use

5.1.1. Estimate of Base Water Use by LMAWUA (Model A)

Fitting the November monthly averages of metered daily water use for the years of 2011, 2012,
2013 and 2014 to model A [Equation (4.5)] yields «, =323.413, o, =0.986, and «, =-0.024 .

This results in a model equation of the form

W, (m) = 323.413 + 0.986m — 0.024m? (5.1)

Using this model equation, the base water use for the duration of May 2011 to December 2014
[or the first 44 months of the data records shown in Figure 3.2(a)] can be predicted. The base

water use prediction by Equation 5.1 is plotted in Figure 5.1.

M

=

=
T
1

monthly-averaged water use

5 10 15 20 25 30 35 40
months

Figure 5.1. Prediction of base water use (dashed curve) using LMAWUA (Model A).
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Following the same procedure for obtaining Equation 5.1, one can fit the data of metered lowest
daily water use for the same years to model A, and obtain the daily equivalent of Equation (5.1).

The resultant polynomial function is
W, (d) = 270.132 + 0.109d — 7.9 x 105d? (5.2)

Equation (5.2) permits the predictions of the base water use for d = 1, 2, 3,...1327. It should be
noted that daily water consumption in the month of December was excluded when obtaining
Equation (5.2), since water consumption in that month may not really represent the base water
use. This is because people tend to go on trips and leave the city during the holidays, increasing

vacancy rate, and affecting water use during that period as a result.

5.1.2. Estimate of Base Water Use by CTA (Model B)

Model B for predictions of the base water use requires the determination of threshold values of
air temperature and precipitation. A scatter plot of metered Wy [Figure 3.2(a)] versus observed
daily maximum air temperature 7 [Figure 3.2(b)] is shown in Figure (5.2). It can clearly be seen
in the plot that when 7'> 10°C, Wr increases with increasing air temperature, and this is not the

case when 7' < 10°C. Therefore, the threshold 7. of air temperature can be taken as 10 °C.

A scatter plot of metered Wr [Figure 3.2(a)] versus observed precipitation amount P [Figure
3.2(c)] is shown in Figure (5.3). Fitting the data points to a polynomial function gives
P = —1.088 x 10~*W7# + 0.084W; — 13.344 (5.3)

This function is shown as the dashed curve in Figure (5.3). In order to obtain the rainfall
threshold, the derivative of P with respect to W, was taken and set equal to zero. The function
gives a maximum P value of 2.7. This peak value is the threshold of precipitation amount or

P =27 (mm).
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Figure 5.2. Scatter plot of metered daily water use versus observed daily maximum air

temperature, based on the data shown in Figures 3.2(a) and 3.2(b) for the City of Brossard.
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Figure 5.3. Scatter plot of metered daily water use versus observed precipitation amount, based
on the data shown in Figures 3.2(a) and 3.2(c) for the City of Brossard. The dashed curve is a
graph of the polynomial function [Equation (5.3)] fit through the data points.

Following the procedures described in Section 4.1.2, we determined the regression coefficients

as y, =357.351, y, =-0.045, and y, =20.644 . The resultant model equation for predictions of

the base water use is

W, (d) = 357.351 — 0.045d + 20.644S(d) (5.4)

The significance of the terms on the right hand side of the regression model is examined through
p-value, which is associated with the probability that the null hypothesis is true; null hypothesis

being that the variables are not statistically significant in the regression. The p-values are lower
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than 0.01, meaning that the coefficients obtained from the regression are statistically significant
at a 99% confidence level. The regression has produced good and reliable results.
The negative sign of coefficient of d implies a downward trend in water use. According to

this model, base water use rises on weekends. Figure 5.4 shows base water use as predicted by

Equation 5.4.

EDD I I I I I I
total daily water use
base water use
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Figure 5.4. Prediction of base water use using CTA (Model B). The predictions show water use

peaks for the weekend days

5.1.3. Estimate of Base Water Use by SFA (Model C)

The thresholds of air temperature and precipitation amount have been determined as 7, =10 °C

and P, =2.7 (mm), respectively in the previous section. Regression analysis was performed for

each of the years of 2011 to 2014, following the procedures described in Section 4.1.3. The
analysis used annually-averaged daily water use on days where the threshold conditions were
satisfied as the dependent variable, and the average household annual income / and the average
payment B for water consumption as the independent variables. When both 7/ and B are included

in the regression analysis, neither of the variables is significant at a 95% confidence level.
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Regression analysis using B as the only independent variable gave an R* value as high as
0.97. The variable B itself is significant at a 99% confidence level. The analysis produced

0, =903.531 and, =-2.913 . The resultant model equation is given by
W,(y) = 903.531 — 2.913B(y — 1) (5.5)

where y = 1, 2,...5, with y = 1 corresponding to the year of 2010. The p-values are lower than
0.01 for the terms on the right hand side of Equation (5.5), and thus the coefficients obtained are

significant at a 99% confidence level. The negative sign of B implies a downward trend in water
use which can be seen in Figure 5.5. Furthermore, the inverse relation between Vf/b (y) and B

shows that as the costs for water consumption increases each year, a reduction in base water use

is expected to happen in the following year.
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Figure 5.5. Prediction of base water use using SFA (Model C). It predicts the base water use

changing from year to year.

38

—
| —



5.2. Seasonal Cycle

The daily water use due to a seasonal cycle is expressed by a Fourier series [Equation (4.13)]. An
increase in the number of harmonics (K) in the equation produces different values for individual
Fourier coefficients. For example, even if the data of (W7 — W}) as input to regression analysis is
the same, a; for K = 8 is different from a; for K = 5. For each of the three models (models A, B
and C), eight sets of Fourier coefficients were obtained. The predicted seasonal-cycle daily water
use for K = 8 is not significantly different from that for K = 7. Thus, there is no need to include
more than 8 harmonics in the analysis.

It should be noted that the predicted base water use W, differs among models A, B and C.
Therefore, the results of W7 minus W, (known as de-trended water use) are different among the
models. Since these different results are the input to Equation (4.13), we obtain three different
sets of Fourier coefficients, as shown in Table 5.1. Using each set of the Fourier coefficients, we
reconstruct a time series of seasonal-cycle water use and compare it with the de-trended time
series [Figure 5.6]. The water use time series de-trended by Model A still shows a slight trend
[Figure 5.6(a), dashed curve]. The coefficient of determination, R?, has values of 0.68, 0.715 and
0.72 for models A, B and C, respectively.
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Table 5.1. A summary of the Fourier coefficients [Equation (4.13)] for calculation of seasonal-

cycle daily water use using the three different models.

Number of Coefficients

Harmonics

(K)

S
&
&
&
&
&

2 -17.970 18.050 -17.790 15.460 -20.180 15.290

4 0.882 -1.993 0.820 -3.088 1.170 -4.158

6 6.311 -4.350 6.177 1.396 6.901 -4.807

8 2.336 2.194 2.302 1.523 1.937 2.026
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Figure 5.6. Seasonal Cycle (solid curve) fit to de-trended daily urban water use time series

(dashed curve) using (a) Model A (b) Model B (c) Model C.



5.3. Climatic Effects

Values of the seven coefficients from regression analysis using Equation (4.14) are listed in
Table 5.2. The coefficient ¢, reflects the basic climatic effect; its values produced by the three
models (models A, B and C) are different from each other to a limited extent. Positive values for
g1 mean that the daily maximum air temperature in exceedance of the normal maximum air
temperature causes an increase in water use. The coefficients associated with precipitation have
negative values, causing a decrease in the current-day water use. Interesting to note is that ¢3 has
a higher value than ¢, ¢ and ¢, meaning that precipitation on the previous day has a bigger
effect on water use than precipitation on the current day, two days ago and three days ago. The
coefficient g4 also has negative values, the magnitude being as large as ¢. This means that in the
city of Brossard, the occurrence of rainfall, regardless of its amount, is expected to cause a

significant decrease in water use and to offset the basic climatic effect (gp).

Table 5.2. A summary of coefficients from climatic-effects regression analysis [Equation
(4.14)]. The differences in the coefficients among the different models result from different base
water use produced by the models, and hence different input to the regression analysis. The listed

p-values apply to all the three models (models A, B and C).

Coefficient S G 1) G G4 G5 66
Model A 7.526 1.5 -0.409 -0.815  -0.548 notsignificant -7.344
Model B 7.070 0921 -0.379 -0.837  -0.595 notsignificant -6.820
Model C 7.898 0901 -0435 -0.874 -0.572 -0.309 -6.719

p-value  <0.0001 <0.0001 <0.03 <0.0001 <0.001 0.0233 <0.0001
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5.4. Weekday/Weekend Effect

The procedures for regression analysis as well as input data to the analysis have been explained
in Section 4.4. Regression analysis was performed using seven dummy variables, each
representing one days of the week, as independent variables; the results (not shown) indicated
that none of the independent variables were significant at a 95% or 90% confidence level. This
was the case for all the three models (models A, B and C).

When the weekday/weekend dummy variable [S in Equation (4.15)] was used as the only
independent variable, regression analysis showed that the variable was significant at a 99%

confidence level. The weekday/weekend-effect regression result is the following for Model A

W, (d) = —3.227 + 11.35(d) (5.6a)

and the following for Model C

W,,(d) = —3.148 + 11.0235(d) (5.6b)

The large positive 77; values mean much more water use on the weekend days in comparison to
weekdays. This is presumably because people tend to spend more time in their houses on the

weekend days, doing laundry, lawn watering and other water-consuming housework.
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5.5. Persistence Component

An autoregressive procedure was applied to the time series of water use residual, resulting from
the subtraction of all the other water use components (discussed in Sections 4.1 to 4.4) from
metered daily water use [Figure 3.2(a)]. PACF was used to identify the optimum number of the
lags (or the order p) in the autoregressive model [Equation (4.16)], and to ensure there was no
autocorrelation left among the autoregression residuals. The resulted autoregression coefficients
are presented in Table 5.3. The blank cells in Table 5.3 mean that the lag number had not been
optimum for the corresponding model.

It is interesting to note that the current day water use is influenced, to some extent, by the
previous day water use, as indicated by the relatively large values of ¢, [Table 5.3 and Equation

(4.16)].

Table 5.3. Autoregression coefficients from analyzes of water-use residuals produced by models

A,Band C

Coefficient ¢ 01 02 03 04 0s V7
Model A 0.006 0.472 0.131 0.116 0.056 - 0.059
Model B 0.020 0.445 0.100 0.165 - -0.067 0.076
Model C  0.010 0.451 0.124 0.118 - - -
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6. Discussion

The main difference between the three models in this study is in the approach taken for the
prediction of base water use. Figure 6.1 shows the predictions of base water use W, for the city
of study using the three different models. Model C not only estimates base water use that is
completely independent of climate variables, but it also formulates the base water use as a
function of socioeconomic factors [Equations (4.11) and (4.12)]. This approach offers a new
alternative to existing approaches [Equation (4.5), referred to as model A, and Equation (4.8),
referred to as model B] reported in the literature about estimates of base water use. The
significance of the new approach is two-fold: First, from the management perspective, it helps
form a solid scientific base for decision makers to achieve sustainability in urban water
consumption and water conservation, to some extent, by adjusting socioeconomic factors
(including charge for water consumption). Second, from the technical perspective, the new

approach usefully separates different kinds of factors that can affect water use in cities.

Using the Brossard data [Figure 6.2, the black curve, the same as Figure 3.2(a)] for a
selected training period as input to the analysis, we obtained Equation (5.2) for Model A,
Equation (5.4) for Model B and Equation (5.5) for Model C, for base water use (Figure 6.1), and
other regression coefficients [Tables 5.1 to 5.3; Equation (5.6)]. We further predicted daily water
use using Equation (4.4) (Equation (4.10) for Model B). The predicted water use by the three
models is plotted as a time series in Figure 6.2 (the red curve), along with the observed time

series (Figure 6.2, the black curve).
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Figure 6.1. Predictions of base water use W, for the City of Brossard, using the three different
regression models. The CTA (model B) predicts water use peaks (the insert panel) for the
weekend days. The SFA (model C) predicts the base water use changing from year to year (insert
panel).
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Figure 6.2. A comparison of daily water use time series between observations (the black curve)
and predictions (the red curve) for the City of Brossard. The base water use component of the
predictions is based on (a) Model A (b) Model B (¢) Model C. The training period is from May

15, 2011 to December 31, 2014. The testing period (beyond the dashed line) is from January 1,
2015 to October 10, 2015.




A further quantitative comparison is shown in Figures 6.3(a) to 6.3(f). For each model, the time
series of observed and predicted daily water use, shown in Figure 6.2, are presented in two
scatter plots for the training and the testing period, respectively. When Model C is used, in both
plots [Figures 6.3(a) and 6.3(b)], the data points are seen to cluster tightly about a perfect
agreement line (the straight solid line, with a slope of 1); the slope of the data points is 0.78, as
indicated by a trend line [Figure 6.3(a), the dashed line] added to the plot, for the training period,
and is 0.89 [Figure 6.3(b), the dashed line] for the testing period. This means that the predictions
are in a reasonable agreement with the observations, and hence confirms the quality of the

prediction techniques that use model C for base water use [Equation (5.5)].

It would be interesting to learn the accuracy of water use predictions, whose base use
component is predicted using models A, B and C. To the best of the author’s knowledge, a
systematic comparison has not been reported in the literature. When model B is used, the slope
of the data points is 0.79 [Figure 6.3(c), the dashed line] for the training period, and is 0.88
[Figure 6.3(d), the dashed line] for the testing period. In this regard, model C and model B
perform equally well. When model A is used, the slope of the data points drops to 0.73 [Figure
6.3(e), the dashed line] for the training period, and is 0.84 [Figure 6.3(f), the dashed line] for the

testing period.

The technical performance of models A, B and C are further investigated by the model

accuracy criteria introduced in section 4.6. The results are presented in Table 6.1.
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Figure 6.3. A comparison of daily water use between observations and predictions. The base
water use component is predicted using the three different models. In each panel, the dashed line
fits through data points. The closer to unity the slope of this line, the better the agreement of

predictions with the observations.
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Table 6.1. A summary of the weighted coefficient of determination ( R.), the relative index of

agreement (D,), and the root mean square error RMSE (in litre per person per day).

Performance index @LMAWUA(model A) CTA (model B) SFA (model C)

Training Period

R? 0.52 0.61 0.62

D, 0.90 0.92 0.92

RMSE 26.7 24.2 23.2
Testing Period

R 0.40 0.45 0.47

D, 0.79 0.81 0.84

RMSE 31.2 30.1 294

According to all the criteria listed in Table 6.1, Model C appears to produce better results. If the
basic idea in base water use formulation is to give climate-independent estimates, formulations
based on lowest water use in the winter months may be inadequate. Arguably, this is the case
when applied to cities like Brossard, where households are required to cover the actual costs of
water consumption. In fact, the prediction of base water use, based on winter-month water use
(Figure 6.1, the dashed-dotted curve), deviates from the actual trend of the metered daily water
use. Model C is simple to use and gives reliable results. It is intended to consider the behaviour
of base water use on the annual timescale, as opposed to a monthly timescale (Model A), and a
daily timescale (Model B). Such a consideration would be more likely to achieve a climate-
independent, accurate estimation. Furthermore, a time-dependent base use model is not able to
capture the sudden changes (jumps) in the trend of water use time series. These jumps in the time
series can be caused by an abrupt socioeconomic change such as a sudden rise or drop in the
water price, or the implementation of water restriction policies. Since the base water use model
in Model C is dependent on socioeconomic variables and changes annually, it has a better chance
of capturing any jumps in the trend that might happen in the future.

As predicted by using Model C, there is a downward trend in water use in the city of
Brossard (Figure 6.1). According to the model, this is possibly because of an increase in the costs
of water consumption over the years (Table 3.1). This increase must have played a significant
role in motivating households to continue reducing their water consumption. This is in contrast

to an upward trend in water use in the neighbouring City of Montreal, as shown in the 1999 to
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2002 record (Adamowski et al., 2013); that city has fixed fees for water consumption and
included the fees in the property taxes for residential units (City of Montreal, 2016). This
contrast evidences that socioeconomic factors, including policies and the price of water, have
significant impacts on urban water demand.

Among the models presented in this study, only Model C was able to reveal the possible
cause in the downward trend of water use in the city. As opposed to previous base use models,
Model C identifies the effect of socioeconomic factors on the trend of water use. This makes the
model very valuable for planning water demand management strategies. For instance, using the
base use model in Model C (Equation 5.5), it is possible to predict how different price
adjustment scenarios might influence the future trend of water use in the next year (2016) for the

city:

»  Normal Increase in Water Price: In this scenario, the price of water would increase at the
same rate as the previous years. Model C predicts a higher drop in base water use than in
the past years (green curve in Figure 6.4.). This is because the decrease in base water use
between the years 2014 and 2015 is lower than that between other previous years (10
litres per person per day compared to about 16 litres per person per day); meaning that
water use has not decreased much, while the price for water has kept increasing. This has
caused the average charge for water consumption per household to increase significantly,
compared to that of the past years (from 205.47 CAD to 227.50 CAD, see Table 3.1).
Therefore, it is expected that the residents of the city be urged and motivated to reduce

their water use rather significantly for the next year.

=  No Change in Water Price: In this scenario, the price of water for the year 2015 is the
same as that of 2014. According to Model C, base use will decrease in the coming year
(Blue curve in Figure 6.4.), but not as much as it would have if water price had increased
as always (Green curve in Figure 6.4.). It is even possible that the trend becomes constant
or even upward, if the price of water keeps not changing in the following years (the effect

of increasing income might prevail over the constant water price).
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= Reduction in Water Price: Another scenario can be water price reducing to that in 2013.
In this case, the model predicts base water use increasing as the trend of water use begins
to become upward (Red curve in figure 6.4.). The reason this happens is that in this
scenario, the average water consumption charge per household in 2015 becomes actually
less than that of 2014. When the residents of the city experience this, they realize that it’s
not necessary to decrease their water consumption in the next year in order to reduce the
amount they have to pay for it. Therefore, they are discouraged from conserving water in
the coming year. Interestingly, as seen in figure 6.4, the base use increases back to about

the same value it had during 2013 in this scenario.

400 I T ' '
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ﬂ :
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= 300 I
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= 260 no change in water price =
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EDD | [ | |
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Figure 6.4. The trend of water use in City of Brossard estimated by Model C for years 2011 to
2015 (Black curve) and predicted for 2016 for different water pricing scenarios: (1) Normal
increase in water price (green curve); (2) No change in water price (blue curve); (3) Reduction in

water price (red curve).

The predictions of base water use in 2016 for different water pricing scenarios as described
above were simple examples of employing the new model for future water demand management
planning using water price adjustment. However, it should be noted that since water has no
substitute for some basic uses, increasing the price will only be effective until a certain point. In
other words, as discussed by other researchers as well, the relationship between water use and
water price is inelastic (Abrams et al., 2012; Arbués et al., 2003). Therefore, water price

adjustment must be consistent with given socioeconomic conditions.
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7. Conclusions

This study reports a new approach to the prediction of urban water use. The new approach is
successfully applied to analyze daily water use in the city of Brossard in the metropolitan area of

Montreal, Canada. The following conclusions have been reached:

(1) The new approach considers changes in base water use on the annual timescale, as opposed
to a monthly or daily timescale. The base water use is formulated as a function of
socioeconomic factors. Such a formulation is conceptually different from existing
formulations of base water use as a function of time. The formulation does not suffer the
limitation of climate dependence and is consistent with typical conditions that socioeconomic

factors change annually.

(2) The application to the city has quantitatively demonstrated the quality of the new approach.
Time series of predicted daily water use captures very well observed fluctuating
characteristics and long-term changes in water use. The results of the weighted coefficient of
determination, the relative index of agreement and the root mean square error, are improved

from the existing formulations.

(3) The new approach usefully separates daily water use into distinct components, including base
water use, water use due to a seasonal cycle, water use due to weekend effect and climatic
effects, and persistence component. Water use increases due to weekend effect. It decreases
in the occurrence of rainfall, and the decrease is more sensitive to previous-day rainfall than

current-day rainfall.

(4) The results of regression coefficients presented in this thesis are pertinent to urban water use
in a specific city, but the same procedures can be applied to analyze urban water use in any

other cities.

(5) According to the new model, base water use exhibits a downward trend possibly as a

response to an increase in the annual charge for water use in the city of Brossard. Previously
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developed models were not capable of showing what factor(s) have caused this trend in the

water use of the city.

(6) The new approach offers a useful tool for decision makers to achieve sustainability in urban
water management and water conservation by adjusting policies and price for water

consumption.

However, like any other study, this study faces some limitations; most notably having a
relatively short record of water use and socioeconomic variables. Since daily water use data was
not available from more than five years ago, the analysis was limited to only five years. As the
approaches taken in this study were statistical, having a longer time series could help make the
analysis more accurate; especially for the base water use estimation of our model, since the data

required for it is annually and five years might not always yield satisfactory results.

Possible future researches that this study motivates include: (1) assessing the
performance of the models presented in this study for an area where numerous water restriction
policies have been implemented or significant economic changes have been experienced
throughout time; (2) using a disaggregate socioeconomic dataset (household by household) for
the estimation of base use in order to investigate whether the performance of the model will
improve; (3) in addition, it would be interesting to investigate how the model performs with a

shorter billing cycle (i.e. monthly).
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