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Abstract 

 

Scheduling Hybrid Flow Lines of Aerospace Composite Manufacturing Systems 

 

Composite manufacturing is a vital part of aerospace manufacturing systems. Applying effective 

scheduling within these systems can cut the costs in aerospace companies significantly. These 

systems can be characterized as two-stage Hybrid Flow Shops (HFS) with identical, non-

identical and unrelated parallel discrete-processing machines in the first stage and non-identical 

parallel batch-processing machines in the second stage. The first stage is normally the lay-up 

process in which the carbon fiber sheets are stacked on the molds (tools). Then, the parts are 

batched based on the compatibility of their cure recipe before going to the second stage into the 

autoclave for curing. Autoclaves require enormous capital investment and maximizing their 

utilization is of utmost importance. 

In this thesis, a Mixed Integer Linear Programming (MILP) model is developed to maximize the 

utilization of the resources in the second stage of this HFS. CPLEX, with an underlying branch 

and bound algorithm, is used to solve the model. The results show the high level of flexibility 

and computational efficiency of the proposed model when applied to small and medium-size 

problems. However, due to the NP-hardness of the problem, the MILP model fails to solve large 

problems (i.e. problems with more than 120 jobs as input) in reasonable CPU times.  

To solve the larger instances of the problem, a novel heuristic method along with a Genetic 

Algorithm (GA) are developed. The heuristic algorithm is designed based on a careful 

observation of the behavior of the MILP model for different problem sets. Moreover, it is 

enhanced by adding a number of proper dispatching rules. As its output, this heuristic algorithm 

generates eight initial feasible solutions which are then used as the initial population of the 

proposed GA. 

The GA improves the initial solutions obtained from the aforementioned heuristic through its 

stochastic iterations until it reaches the satisfactory near-optimal solutions. A novel crossover 

operator is introduced in this GA which is unique to the HFS of aerospace composite 

manufacturing systems. The proposed GA is proven to be very efficient when applied to large-

size problems with up to 300 jobs. The results show the high quality of the solutions achieved by 

the GA when compared to the optimal solutions which are obtained from the MILP model. 

A real case study undertaken at one of the leading companies in the Canadian aerospace industry 

is used for the purpose of data experiments and analysis. 
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1 Chapter One – Introduction 

This chapter includes an overview on the background of the problem which is dealt with in this 

thesis along with an introduction of the research problem. A summary of the case company’s 

characteristics and conditions are provided and the objectives and the methodology used in this 

research are discussed. Finally, the outline of this thesis is presented in the last section. 

1.1 Background 

In today’s global economy with international companies that source products and materials all 

over the world to get the best quality and the lowest cost, the need for speed is felt more than 

ever. These conditions led to a new era of production known as mass customization that aims at 

combining low costs of mass production and high flexibility of individual customization. 

However, the emergence of global outsourcing has made the management of supply chains even 

more complicated and challenging. Nowadays, there are a lot of economic, environmental, and 

political risks associated with global supply chains.  

With the advent of new technologies, the efficiency of planning and management of supply 

chains is highly improved. These technologies (e.g. Electronic Data Interchange (EDI), 

Enterprise Resource Planning (ERP), Supply Chain Planning along with e-commerce, etc.) have 

provided a proper ground for today’s mass customization. On the other hand, the supply chains 

are threatened by many financial, environmental and political disruptions as well as many 

unplanned events. Managing the supply chain with all these changes and disruptions seems quite 

difficult and complicated but there are also great opportunities for identifying and eliminating 

waste and creating more value within the supply chains (Myerson, 2012). 

Supply Chain Management includes the planning and management of all activities related to 

sourcing, procurement, conversion and logistics as well as coordination and collaboration with 

suppliers, intermediaries, service providers and customers. There are also some functional areas 

such as information management, inventory flow scheduling and control, transportation systems 

operation and infrastructure, distribution facilities management, and customer service (Wisner et 

al., 2015). 
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Aerospace supply chains are among the most complicated systems that normally are 

characterized by high demand variability and long lead times (Rose‐Anderssen et al., 2008). 

Different layers and tiers of suppliers, procurement, manufacturing centers, assembly plants, and 

customers (internal and external) are the nodes of a typical aerospace supply chain. A valid 

question that may come to one’s mind here is that why researchers focus on aerospace supply 

chains and try to identify wasteful resources within these chains. 

The first reason is that the aerospace supply chain is a major cost center. It’s proven that 

reducing costs in the supply chain that causes the equivalent profit, is much easier than 

increasing sales (Myerson, 2012). The second reason is the bullwhip effect which means 

inventory, operational cost, and demand variability increase as one moves up a supply chain 

(from customer toward the upstream suppliers). Last but not least, even though the new era of 

increased outsourcing and global supply chains with shorter product life cycles has created a 

great opportunity of exposure to the worldwide business, it also has put pressure on the 

aerospace supply chain (which is sometimes more of a net than a chain) to be more efficient 

(Myerson, 2012). 

Among all the main activities included in an aerospace supply chain, composite manufacturing is 

one of the most advanced and complex areas that has attracted a great deal of scientific attention 

in the last few years. The application of composite materials (carbon fiber sheets) in airplanes 

and helicopters is increasing rapidly (Lubin, 2013). 

There are promising opportunities for identifying improvement potentials in composite 

manufacturing systems in order to cut the supply chain costs for the aerospace industry. In the 

following section, we will introduce and discuss an example of these great opportunities which is 

also the core research focus of this thesis; designing an effective production planning and 

scheduling system which enables the composite manufacturing systems to meet the demand of 

their customers without keeping large amounts of inventory (safety stock) or imposing frequent 

production accelerations or decelerations. 
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1.2 Research Problem 

Composite Manufacturing Systems normally consist of several stages and processes with 

combinatorial relations and interactions among various processes in different stages, which make 

them complicated manufacturing systems. Normally, there are numerous issues and difficulties 

associated with managing such complex systems, the most significant of which are variability 

and instability. High levels of demand variability and long lead times in aerospace manufacturing 

systems combined with the complex nature of Composite Manufacturing Systems causes 

different types of variability (i.e. production rate, capacity utilization, amounts of inventory, etc.) 

in the system. In addition, complicated processes inside composite manufacturing systems which 

require high levels of operator expertise usually cause high yield variance and considerable scrap 

rates, which in turn make the system unstable. 

Since managing the inventory in these systems is very complicated, the tendency to keep more 

safety stock is increased. However, keeping inventory has its own problems and is proven to be 

one of the most important sources of waste. To refrain from keeping too much inventory, it is 

essential to find the root causes of variability and eliminate them (Heizer et al., 2013). 

As a matter of fact, batch size reduction is a very critical principle of today’s production systems 

that are associated with mass customization. Unlike traditional systems in which production in 

large quantities are desirable (because it will spread the fixed costs among a large number of 

products and reduce the per-unit cost), in modern production systems, planners try to schedule 

the production according to the customer’s actual demand. The ideal situation is one-piece flow 

and although it may not be attained, heading toward it is beneficial. The benefits include reduced 

lead times, less inventories, more flexibility to meet the uncertain demand, better quality with 

less scrap, rework and space (Liker, 2005). 

These are all possible by means of effective scheduling systems. Scheduling is known as a 

decision-making process that deals with the allocation of the available resources to tasks over 

specified time periods (Pinedo, 2012). 

This decision-making process plays a pivotal role in managing the resources within complex 

systems such as composite manufacturing systems and it can cut the costs of aerospace 

companies significantly. Therefore, in order to reduce the variability in composite manufacturing 
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systems, a major step is to develop a powerful production planning and scheduling system which 

enables the system to meet the demand of the customers without imposing frequent production 

accelerations or decelerations and without feeling the need to keep large amounts of inventory. 

The composite manufacturing systems in aerospace companies provide their production lines 

with the required composite parts. Thus, they are usually considered internal suppliers of 

aerospace companies’ production lines. 

Improving the efficiency of these suppliers can shorten the overall lead times of the aerospace 

supply chains dramatically and improve the efficiency of the resources inside the composite 

manufacturing systems while reducing the inventories and unnecessary waiting times. There are 

normally various processes and work stations within these systems. The most significant 

challenge in these manufacturing systems is to identify the processes where the jobs need to be 

scheduled and to schedule the jobs in those particular processes in a way that other processes can 

be synchronized with them and work at the rate of customer’s demand. 

The problem that we face in this research is to observe the Composite Manufacturing Systems of 

aerospace companies in order to provide visibility on their operations and identify the 

opportunities for improvement. Afterwards, reducing the sources of variability by a proper 

method of scheduling the jobs inside these systems is tackled. In other words, in this research we 

aim at developing a scheduling system for Composite Manufacturing Systems. 

These systems can be characterized as two-stage Hybrid Flow Shops (HFS) with identical and 

unrelated parallel discrete-processing machines in the first stage and identical parallel batch-

processing in the second stage. The first stage is normally the lay-up process in which the carbon 

fiber sheets are stacked on the molds (tools). Then, the parts are batched based on the 

compatibility of their cure recipe before going to the second stage into the autoclave for curing. 

Autoclaves require enormous capital investment and maximizing their utilization is of utmost 

importance. 

A case study of a leading company in the Canadian aerospace industry, which we will hereinafter 

refer to as the ABC Company for the purpose of confidentiality, is used to validate our model. 
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1.3 Objectives and Methodology 

The objective of this thesis is to schedule jobs in a two-stage Hybrid Flow Shop (HFS) with 

identical, non-identical and unrelated parallel discrete-processing machines in the first stage 

(Lay-up Cells) and non-identical parallel batch-processing machines in the second stage 

(Autoclaves). To the best of our knowledge, this is the first time in the literature of scheduling 

problems that this particular type of HFS is studied. 

The optimal schedule will result in synchronizing the sequence of work done in the lay-up 

process (first stage) to the autoclaves’ cure sequence (second stage). Autoclaves require 

enormous capital investment and maximizing their utilization is of utmost importance. 

Therefore, the main objective of this study is to maximize the utilization of the resources 

(autoclaves) in the second stage of the described Hybrid Flow Shop. 

Minimizing the tooling cycle time is another result of such an optimal schedule that in turn will 

open up extra capacity in the lay-up and cure processes. In addition, providing visibility on the 

utilization of the resources in the lay-up cells and the capacity usage of autoclaves is of interest. 

As the first step of this research, we have identified and reviewed the best practices which are 

done in the area of two-stage Hybrid Flow Shops with discrete and/or batch processes. A number 

of similar industrial cases have been studied to find the ways researchers approach these sorts of 

problems. This helped us identify the methods used to model the real problems of Hybrid Flow 

Shop scheduling and the techniques used to solve such models. 

Value Stream Mapping (VSM) is used to depict the process of composite manufacturing in the 

aerospace industry from the beginning to the end in order to study the flow of material and 

information within these systems. 

The next step was to come up with a mathematical model that represents all the objectives and 

constraints we are dealing with in this problem and in this particular case study. The model 

should imitate the actual conditions of the case study considering all the limitations and special 

characteristics of the Composite Manufacturing System. 
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A Time-indexed Mixed Integer Linear Programming model is developed for this purpose. 

CPLEX with an underlying branch and bound algorithm is used to solve the model. The results 

show the high level of flexibility and computational efficiency of the proposed model when 

applied to the real case study of Composite Manufacturing Center at the ABC Company, 

especially for small and medium-size problems. 

Afterwards, for solving the large instances of the problem, a heuristic solution method is 

proposed. The heuristic method is designed based on a careful observation of the behavior of the 

MILP model and using a number of dispatching rules drawn from the literature of scheduling 

problems. Combining this knowledge with the information we have about the special 

characteristics of Composite Manufacturing Systems, this novel heuristic is established to 

generate eight feasible initial solutions to the original problem. Afterwards, a Genetic Algorithm 

is developed that uses the outputs of the aforementioned heuristic method as its initial population 

and generates improved solutions in its stochastic iterations and finally achieves near-optimal 

solutions. 

A case study of a leading company in the Canadian aerospace industry is used to validate the 

proposed models. Various sets of data from the Composite Manufacturing Center (CMC) of the 

case company are used for numerical experiments and data analysis. 

A thorough data experiment/analysis is conducted to compare the results achieved from the 

MILP model with those obtained from the heuristic method and the GA. Another main objective 

of this research is to develop a scheduling tool (according to the hypotheses and assumptions 

made by the case company) that receives data from the MRP system as input and delivers the 

sequence of work and the work schedule for the two stages of the Composite Manufacturing 

System. 
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1.4 Organization of the Thesis 

This thesis is organized into six chapters. Following the introductory chapter, the second chapter 

provides a comprehensive literature review. The third chapter begins with a description of the 

case study, followed by the detailed problem description and the MILP model formulation. The 

solution approach for small and medium-size problems are also discussed in this chapter. In 

chapter four, a heuristic method along with a GA are presented to show how the near-optimal 

solutions for larger instances of the problem are achieved. 

Chapter five includes the numerical experiments.  Some numerical examples of the MILP model 

as well as the heuristic and the GA are presented and solved and the results are analyzed in order 

to compare different methods. Finally, in chapter six, conclusions, limitations and the possible 

avenues for future research are discussed. 
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2 Chapter Two – Literature Review 

This chapter reviews and discusses the existing research in the area of Hybrid Flow Shop 

scheduling. It starts with a definition of HFS environments and batch scheduling problems and 

continues with a categorization of the various methodologies used to model and solve such 

problems. Finally, a short summary along with the detected gaps in the literature and the 

potential research opportunities are presented. 

2.1 Hybrid Flow Shops 

Hybrid Flow Shops are manufacturing environments in which there is a group of machines and 

they are arranged into s stages in series. At stage l, l=1, …, s, there are M(l) identical machines in 

parallel. Job j, j=1, …, n, has to be processed on any one machine at each stage. The processing 

times of jobs j at the various stages are P (1, j), P (2, j),…, P (s, j). Preemption is allowed in some 

HFS problems and is not allowed in others. If preemption is not allowed, then once a job starts 

being processed on a machine, it has to be finished before any other job can be processed on that 

machine. Each machine can process at most one job at a time. The buffer that stores the jobs 

waiting for processing at each stage has limited storage capacity in some HFS problems and 

unlimited storage capacity in others (Pinedo, 2012). 

In this research, we aim at studying the scheduling problem of a two-stage hybrid flow shop with 

identical, non-identical and unrelated parallel discrete-processing machines in the first stage and 

non-identical parallel batch-processing machines in the second stage. To do so, we have 

conducted a literature review focusing on scheduling hybrid flow shops that contain discrete 

and/or batch processing machines. 

The objective of HFS scheduling problems is typically to minimize the make-span, Cmax, or the 

completion time of the last job to leave the system. This objective implicitly attempts to 

maximize the utilization of the system. However, in the case of this research, the objective is to 

maximize the utilization of the resources in the cure process explicitly. 
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2.2 Batch Scheduling Problem 

There are two main types of batching in scheduling problems. One situation is when different 

jobs require different setups. These setups may call for changing tools or cleaning the machine. 

In these cases, jobs are usually grouped in families based on their similarities in a way that no 

setup is required for a job if the previously processed job was in the same family. These are 

called family scheduling models (serial-batching scheduling). Another situation is where a 

batching machine can process a number of jobs simultaneously. These are called batching 

machine models in which a machine processes a batch of jobs at the same time (Potts and 

Kovalyov, 2000). Scheduling of batch processing machine is also referred to as parallel-batching 

scheduling in the literature (Mathirajan and Sivakumar, 2006). 

Many researchers have studied serial batching scheduling problems. They have used various 

modeling approaches and diverse solution methodologies to address this type of problems (Baker 

and Schrage, 1978; Zdrzalka, 1991; Kovalyov and Potts, 1992; Ng et al., 2003; Yuan et al., 

2007; Yimer and Demirli, 2009; Tang and Liu, 2009; Shen and Buscher; 2012). However, in this 

research we will focus on the parallel-batching scheduling problems in flow shops and hybrid 

flow shops. 

In the following, we have categorized the previous studies based on their modeling and solution 

methodology. The methodologies used in the literature mainly fall in four main categories of 

Heuristic Algorithms and Dispatching Rules (simple/or combined with local search algorithms), 

Dynamic Programming, Mixed and Pure Integer Programming, and Meta-heuristic methods. The 

table in the next page shows the studies done in each of the aforementioned categories. 
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Table 1. Four Main Methodologies to Model and Solve HFS Scheduling Problems 

Number Modeling/Solution Methodology Research (Authors and Year) 

1 Heuristic Algorithms and Dispatching Rules 

Ahmadi et al. (1992) 

Ovacik and Uzsoy (1995)  

Sawik (1995) 

Sotskov et al. (1996)  

Chandra and Gupta (1997) 

Hoogeveen and Velde (1998) 

Danneberg et al. (1999) 

Blomer and Gunther (2000)  

Sung et al. (2000) 

Wang et al. (2001) 

Wang and Li (2002)  

Sung and Kim (2003) 

Lin and Cheng (2005) 

Oulamara et al. (2009)  

Yurtsever et al. (2009)  

Bellanger and Oulamara (2009)  

Wang et al. (2012)  

2 Dynamic Programming 

Sung and Yoon (1997) 

Brucker et al. (1997) 

Sung and Min (2001) 

Xuan and Tang (2007)  

3 Mixed and Pure Integer Programming 

Pinto and Grossmann (1995)  

Guinet and Solomon (1996) 

Bhatnagar et al. (1999)  

Sawik (2000) 

Blomer and Gunther (2000)  

Méndez et al. (2001)  

Sawik (2002) 

Su (2003) 

Damodaran and Srihari (2004) 

Sawik (2005) 

Low (2005)  

Sawik (2006) 

Voss and Witt (2007) 

Jenabi et al. (2007)  

Klemmt and Hielscher (2008) 

Ruiz et al. (2008)  

Klemmt et al. (2009)  

Amin-Naseri and Beheshti-Nia (2009) 

Gong et al. (2010) 

Behnamian and Fatemi Ghomi (2011) 

Ziaeifar et al. (2012)  

Klemmt and Mönch (2012) 

Gicquel et al. (2012)  

Wang et al. (2012)  

Rossi et al. (2013)  

Rossi et al. (2014) 
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Number Modeling/Solution Methodology Research (Authors and Year) 

4 
Meta-heuristic 

Methods 

Genetic Algorithm 

Kim and Kim (2002) 

Wang and Li (2002)  

Balasubramanian et al. (2004) 

Reichelt and Mönch (2006)   

Jenabi et al. (2007)  

Luo et al. (2009)  

Luo et al. (2011)  

Behnamian and Fatemi Ghomi (2011) 

Ziaeifar et al. (2012)  

Simulated Annealing 

Danneberg et al. (1999) 

Mathirajan et al. (2004)  

Low (2005)  

Jenabi et al. (2007)  

Ant Colony System  

Raghavan and Venkataramana (2006)  

Li et al. (2008)  

Mönch and Almeder (2009)  

Neural Networks Mönch et al. (2006)  

Variable Neighborhood Search (VNS) 
Klemmt et al. (2009) 

Behnamian and Fatemi Ghomi (2011)  

Tabu Search  Wang and Tang (2009)  

Hybrid Particle Swarm Optimization 

(HPSO) Algorithm  
Liu et al. (2010)  

Greedy Randomized Adaptive Search 

Procedure (GRASP)  
Damodaran et al. (2011) 
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2.3 Heuristic Algorithms and Dispatching Rules 

Ahmadi et al. (1992) study the complexity of a class of two-machine batching and scheduling 

problems for the objectives of minimizing Cmax and ∑Cj. In the two-stage flow shops that they 

analyze, one or both of the machines may be a batching machine. According to their notation, β 

denotes a batch processor, δ denotes a discrete processor and  denotes the system 

configuration. For instance, δβ means a discrete processor followed by a batching machine. 

They show that there exist polynomial time procedures to solve δβ and ββ for both 

objectives of minimizing Cmax and ∑Cj as well as βδ with the objective of minimizing Cmax. 

For βδ with the objective of minimizing ∑Cj, they prove the problem is NP-complete. Besides 

the proposed Integer Programming formulation, they present a heuristic and determine an upper 

bound on the worst case performance ratio of their heuristic. In addition, they analyze the case of 

three machine flow shop as well as multiple family problems. 

Ovacik and Uzsoy (1995) develop a number of rolling horizon algorithms to minimize maximum 

lateness of jobs in a parallel machine environment with sequence dependent setup times and 

unequal job arrival times. The numerical experiments of their research show that their Rolling 

Horizon Procedures (RHP) outperforms the famous Early Due Date (EDD) dispatching rule by 

69% on average. They also give schedules 38% better than those which are derived from EDD 

coupled with local search. 

Potts et al. (2001) analyze the complexity of two-machine batching problems in open shop, job 

shop and flow shop environments. They study cases of bounded and unbounded batch sizes on a 

machine with the objective of minimizing the completion time of the last job (make-span), and 

establish the complexity status of the problem in each case. 

Sung and Kim (2003) study a two-machine flow shop composed of two batch processes and 

develop three heuristic algorithms to minimize maximum tardiness, number of tardy jobs and 

total tardiness, respectively. 

Lin and Cheng (2005) study a flow shop with two stages in which the first stage is a discrete 

processing machine and the second stage is a batch processing machine with a constant setup 

time for each batch it processes. They prove the strong NP-hardness of the problem and show 

some special polynomial time solvable cases of the problem. They also suggest that an optimal 
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solution for these special cases is a lower bound for the general problem. They propose some 

heuristics to obtain near optimal solutions to the general problem and through numerical 

experiments show that the error ratios are small. 

Oulamara et al. (2009) analyze a scheduling problem of a two machine flow shop in which the 

first machine is a discrete processor (tire building process) and the second machine is a batch 

processor (tire curing process). They also define compatibility relations between each pair of 

jobs and draw an undirected compatibility graph to demonstrate these compatibility relations. 

The batch processing time in the second machine is defined as the longest processing time of the 

jobs contained in the batch. They show the NP-hardness of the problem when the objective is to 

minimize the make-span and develop three heuristic algorithms to make batching and sequencing 

decisions. 

Bellanger and Oulamara (2009) study a two stage hybrid flow shop in which the machines in the 

first stage are identical parallel discrete processors and the second stage consists of several 

identical parallel batch processing machines. The batch processors in the second stage can only 

process compatible jobs in each batch. So, they define a compatibility relation between each pair 

of tasks and obtain an undirected compatibility graph. They proposed three heuristic algorithms 

in order to minimize the make-span. They also conduct computational experiments to compare 

the average and worst case performance of the different proposed heuristics. 

Wang et al. (2012) study the scheduling problem of a two-stage hybrid flow shop in which the 

first stage consists of parallel discrete processing machines while the second stage includes 

parallel batch processing machines. They develop a MIP model with the objective of minimizing 

the make-span which takes into account different aspects of the problem such as release times 

and due date constraints. They propose several heuristic algorithms to solve the problem most 

efficient of which is a dispatching rule called BFIFO which assigns batches to machines based 

on first-in-first-out rule and then employs a local search heuristic called Interchange, 

Translocation, and Transposition (ITT) for re-optimization (relocating the job positions in the 

sequence to obtain better solutions). The computational experiments suggest that the proposed 

technique is capable of generating good schedules for problems with up to 160 jobs on 40 

machines within ten minutes. 
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2.4 Dynamic Programming 

Sung and Yoon (1997) consider a system of two-machine flow shop with two batch processes in 

which a finite number of jobs are released dynamically and the objective is to minimize the 

maximum completion time of all jobs (make-span). They develop a Dynamic Programming 

algorithm based on different solution properties they analyzed. 

Brucker et al. (1997) study the scheduling of a single batching machine with bounded and 

unbounded batch sizes. They develop different Dynamic Programming models for both cases 

with objective functions of minimizing total weighted completion time, maximum lateness, 

weighted number of late jobs and total weighted tardiness. They have mapped the time 

complexities of various single-machine batching problems with the same release dates of jobs. 

Sung and Min (2001) aim at minimizing earliness/tardiness of jobs with a common due date in a 

two machine flow shop environment with three different structures. In the first case, a discrete 

processing machine is followed by a batching processing machine. In the second case, machines 

of both stages are batching processing machines. And, the third case consists of a batching 

processing machine which is followed by a discrete processing machine. For the first two cases, 

the authors propose polynomial time heuristic algorithms. For the third case, however, they 

prove that the problem is NP-complete and show that the optimal sequence of the problem is the 

same as the optimal sequence for the problem of a single discrete machine. Consequently, based 

on the work of Ventura and Weng (1995), they propose a pseudo-polynomial dynamic 

programming algorithm. 

Xuan and Tang (2007) consider a hybrid flow shop problem in iron and steel industry with s 

stages that the last stage is a batch processing machine. They develop an integer Programming 

model with a time-indexed variable and use a Lagrangian Relaxation algorithm to decompose the 

problem into a set of batch-level sub-problems. In order to solve these sub-problems, they 

propose a forward dynamic programming algorithm. 
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2.5 Mixed/Pure Integer Programming 

Pinto and Grossmann (1995) study the problem of scheduling multi-stage batch plants with 

parallel processing equipment and unlimited intermediate buffers. They develop a MIP model 

with continuous time variables in order to minimize the time interval between the end of 

processing of the jobs and their due dates (minimizing the earliness). The model is capable of 

solving small instances with less than 500 binary variables. However, for the larger instances of 

the problem, two methods are suggested. First, they propose a number of preordering constraints 

to reduce the number of nodes (decisions to be made in the branch and bound algorithm). 

Second, they develop a decomposition method that determines feasible assignments of the jobs 

with the objective of minimizing in-process time and then determines a schedule that eliminates 

unnecessary setups to minimize earliness. The numerical experiments on a real-world case 

demonstrate the capability of the proposed approach to solve a problem with 5 stages, 25 

machines and up to 50 jobs. 

Méndez et al. (2001) consider the problem of scheduling a resource-constrained flow shop with 

multiple stages and several batch processing machines working in parallel at each stage. They 

propose a continuous-time Mixed Integer Programing model to minimize the earliness of jobs 

with maximizing the weighted completion times for all orders in all stages with higher weights 

for later stages. The formulation structure of the model enables the possibility of adding 

topological constraints and sequence-dependent setup times without defining any additional 

variable or constraint. The model is applied to real-world problems and solved by CPLEX 

Mixed-Integer Optimizer and the results show that it is significantly powerful in terms of 

computational efficiency. 

Sawik (2002) studied the problem of batch scheduling in hybrid flow shops with limited 

intermediate buffers. The hybrid flow shop under study consists of i consecutive processing 

stages and m parallel identical machines in each stage. He proposes a MIP model in order to 

minimize the make-span by processing the parts of one type consecutively (in serial batches). 

The numerical experiments show that the proposed MIP formulation can be effectively applied 

to small size problems. However, the CPU time required to find optimal solutions for realistic 

large size problems using the proposed MIP model can be very high. 
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Damodaran and Srihari (2004) analyze a two-machine flow shop with batch processes and 

develop two MIP models for the case of unlimited buffer capacity and no buffer capacity. The 

objective function of the model is to minimize Cmax. They have defined two sets of decision 

variables one of which is a binary assignment variable Zbk which is 1 if the batch b is scheduled 

as the kth scheduled batch and the other one is Xjb which is 1 if the job 1 is included in the batch 

b. They solve the problem with AMPL and CPLEX only for ten jobs and suggest using 

techniques such as branch-and-price and branch-and-cut for solving larger instances of the 

problem. 

Sawik (2006) develops multi-objective Integer Programming formulations for obtaining Master 

Production Schedule of customer orders during long-term planning horizons in a hybrid flow 

shop environment with several parallel batch processing machines in each stage. He also 

develops a MIP model for machine assignments and scheduling of jobs over short-term planning 

horizons. To enhance the proposed models, he also adds a number of cutting constraints to each 

of them. For instance, in the case of the multi-objective Integer Programming model, the new 

cutting constraints relate the required capacity (to meet the customer demand) to the available 

capacity for each processing stage. They conduct computational experiments in a real-world 

large-sized case of a make-to-order assembly system in the electronics industry and observe that 

their hierarchical approach is capable of obtaining long-term master production schedules and 

short-term machine schedules. 

Voss and Witt (2007) develop an Integer Programming model for their problem which is a 

combination of a Hybrid Flow Shop and Resource Constrained Project Scheduling Problem 

(RCPSP). The objective function of their model is to minimize the weighted tardiness. They 

divide the planning horizon T into t periods with equal length and define a time-indexed decision 

variable. They propose a heuristic solution procedure using dispatching rules and modify the 

rules in order to create batches. 

Klemmt and Hielscher (2008) study different MIP as well as simulation-based optimization 

approaches to solve the problem of scheduling jobs in batch processes of semiconductor 

fabrication industry. They develop MIP models for two different problems with objectives of 

minimizing the make-span and minimizing the job cycle time. They also study the simulation-

based optimization approaches for both of the problems. The results of the computational 

http://www.sciencedirect.com/science/article/pii/S0925527305002409
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experiments demonstrate that both approaches give better results compared to the dispatching 

rules strategy taken by a real manufacturing case. The results also show that the MIP-based 

approaches give exact solutions or very good near-optimal solutions within the first five minutes 

of running the models. The simulation-based optimization approaches yield very good results 

especially for higher problem dimensions. In cases that problem dimensions of the MIP are too 

high, the simulation-based approaches are advisable. 

Ruiz et al. (2008) study the problem of scheduling a hybrid flow shop with unrelated parallel 

machines, sequence-dependent setup times and unlimited intermediate buffers. They propose a 

MIP model as well as a number of heuristic methods to solve the large instances of the problem. 

They also propose an advanced statistical tool called AID which employs decision trees and 

Design of Experiments (DOE) in order to evaluate the effects of different factors on the 

performance of the MIP model and the heuristics algorithms. The results of their analysis suggest 

that many of the factors which are usually considered critical (ex. the setup to processing time 

ratio) have no effect on the difficulty of the MIP model and the proposed heuristics. 

Amin-Naseri and Beheshti-Nia (2009) study a parallel batch scheduling problem in a hybrid flow 

shop. They formulate the problem as a MIP model and prove its NP-hardness. Then, in order to 

obtain near optimal solutions, they propose three heuristics which are developed based on 

Johnson’s rule, parallel machine scheduling methods, and theory of constraints, respectively. 

They also introduce a novel GA with three dimensional chromosome structures and through 

numerical experiments show that the 3D GA outperforms all the aforementioned heuristics. 

Klemmt and Mönch (2012) discuss different classes of nested time constrains in semiconductor 

wafer fabrication environments and study a scheduling problem of jobs in a flow shop with time 

constraints between consecutive stages. They propose a simple heuristic based on List 

Scheduling and a decomposition approach based on MIP formulation with the objective of 

minimizing total tardiness. Then, they design computational experiments and show that the MIP-

based heuristic outperforms the simple list scheduling heuristic. 

Gicquel et al. (2012) study a real-world case of hybrid flow shops in fermentation areas of a bio-

process industry. The HFS consists of batch processing machines, multiprocessor tasks, and 

sequence-dependent setup and removal times. There are several additional constraints such as 
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zero intermediate buffer capacity and limited waiting time of jobs between two successive 

production operations due to the formation of undesired by-products in case of waiting too long. 

In order to minimize the total weighted tardiness, they develop a MIP model with a time-indexed 

binary variable Ybst which is equal to 1 if processing of batch b at stage s starts in time period t 

and equals to zero otherwise. Computational experiments of the research demonstrate that the 

model is capable of obtaining optimal schedules for real industrial size cases with up to 35 jobs 

in reasonable computational times. However, the authors recommend the use of meta-heuristics 

for future work so as to obtain solutions for larger instances within shorter times. 

Rossi et al. (2014) consider MIP formulations for hybrid flow shop scheduling problem with 

parallel batching machines and compatible product families with the objective of minimizing the 

number of tardy jobs. They prioritize and sort the jobs based on the critical ratio (CRsetup) which 

is the available time between current time and due date divided by the processing time of the job. 

To obtain the critical ratios, they propose two heuristic methods one of which considers 

individual stages while the other one takes all stages into account. Numerical experiments of 

their research show that the combination of the critical ratio priority rule and the rolling horizon 

mechanism of the algorithm enables the proposed heuristics to efficiently reduce the number of 

tardy jobs as well as the make-span. 
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2.6 Meta-heuristic Methods 

Due to the critical fact that hybrid flow shop scheduling problems are mainly NP-hard and 

finding the exact solution for such problems calls for very long computational times and costs 

(and even it is sometimes impossible), the use of meta-heuristic algorithms to find near-optimal 

solutions in relatively short times is very beneficial. 

Therefore, during the last two decades, many researchers have tried to employ different meta-

heuristic approaches to solve complicated scheduling problems. In the following, a review of 

research in this direction will be presented. 

2.6.1 Genetic Algorithm 

Kim and Kim (2002) study a two-machine flow shop in which the first stage is a batch machine 

and the second stage is a discrete machine. They propose a heuristic based on the GA approach 

to minimize the total completion time of the jobs and demonstrate the effectiveness of the GA-

based algorithms in solving scheduling problems through computational experiments. Su (2003) 

studies the same problem and formulates it as a Mixed Integer Programing model with the 

objective of minimizing Cmax. He then develops a heuristic algorithm and presents its 

effectiveness through experimental investigations. 

Reichelt and Mönch (2006) aim at minimizing total weighted tardiness and make-span at the 

same time in a semiconductor manufacturing environment with batch processing machines. They 

propose a multi-objective GA to develop Pareto efficient solutions and combine it with a local 

search technique to improve the quality of the solutions. The computational experiments of this 

research show the good solution quality of their proposed approach. 

Luo et al. (2009) study the scheduling of a two-stage hybrid flow shop in metal-working 

company that has several parallel batching machines in the first stage and one single discrete 

machine in the second stage. There is no intermediate buffer between the two stages and there 

are times that machines are unavailable due to break downs or preventive maintenance practices. 

They consider two types of machine unavailability; deterministic and stochastic. They develop a 

mathematical model for the problem with objective function of minimizing the make-span and 

time-indexed variables for both stages. Then, they propose a GA with two decoding methods in 

order to solve the problem in both cases of deterministic and stochastic machine unavailability. 
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Luo et al. (2011) consider a real-world case in a metal working company which is a two-stage 

hybrid flow shop with parallel batch processing machines in the first stage and a single machine 

with sequence dependent setup times in the second stage. There are some additional constraints 

arising from the special characteristics of the studied problem such as blocking (no intermediate 

buffer between two stages) and conducting machine maintenance practices in a timely manner 

during the scheduling horizon. They develop linear programming formulations to model the 

problem. To obtain solutions, they propose a two-step algorithm. In the first step, jobs are 

grouped in batches based on their similarities and some grouping constraints. In the second stage, 

a GA is proposed which treats each batch like a job unit and determines the sequence of these 

units to be processed in the first stage. This approach is compared to the manual scheduling 

practices which are done currently by the engineers in the company and the results show the high 

superiority of the proposed algorithm with respect to the solution quality and the required 

computation time. 

 

Ziaeifar et al. (2012) study the problem of scheduling a hybrid flow shop with unlimited 

intermediate buffers between stages and processors that move among stages and cooperate with 

processors of each stage in order to perform the operations. They develop a MIP model with the 

objective of minimizing the make-span and cost of assigning processors to stages. In order to 

compute the make-span, they propose a novel heuristic algorithm. Then, they propose a GA that 

uses the result of the aforementioned heuristic as a part of its fitness function. They apply their 

proposed algorithm to 20 test problems and compare the results with a lower bound in the 

literature (Shiau and Huang, 2011). The efficiency of the proposed algorithm is evidenced by the 

computational experiments. 

2.6.2 Simulated Annealing 

Low (2005) study the scheduling of a hybrid flow shop with unrelated parallel machines. He 

develops a MIP model with the objective of minimizing total flow time in the system. Since the 

MIP model is not a practical solution method for large size problems, he proposes a Simulated 

Annealing meta-heuristic to obtain near optimal solutions. He uses SPT/FCFS rule to generate 

initial solutions for the SA algorithm. Then he compares the proposed algorithm with two other 

SA algorithms one of which is standard SA with SPT/FCFS initial solutions heuristic and the 



21 

 

other one is his proposed SA with randomly generated initial solutions. The results of the 

experimental analysis show that his proposed Simulated Annealing heuristic with SPT/FCFS 

initial solution heuristic outperforms the other two SA-based heuristics with respect to solution 

quality and efficiency. 

Jenabi et al. (2007) study the Economic Lot-Scheduling Problem (ELSP) in a hybrid flow shop 

with unrelated parallel machines over a limited planning horizon. They develop a MIP model to 

minimize the sum of setup and inventory holding costs while preventing stock-outs. Since the 

MIP model is not practically solvable for large size problems, they propose two meta-heuristics 

based on Hybrid Genetic Algorithm (HGA) and Simulated Annealing approaches. They also 

propose two constructive heuristic algorithms that provide good initial solutions for the meta-

heuristics. The computational experiments of the research reveal that the proposed HGA meta-

heuristic is superior to the SA algorithm from the viewpoint of solution quality while the SA 

algorithm requires less computational time. 

2.6.3 Ant Colony System 

Raghavan and Venkataramana (2006) try to minimize the Total Weighted Tardiness in a parallel 

batch processor scheduling environment with incompatible job families, identical job sizes and 

arbitrary job weights. They divide the problem into two sub-problems of Batch Formation and 

Batch Scheduling and propose an Ant Colony Optimization approach to solve the batch 

scheduling problem. They apply their proposed algorithm to randomly generated data sets and 

show that the ant colony optimization based algorithm provides higher quality solutions 

compared to the well-known Apparent Tardiness Cost-Batched Apparent Tardiness Cost (ATC-

BATC) rule. 

Mönch and Almeder (2009) propose an Ant Colony System (ACS) approach to solve the same 

problem. They compare their proposed algorithm to the GA algorithms proposed by 

Balasubramanian et al. (2004) and suggest that the ACS approach provides higher quality 

solutions in considerably less computational time. 
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2.6.4 Neural Networks 

Mönch et al. (2006) aim at minimizing total weighted tardiness on parallel batch machines with 

incompatible job families and unequal release time of the jobs. They develop a heuristic based on 

the famous Apparent Tardiness Cost (ATC) Dispatching Rule suggested by Vepsalainen and 

Morton (1987). They use two different machine learning approaches (Neural Networks and 

Inductive Decision Trees) for choosing the look-ahead parameter which is needed for using the 

ATC rule. The results on the performance of the machine learning approaches for choosing the 

look-ahead value indicate their higher solution quality and less computation time. Numerical 

experiments show that in around eighty percent of the cases, a better total weighted tardiness is 

obtained from applying machine learning approaches instead of using a fixed look-ahead 

parameter approach. 

2.6.5 Variable Neighborhood Search (VNS) 

Klemmt et al. (2009) study the problem of scheduling an unrelated parallel batch machine with 

unequal release dates and incompatible job families. In this problem which is motivated by a real 

case in diffusion and oxidation operations in semiconductor industry, only jobs belonging to the 

same family can be processed simultaneously on a batch processor and since the machines are 

dedicated to specific product families, not all families can be processed by every machine. They 

develop a MIP model with the objective of minimizing the total weighted tardiness. They use 

time window decomposition, machine pool decomposition and job list reduction to get the 

smaller instances of the problem and solve them. They also propose a Variable Neighborhood 

Search (VNS) meta-heuristic to solve the problem. The results show that the VNS approach is 

slightly superior to MIP with regard to solution quality and computation time. However, The 

MIP formulation is more flexible especially in case of considering additional constraints such as 

time constraints between consecutive process steps. 

Behnamian and Fatemi Ghomi (2011) consider the problem of scheduling a hybrid flow shop 

with sequence-dependent setup times and resource-dependent processing times. They develop a 

MIP model with the objective of minimizing make-span and total resource allocation costs. They 

propose a hybrid meta-heuristic which is built based on a combination of GA and Variable 

Neighborhood Search (VNS). They test the proposed algorithm on more than 250 benchmark 

problems with up to 100 jobs. The results show the efficiency of the hybrid meta-heuristic. They 
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also compare their algorithm with the Random Initial Population Simulated Annealing (RNDSA) 

proposed by Jungwattanakit et al. (2009) and demonstrate the superiority of their algorithm. 

2.6.6 Tabu Search 

Wang and Tang (2009) study hybrid flow shop scheduling problem with limited intermediate 

buffers. They aim at minimizing the sum of weighted completion time of all jobs. Since the 

problem is proven to be strongly NP-hard, they propose a Tabu Search heuristic combined with a 

modified scatter search with two reference sets in order to obtain near-optimal solutions. They 

generalize the algorithm of Nawaz et al. (1983) which was originally proposed for pure flow 

shop sequencing problem so as to obtain good initial solutions for their hybrid flow shop 

problem. The computational results of their research show that the proposed Tabu Search 

heuristic outperforms the Lagrangian relaxation algorithm proposed by Tang and Xuan (2006). 

2.6.7 Hybrid Particle Swarm Optimization (HPSO) Algorithm 

Liu et al. (2010) study a hybrid flow shop scheduling problem with five stages and several 

parallel batch processing machines in each stage in polypropylene industry. They propose a 

Hybrid Particle Swarm Optimization (HPSO) algorithm to minimize the make-span. There are 

different inventory storage policies in different intermediate buffer areas. They use the algorithm 

of Nawaz et al. (1983) known as Nawaz–Enscore–Ham (NEH) heuristic to generate initial 

solutions and modify this algorithm to develop a new local search heuristic. They also develop a 

local search heuristic based on Simulated Annealing approach with an adaptive meta-

Lamarckian learning strategy. The computation experiments and simulation results of this 

research suggest that the proposed HPSO algorithm is more effective and robust compared to the 

existing hybrid PSO proposed by Tasgetiren et al. (2004) and existing constructive heuristics. 

2.6.8 Greedy Randomized Adaptive Search Procedure (GRASP) 

Damodaran et al. (2011) study the problem of scheduling several identical batch processing 

machines in parallel. They propose A Greedy Randomized Adaptive Search Procedure (GRASP) 

approach in order to minimize the make-span. Their GRASP algorithm obtains optimal solutions 

for problems with up to 10 jobs and near-optimal solutions for larger instances. The numerical 

experiments show the high efficiency and superiority of the algorithm compared to previously 

proposed heuristics in the literature. 
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2.7 Summary 

According to the conducted literature review, there are many general forms to model Hybrid 

Flow Shop manufacturing systems. The more complex manufacturing environment gets the more 

complicated and advance the scheduling models become. This is also true for the solution 

methodologies. 

There is an exponentially growing research focus on the subject of flow shops scheduling but 

only a small proportion of these research attempts are dealing with real-world cases (Reisman et 

al., 1995). Classical scheduling theory sometimes fails to respond to the needs of practical 

environments, and the new trends in scheduling research attempt to make it more relevant and 

applicable to the real world problems (MacCarthy and Liu, 1993). As a result, bridging the gap 

between the scheduling theory and the practical problems has become a matter of significant 

importance. 

Generally, researchers tend to follow the typical and conventional objectives that are quite well-

known in the literature of the scheduling problems. The most popular objective function is 

Minimizing the make-span, Cmax, or the completion time of the last job to leave the system. 

Minimizing other KPIs such as Sum of Completion Times, Total (Weighted) Completion Time, 

Total (Weighted) Tardiness, Maximum Tardiness and Number of Tardy Jobs are among the 

other typical objective functions. The following table shows different objective functions 

considered in the research in the area of Hybrid Flow Shop scheduling. As it can be observed, 

most of them revolve around the aforementioned objectives. 

This is exactly because of the lack of proper connection between the scheduling theory and the 

practical cases because as one can easily suspect, not all the real manufacturing cases necessarily 

seek one of these few objectives. The objectives of the real case problems can be very diverse 

and very different from these typical objectives in the literature of Hybrid Flow Shop scheduling 

problems. This is one of the points that differentiate this thesis from the previous studies in the 

area of HFS as its objective is to maximize the utilization of the resources in the cure process 

which was explained before in section 1.3. 
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Table 2. Different Typical Objective Functions for HFS Scheduling Problems 

No. 
Authors and 

Year 

Minimizing 

Sum of 

Completion 

Times 

Minimizing 

Total 

(Weighted) 

Completion 

Time 

Minimizing 

the Make-

span 

Minimizing 

Total 

(Weighted) 

Tardiness 

Minimizing 

Maximum 

Tardiness 

Minimizing 

Number of 

Tardy Jobs 

Other 

Objectives 

1 
Ahmadi et al. 

(1992)  
            

2 
Ovacik and 

Uzsoy (1995)  
             

3 Sawik (1995)         


  

4 

Pinto and 

Grossmann 

(1995)  

        


  

5 
Sotskov et al. 

(1996) 
            

6 
Guinet and 

Solomon (1996)  
             

7 
Sung and Yoon 

(1997) 
             

8 
Brucker et al. 

(1997) 
          

9 
Hoogeveen and 

Velde (1998) 
             

10 
Danneberg et al. 

(1999) 
            

11 
Bhatnagar et al. 

(1999) 
             

12 
Sung et al. 

(2000) 
            

13 Sawik (2000)              

14 
Blomer and 

Gunther (2000)  
             

15 
Potts et al. 

(2001) 
             

16 
Sung and Min 

(2001) 
            

17 
Wang et al. 

(2001) 
             

18 
Méndez et al. 

(2001)  
    


      

19 
Kim and Kim 

(2002) 
             

20 
Wang and Li 

(2002)  
             

21 Sawik (2002)              

22 Su (2003)              

23 
Sung and Kim 

(2003) 
           

24 
Damodaran and 

Srihari (2004) 
             

25 
Mathirajan et al. 

(2004)  
             
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No. 
Authors and 

Year 

Minimizing 

Sum of 

Completion 

Times 

Minimizing 

Total 

(Weighted) 

Completion 

Time 

Minimizing 

the Make-

span 

Minimizing 

Total 

(Weighted) 

Tardiness 

Minimizing 

Maximum 

Tardiness 

Minimizing 

Number of 

Tardy Jobs 

Other 

Objectives 

26 
Balasubramanian 

et al. (2004)  
             

27 
Lin and Cheng 

(2005) 
             

28 Low (2005)      


       

29 Sawik (2005)            

30 
Mönch et al. 

(2006)  
             

31 
Reichelt and 

Mönch (2006)  
            

32 

Raghavan and 

Venkataramana 

(2006)  

             

33 Sawik (2006)              

34 
Voss and Witt 

(2007) 
             

35 
Xuan and Tang 

(2007)  
             

36 Li et al. (2008)               

37 
Ruiz et al. 

(2008)  
    


      

38 
Klemmt and 

Hielscher (2008) 
             

49 

Amin-Naseri 

and 

Beheshti-Nia 

(2009) 

             

40 Luo et al. (2009)               

41 
Klemmt et al. 

(2009)  
             

42 
Mönch and 

Almeder (2009)  
             

43 
Bellanger and 

Oulamara (2009)  
             

44 
Oulamara et al. 

(2009)  
             

45 
Wang and Tang 

(2009)  
             

46 
Gong et al. 

(2010) 
            

47 Liu et al. (2010)               

48 
Damodaran et al. 

(2011) 
             

49 

Behnamian and 

Fatemi Ghomi 

(2011) 

             
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No. 
Authors and 

Year 

Minimizing 

Sum of 

Completion 

Times 

Minimizing 

Total 

(Weighted) 

Completion 

Time 

Minimizing 

the Make-

span 

Minimizing 

Total 

(Weighted) 

Tardiness 

Minimizing 

Maximum 

Tardiness 

Minimizing 

Number of 

Tardy Jobs 

Other 

Objectives 

50 Luo et al. (2011)              

51 
Klemmt and 

Mönch (2012)  
             

52 
Gicquel et al. 

(2012)  
             

53 
Wang et al. 

(2012)  
    


      

54 
Ziaeifar et al. 

(2012)  
    


      

55 
Rossi et al. 

(2013)  
            

56 
Rossi et al. 

(2014)  
            

 

Although there are many attempts to model the complex HFS in the literature, to the best of our 

knowledge, the constraint of physical capacity of the buffers is something missing. Some 

researchers (Leisten, 1990; Agnetis et al., 1997; Pranzo, 2004; Wang et al., 2006; Liu et al., 

2008) have attempted to study the scheduling problems with limited buffers but they did not 

consider the physical capacity (volume) of the buffer as a constraint which we try to cover in this 

research. 

The limited number of tools is also a constraint which has not been studied deeply in the 

literature. Unlike the constraints about the limited number of resources (machines) in different 

stages, limited number of tools does not seem to be seriously taken into account in the theory of 

scheduling problems. However, in reality, it is a very important constraint that can totally affect 

the performance of a hybrid flow shop manufacturing system. In this research, we aim at 

including this constraint into the modeling and formulations.  
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3 Mathematical Model Formulation and Analysis 

In this section, we will try to develop an optimization model for the case of the Composite 

Manufacturing Center. In the following, first we will describe the case study setting. We then 

define the problem and then, the parameters, variables and the equations which are needed to 

model it. Finally, we will discuss the solution methodology and the results we have obtained 

from CPLEX. 

3.1 Case Study Characteristics 

The Composite Manufacturing Center (CMC) of the case company of this research (ABC 

Company) is producing hundreds of composite parts both for the assembly line and for the spares 

usage. The center consists of different processes: 

Prepare for 

Lay- up

Lay-up & 

Bag
Cure

Routing & 

Insert

Paint & 

Finish

Sub-

Assembly

 

Figure 1. Various Processes inside the Composite Manufacturing Center 

Currently, CMC does not fail to meet the demand of its customers apparently because the excess 

capacity in the system is absorbing the variations. However, the demand is going to increase in 

the future and the need for providing visibility on the capacity of the system in general, and the 

capacity of the lay-up and curing processes in particular, is seriously felt. 

One of the most important factors to boost the efficiency of Composite Manufacturing Systems 

successfully is visibility. Visibility enables the supply chain participants to have access to 

reliable information regarding inventory, product availability, order status, etc. and helps to 

manage the flow of products and services more effectively. Hence, the benefit of providing this 

visibility is to have reliability throughout the chain (Myerson, 2012). 

To provide such a visibility on a system (i.e. a supply chain), VSM is proven to be a very 

powerful technique. There are many opportunities to look for waste and non-value-added 

activities in composite manufacturing systems and eliminate them by the aid of VSM. 

VSM is a team-based technique of depicting the process from the beginning to the end (current 

state map) and covering both value-added and non-value-added activities from the customer’s 
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perspective, numerical and visual data regarding the performance of these activities and then, 

eliminating the wastes, defects, failures and non-value-added activities to acquire the future state 

map. This will enable the company to better prioritize the improvement efforts, provide a 

common language for people involved, and prepare the ground for an implementation plan 

(Liker, 2005). 

VSM is a very useful technique to reveal the areas of potential waste in supply chains and 

networks. Supplier performance and supplier lead times, distribution network’s efficiency, and 

transfer facilities are different areas to look for waste. Thus, in order to better explain the 

circumstances of the Composite Manufacturing Center at the ABC Company, we employ this 

technique. 

In the following page, the Value Stream Map of the Composite Manufacturing Center at ABC 

Company is depicted. There is a Production Control department over CMC that receives 3-5 

years forecast of demand from the customers and sends an 18-24-month forecast of CMC’s 

needs to the suppliers. 



30 

 

P
ro

d
u

ct
io

n
 C

o
n

tr
o

l

La
y-

u
p

 C
el

l
6

C
u

re
A

u
to

cl
av

e 
1

C
u

re
A

u
to

cl
av

e 
2

C
u

re
A

u
to

cl
av

e 
3

L
a

y
-u

p
C

u
re

U
n

-m
o

ld
in

g
FI

FO

FI
FO

FI
FO

FI
FO

P
in

 R
o

u
ti

n
g

To
rr

es

R
o

u
ti

n
g

R
o

u
ti

n
g

In
se

rt
s

In
sp

ec
ti

o
n

 
FI

FO
FI

FO

In
sp

ec
ti

o
n

 

N
D

I

In
sp

ec
ti

o
n

 

FI
FO

FI
FO

FI
FO

FI
FO

FI
FO

FI
FO

FI
FO

In
sp

ec
ti

o
n

FI
FO

2
 S

h
if

ts
6

 H
o

u
rs

C
u

st
o

m
er

s

Su
p

p
lie

rs

P
ly

 C
u

tt
in

g

To
o

l S
to

ra
ge

W
A

R
EH

O
U

SE

St
ag

er

O
X

O
X

1
, 2

, 3
, .

..

FI
FO

La
y-

u
p

 C
el

l
1

La
y-

u
p

 C
el

l
2

La
y-

u
p

 C
el

l
3

La
y-

u
p

 C
el

l
4

La
y-

u
p

 C
el

l
5

Fi
n

al
 P

ai
n

ti
n

g

3
 –

 5
 Y

ea
rs

   
   

   
   

   
Fo

re
ca

st
s

1
8

 –
 2

4
 M

o
n

th
s 

   
   

 F
o

re
ca

st
s

 

 

F
ig

u
re

 2
. 

V
a

lu
e 

S
tr

ea
m

 M
a

p
 o

f 
th

e 
C

o
m

p
o

si
te

 M
a

n
u

fa
ct

u
ri

n
g
 C

en
te

r
 

 



31 

 

In the Ply-cutting process, the sheets of composite are cut in the required sizes and shapes. Then, 

they are sent to the Lay-up process. In the Lay-up process, there are six cells for different 

product families. Inside each cell, a number of regular and laser-equipped work stations exist. 

Each work station (regular or laser-equipped) is managed by one Lay-up Operator.  

The operators of the lay-up cells stack the sheets of composite on tools (molds) and vacuum the 

mold so that the part can be ready for the cure process. The aforementioned tools or molds are 

brought in the cell by a person whose responsibility is to receive the production schedule and 

bring the required mold to the lay-up cell exactly on time. This person is called Stager in this 

Composite Manufacturing Center.  

After being processed in the lay-up cell, parts have to wait in a buffer area between the lay-up 

process and the cure process. This buffer is where the parts are grouped in batches. It is worth 

mentioning that this buffer has a limited physical capacity (in terms of volume). Therefore, at 

any given time, only a certain volume of jobs can be present in the buffer area. There is also a 

time limitation in this buffer area. Due to some technical reasons, parts cannot remain attached to 

their tool (mold) and stay in this buffer area for more than two working shifts.  

When the required parts for creating a batch are present in the buffer and the batch is complete, 

parts which are compatible from the viewpoint of the cure recipe are grouped and are sent to the 

autoclave.  

The cure process accommodates various cure recipes for different products. There are three 

autoclaves which are capable of running different cure recipes. The schedule of the different cure 

recipes are fixed for two of the autoclaves and the third one is allocated for custom orders. 

After the parts are cured in one of the autoclaves, they are sent to the unmolding process so that 

the operators in this work station separate the parts from their molds. As the next step, the mold 

will be sent to a tool preparation process and will be cleaned and prepared to be used again. The 

cured part is sent to the next process which is linked to the unmolding process with a FIFO lane. 

All the processes downstream of the unmolding process are linked together with FIFO lanes. 

Hence, downstream of the unmolding process, continuous flow of the materials is achieved. 
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However, certain conditions of the processes upstream of the unmolding process make the value 

stream quite complicated. 

The production requirements are sent to three points. The first and foremost process that receives 

the production requirements is the lay-up process. The concept of Offset Scheduling is used to 

offset the production requirements by two days and send them to the ply-cutting process so that 

they can cut the required sheets for the lay-up process in advance and make sure they are ready 

when needed. The third point that receives the production requirements is the Stager. He should 

know about the production schedule so that he can bring the required molds to the lay-up cells 

exactly on time. 

Based on this procedure, one may conclude that the pacemaker of this value stream is the lay-up 

process which is a valid statement to some extent. However, certain conditions of the composite 

manufacturing center add some complexities to the problem and make the task of identifying the 

pacemaker more challenging.  

One of the most significant constraints of this composite manufacturing center is the limited 

number of molds which are used in the lay-up, cure and unmolding processes. This constraint is 

a common limitation of every composite manufacturing system because molds are expensive to 

build and they are unique for each product type. This limitation can be explained better by 

introducing the concept of Tooling Cycle in the composite manufacturing center. 

The Tooling Cycle is the path that each mold goes through every time it is used to produce a 

part. It starts from the Tool Storage area when the Stager takes the tool and brings it to the lay-up 

cell. After being processed in the lay-up cell, the mold and the attached carbon fiber sheets 

depart from the lay-up cell and go to the autoclave. After the cure process, the part will be 

separated from its mold and the mold will be free to go to the Tool Preparation area. After being 

cleaned and prepared, the mold is sent to the Tool Storage and the Tooling Cycle terminates. The 

red path in Figure 3 depicts this cycle. 
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Autoclave 1

Autoclave 2

Autoclave 3

Lay-up Cell 1

Lay-up Cell 2

Lay-up Cell 3

Lay-up Cell 4

Lay-up Cell 5

Lay-up Cell 6

Tool 

Storage

Tool Preparation

Lay-up Cells Autoclaves

Tool/Mold

Ply 

Cutting
Carbon Fiber

Sheets

 

Figure 3. The Tooling Cycle 

 

As long as a mold is within its tooling cycle, it cannot be used for any other product. This puts a 

constraint on scheduling the jobs in this value stream because only the jobs with different mold 

requirements can be scheduled at any given time.  

As a result, one should look at the system (which is composed of the lay-up cells, cure process, 

unmolding process and tool preparation process) as a whole. This system (instead of a single 

process) is where the jobs need to be scheduled in this composite manufacturing center. 

Therefore, the task of scheduling the jobs within this system becomes the most significant 

challenge of this research. 

This system in the literature of scheduling problems can be characterized as a two-stage Hybrid 

Flow Shop. This HFS is a common manufacturing environment in composite manufacturing 

systems of aerospace companies. Therefore, the proposed scheduling systems in this research can 

be applied to aerospace composite manufacturing systems. 
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3.2 Scheduling Hybrid Flow Lines of Aerospace Composite Manufacturing 

Systems 

First, we need to define the main problem of this research. The VSM in Figure 4 shows how the 

work is done inside the CMC. 

 

Autoclave #1

Autoclave #2

Autoclave #3

Lay-up Cell #1

Lay-up Cell #2

Lay-up Cell #3

Lay-up Cell #4

Lay-up Cell #5

Lay-up Cell #6

Tool 

Storage

Unmolding/

Tool Prep

Lay-up Cells AutoclavesMax 2 Shifts

Buffer Area

Stager

2 Days

M/C 1

Ply Cutting

M/C 2

Buffer 
Area

Scheduler

MRP

5 Next Days Demand

 

Figure 4. Partial Value Stream Map of the CMC 

 

Every day, the scheduler looks at the MRP requirements for the next 5 days (in case of custom 

orders for the next 15 days). Then, he plans the schedule of the day for the available manpower.  

Each required unit (job) has a due date specified by the MRP system. 

To schedule the jobs, the scheduler has to consider these points: 
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 The lay-up process is composed of a number of unrelated cells, each one of which 

performs a different process. The parts which are sent to each one of the cells are from 

different product families. For example, one cell is allocated only for processing the 

wings while the other one is for doors. However, inside each cell, there are a number of 

work stations which are either regular or laser-equipped. Each one of these two types can 

include a number of identical work stations 

 The number of regular and/or laser-equipped work stations within each lay-up cell is 

limited. 

 The buffer area between the lay-up process and the cure process cannot keep any part for 

more than a specific time period because carbon fiber sheets cannot get attached to the 

molds for more than a certain amount of time. 

 The buffer also has a limited physical capacity. Therefore, at any given time, no more 

than a certain volume of jobs can exist in the buffer. 

 Each type of tool is unique and there are normally only a very limited number of tools for 

each part. Therefore, it’s not possible to schedule the jobs which need the same tool 

simultaneously or in a row. 

 Different parts need to be grouped before being sent to the autoclaves for the cure 

process. Therefore, forming the optimal batches is one of the requirements that the 

scheduling system should satisfy. 

 The autoclaves’ operating plan is fixed. Each type of cure has its own fixed schedule. 

 The physical capacities (volume) of the autoclaves are limited. 

A buffer of two days is kept between the ply cutting and the lay-up cells. After lay-up, products 

are batched according to their cure types and then they are sent to the autoclaves. The autoclaves 

#1 and #2 are used for the 4 main types of curing and they cover around 95 percent of the 

demand. Autoclave #3, which is the small one, is used for the custom orders. 

After curing, the tools are unmolded and then prepared to be sent to the tooling storage, this is 

where the tooling cycle terminates. The parts are then sent to the next processes in a continuous 

flow manner (with FIFO lanes).  
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If we look at this as a classic scheduling problem, we have a scheduling system which is 

characterized as a Hybrid Flow Shop composed of the lay-up cells, curing process and the buffer 

between them. The orders are sent to this system and the parts are processed inside it, and then 

they go through all the processes downstream which are working in continuous flow with FIFO 

lanes (Figure 2). 

3.3 Developing the Mixed Integer Linear Programming Model 

First, the scope of the model should be explained. As mentioned before, a buffer of two days is 

kept between the Ply Cutting and the Lay-up cells. The idea of putting a supermarket (size=2 

days) seems logical and it is proven to be effective in the current system. Therefore, we keep this 

pull system as it is and do not include Ply Cutting in the optimization model. 

The model will include lay-up cells, curing process, the buffer between lay-up and cure, and the 

unmolding process (Figure 5).  

Lay-up 1

Lay-up 2

Lay-up 3

Lay-up 6

Autoclave 1

Autoclave 2

Autoclave 3

Limited 

Buffer Area

Batching

Production Planning

Downstream 

Processes

OXOX

Unmolding/

Tool Prep

Hybrid Flow Shop

Upstream 

Processes Lay-up 4

Lay-up 5

 

Figure 5. Forming a scheduling system composed of lay-up cells, curing process and the buffer between them 

Each of the stages in Figure 5 has its own limitations. In the following, the indices, parameters 

and variables needed to model these stages are introduced and then the development of the MILP 

model for each stage is explained step by step. 
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3.3.1 Indices 

i = 1, 2, 3, …, I    jobs that are released to be scheduled 

t = 1, 2, 3, …, 480   time slots of 15 minutes during the next 5 days 

lu = 1, 2, 3, …, 6  The number assigned to each lay-up cell 

c = 1, 2, 3, …, 25  The number assigned to each cure operation during the next 5 days 

3.3.2 Input Parameters 

I (lu)    Set of jobs that need to be processed in lay-up cell lu (lu=1, 2, …, 6) 

OperatorCap (lu)  The manpower capacity of each cell lu (lu=1, 2, …, 6) 

LaserCap (lu)   The laser capacity of each cell lu (lu=1, 2, …, 6) 

Laser (i)    1 when job i needs a laser station to be processed and 0 when it doesn’t 

ProcessingTime (i)   The time job (i) takes to be processed in one of the lay-up work stations 

Cure (c)   The cure operation number (c) in the next five days 

StartCure (c)   The time cure number (c) starts 

DurationCure (c)  The time takes for Cure(c) to be completed 

SizeMold (i)    The dimensions of the mold which is used for job (i), i=1, 2, 3, …, J 

AutoclaveCap (c)   The physical capacity of the autoclave that is operating cure number (c) 

CureProfile (i) = 1,2,….,5 Type of cure recipe that job (i) needs 

CureType (c) = 1,2,….,5 Type of the cure recipe that cure number (c) provides 

BufferTime   Maximum time a job can stay in the intermediate buffer 

M (i,j)      1 if the job (i) needs the mold (j). Otherwise it’s zero. 

K (c,t) 1 when the cure number (c) is active, otherwise it’s zero.  

T (j)    Number of mold (j) available in the system 

M    A relatively big number 
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3.3.3 Decision Variables 

S (i,t)    Start time of job (i), it’s 1 when job (i) is started at time (t), otherwise it’s zero. 

X (i,t) Whether or not job (i) is being processed at time (t) in one of the lay-up cells. If 

X (i,t) is 1 it means that job (i) is being processed at time (t). Otherwise it’s zero. 

Y (i,c)    1 when job (i) is assigned to Cure (c). Otherwise it’s zero. 

Z (i,t)  1 when job (i) is in the buffer during time (t) and it’s zero when job (i) is not in 

the buffer. 

3.3.4 Objective Function 

The objective function of this model is to maximize the utilization of the resources in the second 

stage (autoclaves). From a technical point of view, we try to maximize the number of products 

that are sent to each cure treatment. To do so, we have developed the following objective 

function. 

Min ∑ ∑ 𝑌(𝑖, 𝑐) ∗ 𝑐25
𝑐=1𝑖 ∈ 𝐼  

This objective function tries to minimize the value of Y (i,c) * c. Y (i,c) is a binary variable which 

is equal to 1 when job (i) is assigned to Cure (c) and it is 0 otherwise. This value is multiplied by 

c which is a number assigned to each cure operation during the next 5 days (c = 1, 2, 3, …, 25). 

Therefore, this objective function strives to push the jobs toward the smaller amounts of c which 

in turn means the earliest cure treatments. 

In other words, the objective function is designed in a way that maximizes the number of jobs 

which can be assigned to Cure (1). Then it goes to Cure (2) and tries to fill up the autoclave as 

much as possible. Then it does the same thing for Cure (3) and so on. This process continues 

until the last cure which is Cure (5) is filled. Thus, normally, the first days cures will be utilized 

as much as possible and the capacity of the last days cures will be reserved as much as possible 

which is very useful in case of facing increased demand. 
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3.3.5 Constraints 

In this section, the constraints of each part of the problem (two main stages, the intermediate 

buffer and the molding constraint) will be presented in detail. 

3.3.5.1 Lay-up Cells Constraints 

As we are planning to develop a time-indexed mixed integer linear programming model, first we 

need to discretize time. We know that currently the scheduler looks 5 days ahead and decides 

about the production requirements. To keep it simple, we assume the planning horizon is 5 days 

and we divide this time to 480 to get time slots of 15 minutes. Therefore, t=1, 2, 3, …, 480 

shows the time periods. According to the data we have, rounding the processing times of 

different products to fit them into slots of 15 minutes is a reasonable assumption.  

Every day, we have a set of jobs with different due dates but we know they should be started 

within the next five days. So, i=1, 2, 3, …, J show the jobs that are released to be scheduled. 

Each job has its own lay-up process, so, we can put the jobs into 6 different sets each one 

showing the available jobs for each lay-up cell. 

I (1), I (2), …, I (6) show the sets of jobs that need to be processed in lay-up cell 1, 2, …, 6 

respectively. We show them as I (lu), 

Each lay-up cell has a number of work stations. The number of work stations (operators) shows 

the capacity of that lay-up cell. We define a parameter named OperatorCap (lu) (lu=1, 2, …, 6) 

to show the manpower capacity of each cell. 

Each lay-up cell has a number of laser work stations. We define a parameter named LaserCap 

(lu) (lu=1, 2, …, 6) to show the laser capacity of each cell. 

Another parameter which should be defined is Laser (i). Laser (i) is 1 when job i needs a laser-

equipped station to be processed and it is 0 when it needs a regular laser station. 

ProcessingTime (i) is another parameter that shows the time job (i) takes to be processed in one 

of the lay-up work stations. 
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S (i,t) is a variable which represents the start time of job (i). If S (i,t) is 1 it means that job (i) is 

started on time (t). Otherwise it’s zero. 

X (i,t) is a variable which determines whether or not job (i) is being processed in time (t) in one 

of the lay-up cells. If X (i,t) is 1 it means that job (i) is being processed in time (t). Otherwise it’s 

zero. 

So, the first set of constraints for the lay-up cells can be defined as: 

∑ 𝑋 (𝑖, 𝑡)

𝑖 ∈ 𝐼(𝑙𝑢)

 ≤ 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝐶𝑎𝑝(𝑙𝑢)                  

∀ 𝑡 = 1, 2, … , 480 𝑎𝑛𝑑 𝑙𝑢 = 1, 2, … , 6        (1) 

∑ 𝑋 (𝑖, 𝑡)𝑖 ∈ 𝐼(𝑙𝑢) ∗ 𝐿𝑎𝑠𝑒𝑟 (𝑖) ≤ 𝐿𝑎𝑠𝑒𝑟𝐶𝑎𝑝(𝑙𝑢)        

∀ 𝑡 = 1, 2, … , 480 𝑎𝑛𝑑 𝑙𝑢 = 1, 2, … , 6        (2) 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒(𝑖) ∗ 𝑆(𝑖, 𝑡) ≤ ∑ 𝑋(𝑖, 𝑡)𝑡+𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒(𝑖)−1  
𝑟=𝑡       

∀ 𝑖 ∈ 𝐼(𝑙𝑢) 𝑎𝑛𝑑 𝑙𝑢 = 1, 2, … , 6   𝑡 = 1 , 2, … , 480 − 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒(𝑖)   (3) 

∑ 𝑋(𝑖, 𝑡)

480

𝑡=1

= 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒(𝑖) 

 ∀ 𝑖 ∈  𝐼(𝑙𝑢) 𝑎𝑛𝑑 𝑙𝑢 = 1, 2, … , 6             (4)  

∑ 𝑆(𝑖, 𝑡)480
𝑡=1 = 1             ∀ 𝑖 ∈  𝐼(𝑙𝑢) 𝑎𝑛𝑑 𝑙𝑢 = 1, 2, … , 6          (5) 

Equation (1) ensures that we do not exceed the capacity of lay-up work stations. Equation (2) 

ensures that we do not exceed the laser capacity. Equation (3) and (4) ensure that when a job 

starts, the process will continue until its lay-up process is completed. In other words, these sets of 

equations prohibit pre-emption in the lay-up processes. Equation (5) states that a job can start at 

only one point in time. It also ensures that the job will be started within the next five days, so, we 

will certainly meet the due date of the job.  
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3.3.5.2 Cure Process Constraints 

The next step of the modeling is focused on the curing process. We assume the schedule of 

different cure types is fixed. It means during the next five days we will have 25 cure operations 

with known start and finish times (Figure 6). To maintain the simplicity of the model for now, 

we just look at autoclave #1 and #2 which cover 95% of the products. 

 

Figure 6. The fixed Schedule of Autoclaves in the Cure Process 

We define the Cure (c) in order to assign a number to each of these cure operations. So, Cure (1) 

& Cure (2) & Cure (3) indicate the cure operations on Autoclave #1 in the first day, Cure (4) and 

Cure (5) indicate the cure operations on Autoclave #2 in the first day, …, Cure (25) indicates the 

last cure operation in Autoclave #2 in the fifth day. 

We define a parameter named StartCure (c) as the time Cure (c) starts and another parameter 

named DurationCure (c) as the time Cure (c) takes to be completed. SizeMold (i) is another 

parameter that specifies the dimensions of the mold which is used for job (i). AutoclaveCap (c) is 

also defined as the capacity of the autoclave that is operating cure number (c). 

We know we have 5 different types of cure. So, we define another parameter named CureType 

(i) that specifies which type of cure each job needs. CureType (c) also shows which type of cure 

each of the 25 cure operations provides. CureType (i) / CureType (c) can get the values 1, 2, 3, 4, 

or 5. 

We define Y (i,c) as a variable which is equal to 1 when job (i) is assigned to Cure (c). Otherwise 

it’s zero. 

𝑌(𝑖, 𝑐) ∗ 𝐶𝑢𝑟𝑒𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑖) = 𝑌(𝑖, 𝑐) ∗ 𝐶𝑢𝑟𝑒𝑇𝑦𝑝𝑒(𝑐) 

∀ 𝑖 = 1, 2, … , 𝐼 and  𝑐 = 1, 2, … , 25        (6)  

∑ 𝑌(𝑖, 𝑐)25
𝑐=1 = 1               ∀ 𝑖 = 1, 2, … , 𝐼       (7) 



42 

 

∑ 𝑌 (𝑖, 𝑐) ∗ 𝐽
𝑖=1 𝑆𝑖𝑧𝑒𝑀𝑜𝑙𝑑(𝑖)  ≤ 𝐴𝑢𝑡𝑜𝑐𝑙𝑎𝑣𝑒𝐶𝑎𝑝(𝑐)         ∀  𝑐 = 1, 2, … , 25   (8) 

Equation (6) suggests that jobs cannot be assigned to the cure operations which are not the same 

type. Equation (7) states that a job can be assigned only to one of the cure operations. Equation 

(8) ensures that we do not exceed the capacity of the autoclaves. 

3.3.5.3 The Constraints of the Buffer between the Lay-up Cells and the Cure Process 

There are two types of constraints for the buffer. The first one is the time limitation; we know 

that we cannot keep a part in the buffer for more than two shifts (Maximum Buffer Time). 

StartCure(c) ∗ Y(i, c) − ∑ t ∗ 480
t=1 S(i, t) − ProcessingTime(i) ≥ (Y(i, c) − 1) ∗ 𝑀  

∀ 𝑖 = 1, 2, … , 𝐼  and  𝑐 = 1, 2, … , 25       (9)  

StartCure(c) ∗ Y(i, c) − ∑ t ∗ 

480

t=1

S(i, t) − ProcessingTime(i)

≤ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑢𝑓𝑓𝑒𝑟 𝑇𝑖𝑚𝑒 + (1 − Y(i, c)) ∗ 𝑀 

∀ 𝑖 = 1, 2, … , 𝐼  and  𝑐 = 1, 2, … , 25       (10) 

  

The buffer time cannot be negative (equation 9). Equation (10) ensures that the time limit of the 

buffer is not exceeded. 

The second constraint of the buffer is its physical capacity. We define the variable Z (i,t) to 

model this part of the problem. Z (i,t) equals to 1 when job (i) is in the buffer during time (t) and 

it’s zero when job (i) is not in the buffer. 

We divide the whole journey of a job from beginning to the end of the tooling cycle to five 

periods. 

i. Before the job is processed in one of the lay-up cells: 

𝑍(𝑖, 𝑡′) ≤ 1 − ∑ 𝑆(𝑖, 𝑡)480
𝑡=𝑡′              ∀ 𝑖 = 1, 2, … , 𝐽  𝑎𝑛𝑑  𝑡′ = 1, 2, … , 480   (11) 
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Equation (11) states that job (i) cannot be in the buffer before its processing in one of the lay-up 

cells is started. 

ii. While the job is being processed in one of the lay-up cells: 

𝑍(𝑖, 𝑡) ≤ 1 − 𝑋(𝑖, 𝑡)             ∀ 𝑖 = 1, 2, … , 𝐼  𝑎𝑛𝑑  𝑡 = 1, 2, … , 480    (12) 

Equation (12) states that job (i) cannot be in the buffer during the time it’s being processed in 

one of the lay-up cells. 

iii. While the job is in the buffer between lay-up cells and autoclaves: 

∑ 𝑍(𝑖, 𝑡)480
𝑡=1 = 𝑆𝑡𝑎𝑟𝑡𝐶𝑢𝑟𝑒(𝑐) ∗ 𝑌(𝑖, 𝑐) − ∑ 𝑡 ∗ 480

𝑡=1 𝑆(𝑖, 𝑡) − 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒(𝑖)  (13) 

Equation (13) states that the job is in the buffer when its lay-up process is finished until its cure 

process starts. 

iv. While the job is being cured: 

∑ 𝑍(𝑖, 𝑡)

𝑆𝑡𝑎𝑟𝑡𝐶𝑢𝑟𝑒(𝑐)+𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑒(𝑐)

𝑡=𝑆𝑡𝑎𝑟𝑡𝐶𝑢𝑟𝑒(𝑐)

≤ (1 − 𝑌(𝑖, 𝑐)) ∗ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑒(𝑐) 

∀ 𝑖 = 1, 2, … , 𝐼  𝑎𝑛𝑑  𝑐 = 1, 2, … , 25       (14) 

Equation (14) states that job (i) cannot be in the buffer during the time it’s being cured. 

v. After the job is cured: 

∑ 𝑍(𝑖, 𝑡)

480

𝑡=𝑆𝑡𝑎𝑟𝑡𝐶𝑢𝑟𝑒(𝑐)+𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑒(𝑐)

≤ (1 − 𝑌(𝑖, 𝑐)) ∗ 480 

∀ 𝑖 = 1, 2, … , 𝐼  𝑎𝑛𝑑  𝑐 = 1, 2, … , 25       (15) 

Equation (15) states that job (i) cannot be in the buffer after it is cured. 

Now, we are able to use Z(i,t) in order to define the constraint of physical capacity of the buffer: 

∑ 𝑍 (𝑖, 𝑡) ∗ 𝐼
𝑖=1 𝑆𝑖𝑧𝑒𝑀𝑜𝑙𝑑(𝑖) ≤ 𝐵𝑢𝑓𝑓𝑒𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦                   ∀  𝑡 = 1, 2, … , 480   (16) 
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3.3.5.4 The Molding Constraint 

In order to model this part of the problem, we need to define a parameter M (i,j)  which is equal 

to 1 if the job (i) needs the mold (j). Otherwise it’s zero. T (j) is another parameter that specifies 

the number of available molds of type (j). 

We also need to define a parameter named K (c,t). K (c,t) is equal to 1 when the cure number (c) 

is active, otherwise it’s zero. This parameter also includes the unmolding part after each cure. 

For example, if the cure starts at time 100 and it takes 6 hours (24*15 minutes) and the 

unmolding after cure takes 4 hours (16*15 minutes), K(c,t) will be 1 for t=100 to 140 and it is 0 

for t<100 and t>140. 

Having X (i,t), Z (i,t), Y (i,c) and K (c,t), we can easily track each product and see whether or not 

it is attached to its specific mold. The equation below insures that at any given time we do not 

exceed the number of available molds for different part types. 

∑ 𝑀 (𝑖, 𝑗) ∗ 𝑋(𝑖, 𝑡)𝑖 ∈ 𝐼(𝑙𝑢) + ∑ 𝑀 (𝑖, 𝑗) ∗ 𝑍(𝑖, 𝑡)𝑖 ∈ 𝐼(𝑙𝑢) + ∑ 𝑀 (𝑖, 𝑗) ∗ 𝑌(𝑖, 𝑐) ∗ 𝐾(𝑐, 𝑡)𝑖 ∈ 𝐼(𝑙𝑢) ≤ 𝑇(𝑗)  

∀ 𝑡 = 1, 2, … , 480 𝑎𝑛𝑑 𝑙𝑢 = 1, 2, … , 6        (17) 

 

3.3.6 The MILP Model 

 

Objective Function 

Min ∑ ∑ Y(i,c)*c25
c=1i ∈ I  

Subject to 

∑ X (i,t)i ∈ I(lu)  ≤ OperatorCap(lu)                    ∀ t=1, 2, …, 480 and lu=1, 2, …, n  (1) 

∑ X (i,t)i ∈ I(lu) *Laser (i)  ≤ LaserCap(lu)       ∀ t=1, 2, …, 480 and lu=1, 2, …, n     (2) 

ProcessingTime(i)*S(i,t) ≤ ∑ X(i,t)
t+ProcessingTime(i)-1  
r=t      (3) 

∀ i∈I(lu) and lu=1, 2, …, 6   t=1 , 2, …, 480-ProcessingTime(i) 

∑ X(i,t)480
t=1 =ProcessingTime(i)                      ∀ i ∈ I(lu) and lu=1, 2, …, n       (4) 
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∑ S(i,t)480
t=1 =1                                                      ∀ i ∈ I(lu) and lu=1, 2, …, n       (5) 

Y(i,c)*CureProfile(i)=Y(i,c)*CureType(c)          ∀ i=1, 2, …, I and  c=1, 2, …, k  (6) 

∑ Y(i,c)25
c=1 =1               ∀ i=1, 2, …, I       (7) 

∑ Y (i,c)* J
i=1 SizeMold(i) ≤ AutoclaveCap(c)                ∀  c=1, 2, …, k   (8) 

StartCure(c)*Y(i,c)- ∑ t* 480
t=1 S(i,t)-ProcessingTime(i) ≥ (Y(i,c)-1)*M    

∀ i=1, 2, …, I and  c=1, 2, …, k        (9) 

 

StartCure(c)*Y(i,c)- ∑ t* 480
t=1 S(i,t)-ProcessingTime(i) ≤ Maximum Buffer Time+ (1-Y(i,c)) *M 

∀ i=1, 2, …, I  and  c=1, 2, …, k        (10)  

Z(i,t') ≤ 1- ∑ S(i,t)480

t=t'
                          ∀ i=1, 2, …, I  and  t'=1, 2, …, 480   (11) 

Z(i,t) ≤ 1-X(i,t)                                   ∀ i=1, 2, …, I  and  t=1, 2, …, 480   (12) 

∑ Z(i,t)480
t=1 =StartCure(c)*Y(i,c)- ∑ t* 480

t=1 S(i,t)-ProcessingTime(i)  

∀ i=1, 2, …, I            (13) 

∑ Z(i,t)

StartCure(c)+DurationCure(c)

t=StartCure(c)

≤(1-Y(i,c))*DurationCure(c) 

 ∀ i=1, 2, …, I  and  c=1, 2, …, k        (14) 

∑ Z(i,t)480
t=StartCure(c)+DurationCure(c) ≤ (1-Y(i,c)) *480    ∀ i=1, 2, …, I  and  c=1, 2, …, k (15) 

∑ Z (i,t)* I
i=1 SizeMold(i) ≤ Buffer Capacity             ∀  t=1, 2, …, 480    (16) 

∑ M (i,j)*X(i,t)i ∈ I(lu) + ∑ M (i,j)*Z(i,t)i ∈ I(lu) + ∑ M (i,j)*Y(i,c)*K(c,t)i ∈ I(lu) ≤ T(j)    

∀ t=1, 2, …, 480 and lu=1, 2, …, n         (17) 
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3.4 Solving the MILP Model and Discussion on the Results  

In order to solve the developed MILP model, we have coded it in CPLEX and linked it to a 

number of Microsoft Excel Worksheets which include the data we have received from the 

Composite Manufacturing Center of the ABC Company. 

The results from running the model demonstrate that CPLEX with an underlying branch and 

bound algorithm is capable of solving the MILP model perfectly for small and medium-size 

problems. The problems with up to 50 jobs are optimally solved in less than five minutes. The 

problems with up to 70 jobs can be also optimally solved in less than 1 hour. After obtaining the 

results from CPLEX, a Gantt chart is drawn to visualize the start time and finish time of the jobs 

in different stages. Figure 7 shows an example of a problem with 70 jobs which is solved in 

CPLEX within 42 minutes. 

 

 

Figure 7. An example of MILP model results in CPLEX 
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However, for the larger instances of the problem, CPLEX achieves the optimal solutions in 

relatively long CPU run times. For example, a problem with a set of 100 jobs was solved 

optimally in 24 hours. The reason for such a long run time of CPLEX for large instances of the 

problem is the huge number of constraints and variables. For the problem with 100 jobs, we had 

210,660 constraints and 146,501 variables. This high number of constraints and variables is 

partly due to the nature of the modeling approach we used in this thesis which is a discrete-time 

MILP model. 

There is no general fact in the literature to prove that either continuous-time or discrete-time 

models are superior in terms of computational efficiency for real-world scheduling problems. 

Normally, the continuous-time models require lower number of variables and constraints 

compared to the discrete-time models. However, the constraints of the continuous time approach 

can be more complicated and may result in greater computational complexity (Stefansson et al., 

2011). 

In discrete-time modeling of the scheduling problems, the constraints need to be monitored only 

at specific and pre-determined points of time. This reduces the complexity of the model and 

makes it structurally simpler and easier to solve, especially when there exist constraints of 

inventory or capacity. However, the size of the mathematical model highly depends on the 

duration (or number) of the uniform time intervals postulated for the scheduling horizon. 

Although this type of modelling is considered a simplification of the original problem (due to 

time approximations), its efficiency and adaptability to various real-world industrial scheduling 

problems has been proved, especially in cases that a small number of time intervals is enough to 

develop the model. 

On the other hand, continuous-time approaches need significantly lower numbers of binary 

variables and lead to solutions with higher quality in shorter times. However, formulating some 

specific aspects of the real-world problems (e.g. limitations associated with resources and 

inventories) usually calls for defining more complicated constraints with many big-M terms 

which increase the complexity of the model (Méndez et al., 2006). 
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Stefansson et al. (2011) analyze the advantages and disadvantages of continuous-time versus 

discrete-time MIP formulation for the problem of scheduling a large real-world multi-stage and 

multi-product flow shop in pharmaceutical industry. In their formulations, the discrete time 

model has a significant larger number of variables while the continuous time model has a 

considerable larger number of constraints. However, as they state, the number of constraints and 

variables is not a very illustrative criterion to define the complexity of a model and the solution 

efficiency highly depends on the specific problem, the solution space and the formulation 

structure of the model. Nonetheless, in the case of their pharmaceutical operations problem, the 

continuous-time model is superior to the discrete-time formulation in terms of solution quality 

and computation time. 

Floudas and Lin (2004) study different practices of scheduling of multi-product and multi-stage 

batch and continuous chemical processes based on continuous and discrete time representation. 

They suggest that the most crucial advantage of the discrete-time modeling approach is that it 

provides a reference grid of time for all shared processes. This facilitates the formulation of 

diverse types of scheduling constraints (especially resource constraints) in a quite simple and 

relatively straightforward structure. However, the concept of discretization of continuous time 

denotes that this type of modelling is actually an approximation of the original problem. In 

addition, deciding about the duration of the uniform time intervals (dividing the scheduling 

horizon to equal time units) is a matter of tradeoff between accuracy (quality of the solution) and 

the complexity of the model (required computational time). 

Floudas and Lin (2005) review the models which are developed based on Mixed Integer Linear 

Programming (MILP) formulations in order to solve scheduling problems in chemical processing 

systems. They categorize the models in two groups of continuous-time and discrete-time 

formulations and suggest a number of advantages and disadvantages for each category. In 

general, while discrete-time models are more flexible in terms of defining constraints and 

provide a simple modeling structure, they usually have a huge number of variables and 

constraints which reduce the efficiency of the model. On the contrary, continuous-time models 

need lower number of variables but formulation of constraints is sometimes a challenging issue 

which results into higher levels of complexity of the model. They also study different approaches 

proposed for increasing the efficiency of MILP models from a computational point of view. 
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According to their report, the most fruitful approaches for improving the computational 

efficiency of the models are reformulation of the constraints, introduction of additional cut 

constraints (in order to opt out infeasible solutions at early stages of the branch and bound 

searching process), use of heuristics to simplify the problem and reduce the search space, 

decomposing the large MILP model to smaller sub-problems, and intervention of the branch and 

bound solution procedure. 

The reason we decided to use the discrete-time modeling approach for this research was the fact 

that modeling some specific aspects of the Composite Manufacturing Center problem (e.g. 

limitations associated with resources and the physical capacity constraint of the buffer) can be 

modeled more properly by means of discretizing the scheduling horizon. 

However, in order to propose a remedy to the long run times of CPLEX for large instances of the 

problem, we have developed a heuristic method along with a GA to obtain near-optimal 

solutions in far shorter times. We will introduce and explain both the novel heuristic method and 

the GA in chapter four in detail. 
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4 A Novel Heuristic Approach Combined with a Genetic Algorithm 

In order to effectively reduce the CPU run times and boost the efficiency of the solution method 

for the problems which are solved by the MILP model described in the previous chapter, in this 

chapter, firstly, we aim at developing a heuristic algorithm to obtain some feasible initial 

solutions. This heuristic algorithm is unique to the Hybrid Flow Shop problem which is 

described in chapter 3. We developed this heuristic method by carefully scrutinizing the behavior 

of the MILP model for different problem sets and understanding how the model tries to schedule 

the jobs to satisfy the objective function and the constraints. Thus, the idea behind the heuristic 

algorithm originates from the observation of the MILP model and the Gantt charts drawn from 

the results of CPLEX. 

Afterwards, we develop a GA with discrete-time based chromosome encoding scheme that uses 

the aforementioned heuristic algorithm for generating the initial population and through its 

stochastic iterations improves and updates the initial solutions until it obtains satisfactory results 

and terminates the algorithm. 

In the following, we will introduce the novel heuristic method for generating the initial feasible 

solutions and then the GA will be presented. 

4.1 The Novel Heuristic Method for Generating Initial Solutions 

This algorithm is designed in a way that receives a list of data from the user as inputs, then starts 

processing the data and going through the algorithmic steps and finally delivers the outputs in 

terms of the start time of the jobs in the first stage (Lay-up Process). 

4.1.1 Inputs 

The algorithm starts with getting the required data about the jobs in order to create the initial 

population.  

Table 3. The Input Data for the Heuristic Algorithm 

Job 

Number 

Lay-up 

Type 

Laser 

Requirements 

Cure 

Type 

Mold 

Type 

Processing 

Time 

Mold Size Due Date 

(Days Left) 

1 1 0 4 12 8 10.6 10 

2 5 1 3 56 10 14.2 15 

… … … … … … … … 

n 3 0 2 34 6 12.3 8 



51 

 

The input data looks like the given example in table 3. Normally, the data can be drawn from the 

available data warehouses in the company’s information system. Thus, only the number and type 

of the demanded parts (part numbers) and their due dates are enough to get all the other required 

information. Linking this input section of the algorithm to the MRP system is a very simple task. 

4.1.2 Steps of the Algorithm 

1. Make a sequence of available cure processes for each job based on their cure type. 

2. Sort the jobs according to their Cure Type in ascending order. 

3. Sort jobs inside each category (Cure Type) based on their ascending Processing Time (SPT). 

4. Let Lay-up (lu, c) Busy, Laser (lu, c) Busy and Cure (c) Occupancy and Mold (j, c) Occupancy 

be equal to zero. Lay-up (lu, c) Busy is referred to the number of operators inside the lay-up cell 

(lu) which are busy before cure (c) starts. Laser (lu, c) Busy is referred to the number of laser-

equipped operators inside the lay-up cell (lu) which are busy before cure (c) starts. Cure (c) 

Occupancy is the amount of space inside cure (c) which is already occupied. Mold (j, c) 

Occupancy is the number of type j molds which are already used for Cure (c). Mold (j, c) is a 

binary variable which is equal to 1 if Mold (j) is used for a part which is going into cure (c). 

5. Assign the first unassigned job on the list to the first available cure process c by starting its 

operation at a lay-up cell at time [Start Cure (c) – Processing Time Job (i)]. 

If the value of [Start Cure (c) – Processing Time Job (i)] is smaller than 1, 

Or if Lay-up (lu, c) Busy is equal to Lay-up (lu, c) Capacity, 

Or if Laser (lu, c) Busy is equal to Laser (lu, c) Capacity, 

Or if Cure (c) Capacity is not greater than Cure (c) Occupancy, 

Or if Mold (j, c) Capacity is not greater than Mold (j, c) Occupancy, 

Then, assign the job to the next available cure process (c′) by starting its operation at a 

lay-up cell at time [Start Cure (c′) – Processing Time Job (i)]. 

6. Update Lay-up (lu, c) Busy      Lay-up (lu, c) Busy = Lay-up (lu, c) Busy + 1 if  the job is 

assigned to Lay-up (lu, c) 

7. Update Laser (lu, c) Busy if  Laser Requirements of the assigned job is equal to 1       Laser 

(lu, c) Busy = Laser (lu, c) Busy + 1, if  Laser Requirements of the assigned job is equal to 0  do 

not modify Laser (lu, c) Busy 

8. Update Cure (c) Occupancy     Cure (c) Occupancy = Cure (c) Occupancy + Mold Size (i) if  

the job is assigned to Cure (c) 

9. Update Mold (j, c) Occupancy        Mold (j, c) Occupancy = Mold (j, c) Occupancy  + Mold (j, 

c) 

10. Terminate if all the jobs in the list are assigned, otherwise go to number 5. 
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4.1.3 Outputs 

Using this algorithm, we will be able to obtain one initial feasible solution to the problem. By 

altering the step 3, we can easily generate more initial solutions. Therefore, as another part of the 

algorithm, we change step 3 to one of the following steps each time and obtain a different initial 

feasible solution: 

 Sort jobs inside each category (Cure Type) based on their descending Processing Time (LPT) 

 Sort jobs inside each category (Cure Type) based on their ascending Due Dates (EDD) 

 Sort jobs inside each category (Cure Type) based on their ascending Mold Size 

 Sort jobs inside each category (Cure Type) based on their descending Mold Size 

 Sort jobs inside each category (Cure Type) based on their ascending Lay-up Type 

 Sort jobs inside each category (Cure Type) based on their descending Lay-up Type 

 Sort jobs inside each category (Cure Type) based on their ascending Job Number 

Therefore, we will have eight initial feasible solutions in total. With these eight initial solutions, 

we can create the initial population of the GA. 

Each one of these solutions is a list of Job Numbers with their start times in the first stage. 

Having the information about the cure type of each Job Number, their start times in their 

respective cure process can be easily inferred. 

Table 4 shows an example of the output we can get from the described heuristic algorithm for a 

problem with 10 jobs.  

 

Table 4. The Output of the Heuristic Algorithm 

 

 

 

 

Job Number 1 2 3 4 5 6 7 8 9 10 

Start Time at the First Stage 4 61 2 88 91 53 59 95 1 49 
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4.2 The Proposed Meta-heuristic: A Genetic Algorithm 

A meta-heuristic is a method to solve a more general class of problems by combining heuristics 

and user-given procedures in an efficient way. The name includes the Greek prefix “meta” which 

means “beyond” and refers to the higher level of heuristics. Meta-heuristics can be applied to 

problems which are not solvable with optimal solution methods or other problem-specific 

algorithm or heuristics; or when the solutions from such methods are not practical to implement 

or satisfactory enough (Zandieh et al., 2010). 

Genetic algorithms, introduced by John Holland (1975), are iterative stochastic algorithms that 

use the idea of natural evolution to model the search method. A GA is a meta-heuristic algorithm 

that provides an algorithmic framework and uses a collection of initial solutions (initial 

population) which evolve through genetic operators (selection, crossover, mutation and 

replacement) to obtain improved solutions. GA evolves solutions for problems that have massive 

solution spaces and are not easily dealt with the exhaustive search methods or traditional 

optimization techniques (Oĝuz and Ercan, 2005). 

Normally, a GA starts with an initial population of candidate solutions.  In this population, 

solutions are encoded as a string (typically, binary or integer) and are usually referred to as 

chromosomes. Each chromosome is composed of genes that characterize the solution. Each 

chromosome is evaluated by a criterion, which is determined by the associated value of the 

objective function. This criterion is referred to as fitness function. Through crossover and 

mutation processes, the GA evolves the population towards an optimal solution. 

Solutions drawn from the stochastic iterations and genetic process of a GA are proven to be 

capable of converging towards the optimal solution. Thus, the GA iterations tend to maximize 

the likelihood of generating such a solution. The first step is typically to evaluate the fitness of 

each candidate solution in the current population, and to select the fittest candidate solutions to 

act as parents of the next generation of candidate solutions. Afterwards, these selected parents 

are recombined by means of a crossover operator and mutated by means of a mutation operator 

to generate offspring. The fittest parents and offspring form a new population and the worst fitted 

individuals die to maintain the desired population and the described procedure is repeated again 

and again to create new populations until a stopping criterion is satisfied. The output of this 

evolution process is the best individual in the final population, which can be a highly evolved 
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solution to the problem. The following algorithmic steps in the figure 8 demonstrate a pseudo 

code of the standard GA (Zandieh et al., 2010). 

 

1- Initialization 

1-1- Set parameters (population_size, generation_number, percent_crossover, percent_mutation,…) 

1-2-Generate initial population (Randomly) 

2- Evaluate fitness of each solution 

3- Form new generation 

3-1- Select individuals for mating pool 

3-2- Apply genetic operators (crossover, mutation and reproduction) based on selection strategy 

3-3- Replace current population with new generation 

4- Stop if stopping criteria is met; otherwise go to step 2 

Figure 8. A standard GA in pseudo code (Zandieh et al., 2010)   

The operations of evaluation, selection, recombination and mutation are usually performed many 

times in a GA. Selection, crossover, and mutation are common operations which are used in any 

GA and have been comprehensively investigated in the literature. However, evaluation is unique 

to the problem and is specifically and directly related to the structure of the solutions (i.e. the 

encoding of the chromosomes). Therefore, in a GA, the major challenge is to decide about the 

structure of solutions (chromosomes) and to select the method of evaluation (fitness function). 

Other parameters include the size of the population, the portion of the population participating in 

the crossover operation, and the mutation rate which defines the probability with which a gene in 

a chromosome is mutated. 

In the following, different features of the proposed GA will be presented in detail. 
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4.2.1 Encoding/Decoding Scheme and the Structure of Chromosomes 

In Genetic Algorithms, each chromosome reflects a solution to the problem. Each chromosome 

is a string of genes. In this proposed algorithm, the number of genes represents the number of 

jobs which are ready to be scheduled. Each gene represents one of the jobs. Therefore, we assign 

a number to each job and gene to connect them (ex. the first job in the list is the first gene from 

left in the string, the second job is the second gene from left, and so on.). The value inside each 

gene is a natural number within the range of [1, 480 – min (processing time + cure time)] which 

shows the start time of the job at one of the lay-up cells. The job starts its lay-up processing at 

the time which is indicated by its respective gene. After being completely processed, it goes to 

the very first available cure process whose curing recipe suits the requirements of that particular 

job. For example, a chromosome for a scheduling problem with ten jobs is depicted below: 

20 126 1 42 58 215 12 18 1 65 

4.2.2 Initialization 

An initial population of a certain number of chromosomes (solutions) is needed in each GA. 

Normally, these solutions are randomly generated. However, in order to make the algorithm 

more efficient, it’s better to generate an initial population with feasible solutions which are closer 

to the optimal solution compared to the randomly generated solutions. To do so, we have 

developed a heuristic method to generate a pool of initial solutions for the GA. The initial 

population of the proposed GA is composed of the eight solutions we obtain from the heuristic 

algorithm described in section 4.1. 

4.2.3 Fitness Function 

The fitness function for each chromosome is defined as the utilization of the autoclaves while 

avoiding generating infeasible solutions. This technique incorporates the constraints into the 

fitness function in a dynamic way. It consists of the objective function of the original scheduling 

problem along with four penalty terms taken into account for the four main constraints of the 

problem which are namely the limited resource capacity of the lay-up cells, the limited physical 

capacity of the buffer, the limited physical capacity of the autoclaves and the limited number of 

molds. The resulting varying fitness function facilitates the GA search. 
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∑ ∑ 𝑌(𝑖, 𝑐) ∗ 𝑐25
𝑐=1𝑖 ∈ 𝐼 + 𝛼 ∗ 𝑀𝑎𝑥 (0 , [(∑ 𝑀 (𝑖, 𝑗) ∗ 𝑋(𝑖, 𝑡)𝑖 ∈ 𝐼(𝑙𝑢) + ∑ 𝑀 (𝑖, 𝑗) ∗ 𝑍(𝑖, 𝑡)𝑖 ∈ 𝐼(𝑙𝑢) +

∑ 𝑀 (𝑖, 𝑗) ∗ 𝑌(𝑖, 𝑐) ∗ 𝐾(𝑐, 𝑡)𝑖 ∈ 𝐼(𝑙𝑢) ) − 𝑇(𝑗)]) + 𝛽 ∗  𝑀𝑎𝑥 (0 , ( ∑ 𝑍 (𝑖, 𝑡) ∗ 𝐼
𝑖=1 𝑆𝑖𝑧𝑒𝑀𝑜𝑙𝑑(𝑖) −

 𝐵𝑢𝑓𝑓𝑒𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)) + 𝛺 ∗  𝑀𝑎𝑥 (0, (𝐴𝑢𝑡𝑜𝑐𝑙𝑎𝑣𝑒𝐶𝑎𝑝(𝑐) − ∑ 𝑌 (𝑖, 𝑐) ∗ 𝐽
𝑖=1 𝑆𝑖𝑧𝑒𝑀𝑜𝑙𝑑(𝑖))) +

𝜆 ∗  𝑀𝑎𝑥 (0 , (∑ 𝑋 (𝑖, 𝑡)𝑖 ∈ 𝐼(𝑙𝑢) − 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝐶𝑎𝑝(𝑙𝑢))) + 𝜎 ∗  𝑀𝑎𝑥 (0 , (∑ 𝑋 (𝑖, 𝑡)𝑖 ∈ 𝐼(𝑙𝑢) ∗

𝐿𝑎𝑠𝑒𝑟 (𝑖) − 𝐿𝑎𝑠𝑒𝑟𝐶𝑎𝑝(𝑙𝑢)))  

Where: 

M (i,j)     1 if the job (i) needs the mold (j). Otherwise it’s zero. 

X (i,t) Whether or not job (i) is being processed in time (t) in one of the lay-up cells. If 

X (i,t) is 1 it means that job (i) is being processed in time (t). Otherwise it’s zero. 

Y (i,c)    1 when job (i) is assigned to Cure (c). Otherwise it’s zero. 

Z (i,t)  1 when job (i) is in the buffer during time (t) and it’s zero when job (i) is not in 

the buffer. 

K (c,t) 1 when the cure number (c) is active, otherwise it’s zero. 

Laser (i)   1 when job i needs a laser station to be processed and 0 when it doesn’t 

T (j)   Number of mold (j) available in the system 

 

The factors α, β, Ω, 𝜆 and 𝜎 are among the control parameters of the GA that should be tuned in 

the parameterization phase.  

The fitness function is a basis of the selection operator. Here, we adopt the elitist principle which 

means the individual with the best fitness does not need to participate in the selection and 

reproduction operations (crossover and mutation) and goes directly to the next generation. 
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4.2.4 Selection 

We propose the roulette wheel method as the selection technique for this GA. The aim of 

selection is to keep good chromosomes and eliminate bad ones. The selection is based on the 

fitness value of individuals. Since the elitist principle is applied, only one of the chromosomes 

will be reserved in the next generation, the other individuals (Population Size - 1) are selected 

based on the roulette wheel method and form the next generation’s mating pool. 

Step 1. Let 1/f(x) denote the fitness value and calculate the probability of a selection p(x) for 

each chromosome. 

𝑝(𝑥) =
f(x)

∑ 𝑓(𝑥)Population Size−1
𝑥=1

 

Step 2. Calculate the cumulative probability q(x) for each chromosome. 

𝑞(𝑥) = ∑ 𝑝(ℎ)

x

ℎ=1

 

Step 3.  Generate a random number r from (0,1]. If r < q(x), select the first individual; otherwise 

select the xth individual (2 ≤ x ≤ Population Size - 1) such that q(x-1) ≤ r ≤ q(x). 

Step 4. Repeat step 2 and 3 until (Population Size – 1) individuals are selected. 

4.2.5 Crossover 

The purpose of designing the crossover operator is to keep the best features of each parent and 

randomly generate the remaining features in forming the offspring. In this algorithm, a new 

crossover operator will be introduced and employed. 

In this method, two chromosomes are randomly selected from the mating pool. The chromosome 

with a larger fitness function is named C1 and the one with a smaller fitness function is named 

C2. Then an array of n elements (number of jobs – length of the chromosomes) consisting of 

random numbers between 0 and 1 is constructed. If the value of the jth member of this array is 

between zero and ‘a’, then the jth gene of the offspring chromosome is taken from the jth gene of 

chromosome C1. If this value is between ‘a’ and ‘b’, the jth gene of the offspring chromosome is 

taken from the jth gene of chromosome C2. 
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If this value is between ‘b’ and ‘c’, the jth gene of the offspring chromosome equals to (the jth 

gene of chromosome C1 - Pmax (c)). If this value is between ‘c’ and 1, the jth gene of the 

offspring chromosome equals to (the jth gene of chromosome C2 - Pmax (c)). 

The values ‘a’, ‘b’, and ‘c’ are numbers between zero and one and they are among the 

algorithm’s parameters which should be specified. Pmax (c) is the maximum processing time of all 

jobs with cure type (c). 

For example, let a, b and c be 0.25, 0.5 and 0.75 respectively.  One possible crossover operation 

is depicted below: 

 

Chromosome C1 

Chromosome C2 

Pmax (c) 

Array 1 

Offspring 1  

Offspring 1 

Array 2   

Offspring 2 

Offspring 2 

 

  

20 126 1 42 58 215 13 18 1 65 

30 13 41 5 69 156 20 1 25 4 

10 12 15 12 10 15 12 10 15 10 

0.36 0.2 0.96 0.32 0.1 0.38 0.18 0.7 0.86 0.07 

30 126 41-15 5 58 156 13 18-10 25-15 65-10 

30 126 26 5 58 156 13 8 10 55 

0.66 0.72 0.86 0.38 0.19 0.28 0.68 0.51 0.16 0.47 

20-10 126-12 41-15 5 58 156 13-12 18-10 1 4 

10 114 26 5 58 156 1 8 1 4 
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4.2.6 Mutation 

The aim of mutation operator is to introduce variations into solutions. Moreover, more solution 

space can be explored and the chance of being trapped in the local optimum is reduced. We 

employ swap operator for mutation which is very common in genetic algorithms designed for 

scheduling problems. 

In this mutation method, we randomly select two genes from a chromosome (with a probability 

that should be specified as one of the GA parameters) and then exchange their positions. The 

example below, illustrates the function of this mutation operator: 

Parent 

Offspring 

 

4.2.7 Termination Criteria 

We can employ two different techniques as the termination criterion: 

1. If the best value for chromosomes fitness functions does not improve in a number of 

consecutive generations (which is another parameter of the algorithm), the algorithm is 

terminated.  

2. A certain number of iterations which is again a parameter of the algorithm. 

All these parameters would be specified after running a series of test problems. 

4.2.8 Parameters Setting 

The performance of a GA depends greatly on the control parameters. These main parameters 

(population size, crossover rate, mutation rate and number of generations) can remarkably 

influence the efficiency of the GA. The population size is the certain number of chromosomes in 

each generation. The crossover rate is the probability of applying the crossover operation in the 

process of reproducing new individuals. The mutation rate is the probability of using the 

mutation operator in the chromosomes reproduction process. And number of generations 

indicates the number of iterations in the process of evolution until the algorithm terminates. 

20 126 1 42 58 215 12 18 1 65 

20 126 18 42 58 215 12 1 1 65 
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Besides these main parameters, in the proposed GA there are some other parameters that need to 

be tuned. The parameters used in the fitness function (α, β, Ω, 𝜆 and 𝜎) and crossover operator 

(a, b and c) are among these parameters. 

After coding the algorithms in C# and running the code with various test problems and different 

parameter combinations and comparing the efficiency of the algorithm with respect to the quality 

of the results, the following values are selected as the best combinations of the parameter values 

for this specific GA. 

 

Table 5. Selected values for parameters of the GA 

  Problem Size 

  
Small 

Up to 40 Jobs 

Medium 

40 to 100 Jobs 

Large 

More than 100 Jobs 

Crossover Rate 0.5 0.8 0.85 

Mutation Rate 0.2 0.1 0.5 

Population Size 8 8 8 

Number of Generations 100 600 1000 

α 10 20 50 

β 10 20 50 

Ω 10 20 50 

𝜆 10 20 50 

𝜎 10 20 50 

a 0.25 0.25 0.25 

b 0.5 0.5 0.5 

c 0.75 0.75 0.75 
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5 Numerical Experiments, Results and Analysis 

In this chapter, the MILP model as well as the proposed heuristic method and the GA are applied 

to different sets of data and the results are presented. Data used in these numerical experiments 

are gathered from the Composite Manufacturing Center of the ABC Company. For the purpose 

of confidentiality, the data is transformed and masked in a way that their specific realistic 

characteristics are preserved. Therefore, each problem is defined as a set of jobs to be scheduled 

and these jobs are presented with a job number and a number of other attributes assigned to them 

such as lay-up type, laser requirements, and cure profile and so on (i.e. Table 3 in section 4.1.1) 

In the following sections, first, a computational analysis of different methods is conducted in 

which the MILP model and the GA are used to solve small, medium and large instances of the 

problem. Afterwards, a comparison of the efficiency and accuracy of these two solution 

approaches is drawn through which the main differences of them are revealed. The advantages 

and disadvantages of each method are also discussed in this section. Finally, a section for 

discussions about the results and their implications is prepared to give the users of this research 

some insight on how and when to use the different proposed solution methods for different types 

of problems. 

5.1 Computational Analysis 

In this section, the proposed solution approaches (i.e. the MILP model and the heuristic/GA) are 

applied to three levels of small, medium and large-size problems. Small-size problems in this 

research are defined as scheduling problems with up to 40 jobs. Medium-size problems are those 

with maximum 100 jobs and large-size problems are the ones with more than 100 jobs. 

For each level, different proposed methods are used several times for various data sets and the 

average of the results are summarized in the table 6. 
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Table 6. Summary of the Results of Applying MILP and GA to Small, Medium and Large-size Problems 

 
  Problem Size 

    
Small 

Up to 40 Jobs 

Medium 

40 to 100 Jobs 

Large 

More than 100 Jobs 

Average Value of 

the Objective 

Function for the 

Initial Solutions 

(rounded to the 

nearest integer) 

SPT 81 285 500 < 

LPT 89 293 500 < 

EDD 85 285 500 < 

Descending Mold Size 87 287 500 < 

Ascending Mold Size 82 295 500 < 

Descending Lay-up Type 90 293 500 < 

Ascending Lay-up Type 89 295 500 < 

Ascending Job Number 94 298 500 < 

Average Value of 

the Objective 

Function 

MILP 65 236 - 

GA 78 254 470 < 

Average Run 

Time (minutes) 

MILP 2 40 - 

GA 1 2 9 

 

In the following, the results for each level of problems will be discussed and the performance of 

the proposed methods will be analyzed. 

5.1.1 Small-size Problems 

For problems with up to 40 jobs, the MILP model works perfectly. The optimal schedules for 

composite manufacturing systems, which are modeled as described in chapter 3, can be obtained 

within 2-3 minutes. 

In the next page, an example of a problem with 40 jobs is illustrated by means of Gantt Charts. 

As it can be observed in figure 9, first, the start time of the jobs in their respective lay-up cell is 

specified. Then, the jobs are grouped in batches and are sent to an autoclave whose operating 

cure process is compatible with their cure profile. The vertical axis of the figure 9 shows the 

resources (lay-up cells and autoclaves) while the horizontal axis displays the time horizon. 

As it was mentioned before in Section 3, it should be noted that the scheduling time horizon is 

discretized to 15 minutes intervals. Therefore, each scheduling day (three shifts of 8 hours) is 

shown as 96 time intervals (96 * 15 minutes = 24 hours). Thus, figure 9 displays one day of the 

scheduling horizon. In other words, all the 40 jobs are scheduled for the first day lay-up and cure 

processes. 
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The proposed MILP model strives for pushing the jobs toward the earlier cure treatments. 

Therefore, the earlier batches are utilized as much as possible first and then, if there is any job 

left, the next cure operations will be utilized. Table 7 shows the utilization of the autoclaves for 

the five cure treatments for the described example. As it can be observed, for cure number 1 and 

5 which provide the same cure treatment (red), the earlier cure process (cure number 1) is 

utilized as much as possible and then, the remained jobs are assigned to cure number 5. 

Table 7. Utilization of the Autoclaves 

Cure Type Cure Number Autoclave Number Utilization Number of Jobs Assigned 

Red 1 1 92% 21 

Red 5 2 32% 6 

Purple 2 1 11% 3 

Yellow 3 1 22% 6 

Green 4 2 29% 4 

 

The other important point about the solutions obtained from the MILP model is that most of the 

jobs are assigned to the lay-up cells just before their cure process starts. The reason behind this 

manner of job assignment is the buffer capacity constraint. The model tries to minimize the 

waiting time of the jobs in the buffer area. Thus, it schedules them in a way that they can directly 

move to the cure operation (without waiting in the buffer) when their lay-up process in finished. 

The heuristic algorithm is also used to solve the problems with up to 40 jobs. The eight initial 

solutions which are the outputs of the heuristic algorithm are generated within 5 seconds. The 

solutions with the underlying SPT, LPT and EDD dispatching rules are presented in the next 

pages as examples of the heuristic algorithm. Figures 10, 11 and 12 show the results of the 

heuristic method which are obtained based on SPT, LPT and EDD rules, respectively. 

The GA is also used to improve these initial solutions and achieve the near-optimal solutions. 

The results of applying the GA to the same problems, that were solved by the MILP model 

before, show that for problems with small numbers of jobs, the solutions obtained from the GA 

does not differ significantly from those which are generated by the heuristic algorithm with an 

underlying SPT rule because these solutions are quite close to the optimal solutions. However, 
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the solutions from the heuristic algorithm with some of the other dispatching rules will be 

improved significantly through stochastic iterations of the GA. Since the elitist principle is 

adopted in the GA, the chromosome related to the solutions obtained from SPT rule will remain 

in all iterations and will be slightly improved. 

Figure 13 shows the solution which is obtained by the GA for 40 jobs. A simple comparison of 

this solution with the three previous figures (which are examples of the solutions obtained from 

the heuristic algorithm) shows that the GA does not change the initial solutions a lot for small-

size problems. The reason is the fact that there is almost no room for improvement for small 

instances of the problem and the heuristic method itself generates very good solutions. These 

solutions are already very close to the optimal solutions obtained from the MILP model and even 

in some cases they are optimal. Thus, it is clear that the GA terminates quite fast (in less than one 

minute). 

The values of the objective function both for the initial solutions obtained from the heuristic 

method and the final solutions obtained from the GA are very close to the values of the objective 

function for the optimal solutions derived from the MILP model. 
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 Figure 12. 

Figure 12. 

Initial 

schedule 

obtained 

from the 

heuristic 

algorithm 

with an 

underlying 

EDD rule 
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Figure 13. Near-

optimal schedule 

obtained from 

the GA when 

applied to a 

problem with 40 

jobs 
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5.1.2 Medium-size Problems 

For problems with 40 to 100 jobs, the MILP model can obtain the optimal solutions. However, 

the run times increase significantly by increasing the number of jobs. For problems with up to 70 

jobs, CPLEX can achieve the optimal solutions within 45 minutes. When it goes beyond 70, the 

run times start to increase dramatically. The average run times for problems with 80, 90 and 100 

jobs are 112, 635 and 1464 minutes, respectively. 

The reason for such a significant increase in the run times is the enormous number of constraints 

and variables of the MILP model when the number of jobs increases. Hybrid Flow Shop 

problems are NP-hard problems and it is quite normal that for large instances of the problem, 

exact solution methodologies (i.e. MIP) have less computational efficiency and sometimes they 

are even unable to solve the problems. 

On the other hand, the heuristic algorithm generates the initial solutions for these problems 

within a few seconds. Although the quality of these solutions is not as high as the results from 

the MILP model, the stochastic iterations of the proposed GA enables them to evolve and finally 

transform into high quality solutions which are comparable to those of the exact solution 

methods. 

GA obtains the near-optimal solutions for medium-size problems within 4-5 minutes. A 

comparison of the results reveal that the objective function of the solutions obtained from the GA 

is very close to that of the MILP model when applied to the same problem sets. However, the run 

times of the GA are far shorter than those of the MILP model. 

In the next pages, the results of the MILP model, the heuristic method with an underlying SPT 

rule and finally the GA are shown through figures 14, 15 and 16. It is worth mentioning that the 

other initial solutions generated by the heuristic method (based on the other dispatching rules) 

have the similar quality as the heuristic method with SPT rule. However, only the results from 

the SPT rule are shown as a sample of the outputs of the heuristic algorithm when applied to 

medium-size problems. 
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Optimal 

schedule 

obtained from 

the MILP 

model when 

applied to a 

problem with 

100 jobs 



72 

 

 

F
ig

u
re

 1
5

. 
In

it
ia

l 
sc

h
ed

u
le

 o
b

ta
in

ed
 f

ro
m

 t
h

e 
h

eu
ri

st
ic

 m
et

h
o

d
 w

it
h

 a
n

 u
n

d
er

ly
in

g
 S

P
T

 r
u

le
 w

h
en

 a
p

p
li

ed
 t

o
 a

 p
ro

b
le

m
 w

it
h

 1
0

0
 j

o
b

s 
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with an underlying 
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to a problem with 100 

jobs 
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5.1.3 Large-size Problems 

For problems with more than 100 jobs, CPLEX could not achieve the optimal solutions in 

reasonable CPU times. While the MILP model is useful for small and medium-size problems, for 

the larger numbers of jobs, the number of constraints and variables grows dramatically and the 

computation time grows exponentially. This is a very common barrier in the scheduling research 

area; complex scheduling systems which are modeled with exact solution methodologies usually 

fail to address the large instances of the problems within practical run times. 

However, near-optimal solution methodologies (i.e. metaheuristics) are proven to be very useful 

and efficient in these cases. The heuristic algorithm generates the initial solutions for large-size 

problems (up to 300 jobs) in less than 10 seconds. Then, the GA obtains the near-optimal 

solutions for these problems within 8-12 minutes, depending on the number of jobs. Since the 

comparison of the results for small and medium-size problems with MILP model results (optimal 

solutions) show the high quality of the results from the GA, its results for the large-size problems 

can be considered strongly reliable. 

The results from the GA compared to those of the heuristic method shows the high levels of 

improvement in solution quality which is achieved by the stochastic iterations of the proposed 

GA. The main reason for such improved solutions is that there is a quite large room for 

modification of the initial solutions when the size of the problem is large. Therefore, the unique 

nature of the crossover operator in the proposed GA makes the algorithm very efficient for large 

instances of the problem. 

The larger the problem is, the more time will be consumed by the GA to reach the termination 

criterion. However, the difference between the initial solutions and the near-optimal solutions 

(final results of the GA) becomes much more significant when the size of the problem grows. 

In the following section, a comparison between the proposed MILP model and the GA is 

presented which explains the special characteristics of each of these solution approaches in 

detail. 
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5.2 Comparison between the Two Proposed Solution Methods 

By comparing the results obtained from the MILP model and those which are achieved using the 

heuristic method and the GA, it is possible to compare these solution methodologies both from 

the viewpoint of solution quality and computational efficiency. 

A careful observation of the results shows that for small-size problems both methods can work 

perfectly. The MILP model delivers optimal solutions within really short run times (about 2 

minutes) and the GA also generates solutions which are very close to optimal in less than one 

minute. However, when the size of the problem grows, while the solution is optimal the 

computational efficiency of the MILP model declines dramatically. 

However, the GA preserves both the high solution quality and computational efficiency when the 

sizes of the problems grow. A comparison of the results for medium-size problems prove that the 

values of the objective function for GA solutions are very close to the results of CPLEX that 

generates optimal solutions for the MILP model. Therefore, the proposed GA maintains the high 

computational efficiency while the quality of the solutions is still satisfactory.  

 

 

Figure 17. Comparing the MILP model and the GA from the viewpoint of CPU run times 

Figure 17 shows the differences in CPU run times for the two proposed methods when they are 

applied to different sets of problems. The horizontal axis shows the number of jobs while the 

vertical axis displays the average run times in minutes. The MILP model’s efficiency declines 
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dramatically when the number of jobs is more than 70 and it is not useful when the number of 

jobs goes beyond 100. On the contrary, the GA maintains the high computational efficiency even 

for problems with up to 300 jobs. 

The number of iterations and consequently, the run time of the GA increase when the sizes of the 

problems grow but this increase is very gradual and mild compared to the severe increase in the 

run times of the MILP model. 

The solution qualities are also compared in Figure 18. The horizontal axis shows the number of 

jobs and the vertical axis shows the average value of the objective function. As it can be easily 

observed, the values of the objective functions of the two proposed methods are very close to 

each other for small and medium-size problems. For large-size problems, only the GA can solve 

the model. Therefore, there is no basis for comparing the results with optimal solutions. 

However, observation of the differences between the two methods for small and medium-size 

problems can somehow imply the high quality of the solutions obtained from the GA even for 

very large-size problems. 

 

 

Figure 18. Comparing the average objective function of the MILP model and the GA for different problem sizes 

Figure 19 shows the optimality gap of the results obtained from the GA for small and medium-

size problems. The horizontal axis shows the number of jobs while the vertical axis demonstrates 
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the gap between the solutions achieved by the GA and the optimal solutions. As it can be 

observed, the optimality gap reduces when the number of jobs increases.  

 

 

Figure 19. Optimality Gap of the Proposed GA 

It can be concluded from Figure 19 that for small-size problems, it’s better to use the MILP 

model because while the computational efficiency is high, the solutions are optimal. Using the 

GA for small-size problems is not recommended because even though the algorithm delivers the 

solutions in shorter times, the optimality gap is relatively high (average 12%). In addition, the 

time difference is not that significant to compromise the solution quality. However, for medium 

and large-size problems, the average optimality gap is under 5% and the GA outperforms the 

MILP model from the viewpoint of computational efficiency. Therefore, the GA is 

recommended for larger instances of the problem. 

The SPT-based heuristic algorithm obtains very good solutions which are usually close to the 

optimal solutions. However, the optimality gap between the SPT-based heuristic and the MILP 

model depends on the correlation between the processing times and the sizes of the molds. Due 

to the nature of the objective function of the MILP model, the model tries to maximize the 

number of jobs in the earlier cure cycles. 

Min ∑ ∑ 𝑌(𝑖, 𝑐) ∗ 𝑐25
𝑐=1𝑖 ∈ 𝐼  
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This function is minimized by matching small c with the largest ∑Y(i,c) possible, and this is 

possible by processing as many small jobs (SPT) with small mold sizes first as possible. If small 

jobs do not have small mold sizes then the gap between SPT and MILP solutions is expected to 

widen. Therefore, in data sets where processing time and mold size have high positive 

correlation, SPT is expected to provide close to optimal solutions. In other words, lower the 

positive correlation wider the gap is expected to be. 

Figure 20 shows the optimality gap of the SPT-based heuristic with respect to the correlation 

coefficient between the processing times of the jobs and the sizes of their molds. The equation 

for the correlation coefficient is: Correlation (X, Y) =
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

√∑(𝑥−𝑥̅)2 ∑(𝑦−𝑦̅)2
 

Fourteen sets of data with different correlation coefficients are used to solve a medium-size 

problem (50 jobs). 

 

Figure 20. Optimality Gap of the SPT-based Heuristic 

As it can be observed in Figure 20, when the correlation between these two parameters is 

negative the optimality gap is more than 10%. Therefore, for problems in which there is no 

correlation between the processing times and the sizes of the molds or the correlation is negative, 

SPT will no longer provide solutions close to the optimal solutions provided by the proposed 

MILP model.  
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5.3 Discussion and Implications 

Analyzing and comparing the results obtained from the proposed solution methods can result in 

useful insights into the usage of each of these methods under different circumstances. As 

discussed in the previous sections, while the MILP model is very useful for solving small-size 

problems and medium-size problems with up to 70 jobs, its efficiency declines when it’s applied 

to large-size problems. 

In the Composite Manufacturing Center of the ABC Company, the number of parts that are 

manufactured every day is normally more than one hundred. As a matter of fact, the ABC 

Company is a large plant with a relatively large composite manufacturing system. Therefore, 

even though the MILP model can be useful for smaller composite manufacturing systems, the 

ABC Company needs to use a scheduling tool that can address the needs of a higher production 

rate. For smaller companies, the MILP model delivers optimal solutions in quite short run times. 

Larger facilities such as the ABC Company can employ the proposed GA for their daily usage. 

In the Composite Manufacturing Center of the ABC Company, the scheduling horizon is always 

the next five days. Thus, it is a rolling horizon in which jobs should be scheduled in a way that 

all due days are met and the objective function (maximizing the utilization of the autoclaves) is 

satisfied. This is possible by linking the proposed GA to the MRP system and using it every day. 

Suppose the production planner of the Composite Manufacturing Center starts using the GA 

today. They give a list of jobs to the algorithm as inputs and receive the near-optimal schedule of 

the jobs for the next five days (day 1 – 5). The next day, the production planner can run the 

algorithm again but this time the input list excludes the jobs that were scheduled and produced 

the previous day and includes the jobs for the next five days (day 2 – 6). 

Every day, the production planner can run the algorithm with the updated input list and obtain 

the results. This can guarantee that all the jobs will be scheduled in time and all due dates will be 

met. This makes the GA a very useful and efficient tool for operational level and daily usage in 

the shop floor. The costs of implementing such a tool and connecting it to the MRP system is 

negligible when compared to the contributions it can make to the system. 
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Figure 21. Rolling horizon of the scheduling system in the Composite Manufacturing Center 

Both proposed methods, the MILP model and the GA, can be modified and used for composite 

manufacturing systems with different structures and settings as long as the main elements of a 

composite manufacturing system (the discrete-processing lay-up cells in the first stage and the 

parallel batch-processing curing machines in the second stage) exist. The number and variety of 

lay-up cells (and/or number of work stations in each cell), number of autoclaves and the variety 

of cure recipes they provide, number and types of molds/tools, and the number and length of 

working shifts can vary for different cases. In order to adjust the model to new composite 

manufacturing system settings, it is only required to define the number and type of the resources 

in each stage. 

The models can be extended to consider the characteristics of more complicated structures. The 

discrete-time nature of the MILP model enables it to be quite flexible where defining new 

constraints is necessary. The GA also is designed in a way that by modifying the operators and 

the fitness function, it is possible to use it for other different types of flow shops. Therefore, the 

proposed methods are applicable not only to the described hybrid flow shop structure but also to 

other flow shops and even industries other than aerospace and composite manufacturing. In the 

next section, the possibility of extending the models and defining the proposed methods for 

various manufacturing structures will be discussed in more details. 

 

Day 1 Day 2 Day 3 Day 4 Day 5 

Day 2 Day 3 Day 4 Day 5 Day 6 

Day 3 Day 4 Day 5 Day 6 Day 7 

Day 4 Day 5 Day 6 Day 7 Day 8 



81 

 

6 Conclusions and Future Work 

In this chapter, the conclusions of the research carried out in this thesis are presented. 

Limitations of this work, opportunities for improving it and directions for future research in the 

area of hybrid flow shops and composite manufacturing systems are also discussed. 

6.1 Conclusions 

In this research, scheduling a two-stage Hybrid Flow Shop (HFS) with identical, non-identical 

and unrelated parallel discrete-processing machines in the first stage and non-identical parallel 

batch-processing machines in the second stage, is studied for the first time. 

The special characteristics of this particular type of Hybrid Flow Shop are studied through 

careful observation of a real case study of the Composite Manufacturing Center at the ABC 

Company. The required information about the current conditions of this system is gathered 

during several meetings with industry people responsible for managing this Composite 

Manufacturing Center. There are various types of constraints within aerospace composite 

manufacturing systems because of their certain characteristics.  

A Time-indexed Mixed Integer Linear Programming model is developed to take all these 

characteristics into consideration in order to maximize the utilization of the resources in the 

second stage of this Hybrid Flow Shop. The second stage is composed of the curing autoclaves 

which are considered enormous capital investment. Therefore, synchronizing the sequence of 

work done in the lay-up process (first stage) to the autoclaves’ cure sequence (second stage) in a 

way that maximizes the utilization of the autoclaves is of uttermost importance. This is put as the 

objective function of the proposed MILP model. CPLEX with an underlying branch and bound 

algorithm is employed to code and solve the proposed model. The results show the high level of 

flexibility and computational efficiency of the proposed MILP model when applied to small and 

medium-size problems. 

This optimized schedule of the jobs obtained from the proposed MILP model also affects the 

tooling cycle time which is one of the most serious issues addressed in this research. The tooling 

cycle starts from the tools storage area and includes the lay-up cells, the cure process, the 

unmolding and tool preparation processes. While a part is within the tooling cycle, its mold 

(tool) cannot be used for other parts due to the limited number of molds for each part type. 
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Reducing the time that each part stays in this tooling cycle can open up some extra capacity for 

other parts to be produced in this manufacturing system. 

So as to be able to solve large problems as well, a heuristic algorithm is designed based on a 

careful scrutiny of the behavior of the MILP model. In order to enhance the capabilities of this 

heuristic, a number of dispatching rules are also included in it. This novel heuristic generates 

eight feasible initial solutions. A GA with a novel crossover operation is also introduced that 

uses the outputs of the aforementioned heuristic method as its initial population and improves 

them through its stochastic iterations to obtain near-optimal solutions. 

An analysis of the results show the efficiency of the proposed GA as well as the high quality of 

the solutions it generates compared to the optimal solutions obtained from the MILP model. It 

has been shown in the thesis that optimizing the schedule for this specific type of hybrid flow 

shop can reveal the level of utilization of the capacity of the resources in both stages of the 

studied hybrid flow shop. In fact, sensitivity analysis of the MILP model can show how well the 

resources of this system are utilized and where the possible opportunities for improvement lie. 

The physical capacity constraint of the buffer in this hybrid flow shop is one aspect of this 

research which has not been studied enough in the literature of scheduling problems. Therefore, 

this very realistic constraint is taken into consideration in the proposed MILP model and GA. 

The results show that in order not to violate these constraints, jobs should start being processed 

in a lay-up cell as close as possible to the start time of their respective cure process. This way, 

the jobs will spend the minimum amount of time in the buffer and the limited physical capacity 

will be preserved for other parts. 

It has also been shown in this research that GA can be used as a very strong and efficient tool 

instead of exact solution methodologies, in cases where exact methods cannot achieve solutions 

in reasonable CPU times. The comparison of the results shows small differences between the 

objective function of the proposed GA and the MILP model. It also shows that applying a proper 

method to generate initial feasible solutions with good qualities (i.e. the ones generated by the 

heuristic algorithm) instead of generating random initial population, can strengthen the GA 

significantly and lead to near-optimal solutions in shorter times. 
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Another important conclusion of this research is that the length of the scheduling horizon directly 

affects the lead times. The longer the scheduling horizon is supposed, the longer the lead times 

and the larger the amount of WIP and finished goods inventories will be. When the production 

planner looks ahead to the needs of the customers in the near future based on the data from an 

MRP system, they may include some products in today’s schedule which are not needed today. 

In fact, if the scheduling horizon is 10 days, for example, some of the parts which are decided to 

be produced today may be needed after a week (not today). This creates a lot of WIP and 

finished goods inventories and consequently lengthens the lead times. On the other hand, 

reducing the scheduling horizon makes the production planner unable to have enough input jobs 

to form the optimal batches for the second stage of the hybrid flow shop. Therefore, selecting a 

proper horizon length is a trade-off that should be carefully made in order to maximize the 

efficiency of this scheduling system. 

The first contribution of this research is developing a linear programming model for this complex 

type of hybrid flow shop which is unique to composite manufacturing systems. The proposed 

model can be used for other hybrid flow shops with similar structure or for other industries 

provided that the main elements of the HFS remain the same. 

Another contribution of this research is taking into account the tools constraint and the tooling 

cycle. Even though resources constraints have always been regarded as integral parts of the 

scheduling problems, these resources are typically defined as fixed machines in different stages. 

In this research, however, in addition to those resources, there are another type of portable 

resources (tools) that move through the stages but still need to be planned and allocated to the 

tasks. The scheduling models proposed in this research take into account both these resource 

types. 

The physical capacity limitation of the buffer is another constraint that has not been tackled by 

the researchers in the area of Hybrid Flow Shop scheduling. This research addresses this gap in 

the literature as well and provides a flexible MILP model which is open to further modifications 

in case of the need for adding extra constraints in the future. 

The heuristic algorithm which is designed for generating initial solutions is a totally novel and 

unique algorithm which is considered a significant contribution of this thesis. 
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Last but not least, the GA proposed in this research is new from various points of view. The 

fitness function is designed in a special way that considers different constraints of the problem 

and minimizes the chance of survival for infeasible solutions in each generation. The crossover 

operator of the proposed GA is a novel crossover which is designed specifically for the case of 

this particular hybrid flow shop and is proven to be very effective and unique to the case of 

composite manufacturing systems. 

6.2 Limitations and Future Research 

There are a number of ways for improving the research done in this thesis. First of all, the MILP 

model can be extended and improved in several ways. The objective function of the model can 

be expanded to consider other factors such as minimization of make-span or optimization of the 

resource utilization in the first stage as well as the second stage. The constraints regarding the 

stacking of the products inside the autoclaves can be identified and added to the model. 

In order to solve the large instances of the problem using the MILP model, other solution 

methodologies such as Column Generation or Lagrangian Relaxation can be used. The use of 

relaxation methods or other algorithms for solving large MILP models are promising research 

avenues in the area of hybrid flow shop scheduling. Another approach could be trying to develop 

a new continuous-time MILP model considering all the new constraints in the problem (i.e. 

tooling constraint, limited buffer, etc.). While the flexibility of the model may be reduced, its 

efficiency can be boosted due to the reduced number of variables and smaller size of the model. 

An extensive sensitivity analysis of the optimization model can be conducted in order to 

determine the optimal number of work stations in each lay-up cell in the first stage as well as the 

optimal number of required autoclaves in the second stage. Similarly, a simulation model can be 

developed to provide some visibility on the resources capacity usage within the studied 

composite manufacturing systems. One of the future objectives could be leveling the load of the 

work throughout the working shifts. To do so, the mentioned methods to determine the optimal 

number of resources in each stage could be of valuable use. Making a smooth flow of products 

within the manufacturing system will be easier by adjusting the required number of work stations 

in the first stage and optimal number of autoclaves in the second stage. 
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In the current research, it is assumed that the schedule of the autoclaves in the second stage of 

the HFS is fixed. In the future research, one can relax this assumption and try to look at the 

schedule of the autoclaves (operation of the various cure recipes) as another variable of the 

problem. In addition, the scheduling horizon is assumed to be fixed (five days) which is subject 

to change in future models. 

Future research can also be focused on improving the proposed solution methodologies. One 

possible way is to elaborate the proposed heuristic method and re-design it in a way that could 

generate better solutions. Developing a new GA by defining improved encoding/decoding 

schemes for chromosomes or introducing other novel operators and/or fitness function are other 

ways to advance the research in this area. Furthermore, other meta-heuristic methods (e.g. PSO, 

Ant Colony Optimization, Neural Networks, etc.) can be used to propose new solution methods. 

Comparing the efficiency of these different methods with regard to quality of the solutions they 

generate could be a very interesting topic for future research. 

The current GA can also be improved from different points of view. In order to set the control 

parameters of the GA more effectively, advanced tools and methods (e.g. Taguchi Experimental 

Design, Response Surface Methodology, etc.) can be used. This will probably boost the 

performance of the GA and lead to higher quality of the solutions in shorter run times. 

Another interesting avenue of research for improving the proposed GA is to develop similar GAs 

with different crossover operators and compare their efficiency. This way the proposed crossover 

operator can be compared to the conventional crossover operators available in the literature of 

GAs and its advantages and disadvantages will be revealed. Also, these kinds of studies can 

potentially prepare the ground for introducing other new crossover operators that can, in turn, 

enhance the performance of the solution method. 

Finally, other types of composite manufacturing systems (in aerospace or any other industry) 

with different structures can be studied and compared to the one which is studied in this research. 
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