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Abstract

On the Scalable Generation of Cyber Threat Intelligence from Passive DNS Streams

Anhar Haneef

Domain Name System (DNS) has become an important element of recent cyber-

crime infrastructures. Indeed, DNS protocol is being used, for instance, to operate in-

fected machines and transport malicious payloads. In this context, it is of paramount

importance to analyze passive DNS streams in order to generate timely and relevant

cyber threat intelligence that can be used to detect, prevent and attribute cyber at-

tacks. In this thesis, we explore the analysis of the aforementioned streams in order to

detect DNS anomalies that correspond to cyber incidents. By DNS anomaly, we mean

any deviation from what is expected in terms of regular DNS activities (queries/re-

sponses). The identification of these anomalies leads to precious intelligence that

could pinpoint domains that are involved in malicious activities (e.g., spamming,

botnets, phishing, DDoS, etc.). We propose, design and implement a system that

analyzes, in near-real-time, passive DNS streams and generates cyber threat intelli-

gence in terms of: suspicious domains, DNS record abuse and passive DNS anomalies.

We correlate the generated intelligence with other sources of intelligence such as our

malware database. We dedicate a special care to the scalability of the proposed sys-

tem. In addition to picking appropriate data structures and database technologies,

we proceed with the distribution of the analysis over a cluster of computers using the

so-called map/reduce paradigm with the Apache Spark framework. Our experiments

show that our system is efficient and scalable while generating important, relevant

and timely cyber threat intelligence.
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Chapter 1

Introduction

1.1 Motivations

The Domain Name System (DNS) plays an important role in most Internet activities.

It provides a core service to Internet applications by translating domain names into

IP addresses. Therefore, Internet users only have to memorize domain names without

the need to remember the IP addresses, which are indeed more difficult to remember.

DNS protocol is critical in the operations of cyber infrastructures including those

that are used for malicious purposes. In addition, there is an increasing evidence

that demonstrates the abuse of DNS to conduct malicious operations. For instance,

botnets use malicious domains as hosts for commands and control servers and change

these domains frequently to remain stealthy. Moreover, cyber criminals use fast-flux

networks to frequently change the IP addresses of the malicious domains to evade

detection. In addition, DNS spoofing is another example of malicious use of DNS. It

replaces the IP address of a benign domain with the IP address of the attacker’s server.
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By doing so, the users requesting access to a legitimate domain will be redirected to

a malicious server. Another example of DNS abuse is the use of the DNS protocol

to transport a malicious payload (e.g., upload of the configuration of a bot) or to

infiltrate/exfiltrate sensitive information.

Nowadays, there are many attacks that are leveraging the DNS protocol. For in-

stance, DNS resolvers can be used to amplify distributed denial of service attacks

that are called Distributed Reflection Denial of Service (DRDoS) attacks. An infa-

mous illustration of such attack is the targeting of Spamhaus in March 2013 with a

DNS-amplified DRDoS [42]. Spamhaus is an anti-spam non-profit organization that

provides large spam blacklists for research institutions and Internet Service Providers

(ISPs). It was one of the biggest DDoS attacks in history with a speed that is up to

300 Gbps of DNS traffic. The attackers were sending ANY DNS requests to a large

number of open DNS resolvers. They spoofed the IP address of Spamhaus as the

source of the requests, which generates a large number of responses that targeted

Spamhaus servers. This attack did not only affect Spamhaus but also affected the

entire Internet. Another notorious illustration of cyber attacks that leverage DNS is

the so-called DNSChanger malware [28]. It modifies the DNS settings of the infected

machines by redirecting DNS queries to a malicious DNS server that takes control

over all the infected computers’ traffic. It hijacked more than 4 million computers

in US. To stop this attack, the Federal Bureau of Investigation (FBI) took action by

blocking Internet connections of all infected computers. Then, it took down the un-

derlying DNSChanger infrastructure. These two attacks give and idea how DNS could

be used and abused for malicious activities and how these activities could globally
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affect Internet operations.

DNS traffic is generally considered, by most network and security administrators,

to be safe, and therefore, it bypasses most network defenses. Unfortunately, this

provides attackers with the opportunity to either instrument or abuse DNS to perpe-

trate cyber attacks. To mitigate this issue, security experts use static domain name

blacklists against such abuse. However, these domain blacklists lack effectiveness in

terms of detection as a huge number of new malicious domain names appears on the

Internet every day. Some of these domains are even the result of Domain Generation

Algorithms (DGAs).

In this context, there is a desideratum that consists of designing and implement-

ing techniques that have the capability of fingerprinting these cyber threats/attacks,

on DNS traffic, as soon as they appear. It is important to mention here that these

techniques absolutely need to be scalable as they have to deal with very large vol-

umes of DNS traffic in order to correctly identify the previously mentioned malicious

activities.

1.2 Objectives

The primary objective of this thesis is to address the analysis of passive DNS streams

for the purpose of generating timely, relevant and important threat intelligence on

cyber crime incidents. In this respect, our work strives to answer the following ques-

tions:

• How to analyze passive DNS streams in order to generate intelligence on cyber
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crime incidents?

• How to isolate suspicious/malicious domains, DNS abuse and DNS anomalies?

• What features of the DNS protocol should we rely on to fingerprint these mali-

cious activities?

• How to make this analysis both efficient and scalable?

1.3 Contributions

The main contributions of this thesis are:

• Comparative study of the state-of-the-art approaches in terms of passive DNS

analysis. These approaches are analyzed and compared against a set of objective

criteria that we have compiled.

• Design and implementation of an efficient and scalable passive DNS analysis

technique that provides timely and relevant threat intelligence on different types

of malicious activities including: suspicious domains, DNS record abuse, and

DNS anomalies.

• Correlation of the generated threat intelligence with other sources of intelligence

such as our malware database. The intention is to get additional intelligence such

as the identification of the underlying malware samples that are responsible for

the observed domains or behaviours.

• Design and implementation of two analysis modes: The first mode, called general

detection, aims at analyzing the DNS traffic underlying every observed domain
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or IP. The second mode is optimized to deal with domains or IP-blocks that

are of interest to the security analyst and that need additional monitoring and

analysis.

• Design and implementation of a distribution technique that leverages the com-

putational clustering paradigm using the so-called Apache Spark framework in

order to achieve scalability of the analysis of DNS streams.

1.4 Thesis Structure

This thesis is organized as follows: In Chapter 2, we introduce the required back-

ground on DNS and passive DNS. Chapter 3 presents a comparative study of the ex-

isting approaches to detect malicious domains using passive DNS analysis. In Chapter

4, we present our work regarding the near-real-time detection of anomalies on passive

DNS streams. Finally, we present the conclusion of this thesis in Chapter 5.
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Chapter 2

Background and Related Work

2.1 Background

This chapter introduces the concepts needed to support the work developed in this

thesis. In Section 2.1.1, an overview of the domain name system is provided. In

Section 2.1.2, the passive DNS technique is explained.

2.1.1 Domain Name System

Domain Name System (DNS) [37,38] is a protocol designed to map domain names to

their corresponding IP addresses. An Internet user initiates a DNS query to obtain

the IP address of a specific domain name. For instance, the domain name www.

concordia.ca is mapped to its IP address 132.205.23.199.

In DNS, all the domain name space information is saved on a distributed database.

DNS protocol has the structure of a tree. Each node stores a file about a particular

domain name (resource record). A group of nodes represents a zone. A zone is

6
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Figure 1: DNS Query Process

authorized by one or more authoritative name servers (AuthNSs). The AuthNSs have

full knowledge about the zones. They provide answers about the information stored

in the zones. Zone files contain multiple resource records (RRs) used for different

purposes. A resource record consists of five parts: name, class, type, time to live

(TTL) and data. The RR name is the name of the node of the resource record. Its

length is limited to 256 bytes. The RR class defines the protocol family. It usually

assigns to IN (Internet) protocol. The RR type describes the usage of the record.

Table (1) presents some of RR types used in our work [1].

A DNS query is initiated from a user’s machine through its stub resolver. To get

the IP address of a specific domain name, the stub resolver is relying on a local DNS

resolver to get the required information. The DNS resolver contacts a DNS server

in case the cache is empty. The obtained IP address could be cached by the DNS

resolver for a specific time (time to live). Therefore, there is no need to interact with

7



Type Decimal
Value

Description

A 1 IPv4 address: an IPv4 address for a domain name
NS 2 Name server: the authoritative name server for a domain name
CNAME 5 Canonical name: an alias name for a domain name
NULL 10 Null RR: placeholders in some experimental extensions of the DNS
MX 15 Mail exchanger: domain name for a mail server
TXT 16 Text information: Text information associated with a domain name
AAAA 28 IPv6 address: an IPv6 address for a domain name
SRV 33 Service locator: specific services available in the zone
OPT 41 Option: pseudo DNS record type
ANY 255 All cached records: all records types available at the name server

Table 1: DNS Record Types

the DNS server in case the answer is cached by the DNS resolver.

The typical scenario of obtaining the IP address is: The stub resolver sends the

query (www.concordia.ca) to the DNS resolver (step 1). If the cache is empty, the DNS

resolver sends a query to the root DNS server (step 2). The root server is responsible

of all information of authoritative name servers of Top Level Domains (TLDs). The

root severs send back to the DNS resolver the IP address of (.ca) TLD servers (step 3).

Then, the DNS resolver re-sends the query to the (.ca) TLD server to obtain the IP

address of the name server of the Second Level domain (2LD) servers (concordia.ca)

and the .ca servers send back the IP address of the authoritative name server of

concordia.ca (steps 4-5). In step 6, the DNS resolver queries the authoritative name

server of concordia.ca and receives the IP address of concordia.ca (step 7). Finally,

the DNS resolver sends the IP address back to the stub resolver (step 8).
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2.1.2 Passive DNS

Passive DNS is a technique where DNS queries and responses are captured by sensors

and replicated for further analysis. Passive DNS technique was invented by Florian

Weimer [55] to reconstruct the structure of the DNS traffic in an easy as well as

accessible format. There are many implementations of passive DNS replication tech-

nique. One of the most important passive DNS systems is a set of products/services

from Farsight Security [16]. The latter provides rich and comprehensive passive DNS

channels based on query/response pairs that are exchanged between recursive DNS

resolvers and authoritative DNS servers [22]. The passive DNS traffic is captured by

deploying sensors above recursive caching DNS servers in multiple networks around

the world [22].

DNS-based Security Measures

SPF (Sender Policy Framework) [30] and DKIM (Domain-Key Identified Mail) [13]

are exciting email specification frameworks used by different email providers. They

protect the domains and domain owners from different kinds of threats such as email

spoofing. In addition, They decrease fraud threats by making it difficult for the at-

tacker to forge sender addresses. The domain owners publish specification information

in their domain zone as TXT RR because it is flexible in terms of the size and the

format.

Domain owners use SPF to identify the mail servers they use to send emails from

their domains. When a mail server receives an email that claims to be from a specific

domain, it can verify whether the email can be sent by that particular IP address

9



or not by querying the TXT RR of the 2LD of the email address domain. Domain

owners also use DKIM to validate that the incoming email is sent from a specific

domain. It is also used to check if the email has been changed during transit. To this

end, a digital signature is added to the message’s header. The digital signature can

be verified through the recipient by using the public key that is stored in the DNS

zone file.

DNS Tunneling

DNS tunneling is a technique proposed by Dan Kaminsky [23] to encode the data

by using DNS queries and responses. DNS tunneling bypasses most network filtering

mechanisms due to DNS protocol property. It embeds the data as sub-domain label

in the query. It could be embeded in many sub-domain labels because of the limited

size of labels. It should use only the alphabet in the encoded data in DNS query and

response. The data is embedded in different types of RRs such as TXT, CNAME

and NULL. TXT RR is mostly used due to its features comparing with CNAME and

NULL. The format of CNAME RR is restricted while NULL RR could be excluded

by DNS servers [32].

In Figure 2, the typical scenario of DNS tunneling is explained. Many requirements

are needed to tunnel the data. First, the host and the server should have access to

the internet. Second, the attacker should have control over the domain name and the

authoritative server of the same domain. The attacker has to add an RR which is NS

record to delegate the domain name to another name server. After that, the attacker

needs to setup DNS tunneling tool on the host and the server. The host encodes the

10



WWW

Authoritative 
NS Server

Local DNS 
Resolver

DNS Server

Host Firewall
1

8

5

4

3

92 7 6

Figure 2: DNS Tunneling Scenario

11



data in DNS query and sends it to the domain. The server receives the query, decodes

the data and sends back the DNS response.

DNS tunneling can be used to deliver any kind of information. However, it has

many limitations. First, it is only capable to send a small amount of data due to the

limitation of length of the RR query. Second, the size of DNS response is 215 bytes

which is small to send enough information. Thus, the attacker may use Extension

Mechanisms for DNS (EDNS) to increase the capacity of the DNS response up to 4096

bytes. However, some firewalls do allow bypassing any DNS response that exceeds

215 bytes.

Domain Generation Algorthim (DGA)

Domain Generation Algorithm (DGA) [11] is a technique used by different types of

malware families to generate a large number of domains. The generated domains are

used to locate command and control (C&C) servers in order to send data or receive

commands and updates. Some malware families tend to use old ways to locate and

connect C&C servers by embedding a static list of domain names with malware.

When the malware is installed on the computers, it tries to connect to the domain

names in the list until it finds the C&C server. However, capturing the static list

of domain names by security analysts could result in C&C taking down the malware

and blacklisting it from connecting with the C&C servers.

To avoid the problems of static lists, the attacker designed an algorithm that takes

defined inputs and generates a list of domain names. Then, it attempts to contact

each domain name in order to receive updates and commands. Conficker is one of

12



the earliest malware families that use DGA. Conficker.a and Conficker.b generated

250 domain names over five different TLDs per day. Conficker.D generated 50000

domain names and attempted to connect to 500 domain names per day. After that,

this technique has been used by different types of malware families such as Conficker,

Murofet, BankPatch, Bonnana and Bobax.

Using domain generation algorithms to generate domain names has many advan-

tages. First, it makes shutting down the domain names difficult for law enforcement

due to the large number of domain names and just in time registration. Second, it

makes getting the list of all C&C domains difficult for static blacklists. Third, it helps

the attacker to avoid network filtering systems [11].

2.2 Related Work

Many techniques have been proposed for detecting malicious activities and distin-

guishing them from legitimate domains using passive DNS traffic. Some techniques

are used to detect malicious domains that are associated with specific types of ma-

licious activities such as fast flux and spam. In [40], Perdisci et al. introduced an

approach to detect malicious fast flux services through passive analysis of recursive

DNS traces. Unlike the other works that are limited to extract malicious fast flux

domains from spam emails [21, 26, 35, 39], Perdisci’s approach has the ability to dis-

tinguish malicious fast flux domain names from legitimate domains by characterizing

features that pinpoint to fast fluxing IPs. In [41], Perdisci et al. extended previ-

ous work, where they detect passively flux networks from above local recursive DNS

13



servers in contrast with the first work, where they used DNS traffic from below re-

cursive DNS servers. In [3], Antonakakis et al. introduced Notos, which is a DNS

dynamic reputation system. It differentiates the malicious activities from benign ac-

tivities using many features. It assigns reputation scores for the new domains based

on models of known benign and malicious domains. The score shows if the domain is

malicious or benign. It has been deployed in a large ISP’s network and be able to find

domains before the public blacklist. In another work [7], Bilge et al. introduced a

system to detect malicious domains, namely, EXPOSURE. They characterize passive

DNS logs to segregate between malicious and benign domains. The segregation is

based on 15 features. They conducted an experiment on 100 billion DNS requests

and deployed their solution for two weeks in an ISP. They managed to identify ma-

licious domains used in botnet command and control, spamming, and phishing. In

another work [8], the same authors extended their initial work, where they deployed

EXPOSURE for 17 months and showed the results. In [50], the authors put forward

a technique to identify botnets using DNS queries. The system uses Näıve Bayesian

classifier to segregate between malicious and benign domain names. The classifier

achieves a positive detection rate of 82% and false positive rate of 8.30%. In [58], the

authors introduced a technique, which correlates successful and failed DNS queries

for the purpose of detecting DGA-based botnets based on the entropy of domain

names. In [57], Yadav et al. presented a technique to detect DGA-based botnets by

using distribution of unigrams and bigrams for all domains associated with the same

IP address, TLD or SLD. In [10], the authors presented a system, namely, BotGAD

(Botnet Group Activities Detection). They used an unsupervised approach (X-means

14



clustering algorithm) to group domain names into clusters. Each cluster has a binary

matrix, where rows are hosts sending DNS queries and columns represent time peri-

ods. This matrix is used to compute a cosine similarity score to decide if the cluster

represents a botnet group or not. In [4], Antonakakis et al. proposed another system

called Kopis. It is a system that detects malware using upper DNS hierarchy. It

distinguishes between legitimate and malware domains using the global DNS query

resolution patterns. In addition, it has the ability to detect malware domains in the

absence of IP reputation information. The eight-month experiment shows that Kopis

was able to identify new malware domains before the blacklist. In [5], Antonakakis et

al. presented a system that detects the DGA-generated domains by analyzing Non-

Existent Domain (NXDomain) responses without the need for reverse engineering

technique. It uses two algorithms, which are clustering and classification algorithms.

The cluster groups similar domains names in terms of structure. The classification

algorithm refers the clusters to known DGA models. If there is no model to assign,

it generates a new DGA model. The system has been deployed on real time data. It

was able to find new DGA families. In [46], Sharifnya et al. proposed a reputation

system to detect DGA-based botnets based on the symmetric Kullback-Leibler diver-

gence score to compute reputation of hosts mapping to a large number of suspicious

domain names. Their approach marked domain names as dynamically generated if

their distribution of uni-grams or bi-grams do not fit the normal distribution. In [47],

the same authors proposed a negative reputation system that detects domain flux

botnets. Unlike previously cited works, it relies on the history of the large number
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of malicious activities to a specific IP address beside the suspicious failures. It as-

signs a high negative score to the suspicious domains. They performed experiments

and managed to detect infected domains. In [25], Kara et al. proposed a detection

mechanism for malicious payload distribution channels in DNS. The authors used a

significant amount of DNS traffic to identify covert channels that abuse DNS proto-

col. They proposed a technique that counts the usage of resource records to detect

payload distribution channels despite the fact that they have been rarely exploited.
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Chapter 3

Comparative Study of Anomalies

Detection Systems on Passive DNS

3.1 Introduction

In the past few years, many techniques have been proposed to monitor and analyze

passive DNS traffic. These techniques focus on detecting malicious activities includ-

ing spam domains, fast flux domains, phishing domains, algorithmically generated

domain names and botnets using passive DNS traffic. Each approach used differ-

ent features to detect malicious activities. Some approaches detect different types of

suspicious activities and some of them target specific types of suspicious activities.

In this chapter, we present the existing approaches that have been conducted in the

state-of-the-art on the analysis of passive DNS. In Section 3.2, we present the existing

approaches that analyze passive DNS traffic. Section 3.3 presents the comparative

study performed on these techniques.
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3.2 Presentation of Existing Techniques

The scope of this study covers many different techniques on the detection of malicious

activities using passive DNS streams. This section gives a summarization of each

technique.

3.2.1 Exposure

Exposure [7] is a novel technique to detect malicious domains based on passive DNS

stream. It uses machine learning techniques to build detection models. It uses a set

of features that are extracted from DNS traffic to identify the malicious domains and

distinguish them from the benign domains. After testing the system for two weeks,

it was able to detect malicious domains with high accuracy (98.4%) and low false

positive rate (0.5%). Thus, the authors deployed it for 17 months. It detected more

than 100K malicious domains.

Exposure has five components: (1) Data Collector, (2) Features Attribution, (3)

Malicious-Benign Domains Collector, (4) Learning Module, (5) Classifier. The Data

Collector collects the DNS traffic of monitored networks. Then, the Feature Attri-

bution attributes the recorded domains with all sets of features(2). At the same

time, Malicious and Benign Domains Collector collects known benign and malicious

domains from different sources. Then, it labels the recorded domains as either ma-

licious or benign using known domains. The labeled domains are the input to the

Learning Module which trains the data to build the detection module. The unlabeled

domains and the detection module are fed to the Classifier. The Classifier classifies
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the unlabeled domains into two categories which are malicious domains or benign

domains. The system should be trained for seven days before it can be ready for

malicious domains detection.

Exposure system applies two filters to reduce the amount of traffic to manageable

size without losing any relevant data. The first filter targets popular and well-known

domains. This filter removes all queries that are related to domains that are unlikely

to be associated with malicious activities such as Alexa top 1000 global sites. The

second filter targets the domains that are older than one year. Most of malicious

domains are detected and blacklisted after a short time of activity (several months).

This means if the domain is older than one year and was not detected by any tool, it

is not malicious. These filters removed almost 70% of the traffic which made it more

manageable.

Exposure was deployed for two weeks in large ISPs. It was able to detect many

unknown malicious domains with a detection rate of (98.4%) and false positive rate

of (0.5%). Because of the good results, Exposure was deployed as a free online service

for 17 months. It provides a daily list of detected malicious domains (200 malicious

domains per day). It detected around 100K malicious domains in total. However,

Exposure has limitations. First, it needs to be trained for seven days before it can be

used for identifying malicious domains. Second, it cannot detect domains that belong

to a malware family if the classifier is not trained for that family.
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Feature Set Feature Name

Short life
Time-based Features Daily similarity

Repeating patterns
Access ratio
Number of distinct IP addresses

DNS Answers-based Features Number of distinct countries
Reverse DNS query results
Number of domains share the IP with
Average TTL

TTL Value-based Features Standard Deviation of TTL
Number of distinct TTL values
Number of TTL change
Percentage usage of specific TTL ranges
% of numerical characters

Domain Name-based Features % of the length of the LMS

Table 2: Exposure Features

3.2.2 Notos

Notos [3] is a DNS dynamic reputation system that identifies malicious domains using

passive DNS stream. It assigns scores to new domains that indicate if the domain is

malicious or benign. High scores are assigned to legitimate domains and low scores

are assigned to malicious domains. It uses many features to classify malicious and

legitimate domains correctly(3). The system was deployed for real time data and was

able to detect malicious domains with high true positive rate (96.8%) and low false

positive rate (0.38%).

Notos system has two modes: off-line mode and on-line mode. In the off-line

mode, Notos reputation engine builds three modules. The first module is network

profiles which extract network-based features of well-known domains (CDN domains,

popular websites and dynamic DNS domains). Then, it trains a classifier to identify

whether a new domain has similar characteristics to the popular domains or not.
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The second model is domain name clusters which build clusters of domains based

on network based features and zone-based features. Some clusters contain malicious

domains that share similar characteristics and the other clusters contain legitimate

domains. The third model is the reputation function. It is a statistical classifier that

assigns a score to a new domain based on evidence-based features and the output

of network profiles and domain name clusters modules. It assigns a low reputation

score to malicious domains such as spam campaigns and C&C servers and assigns

a high reputation score to benign domains. Now the training is completed and the

system is ready for on-line mode. First, a new domain is sent to network profiles

module and the output is the probability that a domain name belongs to well-known

domains. Second, the domain name is sent to domains clusters module. The system

extracts the features and identifies the nearest cluster. Then, the evidence features

are computed to the domain name. Finally, the reputation function calculates the

score based on the outputs of the other modules.

Feature Set Feature Name

BGP features
Network-based Features AS features

Registration features
String features

Zone-based Features Average, TLD features
Blacklist features

Evidence-based features Honeypot features

Table 3: Notos Features

Notos is able to detect new malicious domains with high accuracy. In addition, it

is able to identify malicious domains before they are appearing in public blacklists.

However, Notos has some limitations. First, Notos could assign inaccurate scores
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to domains that don’t have enough passive DNS information. Second, it requires

time and large passive DNS traffic to train the system to be able to detect malicious

domains correctly. Third, due to the false positive rate, it is better to use Notos in

corporation with other defense systems not as a standalone system. Finally, Notos

would assign low reputation scores to legitimate domains that are hosted in bad

networks, which increases the false positive rates.

3.2.3 Kopis

Kopis [4] is a novel detection system to detect malware domains using passive DNS

stream at the upper DNS hierarchy. Because the stream is obtained from the upper

DNS hierarchy, the system has a global visibility that makes DNS operators work

independently to detect malware domains without needing other data from other

networks. It uses many features to detect malware domains including IP-reputation

features (4). The system was deployed for 8 months with real data. The result

indicates that Kopis has high detection rate (98.4%) and low false positive rate (0.3%-

0.5%).

Kopis detection system consists of three components: features computation, learn-

ing module and statistical classifier. The features computation is used to compute

sets of features for observed domain names in the stream. The features are com-

puted after dividing the stream into epochs (one day). The learning module works in

two modes which are training mode and operation mode. In the training mode, the

module takes only the computed features from domains that exist in the knowledge

base (KB). KB contains a list of known benign domains (Alexa, DNSWL) and known
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malicious domains (public blacklists). The module labels each domain’s feature vec-

tor with legitimate label or malicious label. The statistical classifier is used to learn

the behaviors that are related to legitimate and malicious domains. In the operation

mode, the statistical classifier assigns label and confidence scores to the domains that

are not in the KB at the end of each epoch based on the similarity with known le-

gitimate and malicious domains. After that, the average of the confidence scores of

each domain is calculated. If the score is higher than a threshold, it is malicious.

Feature
Set

Feature Name

Mean, standard deviation and variance of BGP prefixes of requesters
Mean, standard deviation and variance of AS numbers of requesters
Mean, standard deviation and variance of CCs of requesters

Requester
Diversity

The number of distinct IP addresses

The number of distinct BGP prefixes
The number of distinct AS numbers prefixes
The number of distinct CCs prefixes
Average, biased and unbiased standard deviation and biased and unbiased variance
of number of domain names queried by specific IP during specific time

Requester
Profile

Average, biased and unbiased standard deviation and biased and unbiased variance
of number of domain names queried by specific IP during specific time multiply by
the IP’s weight
The average number of known malware-related domain names, Spamhaus Block List
domains and the Alexa top 30 domain have pointed to IP addresses of given domain
name during the last month

Resolved
IPs Rep-
utation

The average number of known malware-related domain names, Spamhaus Block List
domains and the Alexa top 30 domain have pointed to BGP prefixes IP addresses of
given domain name during the last month
The average number of known malware-related domain names, Spamhaus Block List
domains and the Alexa top 30 domain have pointed to AS numbers IP addresses of
given domain name during the last month

Table 4: Kopis Features

The features that are used by Kopis detection system fall into three sets: requester

diversity (RD), requester profile (RP) and resolved IPs reputation (IPR). First, the

requester diversity set of features is used to check diversity of machines that query
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a given domain name. The diversity of machines that query malicious domains is

different from the diversity of machines that query legitimate domains. Second, the

requester profile features’ set is used to check whether the revolver’s IP address rep-

resents home machine, small business or large network. It assigns weights to each

resolver based on the number of queries issued by the resolver. If the number is large,

the weight is high and vice versa. Malicious domains usually receive queries that are

issued from large number of resolvers with high weight while legitimate domains re-

ceive queries from revolvers with high weight and resolveres with low weight. Finally,

resolved IPs reputation set of features are used to check the history of IP addresses

that mapped to a given domain name.

3.2.4 FluxBuster

FluxBuster [41] is a novel technique to detect malicious flux networks through analyz-

ing passive DNS traffic obtained from large numbers of local recursive DNS located

in different places. The system consists of many components: message prefiltering to

reduce the amount of messages by ignoring the messages that have no relation with

the flux domains, domain clustering to group domain names that are mapped to the

same group of IP addresses, and classifier to find out which clusters are malicious and

which are not. FluxBuster was deployed on real passive DNS traffic for five months.

It was able to identify malicious flux networks with a low false positive rate. The

malicious flux networks were detected by FluxBuster before public blacklists.

FluxBuster starts by receiving passive DNS stream and aggregating DNS mes-

sages that are related to a domain name during a certain time. It summarizes DNS
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messages into one message that contains all mapped IP addresses, average TTL and

number of messages. Then, it filters the messages based on some flux domain charac-

teristics (short TTL, large numbers of resolved IPs, resolved IPs located in different

networks). However, this step does not remove all legitimate domains. Some of legit-

imate domains that share the characteristics of flux networks still exist. After that,

domain clustering is applied to group the domains that have some similarity in terms

of their IP addresses. To find the similarity, two factors are computed which are Jac-

card index and sigmoidal weight. The second factor is used to measure the confidence

in Jaccard index. Each cluster contains one domain at the beginning. Then, every

cluster merges with the nearest cluster until one cluster is remained. It represents

the merged process as dendrogram and cuts it at certain height. The domains in the

connected subgraph after cutting are in the same clusters. After that, FluxBuster

use a statistical classifier to detect malicious flux network. Table 5 shows the features

that are used by the classifier to detect which cluster is malicious. The classifier is

trained on a data set that contains known malicious flux domains and known non-flex

legitimate domains. Then, it classifies clusters as malicious or benign based on the

computed features set.

FluxBuster has a few limitations. First, each cluster should have at least 30 IP

addresses during each epoch to perform classification on it. Second, the system needs

to observe at least one DNS query and response to a flux domain to be able to detect

it. Finally, FluxBuster needs 30 hours to detect malicious flux networks, which means

it will take a long time before taking action and stopping the threats.
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Feature Number Feature Name

1 Number of resolved IPs
2 Number of domains
3 Average TTL per domain
4 Number of domains per network
5 IP diversity
6 IP growth ratio
7 IP last growth ratio
8 IP prefixes last growth ratio
9 Novelty

Table 5: FluxBuster Statistical Features

3.2.5 CROFlux

CROFlux [19] is a detection system used to identify fast flux domains through passive

DNS system. The system depends on public knowledge about malware lists. It

detects domains with flux characteristics. However, it is able to reduce false positives

by discarding benign domains that have similar properties to flux domains such as

hosting providers and content delivery networks.

CROFlux system has three components: (1) Prefiltering of collected domains, (2)

Candidate domains clustering, (3) Detection of fast flux clusters. The system starts

by monitoring DNS traffic and filtering domains. It chooses the domains that meet

specific criteria which are: TTL should be less than 3 hours, the number of mapped

IP addresses to a domain is more than or equal to 3 and diversity of networks of a

domain is larger than 0.333. In addition, it takes a domain with less than 3 mapped

IP addresses if the TTL was equal or less than 30 seconds. After that, it calculates

the fluxy score for each domain based on the number of distinct IP addresses, number

of dynamic IP addresses and number of distinct autonomous systems. If the fluxy

score is more than 450, the domain is a fast flux candidate. Then, it clusters the
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domains that have common IP addresses. Finally, it identifies fast flux clusters from

other clusters by comparing the clusters’ domains with private and public malware

lists. If the number of malicious domains in a cluster exceeds a threshold, it is a fast

flux cluster.

The system collected DNS traffic for four months and detected 265 malware do-

mains with detection rate (91%).

3.2.6 Stalmans and Irwin

The authors in [50] introduced a system to detect fast flux and algorithmically gener-

ated domains by monitoring passive DNS traffic. The system identifies different types

of features in order to classify domains. The system uses many statistical measures

techniques to classify domains as malicious or not. It was able to detect malicious

domains with high accuracy and low false positive rate.

The system contains two parts. The first part for detecting fast flux domains

and the second part for detecting algorithmically generated domains. For fast flux

domains detection, many classifiers were employed and trained based on a set of

malicious and benign domains. They used a set of features which are the difference

between standard domain, CDN domain and fast flux domain in terms of: (1) number

of A records, (2) number of NS records, (3) number of network ranges, (4) number

of unique ASNs, (5) average TTL. These features are used to distinguish between

benign and malicious domains. For algorithmically generated domains detection, the

classifiers were trained based on an alphanumeric character distribution. Legitimate

domains are different comparing to algorithmically generated domains in terms of
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alphanumeric character distribution.

The system was able to identify fast flux and CDN domains correctly. In addition,

it was able to detect algorithmically generated domains with 87% accuracy rate, 82%

true positive rate and 8% false positive rate. It was determined that Bayesian classifier

is the best choice comparing with other classifiers because it provides high accuracy

with low false positive rate. The system increases the defense of the network.

3.2.7 Kara et al.

Kara et al. [25] introduced a system to detect DNS malicious payloads distribution

channels using passive DNS traffic based on access counts of RRs. The system uses a

set of features that differentiate between benign and malicious domains. It was able

to detect unknown malware domains in addition to malicious payload distribution

channels. The system was deployed for 30 days with real passive DNS traffic and

showed good results.

Each domain name has a zone file that contains different types of RRs. Each

zone file has an authoritative name server that is responsible of receiving a DNS

query and returning the a DNS response. Attackers should have access to the name

server to deliver malicious payloads via DNS responses. To detect malicious payload

distribution channels, the system monitors the DNS zone activities and the access

counts of each RR. Malicious domains that used to deliver payloads are different

from regular domains in terms of received query types. Malicious domains mostly

receive queries for RRs that used to deliver payloads such as TXT records while

regular domains receive queries for different kinds of RRs such as A, AAAA and
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MX records. The system starts by receiving passive DNS traffic and extracting DNS

queries that have TXT records. For each domain name, it aggregates DNS messages

and forwards them to domain-based queuing. At the same time, the DNS traffic

is stored in a database for the purpose of offline analysis. Then, the aggregated

messages are sent to the payload distribution detection module to find the malicious

payload distribution channels. The system extracts the access count of all RRs from

the passive DNS database. For each domain name, it computes the ratio of access

count of TXT records to access count of other record types that are used by payload

distribution channels for a certain period of time. If the ratio is large, it means the

domain is involved in payload distribution activities.

The system applies two filters to remove the legitimate domains that have some

similarities with payload distribution channels such as SPF, DKIM, IKE and DNSBL.

Because these specifications are designed for mail server, MX record should exist in

the zone file. The first filter removes any domain that has defined strings in its TXT

records such as SPF or DKIM. The second filter removes any domain that is associated

with MX records. These two filters remove non-payload distribution channels.

The system was deployed for one month and was able to detect payload distribution

channels after applying the filters. It can detect the payload distribution channels

even if they changed their syntax because it is based on the access count of the RRs.

However, the system has some limitations. First, if the malicious domain that is used

for payload distribution is accessed for different RRs such as A record, the system

will consider this domain as non-payload distribution channel. Second, malware could

send the queries to an open revolver instead of caching resolver. So, the traffic cannot
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be captured by the sensors.

3.2.8 BotGAD

BotGAD [10] (Botnet Group Activity Detector) is a system designed to detect bot-

nets using group activity characteristics by monitoring passive DNS traffic. A botnets

group has many activities such as receiving order, downloading updates and perform-

ing malicious activities. BotGAD was deployed using real time DNS data and was

able to detect botnet domains even if they use evasion techniques such as DGA.

The system consists of five components: data collector, data mapper, correlated

domain extractor, matrix generator and similarity analyzer. It starts by collecting

and aggregating DNS traffic using data collector. Then, the data mapper stores the

information in a hash map structure. It maps a domain name to IP addresses that

query the domain name and maps the IP addresses to the time of the query. Then,

the correlated domain extractor is used to cluster correlated domains based on sets of

features 6. The correlated domains could be domains generated using DGA, domains

from hard-coded C&C or domains from spam recipient list. The features that are

used for clustering are chosen from three different aspects: (1) DNS lexicology, (2)

DNS query information, (3) DNS answer information. At the same time, the system

builds a matrix to find temporal similarity of group activity using conventional vector

based method. The matrix contains the domain name, the IP addresses that query

the domain and the timestamps. The matrix generator marks the element with 1 if

the IP address queries the domain at that time and 0 if the IP address queries the

domain at that time. Then, the similarity analysis measures the similarity score of
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the generated matrix using the cosine similarity coefficient. Finally, hypothesis test

is performed to decide whether the group is botnet or not.

BotGAD was deployed and tested on three real time DNS traces including large

ISP networks. It was able to detect known and unknown botnets in large networks

with more than 95% detection rate, 0.4% false negative rate and 5% false negative

rate.

Feature Type Feature Name

Number of domain tokens
DNS lexicology features Average length of domain tokens

Longest length of domain token
Blacklisted SLD presence
IP diversity
Number of queries sent

DNS query features Number of distinct sender IPs
Number of distinct sender ASNs
Query type (A, NS, CNAME, MX, PTR)
Estimated similarity of a domain
Number of distinct resolved IPs

DNS answer feature Number of distinct ASNs of resolved IPs
Number of distinct countries of resolved IPs
TTL value in a DNS answer packet
Estimated similarity of a domain

Table 6: BotGAD Features

3.3 Comparative Study

We compare the aforementioned techniques according to the following criteria:

• Approach: Techniques that are used to detect DNS malicious activities such

as clustering and classification.

• Goals: Objectives of each system that is addressed.
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• Inputs: Description of different types of system inputs that are used for many

purposes, e.g., benign domain list used to train the system.

• Traffic Level: Level of traffic where the system performs DNS monitoring.

• Training Time: Time that is required to train a system before it becomes able

to produce accurate results.

• Accuracy Rate: It deals with accuracy of system results.

• FP Rate: It presents false positive rate of each system.

We have chosen these criteria since they are important aspects that one should

take into consideration to compare the performance and the accuracy of systems. The

comparison is presented in Table 7

3.4 Conclusion

We conclude this chapter by making the following observations.

• Most of the techniques [41], [19], [50], [25], [10] are specified to detect a certain

type of DNS malicious activities (e.g., botnet or fast flux networks).

• The techniques reported in [7], [3], [4] aim at detecting malicious domains gener-

ically and are not limited to certain types of malicious activities. They use clas-

sification approaches based on a large amount of training data sets. In addition

to the training set, their systems require extensive time for training.

• The training sets in question should be updated and the system should be reg-

ularly retrained. Hence, the system could keep up with the behavior of new
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malicious domains and malware.

33



System Approach Goals Inputs Traffic
Level

Training
Time

Accuracy
Rate

FP
Rate

Exposure
[7]

Training
Classification

Malicious
domains
detection

DNS traffic
Malicious
domain list
Benign do-
main list

Local
recursive
DNS
server

Require
train-
ing (7
days)

98.4 0.5

Notos [3] Training
Classification

Malicious
domains
detection

DNS traffic
Malicious do-
main list
Alexa domain
list

Local
recursive
DNS
server

Require
training

96.8 0.38

Kopis [4] Training
Classification

Malicious
domains
detection

DNS traffic
Malicious do-
main list
Known legiti-
mate domain
list

Upper
DNS
hierarchy

Require
train-
ing (5
Days)

98.4 0.5

FluxBuster
[41]

Prefiltring
Clustering
Classification

Malicious
flux net-
work
detection

DNS traffic
Flux net-
works
Nonflux
networks

Local
recursive
DNS
server

Require
training

High Low

CROFlux
[19]

Prefiltring
Clustering

Fastflux
domains

DNS traffic
Malicious
blacklist

Local
recursive
DNS
server

No
training

91.0 -

Stalmans
and
Irwin [50]

Classification Fastflux
domains
detection

DNS traffic
Malicious
data
1000 top vis-
ited domains

Local
recursive
DNS
server

Require
training

85.0 -

Kara et al
[25]

Filtering
Analysis

Malicious
payload
distri-
bution
channels
detection

DNS traffic Local
recursive
DNS
server

No
training

- -

BotGAD
[10]

Clustring Botnet
detection

DNS traffic
Black list
White list

Local
recursive
DNS
server

No
training

- -

Table 7: Passive DNS Detection Systems
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Chapter 4

Anomalies Detection in Passive

DNS

4.1 Introduction

The Internet has undergone more than just being used for standard activities such as

simple look-ups of general or scientific topics. Its network expanded and the number

of computers and servers connected to, has increased exponentially. It results in being

an essential infrastructure for finance, business, communication, research and devel-

opment. Despite its popularity, the Internet has its own dark side, since it has been

turned to be a nest of cyber-crimes including information theft, scams, email spams,

malware infections, etc. As a part of the Internet evolution, DNS protocol [37, 38]

plays the role of a phone-book for the Internet. This protocol is considered as a vital

piece that allows host-names being accessible. However, it is used as an artifact for

malicious activities. For instance, domain names are used as proxies and command
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& control servers (C&Cs) of malicious networks enclosing infected machines. C&Cs

communicate with bots through DNS queries to perpetrate malicious activities like

key-logging, spamming and spreading infections through networks. DNS protocol has

been also used to conduct reflection DDoS attacks. As such, there is a desideratum in

the generation of cyber-threat intelligence based on DNS traffic replica. Thus, some

research efforts [3,4,7,8,40] put an emphasis on using passive DNS to detect malicious

activities as well as DNS abuses. They use mainly classification techniques to segre-

gate malicious domains from benign domains or to detect fast-flux malicious services.

In spite of interesting results obtained by proposed systems in aforementioned works,

they have not integrated all-in-one solution to gather threat-intelligence. To this

quest, the availability of a tool that detects passive DNS anomalies is of a great help

for security experts since it allows to pinpoint abnormal DNS activities (e.g., frequent

change of city for a given domain, abrupt changes in DNS query number, detection

of new fast fluxing IPs, TTL values change, malicious abuse of DNS records). These

abnormal activities are considered as good indicators to detect zero-day attacks, and

can be correlated with malware analysis. We perceive our work as being different

in the proposition of a system that integrates an all-in-one solution, which has the

following capabilities:

• Design and implementation of an efficient and scalable passive DNS analysis

technique that provides timely and relevant threat intelligence on different types

of malicious activities including: suspicious domains, DNS record abuse, and

DNS anomalies.
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• Correlation of the generated threat intelligence with other sources of intelligence

such as our malware database. The intention is to get additional intelligence such

as the identification of the underlying malware samples that are responsible for

the observed domains or behaviours.

• Design and implementation of two analysis modes: The first mode, called general

detection, aims at analyzing the DNS traffic underlying every observed domain

or IP. The second mode is optimized to deal with domains or IP-blocks that

are of interest to the security analyst and that need additional monitoring and

analysis.

This chapter is organized as follows. Section 4.2 presents the detection of passive

DNS anomalies and abuses. The experimental results are discussed in Section 4.3.

Finally, concluding remarks are provided together with discussion of future research

in Section 4.4.

4.2 pDNS Anomalies and Abuse Detection

In this section, we aim to give an overview of the proposed passive DNS anomalies

and abuses detection framework.

4.2.1 Overview

We aim to design a system that monitors all domains and their DNS records as

observed in passive DNS stream. We intend to deploy a system that detects in near

real-time DNS malicious activities including potential anomalies and abuses of DNS
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protocol observed on captured DNS logs. However, we faced some challenges in the

design and the implementation of our system. The main challenge is how to handle

the high volume of DNS data. We observe in average 38, 891.4 DNS records per

second and more than 6 million unique domains per hour. Sometimes, the traffic of

DNS data reaches more than 8 millions unique domains per hour. Thus, we need

scalable techniques to monitor the huge load of DNS data as well as a reliable storage

system for the purpose of identifying the anomalies and storing the results.

Our system targets to: (1) Aggregate real-time DNS data for analysis purposes.

(2) Segregate different types of DNS records. (3) Identify suspicious domain names

and aliases. (4) Identify DNS records abuse, e.g., TXT, SRV, CNAME, NULL, OPT

and ANY. (5) Extract sets of features representing time series analytics. (6) Detect

DNS anomalies based on extracted features. (7) Correlate with different sources of

cyber-threat intelligence. (8) Monitor and archive all DNS activities related to specific

organizations of our interest.

A number of previous research efforts [29,45,56,59] used Apache Spark to analyze

the large amount of data. This has motivated us to use it as part of our system.

Spark monitors the huge amount of passive DNS data to extract anomalies. Such

framework that allows multi-purpose data processing is designed for intensive in-

memory and distributed clustering computations. It emphasizes on improving the

performance of applications that cannot be expressed efficiently as acyclic data flows,

where a working set of data is across multiple parallel operations [60]. It includes

two use-cases, namely, iterative jobs and interactive computing, where Hadoop [20]

is deficient. Hadoop is a processing model of on-disk data that supports single-pass,
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batch. A key asset of Spark lies in introducing the Resilient Distributed Dataset

(RDD). RDD is known to ensure the abstraction of data such that large datasets

can be cached effectively in memory or disk. RDDs represent immutable collection

of objects grouped into partitions. Spark uses RDD to allow re-usability of memory

cached objects, which significantly improves performance in work-flow execution.

In addition to in-memory and disk caching, Spark supports many data abstrac-

tions, namely, graphs, streaming logs (e.g., Twitter feeds), databases (e.g., MySQL,

Cassandra) and hadoop data formats. Moreover, Spark has an elaborated program-

ming model, which was initially integrated by SCALA programming language [14],

then wrapped to other languages, i.e., object-oriented programming such as Java [36],

script programming such as Python [18], and statistical computing language R [17].

Spark provides programmers with the ability to: (1) construct RDDs from files in a

shared file system, (2) divide collections into slices that can be sent to multiple nodes,

resulting in computation parallelism, (3) transform data smoothly from one type to

another (e.g, a log to a mapping object) and, (4) alter persistence of objects through

two actions, namely, cache action and save action. Cache action leaves a dataset lazy

but kept in memory for re-usability, and, save action dumps data into a distributed

file-system like Hadoop File System (HDFS).

Spark supports also several parallel operations, namely, Filter, Collect, Reduce,

Map-Reduce and Foreach. Filter operation allows to eliminate items into collections,

that do not satisfy a boolean predicate function. Collect operation sends all elements

of a dataset to a driver for a parallel gathering of items into a collection (e.g., ar-

rays, lists, etc.). Reduce operation combines dataset elements through an associative
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function. Map-Reduce, known also as grouped reduce function, which allows to map

datasets to a common mapping objects like tuples and reduce them by a key entry

and an associative function. Foreach operation allows a streaming loop through col-

lection to execute functions like exporting results to databases or copying them into

shared variables in a program.

4.2.2 System Architecture
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Figure 3: DNS Anomalies Detection Architecture

DNS Eco-system aims to monitor real-time DNS replica logs. These logs contain

passive DNS entries enclosing information about different record types (e.g., “A”,

“AAAA”, “CNAME”, “TXT”, etc). DNS anomalies detection system falls into the
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following components: Dispatcher, Record Extraction, Geo-location, Prediction per

Partial Matching (PPM) detection, Aggregation, Record Misuses Filter and Correla-

tor. Figure 3 illustrates the architecture of the system.

Dispatcher

The dispatcher component receives DNS logs and transforms them into streams of

RDDs. These RDDs are divided into four categories: (1) RDDs containing A records,

(2) RDDs containing AAAA records, (3) RDDs containing CNAME records and,

(4) RDDs containing records (e.g., “TXT”, “OPT”, “SRV”, “NULL”) that are the

inputs for DNS misuses like covert channels and tunneling. The dispatcher component

employs Spark filter action to check the resource record type and moves it to the RDDs

that contain the same type.

Record Extraction

The record extraction component takes RDD streams of each type as inputs and

extracts tuples as outputs. This component uses Spark map operation to produce

many tuples and push them to the next components that detect DNS anomalies and

record misuses.

Geo-location

The geo-location component uses a geo-location database called MaxMind [31] to

geo-locate IP addresses that exist in DNS “A” records. Usually, malicious domains

are mapped to many infected machines. Since botmasters have no control over the

geographical locations of the infected machines, the IP addresses of these machines
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are located in different countries, Border Gateway Protocol (BGP) and Autonomous

Systems (ASNs). Legitimate domains like google.com and youtube.com are also

mapped IP addresses located in many countries and cities. Therefore, we use on the

fly a white-list to remove all these domains and we geo-locate the domains that do not

appear in the white-list. The system takes a conservative approach, since it archives

all domains changing frequently cities and countries. Then, it cross-validates with

other features (IP-based features and TTL-based features) that will be explained in

the following sections. We collect the changes of countries and cities and place them

into immutable sets labeled by domain names. For this purpose, we use Spark filter

action to check if these sets are mapped to one country or city and remove all sets that

are mapped to one city or one country. Our system only geo-locate the IPv4 addresses

that are collected from “A” records and we decide to do it for IPv6 addresses that

are collected from “AAAA” records in the near future.

PPM Detection

The PPM detection component uses a technique proposed by Begleiter et al. [6] to

domain fluxing activities and misuse of CNAME records. Domain fluxing is one of the

techniques that are used by attackers where the malware change the fully qualified

domain names frequently. Such domains are used as C&C that send commands, store

stolen information and begin attacks. Domain generation algorithm (DGA) is the

simplest way for botnets to achieve domain fluxing through the generation of random

domain strings. Canonical name (CNAME) records misuse is another technique used

by malware. They map malicious domains to machine generated alias domains to
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appear as legitimate domains.

The technique proposed by Begleiter et al. uses Prediction per Partial Matching

(PPM) algorithm, which is a type of Variable order Markov Model (VMM) algorithms.

PPM algorithm predicts the symbol based on previous symbols. It has two phases,

namely: training phase and prediction phase. At the training phase, it builds a

tree structure (Trie, in particular), which stores the sub-sequences of the training

sequences and the counts of the symbols that appear after them. At the prediction

phase, it calculates the probability estimation of sub-sequences of a new sequence and

compares it with the estimation of the training set. Our abnormal domains detector

computes the probability of a domain name to verify whether it is benign or not. In

our case, the training dataset is composed of different domain white-lists (e.g., Alexa

top one million domains [2], Quantcast US domains ranking [43]). PPM algorithm

has two steps to build the training sequences. First, it reverses each domain name.

Second, it adds two delimiters at the beginning of each reversed domain names. For

example, google.com is reversed to ##moc.elgoog. The delimiters are used to separate

domains, which avoids appearance of noisy context in the training sequence. The

domains are reversed to let the training based on domain TLDs. Once the sequences

are ready, PPM classifier stores the count of symbols that occurs after sub-sequences

of a specific length (distance) in the training sequences.

Then, the classifier is used to calculate the average per symbol probability of the

50% of the training sequences, which are uniformly sampled. The computed average is

considered as a pivot score. The reason behind choosing half of the training sequences

lies in the fact that the pivot score should represent the average benign domain
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name. To determine if a new domain is abnormal or not, we first reverse the domain

name and add the delimiters. After that, we use the PPM classifier to compute

the average per symbol probability. Then, we calculate the ratio of the average per

symbol probability and the pivot score. If the ratio is less than a threshold (0.8), the

domains is considered as abnormal. Otherwise, it is considered as benign.

Aggregation

The aggregation component monitors different features of passive DNS records to

detect DNS anomalies. Since the records are received each minute, we gather the

traffics every minute. After collecting the features for a specified time window (2

hours for specific domains and IPs, 1 hour for the rest of passive DNS records) and

having enough samples, our system uses map-reduce Spark action to reduce tuples

generated by the record extraction component (See Sub-Section 4.2.2) and groups

them according to domain names. Then, we apply anomaly detection techniques to

identify malicious behaviours. The aggregation is done on the following features: (1)

Number of Queries, (2) Number of IP Changes per Domain and (3) TTL values.

Number of Queries: The number of queries that target a particular domain name

over a specific period of time is used as indicator of malicious behaviors such as domain

flux and spam campaigns. Benign domains approximately have similar number of

requests over time. However, domains flux is a technique where an IP address maps

to many suspicious domains. These domains often have abrupt increase in their “A”

or “AAAA” queries number followed by an abrupt decrease. Similarly, when a new
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domain joins spam campaigns, it exhibits abrupt increase in the number of queries

over a period of time.

Chauvenet test is a method that detects outliers by identifying a probability band

centered on the mean of a normal distribution with a certain standard deviation that

contains all time-series points. Any time series point located outside the probabil-

ity band is considered as an outlier. The algorithm has two inputs: the time series

points and a significance level α (0.5). First, the mean of time series data (M) and

the standard deviation (S) are calculated. Then, we create a normal distribution

based on the mean and standard deviation. Using the normal distribution, we com-

pute a cumulative probability (P ) of each value in time series data from the normal

distribution. Then, we multiply the inverse probability by 2 to compute the criterion

value (P ′). Finally, we multiply (P ′) by the length of data points and compare it

with α. If the result is less than α, the value is considered as an outlier. Algorithm

1 summarizes different steps to identify outliers for queries number attribute.

Algorithm 1: Chauvenet Test

Input: Data
Input: α = 0.5
Output: Outliers
M = Mean(Data);
S = StDev(Data);
ND = NormalDist(M,S);
for all V in Data do

P=CumulativeProb(ND,V )
P ′ = 2× (1− P );
if P ′ × Length(Data) < α then

Outliers.Append(V );
end if

end for
return Outliers;

The reason behind using Chauvenet test rather than λ1,t linear regression test to
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identify queries number anomalies lies in the fact that λ1,t linear regression test is

aggressive in terms of detecting outliers. As such, any slight change is seen as an

outlier. However, this is not the case for the number of queries, since we aim to

detect drastic changes instead of slight changes.

Number of IP Changes per Domain: Malicious domains tend to have many IP ad-

dresses. Thus, we decide to monitor IP addresses of each domain observed in the

stream. The system begins with gathering sets of IPs on 2 minute sliding window.

After the 2 hours for domains and IP- blocks of our interest, 1 hour for the rest of

domains, it indexes the collected IPs sets by domain names using Spark map-reduce

action. Then, it converts the sets to time series by computing the number of IP

addresses observed at the time t + 1 and not observed at time t. Using the time

series of each domain as an input for the scoring function, it computes the priority

of that domain. Domains having high priority are more likely to be malicious. So,

it is considered for investigation. Domains having low priority are rejected. There

are many legitimate domains that have many IP addresses. Thus, we use a white-list

which is a set of known benign domains to decrease the false positives.

The scoring function works following these steps: (1) computing the positive shifts

(positiveShifts) between time series values at time t and t + 1, (2) computing the

number of time series values that are greater than or equal to average of the values

(aboveAverage). (3) computing the number of time series values that are greater

than 0 (aboveZero). After that, the score is computed by summing the ratio of

positiveShifts and the ratio of (aboveAverage) and (aboveZero). Then, we divide
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by 3 to normalize it to a value between 0 and 1. Algorithm 2 illustrates how the IPs

changes scoring function is computed.

Algorithm 2: IP Changes Score Function

Input: T imeSeries
Output: Score

M = Mean(T imeSeries);
S = Size(T imeSeries);
for all i = 0; i < S; i++ do

if T imeSeries[i] < TimeSeries[i+ 1] & i �= S − 1 then
positiveShiftse

end if
if T imeSeries[i] > M then

aboveAverage++
end if
if T imeSeries[i] > 0 then

aboveZero++
end if

end for
Score = 1

3
× [(positiveShiftse/S − 1) + ((aboveAverage+ aboveZero)/S)];

return Score;

TTL values: TTL value is one of the features that is used by many security experts to

detect DNS malicious activities. Most of the legitimate domains assign high values to

the TTL to gain caching advantages while malicious domains such as fast-flux systems

tend to use small TTL values such as 3600 seconds or less as well as the round-robin

technique. It provides many IP addresses for a given domain name. These techniques

help malicious domains to stay available all the time and make it difficult for DNS-

based Blackhole List (DNSBL) to detect them. One of the systems that uses low

TTL values to detect Fast-Flux systems is Exposure by Bilge et al [7]. They claim

that some malicious networks change their TTL frequently. These networks have

many bots and some of them are chosen to be proxies. Proxies running on ADSL

server are less dependable so, their TTL values are low. However, proxies running

on university servers are more dependable thus, their TTL values are high. They
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validate their assumption about TTL values with Conflicker botnet domains. Thus,

the frequent changes of TTL values as well as the low TTL values are some of the

characteristics that distinguish the malicious domains from the benign domains. We

use these characteristics in our scoring function to detect such domains. Algorithm

3 illustrates the steps used to compute the score. The algorithm has two parts. The

first part checks if the time series values are the same and less than one hour (3600

seconds). The score is assigned based on the ranges that TTL values belong to. For

example, the TTL values belonging to the range [0, 1] have the highest score while

the ones that belong to the range [900, 3900] have the lowest score. The second

part computes the ratio of TTL values per range RangesRatio and the ratio of TTL

changes ChangesRatio. For computing RangesRatio, we multiply the number of

TTL value per range with a priority number. The priority number of lowest ranges

[0, 1] is the highest number (6) while the priority number of the highest range [3600,∞[

is the lowest number. Then, we sum them and divide them by 6 to normalize the

ratio. The final score is computed by summing RangesRatio and ChangesRatio and

dividing them by 2.

Some benign domains such as Content Delivery Networks (CDNs) also assign low

values to the TTL and use round robin technique to ensure the availability. We create

a white-list of CDNs systems to remove such domains and decrease the false positive

rate.
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Algorithm 3: TTL Score Function

Input: T imeSeries
Output: Score

F = Frequency(T imeSeries, T imeSeries[0]);
S = Size(T imeSeries);
if S = F then

if T imeSeries[0] ∈ [0, 1] then
Score = 1.0

else if T imeSeries[0] ∈ [1, 60] then
Score = 0.9

else if T imeSeries[0] ∈ [60, 300] then
Score = 0.8

else if T imeSeries[0] ∈ [300, 900] then
Score = 0.7

else if T imeSeries[0] ∈ [900, 3600] then
Score = 0.6

else
Score = 0.0;

end if
else

for i = 0; i < S; i++ do
if T imeSeries[i] ∈ [0, 1] then

a[6] + +
else if T imeSeries[0] ∈ [1, 60] then

a[5] + +
else if T imeSeries[0] ∈ [60, 300] then

a[4] + +
else if T imeSeries[0] ∈ [300, 900] then

a[3] + +
else if T imeSeries[0] ∈ [900, 3600] then

a[2] + +
else

a[1] + +
end if
if i+ 1 �= S & T imeSeries[i] �= T imeSeries[i+ 1] then

Changes++;
end if

end for
ChangesRatio = Changes/(S − 1);
RangesRatio = 1

6×S
×∑6

i=1 i× a[i];

Score = 1
2
× (RatioChanges+RatioRanges);

end if
return Score;
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Record Misuses Filter

DNS protocol has been used by cyber-criminals as a carrier for communication be-

tween malware infected machines and remote bot-masters or proxies. Being in-

spired by the emergence of DNS tunneling tools (e.g., iodine [27], NSTX [51], Ozy-

manDNS [24], Heyoka [44], etc.), attackers have been misusing DNS records, namely,

“TXT”,“SRV”,“OPT”, “NULL” and “ANY”, to perpetrate malicious activities. In

this section, we present examples of how these DNS records can be abused.

DNS tunneling: Although being considered as a benign service provided online or

by customized tools, this service is a good artifact to exfiltrate data from networks

that permit traffic to be sent only through a trusted server or proxy. By having a

moderate bandwidth (110 Kilobytes per second) and latency (150 Milliseconds) [52],

attackers consider it as a good medium to send blocked IP traffic through and conduct

stealthy communication between bot masters. In [48], Ed Skoudis claimed that DNS

tunneling malware is among the most dangerous attacks.

Malware covert channels: In [12], the authors explained the Modus-Operandi of

Feederbot botnet. Malware belonging to Feederbot family, exfiltrates data within

DNS query sub-domain labels and infiltrates attack payloads in DNS response packets.

To detect DNS traffic generated by Feederbot botnet, the authors defined empirically

a set of features that span over record data features and behavioral communication

features. Based on these features, they adapted an hybrid approach (clustering &
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classification techniques) to detect malicious DNS traffic. In [34], Mullaney intro-

duced another malware family, namely, Morto, which uses a more resilient method to

exchange communication through covert DNS channels. Morto botnet sends a lim-

ited amount of payload, which makes its payload distribution stealthier in comparison

with Feederbot botnet.

DNS malicious responses: Attackers have put forward tools to send malicious re-

sponses in reply to DNS queries in order to test if DNS look-up servers are vulnera-

ble. For instance, dnsxss [49] is a tool that returns a string containing JavaScript to

“MX”, “CNAME”, “NS”, and “TXT” requests. By looking at Passive DNS stream,

we have found a lot of domains having “TXT” records containing script and frame

tags. If a vulnerable server does not sanitize “TXT” record data returned by such

domain, XSS attacks can be performed leading to some abnormal behavior in the

server side.

Indicators of DNS DDoS attacks: In [9], the authors stipulated that “ANY” record

is usually used in amplification DDoS attacks since it has an amplification factor of

52 as it replies with a response packet of 3, 336 bytes to a request packet of 64 bytes.

In [15], the authors monitored Darknet for the purpose of inferring DDoS attacks.

They observed that “ANY” records are in order of 52.23% of observed records involved

in DDoS attacks during a period of three months. In the prevailing of these facts, we

decide to monitor “ANY” records observed in passive DNS stream of data.

To extract record misuses, we use Spark filter functions on tuples. For instance,

“TXT” record is used to publish email sender policies associated with domains (e.g.
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SPF, DKIM and DMARK) and to identify verification of different search engines. It

detects misuse of “TXT” record by creating patterns that identify benign usage of

“TXT” record while the rest is considered as malicious. The “SRV” record is used

to publish services for DNS. Based on observations done on “SRV” record data, we

create patterns that identify if the record data is suspicious or not. In addition, we

capture all passive DNS entries that have “OPT”, “NULL” or “ANY” as a record

type. The reason behind doing so lies in the fact that such records are rare and can

be indicators of compromise.

Correlator

Our passive DNS anomaly detection system has been corroborated with a set of

scripts that correlate intelligence gathered from passive DNS anomalies with other

cyber-threat intelligence components, namely, dynamic malware analysis database

and VirusTotal database [53]. Threat correlation falls into: (1) anomaly domains

correlation, (2) anomaly IPs correlation and (3) DNS records abuse correlation. Re-

garding anomaly domains correlation, once we have a suspicious domain name, we

check if it is related to malware activities through the dynamic malware analysis

database. If so, we collect the different malware names and use VirusTotal malware

naming capability to link the domain name to a set of malware families. In addi-

tion, we use VirusTotal URL scanner to check if the domain name is associated with

threats identified by VirusTotal. Moreover, we use the suspicious domain database

to collect the different IPs associated with the domain name. These IPs are used to

gather geo-location information for the purpose of threat source identification and
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profiling and be correlated with the dynamic malware analysis database and Virus-

Total search engine to potentially identify other threats. Usually, anomaly domains

have alpha-numerical patterns. Thus, we look into the dynamic malware analysis

database to discover other domains that may have such patterns. Once these do-

mains are identified, we repeat the same aforementioned correlation steps. Regarding

anomaly IPs correlation, we monitor mainly anomalies related to the change of IPs

number. For each domain responsible of triggering those types of alerts, we collect IP

addresses mapped to the domain by correlating it with suspicious domains collections.

In addition, we correlate the domain and its IPs with the dynamic malware analy-

sis database and Virus-total search engine to check if it is related to threats or not.

Regarding DNS records abuse, we correlate obtained DNS records’ data with DNS

traffic collected from the dynamic malware analysis. DNS can be used as a covert

channel for malware communication or a vector for reflection DDoS attacks. Thus,

we correlate any pattern found on “TXT”, “NULL”, “SRV”, “OPT” and “ANY”

data records with DNS traffic generated by malware samples.

4.3 Experiments and Results

In this section, we illustrate the performance of our application in different aspects.
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4.3.1 Application Performance

Three servers have been dedicated to our DNS monitoring system. All the servers

use Debian OS version 7.8. In addition, they use a document-based database (Mon-

goDB [33]) to archive different collections of data. Each server has specific char-

acteristics that suit its requirements. The first server is used to detect suspicious

domains through PPM algorithm and misuses of different types of resource records

(“TXT”,“SRV”,“OPT”, “NULL”, “ANY”). It is a Dell Poweredge T410 and has 64

GB memory, 24 CPU cores, and 3.8 TB space. The second server is employed to

identify the change of cities, countries and IP addresses and TTL values per domain.

It is a HP Proliant DL580 and has 125 GB memory, 48 CPU cores and 4.5 TB space.

The third server is dedicated to monitor suspicious domains through PPM algorithm,

the change of cities, countries and IP addresses, and TTL values of domains or IP-

blocks that are of interest to the security experts. It is a SuperMicro and has 125 GB

memory, 48 CPU cores and 4.0 TB space.

In addition, we analyze performance of servers in terms of memory consumption,

CPU usage and time delay. For the time delay, we aggregate scheduling and pro-

cessing time for batches. We monitor it through Spark user interface. For memory

consumption and CPU usage, we observe them through JavaVisual VM [54]. We give

different observations of memory consumption, CPU usage and delay time for the

three servers. The calculations are done based on 18 hours logs.
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The First Server: PPM Detection and Record Misuse

The first server is employed to detect PPM domains as well as misuses of passive DNS

records. The system reads data in slide batches of 1 minute. We explain the system

performance from various aspects (memory consumption, CPU usage and processing

delay time).

Memory Consumption We observe that the memory consumption of Server 1 is high

because of the large numbers of tuples received each minute. In addition, we notice

that the garbage collector is used frequently (2 to 3 times every 3 hours) to avoid

overhead usage of the memory (See Figure 4).

10:00 AM, Tue 1:00 PM, Tue 4:00 PM, Tue 10:00 PM, Tue 1:00 AM, Wed 4:00 AM, Wed

10 GB

20 GB
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50 GB

60 GB

0 GB
7:00 PM, Tue

Figure 4: Memory Consumption of Server 1

CPU Usage For PPM detection and misuses of records, our system employs a filter-

ing technique to recognize suspicious tuples collected from passive DNS stream. The

batches are read each minute and no need for aggregation. We notice that the CPU
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usage of Server 1 is less than 50% of CPU. Sometimes, we notice an increase of CPU

usage which is due to the huge number of collected data received that minute. This

is illustrated in Figure 5.
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Figure 5: CPU Usage of Server 1

Delay Time Due to the size difference of data received each minute, the delay time

of the application varies from 1 minute to 20 minutes (see Figure 6). The average of

the delay time is 2 minutes 23 seconds which is considered to be reasonable because

of the large amount of passive DNS data analyzed on-the-fly.
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2 minutes 23 seconds

Figure 6: Delay Time of Server 1
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The Second Server: IPs and Domains Features Monitoring

The second server is committed to compute different features of DNS. The features

are cities changes, countries changes, IPs changes and TTL values. The slide batches

of reading data is 2 minutes and the slide batches of the aggregating data is 1 hour.

We describe the performance in terms of memory consumption, CPU usage and delay

time.

Memory Consumption The System consumes most of the memory to compute the

required features. When the window batches of 1 hour are finished and the data is

ready for processing, the application uses the memory intensively due to the large

amount of data being processed (see Figure 7). In addition, the garbage collector

is used many times compared to the first server to release more memory for the

application.
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Figure 7: Memory Consumption of Server 2
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CPU Usage The system uses the CPU massively every 2 minutes. These batches

store different feature values including cities changes, countries changes, IPs changes

and TTL values. In addition, the CPU is used intensively after 1 hour to perform map-

reduce operation and insert the scoring function results to the database collections

(see Figure 8).
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Figure 8: CPU Usage of Server 2

Delay Time The delay time of this application is high compared to the delay time of

Server 1 application (see Figure 9). The average delay time for 1 hour batch window

is 40 minutes and 48 seconds. However, this is considered acceptable due to the large

number of features needed to be processed.
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Figure 9: Delay Time of Server 2
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The Third Server: Specific Domains and IP-Blocks Monitoring

This server is set up to monitor all domains or IP-blocks that are of interest to the

security analyst. This application combines all capabilities of Server 1 and Server

2. So, we monitor all the PPM domains, DNS record misuses and DNS features

statistics. Spark filter is used to distinguish the required domains and IP-blocks. Due

to the fact that the domains and IP-blocks are just a small part of collected DNS

records, we use 2 hours batch window rather than 1 hour to collect more data for the

features.

Memory Consumption We notice that the memory consumption of Server 3 is low

compared to the previous servers. However, after windows batches of 2 hours, the

application consumes more memory to compute the features statistics (see Figure

10). The garbage collector of this application is used few times since the application

is not using the memory intensively like Server 1 and Server 2.
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Figure 10: Memory Consumption of Server 3
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CPU Usage We observe from Figure 11 that the CPU usage of Server 3 is low during

2 hours of slide windows batches. During the aggregation period, we notice an increase

of the CPU usage due to Spark map-reduce operation.
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Figure 11: CPU Usage of Server 3

Delay Time From Figure 12, we observe that the delay time of application 3 is less

than 1 minute before the aggregation period (2 hours). However, the delay time is

increased at the end of window batch (2 hours) due to the computation of features.

The total delay average is 23 seconds and 658 milliseconds that is considered to be

very low comparing with application 1 and application 2.
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Figure 12: Delay Time of Server 3
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4.4 Conclusion

In this chapter, we introduced a system that detects in near real-time different mali-

cious activities including suspicious domains, DNS records misuses and DNS anoma-

lies. Our system monitors all domains and their DNS records within passive DNS

traffic. However, due to the large volume of DNS records, we implemented Apache

Spark as part of our system. It is a framework that has the ability to monitor the huge

load in addition to store the large amount of results. Our experiments on real-time

passive DNS traffic show that our system can detect several types of DNS malicious

domains such as spamming domains, bitcoining domains and phishing domains. Our

system is also able to detect suspicious domains that are associated with several types

of malware families. In addition, we identified different DNS record misuses such as

CNAME and TXT records. We believe that the results of our system can help security

experts to identify potential cyber threats.
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Chapter 5

Conclusion

The Domain Name System (DNS) is a cornerstone component that intervenes in the

operations of cyber threat infrastructures. As such, it is also being extensively used

for malicious purposes. Moreover, there is an increasing evidence that demonstrates

the abuse of DNS to conduct a wide variety of malicious activities such as operating

botnets, spamming, phishing, fast-fluxing networks to evade detection, transporting

malicious payloads, and infiltrating/exfiltrating sensitive information from organi-

zational networks. In this setting, it becomes essential to subject DNS traffic to

extensive analysis for the purpose of detecting the aforementioned cyber crime activ-

ities.

In this thesis, we addressed the problem of the analysis of passive DNS streams

for the purpose of generating timely, relevant and important threat intelligence on

cyber crime activities. Accordingly, we investigated the identification of suspicious/-

malicious domains, the detection of DNS abuse as well as the fingerprinting of DNS

anomalies. An important subgoal of the thesis was to cross-correlate the generated
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intelligence with other sources of cyber threat intelligence. A special care was ded-

icated to make the elaborated analysis both efficient and scalable. In essence, the

contributions of the thesis are:

• Comparative study of the state-of-the-art approaches in terms of passive DNS

analysis. These approaches are analyzed and compared against a set of objective

criteria that we have compiled.

• Design and implementation of an efficient and scalable passive DNS analysis

technique that provides timely and relevant threat intelligence on different types

of malicious activities including: suspicious domains, DNS record abuse, and

DNS anomalies.

• Correlation of the generated threat intelligence with other sources of intelligence

such as our malware database. The intention is to get additional intelligence such

as the identification of the underlying malware samples that are responsible for

the observed domains or behaviours.

• Design and implementation of two modes of analysis: The first mode, called

general detection, aims at analyzing the DNS traffic underlying every observed

domain or IP. The second mode is optimized to deal with domains or IP-blocks

that are of interest to the security analyst and that need additional monitoring

and analysis.

• Design and implementation of a distribution technique that leverages the com-

putational clustering paradigm using the so-called Apache Spark framework in

order to achieve scalability of the analysis of DNS streams.
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Our experiments show that our proposed system is capable of uncovering important

intelligence about cyber crime infrastructures. Indeed, we have been able to map the

elements of several infrastructures that are perpetrating several attacks using botnets,

fast-fluxing networks and malware distribution. In addition, our system demonstrated

high efficiency in monitoring domains and IP-blocks that are of interest. Furthermore,

our system is able to identify suspicious/malicious domains that are associated with

different malware families. Although some of the detected domains have not been

correlated with any malware families, this could be an indication that the underlying

domains and IPs are elements of zero-day attacks. A very nice feature of our system,

compared to existing techniques, is that it does not require any training and does not

focus on specific types of threats.

As future work, we intend to experiment with additional features and time series

prediction algorithms and compare their performance and efficiency to the ones used

in this work. We envision also to conduct correlations with additional sources of cyber

threat intelligence.
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