
TOWARDS A DATA-DRIVEN OBJECT RECOGNITION

FRAMEWORK USING TEMPORAL DEPTH-DATA

David Birkas

A thesis

in

The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

December 2015

c© David Birkas, 2016

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: David Birkas

Entitled: Towards a Data-driven Object Recognition Framework using Tem-

poral Depth-data

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair

Examiner

Examiner

Examiner

Supervisor

Co-supervisor

Approved
Chair of Department or Graduate Program Director

20

Rama Bhat, Ph.D.,ing., FEIC, FCSME, FASME, Interim Dean

Faculty of Engineering and Computer Science

Abstract

Towards a Data-driven Object Recognition Framework using Temporal Depth-data

David Birkas

Object recognition using depth-sensors such as the Kinect device has received a lot of attention in

recent years. Yet the limitations of such devices such as large noise and missing data makes the

problem very challenging. In this work I propose a framework for data-driven object recognition

that uses a combination of local and global features as well as time varying depth information.

iii

Acknowledgments

I would like to thank my mother and father for their unconditional support. My fiance for her

patience and encouragement. My brother for his help through my entire work. Last but not least

for my supervisor who always kept me on the right track.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

2 Related Work 7

2.1 Previous Work . 7

2.1.1 Comparison . 7

2.1.2 Segmentation . 8

2.1.3 Descriptor Design . 11

2.1.4 Detection . 13

2.1.5 Registration . 15

2.2 Fundamental Algorithms . 16

2.2.1 Depth Images and Point Clouds 16

2.2.2 RANSAC . 17

2.2.3 Canny Lines . 18

2.2.4 Bag of Features . 19

2.2.5 ICP . 20

3 Proposed Method 22

3.1 Offline Section . 22

3.1.1 Depth View Generation . 24

3.1.2 Edge View Generation . 26

3.1.3 Vocabulary and Descriptor creation 29

3.2 Online Section . 30

3.2.1 Depthmap Processing . 32

v

Contents vi

3.2.2 Segmentation . 33

3.2.3 Local Descriptor Generation . 36

3.2.4 Retrieval . 38

3.2.5 Correspondence . 40

3.2.6 Retrieval refinement . 41

4 Implementation Details 44

5 Discussion 46

5.1 Analysis . 46

5.2 Limitations . 47

5.3 Evaluation and Results . 47

5.4 Future work . 48

List of Figures

1.1 Visualization of table 1.1 ’s subjects. Each row corresponds to the same
row in the table . 2

1.2 Left: the setup, utility car with the computer and the camera on top.
Right: the system identifying the objects on the table correctly. 5

1.3 There are two main phases in the system. The offline, preprocessing phase
and the online, detection phase. a) the input of the preprocessing phase,
namely meshes. b) creating snapshots of each mesh and obtain the corre-
sponding depth image, then generate the canny lines from it. c) gather the
local descriptors from the edge images. d) create the supporting database
from the local descriptors. e) input of the detection phase, namely depth
maps of the viewed scene. f) segment the scene into objects. g) obtain
the edge images of each segmented object’s depth image. h) generate the
local descriptors from the edge images and find the closest one in the
database. i) aggregate results from previous frames. j) final result. 6

2.1 The result of the above described algorithm. Image from [1]. 11

2.2 In this image the viewer can observe, that the more frequencies are used
to represent a boundary curve, the more information it has to reproduce
the curve. 13

2.3 Result of the Gabor filter and the local feature pipeline. The image is
from [3]. 14

2.4 Result of the Kinect Fusion algorithm. The image shows the position and
orientation of the camera around the scene. The image is from [31]. . . . 15

2.5 Image of a depth map and the corresponding point cloud 17

2.6 Result of the RANSAC algorithm described above. 18

2.7 left: the input image, right: the out put of the Canny algorithm 19

2.8 Illustration of the bag of feature model . 20

2.9 The result of the ICP method. From left to right the algorithm converges. 21

3.1 The offline pipeline . 23

3.2 Sample of the office 3D mesh database set. 24

3.3 Tessellated unit sphere with an object scaled and centered inside it. . . . 25

3.4 Snapshot of the database depth image series. 26

3.5 Left: monitor boundary curve. Right: mug boundary curve 27

3.6 Suggestive contour result on a poor mesh. 27

3.7 Results of the Canny line algorithm . 28

3.8 The online pipeline . 31

3.9 Result of the normal calculation. White lines represent the normals. . . . 32

3.10 Result of the plane’s concave hull calculation. 34

vii

List of Figures viii

3.11 Visualization of figure 3.11’s point cloud as a binary cloud in a text editor.
Yellow color represents 1’s and rest are 0’s. 34

3.12 Object clustering results. Each cluster represents a different color, in total
4. 36

3.13 Left: original depth image patch. Right: scaled depth image patch. 37

3.14 Left: original depth image patch. Right: scaled depth image patch. 37

3.15 Edge image of figure 3.13. 37

3.16 Top database generation, bottom online phase generation. From left to
right: model, depth map of the model, corresponding edge image. 38

3.17 Testing the retrieval system by inputting figure 3.16 image patch of a mug 39

3.18 Top: Each color represents a separate frame and each camera is marked
with the corresponding frame’s color. Bottom: The same image, but
instead of visualizing the point clouds cubes are used to be able to see
the transformations more clearly. 41

3.19 From left to right: 1., 2., 3., input frame. Frame 1. gets false positives for
the monitor as laptop and for the mouse as glass. Frame 2. refinement
phase fixes false positive for the monitor. Frame 3. refinement phase fixes
the false positive for the mouse. 43

4.1 A flow diagram of the system. Each color represents a different thread.
Dotted lines mean, that the thread is depending on some variables from
the other thread. 45

5.1 Some example results of the system. From top to bottom: general office
scene, general office scene with objects not in their standard position,
general office scene with an occlusion example (1), general office scene
with an occlusion example (2), general furniture scene, general furniture
scene with objects not in their standard position. 49

List of Tables

1.1 Questions what need to be answered before developing an object detection
system . 2

1.2 My answers to table 1.1 questions . 4

3.1 Input and output of phase 1 in the offline section of the system, where x
is the number of input 3D meshes. 24

3.2 Input and output of phase 2 in the offline section of the system, where x
is the number of input 3D meshes. 26

3.3 Input and output of phase 3 in the offline section of the system, where x
is the number of input 3D meshes. 29

3.4 The quantified values of chapter 2.5 . 30

3.5 Input and output of phase 1 in the online section of the system. 32

3.6 Input and output of phase 2 in the online section of the system. 33

3.7 Input and output of phase 3 in the online section of the system. 36

3.8 Input and output of phase 4 in the online section of the system. 38

3.9 Input and output of the correspondence in the online section of the system. 40

3.10 Input and output of the refinement phase in the online section of the system. 42

4.1 Summery of the libraries and APIs used in the project. 44

ix

Dedicated to my family.

x

Chapter 1

Introduction

Object detection and object retrieval is a huge research area in computer science. It

includes many fields within computer science, like computer vision [8], [33] and computer

graphics [3], [32]. The reason behind why this task does not belong clearly to one another

lies in the diversity of the use cases of the final application. Moreover the pipeline of

such application may need to solve several complex tasks, which one by one may belong

to one of the above mentioned fields, but they solve a bigger complication altogether.

Furthermore inspecting solutions from different perspectives is beneficial. The combined

knowledge of the field of Computer Graphics and Vision can highlight and create a wide

range of novel solutions and applications. The reason behind this is that while the

filed of Computer Graphics is making efforts to answer the question: how to produce

image data from models, the filed of Computer Vision is making efforts to answer the

question: how models are produced from image data. All in all, this research area is

clearly benefiting from the results of more than one field in computer science and hence

it is located in the joint-section of these fields.

The main question in object detection is how can computers detect, recognize, dis-

tinguish or identify objects from an input data, like an image or video stream, as we

humans do. For us it is an obvious thing and we are pretty good at it even under certain

“complicating” circumstances, such as when an object is partially occluded. However

for computers this is not so trivial. There are many factors that need to be taken into

consideration. Just to name one, for example lighting conditions. These circumstances

can be narrowed down by establishing a specification towards our goals. For instance

if the colour information will not be used, then the problem of lighting condition might

be omitted. Therefore it is important to define the answers to the questions in table 1.1

before designing such system. See also the corresponding image in figure 1.1).

1

Chapter 1. Introduction 2

Subject Question

Domain What kind of object(s) do we want to detect?

Accuracy Do we want to detect the exact same object or just the same

type?

Motion Are we going to detect objects in motion or in a static state?

Input type What kind of input data is used for gathering information

of the object?

Number of inputs Are we using a single image or a video stream?

Feature set What kind of information are we extracting from the input?

Approach How we going to use up our feature set for detection pur-

poses?

Table 1.1: Questions what need to be answered before developing an object detection
system

Figure 1.1: Visualization of table 1.1 ’s subjects. Each row corresponds to the same
row in the table

Chapter 1. Introduction 3

Object detection systems can be used up in a wide range of applications to improve,

automate, help, solve problems in everyday life of humanity. As it was stated above the

research part of object detection is a joint-section of many computer science fields, but

solutions to this problem cover an even broader area, where it can be exceedingly useful.

Just to name a few:

• Security systems to detect certain unwanted objects.

• Medical diagnoses to help detect doctors some anomalies .

• Self driving cars to reduce accidents.

• Generating 3D scenes to accelerate certain phases of 3D modelling.

• etc.

The presented solution in this thesis is designed according to table 1.1 as follows. For

the domain I choose objects which are related to office assets and furniture, for example

computer screens, keyboards, tables, chairs, etc. Yet leaving the opportunity to extend

the object database according to the specific application. The reason why I favored

these objects as my domain is because detecting everyday like objects reliably is a useful

application. This statement was supported also by a company, who deals within the

security sphere. They would be for example very interested in applications, which can

detect and identify missing objects, which were previously detected. Continuing with

the decisions according to table 1.1, the detection part is focusing on detecting the gen-

eral type of the objects in static scenes. Detecting the exact same object requires a

more complex feature set, which in parallel increases the “complicating” circumstances

what needs to be considered. In my application’s point of view the gain of detecting the

exact same object does not scale compared to how more complex the task can become.

As for input type I choose depth images without the color information captured by the

Microsoft Kinect [11] device. The reason why I have neglected the color information

is because it can make the system sensitive to lighting conditions and objects with the

same shape but different textures may result in different features because edges in the

color domain do not represent valley and ridges. Since I want the system to be as robust

as it can, I have decided not to use it. Due to the above reasons extracting information

from the pure depth image of an object may produce a more general feature set. This

is because only the intensity values are taken into consideration, which reflect only the

geometric information of the object in 3D. Furthermore some models in the supporting

database may have very poor textures or even none, which makes the color information

unstable. Additionally depth images can boost the segmentation and help in the camera

localization because it contains 3D information. To improve the accuracy I am using

multiple images and evaluating the final results based on the partial results of the single

Chapter 1. Introduction 4

images. As for the feature set base, I choose edges, namely Canny lines [6] obtained

from the object’s depth map. These lines can capture the hidden information of the

corresponding object and this information can be used to identify the type of the object

for example. For the approach a feature based method, particularly the well known bag

of feature words model was chosen. This technique is the state of the art approach in

feature based methods and is robust against occlusions and noise [8], [9]. A summary

can be seen in table 1.2 below.

Subject Choice

Domain Office objects

Accuracy General

Motion Static

Input type Depth image

Number of inputs Multiple images

Feature set Canny lines

Approach Bag of features

Table 1.2: My answers to table 1.1 questions

The main idea behind my solution was to generate a sketch like line drawing from the

object’s depth image and find the best corresponding match in the supporting database.

Capturing the silhouettes and the reciprocal internal lines, which heavily depend on the

depth map encapsulates 3D information in a 2D setup. This makes the system more

simple and thus robust. Furthermore sketch based shape retrievals were widely studied

in the past couple of years [2], [3], [4]. The solutions presented in these studies prove

accurate and reliable retrieval results, which raises the question: ”Why don’t we use it for

detection purposes also?”. These methods all rely on a sketch based user interface, where

the user can draw the desired model or scene. However instead of drawing the model

or the scene as a sketch, it could be generated automatically with some input device

like a camera. Hence the user has to only capture the desired model or scene. One of

the biggest and hardest problem of sketch based shape retrieval is the vagueness of how

people sketch [3]. This solution would not just adopt the advantages of such introduced

systems, but also solve this ambiguity. Generating the sketches automatically will lead

to a more consistent matching and due to this consistency the fine tuning of certain

thresholds are more tangible.

Chapter 1. Introduction 5

1. In this thesis, I present a pipeline and a corresponding application for object

detection.

2. In my knowledge this is the first approach to detect objects from depth images

by tracing it back to a sketch based object retrieval dilemma.

3. Furthermore another innovation in this method is, that it uses multiple depth

images to make the detected results more accurate.

The setup is a moving utility car with a computer running the application along with

the camera on top observing the scene. The system is capable of localizing the camera in

space while detecting objects in the input stream. It is also prepared for 3D scene recon-

struction in future development, by showing corresponding 3D meshes of the detected

objects. The presented system can be used up in a wide range of applications, like in

security systems detecting missing objects, in game development for scene generation,

or in robotics to identify objects and their position in space. A snap shot of the setup

and the application can be seen in figure 1.2. Also a global pipeline of the system can

be seen in figure 1.3.

Figure 1.2: Left: the setup, utility car with the computer and the camera on top.
Right: the system identifying the objects on the table correctly.

Chapter 1. Introduction 6

Figure 1.3: There are two main phases in the system. The offline, preprocessing
phase and the online, detection phase. a) the input of the preprocessing phase, namely
meshes. b) creating snapshots of each mesh and obtain the corresponding depth image,
then generate the canny lines from it. c) gather the local descriptors from the edge
images. d) create the supporting database from the local descriptors. e) input of
the detection phase, namely depth maps of the viewed scene. f) segment the scene into
objects. g) obtain the edge images of each segmented object’s depth image. h) generate
the local descriptors from the edge images and find the closest one in the database. i)

aggregate results from previous frames. j) final result.

Chapter 2

Related Work

Object detection is a widely studied research area, but it still draws lot of attention as

a research filed since most of the solutions concentrate only on a specific portion of the

detection. There is no universal object detector, which would work under any circum-

stances yet. This thesis tries to focus on expanding an already functioning system to a

broader use-case with some additional improvements. As I mentioned in Chapter 1 this

solution is tracing back the problem of object detection to a sketch based object retrieval

proceeding. This chapter will break down the related previous work and fundamental

algorithms used in this thesis in some way.

2.1 Previous Work

This chapter introduces some previous work, which provided guidance for designing

the presented system in Chapter 3. I will also describe one related work from each

important stage of the presented system separately. These important main stages are:

segmentation, descriptor design, detection, registration.

2.1.1 Comparison

There are several work out there, which try to address and solve the problem of object

detection. I am highlighting three present work here for comparison purposes. The first

work [36] is using a single deep neural network to detect objects in regular images. When

a system detects an object in an image it draws a bounding box around it, with the

title of the object type. Their results are promising, but training the system is tricky

compared to the presented system in this thesis. They have to provide images with

ground truth bounding boxes around the objects, which they want to detect. In the

7

Chapter 2. Related Work 8

presented system training the system or in other words generating the database is much

more easier, discussed later in Chapter 3.1. On the other side using regular 2D images

for object detection makes the system more feasible to integrate it into already existing

systems. The second work [32], which I am highlighting here is related in a way, that

they are using the depth image from the Kinect camera also to obtain some geometric

features from the observed objects. Their system is robust and works well on big objects

like couches and tables, but fails on smaller objects like cups or monitors. However the

presented system in this thesis overcomes this issue and works well on both small and

bigger objects too. One other advantage towards the presented system compared to

theirs is that my system is robust against rotation, while their system would fail to

detect a chair laying on its side for example. These features will be demonstrated in

Chapter 5.3. The third work [4], which I am highlighting here is using the contour

information of the objects encoded it with the Fourier descriptor. The presented system

in their paper works reliable till there is no occlusion. Of course occlusion was not the

case in their setup, but it is in my case. My system is robust against occlusion, which

will be also shown in Chapter 5.3.

2.1.2 Segmentation

Segmentation is the base phase of the system presented in this thesis. The more accurate

the results are of this stage, the more reliably will the detection part work. The reason

for this is because the descriptors will become more robust and unique towards the

object they represent if the output is more accurate of this stage. To make sure the

results are satisfiable I used depth images as an input for the segmentation. Depth

images represent a snap shot of the scene in the system as a normal image, however

they also provide additional information by introducing the third dimension. Moreover

I convert the depth images into point cloud representation, which is a more feasible

representation of the depth image. More on depth images and point clouds in Chapter

2.2.1. The obtained point clouds need to be processed in a way, that the system can

separate the objects into clusters. To segment the scene I am using a plane detection

algorithm described below.

Since I am receiving the point clouds in an organized fashion it enables the use of graph-

based [12] or connected-component [13] approaches. In this thesis I followed the method

proposed in this paper [1], which uses the connected-component approach.

The main idea behind separating the objects into independent clusters is first finding

planar regions in the viewed scene. For plane representation the following normal form

is used:

Chapter 2. Related Work 9

ax+ by + cz + d = 0

Hence such a planar equation is calculated for each point in Euclidean space. To achieve

this the first step is to calculate each point’s normal. Calculation of the normals can be

done in real time exploiting the organized property with this proposed technique [14].

After calculating the normals, a point in the point cloud can be represented as follows:

p = {x, y, z, nx, ny, nz}

where p is a point in the point cloud with x, y, z coordinates and nx, ny, nz are the

corresponding normals. The only remaining variable to represent a point with the above

planner equation is the d component which can be calculated as the dot product of the

coordinates and the normals.

nd = (x, y, z) · (nx, ny, nz)

Therefore the final representation for a point in a point cloud is:

p = {x, y, z, nx, ny, nz, nd}

To see if two neighbouring points belong to the same plane some distance metric has to

be proposed. For distance metric a range distance is used between the d components:

distrange(p1, p2) = |p1nd
− p2nd

|

and the distance between the normal directions, which is the dot product of the two

point’s normal:

distnormal(p1, p2) = p1n · p2n

Now we can proceed with the connected-component algorithm. This algorithm works in

a way, that it segments an organized point cloud into a set of partitions. This is done

by labeling with an integer each point in the point cloud. Those points which belong to

the same cluster will be labeled with the same integer. So if

Chapter 2. Related Work 10

P (x1, y1) ∈ Si and P (x2, y2) ∈ Si, then L(x1, y1) = L(x2, y2)

where P (x, y) is a point in the point cloud, Si is a cluster of points and L(x, y) is the

label of the given point. The points are compared using a comparison function, where

the above mentioned distance metrics are used:

C(p1, p2) =

⎧⎪⎪⎨
⎪⎪⎩
true, if((distnormal < threshnormal) and

(distrange < threshrange))

false, otherwise

where threshnormal and threshrange are the set thresholds for the distance metrics re-

spectively. The algorithm starts by assigning the first point with a label, in this case 0.

Then the first row and column are compared with the above comparison function to have

assigned the appropriate labels. The remaining points are then treated by checking their

neighbouring points, P (x − 1, y) (left) and P (x, y − 1) (top). The following scenarios

can happen:

C1(P (x, y), P (x− 1, y)) and C2(P (x, y), P (x, y − 1))

if(C1 && C2) == true, the two segments has to be merged

if(C1 && C2) == false, a new label is assigned to the current point

if(C1 || C2) == true, the point is assigned with matched label

After the label image is produced some refinement has to be done in order to make sure

we have real planner regions, not just locally planner ones. A least squares plane fit

is done on each labeled segment, which has at least Tinliers inliers. To make sure the

results are really planer the curvature is also computed and a Tcurvature threshold is used

to filter out which are smooth but not planner. The result of this algorithm can be seen

in figure 2.1.

Chapter 2. Related Work 11

Figure 2.1: The result of the above described algorithm. Image from [1].

2.1.3 Descriptor Design

Designing or choosing the descriptor, which will encapsulate all the necessary informa-

tion, to have the system operate as it is planned is an important step, when planning

such system as it is represented in this thesis. In this thesis I choose the state of the art

descriptor for sketch based object retrieval, which is presented in the next chapter, in

Chapter 2.1.3, but there are several other descriptors, like [23] or [34]. In this chapter

I will present Fourier descriptor [23], which gave me lot of guidance and understanding

towards the final decision.

Fourier descriptors are obtained by applying the Fourier transform on the shape’s sig-

nature. The resulting coefficients are the Fourier descriptors. The shape signature is

derived from the boundary curve of the shape, in other words the silhouette. There are

several methods how this signature is exploited from the shapes boundary. The most

commonly used methods are complex coordinates, curvature function and centroid dis-

tance, but it was proven by [29], that centroid distance method outperforms the others

in overall.

The first step to compute the centroid distance dependent Fourier descriptors is to obtain

the boundary coordinates.

(x(t), y(t)), t = 0, 1, ..., N − 1

where N equals to the number of boundary points. The centroid distance function is

expressed in the following formula:

Chapter 2. Related Work 12

r(t) = ([x(t)− xc]
2 + [y(t)− yc]

2)
1
2 , t = 1, 2, ..., N − 1

which represents the distance from the boundary point to the centroid. (xc, yc) represents

the centroid of the shape. The calculation of xc and yc is done by these formulas:

xc =
1

N

t=0∑
N−1

x(t), yc =
1

N

t=0∑
N−1

y(t)

The discrete Fourier transform of r(t), which is called dft also in scientific literature is

then declared with the following formula:

an =
1

N

t=0∑
N−1

r(t)exp(
−j2πnt

N
), n = 0, 1, ..., N − 1

where an represent the coefficients of the Fourier transform.

The acquired Fourier coefficients are translation invariant due to the translation invari-

ance of the centroid distance. In other words, it does not matter where the shape is in

space, since the distance between its centroid and its boundary points is independent to

the shape’s location. To achieve rotation invariance the phase information of the coef-

ficients are ignored by using only magnitudes |an|. Furthermore scale invariance is also

achieved, by dividing the coefficients with the DC component, namely a0. Also since

the centroid function is a real value function only half of the coefficients are needed to

index the shapes. The final f feature vector is used as the Fourier descriptor.

f = [
|a1|
|a0| ,

|a2|
|a0| , ...,

|aN
2
|

|a0|]

The similarity measure between two Fourier descriptor is a simple Euclidean distance

between the two feature vector. Fourier descriptor captures coarse or global features

in the lower order coefficients and finer shape features in the higher order coefficients.

Therefore it is robust against noise and irregularities, since they only appear in very

high frequencies, which are usually neglected. Since mostly lower order frequencies are

used it is also a compact descriptor. Fourier descriptor is also capable of reconstructing

the boundary form the given coefficients, which is an important compression feature,

see figure 2.2. However, since Fourier descriptor only captures silhouette information it

can fail when there are large boundary indentations or protrusions in the input shape,

like what occlusion can cause for example.

Chapter 2. Related Work 13

Figure 2.2: In this image the viewer can observe, that the more frequencies are used
to represent a boundary curve, the more information it has to reproduce the curve.

2.1.4 Detection

There are lot of recent work on object detection, like [32] or [33]. There are also some

recent work on sketch based object retrieval, like [2] or [3]. Since I am combining

object detection problem with a sketch based object retrieval dilemma, in this section

I am briefly describing how does the state of the art sketch based retrieval and the

corresponding GALIF feature work [3]. I integrated this algorithm into my system.

The system takes an image with a sketch as an input. First this sketch image or image

of edges, where the edges represent the sketch lines is divided into smaller local image

patches. This is done by generating N×N key points evenly distributed over the image.

A local image patch is centered around a given key point and is represented by an n×n

cell. A pixel is inside this cell if its (x, y) coordinate is inside the cell’s bounding box.

Each patch size is determined by relatively to the image area.

For each local image patch there is a corresponding local feature F . These features are

obtained by first applying k number of different orientation Gabor filters to the original

image. The Gabor filter in the frequency is defined as:

g(u, v) = exp(−2π2((uθ − w0)
2σ2

x + v2θσ
2
y))

where (uθ, vθ) = Rθ(u, v)
T is the standard coordinate system rotated by θ, w0 is the

peak response frequency, θ is the filter orientation, σx frequency bandwidth, σy angular

bandwidth.

Each orientation of the filter, masks all content that does not possess the right frequency

and orientation. This means that the filter only responds to a subset of the lines in the

image. All parameters are fixed of the Gabor filter gi except the rotation. Then each

image is convolved with a k set of Gabor filters as I mentioned above, which results in

k set of filtered response images.

Chapter 2. Related Work 14

Ri = ‖idft(gi ∗ dft(I))‖

where I is the input image, ∗ denotes point-wise multiplication and idft and dft stand

for inverse/forward discrete Fourier transform. Please see an illustration in figure 2.3.

Figure 2.3: Result of the Gabor filter and the local feature pipeline. The image is
from [3].

This means that the dimension of a local feature vector F for each image, is k × n× n.

For each dimension of F there is an average Gabor filter response within the n× n cell

for orientation i.

F (i) =
∑

(x,y)∈n×n
Ri(x, y)

All features that do not contain edges are discarded and then are normalized such that

‖F‖2 = 1.

After calculating all local feature vector F for an image they are represented as visual

word frequencies. This means that all local feature vector xi is quantized against the

visual vocabulary, where they are represented as an index qij to their closest visual word.

qij = argminj ‖xi − cj‖

where cj is a cluster centroid of one of the visual words. Finally the final histogram of

visual word h representation is defined by

Chapter 2. Related Work 15

hj = |{qij}|

To do this we need to generate a visual vocabulary. The vocabulary is generated by

randomly sampling generated local features and clustering them by using k-means clus-

tering [10]. The number of clusters will determine the size of the vocabulary. This

number is very important because it affects the retrieval performance.

2.1.5 Registration

Registration is an important part of the presented system in this thesis. It is important

because this part solves the camera localization problem and the correspondence between

the detected objects through different input frames. There are lot of work on this

direction, like [30] and [31] or [35].

In this chapter, I will briefly describe the method called Kinect Fusion used in [30],

because this is the method of my choice. The reason behind it in summary is, that it

is fast due to the GPU implementation and tested on the Kinect camera, which showed

reliable results.

Kinect Fusion uses the well known ICP algorithm to calculate the 6DOF transformation

of the current frame, to the previous one (more on general ICP in Chapter 2.2.5).

Each 6DOF transformation result is a local transformation between the current and

the previous frame. Incrementally applying these local transformation to each other

produces the global transformation of the camera. To find the correspondances between

frame Fi−1 and Fi, they use the projective data association technique. One of the

innovation of their GPU implementation is, that is uses all points instead of down-

sampling or searching for key-points in the cloud. The result of their algorithm can be

seen in figure 2.4 below.

Figure 2.4: Result of the Kinect Fusion algorithm. The image shows the position and
orientation of the camera around the scene. The image is from [31].

Chapter 2. Related Work 16

2.2 Fundamental Algorithms

This chapter will highlight the most important data structures, algorithms and methods

used in the presented system. These methods are fundamental because they are well

proven throughout the time or they present the state of the art solution in the given

context.

2.2.1 Depth Images and Point Clouds

As an input I am using depth images. Depth images are images like regular images, but

they also carry depth information for each pixel:

p = {r, g, b, d}

where p represents a pixel in the image and r, g, b is the colour, d is the depth infor-

mation. To capture depth images we need a specialized camera, like the Kinect from

Microsoft [11]. Usually these depth images are converted into point cloud data struc-

tures which allows easier management over the captured data and projects the depth

information into 3D Euclidean coordinate space:

p = {r, g, b, x, y, z}

where p represents a point in the point cloud and r, g, b is the colour, x, y, z is the

projected depth into Euclidean space information. Moreover devices like Kinect are

capable of giving these structures in an organized fashion (i.e. matrix):

p0,0 p0,1 p0,2 ..

p1,0 p1,1 p1,2 ..

p2,0 p2,1 p2,2 ..

: : :

where px,y represent a point in the point cloud which corresponds to the appropriate

pixel in the depth image. From this we can quickly see that neighbouring pixels (or

points) can be accessed in constant time, which can be advantageous when processing

these point clouds. An example of a depth image and the corresponding point cloud can

be seen in figure 2.5.

Chapter 2. Related Work 17

Figure 2.5: Image of a depth map and the corresponding point cloud

2.2.2 RANSAC

For refining the results of the plane detection algorithm I am using the RANSAC or

random sample consensus method [25][26][27]. This method is an iterative algorithm,

which calculates the parameters of certain mathematical models, in this case planes

from a set of points, which might contain outliers. Outliers are points, which does not

belong to the specified model and inliers are points, which are part of the given model.

This method is non-deterministic, which means that it produces a result in a certain

probability. This result can be improved, by increasing the number of iterations. One

of the biggest advantages of this algorithm is, that it is highly robust against noise.

The algorithm takes a set of points and does the following:

1. Randomly selects n points, in this case n = 3, since with three points a plane can

be defined.

2. Calculates the parameters of the plane from the 3 random points.

3. All other points are then tested against the previously calculated model and are

marked as an outlier or inlier, within a certain threshold.

4. Step 1. to 4. is repeated until the number of iteration is set or enough inliers are

found.

5. The plane’s parameters are recalculated by considering all inlier points.

The final result can be seen in figure 2.6.

Chapter 2. Related Work 18

Figure 2.6: Result of the RANSAC algorithm described above.

2.2.3 Canny Lines

I am using edges as features, gathering them from the depth map of the object. These

edges are the well known Canny lines [6]. In this section I am going to briefly discuss

this technique.

The Canny algorithm first finds the intensity gradient of the image. It applies a pair of

convolution masks (Gx, Gy) and finds the gradient strength and direction for each pixel

with the following formula:

G =
√

Gx
2 +Gy

2

θ = arctan(Gy/Gx)

The direction is rounded to four angle intervals, namely 0, 45, 90, 135. After this a non-

maximum suppression is applied [7], where the direction information is used to remove

pixels that are not considered to be part of the edge. Hence only a thin edge will remain.

This is why it is also called an edge thinning technique. The last step is a threshold

check. There are two thresholds an upper (tupper) and a lower (tlower) bound. If

G > tupper

Chapter 2. Related Work 19

the pixel is accepted as an edge. If

G < tlower

the pixel is rejected as an edge. If

tupper ≥ G ≥ tlower

the pixel is accepted only if it is connected to a pixel, which is above tupper. A result of

this algorithm can be seen in figure 2.7.

Figure 2.7: left: the input image, right: the out put of the Canny algorithm

2.2.4 Bag of Features

My selected approach for using my features to detect objects is the bag of feature model

[8], [9]. This model has become the method of choice for affine invariant image retrieval.

Since in this work I actually gathering my features from the grey scale image of the

object’s depth map this technique is feasible.

The bag of feature model compares images based on histogram features. The idea

behind the histograms is basically to divide a range of values into series of intervals

(e.g. bins). This reduces the size of the data and speeds up the comparison between

two set of values. In the bag of feature model a test feature set is used to generate the

vocabulary. The vocabulary is an n dimension vector, which determines the intervals

of the histogram. The vocabulary is generated by clustering the input feature samples

into bigger chunks. The end result of the clustering determines the value of n. After

the vocabulary is generated each value of a feature set of an image is determined to its

Chapter 2. Related Work 20

best fit in the vocabulary’s interval field and only the number of occurrence of the given

interval is stored in the descriptor. Therefore the end result is a sparse vector of the

given image. It is sparse since an image usually will not hold feature values for each

entry of the vocabulary. In this thesis I follow the rules of creating such vocabulary and

descriptors by [2] and [3]. An illustration can be seen in figure 2.8 of the bag of feature

model.

Figure 2.8: Illustration of the bag of feature model

2.2.5 ICP

For finding the correspondence between two affined point clouds I am using the well

known ICP, namely iterative closest point algorithm [18][19][20][21][22]. This algorithm

tends to minimize the difference between two set of points and find the correspond-

ing transformation matrix. It is used in a wide variety of applications, like surface

reconstruction or robot localization. I will be using it for localization and finding the

correspondence between cloud clusters.

The algorithm takes two set of points, in this case two point clouds. One is the target

or the reference cloud, which will be kept fixed and the other one is the source cloud,

which will be transformed to match the target as best as it can. The transformation

is done in an iterative fashion, hence the ”iterative” in the name. The transformation

Chapter 2. Related Work 21

contains both translation and rotation. The general main steps of the algorithm is the

following:

1. For each point in the reference cloud find the closest points in the target cloud.

2. Using a mean squared error cost function, estimate the transformation, that will

align each point found in step 1. in the best possible way.

3. Apply the transformation to the source cloud obtained in step 2.

4. Iterate through step 1. and 3., till the desired result is achieved.

An illustration of the method can be observed below in figure 2.9.

Figure 2.9: The result of the ICP method. From left to right the algorithm converges.

Chapter 3

Proposed Method

The proposed method consist of two main part, an offline (preprocessing) and an on-

line part (detection). The offline section covers the pipeline of creating the supporting

database and the corresponding vocabulary, while the online section covers the pipeline

of the object detection system. Each pipeline consist of several phases. Each phase has

a specific task, which converts the given input to an output for the next phase. All

phases for both offline and online are explained below with their corresponding input

and output in a separate subsection. There is also two independent subsections besides

the above two, namely the correspondence between the inputs, which runs parallel with

the online phase and the retrieval refinement.

3.1 Offline Section

The offline section’s pipeline inhere from three main phases.

1. Depth View Generation

2. Edge View Generation

3. Vocabulary and Descriptor creation

You can see the pipeline in figure 3.1. This part is offline because it runs only once

before the online part of the system is used. Therefore for example speed is not a critical

issue in this stage of the system. However without this part the whole online pipeline

would be useless. The input is a set of 3D meshes, from which the vocabulary and the

corresponding supporting database is generated. The supporting database consists of

several local descriptors for each object in the database. The three main phases are

described below in the subsections.

22

Chapter 3. Proposed Method 23

Figure 3.1: The offline pipeline

Chapter 3. Proposed Method 24

3.1.1 Depth View Generation

The input and output of this phase of the offline pipeline can be seen in table 3.1 below.

Input Output

x Set of 3D meshes 102× x Set of depth images

Table 3.1: Input and output of phase 1 in the offline section of the system, where x
is the number of input 3D meshes.

As table 3.1 states, to generate the database a set of 3D meshes is required as an input.

In this thesis this set contains meshes of office objects, like computer screens, keyboards,

mugs, etc. A sample set can be seen in figure 3.2 below. The size of the database should

be at least 100 to 200 meshes to have enough samples for generating the vocabulary

(more on this later in subsection 3.1.3.)

Figure 3.2: Sample of the office 3D mesh database set.

During the database generation each mesh is loaded and scaled to fit inside the center of

a unit sphere. This sphere is tessellated in a way that it has 102 vertices. A visualization

can be seen in figure 3.3 off the tessellated sphere. Each frame the camera is placed to a

different vertex of the sphere looking at the center with an up vector of (0, 1, 0). As soon

Chapter 3. Proposed Method 25

as the camera has been at each vertex a new model is loaded and the procedure repeats

itself. From each vertex the camera creates a snapshot of the model’s depth map.

Figure 3.3: Tessellated unit sphere with an object scaled and centered inside it.

The final output is a set of depth images of each mesh from the input set. Precisely as

table 3.1 says, 102 depth image of each mesh. A snapshot of the output can be seen in

figure 3.4 below.

Chapter 3. Proposed Method 26

Figure 3.4: Snapshot of the database depth image series.

3.1.2 Edge View Generation

The input and output of this phase of the offline pipeline can be seen in table 3.2 below.

Input Output

102× x Set of depth images 102× x Set of edge images

Table 3.2: Input and output of phase 2 in the offline section of the system, where x
is the number of input 3D meshes.

The next step is to detect the edges in the generated depth images in the previous phase

and render them as lines in a separate image. To generate the edge images I tried the

following edge detection approaches:

1. Silhouettes

The problem with these type of curves, that they are not descriptive enough to

detect an object with high success rate for the reasons discussed in Chapter 2.1.2.

For example if we look at the contour of a monitor and a mug in figure 3.5 even

us humans can hardly guess which one is which.

Chapter 3. Proposed Method 27

Figure 3.5: Left: monitor boundary curve. Right: mug boundary curve

2. Suggestive contours [5]

This contour generating technique generates enough edges to be descriptive, but

unfortunately the algorithm generates poor contours on models with poor mesh

connectivity [2]. See the results of this technique on poor meshes in figure 3.6.

Figure 3.6: Suggestive contour result on a poor mesh.

Chapter 3. Proposed Method 28

3. Canny lines [6]

As it was suggested in this [2] paper, if suggestive contours fail the Canny lines

algorithm from depth images is a good alternative, since it also generates enough

curves to become descriptive enough. Hence to generate the edge images I used

the Canny lines technique. Results can be seen in figure 3.7.

Figure 3.7: Results of the Canny line algorithm

The Canny operator have two thresholds as it was explained in Chapter 2.2.3, which

need to be fine tuned in order to produce the desired results. If the thresholds are too

sensitive unwanted lines can appear in the resulting edge images, due to the intensity

jumps in the resolution of the depth image. This is true also the other way around,

which means that if the thresholds are set too tough, edges which are holding useful

information may not appear in the resulting edge image. My Canny thresholds are 10

for the lower bound and 30 for the upper bound. These threshold values are for the

Canny operator used in the OpenCV library. These threshold values produce similar

results for both the database generated depth images and for a real captured object’s

depth images, which will be explained in Chapter 3.2.3.

The final output is a set of edge images similarly to the previous phase. As table 3.2

states this phase generates the same amount of edges images as the number of input

depth images. A snapshot of the output can be viewed in figure 3.8.

Chapter 3. Proposed Method 29

3.1.3 Vocabulary and Descriptor creation

The input and output of this phase of the offline pipeline can be seen in table 3.3 below.

Input Output

102× x Set of edge images 102 × x Set of local descriptors and the

corresponding vocabulary

Table 3.3: Input and output of phase 3 in the offline section of the system, where x
is the number of input 3D meshes.

To generate the local descriptors and the vocabulary I am using the technique described

in Chapter 2.1.3. In this chapter I will quantify the general variables used in that chapter

by the guide of [3].

So far each input model has 102 different images containing its corresponding Canny

lines, these are called the edge images. Now for each image a descriptor will be generated,

called as the local descriptor. These local descriptors are generated as follows.

Each image is divided into local image patches. 32 ∗ 32 = 1024 evenly distributed key

points are generated on the given image and a patch is created by centering a 4 × 4

matrix on each key point. The size of the patch is relative to the image size. This value

is 0.2, which means that 20% of the image is covered by an image patch. For each patch

a corresponding local feature is generated, but first 4 different orientation Gabor filter

is applied to the original line image (the parameters of the Gabor filters can be found

in [3]). This means that the local feature’s final dimension will be a 4 ∗ 4 ∗ 4 = 64. Each

local feature of one image is than quantized against the vocabulary to generate a sparse

local descriptor. The resulting histograms are then stored in an inverted index data

structure [16] in order to achieve faster query during the online stage. The dimension

of this vector depends on the dimension of the vocabulary, which is 1000 in this system.

The vocabulary is generated by randomly sampling 1 million local features. To achieve

a dense pile of distinguished local features the number of input 3D meshes should not

be less then 100. A summary of these values can be seen in table 3.4 below.

Chapter 3. Proposed Method 30

Variable Value

Number of key points 1024

Number of tiles in local image patch 16

Size of local image patch 0.2

Number of Gabor filters applied 4

Dimension of local feature 64

Dimension of local descriptor 1000

Size of vocabulary 1000

Table 3.4: The quantified values of chapter 2.5

3.2 Online Section

The online section’s pipeline has four main phases.

1. Depthmap Processing

2. Segmentation

3. Local Descriptor Generation

4. Retrieval

You can see the pipeline in figure 3.8. The online part of the system is where the actual

detection takes place. This is the part which is closer to the user, hence fast feedback is

an important aspect for example. However the results of this pipeline is highly dependent

on the supporting database generated in the offline phase. The input is a (set of) depth

map of the currently viewed scene. It is then processed through several phases to convert

them into separate objects with corresponding local descriptors. These descriptors are

then compared against the database and the best match will be the current result. The

system gathers more then one view of the viewed scene, therefore the actual final result

is refined by multiple current results. The correspondence between the processed views

is also calculated. The below subsections serve as a more spacious explanation of the

various phases of the online pipeline.

Chapter 3. Proposed Method 31

Figure 3.8: The online pipeline

Chapter 3. Proposed Method 32

3.2.1 Depthmap Processing

The input and output of this phase of the online pipeline can be seen in table 3.5 below.

Input Output

Depth image of a scene Corresponding point cloud

Table 3.5: Input and output of phase 1 in the online section of the system.

This phase is a preparation for the segmentation. It starts by projecting the depth value’s

into 3D Euclidean space to generate a point cloud data structure, as it is explained in

Chapter 2.2.1. After having the point cloud structure ready, normals are calculated [14]

for each point. A result of the calculated normals can be seen in figure 3.9. By having

the normals calculated the segmentation can take place.

Figure 3.9: Result of the normal calculation. White lines represent the normals.

Chapter 3. Proposed Method 33

3.2.2 Segmentation

The input and output of this phase of the online pipeline can be seen in table 3.6 below.

Input Output

Point cloud of a scene Object clusters

Table 3.6: Input and output of phase 2 in the online section of the system.

The segmentation part is a key phase of the system, since the detection will depend on its

results. Therefore the quality and robustness of the segmentation has to be acceptable.

The segmentation part relies on the normals calculated in the previous phase. By having

the normals the plane detection can take place. The algorithm of the technique is

described in Chapter 2.1.1. The result of the algorithm is refined with the technique

called RANSAC, explained in Chapter 2.2.2. If more then one plane is detected a top

to bottom approach is used. First the normals of the detected planes are compared and

sorted into two separate list. One which represents the horizontal planes, like floor or

table tops and one which represents the vertical planes, like walls for example. After

clustering the planes a sorting procedure takes place on the horizontal list. The sorting

is based on the altitude of the planes. If plane P1 is higher, then P1 > P2, which means

that P1 will be ahead of P2 in the list. After detecting and arranging the planes in the

point cloud the object clustering part is next. The first input for the clustering is the

list of the horizontal planes and starts with the first element of the list, e.g. the highest

one.

For each plane, which was detected in the previous step a 2D concave hull is calculated,

see figure 3.10 below. This concave hull is then projected in 3D within a given height

as a 3D polygonal prism. All points which are inside this prism are segmented from the

point cloud. The coincident is, that these points are actually the points of those objects

which are sitting on this plane. Since we know the indices of these points in the original

point cloud, a binary cloud can be generated as follows:

P (x, y) ∈ C =

{
if true, intensity value is 1

if false, intensity value is 0

where P (x, y) is a point in the original point cloud and C is the cluster inside the 3D

polygonal prism. An example of such binary cloud can be seen in figure 3.11 below.

Chapter 3. Proposed Method 34

Figure 3.10: Result of the plane’s concave hull calculation.

Figure 3.11: Visualization of figure 3.11’s point cloud as a binary cloud in a text
editor. Yellow color represents 1’s and rest are 0’s.

Chapter 3. Proposed Method 35

From the generated binary cloud the object clusters can be seen easily. The algorithm

goes through the binary cloud and only points with intensity value of 1 are considered.

For each of these point’s neighbours are accessed in constant time due to the organized

property of the point cloud. To generate the clusters the following formula is then

applied:

C(p, pn) =

{
true, if(pn �= 0 && dist(p, pn) < tdistance)

false, otherwise

where p represent a point from the binary cloud with an intensity value of 1, pn is a

neighbour of p and dist(p, pn) is the distance function between two given points, which

is a simple Euclidean distance [17]. Based on the above formula a point’s neighbour is

in the same cluster if its value is 1 and is within a certain distance threshold compared

to the given point. If its value is 1, but the distance part of the formula fails, then it

means it is most likely two objects overlapping each other and belongs to a separate

cluster. On the other hand it still might belong to the same object, but due to depth

discontinuity the distance measuring fails. Therefore there are two problems yet what

needs some attention.

1. Depth discontinuity

2. If two object overlap each other partially

The first problem can occur if there is an object, which occludes some of its own part,

like a computer screen its holder or a table its leg. The second problem is strait forward.

There are solutions for both cases, but unfortunately they cancel out each other in a

way. The solution for the depth discontinuity is if the clustering of the objects is without

any distance data between the neighbouring points in the binary cloud. This means,

that the algorithm does not use any distance metric, but then overlapping objects would

be considered as one. Again, introducing a distance metric would solve the overlapping

problem, but as it was stated above it fails when depth discontinuity comes along.

An observation was made about the point clouds generated by Kinect v2, the second

generation depth camera from Microsoft. It tends to create some tail like noise in

the point cloud, where discontinuity happens. As a result of this a well set distance

threshold will still consider a monitor’s holder as one object with the monitor and two

objects which are overlapping each other. The result of the clustering can be seen in

figure 3.12.

Chapter 3. Proposed Method 36

Figure 3.12: Object clustering results. Each cluster represents a different color, in
total 4.

3.2.3 Local Descriptor Generation

The input and output of this phase of the online pipeline can be seen in table 3.7 below.

Input Output

Object clusters Local descriptors

Table 3.7: Input and output of phase 3 in the online section of the system.

The input of this phase is a set of object clusters. These object clusters are then

converted back to their depth image state. Since the Kinect V2’s depth image resolution

is only 512 × 424, an object cluster’s corresponding depth image is relatively small.

Therefore these depth image patches are scaled up uniformly to have their width 256

pixel wide. The ratio between the original depth image patches and the scaled version

can bee seen in figure 3.13 and figure 3.14. Note that there is also an empty border

added to the scaled image.

Chapter 3. Proposed Method 37

Figure 3.13: Left: original depth image patch. Right: scaled depth image patch.

Figure 3.14: Left: original depth image patch. Right: scaled depth image patch.

After having the scaled depth image patches, the same edge detection algorithm is

applied as in the offline section, namely the Canny line algorithm. A visualization of

the final result can be seen in figure 3.15 below. The local descriptors are calculated for

each line image as it is defined in Chapter 2.1.3 with the values of table 3.1.3.

Figure 3.15: Edge image of figure 3.13.

Chapter 3. Proposed Method 38

The similarity between the database and the online phases’s edge images can be seen in

3.16 below.

Figure 3.16: Top database generation, bottom online phase generation. From left to
right: model, depth map of the model, corresponding edge image.

3.2.4 Retrieval

The input and output of this phase of the online pipeline can be seen in table 3.8 below.

Input Output

Local descriptors Detection results

Table 3.8: Input and output of phase 4 in the online section of the system.

The values of the local descriptors represent raw word counts of the given visual word.

This can be misleading since some word might need bigger weights as it can be more

important in the given context. Therefore I am using the tf-idf model (term frequency-

inverse document frequency) [16] to determine the weight of a given visual word. The

idea behind using this technique is that a visual word is more important, which appears

more often in a sketch, but also less distinctive if it occurs often in the collection [3].

For computing weights the following formula is used [9]:

Chapter 3. Proposed Method 39

hj =
hj∑
i hi

log(
N

fi
)

where hj is an entry of a local descriptors, N is the total number of views in the collection

and fi is the frequency of visual word j in the whole collection.

After calculating the right weights a similarity metric is used to measure the similarity

between two local descriptors. If D1 and D2 are two local descriptors representing an

image, then the similarity between them is calculated with the following formula [16]:

S(D1, D2) =
〈D1, D2〉
‖D1‖ ‖D2‖

This means, that two local descriptors are similar if they point into the same direction.

All descriptors are normalized, so descriptors with higher word counts are not benefiting

from it.

In the end the local descriptors are compared against the local descriptors in the support-

ing database with the above similarity metric. The comparison is fast due to inverted

index structure created during the database generation. The final top 20 views, whose

local descriptor was the most similar with the examined object’s local descriptor is eval-

uated to have a final result. The decision is made by counting the occurrence of each

object type. The one with the most occurrence is the final result of the object detector.

This also means that it does not have to be the object which had the smallest difference.

For example in figure 3.17 the object which is getting detected by the system is a mug.

The first two results are not mugs, but the majority in the top 20 result is actually a

mug, hence the current result is a mug.

Figure 3.17: Testing the retrieval system by inputting figure 3.16 image patch of a
mug

Chapter 3. Proposed Method 40

3.2.5 Correspondence

The input and output of this separate phase of the online pipeline can be seen in table

3.7 below.

Input Output

Point cloud Transformation matrix

Table 3.9: Input and output of the correspondence in the online section of the system.

This phase runs parallel to the above explained online pipeline. Its responsibility is to

be able to localize the camera in space and to be able to tell the correspondence between

detected objects in different frames.

As table 3.7 claims the input of this phase is a point cloud. This point cloud is regis-

tered to the previous frame’s point cloud with the technique discussed in Chapter 2.1.4

and Chapter 2.2.5. It is important to note, that the transformation matrix is calcu-

lated always to the previous frame and then it is multiplied with the previous frame’s

transformation matrix to obtain the global transformation.

T1 ∗ T2 ∗ ...Tn = Tglobal

T1, T2, ... Tn represents the local transformation matrix of the current frame and Tglobal

represents the global transformation matrix. It is also important to note, that there is

no T0, since the first transformation is applied after the second frame.

After the registration is done the transformation matrix is obtained. The resulting

transformation matrix is applied to each object detected in the current frame. After

the transformation matrix is applied to the detected object clusters a simple distance

calculation can prove which cluster corresponds to which previous detected object clus-

ters, if any. This distance is a simple Euclidean distance, which was discussed in several

chapters above already. The distance is measured between the centroid of the clusters.

As always there is a certain threshold for the distance. If two centroids are within this

certain threshold, then the two cluster represent the same object. In my application this

threshold is 0.05, which represents 5 cm in the point cloud space. An illustration of this

phase can be seen in figure 3.18 below.

Chapter 3. Proposed Method 41

Figure 3.18: Top: Each color represents a separate frame and each camera is marked
with the corresponding frame’s color. Bottom: The same image, but instead of vi-
sualizing the point clouds cubes are used to be able to see the transformations more

clearly.

3.2.6 Retrieval refinement

The input and output of this separate phase of the online pipeline can be seen in table

3.10 below.

Chapter 3. Proposed Method 42

Input Output

Results of the online phase Refined results

Table 3.10: Input and output of the refinement phase in the online section of the
system.

This is an independent phase of the above presented system. It tends to refine the

output of the online part’s current results. The refinement works in an iterative way on

top of the online pipeline. The input as it is in table 3.10 is a set of results from the

online pipeline. The different input results are separated into vectors. Each vector holds

results to the same corresponding object in the scene. The acquisition of the proper

correspondence between these results are described in the previous chapter, namely

Chapter 3.2.5. There has to be at least two result vectors to have the results refined. As

a result of this there is no refinement phase after the results of the first processed input

depth map frame of the online phase. Furthermore the refinement of a result list of

vectors triggers only for the objects, which are the current results of the online pipeline.

To illustrate the above mechanism the following simple example will guide through the

process. Suppose there were several depth map frames processed via the online phase

already. Therefore there should be already several list of vectors with results of the

corresponding object. A new input depth frame is then processed. There were two

objects clusters at the end with a result set. Both set of results are then added to the

right list of result vectors. Clearly if there was no corresponding list of result vectors

yet to the given object, then a new one is created. As soon as the new results are added

to the proper list the refinement mechanism triggers.

The refinement takes the result list vectors as an input and finds the result in the same

way as in Chapter 3.2.4. The difference is that now there are x ∗ top20 results, where x

is the size of the list and x > 1. An example of this can be seen below.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5

0

3

6

0

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8

1

0

3

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13

1

3

9

0

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chapter 3. Proposed Method 43

Where the first two vector represents two result vector of the same object cluster from a

different view point. Each dimension of the vector represents the occurrence of a given

type of object. This means, that there are 6 type of objects in this example. The result

of the two result vector is the refined result. As it can be seen the first two vector would

have different results and after refinement the entry zero becomes the dominant.

My observation was, that the retrieval refinement improved the successful detection

rate. Some input depth frames might be from a less advantageous view and hence it

can influence the detection. Considering multiple views as the final result can overcome

this issue. The following images in figure 3.19 demonstrates the difference between one

view and multiple view results.

Figure 3.19: From left to right: 1., 2., 3., input frame. Frame 1. gets false positives
for the monitor as laptop and for the mouse as glass. Frame 2. refinement phase fixes
false positive for the monitor. Frame 3. refinement phase fixes the false positive for the

mouse.

Chapter 4

Implementation Details

My chosen language for developing both parts of the application (online part - object

detection, offline part - database generator) was C++. As for developing environment

I used Microsoft Visual Studio 2013 under Windows 8.1 operating system. The reason

for this is, that the new Kinect V2 camera’s API requires at least Windows 8 and Mi-

crosoft Visual Studio 2013. I also tried some open source API’s for the new Kinect, like

libfreenect but I didn’t find them reliable enough yet. Still I wanted to have the chance

to make the application cross platform in the future, therefore I designed an interface

between the Windows dependent Kinect code and the application’s other parts. As

for an application framework I used the well known library Qt. For visualization and

artificial depth map generation I used OpenGL. All the point cloud processing tasks

are done with PCL [28], the point cloud library. Since PCL library has no official re-

lease for Microsoft Visual Studio 2013 I had to create my own version. Edge detections

and image manipulations are done with OpenCV. Additional library used in the project

is Boost C++. A summery of the used libraries and APIs can be seen in table 4.1 below.

Library/API Version

Kinect 2.0

OpenGL 2.1

PCL 1.7.2

OpenCV 2.4.9

Boost C++ 1.57.0

Table 4.1: Summery of the libraries and APIs used in the project.

44

Chapter 4. Implementation Details 45

It is also important to note, that the application, which realizes the online part of the

system is a multithreading application. This is important in order to achieve real-time

feedback to the user. There are three important threads in the application.

• The main thread, which is responsible for the user inputs and the rendering, plus

converting each depth map frame into a point cloud structure and calculating the

corresponding normals. This thread is running with 28-30 fps.

• The registration thread, which is responsible for finding the transformation be-

tween the input frames, so the camera can be localized and the correspondence

can be found between the detected objects. This thread is running with 20-22 fps.

• The processing thread, which is responsible to process the input frame by seg-

menting it into separate object clusters and identify them by object type. This

thread is running with 2-3 fps.

Input frames above consist of the point cloud and the corresponding normals. There is

also communication between some of the threads. The processing thread for example

queries the registration thread about the actual global transformation to be able to

find correspondences between the identified and the already identified objects. This is

important from the refinement phase of point of view. On the other hand the main

thread for visualization purposes queries the processing thread for the identified object

results to be able to show feedback to the user and to be able to indicate any changes

happened during the refinement phase. An illustration of the system can be seen in

figure 4.1 below.

Figure 4.1: A flow diagram of the system. Each color represents a different thread.
Dotted lines mean, that the thread is depending on some variables from the other

thread.

Chapter 5

Discussion

In this chapter some analysis will be provided of the system, limitations will be discussed

and a summary of the results with some evaluation will be provided. The chapter will

finish with some thoughts on future work. Limitations will cover the edge cases of

the applications and cases where failure can happen. The results section will cover an

evaluation of the used techniques and how they improved the results. There will be

words about the difference between the one view and multiple view results. Last but

not least some future improvements will be discussed.

5.1 Analysis

As it was described in Chapter 4 the system has three threads. Out of these three

threads two is basically real time, which means 15+ fps. The third thread is running

with 2 fps. This thread is responsible for the segmentation and detection part. While

the corresponding application is designed in a way, that the user doesn’t necessarily

notices this slowness, it would be feasible to speed up this part of the system.

On the other hand, even with 2 fps the system is accurately detecting the objects in the

scene. Some objects are detected correctly from the first frame and some are detected

correctly after several frames. This is due to the fact that some views are more descriptive

of a given object, then others. Therefore it is important to mention, that as more frames

come into the system the detection’s reliability grows.

The system is also robust against occlusion unlike the Fourier descriptor method [4]

described in Chapter 2.1.1. The system is capable of detecting large (e.g. chairs) and

small (e.g. cups) objects and is scale and rotation invariant unlike this [32] method also

mentioned in Chapter 2.1.1.

46

Chapter 5. Discussion 47

Last but not least the presented system is an extension of a state of the art sketch based

method [3], by automatizing the sketch generation and implanting it into a full object

detection pipeline.

5.2 Limitations

The limitations of the system in the current stage are the following:

• Detecting certain very small objects is hard due to the noise of the input depth

map and errors of the plane detection. Objects, which can belong into the ”very

small” object category do not extrude enough from the supporting plane, like cell

phones or pens laying on a table for example. This means, that during the plane

detection phase they can get neglected and counted as part of the plane.

• On the other side, the noise from the depth camera can influence the plane detec-

tion algorithm and corners of the table can be falsely detected as objects.

• Also very dense scenes where objects are touching and are close together are very

hard to segment rightfully. Therefore on these kind of scenes the system can fail

to segment and detect the right objects.

5.3 Evaluation and Results

This section describes the main tricks, which improved and made the system more

robust. The methods will be discussed in a bottom to top fashion.

First of all, one of the key phases in the system is the segmentation of the objects.

The object segmentation relies on detecting the supporting plane structure. Using only

the plane detection method explained in Chapter 2.1.1 was not enough, because the

algorithm is not able to fully filter out points, which are not part of the plane, but it gives

a reasonable good guess. Using the resulting points of this phase, I used an additional

refinement phase with the help of the well known RANSAC algorithm, explained in

Chapter 2.2.2. Using RANSAC alone on a big point cloud data as obtained from the

Kinect is too slow, but using it on a smaller point set is satisfying and fast.

An other important aspect, which should be highlighted is the chosen descriptor. When

I first started implementing the system I used the a descriptor called Fourier descriptor

[23], described in Chapter 2.1.2. This descriptor works fine until the case of partial

matching does not come into the picture. Since this descriptor relies on the silhouette or

in other words the contour of the object, as soon as the input is just a part of the given

Chapter 5. Discussion 48

object it fails to detect it and gives false positive results. On the other hand GALIF

features and the bag of feature method does not depend on full object observation and

partial matching is way more robust and reliable. Therefore I switched to this feature

and method instead, which improved the results successfully.

The biggest improvement and contribution of this thesis is the using of multiple views.

Each view is processed and evaluated separately, but after each processed phase a refine-

ment is taking place. This refinement is considering all previous results and reevaluates

the results if necessary. This contribution improves the accuracy of the detection and

filters out false positive detections, which makes the system more reliable. The tests

showed, that the accuracy of the presented object detection pipeline is 75%, but 50% of

the failed cases are actually fall into a similar object type, like detecting a cup instead

of a mug or detecting a laptop instead of a monitor.

As a conclusion, tracing back the object detection dilemma to a sketch based object

retrieval problem, combining it with additional techniques from the filed of computer

graphics and computer vision is a viable approach. Some results can be seen in figure

5.1 below.

5.4 Future work

One of the most important things which would largely improve the robustness and

reliability of the presented system is improving the segmentation part. There are several

other techniques out there, which address a solution to this problem, like [24]. Hence

trying out some other methods should be competent. To make the system more fast

and more real-time, some parallelization could be added. There are several phases in

the system, which could be implemented on GPU, like one of the point cloud processing

steps. Since right now the whole process of detecting without the registration and

refinement part is 2 fps. As from a development point of view an additional feature, like

reconstruction would greatly boost the benefits of the application. The system is already

prepared for such a feature, just some additional development is need to find the proper

oriented bounding boxes for each object cluster and replace it with a polygonal model

from the supporting database. Along with this, there are endless range of possibilities

to shape, improve the system in a way so it can become beneficial to a certain user base.

Chapter 5. Discussion 49

Figure 5.1: Some example results of the system. From top to bottom: general office
scene, general office scene with objects not in their standard position, general office
scene with an occlusion example (1), general office scene with an occlusion example
(2), general furniture scene, general furniture scene with objects not in their standard

position.

Bibliography

[1] Trevor, a, Gedikli, S., Rusu, R. B., Christensen, H. I. (2013). Efficient organized point

cloud segmentation with connected components. Proceedings of Semantic Perception Mapping

and Exploration, 16.

[2] Xu, K. (2012). Sketch2Scene: Sketch-based Co-retrieval and Co-placement of 3D Models.

[3] Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., Alexa, M. (2012). Sketch-based shape

retrieval. ACM Transactions on Graphics, 31(4), 110.

[4] Chen, D.-Y., Tian, X.-P., Shen, Y.-T., Ouhyoung, M. (2003). On Visual Similarity Based

3D Model Retrieval. Computer Graphics Forum, 22(3), 223232.

[5] DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A. (2003). Suggestive contours for

conveying shape. ACM Transactions on Graphics, 22(3), 848.

[6] Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8(6), 679698.

[7] Lindeberg, T. (1996). Edge detection and ridge detection with automatic scale selection.

Computer Vision and Pattern Recognition, 1996. Proceedings CVPR 96, 1996 IEEE Computer

Society Conference on, 30(2), 465470.

[8] Squire, D. M., Mller, W., Mller, H., Pun, T. (2000). Content-based query of image

databases: Inspirations from text retrieval. Pattern Recognition Letters, 21(13-14), 11931198.

[9] Sivic, J., Zisserman, A. (2003). Video Google: a text retrieval approach to object matching

in videos. IEEE International Conference on Computer Vision, 14701477. doi:10.1109/ICCV.2003.1238663

[10] Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information

Theory, 28(2), 129137.

[11] Zhang, Z. (2012). Microsoft kinect sensor and its effect. IEEE Multimedia, 19(2), 410.

[12] Felzenszwalb, P. F., Huttenlocher, D. P. (2004). Efficient graph-based image segmentation.

International Journal of Computer Vision, 59(2), 167181.

[13] Hulik, R., Beran, V., Spanel, M., Krsek, P., Smrz, P. (2012). Fast and accurate plane

segmentation in depth maps for indoor scenes. 2012 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems, 16651670.

50

[14] Holzer, S., Rusu, R. B., Dixon, M., Gedikli, S., Navab, N. (2012). Adaptive neighborhood

selection for real-time surface normal estimation from organized point cloud data using integral

images. IEEE International Conference on Intelligent Robots and Systems, 26842689.

[15] John A. Hartigan. 1975. Clustering Algorithms (99th ed.). John Wiley Sons, Inc., New

York, NY, USA.

[16] Witten, I., Moffat, A., BELL, T. 1999. Managing giga- bytes: compressing and indexing

documents and images. Mor- gan Kaufmann.

[17] Deza, M. M., Deza, E. (2009). Encyclopedia of Distances. Media (Vol. 2006).

[18] Besl, P., McKay, N. (1992). A Method for Registration of 3-D Shapes. IEEE Transactions

on Pattern Analysis and Machine Intelligence.

[19] Systems, I. (1991). Object Modeling by Reg strat ion of Multiple Range Images*, (April),

27242729.

[20] Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces.

International Journal of Computer Vision, 13(2), 119152.

[21] Pomerleau, F., Colas, F., Siegwart, R. (2015). A Review of Point Cloud Registration

Algorithms for Mobile Robotics. Foundations and Trends in Robotics, 4(1-104).

[22] Rusinkiewicz, S. (2001). Efficient Variants of the ICP Algorithm a r c Levoy.

[23] Zhang, D., Lu, G. (2002). An Integrated Approach to Shape Based Image Retrieval.

Computer, 23(January), 16.

[24] Silberman, Nathan; Hoiem, Derek; Fergus, Rob; Kohli, P. (2012). Indoor Segmentation

and Support Inference from RGBD Images. Lecture Notes in Computer Science, 7576(Part 5),

746760.

[25] Schnabel, R., Wahl, R., Klein, R. (2007). Efficient RANSAC for point-cloud shape detec-

tion. Computer Graphics Forum, 26(2), 214226.

[26] Hast, A., Nysj, J. (2013). Optimal RANSAC - Towards a Repeatable Algorithm for Find-

ing the Optimal Set. Journal of WSCG, 21(1), 2130.

[27] Oehler, B., Stueckler, J., Welle, J., Schulz, D., Behnke, S. (2011). Efficient multi-resolution

plane segmentation of 3D point clouds. Lecture Notes in Computer Science (including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7102 LNAI, 145156.

51

[28] Rusu, R. B., Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). Proceedings -

IEEE International Conference on Robotics and Automation, 14.

[29] Zhang, D., Lu, G. (2001). A comparison of shape retrieval using Fourier descriptors and

short-time Fourier descriptors. Advances in Multimedia Information Processing PCM 2001, 24,

855860.

[30] Izadi, S., Davison, A., Fitzgibbon, A., Kim, D., Hilliges, O., Molyneaux, D., Freeman, D.

(2011). Kinect Fusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Cam-

era. Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology

- UIST 11, 559.

[31] Newcombe, R. a, Molyneaux, D., Kim, D., Davison, A. J., Shotton, J., Hodges, S., Fitzgib-

bon, A. (2011). KinectFusion: Real-Time Dense Surface Mapping and Tracking. IEEE Interna-

tional Symposium on Mixed and Augmented Reality, 127136.

[32] Li, Y., Dai, A., Guibas, L., Niener, M. (2015). Database-Assisted Object Retrieval for

Real-Time 3D Reconstruction. Computer Graphics Forum, 34(2), 435446.

[33] Leng, B., Zeng, J., Yao, M., Xiong, Z. (2015). 3D Object Retrieval With Multitopic Model

Combining Relevance Feedback and LDA Model. Image Processing, IEEE Transactions on, 24(1),

94105.

[34] Scovanner, P., Ali, S., Shah, M. (2007). A 3-dimensional sift descriptor and its application

to action recognition. Proceedings of the 15th International Conference on Multimedia - MULTI-

MEDIA 07, (c), 357.

[35] Davison, A. J. (2003). Real-time simultaneous localisation and mapping with a single cam-

era. Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, 2, 14031410.

[36] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. (2015). SSD: Single Shot MultiBox

Detector. Arxiv.

52

