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Abstract 

Failure Rate Prediction Models of Water Distribution Networks 

Seyed Farzad Karimian 

The economic, social and environmental impacts of water main failures impose a 

great pressure on utility managers and municipalities to develop reliable 

rehabilitation/replacement plans. The Canadian Infrastructure Report Card 2012 stated that 

15.4% of Canadian water distribution systems was in a “fair” to “very poor” condition with 

a replacement cost of CAD 25.9 billion. The “fair”, “poor” and “very poor” conditions 

represent the beginning of deterioration, nearing the end of useful life and no residual life 

expectancy, respectively. The majority of municipalities in Canada do not possess 

complete dataset of water distribution networks. The annual number of breaks or breakage 

rate of each pipe segment is known as one of the most important criteria in condition 

assessment of water pipelines. The main objective of this research is to develop a research 

framework that circumvent the limitations of existing studies by: 1) identifying the most 

critical factors affecting water pipe failure rates, 2) determining the best mathematical 

expression for predicting water pipeline failure rate 3) developing deterioration curves, and 

4) deploying sensitivity analysis to recognize the effect of each input change on the 

breakage rate. 

The proposed research framework utilizes Best Subset regression to recognize the 

most effective factors on water pipelines. Best-Subset Algorithm is a procedure to find the 

best combination of variables to predict the water pipe failure rate among all possible 

candidates. Once the process of critical factor selection is performed, selected variables are 
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employed to predict the number of breaks of water pipes using Evolutionary Polynomial 

Regression (EPR). The EPR is an intuitive data mining technique performed in two stages: 

1) the search for the best model using Multi-Objective Genetic Algorithm (MOGA), and 

2) the parameter estimation for the model using Least Square Method. The predicted 

number of breaks, computed by EPR, is utilized to develop deterioration curves by 

applying Weibull distribution function. Finally, sensitivity analysis is performed to: 1) 

recognize the effect of changing each input on the failure rate, and 2) study the relationship 

between the selected inputs and the output.   

The developed research framework is applied into two case studies to test its 

effectiveness. The case considers the water distribution networks in the City of Montréal, 

Canada and the City of Doha, Qatar. Physical factors, such as age, length, diameter and 

pipe material were identified as the most critical factors to affect the failure rate of pipes. 

The results indicate that the developed models successfully estimated the number of breaks 

for the City of Montreal and City of Doha with a maximum R-Squared of 89.35% and 

96.27%, respectively. Also, it is tested by using 20% of each dataset and promising results 

were generated with a maximum R-Squared of 84.86% and 74.39% for dataset of Montreal 

and Doha respectively. This demonstrates the accuracy and robustness of the developed 

models in assessing and analyzing water distribution networks. The developed model is 

useful for municipalities and decision makers to prioritize the maintenance, repair, 

rehabilitation, and budget allocation of water distribution networks.  
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1 Chapter 1: Introduction 

Water pipelines are intensive capital assets, preserved through operation and 

maintenance, to meet customers’ expectations and avoid catastrophic failures (Giustolisi et 

al. 2006). The 2013 American Society of Civil Engineers Report Card (ASCE 2013) rated 

the US drinking water networks with a score of D, which is interpreted as “Poor” condition. 

According to the American Water Works Association (AWWA), there are 240,000 water 

main breaks per year in the United States, imposing a total cost of $1 trillion on 

municipalities over the coming decades. Also, as the Canadian Infrastructure Report Card 

2012 (CIRC 2012) shows, municipal drinking-water networks are ranked “Good: Adequate 

for now”. Despite this overall rating, 15.4% of water distribution systems in Canada were 

ranked “fair” to “very poor” with a replacement cost of CAD 25.9 billion. The “fair”, 

“poor” and “very poor” conditions would be interpreted as deterioration beginning to be 

reflected, nearing the end of useful life and no residual life expectancy respectively (CIRC 

2012). Water main deterioration leads to a breakage rate increase and a hydraulic capacity 

decrease. According to CIRC 2012, 86 Canadian municipalities own a total of 719,630 km 

of water pipelines containing distribution pipes (≤350 mm diameter) and transmission 

pipes (>350 mm diameter).  

According to the CIRC 2012, the majority of municipalities in Canada do not have 

complete data for buried infrastructure networks, including water and sewer networks. 

Besides, it is clear that testing, inspection and evaluation of the pipe physical specifications 

require a large amount of financial reserves, and in some cases, it is difficult to implement. 

For operators and managers, it is vital to develop models that can estimate the breakage 

rate of water pipes by using their available and limited historical data instead of relying on 
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models that either require extensive data collection practices or physical testing of pipes. 

If these models can detect the factors that are critical for estimating the breakage rate and 

utilize them to predict it, this will have a profound impact on decreasing their required 

operational budget. Recently, a data-mining technique titled Evolutionary Polynomial 

Regression (EPR) was developed by Giustolisi and Savic (2006). This type of regression 

generates several symbolic expressions that are understandable by specialists and 

professionals, based on various independent variables.  

1.1 Problem Statement 

This research has been inspired by a lack of comprehensive analysis in the water 

pipe failure prediction models. In accordance with the importance of water distribution 

networks, the major limitations with respect to this research are briefly described in this 

section. There is a lack of computational models to predict water pipe failure rate, to be 

generic and not limited to certain physical characteristics (Berardi et al. 2008). The 

majority of developed models in literature were limited to pipes with certain material type 

or diameter. 

Furthermore, current practices do not justify why certain factors were selected for 

predicting the breakage rate (Berardi et al. 2008 and Xu et al. 2011). There is a need for a 

more comprehensive approach that starts with examining available datasets to extract 

factors statistically critical for predicting the breakage rate. As will be demonstrated later 

in this research, extracting and utilizing the most critical factors to estimate the breakage 

rate will improve the obtained statistical results. 
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In addition, current researches effort focused on modeling the water pipe failure 

rate without considering the interrelationships between considered variables and 

subsequently on estimating the failure rate. There is a need to develop failure rate models 

that consider such interrelationships with the ability to test and to determine the best 

mathematical symbolic expression to recognize the correlations among dependent and 

independent variables.      

1.2 Research Objectives 

The main objective of this research is to develop a generic framework for predicting 

water pipe failure rate. This main objective can be achieved through the following sub-

objectives:  

1) Identify and study the critical factors of predicting the number of breaks of 

water mains. 

2) Develop models to predict the number of breaks of water mains.  

3) Develop deterioration curves to predict the future condition of water pipelines.  

4) Perform sensitivity analysis to recognize the most sensitive factors to the 

number of breaks of water mains.   

1.3 Research Framework Overview 

The proposed research framework consists of 6 main parts as shown in Figure 1-1 

and described below: 

1) Literature Review: The literature review is performed to identify current 

studies’ limitations, which need to be investigated in this research. It starts by 

outlining and discussing the components of water distribution networks. Then, 
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it focuses on revealing the current state of the art of: 1) factors utilized in 

predicting the water pipeline failure rate and 2) models for predicting those 

failure rate and their limitations.  

Deterioration and Failure Rate Prediction 
Models of WDN

Literature Review
Factors affecting the failure rate of 

water pipelines
Failure Rate Prediction Techniques

Data Collection

Moncton Hamilton DohaMontreal

Best Subset Regression

Evolutionary Polynomial 
Regression

Weibull Distribution

Sensitivity Analysis

Implementation of Developed 
Model

Conclusion

DohaMontreal

Raw Dataset
Critical 
Factors

Critical 
Factors

Symbolic 
Expressions

Predicted 
Number of 

Breaks

Deterioration 
Curves

The Most 
Sensitive 

Factor

Symbolic 
Expressions

 

Figure 1-1 Research Framework Overview 
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2) Best Subsets regression: The best subset regression is an automated technique 

that recognizes the best-fitting regression models with factors specified by the 

user. In this study, this technique is used to find the best combination of 

independent variables to predict the number of breaks of water pipelines. 

3) Evolutionary Polynomial Regression: This is a data-driven technique and is 

classified as a grey box method as it provides insight into the relationship 

between inputs and output (Giustolisi 2004). This method is performed in two 

stages: 1) a search for the best model using Multi-Objective Genetic Algorithm 

(MOGA), and 2) parameter estimation for the model using Least Square 

Method. The process of EPR should be coupled with engineering knowledge to 

verify if the generated equations and correlations between utilized inputs and 

output are reasonable. Two separated models are developed using datasets of 

Montréal and Doha, based on the most critical factors obtained from the best 

subset regression.    

4) Weibull Distribution: Weibull reliability function is employed to generate 

deterioration curves as it poses three main advantages over the other methods 

to be described later in chapter 4. In general, Weibull-based models are widely 

used in different studies and applications to solve various problems (Jardine and 

Tsang, 2013). In this study, the value of number of breaks that is predicted using 

EPR is used to establish deterioration curves for several homogeneous clusters. 

5) Sensitivity analysis: This technique is deployed to explore the effect of 

changing each input on the predicted output (i.e. number of breaks). Also, 

sensitivity analysis is utilized to verify if the existing relationships between the 
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selected inputs from the best subset algorithm and the predicted output from the 

EPR algorithm are reasonable in terms of engineering knowledge. 

6) Data Collection: Four datasets of water distribution networks obtained from the 

City of Moncton, City of Hamilton and City of Montréal in Canada and the City 

of Doha in Qatar, were considered in this study. These four datasets were 

considered for understanding current practices of data collection. Their 

examination also serves us to obtain better understanding of the water pipe 

deterioration processes. In addition, these datasets are utilized to build up a 

comprehensive water pipeline assessment model for: 1) identifying the most 

critical factors, 2) determining the best mathematical form for predicting water 

pipe breakage rate and 3) providing deterioration curves and recognizing the 

most sensitive factors. Finally, a part of the same datasets was employed to 

check the proposed model’s validity.          

1.4 Thesis Organization 

This thesis consists of 6 chapters and 3 appendices. The literature review is 

presented in chapter 2 and it starts with discussing the components of water distribution 

networks. Then, the factors and models to predict the failure rate in previous studies, along 

with their limitations, are presented. Evolutionary Polynomial Regression is described in 

details as well. At the end of this chapter, the limitations of previous studies are presented. 

Chapter 3 describes and analyzes four datasets: The City of Moncton, City of Hamilton 

and City of Montréal in Canada and City of Doha in Qatar. Chapter 4 contains the research 

framework and its developed models. Two case studies: City of Montréal and City of Doha, 

are used to test the developed model. Their analyses and results are presented in chapter 5. 
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Finally, chapter 6 highlights the contributions, limitations and recommendation of this 

study. 
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2 Chapter 2: Literature Review 

2.1 Overview 

This chapter starts by outlining and discussing the components of water distribution 

networks. The literature review focused on revealing the current state of the art of: 1) 

factors utilized in predicting the failure rate of water pipelines and 2) models for predicting 

the failure rate with their limitations. The factors utilized in predicting the failure rate of 

water pipelines were classified into two clusters based on; 1) whether these factors are 

static or dynamic through the lifecycle of water pipelines and 2) whether these factors are 

physical, environmental or operational. Failure rate models are reviewed with their 

drawbacks being highlighted. The failure rate models are clustered into four groups: 

deterministic, statistical, probabilistic, and artificial intelligence. Finally, this chapter 

concludes with a summary of the identified limitations in the previous studies. Figure 2-1 

shows an overview of this chapter.    

2.2 The components of Water Distribution Systems 

Water distribution networks have three main parts: pipes, valves and flush hydrants. 

The pipes and valves are buried, thus the involved parties like municipalities and 

contractors need a detailed map to have a quick and precise access to the location of the 

pipes in case of emergency. Also, this map can be used in upgrading and improvement of 

the system.  
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Figure 2-1 Overview of Literature Review 

2.2.1 Pipes 

As it can be seen in Figure 2-2, there are two main types of water pipes; 

transmission pipes and distribution pipes. Transmission pipes carry the water from the 

source to the treatment plant and storage tanks. These are the largest (>350 mm diameter) 

and thickest pipes in the system, therefore, the most expensive ones. For reducing the 

transmission cost, the location of the storage system should be as close as possible to the 

source of water.  

Distribution pipes (≤350 mm diameter) carry out the water from storage tanks to 

the users. These pipes must be far at least 10 feet from sewers pipes and laid in separated 
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trench for water quality assurance purposes. The minimum diameter for distribution pipes 

is 2 inches while for serving the fire hydrant the 6 inches pipe is needed. To take into 

consideration the population growth, most of the decision makers try to use bigger pipes 

than the minimum size.  

 

 

Figure 2-2 Water Supply Distribution System (Adopted from EPA, 2006)  

Materials commonly used in water pipes can be divided into three main groups: 

metallic pipes, cement pipes and plastic pipes. Metallic pipes include gray cast iron pipe 

(GCIP), ductile cast iron pipe (DCIP), steel pipe and copper. Cement pipes such as asbestos 

cement (A.C.) pipe and in older systems concrete or fired clay. Plastic pipes include PVC 

(polyvinyl chloride) pipe and high-density polyethylene (HDPE) pipe. 

2.2.2 Valves 

Valves are one of the most important parts of water distribution networks. During 

the maintenance, valves can isolate the portion of the water that needs to be kept in the 
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system. Installing valves in suitable place minimizes the loss of service in water pipe 

rehabilitation and replacement. Valves that are not used for many years can be stuck or 

even broken if neglected. Thus, valve exercise program is an important part in water pipes 

maintenance.  

2.2.3 Flush Hydrant 

Flush hydrants are almost the only visible part of the water distribution networks. 

They must be located at the end of all lines to remove sediment, silt, rust, debris, or stagnant 

water from dead-ends. Flush hydrants should also be installed throughout the system to 

provide for periodic flushing to maintain high water clarity and quality. Fire hydrants are 

larger and more expensive than the flush hydrants and usually are connected to the larger 

pipes. But some of the municipalities use fire hydrants for flushing their lines. 

2.3 Factors affecting the failure rate of water pipelines 

In the last decade, the extensive research effort was made to develop models for 

predicting the failure rate of water pipelines. The factors utilized in these models were 

classified into two clusters based on; 1) whether these factors are static or dynamic through 

the lifecycle of water pipelines and 2) whether these factors are physical or environmental 

or operational. After reviewing previous studies, it was observed that the second 

classification is more common in recent research efforts.  

2.3.1 Static and dynamic factors 

Stone et al. (2002) categorized factors contributing to the failure of water pipelines 

into two groups: static factors and dynamic factors. The characteristics of static parameters 

do not depend on the time, but dynamic factors’ specifications change over time. Static 
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parameters include the diameter, length, soil type, pipe material, etc. On the other hand, 

the age, cumulative number of breaks, soil corrosivity and water pressure are examples of 

dynamic factors influencing pipe failure rate. Osman and Bainbridge (2011) studied the 

effect of time-dependent variables like pipe age, temperature and soil moisture on the 

deterioration of water pipes. Static factors such as soil type, length, wall thickness and 

diameter of the pipe were not considered in their study because of the unavailability of 

reliable data.  

2.3.2 Physical, environmental and operational factors 

InfraGuide. (2003) classified the factors contributing to the deterioration of water 

pipes to three main categories; physical, environmental and operational as shown in Table 

2-1. According to InfraGuide (2003), physical factors include pipe material, pipe wall 

thickness, pipe age, pipe vintage, pipe diameter, type of joints, thrust restraint, pipe lining 

and coating, dissimilar metals, pipe installation and pipe manufacture. In other researches, 

pipe length and buried depth are also known as physical factors.   

InfaGuide (2003) considered pipe bedding, trench backfill, soil type, groundwater, 

climate, pipe location, disturbances, stray electrical currents, and seismic activity as the 

environmental factors. While, other researchers included rainfall, traffic and loading, and 

trench backfill as the environmental factors as well. Kabir et al. (2015b) studied the effect 

of soil type on the failure rate of water pipelines and highlighted that soil type can be 

classified further to major and minor factors. The five major soil’s factors include soil 

electrical resistivity, soil pH, redox potential, soil sulfide contents and soil moisture. The 

five minor soil factors are; temperature of soil, oxygen contents, presence of acids, sulfates, 
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Table 2-1 Factors that contribute to water system deterioration (InfraGuide. 2003) 

Factor Explanation 

Physical 

Pipe material Pipes made from different materials fail in different ways. 

Pipe wall 
thickness 

Corrosion will penetrate thinner walled pipe more quickly. 

Pipe age Effects of pipe degradation become more apparent over time. 

Pipe vintage 
Pipes made at a particular time and place may be more vulnerable to 
failure. 

Pipe diameter Small diameter pipes are more susceptible to beam failure. 

Type of joints 
Some types of joints have experienced premature failure (e.g., leadite 
joints). 

Thrust restraint Inadequate restraint can increase longitudinal stresses. 

Pipe lining and 
coating 

Lined and coated pipes are less susceptible to corrosion. 

Dissimilar metals Dissimilar metals are susceptible to galvanic corrosion. 

Pipe installation 
Poor installation practices can damage pipes, making them vulnerable to 
failure. 

Pipe 
manufacture 

Defects in pipe walls produced by manufacturing errors can make pipes 
vulnerable to failure. This problem is most common in older pit cast pipes. 

Environmental 

Pipe bedding Improper bedding may result in premature pipe failure. 

Trench backfill Some backfill materials are corrosive or frost susceptible. 

Soil type 

Some soils are corrosive; some soils experience significant volume changes 
in response to moisture changes, resulting in changes to pipe loading. 
Presence of hydrocarbons and solvents in soil may result in some pipe 
deterioration. 

Groundwater Some groundwater is aggressive toward certain pipe materials. 

Climate 
Climate influences frost penetration and soil moisture. Permafrost must be 
considered in the north. 

Pipe location Migration of road salt into soil can increase the rate of corrosion. 

Disturbances 
Underground disturbances in the immediate vicinity of an existing pipe can 
lead to actual damage or changes in the support and loading structure on 
the pipe. 

Stray electrical 
currents 

Stray currents cause electrolytic corrosion. 

Seismic activity Seismic activity can increase stresses on pipe and cause pressure surges. 

Operational 

Internal water 
pressure, 
transient 
pressure 

Changes to internal water pressure will change stresses acting on the pipe. 

Leakage Leakage erodes pipe bedding and increases soil moisture in the pipe zone. 

Water quality Some water is aggressive, promoting corrosion 

Flow velocity Rate of internal corrosion is greater in unlined dead-ended mains. 

Backflow 
potential 

Cross connections with systems that do not contain potable water can 
contaminate water distribution system. 

O&M practices Poor practices can compromise structural integrity and water quality. 
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and sulfates reducing bacteria’s.  

The Internal water pressure, transient pressure, leakage, water quality, flow 

velocity, backflow potential, and O&M practices are examples of operational factors 

(InfraGuide 2003). Others considered the nature and date of last failure (e.g., type, cause, 

severity), nature of maintenance operations (e.g., TV inspections, pipe cleaning, cathodic 

protection), nature and date of last repair (e.g., type, length), water quality and construction 

method, as operational factors that affect water pipe’s failure rate. 

Researchers either used a single group of factors (i.e. physical only) or a 

combination of these groups to predict the failure rate of water pipelines (physical and 

operational, physical and environmental and physical, operational and environmental).  

I. Physical factors 

For the physical factors, the impact of these factors on predicting the failure rate of 

pipes was examined by several researchers (Berardi et al. (2008), Wang et al. (2009), Xu 

et al. (2011), Aydogdu and Firat (2014), Arsénio et al. (2014), Jenkins et al. (2014) and 

Kutyłowska (2015)). Berardi et al. (2008) utilized the six following factors for each pipe: 

1) number of pipe’s breaks recorded during the monitoring period; 2) pipe age; 3) number 

of properties supplied; 4) pipe length and 5) pipe nominal diameter (up to 250 mm). The 

whole dataset were clustered into several homogeneous groups (class) based on the age 

and diameter of the pipe. The authors considered age, length, diameter, number of 

properties supplied and number of pipes in each class as the inputs and number of pipe’s 

breaks as the output. It should be noted that they did not take into consideration the material 

of the pipe as the input.  
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Wang et al. (2009) divided the dataset of Québec City into five groups based on the 

pipe material: gray cast iron, ductile iron with, ductile iron without lining, PVC, and 

concrete pipes. They considered three factors as the independent variables including pipe 

length, pipe age, and pipe diameter.  In addition, higher orders and interactions of the first 

order terms of L, A, D such as: square of length, square of pipe age, square of pipe diameter, 

interaction of length and age (L*A), interaction of length and diameter (L*D), and 

interaction of age and diameter (A*D), are included in their inputs as well. These inputs 

are used to improve the accuracy of the model. They observed that pipe length had a great 

impact on the water pipe’s failure. Xu et al. (2011) established a relationship between the 

number of pipe breaks and the following physical factors, the age, length and year of 

installation (age). The dataset of Beijing City was aggregated into several homogeneous 

groups based on the pipe diameter and pipe age. This database was divided into two parts 

based on the observation date, one of them was used for model development, and the other 

one was used for validation. They did not consider pipe material as input as well.  

Aydogdu and Firat (2014) estimated the failure rate considering the age, diameter 

and length of water pipes as the independent variables. Historical records from the City of 

Malatya in Turkey during 2006–2012 were selected to develop and test their model. The 

authors divided the dataset to three groups based on the pipe material: PVC, cast iron and 

asbestos cement pipes. Then, they studied the relationship between the failure rate and the 

above-mentioned factors for each group separately.   Aydogdu and Firat (2014) observed 

that the failure rate for the following three groups of pipes was the highest: pipes with 

lengths of 0–200 m, pipes with diameters of 110 cm, and pipes with ages in the interval of 

15–20 years.     
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Arsénio et al. (2014) took into consideration the ground movement and pipe age as 

the inputs to estimate the breakage rate of the water mains. The water distribution network 

of an unknown Dutch drinking water company was selected as the study area. This dataset 

includes three types of pipes: PVC, asbestos cement and cast iron pipes. The authors 

demonstrated that the failure rate of pipes of all materials located in areas with high 

probability of ground movement was higher than the others. However, they did not 

consider other physical factors such as diameter, length and material of the pipes. While 

according to the previous finding physical factors are the most significant variables in water 

pipe failure occurrence.    

Jenkins et al. (2014) addressed the problem of uncertain and limited data in Weibull 

hazard rate models for water distribution networks. They tried to fill the gap of data that 

were unknown material type and installation date. Whereas pipe length is used as the 

explanatory variable in many statistical models, the uncertainty associated with fitting the 

segment lengths, made it impossible to consider length in the model. Data had been 

provided by large utility that is located in the southeastern United States. Kutyłowska 

(2015) considered material, length, diameter, and installation date of the pipes to predict 

the failure rate of water mains. Historical data was collected from a Polish water 

distribution network during 2001-2006. They used 50%, 25%, and 25% of the database for 

training, testing and validation respectively.  

II. Physical and Operational factors 

Moliga et al. (2007) and Shirzad et al. (2014) added more parameters from various 

categories (operational and physical) as the independent variables to improve the reliability 

of their models. Moliga et al. (2007) identified a homogeneous group of cast iron water 
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mains by selecting pipes installed between 1953 and 1969 in Australia’s database. This 

population was about 23% of the total network length. The pipes with the diameter less 

than 40mm were not included in this cohort. The explanatory variables in this study were 

age, length, diameter, wall thickness, corrosion rate, and operating water pressure. 

Shirzad et al. (2014) took into the consideration an operational factor like hydraulic 

pressure in addition to physical factors to forecast the pipe burst rate. The age, length, 

diameter and buried depth were the physical parameters in their study. The authors 

collected their data from two cities in Iran: the City of Mashhad and the City of Mahabad. 

Asbestos pipes with diameter between 80 and 300 mm and polyethylene pipes with 

diameter between 32 and 160 mm were considered in Mashhad’s database and Mahabad’s 

database respectively.    

III. Physical and Environmental factors 

There has been an extensive effort in the previous studies to assess impact of 

physical and environmental factors on the failure rate prediction models of water mains 

(Asnaashari et al. (2013), Nishiyama and Filion (2014), Francis et al. (2014), Kabir et al. 

(2015a), Kimutai et al. (2015), and Kabir et al. (2015b)).  Asnaashari et al. (2013) 

considered the soil type as an environmental factor, while the physical parameters were 

length, age, diameter and material of pipes. Moreover, the date of cement mortar lining (if 

implemented) and the date of cathodic protection (if implemented) were added to 

independent variables. They applied their model to predict pipe failure rate in the City of 

Etobicoke, Ontario, Canada. Based on the analysis of historical data, they found that failure 

rate is decreased following the initiation of the CP and CML programs.  
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Nishiyama and Filion (2014) developed a model to forecast pipe breaks in cast iron 

water mains considering the diameter, age and length of the pipes as the physical factors 

and the soil type as the environmental factor. The data was collected from the City of 

Kingston, Ontario. It contains cast iron, ductile iron, PVC, and concrete pressure pipes 

(CPP). The reduction in failure rate was observed in Kingston West, Kingston Central, and 

Kingston East because of the old pipe removal.    

Francis et al. (2014) collected the pipe breaks and location data from a large city in 

Mid-Atlantic United States during 2010-2011 to construct a knowledge model for water 

pipe breaks. They were not able to collect pipe characteristics such as pipe age, pipe length 

and pipe material. Instead, they tried to gather publicly available proxies for some of this 

information. For example, they used the average house age at the census tract level to reach 

the approximate age of the water distribution network of that area. Also, population density 

was included in their study as a proxy for intensity of water use. They tried to find the 

possibility of correlations in population characteristics such as age, ethnic and racial 

composition with pipe age. Several soil types and some weather characteristics were 

considered as the environmental factors in their study. It should be mentioned that 

estimation method of pipe age and intensity of water use was novel but might be not 

accurate enough to model water pipe’s breaks.    

Kabir et al. (2015a) tried to develop a failure rate prediction model of water mains 

considering several physical factors (pipe diameter, pipe length, pipe age, and vintage) and 

environmental factors (freezing index, rain deficit, soil resistivity, soil corrosivity index, 

and land use). This model was implemented to predict the failure rate of cast iron and 

ductile iron pipes in the database of the City of Calgary, Alberta, Canada. The results 
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indicated that the behavior of CI and DI pipes is different from input’s effect. Also, CI and 

DI pipes are more sensitive to soil resistivity and soil corrosivity index respectively. 

Kimutai et al. (2015) studied effects of different covariates on the failure rate of 

water pipes. Pipe length, pipe diameter and pipe type were included in their study as the 

physical variables while they considered soil resistivity, freezing index (temperature), and 

rain deficit (precipitation) as environmental variables. Water distribution network of the 

City of Calgary was utilized as the case study. They concluded that the effect of physical 

factors on the failure rate of water mains were more significant than environmental factors. 

Kabir et al. (2015b) considered pipe characteristics like age, diameter, length and 

vintage or manufacturing period to develop a failure rate prediction model for cast iron and 

ductile iron water mains. Also, soil resistivity and soil corrosivity index were taken into 

consideration to explore the dependence of the actual failure rate, soil resistivity and soil 

corrosivity index. Higher order and logarithmic factors (i.e. A2, log A) were included 

among independent variables in order to improve the accuracy of the model. This 

information was collected from water distribution network of the City of Calgary, Alberta, 

Canada. This database comprises different pipe types such as ductile iron (DI), cast iron 

(CI), asbestos cement concrete and concrete cylinder pipes, steel, copper, and plastic pipes. 

IV. Physical, Operational and Environmental factors 

Some others included physical, environmental and operational parameters at the 

same time to improve the effectiveness and robustness of the failure rate prediction models 

(Jafar et al. (2010), Wang et al. (2010), and Kabir et al. (2014)). Jafar et al. (2010) tried to 

model the failure rate and estimate the optimal replacement/rehabilitation time for an 
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individual pipe in water distribution networks. They employed five physical factors (pipe 

material, pipe diameter, pipe length, wall thickness, and pipe age), an operational factor 

(hydraulic pressure), and two environmental factors (soil type and pipe location) as the 

explanatory variables. The database was constructed by collecting 14 years historical data 

(during the observation period between 1991 and 2004) from a city in the north of France.  

Wang et al. (2010) estimated the condition of the water pipes considering ten 

physical, environmental and operational parameters. At first, the factors were the diameter, 

age, coating (inner and outer), soil condition, bedding condition, trench depth, electrical 

recharge, operational pressure, material (steel, cast iron, and ductile iron), and the number 

of road lanes. Then after some numerical experiments of different factor combination, it 

was cleared that water pipe condition can be assessed without information of road lane, 

trench depth, and electric recharge. While, pipe age is the most important factor in 

assessing pipe condition. Kabir et al. (2014) studied the risk of failure of metallic water 

pipes (cast iron, ductile iron, galvanized, and steel) using a large variety of physical, 

environmental and operational factors. The considered factors were the diameter, age, 

length, wall thickness, water pressure and velocity, turbidity, free residual chlorine, color, 

season, water pH, freezing index, soil resistivity, soil pH, redox potential, sulphide content, 

moisture content, population, land use, and traffic and road type. All parameters were 

collected from water distribution network of the City of Kelowna, British Columbia, 

Canada.     

The summary of all aforementioned studies is shown in Table 2-2.  Figure 2-3 

shows the frequency of parameters which were used in 19 different previous works 

including: industry and academia, for each category (physical, environmental and 
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operational). By examining closely these results, out of the 17 reviewed factors, there are 

nine physical factors, seven environmental factors, and just one operational factor. It shows 

the importance of physical factors in modeling failures of water pipes. Also, Kimutai et al. 

(2015) confirmed that physical factors are more critical in estimating the failure rate than 

environmental factors. In Figure 2-3, it is obvious that the most frequent factors utilized in 

previous studies to predict the failure rate of water pipelines are; age, diameter, length, soil 

type, and pipe material. Berardi et al. (2008) stated that pipe age, diameter and length are 

the most important variables in describing water pipe failure occurrence. Also, Wang et al. 

(2009) concluded that length has a great impact on water pipe’s failure. Thus, in this study 

the major physical factors like age, diameter, length and pipe material are considered as 

the independent variables to predict the number of breaks and failure rate of water 

pipelines.  
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Table 2-2 Considered factors affecting water pipes failure rate by different researchers 
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Moglia et al. (2007)    corrosion rate

Berardi et al. (2008)   Number of Properties Supplies

Wang et al. (2009)    

Jafar et al. (2010)     

Wang et al. (2010)       

Xu et al. (2011)  

Asnaashari et al. (2013)     

Arsénio et al. (2014)  Ground Movement

Shirzad et al. (2014)    

Aydogdu and Firat (2014)  

Nishiyama and Filion (2014)   

Kabir et al. (2014)      

Jenkins et al. (2014)  

Francis et al. (2014)   

Kutyłowska (2015)   

Kabir et al. (2015a)   
Number of Connection for Each 

Pipe

Kimutai et al. (2015)     
Soil Resistivity, Freezing Index, 

and Rain Deficit

Kabir et al. (2015b)  
Soil Resistivity and Soil 

Corrosivity Index
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Figure 2-3 Frequency of effective parameters 
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2.4 Failure Rate Prediction Techniques 

During the last three decades, researchers developed different models to predict the 

failure rate of water pipes for a reliable infrastructure management. These failure prediction 

models are classified into four categories; deterministic, statistical, probabilistic, artificial 

intelligence models such as artificial neural networks (ANN) and fuzzy logic. A summary 

of the reviewed models is shown in Table 2-3.   

2.4.1 Deterministic Models 

 Deterministic models usually are used in cases where the relationship between 

inputs and output is clear. In two approaches the deterministic models can be applied: 

empirical and mechanistic. Empirical approach tries to find the relation between failure 

rates as the output and the features and attributes of a group of pipes as the inputs. While, 

the mechanistic approach can forecast the remaining useful life of an individual asset (just 

one pipe). The problem of these models is that a deterministic model can be applied just in 

specific location (Clair and Sinha 2012). 

2.4.2 Statistical Models 

This type of modeling is typically used to predict the useful life or time to failure 

of infrastructure assets (Lawless 1983). Statistical models are applied to homogeneous 

groups of pipes or other infrastructure assets and need recorded failures or data regarding 

asset’s condition. In this approach, regression is utilized to build a model based on the 

historical data that can predict the failure or condition of water assets. In regression, the 

dependent variable is related to at least one of the independent variables.
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Table 2-3 Prediction Models of Water Distribution Networks 

Authors (Year) 
Model 

Classification 
Methodology Output Type 

Moglia et al. (2007) Probabilistic Monte-Carlo Simulation Framework 

Probability of 

Failure for CI 

Pipes 

Berardi et al. (2008) Statistical Evolutionary Polynomial Regression Pipe Deterioration 

Wang et al. (2009) Statistical Five Multiple Regression Models 
Annual Break 

Rates 

Li et al. (2009) Probabilistic Monte-Carlo Simulation 
Remaining Useful 

Life 

Jafar et al. (2010) 
Artificial 

Intelligence 
Six ANN Models Failure Rate 

Wang et al. (2010) Statistical Bayesian Inference Deterioration Rate 

Xu et al. (2011) Statistical Genetic Programming and Evolutionary Polynomial Regression Deterioration Rate 

Osman and Bainbridge 

(2011) 
Statistical Rate of Failure (ROF) and Transition State (TS) Deterioration Rate 

Asnaashari et al. 

(2013) 

Artificial 

Intelligence 
ANN and Multi Linear Regression Failure Rate 

Arsénio et al. (2014) Statistical Ground Movement Estimated by Radar Satellite Data 
replacement-

prioritization plan 

Shirzad et al. (2014) 
Artificial 

Intelligence 
ANN and Support Vector Regression (SVR) Pipe Burst 
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Authors (Year) 
Model 

Classification 
Methodology Output Type 

Aydogdu and Firat 

(2014) 

Artificial 

Intelligence 

Fuzzy Clustering and Least Squares Support Vector Machine 

(LS-SVM) 
Failure Rate 

Nishiyama and Filion 

(2014) 

Artificial 

Intelligence 
ANN Pipe Breaks 

Kabir et al. (2014) probabilistic  Bayesian Belief Networks (BBN) Risk of Failure 

Jenkins et al. (2014) probabilistic  Weibull Hazard Failure Rate 

Francis et al. (2014) probabilistic  Bayesian Belief Networks (BBN) Pipe Breaks 

Kutyłowska (2014) 
Artificial 

Intelligence 
ANN Failure Rate 

Kabir et al. (2015a) Statistical Bayesian Weibull Proportional Hazard Model (BWPHM) Failure Rate 

Kimutai et al. (2015) Statistical 

Weibull proportional hazard model (WPHM), the Cox 

proportional hazard model (Cox-PHM), and the Poisson model 

(PM) 

Pipe Failure 

Kabir et al. (2015b) probabilistic Bayesian Belief Networks (BBN) Failure Rate 
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It should be mentioned that this technique requires a large historical dataset that 

contains a number of data points collected over a period to develop a promising statistical 

model (Clair and Sinha 2012). Table 2-2 shows that in recent years many researchers have 

utilized statistical models (number of regression models) to forecast water pipes failure or 

pipes condition. There has been an extensive effort during the past decades to develop the 

failure rate prediction model by using statistical approach (Berardi et al. (2008), Wang et 

al. (2009), Wang et al. (2010), Xu et al. (2011), Osman and Bainbridge (2011), Arsénio et 

al. (2014), Kabir et al. (2015a), and Kimutai et al. (2015)). Berardi et al. (2008) developed 

a water pipe deterioration model using Evolutionary Polynomial Regression. As it is 

mentioned before, they used a dataset that was classified into homogeneous groups based 

on the age and diameter of the pipe. The developed model can predict the number of breaks 

in each group. Then, for predicting the failure rate for each pipe, a general structural 

deterioration model based on EPR aggregated model was developed.  

Wang et al. (2009) utilized five multiple regression models for different pipe 

materials (gray cast iron, ductile iron without lining, ductile iron with lining, PVC, and 

hyprescon) to predict the annual break rate of individual water pipe rather than a 

homogeneous group. The overall model robustness was measured by F-test and the 

significant of each independent variable was measured by t-test. The model was validated 

using 20% of their collected dataset that was randomly selected. Wang et al. (2010) 

employed the Bayesian inference to assess the condition of water pipes. Ten factors from 

three pipe materials (cast iron, ductile cast iron, and steel) were used to generate factor 

weight. Based on the results of their model, the age of pipe is the most critical variable 
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while, the model was not sensitive to some factors like trench depth, electrical recharge, 

and some road lanes.     

Xu et al. (2011) developed two prediction models for failure rate using 

Evolutionary Polynomial Regression and Genetic Programming, and then they compared 

the results of these two models. Results were measured based on; 1) error between 

predicted and actual data, 2) parsimony of generated equation, and 3) ability to justify the 

generated equations based on the engineering knowledge. The results showed that EPR has 

some advantages over GP in equation uniformity and parameters estimation, while GP was 

better to find the complex relations. Osman and Bainbridge (2011) employed two statistical 

deterioration models to predict future failures of water pipes: rate-of-failure models (ROF) 

and transition-state (TS) models. ROF model extrapolates the failure rate for a specific 

group of water pipes that were classified based on age and some environmental factors. 

This model does not differentiate the times between successive pipe breaks for an 

individual segment while, the transition-state model focuses on finding the time between 

successive failures for the water pipes. TS models are dependent on the availability of 

sufficient and accurate data, but ROF models can be applied to limited historical data.  

The stresses in the buried pipes, which increase the probability of pipe failure, 

might be caused by the ground movement. This is a hypothesis that Arsénio et al. (2014) 

have worked on it. They estimated the ground movement using radar satellite data. Two 

different analyzes were done in their study: cell-based and pixel- based. The number of 

breaks of three types of water pipe was investigated: asbestos cement, PVC, and cast iron 

pipes. Kabir et al. (2015a) presented Bayesian Model Averaging method (BMA) to select 

the most critical explanatory variables. Then the Bayesian Weibull Proportional Hazard 
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Model (BWPHM) is applied to provide the survival curves and to forecast the failure rate 

of two pipe types: cast iron and ductile iron.  

Kimutai et al. (2015) studied the effect of different independent variables on 

predicting the failure rate of water pipes using three statistical models: the Weibull 

proportional hazard model (WPHM), the Cox proportional hazard model (Cox-PHM), and 

the Poisson model (PM). Also, they used curve fitting techniques to estimate a baseline 

hazard function equation for the Cox-PHM and applied it on a dataset from the City of 

Calgary. The predicted breaks and actual breaks were compared using root mean square 

error (RMSE), mean absolute error (MAE), root relative squared error (RRSE) and relative 

absolute error (RAE). 

2.4.3 Probabilistic Models 

Probabilistic models analyze the probability of an event occurring (Creighton 

1994). The probability of occurrence is one and the probability of the event that cannot 

happen is zero. The other probability of occurrence should be between 0 and 1 (Mitrani 

1998). Information about asset conditions and attributes are required to develop a 

probabilistic model. The output or dependent variable would be a range of values instead 

of the specific number. These models need extensive data and typically used in 

infrastructure assets (Clair and Sinha 2012). It should be noted that the probabilistic 

approach commonly increases the computational complexity of the models (Moglia 2007).  

As shown in Table 2-2, many studies employed the probabilistic approach to develop water 

mains assessment models (Moglia et al. (2007), Li et al. (2009), Kabir et al. (2014), Jenkins 

et al. (2014), Francis et al. (2014), and Kabir et al. (2015b)). Moglia et al. (2007) developed 

a physical probabilistic failure prediction model based on the fracture mechanics of cast 
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iron water pipes. The random independent variables were added to the inputs, and then 

Monte-Carlo simulation technique was applied to deal with the computational complexity 

of the model. The developed model without failure data, degradation and load data, was 

not capable of estimating failure rates of water pipes. Whereas, with these data, it can 

predict failure rates more accurately.      

 Li et al. (2009) used the mechanically-based probabilistic model to predict 

remaining useful life and failure probability of buried pipes. They considered the effect of 

random inputs and used Monte-Carlo simulation framework to calculate cumulative 

distribution function (CDF) of remaining useful life of pipelines. But, they did not consider 

the correlation of defects for a pipeline having more than one corrosion defects. Also, they 

found CDF more suitable than probability density function (PDF) and reliability index in 

describing the probability of failure.  

Kabir et al. (2014) assessed the risk of failure of metallic water pipes using a 

Bayesian Belief Network (BBN). Bayesian Belief Network can be interpreted as a 

probabilistic graphical model that can represent a collection of some covariates and their 

probabilistic relationships. This model recognizes the most vulnerable and sensitive pipe 

segments through the water pipe networks. The proposed model is good just for small to 

medium utilities with limited data. Jenkins et al. (2014) tried to address the problem of 

limited, incomplete, or uncertain data in water distribution networks. Two main 

modification were added to Weibull hazard rate models (WPHM) to improve the prediction 

performance of the models: the expert opinion and the spatial analysis. But these two 

modifications were not tested in the other utilities.  
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Francis et al. (2014) analyzed the water distribution systems to develop a pipe 

breaks prediction model using Bayesian Belief Networks (BBNs). They illustrated that 

assessing water pipe network is not only important for the failure prediction model but also 

is crucial for avoiding water loss and water quality degradation. Kabir et al. (2015b) stated 

that uncertainty regarding quality and quantity of databases became a major concern for 

failure prediction model development of infrastructure assets. Thus, they tried to reduce 

these uncertainties by developing failure prediction model for water mains using a new 

Bayesian belief network based data fusion model. The proposed model can identify the 

most vulnerable and sensitive pipe in the entire network, as well as the total number of 

pipes that require the immediate and appropriate action like maintenance, rehabilitation, 

and replacement.  

2.4.4 Artificial Intelligence Models 

In this literature review, Artificial intelligence models include Artificial Neural 

Networks and Fuzzy set theory models.  

I. Artificial Neural Networks 

Artificial Neural Network (ANN) is a method that can predict pipe failure and 

deterioration of infrastructure specially buried pipes. The ANN follows the pattern of the 

human brain using its generalization capabilities. Thus, this technique is able to process 

information even under large, complex, and uncertain environment. The high-quality 

database is needed for supervised training and forecasting the future condition of the pipes. 

Moreover, ANN needs several controlling factors including: number of hidden layers, the 

number of neurons in each hidden layer, activation functions, the number of training 

epochs, learning rate, and momentum term. However, ANN is considered as a “Black-
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Box” technique. Therefore, it is not able to provide insight into the relationship between 

dependent and independents variables (Clair and Sinha 2012; Moselhi and Hegazy 1993, 

Atef et al. 2015, Shirzad et al. 2014). 

Jafar et al. (2010) employed Artificial Neural Network (ANN) to analyze the urban 

water mains. Six ANN models that predict the failure rate of water pipes of a city in France 

were developed then, they tried to estimate the optimal rehabilitation/replacement time for 

the same network. These prediction models were tested and validated using cross-

validation. In the first part of this article, data collection was explained then development 

and validation of ANN models were discussed. In the data collection part, correlation and 

chi2 method were applied to select the most critical inputs.   

Asnaashari et al. (2013) studied two different methods to forecast the water pipe’s 

failure rate. Multi Linear Regression (MLR) and Artificial Neural Networks (ANN) were 

utilized, and their results were compared. The value of R-Squared showed that the ANN 

model (R2=0.94) is more promising while the MLR technique (R2=0.75) is just good 

enough for preliminary assessment. Shirzad et al. (2014) compared the predictive 

performance of Artificial Neural Network (ANN) and Support Vector Regression (SVR) 

in forecasting the water pipe’s breakage rate. In addition, they investigated the effect of 

hydraulic pressure (average and maximum hydraulic pressure values) on precision of 

predicting the pipe’s failure rate. The results showed that the ANN model is more accurate, 

but it is not suitable for generalization purposes. Thus for management purposes, SVR 

might be more appropriate. 

Nishiyama and Filion (2014) developed a model to predict breaks in the water 

supply system of the City of Kingston, Ontario using Artificial Neural Networks. A feed-
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forward back propagation algorithm was utilized to improve the performance and minimize 

the errors. Moreover, they employed the mean square error, receiver operating 

characteristics curves, and a confusion matrix in order to measure the accuracy of their 

model.  Kutyłowska (2014) predicted the failure rate of pipes in an urban water utility using 

ANN. They employed quasi-Newton approach to train the model. The house connections 

and distribution pipes are considered as two different sections in database, and the results 

for both were acceptable. According to the author, simplicity is the advantage of this model.  

II. Fuzzy Logic 

Fuzzy Logic is a mathematical method in the field of artificial intelligence that 

widely used by researchers to assign a value to a certain degree of membership instead of 

crisp values such as zero and one. This method is known to deal with systems that are 

subject to uncertainties and ambiguities. Fuzzy Logic is applicable in infrastructure assets 

like oil and gas, water, bridges and highways (Siler and Buckley 2005, Clair and Sinha 

2012). Aydogdu and Firat (2014) incorporated two methods: fuzzy clustering and Least 

Squares Support Vector Machine (LS-SVM) in order to estimate the failure rate of water 

pipes. At first, they developed failure rate estimation model using LS-SVM, and then fuzzy 

clustering method is utilized to define nine sub-regions for predictive performance 

improvement of the model. Afterward, the results were compared to the results of Feed 

Forward Neural Network (FFNN) and Generalized Regression Neural Network (GRNN) 

methods. Finally, for model evaluation they employed some measurement indexes such as 

Correlation Coefficient (R), Efficieny (E) and Root Mean Square Error (RMSE).  
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2.5 Evolutionary Polynomial Regression 

The Evolutionary Polynomial Regression (EPR) technique was first presented by 

Giustolisi and Savic (2006). The technique utilizes the huge potential of conventional 

numerical regression techniques and the strength of Genetic Algorithm in solving 

optimization problems (Xu et al. 2011).  

Later, this approach was used by other researchers in several engineering fields. 

Savic et al. (2006) and Ugarelli et al. (2008) used EPR to model the sewer pipe failures. 

Berardi et al. (2008) and Xu et al. (2011) applied the EPR to develop deterioration models 

for water distribution networks. Rezania et al. (2008) utilized the EPR methodology to 

evaluate the uplift capacity of suction caissons and shear strength of reinforced concrete 

deep beams. Elshorbagy and El-Baroudy (2009) compared the EPR and Genetic 

Programming to develop the prediction model of soil moisture response. Guistolisi and 

Savic (2009) tested the EPR-MOGA (an improved EPR) to develop groundwater level 

prediction model based on monthly rainfall. El-Baroudy et al. (2010) utilized the EPR to 

develop the evapotranspiration process then compared the efficiency of Evolutionary 

Polynomial Regression to Artificial Neural Networks (ANNs) and Genetic Programming 

(GP). Markus et al. (2010) applied EPR, ANNs and the naive Bayes model to forecast 

weekly nitrate-N concentrations at a gauging station. Ahangar-Asr et al. (2011) applied 

EPR to predict mechanical properties of rubber concrete. Fiore et al. (2012) used EPR to 

provide the predicting torsional strength model of reinforced concrete beams.    

2.6 Summary and Limitation of Previous Studies 

In this chapter, the water distribution networks and their components were covered. 

Factors affecting the water pipe failure rate were discussed along with their classifications. 
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According to the literature review, the most significant independent variables for predicting 

the failure rate of water pipes are the physical factors especially the age, length and 

diameter of water pipes. Subsequently, the failure rate models were categorized to four 

groups: deterministic, statistical, probabilistic, artificial intelligence such as artificial, 

neural networks (ANN) and fuzzy logic. The required inputs, outputs and limitations of 

each model were discussed.   

Water pipes are capital intensive assets preserved through operation and 

maintenance to meet customers’ expectations and avoid failures and consequent 

catastrophes. The expected life time of water pipes ranges between 100-150 years 

(Infraguide, 2003). A robust and promising deterioration model for water pipes can assist 

municipalities in making rational decisions about the replacement/rehabilitation time of 

water pipes. As seen in Figure 2-3, a few studies considered the pipe material as one of the 

independent variables. In most cases, datasets were clustered into different groups, based 

on the pipe material, and then one model was developed for each group. Thus, there are 

several models just for one network that might be tough to implement in the real world.  

Several techniques were utilized by the other authors. Particularly, Artificial Neural 

Networks (ANN) are commonly used in many studies. ANN is able to develop accurate 

prediction models in complex and uncertain environments.  

However, EPR is selected because it does not require large datasets for training and 

unlike ANN, it enables the recognition of correlations among dependent and independent 

variables. Being as such, EPR is not a “Black-Box” technique, but it is classified as a 

“Grey-Box” technique that can provide insight into the relationship between inputs and the 

output. The process of development and selection of EPR contains the engineering 
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knowledge that allows the user to understand the generated equations and correlation 

between variables involved. In ANN, each attempt delivers particular output, which can be 

different in other attempts with the same inputs and features, while, in EPR or generally 

regressions, all similar attempts lead to the same equations as the output.  
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3 Chapter 3: Research Methodology 

3.1 Introduction 

Figure 3-1 shows the developed research methodology. Chapter 3 starts by 

presenting the Best Subset regression that identifies the most critical factors for predicting 

the failure rate of water mains. The datasets of Montréal and Doha are classified into 

homogeneous groups, based on age, material and diameter of the pipes. Afterwards, these 

groups along with the factors selected for predicating the number of breaks using best 

subset regression are forwarded to the EPR algorithm. The EPR algorithm is used because 

– based on the selected factors – it generates some mathematical expressions able to predict 

the number of breaks of water pipelines. In this study, both datasets are analyzed with EPR 

in order to generate equations which provide insight into relationships between inputs and 

the output. The user selects the best symbolic expression for predicting the failure rate 

based on two criteria: 1) fitness to the historical data, and 2) parsimony of the equation. 

The predicted number of breaks, as the output of the EPR algorithm, is used to develop 

deterioration curves, using Weibull distribution function. A description of Weibull 

distribution is presented in this chapter as well. Finally, a Sensitivity analysis is deployed 

to explore the effect of changing each input on the predicted output (i.e. number of breaks). 

Also, sensitivity analysis is used to verify if the existing relationships between the selected 

inputs from the best subset algorithm and the predicted output from the EPR algorithm are 

reasonable in terms of engineering knowledge.  
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Figure 3-1 Research Methodology Flow Chart 
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3.2 Best Subset Regression  

Best Subsets regression is an automated technique that recognizes the best-fitting 

regression models with factors specified by the user. In this study, Stepwise regression 

could be utilized as well. But, the Best Subset regression was selected because Stepwise 

regression does not assess all possible models. It rather constructs a model by adding and 

removing one variable at a time. Meanwhile, Best Subsets regression searches for all 

possible models and finally introduces the best candidates. Stepwise regression is simpler 

and Best Subset regression provides a model with more information (Minitab 17, 2015). 

Best Subset regression is not good for studies with a large number of independent variables. 

In such cases, finding the best combination of factors to predict water pipe failure rates and 

processing them take more time. But in this study, 4 to 5 independent variables are used to 

predict the failure rate in both datasets, which consequently makes using Best Subset 

regression suitable.    

The independent variables for the water distribution network of the City of 

Montréal include 4 factors: Age, diameter, length and material of the pipes. The dataset of 

City of Doha includes 6 factors; Age, diameter, length, material, buried depth and elevation 

of pipes. The pipe material was almost constant for the entire dataset, thus it was excluded 

from this dataset. There were 1599 pipe segments, with only 3 steel pipes and the rest as 

ductile iron. Thus, these 3 segments were excluded from the dataset of Doha and only 

ductile iron pipes were considered in the Best Subset regression. The output in both cases 

is the number of breaks. The results of these two datasets are discussed in chapter 5.   

The best subset regression is a procedure of finding the best combination of 

variables to predict the failure rate of water pipes on three main stages. First of all, all 
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possible combination of variables are identified. For example, if we have 7 independent 

variables, then there are 27 possible regression models. Secondly, out of all possible 

models, one or two models with the highest R-Squared among candidates with the same 

number of independent variables, are selected. The user can specify if a model as the best 

one is enough for same-size candidates or two or more models ought to be selected. Also, 

the minimum and maximum number of free predictors – i.e. independent variables – to add 

to the model can be specified by the user. Finally, further evaluation is required to select 

the best combination of independent variables, by using R-Squared, adjusted R-Squared, 

Mallows' Cp and square root of MSE (Iain Pardoe 2015, Minitab 17).  

The selected combination of factors should have the highest R-Squared, the 

adjusted R-Squared and the smallest S (square root of MSE). The adjusted R-Squared 

penalizes the model when adding an extra independent variable does not improve the 

existing model’s accuracy. In comparing models with the same size, the R-Squared is the 

most useful criterion. However, models with different number of independent variables are 

compared, based on the adjusted R-Squared and Mallows' Cp index (Wang 2006). The 

value of Mallows’ Cp should be close to the number of predictors plus the number of 

constant terms, which is usually one (Minitab 17, 2015). For example, if there are 6 

independent variables (predictors), the best model should have a Mallows’ Cp close to 7.  

The R-Squared, adjusted R-Squared, and Mallows’ Cp are calculated with equations 

number [1], [2], and [3] respectively: 

[1]          𝑅2 =  
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 − 

𝑆𝑆𝐸

𝑆𝑆𝑇
            (𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸) 

[2]          𝑅𝑎
2 = 1 − (

𝑛−1

𝑛−𝑝
) (

𝑆𝑆𝐸

𝑆𝑆𝑇
) = 1 − (

𝑛−1

𝑆𝑆𝑇
)  𝑀𝑆𝐸           
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[3]           𝐶𝑝 =  
𝑆𝑆𝐸𝑝

𝑀𝑆𝐸𝑎𝑙𝑙
− (𝑛 − 2𝑝)                   

Where SSR is the sum of squares due to regression, SSE is the sum of squares due 

to error, n is the number of samples, p is the number of independent variables plus 1, MSE 

is the mean squared error, 𝑆𝑆𝐸𝑝 is SSE for the best model with p predictors and 𝑀𝑆𝐸𝑎𝑙𝑙 is 

the MSE for the model with all predictors (Iain Pardoe 2015). Furthermore, SSE, SSR and 

MSE are calculated with the following equations: 

[4]          𝑆𝑆𝑅 =  ∑(𝑌̂𝑖 − 𝑌̅)
2
 

[5]          𝑆𝑆𝐸 =  ∑(𝑌𝑖 −  𝑌̂𝑖)
2
 

[6]          𝑀𝑆𝐸 =  
𝑆𝑆𝐸

𝑁−𝑑
 

Where 𝑌̅ is the average value of data, 𝑌̂ is the value predicted by the model, N is 

the number of samples and d is the number of independent variables. Figure 3-2 shows the 

average value line (𝑌̅) and the best fit line (𝑌̂) in a sample scatter plot.   

Figure 3-3 illustrates a sample sheet of best subset regression in Minitab 17 

statistical package. As it can be seen, there are two windows, the lower one containing the 

dataset sheet and the upper one showing the table of results. In this sample, there are 7 

independent variables (V1 to V7) and one dependent variable (V8). The table of results in 

the upper window includes 13 columns and 14 rows. Column 1 shows the number of 

considered variables in each model and columns 2 to 6 show the value of R-Squared, 

adjusted R-Squared, predicted R-Squared, Mallows' Cp and S respectively. The last 7 

columns specify which variables are in the model. Each row represents some information 

about a model. In this attempt, the user selects the best set of inputs from among 13 possible    
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Figure 3-2 𝑌̅ and 𝑌̂ 

combinations of variables. It can be concluded that the last model is the best one, because 

it has the largest R-Squared, the adjusted R-Squared and the lowest MSE. In addition, the 

value of Mallows' Cp is exactly 8, which is sum of number of variables (7) plus one.  

Finally, the determined factors were considered as the independent variables to 

develop failure rate prediction model by using EPR.  

3.3 Classification 

Once, the process of factor selection is conducted, both datasets will be classified 

into several homogeneous groups, based on the age, diameter and pipe material. The 

objective of this classification is clustering pipe segments into classes with the same age, 

diameter and material. The following equations are used to achieve this objective: 

[7]          Aclass= 
∑ (Lp .  Ap)class
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[8]          Dclass= 
∑ (Lp .  Dp)class

LTD
 

Where, 𝐿𝑇𝐴 and 𝐿𝑇𝐷 are the total length of pipes with the same age and diameter 

respectively. Also 𝐿𝑝, 𝐴𝑝 and 𝐷𝑝 are length, age and diameter of each segment in the group 

 

Figure 3-3  Sample Sheet of Best Subset Regression (Minitab 17) 

(Berardi et al. 2008). There are several categories within the same class of age, diameter 

and material for each dataset. It should be mentioned that other physical factors of pipe, 

e.g. thickness, length, etc., can be utilized as the grouping criteria in different studies. But 

in this research, these three factors were selected for classification. Age was selected to 

take the indirect effect of time-varying solicitation on water mains into account, since from 

an engineering point of view, the higher the duration of solicitation, the higher the chemical 

and mechanical harmful effects on pipes. These effects can be caused by several factors 
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such as soil condition, traffic loads, and etc. (Berardi et al. 2008). A schematic view of 

classification features is shown in Figure 3-4. 

 

Figure 3-4 Classification's Features (Adopted from Berardi et al. (2008)) 

Other equivalent factors in each dataset can be calculated by different mathematical 

functions such as sum and average. In the dataset of Montréal, the length and number of 

breaks of each class were computed by summing the ones corresponding to each pipe 

segment. Likewise, in the Doha dataset, the same calculations were performed for the 

length and number of breaks while factors such as pipe elevation and burial depth were 

calculated by computing the average of related features of pipes in that group.  

As an example, Table 3-1 shows a sample data of 10 different pipe segments. Age, 

length, diameter, material, buried depth and elevation are independent variables. Table 3-

2 shows the classification of this sample data, based on age, diameter and material. As it 

can be seen in this table, the length of each class is calculated by summing up the length of 

all pipes with the same age, diameter and material. Also, the buried depth and elevation for 

each class are calculated by computing the average from pipes with the same features. For 
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example, class number 1 contains DI pipes with age of 30 years and diameter of 150 mm, 

which are 102 and 105 segments.     

Table 3-1 Sample Data 

Identification 
No. 

Age 
(Year) 

Length 
(m) 

Diameter 
(mm) 

Material 
Buried 

Depth (m) 
Pipe 

Elevation (m) 

101 75 2 200 PVC 0.5 7 

102 30 5 150 DI 1 8 

103 75 6.5 200 PVC 1 8 

104 100 4.5 300 DI 1.5 10 

105 30 10.5 150 DI 2 14 

106 75 3 200 PVC 0.5 12 

107 100 15 300 DI 2.5 17 

108 75 40 200 PVC 1 15 

109 30 12 100 GI 1 18 

110 100 6 300 DI 2 15 

 

Table 3-2 Classified Sample Data 

Pipes in each Class Class Age 
class 

Length Diameter 
class 

Material 
class 

Buried 
Depth 

Pipe 
Elevation 

102, 105 1 30 15.5 150 DI 1.5 11 

109 2 30 12 100 GI 1 18 

101, 103, 106, 108 3 75 51.5 200 PVC 0.75 10.5 

104, 107, 110 4 100 25.5 300 DI 2 14 

 

3.4 Evolutionary Polynomial Regression 

Evolutionary Polynomial Regression is a data-driven technique and is classified as 

a grey box method, according to the color coding classification system. The color coding 

classification system categorizes mathematical models into three groups, based on 

available information; the white box models, black box models and grey box models. In 

the white box technique, the mathematical structure and parameters are already recognized. 

In the grey box technique, the mathematical structure is recognized by physical insight but 
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some data need to estimate parameters. And in the black box technique, the mathematical 

structure and parameters are not known and both should be recognized through the 

available data (Giustolisi 2004).  

EPR is selected because it does not require large datasets for training and, unlike 

ANN, it provides insight into the relationship between the inputs and output. The process 

of EPR should be coupled with engineering knowledge to verify if the generated equations 

and correlations between utilized inputs and output are reasonable. In ANN, each attempt 

delivers particular output, able to vary in subsequent attempts when the same inputs are 

used. While in EPR or generally regressions, all similar attempts leads to generating the 

same equations.  

The software of this method, EPR MOGA - XL tool version 1.0, was first developed 

by Giustolisi and Savic in 2006. The original code of this software has been developed in 

MATLAB environment (MATLAB®) and deployed as an Excel add-in function.  

This algorithm attempts at generating a number of symbolic expressions that can 

predict the number of breaks of water mains, based on historical data. From among these 

generated symbolic expressions, the user will choose the best expression, based on the 

observed fitness and parsimony of the equation. The fitness to the observed data is 

measured by the value of R-Squared, while the number of terms and factors in each 

expression should be minimum to fulfill the requirement for parsimony. The process of 

creating the symbolic expressions contains two stages. In the first stage, the EPR finds the 

best model structure by using Multi-Objective Genetic Algorithm (MOGA). Then, the 

appropriate values for constant are estimated by Least-Squares optimization (LS) (Berardi 

et al. 2008).  
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Figure 3-5 shows the interface of EPR software. In this software, results can be 

shown as a Scatter plot or Cartesian plot. There are seven structures of the symbolic 

expression used to represent the relationship between the inputs and the output. The user 

select the best symbolic expressions according to the prior knowledge of the nature of the 

expected relation between the inputs and the output.  

 

Figure 3-5 Interface of EPR Software 

These seven structures are as follows: 

[9] Y = a0 + ∑ aj .  (X1)ES(j,1) … (Xk)ES(j,k) .  f((X1)ES(j,k+1)… (Xk)ES(j,2k))m
j=1    

[10] Y = a0 + ∑ aj .  f((X1)ES(j,1) … (Xk)ES(j,k))m
j=1  
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[11] Y = a0 + ∑ aj .  (X1)ES(j,1) … (Xk)ES(j,k) .  f((X1)ES(j,k+1))…f( (Xk)ES(j,2k))m
j=1  

[12] Y = log (a
0 

+ ∑ aj .  (X1)ES(j,1) … (Xk)ES(j,k)) m
j=1  

[13] Y = exp (a
0 

+ ∑ aj .  (X1)ES(j,1) … (Xk)ES(j,k)) m
j=1  

[14] Y = sin (a
0 

+ ∑ aj .  (X1)ES(j,1) … (Xk)ES(j,k)) m
j=1  

[15] Y = tan (a
0 

+ ∑ aj .  (X1)ES(j,1) … (Xk)ES(j,k)) m
j=1         

Where, X_k  is the kth explanatory variable, ES is the matrix of unknown exponents 

to be defined by the user, f is inner function selected by the user (can be no function, 

logarithm, exponential, tangent hyperbolic, or secant hyperbolic), aj are unknown 

polynomial coefficients, m is the number of polynomial terms and a0 is the bias term. 

During the generating symbolic expressions, if the EPR cannot find appropriate 

combination of terms containing f(x), it deselects this function (Giustolisi et al. 2011).  

EPR rounds the output to the nearest integer number if the classification is selected 

as the Modelling Type. Thus, in scenarios where the real number was considered as a 

dependent variable, Statical Regression should be chosen. The Dynamical Regression can 

be selected as the modeling type in time series models. The normalization (if required) can 

be accomplished by EPR. The user, therefore, needs to specify the range wherein the inputs 

or output should be scaled (i.e. between 0 and 1). The maximum number of terms in every 

equation in each run can be specified by the user. The nomination of exponents should be 

limited to specific values – i.e. [-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2] – wherein the positive 

and negative values represent the direct and inverse relationship between dependent and 

independent variables and their amounts show how significant the inputs are. It must be 
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remarked that, the zero value should be considered in the matrix of exponents to make the 

EPR capable of removing variables not powerful enough in predicting the output 

(Giustolisi et al. 2011).  

The “GA” is the number of generation and depends on several factors such as the 

number of independent and dependent variables, the number of terms and that of 

exponents. Furthermore, the user can force EPR to generate the expression with only 

positive value of constant coefficients (a_j>0). During the the EPR modeling phase, it 

returns several expressions based on the models’ accuracy and parsimony. The model 

parsimony is implemented by optimizing the number of terms Min(a_j,SSE), the number 

of independent variables Min(X_i,SSE) or both strategies Min(a_j,X_i,SSE). These 

options are the user’s input, defined in the optimization strategy scroll down box of the 

EPR model (Giustolisi et al. 2011). Finally, training and testing datasets are defined as 

follows: 1) X tab is for defining the training input, 2) Y tab is for defining the training 

output, 3) XV tab is for the testing input and 4) YV tab is for the testing output.  

EPR produces five different types of result files including: Excel file, EPR fitting 

criteria, pareto, symbolic expressions, and scatter plot for each model. The Excel result 

file, contains 9 separated sheets are: Models, Y_EPR, Graphs, Train_data, Test_data, EPR-

Setting, and Y_EPR_test. Figure 3-6 shows Models sheet and the figures of other sheets 

are shown in Appendix A.   

The Models sheet contains all generated models from EPR with their coefficients, 

factors and exponents. The following parameters are generated for measuring accuracy of 

the EPR algorithm: SSE (Sum of Squared Error), BIC (Best Information Criterion), MSE 

(Mean Squared Error), FPE (Final Prediction Error of Akaike), AIC (Akaike’s Information 
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Theoretic), GCV (Generalised Cross-Validation), AVG (Average Error) and CoD 

(Coefficient of Determination or R-Squared). MSE and CoD are calculated by equations 

number [6] and [1] respectively.  

 

 

Figure 3-6 Excel Sheets File of EPR’s Result 

However, the other above mentioned indexes are computed using the following 

equations: 

[16]     𝐵𝐼𝐶 = ( 1 + 𝑑
log 𝑁

𝑁
 ) . 𝑆𝑆𝐸 
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[17]     𝐹𝑃𝐸 = ( 
1+ 𝑑 𝑁⁄

1− 𝑑 𝑁⁄
 ) . 𝑆𝑆𝐸  

[18]     𝐴𝐼𝐶 = ( 1 +  2
𝑑

𝑁
 ) . 𝑆𝑆𝐸 

[19]     𝐺𝐶𝑉 =  
𝑆𝑆𝐸

(𝑁−𝑑)2
 

[20]     𝐴𝑉𝐺 = 100 .
1

𝑁
 ∑

𝑆𝑆𝐸

𝑌𝑖

𝑁
𝑖=1  

Where N is the number of samples and d is the number of independent variables. 

The Y_EPR and Y_EPR_test sheets show the output for each generated model, 

based on the training and testing sets respectively. The graph sheet facilitates the process 

of generating figures for comparing predicted outputs with actual observations. Also, the 

expression and the value of CoD and SSE are shown in the graph sheet. There are two 

graphs in one sheet to visually identify the difference between them. The train and test data 

are both in the next two sheets. The content of these two sheets are exactly the same as X, 

Y, XV and YV sheets in the main EPR file. Also, the EPR-Setting shows the user interface 

in the current run of that file.  In addition, Y_rec and Y_V_rec sheets contain the data that 

are reconstructed by EPR for train set and test set respectively (Giustolisi et al. 2011). 

Figure 3-7 shows a sample of the EPR-fitting criteria graph. In this graph, 

horizontal axis shows the number of terms in each generated expression, while vertical axis 

shows the normalized value of different criteria – i.e. SSE, BIC, MSE, FPE, AIC, GCV, 

CoD and AVG.  

In each run, EPR produces several scatter plots for each model. In these graphs, the 

predicted values of the output are compared with the actual data. As Figure 3-8 shows, the 
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horizontal axis demonstrates the value of the predicted output, while the vertical one shows 

actual – i.e. the experimental – data. These graphs are provided for separately training and 

testing each model. At the top of the graph, the symbolic expression of model number 8 

and related CoD are shown as well.   

Figure 3-8 shows the Scatter Plot with the sample data. As it can be seen, horizontal 

axis demonstrates the value of 1-CoD, while the vertical one shows the number of 

considered factors in each model (𝑑
𝑁⁄ ). At the top of the graph, the function structure is 

shown as well. The Scatter plot shows generated models as the points in a graph. Based on 

the selecting criteria, already explained, the best model should be chosen from the lower  

 

Figure 3-7 EPR Fitting Criteria 
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Figure 3-8 Scatter Plot (Predicted Value vs. Actual Data) 

 

Figure 3-9 Pareto Graph (Trade of between Accuracy and Simplicity) 
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left corner of the graph, specified by a green circle in Figure 3-9, since in this area, the 

number of variables is minimum and the value of R-Squared (CoD) is maximum. These 

criteria fulfill requirements respectively for model parsimony and model fitness.     

Based on the dataset size and level of complexity, several numbers of symbolic 

expressions are generated at the end of each run. Figure 3-10 shows 8 expressions that 

predict the output (V5), considering 4 independent variables including V1, V2, V3, and 

V4.  

 

Figure 3-10 Generated Symbolic Expressions 

As mentioned before, the number of breaks is considered as the output of the model 

developed by EPR in this study. However, the value of the breakage rate is required in 

order to provide the deterioration curve using Weibull reliability function. Thus, the 
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following equation is used to transform the number of breaks as the output to the breakage 

rate: 

[21]          Breakage Rate = Number of Breaks / Length (km) / Age (yr) 

The EPR can generate models to forecast the output, based on either one or several 

inputs. In other words, it can construct Multi Input Single Output (MISO) and/or Single 

Input Single Output (SISO) models. It should be noted that the limited missing data points 

can be recreated by using the linear interpolation by EPR. Thus, the model can be 

developed with an incomplete historical dataset although linear interpolation is not very 

accurate to reconstruct it.  

3.5 Weibull Distribution  

Finally, Weibull distribution is employed to generate deterioration curves. In 

general, Weibull-based models are widely used in different studies and applications to 

solve various problems (Jardine and Tsang, 2013). It has been used in the past for various 

building components, structural performance and infrastructure performance of subway 

networks by Grussing et al. (2006), Semaan (2011), and Gkountis (2014) respectively.  

This technique has three advantages. As the most important one, this approach 

needs a few number of historical data while the other methods, such as the Markovian 

models, require the input of a significantly larger amount of data (Grussing 2006). The 

Weibull approach requires just two types of inputs to predict the future condition of the 

water pipelines: The age of the pipe and breakage rate (no. of breaks / km/ yr). Contrary to 

other methods, this one can be used to model either an individual pipe or the whole 
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network. Furthermore, different parameters of Weibull reliability function can be 

calculated easily as it is discussed later in this chapter.   

The Weibull probability distribution function is calculated by the following 

equation:  

[22]          𝑓(𝑡) =  
𝑏

𝑎
. (

𝑡− 𝑡0

𝑎
)

𝑏−1

. 𝑒
−(

𝑡− 𝑡0
𝑎

)
𝑏

 

Where 𝑡 is the time, 𝑡0 is the location parameter, 𝑎 is the scale parameter and 𝑏 is 

the shape/slope parameter. In addition, the cumulative Weibull distribution function (cdf) is 

calculated as follows: 

[23]          𝐹(𝑡) = 1 −  𝑒−(
𝑡− 𝑡0

𝑎
)

𝑏

 

Thus, the Weibull reliability function of a distribution is one minus the cumulative 

Weibull distribution function. Then, the Weibull reliability function is calculated by equation 

number [24], transformed to equation number [25] for the purpose of this study:  

[24]          𝑅(𝑡) =  1 − 𝐹(𝑡) = 𝑒−(
𝑡− 𝑡0

𝑎
)

𝑏

  

[25]          𝑅(𝑡) = 𝑐 . 𝑒−(
𝑡

𝑎
)

𝑏

 

Where, R(t) is the condition of pipe and c is the initial condition factor. The value 

of c is one in this study because the value of the R(t) is one at t = 0: 

 1 = 𝑐 . 𝑒−(
0

𝑎
)

𝑏

= 𝑐 . 𝑒0 

So: 𝑐 = 1 
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Therefore, following equation is used to calculate the pipe’s condition, based on 

the failure rate: 

[26]          𝑅(𝑡) =  𝑒−(
𝑡

𝑎
)

𝑏

 

Where, R(t) is the pipe’s condition, t is the pipe’s age, b is the shape parameter and 

1/a is the failure rate. The value of b should be odd and more than one. In this study, this 

value is equal to 3 because it provides the smoothest inclination (Semaan 2011).  

In some previous studies, especially in oil and gas pipelines and subway networks 

(Seaman, 2011), the values of performance threshold and minimum performance were 

assumed. But in water pipelines, there is no need for that because the failure in water 

pipelines is less costly and critical than the one in the oil and gas pipelines and subway 

networks.   

3.6 Sensitivity Analysis    

A possible definition of Sensitivity Analysis is the study of how uncertainty of the 

output of a model can be caused by different sources of uncertainty in the model inputs 

(Saltelli et al. 2004). In this study, the sensitivity analysis was performed for both cases to 

identify the effect of each independent variable on the pipe failure when water pipes age. 

The rationality of inputs-output relationship in the selected symbolic expression was 

studied as well. Generally, this technique depends on one or more independent variables. 

But in this study, the effect of changing only one parameter over a specific time period was 

investigated. The sensitivity analysis is discussed in details in the next chapter. 
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3.7 Summary and Conclusion 

In this chapter, different parts of the developed research framework were described 

in details. In the first part, the most critical factors, affecting failure rates of water pipes, 

are identified by using best Subset regression. The best combination of independent 

variables are selected out of all possible candidates. Once, the process of factor selection 

is performed, each dataset will be classified into homogeneous groups based on the age, 

diameter and material of pipes. Then, homogeneous groups are forwarded to EPR in order 

to generate some mathematical expressions that predict number of breaks of water 

pipelines. EPR algorithm is performed in two stages: 1) Search for the best model using 

Multi-Objective Genetic Algorithm (MOGA) and 2) a parameter estimation for the model 

by using Least Square Method. Among all generated expressions, the user selects the best 

one based on two criteria: 1) Fitness to the historical data and 2) the parsimony of the 

equation. The predicted number of breaks obtained from the best symbolic expression is 

employed to generate deterioration curves by using Weibull distribution. Finally, the 

sensitivity analysis was conducted to: 1) recognize the effect of changing each input on the 

breakage rate and 2) study the rationality of relationship between the selected inputs and 

the output.  
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4 Chapter 4: Data Collection 

In this study, four sets of data from four municipalities were considered for 

developing failure rate prediction models; City of Moncton, City of Hamilton and City of 

Montréal in Canada and City of Doha in Qatar. As the physical characteristics of water 

pipes in different datasets are generic and the results obtained using the Hamilton and 

Moncton datasets were very close, these two datasets were used to estimate the number of 

breaks in the City of Doha. Then, datasets of Montréal and Doha were employed to develop 

EPR models for predicting failure rates of water mains. A description of data collection is 

presented in this chapter.   

4.1 City of Montréal 

The city of Montréal has a population of 1.8 million, and its land area is around 

365.1 square kilometers. Figure 4-1 shows the GIS map of the City and its water 

distribution network. In this city, there are six water treatment plants and 14 reservoirs. The 

City of Montréal owns 5045 kilometers of water distribution networks containing 4305 km 

distribution pipes and 740 km transmission pipes (Paul 2014). The original excel file of the 

dataset of Montréal comprises of 125,828 pipe segments that include various information 

such as: pipe ID, installation date, diameter, length, material, manager and owner, 

rehabilitation date, and rehabilitation type. It comprises of 56.55% Cast Iron (CI), 26.61% 

Ductile Iron (DI), 10.47% Cementitious (Asbestos and Concrete Cylinder), 5.54% Plastic 

pipes (PVC and Polyethylene), 0.77% Steel, 0.05% Copper, and 0.01% Galvanized Iron 

(GI). The CI pipes are installed during 1862–2015 and DI pipes are mostly installed during 

1951–2015. Figure 4-2 shows the number of breaks in the water distribution networks 

between 1861 and 2015. By closely examining Figure 4-2 below, the trend of using DI and      
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Figure 4-1 Water Distribution Networks of City of Montreal (Paul 2014) 
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Figure 4-2 Number of Breaks per segment for Pipes with Different Material Installed Between 1861 and 2015 for City of Montreal 
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plastic pipes to replace other pipe types is increasing during 25 years ago. It also shows 

that the number of breaks for DI and plastic pipes, installed between 2001 and 2015, are 

increased significantly in the same period. It might be because of either poor installation 

techniques or low-quality material.  

Figure 4-3 shows the number of breaks and their year of occurrence for different 

pipe material. The municipality of Montréal started to perform systematic recording of pipe 

failure since 1972, and the dataset contains a total of 22,735 pipe breaks so far. Figure 4-3 

also shows that the number of breaks for CI pipes has steadily increased since 1986 and 

reached the peak in 2001-2005 interval, before falling slightly during the recent 15 years.  

The dataset of the City of Montréal contains information about pipe’s (age, length, 

diameter, material) and the related pipe failures. The units of age, length, and diameter are 

the year, Km, mm respectively in collected data. Also, the date and the type of 

rehabilitation was recorded for each pipe as well.  As shown in Chapter 2, age, length, 

diameter, and pipe material are the most frequent independent variables utilized for 

predicting failure rates of water pipes. The original file of the dataset of Montréal, which 

was provided by the municipality, contains two separated excel spreadsheets: water pipes’ 

attributes and related water pipes’ breaks. Thus, it was required to incorporate these two 

files into the single file in which pipe’s attributes and pipe’s breaks are available for each 

segment. Table 4-1 shows a summary of some statistical measurements of quantitative 

factors for the City of Montréal. 
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Figure 4-3 Number of Breaks per segment for Pipes with Different Material for City of Montreal 
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Table 4-1 Quantitative data attributes of city of Montréal 

Attribute Mean Min Max Sdv 

Age (year) 55.34 1 199 30.52 

Diameter (mm) 245.98 20 3900 153.73 

Length (m) 43.04 0.15 543.62 65.11 

No. of Breaks 1.76 0 25 1.40 

 

4.2 City of Doha 

Qatar is one of the highest water consumers in the world. The amount of water 

consumption per capita is 500 liters a day that is quadruple the normal range in Europe 

(HSBC, 2014). The city of Doha has a population of 796,947 while its land area is around 

132.1 square kilometers. The city of Doha owns 1,926 kilometers of water distribution 

networks (Kahramaa, 2009). It comprises of 99.99% Ductile Iron and 0.01% Steel pipes 

(just three segments out of 1599 segments). Thus, only ductile iron pipes were considered 

for this dataset.  

The dataset of the city of Doha includes: age (year), length (km), diameter (mm), 

wall thickness (mm), pipe material, buried depth (m), and pipe elevation (m). Always, there 

is a strong relation between diameter and wall thickness in the water pipes. The pipes with 

higher diameter are thicker than the pipes with the smaller diameter. Thus, the wall 

thickness was recognized as a redundant variable and removed from the set of inputs. A 

summary of some statistical measurements for the dataset of City of Doha is shown in 

Table 4-2.  
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Table 4-2 Quantitative data attributes of City of Doha 

Attribute Mean Min Max Sdv 

Age (year) 11.94 2 3 4.40 

Diameter (mm) 227.44 80 1400 280.60 

Wall Thickness (mm) 11.13 10 26.10 3.08 

Length (m) 34.45 0.04 546.85 52.02 

Buried Depth (m) 0.56 0.50 6.31 0.43 

Pipe Elevation (m) 12.59 7 18 3.46 

 

The number of breaks was not available in dataset of Doha. Lack of such data 

prevents working with EPR because this technique takes into account the number of breaks 

or breakage rate as a dependent variable in order to develop a pipe failure prediction model. 

Therefore, it was necessary to estimate the number of breaks for the city of Doha from 

similar infrastructure datasets. The physical characteristics of water pipes in different 

datasets are generic (Karimian et al. 2015). In fact the results obtained using the Hamilton 

and Moncton datasets were very close. In view of this finding and the insufficient data 

collected from Doha, it was required to estimate the number of breaks in Doha based on 

datasets of Hamilton and Moncton. Several attempts were carried out using different 

regression models to estimate the number of breaks of water mains based on the pipe’s age. 

The developed equations for each dataset and their features will be provided later in case 

study chapter. The result of City of Doha’s analysis will be presented in Chapter 5 as well. 
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4.3 City of Moncton 

The City of Moncton located in New Brunswick, Canada and has a population of 

64,128, while its land area is around 142 square kilometers. The City of Moncton owns 

500 kilometers of water distribution networks. This dataset contains 540 pipe segments 

which comprise of Cast Iron, Ductile Iron, and Asbestos. It includes: age (year), breakage 

rate (breaks/yr/km), C-factor, Diameter (mm), RUL (year), and wall thickness (mm). Table 

4-3 shows a summary of some statistical measurements for the dataset of City of Moncton.   

Table 4-3 Quantitative data attributes of City of Moncton (Atef et al. 2015) 

Attribute Mean Min Max Sdv 

Age (years) 46.02 10 106 19.93 

Breakage rate 

(breaks/year/km) 
0.67 0 5 0.68 

C-factor 70.01 10 120 20 

Pipe Diameter (mm) 795.35 100 2400 3.78 

RUL (years) 103.97 44 140 19.93 

Wall Thickness (mm) 6.03 3.5 8 0.45 

 

4.4 City of Hamilton 

The City of Hamilton located in Ontario, Canada and has a population of 519,949 

while its land area is around 1,138 km². The City of Hamilton owns 1,891 km of water 

mains, in which estimated value for replacement of these pipes is around $1.8 billion (SOI 

Report, 2005). This dataset includes five quantitative variables and two qualitative 

https://en.wikipedia.org/wiki/New_Brunswick
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variables that are: age (year), buried depth (m), flow pressure, length (m), diameter (mm), 

material, and soil type. Hamilton dataset comprises of Cast Iron, Ductile Iron, PVC, and 

HDPE. Table 4-4 shows a summary of some statistical measurements for the dataset of 

City of Hamilton. 

Table 4-4 Quantitative data attributes of City of Hamilton (Atef et al. 2015) 

Attribute Mean Min Max Sdv 

Age (years) 59.73 8 113 21.08 

Buried Depth 

(m) 
1.56 0 2.1 0.17 

Flow Pressure 31.61 0 95 24.36 

Length (m) 62.15 0.3 472 75.13 

 

4.5 Data Filtering 

For reducing errors and uncertainty of these datasets, several steps were performed. 

First of all, datasets of Montreal and Doha were cleaned and filtered. All segments with 

missing or incomplete information were removed from the datasets. Some historical 

records were irrational and inconsistent, so these records were removed as well. In some 

cases, there was a chance for the missing or irrational data to be reconstructed based on the 

other attributes’ value or experts’ opinion, but they were ignored for preventing the 

inaccurate result. 

Both datasets, contain pipe material as a qualitative attribute that was converted to 

a quantitative attribute to apply with EPR. Thus, the qualitative variable, which is pipe 
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material, was transformed to the numerical ones. The pipes were sorted based on their 

rigidity and for each type one value was assigned. For example, if there are four different 

types of material, each number from 1 to 4 was assigned to a specific pipe material. The 

maximum number was assigned to the hardest pipe material; in other words, the harder the 

material, the larger the allocated number, and the vice versa.  

Finally, two datasets were classified into homogeneous groups based on age, 

diameter, and material of the pipe. A detailed discussion about classification is presented 

in the research methodology chapter. 
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5 Chapter 5: Implementation of Developed Models 

5.1 Introduction 

In this chapter, two case studies: City of Montréal and City of Doha are analyzed 

and used to test and validate the developed model. As it can be seen in Figure 5-1, these 

two datasets include 5 and 6 subsections respectively. The chapter starts by discussing the 

effort made in identifying the most critical factors using Best Subset regression. Then, 

classifying each dataset into clusters of homogenous pipe segments with the same age, 

diameter and material are discussed. The EPR model is then applied to these clustered sets 

and results of testing and validating the model are reported and discussed. Afterwards, 

deterioration curves, which are developed using Weibull distribution function, are 

presented. Sensitivity analysis is utilized to study how the output can be apportioned to 

different sources of uncertainty in its inputs. 



 

70 

 

Case Study

City of Montreal City of Doha
Summary and 

Conclusion

Best Subset 
Regression

Evolutionary 
Polynomial 
Regression

Weibull 
Distribution

Sensitivity 
Analysis

Number of 
Breaks 

Estimation

Best Subset 
Regression

Evolutionary 
Polynomial 
Regression

Weibull 
Distribution

Sensitivity 
Analysis

Data 
Classification

Data 
Classification

 

Figure 5-1 Chapter Overview 

5.2 City of Montréal  

The dataset is used in this section belongs to City of Montréal, Quebec, Canada. As 

it was discussed in data collection chapter, this city has a population of 1.8 million and its 

land area is around 365.1 square kilometers. The City of Montréal owns 5045 kilometers 

of water distribution networks containing 4305 km distribution pipes and 740 km 

transmission pipes (Paul, 2014). 
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5.2.1 Best Subset Regression 

Best Subset regression is implemented to recognize the most critical factors for 

predicting number of breaks for water pipelines. Best Subset regression was employed by 

using Minitab 17 statistical package. Dataset of Montréal contains four independent 

variables including: length, diameter, age, and material of pipes.    

Figure 5-2 shows the result for the dataset of Montréal. As it can be seen in the 

upper window, models number 5 and 7 have the highest value of R-Squared, adjusted R-

Squared, and predicted R-Squared (68.9%, 68.9%, and 68.1%). The value of S (i.e. square  

 

Figure 5-2 Best Subset Regression for City of Montréal 
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root of MSE) for model number 5 and 7 are 24.286 and 24.289, respectively. While, the 

value of Mallows' Cp for these two models are three and five respectively. The values of S 

are almost equal in both models, however the value for Mallows' Cp is 5 for model number 

7. As discussed in chapter 4, the value for Mallows' Cp should be close to five in this study 

(number of independent variables plus one). Thus, it is concluded that model number 7 

includes the best combination of factors for predicting the number of breaks. 

5.2.2 Data Classification 

The objective of the classification is clustering pipe segments into classes that have 

the same age, diameter and material. The original excel file of the dataset of Montréal 

comprises of 125,828 pipe segments. After data filtering, the dataset was classified into 

2,436 homogeneous groups based on the age, diameter and pipe material. The length and 

the number of breaks of each class were computed by summing corresponding ones of each 

pipe segment. Samples of the original data and the classified data of dataset of Montréal 

are provided in Appendix B.  

5.2.3 Evolutionary Polynomial Regression 

In this study, Evolutionary Polynomial Regression generated twelve symbolic 

expressions, which are used to predict the number of breaks for water pipes in the City of 

Montréal. Table 5-1 shows these expressions and their related R-Squared scores.  At the 

right side of expressions, L, D, A, and M represent the length, diameter, age, and material 

of the water pipelines, and the left side shows the output that is the number of breaks. As 

discussed in chapter 4, among all generated symbolic expressions, the best model should 

be chosen based on the fitness to the historical data and parsimony of the equation. In this 

study model number 10 was selected as it fulfills the requirement for these two criterions 
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Table 5-1 Symbolic Expressions for Montréal dataset and related R-Squared 

M
o
d
el

 #
 Expressions R2 

(%)  

1 𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑠 =  3.4446 ×  10−5 ×  𝐿1.5 76.90 

2 𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑠 = 1.3197 
𝐿1.5

𝐷2  
82.51 

3 𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑠 = 0.08546 
𝐿1.5 𝑀2

𝐷2
 

85.04 

4 𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑠 = 1.8835 
𝐿1.5

𝐷2  ln (
𝑀2

𝐴0.5) 
85.37 

5 𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑠 = 0.24999 
𝐿1.5 𝐴0.5

𝐷2  𝑙𝑛 (
𝑀2

𝐴0.5) 
86.40 

6 𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑠 = 0.092319 × 𝐿0.5 + 0.23417
𝐿1.5 𝐴0.5

𝐷2  ln (
𝑀2

𝐴0.5) 
87.04 

7 
𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑠 = 0.12036 

𝐿1.5 𝑀2

𝐷2 + 4.8297 × 10−7  
𝐿2 𝐴1.5

𝐷2  ln (
1

𝐿
) 

88.03 

8 
𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑠 = 0.008929 

𝐿1.5 𝐴

𝐷2  ln (
1

𝐿0.5) + 0.069455 
𝐿1.5 𝑀1.5 𝐴0.5

𝐷2  
88.72 

9 
𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑠 = 0.086502 𝐿0.5 + 0.00051089 

𝐿1.5 𝐴1.5

𝐷2  ln (
1

𝐿0.5) + 0.021313 
𝐿1.5 𝑀2 𝐴0.5

𝐷2  
88.86 

10 𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑠 = 0.017785
𝐿1.5 𝑀2 𝐴0.5

𝐷2 + 6.1833 × 10−6  
𝐿1.5 𝐴2

𝐷 𝑀2  ln (
𝐷1.5

𝐿
) 

89.35 

11 𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑠 = 0.00044077 𝐿 + 0.017413
𝐿1.5 𝑀2 𝐴0.5

𝐷2
+ 8.8604 × 10−5  

𝐿1.5 𝐴2

𝐷1.5 𝑀2
 ln (

𝐷1.5

𝐿
) 

89.21 

12 𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑠 =  0.00057323𝐿 + 0.049651 
𝐿1.5 𝑀1.5 𝐴0.5

𝐷2
 ln(𝑀0.5) + 8.8156 × 10−5  

𝐿1.5 𝐴2

𝐷1.5 𝑀2
 ln (

𝐷1.5

𝐿
) 

89.30 

 

which are having the highest R-Squared (89.35%) and including just two terms. According 

to the other models, it is observed that introducing a third polynomial term decreases the 

model fitness. The other accuracy indexes such as SSE, BIC, MSE, FPE, AIC, and GCV 

of all models are shown in Table 5-2. As it can be seen in this table, the minimum values 
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of all indexes are for model number 10. It confirms that this model is the best one in 

predicting the output.  

Table 5-2 Accuracy Indexes for Montreal Dataset 

 SSE BIC MSE FPE AIC GCV 

Model #1 476.4 478.2 476.6 476.9 476.9 0.245 

Model #2 360.6 362 360.8 361 361 0.185 

Model #3 308.5 309.7 308.7 308.8 308.8 0.158 

Model #4 301.8 303 302 302.1 302.1 0.155 

Model #5 280.5 281.5 280.6 280.7 280.7 0.144 

Model #6 267.4 269.4 267.6 267.9 267.9 0.137 

Model #7 246.9 248.8 247.1 247.4 247.4 0.127 

Model #8 232.7 234.5 232.9 233.2 233.2 0.12 

Model #9 229.7 232.4 230.1 230.4 230.4 0.118 

Model #10 219.7 221.4 219.9 220.2 220.2 0.113 

Model #11 222.6 225.2 223 223.3 223.3 0.115 

Model #12 220.8 223.4 221.1 221.5 221.5 0.114 

 

Figure 5-3 shows Pareto graph of expressions that were generated based on the 

Montreal dataset. As it was mentioned before, each point represents a generated symbolic 

expression. The selected model (model #10) is specified by the black arrow. The horizontal 

axis shows the value of one minus R-Squared (1-CoD) while the vertical axis shows the 

number of considered factors in each model. 
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Figure 5-3 Pareto of Montreal Dataset 

The dataset of Montreal randomly divided into two subsets (Training and Testing). 

As it can be seen in Table 5-3, 1950 (80%) samples were used for training and 486 (20%) 

samples were used for testing. It should be mentioned that testing samples were not 

exposed to the model during its development. Figures 5-4 and 5-5 show scatter plots that 

depict the relationship between the predicted and the actual number of breaks for training 

and testing datasets respectively. In these graphs, the vertical axis shows the actual number 

of breaks (experimental), while the horizontal axis shows the predicted value of the number 

of breaks. The values of R-Squared (CoD) are shown in the top right corner of each plot 

(i.e. 89.35% and 84.86% for training and testing respectively). At the top of the Figure 5-
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4, the symbolic expression of model number 10 is shown. Scatter plots for the training and 

testing results of other symbolic models are shown in Appendix C.   

Table 5-3 Montreal Dataset Size 

 

 

Figure 5-4 Scatter Plot of Model #10 for Training for Montreal Dataset 

5.2.4 Weibull Distribution 

The value of the number of breaks that was predicted in the previous section is used 

to establish deterioration curves using Weibull reliability function. It should be mentioned 

that the value of the number of breaks was transformed to a breakage rate by diving it by 

the pipe age (year) and length (km). Weibull reliability function can be used to model either 

City Training Size Testing Size Total Size 

Montreal 1950 (80%) 486 (20%) 2436 (100%) 
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an individual pipe or the entire network. Thus, providing a curve for each pipe segment is  

 

Figure 5-5 Scatter Plot of Model #10 for Testing for Montreal Dataset 

possible. However, as it can be seen in Table 5-4, the dataset of Montreal was clustered 

into 18 clusters with a deterioration curve for each of them. The dataset was clustered based 

on length (short, medium, and large), diameter (small and large), and material (M1, M2, 

and M3) of pipes. For the pipe length, three subcategories were defined: short (l≤300m), 

medium (300m <l ≤2000m), and long (l >2000m). According to the literature (CIRC 2012), 

for the pipe diameter, two subcategories were defined: small (D ≤350mm) and large (D 

>350mm).  
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Table 5-4 Different Clusters and Related Features for Montreal Dataset 

Cluster Features 

1 Length: Short, Diameter: Small, Material : M1 

2 Length: Short, Diameter: Small, Material : M2 

3 Length: Short, Diameter: Small, Material : M3 

4 Length: Short, Diameter: Large, Material : M1 

5 Length: Short, Diameter: Large, Material : M2 

6 Length: Short, Diameter: Large, Material : M3 

7 Length: Medium, Diameter: Small, Material : M1 

8 Length: Medium, Diameter: Small, Material : M2 

9 Length: Medium, Diameter: Small, Material : M3 

10 Length: Medium, Diameter: Large, Material : M1 

11 Length: Medium, Diameter: Large, Material : M2 

12 Length: Medium, Diameter: Large, Material : M3 

13 Length: Long, Diameter: Small, Material : M1 

14 Length: Long, Diameter: Small, Material : M2 

15 Length: Long, Diameter: Small, Material : M3 

16 Length: Long, Diameter: Large, Material : M1 

17 Length: Long, Diameter: Large, Material : M2 

18 Length: Long, Diameter: Large, Material : M3 
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In addition, based on historical records of pipes failure, three sub categories were 

defined for the pipe material: M1, M2, and M3 which belong to group of same material 

pipes with low, moderate, and high rate of failure respectively. Thus, 18 different 

deterioration curves were generated for 18 Clusters. 

Figures 5-6 and 5-7 show deterioration curves for Cluster number 7 and 16 

respectively. In each graph, vertical axis shows the condition of the pipe while horizontal 

axis represents the age of the pipe. By observing closely Figure 5-6, pipe condition starts 

from 1 (the best condition) and then decreases slightly to the zero (the worse condition). 

Also, condition of Cluster number 7 starts to decrease sooner than number 16. This 

observation, confirms that the probability of failure in pipes with large diameter is lower 

than pipes with small diameter. Typically, any kind of rehabilitation increases pipe 

reliability and decreases probability of failure. These graphs were developed without 

considering the effect of rehabilitation on decreasing the failure rate of water pipes. 

Therefore, the failure rate of water pipes should be updated when rehabilitation action is 

being considered or applied.   
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Figure 5-6 Deterioration Curve for Cluster number 7 

 

 

Figure 5-7 Deterioration Curve for Cluster number 16 
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5.2.5 Sensitivity Analysis 

Sensitivity analysis was performed to identify the effect of changing each variable 

on the predicted number of breaks of any pipe approaches the end of its useful life. Figures 

5-8, 5-9, and 5-10 show the effect of diameter, length, and pipe material on the number of 

breaks respectively as the pipe ages. In each one, a factor, which is the aim of the study, 

was changed while the rest ones were constant. In these graphs, the vertical axis shows the 

number of breaks while the horizontal axis represents the age of the pipe. It is clear from 

these figures that the number of breaks is increased when pipes approach the end of their 

useful life. As it can be seen in Figure 5-8, the number of breaks for pipes with the small 

diameter is higher than large diameter pipes. In the other words, the smaller the diameter 

of the pipe, the higher its value of the number of breaks will be. This can be justified 

because the wall thickness of smaller pipes is thinner than the larger ones, which allows 

the pipe to be corroded faster (El-Abbasy et al. 2014). Figure 5-9 shows that the number 

of breaks for longer length pipes is higher than pipes with the shorter length. These 

observations confirm previous findings in the literature about the relation between pipe’s 

failure rate and its length and diameter (Berardi et al. 2008). Figure 5-10 shows the 

sensitivity analysis for pipe with different materials. As it was discussed in chapter 3, the 

qualitative variables should be converted to quantitative variables to apply with EPR. In 

this study, pipe materials were divided into six groups based on their historical pipe’s 

failure. Number 1 was assigned to pipes with the lowest historical failure rate while number 

6 was assigned to the pipes with highest historical failure rate. 
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Figure 5-8 Number of Breaks for Different Pipe Diameter 

 

Figure 5-9 Number of Breaks for Different Pipe Length 
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Figure 5-10 Number of Breaks for Different Pipe Material 

Figure 5-11 shows the effect of changing of all input factors on the number of 

breaks of water pipelines. This graph was developed for two purposes. The first one is to 

understand the interrelationship between the number of breaks and its input factors. The 

second purpose is to determine what the most sensitive independent variables are. The 

vertical axis represents the number of breaks (Logarithmic Scale) whereas the horizontal 

axes represent the value of each factor. Since, each factor has its own unit, the horizontal 

axis was plotted using the normalized value from 0.01 to 1. However, for a better 

visualization the actual values of each factor are listed in a separated table below the 

normalized values. The corresponding values of the number of breaks are listed in another 
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table as well. The results confirm the direct relation between age and length as inputs and 

number of breaks as the output. It means that the number of breaks increases when the age 

and length of the pipe increase. Also, there is an inverse relationship between pipe’s 

diameter and the number of breaks of the pipes. In other words, the number of breaks 

increases when the pipe diameter decreases. Among these four curves, changing the value 

of number of breaks in gray curve (pipe diameter) is more than the others which shows that 

the most sensitive factor in this model is pipe diameter.         

5.3 City of Doha 

The dataset is used in this section is for City of Doha, Qatar. As it was discussed in 

data collection chapter, this city has a population of 796,947, while its land area is around 

132.1 square kilometers. The city of Doha owns 1,926 kilometers of water distribution 

networks (Kahramaa, 2009). 

5.3.1 Number of Breaks Estimation 

As it mentioned in data collection, the number of breaks was not available in the 

dataset of Doha. Lack of such data prevents developing prediction models with EPR, 

because it considers the number of breaks as the output. Thus, it was required to estimate 

the number of breaks based on the other available datasets.  

The physical characteristics of water pipes in different datasets are generic. In fact, 

the results obtained using the Hamilton and Moncton data were very close. In view of this 

finding and the insufficient data collected from Doha, it was required to use the developed 

model based on historical records from Hamilton and Moncton to estimate the number of 
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Figure 5-11 Sensitivity Analysis for Montreal Dataset 
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breaks in Doha. It should be mentioned that population, city size and pipe characteristics 

of the City of Doha are similar to the City of Moncton and Hamilton as well. Estimation 

of the number of breaks was implemented by considering age as an input, which can be 

found in all datasets. Three different models were developed by applying regression 

analysis of Excel using datasets of Moncton and Hamilton. In the first two models, the data 

of each city was used separately, while, in the third one the combined data for both cities 

was utilized. In each model, the data was clustered into different groups based on the pipe 

age. It means that pipes with same age were put in one group. The breaks per length (m) 

was calculated for each age-class by computing the average of the number of breaks for 

the same group. Several attempts were conducted to reach the best model using different 

datasets. Since, in the dataset of Doha, there are no pipes older than 33 years, it was not 

necessary to keep pipes with the age of 34 and more, therefore they could be deleted in the 

new inventories. Finally, the model that utilized the large number of data points and gave 

the best performance based on the R-Squared (R2) was chosen to estimate the number of 

breaks for the city of Doha.  

Figures 5-12, 5-13, and 5-14 show the result of regression (based on the No. of 

Breaks per Length (m)) of Moncton, Hamilton and mixing of both cities, respectively. The 

equation of each inventory and R-Square (R2) are shown in Table 5-5. It can be seen that 

the developed models of Moncton and both Cities are acceptable; while, the one that 

belongs to the City of Hamilton is not promising enough to be used on Doha. Finally, 

number of breaks per length that was obtained from these equations should be multiplied 
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by length of related pipe segments to calculate the estimated number of breaks of Doha’s 

dataset. 

 

Figure 5-13 Scatter Plot of No. of Breaks per Length (m) and Age of Hamilton Dataset 
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Figure 5-12 Scatter Plot of No. of Breaks per Length (m) and Age of Moncton Dataset 
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Figure 5-14 Scatter Plot of No. of Breaks per Length (m) and Age of Both Datasets 

Table 5-5 Equations and related R-Squares 

Different Datasets Equations R-Squared (%) 

Moncton y = 3E-05 x2 - 0.0003 x 83.31 

Hamilton 

Mixing of Both Cities 

y = 1E−06x3 − 0.0001x2 + 0.0025x  

y = 3E-06 x2 + 0.0006 x  

30.94 

67.84 

 

Once, the number of breaks for the City of Doha was estimated, the analysis for 

this dataset is conducted. Figure 5-15 shows the number of breaks for ductile iron and steel 
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period of 1996-2000. While from 1991 to 1995 and from 2001 to 2010, the frequencies of 
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pipe failures are almost equal. Having a higher pipe failure in a specific period of time can 

be caused by poor installation methods or low-quality materials. 

Figure 5-16 demonstrates the number of breaks for pipes with different diameter 

and installation date. As it can be seen, the number of breaks for pipes with the smaller 

diameter is higher than the pipes with the larger diameter. This confirms the previous 

findings regarding the inverse relationship between failure rate and pipe diameter. The 

highest number of breaks belongs to the pipes with 100mm diameter that were installed 

between 1996 and 2000. 

 

Figure 5-15 Number of Breaks per segment for pipes Installed between 1981 and 2013 for 

City of Doha 
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Figure 5-16 Number of Breaks per segment for Pipes with Different Diameter for City of Doha 
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5.3.2 Best Subset Regression 

As it is mentioned in chapter 3, Dataset of Doha contains six independent variables 

including: the length, diameter, age, material, buried depth, and elevation of the pipe. 

However, this dataset comprises of 99.99% Ductile Iron and 0.01% Steel pipes thus, only 

ductile iron pipes were considered in this study.  Figure 5-17 shows results of the best 

subset analysis for the City of Doha. As it can be seen in the upper window, there are nine 

possible sets of inputs in this dataset. All of them except model number 2 have the high 

value of R-Squared, adjusted R-Squared, and predicted R-Squared. However, the value for  

 

Figure 5-17 Best Subset Regression for City of Doha 
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Mallows' Cp should be equal to the number of independent variables plus one. In this 

dataset, there are five independent variables, thus only model number 9 has an acceptable 

value for Mallows' Cp, which is 6. Therefore, the of factors model 9 are selected as the 

most critical factors.   

5.3.3 Data Classification 

In this dataset, the aim of data classification is clustering the City of Doha dataset 

into groups that have the same age and diameter. The original excel file of the dataset of 

Doha comprises of 1,599 pipe segments. After data filtering, this dataset was classified into 

72 homogeneous groups which is very smaller when compared with the dataset of 

Montreal. The length and the number of breaks of each class were computed by summing 

corresponding ones of each pipe segment. The original dataset and its classifications are 

provided in Appendix B.  

5.3.4 Evolutionary Polynomial Regression 

In the dataset of Doha, twelves symbolic expressions were generated to predict the 

number of breaks of water pipelines. Table 5-6 shows these expressions along with their 

related R-Squared scores. On the right side of symbolic expressions A, L, D, PE, and BD 

represent Age, Length, Diameter, Pipe Elevation, and Buried Depth respectively. It can be 

seen that age, length and diameter of the pipes are the most commonly used variables for 

estimating the number of breaks while buried depth and pipe elevation has been introduced 

in only the last five expressions. As discussed earlier, the best model should be chosen 

among all expressions based on the model fitness and parsimony. Model number 9 was 

selected as the best one, even though all models have acceptable R-Squared scores. The 

selected model has the highest value of R-Squared and is less complicated than models 



 

93 

 

number 10, 11, and 12. Accuracy indexes such as SSE, BIC, MSE, FPE, AIC, and GCV 

are shown in Table 5-7. Also by observing the results shown in this table, model number 9 

has the minimum values in all indexes. This observation confirms that this model is the 

most promising one in predicting the output.  

Table 5-6 Symbolic Expressions for Doha dataset and related R-Squared 

 Expressions R2 

(%)  

1 No. of Breaks =1.1493 A0.5 L 90.66 

2 
No. of Breaks = 1.8169×10-6

1

L2 +1.1471 A0.5 L 
94.33 

3 
No. of Breaks = 3.3795×10-6 

A0.5

L2 +1.1466 A0.5 L 
94.99 

4 
No. of Breaks =1.146 A0.5 L+1.7317×10-5 

A2

L2
ln (

1

A1.5
) 

95.21 

5 
No. of Breaks =0.0066601 ln(D0.5) +1.1721 A0.5 L+1.6884×10-5 

A2

L2 ln (
1

A2) 
95.87 

6 
No. of Breaks =1.4624×10-5

1

L1.5
ln(D0.5)+  1.1467A0.5L+2.0317×10-5

A2

L2 ln (
1

A2) 
95.58 

7 
No. of Breaks =3.4001×10-5

A0.5

L1.5
ln(D0.5) +1.1473A0.5L+2.4526×10-5

A2

L2 ln (
1

A2) 

95.7 

8 
No. of Breaks =3.2006×10-5

A0.5

L1.5
ln(D0.5PE0.5) +1.1477A0.5L+2.8169×10-5

A2

L2
ln (

1

A2
) 

95.91 

9 
No. of Breaks =3.4191×10-7

A0.5

L2D0.5
ln(PE1.5BD0.5) +1.1463A0.5L+3.5493×10-5

A2

L2 ln (
1

A1.5
) 

96.27 

10 
No. of Breaks =3.4559×10-7

A0.5

L2D0.5
ln(PE1.5BD0.5) +1.1464A0.5L+3.5792×10-6

A2

L2BD0.5
ln (

1

A1.5
) 

96.1 

11 
No. of Breaks =3.817×10-7

A0.5

L2D0.5
ln (

PE1.5BD0.5

A0.5
) +1.1464A0.5L+3.5748×10-6

A2

L2BD0.5
ln (

1

A1.5
) 

96.02 

12 No. of Breaks =3.822×10-7
A0.5BD0.5

L2D0.5
ln (

PE1.5BD0.5

A0.5
) +1.1465A0.5L+3.5775×10-6

A2

L2BD0.5
ln (

1

A1.5
) 

96.05 
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Table 5-7 Accuracy Indexes for Doha Dataset 

 SSE BIC MSE FPE AIC GCV AVG 

Model #1 23.37 25.01 23.78 24.19 24.18 0.417 754.9 

Model #2 14.19 15.18 14.44 14.69 14.68 0.253 5244 

Model #3 12.53 14.29 12.98 13.43 13.4 0.232 8430 

Model #4 11.99 13.67 12.42 12.85 12.82 0.222 6873 

Model #5 10.35 11.8 10.72 11.09 11.06 0.191 8179 

Model #6 11.07 13.4 11.68 12.28 12.22 0.212 11276 

Model #7 10.77 13.03 11.35 11.94 11.88 0.206 16335 

Model #8 10.24 12.39 10.8 11.36 11.3 0.196 11262 

Model #9 9.327 11.29 9.836 10.34 10.29 0.179 8675 

Model #10 9.774 11.83 10.31 10.84 10.79 0.187 10329 

Model #11 9.958 12.05 10.5 11.04 10.99 0.191 11784 

Model #12 9.897 11.98 10.44 10.98 10.92 0.19 7839 

  

Figure 5-18 shows the Pareto graph of Doha dataset. Model number 9 is marked 

with a black arrow while other models are shown as red dots. In this graph, the vertical axis 

shows the number of independent variables, which were considered in each model. While, 

the horizontal axis represents the value of one minus R-Squared (1-CoD) for each model. 

Same as the dataset of Montreal, this dataset was divided randomly to two parts for training 

and testing. As shown in Table 5-8, 80% of dataset were used for training and 20% were 

used for testing. Scatter Plots for training and resting of model number 9 are shown in 

Figures 5-19 and 5-20 respectively. Scatter plots of other models are provided in Appendix 

C as well. These graphs compare the predicted and actual values of the number of breaks. 

The vertical axis shows the actual number of breaks (experimental) while the horizontal 
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Figure 5-18 Pareto of Doha Dataset 

axis shows the predicted value of the number of breaks. The values of R-Squared (CoD) is 

shown in top corners of graphs, which are 96.09% and 74.39% for training and testing 

respectively. 

Table 5-8 Doha Dataset Size 

City Training Size Testing Size Dataset Size 

Doha 58 (80%) 14 (20%) 72 (100%) 
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Figure 5-19 Scatter Plot of Model #9 for Training for Doha Dataset 

 

Figure 5-20 Scatter Plot of Model #9 for Testing for Doha Dataset 
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5.3.5 Weibull Distribution 

The dataset of Doha comprises of 99.99% Ductile Iron thus, it clustered into 6 

clusters just based on length and diameter of the pipes. Table 5-9 shows these 6 clusters 

and related features of each of them. For the pipe length, three subcategories were defined: 

short (l≤300m), medium ( 300m <l ≤2000m), and long (l >2000m). For the pipe diameter, 

two subcategories were defined based on the literature: small (D ≤350mm) and large (D 

>350mm). The number of breaks for each pipe segment, which was predicted in the 

previous section, is transformed to a breakage rate by dividing it by age and length. The 

result is used in this section to provide deterioration curves using Weibull reliability 

function. Figures 5-21 and 5-22 show deterioration curves for clusters number 3 and six 

respectively.  

Table 5-9 Different Clusters and Related Features for Doha Dataset 

Cluster Features 

1 Length: Short, Diameter: Small 

2 Length: Medium, Diameter: Small 

3 Length: Long, Diameter: Small 

4 Length: Short, Diameter: Large 

5 Length: Medium, Diameter: Large 

6 Length: Large, Diameter: Large 
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Figure 5-21 Deterioration Curve for Cluster Number 3 

 

Figure 5-22 Deterioration Curve for Cluster Number 6 
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In each graph, the vertical axis shows the condition of the pipe while the horizontal axis 

represents the age of the pipe. As it can be seen, in both Figures pipe condition starts from 

1 (the best condition) and then decreases slightly to the zero (the worse condition). It can 

be concluded that pipes with smaller diameter are more prone to failure than pipes with 

larger diameter.  

5.3.6 Sensitivity Analysis 

Figure 5-23 shows the sensitivity analysis for the dataset of Doha.  The vertical axis 

represents the number of breaks (Logarithmic Scale) whereas the horizontal axis represents 

the value of each factor. Since, each factor has its own units, the horizontal axis was plotted 

using the normalized value from 0.01 to 1. However, for a better visualization the actual 

value of each factor and the corresponding value of the number of breaks are listed in two 

separated tables below the normalized values. The result confirms the previous finding 

from Montreal dataset that there is a direct relation between age and length as inputs and 

number of breaks as the output. In other words, the number of breaks increases when the 

age and length of the pipe increase. Also, it is concluded that pipe elevation and buried 

depth do not affect the water pipe failure significantly. By examining the above figure, the 

number of breaks is almost constant while the values of pipe elevation and buried depth 

are increasing. Also, it is found that in this study the first and second most sensitive 

independent variables are age and length of the pipe respectively. Thus, further analysis 

was done on these two factors.  

Figures 5-24 shows the effect of different pipe length on the number of breaks while 

the water pipeline is aging. It can be seen that the number of breaks is increasing as the 

pipe is approaching the end of its service. The slope of curves shows the rate of increasing
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Figure 5-23 Sensitivity Analysis for Doha Dataset 
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of the number of breaks. Thus, long length pipes have higher breakage rate than short 

length pipes.   

 

Figure 5-24 Number of Breaks for different Pipe Length 

5.4 Summary and Conclusion 

This chapter presented the analysis of the developed model on two case studies: 

The City of Montreal in Canada and the City of Doha in Qatar. The developed model 

encompasses three main computational techniques: Best Subset regression, Evolutionary 

Polynomial Regression, and Weibull reliability analysis. Best Subset regression was 

utilized to determine the most critical factors for predicting the number of breaks in water 

pipelines. Then, the selected critical factors were used to generate 12 symbolic expressions 
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by EPR. Subsequently, the predicted number of breaks by EPR is utilized as an input to 

generate deterioration curves by using Weibull distribution function.  

The only difference between these two datasets is lack of information about the 

number of breaks in the dataset of Doha. Lack of such data prevents developing the 

prediction models by using EPR and, therefore, there was a need to estimate the number of 

breaks in the dataset of Doha. When examining the results obtained from the two datasets 

of Hamilton and Moncton, it was found out that these datasets were very close. Hence, the 

model developed based on them was used to estimate the number of breaks in Doha.  

Data collection was performed for both cases to cluster pipe segments into classes 

that have the same specifications. The dataset of Montreal was classified based on age, 

diameter and material of pipes, while dataset of Doha was classified based on age and 

diameter of the pipes because it mostly comprises of Ductile Iron. 

Sensitivity analysis was performed for both datasets to identify the effect of 

changing each independent variable on the water pipe failure rate when pipe gets older. 

The rationality of relationship between inputs and output in selected symbolic expression 

was studied as well.  

Based on the Best Subset regression results, it was concluded that all available 

factors should be considered as inputs in EPR for predicting the number of breaks. Then, 

12 symbolic expressions were generated by using EPR. Among them the best one was 

selected based on different criteria such as fitting to the actual data, the parsimony of 

generated equation and the possibility of justifying the equations in terms of reasonable 

relationship between inputs and output. In the end, two deterioration curves as samples 



 

103 

 

were presented for each dataset. As Weibull reliability function can be used for an 

individual pipe, providing a curve for each pipe segment is possible.     
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6 Chapter 6: Conclusion and Future Work 

6.1 Summary and Conclusion  

The increasing failure rates of water pipes are caused by the low maintenance and 

the aging of water distribution networks (Asnashari 2013). Failure prediction models can 

help utilities and municipalities prioritize the replacement/rehabilitation of water pipelines. 

The end result is more cost effective plans for the condition assessment and improved level 

of service. Recently, there has been considerable efforts in developing failure prediction 

models for water pipes as covered in the literature review of this thesis. This study 

presented a research framework that circumvent the limitations highlighted in Chapter 2 

by: 1) identifying the most critical factors affecting failure rates of water pipes, 2) 

determining the best mathematical expression for relating the identified factors with the 

target output – i.e. breakage rates, 3) using the best mathematical formula to construct 

deterioration curves and 4) deploying the sensitivity analysis to recognize the effects of 

changing each input on the breakage rate. 

Best Subset regression was utilized to find the best combination of variables for 

predicting breakage rates of water pipes. The technique was capable of extracting the most 

critical factors for predicting breakage rates using the numbers of statistical indices such 

as R2, Mallows' Cp and square root of MSE. However, this technique is not suitable for 

case studies with a large number of independent variables as the computational time needed 

to process and find the best combination of factors will significantly increase. But in this 

study, 4 and 5 independent variables were used to predict the number of breaks in the City 

of Montreal and Doha respectively. Therefore, Best Subset regression was capable of 
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finding the best factors in a timely fashion. In dataset of Montreal, the model, which 

includes all available independent variables, being age, diameter, length and material of 

pipes, was selected as the best one. Also, for the dataset of Doha, age, diameter, length, 

material, buried depth and elevation of the pipe were selected as the most critical factors. 

Subsequently, EPR algorithm was deployed to generate a number of symbolic 

expressions able to predict the number of breaks of water mains. For each dataset, 12 

symbolic expressions were generated and among them, the best one was chosen based on 

the observed fitness and parsimony of the equation. The process of creating the symbolic 

expressions contains two stages: 1) Finding the best model structure using Multi-Objective 

Genetic Algorithm and 2) estimating the appropriate values for constants using Least-

Squares optimization (Berardi et al. 2008). 

The predicted number of breaks, calculated by the best symbolic expression, was 

employed to construct deterioration curves by using Weibull reliability functions. Weibull 

distribution was utilised because it needs a few number of historical data and can also be 

used to model either an individual pipe or the whole network. Datasets of Montreal and 

Doha were grouped into 18 and 6 clusters respectively and a deterioration curve was 

developed for each group. 

The sensitivity analysis was performed for both datasets to: 1) identify the effect of 

each independent variable on the breakage rate when water pipes are aging and 2) study 

the rationality of relationship between the selected inputs and the output. In dataset of 

Montreal, it was concluded that the pipe diameter is the most sensitive factor. In dataset of 

Doha, however, age and length of the pipe were identified as the most sensitive factors.   
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6.2 Research Contribution 

This study provides a newly developed research framework for predicting the 

number of breaks for water pipes. As the most significant contributions of this research: 

1) The most critical factors for predicting the failure rate of water mains were 

identified from the available literature and historical data. 

2) The failure rate prediction models for water distribution networks were 

developed, considering the interrelationships among the most critical factors. 

Furthermore, different types of pipe material were considered as an independent 

variable. The result of this model was used to provide deterioration curves of 

water pipelines.  

3) Two types of sensitivity analysis were conducted for each dataset, aiming to: 1) 

identify the effect of each independent variable on the breakage rate and 2) 

study the rationality of relationship between the selected inputs and the output.   

6.3 Limitations 

The developed methodology has some limitations, listed as follows: 

1) Lack of available data prevented considering more inputs such as soil type, 

which was identified as one of the most important factors in predicting failure 

rate of water distribution networks. 

2) The effect of third party, mechanical damages, construction defects and 

corrosion were not considered in this study.  

3) The developed methodology does not take into consideration the effect of 

rehabilitation on water pipelines.  
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6.4 Future Works 

The recommendation for future works can be divided into two areas: 1) Research 

enhancement and 2) research extensions. These two areas are summarized as follows:  

6.4.1 Research Enhancement 

1) Considering additional effective factors such as soil type in water distribution 

networks as inputs because the proposed methodology is flexible to include 

more contributing factors. According to the literature, the soil type was 

identified as one of the most important factors in predicting the failure rate of 

water mains.  

2) Developing a user-friendly interface wherein the user inserts the pipe’s 

specifications in order to obtain the most critical factors, the best mathematical 

form for predicting water pipe failures, deterioration curves and the most 

sensitive factor as outcomes. Also, this tool can be adapted to a web version to 

be accessible for interested parties across the world.  

3) Implementing the developed research framework in more water distribution 

networks (other than North America and Middle East) in order to explore its 

capabilities and investigate the result validity with more datasets.  

4) Considering the effect of third party, mechanical damages and construction 

defects in developing the prediction failure rate models for water distribution 

networks.  

5) Investigating how the rehabilitation of water pipes can affect the deterioration 

curves. Considering this effect leads to more accurate and realistic deterioration 

curves to be generated.   
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6.4.2 Research Extensions 

1)  Maintenance, repair and rehabilitation plan can be prioritized based on the 

result of this study. Also, the budget allocation and life cycle cost optimization 

models can be integrated with this methodology to establish a more 

comprehensive framework for water pipes management.  

2) Modifying the developed framework in order to be applicable in other 

infrastructure assets such as sewer pipelines, roads and bridges.  
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Appendix A 

 

Figure A - 1 Y_EPR Sheet of Excel Result File 
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Figure A - 2 Graphs Sheet of Excel Result File 
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Figure A - 3 Train Data Sheet of Excel Result File 
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Figure A - 4 Test Data Sheet of Excel Result File 
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Figure A - 5 EPR Setting Sheet of Excel Result File 
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Figure A - 6 Y-EPR Test Sheet of Excel Result File 
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Appendix B 

 

Figure B - 1 Original dataset of Montreal 
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Figure B - 2 Dataset of Montreal after Classification 
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Figure B - 3 Original Dataset of Doha 
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Figure B - 4 Dataset of Doha after Classification 
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Appendix C 

 

Figure C - 1 Scatter Plot of Model #1 for Training for Montreal Dataset 

 

Figure C - 2 Scatter Plot of Model #1 for Testing for Montreal Dataset 
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Figure C - 3 Scatter Plot of Model #2 for Training for Montreal Dataset 

 

 

Figure C - 4 Scatter Plot of Model #2 for Testing for Montreal Dataset 
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Figure C - 5 Scatter Plot of Model #3 for Training for Montreal Dataset 

 

 

Figure C - 6 Scatter Plot of Model #3 for Testing for Montreal Dataset 
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Figure C - 7 Scatter Plot of Model #4 for Training for Montreal Dataset 

 

 

Figure C - 8 Scatter Plot of Model #4 for Testing for Montreal Dataset 
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Figure C - 9 Scatter Plot of Model #5 for Training for Montreal Dataset 

 

 

Figure C - 10 Scatter Plot of Model #5 for Testing for Montreal Dataset 
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Figure C - 11Scatter Plot of Model #6 for Training for Montreal Dataset 

 

 

Figure C - 12 Scatter Plot of Model #6 for Testing for Montreal Dataset 
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Figure C - 13 Scatter Plot of Model #7 for Training for Montreal Dataset 

 

 

Figure C - 14 Scatter Plot of Model #7 for Testing for Montreal Dataset 
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Figure C - 15 Scatter Plot of Model #8 for Training for Montreal Dataset 

 

 

Figure C - 16 Scatter Plot of Model #8 for Testing for Montreal Dataset 
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Figure C - 17 Scatter Plot of Model #9 for Training for Montreal Dataset 

 

 

Figure C - 18 Scatter Plot of Model #9 for Testing for Montreal Dataset 
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Figure C - 19 Scatter Plot of Model #11 for Training for Montreal Dataset 

 

 

Figure C - 20 Scatter Plot of Model #11 for Testing for Montreal Dataset 
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Figure C - 21 Scatter Plot of Model #12 for Training for Montreal Dataset 

 

 

Figure C - 22 Scatter Plot of Model #12 for Testing for Montreal Dataset 


