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Abstract

Failure Rate Prediction Models of Water Distribution Networks

Seyed Farzad Karimian

The economic, social and environmental impacts of water main failures impose a
great pressure on utility managers and municipalities to develop reliable
rehabilitation/replacement plans. The Canadian Infrastructure Report Card 2012 stated that
15.4% of Canadian water distribution systems was in a “fair” to “very poor” condition with
a replacement cost of CAD 25.9 billion. The “fair”, “poor” and “very poor” conditions
represent the beginning of deterioration, nearing the end of useful life and no residual life
expectancy, respectively. The majority of municipalities in Canada do not possess
complete dataset of water distribution networks. The annual number of breaks or breakage
rate of each pipe segment is known as one of the most important criteria in condition
assessment of water pipelines. The main objective of this research is to develop a research
framework that circumvent the limitations of existing studies by: 1) identifying the most
critical factors affecting water pipe failure rates, 2) determining the best mathematical
expression for predicting water pipeline failure rate 3) developing deterioration curves, and
4) deploying sensitivity analysis to recognize the effect of each input change on the

breakage rate.

The proposed research framework utilizes Best Subset regression to recognize the
most effective factors on water pipelines. Best-Subset Algorithm is a procedure to find the
best combination of variables to predict the water pipe failure rate among all possible
candidates. Once the process of critical factor selection is performed, selected variables are
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employed to predict the number of breaks of water pipes using Evolutionary Polynomial
Regression (EPR). The EPR is an intuitive data mining technique performed in two stages:
1) the search for the best model using Multi-Objective Genetic Algorithm (MOGA), and
2) the parameter estimation for the model using Least Square Method. The predicted
number of breaks, computed by EPR, is utilized to develop deterioration curves by
applying Weibull distribution function. Finally, sensitivity analysis is performed to: 1)
recognize the effect of changing each input on the failure rate, and 2) study the relationship

between the selected inputs and the output.

The developed research framework is applied into two case studies to test its
effectiveness. The case considers the water distribution networks in the City of Montréal,
Canada and the City of Doha, Qatar. Physical factors, such as age, length, diameter and
pipe material were identified as the most critical factors to affect the failure rate of pipes.
The results indicate that the developed models successfully estimated the number of breaks
for the City of Montreal and City of Doha with a maximum R-Squared of 89.35% and
96.27%, respectively. Also, it is tested by using 20% of each dataset and promising results
were generated with a maximum R-Squared of 84.86% and 74.39% for dataset of Montreal
and Doha respectively. This demonstrates the accuracy and robustness of the developed
models in assessing and analyzing water distribution networks. The developed model is
useful for municipalities and decision makers to prioritize the maintenance, repair,

rehabilitation, and budget allocation of water distribution networks.
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Chapter 1: Introduction

Water pipelines are intensive capital assets, preserved through operation and
maintenance, to meet customers’ expectations and avoid catastrophic failures (Giustolisi et
al. 2006). The 2013 American Society of Civil Engineers Report Card (ASCE 2013) rated
the US drinking water networks with a score of D, which is interpreted as “Poor” condition.
According to the American Water Works Association (AWWA), there are 240,000 water
main breaks per year in the United States, imposing a total cost of $1 trillion on
municipalities over the coming decades. Also, as the Canadian Infrastructure Report Card
2012 (CIRC 2012) shows, municipal drinking-water networks are ranked “Good: Adequate
for now”. Despite this overall rating, 15.4% of water distribution systems in Canada were
ranked “fair” to “very poor” with a replacement cost of CAD 25.9 billion. The “fair”,
“poor” and “very poor” conditions would be interpreted as deterioration beginning to be
reflected, nearing the end of useful life and no residual life expectancy respectively (CIRC
2012). Water main deterioration leads to a breakage rate increase and a hydraulic capacity
decrease. According to CIRC 2012, 86 Canadian municipalities own a total of 719,630 km
of water pipelines containing distribution pipes (<350 mm diameter) and transmission

pipes (>350 mm diameter).

According to the CIRC 2012, the majority of municipalities in Canada do not have
complete data for buried infrastructure networks, including water and sewer networks.
Besides, it is clear that testing, inspection and evaluation of the pipe physical specifications
require a large amount of financial reserves, and in some cases, it is difficult to implement.
For operators and managers, it is vital to develop models that can estimate the breakage

rate of water pipes by using their available and limited historical data instead of relying on
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models that either require extensive data collection practices or physical testing of pipes.
If these models can detect the factors that are critical for estimating the breakage rate and
utilize them to predict it, this will have a profound impact on decreasing their required
operational budget. Recently, a data-mining technique titled Evolutionary Polynomial
Regression (EPR) was developed by Giustolisi and Savic (2006). This type of regression
generates several symbolic expressions that are understandable by specialists and

professionals, based on various independent variables.

1.1 Problem Statement

This research has been inspired by a lack of comprehensive analysis in the water
pipe failure prediction models. In accordance with the importance of water distribution
networks, the major limitations with respect to this research are briefly described in this
section. There is a lack of computational models to predict water pipe failure rate, to be
generic and not limited to certain physical characteristics (Berardi et al. 2008). The
majority of developed models in literature were limited to pipes with certain material type

or diameter.

Furthermore, current practices do not justify why certain factors were selected for
predicting the breakage rate (Berardi et al. 2008 and Xu et al. 2011). There is a need for a
more comprehensive approach that starts with examining available datasets to extract
factors statistically critical for predicting the breakage rate. As will be demonstrated later
in this research, extracting and utilizing the most critical factors to estimate the breakage

rate will improve the obtained statistical results.



In addition, current researches effort focused on modeling the water pipe failure
rate without considering the interrelationships between considered variables and
subsequently on estimating the failure rate. There is a need to develop failure rate models
that consider such interrelationships with the ability to test and to determine the best
mathematical symbolic expression to recognize the correlations among dependent and

independent variables.

1.2 Research Objectives

The main objective of this research is to develop a generic framework for predicting
water pipe failure rate. This main objective can be achieved through the following sub-

objectives:

1) Identify and study the critical factors of predicting the number of breaks of
water mains.

2) Develop models to predict the number of breaks of water mains.

3) Develop deterioration curves to predict the future condition of water pipelines.

4) Perform sensitivity analysis to recognize the most sensitive factors to the

number of breaks of water mains.

1.3 Research Framework Overview

The proposed research framework consists of 6 main parts as shown in Figure 1-1

and described below:

1) Literature Review: The literature review is performed to identify current
studies’ limitations, which need to be investigated in this research. It starts by

outlining and discussing the components of water distribution networks. Then,



it focuses on revealing the current state of the art of: 1) factors utilized in

predicting the water pipeline failure rate and 2) models for predicting those

failure rate and their limitations.
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2)

3)

4)

5)

Best Subsets regression: The best subset regression is an automated technique
that recognizes the best-fitting regression models with factors specified by the
user. In this study, this technique is used to find the best combination of
independent variables to predict the number of breaks of water pipelines.
Evolutionary Polynomial Regression: This is a data-driven technique and is
classified as a grey box method as it provides insight into the relationship
between inputs and output (Giustolisi 2004). This method is performed in two
stages: 1) a search for the best model using Multi-Objective Genetic Algorithm
(MOGA), and 2) parameter estimation for the model using Least Square
Method. The process of EPR should be coupled with engineering knowledge to
verify if the generated equations and correlations between utilized inputs and
output are reasonable. Two separated models are developed using datasets of
Montréal and Doha, based on the most critical factors obtained from the best
subset regression.

Weibull Distribution: Weibull reliability function is employed to generate
deterioration curves as it poses three main advantages over the other methods
to be described later in chapter 4. In general, Weibull-based models are widely
used in different studies and applications to solve various problems (Jardine and
Tsang, 2013). In this study, the value of number of breaks that is predicted using
EPR is used to establish deterioration curves for several homogeneous clusters.
Sensitivity analysis: This technique is deployed to explore the effect of
changing each input on the predicted output (i.e. number of breaks). Also,

sensitivity analysis is utilized to verify if the existing relationships between the



selected inputs from the best subset algorithm and the predicted output from the
EPR algorithm are reasonable in terms of engineering knowledge.

6) Data Collection: Four datasets of water distribution networks obtained from the
City of Moncton, City of Hamilton and City of Montréal in Canada and the City
of Doha in Qatar, were considered in this study. These four datasets were
considered for understanding current practices of data collection. Their
examination also serves us to obtain better understanding of the water pipe
deterioration processes. In addition, these datasets are utilized to build up a
comprehensive water pipeline assessment model for: 1) identifying the most
critical factors, 2) determining the best mathematical form for predicting water
pipe breakage rate and 3) providing deterioration curves and recognizing the
most sensitive factors. Finally, a part of the same datasets was employed to

check the proposed model’s validity.

1.4 Thesis Organization

This thesis consists of 6 chapters and 3 appendices. The literature review is
presented in chapter 2 and it starts with discussing the components of water distribution
networks. Then, the factors and models to predict the failure rate in previous studies, along
with their limitations, are presented. Evolutionary Polynomial Regression is described in
details as well. At the end of this chapter, the limitations of previous studies are presented.
Chapter 3 describes and analyzes four datasets: The City of Moncton, City of Hamilton
and City of Montréal in Canada and City of Doha in Qatar. Chapter 4 contains the research
framework and its developed models. Two case studies: City of Montréal and City of Doha,

are used to test the developed model. Their analyses and results are presented in chapter 5.



Finally, chapter 6 highlights the contributions, limitations and recommendation of this

study.



Chapter 2: Literature Review

2.1 Overview

This chapter starts by outlining and discussing the components of water distribution
networks. The literature review focused on revealing the current state of the art of: 1)
factors utilized in predicting the failure rate of water pipelines and 2) models for predicting
the failure rate with their limitations. The factors utilized in predicting the failure rate of
water pipelines were classified into two clusters based on; 1) whether these factors are
static or dynamic through the lifecycle of water pipelines and 2) whether these factors are
physical, environmental or operational. Failure rate models are reviewed with their
drawbacks being highlighted. The failure rate models are clustered into four groups:
deterministic, statistical, probabilistic, and artificial intelligence. Finally, this chapter
concludes with a summary of the identified limitations in the previous studies. Figure 2-1

shows an overview of this chapter.

2.2 The components of Water Distribution Systems

Water distribution networks have three main parts: pipes, valves and flush hydrants.
The pipes and valves are buried, thus the involved parties like municipalities and
contractors need a detailed map to have a quick and precise access to the location of the
pipes in case of emergency. Also, this map can be used in upgrading and improvement of

the system.
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Figure 2-1 Overview of Literature Review

2.2.1 Pipes

As it can be seen in Figure 2-2, there are two main types of water pipes;
transmission pipes and distribution pipes. Transmission pipes carry the water from the
source to the treatment plant and storage tanks. These are the largest (>350 mm diameter)
and thickest pipes in the system, therefore, the most expensive ones. For reducing the
transmission cost, the location of the storage system should be as close as possible to the

source of water.

Distribution pipes (<350 mm diameter) carry out the water from storage tanks to

the users. These pipes must be far at least 10 feet from sewers pipes and laid in separated



trench for water quality assurance purposes. The minimum diameter for distribution pipes
is 2 inches while for serving the fire hydrant the 6 inches pipe is needed. To take into
consideration the population growth, most of the decision makers try to use bigger pipes

than the minimum size.

Transmission Pipes Distribution Pipes

Figure 2-2 Water Supply Distribution System (Adopted from EPA, 2006)

Materials commonly used in water pipes can be divided into three main groups:
metallic pipes, cement pipes and plastic pipes. Metallic pipes include gray cast iron pipe
(GCIP), ductile cast iron pipe (DCIP), steel pipe and copper. Cement pipes such as asbestos
cement (A.C.) pipe and in older systems concrete or fired clay. Plastic pipes include PVC

(polyvinyl chloride) pipe and high-density polyethylene (HDPE) pipe.

2.2.2 Valves

Valves are one of the most important parts of water distribution networks. During

the maintenance, valves can isolate the portion of the water that needs to be kept in the
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system. Installing valves in suitable place minimizes the loss of service in water pipe
rehabilitation and replacement. Valves that are not used for many years can be stuck or
even broken if neglected. Thus, valve exercise program is an important part in water pipes

maintenance.

2.2.3 Flush Hydrant

Flush hydrants are almost the only visible part of the water distribution networks.
They must be located at the end of all lines to remove sediment, silt, rust, debris, or stagnant
water from dead-ends. Flush hydrants should also be installed throughout the system to
provide for periodic flushing to maintain high water clarity and quality. Fire hydrants are
larger and more expensive than the flush hydrants and usually are connected to the larger

pipes. But some of the municipalities use fire hydrants for flushing their lines.

2.3 Factors affecting the failure rate of water pipelines

In the last decade, the extensive research effort was made to develop models for
predicting the failure rate of water pipelines. The factors utilized in these models were
classified into two clusters based on; 1) whether these factors are static or dynamic through
the lifecycle of water pipelines and 2) whether these factors are physical or environmental
or operational. After reviewing previous studies, it was observed that the second

classification is more common in recent research efforts.

2.3.1 Static and dynamic factors
Stone et al. (2002) categorized factors contributing to the failure of water pipelines
into two groups: static factors and dynamic factors. The characteristics of static parameters

do not depend on the time, but dynamic factors’ specifications change over time. Static
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parameters include the diameter, length, soil type, pipe material, etc. On the other hand,
the age, cumulative number of breaks, soil corrosivity and water pressure are examples of
dynamic factors influencing pipe failure rate. Osman and Bainbridge (2011) studied the
effect of time-dependent variables like pipe age, temperature and soil moisture on the
deterioration of water pipes. Static factors such as soil type, length, wall thickness and
diameter of the pipe were not considered in their study because of the unavailability of

reliable data.

2.3.2 Physical, environmental and operational factors
InfraGuide. (2003) classified the factors contributing to the deterioration of water
pipes to three main categories; physical, environmental and operational as shown in Table
2-1. According to InfraGuide (2003), physical factors include pipe material, pipe wall
thickness, pipe age, pipe vintage, pipe diameter, type of joints, thrust restraint, pipe lining
and coating, dissimilar metals, pipe installation and pipe manufacture. In other researches,

pipe length and buried depth are also known as physical factors.

InfaGuide (2003) considered pipe bedding, trench backfill, soil type, groundwater,
climate, pipe location, disturbances, stray electrical currents, and seismic activity as the
environmental factors. While, other researchers included rainfall, traffic and loading, and
trench backfill as the environmental factors as well. Kabir et al. (2015b) studied the effect
of soil type on the failure rate of water pipelines and highlighted that soil type can be
classified further to major and minor factors. The five major soil’s factors include soil
electrical resistivity, soil pH, redox potential, soil sulfide contents and soil moisture. The

five minor soil factors are; temperature of soil, oxygen contents, presence of acids, sulfates,
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Table 2-1 Factors that contribute to water system deterioration (InfraGuide. 2003)

Physical

Factor Explanation
Pipe material Pipes made from different materials fail in different ways.
:I'Iu?:k::s“s Corrosion will penetrate thinner walled pipe more quickly.
Pipe age Effects of pipe degradation become more apparent over time.
Pipe vintage Pipes made at a particular time and place may be more vulnerable to

failure.

Pipe diameter

Small diameter pipes are more susceptible to beam failure.

Type of joints

Some types of joints have experienced premature failure (e.g., leadite
joints).

Thrust restraint

Inadequate restraint can increase longitudinal stresses.

Pipe lining and
coating

Lined and coated pipes are less susceptible to corrosion.

Dissimilar metals

Dissimilar metals are susceptible to galvanic corrosion.

Pipe installation

Poor installation practices can damage pipes, making them vulnerable to
failure.

Environmental

Pipe Defects in pipe walls produced by manufacturing errors can make pipes
manufacture vulnerable to failure. This problem is most common in older pit cast pipes.
Pipe bedding Improper bedding may result in premature pipe failure.

Trench backfill

Some backfill materials are corrosive or frost susceptible.

Some soils are corrosive; some soils experience significant volume changes
in response to moisture changes, resulting in changes to pipe loading.

Soil type Presence of hydrocarbons and solvents in soil may result in some pipe
deterioration.

Groundwater Some groundwater is aggressive toward certain pipe materials.

Climate Climate influences frost penetration and soil moisture. Permafrost must be

considered in the north.

Pipe location

Migration of road salt into soil can increase the rate of corrosion.

Disturbances

Underground disturbances in the immediate vicinity of an existing pipe can
lead to actual damage or changes in the support and loading structure on
the pipe.

Stray electrical
currents

Stray currents cause electrolytic corrosion.

Seismic activity

Seismic activity can increase stresses on pipe and cause pressure surges.

Operational

Internal water

pressure, . . . .
. Changes to internal water pressure will change stresses acting on the pipe.
transient
pressure
Leakage Leakage erodes pipe bedding and increases soil moisture in the pipe zone.

Water quality

Some water is aggressive, promoting corrosion

Flow velocity

Rate of internal corrosion is greater in unlined dead-ended mains.

Backflow
potential

Cross connections with systems that do not contain potable water can
contaminate water distribution system.

O&M practices

Poor practices can compromise structural integrity and water quality.
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and sulfates reducing bacteria’s.

The Internal water pressure, transient pressure, leakage, water quality, flow
velocity, backflow potential, and O&M practices are examples of operational factors
(InfraGuide 2003). Others considered the nature and date of last failure (e.g., type, cause,
severity), nature of maintenance operations (e.g., TV inspections, pipe cleaning, cathodic
protection), nature and date of last repair (e.g., type, length), water quality and construction

method, as operational factors that affect water pipe’s failure rate.

Researchers either used a single group of factors (i.e. physical only) or a
combination of these groups to predict the failure rate of water pipelines (physical and

operational, physical and environmental and physical, operational and environmental).

I.  Physical factors

For the physical factors, the impact of these factors on predicting the failure rate of
pipes was examined by several researchers (Berardi et al. (2008), Wang et al. (2009), Xu
et al. (2011), Aydogdu and Firat (2014), Arsénio et al. (2014), Jenkins et al. (2014) and
Kutytowska (2015)). Berardi et al. (2008) utilized the six following factors for each pipe:
1) number of pipe’s breaks recorded during the monitoring period; 2) pipe age; 3) number
of properties supplied; 4) pipe length and 5) pipe nominal diameter (up to 250 mm). The
whole dataset were clustered into several homogeneous groups (class) based on the age
and diameter of the pipe. The authors considered age, length, diameter, number of
properties supplied and number of pipes in each class as the inputs and number of pipe’s
breaks as the output. It should be noted that they did not take into consideration the material

of the pipe as the input.
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Wang et al. (2009) divided the dataset of Québec City into five groups based on the
pipe material: gray cast iron, ductile iron with, ductile iron without lining, PVC, and
concrete pipes. They considered three factors as the independent variables including pipe
length, pipe age, and pipe diameter. In addition, higher orders and interactions of the first
order terms of L, A, D such as: square of length, square of pipe age, square of pipe diameter,
interaction of length and age (L*A), interaction of length and diameter (L*D), and
interaction of age and diameter (A*D), are included in their inputs as well. These inputs
are used to improve the accuracy of the model. They observed that pipe length had a great
impact on the water pipe’s failure. Xu et al. (2011) established a relationship between the
number of pipe breaks and the following physical factors, the age, length and year of
installation (age). The dataset of Beijing City was aggregated into several homogeneous
groups based on the pipe diameter and pipe age. This database was divided into two parts
based on the observation date, one of them was used for model development, and the other

one was used for validation. They did not consider pipe material as input as well.

Aydogdu and Firat (2014) estimated the failure rate considering the age, diameter
and length of water pipes as the independent variables. Historical records from the City of
Malatya in Turkey during 2006-2012 were selected to develop and test their model. The
authors divided the dataset to three groups based on the pipe material: PVC, cast iron and
asbestos cement pipes. Then, they studied the relationship between the failure rate and the
above-mentioned factors for each group separately. Aydogdu and Firat (2014) observed
that the failure rate for the following three groups of pipes was the highest: pipes with
lengths of 0—200 m, pipes with diameters of 110 cm, and pipes with ages in the interval of

15-20 years.
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Arsénio et al. (2014) took into consideration the ground movement and pipe age as
the inputs to estimate the breakage rate of the water mains. The water distribution network
of an unknown Dutch drinking water company was selected as the study area. This dataset
includes three types of pipes: PVC, asbestos cement and cast iron pipes. The authors
demonstrated that the failure rate of pipes of all materials located in areas with high
probability of ground movement was higher than the others. However, they did not
consider other physical factors such as diameter, length and material of the pipes. While
according to the previous finding physical factors are the most significant variables in water

pipe failure occurrence.

Jenkins et al. (2014) addressed the problem of uncertain and limited data in Weibull
hazard rate models for water distribution networks. They tried to fill the gap of data that
were unknown material type and installation date. Whereas pipe length is used as the
explanatory variable in many statistical models, the uncertainty associated with fitting the
segment lengths, made it impossible to consider length in the model. Data had been
provided by large utility that is located in the southeastern United States. Kutylowska
(2015) considered material, length, diameter, and installation date of the pipes to predict
the failure rate of water mains. Historical data was collected from a Polish water
distribution network during 2001-2006. They used 50%, 25%, and 25% of the database for

training, testing and validation respectively.

II.  Physical and Operational factors
Moliga et al. (2007) and Shirzad et al. (2014) added more parameters from various
categories (operational and physical) as the independent variables to improve the reliability

of their models. Moliga et al. (2007) identified a homogeneous group of cast iron water
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mains by selecting pipes installed between 1953 and 1969 in Australia’s database. This
population was about 23% of the total network length. The pipes with the diameter less
than 40mm were not included in this cohort. The explanatory variables in this study were

age, length, diameter, wall thickness, corrosion rate, and operating water pressure.

Shirzad et al. (2014) took into the consideration an operational factor like hydraulic
pressure in addition to physical factors to forecast the pipe burst rate. The age, length,
diameter and buried depth were the physical parameters in their study. The authors
collected their data from two cities in Iran: the City of Mashhad and the City of Mahabad.
Asbestos pipes with diameter between 80 and 300 mm and polyethylene pipes with
diameter between 32 and 160 mm were considered in Mashhad’s database and Mahabad’s

database respectively.

III.  Physical and Environmental factors

There has been an extensive effort in the previous studies to assess impact of
physical and environmental factors on the failure rate prediction models of water mains
(Asnaashari et al. (2013), Nishiyama and Filion (2014), Francis et al. (2014), Kabir et al.
(2015a), Kimutai et al. (2015), and Kabir et al. (2015b)). Asnaashari et al. (2013)
considered the soil type as an environmental factor, while the physical parameters were
length, age, diameter and material of pipes. Moreover, the date of cement mortar lining (if
implemented) and the date of cathodic protection (if implemented) were added to
independent variables. They applied their model to predict pipe failure rate in the City of
Etobicoke, Ontario, Canada. Based on the analysis of historical data, they found that failure

rate is decreased following the initiation of the CP and CML programs.
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Nishiyama and Filion (2014) developed a model to forecast pipe breaks in cast iron
water mains considering the diameter, age and length of the pipes as the physical factors
and the soil type as the environmental factor. The data was collected from the City of
Kingston, Ontario. It contains cast iron, ductile iron, PVC, and concrete pressure pipes
(CPP). The reduction in failure rate was observed in Kingston West, Kingston Central, and

Kingston East because of the old pipe removal.

Francis et al. (2014) collected the pipe breaks and location data from a large city in
Mid-Atlantic United States during 2010-2011 to construct a knowledge model for water
pipe breaks. They were not able to collect pipe characteristics such as pipe age, pipe length
and pipe material. Instead, they tried to gather publicly available proxies for some of this
information. For example, they used the average house age at the census tract level to reach
the approximate age of the water distribution network of that area. Also, population density
was included in their study as a proxy for intensity of water use. They tried to find the
possibility of correlations in population characteristics such as age, ethnic and racial
composition with pipe age. Several soil types and some weather characteristics were
considered as the environmental factors in their study. It should be mentioned that
estimation method of pipe age and intensity of water use was novel but might be not

accurate enough to model water pipe’s breaks.

Kabir et al. (2015a) tried to develop a failure rate prediction model of water mains
considering several physical factors (pipe diameter, pipe length, pipe age, and vintage) and
environmental factors (freezing index, rain deficit, soil resistivity, soil corrosivity index,
and land use). This model was implemented to predict the failure rate of cast iron and

ductile iron pipes in the database of the City of Calgary, Alberta, Canada. The results

18



indicated that the behavior of CI and DI pipes is different from input’s effect. Also, CI and

DI pipes are more sensitive to soil resistivity and soil corrosivity index respectively.

Kimutai et al. (2015) studied effects of different covariates on the failure rate of
water pipes. Pipe length, pipe diameter and pipe type were included in their study as the
physical variables while they considered soil resistivity, freezing index (temperature), and
rain deficit (precipitation) as environmental variables. Water distribution network of the
City of Calgary was utilized as the case study. They concluded that the effect of physical

factors on the failure rate of water mains were more significant than environmental factors.

Kabir et al. (2015b) considered pipe characteristics like age, diameter, length and
vintage or manufacturing period to develop a failure rate prediction model for cast iron and
ductile iron water mains. Also, soil resistivity and soil corrosivity index were taken into
consideration to explore the dependence of the actual failure rate, soil resistivity and soil
corrosivity index. Higher order and logarithmic factors (i.e. A2, log A) were included
among independent variables in order to improve the accuracy of the model. This
information was collected from water distribution network of the City of Calgary, Alberta,
Canada. This database comprises different pipe types such as ductile iron (DI), cast iron

(CI), asbestos cement concrete and concrete cylinder pipes, steel, copper, and plastic pipes.

IV.  Physical, Operational and Environmental factors

Some others included physical, environmental and operational parameters at the
same time to improve the effectiveness and robustness of the failure rate prediction models
(Jafar et al. (2010), Wang et al. (2010), and Kabir et al. (2014)). Jafar et al. (2010) tried to

model the failure rate and estimate the optimal replacement/rehabilitation time for an
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individual pipe in water distribution networks. They employed five physical factors (pipe
material, pipe diameter, pipe length, wall thickness, and pipe age), an operational factor
(hydraulic pressure), and two environmental factors (soil type and pipe location) as the
explanatory variables. The database was constructed by collecting 14 years historical data

(during the observation period between 1991 and 2004) from a city in the north of France.

Wang et al. (2010) estimated the condition of the water pipes considering ten
physical, environmental and operational parameters. At first, the factors were the diameter,
age, coating (inner and outer), soil condition, bedding condition, trench depth, electrical
recharge, operational pressure, material (steel, cast iron, and ductile iron), and the number
of road lanes. Then after some numerical experiments of different factor combination, it
was cleared that water pipe condition can be assessed without information of road lane,
trench depth, and electric recharge. While, pipe age is the most important factor in
assessing pipe condition. Kabir et al. (2014) studied the risk of failure of metallic water
pipes (cast iron, ductile iron, galvanized, and steel) using a large variety of physical,
environmental and operational factors. The considered factors were the diameter, age,
length, wall thickness, water pressure and velocity, turbidity, free residual chlorine, color,
season, water pH, freezing index, soil resistivity, soil pH, redox potential, sulphide content,
moisture content, population, land use, and traffic and road type. All parameters were
collected from water distribution network of the City of Kelowna, British Columbia,

Canada.

The summary of all aforementioned studies is shown in Table 2-2. Figure 2-3
shows the frequency of parameters which were used in 19 different previous works

including: industry and academia, for each category (physical, environmental and
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operational). By examining closely these results, out of the 17 reviewed factors, there are
nine physical factors, seven environmental factors, and just one operational factor. It shows
the importance of physical factors in modeling failures of water pipes. Also, Kimutai et al.
(2015) confirmed that physical factors are more critical in estimating the failure rate than
environmental factors. In Figure 2-3, it is obvious that the most frequent factors utilized in
previous studies to predict the failure rate of water pipelines are; age, diameter, length, soil
type, and pipe material. Berardi et al. (2008) stated that pipe age, diameter and length are
the most important variables in describing water pipe failure occurrence. Also, Wang et al.
(2009) concluded that length has a great impact on water pipe’s failure. Thus, in this study
the major physical factors like age, diameter, length and pipe material are considered as
the independent variables to predict the number of breaks and failure rate of water

pipelines.
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Table 2-2 Considered factors affecting water pipes failure rate by different researchers

Physical Factors

Environmental Factors

Operational Factors

Pipe Material

Pipe Wall Thickness

Pipe Age

Pipe Length
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Dissimilar Metals

Depth Laid

Pipe Installation

Pipe Manufacture

Pipe Bedding
Trench Backfill

Soil Type
Groundwater
Climate
Pipe Location
Disturbances
Stray Electrical Currents

Traffic and Loading

Seismic Activity

Leakage
Water Quality
Flow Velocity

Backflow Potential
0&M Practices

Other Factors

Moglia et al. (2007)

\ Internal Water Pressure, Transient Pressure

corrosion rate

Berardi et al. (2008)

Number of Properties Supplies

Wang et al. (2009)

Jafar et al. (2010)

AN ANANAN

Wang et al. (2010)

ANANAN

A

AAN

Xu et al. (2011)

Asnaashari et al. (2013)

A

NAVAYAVAVAVAN

Arsénio et al. (2014)

Ground Movement

Shirzad et al. (2014)

Aydogdu and Firat (2014)

Nishiyama and Filion (2014)

A

Kabir et al. (2014)

ANAVNANAN

A

Jenkins et al. (2014)

NAYAVAVAN

Francis et al. (2014)

Kutylowska (2015)

Kabir et al. (2015a)

NAYAYANAVANANANANANANANANANAVAN

Number of Connection for Each
Pipe

Kimutai et al. (2015)

Soil Resistivity, Freezing Index,
and Rain Deficit

Kabir et al. (2015b)

S

MNAYAYAN

NAYAYAN

NAYAN

Soil Resistivity and Soil
Corrosivity Index
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2.4 Failure Rate Prediction Techniques

During the last three decades, researchers developed different models to predict the
failure rate of water pipes for a reliable infrastructure management. These failure prediction
models are classified into four categories; deterministic, statistical, probabilistic, artificial
intelligence models such as artificial neural networks (ANN) and fuzzy logic. A summary

of the reviewed models is shown in Table 2-3.

2.4.1 Deterministic Models

Deterministic models usually are used in cases where the relationship between
inputs and output is clear. In two approaches the deterministic models can be applied:
empirical and mechanistic. Empirical approach tries to find the relation between failure
rates as the output and the features and attributes of a group of pipes as the inputs. While,
the mechanistic approach can forecast the remaining useful life of an individual asset (just
one pipe). The problem of these models is that a deterministic model can be applied just in

specific location (Clair and Sinha 2012).

2.4.2 Statistical Models

This type of modeling is typically used to predict the useful life or time to failure
of infrastructure assets (Lawless 1983). Statistical models are applied to homogeneous
groups of pipes or other infrastructure assets and need recorded failures or data regarding
asset’s condition. In this approach, regression is utilized to build a model based on the
historical data that can predict the failure or condition of water assets. In regression, the

dependent variable is related to at least one of the independent variables.
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Table 2-3 Prediction Models of Water Distribution Networks

Model
Authors (Year) Classification Methodology Output Type
Probability of
Moglia et al. (2007) Probabilistic Monte-Carlo Simulation Framework Failure for CI
Pipes
Berardi et al. (2008) Statistical Evolutionary Polynomial Regression Pipe Deterioration
Wang et al. (2009) Statistical Five Multiple Regression Models Annllia;ltel‘zreak
Li et al. (2009) Probabilistic Monte-Carlo Simulation Remanﬁlfi Usetul
Jafar et al. (2010) Art1f1mal Six ANN Models Failure Rate
Intelligence
Wang et al. (2010) Statistical Bayesian Inference Deterioration Rate
Xuetal. (2011) Statistical Genetic Programming and Evolutionary Polynomial Regression | Deterioration Rate
Osman 2?21((1) llia;mbrldge Statistical Rate of Failure (ROF) and Transition State (TS) Deterioration Rate
Asnaashari et al. Artificial - . .
(2013) Tntelligence ANN and Multi Linear Regression Failure Rate
Arsénio et al. (2014) Statistical Ground Movement Estimated by Radar Satellite Data .replfacer‘nent-
prioritization plan
Shirzad et al. (2014) Artificial ANN and Support Vector Regression (SVR) Pipe Burst
' Intelligence upp & pe Bu
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Model

Authors (Year) Classification Methodology Output Type
Aydogdu and Firat Artificial Fuzzy Clustering and Least Squares Support Vector Machine Failure Rate
(2014) Intelligence (LS-SVM)
Nishiyama and Filion Artificial .
(2014) Intelligence ANN Pipe Breaks
Kabir et al. (2014) probabilistic Bayesian Belief Networks (BBN) Risk of Failure
Jenkins et al. (2014) probabilistic Weibull Hazard Failure Rate
Francis et al. (2014) probabilistic Bayesian Belief Networks (BBN) Pipe Breaks
Kutylowska (2014) Artificial ANN Failure Rate
Intelligence
Kabir et al. (2015a) Statistical Bayesian Weibull Proportional Hazard Model (BWPHM) Failure Rate
Weibull proportional hazard model (WPHM), the Cox
Kimutai et al. (2015) Statistical proportional hazard model (Cox-PHM), and the Poisson model Pipe Failure
(PM)
Kabir et al. (2015b) probabilistic Bayesian Belief Networks (BBN) Failure Rate
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It should be mentioned that this technique requires a large historical dataset that
contains a number of data points collected over a period to develop a promising statistical
model (Clair and Sinha 2012). Table 2-2 shows that in recent years many researchers have
utilized statistical models (number of regression models) to forecast water pipes failure or
pipes condition. There has been an extensive effort during the past decades to develop the
failure rate prediction model by using statistical approach (Berardi et al. (2008), Wang et
al. (2009), Wang et al. (2010), Xu et al. (2011), Osman and Bainbridge (2011), Arsénio et
al. (2014), Kabir et al. (2015a), and Kimutai et al. (2015)). Berardi et al. (2008) developed
a water pipe deterioration model using Evolutionary Polynomial Regression. As it is
mentioned before, they used a dataset that was classified into homogeneous groups based
on the age and diameter of the pipe. The developed model can predict the number of breaks
in each group. Then, for predicting the failure rate for each pipe, a general structural

deterioration model based on EPR aggregated model was developed.

Wang et al. (2009) utilized five multiple regression models for different pipe
materials (gray cast iron, ductile iron without lining, ductile iron with lining, PVC, and
hyprescon) to predict the annual break rate of individual water pipe rather than a
homogeneous group. The overall model robustness was measured by F-test and the
significant of each independent variable was measured by t-test. The model was validated
using 20% of their collected dataset that was randomly selected. Wang et al. (2010)
employed the Bayesian inference to assess the condition of water pipes. Ten factors from
three pipe materials (cast iron, ductile cast iron, and steel) were used to generate factor

weight. Based on the results of their model, the age of pipe is the most critical variable
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while, the model was not sensitive to some factors like trench depth, electrical recharge,

and some road lanes.

Xu et al. (2011) developed two prediction models for failure rate using
Evolutionary Polynomial Regression and Genetic Programming, and then they compared
the results of these two models. Results were measured based on; 1) error between
predicted and actual data, 2) parsimony of generated equation, and 3) ability to justify the
generated equations based on the engineering knowledge. The results showed that EPR has
some advantages over GP in equation uniformity and parameters estimation, while GP was
better to find the complex relations. Osman and Bainbridge (2011) employed two statistical
deterioration models to predict future failures of water pipes: rate-of-failure models (ROF)
and transition-state (TS) models. ROF model extrapolates the failure rate for a specific
group of water pipes that were classified based on age and some environmental factors.
This model does not differentiate the times between successive pipe breaks for an
individual segment while, the transition-state model focuses on finding the time between
successive failures for the water pipes. TS models are dependent on the availability of

sufficient and accurate data, but ROF models can be applied to limited historical data.

The stresses in the buried pipes, which increase the probability of pipe failure,
might be caused by the ground movement. This is a hypothesis that Arsénio et al. (2014)
have worked on it. They estimated the ground movement using radar satellite data. Two
different analyzes were done in their study: cell-based and pixel- based. The number of
breaks of three types of water pipe was investigated: asbestos cement, PVC, and cast iron
pipes. Kabir et al. (2015a) presented Bayesian Model Averaging method (BMA) to select

the most critical explanatory variables. Then the Bayesian Weibull Proportional Hazard
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Model (BWPHM) is applied to provide the survival curves and to forecast the failure rate

of two pipe types: cast iron and ductile iron.

Kimutai et al. (2015) studied the effect of different independent variables on
predicting the failure rate of water pipes using three statistical models: the Weibull
proportional hazard model (WPHM), the Cox proportional hazard model (Cox-PHM), and
the Poisson model (PM). Also, they used curve fitting techniques to estimate a baseline
hazard function equation for the Cox-PHM and applied it on a dataset from the City of
Calgary. The predicted breaks and actual breaks were compared using root mean square
error (RMSE), mean absolute error (MAE), root relative squared error (RRSE) and relative

absolute error (RAE).

2.4.3 Probabilistic Models

Probabilistic models analyze the probability of an event occurring (Creighton
1994). The probability of occurrence is one and the probability of the event that cannot
happen is zero. The other probability of occurrence should be between 0 and 1 (Mitrani
1998). Information about asset conditions and attributes are required to develop a
probabilistic model. The output or dependent variable would be a range of values instead
of the specific number. These models need extensive data and typically used in
infrastructure assets (Clair and Sinha 2012). It should be noted that the probabilistic
approach commonly increases the computational complexity of the models (Moglia 2007).
As shown in Table 2-2, many studies employed the probabilistic approach to develop water
mains assessment models (Moglia et al. (2007), Li et al. (2009), Kabir et al. (2014), Jenkins
et al. (2014), Francis et al. (2014), and Kabir et al. (2015b)). Moglia et al. (2007) developed

a physical probabilistic failure prediction model based on the fracture mechanics of cast
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iron water pipes. The random independent variables were added to the inputs, and then
Monte-Carlo simulation technique was applied to deal with the computational complexity
of the model. The developed model without failure data, degradation and load data, was
not capable of estimating failure rates of water pipes. Whereas, with these data, it can

predict failure rates more accurately.

Li et al. (2009) used the mechanically-based probabilistic model to predict
remaining useful life and failure probability of buried pipes. They considered the effect of
random inputs and used Monte-Carlo simulation framework to calculate cumulative
distribution function (CDF) of remaining useful life of pipelines. But, they did not consider
the correlation of defects for a pipeline having more than one corrosion defects. Also, they
found CDF more suitable than probability density function (PDF) and reliability index in

describing the probability of failure.

Kabir et al. (2014) assessed the risk of failure of metallic water pipes using a
Bayesian Belief Network (BBN). Bayesian Belief Network can be interpreted as a
probabilistic graphical model that can represent a collection of some covariates and their
probabilistic relationships. This model recognizes the most vulnerable and sensitive pipe
segments through the water pipe networks. The proposed model is good just for small to
medium utilities with limited data. Jenkins et al. (2014) tried to address the problem of
limited, incomplete, or uncertain data in water distribution networks. Two main
modification were added to Weibull hazard rate models (WPHM) to improve the prediction
performance of the models: the expert opinion and the spatial analysis. But these two

modifications were not tested in the other utilities.
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Francis et al. (2014) analyzed the water distribution systems to develop a pipe
breaks prediction model using Bayesian Belief Networks (BBNs). They illustrated that
assessing water pipe network is not only important for the failure prediction model but also
is crucial for avoiding water loss and water quality degradation. Kabir et al. (2015b) stated
that uncertainty regarding quality and quantity of databases became a major concern for
failure prediction model development of infrastructure assets. Thus, they tried to reduce
these uncertainties by developing failure prediction model for water mains using a new
Bayesian belief network based data fusion model. The proposed model can identify the
most vulnerable and sensitive pipe in the entire network, as well as the total number of
pipes that require the immediate and appropriate action like maintenance, rehabilitation,

and replacement.

2.4.4 Artificial Intelligence Models
In this literature review, Artificial intelligence models include Artificial Neural

Networks and Fuzzy set theory models.

1.  Artificial Neural Networks

Artificial Neural Network (ANN) is a method that can predict pipe failure and
deterioration of infrastructure specially buried pipes. The ANN follows the pattern of the
human brain using its generalization capabilities. Thus, this technique is able to process
information even under large, complex, and uncertain environment. The high-quality
database is needed for supervised training and forecasting the future condition of the pipes.
Moreover, ANN needs several controlling factors including: number of hidden layers, the
number of neurons in each hidden layer, activation functions, the number of training

epochs, learning rate, and momentum term. However, ANN is considered as a “Black-
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Box” technique. Therefore, it is not able to provide insight into the relationship between
dependent and independents variables (Clair and Sinha 2012; Moselhi and Hegazy 1993,

Atef et al. 2015, Shirzad et al. 2014).

Jafar et al. (2010) employed Artificial Neural Network (ANN) to analyze the urban
water mains. Six ANN models that predict the failure rate of water pipes of a city in France
were developed then, they tried to estimate the optimal rehabilitation/replacement time for
the same network. These prediction models were tested and validated using cross-
validation. In the first part of this article, data collection was explained then development
and validation of ANN models were discussed. In the data collection part, correlation and

chi2 method were applied to select the most critical inputs.

Asnaashari et al. (2013) studied two different methods to forecast the water pipe’s
failure rate. Multi Linear Regression (MLR) and Artificial Neural Networks (ANN) were
utilized, and their results were compared. The value of R-Squared showed that the ANN
model (R2=0.94) is more promising while the MLR technique (R2=0.75) is just good
enough for preliminary assessment. Shirzad et al. (2014) compared the predictive
performance of Artificial Neural Network (ANN) and Support Vector Regression (SVR)
in forecasting the water pipe’s breakage rate. In addition, they investigated the effect of
hydraulic pressure (average and maximum hydraulic pressure values) on precision of
predicting the pipe’s failure rate. The results showed that the ANN model is more accurate,
but it is not suitable for generalization purposes. Thus for management purposes, SVR

might be more appropriate.

Nishiyama and Filion (2014) developed a model to predict breaks in the water

supply system of the City of Kingston, Ontario using Artificial Neural Networks. A feed-
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forward back propagation algorithm was utilized to improve the performance and minimize
the errors. Moreover, they employed the mean square error, receiver operating
characteristics curves, and a confusion matrix in order to measure the accuracy of their
model. Kutytowska (2014) predicted the failure rate of pipes in an urban water utility using
ANN. They employed quasi-Newton approach to train the model. The house connections
and distribution pipes are considered as two different sections in database, and the results

for both were acceptable. According to the author, simplicity is the advantage of this model.

II.  Fuzzy Logic

Fuzzy Logic is a mathematical method in the field of artificial intelligence that
widely used by researchers to assign a value to a certain degree of membership instead of
crisp values such as zero and one. This method is known to deal with systems that are
subject to uncertainties and ambiguities. Fuzzy Logic is applicable in infrastructure assets
like oil and gas, water, bridges and highways (Siler and Buckley 2005, Clair and Sinha
2012). Aydogdu and Firat (2014) incorporated two methods: fuzzy clustering and Least
Squares Support Vector Machine (LS-SVM) in order to estimate the failure rate of water
pipes. At first, they developed failure rate estimation model using LS-SVM, and then fuzzy
clustering method is utilized to define nine sub-regions for predictive performance
improvement of the model. Afterward, the results were compared to the results of Feed
Forward Neural Network (FFNN) and Generalized Regression Neural Network (GRNN)
methods. Finally, for model evaluation they employed some measurement indexes such as

Correlation Coefficient (R), Efficieny (E) and Root Mean Square Error (RMSE).
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2.5 Evolutionary Polynomial Regression

The Evolutionary Polynomial Regression (EPR) technique was first presented by
Giustolisi and Savic (2006). The technique utilizes the huge potential of conventional
numerical regression techniques and the strength of Genetic Algorithm in solving

optimization problems (Xu et al. 2011).

Later, this approach was used by other researchers in several engineering fields.
Savic et al. (2006) and Ugarelli et al. (2008) used EPR to model the sewer pipe failures.
Berardi et al. (2008) and Xu et al. (2011) applied the EPR to develop deterioration models
for water distribution networks. Rezania et al. (2008) utilized the EPR methodology to
evaluate the uplift capacity of suction caissons and shear strength of reinforced concrete
deep beams. Elshorbagy and El-Baroudy (2009) compared the EPR and Genetic
Programming to develop the prediction model of soil moisture response. Guistolisi and
Savic (2009) tested the EPR-MOGA (an improved EPR) to develop groundwater level
prediction model based on monthly rainfall. El-Baroudy et al. (2010) utilized the EPR to
develop the evapotranspiration process then compared the efficiency of Evolutionary
Polynomial Regression to Artificial Neural Networks (ANNs) and Genetic Programming
(GP). Markus et al. (2010) applied EPR, ANNs and the naive Bayes model to forecast
weekly nitrate-N concentrations at a gauging station. Ahangar-Asr et al. (2011) applied
EPR to predict mechanical properties of rubber concrete. Fiore et al. (2012) used EPR to

provide the predicting torsional strength model of reinforced concrete beams.

2.6 Summary and Limitation of Previous Studies

In this chapter, the water distribution networks and their components were covered.

Factors affecting the water pipe failure rate were discussed along with their classifications.
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According to the literature review, the most significant independent variables for predicting
the failure rate of water pipes are the physical factors especially the age, length and
diameter of water pipes. Subsequently, the failure rate models were categorized to four
groups: deterministic, statistical, probabilistic, artificial intelligence such as artificial,
neural networks (ANN) and fuzzy logic. The required inputs, outputs and limitations of

each model were discussed.

Water pipes are capital intensive assets preserved through operation and
maintenance to meet customers’ expectations and avoid failures and consequent
catastrophes. The expected life time of water pipes ranges between 100-150 years
(Infraguide, 2003). A robust and promising deterioration model for water pipes can assist
municipalities in making rational decisions about the replacement/rehabilitation time of
water pipes. As seen in Figure 2-3, a few studies considered the pipe material as one of the
independent variables. In most cases, datasets were clustered into different groups, based
on the pipe material, and then one model was developed for each group. Thus, there are

several models just for one network that might be tough to implement in the real world.

Several techniques were utilized by the other authors. Particularly, Artificial Neural
Networks (ANN) are commonly used in many studies. ANN is able to develop accurate

prediction models in complex and uncertain environments.

However, EPR is selected because it does not require large datasets for training and
unlike ANN, it enables the recognition of correlations among dependent and independent
variables. Being as such, EPR is not a “Black-Box” technique, but it is classified as a
“Grey-Box” technique that can provide insight into the relationship between inputs and the

output. The process of development and selection of EPR contains the engineering
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knowledge that allows the user to understand the generated equations and correlation
between variables involved. In ANN, each attempt delivers particular output, which can be
different in other attempts with the same inputs and features, while, in EPR or generally

regressions, all similar attempts lead to the same equations as the output.
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Chapter 3: Research Methodology

3.1 Introduction

Figure 3-1 shows the developed research methodology. Chapter 3 starts by
presenting the Best Subset regression that identifies the most critical factors for predicting
the failure rate of water mains. The datasets of Montréal and Doha are classified into
homogeneous groups, based on age, material and diameter of the pipes. Afterwards, these
groups along with the factors selected for predicating the number of breaks using best
subset regression are forwarded to the EPR algorithm. The EPR algorithm is used because
—based on the selected factors — it generates some mathematical expressions able to predict
the number of breaks of water pipelines. In this study, both datasets are analyzed with EPR
in order to generate equations which provide insight into relationships between inputs and
the output. The user selects the best symbolic expression for predicting the failure rate
based on two criteria: 1) fitness to the historical data, and 2) parsimony of the equation.
The predicted number of breaks, as the output of the EPR algorithm, is used to develop
deterioration curves, using Weibull distribution function. A description of Weibull
distribution is presented in this chapter as well. Finally, a Sensitivity analysis is deployed
to explore the effect of changing each input on the predicted output (i.e. number of breaks).
Also, sensitivity analysis is used to verify if the existing relationships between the selected
inputs from the best subset algorithm and the predicted output from the EPR algorithm are

reasonable in terms of engineering knowledge.
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3.2 Best Subset Regression

Best Subsets regression is an automated technique that recognizes the best-fitting
regression models with factors specified by the user. In this study, Stepwise regression
could be utilized as well. But, the Best Subset regression was selected because Stepwise
regression does not assess all possible models. It rather constructs a model by adding and
removing one variable at a time. Meanwhile, Best Subsets regression searches for all
possible models and finally introduces the best candidates. Stepwise regression is simpler
and Best Subset regression provides a model with more information (Minitab 17, 2015).
Best Subset regression is not good for studies with a large number of independent variables.
In such cases, finding the best combination of factors to predict water pipe failure rates and
processing them take more time. But in this study, 4 to 5 independent variables are used to
predict the failure rate in both datasets, which consequently makes using Best Subset

regression suitable.

The independent variables for the water distribution network of the City of
Montréal include 4 factors: Age, diameter, length and material of the pipes. The dataset of
City of Doha includes 6 factors; Age, diameter, length, material, buried depth and elevation
of pipes. The pipe material was almost constant for the entire dataset, thus it was excluded
from this dataset. There were 1599 pipe segments, with only 3 steel pipes and the rest as
ductile iron. Thus, these 3 segments were excluded from the dataset of Doha and only
ductile iron pipes were considered in the Best Subset regression. The output in both cases

is the number of breaks. The results of these two datasets are discussed in chapter 5.

The best subset regression is a procedure of finding the best combination of

variables to predict the failure rate of water pipes on three main stages. First of all, all
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possible combination of variables are identified. For example, if we have 7 independent
variables, then there are 27 possible regression models. Secondly, out of all possible
models, one or two models with the highest R-Squared among candidates with the same
number of independent variables, are selected. The user can specify if a model as the best
one is enough for same-size candidates or two or more models ought to be selected. Also,
the minimum and maximum number of free predictors — i.e. independent variables — to add
to the model can be specified by the user. Finally, further evaluation is required to select
the best combination of independent variables, by using R-Squared, adjusted R-Squared,

Mallows' Cp and square root of MSE (Iain Pardoe 2015, Minitab 17).

The selected combination of factors should have the highest R-Squared, the
adjusted R-Squared and the smallest S (square root of MSE). The adjusted R-Squared
penalizes the model when adding an extra independent variable does not improve the
existing model’s accuracy. In comparing models with the same size, the R-Squared is the
most useful criterion. However, models with different number of independent variables are
compared, based on the adjusted R-Squared and Mallows' Cp index (Wang 2006). The
value of Mallows’ Cp should be close to the number of predictors plus the number of
constant terms, which is usually one (Minitab 17, 2015). For example, if there are 6
independent variables (predictors), the best model should have a Mallows’ Cp close to 7.
The R-Squared, adjusted R-Squared, and Mallows’ Cp are calculated with equations

number [1], [2], and [3] respectively:

PR 3E (SST = SSR + SSE)

2 _
[1] R* = SST SST

2 Ri=1-(5) () =1~ () ms
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SSEp
MSE a1

[3] Cp = — (n—2p)

Where SSR is the sum of squares due to regression, SSE is the sum of squares due
to error, n is the number of samples, p is the number of independent variables plus 1, MSE
is the mean squared error, SSE), is SSE for the best model with p predictors and MSE; is
the MSE for the model with all predictors (Iain Pardoe 2015). Furthermore, SSE, SSR and

MSE are calculated with the following equations:
[4]  SSR=y(% - 7)°

5]  SSE=Yy(Y,— %)

[6] MSE = 3£
N-d

Where Y is the average value of data, ¥ is the value predicted by the model, N is
the number of samples and d is the number of independent variables. Figure 3-2 shows the

average value line (¥) and the best fit line (¥) in a sample scatter plot.

Figure 3-3 illustrates a sample sheet of best subset regression in Minitab 17
statistical package. As it can be seen, there are two windows, the lower one containing the
dataset sheet and the upper one showing the table of results. In this sample, there are 7
independent variables (V1 to V7) and one dependent variable (V8). The table of results in
the upper window includes 13 columns and 14 rows. Column 1 shows the number of
considered variables in each model and columns 2 to 6 show the value of R-Squared,
adjusted R-Squared, predicted R-Squared, Mallows' Cp and S respectively. The last 7
columns specify which variables are in the model. Each row represents some information

about a model. In this attempt, the user selects the best set of inputs from among 13 possible
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combinations of variables. It can be concluded that the last model is the best one, because
it has the largest R-Squared, the adjusted R-Squared and the lowest MSE. In addition, the

value of Mallows' Cp is exactly 8, which is sum of number of variables (7) plus one.

Finally, the determined factors were considered as the independent variables to

develop failure rate prediction model by using EPR.

3.3 Classification

Once, the process of factor selection is conducted, both datasets will be classified
into several homogeneous groups, based on the age, diameter and pipe material. The
objective of this classification is clustering pipe segments into classes with the same age,

diameter and material. The following equations are used to achieve this objective:

[7] Aclass= chass(l-p- AP)

Lta
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anss Lp. D
[8] Dclass= %

Where, L4 and Ly are the total length of pipes with the same age and diameter

respectively. Also L,, A, and D,, are length, age and diameter of each segment in the group
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Figure 3-3 Sample Sheet of Best Subset Regression (Minitab 17)

(Berardi et al. 2008). There are several categories within the same class of age, diameter
and material for each dataset. It should be mentioned that other physical factors of pipe,
e.g. thickness, length, etc., can be utilized as the grouping criteria in different studies. But
in this research, these three factors were selected for classification. Age was selected to
take the indirect effect of time-varying solicitation on water mains into account, since from
an engineering point of view, the higher the duration of solicitation, the higher the chemical

and mechanical harmful effects on pipes. These effects can be caused by several factors
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such as soil condition, traffic loads, and etc. (Berardi et al. 2008). A schematic view of

classification features is shown in Figure 3-4.

} D class +

L1 | L2 | L3 | | Ln

L class

Figure 3-4 Classification's Features (Adopted from Berardi et al. (2008))

Other equivalent factors in each dataset can be calculated by different mathematical
functions such as sum and average. In the dataset of Montréal, the length and number of
breaks of each class were computed by summing the ones corresponding to each pipe
segment. Likewise, in the Doha dataset, the same calculations were performed for the
length and number of breaks while factors such as pipe elevation and burial depth were

calculated by computing the average of related features of pipes in that group.

As an example, Table 3-1 shows a sample data of 10 different pipe segments. Age,
length, diameter, material, buried depth and elevation are independent variables. Table 3-
2 shows the classification of this sample data, based on age, diameter and material. As it
can be seen in this table, the length of each class is calculated by summing up the length of
all pipes with the same age, diameter and material. Also, the buried depth and elevation for

each class are calculated by computing the average from pipes with the same features. For
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example, class number 1 contains DI pipes with age of 30 years and diameter of 150 mm,

which are 102 and 105 segments.

Table 3-1 Sample Data

Identification Age Length Diameter Material Buried Pipe
No. (Year) (m) (mm) Depth (m) | Elevation (m)
101 75 2 200 PVC 0.5 7
102 30 5 150 DI 8
103 75 6.5 200 PVC 8
104 100 4.5 300 DI 15 10
105 30 10.5 150 DI 2 14
106 75 3 200 PVC 0.5 12
107 100 15 300 DI 2.5 17
108 75 40 200 PVC 15
109 30 12 100 Gl 18
110 100 6 300 DI 15
Table 3-2 Classified Sample Data
Pipes in each Class | Class ﬁag: Length Dia:;:ter Mig:srial BDLérFI)f: Elelillzteion
102, 105 1 30 15.5 150 DI 1.5 11
109 2 30 12 100 Gl 1 18
101, 103, 106, 108 3 75 51.5 200 PVC 0.75 10.5
104, 107, 110 4 100 25.5 300 DI 2 14

3.4 Evolutionary Polynomial Regression

Evolutionary Polynomial Regression is a data-driven technique and is classified as
a grey box method, according to the color coding classification system. The color coding
classification system categorizes mathematical models into three groups, based on
available information; the white box models, black box models and grey box models. In
the white box technique, the mathematical structure and parameters are already recognized.

In the grey box technique, the mathematical structure is recognized by physical insight but
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some data need to estimate parameters. And in the black box technique, the mathematical
structure and parameters are not known and both should be recognized through the

available data (Giustolisi 2004).

EPR is selected because it does not require large datasets for training and, unlike
ANN, it provides insight into the relationship between the inputs and output. The process
of EPR should be coupled with engineering knowledge to verify if the generated equations
and correlations between utilized inputs and output are reasonable. In ANN, each attempt
delivers particular output, able to vary in subsequent attempts when the same inputs are
used. While in EPR or generally regressions, all similar attempts leads to generating the

same equations.

The software of this method, EPR MOGA - XL tool version 1.0, was first developed
by Giustolisi and Savic in 2006. The original code of this software has been developed in

MATLAB environment (MATLAB®) and deployed as an Excel add-in function.

This algorithm attempts at generating a number of symbolic expressions that can
predict the number of breaks of water mains, based on historical data. From among these
generated symbolic expressions, the user will choose the best expression, based on the
observed fitness and parsimony of the equation. The fitness to the observed data is
measured by the value of R-Squared, while the number of terms and factors in each
expression should be minimum to fulfill the requirement for parsimony. The process of
creating the symbolic expressions contains two stages. In the first stage, the EPR finds the
best model structure by using Multi-Objective Genetic Algorithm (MOGA). Then, the
appropriate values for constant are estimated by Least-Squares optimization (LS) (Berardi

et al. 2008).
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Figure 3-5 shows the interface of EPR software. In this software, results can be
shown as a Scatter plot or Cartesian plot. There are seven structures of the symbolic
expression used to represent the relationship between the inputs and the output. The user
select the best symbolic expressions according to the prior knowledge of the nature of the

expected relation between the inputs and the output.
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Figure 3-5 Interface of EPR Software

These seven structures are as follows:
[91Y =ay+ X 8. (XDESED (XSGR (X )ESGRD (X, )FSE20)

[10]Y =ay+ ijgl a; . f((X)ESGD | (X, )ESGR)
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[11]Y =ay+ X% a;. (X)ESED (XSGR (XSGR (X,)ESE2R)
[12]Y =log (a, + I a;. (X)ESED (X )FSGR)
[13]Y =exp (a,+ Ty . (XD (X)FSGR)
[141Y =sin (a, + TP . (X)ES0D (X, )ESGR)
[15]Y =tan (a,+ X7 a;. (X)BS0D (X )ESE0)

Where, X k is the kth explanatory variable, ES is the matrix of unknown exponents
to be defined by the user, f is inner function selected by the user (can be no function,
logarithm, exponential, tangent hyperbolic, or secant hyperbolic), a; are unknown
polynomial coefficients, m is the number of polynomial terms and ao is the bias term.
During the generating symbolic expressions, if the EPR cannot find appropriate

combination of terms containing f(x), it deselects this function (Giustolisi et al. 2011).

EPR rounds the output to the nearest integer number if the classification is selected
as the Modelling Type. Thus, in scenarios where the real number was considered as a
dependent variable, Statical Regression should be chosen. The Dynamical Regression can
be selected as the modeling type in time series models. The normalization (if required) can
be accomplished by EPR. The user, therefore, needs to specify the range wherein the inputs
or output should be scaled (i.e. between 0 and 1). The maximum number of terms in every
equation in each run can be specified by the user. The nomination of exponents should be
limited to specific values — i.e. [-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2] — wherein the positive
and negative values represent the direct and inverse relationship between dependent and

independent variables and their amounts show how significant the inputs are. It must be
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remarked that, the zero value should be considered in the matrix of exponents to make the
EPR capable of removing variables not powerful enough in predicting the output

(Giustolisi et al. 2011).

The “GA” is the number of generation and depends on several factors such as the
number of independent and dependent variables, the number of terms and that of
exponents. Furthermore, the user can force EPR to generate the expression with only
positive value of constant coefficients (a_j>0). During the the EPR modeling phase, it
returns several expressions based on the models’ accuracy and parsimony. The model
parsimony is implemented by optimizing the number of terms Min(a_j,SSE), the number
of independent variables Min(X i,SSE) or both strategies Min(a_j,X i,SSE). These
options are the user’s input, defined in the optimization strategy scroll down box of the
EPR model (Giustolisi et al. 2011). Finally, training and testing datasets are defined as
follows: 1) X tab is for defining the training input, 2) Y tab is for defining the training

output, 3) XV tab is for the testing input and 4) YV tab is for the testing output.

EPR produces five different types of result files including: Excel file, EPR fitting
criteria, pareto, symbolic expressions, and scatter plot for each model. The Excel result
file, contains 9 separated sheets are: Models, Y EPR, Graphs, Train_data, Test data, EPR-
Setting, and Y _EPR test. Figure 3-6 shows Models sheet and the figures of other sheets

are shown in Appendix A.

The Models sheet contains all generated models from EPR with their coefficients,
factors and exponents. The following parameters are generated for measuring accuracy of
the EPR algorithm: SSE (Sum of Squared Error), BIC (Best Information Criterion), MSE

(Mean Squared Error), FPE (Final Prediction Error of Akaike), AIC (Akaike’s Information
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Theoretic), GCV (Generalised Cross-Validation), AVG (Average Error) and CoD
(Coefficient of Determination or R-Squared). MSE and CoD are calculated by equations

number [6] and [1] respectively.
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Figure 3-6 Excel Sheets File of EPR’s Result

However, the other above mentioned indexes are computed using the following

equations:

logN
N

[16] BIC:(1+d ) .SSE
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[17] FPE = (i Z;x) .SSE

[18] AIC=(1+ 2%) .SSE

SSE

N SSE

[20] AVG =100.= %

Where N is the number of samples and d is the number of independent variables.

The Y _EPR and Y _EPR test sheets show the output for each generated model,
based on the training and testing sets respectively. The graph sheet facilitates the process
of generating figures for comparing predicted outputs with actual observations. Also, the
expression and the value of CoD and SSE are shown in the graph sheet. There are two
graphs in one sheet to visually identify the difference between them. The train and test data
are both in the next two sheets. The content of these two sheets are exactly the same as X,
Y, XV and YV sheets in the main EPR file. Also, the EPR-Setting shows the user interface
in the current run of that file. In addition, Y rec and Y _V_rec sheets contain the data that

are reconstructed by EPR for train set and test set respectively (Giustolisi et al. 2011).

Figure 3-7 shows a sample of the EPR-fitting criteria graph. In this graph,
horizontal axis shows the number of terms in each generated expression, while vertical axis
shows the normalized value of different criteria — i.e. SSE, BIC, MSE, FPE, AIC, GCV,

CoD and AVG.

In each run, EPR produces several scatter plots for each model. In these graphs, the

predicted values of the output are compared with the actual data. As Figure 3-8 shows, the
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horizontal axis demonstrates the value of the predicted output, while the vertical one shows
actual — i.e. the experimental — data. These graphs are provided for separately training and
testing each model. At the top of the graph, the symbolic expression of model number 8

and related CoD are shown as well.
Figure 3-8 shows the Scatter Plot with the sample data. As it can be seen, horizontal
axis demonstrates the value of 1-CoD, while the vertical one shows the number of

considered factors in each model (d/ N)- At the top of the graph, the function structure is

shown as well. The Scatter plot shows generated models as the points in a graph. Based on

the selecting criteria, already explained, the best model should be chosen from the lower
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left corner of the graph, specified by a green circle in Figure 3-9, since in this area, the
number of variables is minimum and the value of R-Squared (CoD) is maximum. These

criteria fulfill requirements respectively for model parsimony and model fitness.

Based on the dataset size and level of complexity, several numbers of symbolic
expressions are generated at the end of each run. Figure 3-10 shows 8 expressions that
predict the output (V5), considering 4 independent variables including V1, V2, V3, and

V4.

EPR-MOGA Symbolic expressions

{1) Ve = +1.0893v 19

(2) VB = +0.070302V 119y 32

{3) VB = +0.12500V1V32 In (V1)

{4) VB = +0.048988V1V 3% In (V12V3"5)

{B) V6 = +0.0073183V4 4 0.066815V1V 32 ln (V115VE)

(6) VB = +0.035818V 4% In (VE'F) +0.068777V1VE2 In (V11V3)
(7) V8 = +0.080331V1V3? In (V1V32) 40010285V 115V 32 In (V31¥)

(8) V5 = +0.030451¥ 4% +0.049627V1 V3% In (V1V3?) + 00105853 1-¥v52 In (V315

Figure 3-10 Generated Symbolic Expressions

As mentioned before, the number of breaks is considered as the output of the model
developed by EPR in this study. However, the value of the breakage rate is required in

order to provide the deterioration curve using Weibull reliability function. Thus, the
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following equation is used to transform the number of breaks as the output to the breakage

rate:

[21] Breakage Rate = Number of Breaks / Length (km) / Age (yr)

The EPR can generate models to forecast the output, based on either one or several
inputs. In other words, it can construct Multi Input Single Output (MISO) and/or Single
Input Single Output (SISO) models. It should be noted that the limited missing data points
can be recreated by using the linear interpolation by EPR. Thus, the model can be
developed with an incomplete historical dataset although linear interpolation is not very

accurate to reconstruct it.

3.5 Weibull Distribution

Finally, Weibull distribution is employed to generate deterioration curves. In
general, Weibull-based models are widely used in different studies and applications to
solve various problems (Jardine and Tsang, 2013). It has been used in the past for various
building components, structural performance and infrastructure performance of subway

networks by Grussing et al. (2006), Semaan (2011), and Gkountis (2014) respectively.

This technique has three advantages. As the most important one, this approach
needs a few number of historical data while the other methods, such as the Markovian
models, require the input of a significantly larger amount of data (Grussing 2006). The
Weibull approach requires just two types of inputs to predict the future condition of the
water pipelines: The age of the pipe and breakage rate (no. of breaks / km/ yr). Contrary to

other methods, this one can be used to model either an individual pipe or the whole
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network. Furthermore, different parameters of Weibull reliability function can be

calculated easily as it is discussed later in this chapter.
The Weibull probability distribution function is calculated by the following

equation:

t— tg)b

= b ()T (S

221 f=2.(% ) e
Where t is the time, t is the location parameter, a is the scale parameter and b is
the shape/slope parameter. In addition, the cumulative Weibull distribution function (cdf) is

calculated as follows:

t— to)b

23] F()=1-e (2

Thus, the Weibull reliability function of a distribution is one minus the cumulative
Weibull distribution function. Then, the Weibull reliability function is calculated by equation

number [24], transformed to equation number [25] for the purpose of this study:

t— to)b

24] R =1-F@) =e (2"

b
25] R =c.e @
Where, R(t) is the condition of pipe and c is the initial condition factor. The value

of ¢ is one in this study because the value of the R(t) is one at t = 0:

56



Therefore, following equation is used to calculate the pipe’s condition, based on

the failure rate:

6] R = D)

Where, R(t) is the pipe’s condition, t is the pipe’s age, b is the shape parameter and
1/a is the failure rate. The value of b should be odd and more than one. In this study, this

value is equal to 3 because it provides the smoothest inclination (Semaan 2011).

In some previous studies, especially in oil and gas pipelines and subway networks
(Seaman, 2011), the values of performance threshold and minimum performance were
assumed. But in water pipelines, there is no need for that because the failure in water
pipelines is less costly and critical than the one in the oil and gas pipelines and subway

networks.

3.6 Sensitivity Analysis

A possible definition of Sensitivity Analysis is the study of how uncertainty of the
output of a model can be caused by different sources of uncertainty in the model inputs
(Saltelli et al. 2004). In this study, the sensitivity analysis was performed for both cases to
identify the effect of each independent variable on the pipe failure when water pipes age.
The rationality of inputs-output relationship in the selected symbolic expression was
studied as well. Generally, this technique depends on one or more independent variables.
But in this study, the effect of changing only one parameter over a specific time period was

investigated. The sensitivity analysis is discussed in details in the next chapter.
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3.7 Summary and Conclusion

In this chapter, different parts of the developed research framework were described
in details. In the first part, the most critical factors, affecting failure rates of water pipes,
are identified by using best Subset regression. The best combination of independent
variables are selected out of all possible candidates. Once, the process of factor selection
is performed, each dataset will be classified into homogeneous groups based on the age,
diameter and material of pipes. Then, homogeneous groups are forwarded to EPR in order
to generate some mathematical expressions that predict number of breaks of water
pipelines. EPR algorithm is performed in two stages: 1) Search for the best model using
Multi-Objective Genetic Algorithm (MOGA) and 2) a parameter estimation for the model
by using Least Square Method. Among all generated expressions, the user selects the best
one based on two criteria: 1) Fitness to the historical data and 2) the parsimony of the
equation. The predicted number of breaks obtained from the best symbolic expression is
employed to generate deterioration curves by using Weibull distribution. Finally, the
sensitivity analysis was conducted to: 1) recognize the effect of changing each input on the
breakage rate and 2) study the rationality of relationship between the selected inputs and

the output.
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Chapter 4: Data Collection

In this study, four sets of data from four municipalities were considered for
developing failure rate prediction models; City of Moncton, City of Hamilton and City of
Montréal in Canada and City of Doha in Qatar. As the physical characteristics of water
pipes in different datasets are generic and the results obtained using the Hamilton and
Moncton datasets were very close, these two datasets were used to estimate the number of
breaks in the City of Doha. Then, datasets of Montréal and Doha were employed to develop
EPR models for predicting failure rates of water mains. A description of data collection is

presented in this chapter.

4.1 City of Montréal

The city of Montréal has a population of 1.8 million, and its land area is around
365.1 square kilometers. Figure 4-1 shows the GIS map of the City and its water
distribution network. In this city, there are six water treatment plants and 14 reservoirs. The
City of Montréal owns 5045 kilometers of water distribution networks containing 4305 km
distribution pipes and 740 km transmission pipes (Paul 2014). The original excel file of the
dataset of Montréal comprises of 125,828 pipe segments that include various information
such as: pipe ID, installation date, diameter, length, material, manager and owner,
rehabilitation date, and rehabilitation type. It comprises of 56.55% Cast Iron (CI), 26.61%
Ductile Iron (DI), 10.47% Cementitious (Asbestos and Concrete Cylinder), 5.54% Plastic
pipes (PVC and Polyethylene), 0.77% Steel, 0.05% Copper, and 0.01% Galvanized Iron
(GI). The CI pipes are installed during 1862—-2015 and DI pipes are mostly installed during
1951-2015. Figure 4-2 shows the number of breaks in the water distribution networks

between 1861 and 2015. By closely examining Figure 4-2 below, the trend of using DI and
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plastic pipes to replace other pipe types is increasing during 25 years ago. It also shows
that the number of breaks for DI and plastic pipes, installed between 2001 and 2015, are
increased significantly in the same period. It might be because of either poor installation

techniques or low-quality material.

Figure 4-3 shows the number of breaks and their year of occurrence for different
pipe material. The municipality of Montréal started to perform systematic recording of pipe
failure since 1972, and the dataset contains a total of 22,735 pipe breaks so far. Figure 4-3
also shows that the number of breaks for CI pipes has steadily increased since 1986 and

reached the peak in 2001-2005 interval, before falling slightly during the recent 15 years.

The dataset of the City of Montréal contains information about pipe’s (age, length,
diameter, material) and the related pipe failures. The units of age, length, and diameter are
the year, Km, mm respectively in collected data. Also, the date and the type of
rehabilitation was recorded for each pipe as well. As shown in Chapter 2, age, length,
diameter, and pipe material are the most frequent independent variables utilized for
predicting failure rates of water pipes. The original file of the dataset of Montréal, which
was provided by the municipality, contains two separated excel spreadsheets: water pipes’
attributes and related water pipes’ breaks. Thus, it was required to incorporate these two
files into the single file in which pipe’s attributes and pipe’s breaks are available for each
segment. Table 4-1 shows a summary of some statistical measurements of quantitative

factors for the City of Montréal.
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Table 4-1 Quantitative data attributes of city of Montréal

Attribute Mean Min Max Sdv
Age (year) 55.34 1 199 30.52
Diameter (mm) 245.98 20 3900 153.73
Length (m) 43.04 0.15 543.62 65.11

No. of Breaks 1.76 0 25 1.40

4.2 City of Doha

Qatar is one of the highest water consumers in the world. The amount of water
consumption per capita is 500 liters a day that is quadruple the normal range in Europe
(HSBC, 2014). The city of Doha has a population of 796,947 while its land area is around
132.1 square kilometers. The city of Doha owns 1,926 kilometers of water distribution
networks (Kahramaa, 2009). It comprises of 99.99% Ductile Iron and 0.01% Steel pipes
(just three segments out of 1599 segments). Thus, only ductile iron pipes were considered

for this dataset.

The dataset of the city of Doha includes: age (year), length (km), diameter (mm),
wall thickness (mm), pipe material, buried depth (m), and pipe elevation (m). Always, there
is a strong relation between diameter and wall thickness in the water pipes. The pipes with
higher diameter are thicker than the pipes with the smaller diameter. Thus, the wall
thickness was recognized as a redundant variable and removed from the set of inputs. A
summary of some statistical measurements for the dataset of City of Doha is shown in

Table 4-2.
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Table 4-2 Quantitative data attributes of City of Doha

Attribute Mean Min Max Sdv

Age (year) 11.94 2 3 4.40
Diameter (mm) 227.44 80 1400 280.60

Wall Thickness (mm) 11.13 10 26.10 3.08
Length (m) 34.45 0.04 546.85 52.02

Buried Depth (m) 0.56 0.50 6.31 0.43

Pipe Elevation (m) 12.59 7 18 3.46

The number of breaks was not available in dataset of Doha. Lack of such data
prevents working with EPR because this technique takes into account the number of breaks
or breakage rate as a dependent variable in order to develop a pipe failure prediction model.
Therefore, it was necessary to estimate the number of breaks for the city of Doha from
similar infrastructure datasets. The physical characteristics of water pipes in different
datasets are generic (Karimian et al. 2015). In fact the results obtained using the Hamilton
and Moncton datasets were very close. In view of this finding and the insufficient data
collected from Doha, it was required to estimate the number of breaks in Doha based on
datasets of Hamilton and Moncton. Several attempts were carried out using different
regression models to estimate the number of breaks of water mains based on the pipe’s age.
The developed equations for each dataset and their features will be provided later in case

study chapter. The result of City of Doha’s analysis will be presented in Chapter 5 as well.
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4.3 City of Moncton

The City of Moncton located in New Brunswick, Canada and has a population of
64,128, while its land area is around 142 square kilometers. The City of Moncton owns
500 kilometers of water distribution networks. This dataset contains 540 pipe segments
which comprise of Cast Iron, Ductile Iron, and Asbestos. It includes: age (year), breakage
rate (breaks/yr/km), C-factor, Diameter (mm), RUL (year), and wall thickness (mm). Table

4-3 shows a summary of some statistical measurements for the dataset of City of Moncton.

Table 4-3 Quantitative data attributes of City of Moncton (Atef et al. 2015)

Attribute Mean Min Max Sdv
Age (years) 46.02 10 106 19.93
Breakage rate
(breaks/year/km) 0.67 0 > 0.68
C-factor 70.01 10 120 20
Pipe Diameter (mm) 795.35 100 2400 3.78
RUL (years) 103.97 44 140 19.93
Wall Thickness (mm) 6.03 3.5 8 0.45

4.4 City of Hamilton

The City of Hamilton located in Ontario, Canada and has a population of 519,949
while its land area is around 1,138 km?. The City of Hamilton owns 1,891 km of water
mains, in which estimated value for replacement of these pipes is around $1.8 billion (SOI
Report, 2005). This dataset includes five quantitative variables and two qualitative
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variables that are: age (year), buried depth (m), flow pressure, length (m), diameter (mm),
material, and soil type. Hamilton dataset comprises of Cast Iron, Ductile Iron, PVC, and
HDPE. Table 4-4 shows a summary of some statistical measurements for the dataset of

City of Hamilton.

Table 4-4 Quantitative data attributes of City of Hamilton (Atef et al. 2015)

Attribute Mean Min Max Sdv
Age (years) 59.73 8 113 21.08
Buried Depth 1.56 0 2.1 0.17
(m)
Flow Pressure 31.61 0 95 24.36
Length (m) 62.15 0.3 472 75.13

4.5 Data Filtering

For reducing errors and uncertainty of these datasets, several steps were performed.
First of all, datasets of Montreal and Doha were cleaned and filtered. All segments with
missing or incomplete information were removed from the datasets. Some historical
records were irrational and inconsistent, so these records were removed as well. In some
cases, there was a chance for the missing or irrational data to be reconstructed based on the
other attributes’ value or experts’ opinion, but they were ignored for preventing the

inaccurate result.

Both datasets, contain pipe material as a qualitative attribute that was converted to

a quantitative attribute to apply with EPR. Thus, the qualitative variable, which is pipe
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material, was transformed to the numerical ones. The pipes were sorted based on their
rigidity and for each type one value was assigned. For example, if there are four different
types of material, each number from 1 to 4 was assigned to a specific pipe material. The
maximum number was assigned to the hardest pipe material; in other words, the harder the

material, the larger the allocated number, and the vice versa.

Finally, two datasets were classified into homogeneous groups based on age,
diameter, and material of the pipe. A detailed discussion about classification is presented

in the research methodology chapter.
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Chapter S: Implementation of Developed Models

5.1 Introduction

In this chapter, two case studies: City of Montréal and City of Doha are analyzed
and used to test and validate the developed model. As it can be seen in Figure 5-1, these
two datasets include 5 and 6 subsections respectively. The chapter starts by discussing the
effort made in identifying the most critical factors using Best Subset regression. Then,
classifying each dataset into clusters of homogenous pipe segments with the same age,
diameter and material are discussed. The EPR model is then applied to these clustered sets
and results of testing and validating the model are reported and discussed. Afterwards,
deterioration curves, which are developed using Weibull distribution function, are
presented. Sensitivity analysis is utilized to study how the output can be apportioned to

different sources of uncertainty in its inputs.
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5.2 City of Montréal

The dataset is used in this section belongs to City of Montréal, Quebec, Canada. As
it was discussed in data collection chapter, this city has a population of 1.8 million and its
land area is around 365.1 square kilometers. The City of Montréal owns 5045 kilometers
of water distribution networks containing 4305 km distribution pipes and 740 km

transmission pipes (Paul, 2014).
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Figure 5-1 Chapter Overview
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5.2.1 Best Subset Regression
Best Subset regression is implemented to recognize the most critical factors for
predicting number of breaks for water pipelines. Best Subset regression was employed by
using Minitab 17 statistical package. Dataset of Montréal contains four independent

variables including: length, diameter, age, and material of pipes.

Figure 5-2 shows the result for the dataset of Montréal. As it can be seen in the
upper window, models number 5 and 7 have the highest value of R-Squared, adjusted R-

Squared, and predicted R-Squared (68.9%, 68.9%, and 68.1%). The value of S (i.e. square
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Figure 5-2 Best Subset Regression for City of Montréal
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root of MSE) for model number 5 and 7 are 24.286 and 24.289, respectively. While, the
value of Mallows' Cp for these two models are three and five respectively. The values of S
are almost equal in both models, however the value for Mallows' Cp is 5 for model number
7. As discussed in chapter 4, the value for Mallows' Cp should be close to five in this study
(number of independent variables plus one). Thus, it is concluded that model number 7

includes the best combination of factors for predicting the number of breaks.

5.2.2 Data Classification
The objective of the classification is clustering pipe segments into classes that have
the same age, diameter and material. The original excel file of the dataset of Montréal
comprises of 125,828 pipe segments. After data filtering, the dataset was classified into
2,436 homogeneous groups based on the age, diameter and pipe material. The length and
the number of breaks of each class were computed by summing corresponding ones of each
pipe segment. Samples of the original data and the classified data of dataset of Montréal

are provided in Appendix B.

5.2.3 Evolutionary Polynomial Regression

In this study, Evolutionary Polynomial Regression generated twelve symbolic
expressions, which are used to predict the number of breaks for water pipes in the City of
Montréal. Table 5-1 shows these expressions and their related R-Squared scores. At the
right side of expressions, L, D, A, and M represent the length, diameter, age, and material
of the water pipelines, and the left side shows the output that is the number of breaks. As
discussed in chapter 4, among all generated symbolic expressions, the best model should
be chosen based on the fitness to the historical data and parsimony of the equation. In this

study model number 10 was selected as it fulfills the requirement for these two criterions
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Table 5-1 Symbolic Expressions for Montréal dataset and related R-Squared

12 Ll.S M1.5 0.5
No.of Breaks = 0.00057323L + 0.049651 ————— In(M°>) + 8.8156 X 107>

DZ D1.5 MZ

in

L

)

" Expressions R?
©
2 (%)
=
1 No.of Breaks = 3.4446 x 1075 x L'® 76.90
2 S 82.51
No.of Breaks = 1.3197 7
3 LS M2 85.04
No.of Breaks = 0.08546 D2
4 LS 2 85.37
No.of Breaks = 1.8835 7 In 105
5 L5 405 (M2 86.40
No.of Breaks = 0.24999 7 In 105
6 N B ks = 0.092319 x L%5 +0 23417£ 1 M_Z 87.04
0.0f Breaks = 0. . BB n 105
7 L5 M2 L L2AYS 1 88.03
No.of Breaks = 0.12036 T+ 4.8297 x 10 D2 In (Z)
8 LI.SA 1 L1.5 M1.5 AO.S 88.72
N0.0f Breaks = 0.008929 7 In <LO_5) + 0.069455 T
9 | No.of Breaks = 0086502 195 + 0.00051089 4™ 1n (-1 ) + 0.021313 > M> A° 88.86
o.of Breaks = 0. . D2 n|\7os . D2
10 L1.5 MZ AO.S 6 L1.5 AZ Dl.S 8935
No.of Breaks = 0'017785T +6.1833 x 10 e In I
11 |y, of Breaks = 000044077 L + 0017413 M2 A°° | 6 8604 x 10-5 o4 1 (222 8921
0.0f reaxks = V. + 0. T—i— . X m n T
LS A2 D5\ | 89.30

which are having the highest R-Squared (89.35%) and including just two terms. According

to the other models, it is observed that introducing a third polynomial term decreases the

model fitness. The other accuracy indexes such as SSE, BIC, MSE, FPE, AIC, and GCV

of all models are shown in Table 5-2. As it can be seen in this table, the minimum values
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of all indexes are for model number 10. It confirms that this model is the best one in

predicting the output.

Table 5-2 Accuracy Indexes for Montreal Dataset

SSE BIC MSE FPE AIC GCV
Model #1 476.4 478.2 476.6 476.9 476.9 0.245
Model #2 360.6 362 360.8 361 361 0.185
Model #3 308.5 309.7 308.7 308.8 308.8 0.158
Model #4 301.8 303 302 302.1 302.1 0.155
Model #5 280.5 281.5 280.6 280.7 280.7 0.144
Model #6 267.4 269.4 267.6 267.9 267.9 0.137
Model #7 246.9 248.8 247.1 2474 247.4 0.127
Model #8 232.7 234.5 2329 233.2 233.2 0.12
Model #9 229.7 2324 230.1 230.4 230.4 0.118
Model #10 219.7 221.4 219.9 220.2 220.2 0.113
Model #11 222.6 225.2 223 2233 223.3 0.115
Model #12 220.8 2234 221.1 221.5 221.5 0.114

Figure 5-3 shows Pareto graph of expressions that were generated based on the
Montreal dataset. As it was mentioned before, each point represents a generated symbolic
expression. The selected model (model #10) is specified by the black arrow. The horizontal
axis shows the value of one minus R-Squared (1-CoD) while the vertical axis shows the

number of considered factors in each model.
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Figure 5-3 Pareto of Montreal Dataset

The dataset of Montreal randomly divided into two subsets (Training and Testing).
As it can be seen in Table 5-3, 1950 (80%) samples were used for training and 486 (20%)
samples were used for testing. It should be mentioned that testing samples were not
exposed to the model during its development. Figures 5-4 and 5-5 show scatter plots that
depict the relationship between the predicted and the actual number of breaks for training
and testing datasets respectively. In these graphs, the vertical axis shows the actual number
of breaks (experimental), while the horizontal axis shows the predicted value of the number
of breaks. The values of R-Squared (CoD) are shown in the top right corner of each plot

(i.e. 89.35% and 84.86% for training and testing respectively). At the top of the Figure 5-
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4, the symbolic expression of model number 10 is shown. Scatter plots for the training and

testing results of other symbolic models are shown in Appendix C.

Table 5-3 Montreal Dataset Size

City Training Size Testing Size Total Size

Montreal 1950 (80%) 486 (20%) 2436 (100%)

No.of Breaks = +0.017785
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Figure 5-4 Scatter Plot of Model #10 for Training for Montreal Dataset

5.2.4 Weibull Distribution
The value of the number of breaks that was predicted in the previous section is used
to establish deterioration curves using Weibull reliability function. It should be mentioned
that the value of the number of breaks was transformed to a breakage rate by diving it by

the pipe age (year) and length (km). Weibull reliability function can be used to model either
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an individual pipe or the entire network. Thus, providing a curve for each pipe segment is

EPR vs. Experimental Data (Test Set)
400 T T T T +

T T T
| 4 Mo, of Breaks,, CUDZEA.BBdQ-A\/GZNaN%|

No. of Breaks

o AT | | I | I |
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Figure 5-5 Scatter Plot of Model #10 for Testing for Montreal Dataset

possible. However, as it can be seen in Table 5-4, the dataset of Montreal was clustered
into 18 clusters with a deterioration curve for each of them. The dataset was clustered based
on length (short, medium, and large), diameter (small and large), and material (M1, M2,
and M3) of pipes. For the pipe length, three subcategories were defined: short (1<300m),
medium (300m <1 <2000m), and long (1>2000m). According to the literature (CIRC 2012),
for the pipe diameter, two subcategories were defined: small (D <350mm) and large (D

>350mm).
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Table 5-4 Different Clusters and Related Features for Montreal Dataset

Cluster Features

1 Length: Short, Diameter: Small, Material : M1

2 Length: Short, Diameter: Small, Material : M2

3 Length: Short, Diameter: Small, Material : M3

4 Length: Short, Diameter: Large, Material : M1

5 Length: Short, Diameter: Large, Material : M2

6 Length: Short, Diameter: Large, Material : M3

7 Length: Medium, Diameter: Small, Material : M1

8 Length: Medium, Diameter: Small, Material : M2

9 Length: Medium, Diameter: Small, Material : M3

10 Length: Medium, Diameter: Large, Material : M1

11 Length: Medium, Diameter: Large, Material : M2

12 Length: Medium, Diameter: Large, Material : M3

13 Length: Long, Diameter: Small, Material : M1

14 Length: Long, Diameter: Small, Material : M2

15 Length: Long, Diameter: Small, Material : M3

16 Length: Long, Diameter: Large, Material : M1

17 Length: Long, Diameter: Large, Material : M2

18 Length: Long, Diameter: Large, Material : M3
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In addition, based on historical records of pipes failure, three sub categories were
defined for the pipe material: M1, M2, and M3 which belong to group of same material
pipes with low, moderate, and high rate of failure respectively. Thus, 18 different

deterioration curves were generated for 18 Clusters.

Figures 5-6 and 5-7 show deterioration curves for Cluster number 7 and 16
respectively. In each graph, vertical axis shows the condition of the pipe while horizontal
axis represents the age of the pipe. By observing closely Figure 5-6, pipe condition starts
from 1 (the best condition) and then decreases slightly to the zero (the worse condition).
Also, condition of Cluster number 7 starts to decrease sooner than number 16. This
observation, confirms that the probability of failure in pipes with large diameter is lower
than pipes with small diameter. Typically, any kind of rehabilitation increases pipe
reliability and decreases probability of failure. These graphs were developed without
considering the effect of rehabilitation on decreasing the failure rate of water pipes.
Therefore, the failure rate of water pipes should be updated when rehabilitation action is

being considered or applied.

79



o o
(@) (0]

Pipe Condition
©
I

o
(N}

o

ipe Condition
©Ooo0o0oo0000O0
R N W S U1OONN 0 O -

o

Length: Medium, Diameter: Small, Material : M1

20 40 60 80 100 120 140
Age (year)
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Figure 5-7 Deterioration Curve for Cluster number 16
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5.2.5 Sensitivity Analysis

Sensitivity analysis was performed to identify the effect of changing each variable
on the predicted number of breaks of any pipe approaches the end of its useful life. Figures
5-8, 5-9, and 5-10 show the effect of diameter, length, and pipe material on the number of
breaks respectively as the pipe ages. In each one, a factor, which is the aim of the study,
was changed while the rest ones were constant. In these graphs, the vertical axis shows the
number of breaks while the horizontal axis represents the age of the pipe. It is clear from
these figures that the number of breaks is increased when pipes approach the end of their
useful life. As it can be seen in Figure 5-8, the number of breaks for pipes with the small
diameter is higher than large diameter pipes. In the other words, the smaller the diameter
of the pipe, the higher its value of the number of breaks will be. This can be justified
because the wall thickness of smaller pipes is thinner than the larger ones, which allows
the pipe to be corroded faster (El-Abbasy et al. 2014). Figure 5-9 shows that the number
of breaks for longer length pipes is higher than pipes with the shorter length. These
observations confirm previous findings in the literature about the relation between pipe’s
failure rate and its length and diameter (Berardi et al. 2008). Figure 5-10 shows the
sensitivity analysis for pipe with different materials. As it was discussed in chapter 3, the
qualitative variables should be converted to quantitative variables to apply with EPR. In
this study, pipe materials were divided into six groups based on their historical pipe’s
failure. Number 1 was assigned to pipes with the lowest historical failure rate while number

6 was assigned to the pipes with highest historical failure rate.
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Figure 5-10 Number of Breaks for Different Pipe Material

Figure 5-11 shows the effect of changing of all input factors on the number of
breaks of water pipelines. This graph was developed for two purposes. The first one is to
understand the interrelationship between the number of breaks and its input factors. The
second purpose is to determine what the most sensitive independent variables are. The
vertical axis represents the number of breaks (Logarithmic Scale) whereas the horizontal
axes represent the value of each factor. Since, each factor has its own unit, the horizontal
axis was plotted using the normalized value from 0.01 to 1. However, for a better
visualization the actual values of each factor are listed in a separated table below the

normalized values. The corresponding values of the number of breaks are listed in another
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table as well. The results confirm the direct relation between age and length as inputs and
number of breaks as the output. It means that the number of breaks increases when the age
and length of the pipe increase. Also, there is an inverse relationship between pipe’s
diameter and the number of breaks of the pipes. In other words, the number of breaks
increases when the pipe diameter decreases. Among these four curves, changing the value
of number of breaks in gray curve (pipe diameter) is more than the others which shows that

the most sensitive factor in this model is pipe diameter.

5.3 City of Doha

The dataset is used in this section is for City of Doha, Qatar. As it was discussed in
data collection chapter, this city has a population of 796,947, while its land area is around
132.1 square kilometers. The city of Doha owns 1,926 kilometers of water distribution

networks (Kahramaa, 2009).

5.3.1 Number of Breaks Estimation
As it mentioned in data collection, the number of breaks was not available in the
dataset of Doha. Lack of such data prevents developing prediction models with EPR,
because it considers the number of breaks as the output. Thus, it was required to estimate

the number of breaks based on the other available datasets.

The physical characteristics of water pipes in different datasets are generic. In fact,
the results obtained using the Hamilton and Moncton data were very close. In view of this
finding and the insufficient data collected from Doha, it was required to use the developed

model based on historical records from Hamilton and Moncton to estimate the number of
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breaks in Doha. It should be mentioned that population, city size and pipe characteristics
of the City of Doha are similar to the City of Moncton and Hamilton as well. Estimation
of the number of breaks was implemented by considering age as an input, which can be
found in all datasets. Three different models were developed by applying regression
analysis of Excel using datasets of Moncton and Hamilton. In the first two models, the data
of each city was used separately, while, in the third one the combined data for both cities
was utilized. In each model, the data was clustered into different groups based on the pipe
age. It means that pipes with same age were put in one group. The breaks per length (m)
was calculated for each age-class by computing the average of the number of breaks for
the same group. Several attempts were conducted to reach the best model using different
datasets. Since, in the dataset of Doha, there are no pipes older than 33 years, it was not
necessary to keep pipes with the age of 34 and more, therefore they could be deleted in the
new inventories. Finally, the model that utilized the large number of data points and gave
the best performance based on the R-Squared (R2) was chosen to estimate the number of

breaks for the city of Doha.

Figures 5-12, 5-13, and 5-14 show the result of regression (based on the No. of
Breaks per Length (m)) of Moncton, Hamilton and mixing of both cities, respectively. The
equation of each inventory and R-Square (R2) are shown in Table 5-5. It can be seen that
the developed models of Moncton and both Cities are acceptable; while, the one that
belongs to the City of Hamilton is not promising enough to be used on Doha. Finally,

number of breaks per length that was obtained from these equations should be multiplied
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by length of related pipe segments to calculate the estimated number of breaks of Doha’s

dataset.

y = 3E-05x? - 0.0003x
R?=0.8331 . o
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Figure 5-12 Scatter Plot of No. of Breaks per Length (m) and Age of Moncton Dataset
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Figure 5-13 Scatter Plot of No. of Breaks per Length (m) and Age of Hamilton Dataset
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Figure 5-14 Scatter Plot of No. of Breaks per Length (m) and Age of Both Datasets

Table 5-5 Equations and related R-Squares

Different Datasets Equations R-Squared (%)
Moncton y = 3E-05 x* - 0.0003 x 83.31
Hamilton y = 1E-06x> — 0.0001x* + 0.0025x 30.94

Mixing of Both Cities y = 3E-06 x* + 0.0006 x 67.84

Once, the number of breaks for the City of Doha was estimated, the analysis for
this dataset is conducted. Figure 5-15 shows the number of breaks for ductile iron and steel
pipes installed between 1981 and 2013. The highest range of pipes failure belongs to the

period of 1996-2000. While from 1991 to 1995 and from 2001 to 2010, the frequencies of
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pipe failures are almost equal. Having a higher pipe failure in a specific period of time can

be caused by poor installation methods or low-quality materials.

Figure 5-16 demonstrates the number of breaks for pipes with different diameter
and installation date. As it can be seen, the number of breaks for pipes with the smaller
diameter is higher than the pipes with the larger diameter. This confirms the previous
findings regarding the inverse relationship between failure rate and pipe diameter. The
highest number of breaks belongs to the pipes with 100mm diameter that were installed

between 1996 and 2000.

Frequency
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o
o
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W Ductile Iron M Steel

Figure 5-15 Number of Breaks per segment for pipes Installed between 1981 and 2013 for

City of Doha
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5.3.2 Best Subset Regression
As it is mentioned in chapter 3, Dataset of Doha contains six independent variables
including: the length, diameter, age, material, buried depth, and elevation of the pipe.
However, this dataset comprises of 99.99% Ductile Iron and 0.01% Steel pipes thus, only
ductile iron pipes were considered in this study. Figure 5-17 shows results of the best
subset analysis for the City of Doha. As it can be seen in the upper window, there are nine
possible sets of inputs in this dataset. All of them except model number 2 have the high

value of R-Squared, adjusted R-Squared, and predicted R-Squared. However, the value for
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Mallows' Cp should be equal to the number of independent variables plus one. In this
dataset, there are five independent variables, thus only model number 9 has an acceptable
value for Mallows' Cp, which is 6. Therefore, the of factors model 9 are selected as the

most critical factors.

5.3.3 Data Classification
In this dataset, the aim of data classification is clustering the City of Doha dataset
into groups that have the same age and diameter. The original excel file of the dataset of
Doha comprises of 1,599 pipe segments. After data filtering, this dataset was classified into
72 homogeneous groups which is very smaller when compared with the dataset of
Montreal. The length and the number of breaks of each class were computed by summing
corresponding ones of each pipe segment. The original dataset and its classifications are

provided in Appendix B.

5.3.4 Evolutionary Polynomial Regression

In the dataset of Doha, twelves symbolic expressions were generated to predict the
number of breaks of water pipelines. Table 5-6 shows these expressions along with their
related R-Squared scores. On the right side of symbolic expressions A, L, D, PE, and BD
represent Age, Length, Diameter, Pipe Elevation, and Buried Depth respectively. It can be
seen that age, length and diameter of the pipes are the most commonly used variables for
estimating the number of breaks while buried depth and pipe elevation has been introduced
in only the last five expressions. As discussed earlier, the best model should be chosen
among all expressions based on the model fitness and parsimony. Model number 9 was
selected as the best one, even though all models have acceptable R-Squared scores. The

selected model has the highest value of R-Squared and is less complicated than models
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number 10, 11, and 12. Accuracy indexes such as SSE, BIC, MSE, FPE, AIC, and GCV
are shown in Table 5-7. Also by observing the results shown in this table, model number 9
has the minimum values in all indexes. This observation confirms that this model is the

most promising one in predicting the output.

Table 5-6 Symbolic Expressions for Doha dataset and related R-Squared

Expressions R’
(%)
1 | No. of Breaks=1.1493 A%5 L 90.66
1 94.33
2 No. of Breaks =1.8169x10°° 7 +1.1471 A% L
3 A0S 94.99
No. of Breaks = 3.3795x10°° <z T1.1466 A% L
4 A2 1 95.21
No. of Breaks =1.146 A*® L+1.7317x10°* 7In 6\1 5)
5 A? 95.87
No. of Breaks =0.00666011In(D%5 )+1.1721 A%> L+1.6884x10° — In /i /
12 (A2
6 1 A 95.58
No. of Breaks =1.4624x10° ﬁ1n(D°-5 JH 1.1467A%%142.0317x10° 17 1In /iz
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Table 5-7 Accuracy Indexes for Doha Dataset

SSE BIC MSE FPE AIC GCV AVG
Model #1 23.37 25.01 23.78 24.19 24.18 0.417 754.9
Model #2 14.19 15.18 14.44 14.69 14.68 0.253 5244
Model #3 12.53 14.29 12.98 13.43 13.4 0.232 8430
Model #4 11.99 13.67 12.42 12.85 12.82 0.222 6873
Model #5 10.35 11.8 10.72 11.09 11.06 0.191 8179
Model #6 11.07 13.4 11.68 12.28 12.22 0.212 11276
Model #7 10.77 13.03 11.35 11.94 11.88 0.206 16335
Model #8 10.24 12.39 10.8 11.36 11.3 0.196 11262
Model #9 9.327 11.29 9.836 10.34 10.29 0.179 8675
Model #10 9.774 11.83 10.31 10.84 10.79 0.187 10329
Model #11 9.958 12.05 10.5 11.04 10.99 0.191 11784
Model #12 9.897 11.98 10.44 10.98 10.92 0.19 7839

Figure 5-18 shows the Pareto graph of Doha dataset. Model number 9 is marked
with a black arrow while other models are shown as red dots. In this graph, the vertical axis
shows the number of independent variables, which were considered in each model. While,
the horizontal axis represents the value of one minus R-Squared (1-CoD) for each model.
Same as the dataset of Montreal, this dataset was divided randomly to two parts for training
and testing. As shown in Table 5-8, 80% of dataset were used for training and 20% were
used for testing. Scatter Plots for training and resting of model number 9 are shown in
Figures 5-19 and 5-20 respectively. Scatter plots of other models are provided in Appendix
C as well. These graphs compare the predicted and actual values of the number of breaks.

The vertical axis shows the actual number of breaks (experimental) while the horizontal
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Figure 5-18 Pareto of Doha Dataset

axis shows the predicted value of the number of breaks. The values of R-Squared (CoD) is
shown in top corners of graphs, which are 96.09% and 74.39% for training and testing

respectively.

Table 5-8 Doha Dataset Size

City Training Size Testing Size Dataset Size

Doha 58 (80%) 14 (20%) 72 (100%)
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5.3.5 Weibull Distribution

The dataset of Doha comprises of 99.99% Ductile Iron thus, it clustered into 6
clusters just based on length and diameter of the pipes. Table 5-9 shows these 6 clusters
and related features of each of them. For the pipe length, three subcategories were defined:
short (1<300m), medium ( 300m <I <2000m), and long (1 >2000m). For the pipe diameter,
two subcategories were defined based on the literature: small (D <350mm) and large (D
>350mm). The number of breaks for each pipe segment, which was predicted in the
previous section, is transformed to a breakage rate by dividing it by age and length. The
result is used in this section to provide deterioration curves using Weibull reliability
function. Figures 5-21 and 5-22 show deterioration curves for clusters number 3 and six

respectively.

Table 5-9 Different Clusters and Related Features for Doha Dataset

Cluster Features
1 Length: Short, Diameter: Small
2 Length: Medium, Diameter: Small
3 Length: Long, Diameter: Small
4 Length: Short, Diameter: Large
5 Length: Medium, Diameter: Large
6 Length: Large, Diameter: Large
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In each graph, the vertical axis shows the condition of the pipe while the horizontal axis
represents the age of the pipe. As it can be seen, in both Figures pipe condition starts from
1 (the best condition) and then decreases slightly to the zero (the worse condition). It can
be concluded that pipes with smaller diameter are more prone to failure than pipes with

larger diameter.

5.3.6 Sensitivity Analysis

Figure 5-23 shows the sensitivity analysis for the dataset of Doha. The vertical axis
represents the number of breaks (Logarithmic Scale) whereas the horizontal axis represents
the value of each factor. Since, each factor has its own units, the horizontal axis was plotted
using the normalized value from 0.01 to 1. However, for a better visualization the actual
value of each factor and the corresponding value of the number of breaks are listed in two
separated tables below the normalized values. The result confirms the previous finding
from Montreal dataset that there is a direct relation between age and length as inputs and
number of breaks as the output. In other words, the number of breaks increases when the
age and length of the pipe increase. Also, it i1s concluded that pipe elevation and buried
depth do not affect the water pipe failure significantly. By examining the above figure, the
number of breaks is almost constant while the values of pipe elevation and buried depth
are increasing. Also, it is found that in this study the first and second most sensitive
independent variables are age and length of the pipe respectively. Thus, further analysis

was done on these two factors.

Figures 5-24 shows the effect of different pipe length on the number of breaks while
the water pipeline is aging. It can be seen that the number of breaks is increasing as the

pipe is approaching the end of its service. The slope of curves shows the rate of increasing
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of the number of breaks. Thus, long length pipes have higher breakage rate than short

length pipes.
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Figure 5-24 Number of Breaks for different Pipe Length

5.4 Summary and Conclusion

This chapter presented the analysis of the developed model on two case studies:

The City of Montreal in Canada and the City of Doha in Qatar. The developed model

encompasses three main computational techniques: Best Subset regression, Evolutionary

Polynomial Regression, and Weibull reliability analysis. Best Subset regression was

utilized to determine the most critical factors for predicting the number of breaks in water

pipelines. Then, the selected critical factors were used to generate 12 symbolic expressions

101



by EPR. Subsequently, the predicted number of breaks by EPR is utilized as an input to

generate deterioration curves by using Weibull distribution function.

The only difference between these two datasets is lack of information about the
number of breaks in the dataset of Doha. Lack of such data prevents developing the
prediction models by using EPR and, therefore, there was a need to estimate the number of
breaks in the dataset of Doha. When examining the results obtained from the two datasets
of Hamilton and Moncton, it was found out that these datasets were very close. Hence, the

model developed based on them was used to estimate the number of breaks in Doha.

Data collection was performed for both cases to cluster pipe segments into classes
that have the same specifications. The dataset of Montreal was classified based on age,
diameter and material of pipes, while dataset of Doha was classified based on age and

diameter of the pipes because it mostly comprises of Ductile Iron.

Sensitivity analysis was performed for both datasets to identify the effect of
changing each independent variable on the water pipe failure rate when pipe gets older.
The rationality of relationship between inputs and output in selected symbolic expression

was studied as well.

Based on the Best Subset regression results, it was concluded that all available
factors should be considered as inputs in EPR for predicting the number of breaks. Then,
12 symbolic expressions were generated by using EPR. Among them the best one was
selected based on different criteria such as fitting to the actual data, the parsimony of
generated equation and the possibility of justifying the equations in terms of reasonable

relationship between inputs and output. In the end, two deterioration curves as samples
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were presented for each dataset. As Weibull reliability function can be used for an

individual pipe, providing a curve for each pipe segment is possible.
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Chapter 6: Conclusion and Future Work

6.1 Summary and Conclusion

The increasing failure rates of water pipes are caused by the low maintenance and
the aging of water distribution networks (Asnashari 2013). Failure prediction models can
help utilities and municipalities prioritize the replacement/rehabilitation of water pipelines.
The end result is more cost effective plans for the condition assessment and improved level
of service. Recently, there has been considerable efforts in developing failure prediction
models for water pipes as covered in the literature review of this thesis. This study
presented a research framework that circumvent the limitations highlighted in Chapter 2
by: 1) identifying the most critical factors affecting failure rates of water pipes, 2)
determining the best mathematical expression for relating the identified factors with the
target output — i.e. breakage rates, 3) using the best mathematical formula to construct
deterioration curves and 4) deploying the sensitivity analysis to recognize the effects of

changing each input on the breakage rate.

Best Subset regression was utilized to find the best combination of variables for
predicting breakage rates of water pipes. The technique was capable of extracting the most
critical factors for predicting breakage rates using the numbers of statistical indices such
as R2, Mallows' Cp and square root of MSE. However, this technique is not suitable for
case studies with a large number of independent variables as the computational time needed
to process and find the best combination of factors will significantly increase. But in this
study, 4 and 5 independent variables were used to predict the number of breaks in the City

of Montreal and Doha respectively. Therefore, Best Subset regression was capable of
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finding the best factors in a timely fashion. In dataset of Montreal, the model, which
includes all available independent variables, being age, diameter, length and material of
pipes, was selected as the best one. Also, for the dataset of Doha, age, diameter, length,

material, buried depth and elevation of the pipe were selected as the most critical factors.

Subsequently, EPR algorithm was deployed to generate a number of symbolic
expressions able to predict the number of breaks of water mains. For each dataset, 12
symbolic expressions were generated and among them, the best one was chosen based on
the observed fitness and parsimony of the equation. The process of creating the symbolic
expressions contains two stages: 1) Finding the best model structure using Multi-Objective
Genetic Algorithm and 2) estimating the appropriate values for constants using Least-

Squares optimization (Berardi et al. 2008).

The predicted number of breaks, calculated by the best symbolic expression, was
employed to construct deterioration curves by using Weibull reliability functions. Weibull
distribution was utilised because it needs a few number of historical data and can also be
used to model either an individual pipe or the whole network. Datasets of Montreal and
Doha were grouped into 18 and 6 clusters respectively and a deterioration curve was

developed for each group.

The sensitivity analysis was performed for both datasets to: 1) identify the effect of
each independent variable on the breakage rate when water pipes are aging and 2) study
the rationality of relationship between the selected inputs and the output. In dataset of
Montreal, it was concluded that the pipe diameter is the most sensitive factor. In dataset of

Doha, however, age and length of the pipe were identified as the most sensitive factors.
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6.2 Research Contribution

This study provides a newly developed research framework for predicting the

number of breaks for water pipes. As the most significant contributions of this research:

1)

2)

3)

The most critical factors for predicting the failure rate of water mains were
identified from the available literature and historical data.

The failure rate prediction models for water distribution networks were
developed, considering the interrelationships among the most critical factors.
Furthermore, different types of pipe material were considered as an independent
variable. The result of this model was used to provide deterioration curves of
water pipelines.

Two types of sensitivity analysis were conducted for each dataset, aiming to: 1)
identify the effect of each independent variable on the breakage rate and 2)

study the rationality of relationship between the selected inputs and the output.

6.3 Limitations

The developed methodology has some limitations, listed as follows:

1)

2)

3)

Lack of available data prevented considering more inputs such as soil type,
which was identified as one of the most important factors in predicting failure
rate of water distribution networks.

The effect of third party, mechanical damages, construction defects and
corrosion were not considered in this study.

The developed methodology does not take into consideration the effect of

rehabilitation on water pipelines.
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6.4 Future Works

The recommendation for future works can be divided into two areas: 1) Research

enhancement and 2) research extensions. These two areas are summarized as follows:

6.4.1 Research Enhancement

1)

2)

3)

4)

5)

Considering additional effective factors such as soil type in water distribution
networks as inputs because the proposed methodology is flexible to include
more contributing factors. According to the literature, the soil type was
identified as one of the most important factors in predicting the failure rate of
water mains.

Developing a user-friendly interface wherein the user inserts the pipe’s
specifications in order to obtain the most critical factors, the best mathematical
form for predicting water pipe failures, deterioration curves and the most
sensitive factor as outcomes. Also, this tool can be adapted to a web version to
be accessible for interested parties across the world.

Implementing the developed research framework in more water distribution
networks (other than North America and Middle East) in order to explore its
capabilities and investigate the result validity with more datasets.

Considering the effect of third party, mechanical damages and construction
defects in developing the prediction failure rate models for water distribution
networks.

Investigating how the rehabilitation of water pipes can affect the deterioration
curves. Considering this effect leads to more accurate and realistic deterioration

curves to be generated.
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6.4.2 Research Extensions

1)

2)

Maintenance, repair and rehabilitation plan can be prioritized based on the
result of this study. Also, the budget allocation and life cycle cost optimization
models can be integrated with this methodology to establish a more
comprehensive framework for water pipes management.

Modifying the developed framework in order to be applicable in other

infrastructure assets such as sewer pipelines, roads and bridges.
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Figure A - 1 Y_EPR Sheet of Excel Result File
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Figure A - 2 Graphs Sheet of Excel Result File
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Figure A - 3 Train Data Sheet of Excel Result File
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Figure A - 4 Test Data Sheet of Excel Result File
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Figure A - 5 EPR Setting Sheet of Excel Result File
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33 31 1.0883 0.282951 -0.0003 0.203376 0.477632 0.420321 0.321545 0.511467 0.506447
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Figure A - 6 Y-EPR Test Sheet of Excel Result File
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5 50 il -1 nconnu Pierrefonds - Roxboro Inconnu Réseau 17.86274091
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9 10037915 8/19/2008 300 Fonte ductile Plateau - Mont-Royal MNon applicable Réseau 1098015753
10 7! 197201 Fonte ductile Plateau - Maont-Rioyal on applicable Féseau 305789519
1 7 197201 Fonte dudtile Plateau - Mont-Royal on applicable Feseau 5.51909448
12 7! 197201 Fonte ductile Flateau - Mont-Royal on applicable Réseau (99589602
13 7 197201 Fonte dudtile Plateau - Mont-Royal on applicable Feseau 061509512
14 7904 197201 Fonte ductile Flateau - Mont-Royal on applicable Réseau 29013477
15 7902 I Fonte ductile Plateau - Mont-Royal on applicable Fieseau 87508572
16 (10037301 J Fonte grise Brcier - Hochelaga-Maisanneu Inconnu Réssau 130264
17 9758 Fals 1650 Betan armé Pierrefonds - Roxkoro MNon applicable Feseau 1692038318
13 3427 il 200 Fonte grise ou fonte ductile Lasalle Mon applicable Réseau 128.4417458
19 3426 Fals 200 Fante grise oufonte ductile Lazalle MNon applicable FRéseau 101.8413632
20 10022935 111900 200 Fonte grise ou fonte ductile Lasalle MNon applicable Réseau 17.09275332
2110022934 11,1900 200 Fonte grise ou fonte ductile Lazalle MNon applicable Részeau 1514158024
22 10020008 14171985 250 Chlorure de polvinyle Verdun MNon applicable Réseau 6834865401
23 7 /1964 35 Fonte ductile Yerdun on applicable Féseau 4443660227
24 11,1964 35 Fonte ductile Werdun on applicable Réseau 1953023512
25 11/1964 a0 Fonte ductile Yerdun on applicable Réseau 114784862
26 ¥1/1964 oo Fonte ductile Werdun on applicable Réseau 26.0445705
27 514347, 1411971 00 Fonte ductile Suc-Ouest nconnu Réseau 76143008
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35 | 5005791 111970 200 Fonte grise prcier - Hochelaga-Maisonneu: Inconnu Réseau 31.53660117
36 5005131 A1/1971 {ili} Fonte grise prcier - Hochelaga-Maisonneu: Inconnuy Féseau 1132367617
37 5005130 fili 00 Fonte grise proier - Hochelaga-Maisonnew Inconnu Feseau 71.0042357
38 124418 S11a7 50 Fonte ductile Dorval - lle Dorval Man applicable Réseau 47.40943996
39 63723 /1198 50 Chlorure de palyvinyle Verdun MNon applicable Féseau 4.080823017
40 B3ITe2 417198 50 Chlorure de palyvinyle Yerdun Man applicable Réseau 5013421697 =
a1 mmaca e tn [T ————— YR [rep— Cy—— ERCTIIECETE]
Memo | WaterPipe & ] 3
READY m —F—+ 100%

Figure B - 1 Original dataset of Montreal
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FILE HOME  INSERT ~ PAGELAVOUT ~ FORMULAS ~ DATA  REVIEW  VIEW Seyed Farzad Karimian ~
= = E gl =1 split [T View Side by Side [l
|:| D ]g] | Formula Bar Q [:; DQ L_‘D e = D
Normal PageBreak Page Custom (7] Gridlines 7] Headings Zoom 100% Zoomto  New Amange Freeze Switch  Macros
Preview Layout Views Selection Window All  Panes~ Windows ~ -
Workbook Views Show Zoom ‘Window Macros -~
F14 - =E14/C14/H14 Al
A 8 C D E F G H 1 J K -
| Case Number Pipelength(m) | Pipelength(km) —{ Diameter (mm) | No.ofBreaks | BreakageRate (No./km/yr) —{Materil| Age |
1880 198 1635.308125 1.635308125 100 3 0.021582549 4 85
1881 199 5.333511038 0.005333511 100 [ 0 6 85
1882 473 4415.853163 4.415853163 150 20 0.053283954 4 85
1883 778 4.578348536 0.004578349 200 [ [} 3 85
1884 77 19988.11583 15.98811583 200 42 0.024720572 4 85
1885 1021 1283.013882 1233013882 250 3 0.027508757 4 85
1886 1297 5221.970611 5.221970611 300 9 0.020276321 4 85
1887 1691 1557.970511 1.557970511 400 0 0 3 85
1888 1692 945.8522443 0.949852244 400 1 0.012385827 4 85
1889 1893 236.3974669 0.236397467 500 a 0 4 85
1890 2035 33.96052767 0.033960528 600 [ 0 3 85
1891 2036 4161.163464 4.161163464 600 13 0.036754426 4 85
1892 2139 152.2081391 0.152208139 750 [ 0 2 85
1893 2140 2333.52292 2.33352292 750 1 0.005041607 3 85
1894 2141 9689.590893 9 750 10 0.012141592 4 85
1895 2256 33.797654 0.033757694 900 0 0 2 85
1896 200 277.9635786 0.277963573 100 [ 0 4 86
1897 474 5479.3365946 5.479336946 150 16 0.033954202 4 86
1898 780 130.3367189 0.130336719 200 a 0 3 86
1899 781 15527.27412 15.52727412 200 32 0. 4 86
1900 1022 939.0586872 0.939058687 250 1 0.012382514 4 86
1901 1298 703.2007152 0.703200715 300 3 0.049607061 4 86
1902 2142 727.1046921 0.727104692 750 a 0 4 86
1903 201 1041.282464 1041282464 100 4 0.044154217 4 87
1904 475 6580.982084 6.580982084 150 25 0.043664656 4 87
1905 782 18105.16198 18.10516198 200 31 0.019680677 4 87
1906 1023 1613.27447 1.61327447 250 10 0.071247569 4 87
1907 1299 821.9621662 0.821962166 300 1 0.01398392 4 87
1908 2037 116.6743546 0.116674895 600 0 0 3 87
1909 2038 46.62053905 0.046620539 600 a 0 4 87
1910 2257 6.967390907 0.006967391 900 0 0 2 87
1911 2295 1.5947593452 0.001947593 1050 o 0 3 87 -
3 al | Sheett | Training | Testing | Training-OL | Testing -OL Modified Training ... F] 3
READY B

Figure B - 2 Dataset of Montreal after Classification
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H - -

No. of Breaks of Doha #2 - Excel

FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW

“D Eév Calibri ~ - N === - - EWepTet General - [:—| ;‘l ’:‘ %ﬂ EE"?K @
Pate . B ru- H- D-A- Sl Merge & Center = § = % + % 8 Condtional Formatas Cell  Insert Delste Format

- Formatting~ Table~ Styles= = - -
Clipboard & Font ) Alignment E] Number ) Styles Cells
D1111 - 150
A B C D E F G H 1
PipeID | PipeAge | MATERIAL DIAMETER_M Thickness (mm) Pipes elevation DEPTHLAID Length (m) Length (Km)
1 ~ - - ] - = = =
1105 938 7 1 150 10 12 0.5 33.718462 0.033718462
1106 1349 14 1 150 10 10 0.5 7.421494 0.007421494
1107 1318 6 1 150 10 17 0.5 0.35608 0.
1108 1142 7 1 150 10 18 0.5 2.774012 0.002774012
1109 898 16 1 150 10 8 0.5 0.510868 0.000510868
1110/ 1319 7 1 150 10 18 0.5 38.845738 0.038845738
1111 784 12 1 150 10 17 0.5 65.257327 0.065257327
1112 769 12 1 150 10 7 0.5 3.04719 0.00304719
1113 606 12 1 150 10 12 0.5 23.584237 0.023584237
1114 1566 12 1 150 10 14 0.5 0.450145 0.000450145
1115 398 14 1 150 10 17 0.5 2.206392 0.002206392
1116 1436 7 1 150 10 18 0.5 2.592216 0.002592216
117 33 7 1 150 10 16 0.5 11.23479 0.01123479
1118 673 16 1 150 10 7 0.5 0.855959 0.000855959
1119 1461 7 1 150 10 13 0.3 0.274883 0.000274383
1120) 1491 20 1 150 10 14 0.5 0.502192 0.000502192
1121 793 12 1 150 10 16 0.5 1.601602 0.001601602
1122 913 14 1 150 10 15 0.5 21.342377 0.021342377
1123] 1398 7 1 150 10 12 0.5 5.632353 0.005632353
1124 845 7 1 150 10 17 0.5 88.208594 0.088208594
1125| 1340 14 1 150 10 13 0.5 197.392461 0.197392461
1126 1462 21 1 150 10 14 0.5 9.253893 0.009253893
1127 185 12 1 150 10 11 0.5 14.493853 0.014493853
1128 52 7 1 150 10 17 0.5 3.912099 0.003912099
1129 41 16 1 150 10 15 0.5 78.755233 0.078755239
113 148 14 1 150 10 16 0.5 58.121759 0.058121759
1131 395 12 1 150 10 9 0.5 85.331231 0.085331231
1132 855 16 1 150 10 7 0.5 46.679781 0.046679781
1133| 1551 14 1 150 10 7 0.5 89.033063 0.089033063
1134 1489 6 1 150 10 18 0.5 7.111602 0.007111602
1135 1055 7 1 150 10 14 0.5 8.186662 0.008186662
3 City of Doha #2 | all Naormalized All Normalized & Classified D80 D 100 D150 ... [l
READY B

Figure B - 3 Original Dataset of Doha

122

7T EH - @ %X
Seyed Farzad Karimian ~

> AutoSum - éY H

[ Fin~
Sort & Find &
& Clear~ Filter = Select~
Editing ~
A
J K L *

»
M -——+ 1009



f H ©- = No. of Breaks of Doha #2 - Excel ? H - &8 %X

FILE HOME | INSERT  PAGELAYOUT ~ FORMULAS ~ DATA  REVIEW  VIEW seeiarad fEriftian ~
o X . T o = . = . = o B [Fh Z Autosum - A
D i Calibri 11 A A - M- EFWrap Text General [;.Igl ’;‘4 D & ;‘ lll Wi ZY H
GO R RE RS EEMasescons - § - % 1 G 4 Condfon T o e Db forme L Sone s
Clipboard Font N Alignment ] Mumber I Styles Cells Editing ~
49 - 56.028 ~
A B C D E F G H 1 -
Breaks/Km/Yr based on Moncton's | Breaks/Km/Yr based on Hamilton's | Breaks/Km/Yr based on Equation of
Class _ R L Alyr) L(Km) D (mm}) N
- Equation hd Equation A Both Cities - ol - - -
38 3 0 18.72733333 10.40044444 3 0.427292932 100 14
39 47 012 4.574181818 2.809454545 11 0.104539627 300 4
40 10 9.12 163.096 104.6773333 12 3.350490435 100 152
41 22 3.1 91.205 58.53666667 12 2.605626245 150 85
42 35 0.24 4.292 2.754666667 12 0.124188089 200 4
43 43 0.54 9.657 6.198 12 0.226807869 300 9
44 11 1.62 18.26446154 12.204 13 0.270798946 100 18
45 23 0.18 2.029384615 1.356 13 0.030263129 150 2
46 36 0.09 1.014692308 0.678 13 0.018664372 200 1
47 4 0.24 1.932 1.339428571 14 0.001984792 80 2 '
48 12 15.6 125.58 87.06235714 14 4.714366349 100 130
49 24 6.96 56.028 38.84342857 14 2.141659941 150 58
50 37 6.72 54.096 37.504 14 2.341923777 200 56
51 43 1.56 12.558 8.706285714 14 0.854444285 300 13
52 68 3.84 30.912 21.43085714 14 2.54563195 1200 32
53 13 6.75 41.625 29.85 15 1.735356607 100 45
54 25 2.4 14.8 10.61333333 15 0.463862978 150 16
35 30 0.75 4.625 3.316666667 15 0.323108156 300 5
56 14 38.52 190.5135 140.919 16 9.60148968 100 214
57 26 10.8 53.415 39.51 16 2.650060731 150 60
58 38 4.14 20.47575 15.1455 16 0.81274071 200 23
59 51 2.88 14.244 10.536 16 0.745701043 300 16
60 57 0.21 0.860647059 0.654541176 17 0.000523845 600 1
61 15 0.54 1.627263158 1.301684211 19 0.001020536 100 2
62 27 0.54 1.627263158 1.301684211 19 0.002000976 150 2
63 39 1.08 3.254526316 2.603368421 19 0.084070813 200 4
64 65 1.89 5.695421053 4.555894737 19 2.072862591 300 7
65 16 3.3 8.745 7.15 20 0.151353389 100 11
66 28 3 7.95 6.5 20 0.304033471 150 10
67 32 0.3 0.795 0.65 20 0.000503164 300 1
68 17 10.56 24.928 20.79390476 21 1.307321637 100 32
69 29 4.29 10.127 8.44752381 21 0.367886752 150 13 -
3 City of Doha #2 All Normalized All Normalized & Classified D80 D 100 D13 . € 4 3

Figure B - 4 Dataset of Doha after Classification
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Figure C - 1 Scatter Plot of Model #1 for Training for Montreal Dataset

EPR vs. Experimental Data (Test Set)
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Figure C - 2 Scatter Plot of Model #1 for Testing for Montreal Dataset
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Figure C - 3 Scatter Plot of Model #2 for Training for Montreal Dataset

EPR vs. Experimental Data (Test Set)
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Figure C - 4 Scatter Plot of Model #2 for Testing for Montreal Dataset
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Figure C - 5 Scatter Plot of Model #3 for Training for Montreal Dataset
EPR vs. Experimental Data (Test Set)
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Figure C - 6 Scatter Plot of Model #3 for Testing for Montreal Dataset
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Figure C - 7 Scatter Plot of Model #4 for Training for Montreal Dataset

EPR vs. Experimental Data (Test Set)
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Figure C - 8 Scatter Plot of Model #4 for Testing for Montreal Dataset
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Figure C - 9 Scatter Plot of Model #5 for Training for Montreal Dataset
EPR vs. Experimental Data (Test Set)
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Figure C - 10 Scatter Plot of Model #5 for Testing for Montreal Dataset
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Figure C - 11Scatter Plot of Model #6 for Training for Montreal Dataset
EPR vs. Experimental Data (Test Set)
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Figure C - 12 Scatter Plot of Model #6 for Testing for Montreal Dataset
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Figure C - 13 Scatter Plot of Model #7 for Training for Montreal Dataset

EPR vs. Experimental Data (Test Set)
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Figure C - 14 Scatter Plot of Model #7 for Testing for Montreal Dataset
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Figure C - 15 Scatter Plot of Model #8 for Training for Montreal Dataset

EPR vs. Experimental Data (Test Set)
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Figure C - 16 Scatter Plot of Model #8 for Testing for Montreal Dataset
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Figure C - 17 Scatter Plot of Model #9 for Training for Montreal Dataset
EPR vs. Experimental Data (Test Set)
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Figure C - 18 Scatter Plot of Model #9 for Testing for Montreal Dataset
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Figure C - 19 Scatter Plot of Model #11 for Training for Montreal Dataset
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Figure C - 20 Scatter Plot of Model #11 for Testing for Montreal Dataset
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Figure C - 21 Scatter Plot of Model #12 for Training for Montreal Dataset
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Figure C - 22 Scatter Plot of Model #12 for Testing for Montreal Dataset
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