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Abstract

Monitoring and Improving Managed Security Services inside a

Security Operation Center

Mina Khalili

Nowadays, small to medium sized companies, which usually cannot afford hiring ded-

icated security experts, are interested in benefiting from Managed Security Services

(MSS) provided by third party Security Operation Centers (SOC) to tackle network-

wide threats. Accordingly, the performance of the SOC is becoming more and more

important to the service providers in order to optimize their resources and compete

in the global market. Security specialists in a SOC, called analysts, have an impor-

tant role to analyze suspicious machine-generated alerts to see whether they are real

attacks. How to monitor and improve the performance of analysts inside a SOC is

a critical issue that most service providers need to address. In this paper, by ob-

serving workflows of a real-world SOC, a tool consisting of three different modules

is designed for monitoring analysts’ activities, analysis performance measurement,

and performing simulation scenarios. The tool empowers managers to evaluate the

SOC’s performance which helps them to conform to Service-Level Agreement (SLA)

regarding required response time to security incidents, and see the need for improve-

ment. Moreover, the designed tool is strengthened by a background service module

to provide feedback about anomalies or informative issues for security analysts in the

SOC. Three case studies have been conducted based on real data collected from the

operational SOC, and simulation results have demonstrated the effectiveness of the

different modules of the designed tool in improving the SOC performance.
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Chapter 1

Introduction

Advantages of employing Managed Security Services (MSS), such as cost effective-

ness, skilled security experts, appropriate facilities, up to date security awareness,

and 24 hours continuous service encourage different companies to outsource their se-

curity services rather than having in-house security employees [1]. Network security

monitoring (NSM) was born as a different term to specify the new feature of MSS

for continuous monitoring of networks by human experts rather than just installing

security appliances. NSM is defined by Bejtlich [2] as “the collection, analysis, and

escalation of indications and warnings to detect and respond to intrusions.” De-

scribing the Bejtlich’s definition, in order to provide NSM service, Managed Security

Service Providers (MSSP) deploy various sensors in the client site, such as Intrusion

Detection Systems (IDS) to gather various suspicious alerts from each client’s com-

puter network, and send them to the Security Operation Center (SOC). Then, SOC

as a heart of NSM correlates and analyzes the alerts by its human security analysts

to confirm whether they are successful exploits. A security incident is detected and

confirmed by True Positive (TP) alerts as indications. In case of an incident, results

of analysis need to be exposed to decision makers, in a process called escalation, to

react in an appropriate way.

Emerging demand of outsourcing security services from different companies makes

the business world increasingly competitive for MSS providers. Monitoring and im-

proving performance of the SOC becomes more crucial to the managers to optimize

their resources and improve the quality of service. Challenges faced by the opera-

tional SOC include: 1. To the best of our knowledge, there does not exist any model
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for the SOC analysis workflow to elaborate analysts’ detailed tasks. By modeling

the analysis workflow, we can obtain a clear picture about analysis steps allowing

the system to track analysts’ activities. 2. There do not exist automated tools for

monitoring and evaluating SOC performance. Consequently, there is no clear under-

standing of SOC capability and different analysts’ performance. 3. There does not

exist any tool to simulate potential improvement options of the SOC in order to assess

their effectiveness. 4. There does not exist any tool to support convenient knowledge

transfer among analysts. Analysts usually possess different knowledge, since they

gain different knowledge during each investigation related to different clients. The

above mentioned challenges prevent managers to prioritize the effort on improving

SOC performance.

There are three main categories of related work (a more detailed review is given

in Chapter 6). The first domain discusses different aspects of MSS. There are some

works ([3] [4] [5] [6] [7] [8] [9]) proposing different designs for a SOC architecture, such

as employing recognition mechanism of immune system, cloud based NSM, hierarchi-

cal mobile-agent-based approaches, etc. Some papers ([10] [11] [12]) study various

aspects of different operational SOCs to compare their functionality. These works are

different from our work, since we neither modify the SOC architecture, nor provide a

classification framework for SOCs. The second domain is alert correlation techniques

helping to provide more accurate alerts, and reducing the rate of False Positive (FP)

([13][14][15][16]). The third domain reviews studies about Call Centers (CC), since

SOC and CC are similar regarding their performance evaluation. In a CC, operators

answer to different calls in a queue where in a SOC, analysts analyze incoming logs in

a queue. Different queueing models are employed in this area to solve the problem of

staffing, scheduling, and routing jobs policy ([17][18][19][20]). Overview of the litera-

ture shows there is little work related to performance measurement and improvement

of a SOC.

The designed system consists of a Graphical User Interface (GUI) for managers

with three modules; monitoring, measuring, and simulation, respectively. Moreover,

it consists of a background service to generate feedbacks to SOC’s analysts about

anomalies and informative issues. The tool helps managers to be updated about

current analysts’ activities of the SOC with the monitoring module. This module

illustrates details of recent investigations which are in progress or recently completed
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by the analysts. Managers can check overall and detailed SOC performance with the

measuring module. Consequently, they may see the need for adding new analysts, rec-

ognize demanding clients, or optimize certain analysis steps average duration. With

the simulation module, they can assess different performance improvement options

to see the potential effect of each possible improvement on the performance result

of real production data, without affecting the normal operation of the SOC. Two

improvement options can be automating certain steps to increase the efficiency of

human analysts’ tasks or the way of dispatching incoming alerts among analysts.

Analysts benefit from the feedback module where they get hints about next probable

steps, and feedback whether they have performed their tasks in normal range of time

or they have missed a step. Moreover, they can learn from the results of previous

analyses performed by other analysts. The development team of the operational SOC

can improve the SOC Console application based on provided evidence by the sim-

ulation module. Furthermore, some measuring results can be used as evidence to

demonstrate quality of services to the clients.

Contributions of our work are; 1. modeling the alert analysis workflow based

on a real operational SOC, 2. developing a practical tool capable of; a) monitoring

analysts’ analysis workflow, b) measuring analysts’ performance by defining different

performance metrics, c) providing simulation opportunities to assess possible improve-

ment options. d) enabling knowledge transfer among analysts by feedback module, 3.

conducting three case studies based on real life activity logs of analysts over a period

of 57 days to show how the performance would be affected by different simulation

scenarios.

The rest of the thesis is organized as follows. Chapter 2 describes the required

background knowledge to understand this work. Chapter 3 illustrates our modeling

methodology of the analysis workflow, and the logging phase of analysts’ activities.

Chapter 4 provides an overview of the system’s functionality, and the modules em-

ployed methodology and implementation. Chapter 5 evaluates three case studies to

assess different improvement options of the SOC performance. Chapter 6 reviews

related work. Chapter 7 concludes our work and addresses the future work.

3



Chapter 2

Background

In this chapter, the operational SOC workflow and its related characteristics and

notations are explained to provide background knowledge. Besides illustrating SOC

characteristics, a brief description of the designed system, and related definitions are

given to show how the proposed system functions alongside the SOC main workflow.

A conceptual example of a typical service deployment model is drawn in Figure 1

from an infrastructure perspective (in reality, a client deployment architecture can

be more complex). The operational SOC uses Virtual Private Network (VPN) to

connect the client site to the SOC. Depending on the number of sensors, sensors can

be placed at different locations in the client network, such as outside the firewall

facing internet, behind the firewall inside the demilitarized zone (DMZ), which are

accessible internal points of client’s network from outside, or in the local network

behind the firewall.

Different devices and sensors, such as Intrusion Detection Systems (IDS), asset

detection tools, and flow analysis tools can be deployed to gather various suspicious

events, called alerts1. Once sensors are deployed on the client site, they start gener-

ating alerts, based on their configurations, and sending them to the SOC via VPN.

In the SOC, analysts receive the alerts of each client in real time. Alerts (suspicious

events) should be analyzed within a specific time period which is defined in Service

Level Agreement (SLA) signed between MSS provider and the client. For instance,

response time of the operational SOC studied in this work is two hours defined in

1To clarify notations, alerts are specifically IDS-generated. However the event notation includes
all kinds of machine generated alerts and logs. Logs could be referred to normal operating system
events (e.g., unsuccessful attempt to login a system) that can be useful for a security investigation.
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Figure 1: An example of a typical deployment model for Network Security Monitoring
service representing an operational SOC and a client infrastructure

their SLA.

Analysts rely on the main tool of the SOC, named SOC Console, to review related

alerts of each client and conduct analysis. The workflow of alert analysis starts from

the SOC Console consisting tasks, such as receiving alerts, cross referencing network

map of a client, examining a client’s assets and vulnerabilities, opening content of the

alert packet, and contacting the client in case of a true positive alert.

The analysis task of sensor-generated alerts by an analyst is called investigation

(investigation and analysis notations can be used interchangeably). If the result of

an alert analysis is true positive indicating a real threat, it is called an incident. The

analyst needs to inform the related client about the incident in order to perform a

proper action to tackle it. Such a process of informing client is called escalation. Based

on severity of a threat and client’s preference, different approaches could be defined

for informing the client about different types of incident in the SLA, documented in

an escalation grid file. Escalation approaches include sending an email, calling the

administrator, or informing the client in a monthly report.

Investigations conclude in one of the following three different results, a) creating

a new incident when a new threat is detected, b) updating a current incident when

either more indications (TP alerts) related to one recorded incident are on hands and

need to be added to the same incident, or the incident needs to be updated after

contacting the client, or c) closing and archiving the alert, since there is no enough

indication to declare the alert as a threat. From now on, investigation class points
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at one of the mentioned investigation result categories.

Moreover, investigations can be categorized based on their alert types. An in-

vestigation type implies an analysis related to a specific attack type, e.g., malware

infection. Different alerts related to a same attack type are grouped together to rep-

resent an attack type e.g., different snort rule IDs indicating the malware infection.

There are eight investigation types in two main categories from the SOC per-

spective, security-related incidents and policy violation incidents. Investigation types

inherit their names from attack types, and can be used interchangeably, as they are

implying the same concept. Table 1 represents different investigation types. Table 2

describes attack definitions related to investigation types. And, Table 3 provides one

EventID example for each investigation type.

Incident category Investigation type Abbreviation

Security related BruteForce Attack BFA

Denial Of Service DOS

External Vulnerability Scan EVS

Malware Infection MI

Abnormal Activities AA

Others OTHERS

Policy violation Policy Violation PV

Peer to Peer Bittorrent P2P

Table 1: List of investigation types related to the incident categories

Inside an investigation workflow, each investigation has some major steps. As is

discussed, an investigation process is conducted through the SOC Console. Generally,

for analyzing each alert, 1. analysts expand details of the alert (step A). 2. Then, they

may check network assets to see whether the reported alert is related to discovered

vulnerabilities (step C). 3. They also check whether a similar incident with the

same alert type is recently recorded (step C). 4. Some investigations might need

more in-depth analysis, such as exporting alert packet content and using specific

tools (e.g., Wireshark) to analyze them (step O). 5. In the end, if they infer the

alert is not a threat based on the current situation, they will close and archive the

alert (step B). If they deduce the alert is true positive, then they need to record

and escalate the incident to the related client. 6. If the similar incident is still in
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Investigation type Description

Brute Force Attack It is a probabilistic approach to obtain username and
password credentials by trying all possible keys [21].

Denial of Service It implies flooding resources by many requests making
them out of service [22].

External Vulnerability Scan It is a legitimate service for evaluating vulnerabili-
ties of the network which can be threatful while it is
launching from unauthorized sources [23].

Malware Infection indicates all kinds of malicious activities resulting in
exploiting network assets [24].

Abnormal Activities Four categories of Snort alerts [25]; miscellaneous ac-
tivity, miscellaneous attack, access to vulnerable web
applications, and detection of TCP connection in the
client’s netwrok are grouped together forming this cat-
egory.

OTHERS Alerts that do not fit in any mentioned attack types
are placed under this category.

Policy Violation This category is considered for both adult content ac-
cess and chatting applications which can be illegal
based on the client’s policy.

Peer to Peer Bittorrent It is a legitimate file sharing protocol which can be
defined as a policy violation activity inside a client
network.

Table 2: Investigation types and related descriptions

the process, they update the current incident with more indications (step D). 7. If

there is no recent similar incident, they record it as a new incident (step E). 8. Since

recording an incident in the system is accompanied by escalating the incident, analysts

may check the required escalation method from escalation grid document (step F).

Each mentioned task is considered as one step of an investigation which the analyst

performs to accomplish the alert analysis workflow. Table 4 describes different steps.

For each investigation type, there are usually several possible investigation ap-

proaches. We collect all possible analysis approaches in one integrated model consist-

ing of different investigation paths of all investigation types. The complete investiga-

tion workflow modeling phase will be described in details in Section 3.1.

A simple flowchart is drawn as an “model example” in Figure 2. Three end nodes

7



Investigation EventID EventID description

type example

BFA 31304 “SERVER-WEBAPP PocketPAD brute-force login
attempt” [26]

DOS 2522 “This event is generated when an attempt is made to
exploit a known vulnerability in the Microsoft imple-
mentation of SSL Version 3.” [27]

EVS 632 “This event is generated when an external user scans
an internal SMTP server using Network Associates’
Cybercop vulnerability scanner.” [28]

MI 35462 “MALWARE-CNC Win.Trojan.Kazy outbound con-
nection” [29]

AA 18180 “This event is generated when an attempt is made to
exploit a known vulnerability in flash player.” [30]

OTHERS 101010 “A customized rule for the sensors to verify DNS
queries by comparing to a blacklist file.”

PV 34463 “APP-DETECT TeamViewer remote administration
tool outbound connection attempt” [31]

P2P 12426 “This event is generated when network traffic that in-
dicates Ruckus P2P broadcast domain probe is being
used.” [32]

Table 3: An EventID example for each investigation type category

show the three possible investigation results (classes). Each directed path from the

start node to the end node is one possible investigation path. As is shown, two

investigation paths result in scenario#1 which is closing and archiving the alert. The

shorter path indicates that the analyst only by expanding the alert detail in the SOC

Console determines that the alert is false positive. The other path shows the decision

is made after conducting more analysis steps, such as step O which is about deep

alert packet content analysis. The other scenarios#2 and 3 represent two possible

investigation paths resulting in updating an incident and creating a new incident

respectively.

Steps consist of sub-steps called actions. Actions are minor tasks grouped into

one step. Actions are track-able points for each step performed by analysts. They

correspond to single mouse click on the SOC console listed in Table 5, such as clicking

on a specific button, or opening a window. Series of mouse clicks (actions) represent

8



StepIDs Description

A Checking global view of the SOC Console which shows all alerts
related to each client, expanding a specific alert to check the
details and related destination and source IP addresses

B Classifying an event as not-suspicious and labeling it as FP

C Checking the network assets to see whether the reported alert
is related to discovered vulnerabilities. Moreover, checking
whether the same attack is reported recently

D Updating an existing incident for the client, since a similar inci-
dent is reported recently. Or updating the incident description,
since the client responded to the incident (clarifying the incident)

E Creating a new incident for the client, since indications confirm
the alert as suspicious (true positive alert)

F Checking the escalation grid for the related client. In this grid,
analysts are provided information about how the client prefers
to be informed about different kinds of attacks depends on crit-
icality (e.g. call, email, report)

O Opening the alert packet content by a specific tool to analyze
deeply, such as Wireshark.

Table 4: Step IDs and their description

a task (step) which is performed. To avoid discussing unnecessary details, we focus

on steps rather than actions mostly throughout the paper.

The pre-condition of the proposed system to monitor, measure, simulate, and feed-

back the investigation workflow is to find a way to track and log analysts’ activities on

the SOC Console. Logging activities becomes possible by defining steps and actions.

As is discussed, actions are series of mouse clicks on the SOC Console. A script is

written to log SOC Console activities with different required attributes which will be

discussed in details in Section 3.2.

The designed system runs at different locations of the infrastructure, as it assists

both managers and analysts. Referencing back to Figure 1, three locations of the

SOC are labeled in that figure which are involved by the proposed system. Label

I indicates the location at the server room where the tool for auditing and logging

analysts’ activities is running continuously keeping the logs up to date. Label II is

the manager’s desktop where the user interface (UI) with three modules (monitoring,

measuring, and simulation) is installed. Label III is analysts’ desktop where they can
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Step ActionID Description

A 130 Opening a specific client alert view

105 Expanding the aggregated alert detail

107 Clicking on the alerts to view alert details by “Editor”

B 109 Clicking on the button “Acknowledge” from alert detail

125 Clicking on the button “Acknowledge” from alert list

C 104 Clicking on “View Asset” that will open a small window from
source IP

126 Clicking on “View Asset” that will open a small window from
destination IP

110 Clicking on the tab “Incidents”

112 Clicking on “Edit incident” to open and view the incident

D 114 Clicking on the button “Add to incident”

116 Clicking on the button “Add alerts to incident”

117 Under comment box, clicking on the button “Apply” or “OK”

E 119 Clicking on the button ”Create incident”

121 Clicking the button ”Finish”

F 122 Opening the documents dashboard

123 Selecting the client

124 click on the document ”Escalation Grid”

O 103 clicking on the button ”Export to pcap”

127 Opening the packet using Wireshark

Table 5: Steps with sub-steps as Action IDs and related description
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Chapter 3

Modeling and Logging the

Investigation Workflow

In this chapter, the modeling phase of the investigation workflow is discussed. Then,

the logging phase of analysts’ activities will be detailed.

3.1 Modeling the Investigation Workflow

Before going through the modeling details, Section 3.1.1 justifies the employed method,

UML activity diagram, than another popular modeling method, petri net, to model

the investigation workflow.

3.1.1 UML Activity Diagram vs. Petri Net

There are two popular workflow modeling methods, petri net [33] and Unified Model-

ing Language (UML) activity diagram [34], in the literature. In this section, they are

reviewed for modeling SOC’s workflows. Both petri net and activity diagram meth-

ods intend to model workflow systems (WFS) with ordered and parallel activities

considering decisions and iterations in a graphical representation.

Petri net is a bipirate graph for modeling systems’ workflows graphically. It is

enriched with precise mathematical definitions. It consists of places, transitions, and

arcs which are circles, vertical boxes, and directed arrows respectively. A simple

schema is provided in figure 3. Places represent conditions; transitions imply events

which may occur; and arcs are connectors of places and transitions. A transition could
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in contact with the related client (environment) to clarify certain situations. Actions

take time to be completed in the SOC, which basic petri net does not support. In

our work, we need to model sequence of possible actions without detailing pre or post

conditions.

The discussed issues and comparisons between petri net and activity diagram lead

us to choose UML activity diagrams to model SOC’s workflows. Activity diagram

notations are concise, enough, and easy to understand for our need, where each

node of a diagram represents an action either from the system or environment beside

considering probable duration to perform the action.

3.1.2 Modeling Methodology

In this section, the modeling methodology of the investigation workflow is detailed.

Hofstede [44] defines a workflow as an executable process, a detailed description of

tasks with their chronological dependencies.

Modeling the investigation workflow for the designed system is a precondition to

develop different functionalities of the system. Through the modeling phase, a good

understanding of the investigation workflow is achieved. Consequently, measurable

details which can be monitored and logged are identified as steps and actions discussed

in Section 2.

The modeling of the investigation workflow is performed in two phases. The first

phase is to gather the expert knowledge from analysts to identify different investiga-

tion types and relevant approaches. By completing this phase, Tables 1, 4, and 5 are

provided in Section 2 to describe investigation types, and relevant steps and actions.

To model different tasks (steps) and their relationship, UML activity diagram has

been employed to visualize the model. The second phase is to visualize the model for

the designed tool. Graphviz V.2.38 [45] is employed to layout the activity diagram

to represent the investigation workflow model in the system.

Different analysis approaches regarding all investigation types are modeled in one

integrated model by an activity diagram. Initially, it was assumed different investi-

gation types have different analysis approaches. We had eight distinct investigation

models. Later by comparing them, it became clear, however related approaches of

different investigation types vary slightly, they can be integrated into one general

model regardless of the investigation types. Slight difference, for instance having one
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step more or less, can be managed within the same model. We aggregate all possible

paths into one integrated model in which they do not contradict each other but just

make the model bigger covering different investigation types paths.

The integrated model is shown in Figure 4. A labeling system is used to address

each node of the activity diagram, than the node description. Each node of activity

diagram is the representation of one single action belonging to a step. In other words,

the label of each node indicates the node belongs to which action and step.

As is explained in Section 2, steps are tasks labeled by alphabet characters (step

ID), and actions as single mouse clicks are labeled by numbers (action ID). The

combination of step ID, and action ID is the identifier of each node of the activity

diagram in the format of ‘step ID : action ID’. For instance, we label the node of

activity diagram as A:107 implying the related action 107 belonging to step A. Related

description of different steps and actions are provided in Tables 4, and 5 in Section 2.

A sequence of nodes following from first node to the last node of the model forms

an investigation path. One example of the investigation path is Specified by double

boxes in Figure 4.

The logical relationship among different nodes of the model could be AND or OR.

By traversing a single investigation path in the model, all existing nodes in the path

have AND logical relationship from the start to the end node. When it is OR, it

implies possibility of different investigation paths. By facing diamond shapes, which

are decision nodes of the model, we can see OR relation among different nodes repre-

senting different investigation paths. The different investigation paths can be followed

based on different conditions, such as different investigation types, or previous node’s

results. Following a single path of the investigation model, there is an AND logical

relationship among the all related nodes. AND logical relation implies mandatory

nodes. If an analyst misses one mandatory node between previous and next node of

the path, the feedback module will warn the analyst about missing step. It will be

discussed in details in Sections 4.1.4, and 4.2.4.

It is important to have a unique actionable label (stepID:actionID) for each node

of the model since incoming analysts’ activity logs will be mapped to each related

node of the model.

The tool determines an investigation is completed if the next node of the current

node is End node. Since we have several nodes in the model which could be considered
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Figure 4: The investigation model

as the last node, we connect all of them to one dummy node called End. The tool by

traversing next node of current node, can find out whether the next node is the End

node. If so, then the current node is the last log of the investigation.

Graphviz [45] is employed to generate the investigation model as the graph output

in a DOT file format. The DOT file can be fed into the system and traversed in

order to track analysts’ activities by comparing incoming logs with the related model.

NetworkX package [46] in python is used as the data structure to read the DOT file.

Since preparing activity diagrams by the Graphviz tool requires writing codes in

a special format, which is not user-friendly for the analysts, we introduce an open
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source extension for Microsoft Visio called GraphVisio [47]. This extension eases the

phase of generating a DOT file where analysts draw activity diagrams with Visio and

then export their model directly to a DOT file.

3.2 Logging Analysts’ Activities

Based on the extracted model from Section 3.1.2, the investigation workflow is defined

by different steps (tasks) and their dependencies. Each task is defined by different

actions as single mouse clicks on the SOC Console. These mouse clicks are logged

by a python code which is part of the system. Each log represents one single action

performed by an analyst through the SOC Console.

Each row of logs consists of eleven attributes. Attributes are listed and described

in Table 6. Each log contains information about start and end time of the action

as two attributes: TimeStart, and TimeEnd. We have three other attributes as In-

vestigationTypeID, StepID, and ActionID. The SourceID represents the alert is from

which source (e.g., IDS), and the EventID represents Snort signatures or customized

sensor rules. The AnalystID shows which analyst is performing the investigation,

where the ClientID shows the related client. The IncidentID represents whether pre-

viously related client had the same type of incident. The InvID is the identifier of the

ongoing investigation, a unique ID for all related investigation logs in the database.

Database Attributes Description

ID Auto increment primary key of the table

TimeStart Starting time of the action

TimeEnd Ending time of the action

InvestigationTypeID Related investigation type

StepID Related step

ActionID Related action

SourceID Event (alert) comes from which source e.g., IDS

EventID The rule identifier of sensors to raise the alert

AnalystID Which analyst performs the investigation

ClientID Investigation is related to which client

IncidentID If currently the incident is recorded in the SOC Console

InvID One unique ID assigned to all logs of the investigation

Table 6: Related attributes and description
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Based on the identified actions through the SOC Console, the logging script logs

the actions started and ended via the SOC Console. Start time of actions are bound

to the specific buttons, and end time of actions are bound to the start time of the next

recognizable action by the tool. In this way, no time in the middle of an investigation

is skipped in case of using other tools not being monitored by our logging system.

End time of the last action is a specific button to close an investigation.

The output of the logging tool is a text file which needs to be adjusted by pre-

processing phase (will be detailed in Section 5.1) to fit into the table of database.

As is shown in Table 6, each row of activity logs has related StepID and Ac-

tionID which the row will be matched to the investigation model. As is discussed in

Section 3.1.2, we have the same identifier for each node of the model (StepID and

ActionID). Therefore, by having StepID:ActionID from the log, we can examine the

model to see which node can be mapped to the log. In this way, by tracking analysts

activities the system is able to understand what is going on in each investigation,

such as analyst is working on which step currently, or what is the next action. By

mapping all logs of one investigation to the investigation model, the tool can also

identify which actions are missed from the followed investigation path.

During the first phase of our implementation, due to lack of real-life activity logs,

a program is developed to generate random log entries simulating different investi-

gations by multiple analysts, for different investigation types, decisions (paths), and

clients. By traversing the investigation model, different random paths are gener-

ated with random arrival times. The program could simultaneously generate events

for multiple analysts performing investigations in parallel for multiple clients, and

store generated logs in the database as well. On the other hand, the tool queries

the database incrementally after configurable time intervals and updates results in

measuring and monitoring modules.

In this phase, we made an assumption about identifying each single investiga-

tion log, that the combination of following six attributes forms a key : Investi-

gationTypeID, SourceID, AnalystID, ClientID, IncidentID, EventID, since we as-

sumed such a combination would always be unique for the all investigation logs (e.g.,

MI;01;01;25;50001;36505). However, in real logs we found it is not possible to have

all values of these six values present in all logs. In other words, in each row related to

one investigation, some attributes may not have their related value. For instance, we
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InvID

203547 1432954820387 1432954834974 MI A 130 0 33906 4 15 0 1210176

203548 1432954834974 1432954851571 MI A 105 0 33906 4 15 0 1210176

203549 1432954851571 1432954857971 MI C 104 0 33906 4 15 0 1210176

203550 1432954857971 1432954868877 MI C 110 0 33906 4 15 0 1210176

203551 1432954868877 1432954934995 MI A 107 1 33906 4 15 0 1210176

203552 1432954934995 1432955078419 MI E 119 0 33906 4 15 0 1210176

203553 1432955078419 1432955083059 MI C 112 0 33906 4 15 500204 1210176

203554 1432955083059 1432955083059 MI E 121 0 33906 4 15 500204 1210176

Table 7: Log entries of one investigation related to MI investigation type

may have SourceID in just second or third row of logs. By this observation, we added

a new attribute, InvID, to the log format as a primary key of each single investigation

record. Dataset pre-processing is detailed in Section 5.1.

Table 7 shows a sequence of logs belonging to one investigation, containing three

steps and eight actions(A:130 221A:105 221C:104 221C:110 221A:107221E:119 221C:112

221E:121). This investigation path is illustrated in the investigation model shown in

Figure 4 as specified by the double boxes. By comparing the combined key of each

log, which is StepID:ActionID, the tool can map the log to a node of the model (the

analyst is performing which step and action). By looking at all logs and mapping

them to related nodes in the investigation model, we can see which path is followed

by the analyst. Furthermore, By identifying the path followed by an analyst in the

investigation model, the feedback module can notify analysts about probable next

steps or missing steps (will be discussed in Section 4.2.4).
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Chapter 4

Methodology and Implementation

In this chapter, we elaborate the system modules and their functionalities. Then, we

describe the employed methodology and detailed implementation of each module.

4.1 Overview of The System

The designed system assists both managers and analysts as a value-added component

of the SOC Console. Once investigation modeling and logging phases are completed, it

is possible to implement four modules with different functionalities. The independent

graphical user interface with the three modules; monitoring, measuring, and simu-

lation helps managers to evaluate the operational SOC performance. In addition,

the feedback module assists analysts of the SOC by notifying them with different

information through the Microsoft Windows operating system tray, while they are

performing investigations through the SOC Console.

The implemented system by four components satisfies different objectives. The

monitoring module makes tracking and monitoring analysts’ activities possible. The

measuring module empowers managers to check SOC’s performance with different

metrics provided by the tool. Furthermore, customizable OLAP analysis is integrated

into the tool, providing more detailed analysis performance results. The simulation

module facilitates evaluating improvement options by two different approaches: 1.

Modifying different analysis steps’ duration to see how the total analysis duration

would be affected by an improved step. 2. Applying a different queueing model

and alert dispatching approach to see how the overall performance would be affected.
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The feedback module, by employing the investigation model and comparing it with

ongoing investigations, can reveal anomalies in terms of analysis approach or time.

It can also remind analysts about next possible steps. Furthermore, this module

considers completed investigations as valuable historical results to be retrieved and

shared with other analysts.

A general workflow of the designed system is shown in Figure 5, where activity

logs are being gathered from analysts’ machines and stored in the database. The main

GUI including the monitoring, the measuring, and the simulation modules keeps read-

ing the database and provides different capabilities to the managers. The feedback

module works as a background service to give feedback to analysts in real time.

Figure 5: The proposed system architecture

4.1.1 Monitoring Module

Figure 6 shows the monitoring module of the managers’ GUI. This module is provided

to illustrate the detailed information of the SOC ongoing investigations in an easy-

to-understand way. The main purpose is showing which analyst is performing which

type of investigation for which client. Investigations started within a configurable

period (e.g., 30 minutes) stay in the graphical plot.

By looking at the plot, the y-axis shows different investigations, the x-axis shows

the investigation duration. Each stacked bar is an ongoing investigation in the SOC.

A vertical line, drawn on the plot dividing a stacked bar to two, represents the current

time. The stacked bar on the left side of the vertical line shows completed steps of the

investigation, and a bar on the right side is the representation of the next predicted
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Figure 6: The monitoring module dashboard

step. Next step prediction is done by mapping the ongoing investigation to the rele-

vant model, which will be detailed in section 4.2.1. The plot is continuously updated

after configurable time intervals by reading new data from database incrementally.

By considering investigation number 2 in the monitoring module in Figure 6, we

describe an example to elaborate the plot. As is shown, steps A, and O are performed

for the investigation number 2 in the figure, since they are on the left side of the

vertical line. Step IDs are displayed at the bottom side of the bar, where related

duration are shown on the top. For instance, for step A, duration is 2:04. The time

format is minutes and seconds (mm:ss). The next step predicted by the tool is shown

next to the completed steps after the vertical line. The predicted step is O in this

case, as the tool expects step O is still going on. The duration of the predicted step

is based on the historical average of a step calculated from previous investigations in

the database.

On the left side of a stacked bar, some information such as investigation type,

analyst ID and client ID related to the investigation are shown. As we can see, for

the investigation number 2, Investigation type is PV. Analyst ID and Client ID are

1 and 501 respectively. By clicking on the plot more detailed information will be

provided. For instance, by clicking on the left side of the plot, as we can see in

Figure 6, more information related to analyst ID, client ID and investigation ID is

appeared.
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4.1.2 Measuring module

To understand the SOC performance better, measuring becomes necessary. A recent

book on IT security metrics [48] states that every metric which can reduce the uncer-

tainty is a good metric. Qualitative measurement usually is ignored as it is difficult

or expensive to be scaled. Therefore, the measuring module provides managers with

quantitative measurements of the SOC performance.

To the best of our knowledge, there do not exist SOC analysis performance studies

in the literature. In a recent paper [11], Jacobs et al. examined different aspects of

three real-world operational SOCs. They expressed one performance metric consid-

ered in one operational SOC as the number of analyzed incidents per analyst daily.

It is described that counting the number of incidents solely is not a good metric,

if the time duration of analysis is not considered. Efforts on difficult investigations

which take more time to analyze reduce the total number of processed incidents. As

a result, analysts are not motivated to analyze carefully, since it results in showing

lower productivity for them in managers’ point of view. In a university SOC assessed

in the same work [11], a ticketing system dispatching alert tickets to analysts, pro-

vides a performance metric which is time spent on each ticket; however more detailed

information is not provided in [11].

The measuring module is designed to provide various SOC’s performance metrics

to evaluate SOC behavior. By having analysts’ activity logs from the SOC Console,

providing different performance metrics from different perspectives is possible.

We enumerate different metrics provided by the measuring module. Important

results, such as the maximum values, are shown in the main GUI where detailed

analysis is reachable through different buttons. Figure 7 shows the measuring module

dashboard, and the two detailed analysis reports are open in the two windows.

The first group of metrics provides different average analysis time (AAT) from

different perspectives. Total AAT which is the average duration of investigations

regardless of any condition gives a general inference about overall performance of

the SOC. AAT of each investigation type, each analyst, and each client are metrics

focusing on those parameters. By these performance metrics, it is possible to identify

time consuming investigation types, demanding clients, and fast analysts. With the

last 4 metrics, more detailed information is provided for managers to see which analyst

is faster for which investigation type, which client is demanding for which investigation
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Figure 7: The measuring module dashboard

type, and which analyst is taking more time for which client, which can imply not

knowing the client well.

• Total average analysis time.

• Average analysis time of each investigation type

• Average analysis time of each analyst

• Average analysis time of each client

• Average analysis time of different analysts for each investigation type.

• Average analysis time of different investigation types for each client.

• Average analysis time of different analysts for each client.

The second group of performance metrics concentrates on average duration of

different investigation steps. This group attempts to show steps’ average duration in

general, for different analysts, and different clients.

• Ranking analysis steps according to the time spent in executing them.

• Average analysis time of different analysts for each Step.
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• Average analysis time of different clients for each Step.

The third group is about showing maximum values for some performance metrics

in the managers’ GUI. This group helps managers to determine if maximum values

are significantly different from average durations.

• Identifying which investigation type takes more time to be analyzed.

• Which step of which investigation type takes more time to be analyzed.

• Which analyst has the highest average time for which investigation type.

• Which client has the highest average time for which investigation type.

• Which analyst has the highest average time for which client.

The fourth group is the number of created and updated incidents for different

parameters.

• The number of created and updated incidents for each investigation type.

• The number of created and updated incidents for each analyst.

• The number of created and updated incidents for each client.

OLAP component

An Online Analytical Processing (OLAP) tool is employed beside the designed mea-

suring module inside the managers’ GUI. OLAP empowers managers to create new

analysis queries with mouse dragging and clicking instead of modifying code or writ-

ing complicated SQL queries. An open-source web-based OLAP engine, Community

Edition Saiku (CE Saiku) [49], is integrated into the GUI providing customized data

analysis opportunities. CE Saiku is implemented by Pivot4J Java API using Mon-

drian OLAP server. We integrate web-based Saiku to the managers’ desktop GUI by

embedding a browser.

Saiku configuration for SOC performance metrics is discussed beside an example

in section 4.2.2.
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4.1.3 Simulation Module

The simulation module is designed to show effects of potential changes on the in-

vestigation workflow. It simulates the effect of a change on real activity logs, and

recalculates performance metrics. It helps the managers to prioritize efforts on po-

tential improvements of the SOC. Two potential changes as simulation options are

provided. One is modifying current steps’ duration, and the other is changing the

dispatching method of alerts.

The first simulation capability is modifying specific steps’ duration by a specified

percentage to see how different performance metrics would be affected. This simula-

tion helps managers to find out whether it is the best option to optimize one specific

step to reduce the time taken by that task.

By assessing optimization options for each step, the manager decides one or more

steps duration to be modified and by a specific percentage. An optimization option

can be a possible automation for a specific step to reduce analysts’ tasks. The re-

duction percentage is the manager’s prediction as a result of that potential change

in the investigation workflow. For example, if one step is going to be automated

completely, the related duration of the step should be removed completely (reduction

percentage is 100%). The simulation is designed in a way that the simulator consid-

ers all historical database investigations containing that specific step, and modifies

all current sub-steps’ (actions) durations by the mentioned value, and recalculate all

performance metrics based on the managers assumption.

The second simulation capability is simulating the dispatching phase of incoming

alerts among analysts with a different queueing model. Different ways of dispatching

services (alerts) among servers (analysts) is usually studied as queuing models [50].

In our work, a different alert dispatching method is simulated to assess the employed

approach effect on the SOC performance metrics.

The result of both simulation scenarios is shown side by side with the real one

(measuring module) in the GUI to ease the comparison process for managers. Figure 8

shows an example of the provided simulation results beside the measuring module. In

this way, comparing the effect of the simulation scenario on actual SOC performance

metrics is easy for the managers. For instance, as we see in Figure 8, the simulation

reduces the average time of analysis from 6:41 to 5:53. By the measuring module

results, we see the most time consuming investigation type is PV with the average
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of 10:17, the conducted simulation reduces it to 6:03 however the investigation type

is not changed. Moreover, we can compare easily that the biggest investigation type

average duration belongs to AnalystID 2 for PV with the average of 45:05, and this

simulation changes it to AnalystID 4 for MI with the average of 11:42.

Figure 8: The results of the simulation module alongside the measuring module

4.1.4 Feedback Module

The feedback module is designed for knowledge transfer among SOC analysts. Knowl-

edge can be a hint about next required action to proceed in the investigation, notifying

the analyst about anomalous durations and missing steps, or showing the result of

previous similar investigation types performed by other analysts. The analysts are

firstly notified about mentioned information in the Windows operating system tray,

and the summary of all notifications are accessible in a desktop GUI.

The feedback Module works as a background service uninterruptedly as analysts

activity logs are being stored in the database. It keeps reading the database, and

mapping them to the investigation model. As a result, the system can notify analysts

about next probable steps, find anomalies, and warn analysts about them. The

module reminds the analyst what is the probable next step based on the step he is

currently performing. Anomaly notifications are about spending normal duration on

the steps, or not missing an action. For instance, If the analyst takes 50% (which

is configurable) less or more time than the historical average duration of the step,

he will be warned. If the analyst’s activities does not match one of the investigation

model’s paths, he will receive a warning about the missing steps.
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Moreover, once an analyst starts to perform an investigation, the feedback module

shows previous investigations activity logs of the same type by different analysts.

This feature provides background knowledge from other analysts’ approaches with

different clients, or result of similar investigations for the same client. The results can

be filtered by a specific client to provide knowledge whether the client recently had the

same event type, what was the result, which source or destination IP were involved,

etc. The main investigation approaches adopted by analysts are the same. However,

analysts’ knowledge can be improved over time with experiences and knowing clients’

environment better. Moreover, the feedback module shows results of investigations

which can help the next analyst to have an inference about similar situations, for

instance, the same event is generated for the same source and destination IP which

was false positive before. Then, the next analyst by knowing the history of the client

about this specific event, and result of previous analyst’s investigation, can take a

faster action with the knowledge of previous analyst.

The feedback module is shown in Figure 9. As is shown, different hints are pro-

vided to the analyst. The analysts receive notifications in real time about their

ongoing investigations in the Windows operating system tray, where all notification

reports are accessible by the GUI.

Figure 9: The feedback module notifications and reports
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4.2 Implementation

In this section, the methodology and implementation details of each module are dis-

cussed. All modules are implemented in Python 2.7 programming language and

existing libraries.

For the managers’ GUI, since three modules (monitoring, measuring, and simu-

lation) are integrated in the same window, threading objects [51] are used to serve

each module’s refreshing time. In this way, different updating times for each mod-

ule (specifically, monitoring and measuring) does not block the main program. Both

monitoring and measuring modules are updated periodically after configurable time

intervals in the managers’ GUI.

The smallest scale of time duration shown in different modules of the tool is step’s

duration. Series of actions are grouped to a step representing a task.

Moreover, All configurable parameters mentioned in the work are reachable in a

single table in the database.

4.2.1 Monitoring Module

The characteristics of the visualized plot are discussed in Section 4.1.1. Visualization

of the monitoring module is implemented with Matplotlib package [52] in Python. As

is discussed, the plot is being continuously updated after configurable time intervals.

With each update, the plot is refreshed, and recent logs, which are performed steps

from the last update, are added to the plot. Here, the employed methodology to

implement the module is discussed.

In each update, the module fetches StepID and ActionID from the last log of the

investigation, and composes the mapping key. Then, it maps the key value to the

relevant node of the investigation model. By traversing the investigation model, it

can recognize what is the next probable action. If the next node is End, it shows

the investigation is completed, otherwise it shows the next probable action and step.

Moreover, it is possible to have more than one action as the next probable actions,

since there are several paths due to decision nodes and integration of all possible

paths. In this case, the predicted bar after the vertical line (shown in the plot) will

be in black-color meaning there are some probable actions based on the current action.

A white-color bar means there is only one possibility as a next action.
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The estimated duration of a predicted step in the plot is calculated based on the

average duration of a step from historical data. It is also possible that the analyst

is in the middle of one step, in this way the next predicted StepID is the same as

the performed step. For plotting it, the StepID will be the same, where the related

estimated duration will be the subtraction of performed duration of the step from the

total average of the step.

Differentiating between performed steps (past) and predicted steps (future) in the

plot is achieved by the vertical line. To plot the vertical line representing current time,

the tool fetches all performed steps’ durations from the database into the memory as

negative values, and historical average durations for the predicted steps as positive

values.

Two dictionaries are defined to read data into the memory to plot investigation

details as stacked bars. Dictionaries are a data structure in Python as a pair of key-

value. Considering a single investigation, there are two dictionaries containing steps’

durations of the investigation. The key of both dictionaries are InvID, where the

values of keys are different. One dictionary values are series of performed StepIDs

duration, and the other is average duration of predicted step (which could be more

than one). InvID is the dimension of y-axis which is the same for both dictionaries,

and the duration of different StepIDs, which are the length of different steps, are

illustrated as x-axis. As is described, performed steps’ durations are stored as negative

values in one dictionary, and predicted step’s duration is stored as a positive value

in another. In this way, negative and positive values related to the same InvID are

plotted on the same y axis, where performed steps and the predicted step can be

differentiated by the vertical line.

4.2.2 Measuring Module

The measuring module is designed to provide SOC performance statistics with differ-

ent metrics. The SOC performance metrics are described in Section 4.1.2. By having

the measurable investigation workflow, performance metrics can be calculated by run-

ning SQL queries on the database. The duration of an investigation is measurable

from provided analysts’ activity logs with different attributes.

PostgreSQL [53] as a free and open source object-relational database system is

employed in the implementation supporting SQL standard queries.
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The first and most important basic SQL query is the one to calculate a single

investigation duration. For calculating the related duration of one investigation, by

considering the InvID, all actions’ durations belonging to the same step are added

together. Then, all steps of the InvID are summed to represent the investigation

duration.

Since in reality there is a high chance of either skipping or redoing actions by

analysts, we do not put any limitation regarding number of actions that could be

added together for one step. As long as they are related to the same step of same

investigation with the unique InvID, duration times are added together.

By the employed methodology, we have different durations related to each ac-

tion, each step, and the entire investigation. Having duration of each step of the

investigation model provides the opportunity to perform average queries from spe-

cific perspectives, such as average of each step by each analyst. For example, it is

possible to look at performance of each analyst for each step to see who can manage

which step in a better way.

Having the duration of each single investigation in the database provides the

opportunity to perform average queries to calculate the investigation average duration

from different point of views, such as investigation average duration of each analyst,

investigation average duration of each client, etc.

Saiku OLAP Configuration

The functionality of web-based OLAP application, Saiku, is discussed in the subsec-

tion of Section 4.1.2. Saiku is integrated into the managers’ GUI next to measuring

module to provide more statistics on investigation logs. Besides OLAP configura-

tion for the SOC database, it is described how to integrate web-based OLAP in the

desktop GUI.

The employed package for integrating browser into the desktop GUI is CEF python

[54]. By this package, A web browser is embedded in one tab of the GUI. By setting

the web address of configured Saiku for the browser, managers can work with Saiku

application through the GUI.

Configuring the OLAP tool is accomplished by designing a schema. Schema as

a logical model defines the data format for calculations. Dimensions are the at-

tributes that we want to measure (e.g., InvestigationTypeID attribute). Measures
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are those quantitative attributes (e.g., TimeStart attribute) related to dimensions.

Calculations on measures are defined by different aggregators, such as sum, count,

avg, etc. One cube can contain several dimensions and measures to represent data

in a multidimensional form. A schema (logical model) can lead to many cubes con-

taining different dimensions and measures. In the following, the implemented cube

to measure investigation durations is described.

The schema containing one cube is designed by considering different attributes

of analysts’ activity logs to provide detailed investigation measurement to managers.

Dimensions considered for the cube are: investigation types, analysts, and clients.

Related measures are: TimeStart, TimeEnd, and InvID. For each measure, we should

set a proper aggregator. For TimeStart and TimeEnd attributes, the aggregator is

sum. For InvID, the aggregator is distinct-count counting the number of distinct

values (the measure is called “Number of Investigations”).

By simply using aggregators on measures of dimensions, SOC performance metrics

cannot be directly achieved. We employ the method, calculated member, to facilitate

writing formulas to combine different measures together. For instance, as a basic

calculation, different investigations’ durations are calculated. Then by using the cal-

culated member, we calculate the average of investigation durations. The calculated

member is “Average per Investigation”.

Once the cube is configured in the XML format, managers can make different

queries by dragging and dropping listed dimensions and measures. For example, by

selecting the dimension “Investigation Type” and the measure “Number of Investi-

gations”, we can see how many investigations are performed for each investigation

type in the dataset. If we add other dimensions, such as analysts and clients, as well

as more measures, such as “Average per Investigation”, detailed information will be

shown. Figure 10 is part of the result of this example, and the time is in minutes.

It shows which analysts performed which investigation types (here analysts #3 and

#4 performed the investigation type AA), which analysts performed the investigation

type for which client (here analyst#3 performed the investigation for client#67), and

the investigation average duration for the client analyzed by the analyst.
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Figure 10: Partial OLAP analysis results

4.2.3 Simulation Module

None of the two simulation scenarios affect the production database. The alert dis-

patching simulation is provided in a replicated database by storing the simulated

logs, and the modifying steps’ duration simulation is performed by SQL queries in

real time.

Modifying Steps’ Duration

For modifying steps duration, different SQL queries are provided to simulate the same

performance metrics as measuring module metrics. There are different SQL queries

than measuring module queries, since simulation queries firstly apply the reduction

percentage for the target steps in every investigation, then calculate different perfor-

mance metrics and show the results with the same format of the measuring module.
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Alert Dispatching Method

The default alert dispatching method is assigning the same number of clients to the

available analysts of a work shift. Analysts are responsible for their assigned clients

and work independently. For instance, we have five available analysts and 15 clients,

each three clients are assigned to one analyst regardless of any consideration. This

approach has some pitfalls, such as the possibility of assigning clients with high load

of alerts to the same analyst, where the other analyst is assigned clients with low load

of alerts. It is also possible that two clients assigned to the same analyst are under

attack at the same time, and the analyst cannot handle both of them at the same

time, where none of clients of the other analyst are in such a critical situation.

The employed simulation method follows single-queue, multiple-servers method-

ology. Considering several servers serving clients from a single queue is known as the

M/M/c model where c is the number of servers [50]. The discipline in these systems

is first-come, first-served and the arrival rate of jobs is based on Poisson process.

We employ a job routing idea proposed by Armony [55], named Fastest Servers

First (FSF). The idea is routing the incoming jobs to the fastest servers first resulting

in the overall performance improvement for the system. In our work, a fastest server

is the analyst with the lower average analysis duration for an assigned investigation

type.

In order to dispatch each alert from the queue, average analysis durations of

different analysts for the related investigation type are calculated, and the alert is

assigned to the most efficient analyst for that investigation type. For example, if the

incoming investigation type is MI; the simulator knows the analyst#6 is the most

efficient available analyst for this type, and it assigns the alert to the analyst#6. In

case the most efficient analyst is busy, it assigns it to the next best analyst.

In this simulation, two metrics will be provided to assess the effect of the simulated

method. One is the average analysis duration, and the other is the alert waiting

time. The waiting time is the time the alert stays in the SOC Console (queue) to be

analyzed. It is the subtraction of the start time of an investigation from the arrival

time of an alert in the queue. In our study, waiting time implies the response time of

the SOC to incidents which is an important factor for the managers to respect SLA

for different clients. By considering waiting time, we can also assess how the new

approach would affect the waiting time of the alerts. The simulation will be detailed
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in a case study in Section 5.3.

4.2.4 Feedback Module

WxPython user interface library [56] is used to implement the feedback module to

notify the SOC analysts of various information in the MS Window operating system

tray and the desktop GUI. Different methodologies, such as finding missing steps,

predicting the next step and its estimated duration, revealing duration anomalies,

and displaying previous similar investigations details to analysts are employed by

this module.

Mapping analysts’ activity logs to the investigation model to find the path followed

by analysts is discussed in section 3.2. Predicting the next step and its estimated

duration is also discussed in details in section 4.2.1, since the monitoring module has

the same feature to show next probable steps to the managers.

The algorithm to find missing steps maps analysts’ incoming activity logs to the

investigation model continuously to see whether a step is missed. It starts checking

logs of one investigation from the first log. It checks every two successive logs (adja-

cent) in the database to see whether they are also successive in the model. If they

are not adjacent in the model, there is one or more missing nodes between them.

Another algorithm is employed to find a shortest path between two nodes. Since it

is possible to have several paths between two nodes, the shortest path, including less

nodes, is selected to report missing actions or steps.

In order to report duration anomalies, as some analysts may not spend enough

time on some steps, a dynamic duration standard is provided base on historical data

for each specific step. The standard duration is considered as real-time average of

historical data in a range, as follows.

(1−n) ∗AverageDuration < StandardDuration < (1+n) ∗AverageDuration (1)

For instance, by applying the above formula, if n is 20% and Average is 60 sec,

normal duration range is between 48 and 72. The alternative range percentage is

configurable.

Once an analyst starts to perform an investigation, previous investigations logs of

the same EventID will be shown to the analyst. As is discussed in Section 2, several

alert types (EventID) are categorized to investigation types. Since investigation types
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are general categories, investigations of the same EventID are shown to the analysts

than the investigations related to a same investigation type.
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Chapter 5

Case Studies

Three case studies are elaborated in this section to show the effect of the designed

system on improvement of the SOC performance. Firstly, we go through the dataset

pre-processing and provide different statistics of the dataset.

5.1 Dataset Pre-processing

A pre-processing step is implemented to remove data-gathering mistakes resulting in

out-of-range values, impossible data combinations, and missing values. As is discussed

in Section 3.2, each row of analysts’ activity logs represents one single action of one

investigation performed by an analyst with different attributes (TimeStart, TimeEnd,

InvestigationTypeID, StepID, ActionID, SourceID, EventID, AnalystID, ClientID,

IncidentID, InvID). The duration of each action is calculated by the subtraction of

TimeStart from TimeEnd. The duration of relevant actions of one specific step will be

added together to represent the step’s duration. Then, accumulated steps’ durations

form the investigation duration.

Out of range values implies those steps’ durations which are too long compared to

real durations and need to be normalized. For instance, when normal step’s duration

is in a range of 10 minutes and information from the gathered log shows the duration

is one hour, which is abnormal. One possible reason for these abnormal cases is that

the TimeEnd of each action is considered as TimeStart of the next action. Therefore,

if there is a gap (e.g., analysts take a leave) between sequential actions, the large

duration is possible. Such large duration for steps is considered as a noise in our
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dataset and is normalized. More specifically, steps duration more than 30 minutes is

considered as a noise and normalized in the preprocessing phase.

Impossible data combination emerges after analyzing each single investigation

logs. There can be different ClientIDs in one investigation related to a specific client,

since logging the analysts’ activities by our system is tracking their mouse clicks and

it is possible that analysts mistakenly click on the other parts of the SOC Console

relevant to other clients than the one they are performing an investigation for. This

kind of noise also needs to be removed from the dataset to fit data into the tool.

Missing values are about non-existent values for different attributes of a log entry.

During the logging phase, the recording log system does not guarantee to provide

values for all attributes (InvestigationTypeID, SourceID, EventID, IncidentID) for

each single action of investigation which is one row of log entries. It is possible that

some values are not retrievable, and they will be filled by zero automatically; however,

those values can be retrieved by looking at the entire investigation logs. Zero values

could appear in two situations; either when all values of one attribute are zero in

the investigation log entries, or some of them are zero. If all values of one attribute

related to an investigation are zero, it means the value could not be fetched during

logging phase which is considered as unknown. If even one of the values is filled by

a value rather than zero, other zero values related to the same attribute should be

replaced by that value in the pre-processing phase.

It is observed there are some investigations with zero or milliseconds duration,

which are more related to false positive or contextual events. Analysts close these

events immediately resulting in very fast investigations. Contextual events can be dif-

ferent assets syslogs such as failure login attempts that could be suspicious in specific

situations. Once analysts infer nothing goes wrong, they clean them from the alert

queue without much investigation. Since these short investigations affect different

performance metrics enormously, investigations without expanding alert content are

eliminated from the dataset.

Different activity logs from different analysts’ machines are being gathered and

stored at the same time by the logging script. Firstly, different analysts’ activity

logs are separated from each other ordered by time. Then, different investigations

of the same analyst are distinguishable from each other by a specific ActionID. A

new investigation starts with ActionID# 130. By separating each investigation from
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others, we are able to assign each investigation a unique identifier as InvID.

Here, we provide an example of one investigation activity logs to show the pre-

processing phase which is performed to prepare raw logs to fit into the table of

database. Table 8 represents raw data in a text format file and Figure 11 shows

processed data placed in the database. At first glance, Figure 11 has two more at-

tributes than Table 8, the first attribute is ID, an auto increment primary key of the

table, and the last attribute is InvID. All related log entries of a single investigation

receive the same unique identifier which is 1250000 here.
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1432357758628 1432357765749 0 1 130 0 0 2 10 0

1432357765749 1432357822688 0 1 105 0 0 2 10 0

1432357822688 1432358143981 1 1 107 0 34463 2 10 0

1432358143981 1432358146472 0 16 103 0 0 2 10 0

1432358146472 1432358250989 0 16 127 0 0 2 10 0

1432358250989 1432358250989 1 2 125 0 34463 2 10 0

Table 8: Raw activity logs in the format of text file

InvestigationTypeID and StepID values are mapped from numbers to predefined

codes of the system in the pre-processing phase. For instance, in the text file, value

1 for the InvestigationTypeID attribute is an identifier of Policy Violation (PV) in-

vestigation type. Consequently, those numbers are mapped to the abbreviated forms

of their investigation type names. Similarly, it is done for StepID attribute, codes

1, 2, 3, ... are mapped to A, B, C, ... respectively. In Table 8, we can see values

of InvestigationTypeID attribute are zero and one, firstly all values of this attribute

are changed to one. Then all values are mapped to PV as we see in Figure 11. If all

those values related to the InvestigationTypeID were zero, it would mean the Inves-

tigationTypeID was not retrievable. And, the algorithm would assign OTHERS type
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Figure 11: Rows of logs related to one investigation placed in the database

for the InvestigationTypeID, since it was not related to a known investigation type.

There is a possibility when an analyst is not convinced about an action and he

will repeat it. Consequently, it is possible to see two or more log entries with a same

ActionID happening one after another with different TimeStart and TimeEnd values.

As the algorithm adds actions’ durations related to the same step together, only spent

durations on one step will be considered.

5.1.1 Statistics of Dataset

Our dataset is categorized into three different classes based on investigations results.

As is discussed, an investigation can result in creating a new incident, updating one

of current incidents, or closing the alert. When the related investigation of an alert

results in creating an incident, it indicates a possible threat confirmed by an analyst’s

indications (proofs). Then the analyst contacts the related client for the incident

escalation based on the escalation grid. The incident is open till the related client

either confirms or clarifies the situation. In this gap (client’s response), which could

be from one day to one week depends on incident criticality, incoming alerts will be

added to the current incident. Updating the recorded incident with more alerts or

client’s response forms the category of updating incidents. False positive alerts are

categorized into the closed alerts class.

The time period of the dataset is from June 2015 to August 2015 for 57 days. 6

analysts perform alert analysis for 40 clients. The time duration format in Table 9, and

all following tables is mm:ss. As is shown, 40.7% of investigations result in creating

or updating incidents, where 59.3% of total investigations are about closing alerts

after an investigation. Average analysis duration of investigations ending in creating

new incidents is 17:52, while average duration of updating an incident and closing
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Parameters New Updated Closed Total

Incidents Incidents Alerts Dataset

Number of log entries 3301 1558 9380 14239

Number of investigations 194 331 765 1290

Proportion 15.04% 25.66% 59.3% 100%

Total average analysis duration 17:52 06:41 05:16 07:32

Average duration of fastest analyst 12:10 03:59 04:44 06:22

Average duration of slowest analyst 22:38 09:46 11:27 11:52

Table 9: The dataset statistics

an alert are 06:41, 05:16, respectively. Moreover, different analysts have different

average analysis durations. The slowest analyst’s average duration is 11:52 whereas

the fastest one is 06:22.

The different average investigation durations of different investigation types are

shown in Table 10 based on three investigation results. For each column, the first

element is the number of related investigations, and the second is the average in-

vestigation duration. For all investigation types, we can see the average duration of

creating a new incident category is longer compared to updating the incident and

closing the alert categories. EVS, MI, BFA and PV investigation types take more

time to gather indications to create an incident than AA, DOS, and OTHERS. Most

popular attack type is MI with 47 distinct incidents in the dataset, whereas DOS has

the least number of created incidents, 4. After MI, other two popular attack types are

BFA and PV. Since the number of cases for OTHERS type is much more than other

known categories, it is not mentioned in our comparisons for known investigation

types.

For almost all investigation types, average time of updating an incident is more

than closing the alert of the same type. Exception is the AA type whose number of

related cases (#2) for updated ones is not enough to be considered as a counterex-

ample. However EVS attack type takes more time to be confirmed as an incident,

average duration of getting closed is the least (03:27) among other types. The most

time consuming investigation type for updating an incident is PV type, which is

reasonable as it mostly needs communicating with the client to clarify the situation.

Looking at the total dataset statistics, MI, BFA, and PV are most time consuming

alert types in the SOC regardless of the investigation result. The number of received
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Investigation New Updated Closed Total

Type Incidents Incidents Alerts Dataset

- # Avg # Avg # Avg # Avg

EVS 6 20:50 11 06:28 91 03:27 108 04:43

MI 47 20:31 68 07:04 183 06:22 298 08:45

BFA 24 20:18 17 08:38 102 05:16 143 08:11

PV 20 19:46 10 10:17 80 05:41 110 08:40

AA 6 19:27 2 01:10 67 05:25 75 06:25

DOS 4 17:35 5 08:13 77 04:55 86 05:41

OTHERS 87 15:02 218 06:17 165 04:58 470 07:26

Table 10: The dataset statistics regarding different investigation types. Here, average
values are time duration in the format of mm:ss, and the other column (#) is the
number of instances.

alerts from these attack types is highest beside EVS, although EVS alerts are analyzed

quickly. Trend shows MI type has the highest number of investigations (298), and

the highest average analysis time (08:45).

5.2 Case Study I, Modifying the Duration of Steps

This case study is about assessing potential steps which could be automated to im-

prove overall performance. Every change in a system needs to be assessed before

going into production. After going through all steps that analysts perform for an

alert investigation, two possible automation options are recognized. One is about

checking clients’ assets and the other is about checking escalation grid. These two

are considered as potential improvements to the current investigation workflow.

5.2.1 Checking clients’ assets (part of step C)

As described before, there is one step about checking a client’s assets. The reason

behind checking the client’s assets is to assure the raised alert matches to the assets’

vulnerabilities. For instance, if the raised alert is about vulnerabilities of a specific

version of software and the client does not have that specific version, then raised alert

is apparently false positive. This example could be extended to all kind of assets,
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resources, and different related versions and patches.

A possible solution to automate this step is correlating alerts with the events

triggered by vulnerability scan of a client’s assets. In other words, alerts can be

correlated based on the client’s assets vulnerabilities for not raising FP alerts. In this

way, this task could be handled by the SOC automation solution than the human

analysts.

In this simulation scenario, we assess how the possible solution would affect the

SOC performance. As we know, investigations can result in three different categories,

creating a new incident, updating the current incident, or closing the alert as FP. For

the first two categories (creating or updating incidents), the simulation is done in a

way that the related actions’ duration to asset checking are eliminated completely,

then average analysis durations are recalculated to show the improvement. For the

investigations of the closing alerts category containing this step, a careful observa-

tion is made whether the reason for closing the alert was about mismatching asset’s

vulnerabilities and the raised alert. If the condition is true, we claim the entire in-

vestigation was useless, since by implementing the provided solution, there would be

no more FP alert in this regard. As a result, FP alert reduction aside, analysts’ time

would be saved. If the alert is not closed immediately after checking this step, we

just deduct this step duration from the investigation duration.

For the first two categories of investigations (creating and updating an incident),

we remove related actions for checking assets, then following simulated results are

calculated. Table 11 shows the results for creating a new incident class, where the

dataset average, the simulated average and the reduction ratio are represented in this

table. Generally, 48.45% of investigations in this class contains an asset checking step

which is involved in this simulation. The total average of this investigation class is

decreased by 7.55%. The most affected investigation types are AA, EVS, and MI.

Table 12 depicts the simulation result of the updating incidents class, where 12.69% of

investigations has the asset checking step. The total average of this class is decreased

by 6.98%.

For the closing alerts category, the step for checking a client’s asset is performed in

30.2% of investigations (231 out of 765 investigations) which can be eliminated from

the analysis process similar to other two investigation categories scenarios. Specif-

ically, 41 out of 231 (17.75%) alerts of these investigations are closed immediately
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Investigation Type Dataset Average Simulation Average Reduction Ratio

EVS 20:50 18:17 12.24%

MI 20:31 18:15 11.05%

BFA 20:18 19:22 4.6%

PV 19:46 19:25 1.77%

AA 19:27 16:13 16.62%

DOS 17:35 16:57 3.6%

OTHERS 15:02 14:01 7.62%

Table 11: Class: creating new incidents; 94 out of 194 investigations (48.45%) contain
step C. By the simulation, the total average analysis duration decreases from 17:52
to 16:31, or 7.55%.

Investigation Type Dataset Average Simulation Average Reduction Ratio

EVS 06:28 05:10 20.10%

MI 07:04 06:24 9.43%

BFA 08:38 06:47 21.43%

PV 10:17 09:08 11.18%

AA 01:10 00:30 57.14%

DOS 08:13 08:13 0.0%

OTHERS 06:17 06:04 3.45%

Table 12: Class: updating incidents; 42 out of 331 investigations (12.69%) contain
step C. By the simulation, the total average analysis duration decreases from 06:41
to 06:13, or 6.98%.
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Investigation Dataset Average after Final Reduction

Type Average eliminating investigations Simulation Ratio

EVS 03:27 03:28 3:11 8.17%

MI 06:22 06:14 5:44 8.02%

BFA 05:16 05:19 5:01 5.64%

PV 05:41 05:55 5:36 5.35%

AA 05:25 05:08 4:59 2.92%

DOS 04:55 04:55 4:46 3.05%

OTHERS 04:58 04:50 4:35 5.17%

Table 13: Class: closing alerts; 5.36% of investigations are removed, 231 out of 724
investigations (31.9%) are involved in this simulation. By the simulation, the total
average analysis duration decreases from 05:12 to 04:54, or 5.77%.

after checking the step indicating useless investigations. Since they are closed imme-

diately after this step, it is assumed that the raised alerts did not match the assets

vulnerabilities. As a result, they could be cleaned from the alerts repository before

reaching analysts’ SOC Console. By implementing the solution, the rate of false

positive alerts would be decreased by 5.36% (41 out of 765) in this class, where 266

minutes of analysts time (around four and a half hours) would be saved. For the

remaining 190 investigations containing this step, we eliminate the asset checking

step and recalculate the results for the closing alerts category. Results are shown in

Table 13 illustrating 7.28% decrease in the total average analysis duration.

Considering all investigation categories together, Table 14 illustrates different sim-

ulated average analysis durations for different investigation types. After removing 41

investigations from the closed alerts category, 29.38% of investigations are affected

by this scenario, and the total average analysis duration decreases by 6.83%. The

most affected attack types are EVS, MI, and BFA, where PV and DOS attacks are

improved to a lower degree.

Considering investigation classes, the summary of simulation results is shown in

Table 15.

5.2.2 Checking escalation grid (step F)

One analysis step is checking escalation grid to find out how the related client should

be informed in case of a new or updated incident. Each client’s escalation grid as an

informative document is accessible through some mouse clicks in the SOC Console.
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Investigation Type Dataset Average after Final Reduction

Type Average eliminating investigations Simulation Ratio

EVS 04:43 04:46 4:15 10.84%

MI 08:45 08:49 7:58 9.64%

BFA 08:11 08:19 7:42 7.41%

PV 08:40 08:59 8:36 4.27%

AA 06:25 06:11 5:47 6.47%

DOS 05:41 05:44 5:33 3.2%

OTHERS 07:26 07:26 7:03 5.16%

Table 14: Total dataset; 29.38%, 367 out of 1249 investigations contain step C (41
investigations are removed from 1290 total investigations, as is discussed for the closed
alerts category). By the simulation, the total average analysis duration decreases from
07:34 to 07:03, or 6.83%.

Investigation Dataset Simulation Involved Reduction

Class Average Average Proportion Percentage

Creating new incidents 17:52 16:31 48.45% 7.55%

Updating incidents 06:41 06:13 12.69% 6.98%

Closing alerts 05:12 04:54 31.9% 5.77%

Total dataset 07:34 07:03 29.38% 6.83%

Table 15: The summary of simulation results for different investigation classes
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Investigation Type Dataset Average Simulation Average Reduction Ratio

EVS 20:50 20:36 1.12%

MI 20:31 20:06 2.03%

BFA 20:18 20:06 0.98%

PV 19:46 19:43 0.25%

AA 19:27 19:01 2.23%

DOS 17:35 17:28 0.66%

OTHERS 15:02 14:52 1.11%

Table 16: Class: creating new incidents; 58 out of 194 investigations (29.9%) contain
step F. By the simulation, the total average analysis duration decreases from 17:52
to 17:38, or 1.3%

The contacting approaches can be different for each client based on severity of the

incident and the client’s preference.

A possible improvement for this step is providing information about the required

escalation method for an incident in the window of creating and updating incidents

in the SOC Console. By correlating related client escalation grid and related incident

type, the proper contact approach can be fetched and shown to the analyst as a

hint which saves him time to go through different buttons to find out the required

information. In this scenario, we observe how frequent this step is beside the average

duration analysts spending on it.

We found that 58 out of 194 (29.9%) investigations contain checking escalation grid

for the category of creating incidents. Besides, 18 out of 331 (5.44%) and 23 out of 765

(3.0%) investigations include checking escalation grid for the categories of updating

and closing incidents respectively. Since the number of involved investigations for

the last two investigation classes are not much (as expected), the simulation is only

done for the creating new incidents category. Table 16 shows the detailed simulation

results for the class of creating new incidents, where the related step is eliminated

completely. Our simulation illustrates the average investigation duration is decreased

by just 1.3%. MI and AA attack types are mostly checked for the proper escalation

method.
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Investigation Dataset Average after Simulation Reduction

Type Average eliminating investigations Average Ratio

EVS 04:43 05:18 04:46 10.06%

MI 08:45 09:46 08:48 9.9%

BFA 08:11 08:59 08:18 7.61%

PV 08:40 09:32 08:59 5.77%

AA 06:25 06:40 06:11 7.25%

DOS 05:41 05:59 05:43 4.46%

OTHERS 07:26 07:52 07:25 5.72%

Table 17: Combined effect: 41 investigations are removed resulting in an increase
in the average analysis durations shown in the third column, 377 out of 1249 inves-
tigations (30.18%) are affected by the combination of two simulation scenarios, and
decreases the total average analysis duration from 8:09 to 7:33, or 7.36% beside saving
four and a half hours man-hour.

5.2.3 Combination of two possible improvements

By combining the above two improvement options, we assess how averages would be

affected. Correlated alerts with assets’ vulnerabilities and automated shown escala-

tion grid together are simulated to show the effect on the averages. Table 17 shows

the simulation results. Firstly, by removing 41 investigations which were closed im-

mediately after checking assets’ vulnerabilities, new analysis averages are shown in

the second column indicating on an increase which means removed investigations were

part of short investigations. Then by eliminating the steps related to checking assets

and escalation grid, simulated average analysis durations are calculated and shown

in the fourth column. By employing both automation solutions, the total average

analysis duration would be decreased by 7.36%. The most effected attack types are

EVS, and MI.

5.3 Case Study II, A Different Alert Dispatching

Method

In this case study, the simulation of a different dispatching method of incoming alerts

among analysts is assessed.

The number of analysts working in the SOC is different from one work-shift to

another work-shift. For week days (Monday to Friday), there are three work-shifts
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per day; day-shift from 8:00 to 16:00, evening-shift from 16:00 to 00:00, and night-

shift from 00:00 to 8:00. For weekends, there are two 12 hours shift per day. Since

during weekend and weekdays evening and night shifts only one analyst is working,

these shifts are not considered in the dataset of this simulation. Only investigations

of the day-shift for week days with more than two analysts are considered for this

simulation.

In Section 5.1, it is mentioned that short investigations (with milliseconds du-

rations) are removed from the dataset. Since the number of short investigations is

significant, they affect the average time of analysis enormously. By removing short

investigations, we are able to look at the dataset and its statistics in a more accurate

way. However, in this case study since we want to simulate dispatching phase of alerts,

we need all alerts. By those removed investigations, we would have time gaps between

investigations showing that the analysts were free, which was a wrong assumption for

this simulation. Consequently, we consider a dataset containing all investigations no

matter how long they are. We consider all situations in which analysts are busy.

As is discussed, the alert waiting time is also considered as a metric to show the

effect of the simulation. In this regard, having the arrival time of alerts is necessary,

however we do not have arrival time in the provided dataset. Poisson process [57]

is employed to simulate the arrival time of alerts. Using the Poisson distribution,

we generate the desired number of random durations with a specific average in to-

tal. Summation of the waiting time with the investigation start time (timestamp)

simulates the arrival time of the alert in the queue.

Two parameters are needed to be fed the Poisson process to generate random

durations as the waiting time. One parameter is average duration time of the waiting

time which alerts stay in the queue to be analyzed. We have the average duration

as two hours asked from the SOC experts. Second parameter is the number of alerts

which we need to generate time for them. Number of alerts is counted based on the

number of investigations which we have for each work shift. For each work-shift,

the simulator counts the number of investigations, and considers 120 minutes as the

average waiting time. Then by Poisson process, it generates the same number of

durations by different values with the average of 120 minutes in total.

The arrival time stamp of an alert is the constant value which is generated by the

Poisson process. The start time of investigations changes from the original dataset
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to the simulated data. Since investigations are performed by different analysts with

different analysis durations, they affect the start time of the next investigation in the

work-shift. Consequently, we have different waiting times for the simulated investi-

gations.

In order to dispatch each alert of the queue, the simulator checks the average anal-

ysis duration of the available analysts of the work-shift for the related investigation

type. Then, the alert is assigned to the most efficient and available analyst of the

shift. The available analyst means analysts working in the work-shift, and not being

occupied by other investigations. When all analysts are occupied, next investigation

would be postponed till one analyst becomes free.

Once an investigation is assigned to an analyst by the simulator, activity logs of the

simulated investigation are simulated from the real investigation logs. The simulator

considers the same investigation path with the same number of activity logs for the

simulated investigation, where duration of the different actions (activity logs) in that

investigation are calculated based on the assigned analyst’s average analysis duration.

In other words, the duration of the simulated investigation is based on the average

analysis duration of the selected analyst for the simulation.

We know based on the different results of an investigation (e.g., closing the alert

or creating new incident), the average of the same actions are different. For simu-

lating each action duration of one investigation, the simulator calculates the average

duration of the action based on the investigation result. For example, the average

duration of expanding alert content for investigations resulting in creating new inci-

dents is 4 minutes where it is 30 seconds for investigations resulting in closing alerts.

Since the simulator knows the result of each alert investigation from the beginning,

it simulates the duration of each action based on the average duration of the related

alert investigation class.

Totally, 33 day work-shifts are considered for the simulation with the minimally

two analysts working per work-shift. For 17 work-shifts, two analysts are working

per work-shift. For 15 work-shifts, three analysts and for one work-shift four analysts

are working in the SOC in parallel. These 33 day work-shifts are selected with the

entire dataset. Table 18 shows statistics on the selected dataset for 33 day work-

shifts and simulation results. Each column represents one investigation class, such as

new incidents which first sub-column is dataset average analysis time, second one is
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simulated average analysis time, and third sub-column is the reduction ratio.

By comparing Table 9 with Table 18, we can see the proportion of the closing alerts

category increases from 59.3% to 94.12%, since all investigations of the work-shift

are considered regardless of their duration.

The simulation result in Table 18 represents the effect of the simulated dispatching

approach on the total average analysis time and waiting time of different investigation

classes and the total dataset. Total average analysis duration and waiting time of the

total dataset are improved by 4.42% , and 2.18% respectively.

Investigation classes New Incidents Updated Incidents Closed Alerts Total Dataset

# of log entries 1059 731 11181 12971

# of

investigations 75 163 3807 4045

Proportion 1.85% 4.03% 94.12% 100%

Parameters Real Simu % Real Simu % Real Simu % Real Simu %

Total average

analysis duration 18:13 16:54 7.23% 05:19 04:16 19.75% 01:25 01:25 0% 01:53 01:48 4.42%

Waiting time 120:16 116:02 3.52% 120:00 116:02 3.3% 120:06 117:34 2.11% 120:06 117:29 2.18%

Table 18: The alert dispatching method dataset statistics for 33-day work-shifts, the
simulation results and the reduction ratios.

Table 19 shows the simulation results for the different investigation types. For each

column, first sub-column is the number of investigations related to the investigation

type, second sub-column is the real dataset average analysis duration, third is the

simulated average analysis duration, and the fourth is the reduction ratio. In some

columns related to the reduction ratio, “+” is shown (e.g., +2.77%) implying the

increase percentage rather the decrease.

By looking at the results, we can say when the reduction ratio is high, it is

infer-able that either the dataset durations for those specific investigations are so

different from the average, or analysts efficiency are so different from each other for

that investigation type. For instance, we can see for the updating incidents class

related to the PV investigation type, simulated average time is decreased by 98.94%;

first point is that the number of investigations are few (#5), and the second point

is that by the simulation we interchange the real investigation duration (which can

be so far from the average) with the average analysis duration of the best analyst.

Moreover, for investigations belonging to the updating incidents class, if they are

about contacting the client, they can just contain few actions with long durations,
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and we simulate them with the average duration of that action which is shorter.

Looking at the reduction ratios of the total dataset, the most affected investigation

types are EVS, and PV showing different efficiency of analysts. Since by dispatching

the alerts to different analysts, the average analysis durations are decreased signif-

icantly. However DOS and OTHERS investigations are increased in their average

analysis duration by +5.71% and +1.98% respectively.

Inv. New Updated Closed Total

Types Incidents Incidents Alerts Dataset

- # Real Simu % # Real Simu % # Real Simu % # Real Simu %

EVS 3 15:56 13:05 17.89 7 03:56 00:25 89.41 92 01:04 00:59 7.81 102 01:42 01:18 23.53

MI 21 21:50 22:54 +4.88 38 06:47 05:42 15.97 300 02:21 01:58 16.31 359 03:58 03:35 9.66

BFA 12 22:16 22:52 +2.77 8 02:59 01:59 33.52 493 01:21 01:05 19.75 513 01:52 01:37 13.39

PV 7 18:34 11:28 38.24 5 06:18 00:04 98.94 222 01:05 01:04 1.54 234 01:43 01:21 21.36

AA 2 16:23 13:44 16.17 2 01:10 01:08 2.86 58 01:37 01:27 10.31 62 02:04 01:50 11.29

DOS - - - - 3 05:55 01:16 78.59 256 01:07 01:14 +10.45 259 01:10 01:14 +5.71

OTHERS 30 14:40 12:13 16.7 100 05:04 04:33 10.2 2386 01:23 01:28 +6.02 2516 01:41 01:43 +1.98

Table 19: The alert dispatching method dataset statistics for different investigation
types, the simulation results and the reduction ratios (the sign “+” implies an increase
than the reduction)

The proposed approach is supposed to have a better performance result when the

number of working analysts in the work-shift is more. Since we have more analysts

working per work-shift, we have more diversity in analysts’ skills. Diversity implies

the analysts with different expertise, as each analyst could be more skilled on specific

alert type and analyze that type faster. In the dataset of this simulation, we can see

that we have choices of two, three and four analysts working per work-shift.

We divide the dataset to three distinct datasets based on the number of analysts

working in work-shifts (2, 3, and 4 analysts working per workshoft). Separate three

alert dispatching simulations are done for the three datasets to show the effect of the

employed simulation approach on work-shifts with different number of analysts.

Tables 20 and 21 represent the simulation results for the work-shifts with two and

three analysts respectively. The total average analysis duration is decreased 3.88%

and 0.85% for the work-shifts with two and three analysts respectively. Moreover,

the waiting time is decreased 2.23% for the work-shifts with two analysts, and 2.15%

for the work-shifts with three analysts.

An observation from the simulation results of the work-shifts with two and three

analysts shows one important factor to improve the efficiency by the employed ap-

proach is about combination of the selected analysts’ expertise for one work-shift. If
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analysts with different expertise are chosen to work in the same work-shift, it would

increase the efficiency of the SOC by the proposed dispatching model more. For in-

stance, if we have two analysts that each one has a good performance result for a

different range of investigation types, the performance improvement is more than the

situation that we have three analysts with the same expertise level.

Parameters New Incidents Updated Incidents Closed Alerts Total Dataset

Number of investigations 24 57 1535 1616

Parameters Real Simu % Real Simu % Real Simu % Real Simu %

Total average analysis duration 15:17 15:31 +1.53% 05:11 03:37 30.22% 01:23 1:20 3.61% 01:43 01:39 3.88%

Waiting time 120:01 114:59 4.19% 120:27 115:40 3.97 % 120:01 117:54 1.76% 120:28 117:47 2.23%

Table 20: The alert dispatching method dataset statistics for 17-day work-shifts with
2 analysts, the simulation results and the reduction ratios (the sign “+” implies an
increase than the reduction)

Parameters New Incidents Updated Incidents Closed Alerts Total Dataset

Number of investigations 44 100 2125 2269

Parameters Real Simu % Real Simu % Real Simu % Real Simu %

Total average analysis duration 19:31 17:49 8.71% 05:22 04:49 10.25% 01:26 1:28 +2.32% 01:57 01:56 0.85%

Waiting time 120:25 116:02 3.64% 119:48 116:05 3.1% 119:58 117:29 2.07% 119:58 117:23 2.15%

Table 21: The alert dispatching method dataset statistics for 15-day work-shifts with
3 analysts, the simulation results and the reduction ratios (the sign “+” implies an
increase than the reduction)

Table 22 is the simulation results for one work-shift with 4 analysts. As is shown,

the total average analysis duration and the waiting time are decreased by 32.21% and

6.58% respectively. This experiment shows also the employed approach improves the

SOC performance where the number of analysts is increased and the analysts working

in the same work-shift have different expertise regarding different investigation types.

Parameters New Incidents Updated Incidents Closed Alerts Total Dataset

Number of investigations 7 6 147 160

Parameters Real Simu % Real Simu % Real Simu % Real Simu %

Total average analysis duration 19:55 11:34 41.92% 05:51 01:37 72.36% 01:31 1:13 19.78% 02:29 01:41 32.21%

Waiting time 120:06 119:33 0.45% 118:58 118:37 0.29% 119:54 115:29 3.68% 119:52 115:47 3.41%

Table 22: The alert dispatching method dataset statistics for 1-day work-shift with 4
analysts, the simulation results and the reduction ratios
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5.4 Case Study III, The Feedback Module

Our study on the analysts’ activity logs shows investigations’ average durations for

different attack types are usually different from each other. Different analysts’ aver-

age durations are usually also different even for the same attack type implying the

different efficiency. The different efficiency can be due to the analysts’ different levels

of knowledge regarding analysis approaches or familarity about clients’ environments.

As is discussed in Sections 4.1.4 and 4.2.4, one feature of the feedback module is

showing previous investigation logs whose alert type is similar with which the analyst

is currently analyzing. In this case study, we evaluate how such a feedback module

would affect the analysts’ performance.

We consider one analyst as the senior analyst who has better efficiency than

others. The other analysts who may benefit from the senior analyst’s knowledge and

experience are called junior analysts. We model the trend of investigation durations

of the senior analyst, and partially apply the model to future investigation durations

of the junior analysts, assuming that, since the junior analysts can see what the senior

analyst performed through the feedback module, they can potentially improve their

efficiency.

Linear regression analysis [58] is employed to model the senior analyst’s investi-

gation durations. By the regression analysis, the mathematical function representing

investigation durations is extracted from the dataset. The duration of each investi-

gation completed by the senior analyst is considered as a data point for that analyst.

Different data points of the analyst is ordered by time chronologically as they are

performed in different days. By extrapolating the established model, we can predict

future investigation durations of the senior analyst based on his historical data.

It is discussed in Section 2, several alert types (EventID) indicating the same

attack type are grouped together to form an investigation type. EventID can be the

signature of an exploited vulnerability of an application belonging to an attack type.

Since investigation types are general categories containing different kinds of EventIDs,

the feedback module will show the investigations of the same EventID to the analysts

by the feedback module.

In order to simulate a scenario, we choose an EventID with the highest number

of investigations in the dataset, since we would like to have sufficient investigation

samples (data points) to more accurately model the analyst’s investigation durations

54



AnalystID Average Variance The Number of Investigations

1 16:05 - 1

2 01:17 - 1

3 21:34 717.72 2

4 05:46 100.57 5

5 07:29 35.45 6

6 03:16 7.85 45

Table 23: Different analysts’ statistics; the average investigation duration, the vari-
ance of investigations durations, and the number of investigations related to EventID
101010 which is a custom EventID for verifying DNS queries.

and assess the effect of our feedback module. The most common EventID is 101010

which has the largest number of investigations compared to other EventIDs. This

EventID is a custom EventID corresponding to sensors in verifying DNS queries.

Each DNS request is verified by comparing it to a blacklist in the SOC automatically.

If the requested domain is in the blacklist, the sensor raises an alert.

After determining the EventID, we must also choose a senior analyst to model

his investigation durations. Some parameters are considered in choosing the senior

analyst. The senior analyst is the one with the lower average investigation duration,

the lower data points variance, and the highest number of investigations related to the

selected EventID. In Table 23, we can see different analysts’ statistics regarding the

mentioned parameters. From the table, we can see the most suitable senior analyst is

the AnalystID 6 who has the lower average investigation duration, the lower variance,

and the higher number of conducted investigations compared to the other analysts.

We note that having more investigations by the AnalystID 6 in the dataset does

not mean other analysts pay less attention to EventID 101010. Since we have some gap

(missing days) in the dataset, it is likely that we may have missed some analysts’ work-

shifts, or AnalystID 6 simply has more work-shifts during the dataset’s particular

period.

A realistic assumption here is that the junior analyst will partially benefit from

the knowledge of the senior analyst by observing the latter’s investigation details but

such benefit is not likely sufficient to enable the former to perform those analyses

with exactly the same efficiency as the latter. In other words, the knowledge transfer

is partial instead of complete. Accordingly, we assign a percentage range by which a

junior analyst can improve the efficiency of his/her investigations of the same type
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after observing the senior analyst’s approach and results. It is assumed in this case

study that a junior analyst can gain 10% to 60% of the senior analyst’s knowledge

to improve his investigations. To obtain a more accurate estimation of such a range

from real data is a future work.

The average investigation duration of a junior analyst for EventID 101010 is con-

sidered as the default value for his future investigation durations in our simulation.

This default value can be improved by learning from the senior analyst. For example,

when we assume the junior analyst gains knowledge by 10%, his average investiga-

tion duration is calculated as the summation of 90% of the estimation proportion

(90% ∗ Junior Investigation Average) and 10% of the senior analyst’s investigation

duration (as predicted by the model) (10% ∗ Model Investigation Duration). As

another example, when we assume the junior analyst gains knowledge by 60%, his

average investigation duration is equal to 40% of his own duration plus 60% of the

senior analyst’s duration.

The reason behind considering the average investigation duration of the junior

analyst instead of modeling his investigations durations (as well as the senior analyst)

is that we do not have sufficient data points to establish the model for the junior

analysts. Since the dataset does not provide enough investigations for any single

EventID, the average investigation duration is considered for the junior analysts.

For the regression analysis, the X axis represents time series ordering investigations

chronologically and the Y axis is the investigation duration for the data points. In

practice investigations might be performed on the same day or across different days

in the period of the dataset, but the time distance between data points considered

in this case study is limited to one day in this simulation. We aim to obtain the

main trend of the investigation durations in chronological order as either an increase

or decrease in the average investigation durations of the senior analyst during the

dataset period.

There turn out to be a lot of fluctuations for the 45 data points representing

investigation durations for the AnalystID 6. To smooth the curve, every five adjacent

investigation durations are averaged and represents one data point. In the end, we

obtain a model of the senior analyst’s investigation durations as the exponential

equation shown below.

y = 2.8352e−0.005x (2)
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In Table 24, some of the data points are shown. The first 10 data points are

averaged investigation durations from 45 investigations of the dataset for the senior

analyst, and the next 10 data points are the extrapolation of the model. The aver-

age duration of the dataset data points is 3:04, where the average duration of the

extrapolated data points is 2:37 showing the decreasing trend of the senior analyst’s

model, which indicates that the analyst’s efficiency for this type of investigations

slowly improves over time.

X; Time Y; Investigation X; Future Y; Extrapolated

Series Duration Time Series Investigation Duration

1 2:11 11 2:41

2 2:20 12 2:40

3 2:11 13 2:40

4 5:57 14 2:38

5 3:31 15 2:38

6 2:32 16 2:37

7 1:59 17 2:36

8 2:54 18 2:35

9 5:46 19 2:35

10 1:16 20 2:34

Table 24: First 10 investigation durations represent data points from the dataset for
the senior AnalystID 6 and EventID 101010, and the next 10 investigation durations
are extrapolated under the model.

As is discussed, in order to estimate the junior analyst’s efficiency, a percentage

range of gaining knowledge is considered from 10% to 60%. We simulate 10 future

investigation durations for the junior analysts by combining their own investigation

average duration and the effect of the senior analysts knowledge using the percentage.

Table 25 shows the simulation results, where the junior analyst is AnalystID 5

with the default investigation average duration of 7:29. Estimation results show that,

if the junior AnalystID 5 gains 10% of the senior analyst’s knowledge through the

feedback module, the average investigation duration will change from 7:29 to 6:59,

decreased by 6.68%. If he/she gains 60% of the senior analyst’s knowledge, his/her

average investigation duration will change from 7:29 to 4:33, decreased by 39.2%.

Table 26 shows the simulation results where the junior analyst is AnalystID 4 with

the default average of 5:46. Simulation results show that, if the junior AnalystID 4
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Simulated Junior’s average Model’s investigation Simulated

Time Series investigation duration*90% duration*10% investigation duration

1 6:44 0:16 7:00

2 6:44 0:16 7:00

3 6:44 0:16 7:00

4 6:44 0:15 6:59

5 6:44 0:15 6:59

6 6:44 0:15 6:59

7 6:44 0:15 6:59

8 6:44 0:15 6:59

9 6:44 0:15 6:59

10 6:44 0:15 6:59

Simulated Junior’s average Model’s investigation Simulated

Time Series investigation duration*40% duration*60% investigation duration

1 2:59 1:37 4:36

2 2:59 1:36 4:35

3 2:59 1:36 4:35

4 2:59 1:35 4:34

5 2:59 1:35 4:34

6 2:59 1:34 4:33

7 2:59 1:34 4:33

8 2:59 1:33 4:32

9 2:59 1:33 4:32

10 2:59 1:33 4:32

Table 25: The simulation results of the feedback module’s impact for the junior An-
alystID 5 with the default average investigation duration of 7:29 for the EventID
101010. The first part simulates the junior’s efficiency for 10 future investigations
by considering the knowledge transfer percentage as 10%, and the second part simu-
lates the junior’s efficiency for 10 future investigations by considering the knowledge
transfer percentage as 60%.

gains 10% of the senior analyst’s knowledge, the average investigation duration will

change from 5:46 to 5:26, decreased by 5.78%. If he/she gains 60% of the senior

analyst’s knowledge, his/her average investigation duration will change from 5:46 to

3:53, decreased by 32.66%.

In summary, in this case study, the impact of showing previous investigations

to the analysts, which is one of the important features of the feedback module, is

assessed based on some assumptions. The AnalystID 6 is considered as a senior

analyst, and AnalystsIDs 5 and 4 are juniors. Based on the simulation results, if

the junior analysts gain 10% to 60% of the professional analyst’s knowledge; the

efficiency of AnalystID 5 can be improved by 6.68% to 39.2%, and the efficiency of

AnalystID 4 can be improved by 5.78% to 32.66%. Those results clearly demonstrate
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Simulated Junior’s average Model’s investigation Simulated

Time Series investigation duration*90% duration*10% investigation duration

1 5:11 0:16 5:27

2 5:11 0:16 5:27

3 5:11 0:16 5:27

4 5:11 0:16 5:27

5 5:11 0:16 5:27

6 5:11 0:16 5:27

7 5:11 0:16 5:27

8 5:11 0:15 5:26

9 5:11 0:15 5:26

10 5:11 0:15 5:26

Simulated Junior’s average Model’s investigation Simulated

Time Series investigation duration*40% duration*60% investigation duration

1 2:18 1:37 3:55

2 2:18 1:36 3:54

3 2:18 1:36 3:54

4 2:18 1:35 3:53

5 2:18 1:35 3:53

6 2:18 1:34 3:52

7 2:18 1:34 3:52

8 2:18 1:33 3:51

9 2:18 1:33 3:51

10 2:18 1:32 3:50

Table 26: The simulation results of the feedback module’s impact for the junior An-
alystID 4 with the default average investigation duration of 5:46 for the EventID
101010. The first part simulates the junior’s efficiency for future 10 investigations
by considering the knowledge transfer percentage as 10%, and the second part simu-
lates the junior’s efficiency for future 10 investigations by considering the knowledge
transfer percentage as 60%.

the potential benefit of the feedback module of our tool. The summary of results is

shown in Table 27.
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Junior Default Investigation Estimation Reduction

AnalystID Average Duration 10% - 60% 10% - 60%

5 7:29 6:59 4:33 6.68% 39.2%

4 5:46 5:26 3:53 5.78% 32.66%

Table 27: The summary of results
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Chapter 6

Related Work

Related work is categorized into three different groups. Section 6.1 reviews existing

works regarding Managed Security Services (MSS), Managed Security Monitoring

(MSM), Network Security Monitoring (NSM), and Security Operation Center (SOC).

Those range from preliminary works on this emerging service to its different aspects,

such as design, classification, information sharing, etc.

In section 6.2, alert correlation techniques are reviewed, which draws a lot of

attention in academia and industry. It plays an important role to generate accurate

suspicious events for the security services. Moreover, alert correlation is a tangible

aspect of the SOC that can be improved. It has also led to other research areas either

military or non-military intelligent systems.

Section 6.3 reviews studies about Call Centers (CC), since SOC and CC are similar

regarding their performance evaluation. Existing works in this domain focus on dif-

ferent queueing models and methods to solve the problem of staffing and scheduling.

It also provides background knowledge for the alert dispatching simulation scenario.

6.1 MSS, MSM, NSM, SOC

Managed Security Monitoring (MSM) and Network Security Monitoring (NSM) were

the terms for a new generation of Managed Security Services (MSS). At the present

time, those three terms point to the same concept.

In the work of Allen et al. [1], different security services are reviewed, from
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network boundary protection services, vulnerability assessment and penetration test-

ing, anti-virus and content filtering services, information security risk assessments,

data archiving and restoration, on-site consulting to security monitoring and incident

management. Different guidelines about MSS request proposal, evaluating an MSS

proposal, MSS service level agreement, and transitioning to MSS are discussed in

details.

Managed Security Monitoring (MSM) is introduced as a network security solution

of this century by Schneier in the year 2000 [59]. He claims simply installing firewalls

and other security-related tools cannot tackle intrusions. MSM is compared with

Managed Security Services (MSS) in 2001 [60]. Where MSS is more about providing

updated firewalls, IDSs, and other security products for companies, MSM is moni-

toring a client’s network to recognize and respond to threats simultaneously in real

time.

NSM is defined for the first time by Bejtlich in [2] as “the collection, analysis, and

escalation of indications and warnings to detect and respond to intrusions.” The book

describes different terms and security processes beside deployment considerations. It

also explains a case study as an “intrusion reference model”. Moreover, the different

types of data needed to be collected from network are discussed beside useful open

source tools for NSM, such as traffic modifying tools. The book provides technical

best practices regarding event handling and incident response processes. It also allows

analysts and supervisors to learn weapons and tactics, telecommunication, system

administration, scripting and programming, and management and policy. 16 different

case studies are provided to show analysts how they can employ principles to intrusion

scenarios. And it discusses attacker’s perspective by describing attacking approaches

to products, processes, and people.

Implementing Network Security Monitoring (NSM) for cloud services is discussed

by Shin and Gu [5]. The CloudWatcher framework is proposed to direct network

packets of the cloud passing through defined network security monitoring points.

Another work in NSM area focuses on routing network traffic to monitoring devices

by introducing a system called OpenSAFE [8]. OpenSAFE provides configurable

network traffic routing by employing OpenFlow-supported devices [61] to preserve

high line rates performance, and introduces ALARMS as a flow specification language

to ease the management of network monitoring devices.
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Main concepts and components of a SOC as a heart of NSM are discussed in [3]

by Renaud Bidou for the first time in 2005. Different modules’ functionalities, from

event generating, collecting, and storing to analysis approaches and related response

methods, are covered to explain the process of building a SOC, where integrating all

modules is considered as a challenge. Other work [4] on designing a SOC proposes a

solution utilizing recognition mechanism of immune system to detect intrusions. The

SOC is designed in a way that it detects the self from non-self. The protected network

is preserved among immune cells.

Hu and Xie [7] present a novel design for a SOC by applying Dempster-Shafer

Theory (DST) on the basic SOC model proposed by Renaud Bidou [3]. By using

multi sensor data fusion techniques, they claim the presented approach reduces the

rate of both false positive and false negative alerts. The authors believe integrating

security services from a SOC is more beneficial since SOCs correlate different sources’

events to detect threats with higher accuracy compared to single sensor events.

A recent work [6] on designing SOCs by Li et al. proposes a hierarchical mobile-

agent-based SOC to avoid one fixed location for alert correlating and improve compu-

tational efficiency. Event collectors and correlators are distributed in the monitored

network to prevent single point of failure attacks resulting in downing of the service.

Since independent SOCs usually are reluctant to share security information about

new incidents, a study [62] introduces a mechanism for trusted sharing of security

incidents information among SOCs by minimum information sharing. Information,

such as time of occurrence, origin of attack, consequence, severity, and path of attack

can be shared in Security Incident Data Exchang (SIDEx) format by not revealing

sensitive information.

Ganame et al. [9] develops a SOC providing a global view of the monitored

network in a graphical way to help analysts detecting attacks. Different reports are

made from the aggregated alerts from different sources. Performance evaluation of

the proposed system is evaluated and compared with simple IDS. This is different

from our work since we evaluate analysis process performance performed by human

security analysts.

Another work [10] proposes a classification model to assess SOC services. By the

proposed framework, either SOC clients or owners can measure the maturity of SOC

processes regarding certain aspects, such as log collection, log retention and archival,
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log analysis, monitoring of security environments for security events, diversity of

devices integrated, event correlation and workflow, incident management, reaction to

threats, threat identification, and reporting.

Sundaramurthy et al. [11] study three different operational SOCs to understand

their functionalities in details by the anthropological approach. Three different stu-

dents with computer science background are assigned as analysts in each SOC, and

trained to observe SOC analysts’ tasks. List of different aspects of each SOC is de-

tailed in this work, such as team structure, training methodology for new analysts,

operational workflows, employed tools and software, work-shifts scheduling, SOC ef-

ficiency metrics. They mention one performance metric considered in one of the

operational SOCs is the number of analyzed incidents per analyst daily. It is also de-

scribed that counting the number of incidents solely is not a good metric, if the time

duration of analysis is not considered. Consequently, efforts on difficult investigations

taking more time to analyze reduce the total number of analyzed incidents. As a re-

sult, analysts are not motivated to analyze deeply, since it results in showing lower

productivity for them in a managers’ point of view. In a university SOC assessed by

the same work [11], a ticketing system dispatching alert tickets to analysts, provides

a performance metric as time spent on each ticket. To the best of our knowledge,

there is no work presenting a clear approach to model SOC analysis process by human

analysts, and evaluating SOC performance by different metrics in the literature.

Michail studies SOC from business perspective in [12], and answers different ques-

tions about SOC, which vary from how SOCs can be different from each other with the

same goals to how being well-established helps a SOC to improve its performance.

The author claims comparing SOCs is not a valid question since they employ dif-

ferent security solutions, organizational structures, and services. However the same

high level goal is shared among them to protect against any cyber attack. The au-

thor also rejects the existence of any scientific literature supporting the idea that a

well-established SOC results in a better performance.

6.2 Alert Correlation Techniques

Every raw alert of an IDS can show a single attack step of an intrusion, however

usually it is a part of failed attack attempt or normal traffic. Consequently, SOCs
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mostly receive a huge amount of raw alerts from deployed sensors. Considering such

this massive load of raw alerts, two SOC-related studies [3], and [7] claim correlating

gathered events from different sensors plays an important role to generate accurate

suspicious events, and reduce the rate of false positive. There are plenty of works

for alert correlation, since it is considered as the most improvable and effective part

of a SOC regarding performance improvement. Data fusion techniques have been

employed earlier in other fields either military or non-military intelligent systems,

such as [63],[64].

In a recent survey on alert correlation by Leau et al. [65], correlation approaches

are classified to four categories, correlation methods based on similar semantics in

alerts description, predefined attack scenarios, preconditions and post conditions of

attacks, and data mining. First method targets different alerts’ attributes, such

as Source IP address, destination port number, etc. and correlates alerts by their

similarity score. Second method correlates alerts based on predefined attack scenarios.

Learning phase of this method can be user defined signatures from attack scenarios or

automatically extracted from training dataset. Third method correlates alerts based

on each attack scenario prerequisites and consequences. For the last two methods,

complexity of the design, and identifying new attacks are part of mentioned issues.

Fourth category is about methods employing data mining techniques to identify attack

patterns and correlations.

Elshoush and Osman [14] devise a correlation framework combining 10 compo-

nents, called normalization, pre-processing, prioritization, alert verification, alert fu-

sion, focus recognition, uncorrelated removal, multi-step correlation, intention recog-

nition, and impact analysis. This approach aims to reduce FP alerts in initial phases

by removing unrelated alerts from fused alerts. Then, it attempts to employ correla-

tion approaches, such as attack scenarios, to have correlated alerts.

Wang et al. [13] propose a memory efficient correlation approach by employing

attack graphs which are predefined attack scenarios. By introducing a novel approach

Queue Graph (QG), nested loop based correlation is solved, and it is possible to match

alerts to related nodes of the attack graph. Zali et al. [15] presents a correlation

approach by pre-defining simple relations among minor attacks to identify attack

scenarios in real time. By benefiting from TVA model[13], they model relations

among minor attacks as pre and post conditions of each attack pattern in a new
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way. Then, the algorithm extracts attack scenarios in real time with polynomial time

complexity.

A correlation method is introduced by Zhu and Ghorbani [66] to recognize differ-

ent attack scenarios without experts’ knowledge background. Multilayer perceptron

(MLP) and support vector machine (SVM) are employed as neutral network ap-

proaches to evaluate correlation probability of each pair of alerts. Correlation prob-

ability estimation results are stored in Alert Correlation Matrix (ACM), and ACM

will be used to extract high level attack scenarios.

Ramaki et al. [16] presents a correlation framework to detect multi-step attack

scenarios in real time as an Early Warning System (EWS). An EWS aims to identify

hidden risky behaviour of a system which might expose the system to threats[67].

Statistical and stream mining (sequence analysis) techniques are employed to design

the correlation scheme. The correlation framework works in two modes, offline and

online. In offline mode, aggregated alert types, called hyper alerts, are checked by

an episode mining algorithm to find aggregation options for hyper alerts. Then, in

learning phase, it learns multi-step attack scenarios while it is constructing an off-line

attack tree from the processed dataset. In online mode, it constructs an attack tree

in real time with the learned knowledge.

6.3 Call Centers And Queuing Models

Performance evaluation of a SOC is similar to Call centers (CC) modeling. In both

SOC and CC, humans serve different clients with different service requests in a queue.

In the SOC, security analysts are the servers and incoming alerts are considered as

different service requests, whereas in the CC, operators respond to different calls. In

both cases, incoming service requests are coming in a queue and the service needs

to meet certain service level agreement (SLA) specified between clients and service

company.

Brown et al. [68] describe queueing-theoretic models for service systems where

the number of human servers, arrival rate of requests, serving time, and authorized

waiting time of requests in a queue are inputs of the queueing model, and outputs of

the model could be for example distribution of waiting time for service requests and

the fraction of requests not being handled within the authorized time. They present
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a basic common queueing model M/M/N system or Erlang-C [69] which considers

arrival rate based on Poisson process, exponentially distributed service time, and

servers and clients act independently. Limitations of the basic model include not

considering time-dependant parameters, clients’ or their requests heterogeneity, and

servers’ skill levels.

Green et al. [17] discuss different methods of queuing-theory for setting a service

system to serve clients whose request-pattern is predictable during a day (how much

demanding in which periods). Different aspects of service systems are discussed, such

as setting the system capacity (overall size of the workforce), single-skilled vs. multi-

skilled human servers, and queueing models which consider demanding periods beside

service time.

Excoffier et al. [18] try to solve staffing problem with a solution that determines

the minimum number of servers that could conform to SLA. The proposed solution

is based on linear approximation, and considered arrival rate as random. the other

similar work [19] presents a robust solution guaranteeing that the proposed shift

schedule with the minimum number of servers can conform to SLA. It computes the

solution by considering the probability distributions of uncertain parameters.

Other recent works on queueing models of call centers [20][70] mostly focus on

considering a new input parameter for queueing models called impatient customers.

This parameter indicates those customers abandoning the queue before being served.
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Chapter 7

Conclusion and Future Work

In this chapter, we conclude our work by summarizing the contributions and dis-

cussing the directions of future work.

7.1 Conclusion

In this thesis, by modeling the main workflow of an operational Security Operation

Center (SOC), a system for improving the SOC’s performance has been designed

consisting of four modules; monitoring, measuring, simulation, and feedback. The

first three modules empower the SOC managers to evaluate the current SOC perfor-

mance, and assess potential improvement options through simulations. The feedback

module enables knowledge transfer among SOC analysts in their ongoing workflows

to improve their performance.

By deploying a logging component inside the main SOC console, analysts’ activity

logs from a real production SOC are collected from June to August 2015 for 57 days

in a dataset for evaluating our system. Three case studies have been conducted based

on the dataset to study the designed system’s effectiveness, namely, modifying the

duration of steps, a different alert dispatching method, and the feedback module’s

impact. In the case study of modifying the duration of steps, we provide two im-

provement scenarios for the SOC workflow. The simulation result of the combined

scenarios demonstrates a performance improvement of 7.36%. In the case study of a

different alert dispatching method, the results indicate that one important factor to

improve the efficiency by the employed approach is about combination of the selected
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analysts’ expertise for one work-shift. If analysts with different expertise are chosen

to work in the same work-shift, it would increase the efficiency of the SOC by the

proposed dispatching model more. The simulation results for the 33-day work-shifts

state a 4.42% improvement in the average investigation duration and 2.18% in the

alerts waiting time. In the case study of the feedback module’s impact, knowledge

transfer rates (10% to 60%) are considered for two junior analysts gaining knowl-

edge from a senior analyst regarding a specific EventID. The average performance

improvement for the two junior analysts ranges from 6.23% to 35.93% depending on

their knowledge transfer rate. In order to asses the improvement results, it should be

considered that the all improvement percentages point at the time duration reduction

in one single investigation.

7.2 Future Work

We address our future work by two directions. We will employ data mining for auto-

mated analysis of investigations logs. The examples are employing classification and

association techniques. By classification, we can label analysts performance regard-

ing their performance evaluation. Association rules can be employed to find frequent

patterns, such as if one analyst has a certain habit in investigation, or if one EventID

is closed all the time for a client, it can be suggested to the SOC to filter it.

We will also apply and simulate some queuing theories on the dataset to show

how different models affect the overall performance of the SOC differently to find the

optimum approach.

Moreover, we would like to extend case studies on a larger scale dataset.
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