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ABSTRACT

Model Checking Commitment-Governed Compositions of Web Services

Ana Vazquez, MASc

Concordia University, 2015

We propose a new approach towards verifying compositions of web services using

model checking. In order to perform such a verification, we transform the web service

composition into a Multi-Agent System (MAS) model where the process in charge of the

composition and the participating services are represented by agents. We model the behav-

ior of the resulting MAS using the extended Interpreted Systems Programming Language

(ISPL+), the dedicated language of the MCMAS+ model checker for MAS. We use com-

mitments between agents to regulate and reason about messages between composite web

services. The properties against which the compositions are verified are expressed in the

Computation Tree Logic of Commitments (CTLC), an extension of the branching logic

CTL that supports commitment modalities.

We describe BPEL2ISPL+, a tool we developed to perform the automatic transforma-

tion from the web service composition described in Business Process Execution Language

(BPEL) into a verifiable MAS model described in ISPL+. The BPEL2ISPL+ tool is ap-

plied to a concrete BPEL web service composition and its accurate representation in ISPL+

is obtained. The CTLC properties used to verify the compositions regulated by commit-

ments are represented along with the agents abstracting the participating web services. The

MCMAS+ model checker is used to verify the model against these properties, providing

thus a new approach to model check agent-based web service compositions governed by

commitments.
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Chapter 1

Context and Problem of Research

1.1 Context

This thesis is about the verification of compositions of web services regulated by commit-

ments abstracting contractual interactions. The verification is done using model checking,

particularly the technique that was initially developed for Multi-Agent Systems (MAS).

This section introduces the main concepts used in our approach which are: web service

composition, commitments, verification techniques, and the MCMAS model checker.

Any application can publish its function on the Internet using web services. A web

service presents its capabilities as operations, establishing interfaces without any ties to pro-

prietary communication framework [18]. Through web service composition, new services

can be developed by the means of coordinating the operations of existing web services,

which may be running in different environments [17]. Business Process Execution Lan-

guage (BPEL) is the OASIS standard language for web service composition [1]. It uses

an XML-based vocabulary to specify business processes using a workflow. A web service

composition uses interfaces and messages to coordinate operations. Interactions between
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Figure 1.1: W life cycle

web services are modeled as commitments, which provide powerful abstractions of con-

tractual obligations regulating such interactions. Verification of these interactions is a key

issue to determine the quality of the composition.

Two types of verification techniques are usually used: dynamic and static. Testing

is a dynamic technique deployed to verify the system execution. It runs a set of cases on

the system comparing actual with expected outputs. Static techniques verify the system

at early stages before producing the code. The W model [49, 30] depicted in Figure 1.1

distinguishes these two types of verification in a system development life cycle. Static ver-

ification techniques are performed in requirements, specification and design phases. While

dynamic techniques can only be used after producing the system’s code.

Model checking is a static verification technique used to verify the system at the

design level [5]. It takes a system model as an input to characterize all possible scenarios

over time and verify them against given properties. Properties capture functional and non-

functional system requirements expressed in a temporal logic. Temporal logics are a special

branch of symbolic logics focused on temporal propositions, i.e., statements to be evaluated

to true or false depend on time. The model checking process is divided into the following
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activities: 1) modeling the system under consideration; 2) formalizing the requirements

into properties to be checked; and 3) running the model checker to verify the system model

against the properties and analyzing the results. Model checking web service compositions

has been broadly studied. However, the main properties that have been checked are limited

to the safety and liveness [39]. A safety property asserts that "nothing bad will happen". A

liveness property asserts that "something good will eventually happen".

On the other hand, model checking techniques have been used to verify MAS. A

multi-agent system is comprised of several intelligent autonomous agents working together

toward achieving a common goal or completing a joint task. An agent refers to a component

of software that is capable of acting in a certain way to accomplish tasks on behalf of

its user. Due to the autonomy of agents, two particular modalities have been extensively

investigated: epistemic [19] and social commitments[45]. The epistemic modality deals

with the knowledge that agents have and social commitments with what agents are publicly

announcing.

The MCMAS model checker [32] has been developed to verify temporal and epis-

temic properties of MAS. MCMAS has its own language named Interpreted Systems Pro-

gramming Language (ISPL) and is used to describe the system under verification. The

model checker has been used to model and verify web services [33]. It was extended into

MCMAS+ and ISPL+ [7, 28] to verify social commitment-based properties using CTLC, a

dedicated logic extending Computation Tree Logic (CTL) with the commitment modality

(C).

In this thesis, we propose to model and reason about compositions of web services

using MAS as an abstraction tool when agent-based services can engage in business in-

teractions using commitments. We assert that the interactions describing a web service

composition can be verified through the verification of the commitments that model and
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capture these interactions in the corresponding MAS model. To perform this verification,

we transform the web service composition into a MAS model, where the participating ser-

vices are transformed into agents. We model the behavior of the resulting MAS system

using ISPL+. We define a set of properties using CTLC to verify the composition through

the verification of the establishment and fulfillment of commitments. The ISPL+ model is

generated using BPEL2ISPL+, a tool we fully developed to automatically transform BPEL-

based composition into ISPL+-based description. This tool takes as input the BPEL code of

the process in charge of the composition and the behavioral description of the participating

services, which are abstract BPEL processes, and produces as output the MAS model of the

composition that can directly run on the MCMAS+ model checker.

1.2 Motivation

Web service composition allows companies to reuse existing applications and hence opti-

mize their resource usage. One of the main concerns of service composition is to guarantee

the quality of newly composite service. Model checking is extremely useful in this area as a

formal and fully automatic technique to verify the system behavior at design phase, helping

us detect defects and solve them using less resources than those that would be needed in

subsequent phases [54]. This is particularly the case when the participating web services

are supplied by different providers.

This work verifies the achievement of the composition’s goals through the verifica-

tion of the interactions among the participating services. Abstracting and transforming the

problem of verifying service compositions to checking contractual interactions among ser-

vices within a MAS setting provide a new and original way of applying model checking to

verify services composition. A fully implemented transformation tool is provided to gener-

ate the MAS verifiable model.The main advantages of this approach are 1) to emphasize the
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key elements of such a composition, namely the interaction and coordination among those

services; 2) to capture the contractual obligations governing the composition through the

means of commitments; and 3) to build on an existing model checker for MAS, MCMAS+,

that has been proved to be efficient in terms of both time and scalability [28].

1.3 Definition of the Problem and Methodology

The problem we address in this thesis is about verifying composite web services described

using the BPEL standard. The aim is to cover not only non-functional requirements, but

also functional, business-oriented requirements. Our methodology is depicted in Figure 1.2.

The inputs are a composition of web services shown as a BPEL-expressed workflow along

with the BPEL code of the participating services. From the implementation perspective,

web service composition is developed in BPEL Designer, an open source tool that enables

us to specify the composition using a workflow that defines the interactions between the

operations of the participant services. The BPEL code of the process in charge of the com-

position is automatically generated. The approach includes an automatic transformation

of the composition workflow and the participating services into a verifiable MAS-based

model expressed using ISPL+. This model is verified using the MCMAS+ model checker

against given properties. Moreover, an automata view of the transformed model is also

automatically generated.

Transforming BPEL processes into a verifiable model is a challenging task that has

to be done systemically considering all the BPEL elements. Our BPEL2ISPL+ automated

tool is able to perform this transformation using a set of algorithms transforming each BPEL

construct into a corresponding ISPL+ code. BPEL2ISPL+ takes as input the BPEL process

in charge of the composition and the behavioral description of the participating web ser-

vices provided using abstract BPEL processes. In fact, the ISPL+ code defines a MAS

5



Figure 1.2: Schematic view of our approach

model which is then graphically displayed as an automaton using the dot language. The

interactions among services are captured through the exchanged commitments.

To summarize, the key components of the proposed approach are:

• Transformation algorithms from BPEL constructs to MAS representations.

• A tool that generates a MAS description in ISPL+ taking as input the executable

BPEL code of the process in charge of composition and the abstract BPEL processes

of the participating services along with their behavioral description.

• A visual representation of the automatically generated MAS model as an additional

output of the tool.

• A verification process of the web services composition through the verification of

commitments between the agents representing the participating services and the agent

representing the BPEL process in charge of the composition using MCMAS+ and

CTLC properties.
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1.4 Thesis Structure

The rest of the thesis is organized as follows. In Chapter 2, we present a brief review

of the background concepts including: Service-Oriented Arachitecture (SOA), web ser-

vices, BPEL, verification, model checking, communicative commitments and the MC-

MAS+ model checker. Chapter 3 discusses our approach in detail and provides a case

study along with experimental results. In Chapter 4, we conclude our work and describe

opportunities for future work.
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Chapter 2

Background

The three main components of this work are, as depicted in Figure 1.2: the system under

study, its transformation and its verification. The system under study is a web services

composition, the transformation takes this composition to produce a verifiable model. Then,

this model is used to verify commitments between agents representing web services.

This chapter devotes one section to offer background knowledge on each one of these

three components. Section 2.1 introduces Web services composition. Then, Section 2.2

introduces the tools used on the transformation. Finally, Section 2.3 explains the verification

technology used on this work.

2.1 Web Services Composition

This section describes web services composition in the context of Service Oriented Ar-

chitecture. Then, we introduce BPEL, which is the de facto standard to develop these

compositions, and the one we used to develop our case study.

8



Figure 2.1: Components of web service contract (from [17])

2.1.1 Service Oriented Architecture

Service-oriented architecture is a model that describes how services could be used through

description, registration and invocation. Its main objective is to enhance the agility and cost-

effectiveness of business applications. It accomplishes this by making services as the main

means through which solution logic is implemented [46, 47]. A service is a unit of solution

logic. Each service has a functional goal, and is comprised of a set of capabilities and

operations. Therefore, a service can be considered as a container of operations associated

with a given goal. These operations are expressed in the service contract [17].

A web service is a piece of software describing a set of functionalities offered as a service

by a machine (or electronic device) to another machine, communicating with each other

via the World Wide Web. A web service exposes public capabilities as operations, estab-

lishing a technical interface without being associated to any proprietary communication

framework. Each web service is described as a contract using Web Service Description

Language (WSDL) definition, XML schema definition, and WS-Policy definition. A web

service contract can be further comprised of human-readable documents, such as a Service

Level Agreement (SLA) that describes non-functional requirements as quality features, be-

haviors and limitations. Figure 2.1 illustrates the components of a web service contract.
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Figure 2.2: Example of service composition

Web services are designed to communicate and coordinate with each other within

compositions. A service composition is an aggregation of services collectively composed

to automate a particular complex function or business process that are beyond the capa-

bilities of individual services. To qualify as a composition, two participating services or

more, in addition to the composition initiator, need to take place and to be clearly specified.

Otherwise, the service interaction only represents a point-to-point exchange [17]. Figure

2.2 depicts a schematic view of an example of web services composition.

2.1.2 Enterprise Processes

Enterprise objectives are implemented through processes. Both objectives and processes are

constantly changing in response to external and internal influences. Nowadays, IT plays a

key role in specifying, supporting and facilitating these processes. From an IT perspective,

as argued in [47], enterprise processes can be divided into two main classes: business pro-

cesses and applications. Usually, business processes are documented implementations of

the business requirements. Business processes express these requirements, along with any

10



Figure 2.3: Definition of a process service

associated constraints, dependencies, and outside influences [17]. Applications are technol-

ogy solutions implementing a part of these processes. These applications support business

processes through developed systems within an organization’s IT infrastructure covering

security constraints, technical capabilities, and vendor dependencies.

In this enterprise context, web services have been highly suitable and successful in imple-

menting and realizing SOA [47]. This is mainly thanks to the fact that services establish

a form of abstraction located between traditional business and application layers. Services

can encapsulate physical application logic as well as business process logic, as depicted in

Figure 2.3 [17].

Designing an IT solution requires a proper interpretation of the business process require-

ments, that should be collected at the beginning of the endeavor, and then implemented

accurately. Usually, business processes are designed by analysts using modeling tools that

11



produce diagrams. These diagrams are handed over to architects and developers for imple-

mentation purposes. Diagrams and its accompanying documentation are, most of the times,

the sole means of communicating how this logic should be realized within an automated

solution. This traditional approaches is the source of misunderstandings and omissions

between the analysis and implementation phases [46].

In SOA, this misalignment between the analysis and implementation phases is ad-

dressed by operational business modeling languages, such as BPEL. BPEL composes web

services using a workflow approach and an XML-based description. The user can develop

her code in two ways: writing it directly or using a visual editor. Writing the code directly

requires a deep knowledge of the language, while using an editor allows the analyst to con-

struct the BPEL processes using a drag-and-drop approach. The result is a diagram on the

front end that expresses the analyst’s vision of the process and a computer executable pro-

cess definition on the back end that can be handed over to the development team. Although

architects and developers may complete the process with technical information, there is

almost no room for interpretation of the implementation.

2.1.3 BPEL

BPEL is a programming in the large language used for web services composition. It differs

from programming in the small languages (such as Java, or C) which are used to implement

specific functionalities. Web services described in BPEL may include several function-

alities to perform the associated operations. BPEL is widely supported in development

environments, such as JDeveloper, WebSphere Integration Designer, and Eclipse. To exe-

cute a BPEL process, we need a process server. Several commercial and open source BPEL

process servers are available. The most well-known are Oracle SOA Suite, IBM WebSphere

BPM, ActiveVOS, and Apache ODE.
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A. BPEL Activities

A BPEL process consists of steps, each step is called an activity. BPEL supports three types

of activities: partner interaction, basic, and structured [1, 27]. Partner interaction activities

are used for receiving and sending messages to and from participating partners and are

listed as follows:

• Invoking other web services using <invoke>.

• Waiting for the client to invoke the business process through sending a message using

< receive> (receiving a request).

• Generating a response for synchronous operations using <reply>.

Basic activities are used for common tasks and are listed as follows:

• Manipulating data variables using <assign>.

• Indicating faults and exceptions using <throw> and <rethrow>.

• Waiting for some time using <wait>.

• Terminating the entire process using <exit>.

Structured activities aggregate basic activities to define composite flows. The most

important are listed as follows:

• Sequence (<sequence>) for a set of activities that will be invoked in an ordered

sequence.

• Flow (<flow>) for defining a set of activities that will be invoked in parallel.

• Conditional construct (<if>) for implementing branches.
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• While, repeat, and for each (<while>, <repeatUntil>, <forEach>) for defining

loops.

• Pick (<pick>) for selecting one of the number of alternative paths.

B. BPEL Structure

A BPEL process definition is written as an XML document using the <process> root el-

ement. < partnerLinks>, <variables > and a top-level <sequence> activity are usually

part of the root element. Within the sequence, the process will first wait for the incoming

message to start the process. This wait is modeled with the <receive> construct. Then, the

process will perform some activities and return a response. The following listing shows an

example [1]:

Listing 2.1: BPEL example

< p r o c e s s . . . >

< p a r t n e r L i n k s >

< p a r t n e r L i n k . . . / >

. . .

< p a r t n e r L i n k . . . / >

</ p a r t n e r L i n k s >

< v a r i a b l e s >

< v a r i a b l e name= i n p u t V a r i a b l e . . . / >

. . .

< v a r i a b l e name = o u t p u t V a r i a b l e . . . / >

</ v a r i a b l e s >

< sequence >

<!−− Wait f o r t h e incoming r e q u e s t t o s t a r t t h e p r o c e s s −−>

< r e c e i v e . . . / >
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<!−− Per fo rm some a c t i v i t i e s −−>

. . .

<!−− Re t u rn t h e r e s p o n s e −−>

< r e p l y . . . / >

</ sequence >

</ p r o c e s s >

Partner Links

Partner links denote all the interactions with the external participating services. The two

possibilities of interaction are:

• The BPEL process invokes operations on other services.

• The BPEL process receives invocations from clients.

Each BPEL process has at least one client partner link that invokes the BPEL process

and initiates its execution. Usually, a BPEL process will also have several invoked partner

links because it will most likely invoke several services. Partner links are specified near the

beginning of the BPEL process definition document, just after the <process> tag. Several

<partnerLink> definitions are nested within the <partnerLinks> as shown in the previous

listing. For each partner link, the following items should be specified:

• name: serves as a reference for interactions via that partner link.

• partnerLinkType: defines the type of the partner link. Partner link types are defined

in the WSDL document.

• myRole: indicates the role of the BPEL process itself.

• partnerRole: specifies the role of the partner.
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Variables

As any other programming language, BPEL does not make exception in using variables,

but makes exception in the fact that these variables cab hold XML elements and not only

primitive types. A program requires declaration and initialization of variables, and needs

at least two of them: input and output. The input variable holds the input payload (input

parameters). The output variable holds the output, which is returned to the client (the one

that invoked the BPEL process).

The Process Logic

The process logic is specified in the top-level <sequence> activity, which contains all the

process flow. Each process starts waiting for the initial request message from the client,

using a (<receive>) activity. Then uses several BPEL activities to process the received

input. Most of the times, a process ends with a <reply> activity to return a response to the

client [1].

C. Partner Interactions

Synchronous and asynchronous communication are the two general strategies to interact

with web services. In synchronous interactions, both parties maintain the connection in-

tact until the communication is over. In contrast, in asynchronous interactions, the client

establishes a connection with the server, then sends the request message and closes the

connection. The receiver processes the incoming message to generate a response message.

Then, it establishes a connection with the requesting-party, and sends the response [27].

Each partner interaction activity identifies the interacting partners, specifying the fol-

lowing information:

• partnerLink: specifies which partner link is interacting

• portType: specifies the port type being used

• operation: specifies the name of the operation is working with
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Three activities are associated with each partner interaction: receive, reply, and in-

voke.

Receive

This activity waits for an incoming message (operation invocation), either for starting the

BPEL process, or for a callback function (after an asynchronous invocation). The business

process stores the incoming message in the variable specified in the variable attribute.

Another attribute for the receive activity is the createInstance attribute, which is re-

lated to the business process life cycle, and instructs the BPEL engine to create a new

instance of the process. We specify the createInstance = "yes" attribute with the initial

receive activity of the process.

Reply

This activity is used to return the response for the synchronous BPEL operation. It is always

related to the initial receive through which the BPEL process started. We define the name

of the variable where the response message is stored using the variable attribute.

Invoke

This activity invokes operations on other services. When the business process invokes an

operation on a service, it sends a set of parameters that are modeled as input messages.

To specify the input message for the invocation, we use the inputVariable attribute. If the

invoke is a synchronous request/response operation it returns a result, which is also modeled

as an output message. We use the variable defined in the outputVariable attribute to specify

the output message.

D. Faults

BPEL processes execution could lead to unexpected behaviors. These are due to commu-

nication issues, contract issues, faults produced by an external web service, or faults from

the business process [27].

17



Communication Issues

When a business process communicates with external web services, this communication

uses a network. The communication is prone to unexpected errors due to unreliability on

the infrastructure. Another issue arises when the web service is unavailable, or when it has

been moved to a new location without notifying the business process.

Contract Issues

The agreed communication contracts with external web services can be changed without

notification, leading to the breakage of the agreed relationship.

Faults thrown from the external web service

The external web service itself can throw errors based on its execution. And those faults

can be propagated back to the business process.

Faults thrown from the business process

The business process can generate faults due to its business logic. These faults can be

divided in:

• Logical errors: These faults are defined by the business process developer. So, for

example, if the input variable carries an unexpected value, the business process de-

veloper can declare a fault within the business logic. And then the business process

should be responsible to take care of that fault. Logical errors are also known as

business faults.

• Execution errors: This category of faults is generated by the BPEL runtime. Suppose,

when a variable is assigned some data, the BPEL run-time generates a fault if the

variable is uninitialized.

E. Fault Handlers

BPEL specification uses fault handlers to deal with faults. These faults can be either implic-

itly generated by the BPEL run-time or explicitly generated using the < throw> activity.
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The following code template depicts the structure of fault handlers [27]:

Listing 2.2: Fault handlers example

< f a u l t H a n d l e r s >

< c a t c h fau l tName = . . . ><!−− F i r s t f a u l t h a n d l e r −−>

<!−− Per fo rm an a c t i v i t y −−>

</ c a t c h >

< c a t c h fau l tName . . . ><!−− Second f a u l t h a n d l e r −−>

<!−− Per fo rm an a c t i v i t y −−>

</ c a t c h >

< c a t c h A l l >

<!−− Per fo rm an a c t i v i t y −−>

</ c a t c h A l l >

</ f a u l t H a n d l e r s >

From the previous listing, we can observe that the child elements of a fault handler

are either < catch> or < catchAll>. A < catch> element can be used to handle a specific

fault and < catchAll> is used to handle faults that are not handled by the other < catch>

elements. The optional < catchAll> element should be located as the last element in <

faultHandler>.

F. Abstract Business Processes

Additionally to executable business processes, BPEL supports abstract business processes.

These are partially specified processes that are not intended to be executed. The syntactic

characteristics of abstract processes are [48]:

• The abstractProcessProfile attribute must exist. Its value refers to an existing

profile definition.

• All the constructs of Executable Processes are permitted. Therefore, there is no fun-

damental expressive power distinction between Abstract and Executable Processes.
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• Certain syntactic constructs in BPEL Executable Processes may be hidden, explicitly

through the inclusion of opaque language extensions, and implicitly through omis-

sion.

– Opaque activities are allowed.

– All BPEL expressions are allowed to be opaque.

– All BPEL attributes are allowed to be opaque.

– The from-spec (e.g. in (< assign>) is allowed to be opaque.

• An Abstract Process may omit the createInstance activity that is mandatory for

Executable BPEL Processes.

Examples of opaque language extensions are shown in the following listing. Partner

links definitions contain opaque attributes. The condition within the < if > activity is

opaque. The from-spec within the < assign > in the true branch of the < if > is opaque

too. An opaque activity follows the < if > activity.

Listing 2.3: Example of opaque attributes [48]

< p r o c e s s name=" O r d e r i n g S e r v i c e P r o c e s s "

. . .

a b s t r a c t P r o c e s s P r o f i l e =" h t t p : / / docs . o a s i s −open . o rg / wsbpel . . . " >

< p a r t n e r L i n k s >

. . .

< p a r t n e r L i n k name=" i n v o i c e P r o c e s s o r "

p a r t n e r L i n k T y p e ="## opaque "

myRole ="## opaque "

p a r t n e r R o l e ="## opaque " / >

</ p a r t n e r L i n k s >

< v a r i a b l e s >
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. . .

</ v a r i a b l e s >

< sequence >

. . .

< i f >

< c o n d i t i o n opaque =" yes " / >

< a s s i g n >

<copy >

<opaqueFrom / >

<to >orderAckMsg . OrderAckMessagePar t / o r d e r : Ack </ to >

</ copy >

</ a s s i g n >

< e l s e >

. . .

</ e l s e >

</ i f >

< o p a q u e A c t i v i t y >

< documen ta t i on >

I f we r e c e i v e n o t i c e t h a t t h e s h i p has comple ted , u p d a t e

our s h i p h i s t o r y a c c o r d i n g l y

</ documen ta t i on >

</ o p a q u e A c t i v i t y >

. . .

</ sequence >

</ p r o c e s s >

The BPEL specification defines abstract business processes either as templates or as means

to describe the externally observable service behavior [26]. Abstract processes as templates

can be used to define sets of rules, without including all the execution details. Such de-

tails can be added later when the abstract process is used as a template for developing an
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Figure 2.4: BPEL2ISPL+ basic structure

executable process. Abstract processes for describing the externally observable service be-

havior is useful for describing public process behavior without the exact details of how the

process executes. Such abstract business processes specify public message exchange be-

tween parties only. An abstract business process should provide a complete description of

external behavior relevant to a partner or several partners it interacts with. In this case, the

use of opacity is concentrated in those features associated with data handling.

2.2 Tools Used by BPEL2ISPL+

BPEL2ISPL+ is a Java program that performs the transformation from BPEL into a veri-

fiable MAS model. This section introduces the tools used by BPEL2ISPL+ to achieve its

objective. As illustrated in Figure 2.4, BPEL2ISPL+ takes several BPEL files as input.

Then, BPEL files are read using the DOM parser, while translating them into an Agent

Object Representation (AOR) following a set of algorithms. Out of the the object repre-

sentation, two outputs are produced. The main output is the verifiable model in ISPL+, the

second output is a file in the DOT language. The latter one allows us to produce a graphical

view of the main components of the model. Both outputs are text files.

In fact, BPEL2ISPL+ uses: BPEL, the DOM parser, Java classes to build the AOR,

ISPL+ and the DOT language. BPEL was already introduced in the previous section, Java is
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a well known language and the verifiable model in ISPL+ [28] is discussed in the next sec-

tion. In this section, we introduce the DOM parser (Section 2.2.1), and the DOT language

(Section 2.2.2).

2.2.1 The DOM Parser

BPEL2ISPL+ uses an XML parser to read the input BPEL files. The two most popular

APIs used to parse XML documents are: the Document Object Model (DOM) and the

Simple API for XML (SAX). DOM is an official recommendation of the W3C (available at

http://www.w3.org/TR/REC-DOM-Level-1), while SAX is a de facto standard created on

the XML-DEV mailing list (http://lists.xml.org/archives) [50].

SAX uses memory efficiently, but it reads documents sequentially. DOM uses more

memory than SAX, but allows us to reach elements randomly. Additionally, it facilitates

access to the siblings of an element. We decided to use DOM because we needed ran-

dom access to the document’s elements, and did not have important memory restrictions.

DOM builds a tree view of the XML document that is contained in a single element, which

becomes the root of the tree. The DOM specification defines several language-neutral in-

terfaces including:

• Node. This interface is the base datatype of the DOM. Document, Element, Attr,

Text, Comment, and ProcessingInstruction all extend the Node interface.

• Document. This object contains the DOM representation of the XML document.

• Element. This interface represents an element in an XML document.

• Attr. This interface represents an attribute of an element in an XML document.

• Text. This interface represents a piece of text from the XML document. Any text in

your XML document becomes a Text node. This means that the text of a DOM object
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Figure 2.5: DOM example

is a child of the object, not a property of it. The text of an Element is represented as

a Text child of an Element object; the text of an Attr is also represented that way.

• Comment. This interface represents a comment in the XML document.

• ProcessingInstruction. This interface represents a processing instruction in the

XML document.

After parsing an XML document, the DOM parser builds an in-memory representation of

the document as represented in Figure 2.5 [36]. Given a Document object, one can get the

root of the tree with the getDocumentElement() method. From the root, we can move

through the tree to find all elements, attributes, text, comments, processing instructions,

etc.

There are a number of methods provided in the Document interface to access the

nodes in the tree, some of them are listed in Table 2.1. These methods return either a Node
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Method name Description

getDocumentElement()
Allows direct access to the root element

of the Document.

getElementsByTagName(String)

Returns a NodeList of all the elements

with the given tag name, in the order in

which they are encountered in the tree.

getChildNodes()
Returns a NodeList that contains all chil-

dren of this Node.

getParentNode() Returns the parent of this Node.

getFirstChild() Returns the first child of this Node.

getLastChild() Returns the last child of this Node.

getPreviousSibling()
Returns the Node immediately preceding

this Node.

Table 2.1: Document interface methods to traverse a DOM tree

or a NodeList (ordered collection of nodes) [51].

In a simple DOM application, the getChildNodes() method can be used to recur-

sively traverse the DOM tree. The NodeList.getLength() method can then be used to

find out the number of nodes in the NodeList. In addition to the tree traversal meth-

ods, the Node interface provides the methods shown in Table 2.2 to investigate the con-

tents of a node. NodeList objects are collections of Nodes such as those returned by

Node.childNodes(). They have one property and one method (see Table 2.3).

2.2.2 The DOT Drawing Tool

A visual representation of the agents defined in ISPL+ language [28] facilitates the com-

prehension and review of the verifiable model. The verification tool MCMAS+ [7, 28] used

in this thesis (see Section 2.3.4) doesn’t include a visual representation. Thus, we used the

Graphviz graph visualization software to implemented it [41]. Graphviz is an open source

software that has several programs to provide different type of layouts (hierarchical, radial,

circular, etc). Graphviz’s programs take descriptions of graphs in a simple text language,

and make diagrams in useful formats for inclusion in other documents or display in an
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Method name Description

getAttributes()

Returns a NamedNodeMap containing the at-

tributes of a Node if it is an Element or null

if it is not.

getNodeName()
Returns a string representing the name of this

Node (the tag).

getNodeType()
Returns a code representing the type of the un-

derlying object.

getNodeValue()

Returns a string representing the value of this

Node. If the Node is a Text node, the value

will be the contents of the Text node. For an

attribute Node, it will be the string assigned to

the attribute. For most node types, there is no

value and a call to this method will return null.

getNamespaceURI() The namespace URI of this Node.

hasAttributes()
Returns a boolean to indicate whether this Node

has any attributes.

hasChildNodes()
Returns a boolean to indicate whether this Node

has any children.

Table 2.2: Document interface methods to inspect DOM nodes

Property/Method Description

length() Returns the number of nodes in a NodeList.

item
Returns the Node at the specified index in a

NodeList.

Table 2.3: NodeList object property and method
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Figure 2.6: Output graph

interactive graph browser [41].

The DOT program accepts inputs in the DOT language and produces directed graphs.

This language describes three types of objects: graphs, nodes, and edges. In the following

listing, we give an example. The first line defines the type of graph and its name. The

second and third line define nodes and edges. DOT creates a node when its name first

appears. DOT creates Edges when nodes are joined by the edge operator −>.

Listing 2.4: DOT program example [48]

d i g r a p h graphname {

a −> b −> c ;

b −> d ;

}

DOT files are read by several tools that complement Graphviz, such as graph gener-

ators, post processors and interactive viewers. The output provided by one of this tools is

depicted in Figure 2.6.
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2.3 System Verification and Model Checking

This section starts with an overview of verification and model checking in Section 2.3.1,

followed by an introduction to its application to MAS in Section 2.3.2. Then, we present

the logic developed to verify commitments in MAS in Section 2.3.3, and finally we describe

the MCMAS+ model checker in Section 2.3.4.

2.3.1 Overview

System verification is the process of checking that a system meets its specification, and that

it fulfills its intended purpose. This specification prescribes what the system has to do and

what not, constituting the basis for any verification activity. A defect is found when the

system does not fulfill one of the specification’s properties. The system is "correct" when it

satisfies all properties obtained from its specification. So correctness is always relative to a

specification, and is not an absolute property of a system.

Verification techniques are divided into two types: dynamic and static. Testing is

a dynamic technique that is used to verify the system. It runs a set of cases on the sys-

tem comparing actual with expected outputs. Static techniques verifies the systems at early

stages before producing code. The W model [49] in Figure 1.1 distinguishes these two

types of verification in a system development life cycle. This model has two Vs, one dedi-

cated to the system development and another devoted to its verification. Static verification

techniques are performed in requirements, specification and design phases. While dynamic

techniques can only be used after producing the system’s code. The coverage of testing in-

creases along with the code is produced. It goes form unit test, to integration test, to system

test and finalizes with acceptance test. A schematic view of verification at the design phase

is depicted in Figure 2.7 [5].

Model checking is a static technique used at the design phase to verify automatically
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Figure 2.7: Schematic view of system verification at the design phase

finite state systems. The verification involves an exhaustive search of the state space of

the design, to check if a given property is satisfied or not. The procedure is guaranteed

to terminate with a yes/no answer, if sufficient computational resources are available. In

order to apply model checking to a given system, it needs to be expressed in a formalism

susceptible to model checking. Then, it is necessary to state the requirements that the

system must satisfy. These requirements are typically expressed as a set of properties in a

suitable logical formalism [35]. A schematic view on model checking is depicted in Figure

2.8 [5].

Each model checker has a model description language to specify the system, and a

property specification language to formalize its requirements. In applying model checking

to a design, the following different steps must be followed:

• Modeling the system under consideration, using the model description language of

the selected model checker. Simulations should be run to verify that the model repre-

sents accurately the system’s design.

• Formalizing the properties to be checked, using the property specification language.
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Figure 2.8: Schematic view of model checking

• Running the model checker, to check the validity of the property in the system model.

• Analyzing the results. If the property is satisfied, then check the next property. If

the property is violated, then analyze the counterexample. Using analysis results,

remove the defect either by refining the design, the model or even the property. Run

the verification again after performing the modifications.

A. System Models

These models describe the behavior of systems in an accurate and unambiguous way. They

are mostly expressed using finite state automata, consisting of a finite set of states and a set

of transitions. States comprise information about the current values of variables. Transitions

describe how the system evolves from one state into another [5].

One of the most popular formalisms to model systems in model checking are Kripke

structures defined formmaly as folows: Let AP be a set of atomic propositions. A Kripke

structure over AP is a triple M = (S,R,K), where:
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• S is a set of states.

• R ⊆ S• is a is a transition relation that is total, that is, 9∀s ∈ S)(∃t ∈ S)((s, t) ∈ R).

• K : S → 2AP is a labelling function.

A Kripke structure models the state transition graph, where outputs are functions of

current state variables. The labeling function K associates each state with a set of atomic

propositions that are true in that state.

B. Properties

The target of model checking are mostly dynamic systems. Dynamic systems have a state

component that changes over time. Temporal logics are a suitable formalism for describing

requirements or properties of such systems for model checking. Temporal logic expresses

system behavior over time without explicitly bringing in the notion of time [35].

Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) are among the

most popular temporal logics in model checking. These logics allow us the specification

of a broad range of relevant system properties, such as: functional correctness (does the

system do what it is supposed to do?), reachability (is it possible to end up in a deadlock

state?), safety ("something bad never happens"), liveness ("something good will eventually

happen"), fairness (does, under certain conditions, an event occur repeatedly?), and real-

time properties (is the system acting in time?) [5].

Computation Tree Logic

CTL is a branching-time logic, meaning that its model of time is a tree-like structure in

which the future is not determined. Different paths in the future are available, any one of

which might be the "actual" path.

We define CTL formulas inductively via a Backus Naur form:

ϕ ::= p |¬ϕ |ϕ1 ∧ϕ2 |EXϕ |E(ϕ1Uϕ2) |EGϕ
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where p ∈ AP is an atomic proposition.

CTL distinguishes between state and path formulae. Intuitively, state formulae ex-

press a property of a state, while path formulae express a property of a path. Formula Xϕ

holds for a path if ϕ holds at the next state in the path, ϕ1Uϕ2 holds for a path if there is

some state along the path for which ϕ2 holds, and ϕ1 holds in all states prior to that state,

and Gϕ holds for a path if ϕ holds in all states. Path formulae can be turned into state for-

mulae by prefixing E (pronounced "for some path"). Note that the linear temporal operators

X , U and G are required to be immediately preceded by E to obtain a legal state formula.

Other operators may be defined as the path quantifier A (pronounced "for all paths").

2.3.2 Model Checking Multi-Agent Systems

Different approaches have been proposed for conducting verification in multi-agent systems

using model checking [8, 9, 13, 29, 37]. These approaches include the verification of tem-

poral [53], epistemic (knowledge) [3, 40] and commitments properties [3, 7]. This thesis

focuses on CTLC, a logic of social commitments that extends CTL to make the reasoning

about the commitments establishment between two agents possible [7].

Before describing CTLC, we provide an introduction to MAS in order to understand

the context under which this logic was developed. An agent refers to a component of

software and/or hardware that is capable of acting in a certain way to accomplish tasks on

behalf of its user. Agents generally look for complete automation of complex processes

through artificial intelligent techniques acting on behalf of human users. An agent is a

computational entity that satisfies the following criteria [2]:

• Acts on behalf of other entities in an autonomous fashion.

• Performs its actions with some level of proactivity and/or reactiveness.
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• Exhibits several characteristics such as: autonomy, cooperation, learning and reactiv-

ity.

• Enjoys social ability, which refers to the ability to interface and interact with other

agents via a communication language.

A multi-agent system is comprised of several intelligent agents working together to-

ward a goal or completion of a task. This system is called for when complex problems

require the coordination of multiple agents with diverse capabilities and needs. A multi-

agent system cannot exist without interactions between intelligent agents. In cooperative

models, several agents try to combine their efforts to accomplish as a group what the in-

dividuals cannot, while in competitive models, each agent tries to get what only some of

them can have [2].

MAS objectives in cooperative models are achieved through collaboration. Collab-

oration is realized when an agent commits to perform a task, and fulfills its commitment.

Castelfranchi et al. stated that "Social commitment results from the merging of a strong del-

egation and the corresponding strong adoption: reciprocal social commitments constitute

the most important structure of groups and organizations" [10].

2.3.3 Model Checking Communicative Commitments in MAS

The model used for this logic extends the interpreted system formalism to account for com-

munication that occurs during the execution of MAS. This extension provides an intuitive

semantics for social commitments that are established through communication between in-

teracting agents [7].

A. Interpreted Systems

Interpreted systems was first adopted as a formal tool to model MAS characteristics by

Fagin et al. [19]. The system is defined by:
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• A set of n agents A = {1, . . . ,n}, each agent i ∈ A has:

– a non-empty and countable set Li of local states. Each local state of an agent

represents the complete information about the system that the agent has at his

disposal at a given moment;

– a set Acti of local actions. It is assumed that null ∈ Acti for each agent i, where

null refers to the silence action;

– an action selection mechanism given by the notion of local protocol Pi : Li →

2Acti . That is Pi is a function giving the set of enabled actions that may be

performed by i, in a given local state;

– an evolution function τi that determines the transitions for an individual agent i

between its local states and is defined as follows: τi : Li ×Actii → Li.

• A set of global states is denoted by S, a global state s ∈ S:

– gives the configuration of all agents in the system at a given time;

– is a tuple g = (l1, . . . , ln) where each element li ∈ Li represents a local state of

agent i. Thus, the set of all global states S ⊆ L1×·· ·×Ln is a non-empty subset

of the cartesian product of all local states of n agents.

• A set of initial global states for the system I ⊆ S .

• A global evolution defined as follows: τ : ×ACT → S, where ACT = Act1×·· ·×Actn

is a joint action, which is a tuple of actions (one of each agent).

• A set Φp of atomic propositions and a valuation function ν : S → 2Φp

To provide an "intuitive semantics" for social commitments that are established through

communication between inter-acting agents, Bentahar et al. [7] extended the formalism of

interpreted systems as follows:
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• Each agent i ∈ A is associated with a set of local variables Vari of n local boolean

variables. These variables represent the communication channels that can be used for

sending and receiving messages.

• A shared variable between two interacting agents i and j exists iff Vari ∩Var j 6= 0,

which means the existence of a communication channel between the two agents.

• The value of a variable x in the set Vari at local state li(s) is denoted by lx
i (s).

• For the shared variable x∈Vari∩Var j, lx
i (s) = lx

j(s
′) means that the values of variable

x for the agent i in lx
i (s) are equal to the values of variable x for agent j in lx

j(s
′)

• If li(s) = li(s
′) then lx

i (s) = lx
i (s

′) for all x ∈Vari.

• For the unshared variables (y),∀y ∈Var j −Vari we have l
y
i (s) = l

y
i (s

′)

Therefore, a model MC = (S, I,Rt ,{∼i→ j}(i, j)∈A2 ,V ) is a tuple, where:

• S ⊆ L1 ×·· ·×Ln is a set of reachable global states for the system.

• I ⊆ S is a set of initial global states for the system.

• Rt ⊆ S×S is the transition relation defined by (s,s′)∈ Rt iff there exists a joing action

(a1, . . . ,an) ∈ ACT such that τ(s,a1, . . . ,a2) = s′

• For each pair (i, j) ∈ A2, ∼i→ j⊆ S× S is the social accesibility relation defined by

s ∼i→ j s′ iff li(s) = li(s
′) and ∃!xVari ∩Var j s.t. lx

i (s) = lx
j(s

′) and ∀y ∈ Var j −Vari

we have l
y
j(s) = l

y
j(s

′) and s′ is reachable from s using transitions from the transition

relation Rt .

• ν : S → 2Φp is a valuation function, where Φp is the set of atomic propositions.
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B. Computation Tree Logic of Commitments

The CTLC logic extends CTL with two operators: commitment and fulfillment. A commit-

ment Ci→ jϕ is described by a debtor i, a creditor j and the commitment content ϕ , meaning

that the debtor commits to the creditor to bring about the content ϕ . The fulfillment of this

commitment by the debtor is denoted by: Fu(Ci→ jϕ). The syntax of CTLC is defined as

follows [7]:

ϕ ::= p |¬ϕ |ϕ ∨ψ |EXϕ |E(ϕUψ) |EGϕ |Ci→ jϕ |Fu(Ci→ jϕ)

A CTLC formula ϕ in a global state s, denoted by (MC,s) |= ϕ is recursively defined

as follows:

• (MC,s) |= p iff p ∈ ν(s);

• (MC,s) |= ¬ϕ iff (MC,s) 6|= ϕ

• (MC,s) |= ϕ ∨ψ iff (MC,s) |= ϕ or (MC,s) |= ψ

• (MC,s) |= EXϕ iff there exists a path π starting at s such that (MC,π(1)) |= ϕ;

• (MC,s) |=E(ϕUψ) iff there exists a path π starting at s such that for k> 0, (MC,π(k)) |=

ψ and (MC,π( j)) |= ϕ for all 0 ≤ j < k;

• (MC,s) |= EGϕ iff there exists a path π starting at s such that (MC,π(k)) |= ϕ for all

k > 0;

• (MC,s) |=Ci→ jϕ if for all global states s′ ∈ S such that s ∼i→ j s′, we have (MC,s
′) |=

ϕ;

• (MC,s) |= Fu(Ci→ jϕ) if there exists s′ ∈ S such that s′ ∼i→ j s and (MC,s
′) |=Ci→ jϕ
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2.3.4 The MCMAS+ Model Checker

In this thesis, the MCMAS+ model checker [7, 28] is used to verify commitments capturing

the interactions between web services within compositions. This model checker is an ex-

tension of MCMAS, a model checker for MAS [32]. MCMAS+ allows us to verify CTLC

properties. It takes two inputs: a MAS specification and a set of formulae to be verified. It

evaluates the truth value of these formulae, producing counterexamples for false formulae,

and witnesses for true formulae when it is possible. MCMAS+ allows us to perform the

verification of a number of modalities, including CTL operators.

MCMAS+ can also run interactive, step by step simulations. It provides a graphical

interface as an Eclipse plug-in that includes a graphical editor and a graphical analyzer for

counterexamples. MAS are described in MCMAS+ using ISPL+, which is an extended ded-

icated programming language derived from the formalism of extended interpreted systems.

This language characterizes agents by means of variables, and represents their evolution

using Boolean expressions [28]. It distinguishes between two kinds of agents: standard

agents and the environment agent, which are modeled similarly. The environment agent is

practically used to define and code infrastructures shared by traditional agents. This agent

is optional since not all models require one. As in MCMAS, in MCMAS+ each agent is

characterized by [32]:

• A set of local states, defined using an enumerated variables.

• A set of actions.

• A protocol describing which action can be performed by an agent in a given local

state.

• An evolution function describing how the local states of the agents evolve based on

their current local state and on other agents’ actions.
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The ISPL+ specification also contains the definition of initial states, evaluation (propo-

sitions), and formulae to be checked. The following listing shows the general structure of a

program.

Listing 2.5: ISPL+ program structure

Agent a g e n t 1

Vars :

s t a t e = { s0 , s1 , s2 . . } ;

. . .

end Vars

A c t i o n s = {a1 , a2 , . . . } ;

P r o t o c o l :

s0 : { a1 , . . . }

. . .

end P r o t o c o l

E v o l u t i o n :

s t a t e = s1 i f s t a t e = s0 and a c t i o n = a1 ;

. . .

end E v o l u t i o n

end Agent

E v a l u a t i o n

l a b e l = a g e n t . s t a t e = s1 ;

. . . .

end E v a l u a t i o n

I n i t S t a t e s

a g e n t 1 . s t a t e = s0 and a g e n t 1 . s t a t e =s0 and

. . .

end I n i t S t a t e s

Formulae

EF ( l a b e l ) ;

. . .

end Formulae

Evaluation function

An evaluation function consists of a group of atomic propositions, which are defined over

global states. Each atomic proposition is associated with a boolean formula over local vari-

ables of standard agents and observable variables in the environment agent. The proposition

is evaluated to true in all the global states that satisfy the boolean formula. Every variable

involved in the formula has a prefix indicating the agent the variable belongs to [32].

38



Initial states

Initial states are defined by a boolean formula over variables.

Definition of formulae to be checked

A formula to be verified is defined over atomic proposition. Some of the forms that it can

have are:

formula ::= ( formula )

|formula and formula

|formula or formula

|!

|formula -> formula

|AG formula

|EG formula

|AX formula

|EX formula

|AF formula

|EF formula

|A (formula U formula)

MCMAS+ allow us to verify commitment properties using CTLC logic. From the

user perspective, the additional features are: defining shared variables, using these variables

to model communication between agents, and writing CLTC properties to verify commit-

ments [7].

Shared variables

Shared variables are used to model communication channels between two agents. They

have to be declared in the Vars section of each of the two agents that use it to model their
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communication. The name of the variable has to be exactly the same in both agents and it

has to start with a lowercase letter.

Commitment properties

Properties are defined in the Formulae section and they are stated as follows:

• C(i, j,ϕ) where agent i is the creditor, agent j is the debtor and ϕ is the commitment.

The commitment has to be defined in the Evaluation section. Meaning agent j

commits to agent i to ϕ .

• Fu(i, j,ϕ), this formulae verifies the fulfillment of the commitment defined above.

In the next chapter, we describe our approach to verify compositions of web services

using commitments and the MCMAS+ model checker.
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Chapter 3

Verifying Commitment-Driven

Composite Web Services

3.1 Introduction

As discussed in the introductory chapter, this work uses MAS as abstraction to reason about

compositions of web services. A MAS model is being generated and used for this purpose.

The service in charge of the composition as well as the participating services are automat-

ically transformed into agents. The behavior of these agents is modeled using the BPEL

code of the corresponding service. Service invocations by the process in charge of the com-

position are treated as commitments which capture and regulate the interactions between

services. Thus, verifying these interactions within a composition scenario can be done

through the verification of the underlying commitments.

The proposed framework takes as input the BPEL code of the process in charge of

the web service composition and the BPEL code of the participating services, either in exe-

cutable or abstract mode. Our BPEL2ISPL+ tool transforms these inputs into an equivalent

MAS verifiable model specified in ISPL+, and recommend properties in CTLC to verify
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commitments between two services. BPEL2ISPL+ also provides an automata-based view

of the system in the DOT language.

Properties in CTLC intend to verify commitments establishment and their fulfillment.

Commitments are set up between the agent-based service in charge of the composition and

one of the participating agent-based services. Several commitments may be established

between two services according to the business logic of the composition. The properties

are verified using the MCMAS+ model checker. Out of these results, we can conclude

whether services invocations respond as expected or not.

BPEL2ISPL+ transforms each BPEL process (executable or abstract) into an agent.

BPEL2ISPL+ uses an intermediate in-memory Agent Object Representation (AOR) to per-

form this transformation. The reason behind using this intermediate representation is be-

cause it is not feasible to develop the final agent’s ISPL+ code while reading the BPEL

file sequentially due to some decisions that cannot be made immediately before scanning

the whole BPEL file. For example, an agent description in ISPL+ starts defining the set of

local states, and we cannot know in advance how many states are being used until we finish

processing the corresponding BPEL file. The object representation allows us to create all

the objects needed to describe the agent before writing its description in the ISPL+ text file.

Therefore, BEL2ISPL+ has two parts as illustrated in Figure 3.1. In the first part, AOR

objects are created while processing each BPEL code. In the second part, objects are used

to write the ISPL+ code.

3.2 From BPEL to Agent Object Representation

In order to create the AOR, the agent description in ISPL+ is first analyzed. The correspond-

ing UML class diagram of this description is then obtained. This class diagram is used to

guide the creation of agent objects from BPEL. An example of ISPL+ agent description is
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Figure 3.1: BPEL to ISPL+ transformation

shown in the following listing.

Listing 3.1: Agent Definition

Agent P r o c e s s

Vars :

S t a t e : {SE0 , SE1 , SE2 , SE3 } ;

end Vars ;

A c t i o n s = { A c t i v i t y 1 , A c t i v i t y 2 , A c t i v i t y 3 } ;

P r o t o c o l

S t a t e = SE0 : { A c t i v i t y 1 } ;

S t a t e = SE1 : { A c t i v i t y 2 } ;

S t a t e = SE2 : { A c t i v i t y 3 } ;

end P r o t o c o l

E v o l u t i o n

S t a t e = SE1 i f s t a t e = SE0 and A c t i on = A c t i v i t y 1 ;

S t a t e = SE2 i f s t a t e = SE1 and A c t i on = A c t i v i t y 2 ;

S t a t e = SE3 i f s t a t e = SE2 and A c t i on = A c t i v i t y 3 ;

end E v o l u t i o n

end Agent

The classes identified in this agent description are: agent, state, action, protocol and

evolution. These classes and their relationships are represented in the class diagram de-

picted in Figure 3.2. The diagram shows the following:

- Agent has the attribute name, and has one or many actions, one or many states and one or

many evolutions.

- State has the attributes name and a label (the label is used in the evaluation section as
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Figure 3.2: Class diagram of agent object representation

described in Section 3.3).

- Action has the attribute name.

- Protocol is related with one and only one state and with one or more actions.

- Evolution is related with a final state from an initial state and one or more actions and one

or more Boolean variables.

- Shared variable has Send1A, Send1B, Send2A, Send2B. This is part of the implementa-

tion of CTLC logic. Its usage is explained in Section 3.2.5.

Part I transforms a BPEL process at a time. It starts creating an agent object for the

corresponding process, and converting the BPEL file into a DOM. DOM builds a tree view

of the BPEL code (which is an XML document). An example of a tree view of a BPEL

file is given in Figure 3.3. In fact, Part I creates agent’s objects (Actions, States, Protocols,

etc.) by processing each activity in the DOM tree with the algorithms corresponding to

each BPEL activity. The algorithms for < sequence >, < if >, < while >, < pick > and

< flow > are recursive. In the example provided in Figure 3.3, the root of the tree is the
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Figure 3.3: Tree view of a BPEL file

< process > clause. Each < process > has to have one BPEL activity among its children,

which is a < sequence > in this example. The transformation starts applying the algorithm

defined for the < sequence > activity. This algorithm calls the algorithms of its children,

namely: < receive >, < if > and < reply >.

Part II is divided into three sub-parts. The first sub-part describes ISPL+ agents using

the AOR. The second one completes the description of the MAS, defining the initial states

and the evaluation section. The last sub-part proposes commitment properties using the

communication between agents.

As explained in Chapter 2, BPEL activities are divided into three groups: partner

interaction, basic and structured. Specifically, our transformation tool includes: < invoke

>,< receive> and < reply > partner interaction activities; < assign >, < throw > and <

opaqueActivity> basic activities; and the < sequence>, < flow>, < if>, <pick> and <
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Figure 3.4: ISPL agents depicted as automaton

while> control structured activities. It is important to highlight that all control structured

activities are recursive.

Automata are used to visualize the agents representation in ISPL+ produced by the

transformation of each BPEL process. Automata are constructed using the following equiv-

alences: agent’s states are equivalent to states, agent’s evolutions are equivalent to transi-

tions, and agent’s protocols define the activities that can be executed from a given state.

The equivalences between automata and agents representation are shown in Figure 3.4. To

clarify the description of our transformation algorithms, we define the following notations

(items 1 and 2) and methods (items 3 to 6):

1. Each agent object representation (AOR) A has a set s of local states, set a of local

actions and set e of local evolutions.

2. Each evolution object representation (EOR) e contains: initial state i ∈ s, final state

f ∈ s, and action x ∈ a.

3. The create_new_action(activity) procedure creates a new action’s object (an instance

of the class ‘Action’, see Figure 3.2) using the activity data as input.
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4. The create_new_state procedure creates a new state’s object Sy of the class ‘State’

where y is a consecutive identification number.

5. The create_new_evolution(initial_state, final_state, action|boolean_expression) pro-

cedure creates a new evolution’s object as a transition from initial_state to final_state

labeled with action or boolean_expression.

6. The get_last_state procedure returns a pointer to the agent’s last state object.

When starting to transform a BPEL process, an agent with the same name is created along

with an initial state S0.

3.2.1 Transformation of Partner Interactions Activities

As discussed in Section 2.1.3, a BPEL process can interact with a web service using three

distinct interaction activities: < receive >, < reply > and < invoke >. The < receive >

activity waits for an incoming message. The < reply > activity returns a response. The <

invoke > activity invokes operations on other services. When the business process invokes

an operation, it sends a set of parameters that are transformed into messages. If we invoke

a synchronous request/response operation, it also returns a message.

Table 3.1 describes the automata representations of partner interaction activities. From

the table, we can observe that the activities are transformed into a mix of "Receive" and

"Send" actions. This is because from the agent perspective, both replying to a request and

invoking a service can be represented by a "Send" action. On the other hand, receiving a

message derived from an invoke can be represented as a "Receive" action. These activities

are transformed into AOR using Algorithm 1, when transforming < invoke > one state and

one evolution were added to model the "Receive" action in synchronous mode.
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Algorithm 1: Transformation of basic activity

Input: BPEL non-recursive activity A

Output: AOR A

1 c := A.get_last_state

2 ai:=A.create_new_action (A)
3 si:=A.create_new_state

4 ei:=A.create_new_evolution (c,A.si,A.ai)

3.2.3 Transformation of Structured Activities

Each structured activity has a transformation description that provides: an example of the

BPEL construct under transformation and the algorithm that describes how to perform the

transformation into AOR followed by its execution description using the given example as

an input, along with the automaton that describes the resulting AOR. Processes examples

are taken from [11] and created using Eclipse BPEL Designer [21].

A. Sequence Transformation

The < sequence > construct runs activities sequentially. An example is shown in the left

side of Figure 3.5. This workflow starts receiving an input from client using < receive >.

The value is saved into the "input" variable, then it is assigned to the "output" variable using

an assign, and then this is replied to client with the < reply > activity. The BPEL code is

shown in the following listing.

Listing 3.2: Sequence example

< b p e l : s e q u e n c e name=" main ">

< b p e l : r e c e i v e name=" r e c e i v e I n p u t " p a r t n e r L i n k =" c l i e n t "

p o r t T y p e =" t n s : HellowWorld "

o p e r a t i o n =" p r o c e s s " v a r i a b l e =" i n p u t "

c r e a t e I n s t a n c e =" yes " / >

< b p e l : a s s i g n v a l i d a t e =" no " name=" Ass ign ">

. . .

</ b p e l : a s s i g n >
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< b p e l : r e p l y name=" r e p l y O u t p u t "

p a r t n e r L i n k =" c l i e n t "

p o r t T y p e =" t n s : HellowWorld "

o p e r a t i o n =" p r o c e s s "

v a r i a b l e =" o u t p u t " / >

</ b p e l : sequence >

Algorithm 2 describes how to transform the < sequence > BPEL activity into its

corresponding AOR. Figure 3.5 shows the flow of the transformation. The algorithm’s

input is a BPEL < sequence > activity S that has one or more activities t1, t2, etc.

Algorithm 2: Sequence transformation

Input: BPEL sequence activity S

Output: AOR A

1 iniState :=A.get_last_state

2 foreach ti ∈ S do

3 call algorithm for ti
4 end

Execution description

The input < sequence > has three activities: < receive >, < assign > and < reply >. The

algorithm starts obtaining the initial state S0. Then calls the basic algorithm to transform

the < receive >. When the algorithm is executed, it creates the action "receive", the state

S1, and one evolution from S0 to S1 with the action "receive" on it. The following activity

is < assign > and therefore the basic algorithm is called again. This algorithm creates the

action "assign", the state S2 and one evolution form S1 to S2 with the action "assign" on it.

Finally, the basic algorithm is called to transform the < reply >. This algorithm creates the

action "send", the state S3, and one evolution form S2 to S3 with the action "send" on it .

The automaton is depicted in the right side of Figure 3.5.

B. If Transformation

The intent of the < i f > construct is to branch from a single activity to exactly one of
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Figure 3.5: Sequence example and its automaton

several branches based on the evaluation of a condition. Branches converge to a single

activity, which starts executing when the chosen branch completes.

The left side of Figure 3.6 shows an example. The worklfow starts receiving a name

from client, then the value of name is compared with "John". If this condition evaluates to

true, then the output variable is set to "Hello John". On the other hand, if the condition

evaluates to false, the output variable is set to "You are not John". The output variable is

replied to the client. The BPEL code is shown in the following listing.

Listing 3.3: If example

< b p e l : s e q u e n c e name=" main ">

< b p e l : r e c e i v e name=" r e c e i v e I n p u t " p a r t n e r L i n k =" c l i e n t " . . . / >

< b p e l : i f name=" I f ">

< b p e l : c o n d i t i o n >

<− name == " John"−>

. . .

</ b p e l : c o n d i t i o n >

< b p e l : a s s i g n
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<!−− o u t p u t = " H e l l o John " −−>

. . .

</ b p e l : a s s i g n >

< b p e l : e l s e >

< b p e l : a s s i g n

<− o u t p u t == " Yo a r e n o t John " −>

. . .

</ b p e l : a s s i g n >

</ b p e l : e l s e >

</ b p e l : i f >

< b p e l : r e p l y name=" r e p l y O u t p u t " p a r t n e r L i n k =" c l i e n t " . . . / >

</ b p e l : sequence >

Algorithm 3 describes how to transform the < i f > BPEL construct into its corresponding

AOR. The right side of Figure 3.6 shows the flow of the transformation. The algorithm’s

input is a BPEL < i f > activity denoted by I that contains one condition C, one activity t1

for the true branch and one activity t2 for the false branch.

Execution description

The input’s condition is (name == "John"), the true branch has an < assign > activity

and the false branch has another < assign > activity. The algorithm starts obtaining the

initial state, that is S1, then processes the true branch. The true branch creates the state S2,

one evolution with the guard C from S1 to S2 , and calls the algorithm for processing the

< assign >. This algorithm creates the action “assign", the state S3, and one evolution with

the “assign" action from S2 to S3. When the control returns to the If algorithm, it creates

a new state S4 and one evolution with the guard true from S3 to S4. After processing the

true branch, the algorithm processes the false branch. This branch creates the state S5,

one evolution with the guard !C from S1 to S5, and calls the algorithm for processing the

< assign >. This algorithm creates the action “assign1", the state S6, and one evolution

52



Algorithm 3: IF transformation

Input: BPEL If I

Output: AOR A

1 iniState :=A.get_last_state

2 true branch

3 A.si:=create_new_state

4 A.ei:= create_new_evolution (iniState,A.si, I.C)
5 call algorithm for t1
6 lastPathState :=A.get_last_state

7 A.si:= create_new_state

8 A.ei:= create_new_evolution (lastPathState,A.si, true)
9 f inState = si

10 false branch

11 A.si:= create_new_state

12 ei:=A.create_new_evolution (iniState,A.si, !I.C)
13 call algorithm for t2
14 lastPathState :=A.get_last_state

15 ei:= A.create_new_evolution (lastPathState, f inState, true)

with the action “assign1" from S5 to S6. When the control returns to the If algorithm,

it creates one evolution with the guard true from S6 to S4. The resulting automaton is

depicted in Figure 3.6.

C. While Transformation

The < while > construct supports repeated executions of a contained activity, which runs as

long as the Boolean < condition > evaluates to true at the beginning of each iteration. The

left side of Figure 3.7 shows an example. This workflow receives an input string, creates

a new string concatenating 5 times the input and returns the new string to the client. The

following listing shows its BPEL code.

Listing 3.4: While example

< b p e l : s e q u e n c e name=" main ">

< b p e l : r e c e i v e name=" r e c e i v e I n p u t " . . . " / >

< b p e l : a s s i g n v a l i d a t e =" no " name=" Ass ign ">

. . .
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Figure 3.6: If example

</ b p e l : a s s i g n >

< b p e l : w h i l e name=" While ">

< b p e l : c o n d i t i o n . . . ( i t e r a t o r < 5 ) . . . < / b p e l : c o n d i t i o n >

< b p e l : a s s i g n v a l i d a t e =" no " name=" Ass ign1 ">

. . .

</ b p e l : a s s i g n >

</ b p e l : whi le >

< b p e l : a s s i g n v a l i d a t e =" no " name=" Ass ign2 ">

. . .

</ b p e l : a s s i g n >

< b p e l : i n v o k e name=" c a l l b a c k C l i e n t " . . . / >

</ b p e l : sequence >

Algorithm 4 describes how to transform the < while > BPEL construct into its corre-

sponding AOR. The flow of the transformation is drawn in the right side of Figure 3.7. The

algorithm’s input is a BPEL < while > activity denoted by W which contains one condition
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C and one activity t.

Algorithm 4: While transformation

Input: BPEL While W

Output: AOR A

1 iniState :=A.get_last_state

2 true branch

3 A.si:= create_new_state

4 A.ei:= create_new_evolution (iniState,si,W.C)
5 call algorithm for ti
6 si :=A.get_last_state

7 A.ei:= create_new_evolution (si, iniState, true)
8 false branch

9 A.si:= create_new_state

10 A.ei:= create_new_evolution (iniState,s, !W.C)

Execution description

The input’s condition is (iterator < 5) and the true branch has an < assign > activity.

Thus, the algorithm starts obtaining the initial state that is S2, then processes the true

branch. This branch creates the state S3, one evolution from S2 to S3 with the guard C, and

calls the algorithm for processing the < assign > activity. This algorithm creates the action

"assign1", the state S4, and one evolution from S3 to S4 with the "assign1" action. When

the control returns to the While algorithm, it creates one evolution with the guard "true"

from S4 to S2. After processing the true branch, the algorithm processes the false branch.

This branch creates the state S5 and one evolution from S2 to S5 with the guard !C. Figure

3.7 depicts the resulting automaton.

D. Pick Transformation

This activity allows us to specify which branch would be executed according to the re-

ceived message. Once one of the branches is activated, the other alternative branches are

withdrawn. It is important to note that the decision about which branch to take is delayed

until a message is received. The left side of Figure 3.8 displays an example. This worflow

replies "hello" if it receives "say hello", or replies "goodbye" if it receives "say goodbye".
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Figure 3.7: While example

The following listing shows the BPEL code.

Listing 3.5: Pick example

< b p e l : s e q u e n c e name=" main ">

< b p e l : p i c k name=" P ic k " c r e a t e I n s t a n c e =" yes ">

< b p e l : onMessage p a r t n e r L i n k =" c l i e n t " o p e r a t i o n =" SayHel lo " . . . >

< b p e l : sequence >

< b p e l : a s s i g n v a l i d a t e =" no " name=" Ass ign ">

. . .

</ b p e l : a s s i g n >

< b p e l : r e p l y name=" r e p l y O u t p u t " p a r t n e r L i n k =" c l i e n t " . . . / >

</ b p e l : sequence >

</ b p e l : onMessage >

< b p e l : onMessage p a r t n e r L i n k =" c l i e n t " o p e r a t i o n =" SayGoodBye " . . . >

< b p e l : sequence >

< b p e l : a s s i g n v a l i d a t e =" no " name=" Ass ign1 ">
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. . .

</ b p e l : a s s i g n >

< b p e l : r e p l y name=" Reply " p a r t n e r L i n k =" c l i e n t "

o p e r a t i o n =" SayGoodBye

</ b p e l : sequence >

</ b p e l : onMessage >

</ b p e l : p ick >

</ b p e l : sequence >

Algorithm 5 describes how to transform the < pick > BPEL construct into its cor-

responding AOR. The right side of Figure 3.8 shows the flow of the transformation. The

algorithm’s input is a BPEL < pick> activity denoted by P that has one or more on-message

denoted by o j. Each on-message o j has one activity denoted by ti.

Algorithm 5: Pick transformation

Input: BPEL Pick P

Output: AOR A

1 iniState :=A.get_last_state

2 foreach o j ∈ P do

3 A.si:= create_new_state

4 A.ai:= create_new_action (o j)
5 A.ei:= create_new_evolution (iniState,si,ai)
6 call algorithm for ti
7 si :=A.get_last_state

8 if j==0 then

9 f inState :=A.create_new_state

10 ei:= A.create_new_evolution(si, f inState, true)

11 else

12 ei:= A.create_new_evolution (si; f inState; true)
13 end

14 end

Execution description

The input < pick > activity has two branches. The first branch ( j := 0) is the message

"say hello" and it is related to a < sequence > that has two activities. The first activity
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Figure 3.8: Pick example

is an < assign > to copy "hello" to an output variable. The second activity replies this

variable to the client. The second branch is the message "say goodbye" and it is related to a

< sequence > that has two activities. The first activity is an < assign > to copy "goodbye"

to an output variable and the second activity replies this variable to the client. The algorithm

starts obtaining the initial state that is S0, then processes the first branch. The first branch

creates the state S1, a new "receive" action, one evolution with the "receive" action from S0

to S1, and calls the algorithm for processing the < sequence >. When the control returns to

the Pick algorithm, it gets the last state, that is S3. Then, the condition ( j == 0) evaluates

to true. Therefore, it creates a new state S4 and its value is assigned to the variable finState.

Thereafter, it creates one evolution with the guard "true" from S3 to S4. The second branch

( j := 1) is processed in the same way that the first one; the only difference is that the

condition ( j == 0) evaluates to false. Then, one evolution is created with the guard "true"

form S7 to S4(finState). Figure 3.8 illustrates the resulting automaton.

E. Flow Transformation

The < f low> activity sets up parallel activity execution and activity synchronization where
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the order of execution is unpredictable. The flow waits for each contained activity to com-

plete before exiting. The left side of Figure 3.9 reveals an example. In this workflow, an

input is received, then two < assign> activities are executed in parallel inside the < f low>

activity. Once this is done, an output is replied. The following listing shows the BPEL code.

Listing 3.6: Flow example

< b p e l : s e q u e n c e name=" main ">

< b p e l : p i c k name=" P ic k " c r e a t e I n s t a n c e =" yes ">

< b p e l : onMessage p a r t n e r L i n k =" c l i e n t " o p e r a t i o n =" SayHel lo " . . . >

< b p e l : sequence >

< b p e l : a s s i g n v a l i d a t e =" no " name=" Ass ign ">

. . .

</ b p e l : a s s i g n >

< b p e l : r e p l y name=" r e p l y O u t p u t " p a r t n e r L i n k =" c l i e n t " . . . / >

</ b p e l : sequence >

</ b p e l : onMessage >

< b p e l : onMessage p a r t n e r L i n k =" c l i e n t " o p e r a t i o n =" SayGoodBye " . . . >

< b p e l : sequence >

< b p e l : a s s i g n v a l i d a t e =" no " name=" Ass ign1 ">

. . .

</ b p e l : a s s i g n >

< b p e l : r e p l y name=" Reply " p a r t n e r L i n k =" c l i e n t "

o p e r a t i o n =" SayGoodBye " . . . >

</ b p e l : sequence >

</ b p e l : onMessage >

</ b p e l : p ick >

Algorithm 6 describes how to transform the < f low > BPEL construct into its cor-

responding AOR. The flow of the transformation is drawn in the right side of Figure 3.9.

The algorithm’s input is a BPEL < f low > activity denoted by F that contains n activities
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ti where n > 0. The procedure Permutation (a1,a2...an) produces a set of permutations Pj

of the input activities.

Execution description

Algorithm 6: Flow transformation

Input: BPEL Flow F

Output: AOR A

1 iniState :=A.get_last_state

2 foreach permutation Pj(t1, t2, ...tn) do

3 call sequence algorithm with the activities of Pj as input

4 lastPermutationState :=A.get_last_state

5 if j=0 then

6 f inState := A.create_new_state

7 ei:= A.create_new_evolution (lastPermutationState, f inState, true)

8 else

9 ei:= A.create_new_evolution (lastPermutationState, f inState, true)
10 end

11 end

The input < f low > activity has two branches. The first branch has the activity t0 which

is < assign >. The second branch has the activity t1 which is < assign1 >. The algorithm

starts obtaining the initial state S1, then obtains the permutations of these activities, which

are P0 : (t0, t1) and P1 : (t1, t0). Thereafter, the < sequence > algorithm is called using P0 as

input. Inside the sequence, the algorithm for non recursive activities is called twice. The

first time, it creates the action "assign", the state S2 and an evolution form S1 to S2 with the

action "assign" on it. The second time, it creates the action "assign1", the state S3 and an

evolution form S2 to S3 with the action "assign1" on it. When the control returns, the state

S4 is created and assigned to finState. Then, it creates an evolution form S3 to S4 with true

as a guard. The < sequence > algorithm is called again using P1 as input and creates the

state S5, an evolution form S1 to S5 with the activity "assign1", the state S6 and an evolu-

tion form S5 to S6 with the action "assign" on it. When the control returns, an evolution is

created form S6 to S4 with true as a guard. Figure 3.9 depicts the resulting automaton.
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Figure 3.9: Flow example

This algorithm generates the alternatives of execution for the < f low > activity per-

forming permutations, taking each branch activity as an element. When processing struc-

tured activities, a more accurate representation of the actual processing would be taking

each basic activity inside each structured activity as an element to generate the alternatives

of execution following the defined order for each branch activity, but interchanging ele-

ments of all branches. The algorithm to implement this approach is called shuffle product

[52]. However, we did not use the shuffle product approach because from the verifica-

tion perspective, it does not add any value compared to the transformation using permuta-

tions. The alternatives created using permutations follow the ordering within the < f low >

branches activities and basic activities of other branches are executed before and after a

given branch. This is enough to verify that there is no dependency between a given basic

activity of a branch and other branches’s elements. Additionally, the shuffle product would

multiply the number of branches on the automaton, which may cause confusions for the

users.
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3.2.4 Transforming Fault Handlers

Fault handling allows a BPEL process to deal with run-time faults. Each fault has a fault

handler and an activity, which is executed when the associated fault occurs. We transform

the fault-handling section after processing the constructs in the main body of the BPEL

process. The transformation is done in two steps:

• For each fault-handler, we create a new state’s object and label it with the fault’s

name. Then, we transform its associated activity using the algorithms described ear-

lier.

• After transforming all the fault-handlers, we look for the AOR states objects labeled

with a < throw > and create an evolution from each one of them to the state labeled

with the name of the corresponding fault.

3.2.5 Modeling Communication

We addressed communication transformation between the BPEL process and its partners

in Section 3.2.1. However, two more steps are needed. The first one is to synchronize

the sending and the corresponding receiving actions. The second one is to include shared

variables to model communication channels as required by the extension of the formalism

of interpreted systems to use CTLC. Both steps have to be done after transforming all the

input processes into the corresponding AORs.

A. Synchronization

In the AOR "send" and "receive", actions include the name of the partner and the operation

they are conducting. To synchronize receiving and sending actions, the corresponding part-

ner action is added to each transition that contains one of these activities. A partner action

for a "send" action is a "receive" action of the partner with the same operation. The partner
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Action Automata

Send to a non BPEL partner

Receive from a non BPEL partner

Send to a BPEL partner

Receive from a BPEL partner

Table 3.3: Automata for communications actions

action is included using an and. Since some partners may not have a behavioral description,

their communication actions are not modified. Table 3.3 shows the automata obtained for

communications actions when synchronization is being applied.

B. Shared Variables

In order to apply CTLC logic, we model communication channels using shared variables

between two services. An enumerated variable is defined in each pair of agents that commu-

nicate with each other. An initial value and two values to model communication directions

in both ways are enumerated for each variable. The shared variable is initialized when the

process starts. Before sending a message, one of the values is assigned to the shared vari-

able. The receiver assigns the same value to the shared variable after receiving the message.

Two values are required to differentiate two consecutive messages.

Figure 3.10 depicts an example where the shared variable sv2 is used to model com-

munication between agent A and agent B. This variable holds one of the following values:

v0, v1, v2, v3 and v4. The initial value is v0. Values v1 and v2 are used to model communi-

cation from agent B to agent A. Variables v3 and v4 are used to model communication from

agent A to agent B. Agent A changes the value of the variable before sending a message to

agent B. Agent B changes the value of the variable after receiving the message.

63



send_AgentB_operation

i f  sv2=v3 t hen sv2=v4 el se sv2=v3
receive_AgentA_operation

Agent A

S0

S1

S2

Agent B

S0

S1

S2

i f  sv2=v3 t hen sv2=v4 el se sv2=v3

Figure 3.10: Implementation of shared variables

3.3 From Agents Object Representation to ISPL and DOT

A. Agent Description

As explained earlier in Section 2.3.4, an agent description in ISPL+ consists of the following

fixed sections: Vars, Actions, Protocol and Evolution. In order to write an ISPL+ agent

description, we use each AOR as described in the following steps:

1. declare the agent using the agent’s object name;

2. define the state variable using the objects of the state class;

3. define actions section taking all entries from the action class;

4. define protocol section taking all entries form the protocol class and the related state

and actions; and

5. define evolution taking all the objects form the evolution class, the initial and target

states, and the action.
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Moreover, in order to complete the MAS description in ISPL+, three sections are

needed: IniStates, Evaluation, and Formulae.

B. Initial States

Each initial state is a Boolean expression indicating that the agent is in its starting point.

Shared variables are also initialized in initial states.

C. Evaluation Section

An evaluation is defined for each state object of the agent. During the transformation, a

label is saved on each state based on the name of the transition that ends on it. The format

of the evaluation is as follows:

label if Agent.State = Sx;

When all the agents are being processed, an evaluation section for communication between

agents is written. Each occurrence is performed matching the sending state from one agent

with the receiving state of its partner using the labels saved on each state object. The format

of the evaluation is as follows:

Agent1_Agent2_OperationName if Agent1.State = Sx and Agent2.State = Sy;

D. Formulae Section

As seen in Section 2.3.4, we define commitment properties and the corresponding fulfill-

ment as follows:

• C(agent2, agent1, commitmet1);

• Fu(agent2, agent1, commitmet1);

The transformation assumes that each invocation from the agent in charge of the

orchestration to a participating agent establishes a commitment. Therefore, for each invo-

cation a commitment property and its fulfillment is generated. The format of the transfor-

mation is as follows:
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• EF C(agentInCharge, participatingAgent1, commitmet1); – meaning there exists a

computation so that in its future agentInCharge commits toward participatingAgent1

to bring about commitment1.

• EF Fu(agentInCharge, participatingAgent1, commitmet1)); – meaning there exists a

computation so that in the future the fulfillment of the commitment will hold.

3.4 From Intermediate Representation to DOT

In order to provide a graphical visualization of each agent, a guarded automaton is drawn

using its AOR. A DOT file for each agent is written, transforming each evaluation object

into the following format:

IniState ->FinalState [label = evolution]

In the following listing we show the output for the sequence example in Section 3.2.3.

Listing 3.7: DOT example

Digraph {

s0−>s1 [ l a b e l =" r e c e i v e _ c l i e n t _ S a y H e l l o " ] ;

s1−>s2 [ l a b e l =" a s s i g n _ A s s i g n " ] ;

s2−>s3 [ l a b e l =" s e n d _ c l i e n t _ S a y H e l l o " ] ;

s3−>s4 [ l a b e l =" n u l l " ] ;

s0−>s5 [ l a b e l =" r e c e i v e _ c l i e n t _ S a y G o o d B y e " ] ;

s5−>s6 [ l a b e l =" a s s i g n _ A s s i g n 1 " ] ;

s6−>s7 [ l a b e l =" send_c l i en t_SayGoodBye " ] ;

s7−>s4 [ l a b e l =" n u l l " ] ;

}

This file creates the automaton displayed in Figure 3.11 using a DOT visualization software.
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Figure 3.11: Sequence automaton

3.5 Verification

We perform the verification loading the code generated in ISPL+ into the MCMAS+ model

checker. The graphic description of the automata of the agents are useful to understand

the transformation results. After running the validation we can obtain the results of each

property validation. The tool also provides a witness when the property evaluates to true

and a counter example when the formula evaluates to false.

3.6 Case Study

3.6.1 Outline

The "Time Sheet Submission Service Process" (TSP) orchestrates several services. In this

section, we show the example of two web services: Employee and Invoice to create a new

service as depicted in Figure 3.12. However, these two services include all the constructs of

BPEL that we considered in this thesis. The objective is to show through a simple example

the feasibility of our transformation-based verification framework. Extending the example

to include more services is straightforward. Appendix A shows the example of composing
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Figure 3.12: Timesheet submission service layers

5 services (4 services plus the orchestrator).

A. Participating Services

Employee web service

The Employee service has two operations: GetWeeklyHoursLimit and UpdateHistory. GetWeek-

lyHoursLimit operation receives the employee identification data, and returns the largest

amount of hours that he can work on a given week. In order to get this amount, it performs

an addition of the largest amount of hours that he can work each day of the week. With re-

gard to UpdateHistorty operation, it receives information related to the employee and saves

it on the historical data. The abstract BPEL Process that describes this service behavior is

described in Figure 3.13.

Invoice web service

The Invoice service has only one operation: GetBilledHours. This operation receives as

parameters the employee identification and a given week, and returns the number of billed

hours. The abstract BPEL Process that describes its behavior is described in Figure 3.14.

B. Orchestrating Web Service

This service receives a time-sheet as an input, then verifies that the information contained

is valid. If the validation fails, it is recorded in the employee history. This process can be

done with two < i f > construct. However, it was done using the < f low > construct in
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Figure 3.13: Employee web service
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Figure 3.14: Invoice web service

order to show the fault handler functionality. The process is depicted in Figure 3.15.

3.6.2 Transformation

BPEL2ISPL+ transformed the BPEL code of the process in charge of the orchestration and

the abstract BPEL code of the participating web services. BPEL2ISPL+ provided two files

as outputs: name.ispl containing the MAS description in ISPL+, and name.gv containing

the graphical description of the agents. The files are named as the process in charge of the

orchestration.

The Invoice automaton is depicted in Figure 3.16. It has one path (from s0 to s7) re-

sulting from the < sequence > construct transformation. The activities inside this construct

are transformed into sequential actions as described by Algorithm 2. Each basic activity is

transformed using Algorithm 1. The resulting actions are: receive_TSPa_GetBilledhours

on the evolution from S0 to S1, assign_GetParameters on the evolution from S2 to S3 ,

opaque_Activity_DatabaseAccess on the evolution from S3 to S4, assign_DataToOutput

on the evolution from S4 to S5 and send_TSPa_GetBilled_hours on the evolution from S6

70





Figure 3.16: Invoice agent automaton
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Figure 3.17: Employee agent automaton

to S7.

In order to model communication, as explained in 3.2.5, the receive action is synchro-

nized with a send action from the corresponding agent and operation, and the send action

is synchronized with a receive action from the corresponding agent and operation. Addi-

tionally, two evolutions are added to assign values to the shared variable g0 with the TSP

agent. The values v1 and v2 are used when this agent receives information from the TSP

agent. One of these values is assigned after receiving information. The values v3 and V 4

are used when information is sent to the TSP agent. One of these values is assigned before

sending information. As discussed earlier, two values are used to differentiate consecutive

actions in the same direction. The initial value of the shared variable g0 is v0.

The Employee automaton is depicted in Figure 3.17. It starts with two paths resulting

from the < pick > construct transformation. Each path starts with a receive action. The first

path starts with the evolution from s0 to s1 with the action receive_TSPa_GetWeeklyHoursLimit
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and finishes with the evolution from s11 to s12 with the label true. The second path starts

with the evolution form s0 to s13 with the action receive_TSPa_UpdateHistoy. It ends with

an evolution from s19 to s12 with the guard true.

The first path continues with the result from the < sequence > construct transfor-

mation. The evolution form s2 to s3 has the action receive_TSPa_GetWeeklyHoursLimit.

Then, states S3 to S8 implement the while transformation, followed by the evolution form

s8 to s9 with the action assign_AssignTotalToOutput and the evolution from s10 to s11

with the action receive_TSPa_GetWeeklyHoursLimit. Algorithm 1 is used to perform the

< while > construct transformation. It has two branches: one when the condition evalu-

ates to true and the other when the condition evaluates to false. The true branch starts

with the evolution from s3 to s4 when the condition evaluates to true, then transforms

the < sequence > construct inside the while. The evolution s4 to s5 has the action as-

sign_incIterator, the evolution s5 to s6 has the action opaqueActivity_ObtainDayLimit and

the evolution from s6 to s7 has the action assign_SumEachDay. An evolution from s7

to s3 with the true guard finishes the true branch. The evolution form s3 to s8 with

the guard Cond_0_em is false implements the false branch. The second path has four

additional actions resulting form the the < sequence > construct transformation, which

are assign_GetParam, opaqueActivity_UpdateDatabase, assign_AssingConfToOutput and

send_TSPa_UpdateHistory. Finally, service communication is modeled in the same way as

in the Invoice service.

The TSP automaton is depicted in Figure A.2. The automaton starts with the evo-

lution from s0 to s1 with the receiveInput action, then it transforms the < f low > con-

struct that has two < sequence > constructs: Sequence and Sequence1 using Algorithm 6.

As a result, the automaton has two branches out of the the permutations of Sequence and

Sequence1. The branch s1 to s15 is the result of the transformation of the first permutation,
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Figure 3.19: TSP agent automaton continued

which starts with Sequence followed by Sequence1. The branch from s1 to s30 is the result

of the transformation of the second permutation, which starts with Sequence1 followed by

Sequence. Both branches close with an evolution to s16 with true as guard. The automaton

ends with an evolution from s16 to s31 with the action send.

The branch from s1 to s15 begins with the Sequence < sequence > construct trans-

formation, which starts with an assign_Assign action on the evolution from s1 to s2. Then

continues with the invoke transformation from s3 to s4 and from s4 to s5. Thereafter, it

transforms the < i f > construct using Algorithm 3. The true branch starts with the evolu-

tion from s6 to s7 with true as guard. Since the following activity is a < throw >, s7 has a

variable indicating which fault is thrown. The evolution will be completed after processing

fault-handlers. The false branch is implemented by the evolution from s6 to s8. Up to now,

the transformation of Sequence is completed. Thus, we continue with the transformation of

Sequence1. It starts with the action assign_Assign2 evolution from s8 to s9. It continues

with the invoke transformation from s10 to s12. Then, it transforms the < i f > construct.
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The true branch starts with the evolution from s13 to s14 with true as label. Since the

following activity is a < throw >, s14 has a variable indicating which fault is thrown. The

false branch is implemented by the evolution from s13 to s15. The branch from s1 to s30

that results from the second permutation starts transforming Sequence1 followed by Se-

quence. The steps to transform them are the same as the first permutation. Finally, the

communication part is modeled in the same way as for the Employee and Invoice services.

The fault handler section is transformed as explained in Section 3.2.4 and is depicted

in Figure 3.19. This case has the CatchAll Fault Handler. The program creates a new state

s32 and label it as the beginning of the CatchAll fault handler. Then, it transforms the nested

< sequence> construct, which ends in state s37. Once this is done, the program jumps back

to the main process transformation and looks for all states that have a label indicating that

a fault is thrown from it. An evolution to s32 from s7, s14, s22 and s29 is created with the

name of the corresponding fault handler on it. To improve readability, when depicting the

automaton for the fault handler, states are divided in two: fault state and fault handler state.

3.6.3 Verification Results

Once the ISPL+ file is generated, the next step is to load it into MCMAS+. The properties

checked are stated as follows:

1. EF C(TSPa, Invoice, opaqueActivity_DatabaseAccess)

2. EF Fu(TSPa, Invoice, opaqueActivity_DatabaseAccess)

3. EF C(TSPa, Employee, assign_AssignTotalToOutput)

4. EF Fu(TSPa, Employee, assign_AssignTotalToOutput)

Property one checks if there is a possible computation where the Invoice agent com-

mits to TSPa agent to perform DatabaseAccess. Property two checks if this commitment
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Figure 3.20: Verification results

is fulfilled. Property three checks if it is possible in some future run that Employee agent

commits to TSPa agent about AssignTotalToOutput. Property four checks if this commit-

ment is fulfilled. As we can see in the verification results shown in Figure 3.20, all the

properties hold.

Figure 3.21 shows a witness for property one, which means that Invoice agent com-

mits to TSPa agent to perform DatabaseAccess in global state three. Figure 3.22 shows a

witness for property two, which means that the commitment established in property one is

fulfilled in global state eight. Figure 3.23 shows a witness for property three, which means

that Employee agent effectively commits to TSPa agent to perform AssignTotalToOutput in

global state three. Figure 3.24 is a witness for property four, meaning that the commitment

established in property three is fulfilled in global state twenty.

3.7 Related Work

Morimoto recently surveyed the work undertaken the formal verification of BPEL processes

[39] using the transformation process. He categorized current approaches according to the

transformed formal models into Automata, Petri-net and Process Algebra. In this thesis, we

extend Morimoto’s taxonomy [39] with a new category called Interpreted System models

and discuss the following approaches.
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Figure 3.21: Witness of the formula one

An automaton generally comprises of a set of states, transitions between states, an

initial state, and actions. Specification models, which specify system behavior can be de-

rived from automata. The approaches lie in this category transform BPEL processes into

automata in order to perform formal verification using either NuSMV [12], UPPAL [6] or

SPIN [24] model checkers. Among these approaches, there is only one approach that devel-

ops the BPEL2SMV tool to automatically perform the transformation from BPEL processes

into an automaton model, which is then transformed into a SMV model [38]. The correct-

ness of the resulting SMV model is verified against properties formalized in CTL using

NuSMV. However, the approach does not present and discuss the transformation rules that

they use in the transform process in order to be able to compare with our rules.

Petri net is an approach to model concurrent systems. The Petri net model comprises

of places, transitions, and arcs. The arcs connect between places and transitions and they are

directed. In this category, there are several approaches that transform BPEL processes into
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Figure 3.22: Witness of the formula two
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Figure 3.23: Witness of the formula three
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Figure 3.24: Witness of the formula four
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Petri net models. Some of these approaches perform an automatic transformation. Among

these approaches, Lohmann et al. [31] developed the BPEL2oWFN tool that transforms

BPEL processes into Petri net models. The authors claimed that the Petri net models can

be checked given temporal properties (LTL and CTL) using common model checker tools

without considering certain model checker tool.

It is known that process algebras can formally model concurrent systems and their

grounded semantics are based on the automata theory. Several derivative algebras have

been defined such as Milner’s Calculus of Communicating Systems (CCS), Hoare’s Calcu-

lus of Sequential Processes (CSP) and the Language of Temporal Ordered Systems (LO-

TOS). While, there are several approaches that can transform BPEL processes into process

Algebra models [43] [20], their transformation process is not performed in an automatic

manner.

All the above approaches are not considered the multi-agent system paradigm, which

can effectively model and reason about the services composition. For this reason, we in-

troduce the interpreted system models. The formalism of interpreted systems were first

proposed by Fagin et al.[19] to model distributed systems. Recently, this formalism has

been adopted as a formal tool to model multi-agent systems and their characteristics. In

this formalism, each agent is defined using a set of local states, local actions, local proto-

col and local evolution function and initial state. The semi-automatic transformation from

BPEL processes to the ISPL models was done by Lousmicio et al. [34], which in turn is

based in the transformation proposed by Fu et al. [22]. However, there are at least four

technical differences with our approach. The first difference is that our transformation pro-

duces ISPL+ code instead of ISPL, which allows us to verify commitments using CTLC.

The second difference is in the objective of the thesis: they focus on the contract service
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level agreements among Web services instead of Web services themselves and their compo-

sition, while our work focuses on commitments verification between the service in charge

of the composition and participating services. The third difference is that they state rules,

while we describe algorithms that provide implementation details. The fourth difference is

in the transformation of the BPEL constructs. Within the language constructs, we include

<throw> and <opaqueActivity> and modify the transformation of <pick> and <flow>

introduced in [34]. The inclusion of <throw> allows us to model the fault-triggering to

handle exceptions at run time, and the inclusion of <opaqueActivity> allows us to include

opaque activities. In the modified version of the <pick> transformation, we translate every

<on-message> as the “receive” activity to model interactions among services in a reason-

able way. The transformation rule of the <flow> activity in the Lousmicio et al.’ proposal

is not feasible in the automaton theory.

Discussion: Although interactions between invoked Web services can be described in the

automaton, Petri net, process algebra and ISPL models, we cannot express properties that

can check the direct interactions among Web services (or agents). In a matter of fact, the

interaction among Web services and agents plays a fundamental role in the composition

process, as shown in [16, 15]. In the reviewed approaches, the compliance of the trans-

formed models is verified with specifications formalized in pure temporal logics (LTL and

CTL). The pure temporal logics waive temporal communication modalities that we can

use to directly model, reason and verify Web service (agent) interaction with each other.

Additionally, the LTL and CTL formulas are added manually in the transformed models.

In our approach, we add transformation rules to model communication into the shared

variables in the ISPL+ models. These shared variables model communication channels be-

tween two pair of agents in the commitment logic CTLC introduced in [7]. In fact, CTLC is

an extension of CTL with social commitment and fulfillment modalities. The commitment

84



modality can be use to model and reason about the interaction among Web services enacted

by agents. Moreover, we automatically extract atomic propositions from the transformed

models. These atomic propositions are used to automatically express different temporal

properties.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, we proposed a new approach towards verifying compositions of web ser-

vices using 1) MAS and commitments as abstractions; and 2) model checking as a formal

and automatic verification technique. To perform the verification, we transformed the web

services composition into a MAS model where the process in charge of the composition

and the participating services were transformed into agent models. We coded the behav-

ior of the resulting MAS using ISPL+, which is the dedicated language of the MCMAS+

model checker. In fact, to represent contractual communications between services within

compositions, we used commitments, which are powerful abstractions that allow us to rea-

son about services interactions and capture useful properties by the means of operations on

these commitments. CTLC, the commitment-extension of CTL is used to formally express

these properties.

From the implementation perspective, we developed a tool called BPEL2ISPL+ to

perform the automatic transformation of the web service composition and its participating

services into a MAS verifiable model in ISPL+. We included a graphical representation
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that depicts the resulting model in order to facilitate its understanding. We tested our tool

with a web service composition case study and loaded the resulting ISPL+ model into the

MCMAS+ model checker. In fact, BPEL2ISPL+ automatically generated the ISPL+ model

in less than one second, the task that would take several hours if manually done. A care-

ful analysis of the generated model revealed that it is error free, a result that cannot be

guaranteed with the manual transformation. Furthermore, The visual representation of the

ISPL+ model was extremely helpful when verifying the accuracy of the model. Moreover,

we defined a set of properties to verify the soundness of the composition by verifying the

commitments established between the participating services including the service in charge

of the composition. Verification results showed how these commitments are created and

fulfilled, capturing thus the interaction-based composition.

4.2 Future Work

In recent years, companies have migrated to cloud computing to decrease the cost devoted

to the management of hardware and software resources. High demand on cloud services

has contributed to increase the amount of cloud services offerings [25]. Some approaches

have proposed BPEL to perform cloud computing service composition to provide composite

functionality out of the combination of several services [4, 14]. Our first future direction is

to extend and adapt our approach to verify cloud service compositions. The challenge is to

capture, model and then verify both horizontal (same cloud layer) and vertical (cross cloud

layers) compositions.

On the other hand, for several years, researchers have proposed approaches where

software agents interact with web services [23, 42, 44]. The plan is to expand our approach

to systems where agents and web services collaborate. Our current proposal already support

the web services behavioral description in ISPL+, which was originally proposed for agents.
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In order to include concrete software agents, and not only abstract ones as in the current

proposal, their behavioral description including their beliefs and epistemic status should be

integrated and then coded in ISPL+. A logic combining knowledge and commitments, for

instance the one proposed in [3], should be used to express the model and properties to be

model-checked.

Regarding the CTLC logic, currently it verifies fulfillment of commitments when the

creditor stays in the local state where the commitment was established. In other words, the

creditor has to wait in the state until the debtor accomplishes the commitment. Investigating

the removal of this condition from the commitment logic and analyzing its impact on the

model checking approach is another direction for further research.
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Appendix A

Extended Case Study

A.1 Outline

The "Time Sheet Submission Service Process" (TSP) discussed in Chapter 3 orchestrates

two participating web services: Employee and Invoice. In this appendix, we extend the

example with two additional participating web services: Payroll and Project, to create an

extended service as depicted in Figure A.1.

A. Participating Services

Payroll web service

The Payroll service has one operation: UpdatePayroll. This operation receives as param-

eters the employee identification and the number of hours worked in a given week. If the

company pays the employee monthly, it adds the hours worked to the monthly records.

Otherwise, the company pays the employee according to the hours worked. The abstract

BPEL Process that describes this behavior is illustrated in Figure A.2.

Project web service

The Project service has one operation: SetBilledHours. This operation receives as param-

eters the employee identification, project name, a given week and the number of hours
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Figure A.1: Timesheet submission service layers
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Figure A.2: Payroll web service

worked. It updates the project cost according to the hours worked. The abstract BPEL

Process that describes this behavior is shown in Figure A.3.

B. Orchestrating Web Service

As described in Chapter 3, this service receives a time-sheet as an input, then verifies that

the information contained is valid. If the validation fails, it is recorded in the employee

history. The process is extended after the validation by invocations of Payroll and Project

web services. The process is depicted in Figure A.4.

A.2 Transformation

BPEL2ISPL+ is used to transform the BPEL code of the process in charge of the orches-

tration and the abstract BPEL code of the participating web services. The orchestration

of Invoice and Employee web services is the same as described in Chapter 3. Therefore,

their corresponding agents are as previously presented. Agents of Payroll and Project web
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Figure A.3: Project web service

services are described in the appendix as well as the extended version of TSP.

The Payroll automaton is depicted in Figure A.5. It has an < i f > construct trans-

formation and the nested activities inside this construct are transformed into two branches

as described by Algorithm 3. Each basic activity is transformed using Algorithm 1. The

resulting actions are: receive_TSPa_UpdatePayroll on the evolution from S0 to S1, op-

paqueActivity_AddWorkedHours on the evolution from S3 to S4 if Cond_0_Pa evaluates to

true and oppaqueActivity_AddHoursPayment on the evolution from S6 to S7 if Cond_0_Pa

evaluates to false, and send_TSPa_UpdatePayroll on the evolution from S8 to S9.

In order to model communication, as explained in 3.2.5, the receive action is synchro-

nized with a send action from the corresponding agent and operation, and the send action

is synchronized with a receive action from the corresponding agent and operation. Addi-

tionally, two evolutions are added to assign values to the shared variable g2 with the TSP

agent. The values v9 and v10 are used when this agent receives information from the TSP

agent. One of these values is assigned after receiving information. The values v11 and v12

are used when information is sent to the TSP agent. One of these values is assigned before
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Figure A.4: Timesheet submission service process
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Figure A.5: Payroll agent automaton
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Figure A.6: Project agent automaton

sending information. As discussed earlier, two values are used to differentiate consecutive

actions in the same direction. The initial value of the shared variable g2 is v0.

The Project automaton is depicted in Figure A.6. It has one path (from s0 to s5) result-

ing from the < sequence > construct transformation. The activities nested within this con-

struct are transformed into sequential actions as described by Algorithm 2. Each basic activ-

ity is transformed using Algorithm 1. The resulting actions are: receive_TSPa_SetBilledhours

on the evolution from S0 to S1, opaque_Activity_UpdateProjectCost on the evolution from

S2 to S3, and send_TSPa_SetBilledHours on the evolution from S4 to S5. Moreover, the

communication is modeled in a similar way as for the Payroll service.

The TSP automaton is the same as the one depicted in Figure until global state

16, its extension starting at the transition from state 16 to state 31 is depicted in Fig-

ure A.7. The actions corresponding to the invocation to Payroll and Project web services
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Figure A.7: TSP agent automaton
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were added after the transformation of the < f low > construct. The resulting actions are:

send_Payroll_UpdatePayroll on the evolution from S31 and S32, receive_Payroll_UpdatePayroll

on the evolution from S32 and S33, send_Project_SetBilledHours on the evolution from

S35 and S36 and receive_Project_SetBilledHours on the evolution from S36 and S37. The

Fault Handler section do not have changes.

A.3 Verification Results

After being generated, the ISPL+ file is loaded into MCMAS+. Additional properties in-

volving Payroll and Project services are stated as follows:

5. EF C(TSPa, Payroll, FinIf_Payroll)

6. EF Fu(TSPa, Payroll, FinIf_Payroll)

7. EF C(TSPa, Project, opaqueActivity_UpdateProjectCost)

8. EF Fu(TSPa, Project, opaqueActivity_UpdateProjectCost)

Property five checks if there is a possible computation where the Payroll agent com-

mits to TSPa agent to perform FinIf. Property six checks if this commitment is fulfilled.

Property seven checks if it is possible in some future run that Project agent commits to TSPa

agent about AssignTotalToOutput. Property eight checks if this commitment is fulfilled. As

we can see in the verification results shown in Figure A.8, all the properties hold.

Figure A.9 shows a witness for property five, which means that Payroll agent commits

to TSPa agent to perform FinIf in global state twenty six. Figure A.10 shows a witness for

property six, which means that the commitment established in property five is fulfilled in

global state thirty one. Figure A.11 shows a witness for property seven, which means that

Project agent effectively commits to TSPa agent to perform UpdateProjectCost in global
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Figure A.8: Verification results

state thirty six. Figure A.12 is a witness for property eight, meaning that the commitment

established in property seven is fulfilled in global state forty three.
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Figure A.9: Witness of the formula five
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Figure A.10: Witness of the formula six
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Figure A.11: Witness of the formula seven
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Figure A.12: Witness of the formula eight
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