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Abstract 

Alcohol-seeking behavior elicited by a discrete Pavlovian alcohol cue is invigorated by 

 an alcohol context and requires AMPA glutamate receptors in the basolateral amygdala 

 

Joanna Marie Sciascia 

 

Environmental cues associated with alcohol consumption can trigger craving and facilitate 

relapse in abstinent alcoholics. We hypothesized that alcohol-seeking behavior evoked by a 

discrete cue associated with alcohol, would be influenced by context and require glutamate 

transmission in the basolateral amygdala. Male, Long-Evans rats that had previously consumed 

ethanol (EtOH; 15%; v/v) received Pavlovian conditioning sessions in which a 10-sec auditory 

stimulus (CS; 15 trials per session) was paired with EtOH (0.2 ml/CS). Entries into a fluid port 

where EtOH was delivered were measured. Pavlovian conditioning occurred in a specific context 

(alcohol context) and was alternated with sessions in a different context (non-alcohol context) 

where neither the CS nor EtOH was presented. At test, the CS was presented without EtOH in 

either the alcohol context or the non-alcohol context. In a separate study, rats received a bilateral 

microinfusion (0.3 µl/hemisphere) of 0, 0.3, or 1.0 µg of the AMPA glutamate receptor 

antagonist NBQX [2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione)] in the 

BLA. The effect of NBQX administration in the CPu on alcohol-seeking behavior elicited by an 

alcohol-predictive CS was also tested in a non-alcohol context. Alcohol-seeking elicited by the 

CS was invigorated in the alcohol context relative to the non-alcohol context. NBQX in the BLA 

attenuated CS responding at test in both contexts, but had no effect when infused into the CPu. 

These data highlight an important role of context in modulating the vigor of Pavlovian-

conditioned alcohol-seeking, and suggest that AMPA receptors within the BLA are required for 

the expression of this behavior.  

Keywords: Alcohol, Pavlovian conditioning, basolateral amygdala, NBQX, Context, Cues, 

Ampa receptors 
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Alcohol-seeking behavior elicited by a discrete Pavlovian alcohol cue is invigorated by an 

alcohol context and requires AMPA glutamate receptors in the basolateral amygdala 

 

Thesis overview 

Environmental stimuli that are reliably paired with the pharmacological effects of alcohol 

can, through associative learning, come to serve as cues that predict alcohol. Alcohol-predictive 

cues can evoke craving in abstinent alcoholics, which in turn can lead to alcohol-seeking 

behaviors that increase the risk of relapse (Cooney, Litt, Morse, Bauer, & Gaupp, 1997; Nees, 

Diener, Smolka, & Flor, 2012; Schneider et al., 2001). Thus, it is of value to investigate the 

behavioral and neurobiological mechanisms underlying relapse elicited by cues that predict 

alcohol. 

Cues that predict alcohol can be separated into at least 2 categories, based on their 

temporal relation to the pharmacological effects of alcohol. ‘Discrete alcohol cues’ are stimuli 

that are closely linked to alcohol consumption, and are reliably experienced immediately before 

the pharmacological effects of alcohol take effect. ‘Contextual alcohol cues’ are multimodal 

stimuli that routinely occur in the background during alcohol consumption (Cassaday, Horsley, 

& Norman, 2005; Janak & Chaudhri, 2010; Nees et al., 2012; Remedios, Woods, Tardif, Janak, 

& Chaudhri, 2014; Sciascia, Mendoza, & Chaudhri, 2014; Sparks, Sciascia, Ayorech, & 

Chaudhri, 2014). Although discrete and contextual cues can both independently trigger alcohol-

seeking behaviors (Chaudhri, Sahuque, & Janak, 2008, 2009; Millan & McNally, 2011; 

Remedios et al., 2014; Sciascia et al., 2014; Zironi, Burattini, Aicardi, & Janak, 2006), less is 

known about how contextual alcohol cues can influence alcohol-seeking behaviors elicited by 

discrete alcohol cues. A recent study in our laboratory found that alcohol-associated contexts can 

invigorate alcohol-seeking behavior elicited by a discrete Pavlovian cue that predicts alcohol in 

rats (Remedios et al., 2014). The current research sought to replicate this finding using a new 

behavioral procedure, and to investigate the neurobiological processes that mediate alcohol-

seeking behavior elicited by discrete Pavlovian alcohol cues that are experienced in different 

environmental contexts.  

The glutamatergic system has been implicated in alcohol dependence in humans 

(Holmes, Spanagel, & Krystal, 2013) and operant conditioned alcohol-seeking behavior in 

animal models (Bäckström & Hyytiä, 2004; Cannady, Fisher, Durant, Besheer, & Hodge, 2013; 
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Gass, Sinclair, Cleva, Widholm, & Olive, 2011; Rodd et al., 2006). For instance, preclinical 

research shows that systemic injections of AMPA (α-Amino-3-hydroxy-5-methyl-4-

isoxazoleproprionic acid) and NMDA (N-methyl-d-aspartate) glutamate receptor antagonists 

decrease cue-induced reinstatement of alcohol-seeking behavior (Bachteler, Economidou, 

Danysz, Ciccocioppo, & Spanagel, 2005; Bäckström & Hyytiä, 2004). In addition, enhancing 

glutamate activity increases cue-induced reinstatement of alcohol self-administration in rats 

(Cannady et al., 2013). It is evident that glutamate transmission plays a critical role in behavior 

maintained by alcohol cues, but the role of glutamate in alcohol-seeking behavior elicited by 

discrete Pavlovian cues has not been investigated. 

The basolateral amygdala (BLA) is critically involved in the formation of Pavlovian 

associations between environmental stimuli and rewards (Meil & See, 1997). The BLA receives 

and integrates input from cortical and subcortical regions about auditory and olfactory 

conditioned cues (Grace & Rosenkranz, 2002). Functional inactivation of the BLA attenuates 

context-induced renewal of alcohol-seeking, suggesting that the BLA is required for the renewal 

of alcohol-seeking behavior triggered by an alcohol-associated context (Chaudhri, Woods, 

Sahuque, Gill, & Janak, 2013).  In addition, glutamate activity in the BLA increases during 

reinstatement of alcohol-seeking but not food-seeking behavior, indicating that glutamate in the 

BLA is an important mediator of alcohol-seeking behavior (Gass et al., 2011). Therefore, the 

BLA appears to be a critical brain region that is involved in the formation of memories that 

involve CS-US associations, and a prime candidate in the study of alcohol-seeking behavior 

mediated by discrete and contextual alcohol-conditioned cues.  

The present thesis research sought to first examine whether alcohol-seeking behavior 

elicited by a discrete alcohol-associated cue would be enhanced in an alcohol context relative to 

a context where alcohol had never been consumed. In order to test this hypothesis, we used an 

experimental design that involved alternating Pavlovian conditioning sessions in one context, 

referred to as the ‘alcohol context,’ with exposure to second context where alcohol was never 

experienced, called the ‘non-alcohol context’. During Pavlovian conditioning sessions, a discrete 

cue is paired with the delivery of alcohol, while no cues or alcohol are delivered during sessions 

in a non-alcohol context. At test, the discrete cue is presented in the alcohol context and the non-

alcohol context using a within-subjects design, and alcohol-seeking behavior is indexed by the 

number of port entries made into the fluid port. We also determined if AMPA glutamate 
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receptors within the BLA are required for alcohol-seeking behavior elicited by a discrete 

Pavlovian cue in both contexts. In a control study, we tested the role of AMPA glutamate 

receptors in the caudate putamen (CPu), just dorsal to the BLA, on alcohol-seeking behavior 

elicited by a discrete cue in a non-alcohol context. 

 

Background 

 

Relapse to alcohol use and abuse can be precipitated by cues that predict alcohol 

Alcohol is one of the most commonly used addictive substances in the world, (Ferreira & 

Willoughby, 2008; Vonghia et al., 2008) and a leading cause of death and disability. In 2011, 

16.7 million people aged 12 and above were classified as alcohol dependent in the United States 

of America (Results from the 2011 National Survey on Drug Use and Health: Summary of 

National Findings, 2012). It is estimated that of those seeking treatment from alcohol 

dependence, 85% will relapse within the first year of recovery (Sinha, 2011).  

Given that relapse is such a substantial problem, considerable effort has been made to 

understand the factors that promote relapse. Exposure to stimuli that have been previously linked 

to alcohol consumption can evoke subjective and physiological indications of craving (Field & 

Duka, 2002; Nees et al., 2012; Schneider et al., 2001), which may in turn facilitate relapse 

(Cooney et al., 1997; Evren, Cetin, Durkaya, & Dalbudak, 2010; Field & Cox, 2008). A link 

between environmental stimuli and craving has been demonstrated in studies that have used 

classical conditioning techniques in order to create associations between arbitrary cues and 

alcohol. For example, Field & Duka (2002) gave social drinkers two drinks that distinctively 

differed in taste, smell and color of the glass in which the drink was presented. One drink always 

contained 0.2 g/kg of 90% alcohol and was designated as the conditioned stimulus (CS+), and 

the other drink never contained alcohol and was designated as the CS-. During conditioning 

sessions, subjects were instructed to smell and consume five 50 ml glasses of the CS+, and later 

were asked to drink five 50 ml glasses of the CS- in a counterbalanced order. Following 

successive conditioning sessions, subjects were presented with the CS+ and CS- (which did not 

contain alcohol), and were asked to choose which beverage they would prefer to consume after 

they had smelled and tasted each drink. The results showed that on the last conditioning session, 

the CS+ evoked higher skin conductance relative to the CS-, and gazing behavior towards the 
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CS+ was significantly higher than the CS- during the subsequent test day. In addition, subjective 

ratings of craving were elevated in response to the CS+, while ratings of craving to the CS- 

decreased across conditioning sessions. This experiment demonstrates that an initially neutral 

cue, such as taste, can come to acquire incentive properties through repeated pairings with 

alcohol (Ludwig & Wikler, 1974).  Similar findings have been replicated in studies using alcohol 

dependent subjects (Pomerleau, Fertig, Baker, & Cooney, 1983). For instance, sniffing a 

preferred alcoholic beverage increases swallowing, salivation and heart rate in abstinent 

alcoholics relative to non-alcoholic controls (Pomerleau et al., 1983). In addition, when alcohol-

dependent individuals were asked to think about personal alcohol cue-related situations, subjects 

displayed increased craving and negative affect, along with a decrease in positive affect relative 

to thinking about neutral situations (Fox, Bergquist, Hong, & Sinha, 2007).  

Alcohol-associated cues not only elicit subjective and physiological changes in alcohol 

dependent individuals, but also induce changes in brain activity (Fryer et al., 2013; Myrick et al., 

2004). For instance, in a study conducted by Myrick and colleagues (2004), alcohol dependent 

and social drinkers were placed into a magnetic resonance imaging scanner (MRI) and given a 

sip of alcohol before viewing images of alcoholic beverages, non-alcoholic beverages, and 

neutral images. Results showed that several brain regions including the nucleus accumbens, 

ventral tegmental area and insula were activated during alcohol images and not for images 

depicting non-alcoholic beverages. Furthermore, social drinkers did not display activation in 

these areas when alcohol images were displayed. Importantly, within the alcohol group, craving 

elicited by alcohol-related images was correlated with activation in the left nucleus accumbens, 

anterior cingulate and orbitofrontal cortex. These results indicate that brain activation in response 

to alcohol-related images differs between alcoholic and non-alcoholic individuals, and that self 

reported craving in alcohol dependent individuals is correlated with activation of discrete brain 

regions. Taken together, these data support the hypothesis that environmental stimuli associated 

with prior intake of alcohol can be an important determinant of continued alcohol abuse. 

Therefore, a deeper understanding of the behavioral and neural mechanisms that govern alcohol-

seeking behaviors evoked by cues that predict alcohol is needed.  

 

The context in which a discrete alcohol cue is experienced can modulate the vigor of conditioned 

responses elicited by the discrete cue 
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A wealth of research from human and animal studies has shown that multiple different 

types of environmental stimuli can come to signal alcohol via classical conditioning (Beirness & 

Vogel-Sprott, 1984; Chaudhri et al., 2008; Drobes, Saladin, & Tiffany, 2001; Field & Duka, 

2002; Fryer et al., 2013; Glautier, Drummond, & Remington, 1994; Janak & Chaudhri, 2010; 

Ludwig & Wikler, 1974; Myrick et al., 2004; Nees et al., 2012; Shapiro & Nathan, 1986). These 

environmental stimuli can be divided into two broad categories based on their proximal relation 

with drug intake. Discrete cues are conditioned stimuli that are most directly linked to drug or 

alcohol consumption. For example, the sight, smell, and taste of alcohol are sensory properties 

that repeatedly precede alcohol intoxication. In contrast, contextual cues are not temporally 

linked with drug administration, and are instead described as a constellation of stimuli that are 

routinely present in the background during drug intake (Remedios et al., 2014). For example, 

entering a local bar may entice an individual to have a drink, if he or she has frequently 

consumed alcohol in a similar context. A goal of the current experiments was to investigate the 

independent and combined effect of discrete and contextual cues on alcohol-seeking behavior.  

Mounting evidence indicates that both discrete and contextual cues are important during 

the learning and expression of conditioned drug-seeking behavior (Chaudhri et al., 2008; 

Conklin, Robin, Perkins, Salkeld, & McClernon, 2008; Nees et al., 2012; Sciascia et al., 2014; 

Zironi et al., 2006). The capacity of contexts associated with alcohol to trigger relapse-like 

behavior in animals was initially investigated using an operant conditioning procedure in which 

rats were trained to make an operant response in a distinct context (called ‘context A’) in order to 

obtain an appetitive stimulus. This behavior was then extinguished by withholding the drug in a 

different environmental context (context B). Upon placement into context A, the operant 

response was reinstated in the absence of alcohol delivery, suggesting that the specific memory 

of the context in which rats received alcohol was sufficient to reinstate alcohol-seeking behavior 

(Chaudhri et al., 2008). This ABA renewal model has been widely used to study the effect of 

context on relapse for a number of abused drugs, including heroin (Bossert et al., 2011; Bossert, 

Liu, Lu, & Shaham, 2004), cocaine (Crombag, Grimm, & Shaham, 2002; Fuchs, Eaddy, Su, & 

Bell, 2007), and nicotine (Diergaarde, de Vries, Raasø, Schoffelmeer, & De Vries, 2008).  

The influence of context on alcohol-seeking behavior elicited by a discrete, Pavlovian 

alcohol cue has also been investigated using the ABA renewal procedure (Chaudhri et al., 2008, 

2009; Sciascia et al., 2014). In this procedure, rats were trained to discriminate between two 10-
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sec auditory stimuli in context A. One auditory stimulus (CS+) was consistently paired with 

ethanol, and the other stimulus (CS-) was presented without ethanol. Rats received 16 

presentations of each CS during daily Pavlovian discrimination training sessions. During these 

sessions, entries into a fluid port where ethanol was delivered for oral consumption were 

measured during the CS+ and CS-. Following training, conditioned port-entries were 

extinguished in context B, where the CS+ and CS- were presented as during training, but ethanol 

was not delivered. Twenty-four hours after the last extinction session, renewal was assessed by 

placing the rats back into context A and exposing them to the CS+ and CS- without ethanol. 

Using this procedure, Chaudhri and colleagues (2008, 2009) showed that during training, rats 

learned to reliably discriminate between the CS+ and CS-, as indicated by more responses during 

the CS+ rather than the CS-. Responding to both auditory cues diminished across extinction 

sessions in context B. At test, when rats were placed back into the training context (context A), 

responding increased during the CS+ compared to extinction, whereas CS- responding remained 

low. These findings are indicative of context-induced renewal of alcohol-seeking behavior, and 

support the hypothesis that contexts can acquire the capacity to predict alcohol availability 

through Pavlovian conditioning. 

In the everyday experience of drug abusers, it is unlikely that individuals will be exposed 

to discrete or contextual cues associated with alcohol in isolation. Instead, these cues often co-

occur, and together can enhance subjective and physiological indications of craving, more so 

than when experienced independently (Nees et al., 2012). This hypothesis was recently tested by 

Remedios et al (2013) using an animal model of Pavlovian conditioned alcohol-seeking in which 

rats were trained in a distinctive context to discriminated between a CS+ that was paired with 

alcohol and a CS- that was presented without alcohol. Following training, rats were repeatedly 

exposed to a different context, referred to as the non-alcohol context, where the CS+, CS- and 

alcohol was not presented. In order to assess the impact of context on behavior elicited by an 

alcohol predictive cue, half of the rats were tested in the alcohol context and half were tested in 

the non-alcohol context. In both contexts the discrete cues (CS+ and CS-) were presented, but no 

alcohol was delivered. In a second, similar experiment, rats were also tested in a third, novel 

context in which the cues were presented without alcohol. The results showed that port entries 

during the CS+ were significantly elevated in the alcohol context relative to the non-alcohol 
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context and novel context, suggesting that the combined experience of discrete and contextual 

cues associated with alcohol may be the strongest trigger for craving, and potentially relapse.  

In the present research, we sought to test the hypothesis that responding elicited by a 

discrete alcohol predictive cue will be enhanced in an alcohol context relative to a non-alcohol 

context, while addressing some important limitations of the previous study. Specifically, the 

procedure used by Remedios and colleagues (2014) involved training rats to discriminate 

between a CS+ and CS- in an alcohol context over 14 consecutive sessions, followed by 8 

consecutive sessions of exposure to a non-alcohol context prior to test. This procedure did not 

allow for equal exposure to both contexts, which may have contributed to the elevated levels of 

responding at test in the alcohol context. To address this limitation, Pavlovian training sessions 

in the present study were alternated daily with sessions of exposure to a non-alcohol context, 

thereby ensuring that all rats received an equal amount of exposure to either context prior to 

testing procedures. Another limitation of the prior design was that performance at test may have 

been influenced by the fact that animals had not received alcohol for a prolonged period of time 

prior to test. To avoid this potential limitation, our revised procedure allowed for a maximum 

time of 3 days without alcohol prior to test. 

 

Glutamate neurotransmission contributes to alcohol-seeking behavior elicited by cues that 

predict alcohol 

There is a growing interest in novel pharmacotherapy for alcohol addiction, and 

considerable focus has been placed on the glutamatergic system. Glutamate is an excitatory 

neurotransmitter that is abundant in the brain, and mediates approximately 70% of synaptic 

transmission in the central nervous system (Iverson, Iverson, Bloom, & Roth, 2009). Glutamate 

receptors can be either ionotropic, which mediate fast excitatory transmission, or metabotropic, 

which mediate slower, modulatory transmission in the brain (Iverson et al., 2009). Ionotropic 

receptors consist of N-methyl-D-asparate receptors (NMDAr), α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptors (AMPAr) and kainite receptors. The glutamate system is of 

particular interest due to its involvement in various aspects of alcohol addiction, including 

glutamatergic neuroadaptations that arise following chronic and acute exposure to alcohol. For 

instance, chronic exposure to ethanol inhibits NMDAr functioning (Lovinger, White, & Weight, 

1989), and as an adaptive consequence, an up-regulation of NMDAr functioning occurs which 
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causes increased excitatory neurotransmission. These effects have been shown to contribute to 

ethanol tolerance and withdrawal in humans (Tsai et al., 1998) and in animals (Bienkowski et al., 

2001; Dahchour, De Witte, & Witte, 2003; Valverius, Crabbe, Hoffman, & Tabakoff, 1990). In 

addition, post-mortem studies of alcohol dependent patients reveal a correlation between NMDA 

receptor upregulation and human alcohol dependence (Freund & Anderson, 1999). 

Glutamate plays a critical role in synaptic plasticity, and is fundamental in learning and 

memory processes (Riedel, Platt, & Micheau, 2003). Experiments in this thesis tested the 

hypothesis that glutamate neurotransmission at AMPAr is needed for the expression of alcohol-

seeking behavior elicited by discrete cues that predict alcohol. This hypothesis is based on a rich 

literature identifying a role for glutamate in Pavlovian learning, memory formation and behavior 

maintained by cues that predict alcohol. For instance, studies using various types of glutamate 

receptor antagonists have revealed a critical role of glutamate in context and cue-induced 

relapse-like behavior (Bachteler et al., 2005; Bäckström & Hyytiä, 2004; Bossert et al., 2004; 

Van den Oever et al., 2008). In one study, Backstrom and Hyytia (2004) examined the effects of 

blocking ionotropic glutamate receptors on cue-induced ethanol-seeking behavior using a 

reinstatement model of oral self-administration. Rats were conditioned to associate an anise 

odour with the delivery of a 10% ethanol solution. In addition, delivery of ethanol was 

accompanied by a 3s light stimulus. Next, rats received extinction sessions in which lever presses 

had no programmed responses, and olfactory stimuli signalling delivery were withheld. In order 

to investigate the effects of ionotropic glutamate receptors on reinstatement of ethanol-seeking 

behavior, rats were given systemic injections of saline, a non competitive NMDA receptor 

antagonist (MK-801), the competitive NMDA receptor antagonist (CGP39551), an 

NMDA/glycine site antagonist (L-701,324), a competitive AMPA/kainate receptor antagonist 

(CNQX), or an opioid receptor antagonist, naltrexone. During reinstatement tests, the rats were 

placed into operant conditioning chambers containing the ethanol-predictive odor, where each 

lever press resulted in the presentation of the light/tone stimulus. During the first two active lever 

presses, a small priming dose of ethanol was delivered for oral consumption, and subsequent 

lever presses had no programmed consequences. Systemic injections of the NMDA/glycine 

antagonist, the AMPA/kainate glutamate receptor antagonist, and the opioid receptor antagonist, 

attenuated reinstatement of responding relative to saline-infused animals. These data suggest that 

blocking glutamate transmission can reduce cue-induced reinstatement of alcohol-seeking 
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behavior. One limitation of this study, however, is that the AMPAr antagonist CNQX also has 

affinity to the glycine site located on NMDArs (Lester et al, 1989), making it difficult to isolate a 

specific role of AMPAr functioning in cue-induced reinstatement of alcohol-seeking behavior. 

To circumvent this possible confound, the present studies used NBQX (2,3-dihydroxy-6-nitro-7-

sulfamoyl-benzo[f]quinoxaline-2,3-dione), a compound that selectively targets AMPA receptors, 

and does not have affinity for the glycine site located on NMDAr (Goldstein & Litwin, 1993). 

Like NMDA receptors, chronic exposure to ethanol upregulates AMPA receptor subunit 

proteins in animal models (Neasta, Ben Hamida, Yowell, Carnicella, & Ron, 2010) and in post 

mortem brain preparations on human alcoholics (Breese, Freedman, & Leonard, 1995). In 

behavioral models of alcohol self-administration, systemic infusions of an AMPA receptor 

antagonist block reinstatement of alcohol-seeking in rats (Bäckström & Hyytiä, 2004) and mice 

(Sanchis-Segura et al., 2006). Further support for the involvement of AMPAr functioning in 

alcohol-seeking behavior is provided by a recent study conducted by Cannady and colleagues 

(2012), which investigated the effect of enhancing AMPA receptor activity on alcohol self-

administration and cue-induced reinstatement using a positive allosteric modulator, aniracetam 

(ANI). Rats were first trained to press a lever in order to receive a 15% ethanol solution, which 

was accompanied with a light cue. Following stable self-administration, rats were pretreated with 

0, 1, 5, 10, and 30 mg/kg (i.p) of ANI using a within-subjects design. The results revealed that 

following infusions of 1 and 5 mg/kg of ANI, responses made on the active lever were 

potentiated relative to pretreatment with saline. Interestingly, ANI did not alter operant sucrose 

responding under identical training procedures, which suggests that enhanced glutamate activity 

at AMPA receptors induced by ANI pretreatment selectively potentiated alcohol-seeking 

behavior. To test the effects of ANI on cue-induced reinstatement of alcohol-seeking behavior, 

rats were given extinction sessions following stable self administration, in which previously 

reinforced responses were extinguished by withholding the light cue and alcohol. At test, rats 

were infused with saline or 5 mg/kg of ANI prior to the reinstatement test session, and lever 

responses resulted in the light cue without alcohol. During the reinstatement test, rats pretreated 

with saline and ANI displayed cue-induced alcohol-seeking behavior as shown by increased 

responding on the active lever compared with the last day of extinction. Interestingly, responses 

made on the active lever were potentiated following pretreatment with ANI relative to rats 

infused with saline. Collectively, these results suggest that AMPA receptor signaling can 
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invigorate alcohol self-administration and facilitate cue-induced relapse of alcohol-seeking 

behavior. 

 

The BLA is important for conditioned responses elicited by cues that predict either aversive or 

appetitive unconditioned stimuli. 

The amygdala is critically involved in the acquisition (Fanselow & Kim, 1994), 

consolidation (Nader, Majidishad, Amorapanth, & LeDoux, 2001; Paré, 2003), and expression of 

Pavlovian associations between a CS and US (Wilensky, Schafe, Kristensen, & LeDoux, 2006). 

One subsystem of the amygdala is the basolateral complex (BLA), which is comprised of the 

lateral (LA), basolateral (BL), and basomedial nuclei. The BLA is anatomically well situated to 

integrate information from a variety of sensory modalities. For instance, it receives sensory 

information from the auditory cortex (Goosens & Maren, 2001; Quirk, Repa, & LeDoux, 1995) 

and the olfactory cortex (Nishijo, Uwano, Tamura, & Ono, 1998). In addition, projections from 

the hippocampus to the BLA underlie conditioning to contextual cues (Maren, 2001). These 

neuroanatomical data suggest that the BLA may be a locus of convergence for information about 

conditioned stimuli and unconditioned stimuli. Indeed, animals with damage to the BLA do not 

respond to an auditory or contextual cue that signals a fearful event, such as a footshock 

(Goosens & Maren, 2001; Nader et al., 2001). Furthermore, functional inactivation of the BLA 

prior to fear conditioning disrupts cue-induced fear learning (Wilensky et al., 2006) and place 

avoidance (Vafaei, Jezek, Bures, Fenton, & Rashidy-Pour, 2007).  

 The BLA is also essential for conditioned drug-seeking behaviors. For instance, 

excitotoxic lesions or reversible inactivation to the BLA impairs the acquisition of cocaine self 

administration on a second order schedule of reinforcement (Whitelaw, Markou, Robbins, & 

Everitt, 1996), and the reinstatement of extinguished cocaine-seeking behavior following 

exposure to cocaine-associated conditioned stimuli (Fuchs et al., 2005; Meil & See, 1997). The 

BLA has also been implicated in conditioned drug-seeking behaviors using other reinforcers 

including heroin (Fuchs & See, 2002), cocaine (Fuchs et al., 2005) and more recently, alcohol 

(Chaudhri et al., 2013; Millan & McNally, 2011). For example, context-induced renewal of 

Pavlovian-conditioned alcohol-seeking behavior is attenuated by bilateral or unilateral 

inactivation of the BLA (Chaudhri et al., 2013). Such findings suggest that the BLA is a key 
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brain region responsible for processing and integrating behaviors triggered by conditioned 

stimuli. 

 Consistent with the findings outlined above, studies have also implicated the BLA in cue-

induced reinstatement of alcohol-seeking behavior. Based on previous literature indicating that 

glutamatergic transmission is required for learning and the formation of CS-US associations 

(Bachteler et al., 2005; Bäckström & Hyytiä, 2004; Bossert et al., 2004; Van den Oever et al., 

2008), Gass and colleagues (2010) quantified changes in extracellular glutamate in the BLA 

during cue-induced reinstatement of alcohol-seeking behavior or food-seeking behavior. 

Elevated glutamate activity was observed within the BLA during cue-induced reinstatement of 

alcohol-seeking behavior, relative to food-seeking behavior, suggesting that glutamate in the 

BLA may play a facilitatory role in alcohol-seeking induced by alcohol-predictive cues.  

 

Specific aims of the current research 

Mounting clinical and preclinical data support the hypothesis that discrete and contextual 

stimuli associated with alcohol can elicit craving, and precipitate relapse. Furthermore, the 

context in which a discrete cue is experienced can influence the vigor of alcohol-seeking 

behavior elicited by that cue. Given that glutamate receptors mediate synaptic plasticity involved 

in learning and memory, the conditioning of these cues to alcohol may be mediated by 

glutamatergic transmission in specific brain regions. The BLA is a prime candidate for 

investigation, as it is a locus of convergence of afferents from both subcortical and cortical 

sensory regions. To our knowledge, no studies have examined the effects of selective AMPA 

receptor antagonism in the BLA on alcohol-seeking behavior elicited by a discrete alcohol cue.  

Experiments in this thesis tested the hypothesis that environmental context can influence 

conditioned responding elicited by discrete, Pavlovian alcohol cues. Briefly, rats that had 

previously consumed ethanol in the home cage, received Pavlovian conditioning training 

sessions in which an auditory CS was paired with alcohol for oral consumption. These training 

sessions occurred in a distinctive context, referred to as the alcohol context, and were alternated 

with sessions of exposure to a second, different context referred to as the non-alcohol context, 

where the CS and ethanol were never presented. At test, the CS was presented without ethanol in 

either context in the absence of alcohol. We predicted that responding to the discrete alcohol-

predictive cue would be invigorated in an alcohol context relative to the non-alcohol context.  
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We also investigated the contribution of AMPA glutamate receptors in the BLA to 

Pavlovian-conditioned alcohol-seeking behavior. Using the method described above, at test rats 

received a bilateral microinfusion into the BLA of 0, 0.3, or 1.0 µg/0.3µl of the AMPA receptor 

antagonist NBQX. We predicted that alcohol-seeking elicited by a discrete CS would be 

diminished in rats infused with NBQX, and that this effect may occur in both contexts. In this 

experiment, the effect of NBQX infusions in the BLA was also investigated during a Pavlovian 

conditioning session where the discrete cue was paired with alcohol.  

Finally, to ensure brain region specificity, the effect of AMPA receptor antagonism was 

also tested in the CPu, a region dorsal to the BLA that also expresses AMPA receptors. The CPu 

contains AMPA receptor on postsynaptic neurons (Tarazi, Campbell, Yeghiayan, & Baldessarini, 

1998) and has been previously used in anatomical control studies for the BLA (Fuchs et al., 

2005). 
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General Methods 

Subjects 

 Male, Long-Evans rats (220-275g on arrival; n=75) were obtained from Harlan 

Laboratories (Indianapolis, USA). They were individually housed in polycarbonate shoebox 

cages in a temperature- (21°C) and humidity-controlled colony room on a 12-hour light/dark 

cycle (lights on at 0700-hr; procedures conducted during the light phase). Unrestricted access to 

rat chow (Ralston Purina, Canada) and water was provided throughout. Rats had 7-10 days to 

acclimate to the colony room, during which time they were weighed and handled on Monday, 

Wednesday and Friday. All procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the Ernest Gallo Clinic and Research Center and the Animal Research 

Ethics Committee (AREC) at Concordia University, and are in agreement with the 

recommendations in the Guide for the Care and Use of Laboratory Animals (Institute of 

Laboratory Animal Resources, Commission of Life Sciences, National Research Council, 1996).  

 

Apparatus 

Behavioral procedures were conducted in conditioning chambers (ENV-009A; 32.8 cm x 

32.8 cm x 32.8 cm; Med Associates Inc., St-Albans, VT) that were housed in custom-made, 

ventilated, sound attenuating melamine cubicles (53.6 cm x 68.2 cm x 62.8 cm). The sidewalls of 

each chamber were made of stainless steel, and the rear walls, ceilings and front walls were made 

of clear Plexiglas. The floors were made of metal bars that extended from the rear wall to the 

front wall. A fluid receptacle (ENV-200R3AM) was located 2 cm from the floor, near the center 

of the right wall. Fluid was delivered into the receptacle via a 20-ml syringe that was mounted 

onto a pump (Med Associates Inc., PHM-100, 3.33 RPM) located outside the sound-attenuating 

cubicle. Entries into the fluid port were measured by interruptions of a photo beam located across 

its entrance. A white light (Med Associates Inc., 75W, 100 mA, ENV-215M) was located near 

the ceiling on the left side of the chamber. The same wall featured a white noise generator (Med 

Associates Inc., ENV-225SM, 80-85 dB) and clicker stimulus (Med Associates Inc., ENV-

135M, 75-80 dB). A personal computer (PC) computer running Med PC IV software controlled 

fluid delivery and auditory stimulus presentations, and also recorded port entries.  

Drugs 
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Ethanol (EtOH, 15%, v/v) was prepared by diluting 95% EtOH in tap water. AMPA 

glutamate receptors in the BLA and CPu were blocked using NBQX [2,3-Dioxo-6-nitro-1,2,3,4 -

tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt)] (Abcam Inc, Cambridge, 

USA;118876-58-7). NBQX (10 mg) was dissolved in 0.6 ml of sterile 0.9% sodium chloride to 

obtain a concentraion of 5 µg/0.3 µl. Concentrations of 1.0 µg/0.3 µl and 0.3 µg/0.3 µl were 

made through serial dilution. Aliquots of each concentration were stored in a - 20° C freezer until 

needed. NBQX concentration was chosen based on preliminary research showing a robust 

decrease in port entries elicited by a discrete alcohol cue following bilateral infusion of 5 µg/0.3 

µl or 1 µg/0.3 µl of NBQX into the BLA. The latter concentration was obtained from published 

data on fear conditioning studies that have used infusions of 3 µg of NBQX in the BLA (Walker 

& Davis, 1997; Walker, Paschall, & Davis, 2005). 

  

General Procedures 

 

Ethanol consumption in the home-cage 

Ten days after arrival, rats were acclimated to the taste and pharmacological effects of 

EtOH in their home-cage using a 24-hr, intermittent-access schedule that induces high levels of 

EtOH consumption in rats (Simms et al., 2008; Sparks et al., 2014; Wise, 1973). Rats had access 

to water via a 400 ml plastic bottle for 7 days/week. However, on Monday, Wednesday and 

Friday a 100 ml graduated cylinder containing 15% EtOH was placed onto the lid of the home-

cage for 24 hr. Before each session, EtOH cylinders, water bottles and rats were weighed, and 24 

hr later EtOH cylinders and water bottles were re-weighed to record consumption. To mitigate 

the effects of side preference on intake, the placement of EtOH and water containers on the 

home-cage was alternated in each session. Spillage was accounted for by subtracting EtOH and 

water lost from bottles that were placed on empty cages from EtOH consumption during the 

corresponding session.  

 

Surgery 

Upon completing home-cage ethanol exposure, rats in experiments 2 and 3 were 

implanted with bilateral, 26-gauge guide cannulae (Plastics One, Roanoke, VA) targeting the 

BLA (AP: -2.8; ML: ± 5.1; DV -5.4; final DV at injector tip is -8.4) or CPu (AP: -2.8; ML: ± 
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5.1; DV -4; final DV at injector tip is -6), respectively. Rats were anesthetized with isoflurane, 

their heads shaved and placed into a stereotaxic apparatus. An incision was made to expose the 

skull, and DV coordinates at bregma and lambda were used to verify a flat skull position. Guide 

cannulae were anchored to the skull using dental cement and metal screws and occluded with 

metal obdurators of the same length. One hour into surgery and upon completion of surgery, 1 ml 

of 0.9% saline was administered (s.c) to maintain hydration. Following surgery, rats received a 

single injection of buprenophine (0.1 ml/kg, s.c.), and sweetened, softened rat chow was 

provided to encourage feeding. Weight gain was monitored during a subsequent 7-20 day 

recovery period.  

 

Habituation to behavioral testing chambers 

After recovery, rats were transported on a cart from the colony room to the behavioral 

testing room and handled individually for 1 min. The next day they were placed into a designated 

behavioral testing chamber for 20 min, during which time the house light was illuminated and 

entries into the fluid port were recorded. Each chamber was set up as context 1 on the first day of 

habituation, and context two on the subsequent day. Contexts were created by the addition of 

distinctive visual, olfactory and tactile stimuli to the chamber. Context 1 consisted of black 

walls, created by placing black cardboard paper over the Plexiglas wall of the conditioning 

chamber, with a smooth Plexiglas floor insert placed on the floor of the conditioning chamber. 

Brown paper towels were placed on a wastepan underneath the conditioning chamber floor, 

along with a strip of white non-absorbent paper on top of the brown paper, onto which 3 sprays 

of lemon odor was applied. Context 2 featured clear Plexiglas walls, and a wire mesh insert 

placed onto the conditioning chamber floor. White absorbent paper was placed on a waste pan 

underneath the conditioning chamber floor, along with a strip of white non-absorbent paper on 

top of the white absorbent paper, onto which 3 sprays of almond odor was applied. Odors were 

prepared by adding tap water to lemon oil (SAFC Supply Solutions, St Louis, MO) or 

benzaldehyde (almond odor; OMEGA Chemical Company Inc., Levis, QC, Canada) for final 

concentrations of 10% (v/v) and were applied to waste pans beneath the chamber floors. 

Pavlovian Conditioning 

 Pavlovian conditioning sessions (Mon-Fri; 75 min) were conducted to train rats to 

associate a discrete auditory cue with EtOH. Once each rat was weighed and placed into its 
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assigned testing chamber the Med-Associate program was initiated, and 2 min later the house 

light in each chamber was illuminated to indicate the start of the session. During each session, 

rats received 15 presentations of an auditory conditioned stimulus (CS, 10-sec continuous white 

noise) that was delivered on a variable-time 260-second schedule. At 4 sec after CS onset 0.2 ml 

of EtOH was delivered into a fluid receptacle for oral consumption. A total of 3 ml of EtOH was 

delivered per session, and at the end of each session, ports were checked to ensure that it had 

been consumed. Pavlovian conditioning sessions were conducted in a specific environmental 

context, which consisted of context 1 for half the rats and context 2 for the remainder. 

Assignment to each context type was based on ethanol intake averaged over the last 3 sessions of 

ethanol exposure in the home-cage.   

Pavlovian conditioning sessions were alternated with sessions in which rats were placed 

into the same chamber that was equipped with a different set of contextual cues. This second 

context was referred to as the non-alcohol context. The purpose of these sessions was to train rats 

to discriminate between a context where they receive alcohol and a context where they never 

received alcohol. During each 75 min session in the non-alcohol context, the house light was 

illuminated after a 2 min delay, but no auditory stimulus or EtOH were ever presented. During 

these sessions the pump remained activated from the onset of the session to the end, however, 

syringes containing alcohol were not mounted on the pumps. 

Half of the rats received Pavlovian conditioning on session 1 and the remaining half 

received exposure to the non-alcohol context. Sessions in each context were alternated until rats 

had received an equal number of Pavlovian conditioning sessions, and sessions of exposure to 

the non-alcohol context. Training procedures were conducted Monday through Friday. 

Test 

Twenty four hours after the last training session, responding to the CS in the absence of 

EtOH was assessed in an alcohol context for half the rats, and a non-alcohol context for the 

remaining rats. At test, the CS was presented as in Pavlovian conditioning training, however, 

EtOH was withheld. Approximately 25 min prior to the test session rats received localized 

infusions of saline, 0.3, or 1 µg/0.3µl of NBQX in the BLA (Exp. 2) or the CPu (Exp. 3). 

 

Intracranial microinfusions 
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Bilateral microinfusions were conducted in the behavioral testing room using 33 gauge 

injectors (Plastics One, Roanoke, VA) that extended 3 mm (experiment 2) or 2 mm (experiment 

3) below the cannulae. Each injector was connected to a Hamilton syringe (10 μl; Fisher 

Scientific, 1701 RNR- #14-815-279) using polyethylene size 50 (PE-50) tubing (VWR 

International Co.). Hamilton syringes were placed on a microinfusion pump (Harvard Apparatus, 

PHD 2000) that infused at a rate of 0.3 µl/min. A total volume of 0.3 µl was infused, after which 

injectors were kept in place for 2 min to maximize diffusion. Rats were gently restrained during 

microinfusions in order to avoid detachment from the injectors. The travel of 2 small air bubbles 

within each line was used to indicate successful infusions. Rats were immediately placed into the 

testing chambers after the infusion, and session onset occurred 5-25 minutes later.  

 

Experiment 1: Effect of context on alcohol-seeking elicited by a discrete cue that predicts 

alcohol. 

Experiment 1 tested the hypothesis that environmental context can influence conditioned 

alcohol-seeking behavior elicited by a discrete, alcohol-predictive cue. One week after arrival, 

rats (n=21) received 12 sessions of EtOH exposure in the home-cage as described above. 

Subsequently, rats underwent 10 sessions of Pavlovian conditioning alternated with 10 sessions 

of exposure to a non-alcohol context. At 24 hrs after the last training session, rats were placed 

into either the alcohol context (n=8) or the non-alcohol context (n=8) where the CS was 

presented as before, but EtOH was withheld. A within-subjects design was used during test, such 

that the following day, each rat was tested in the alternate condition.   

 

Experiment 2a: The effect of blocking BLA AMPA receptors on alcohol-seeking elicited by a 

discrete cue that predicts alcohol. 

 Experiment 2 investigated the role of glutamate transmission at AMPA receptors in the 

BLA on alcohol-seeking behavior elicited by a discrete, alcohol-predictive cue.  After 11 days of 

acclimation to the lab, rats (n=42) received 15 sessions of EtOH exposure in the home-cage, 

followed by surgery to implant guide cannulae targeting the BLA.  Following recovery from 

surgical procedures rats were habituated to context 1, and context 2 the subsequent day. After 

habituation to context, behavioral training began in which rats received a total of 11 Pavlovian 

conditioning sessions alternated with 11 sessions of exposure to non-alcohol context. In order to 
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habituate the rats to microinfusion procedures, a sham microinfusion was conducted with a cut 

injector on session 7 followed by a saline sham infusion on session 9 using a full length injector. 

The effect of AMPAr antagonism in the BLA was tested on session 12, in which rats were given 

bilateral microinfusions of either saline (n=12), 0.3 (n=7) or 1.0 (n=7) µg/0.3 µl of NBQX in the 

BLA using a between-subjects design. Rats were separated into each group based on average CS 

responding during the last 3 sessions of Pavlovian conditioning in the alcohol context. All 

subjects were tested in both the alcohol context and the non-alcohol context. Following test 1, 

rats received 2 additional Pavlovian training sessions and 2 additional sessions in a non-alcohol 

context. Test 2 followed identical procedures as in test 1, however, rats that received their first 

test in an alcohol context were now tested in the non-alcohol context, and vice versa.  

 

Experiment 2b: The effect of blocking BLA AMPA receptors on responding to a discrete alcohol 

cue that is paired with EtOH.  

Rats from Experiment 2a were used to investigate the effect of NBQX on responding to 

an alcohol-predictive cue in an alcohol context where alcohol was paired with the CS. Two days 

following the final testing session in experiment 2a, rats received 4 consecutive Pavlovian 

conditioning sessions in their respective Pavlovian conditioning contexts. On session 5, rats were 

either treated with saline, (n=8), 0.3 (n=10) or 1.0 (n=7) µg/0.3 µl of NBQX into the BLA using 

a between-subjects design. Drug group assignment was based on normalized CS responding (CS 

port entries minus PreCS port entries) and total port entries averaged over the last 4 sessions. 

Each dose included some rats from each of the prior doses in experiment 2a.   

 

Experiment 3: The effect of NBQX in the CPu on responding to a discrete alcohol cue in a non-

alcohol context. 

In a separate group of rats (n=12), the effect of AMPAr antagonism on responding to a 

discrete cue that predicts alcohol in a non-alcohol context was investigated in the CPu. The 

purpose of this experiment was to ensure that the effect observed following administration of 

NBQX were specific to the BLA, and were not due to an upward diffusion of NBQX to anterior 

parts of the brain. Identical testing procedures were conducted as in experiment 2 in order to 

maximize direct behavioral comparisons, except that all rats were tested in the non-alcohol 

context, using saline or 0.3 µg/0.3 µl of NBQX as within-subject variables.  
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Histological verification of cannulae placements 

 Rats in experiment 2 and 3 were anesthetized with isoflurane and given a microinfusion 

of fast green into the BLA and CPu (0.1 µl/min, 0.5 µl). Injectors were kept in the cannulae for 5 

min in order to optimize diffusion. Rats were then decapitated, brains were removed from the 

skull and post-fixed in formalin for 24 hrs. Brains were subsequently placed in 25% sucrose for 

one week, and then sliced on a cryostat (60 microns, coronal), which was maintained at -19
o
C. 

Sections were mounted onto glass slides, stained with cresyl violet, and analyzed using light 

microscopy. Subjects in experiment 2 and 3 were included in the final analyses if the most 

ventral point of the injector tips touched the boundary, or were inside the boundary of the BLA 

and CPu as defined in the rat brain atlas of Paxinos and Watson (1997).   

 

Statistical analyses 

Five rats who attained < 3.8 g/kg EtOH intake were dropped prior to behavioral training 

in experiment 1 (final n=16). A total of 16 rats were dropped from experiment 2 (for data on 

dropped rats, see supplementary figure 1). Six of the lowest drinkers were dropped following 

ethanol exposure in the home-cage, and one rat was dropped during behavioral training sessions 

because of failure to acquire the CS-US association. In addition, 9 rats were dropped because of 

inaccurate placements (final n=26). Two rats from experiment 2a did not participate in 

experiment 2b due to aggressive behavior (final n=25). Finally, one rat was dropped from 

experiment 3 prior to test because he did not acquire the CS-US association during Pavlovian 

conditioning training (final n=11).  

During ethanol consumption in the home cage, ethanol consumption (g/kg; grams of 

ethanol consumed per kilogram of body weight) and preference for ethanol (%; calculated as a 

ratio of ethanol intake in gm divided by the sum of water and ethanol intake in gm) were used as 

dependent variables. Each measure was analyzed using repeated-measures analyses of variance 

(RM-ANOVA) with Session as a within-subjects variable. 

 During Pavlovian conditioning sessions, entries into the fluid port were recorded during 

the following intervals: each 10 second CS trial (CS); 10 sec intervals preceding each CS trial 

(PreCS); 10 sec intervals after each CS trial (PostCS). In addition, port entries that occurred 

during inter-trial intervals (ITI) that did not include PreCS, CS, and PostCS (ITI; total port 

entries minus PreCS, CS, and PostCS) were recorded. Pavlovian conditioning sessions were 
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analyzed using RM-ANOVA with Session (EXP 1: 1-10; EXP 2: 1-11; EXP 3: 1-11) and 

Interval (CS and PreCS) as within-subjects factors. 

 Total port entries obtained during training in the alcohol and non-alcohol context were 

compared across behavioral training. Data were analyzed using repeated-measures analyses of 

variance (RM-ANOVA) with Context (alcohol and non-alcohol) and Session as within-subjects 

variables.  

 Test data for experiment 1 were analyzed using RM-ANOVA with Context (alcohol, non-

alcohol context) and Interval (PreCS, CS) as within-subjects variables. Paired samples t-tests 

were used to investigate significant main effects and interactions. Frequency of port entries, and 

time spent in the port during each CS trial at test was analyzed using RM-ANOVA with CS trial 

and Context as within-subject variables.   

Data obtained at test for experiment 2a was analyzed using RM-ANOVA. Port entries 

made during PreCS and CS intervals were analyzed together with Interval (PreCS, CS) as 

within-subjects factors and Dose (0, 0.3, 1 µg/0.3 µl NBQX) as between-subjects factors.  

PostCS and ITI were analyzed separately using RM-ANOVA with Context (alcohol, non-

alcohol) as a within-subjects factors, and Dose as a between-subjects factor. Frequency of port 

entries per CS trial at test were analyzed using RM-ANOVA with Trial and Context as within-

subject variables and Dose as a between-subjects variable. Data obtained from experiment 2b 

was analyzed using RM-ANOVA with PreCS and CS port entries as within-subjects factors and 

Dose (0, 0.3, 1 µg/0.3 µl NBQX) as between-subjects factors. Frequency of port entries per CS 

trial at test in the alcohol context were analyzed using RM-ANOVA, with CS trial as a within-

subjects factor, and Dose as a between-subjects factor. 

Test data collected from experiment 3 was analyzed using RM-ANOVA, with Interval 

(PreCS, CS) and Drug as within-subjects factors. Frequency of port entry during each CS trial 

was analyzed using RM-ANOVA with Trial and Drug as within-subjects variables. Finally, 

PostCS and ITI were analyzed separately using a paired-samples t-test, with Drug as the within-

subjects variable. 

Violations of homogeneity of variance were determined by Mauchly’s test of sphericity 

and were corrected using the Huynh-Feldt correction. Analyses were conducted using SPSS 

(Version 18) with a significance level of α = 0.05. 
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Results 

 

As depicted in supplementary figure 2, ethanol intake and preference for ethanol over 

water increased across sessions of ethanol consumption in the home-cage for all 3 experiments. 

 

Experiment 1: Effect of context on alcohol-seeking elicited by a discrete cue that predicts alcohol 

Figure 1a illustrates intervals of interest, and temporal relation between the CS and US 

across sessions of Pavlovian conditioning. Rats learned to associate an auditory cue (CS) with 

EtOH across Pavlovian conditioning sessions in the alcohol context (Fig. 1b). A comparison of 

port entries made during the PreCS and CS intervals indicated that port entries during the CS 

increased as a function of session, whereas port entries during the PreCS did not [Session, 

F(9,135) = 17.649, p = .000; Interval, F(1,15) = 59.275, p = .000; Session × Interval, F(9,135) = 

25.091, p = .000], Paired-samples t-tests revealed that CS responding was significantly higher 

than PreCS responding (p ≤ 0.5 for all comparisons) on all sessions, except for session 1, where 

PreCS responses were higher [t(15) = 2.628, p = .019]. 

The total number of port entries (Fig. 1c) made in the alcohol context was higher relative 

to the non-alcohol context [Context, F(1,15) = 77.752, p = .000]. Furthermore, while total port 

entries remained elevated during Pavlovian training sessions, they steadily decreased across 

sessions in the non-alcohol context [Session, F(9, 135) = 3.460 p = .001; Context × Session 

F(9,135) = 3.912, p = .000]. Paired samples t-tests confirmed that total port entries on the first 

session in the non-alcohol context were significantly higher than the last session [t(15) = 3.670, p 

= .002], and that total port entries on the first session relative to the last in the alcohol context 

remained the same [t(15) = .541, p = .597]. Similar findings were observed during Pavlovian 

conditioning sessions in experiment 2 and 3 (supplementary Fig. 3). 

Presentations of the CS without alcohol elicited alcohol-seeking behavior in the non-

alcohol context, and this effect was invigorated in the alcohol context (Fig. 1d-f). Rats made 

more port entries in the alcohol context than the non-alcohol context [Context, F(1,15) = 39.671 

p = .000] and responding was higher during the CS than the PreCS interval [Interval, F(1,15) = 

10.857, p = .005]. Furthermore, higher port entries were observed during CS trials in the alcohol 

context [Context × Interval, F(1,15) = 12.391, p = .003]. Follow-up t-test for paired-samples 

verified that there was no difference in port entries during the PreCS as a function of context 
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[t(15) = .000 p = 1.00], but that port entries during the CS were higher in the alcohol context than 

the non-alcohol context [t(15) = 3.409, p = .004]. Presentations of the CS without EtOH elicited 

more port entries relative to the PreCS baseline in both the non-alcohol context [t(15) = 3.925, 

p= .001] and the alcohol context [t(15) = -6.223 p = .000].  

The number of port entries made during each CS trial at test in either context is depicted 

in Figure 1e. More port entries were made in the alcohol context than the non- alcohol context 

[Context, F(1,15) = 10.517, p = .005] and there was a reduction in port entries as a function of 

Trial [Trial, F(14, 210) = 7.684, p = .000]. No significant interaction [Trial × Context, F(14, 210) 

= .606, p = .662] suggested that the number of port entries made during CS trials did not change 

as a function of which context condition rats received at test. Paired samples t-tests comparing 

port entries during each trial indicated that port entries were lower in the non-alcohol context 

than the alcohol context on sessions 4, 6, 7, 8, 12, 14 & 15 (all p’s < 0.05). 

 Similar results were obtained for the duration of time that rats spent in the fluid port 

during each CS trial at test (Fig. 1f). More time was spent in the port in the alcohol context 

compared to the non-alcohol context [Context, F(1,15) = 17.185, p = .001], and there was a 

reduction in time spent in the port as the test session progressed [Trial, F(14, 210) = 12.691, p = 

.000]. There was no interaction observed between Trial and Context, suggesting that time spent 

in the port during CS trials did not change as a function of which context condition rats received 

at test [Trial × Context, F(14, 210) = .854, p = .543]. Time spent in the port in the alcohol 

context was significantly higher relative to the non-alcohol context on sessions 2, 4, 5, 6, 7, 8, 

12, 13, 14 and 15 (all p’s < 0.05). There was no effect of context on port entries during the 

PostCS or ITI intervals (see Supplementary Fig. 4).  
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Acquisition of Pavlovian alcohol-seeking behavior 
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Alcohol-seeking behavior elicited by a discrete Pavlovian cue at test 
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Figure 1. Alcohol-seeking behavior elicited by a discrete cue is invigorated in an alcohol context 

relative to a context where alcohol had never been consumed Port entries made during the CS 

were enhanced in an alcohol context relative to a non-alcohol context. (A) Depiction of data 

collected during each time interval, and temporal relation between the CS and delivery of 

alcohol. (B) Mean (± SEM) number of port entries made during CS presentations (filled circles), 

and 10 seconds prior to CS onset (PreCS; open symbols) during Pavlovian conditioning training 

in an alcohol context. (C) Mean (± SEM) total number of port entries made during Pavlovian 

conditioning training in an alcohol context (filled triangles) and exposure to a second context 

where the CS and EtOH delivery was never presented (open triangles). (D) Mean (± SEM) port 

entries made during PreCS and CS intervals at test in the alcohol context (filled bar) and the non-

alcohol context (open bar). (E) Mean ± (SEM) number of port entries made during each CS trial 

at test in an alcohol context (filled squares) and non-alcohol context (open squares). (F) Mean (± 
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SEM) time spent (sec) in the port during each CS trial at test in an alcohol (filled triangles) and 

non-alcohol (open triangles) context. * p < .05, alcohol > non-alcohol context. 
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Experiment 2a: The effect of blocking BLA AMPA receptors on alcohol-seeking elicited by a 

discrete cue that predicts alcohol 

In order to investigate the hypothesis that alcohol-associated contexts can invigorate 

responding to a discrete CS, we conducted a 2×2 ANOVA analyzing PreCS and CS responding 

for saline-treated animals in the alcohol and non-alcohol context (Fig. 2a). Similar to findings 

obtained in experiment 1, port entries during the CS were invigorated in an alcohol context 

relative to a non-alcohol context [Context, F(1,11) = 5.121, p = .045 ; Interval, F(1,11) = 61.969, 

p = .000; Context x Interval, F(1,11) = 6.960, p = .023]. 

Blocking AMPA glutamate receptors in the BLA attenuated alcohol-seeking behavior 

elicited by an alcohol-predictive CS, and this effect was observed in both an alcohol context and 

a non-alcohol context (Fig. 2a). Overall, port entries were higher in the alcohol context compared 

to the non-alcohol context at test [Context, F(1,23) = 8.652, p = .007], with higher port entries 

made during the CS than PreCS interval [Interval, F(1,23) = 67.043, p = .000]. Importantly, 

while responses made in the alcohol context were higher relative to the non-alcohol context, this 

effect was only observed during CS presentations [Context × Interval, F(1,23) = 10.691, p = 

.003]. NBQX in the BLA reduced port entries made during the CS in both contexts [Dose, 

F(2,23) = 14.610, p = .000; Interval × Dose, F(2,23) = 14.844, p = .000]. No interactions 

between context, interval and dose were found [Context × Dose, F(2,23) = .569, p = .574; 

Context × Interval × Dose, F(2,23) = .690, p = .512], suggesting that the effect of NBQX did not 

differ between test conditions during either interval.  

To further investigate the effect of NBQX on alcohol-seeking behavior, responses made 

during the CS were investigated in isolation. Port entries made during the CS were higher in an 

alcohol context relative to a non-alcohol context [Context, F(1,23) = 9.664, p = .005] and this 

effect was attenuated by infusion of NBQX, regardless of context [Dose F(2,23) = 14.767, p = 

.000; Context × Dose, F(2,23) = .629, p = .542]. The main effect of dose was further investigated 

using Bonferroni post hoc tests comparing CS responses at each dose collapsed across context. 

NBQX attenuated responding to the CS following pretreatment of 0.3 and 1 µg/0.3 µl doses 

[saline vs. 0.3µg, p = .005; saline vs. 1.0 µg, p = .000; 0.3 µg vs. 1.0 µg, p = 0.328]. Identical 

analyses were conducted to investigate the effect of NBQX on PreCS port entries. The results 

showed that responses made during the PreCS remained stable across context conditions, and did 
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not vary as a function of treatment with NBQX [Context, F(1,23) = 1.248, p = .275; Context × 

Dose, F(2,23) = .226, p = .799; Dose F(2,23) = .541, p = .589].   

There was no impact of test context on port entries made during PostCS intervals [Fig. 

2b; Context, F(1,23) = 1.010, p =.325]. However, NBQX reduced PostCS responding regardless 

of which context condition rats received at test [Dose, F(2,23) = 7.462, p = .003; Context × 

Dose, F(2,23) = .891, p =.424]. Bonferroni post hoc analyses revealed a significant difference in 

port entries made between saline and 1.0 µg [p = .003] of NBQX when context was collapsed 

across dose, while no significant effects were found between saline and 0.3 µg [p = .957] or 0.3 

µg and 1.0 µg/0.3 µl doses [p = .059]. Furthermore, port entries made during ITI were not 

affected by NBQX (Fig. 2c; Context, F(1,23) = 1.894, p =.182; Context × Dose, F(2,23) = 1.341, 

p = .281, p = .275; Dose, F(2,23) = .464, p =.635].  

Figure 2d-f depict port entries made during each CS trial in the alcohol and non-alcohol 

context at test for each dose of NBQX. Port entries made during CS trials decreased across test, 

with significantly reduced responding for rats infused with NBQX relative to saline [Trial, 

F(14,322) = 10.315, p = .000; Dose, F(2,23) = 14.788, p = .000; Trial × Dose, F(28,322) = 

2.719, p = .000]. While responding in the alcohol context was overall higher than test in a non-

alcohol context [Context, F(1,23) = 9.810, p = .005], this difference in behavior did not occur as 

a function of Trial or Dose of NBQX [Context × Dose, F(2,23) = .643, p = .535; Trial × Context, 

F(14,322) = .495, p = .894; Trial × Context × Dose F(28,322) = 2.175, p = .720). To further 

investigate the significant Trial × Dose interaction,  RM-ANOVA was used to investigate port 

entries made during the first trial at test in both contexts across drug groups. No significant main 

effect of context, or interactions with drug was found [Context, F(1,23) = .006, p = .940; Context 

x Drug F(2,23) = .244, p = .786], however, a main effect of dose was found, suggesting that 

overall, NBQX reduced port entries made during the first CS trial regardless of context [Dose, 

Drug, F(2,23) = 6.468, p = .006]. To further investigate the effect of NBQX on port entries made 

during the first CS trial, bonferroni post hoc tests were conducted, which revealed a significant 

reduction in port entries made for rats infused with 1.0 µg/0.3µl of NBQX relative to rats infused 

with saline (p = .005). No differences in port entries were found between saline and 0.3 µg/0.3µl 

treated animals (p =.558) or between 0.3 µg and 1.0 µg treated animals (p = .177).  
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Similarly, more time was spent in the ports during each CS trial in the alcohol context 

relative to the non-alcohol context, and this effect was significantly reduced with for rats treated 

with NBQX (Supplementary Fig. 5).  
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Figure 2. Blocking glutamate at AMPAr attenuates Pavlovian cue-induced alcohol-seeking in an 

alcohol (filled symbols) and non-alcohol context (open symbols). (A) Mean (± SEM) port entries 

made during CS and PreCS intervals. (B) Mean (± SEM) port entries made during PostCS 

intervals. (C) Mean (± SEM) port entries made during the variable ITI, calculated by subtracting 
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port entries made during the PreCS, CS, and PostCS intervals from total port entries. * p < .05, 

alcohol > non-alcohol context. ^ p < .05, saline > NBQX on data collapsed across context. (D-F) 

Mean (± SEM) number of port entries during each CS trial at test in both contexts. 
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Experiment 2b: The effect of blocking BLA AMPA receptors on responding to a discrete alcohol 

cue that is paired with alcohol.  

Presentation of the CS followed by delivery of alcohol at test in an alcohol context 

elicited a significant increase in port entries relative port entries made during the PreCS [Fig. 3a; 

Interval, F(1,22) = 118.520, p = .000]. Administration of NBQX in the BLA had no effect on CS 

port entries when the CS was paired with alcohol [Interval × Dose, F(2,22) = .775, p = .473; 

Dose, F(2,22) = 1.133, p = .340]. Furthermore, the pattern of responding during CS trials at test 

remained stable across test, and was not affected by NBQX [Fig. 3b; Trial, F(14,308) = .906, p = 

.530; Dose, F(2,22) =.954, p =.400; Trial x Dose, F(28,308) = 1.302, p = .145]. 
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Figure 3. Blocking glutamate at AMPAr had no effect on alcohol-seeking behavior when the CS 

was paired with alcohol. (A) Mean (± SEM) port entries made during PreCS and CS intervals at 

test in an alcohol context. (B) Port entries made during each CS trial at test for rats infused with 

0, 0.3, or 1.0 µg/0.3µl of NBQX in the BLA. 
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Experiment 3: The effect of NBQX in the CPu on responding to a discrete alcohol cue in a non-

alcohol context. 

Infusion of  NBQX in the CPu had no effect on alcohol-seeking behavior elicited by the 

CS in the absence of alcohol at test in a non-alcohol context (Fig. 4). Port entries made during 

the CS were significantly higher than PreCS responding following infusions of saline and NBQX 

[Fig. 4a; Interval, F(1,10) = 78.536, p = .000; Dose, F(1,10) = .358, p = .563; Interval × Dose, 

F(1,10) = .435 p = .524]. In addition, there was no impact of NBQX on frequency of port entries 

during each CS trial at test [Fig. 4b: Trial, F(14,70) = 6.332, p = .000; Drug, F(1,5) = .137, p 

=.726; Trial × Drug, F(14,70) = .620, p = .840]. Analysis of port-entries made during PostCS 

intervals and ITI indicated that there was no impact of NBQX on port entries during either 

interval [Fig. 4c: Post CS, t(10) = 1.677, p = .124; ITI, t(15) = 1.449, p = .178]. 

  



33 
 

A 

P
o

rt
 E

n
tr

ie
s

0

5

10

15

20

25

30
0 µg/0.3µl
0.3 µg/0.3µl

PreCS CS

n=11

Interval
 

 

B 

1 3 5 7 9 11 13 15

P
o

rt
 E

n
tr

ie
s

0

2

4

6

8

10

0.3 µg/0.3µl

0 µg/0.3µl

CS Trial  
 

C 

P
o

rt
 E

n
tr

ie
s

0

5

10

15

20

25

30
0 µg/0.3µl
0.3 µg/0.3µl

PostCS ITI

Interval
 

 

Figure 4. Infusion of NBQX in the CPu had no effect on alcohol-seeking behavior at test in a 

non-alcohol context. (A) Data represent Mean (± SEM) PreCS and CS port entries. (B) Mean (± 

SEM) port entry per CS trial. (C) Mean (± SEM) PostCS and variable ITI.  
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General Discussion 

 

In the present research, presentations of a discrete alcohol-predictive CS without alcohol 

elicited alcohol-seeking behavior in a non-alcohol context, and this effect was invigorated in an 

alcohol-associated context. This pattern of results was replicated in saline-treated rats in a second 

study that investigated the role of AMPA glutamate receptors in the BLA in alcohol-seeking 

elicited by the discrete CS in both contexts. Intra-BLA infusions of NBQX attenuated alcohol-

seeking behavior elicited by the CS in both an alcohol context and a non-alcohol context. Control 

experiments revealed that port entries elicited by the CS were not influenced by NBQX in a test 

session in which the CS was paired with alcohol, and that NBQX administered into the CPu had 

no impact on CS responding in the absence of alcohol in a non-alcohol context. These findings 

highlight that the context where a discrete alcohol-predictive CS is encountered can serve as an 

important determinant in the level of conditioned responding elicited by the CS, and provide 

novel evidence that AMPA glutamate receptors in the BLA are needed for alcohol-seeking 

behavior elicited by discrete Pavlovian alcohol cues. 

 

Acquisition of CS-alcohol association, and behavioral discrimination between an alcohol context 

and a non-alcohol context  

 Paired presentations of the CS with alcohol in the present studies resulted in the 

acquisition of Pavlovian alcohol-seeking behavior. In all three experiments, port entries made 

during PreCS intervals remained low, while port entries made during the CS escalated across 

sessions, indicating that the CS triggered alcohol-seeking behavior. This explanation is 

corroborated by unpublished data from our laboratory, in which paired presentations of a CS and 

alcohol resulted in the acquisition of alcohol-seeking behavior, whereas unpaired presentations 

of a CS and alcohol did not (Supplementary Fig. 6). Additional support comes from studies that 

incorporated a second cue during Pavlovian conditioning sessions that was never paired with 

alcohol (CS-). Across Pavlovian discrimination training, port entries made during the CS+ 

increases, while port entries made during the CS- remain low, suggesting that rats learned to 

discriminate between a cue that predicted alcohol and one that did not when both were presented 

in the same session (Chaudhri et al, 2008a, 2008b, 2009, 2010, Sciascia et al, 2013; Sparks et al, 

2013). Such findings support the conclusion that the CS acquired the capacity to predict alcohol 
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through repeated pairings with alcohol delivery, and that the observed increase in behavior was 

not due to sensitization or pseudoconditioning. Our findings also support substantial human 

laboratory studies indicating that neutral environmental cues can come to acquire incentive 

motivational properties through repeated pairings with alcohol, and can lead to craving in 

humans (Field & Duka, 2002; Ludwig & Wikler, 1974). 

  Another important question to be considered before interpreting the test data is whether 

or not rats learned to discriminate between the alcohol context and the non-alcohol context 

during training. An examination of total port entries made during training sessions suggests that 

they did. Total port entries increased across Pavlovian conditioning sessions in the alcohol 

context, but decreased across sessions in the non-alcohol context. The latter finding suggests that 

rats learned to stop checking the port for alcohol in the non-alcohol context. These results are 

consistent with our prior data showing that total port entries in a non-alcohol context diminish 

across training sessions (Sparks et al, 2013; Remedios et al, 2014), and parallel human studies 

that show higher stimulation and positive expectancies in a bar setting relative to a laboratory 

setting (Wall, McKee, & Hinson, 2000; Wall, McKee, Hinson, & Goldstein, 2001) 

 

The effect of context on alcohol-seeking behavior elicited by a discrete alcohol-predictive cue 

 Presentation of the CS without alcohol in a non-alcohol context evoked alcohol-seeking 

behavior, as indexed by elevated port entries during the CS relative to port entries during the 

PreCS. These findings are in accordance with previous studies demonstrating that a non-

extinguished discrete CS can elicit alcohol-seeking behavior in a context where alcohol was 

never previously delivered (Chaudhri et al, 2010; Remedios et al, 2013; Sparks et al, 2013). 

Furthermore, these findings parallel clinical studies in which craving for alcohol is measured in 

environments that are not typically reminiscent of alcohol consumption. For instance, Myrick 

and colleagues (2004) measured craving for alcohol while subjects were in an fMRI scanner. 

Although subjects had presumably never consumed alcohol in an fMRI scanner, subjective 

craving in response to alcohol associated pictures was observed, suggesting that alcohol cues are 

reliably triggered even in environments where alcohol was never consumed.  

Importantly, average port entries made during CS trials, and time spent in the port during 

the CS were elevated in an alcohol-associated context relative to the non-alcohol context, a 

finding that was replicated in experiment 2a. This finding suggests that experiencing an alcohol-
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predictive discrete cue in an environment where alcohol has previously been consumed may 

serve as a more potent trigger for relapse than exposure to either the discrete or contextual cue 

alone. This interpretation is supported by clinical studies that show an increase in subjective 

ratings of craving in response to picture presentations of alcoholic beverages in a bar setting, 

relative to pictures of alcohol beverages alone (Nees et al., 2012). These data also provide 

important considerations for clinical models that assess craving in environments that are not 

realistic. For instance, the assessment of craving triggered by pictures of alcoholic beverages 

may be underestimated in lab settings, as opposed to naturalistic settings. Therefore, future 

studies should expand on cue-based research methods by incorporating more ecologically valid 

environments. Indeed, research has now begun to assess craving in response to discrete and 

contextual cues through virtual simulations, in which drug-predictive cues can be experienced in 

environments where the drug have previously been consumed (Bordnick et al., 2008; Bordnick, 

Graap, Copp, Brooks, & Ferrer, 2005; Paris et al., 2011). 

These findings support prior research conducted using a similar Pavlovian conditioning 

procedure. Remedios and colleagues (2013) found that alcohol-seeking behavior elicited by a 

discrete cue is enhanced in an alcohol context relative to a non-alcohol context. However, these 

results may have been influenced by the fact that rats had more exposure to the alcohol context 

relative to the non-alcohol context prior to test. In addition, alcohol-seeking behavior may have 

been enhanced due to a prolonged absence of alcohol prior to test. Our novel procedure 

addressed these limitations by alternating Pavlovian conditioning sessions with exposure to a 

non-alcohol context, thereby allowing an equal amount of exposure to both contexts prior to test. 

Furthermore, our current procedure allowed a maximum time 3 days without alcohol prior to test 

in order to minimize any effect of alcohol deprivation on behavior. 

Previous research supports the hypothesis that context associated with the presence or 

absence of alcohol can stimulate or suppress alcohol-seeking behavior. For instance, Tsiang and 

Janak (2008) investigated the impact of context on cue-induced reinstatement of alcohol seeking 

using inbred C57BL/6 mice. Self-administration training took place in a distinctive context, 

where each active lever press resulted in the presentation of a compound light/tone cue, and the 

delivery of alcohol for oral consumption. Following stable self-administration, extinction 

sessions were conducted in a different context where lever presses no longer resulted in the 

presentation of the compound cue or alcohol. The ability of context to motivate alcohol-seeking 
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behavior was assessed by testing rats in the self-administration context, where lever presses 

either resulted in the presentation of the compound cue or did not. In addition, reinstatement was 

assessed in the extinction context, where active lever presses resulted in the presentation of the 

compound cue. At test, active lever presses were enhanced in the self-administration context 

when the compound cue was presented relative to when it was not, suggesting that the 

combination of a discrete cue in a context where alcohol has previously been consumed can 

enhance alcohol-seeking behavior relative to exposure to an alcohol context alone. Interestingly, 

active lever presses in the extinction context were significantly lower relative to active lever 

presses in the self administration context, which suggest that environmental context in which 

discrete cues are experienced can either enhance or suppress alcohol-seeking behavior, and are  

thus in accordance with our current findings. 

 

AMPA receptors in the BLA are needed for the expression of alcohol-seeking behavior elicited 

by a discrete Pavlovian alcohol cue, independent of the context in which the cue is experienced. 

 Our data indicate that alcohol-seeking behavior elicited by a discrete alcohol-predictive 

cue requires AMPA glutamate receptors in the BLA. Localized infusions of 0.3 and 1.0 µg/0.3µl 

of NBQX in the BLA attenuated port entries made during the CS, an effect that was observed in 

both contexts. In addition, the frequency of port entries and time spent in the port at test during 

each CS trial decreased, with steeper reductions observed with rats infused with NBQX. By 

contrast, NBQX had no effect on port entries made during the PreCS interval, or during the 

variable ITI that occurred between CS trials, suggesting that AMPA receptors in the BLA are 

specifically required for alcohol-seeking elicited by a discrete CS. However, the highest dose of 

NBQX reduced port entries during the PostCS interval, indicating that NBQX continued to 

reduce port entries following presentations of the CS. This finding is not surprising considering 

that the PostCS interval occurs immediately after the CS, and is thus considered an interval that 

may still be associated with the presence of alcohol. Alternatively, the observed reduction in CS 

and PostCS port entries following infusions of NBQX may have been attributable to a deficit in 

locomotion. This interpretation is unlikely because NBQX did not reduce average port entries or 

frequency of port entries during CS trials at test when the CS was paired with alcohol. In 

addition, there was no effect of NBQX on port entries made during the PostCS or variable ITI.  
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One interpretation for the reduction of alcohol-seeking behavior following AMPAr 

blockade in the BLA is that the memory of the CS-US association may have been disrupted. Our 

data indicate that port entries during the first CS trial were reduced following treatment with 

NBQX. This finding is intriguing because it suggests that AMPA receptors in the BLA are 

potentially required to access the initial memory of the CS-alcohol association. Accordingly, rats 

with BLA lesions are capable of acquiring CS-US associations, but are severely impaired during 

tasks where they are required to access information regarding the CS (Blundell, Hall, & 

Killcross, 2001). In support of this interpretation, NBQX administration in the BLA did not 

affect CS port entries when the CS was paired with alcohol, but reduced CS port entries when 

alcohol was not delivered following CS presentations. Similarly, unilateral inactivation of the 

BLA reduces responding triggered by a Pavlovian cue, but not when it is paired with alcohol 

(Chaudhri et al., 2013). Therefore, it is possible that AMPArs in the BLA are necessary for the 

ability for the CS to access the memory of the US.  

Alternatively, it is possible that glutamate blockade in the BLA disrupted the capacity to 

attribute incentive salience to the CS, which would account for the reduction in CS port entries 

observed at test. Incentive salience is a term used to describe a motivational component of 

reward that makes stimuli paired with a reinforcer especially attractive and highly desired 

(Robinson & Berridge, 2001).This interpretation is plausible considering that the BLA is 

required for Pavlovian second-order conditioning (Hatfield, Han, Conley, Gallagher, & Holland, 

1996; Setlow, Holland, & Gallagher, 2002) and acquisition of a new response with conditioned 

reinforcement (Burns, Robbins, & Everitt, 1993). In addition, discrete infusions of NMDA 

receptor antagonists in the NAC core disrupts Pavlovian conditioned sign-tracking performance 

in rats (Ciano, Cardinal, Cowell, Little, & Everitt, 2001). Taken together, glutamate activity in 

the BLA may be required for the ability of the CS to maintain its conditioned reinforcing 

properties, through which to motivate conditioned approach behaviors.  

In a separate control study, we investigated the possibility that the reduction of port 

entries made during the CS following NBQX administration in the BLA could be attributable to 

an upward diffusion of NBQX into the dorsally-situated CPu. The CPu receives heavy 

glutamatergic inputs from the frontal cerebral cortex (Fonnum, Storm-Mathisen, & Divac, 1981) 

and has been shown to be involved in associative learning (Haruno & Kawato, 2006). Our 

current data show that NBQX administration in the CPu did not reduce port entries made during 
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the CS relative to saline-treated animals at test in a non-alcohol context. These findings negate 

the possibility that our results are due to an upward diffusion of NBQX into the CPu, and provide 

additional support for the role of AMPAr in the BLA in alcohol-seeking behavior elicited by an 

alcohol-predictive cue. It is also possible that NBQX diffused outwards, thereby affecting 

structures ventral or medial to the BLA. One such structure is the central nucleus of the 

amygdala, which has been implicated in Pavlovian conditioning and memory consolidation 

(Wilensky et al., 2006) as well as alcohol consumption in rodents (McBride, 2002). Future 

studies should therefore investigate the contribution of AMPAr activity in the central nucleus of 

the amygdala on Pavlovian conditioned alcohol-seeking behavior.  

Our current finding are in accordance with research showing that glutamate activity in the 

BLA increases during cue-induced reinstatement of alcohol-seeking relative to food-seeking 

behavior (Gass et al., 2011). However, metabotropic glutamate receptors in the BLA also 

contribute to alcohol-seeking behavior in operant conditioning tasks. For example, metabotropic 

glutamate receptor antagonists reduce reinstatement of alcohol-seeking behavior either 

systemically (Bäckström & Hyytiä, 2004; Schroeder, Overstreet, & Hodge, 2005), or in the BLA 

(Sinclair, Cleva, Hood, Olive, & Gass, 2012). The contribution of these receptors to alcohol-

seeking behavior elicited by Pavlovian alcohol cues still needs to be assessed.  

Our current findings suggest that glutamate activity in the BLA is required for 

conditioned behavior guided by discrete Pavlovian cues, however, the question still remains as to 

where glutamate projections to the BLA originate from. The Prelimbic (PL) medial prefrontal 

cortex sends and receives glutamatergic input from the BLA (McDonald, 1991; Mcdonald, 

1998), and has been implicated in reactivity to alcohol cues in humans (Fryer et al., 2013; 

George et al., 2001; Grüsser et al., 2004) and conditioned responding to discrete Pavlovian cues 

in rats (Sierra-Mercado, Padilla-Coreano, & Quirk, 2011; Vidal-Gonzalez, Vidal-Gonzalez, 

Rauch, & Quirk, 2006). Interestingly, optogenetic inhibition of BLA-to-PL pathway reduces cue-

induced reinstatement of cocaine seeking, suggesting that this pathway may be especially 

involved in the modulation of discrete conditioned cues on drug-seeking behavior (Stefanik & 

Kalivas, 2013). By contrast, contextual cues seem to be modulated by the ventral hippocampus 

(VH), a brain region that heavily projects to the BLA (Ishikawa & Nakamura, 2006), and is 

involved in the processing and integration of spatial and contextual information (for review see 

Jarrard, 1993). Accordingly, reversible inactivation of the ventral subiculum/CA1 of the 
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hippocampus attenuates context-induced reinstatement of heroin-seeking (Bossert & Stern, 2012) 

and inactivation of the dorsal hippocampus reduces context but not discrete cue-induced 

reinstatement of cocaine- seeking (Fuchs et al., 2005). Future studies should investigate the 

hypothesis that excitatory input relaying information about discrete alcohol cues to the BLA may 

originate from the PL, while the VH-to-BLA projection may contribute to the invigoration of 

alcohol-seeking behavior elicited by discrete cues that predict alcohol.   

In summary, our data demonstrate that alcohol-seeking behavior elicited by an alcohol- 

predictive cue is invigorated in an alcohol-associated context, suggesting that the summation of 

discrete and contextual cues may be a stronger trigger for craving and relapse in abstinent 

alcoholics relative to either cue alone. This finding is particularly important for clinical research 

that assess craving in response to alcohol cues, as craving may be underestimated in laboratory 

settings relative to realistic drinking environments. In addition, infusion of NBQX in the BLA 

reduced port entries made during CS presentations regardless of environmental context. These 

findings provide novel evidence for a pivotal role of AMPA glutamate receptors in the BLA in 

the expression of Pavlovian-conditioned alcohol-seeking behavior maintained by a discrete 

Pavlovian CS, and offer new insight into the neurobiological processes that mediate conditioned 

responding elicited by alcohol-predictive stimuli. 
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Supplementary Figure 1 

Blocking glutamate at AMPAr outside the BLA had no effect on alcohol-seeking behavior 

elicited by the CS when it was presented without ethanol in the non-alcohol context or the 

alcohol context. (A-I)  Normalized port entries at test in the non-alcohol context (open bars) and 

the alcohol context (gray bars) for 9 rats from Experiment 2a/2b that were dropped because 

either one or both injector tips were located outside the basolateral amygdala. Normalized port 

entries were calculated by subtracting port entries made during the PreCS from port entries made 

during the CS interval. Dose assignment for each rat is indicated within each graph. Mean (± 

SEM) test data for each dose and context condition obtained from rats with correct cannula 

placements are indicated within each graph (filled circles). Each individual rat was assigned a 

unique symbol that illustrates cannula placements. (J) Placement of injector tips from each 

corresponding dropped rat. 

  



54 
 

      Experiment 1       Experiment 2       Experiment 3 
A B C 

Session

1 2 3 4 5 6 7 8 9 10 11 12

E
tO

H
 i

n
ta

k
e
 (

g
/k

g
)

0

1

2

3

4

5

6

7

 
 
 

Session

1 3 5 7 9 11 13 15

E
tO

H
 i

n
ta

k
e

 (
g

/k
g

)

0

1

2

3

4

5

6

7

 
 

Session

1 3 5 7 9 11 13 15

E
tO

H
 i

n
ta

k
e
 (

g
/k

g
)

0

1

2

3

4

5

6

7

 
 

D E F 

Session

1 2 3 4 5 6 7 8 9 10 11 12

P
re

fe
re

n
c

e
 (

%
)

0

10

20

30

40

50

60

 
Session

1 3 5 7 9 11 13 15

P
re

fe
re

n
c

e
 (

%
)

0

10

20

30

40

50

60

 
Session

1 3 5 7 9 11 13 15

P
re

fe
re

n
c
e

 (
%

)

0

10

20

30

40

50

60

 
 

Supplementary Figure 2 

Ethanol consumption and preference for ethanol over water increased across sessions of ethanol 

consumption in the home-cage. Data from Experiments 1 (n=16), 2 (n=26) and 3 (n=11) are 

depicted. (A-C) Mean (± SEM) ethanol intake increased across sessions [Experiment 1; Session, 

F(11,165) = 25.96, p < .001; session 12 > session 1, t(15) = 13.74, p < .001: Experiment 2; 

Session, F(14,350) = 8.80, p < .001; session 15 = session 1, t(25) = 1.964, p =.061: Experiment 

3: Session, F(14,140) = 4.70, p < .001, session 15 > session 1, t(10) = 2.58, p =.027]. (D-F) 

Mean (± SEM) ethanol preference over water increased across sessions [Experiment 1; Session, 

F(11,165) = 35.42, p < .001; session 12 > session 1, t(15) = 14.16, p < .001: Experiment 2; 

Session, F(14,350) = 10.20, p < .001; session 15 > session 1, t(25) = 4.10, p < .001: Experiment 

3: Session, F(14,140) = 6.93, p < .001, session 15 > session 1, t(10) = 3.81, p =.003].  
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Supplementary Figure 3 

Rats learned to associate a discrete cue with the delivery of alcohol during Pavlovian 

conditioning sessions. Data from Experiments 2 (n=26) and 3 (n=11) are depicted. (A-B) Mean 

(± SEM) number of port entries during the CS (filled circles) and PreCS intervals (open circles). 

Port entries during the CS increased across sessions while PreCS responses remained low. 

[Experiment 2; Session, F(10,250) = 21.78, p < .001, Interval, F(1,25) = 234.70, p < .001; 

Session × Interval, F(10,250) = 26.80, p < .001: Experiment 3; Session, F(10,100) = 6.68, p = 

.002, Interval, F(1,10) = 46.98, p < .001; Session × Interval, F(10,100) = 7.27, p = .001]. ^ p < 

.05, CS versus PreCS. (C-D) Mean (± SEM) total number of port entries during each Pavlovian 

conditioning session in an alcohol context (filled triangles) and in alternating sessions in a non-

alcohol context where neither the CS nor alcohol were presented (open triangles). More port 

entries were made during Pavlovian conditioning sessions in an alcohol context [Experiment 2; 

Context, F(1,25) = 261.93, p < .001; Experiment 3, Context, F(10,100) = 92.24, p <.001]. Total 

port entries were higher across sessions during Pavlovian conditioning and decreased across 

session in the non-alcohol context in experiment 2 [Session, F(10,250) = 8.83 p < .001; Context 
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× Session F(10,250) = 3.04, p = .001]. Total port entries decreased across sessions in experiment 

3 [Session, F(10,100) = 2.44, p = .012, Session × Context, F(10,100) = 1.64, p = .106]. 
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Supplementary Figure 4 

There was no effect of context on port entries made during the PostCS [t(15) = 1.826, p= .088] or 

ITI [t(15) = 1.787, p= .094] intervals at test for rats in experiment 1.  Filled bars represent port 

entries obtained in an alcohol context, and open bars represent port entries made in a non-alcohol 

context. 
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Supplementary Figure 5 

Blocking glutamate at AMPAr in the BLA reduced time spent in the fluid port during CS trials 

when the CS was presented without ethanol in the alcohol context (filled circles) or the non-

alcohol context (open circles). Graphs depict mean (± SEM) time spent (sec) in the port in the 

alcohol context (filled circles) and non-alcohol context (open circles) for rats infused with (A) 0 

(n=12) (B) 0.3 (n=7) and (C) 1.0 µg/0.3µl (n=7) of NBQX in the BLA. Overall, rats spent more 
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time in the fluid port during CS trials in the alcohol context relative to the non-alcohol context 

[Context, F(1,23) = 7.16, p = .013]. The amount of time spent in the port decreased across CS 

trials in both contexts [Trial, F(14,322) = 12.86, p < .001]. Infusion of NBQX in the BLA 

reduced time spent in the fluid port relative to rats infused with saline, particularly at the start of 

the test session [Dose, F(2,23) = 26.40, p < .001; Trial × Dose, F(28,322) = 6.08, p < .001]. This 

effect occurred in both test contexts [Context × Dose, F(2,23) = 1.51, p = .242; Trial × Context, 

F(14,322) = 1.01, p = .443; Trial × Context × Dose, F(28,322) = 0.81, p = .738]. 
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Supplementary Figure 6 

Port entries made during the CS for rats that received paired presentations (filled circles) of the 

CS and US increased across training sessions, while CS port entries made for rats in the unpaired 

group (open circles) decreased [Session, F(11,132) = 1.780, p = .134; Session × Group, 

F(11,132) = 2.319, p = .012]. 

 


