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Abstract

Five-axis Flank Milling and Modeling the Spiral Bevel Gear with

a Ruled Tooth Surface Design

Yuansheng Zhou, Ph.D.

Concordia University, 2015

Spiral bevel gears usually are cut by the machine tools which are specifically

made for manufacturing spiral bevel gear. For some practical applications,

such as repair, prototype, and small batch, there are only several spiral bevel

gears need to be machined. It seems not wise to buy a gear manufactur-

ing machine tool for cutting those several gears. Consequently, some other

manufacturing methods are introduced to cope with this situation. Recent

advances in computer numerical control (CNC) milling machine tools make

it possible to manufacture good quality spiral bevel gears. Moreover, CNC

milling machine tools are usually cheaper than the specific gear manufactur-

ing machine tools. Even more, they are not only cut gears but also other

parts. Therefore, computer numerical control (CNC) milling is introduced in

industry to cut spiral bevel gears.

End milling and flank milling are two modes of CNC milling. Compared

to end milling, flank milling has been highlighted in quality enhancement,

manufacturing time and cost reduction. Theoretically, the result of flank

milling a developable ruled surface does not contain geometric deviations.
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Hence, flank milling has been widely used to machine the parts with ruled

surface or the surface close to ruled surface, such as turbines and blades.

Due to the fact that the tooth surfaces of spiral bevel gears are close to ruled

surface (the tooth surface of Format-cut spiral bevel is part of a cone), flank

milling can also be used to cut spiral bevel gears.

However, there is no literature about flank milling spiral bevel gears. More-

over, the current existing tooth surface models (except the tooth surface of

Format-cut spiral bevel gear) are implicit, which makes further calculation

inefficient and difficult. To address these two problems, a new ruled tooth

surface design is proposed to spiral bevel gears design. Subsequently, the de-

sign model is used to be machined with five-axis flank milling by introducing

a new tool path planning approach. To obtain the simulate machined tooth

surface, a new geometric envelope approach is proposed to calculate the cutter

envelope surface as a closed-form representation. Then the result of geomet-

ric deviations, which are obtained by comparing the design tooth surface and

the simulate machined tooth surface, shows the flank milling is appropriate

to cut spiral bevel gears. Furthermore, the conventional face-milled model is

also used as the design model for flank milling, and another result of geomet-

ric deviations is obtained. Subsequently, both results are compared, and the

comparison shows that the proposed design reduces the geometric deviations

effectively. Moreover, the closed-form simulate machined tooth surface can

only be obtained by using the proposed design.

Keywords: Five-axis flank milling; spiral bevel gear; envelope surface; de-

sign; modeling; tooth surface; ruled surface
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Chapter 1

Introduction

1.1 Background

Machine frame

Cradle

Rotation axis 
of sliding base

Sliding base

Mac
hine ta

ble

Cutter head

Rotation axis 
of cradle

Cutter

(b) Face-milling machine tool(a) Five-axis CNC milling machine tool

Figure 1.1: Conventional face-milling machine tool and five-axis CNC milling machine tool.

Spiral bevel gears are significant industry components for power transmis-

sion, as in the transmission systems of automobile and helicopter. A spiral

bevel gear is the gear with bevel blank and curved teeth. On the one hand,

spiral bevel gears have an additional overlapping tooth action in comparison
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with straight bevel or spur gears. On the other hand, the manufacturing of

spiral bevel gears is more complicated. Three major conventional approaches

to manufacture spiral bevel gears are face milling, face hobbing and hob-

bing. All of those conventional approaches are equipped with special gear

manufacturing machine tools, which are relied on the works of corresponding

manufacturers, such as Gleason Corporation, Klingelnberg, OC Oerlikon.

Recent advances in computer numerical control (CNC) milling machine

tools make it possible to manufacture good quality spiral bevel gears. CNC

milling machine tools have different configurations with conventional gear

manufacturing machine tools. As shown in Fig. 1.1, a five-axis milling ma-

chine is compared with a conventional face-milling machine to cut spiral bevel

gears. Due to the different configurations, the methods used for both machine

tools to cut spiral bevel gear are also different. The general comparison is

summarized in Table 1.1.

Table 1.1: The comparison between CNC milling and face milling

CNC milling Face milling Result of CNC milling

Machine tools CNC milling machine Face-milling machine Cheaper cost
Cutting tools Milling tools Special cutting tools Cheaper cost
Application Gears, blades, disks, etc Only gears Broader application
Cutting timeI About 6 hours Less than 20 minutes Lower efficiency

I: The cutting time is obtained by approximately estimating to a spiral bevel gear with module
of 4.8338 and tooth number of 33. The cutting time of CNC milling is estimated according to
machining simulation in CATIA V5R20. For face-milling, it is estimated according to [1].

In summary, although CNC milling has a lower production rate to cut

spiral bevel gears than the conventional approaches, it takes advantage of

the following aspects: (1) a broad of range of gears can be manufactured

2



with a CNC milling machine tool; (2) crown gears can also be manufactured;

(3) not only gears but also other parts can be machined. Consequently, CNC

milling spiral bevel gears has been introduced in industry, especially for the

application of small batch, prototype and repair.

1.2 Literature review

1.2.1 Conventional approaches to manufacturing spiral bevel gears

Gear 
Curvature

Gear Cutter Model & 
Machine-tool Settings

Pinion Machine-
tool Settings

 Machining 
Model of Gear

Pinion 
Curvature

Litivin’s Gearing Theory

Local Synthesis

Expected 
Contact Ellipse

Kinematic 
Parameter m21'

N

Y

End

Machining Model 
of Pinion

Pinion Cutter Model 

Equation of Meshing

?
Contact Pattern and 
Transmission errors

Figure 1.2: The process of conventional approaches.

In the process of the conventional approaches, a series of steps are applied

to manufacture the spiral bevel gears to achieve requirements of their work

performances. The work performances of a pair of spiral bevel gear are the-

3



oretically evaluated by two indexes, contact pattern and transmission errors.

Both indexes are determined by the geometry of both tooth surfaces of a pair

of spiral bevel gears.

Generally, the process used to cut spiral bevel gears in the conventional

approaches can be illustrated as Fig. 1.2. It contains the following three major

steps. (1) The bigger member of a pair of spiral bevel gear, named gear, is

manufactured primarily according to some basic work requirements. Based

the cutter geometry and machining settings, the mathematical model of the

gear tooth surface can be obtained. (2) With the geometry gear tooth surface,

the cutters and machining settings for pinion, which is the smaller member of

a pair of spiral bevel gears, are determined. Subsequently, the mathematical

model of the pinion tooth surface is also obtained. (3) The contact pattern

and transmission errors can be calculated according to the tooth surfaces of

both gear and pinion. In some cases, it may be an iteration process since

the requirements of contact pattern and transmission errors could be not

satisfied by the result of step (3). In a word, the whole process is to generate

the reasonable shapes of tooth surfaces by choosing the right cutters and

machining settings. Subsequently, the result satisfies the requirements of the

work performances.

Some well-established knowledge methodologies have been used for man-

ufacturing the spiral bevel gears in conventional approaches. Specially, the

now classic Litvin’s approach has been widely applied in conventional ap-

proaches to manufacture spiral bevel gears, as shown in Fig. 1.2. There are

several significant methodologies in Litvin’s approach, such as the equation
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of meshing, theory of gearing, local synthesis [2–6]. These methodoogies are

summarized as follows.

• The equation of meshing is developed by litvin et al. to calculate the gear

tooth surface. With the consideration of the gear generating process, the

tooth surface can be represented as an implicit form of three parameters,

and one of which has to be eliminated according to a necessary condition

of the generating process. This necessary condition is written as the

equation of meshing. The equation of meshing is referred to as envelope

theory in the filed of CNC milling.

• With the tooth surface model, curvature analysis is necessary to in-

vestigate the contact pattern and transmission errors of the gear drive.

Mathematically, curvature analysis can be implemented with the results

of classic differential geometry [7]. However, since the tooth surface of

the generated gear is expressed as an implicit form with the equation

of meshing, it is complicated and inefficient to calculate the derivatives

of the tooth surface with differential geometry approach. Subsequently,

the alternative approaches are proposed to curvature analysis. Litvin

et al. proposed theory of gearing to do curvature analysis for conju-

gated surfaces. In this now classic approach, a systematic methodology

is established to derive the curvature relationship between two conjugate

surfaces based on the analysis of the motion of the contact point. This

method employs kinematic relationships and scalar components in an

orthogonal reference frame, and it does not use the parametric coordi-

nates.

5



• Local synthesis to calculate the pinion machining settings based on the

contact ellipse of gear and pinon at a chosen point. Since the contact

ellipse is determined by the curvatures of the gear and pinion, the pinion

curvature is determined while given the gear curvatures and contact

ellipse. Subsequently, the machining settings for the pinion are obtained

by applying the theory of gearing.

There are some other works besides the aforementioned works. Based on

the equation of meshing, envelope surface and its curvature analysis can be

implemented with different methods. These methods can be categorized into

two groups, Litvin’s and invariant approaches, depending on whether the

derivation process is related with coordinate systems or not. In the follow-

ing literature review, the tooth surface generation is introduced separately

with both approaches. Subsequently, the curvature analysis based on both

approaches is also illustrated respectively.

Based on the equation of meshing, Fong and Tsay [8] calculated the tooth

surface model for circular cut spiral bevel gears. Tsay and Lin [9] proposed

a mathematical model for different types of hypoid gears. Shih et al. [10]

introduced a universal hypoid generator mathematical model for face hobbed

spiral bevel and hypoid gears. Lelkes et al. [11] generated the model for Klin-

gelnberg bevel gears. Fan [12] proposed a complete modeling of a face-hobbed

spiral bevel gear by expressing the machine-tool settings as a function of the

cradle increment angle. Vimercati [13] modeled the tooth surface of face-

hobbed hypoid gears with the accurate geometric representation. Xie [14]

proposed a genuine cutter geometric model for the spiral bevel and hypoid

6



gears by defining the cutting edges on the blade rake face. Muhammad [15]

introduced a new approach to CNC programming for an accurate model of

multi-axis face-milling of hypoid gears. Chen et al. [16] introduced the gen-

eralized motion to represent the gear generation motions to obtain the gear

tooth surface model. Puccio et al. [17] calculated the tooth surface model by

applying the invariant approach, where the geometric relations in gear gener-

ation are described as vectorial forms. Subsequently, a more general case of

the gear generation with supplemental motion is also introduced [18]. Wang

and Zhang [19] extended the invariant approach with tensor expression.

Different from Litvin’s approach, the invariant approach describes the gear

generating process without referring to coordinate systems, and this makes

the overall formulation compact. Two significant issues of the invariant ap-

proach are vector (or tensor) expression and motion description. Wu and

Luo [20] used vector expression to formulate gear generation, and Dooner [21]

introduced screw theory to describe the kinematic motion. Puccio et al. [17]

represented gear generation based on geometric relations in vectorial form,

and a more general case [18] of the gear generation with supplemental mo-

tion is introduced subsequently. Wang and Zhang [19] extended the invariant

approach with tensor expression.

With the tooth surface geometry, the curvature analysis has been investi-

gated. Chen [22] introduced non-principal parametric coordinates and devel-

oped curvature expression in a given direction in a non-orthogonal reference

frame. The case with the generalized motion has been developed by Chen

et al. [16]. Wu and Luo [20] obtained the curvature equations by introduc-

7



ing screw theory to describe the relative motion of conjugate surfaces, and

Yan and Cheng [23] applied this approach to some cam-follower mechanisms.

Ito and Takahashi [24] investigated curvatures in hypoid gears with classic

differential geometry and kinematic relationships. Dooner [21] proposed the

third law of gearing with screw theory to obtain the limiting relationship

between the curvatures of two conjugate surfaces. Puccio et al. [25] used

the invariant approach to do curvature analysis of conjugate surfaces. An

extension of the invariant approach to the general case of the gear genera-

tion with supplemental motions is introduced consequently [18]. Puccio et

al. [26] gave a comprehensive comparison in different methods and expressed

all these methods with vector form. Wang and Zhang [19] developed the

invariant approach with rotation and curvature tensors to illustrate theory

of gearing and local synthesis.

All of the above research calculates the tooth surface based on the equa-

tion of meshing, and the derivatives of the equation of meshing are used

to investigate curvature analysis with alternative approaches. However, the

whole calculation process can be more simple and straightforward. To fulfill

these purposes, a new geometric meshing theory is proposed in this thesis in

Section 2. If we follow the convention of CNC milling, the geometric mesh-

ing theory is called as geometric envelope approach. We will use geometric

envelope approach in the remainder of this thesis.
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1.2.2 CNC milling approaches to manufacturing spiral bevel gears

Over the last few decades, the progress of CNC milling spiral bevel gears

has aroused public concern in gear manufacturing industry. It has been ap-

plied in the traditional gear manufacture companies, such as Gleason Corpo-

ration, DMG Mori, etc. According to the tool position and orientation with

regard to the machined surface, CNC milling has two modes, flank milling

(also referred to as side or peripheral milling) and end milling. End milling

removes the material around the midst of the tool flat end, while it is along

the flank side of the tool in flank milling. End milling spiral bevel gears has

been implemented in some works [27–29]. Besides the machining time, there

are two other limitations for end milling spiral bevel gears. First, the scallop

will be generated among two adjacent tool paths. Consequently, the further

manufacturing process may be needed to satisfy high qualify requirement.

Second, it is very difficult to obtain the simulate machined tooth surface,

which is the fundamental input to evaluate work performances prior to the

real machining.

From the view of design, Huston and Coy [30] described the tooth surface

of an ideal spiral bevel gear with the involute curve and logarithmic spiral.

Since the involute curve has been widely used in spur gears and helical gears,

Huston and Coy applied it as the profile. A logarithmic spiral is chosen as

the lengthwise curve of the crown gear, and then it is spindled from the disk

into a cone. Later, Huston and Coy [31] gave the analysis of the tooth surface

design for circular cut spiral bevel gears. Although the designs proposed by
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Huston and Coy [30,31] are difficult to be machined by the conventional gear

manufacturing machine tools [32], the fundamental idea has been introduced

for CNC milling spiral bevel gears, such as the works in [27–29]. Suh et al. [27]

designed the tooth surface by rotating the spherical involute curve along the

circular cut spiral curve. Subsequently, the design tooth surface is machined

by both four-axis and 3/4 axis CNC milling. Moreover, Suh et al. [28] also

designed spiral bevel gears with crown, and then machined in four-axis CNC

milling machine tools. Alves et al. [29] designed the tooth surface by applying

the spherical involute tooth profiles along a logarithmic spiral on the pitch

cone. Then the tooth surface is machined with five-axis CNC milling. All the

manufacturing modes in [27–29] are end milling. Consequently, as mentioned

before, it is very difficult to obtain the simulate machined tooth surface prior

to the real machining. Measurements are applied in [27–29] to obtain the

machined models of the tooth surface after machining.

Compared to end milling, flank milling has many advantages in quality

enhancement, manufacturing time and cost reduction [33,34]. Theoretically,

five-axis flank milling the developable ruled surface does not contain geomet-

ric deviations (or geometrical deviations, which are the differences between

the design surface and the simulate machined surface). Therefore, it has been

widely used to machine the parts with ruled surface, even some generic free-

form surfaces. For a detailed insight on five-axis flank milling, readers can

refer to [35]. However, there is no literature about flank milling spiral bevel

gears, and no ruled tooth surface design available for spiral bevel gears.
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1.2.3 The calculation of envelope surface

Theoretically, the tooth surface model of spiral bevel gears is part of the en-

velope surface of the cutter along the given tool path. Hence, it is significant

to calculate the envelope surface in gear manufacturing. In the filed of gear

manufacturing, the approaches as stated in Section 1.2.1 apply the equation

of meshing to calculate the envelope surface. Moreover, there are also some

mathematical algorithms developed in the filed of CNC milling to compute

the envelope surface, such as sweep-envelope differential equation (SEDE),

singularity theory (also referred to as manifold stratification or Jacobian rank

deficiency method) and envelope theory. Blackmore et al. [36, 37] proposed

the SEDE algorithm to compute the envelope surface and applied it in CNC

machining simulation. Wang et al. [38] extended the SEDE method to the

general deformed envelope surface. Abdel-Malek and Yeh [39,40] used an im-

plicit equation to calculate the envelope surface by introducing the Jacobian

rank-deficiency condition. In the later work [41], this approach was developed

to the consecutive sweeps of n parameters. Subsequently, it was applied to

calculate the material removed in the five-axis CNC machining process. The

basic idea of the envelope theory is sourced from differential geometry [42].

Wang et al. [43] used the tangency condition of the envelope theory to obtain

the envelope surface by computing a family of grazing curves. Martin and

Stephenson [44] and Weld and Leu [45] initially adopted the envelope theory

to formulate the envelope surface.

The envelope surface of general objects is studied by several approximate
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methods. Kim et al. [46] approximated the swept volume of a complex poly-

hedron along a given trajectory. Rossignac et al. [47] computed the envelope

surface of a free-form solid by introducing a polyscrew approximation of the

screw motion. Erdim and Ilieş [48] proposed a generic point membership clas-

sification approach to compute the envelope surface of 3-dimensional objects

in general motions. Juttler and Wagner [49] summarized the basic theory of

spatial rational B-spline motions and introduced a linear control structure.

Subsequently, the envelope surface swept out by a moving polyhedron is cal-

culated. Xia and Ge [50] introduced the exact non-uniform rational B-splines

(NURBS) representations of the envelope surfaces of the swept volume of a

cylinder undergoing a rational Bézier or B-spline motions. Yang et al. [51]

computed the approximate swept volumes of NURBS surfaces or solids by

slicing NURBS surfaces into sliced curves.

The applications of the envelope surface to CNC machining simulation

are studied in several approaches. Chen and Cai [52] applied the envelope

surface to three-axis virtual milling of sculptured surfaces. Bohez et al. [53]

presented an algorithm based on the sweep plane approach to determine the

machined part geometry in five-axis CNC machining with the general cutter

of automatically programmed tool (APT). Park et al. [54] proposed a hybrid

cutting simulation methodology based on a general discrete vector model.

Many researchers have taken much effort to apply the envelope theory to

five-axis CNC machining. Yang and Lee [55] presented a nonparametric R-

map model to describe discrete surfaces to obtain machined surface. Chiou

and Lee [56] presented a shape-generating approach to find the envelope sur-
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face by constructing G-buffer models for five-axis CNC machining. Maeng

et al. [57] proposed a Z-map method to compute the intersection points be-

tween a set of z-axis aligned vectors and the envelope surface. Chung et

al. [58] proposed a single valued function to represent the envelope surface

for the generalized cutter in three-axis CNC machining. In this work, the

grazing curves were calculated with the silhouette curve equations. Roth et

al. [59] presented a modified principle of silhouettes to determine the grazing

curves on the envelope surface of a toroidal cutter in five-axis CNC machin-

ing. Later this method is extended by Mann and Bedi [60] to compute the

envelope surface of all rotary milling cutters in five-axis CNC machining. Lee

and Nestler [61, 62] applied the gauss map to compute the envelope surface

of a cutter undergoing simultaneous five-axis movement. In this work, the

complete envelope surface with self-penetration (or self-intersection) is also

presented. Based on envelope theory, all these approaches in [55–62] com-

puted the envelope surface with numerical methods.

The closed-form methods are also widely studied based on envelope theory.

Hu and Ling [63] generated the envelope surface of the natural quadric surface

by introducing the instantaneous screw axis to describe the sweep motion.

Chiou and Lee [64] presented a closed-form solution to the envelope surface

of the APT cutters to simulate five-axis CNC machining. Subsequently, this

method was used to optimize the cutter configuration for five-axis tool-end

machining [65] and five-axis ruled surface machining [66]. Lartigue and Af-

fouard [67] calculated the envelope surface by kinematic approach to correct

the tool path in five-axis flank milling. Weinert et al. [68] proposed an an-
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alytical method to calculate the envelope surface of a fillet end cutter for

five-axis CNC milling based on the moving frame method, which simplify the

calculation. Du et al. [69] extended this method to APT cutters with several

different formulas for different cutters, such as fillet end, ball end and flat end.

In addition, they presented solution analysis and special case analysis. Zhu

et al. [70] calculated the envelope surface of the general rotary cutter under-

going general spatial motion for multi-axis machining. Gong and Wang [71]

presented two closed-form solutions for calculating the envelope surface of a

generic cutter directly from CL data based on the moving frame.

By combining with the envelope theory, the theory of two-parameter fam-

ilies of spheres (or referred to as sphere congruence) has been introduced

to analytically calculate the envelope surface in five-axis CNC machining.

The cutter surface is represented as the envelope surface of one-parameter

spheres. Subsequently, by introducing another parameter as the cutter mo-

tion parameter, the envelope surface is obtained as two-parameter families of

spheres [72, 73]. Similar theory is applied to calculate the boundary of the

screw-sweep of canal surface [74].

Compared to the other methods, the theory of two-parameter families of

spheres provides a simpler calculation. However, the computation process

is still not straightforward since the cutter surface has to be represented as

the envelope surface of one-parameter spheres prior to further calculation.

Moreover, as aforementioned, the computation of the curvature of the enve-

lope surface will be more complicated. To address these two problems, the

geometric envelope approach is introduced in this thesis. The most elegant
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feature of this geometric envelope approach is that the generated surface can

be obtained as a closed-form vector representation with parameters h and φ,

and then curvature analysis can be directly and efficiently implemented with

differential geometry equations. The details are stated in Section 2.

1.3 Research problems and objectives

Chapter 3 The 
Design Gear Model

Chapter 2 Geometric 
Envelope Approach

VS

Conventional Gear Model Proposed Gear Model 
with Ruled Tooth Surface

Machining Model 
based on Conventional 

Gear Model

Conventional Gear 
Manufacturing Approach

Machining Model 
based on Proposed 

Gear Model

Chapter 4 Five-axis Flank 
Milling and Modeling

Ruled Tooth 
Surface Design

Conclusion

Figure 1.3: Thesis organization.

As stated in the literature review, there are three major problems summa-

rized as follows.

• The calculation of the envelope surface is complicated and not straight-

forward
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• There is no ruled tooth surface design for spiral bevel gears

• There is no literature about five-axis flank milling spiral bevel gears

To address these problems, this thesis proposes some objectives organized

as shown in Fig. 1.3. The details are stated as follows.

• In Chapter 2, a new geometric envelope approach (also referred to as

geometric meshing theory in the convention of the filed of gear manufac-

turing) is proposed to obtain a closed-form vector representation of the

envelope surface. Subsequently, curvature analysis can be implemented

directly and efficiently with differential geometry equations

• In Chapter 3, a ruled tooth surface is proposed to design the tooth

surface of spiral bevel gear.

• In Chapter 4, the tool path planning is implemented for five-axis flank

milling. Furthermore, the closed-form representation of the simulate

machined tooth surface is obtained by using the envelope geometric ap-

proach.

• A conclusion is conducted in Chapter 5.
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Chapter 2

A new geometric envelope approach

2.1 Envelope surface

2.1.1 An introduce of envelope surface

Envelope surface is mentioned as the boundary surface of the swept vol-

ume formed by a object moving in a space. The surface of the object and

envelope surface are also called as generating surface and generated surface,

respectively. The whole process is called as generating process. Envelope

surface has been widely used to simulate the machined surface in many fields

of current manufacturing industry. While a product is machining, the ma-

chined surface is obtained by removing a certain amount of material from the

stock. Subsequently, the machined surface can be calculated as part of the

envelope surface of the cutter moving along the given tool path. The details

about the envelope surface are introduced as follows.

Assume a generating process is related to a generating surface continuously

moving in the three dimensional Euclidean space E
3. With the generating
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process, a family of surfaces is formed with respect to all configurations of

the generating surface at every moment. Taking an example of Fig. 2.1, the

generating surface is a conical surface r(h, θ), in which h is the parameter of

generatrix and θ is the parameter of rotation. The conical surface undergoes

a general motion from the initial configuration to a new configuration cor-

responding to a moment of the generating process. Assume the parameter

of motion is φ, then the family of the conical surfaces can be represented as

r(h, θ, φ) in E
3 with respect to a chosen fixed point o(f). At a given instance

φ∗, the configuration of the generating surfaces can be described as r(h, θ, φ∗).

generating surfacegrazing curveenvelope surface

h

θ 

grazing point

r(h, θ, ϕ*)

r(h, θ, ϕ* )r(h, θ(h, ϕ*), ϕ*)r(h, θ(h, ϕ), ϕ)r(h*, θ(h*, ϕ*), ϕ*)

o(f)

Figure 2.1: The envelope surface of the family of the generating surfaces

During the generating process, the generated surface and the generating

surface stay in line contact at every moment. Line contact means that the

generating surface tangent at the generated surface along the line. This line

is called grazing curve (also referred to as contact line, characteristic curve,

critical curve, swept profile, silhouette curve, generating curve, imprint curve,

etc). For a given instance φ∗, the grazing curve can be represented by elim-

inating either h or θ. Taking the example of eliminating parameter θ, the

grazing curve can be obtained as r(h, θ(h, φ∗), φ∗). By sampling parameter
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φ with different values, a series of grazing curves can be obtained, and the

generated surface is formed by connecting these grazing curves. In order to

obtain a grazing curve, grazing points, which are the points on this grazing

curve, should be calculated first. For a specified grazing curve corresponding

to φ∗, when the parameter h is given as a specified value h∗, the grazing point

which is corresponding to φ∗ and h∗ can be represented as r(h∗, θ(h∗, φ∗), φ∗).

By sampling h with different values, the grazing curve is generated by con-

necting all the grazing points. Hence, the calculation of the grazing point is

the key step to obtain the generated surface.

In order to calculate the grazing point, a necessary condition is derived

according to the tangent condition between the generating surface and gener-

ated surface. The necessary condition is that the unit normal n(h, θ(h, φ), φ)

of the generating surface at the grazing point is orthogonal to the velocity

v(h, θ(h, φ), φ) of the generating surface at the grazing point [2,3,42,43]. This

necessary condition is represented as

n(h, θ(h, φ), φ) · v(h, θ(h, φ), φ) = 0 (2.1)

Eq.(2.1) is called equation of meshing in the literature of gear manufacturing,

and it is refereed to as envelope theory in the literature of CNC milling. In

Eq.(2.1), θ is obtained with given h and φ. However, it is not easy to solve

Eq.(2.1), especially for the gear generating process, or the five-axis CNC

milling, which are involved with different coordinate systems and supplemen-

tal motions. In order to make this issue clear, a typical process to calculate

the envelope surface used in previous research is illustrated in Section 2.1.2.
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2.1.2 The calculation of the envelope surface

Generally, the typical procedure of the currently prevalent way to calculate

the envelope surface includes the following steps I ∼ IV.

Step I is the definition of the initial configuration of the generating surface.

The expression of the position vector of the generating surface r(h, θ) at the

initial instance φ = 0 can be established first, then the unit normal n(h, θ)

of generating surface at φ = 0 can be represented as

n(h, θ) =
rh × rθ

| rh × rθ | (2.2)

where

rh =
∂r(h, θ)

∂h
, rθ =

∂r(h, θ)

∂θ

Step II is the calculation of the instantaneous configuration of the gener-

ating surface. For a given instance φ, the position vector of the generating

surface at the currently instantaneous configuration is r(h, θ, φ). Assume

there is an instantaneous operator M(φ), which will transfer the generating

surface from the initial configuration r(h, θ) to the instantaneous configura-

tion r(h, θ, φ). Then r(h, θ, φ) can be obtained as

r(h, θ, φ) = M(φ) · r(h, θ) (2.3)

Also the instantaneous unit normal n(h, θ, φ) of the generating surface can

be obtained as

n(h, θ, φ) = M(φ) · n(h, θ) (2.4)
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The instantaneous operator M(φ) can be obtained in different ways. The

classic Litvin’s approach [2, 3] calculates M(φ) as a homogeneous transfor-

mation matrix (HTM) based on kinematic chain. M(φ) is also represented

with the rotation vector [17] and the rotation tensor [19] in the invariant

approach.

Step III is the calculation of the velocity of the generating surface. The

methods used to calculate the velocity in previous research can be included

in two ways. The first one is the derivative approach, which is based on

the derivative of the instantaneous configuration r(h, θ, φ) with respect to φ.

According to Eq. (2.3), the velocity can be obtained as

v(h, θ, φ) =
dM(φ)

dφ
· r(h, θ) (2.5)

The second way is the instantaneous angular velocity approach. When the

instantaneous angular velocity and the velocity of a point on the instanta-

neous axis are obtained as ω(φ) and vo(φ), respectively, the velocity of the

generating surface can be calculated as

v(h, θ, φ) = vo(φ) + ω(φ)× r(h, θ, φ)

= vo(φ) + ω(φ)× (M(φ) · r(h, θ))
(2.6)

Step IV is to solve the equation of meshing by submitting the unit normal

and the velocity. Submitting Eqs. (2.4) and (2.5) into Eq. (2.1), the equation

of meshing can be written as

[M(φ) · n(h, θ)] ·
[
dM(φ)

dφ
· r(h, θ)

]
= 0 (2.7)

21



The equation of meshing can also be solved by submitting Eqs. (2.4) and (2.6)

into Eq. (2.1)

[M(φ) · n(h, θ)] · [vo(φ) + ω(φ)× (M(φ) · r(h, θ))] = 0 (2.8)

On one hand, either Eq.(2.7) or Eq.(2.8) involves operator M(φ) twice,

and this makes the equation of meshing complicated, especially for the gear

generating process with the supplemental motion such as modified roll, heli-

cal motion and tilt motion. On the other hand, the calculation process is not

straightforward. For calculating a single contact point, the calculation pro-

cess is to obtain θ with specified φ∗ and h∗ based on the equation of meshing.

First, these two items in the equation of meshing, n and v, are expressed as

the functions of θ in the initial configuration and subsequently transformed

into the instantaneous configuration. Then θ is obtained as θ∗ by solving

the equation of meshing, and the contact point is obtained as r(h∗, θ∗) in

the initial configuration. Furthermore, the final representation r(h∗, θ∗, φ∗) is

obtained by transforming r(h∗, θ∗) into the instantaneous configuration.

The generated surface is obtained by combining the equation of meshing,

either Eq. (2.7) or Eq. (2.8) with the expression of the instantaneous configu-

ration of the generating surface, Eq. (2.3). Since it is complicated to find the

closed-form solution for the equation of meshing, it is usually represented as

an implicit function

f(h, θ, φ) = 0 (2.9)

Combining Eqs. (2.3) and (2.9), the implicit form of the generated surface
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can be expressed as {
r(h, θ, φ) = M(φ) · r(h, θ)

f(h, θ, φ) = 0
(2.10)

It is difficult to directly use differential geometry equations to do curva-

ture analysis based on Eq. (2.10) because the derivatives of the equation of

meshing is involved. Some alternative approaches are used to do curvature

analysis, such as theory of gearing [3], invariant approach [25]. Both of these

two approaches calculate the curvature of the generated surface based on

two similar systems of three linear equations [3,25, Eq. (13.1.27), p. 264 and

Eq. (90), p. 393, respectively].

The above processes of the calculation of the generated surface and cur-

vature analysis can be simplified. First, The expressions of n and v are

not necessary to relate with θ, and the contact point can be calculated di-

rectly in the instantaneous configuration. Moreover, the generated surface

can be expressed as a closed-form representation. A better approach is pro-

posed recently by combining with the envelope theory and the theory of two-

parameter families of spheres (or referred to as sphere congruence) [72–74].

This approach analytically calculate the envelope surface in five-axis CNC

machining. The cutter surface is represented as the envelope surface of one-

parameter spheres. Subsequently, by introducing another parameter as the

cutter motion parameter, the envelope surface is obtained as two-parameter

families of spheres [72,73]. Similar theory is applied to calculate the boundary

of the screw-sweep of canal surface [74].
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Compared to the other methods, the theory of two-parameter families of

spheres provides a simpler calculation. However, the computation process

is still not straightforward since the cutter surface has to be represented as

the envelope surface of one-parameter spheres prior to further calculation.

Moreover, the curvature analysis is still very challenging. To address these

two problems, the geometric envelope approach is introduced to straightfor-

wardly and efficiently to calculate the envelope surface of the specific circular

surface, which is a general case of surface including the surface of revolution,

canal surface and tube surface. Subsequently, curvature analysis can be im-

plemented directly and efficiently with differential geometry equations. The

details are stated in Section 2.2.

2.2 A geometric envelope approach for the specific cir-

cular surface

The geometric envelope approach is introduced to calculate the envelope

surface of a special group of generating surface, which is called the specific

circular surface in this thesis. First, the specific circular surface and its

geometric characteristic are introduced. Subsequently, a geometric equation

is derived according to the geometric characteristic. Moreover, a simplified

equation of the envelope theory is obtained for the specific circular surface.

Consequently, the geometric envelope approach is obtained by combining

both equations.
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2.2.1 Specific circular surface and the geometric equation

As shown in Fig. 2.2, a circular surface is a one-parameter family of circles

with its center following the curve o(h) in Euclidean space E
3 [75, 76]. Each

circle is called as generating circle. A circular surface can be defined as

r(h, θ) = o(h) +R(h) · (N(h) · cos θ +B(h) · sin θ) (2.11)

where

h is the parameter to define the trajectory curve of the circle center o(h);

R(h) is the radius of the generating circle;

θ is the parameter to define the generating circle;

N and B are two unit orthogonal vectors lying on the plane of the gener-

ating circle whose unit normal is T (T is different with t, which is the unit

tangent vector of o(h)). {T,N,B} is the Frenet–Serret frame.

Specially, a group of circular surfaces are introduced with the following

property: given a generating circle, the normals of the circular surface at all

points of this generating circle intersect at a point q, which lies on the line

passing through o and paralleling with T. Assume that p is a point on this

generating circle. ρ is the distance between q and p. We have

ρ(h) = R(h) · cscα(h) (2.12)

where α is the angle formed by T and n, which is the unit normal vector

of the circular surface at p. For clarity, ρ, α, q and T are named in this
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Figure 2.2: The specific circular surface.

thesis as effective radius, effective angle, effective center curve and unit circle

normal, respectively.

The circular surfaces with above property is named as specific circular

surface in this thesis. It includes surface of revolution [77], canal surface [72–

74] and tube surface [74]. According to its property, the specific circular

surface also can be represented as

r(h, θ) = q(h) + ρ(h) · n(h, θ). (2.13)

Assume that n always directs away from q (also away from the object body

of the circular surface). This assumption is applied throughout this thesis.
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For a specific circular surface, we have

n(h, θ) ·T(h) = cosα(h). (2.14)

Eq. (2.14) is useful to derive the envelope surface as a result of closed-form

representation. Since Eq. (2.14) is a geometric characteristic of the specific

circular surface, it is regarded as the geometric equation.

2.2.2 Geometric envelope approach

When the specific circular surface moves continuously under a general mo-

tion, a family of the specific circular surface is obtained. Assuming that

the motion parameter is φ, the family of the specific circular surface can be

expressed according to Eq. (2.13) as

r(h, θ, φ) = q(h, φ) + ρ(h) · n(h, θ, φ). (2.15)

The velocity of the specific circular surface can be calculated by differentiating

Eq. (2.15) with respect to φ. We have

v(h, θ, φ) =
∂q(h, φ)

∂φ
+ ρ(h) · ∂n(h, θ, φ)

∂φ
. (2.16)

According to the envelope theory, the specific circular surface and its en-

velope surface are tangent with each other along a curve at every instant

during the moving process [43]. This curve is regarded as the grazing curve.

The point on the grazing curve is the grazing point. To calculate the grazing

point, the tangent condition is used as a necessary condition which is written
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as an equation of the envelope theory [43]

n · v = 0. (2.17)

By Submitting Eq. (2.16) into Eq. (2.17), we have a simplified equation of

the envelope theory as

n · v = n(h, θ, φ) ·
(
∂q(h, φ)

∂φ
+ ρ(h) · ∂n(h, θ, φ)

∂φ

)

= n(h, θ, φ) · ∂q(h, φ)
∂φ

= n(h, θ, φ) · vq(h, φ) = 0.

(2.18)

Eq. (2.18) means that if p is a grazing point, the normal of the specific cir-

cular surface at p is orthogonal to vq, which is the velocity of the specific

circular surface at q. This is a special characteristic when the envelope the-

ory is applied to the specific circular surface. Another important feature of

Eq. (2.18) is that vq is not related with the parameter θ. It is very helpful

to represent the grazing point as a closed-form expression.

Considering the geometric equation, Eq.(2.14), under the general motion,

we have

n(h, θ, φ) ·T(h, φ) = cosα(h). (2.19)

Combining Eqs.(2.18) with (2.19), the geometric envelope approach is ob-

tained as a system of two independent equations. With the given values for

h and φ, vq and T become two knowns based on the corresponding motion

description. Since the unit normal n can be expressed with two arbitrary

independent parameters in any chosen coordinate system, it can be solved

with two independent equations. Therefore, the unit normal n of the graz-
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ing point can be directly calculated with the geometric envelope approach.

Moreover, both vq and T are independent of θ. Hence n is also independent

of θ. By eliminating θ, the geometric envelope approach can be written as{
n(h, φ) · vq(h, φ) = 0

n(h, φ) ·T(h, φ) = cosα(h).
(2.20)

2.2.3 The closed-form solution of the geometric envelope approach

(a) 0 ≤ β ≤  π/2 

Pu

T

β 

α  

e1=vq / |vq|

n

β' e2

e3

T

β 

α  

e1=vq / |vq|

n

β' 

e2

e3

(b) π/2 < β ≤ π 

Pu

Figure 2.3: The calculation of the unit normal n.

According to the invariant envelope theory, the envelope surface can be

calculated. A vector calculation is derived to obtain the closed-form result.

The vector calculation is conducted by illustrating the invariant envelope

theory with two geometric conditions. As shown in Fig. 2.3, assume that

Pu represents the plane orthogonal to e1, which is the unit vector of vq.

According to the first equation in Eq. (2.20), n should lie on Pu. Moreover, n

should form an angle α with T according to the second equation in Eq. (2.20).

n can be obtained according to these two geometric conditions.

As shown in Fig. 2.3, assume that e2 is the unit vector of the projection of

T onto Pu. By introducing e3 = e1×e2, {e1, e2, e3} are three basis vectors of
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a right-handed fame. Assume that the angle between e1 and T is β, β ∈ [0, π],

then we have

sin β =| T× e1 |, cos β = T · e1 (2.21)

T = cos β · e1 + sin β · e2. (2.22)

By substituting that Eq. (2.22) into the second equation of Eq. (2.20), we

have

n · (sin β · e2 + cos β · e1) = sin β · (n · e2) = cosα. (2.23)

Usually, β �= 0 or π. When β = 0 or π, theres is no solution for n unless

α = π/2 and e1 = ±T (the case α = π/2 will be discussed later as a particular

case of the invariant envelope theory). If β �= 0 or π, Eq. (2.23) can be derived

as

n · e2 = cosα

sin β
. (2.24)

With Eq. (2.24), we know that it should be | cosα/ sin β |≤ 1, or n does not

exist. This condition can be geometrically explained according to Fig. 2.3.

Assume that the angle betweenT and e2 is β
′. β′ = π/2−β when β ⊆ [0, π/2],

and β′ = β − π/2 when β ⊆ (π/2, π]. Since e2 is the unit vector of the

projection of T onto Pu, we have 0 ≤ β′ ≤ α ≤ π/2. Hence, if the solution

of n exists, | cosα/ sin β |≤ 1.

With Eq. (2.24) and considering that n, e2 and e3 all lie on Pu, we have

n = (n · e2) · e2 + (n · e3) · e3

=
cosα

sin β
· e2 ±

√
1−
(
cosα

sin β

)2

· e3.
(2.25)
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Referring to Eq. (2.22), we have

e2 =
1

sin β
·T− cot β · e1 (2.26)

e3 = e1 × e2 =
1

sin β
· (e1 ×T) . (2.27)

By substituting Eqs. (2.26)and (2.27) into Eq. (2.25), we have

n =
cosα

sin2 β
·T− cosα · cos β

sin2 β
· e1 ±

√
sin2 β − cos2 α

sin2 β
· (T× e1)

=
cosα

(T× e1)
2 ·T− (T · e1) · cosα

(T× e1)
2 · e1 ±

√
(T× e1)

2 − cos2 α

(T× e1)
2 · (T× e1) .

(2.28)

Since e1 is the unit vector of vq, then we have

e1 =
vq

| vq | ,T× e1 =
T× vq

| vq | ,T · e1 = T · vq

| vq | . (2.29)

By substituting Eq. (2.29) into Eq. (2.28), Eq. (2.28) can be replaced as

n =
cosα · v2

q

(T× vq)
2 ·T− (T · vq) · cosα

(T× vq)
2 ·vq±

√
(T× vq)

2 − cos2 α · v2
q

(T× vq)
2 · (T× vq) .

(2.30)

Eqs. (2.28) and (2.30) are two closed-form expressions for the unit normal n

of the envelope surface at the grazing point. Furthermore, the closed-form

expression of the envelope surface can be obtained according to Eq. (2.15) as

s(h, φ) = q(h, φ) + ρ(h) · n(h, φ) (2.31)

where n(h, φ) has been calculated in Eq. (2.28) or Eq. (2.30).
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There are several significant features for this envelope surface expression.

• It is a closed-form expression with respect to two parameters, h and

φ. According to [77], it is more efficient than the closed-form methods

mentioned in [63–71, 73, 74], where the parameter θ is eliminated by

solving the trigonometric function

• The expression is invariant to coordinate system because it is written in

vector form. Subsequently, the result can be calculated by choosing any

convenient coordinate system

• To calculate the grazing point, the velocity of q is calculated rather than

p. This is very useful to simplify the computation in the later calculation

of the accurate envelope surface according to the accurate cutter motion

in practical machining

• The envelope surface is related to four terms: ρ(h), α(h), q(h, φ) and

T(h, φ) since vq(h, φ) is the derivative of q(h, φ) with to φ. ρ(h) and

α(h) are effective radius and effective angle, respectively. They are only

related to the shape of the specific circular surface. q(h, φ) and T(h, φ)

are not only determined by the effective center curve and unit circle

normal, respectively, but also the motion of the specific circular surface

Particular case for surface of revolution

while the generating surface is a surface of revolution, it is can be treat

as the special case of the specific circular surface. As shown in Fig. 2.4,

the generatrix is given as a regular curve c(h) and h is the parameter. The

generating surface is the surface of revolution by rotating c(h) along the
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cutter axis l, and θ is the parameter of rotation. o is the intersection point

of l and the bottom plane which is corresponded to h = 0. Rc is the distance

from the cutting edge point to the cutter axis. Zc is the distance from the

cutting edge point to the bottom plane. n is the unit normal of the generating

surface at a point p, and assume n is positive when it is far away from l. ph

is the intersection point of n and l, and α is the angle from n to l. ρ is the

distance between p and ph, and h is the distance from o to ph.

y
z, l

n

o

α 

ρ 

x

Generatrix c(h)

h

Rc

Zc

p

q

θ 

Figure 2.4: A generic model to represent the surface of revolution of the generating surface

The surface of revolution can be represented with a vector form or a scalar

form. The vector form is invariant with coordinate systems but the scalar

form is related with. Compared to the scalar form, the vector form is simple

and compact to carry out theoretical development. After theoretical devel-

opment, the practical computation can be implemented with the scalar form

by choosing a convenient coordinate system. The surface of revolution can
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be expressed with the vector form as

r(h, θ) = o+ h · l+ ρ(h) · n(h, θ) (2.32)

where

ρ(h) = Rc(h) · cscα(h)

For the surface of revolution as shown in Fig. 2.4, the unit circle normal is

coincident with l, which is the unit vector of the cutter axis, and the effective

center curve is coincident with the cutter axis. We have

T(h) = l,q(h) = oc + h · l. (2.33)

By substituting Eq. (2.33) into Eqs. (2.30) and (2.31), the envelope surface

of the surface of revolution is written as

r(h, φ) = oc(φ) + h · l(φ) + ρ(h) · n(h, φ) (2.34)

where

n(h, φ) =
cosα · v2

q

(l× vq)
2 ·l−

(l · vq) · cosα
(l× vq)

2 ·vq±
√
(l× vq)

2 − cos2 α · v2
q

(l× vq)
2 ·(l× vq) .

(2.35)
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Particular case for cylindrical surface

For cylindrical surface, we have α(h) = π/2, and the effective center curve

q(h) is coincident with the center curve o(h). Eq. (2.20) can be derived as{
n(h, φ) ⊥ vq(h, φ)

n(h, φ) ⊥ T(h, φ).
(2.36)

Then we have

n(h, φ) = ± T(h, φ)× vq(h, φ)

| T(h, φ)× vq(h, φ) | . (2.37)

The result of Eq. (2.37) can also be obtained by substituting α(h) = π/2 into

Eq. (2.30). Subsequently, the envelope surface of the cylindrical surface can

be obtained by substituting Eq. (2.37) into Eq. (2.31). We have

r(h, φ) = q(h, φ)± ρ(h) · T(h, φ)× vq(h, φ)

| T(h, φ)× vq(h, φ) | . (2.38)

2.3 Curvature analysis of the envelope surface

With the closed-form representation of the envelope surface, its curvature

analysis can be directly implemented with differential geometry equations.

In this section, the basic derivatives of both envelope surface and its normal

are calculated first. Subsequently, the curvature analysis is implemented with

two methods based on differential geometry equations.
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2.3.1 Basic derivatives

The derivatives of the unit normal of the envelope surface can be calculated

with Eqs. (2.30) and (2.31) can be derived as

n·(T× vq)
2 = cosα·v2

q ·T−(T · vq)·cosα·vq±
√
(T× vq)

2 − cos2 α · v2
q ·(T× vq)

(2.39)

Assume

f1 = (T× vq)
2 , f2 = cosα·v2

q , f3 = − cosα·(T · vq) , f4 = ±
√

(T× vq)
2 − cos2 α · v2

q

(2.40)

Submitting Eq. (2.40) into Eq. (2.39), Eq. (2.39) can be derived as

f1 · n = f2 ·T+ f3 · vq + f4 · (T× vq) (2.41)

Taking the derivatives of both sides of Eq. (2.41) with respect to h, we

have

∂f1
∂h

·n+f1 · ∂n
∂h

=
∂f2
∂h

·T+
∂f3
∂h

·vq+f3 · ∂vq

∂h
+
∂f4
∂h

· (T× vq)+f4 · ∂ (T× vq)

∂h
(2.42)

Then the derivative of n with respect to h is given as

nh =
∂n

∂h
=

1

f1
·
[
−∂f1

∂h
· n+

∂f2
∂h

·T+
∂f3
∂h

· vq

+ f3 · ∂vq

∂h
+

∂f4
∂h

· (T× vq) + f4 · ∂ (T× vq)

∂h

] (2.43)
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where

∂f1
∂h

= 2 · (T× vq) · ∂ (T× vq)

∂h
= 2 · (T× vq) ·

(
T× ∂vq

∂h

)
∂f2
∂h

= − sinα · dα
dh

· v2
q + 2 · cosα · vq · ∂vq

∂h
∂f3
∂h

= sinα · dα
dh

· (T · vq)− cosα · d (T · vq)

dh
∂f4
∂h

=
1

2 · f4 ·
(
∂f1
∂h

+ sin 2α · dα
dh

· v2
q − 2 · cos2 α · vq · ∂vq

∂h

)

Similarly, the derivative of n with respect to φ is given as

nφ =
∂n

∂φ
=

1

f1
·
[
−∂f1

∂φ
· n+

∂f2
∂φ

·T+ f2 · dT
dφ

+
∂f3
∂φ

· vq

+ f3 · ∂vq

∂φ
+

∂f4
∂φ

· (T× vq) + f4 · ∂ (T× vq)

∂φ

] (2.44)

where

∂f1
∂φ

= 2 · (T× vq) · ∂ (T× vq)

∂φ
= 2 · (T× vq) ·

(
dT

dφ
× vq +T× ∂vq

∂φ

)
∂f2
∂φ

= 2 · cosα · vq · ∂vq

∂φ
∂f3
∂φ

= − cosα · d (T · vq)

dφ
∂f4
∂φ

=
1

2 · f4 ·
(
∂f1
∂φ

− 2 · cos2 α · vq · ∂vq

∂φ

)

With the derivatives of the unit normal, the derivatives of the envelope

surface can be calculated according to Eq. (2.34) as

rh =
∂r(h, φ)

∂h
= T(φ) +

dρ(h)

dh
· n(h, φ) + ρ(h) · nh (2.45)

rφ =
∂r(h, φ)

∂φ
= vq(h, φ) + ρ(h) · nφ (2.46)

37



where nh and nφ have been calculated in Eqs.(2.43) and (2.44), respectively.

2.3.2 Curvature analysis with differential geometry methods

With well-established differential geometry, the curvature analysis can be

carried out in different ways. Two methods are introduced here as the appli-

cations of differential geometry to the envelope surface. One is fundamental

form method in which the coefficients of the first and second fundamental

forms are used. The other one is Rodrigues’ Formula method which is based

on Rodrigues’ Formula.

Fundamental form method

To study the geometric properties of a regular surface around a given point,

the curves which lie on the surface and pass through this point are always

involved. Assume these curves are expressed as r(s), where s is the arc length

parameter. The tangent vector of r(s) can be expressed as

dr = ṙ · ds = rh · dh+ rφ · dφ (2.47)

The normal curvature along dr is determined by the equation [2, Eq. (7.4.15),

p. 177]

κn =
II

I
=

−dr · dn
dr2

=
L · dh2 + 2 ·M · dh · dφ+N · dφ2

E · dh2 + 2 · F · dh · dφ+G · dφ2
(2.48)

where I, II are first and second fundamental forms, respectively (proposed

by the famous mathematician Gauss). E, F and G are the coefficients of the
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first fundamental form, and L, M and N are the coefficients of the second

fundamental form. These coefficients are obtained as

E = r2h, F = rh · rφ, G = r2φ (2.49)

L = −rh · nh,M = −rh · nφ = −rφ · nh, N = −rφ · nφ (2.50)

Since rh, rφ, nh and nφ have been determined in Eqs. (2.43) ∼ (2.46), the

coefficients of the first and second fundamental forms can be obtained, then

the normal curvature can be calculated with Eq. (2.48).

At a given point on a regular surface, the principal curvatures are the max-

imum and minimum normal curvatures at this point, and the corresponding

directions are principal directions. The principal curvatures are related with

Gaussian curvature and mean curvature [7, p. 181]

K = κ1 + κ2, H = κ1 · κ2 (2.51)

where κ1 and κ2 are the principal curvatures, K and H are the Gaussian

curvature and mean curvature, respectively. K andH are determined as [7, p.

188]

K =
L ·N −M 2

E ·G− F 2
, H =

L ·G− 2 ·M · F +N · E
2 · (E ·G− F 2)

(2.52)

According to Eq. (2.51), the principal curvatures can be expressed as

κ1,2 =
K ±√

K2 − 4 ·H
2

(2.53)

In order to find the principle directions, a direction parameter is used and

defined as u = dh/dφ (dφ �= 0). According to Eq. (2.47), the direction of
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the tangent vector dr is determined by u. Submitting u into Eq. (2.48), the

normal curvature κn can be treat as a function of u

κn(u) =
L · u2 + 2 ·M · u+N

E · u2 + 2 · F · u+G
(2.54)

Since the principal directions correspond to the extremum of the normal

curvature, we have
dκn(u)

du
= 0 (2.55)

Combining Eqs. (2.54) and (2.55), the direction parameter of the principle

directions can be calculated as

u1,2 =
− (L ·G−N · E)±

√
(L ·G−N · E)2 − 4 · (L · F −M · E) · (M ·G−N · F )

2 · (L · F −M · E)
(2.56)

When dφ = 0, Eq. (2.56) can not be used. For this case, another direction pa-

rameter can be defined as v = dφ/dh (dh �= 0). similarly, direction parameter

of the principle directions can be calculated as

v1,2 =
− (L ·G−N · E)±

√
(L ·G−N · E)2 − 4 · (L · F −M · E) · (M ·G−N · F )

2 · (M ·G−N · F )
(2.57)

Rodrigues’ Formula method

Another interesting method to calculate the principle curvatures and di-

rection is derived from the famous Rodrigues’ Formula [2, 7]. According to
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Rodrigues’ Formula, a special relation in the principle directions is existed

dn = −κ1,2 · dr (2.58)

Eq. (2.58) can be derived as

−κ1,2 =
dn

dr
=

nh · dh+ nφ · dφ
rh · dh+ rφ · dφ =

nh · u+ nφ

rh · u+ rφ
(2.59)

where rh, rφ, nh and nφ have been calculated in Eqs. (2.43) ∼ (2.46). Ac-

cording to Eq. (2.59), the direction parameter of the principal directions can

be expressed as

u1,2 =
nφ + κ1,2 · rφ

−(nh + κ1,2 · rh) (2.60)

With the consideration of the scalar components of the vectors in Eq. (2.60),

we have

u1,2 =
nφx + κ1,2 · rφx

−(nhx + κ1,2 · rhx) =
nφy + κ1,2 · rφy

−(nhy + κ1,2 · rhy) =
nφz + κ1,2 · rφz

−(nhz + κ1,2 · rhz) (2.61)

According to Eq. (2.61), the principle curvatures can be calculated as the

unknown of a quadratic equation, which can be written as

aκ · κ2 + bκ · κ+ cκ = 0 (2.62)

where
aκ = rφx · rhy − rφy · rhx
bκ = rφx · nhy + rhy · nφx − rφy · nhx − rhx · nφy
cκ = nφx · nhy − nφy · nhx
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With Eq. (2.62), the principle curvatures are calculated as

κ1,2 =
−bκ ±

√
b2κ − 4 · aκ · cκ
2 · aκ (2.63)

The direction parameter of the principle directions can be obtained by sub-

mitting the principle curvatures into Eq. (2.61), then the principle directions

are also calculated.
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Chapter 3

A new ruled tooth surface design of

spiral bevel gears

3.1 The geometric model of spiral bevel gears

3.1.1 The blank model of spiral bevel gears

The blank design of the spiral bevel gear is considered as the preliminary

desgin. According to the work requirements, the blank data can be deter-

mined based on the standard, such as [78]. Fig. 3.1 is the blank data of a pair

of spiral bevel gear of Duplex depth type or Tilted Root Line (TRL) type,

and the shaft angle is Σ = 90◦. The nomenclatures of spiral bevel gears in

Fig. 3.1 are shown in Table 3.1. The details can be referred to [78].

Points A ∼ I and Points A’ ∼ I’ are used to define the blank geometric

dimensions. Since Points A’ ∼ I’ are symmetrical to points A ∼ I along

gear axis, we just need to calculate points A ∼ I in gear coordinate system

Sg are shown in Table 3.2. And this process is similar to pinion blank. The

nomenclatures about Table 3.2 can be referred to Table 3.1. The details
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about the nomenclature can be referred to [78]. By the way, one important

issue is that the gear root cone generatrix is parallel with pinion face cone

generatrix, and the pinion root cone generatrix is parallel with gear face cone

generatrix. This issue is used to calculate the dedendum of the pinion or gear

along their pith cones.
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Figure 3.1: The geometry of the blanks of a pair of spiral bevel gears
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Table 3.1: The nomenclature of spiral bevel gears

Sign mean Sign mean

Ao outer cone distance F face width
aoG gear outer addenduma aoP pinion outer addendum
boG gear outer dedendum boP pinion outer dedendum
δG gear dedendum angle δP pinion dedendum angle
Γo gear face angle γo pinion face angle
ΓR gear root angle γR pinion root angle

A pair of spiral bevel gear with the blank data as shown in Table 3.3 is

used as an example. With the given blank data, the 3D models are modeled

in CATIA V5R20 as shown Fig. 3.2.

Table 3.2: The dimension calculation of blank data

Gear points in Sg pinion points in Sp

A = Ao ·
[
sin Γ
cos Γ

]
a = Ao ·

[
sin γ
cos γ

]

B = A+ aoG ·
[
cos Γ
− sin Γ

]
b = a+ aoP ·

[
cos γ
− sin γ

]

C = A+ boG ·
[− cos Γ

sin Γ

]
c = a+ boP ·

[− cos γ
sin γ

]

D = B+
F

cos δp
·
[− sin Γo

− cos Γo

]
d = b+

F

cos δG
·
[− sin γo
− cos γo

]

E = C+
F

cos δG
·
[− sin ΓR

− cos ΓR

]
e = c+

F

cos δP
·
[− sin γR
− cos γR

]

3.1.2 The tooth surface model of the conventional generated face-

milled spiral bevel gear

Tooth surface geometry is the significant factor to determine the work

performance of a pair of spiral bevel gears. It is used as the input to evalu-

ate the contact pattern and transmission error. Generally, the tooth surface
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(a) Gear blank (b) Pinion blank

Figure 3.2: 3D models of the blanks of a pair of spiral bevel gears

Table 3.3: Blank data of a pair of spiral bevel gears

parameter value

pinion tooth number 9
gear tooth number 33
module 4.8338
shaft angle 90.0000◦

pinion handle Right hand
mean spiral angle 32◦

face width 27.5000 mm
outer addendum 1.7600 mm
outer dedendum 7.6700 mm
face angle 76.1167◦

root angle 69.5833◦
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geometry is determined by the manufacturing process, which including the

manufacturing approaches, machining settings, cutter geometry, etc. To bet-

ter understand the conventional tooth surface geometry, The example of a

face-milled spiral bevel gear generated on a Gleason’s CNC machine is illus-

trated in this Section. This example is introduced from Litvin’s work [2].

First, the generating process of the face-milled spiral bevel gear is stated.

Second, kinematic relation is established for the generating process. Third,

the head-cutter surfaces are illustrated as the generating surfaces. Lastly, the

tooth surface is calculated with the geometric envelope approach.

The generating process of face-milled spiral bevel gears

When spiral bevel gears are generated with the face-milled method, the

cutting process is a single indexing process. For each tooth side or slot, it

is generated with a separate process. When the current tooth side or slot

is finished, the generating process is interrupted and then the workspace is

indexed to the next tooth side or slot. This process is repeated till the whole

generating process is finished.

Fig. 3.3 is the simulate model of a face-milled machine tool used in Gleason.

There are three rotation motions are involved in the cutting process: rotation

(1) of the head-cutter along the head-cutter axis zg, rotation (2) of the cradle

along the cradle axis zc and rotation (3) of the gear along the gear axis zb.

In industry, the generating process of face-milled spiral bevel gears can be

classified as non-generated (also called as Formate�) or generated methods,

and the corresponding gears are non-generated gears or generated gears, re-
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Figure 3.3: Structure and kinematic motion for the generation of face-milled spiral bevel
gears
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spectively. For the non-generated method, the gear is static, which means

there is no rotation (3). On the contrary, rotation (3) is applied in gener-

ated method. Generally, the non-generated method offers higher productivity

than the generated method. However, the generated method provides more

freedom to control the tooth surface and its curvature, which are significant

to the contact and transmission of the gear drive. Theoretically, the tooth

surface of the non-generated gear is a part of the head-cutter surface. In

contrast, the tooth surface of the generated gear is more complicated, and it

is a part of the envelope surface of the family of the head-cutter surfaces in

the generating process.

Since the head-cutter is mounted on the cradle, the motion of the head-

cutter can be treated as a planetary motion which comprises rotations of

(1) and (2). Rotation (1) is the relative motion (relative to the cradle), and

rotation (2) is the transfer motion (with the cradle). Rotation (1) is chosen

to provide the desired cutting velocity, and theoretically, it does not affect

the result of the gear model. For generated method, rotations (2) and (3)

are related, and they are called rolling or generating motions. The so-called

ratio of roll or velocity ratio is used to define the relation between these two

rotations, and it can be constant or varied. When ratio of roll is constant, it

can be represented as

φb(φc) = mbc · φc (3.1)

where φb and φc are the rotation angles of the gear rotation and the cradle

rotation, respectively. When the ratio of roll is varied in the generating
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process, it is called as modified roll, and the corresponding modified roll

function is expressed as [79]

φb(φc) = mbc ·
(
φc − C · φ2

c −D · φ3
c − E · φ4

c − F · φ5
c

)
(3.2)

where C, D, E, F are referred as the modified roll coefficients. By the way,

the first and second derivatives of the modified roll function with respect to

φc will be used to later calculation, and we have

dφb

dφc
= mbc ·

(
1− 2 · C · φc − 3 ·D · φ2

c − 4 · E · φ3
c − 5 · F · φ4

c

)
d2φb

dφ2
c

= mbc ·
(−2 · C − 6 ·D · φc − 12 · E · φ2

c − 20 · F · φ3
c

) (3.3)

Kinematic relation

Table 3.4: Main data of face-milling a spiral bevel gear

blade data machine-settings

parameter value parameter value

average radius 63.5000 mm radial setting 64.3718 mm
point width 2.5400 mm cradle angle -56.7800◦

pressure angle 22.0000◦ sliding base 0.0000 mm
fillet radius 1.5240 mm blank offset -0.2071 mm

machine center to back 0.0000 mm
machine root angle 69.5900 ◦

roll ratio 1.0323
modified roll coefficients 0.0000

The kinematic relation of the generating process can be defined base on

several machine settings, as shown in Fig. 3.3. The installment of the cradle

is determined by the parameters Sr and q, which are called as radial distance
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and cradle angle, respectively. The settings of a generated spiral bevel gear

is represented by other four parameters, and they are sliding base ΔXB,

blank offset ΔEm, machine center to back ΔXD and machine root angle γm.

These machine-settings are applied in this example with the values shown in

Table 3.4.

To conduct the computation with the proposed approach, a coordinate sys-

tem should be chosen. Two coordinate systemes are popularly chosen in pre-

vious research. As shown in Fig. 3.3, one is the machining coordinate system

Sm(om; xm, ym, zm), the other is the gear coordinate system Sb(ob; xb, yb, zb).

When Sm is chosen [17], it is convenient to represent the kinematic motion

with respect to Sm because both the cradle and the gear blank have only

one rotation operation (besides the translation operation). However, the fi-

nal result need to be transformed from Sm to Sb since the tooth surface is

usually defined in Sb. On the other hand, when Sb is chosen [2], the result is

direct obtained in Sb, but the expression of the cradle motion in Sb is more

complicated because it is involved two rotation operations. Both of these co-

ordinate systems can be applied in the proposed approach, and Sb is chosen

as an example to show the convenience of the proposed approach.

When the generating process is considered in a three dimensional Euclidean

space E
3
b , where the gear and Sb are fixed, the generating process can be

treated as an equivalent generated motion as shown in Fig. 3.4. While the

gear is fixed in E
3
b , the head-cutter not only rotates about the cradle axis

with an angle φc but also rotates about the gear axis with another angle −φb.

Then tooth surface model is formed as the envelope surface of the family
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Figure 3.4: Equivalent generated motion with respect to the gear coordinate system

of the head-cutter surfaces. In order to calculate this envelope surface, it

is necessary to describe the instantaneous configuration of the head-cutter

surfaces with respect to Sb. This can be implemented with the HTM which

transfers the head-cutter surfaces from Sg to Sb, and it can be represented as

Mbg (φc) =

⎡
⎢⎢⎢⎢⎣

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (3.4)

The details about the derivation of Mbg (φc) and its components Mi,j(i =

1, 2, 3; j = 1, 2, 3, 4) are given in Appendix A.

Head-cutter surface

The head-cutter with the blade cutting edges of a straight line with circular

fillet is illustrated in this example. Each side of the blade cutting edges

comprises two segments, the straight line and the circular fillet. The segment
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Figure 3.5: Blade cutting edges of a straight line with a circular fillet

of the straight line with the profile angle αg generates the working part of

the gear tooth surface. The circular arc of radius rf generates the fillet of the

tooth surface. Therefore, the generating surfaces, which are the head-cutter

surfaces, are the surfaces of revolution formed by rotating the blade cutting

edges about the head-cutter axis lg. The parameters of the blade cutting

edges in this example are shown in Table 3.4.

The working part of head-cutter surface can be represented as

r(h, θ) = og + h · lg + ρ(h) · n(h, θ) (3.5)

where

ρ(h) = Rc(h)·cscα(h), Rc(h) =

(
Ru ± Pw

2
± h · tanαg

)
, α(h) = csc

(π
2
∓ αg

)

The upper and lower sign refer to the concave and convex side, respectively.

By the way, the derivatives of α(h) and ρ(h) with respect to h will be used
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to curvature analysis, and they are given as

dα(h)

dh
= 0,

dρ(h)

dh
= tanαg · csc

(π
2
∓ αg

)
(3.6)

Similarly, the fillet of the head-cutter surface can be represented as

r(ϕ, θ) = og + h(ϕ) · lg + ρ(ϕ) · n(ϕ, θ), ϕ ⊆
(
0,

π

2
− αg

]
(3.7)

where

h(ϕ) = rc −Xw · cotϕ = rc −
[
Ru ± Pw

2
∓ rc · (secαg − tanαg)

]
· cotϕ

ρ(ϕ) = Rc(ϕ) · cscα(ϕ) = (Xw ± rc · sinϕ) · csc
[π
2
± (ϕ− π

2
)
]

Particularly, when ϕ = 0, the proposed method is can not be used because

of h(ϕ) |ϕ=0= +∞ and ρ(ϕ) |ϕ=0= +∞. However, the equation of meshing

can be applied to calculate the contact points for this case.

Tooth surface

According to Eq. (2.34), we have to calculate og(φc), lg(φc), vq(h, φc)

and vq(ϕ, φc) to obtain the closed-form expression of the tooth surface, and

vq(h, φc) and vq(ϕ, φc) are calculated for the working part and fillet of the

tooth surface, respectively. When we consider the instantaneous configura-

tion of the head-cutter surface in Sg, we have

og
g =
[
0 0 0

]T
, lgg =

[
0 0 1

]T
(3.8)
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While we consider the instantaneous configuration of the head-cutter surface

with respect to Sb, we can transform them from Sg to Sb as

ob
g(φc) = Mbg (φc) · og

g =
[
M14 M24 M34

]T
(3.9)

lbg(φc) = Mbg (φc) · lgg =
[
M13 M23 M33

]T
(3.10)

According to Eqs. (3.9) and (3.10), vq(h, φc) can be calculate in Sb as

vb
q (h, φc) =

dob
g(φc)

dφc
+h·dl

b
g(φc)

dφc
=

[
dM14

dφc

dM24

dφc

dM34

dφc

]T
+h·
[
dM13

dφc

dM23

dφc

dM33

dφc

]T
(3.11)

where dMi3/dφc and dMi4/dφc (i = 1, 2, 3 ) are given in Eq. (A.3) in Ap-

pendix. vq(ϕ, φc) can be obtained by replacing h in Eq. (3.11) with h(ϕ) in

Eq. (3.7). By submitting Eqs. (3.9) ∼ (3.11) into Eq. (2.34), the closed-form

representation of the tooth surface is obtained. Moreover, the 3D model of

this example is obtained in CATIA V5R20 as shown in Fig. 3.6.

Figure 3.6: 3D gear model of a generated face-milled spiral bevel gear
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Curvature analysis

Curvature analysis is only conduct to the working part of the tooth surface.

As stated in Section 2.3.2, the curvature analysis can be implemented with

rh, rφ, nh, and nφ. According to Eqs. (4.7) ∼ (2.46), we have to calculate l,

vq and their derivatives with respect to both h and φ to obtain rh, rφ, nh,

and nφ. l and vq have been calculated in Eqs. (3.10) and (3.11), then we have

dlbg(φc)

dh
= 0 (3.12)

dlbg(φc)

dφc
=

[
dM13

dφc

dM23

dφc

dM33

dφc

]T
(3.13)

dvb
q (h, φc)

dh
=

dlbg(φc)

dφc
(3.14)

dvb
q (h, φc)

dφc
=

[
d2M14

dφ2
c

d2M24

dφ2
c

d2M34

dφ2
c

]T
+ h ·

[
d2M13

dφ2
c

d2M23

dφ2
c

d2M33

dφ2
c

]T
(3.15)

where d2Mi3/dφ
2
c and d2Mi4/dφ

2
c (i = 1, 2, 3 ) are given in Eq. (A.4) in Ap-

pendix A.

3.1.3 Result validation and computation efficiency comparison

As a verification and comparison, the tooth surface and its curvatures

of the aforementioned example are also calculated with Litvin’s approach.

In Litvin’s approach, the tooth surface is calculated with the equation of

meshing, and the curvature of the tooth surface is computed with theory of

gearing. The results of the proposed method and Litvin’s approach are the

56



same. Therefore, the proposed method is valid.

Considering the computation efficiency, the comparison of the proposed

method and Litvin’s method is implemented to the calculation of the tooth

surface and its curvatures, respectively. All computations are implemented

with MATLAB R2010b on a 64-bit machine with Intel Core i5-2520M 2.50

GHz CPU and 4 GB main memory.

Table 3.5: Efficiency comparison of the calculation of the contact points

Case Point number
Geometric envelope approach Equation of meshing

Time (s) Ratio Time(s)

1 100 × 100 0.193 65.2% 0.296
2 100 × 1000 0.895 45.9% 1.950

Table 3.6: Efficiency comparison of the implementation of the curvature analysis

Case Point number
Fundamental form Rodrigues’ Formula Theory of gearing

Time (s) Ratio Time (s) Ratio Time (s)

1 100 × 100 0.574 84.8% 0.566 83.6% 0.677
2 100 × 1000 4.692 81.3% 4.509 78.1% 5.770

For the calculation of the tooth surface, the proposed geometric envelope

approach is compared with the equation of meshing, and the comparison is

shown in Table 3.5. Two cases with different numbers of the contact points

are carried out for the convex side of the tooth surface. The number of

the contact points is given by multiplying the number of the contact lines

and the number of the contact points on each contact line. The ratio is

calculated as a ratio of the computation time of the proposed method to the

computation time of Litvin’s method. According to Table 3.5, it illustrates

that the proposed method is more efficient than Litvin’s method.
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For the calculation of the curvatures, both two proposed methods, fun-

damental form method and Rodrigues’ Formula method, are compared with

the method of theory of gearing, and the comparison is shown in Table 3.6.

According to Table 3.6, both two proposed methods are more efficient than

Litvin’s method, and the Rodrigues’ Formula method is the most efficient

method.

Moreover, since it is usually an iterative process to find reasonable param-

eters to manufacture the spiral bevel gears, the proposed method is helpful

to reduce the calculation time.

3.2 Ruled tooth surface design of spiral bevel gears

3.2.1 Tooth surface design of spiral bevel gears

Profile

Lengthwise curve

Tooth surface

Gear axis

og

q

П

Radial direction line

Figure 3.7: The lengthwise curve and profile of a tooth surface.

The tooth surface geometry is usually described with a lengthwise curve

and a series of profiles, as shown in Fig. 3.7. The lengthwise curve is a curve

defined on the pitch cone of the spiral bevel gear. Assuming that q is a

point on the lengthwise curve, the profile corresponding to q is defined as
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the intersection of the tooth surface with a plane
∏
.
∏

is the plane passing

through q and perpendicular to radial direction ogq, in which og is the pitch

cone apex.

It is still not clear about the precise nature of the effects of slight changes

in the tooth surface geometry of high precision and high performance spiral

bevel gears. Any reasonable shape can be chosen for both the lengthwise

curve and profile [32]. Since the working part of the tooth surface generated

from conventional approaches is close to a ruled surface, here we proposed a

new ruled tooth surface design for five-axis flank milling spiral bevel gears.

Ruled surface is the result of the movement of a line, named as rule, along a

guiding curve. The details about ruled surface can be referred to [35,80]. For

the proposed ruled tooth surface design, the lengthwise curve is the guiding

curve. The working part of the profile is defined with two rules. Consequently,

the ruled tooth surface design is obtained.

3.2.2 The circular lengthwise curve of the ruled tooth surface

For the lengthwise curve, currently used shapes includes straight line, circle,

trochoid, involute and logarithmic spiral. The vast majority of spiral bevel

gears in use are of the circular lengthwise curvature type [32]. Hence, we

choose the circular lengthwise curve for the ruled tooth surface design. The

corresponding design procedure can be applied to the other choices of the

lengthwise curve.
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Figure 3.8: Circular lengthwise curve of the crown gear

Circular lengthwise curve of crown gears

For a crown gear, the circular lengthwise curve of a tooth is considered

as a given arc in the reference plane of the crown gear. The reference plane

becomes the pitch cone when the crown gear is spindled into a spiral bevel

gear. Fig. 3.8 is a partial view about the intersection of the crown gear tooth

flanks with the reference plane. qoMqi is the circular lengthwise curve, which

can be defined with given mean point M and arc center point ol.

A coordinate system Sg (og;xg,yg, zg) fixed in the reference plane is estab-

lished as shown in Fig. 3.8. og is the intersection point of the gear axis with

the reference plane. zg is the unit normal direction of the reference plane,

and it directs from pitch cone apex to back cone apex. M is defined in Sg by
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given the mean cone distance Am and an initial angle θmc. We have

M = Am ·
[
cos θmc sin θmc 0

]T
. (3.16)

Assume that e1 is the unit vector from ol to M, and e2 is the unit tangent

vector of qoMqi at M. We have

e1 =

⎡
⎢⎣
cos (θmc + θt)

sin (θmc + θt)

0

⎤
⎥⎦ , e2 =

⎡
⎢⎣
− sin (θmc + θt)

cos (θmc + θt)

0

⎤
⎥⎦ . (3.17)

ol is defined in Sg by given θt and rc. θt is the commentary to spiral angle,

which is given in gear design and defined as the angle between e2 and Mog.

In conventional methods of spiral bevel gear manufacturing, rc is the cutter

radius chosen based on gear design and manufacturing methods. Here we can

chosen rc according to Gleason calculations for face milling methods. The

details about how to chosen rc can be referred to [78]. We have

ol = M− rc · e1 =

⎡
⎢⎣
Am · cos θmc − rc · cos (θmc + θt)

Am · sin θmc − rc · sin (θmc + θt)

0

⎤
⎥⎦ . (3.18)

An arbitrary point qc on qoMqi can be expressed with parameter ϕ, which

is the angle from olM to olqc. We have

qc(ϕ) = ol + olqc = ol + rc · (e1 · cosϕ+ e2 · sinϕ)

=

⎡
⎢⎣
Am · cos θmc − rc · cos (θmc + θt) + rc · cos (θmc + θt + ϕ)

Am · sin θmc − rc · sin (θmc + θt) + rc · sin (θmc + θt + ϕ)

0

⎤
⎥⎦ . (3.19)
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The circular lengthwise curve can also be represented with parameter θc,

which is the angle from ogM to ogqc. We have

qc(ϕ) = rq ·
[
cos θc sin θc 0

]T
. (3.20)

Assuming that qc = [qcx qcy], θc can be obtained as

θc = arctan

(
qcy
qcx

)
− θmc. (3.21)

rq is the radial distance between og and qc. We have

rq =
√
q2cx + q2cy. (3.22)

Circular lengthwise of spiral bevel gears

zg

og
xg

qs

qo'

qi' qs

yg

og

xg

�
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M

M
θs

(a) Front view (b) Top view

rq

Pitch cone

qo'

qi' 

qs

(c) Profile of Section A–A
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A

A tq

Concave side

Convex side

Concave side Convex side

Figure 3.9: Circular lengthwise curve of the spiral bevel gear

Geometrically, a spiral bevel gear can be obtained from the crown gear,

while the reference plane of the crown gear is spindled into the pitch cone
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of the spiral bevel gear. Subsequently, the circular lengthwise curve of the

crown gear is spindled into a new lengthwise curve on the pitch cone. As

shown in Fig. 3.9, the new lengthwise curve is q′
oMq′

i. Correspondingly, θms

and θs are used to replace θmc and θc, respectively. According to [30], we have

θms = θmc · csc Γ, θs = θc · csc Γ (3.23)

where Γ is the gear pitch angle. The parametric expression of the pitch cone

in Sg (og;xg,yg, zg) can be described as

P (r, θ) = r ·
[
sin Γ · cos θ sin Γ · sin θ cos Γ

]T
. (3.24)

Subsequently, the new lengthwise curve q′
oMq′

i can be represented with re-

spect to parameter θs in Sg as

qs(θs) = rq ·
[
sin Γ · cos (θms + θs) sin Γ · sin (θms + θs) cos Γ

]T
(3.25)

where rq is obtained as Eq. (3.20). According to Eqs. (3.21) and (3.22),

both rq and θc are the functions with respect to parameter ϕ. Therefore,

the parametric expression of the new lengthwise curve can also be respected

to parameter ϕ. We will use ϕ to replace θs for further calculations. As a

consequence, the tangent vector of this new lengthwise curve can be obtained
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as the derivative of qs with respect to ϕ. We have

Tq =
dqs

dϕ
=

⎡
⎢⎢⎢⎢⎢⎣
sin Γ · cos (θms + θs) · drq

dϕ
− rq · sin Γ · sin (θms + θs) · dθs

dϕ

sin Γ · sin (θms + θs) · drq
dϕ

+ rq · sin Γ · cos (θms + θs) · dθs
dϕ

cos Γ · drq
dϕ

⎤
⎥⎥⎥⎥⎥⎦

T

(3.26)

where

drq
dϕ

=
rc
rq

· [−qcx · sin (θmc + θt + ϕ) + qcy · cos (θmc + θt + ϕ)]

dθs
dϕ

=
rc · cos Γ

r2q
· [qcx · cos (θmc + θt + ϕ) + qcy · sin (θmc + θt + ϕ)] .

The unit tangent vector of the new lengthwise curve can be calculated as

tq =
Tq

| Tq | . (3.27)

3.2.3 The profile of the ruled tooth surface

As shown in Fig. 3.9, the profile is the intersection of the tooth surface

and the section plane A − A, which passes through qs and normal to the

radial direction ogqs. The choices of the profile shape are also various. Any

profile form which obeys the basic laws of Law of Gearing can be employed

conjugate action. Inspired from the fact that the work part of the profile

of the generated face-milled gear is close to a straight line, here we propose

the straight line design for the working part of the profile. The ruled tooth

surface is formed by connecting all profiles along the lengthwise curve.
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The definition of the profile is shown in Fig. 3.10. The profile is composed

of two sides, the convex and concave sides. Each side has the side and bottom

line segments. Additionally, an arc segment connects these two line segments.

pf is the intersection point of the side line and arc segments. The bottom line

segment with distance rb generates the bottom of the tooth surface. The side

straight line segment with pressure angle αg generates the working part of the

tooth surface. The arc segment of radius rf generates the fillet of the tooth

surface. Here we clarify that the fillet of the tooth surface is not a ruled

surface, although we mention that the whole tooth surface as ruled tooth

surface. To define the profile, a new coordinate system Sp (op;xp,yp, zp) is

zg

og qs

or

xp

Root cone

Pitch cone

op

yp

nq, zp

op

Hsrf

rb

qs αg

Γr

Γ

Section A–A

A

A

nq, zp

Face cone

Hp

pf

Γo

of

Convex sideConcave side

Figure 3.10: The profile definition of the ruled tooth surface.

created as shown in Fig. 3.10. xp is obtained as the unit vector of ogqs. zp

is aligned with nq, which is the unit normal of the pitch cone at qs. yp is

determined based on the right-hand rule. op is the intersection point of nq
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and the root cone. The distance between qs and op is Hs. Hs can be obtained

as

Hs(ϕ) = (rq+ | orog | · cos Γ) · tan(Γ− Γr)− | orog | · sin Γ (3.28)

where Γr is the root angle; | orog | is the distance from the root cone apex to

the pitch cone apex ( when the direction of orog is the same with zg, | orog |
is positive, or | orog | is negative). Γr is given as gear blank data. | orog | can
be calculated according to the blank data as Fig. 3.11. For TRL (tileted root
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�
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(a) Tilted around  point M of pitch 
line at outer cone distance

R�
�

M

N
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(b) Tilted around  point M of pitch 
line at middle cone distance

OM

or
og or

og

Figure 3.11: The distance from the root cone apex to the pitch cone apex.

line) gear, there are two types design for the pitch cone. Correspondingly,

| orog | has different results as

| orog |=

⎧⎪⎨
⎪⎩

Case(a)
Ao · sin Γ− bog · cos Γ

tan ΓR
− bog · sin Γ− Ao · cos Γ

Case(b)
Am · sin Γ− bg · cos Γ

tan ΓR
− bg · sin Γ− Am · cos Γ

(3.29)
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We take the case (a) as the example in this thesis. The detail calculation

process of case (a) is stated as follows.

| orog |=| oroM | − | ogoM |= (| oroN | − | oMoN |)− | ogoM | (3.30)

where

| oroN | = Ao · sin Γ− bog · cos Γ
tan ΓR

| oMoN | = bog · sin Γ
| ogoM | = Ao · cos Γ.

(3.31)

The arc segment is represented in Sp as

rf,p (α) =
[
0 ± (rb + rf · sinα) rf · (1− cosα)

]T
, 0 ≤ α ≤ π/2− αg.

(3.32)

In Eq.(3.32), the item rf,p indicates the expression of vector rf in Sp. The

other similar items in the reminder of this paper can also be explained as

the same way. The upper and lower signs correspond to convex and concave

sides, respectively. According to Eq.(3.32), pf can be obtained in Sp with

α = π/2− αg. We have

pf,p =
[
0 ± (rb + rf · cosαg) rf · (1− sinαg)

]T
. (3.33)

Assuming that pf,p = [0 pfy pfz]
T , the straight line segment can be repre-

sented in Sp as

rl,p (h) =
[
0 rly,p h

]T
, rly,p = ± [pfy + (h− pfz) · tanαg] , pfz ≤ h ≤ Hp

(3.34)
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where Hp is the profile height, as shown in Fig. 3.10. We have

Hp(ϕ) = Hs(ϕ) + (rq− | ogof | · cos Γ) · tan(Γo − Γ)− | ogof | · sin Γ (3.35)

where Γo is the face angle and it is given as gear blank data; | ogof | is the
distance from the pitch cone apex to the face cone apex.

3.3 Design tooth surface model and its normal

3.3.1 Geometric model of the design tooth surface

Since the profile is obtained in Sp, the geometric model of the design tooth

surface can be obtained by transforming all profiles from Sp to Sg. Hence, it

is necessary to calculate the transformation matrix from Sp to Sg. The unit

normal of the pitch cone can be calculated in Sg according to Eq. (3.24). In

this paper, we clarify that the normal direction of a surface always directs

away the corresponding axis, such as the rotary axis of the pitch cone surface

and the profile axis of the ruled tooth surface. For the pitch cone surface, we

have

n (r, θ) =
[
cos Γ · cos θ cos Γ · sin θ − sin Γ

]T
. (3.36)

According to Eqs. (3.25) and (3.36), we have

xp (ϕ) =
[
sin Γ · cos (θms + θs) sin Γ · sin (θms + θs) cos Γ

]T
zp(ϕ) = nq(ϕ) =

[
cos Γ · cos (θms + θs) cos Γ · sin (θms + θs) − sin Γ

]T
yp(ϕ) = zp(ϕ)× xp(ϕ) =

[
sin (θms + θs) − cos (θms + θs) 0

]T
.

(3.37)
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As shown Fig. 3.10, op can be calculated as

op(ϕ) = qs −Hs · nq (3.38)

where qs and nq are obtained in Eqs. (3.25) and (3.37), respectively. Conse-

quently, the transformation matrix from Sp to Sg can be obtained as

Mgp (ϕ) =

[
xp (ϕ) yp (ϕ) zp (ϕ) op (ϕ)

0 0 0 1

]
(3.39)

Subsequently, the geometric model of the design tooth surface can be obtained

in Sg as [
rf,g(ϕ, α) rl,g(ϕ, h)

1 1

]
= Mgp(ϕ) ·

[
rf,p(α) rl,p(h)

1 1

]
. (3.40)

An spiral bevel gear with the proposed ruled tooth surface design is modeled

as the example. The main data is show in Table 3.7. The result is imple-

mented in CATIA V5R20. The details of the modeling process are shown in

Fig. 3.12.

Table 3.7: Tooth profile design data

Parameter Value

lengthwise curve radius 63.5000 mm
bottom line distance 1.0000 mm
profile fillet radius 1.5000 mm
side line taper angle 22.0000◦
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(a)  Model blank (b) Model the lengthwise curve

(c) Model Profiles along the 
lengthwise curve

(d) Model one tooth surface by 
connecting all profiles 

(e)  Model all tooth surfaces by patterning 
the tooth surface in (d)

(f)  Model the spiral bevel gear by 
trimming the tooth surfaces with the blank

Figure 3.12: 3D gear model with ruled tooth surfaces design.
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3.3.2 The normal of the design tooth surface

According to Eq. (3.40), the partial derivatives of the design tooth surface

at the working part can be obtained in Sg. Subsequently, the unit normal of

the tooth surface can be obtained in Sg as

ng(ϕ, h) = ± Nϕ,g ×Nh,g

| Nϕ,g ×Nh,g | (3.41)

where upper and lower signs correspond to convex and concave sides, respec-

tively. Nϕ,g ×Nh,g calculated as

Nϕ,g ×Nh,g = ±rly,p · tanαg ·
(
dyp

dϕ
× yp

)
+ rly,p ·

(
dyp

dϕ
× zp

)

± h · tanαg ·
(
dzp
dϕ

× yp

)
+ h ·

(
dzp
dϕ

× zp

)
+

dop

dϕ
× (± tanαg · yp + zp) .

(3.42)

where

dxp (ϕ)

dϕ
= sin Γ · dθs

dϕ
·
[
− sin (θms + θs) cos (θms + θs) 0

]T
dyp (ϕ)

dϕ
=

dθs
dϕ

·
[
cos (θms + θs) sin (θms + θs) 0

]T
dzp (ϕ)

dϕ
= cos Γ · dθs

dϕ
·
[
− sin (θms + θs) cos (θms + θs) 0

]T
dop (ϕ)

dϕ
=

dqs

dϕ
− tan(Γ− Γr) · drq

dϕ
· zp −Hs · dzp

dϕ
.

(3.43)
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Both items of
drq
dϕ

and
dθs
dϕ

in Eq. (3.43) are calculated according to Eqs. (3.22)

and (3.23) as

drq
dϕ

=
rc
rq

· [−qcx · sin (θmc + θt + ϕ) + qcy · cos (θmc + θt + ϕ)]

dθs
dϕ

=
rc · csc Γ

r2q
· [qcx · cos (θmc + θt + ϕ) + qcy · sin (θmc + θt + ϕ)] .

(3.44)

According to the result, the normals of the design tooth surface do not

collinear along the same rule. The design tooth surface is non-developable

ruled surface. Consequently, geometric deviation will be produced while it is

manufactured with five-axis flank milling.

72



Chapter 4

Five-axis flank milling and modeling

of spiral bevel gears

4.1 Five-axis flank milling

4.1.1 Flank milling cutter

In five-axis milling, the APT (automatically programmed tools) cutter is

a generalized cutter which also can be used to describe other types of milling

cutter. As shown in Fig. 4.1, the APT cutter surface is comprised of three

parts: lower cone, corner torus and upper cone. To describe the geometry of

the APT cutter, five parameters are defined and given as follows:

H, the cutter length measured along the cutter axis;

Rl, the radial distance from the corner center to cutter axis;

Rt, the radius of the corner torus;

ψl, the angle between the lower cone and the bottom plane which pass

through the cutter tip point oc and vertical to the cutter axis;
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ψu, the taper angle between the upper cone and the cutter axis. Since

ψu

Rt

Rl

ψl

φ

Upper 
cone

Corner
 torus

Lower 
cone

H2

Hl

H

H3

oc

p

q

l

h

Figure 4.1: The geometry of the APT cutter surface.

the APT cutter surface is a particular case of the specific circular surface,

the envelope surface of the APT cutter can be calculated with the geometric

envelope approach. To calculate the envelope surface, the preparatory calcu-

lations about the effective angle and effective radius are necessary. Since the

APT cutter surface is comprised of three parts, we will give the preparatory

calculations to each part individually.

For the lower cone, we have

α(h) = π − ψl, ρ(h) = h · cosψl (4.1)

where 0 < h ≤ H1, and H1 = (Rl +Rt · sinψl) · secψl · cscψl.

For the corner torus, it is better to use another parameter ϕ to represent
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the generatrix, as shown in Fig. 4.1. We have

α(ϕ) = π−ϕ, ρ(ϕ) = Rl +Rt · cscϕ, h(ϕ) = H2 +Rl · (cotϕ− tanψu) (4.2)

where
π

2
− ψl ≤ ϕ ≤ π

2
− ψu and H2 = Rl · (tanψl + tanψu) +Rt · secψl.

For the upper cone, the parameter to represent the generatrix is h. We

have

α(h) =
π

2
+ ψu, ρ(h) = (Rl +Rt cosψu) · secψu + (h−H2) · sinψu (4.3)

where

H2 ≤ h ≤ H3,

H3 = H+{Rl +Rt · cosψu + [H −Rt · (secψl − sinψu)−Rl · tanψl] · tanψu}·
tanψu.

4.1.2 Cutter motion description in five-axis milling

The cutter motion is described in different ways for different stages of

the five-axis milling process. At the beginning of the tool path planning

stage, the cutter motion is represented as the theoretical tool path, which

is generated according to the geometry relationship between the cutter and

part. Subsequently, the theoretical tool path is approximated as CL (cutter

location) data which records the position and orientation of the cutter at a

series of CL points. Moreover, CL data is converted by the post-processor into

NC code which is used to a specific CNC machine tool. Finally, the cutter

motion can be executed in the practical machining stage by interpolating
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two consequent CL points based on the corresponding interpolation scheme

and kinematic model of the CNC machine tool. In summary, there are three

modes to describe the cutter motion in different stages of the five-axis milling

process: theoretical tool path, CL data, NC code. Correspondingly, the cutter

motion is obtained as the theoretical cutter motion, CL data cutter motion

and NC code cutter motion, respectively. Based on these three cutter motion

modes, the envelope surfaces are also varied, and they are referred to in

this paper as envelope surface of theoretical tool path, envelope surface of

CL data and envelope surface of NC code, respectively. These three cutter

motion modes are introduced as follows.

Theoretical cutter motion

oc(ϕ)

ot(ϕ)

Figure 4.2: Cutter motion described with two curves.

When the cutter is treated as a rigid body, the theoretical cutter motion

can be described with two curves, which correspond to the trajectories of two

points of the cutter axis. As shown in Fig. 4.2, taking the tip point oc and top

point ot of the cutter axis as the example, the cutter motion are represented
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by two curves oc(φ) and ot(φ).With these two curves, we have

l(φ) =
ot(φ)− oc(φ)

| ot(φ)− oc(φ) | (4.4)

vq(h, φ) = (1− h) · doc(φ)

dφ
+ h · dot(φ)

dφ
. (4.5)

When the effective angle and the effective radius are given, the envelope

surface of theoretical tool path is obtained by substituting Eqs. (4.4) and

(4.5) into Eqs. (2.34) and (2.35). With two curves, the cutter motion can be

completely described along the tool path. These two curves can be optimized

or corrected to reduce the geometric deviation of the machined surface in five-

axis milling [65, 67,72,81–83].

CL data cutter motion

When the theoretical tool path is obtained, it will be discretized as a series

of CL data, as shown in Fig. 4.3. Before post-processing the CL data into

NC code for a five-axis CNC machine tool, it is important to know whether

the machining error caused by the discretization is acceptable. Therefore,

it is necessary to calculate the envelope surface from the CL data directly.

Gong and Wang [71] proposed a method to calculate the envelope surface of a

generic cutter directly from CL data. However, this method uses the moving

frame. Here we proposed another method which is invariant to the frame.

Consequently, the convenient frame can be chosen to simplify the calculation.
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Figure 4.3: Tool path discretized as CL data.

In the CAM system, CL data is the aggregation of vectors {oc,i, li} , (i =
1 ∼ N). oc,i denotes the position of the ith tip point. li indicates the unit

vector of the cutter axis corresponding to oc,i. In order to define the cutter

motion, the cutter motion between two consecutive CL points needs to be

computed.

In five-axis milling, the motion of the tip point is usually a piecewise linear

motion. It means the tip point will move along the line connected by two

consecutive CL points, as shown in Fig. 4.4. Since the magnitude of the

velocity vector does not change the envelope condition, we can assume that

the total time of the cutter moving between two consecutive CL points is

1, which means 0 ≤ φ ≤ 1. Then the tip point and its velocity can be

represented as

oc,i(φ) = (1− φ) · oc,i + φ · oc,i+1 (4.6)
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vo,i(φ) = oc,i+1 − oc,i, 0 ≤ φ ≤ 1, i = 1 ∼ N − 1. (4.7)

In Eq. 4.6, oc,i(φ) denotes the item oc at the instant φ during the process

of the cutter moving between the ith CL point and the (i + 1)th CL point.

Other similar items can be explained with the same way.

li+1

 

γi

 

li+1li

oc, i

oc, i+1

liv

Figure 4.4: Cutter motion between two consecutive CL points.

In order to obtain the cutter axis motion between two consecutive CL

points, an additional assumption is necessary. This assumption also intro-

duced by Gong and Wang [71], and it is used to generate the CL data for

current CAM systems. The assumption is that the cutter axis is rotate lin-

early (constant angular velocity) during the cutter moving between two con-

secutive CL points. As shown in Fig. 4.4, when li+1 is translated from oc,i+1

to oc,i, the cutter axis motion can be treated as the linear rotation along the

axis which pass through oc and with direction li× li+1. Assume that γi is the

angle formed by li and li+1, and liv is the a unit vector obtained by rotating
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li with angle π/2. Then we have

sin γi =| li × li+1 |, cos γi = li · li+1 (4.8)

li+1 = cos γi · li + sin γi · liv. (4.9)

According to Eq. (4.9), we have

liv = csc γi · (− cos γi · li + li+1) . (4.10)

The unit vector of the cutter axis during the process of the cutter moving

between two consecutive CL points can be expressed as

lφ,i(φ) = cosφ · li + sinφ · liv. (4.11)

By substituting Eq. (4.10) into Eq. (4.11), we have

lφ,i(φ) = csc γi · [sin (γi − φ · γi) · li + sin (φ · γi) · li+1] . (4.12)

The velocity of the point on the cutter axis can be calculated as

vq,i(h, φ) = vo,i(φ) + h · dlφ,i(φ)
dφ

= oc,i+1 − oc,i + h · γi · csc γi · [− cos (γi − φ · γi) · li + cos (φ · γi) · li+1] .

(4.13)

When the effective angle and the effective radius are given, the envelope

surface of CL data is obtained by substituting Eqs. (4.12) and (4.13) into

Eqs. (2.34) and (2.35).
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NC code cutter motion

When the CL data is obtained, the post-processor is used to convert the

CL data into NC code dedicated for a particular CNC machine tool. Sub-

sequently, the cutter motion in practical machining is determined by imple-

menting the NC code based on the kinematic model and interpolation scheme

of the specific CNC machine tool. Therefore, NC code cutter motion is the

accurate model of the cutter motion in the practical machining. Depending

on the kinematic configurations of the CNC machine tools, the formats of

the NC code will be different [84]. Taking an example of a five-axis milling

machine with the vertical spindle-rotating configuration, and the combina-

tion of the rotary axes CB, then the unit vector of the cutter axis can be

expressed as [84]

li = [sinBi · cosCi sinBi · sinCi cosBi]
T . (4.14)

In current five-axis milling, the cutter configurations corresponding to all CL

points can be implemented in high precision. However, the cutter configu-

rations during the process of the cutter moving between two consecutive CL

points are depended on the interpolation scheme. Currently, there are two

major interpolation schemes in five-axis milling. The first one is the linear

interpolation. The motion of each axis is determined by linearly interpolat-

ing its values at two consecutive CL points. Consequently, nonlinearity error

will be produced due to that the trajectory of the cutter tip point (or cutter

center point, cutter contact point) is not a straight line [85,86]. For the other
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one, the motion of the rotational axis is determined by linear interpolation,

and the motion of the translational axis is implemented with nonlinear inter-

polation to make the trajectory of the cutter tip point as a straight line [87].

Taking the example of the second interpolation scheme, the cutter tip point

trajectory and the cutter axis can be expressed as [87]

oc,i(φ) = (1− φ) · oc,i + φ · oc,i+1 (4.15)

lφ,i(φ) = [sin bi(φ) · cos ci(φ) sin bi(φ) · sin ci(φ) cos bi(φ)]
T (4.16)

where i = 1 ∼ N − 1, 0 ≤ φ ≤ 1, bi(φ) = (1 − φ) · Bi + φ · Bi+1, ci(φ) =

(1−φ) ·Ci+φ ·Ci+1. According to Eqs. (4.15) and (4.16), the velocity of the

point on the cutter axis can be calculated as

vq,i(h, φ) = vo,i(φ) + h · dlφ,i(φ)
dφ

= oc,i+1 − oc,i + h ·

⎡
⎢⎣
ΔBi · cos bi(φ) · cos ci(φ)−ΔCi · sin bi(φ) · sin ci(φ)
ΔBi · cos bi(φ) · sin ci(φ) + ΔCi · sin bi(φ) · cos ci(φ)

−ΔBi · sin bi(φ)

⎤
⎥⎦

(4.17)

where ΔBi = Bi+1 − Bi and ΔCi = Ci+1 − Ci. By substituting Eqs. (4.16)

and (4.17) into Eqs. (2.34) and (2.35), the envelope surface of NC code is

obtained. As aforementioned, since the NC code cutter motion is the accurate

model of cutter motion in practical machining, the envelope surface of NC

code is an accurate model to generate the machined surface. The proposed

approach is simpler than the method used by Mann et al. [88] due to two

reasons. First, since the later method has to calculate the accurate velocity
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of the cutter surface point, the kinematic model represented by a series of

transformation matrices are inevitable. The other reason is that the grazing

point is calculated by numerical method in the later method.

4.1.3 Examples for the calculation of the envelope surface of flank

milling cutter

(a) Grazing curves

(b) Envelope surface

Figure 4.5: Envelope surface of the APT cutter

With the preparatory calculations, the envelope surface of the milling

cutter in five-axis milling can be obtained according to Eqs. (2.34) and

(2.35). For example, an APT cutter is given by defining the five parame-

ters {H,Rl, Rt, ψu, ψl} as {45.000, 10.000, 3.000, 10.000◦, 10.000◦}. The cut-
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ter motion is described based on the mode of NC code cutter motion, and

the NC code data {X, Y, Z,B,C} is defined by two CL points with the val-

ues {0.000, 0.000, 0.000, 0.000◦, 0.000◦} and {50.000, 50.000, 10.000, 18.000◦,
18.000◦}. The computer program is implemented in Matlab language, and

the result is shown as Fig. 4.5. This example is also computed with the

method proposed by Gong and Wang [71], and the results of both approaches

are identical.

(a) Grazing curves

(b) Envelope surface

Figure 4.6: Envelope surface of the flat-end mill cutter

For the flat end mill, the envelope surface can be obtained according to

Eq. (2.38), because the cutter surface of flat-end mill is a cylindrical surface.

A flat end mill is introduced to test the proposed method, the parameters of
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the flat end mill {H,Rl, Rt, ψu, ψl} are defined as {35.000, 15.000, 0.000, 0.000◦,
0.000◦}. The NC code data is defined by two CL points where the values of

{X, Y, Z,B,C} are {0.000, 0.000, 0.000, 0.000◦, 0.000◦} and {60.000, 60.000,
10.000, 18.000◦, 27.000◦}, respectively. The computer program is implemented

in Matlab language, and the result is shown as Fig. 4.6. This example is also

verified by the method proposed by Gong and Wang [71], and the results are

identical.

4.2 Five-axis flank milling spiral bevel gears

4.2.1 The conical cutter for flank milling spiral bevel gears

R2

R1

αc

pf

qf

oc

qh

ph

ρ
np

qt

Hc

Rt

h

pa

l

β 

α

Figure 4.7: The conical cutter for flank milling spiral bevel gears.

Different cutters could be used in flank milling. Here we use conical cutter

for five-axis flank milling since it can be also treated as the general cutter
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which is used to represent fillet end mill cutters and flat end mill cutters.

As shown in Fig. 4.7, the side surface of the conical cutter is composed of

two surfaces of revolution, upper and fillet surfaces. They are generated

by a straight line with the taper angle αc and the arc with the radius R2,

respectively. The bottom radius of the conical cutter is R1. For a point ph

on the upper surface, we have

ph(h, θ) = oc + h · l+ ρ(h) · np(h, θ) (4.18)

where | ocqf |≤ h ≤| ocqt |, 0 ≤ θ < 2π, and

| ocqt | = Hc +Rt · tanαc

Rt = R1 +R2 · cosαc + [Hc −R2 · (1− sinαc)] · tanαc

| ocqf | = R1 · tanαc +R2

ρ(h) = R1 · secαc +R2 + (h− | ocqf |) · sinαc.

(4.19)

For a point pa on the fillet surface, we have

pa(β, θ) = oc + h(β) · l+ ρ(β) · np(β, θ) (4.20)

where 0 < β < π/2− αc, 0 ≤ θ < 2π, and

h(β) = R1 · cot β +R2 · (1− sinαc + cos β)

ρ(β) = R1 · csc β +R2.
(4.21)

Assume that the angle between np and l is defined as α. For the point on

the upper surface, α = π/2 + αc. We have

np · l = cosα. (4.22)
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4.2.2 Tool path planning strategies

Tooth surface finish machining

Since the design tooth surface is a non-developable ruled surface, geometric

deviations will be produced in the tooth surface finish machining with flank

milling. Many works have been done to minimize the geometric deviations in

flank milling. The details can be referred to [35]. However, different with the

works stated in [35], the criteria for spiral bevel gears is the work performance

of a pair of them [2–4]. Based on this idea, the tool path planning strategy

is given by considering the contact path of the tooth surface.

l

nm

pm

e
qm

qf

oc pf

hmph

np, nE

hq

qh

qt

Figure 4.8: Tool path planning strategy for five-axis flank milling tooth surface.

Assuming that pm is a point on the contact path of the tooth surface,
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pm also is a point lying on the corresponding profile of the tooth surface,

as shown in Fig. 4.8. As stated in [2–4], the design contact path is usually

chosen as the middle of the tooth surfaces of a pair of spiral bevel gear, of

which the parameter h for pm can be obtained as

hm(ϕ) =
Hp + c

2
(4.23)

where Hp is calculated in Eq. (3.35); c is the tooth clearance, which is given

as a blank design parameter. The detail about the calculation of c can be

referred to [78]. Subsequently, the chosen contact paths for both sides of the

tooth surface can be obtained by submitting h = hm into Eq. (3.40).

The tooth path planning strategy is shown in Fig. 4.8. nm is the unit

normal of the tooth surface at pm. e is the unit direction of straight line

part of the profile. The cutter axis l and cutter tip point oc are determined

according to the following conditions.

(1) The cutter surface is tangent to the tooth surface at point pm. The

corresponding tangent point on the cutter surface is pm.

(2) l lies on the profile plane, which is determined by nm and e.

(3) pf , which is the intersection point of straight line part and the fillet

part of the tooth surface profile, is also the intersection point of straight line

part and the fillet part of the cutter surface profile.

With the above three conditions, the tool path can be calculated as follows.

First, pm and its unit normal can be obtained in Sg by submitting h = hm
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into Eqs. (3.40) and (3.41) respectively. We have

[pm,g (ϕ) 1] =

[
rl,p (h)

∣∣∣∣
h=hm(ϕ)

1

]
·Mgp(ϕ)

nm,g(ϕ) = ng (ϕ, h)

∣∣∣∣
h=hm(ϕ)

.

(4.24)

Second, e can be obtained in Sg as

[eg(ϕ) 0] = [ep 0] ·Mgp(ϕ) = [0 ± sinαg cosαg 0] ·Mgp(ϕ). (4.25)

Finally, l and oc are obtained in Sg as

lg(ϕ) = eg(ϕ) · cosαc − nm,g(ϕ) · sinαc

oc,g(ϕ) = qm,g− | qmpm | ·nm,g− | qmoc | ·lg.
(4.26)

where | qmpm | and | qmoc | are calculated as follows.

| pmpf | = (hm − pfz) · secαg

| qmoc | =| pmpf | · secαc +R1 · tanαc +R2

| ompm | = R1 · secαc +R2+ | pmpf | · tanαc.

(4.27)

Subsequently, the tooth paths are obtained. For the previous example

stated in Table 3.7, the manufacturing cutter data is shown in Table 4.1.

The generated tool paths for a tooth slot are obtained and implemented in

CATIA V5R20 as shown in Fig. 4.9.

89



(a) Tool path for convex tooth surface

(b) Tool path for concave tooth surface

Figure 4.9: Tool paths planned for one tooth slot.

Table 4.1: Manufacturing data of the spiral bevel gear

Parameter Value

cutter radius 1.0000 mm
cutter taper angle 15.0000◦

cutter fillet radius 1.5000 mm
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Rough machining

Since we have the 3D model of the spiral bevel gears, the rough machining

tool path can be easily obtained in commercial CAM (Computer-aided Man-

ufacturing) softwares, such CATIA, UG, Msstercam, PowerMILL, etc. With

the help of these CAM softwares, the tool path for rough machining each

side of every tooth slot can be generated individually. However, it could be

more efficient to machining both sides of every slot with one tool path due

to the fact that the profiles of booth tooth surface are symmetrical along the

lengthwise curve. Hence, it is necessary to introduce the corresponding tool

path planing strategy. Two strategies are applied, as shown in Figs. 4.10 and

4.11, respectively. The tool paths are planned along the lengthwise curve.

R� ��

zg

og
or

Γr
Γ oc

qs

op

nq lq

Hn

eq

Figure 4.10: Tool path planning strategy I for five-axis roughing.

For case I, taking an arbitrary point ps, the tool axis is located in the plane

formed by nq and eq. The angle between nq and lq is Γ − ΓR. The tool tip

point is determined by the tool axis and Hn, which is distance of the tool tip
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point oc to qs. Since it usually takes more than one pass to do roughing for

each tooth slot, Hn will be changed. And Hn means the distance at the nth

pass. Consequently, the tool axis and tool tip point can be calculated in Sp,

which has been stated in Section 3.2.3. Then we have

lq,p =
[
sin(Γ− Γr) 0 cos(Γ− Γr)

]T
oc,p = ps,p + (Hs · sin(Γ− Γr)−Hn) ·

[
− cos(Γ− Γr) 0 sin(Γ− Γr)

T
]
.

(4.28)

For case II, the tool axis is always along nq. Subsequently, the tool tip

point also lies on the psoq. Correspondingly, we have the tool axis and tool

tip point in Sp as

lq,p = nq,p =
[
0 0 1

]T
oc,p = qs,p −Hn ·

[
0 0 1

]T
.

(4.29)

zg

og

or

op

Γr

Γ

qs

Hn
oc

nq , lq

Figure 4.11: Tool path planning strategy II for five-axis roughing.
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Interference

Interference are also an important consideration in five-axis tool path plan-

ning. Here we takes a simple example for roughing strategy II with a fillet end

mill cutter. As shown in Fig. 4.12 (a), the interference are happened at the

fillet part of the end mill cutter. The critical case is shown in Fig. 4.12 (b).

In order to avoid interference in five-axis flank milling spiral bevel gears, the

comprehensive detection should be conducted with the whole 3D models.

More details about it can be investigated based on the works of interference

in five-axis CNC machining.

zg

og

or

ocΓr

Γ

(a) Interference case

qs

zg

og

or

op

Γr

Γ
oc

(b) Critical case

of

pt

qs

Figure 4.12: The interference in five-axis flank milling spiral bevel gears.

4.3 Closed-form representation of the simulate machined

tooth surface

The tooth surface model is the fundamental input to evaluate the work

performance of a pair of spiral bevel gears, such as the contact path and
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transmission errors. With the considerations of time and cost, the simulate

tooth surface model is usually applied before real machining. The simulate

machined tooth surface is part of the envelope surface of the flank milling

cutter moving along the tool path of the finish machining. Hence, to obtain

the simulate machined tooth surface, the envelope surface is calculated first,

and then it is used to trimmed the blank to obtain the final tooth surface.

As aforementioned, the envelope surface of the flank milling cutter can be

calculated with geometric envelope approach as a closed-from representation.

For a given point ph, as shown in Fig. 4.8, np is the unit normal of the cutter

surface at ph. If ph is the grazing point, nq can be calculated by the geometric

envelope approach as a closed-form result. Since ph is the grazing point, nq

is also the normal of the envelope surface at ph. Here we use nE to represent

the normal of the envelope surface. According to Eq. (2.35), the closed-form

expression of nE can be expressed as

nE =
cosα · v2

q

(l× vq)
2 · l− (l · vq) · cosα

(l× vq)
2 · vq ±

√
(l× vq)

2 − cos2 α · v2
q

(l× vq)
2 · (l× vq) .

(4.30)

Subsequently, the closed-form expression of the envelope surface can be ob-

tained according to Eq. (2.34) as

s(h, φ) = oc(φ) + h · l(φ) + ρ(h) · nE(h, φ) = qh(φ) + ρ(h) · nE(h, φ) (4.31)

With the geometric envelope approach, the cutter envelope surface can be

obtained by calculating all the items in Eqs. (4.30) and (4.31). l and oc have

been calculated in Eqs. (4.26). The other terms are calculated as follows.
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For the upper surface, hq is used to replace the parameter h in the geometric

envelope approach. As shown in Fig. 4.8, hq is the distance from qm to qh.

hq is positive when the direction of qmqh is the same with l, or it is negative.

The angle between nE and l is obtained as α = αc+π/2. ρ(hq) is the distance

between ph and qh. Then we have

qh(ϕ, hq) = pm− | qmpm | ·nm + hq · l
ρ(hq) =| qmpm | +hq · sinαc

(4.32)

where
− | qmqf |≤ hq ≤| qmqt |,

| qmqt |=| ocqt | − | qmoc | .

According to Eq. (4.32), vq is obtained as the velocity of qh as

vq(ϕ, hq) =
dpm

dϕ
− d | qmpm |

dϕ
· nm− | qmpm | ·dnm

dϕ
+ hq · dl

dϕ
(4.33)

where in Sg we have

dpm,g

dϕ
= Nϕ,g (ϕ, hm) +

dhm

dϕ
· (± tanαg · yp + zp)

dhm

dϕ
=

drq
dϕ

· tan(Γ− Γr) + tan(Γo − Γ)

2
d | qmpm |

dϕ
= tanαc · secαg · dhm

dϕ
dlg(ϕ)

dϕ
= cosαc ·

(
± sinαg · dyp(ϕ)

dϕ
+ cosαg · dzp(ϕ)

dϕ

)
− sinαc · dnm,g(ϕ)

dϕ
.

(4.34)
dnm

dϕ
is calculated in Sg as shown in Appendix B.

For the fillet surface, β is used to replace the parameter h in the geometric
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meshing theory. h and ρ are the functions with respect to β and they are

already calculated in Eq. (4.21). Then we have

qh(ϕ, β) = pm− | ompm | ·nm + (h(β)− | omoc |) · l. (4.35)

vq is obtained as the derivative of qh with respect to ϕ as

vq(ϕ, hq) =
dpm

dϕ
− d | qmpm |

dϕ
· nm− | qmpm | ·dnm

dϕ

+ (h(β)− | qmoc |) · dl
dϕ

+
d | qmoc |

dϕ
· l.

(4.36)

where
d | qmoc |

dϕ
= secαc · secαg · dhm

dϕ
(4.37)

Subsequently, the envelope surface generated by the cutter surface can be

obtained. For the previous example stated in Table 4.1, the envelope surfaces

of the upper cutter surface for flank milling the convex and concave tooth

surfaces, respectively, are obtained as shown in Fig. 4.13. Consequently, the

3D gear model with simulate machined tooth surfaces are obtained in CATIA

V5R20, as shown in Fig. 4.14.

4.4 Geometric deviation analysis and comparison

4.4.1 The geometric deviation analysis

Since both the design and simulate machined tooth surfaces are obtained,

the comparison can be implemented. The geometric deviation analysis is

given for the tooth profiles of both tooth surfaces on the plane ΠM. As shown
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Grazing curves Envelope surfaces
(a) For convex tooth surface

(b) For concave tooth surface

Figure 4.13: The envelope surface of the upper cutter surface for flanking a tooth slot.

Figure 4.14: 3D gear model with simulate machined tooth surfaces.
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in Fig. 4.15, ΠM passes through the mean point M and is perpendicular to

radial direction ogM. The result is obtained from CATIA V5R20, as shown

in Fig. 4.16. Moreover, several sample points are used to check the geometric

deviations. These sample points are chosen as the intersection points of

tooth profiles and several lines. L0 is chosen to pass the contact points.

The distances of L1, L3 and L5 above L0 are 0.5 mm, 1.5 mm and 3.0 mm,

respectively. The distances of L2, L4 and L6 below L0 are 0.5 mm, 1.5 mm

and 3.0 mm, respectively. The geometric deviations at the chosen points are

shown in Table 4.2.

ПM M

og

Figure 4.15: The profiles for comparing the geometric deviation.

Compared with the design tooth profile, the machined tooth profile is over-

cut. The overcut could be explained with the tooth path planning strategy.

At a given CL point, the cutter is planned tangent to the design profile. Since

the removed material will be more than the cutter shape at this CL point,

the overcut is generated. Also the geometric deviation is bigger when the dis-

tance to the contact point is farther. According to the results, the geometric

deviations are very small. Especially for the area near the contact point, it
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only around 1 μm. It satisfies most critical quality requirements.

L0

L1

L2

L3

L5

L6

L4

Concave 
side

Convex 
side

Figure 4.16: Geometric deviation analysis for the proposed design.

L0

L1

L2

L3

L5

L6

L4

Concave 
side

Convex
side

Figure 4.17: Geometric deviation analysis for the face-milled model.

4.4.2 Comparison with the generated face-milled tooth surface

model

As a comparison, the generated face-milled tooth surface model, which is

obtained from the conventional generated face-milled method, is also used to
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do flank milling. The blank data of the generated face-milled tooth surface

model is the same blank data in Table 3.7. The manufacturing data and

calculation details can be referred to [77]. With this tooth surface model, the

tool path planning strategy is also the same as the example of the proposed

model. Subsequently, the corresponding geometrical deviations are also ob-

tained in Fig. 4.17 and Table 4.2. According to the results, the areas around

the contact points are overcut, but the other areas are undercut. The overcut

can be explained as the same as Fig. 4.16. The reason of the undercut is that

both sides of the profile of the face-milled tooth surface are convex shapes.

Compared to the generated face-milled model, the proposed model reduces

the geometric deviations effectively. Moreover, another advantage of the pro-

posed approach is that the tooth surface model is obtained as the closed-

form representation, which is easier and more efficient for the further calcula-

tions [77]. On the contrary, numerical model is obtained from the generated

face-milled model. To calculate the design contact path of the generated

face-milled model, the numerical method is used as stated as Eqs. (3.2.1)

and (3.2.1) in [4] or Eq. (21.5.4) in [2]. Subsequently, the simulate machined

tooth surface is obtained by solving more complicated implicit equations with

numerical methods.

Table 4.2: Geometric deviations at chosen points (μm)I

L0 L1 L2 L3 L4 L5 L6

Proposed model
Convex side 1.2 2.7 1.5 5.5 5.8 5.3 9.6
Concave side 1.0 1.8 2.1 7.4 7.6 6.8 10.8

Conventional model
Convex side 1.2 −9.3 −4.2 −31.7 −30.3 −67.5 −69.0
Concave side 1.1 −23.8 −7.8 −28.8 −18.3 −35.4 −66.8

I: Positive and negative mean overcut and undercut, respectively.
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Chapter 5

Conclusion and future works

5.1 Conclusion

Based on industry demands, five-axis flanking milling is studied in this

thesis to cut spiral bevel gear. A new ruled tooth surface is proposed to design

spiral bevel gears. Subsequently, the design model is used to do tool path

planning with a new tool path planning approach. Furthermore, the simulate

machined tooth surface is computed as part of the envelope surface, which

is formed by the flank milling cutter moving along the planned tool path.

Consequently, the geometric deviation is obtained by comparing the design

and simulate machined result. The result of the geometric deviation shows

that the proposed flank milling approach is appropriate to the spiral bevel

gear manufacturing. Moreover, the further comparison between the proposed

model and the conventional face-milled model also shows the priority of the

proposed model in five-axis flank milling spiral bevel gears. Several distinct

works in this thesis are summarized as follows.
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(1) A new geometric envelope approach is proposed to calculate the en-

velope surface as a closed-form vector representation. The calculation of

envelope surface is a significant work in the fields of gear manufacturing and

CNC machining. Comparing to the other methods, the geometric envelope

approach has several distinct features to make its calculation more efficient

and straightforward. First, the result is directly obtained as a closed-form

representation with respect to two parameters. One is related to the shape of

the cutter (or generating surface) and the other is related to the motion of the

cutter. Second, since the expression is a vector form, a convenient coordinate

system can be chosen for the further calculation. Third, the curvature of

the envelope surface can be calculated according to the differential geometry

knowledge. The new geometric envelope approach is more efficient than the

previous methods to calculate the envelope surface and its curvature.

(2) A new ruled tooth surface design is proposed to five-axis flank milling

spiral bevel gears. Although the current tooth surface models are closed to

the ruled surface, there is no ruled tooth surface design available. Hence, the

proposed ruled tooth surface design give a useful example to design the tooth

surface, especially for five-axis flank milling.

(3) The tool path planning of five-axis flank milling spiral bevel gears is

conducted according to characteristic of the tooth action of a pair of spiral

bevel gears. Different to other parts machined by five-axis flank milling,

the tooth surfaces are manufactured to be engaged as a pair. Therefore,

the proposed tool path planning strategy gives a good example to apply the

well-established knowledge of five-axis flank milling to cut spiral bevel gears.
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5.2 Future works

The final goal of the design and manufacturing spiral bevel gears is about

their work performances. Lots of works have been done in conventional ap-

proaches to improve the work performances. Since five-axis flank milling is

still a new topic to spiral bevel gears, the similar works as the conventional

approaches also should be done for five-axis flank milling. Moreover, there

are many works, which has been done in five-axis flank milling other parts,

also need to be investigated to conduct properly for cutting spiral bevel gears.

Here, a summarization of the future works for flank milling spiral bevel gears

is stated as the following aspects.

(1) The applications of five-axis flank milling to spiral bevel gears

Although five-axis flank milling has been well-established to machine some

parts, it is not yet for spiral bevel gears. Subsequently, many investigations

need to be applied to spiral bevel gears, such as tool path planning strategies

for different machining processes (the major concern of this thesis is about

the strategy for tooth surface finish machining), machining error control, tool

interference, machining efficiency.

(2) Other design models

Since any reasonable shapes can be chosen for the length curve and the

profile, other design models may be applied to improve the work performances

of the flank milling spiral bevel gears. Moreover, the tooth flank modification

could also be a useful tool to improve work performances.
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(3) Pinion design and manufacturing

With the given machined gear model, the pinion could be designed and

manufactured to conjugate with the gear. It is challenging to find the rea-

sonable design and manufacturing for pinion.

(4) Work performance analysis and optimization

It is usually an iteration process for designing and manufacturing spiral

bevel gears to satisfy their work performances, such as contact path localiza-

tion, bearing stress and transmission errors. The work performance analysis

and optimization is significant for five-axis flank milling spiral bevel gears.

5.3 Publications related to the thesis

[1] Yuansheng Zhou, Zezhong Chevy Chen. A new geometric meshing the-
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[2] Yuansheng Zhou, Zezhong Chevy Chen, Xujing Yang. An accurate, effi-
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Appendix A

HTM and its derivatives for

generated face-milled approach

According to the kinematic relation described in Fig. 3.3, the HTM from

Sg to Sb is calculated as

Mbg (φc) =RZ(−φb) ·T

⎛
⎜⎝

0

0

−ΔXD

⎞
⎟⎠ ·RY

(
−(

π

2
− γm)

)
·T

⎛
⎜⎝

0

ΔEm

−ΔXB

⎞
⎟⎠

·RZ(φc) ·T

⎛
⎜⎝

Sr · cos q2
Sr · sin q2

0

⎞
⎟⎠

(A.1)

where R and T are rotation and translation HTM, respectively [89]. For

example, RZ(−φb) is the rotation HTM by rotating along Z axis with a angle

−φb, and T
(
[0, 0, −ΔXD]

T
)
is the translation HTM with the translational
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vector [0, 0, −ΔXD]
T . They are given as

T

⎛
⎜⎝

Sr · cos q2
Sr · sin q2

0

⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎣

1 0 0 Sr · cos q2
0 1 0 Sr · sin q2
0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

RZ(φc) =

⎡
⎢⎢⎢⎢⎣

cosφc − sinφc 0 0

sinφc cosφc 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

T

⎛
⎜⎝

0

ΔEm

−ΔXB

⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 ΔEm

0 0 1 −ΔXB

0 0 0 1

⎤
⎥⎥⎥⎥⎦

RY

(
−(

π

2
− γm)

)
=

⎡
⎢⎢⎢⎢⎣

sin γm 0 − cos γm 0

0 1 0 0

cos γm 0 sin γm 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

T

⎛
⎜⎝

0

0

−ΔXD

⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 −ΔXD

0 0 0 1

⎤
⎥⎥⎥⎥⎦

RZ(−φb) =

⎡
⎢⎢⎢⎢⎣

cosφb sinφb 0 0

− sinφb cosφb 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦
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With (A.1), the components of Mbg (φc) are calculated as

M11 = cosφb · cosφc · sin γm + sinφb · sinφc

M12 = − cosφb · sinφc · sin γm + sinφb · cosφc

M13 = − cosφb · cos γm
M14 = N1 · cosφb · sin γm +N2 · sinφb +N3

M21 = − sinφb · cosφc · sin γm + cosφb · sinφc

M22 = sinφb · sinφc · sin γm + cosφb · cosφc

M23 = sinφb · cos γm
M24 = −N1 · sinφb · sin γm +N2 · cosφb +N4

M31 = cosφc · cos γm
M32 = − sinφc · cos γm
M33 = sin γm

M34 = N1 · cos γm −ΔXB · sin γm −ΔXD

(A.2)

where

N1 = Sr · cos (q2 + φc) , N2 = Sr · sin (q2 + φc) ,

N3 = ΔEm · sinφb +ΔXB · cosφb · cos γm, N4 = ΔEm · cosφb −ΔXB · sinφb · cos γm
In order to calculate vh(h, φc), dMi3/dφc and dMi4/dφc (i = 1, 2, 3 ) are

calculated according to (A.2) as
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dM13

dφc
= sinφb · cos γm · dφb

dφc

dM23

dφc
= cosφb · cos γm · dφb

dφc

dM33

dφc
= 0

dM14

dφc
= N2 · cosφb ·

(
dφb

dφc
− sin γm

)
+N1 · sinφb ·

(
1− sin γm · dφb

dφc

)
+N4 · dφb

dφc

dM24

dφc
= N2 · sinφb ·

(
sin γm − dφb

dφc

)
+N1 · cosφb ·

(
1− sin γm · dφb

dφc

)
−N3 · dφb

dφc

dM34

dφc
= −N2 · cos γm

(A.3)

For gear curvature analysis, d2Mi3/dφ
2
c and d2Mi4/dφ

2
c (i = 1, 2, 3 ) are cal-
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culated according to Eq. (A.3) as

d2M13

dφ2
c

=cosφb · cos γm ·
(
dφb

dφc

)2

+ sinφb · cos γm · d
2φb

dφ2
c

d2M23

dφ2
c

=− sinφb · cos γm ·
(
dφb

dφc

)2

+ cosφb · cos γm · d
2φb

dφ2
c

d2M33

dφ2
c

=0

d2M14

dφ2
c

=M24 · d
2φb

dφ2
c

−M14 ·
(
dφb

dφc

)2

+ 2 · (N1 · cosφb +N2 · sinφb · sin γm) · dφb

dφc

−M14 +N3

d2M24

dφ2
c

=−M14 · d
2φb

dφ2
c

−M24 ·
(
dφb

dφc

)2

+ 2 · (−N1 · sinφb +N2 · cosφb · sin γm) · dφb

dφc

−M24 +N4

d2M34

dφ2
c

=−N1 · cos γm
(A.4)
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Appendix B

The derivation of
dnm,g(ϕ)

dϕ

According to Eqs. (3.41) and (4.24), we have

nm,g(ϕ) = ± Nϕ,g ×Nh,g

| Nϕ,g ×Nh,g |
∣∣∣∣
h=hm(ϕ)

. (B.1)

Assuming that Tm(ϕ) = (Nϕ,g ×Nh,g)

∣∣∣∣
h=hm(ϕ)

, the derivative of Eq. (B.1)

with respect to ϕ can be obtained as

dnm,g(ϕ)

dϕ
= ±T′

m· | Tm | −Tm· | Tm |′
| Tm |2

= ±
T′

m· | Tm | −Tm · Tm ·T′
m

| Tm |
| Tm |2

= ±T′
m· | Tm |2 −Tm · (Tm ·T′

m)

| Tm |3 .

(B.2)

In order to calculate
dnm,g(ϕ)

dϕ
, Tm(ϕ) and T′

m are calculated as follows.

According to Eq. (3.42), we have
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Tm(ϕ) = (Nϕ,g ×Nh,g)

∣∣∣∣
h=hm(ϕ)

= ±rly,p · tanαg ·
(
dyp

dϕ
× yp

)
+ rly,p ·

(
dyp

dϕ
× zp

)

± hm · tanαg ·
(
dzp
dϕ

× yp

)
+ hm ·

(
dzp
dϕ

× zp

)

+
dop

dϕ
× (± tanαg · yp + zp) .

(B.3)

The derivative of Tm(ϕ) with respect to ϕ can be calculated as

T′
m =

dTm(ϕ)

dϕ
= ±drly,p

dϕ
· tanαg ·

(
dyp

dϕ
× yp

)
± rly,p · tanαg ·

(
d2yp

dϕ2
× yp

)

+
drly,p
dϕ

·
(
dyp

dϕ
× zp

)
+ rly,p ·

(
d2yp

dϕ2
× zp +

dyp

dϕ
× dzp

dϕ

)

± dhm

dϕ
· tanαg ·

(
dzp
dϕ

× yp

)
± hm · tanαg ·

(
d2zp
dϕ2

× yp +
dzp
dϕ

× dyp

dϕ

)

+
dhm

dϕ
·
(
dzp
dϕ

× zp

)
+ hm ·

(
d2zp
dϕ2

× zp

)
+

d2op

dϕ2
× (± tanαg · yp + zp)

+
dop

dϕ
×
(
± tanαg · dyp

dϕ
+

dzp
dϕ

)
.

(B.4)

It is worthwhile mentioning that the derivatives of
dTm(ϕ)

dϕ
and

d (Nϕ,g ×Nh,g)

dϕ
are different. Because both rly,p and hm in the former item are dependent on

ϕ, but both rly,p and hm in the later item are independent of ϕ. According

to Eqs. (3.34), (3.35) and (4.23), we have

dhm(ϕ)

dϕ
=

1

2
· drq
dϕ

· (tan(γ − γr) + tan(γo − γ))

drly,p
dϕ

= ± tanαg · dhm(ϕ)

dϕ
.

(B.5)
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According to Eq. (3.43), we have

d2xp (ϕ)

dϕ2
= sin Γ · d

2θs
dϕ2

·

⎡
⎢⎣
− sin (θms + θs)

cos (θms + θs)

0

⎤
⎥⎦− sin Γ ·

(
dθs
dϕ

)2

·

⎡
⎢⎣
cos (θms + θs)

sin (θms + θs)

0

⎤
⎥⎦

d2yp (ϕ)

dϕ2
=

d2θs
dϕ2

·

⎡
⎢⎣
cos (θms + θs)

sin (θms + θs)

0

⎤
⎥⎦+

(
dθs
dϕ

)2

·

⎡
⎢⎣
− sin (θms + θs)

cos (θms + θs)

0

⎤
⎥⎦

d2zp (ϕ)

dϕ2
= cos Γ · d

2θs
dϕ2

·

⎡
⎢⎣
− sin (θms + θs)

cos (θms + θs)

0

⎤
⎥⎦− cos Γ ·

(
dθs
dϕ

)2

·

⎡
⎢⎣
cos (θms + θs)

sin (θms + θs)

0

⎤
⎥⎦

d2op (ϕ)

dϕ2
=

d2qs

dϕ2
− tan(Γ− Γr) ·

(
d2rq
dϕ2

· zp + 2 · drq
dϕ

· dzp
dϕ

)
−Hs · d

2zp
dϕ2

.

(B.6)

According to Eq. (3.25), we have

d2qs (ϕ)

dϕ2
= sin Γ ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
cos (θms + θs) · d

2rq
dϕ2

− 2 · sin (θms + θs) · dθs
dϕ

· drq
dϕ

−rq ·
[
sin (θms + θs) · d

2θs
dϕ2

+ cos (θms + θs) ·
(
dθs
dϕ

)2
]}

{
sin (θms + θs) · d

2rq
dϕ2

+ 2 · cos (θms + θs) · dθs
dϕ

· drq
dϕ

+rq ·
[
cos (θms + θs) · d

2θs
dϕ2

− sin (θms + θs) ·
(
dθs
dϕ

)2
]}

cot Γ · d
2rq
dϕ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.7)
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where

d2rq
dϕ2

= − 1

rq
·
(
drq
dϕ

)2

+
rc
rq

· [rc − qcx · cos (θmc + θt + ϕ)− qcy · sin (θmc + θt + ϕ)]

d2θs
dϕ2

=
−2

rq
· dθs
dϕ

· drq
dϕ

+
rc · csc Γ

r2q
· [−qcx · sin (θmc + θt + ϕ) + qcy · cos (θmc + θt + ϕ)] .

Submitting Eqs. (3.43), (B.5) ∼ (B.7) into Eq. (B.4),
dTm(ϕ)

dϕ
can be ob-

tained. Subsequently,
dnm,g(ϕ)

dϕ
can be obtained by submitting Eqs. (B.3)

and Eq. (B.4) into Eq. (B.2).
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