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ABSTRACT

Optimal Control of Two-Wheeled Mobile Robots for Patrolling Operations

Walaaeldin Ahmed Ghadiry,

Concordia University, 2015

This work studies the use of the two-wheeled mobile robots in patrolling oper-

ations, and provides the most distance-e�cient as well as time-e�cient trajectories

to patrol a given area. Novel formulations in the context of constrained optimization

are introduced which can be solved using existing software. The main concept of the

problem is directly related to the well-known Traveling Salesman Problem (TSP)

and its variants, where a salesman starts from a base city and visits a number of

other cities with minimum travel distance while satisfying the constraint that each

city has to be visited only once. Finally, the salesman returns back to the starting

base city after completing the mission. Two di�erent patrolling con�gurations that

are related to the TSP and its variants, namely the Single Depot multiple Traveling

Salesman Problem (mTSP) and the Multidepot multiple Traveling Salesman Prob-

lem (MmTSP) are investigated. Novel algorithms are introduced for the trajectory

planning of multiple two-wheeled mobile robots, either with two di�erential motors

(which can turn on the spot) or with Dubins-like vehicles. The output trajectories

for both types of wheeled robots are investigated by using a model predictive con-

trol scheme to ensure their kinematic feasibility for the best monitoring performance.

The proposed formulations and algorithms are veri�ed by a series of simulations us-

ing e�cient programming and optimization software as well as experimental tests

in the lab environment.
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Chapter 1

Introduction

1.1 Literature Review

Mobile robots are increasingly ubiquitous today, and are used in a variety of di�erent

applications, including exploration, search and rescue, materials handling and enter-

tainment. While legged robots are able to step over obstacles, they are more complex

to design and control due to the greater number of degrees of freedom. Particularly

wheeled mobile robots (WMRs) are more energy e�cient, have a simpler mechanical

structure and simpler dynamics compared to legged robots [1]. This type of robots

is often developed in applications concerning dangerous environments where human

safety can be at risk. Among various types of WMRs, the two-wheeled mobile robots

(TWMRs) with a third caster wheel have several advantages. For instance, in ad-

dition to their simple kinematics and dynamics, they have high maneuverability

because of their ability to turn on the spot, although they are nonholonomic [2].

Coordinated teams of autonomous agents can e�ectively complete tasks re-

quiring repetitive execution, such as monitoring oil spills [3], detecting forest �res

[4], border surveillance [5], and environmental monitoring [6]. For example, moni-

toring a certain environment is typically carried out by assigning some viewpoints,

1



the number of which is greater than robots to be used in the patrolling problem. The

surveillance of an area of interest requires the robots to travel across the environment

continuously while minimizing a prescribed cost function such as the travel distance

[7, 8, 9]. The patrolling problem has many real life applications, among which are

border patrol for reducing illegal immigration, �ghting the threat of terrorism, mar-

itime surveillance for reducing illegal �shing, forest �res monitoring, infrastructure

protection, surveillance using unmanned aerial vehicles (UAV) and indoor patrolling

including nuclear power stations, private roads and campuses [10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. It is considered

as one of the important real applications of the three main basic research areas of the

navigation of the WMRs which are following a path, tracking a reference trajectory

and point stabilization [35, 36].

The �rst criterion to be optimized in the patrolling operation after assigning

the viewpoints is either the travel time or the travel distance via these viewpoints. If

the travel distance is considered to be optimized, this will be strongly related to the

conceptually relevant Travelling Salesman Problem (TSP) and two of its variants:

the single depot multiple travelling salesmen problem (mTSP) and the multidepot

multiple Travelling Salesman Problem (MmTSP). In the TSP, a salesman is required

to start from a base city or a depot (the node from which the salesman starts his

mission) and visits a number of cities with minimum travel distance, subject to the

constraint that each city has to be visited only once and that the salesman should

eventually return back to the starting base city after completing the mission [37].

However, in this problem, only one salesman (a robot in this case) is used to visit

a given number of destinations (viewpoints), but if there exists a larger number of

robots needed to visit these viewpoints such that each viewpoint is only visited by

one of the given robots this leads to a variant problem of the TSP which is de�ned

as the multiple Traveling Salesman Problem.
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If all the robots start their trajectories from only one depot, this is the mTSP,

while if the robots start their trajectories from more than one depot, this is the

MmTSP. Compared to the TSP, the mTSP better represents real life routing and

scheduling scenarios due to its generality in terms of the number of the salesmen [38].

Applications of the mTSP include crew scheduling [39], school bus routing problem

[40], and, in particular, mission planning which arises in the context of autonomous

mobile robots. The mission plan consists of the optimal path determination for each

robot to accomplish the goals of the mission in the shortest time. In the mission

planning, a variant of the mTSP is used where there are m robots and n viewpoints

which must be visited by some robots and a base city to which all robots must

eventually return [38]. Some applications of the mTSP in mission planning are

reported in [41] and [42]. In [43], Yu et al model the planning of autonomous robots

in cooperative robotics as a variant of the mTSP. Similarly, the routing problems

that arise in the planning of UAV applications are investigated by Ryan et al [44] in

the context of the patrolling problem. The MmTSP is considered as a generalization

of the mTSP to the case where more than one depot exists and there are a number

of salesmen at each depot [45, 46, 47, 48].

Minimizing the time needed to patrol an area can be another scenario of the

patrolling operation. The problem turns out to be a new variant of the TSP, namely,

minimum-time multidepot multiple Traveling Salesmen Problem (MTMmTSP).

Several articles investigate minimum distance trajectory in the patrolling prob-

lem or intend to minimize the waiting time of salesmen in TSP with time windows

(TSPTW), which is closely related to the underlying patrolling problem. In the

TSPTW problem, each customer has a service time and a time window between

the ready time and due date. Each customer must be visited before its due date;

otherwise, the tour is said to be infeasible. If, on the other hand, a vehicle arrives
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before the above-mentioned time window, it must wait. The TSPTW can be mod-

eled as a routing or a scheduling problem. In routing tasks, it is desired to �nd a

route to visit a number of viewpoints, starting and ending at the same depot, with

the constraint that each viewpoint must be visited in a time window. In scheduling

jobs on a single machine, on the other hand, setup times are sequence dependent,

and each job has a release and due date. In this case, the objective function is to

minimize the tour-completion time, or the so-called makespan [49, 50, 51, 52].

In all the previous discussed patrolling trajectories, the wheeled robots are

assumed to be agile with no slipping e�ect and can change directions quickly rel-

ative to the inter-activity travel times, the time between two activities can then

be described approximately in terms of the distances between the activities. The

resulting sequencing problem becomes an Euclidean Travelling Salesman Problem

(ETSP). Exact algorithms, heuristics as well as constant factor approximation al-

gorithms with polynomial time requirements are available for the ETSP, however,

when vehicles have signi�cant kinematic constraints such as limited turning radius,

and the inability to move in a reverse direction, the paths obtained from ETSP so-

lutions are hard to approximate with �yable trajectories. Thus, the ETSP solution

provides poor estimates of actual travel time and vehicle location [53].

A classical model for two-dimensional motion of vehicles with kinematic con-

straints is Dubins' model [54, 55, 56, 57, 58] ; we refer to these models as Dubins'

vehicles. The solution of TSP problems with Dubins' vehicles (DTSP) was recently

considered in many articles [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. This means

that the distance between any two pairs of viewpoints depends on the incoming and

outgoing directions of the trajectory through the node pair. Thus, the distances

cannot be precomputed considering only the location of the nodes. Extensions of

the TSP formulation for Dubins' vehicles are possible by creating multiple nodes

for each physical waypoint representing possible discrete travel orientations, but
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these extensions result in signi�cantly larger TSPs, making the real-time solution of

the path planning problem impractical. Alternative approaches for DTSP proposed

in [53, 60, 61] is to use a hierarchical approach: First, determine the sequence of

the viewpoints by solving for the exact optimal ETSP then �nd a sub-optimal path

through the sequence of points that satis�es the nonholonomic kinematic constraints

based on DTSP.

After obtaining the desired optimal trajectories for the TWMRs or for the

Dubins' vehicles to be tracked in the patrolling problem, a controller is needed to

feasibly track these trajectories. Due to the nonholonomic features of the TWMRs,

the design of a feedback controller for such robots became a challenging task. Ac-

cording to Brockett's result [71], nonholonomic systems cannot be stabilized by a

continuously di�erentiable, time-invariant state feedback control law. Trajectory

tracking in particular is of potential interest in various applications [72]. Here the

term trajectory refers to the path that a robot should traverse as a function of time.

A trajectory planner generates the appropriate trajectory for arriving at a partic-

ular location, patrolling in a prespeci�ed area, etc., and at the same time avoiding

collisions with di�erent kinds of obstacles. To obtain a feasible trajectory, i.e., a

trajectory that a robot is able to track, the planner also needs to consider various

physical and dynamic limitations of the robot such as its velocity and acceleration

limits. A trajectory can be generated in real-time on the basis of current sensor

readings or generated in advance on the basis of operating environment map [73].

Motion control of WMRs has been and still is the subject of numerous re-

search studies. Many nonlinear techniques have been proposed in the literature

such as dynamic feedback linearization [74], sliding mode control [75], backstep-

ping techniques [76], Lyapunov Techniques [77] etc., to name only a few. Model

predictive control (MPC) also referred to as receding horizon control (RHC) has
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been widely adopted in process control industry for decades because control ob-

jectives and operating constraints can be integrated explicitly in the optimization

problem that is solved at each instant. Many successful MPC applications have

been reported in the last three decades. Although the method is traditionally ap-

plied to plants with su�ciently slow dynamics to permit computations between

samples, with the advancement of faster computers, it has become possible to

implement MPC on systems governed by faster dynamics including WMRs as in

[78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

and there seem to be a promising future for the application of MPC to WMRs .

1.2 Motivation

As introduced earlier, several articles tackled the mTSP and the MmTSP problems

by using prespeci�ed starting depots as in [46, 47]. Three main assumptions are

typically used: (i) a set of starting depots for the robots is prespeci�ed; (ii) a set of

customer nodes that contains the rest of all the other nodes which are to be visited

by the robots throughout the process is prespeci�ed; (iii) The number of robots at

each starting depot is also prespeci�ed.

Although the patrolling problem has been widely studied in the literature, the

existing results always depend on the previous assumptions. This gives motivation

to seek for the distance-e�cient and time-e�cient patrolling trajectories without any

prior assumptions on the depots and the initial number of robots at each starting

depot.

As discussed earlier, the MPC has a promising future for the control of WMRs,

this gives motivation to apply this type of control on the TWMRs to feasibly track

the optimally-obtained patrolling trajectories. This can be applied for the optimal

ETSP and also the sub-optimal DTSP trajectories.
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1.3 Thesis Contributions

The main contributions of this thesis arise from the investigation of patrolling op-

erations. This is achieved by introducing distance-e�cient as well as time-e�cient

formulations and algorithms either for TWMRs or Dubins' vehicles. The formula-

tions and algorithms introduced in this research are veri�ed by a series of simulations

using well-known programming and optimization software as well as practical im-

plementations in the lab.

The contributions of the thesis are as follows:

• Introducing a framework for distance-e�cient trajectory optimization of non-

prespeci�ed mTSP-based patrolling problems.

• Introducing a generalized formulation for distance-e�cient trajectory opti-

mization of non-prespeci�ed MmTSP-based patrolling problems.

• Introducing a minimum-distance formulation for trajectory optimization of

unknown MmTSP-based patrolling problems.

• Introducing a minimum-distance formulation for trajectory optimization of

non-TSP-based patrolling problems for unknown number of staring depots

and robots.

• Introducing a minimum-time formulation for trajectory optimization of non-

prespeci�ed MmTSP-based patrolling problems.

• Introducing an algorithm for obtaining the minimum-time optimal trajec-

tory using minimum-distance optimal trajectory for non-prespeci�ed MmTSP-

based patrolling problems.

• Introducing a minimum-time formulation for trajectory optimization of un-

known MmTSP-based patrolling problems.
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• Introducing an algorithm for obtaining the minimum-time optimal trajectory

using minimum-distance optimal trajectory for unknown MmTSP-based pa-

trolling problems.

• Introducing an algorithm for obtaining feasible sub-optimal Dubins' trajectory

(DTSP) based on the optimally-obtained (ETSP) trajectory.

• Driving upper bounds for some existing sub-optimal algorithms in the litera-

ture used to obtain the DTSP from the ETSP and introducing enhancements

to them.

1.4 Thesis Outline

The thesis is organized as follows:

Chapter 2 presents the minimum-distance patrolling problem when multiple

robots perform the patrolling operation start from a single depot (mTSP). Two

new formulations are presented on the basis of the non-prespeci�ed starting depot

with a detailed comparison between their simulation results and the commonly-used

formulation results. The computational time of the two presented formulations is

compared to each other at the end of the chapter.

Chapter 3 presents the minimum-distance patrolling problem when multiple

robots performing the patrolling operation start from multiple depots (MmTSP).

First, a generalized formulation is presented on the basis of non-prespecifying the

starting depots as well as the initial number of robots at each starting depot with a

comparison between its simulation results and the commonly-used formulation re-

sults. Second, two new generalized formulations are presented for the same problem

when the optimal number of starting depots as well as the optimal number of robots

needed for the patrolling operation are unknown. One of these two formulations is

MmTSP based, while the other is not.
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Chapter 4 presents the minimum-time patrolling problem when multiple robots

performing the patrolling operation start from multiple depots (MTMmTSP). First,

a new formulation is presented on the basis of the non-prespeci�ed starting depots

and robots at each starting depot. Second, a new algorithm is introduced to obtain

the minimum-distance trajectory among the possible minimum-time trajectories of

the previous problem. Third, a new formulation and a new algorithm are presented

analogous to the previous two problems but for the case where the number of depots

and robots are unknown.

Chapter 5 introduces a new algorithm for softening the optimally-obtained

sharp-turning patrolling trajectories to result in sub-optimal trajectories that can be

continuously tracked by Dubins' vehicles. The new algorithm is compared theoreti-

cally to other works to elaborate its e�cacy. Some upper-bounds and enhancements

are introduced to the existing works in the literature.

Chapter 6 introduces the experimental results. This is done by using MPC con-

troller in the trajectory tracking of the linearized model of the TWMRs to track the

optimally-obtained trajectories in three experiments. The �rst two are for tracking

the exact sharp-turning patrolling trajectories optimally-obtained in Chapters 2-4

using TWMRs dynamics. The third is for testing the new algorithm introduced in

Chapter 5 for softening the optimally-obtained sharp-turning patrolling trajectories

into sub-optimal trajectories that can be tracked by Dubins' vehicles.

Finally, Chapter 7 is devoted to the conclusions and future work.
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Chapter 2

A Framework for Distance-E�cient

Trajectory Optimization in

Patrolling Problem with

Non-prespeci�ed Starting Depot

In this chapter, two new formulations are presented for trajectory optimization in

the patrolling problem. It is assumed that the starting depot is not prespeci�ed;

an assumption that distinguishes the present work from the existing literature [38,

39, 40, 41, 42, 43, 44]. A number of viewpoints are assigned to be visited in a

certain sequence to minimize the total travel distance. The problem turns out to be

a variant of the well-known Traveling Salesmen Problem (TSP), namely the Single

depot multiple Traveling Salesmen Problem (mTSP). The only information known

a priori is the total number of robots in addition to the number of viewpoints. It

is assumed that the starting depot is among the nodes (viewpoints) to be visited,

and that the robots have the same nonlinear dynamics as the TWMRs. The latter

assumption makes it possible to turn on the spot, which means that the robots can

10



move on sharp-edged paths. Furthermore, there are no physical constraints that can

a�ect the motion trajectories. The e�ciency of the motion-planning strategy based

on the proposed new formulations for the patrolling problem with non-prespeci�ed

starting depot is evaluated and compared to the conventional case, where the starting

depot is prespeci�ed. Simulations con�rm that under the proposed method robots

travel a shorter distance and complete the patrolling mission more rapidly.

The rest of this chapter is organized as follows. The problem statement of

the Single Depot multiple traveling Salesmen Problem is introduced in Section 2.1.

Section 2.2 presents the proposed frameworks and the new formulations. The simu-

lation results are provided in Section 2.3 in a comparable fashion to show the e�cacy

of the proposed formulations.

2.1 Problem Statement

Consider a complete undirected graph G(V,E), where V = {v1, . . . , vn} denotes a set

of n viewpoints through which m robots, m < n, will perform a patrolling operation

for monitoring an area, starting from a prespeci�ed depot. E denotes the set of all

edges connecting any two nodes, and is used to represent the motion trajectories to

be tracked by the robots. Let [cij] represent the cost matrix corresponding to the

path lengths of all edges between viewpoints vi and vj. The distance between two

connected nodes is adopted as the edge weight, which implies cij = cji, ∀(i, j) ∈ E.

This choice of edge weight also satis�es the triangular inequality, i.e., the shortest

path between viewpoints constitute a suitable choice [7]. More precisely, for any

three nodes (i, j, k), cij + cjk ≥ cik, ∀i, j, k ∈ V [38].

The above formulation is for the traditional patrolling problem, where the

starting depot is prespeci�ed. In the new formulations proposed here, only the set

of n viewpoints V = {v1, . . . , vn} is assumed to be given. In other words, there is no
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prespeci�ed depot. The minimum distance trajectories are required to be computed

such that each robot follows an appropriate trajectory connecting a subset of the

viewpoints starting from the depot (which is not prespeci�ed) and returning back to

it. There are two cases of interest: (i) when a return trip is allowed, i.e., the robot

can visit only one viewpoint and return to its previous viewpoint, and (ii) when a

return trip is not allowed. The restriction in the second case applies to applications

such as pickup and delivery, where visiting only one node is not allowed. It will

be shown later the minimum distance trajectories in the new formulation highly

depend on the starting depot's position. This will have a signi�cant impact on the

travel distance, and hence, on the operation life time.

2.2 Proposed Frameworks

Problem 1: Single Depot multiple Traveling Salesmen Problem (mTSP)

with non-prespeci�ed starting depot, and with return trip allowed. For

the aforementioned graph G(V,E) and cost matrix [cij], the Single Depot multiple

Traveling Salesmen Problem represented in the literature can be formulated in an

optimization framework as follows: Let a link connecting two arbitrary nodes vi, vj

on the trajectory from a prespeci�ed starting depot be represented by a binary

variable xij, which is equal to 1 if the trajectory is optimal and 0 otherwise. The

cost function to be minimized can be represented as the overall sum of the product

of each element in [cij] and its corresponding variable xij, and can be formulated as:

minxij

n∑
i=1

n∑
j=1
j 6=i

cijxij (2.1)
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The number of departures from and arrivals to the starting depot, which is de�ned

a priori here as node #1, is denoted by m as described below:

n∑
j=2

x1j = m (2.2)

n∑
j=2

xj1 = m (2.3)

In addition, the number of departures from and arrivals to any other node not

including the starting depot is one, i.e.:

n∑
i=1
i6=j

xij = 1, j ∈ V − {1} (2.4)

n∑
j=1
j 6=i

xij = 1, i ∈ V − {1} (2.5)

On the other hand, one of the most important constraints in the Traveling

Salesman Problem (TSP) is to avoid any sub-tour, which is a closed trajectory that

does not include the starting depot as the starting and ending point. This could be

presented in the optimization framework as an inequality that contains two variables

corresponding to each link between any two nodes vi, vj. Thus, the di�erences

between the variables corresponding to a sub-tour not including the starting depot

will always contradict the inequality, preventing such sub-tours from being formed.

The aforementioned sub-tour elimination inequality is:

ui − uj + (n−m)xij ≤ n−m− 1,

i ∈ V, j ∈ V − {1}, i 6= j

(2.6)

where ui and uj are the two arti�cial variables that prevent the formation of such

sub-tours among nodes not including the starting depot.
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Remark 2.1. A similar formulation is presented in [46] but with a set of constraints

on the maximum and minimum number of nodes that a robot has to visit. The

equations given above do not include such restrictions.

The new formulations presented in this work represent a novel optimization

framework. It is assumed that for a given set of viewpoints, only the total number

of robots is given without pre-de�ning a certain starting depot. The �rst formula-

tion has been represented in [100], where the optimization framework is repeated

at each possible depot and the �nal optimal solution is the minimum among all the

optimal solutions at each possible depot. This formulation will be referred to as

the greedy algorithm in this chapter. However, in the second formulation, the opti-

mization framework is solved only once, seeking for the optimal depot that results

in trajectories with minimum overall travel distance.

Starting with the �rst proposed greedy algorithm, denote the index of the

starting depot by k, and note that this depot can be any of the viewpoints. Note

also that the optimal trajectories depend on k, with an optimal solution D∗(k).

The problem is solved by considering every k as a candidate for the optimal index

and solving a mixed-integer linear programming problem, and then comparing the

values obtained for di�erent cases. The above optimal solution can be described by

a minimum cost function as follows:

mink D
∗(k) = mink minxij

n∑
i=1

n∑
j=1
j 6=i

cijxij, k ∈ V (2.7)

The number of departures from and arrivals to the starting depot which depends on

k is denoted by m, as expressed below:

n∑
j=1
j 6=k

xkj = m (2.8)
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n∑
j=1
j 6=k

xjk = m (2.9)

In addition, the number of departures from and arrivals to any other node not

including the starting depot is equal to one, i.e.:

xkj +
n∑
i=1
i6=k

xij = 1, j ∈ V, j 6= k (2.10)

xik +
n∑
j=1
j 6=k

xij = 1, i ∈ V, i 6= k (2.11)

The sub-tour elimination constraint (SEC) can be presented by:

ui − uj + (n−m)xij ≤ n−m− 1,

i, j ∈ V, i 6= j, j 6= k

(2.12)

Note that the binary variable xij is equal to one if the edge (i, j) is optimal, and is

zero otherwise. Equations 2.7 - 2.12 therefore compose the new greedy algorithm

for the return trip allowed case.

The second proposed formulation uses an improved optimization framework

that is solved only once to obtain the same optimal result as the �rst proposed

formulation. In this case, the binary variables are denoted by xijk, i, j, k ∈ V .

If a link between vi and vj and originating from depot vk constitutes an optimal

trajectory, then xijk is equal to one; otherwise, it is zero. A set of n auxiliary binary

variables ωk is introduced, where each variable corresponds to one of the possible

choices of depots among the n viewpoints in such a way that ωk is equal to one if

vk is an optimal starting depot, and zero otherwise.
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The cost function to be minimized can be reformulated as:

minxijk

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1

cijxijk (2.13)

The number of departures from and arrivals to the starting depot (which is not

prespeci�ed) is denoted by m, as given below:

n∑
j=1
j 6=k

xkjk = m ωk, k ∈ V (2.14)

n∑
j=1
j 6=k

xjkk = m ωk, k ∈ V (2.15)

Moreover, a new constraint on the sum of the new auxiliary variables is given by:

n∑
k=1

ωk = 1 (2.16)

which implies that there is only one optimal starting depot. In addition, the number

of departures from and arrivals to any node other than the starting depot is one,

i.e.:
n∑
i=1
i6=j,k

xijk = ωk, j, k ∈ V, j 6= k (2.17)

n∑
i=1
i6=j,k

xjik = ωk, j, k ∈ V, j 6= k (2.18)

The SEC can be presented by:

ui − uj + (n−m)xijk ≤ n−m− 1 + (1− ωk),

i, j, k ∈ V, i 6= j, j 6= k

(2.19)
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The above inequality is di�erent from inequality (2.6) as a new expression is added

in (2.19). In this new expression, where vk is the optimal depot if ωk = 1, for which

the set of inequalities representing an optimal tour will be valid. Equations 2.13 -

2.19 therefore compose the new formulation for the non-prespeci�ed depot with the

return trip allowed case.

Problem 2: Single Depot multiple Travelling Salesmen Problem (mTSP)

with non-prespeci�ed starting depot, and with return trip not allowed.

Typically in applications such as pickup and delivery, the robot is not allowed to

return to a viewpoint before visiting at least two other nodes. The inequalities

describing that the return trip is not allowed in the �rst and second new proposed

formulations are given by:

xkj + xjk ≤ 1, j, k ∈ V, j 6= k (2.20)

and
n∑
k=1
k 6=j

xkjk +
n∑
k=1
k 6=j

xjkk ≤ 1, j, k ∈ V (2.21)

respectively. Problems 1 and 2 are both expressed in mixed integer programming

framework with linear constraints. Thus, they are convex and always have a feasible

optimal solution, which can be obtained using solvers such as MOSEK optimization

software [101] and Gurobi Optimizer 6.0 [102]

2.3 Simulation Results

Consider the patrolling problem for a 20m by 20m �eld, where a set of 10 nodes

(viewpoints) are to be visited by 3 robots (n = 10 and m = 3). It is desired to
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�nd the minimum-distance trajectories using the formulation for the prespeci�ed

set of starting depots as well as the proposed formulations for the non-prespeci�ed

starting depots. MATLAB was employed with MOSEK optimization software [101]

to obtain all the results using Intel Core i7-3537U @ 2.00GHz processor with 8 GB

RAM.

Scenario 1. In this scenario, node 1 is assumed to be the prespeci�ed starting

depot. It is also assumed that the return trip is allowed. The optimal result in this

case is demonstrated in Fig. 2.1 and the total travel distance is about 101m.

Scenario 2. In this scenario, node 6 is assumed to be the prespeci�ed starting

depot. In fact, it can be veri�ed that this is the worst-case scenario for the given

node con�guration as far as the minimum travel distance is concerned. Again, it is

assumed that the return trip is allowed. The optimal result in this case is depicted

in Fig. 2.2, and the total travel distance is about 109m.

Scenario 3. In this scenario, it is assumed that unlike the previous two sce-

narios, the starting depot is not prespeci�ed, and that, like the previous scenarios,

the return trip is allowed. Using the proposed formulation, the optimal trajectory

depicted in Fig. 2.3 is obtained. The total travel distance in this case is about 78m.

Table 2.1 provides a comparison between the optimal travel distance in the

above three scenarios. As shown in this table, the reduced travel distance in only

one patrolling tour with a non-prespeci�ed starting depot could range between 23m

(23.08% of the total travel distance) and 30m (28.34% of the total travel distance),

compared to scenarios 1 and 2, respectively. Such a signi�cant reduction in travel

distance can also lead to major improvement in the operation time of the robots due

to the increase in the life time of the batteries (note that typically the patrolling

operation can be repeated for a long period of time). Table 2.1 also shows that

the computation time required for the new formulation is longer than that for the

conventional method. However, it is important to note that the computation is
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Figure 2.1: The Optimal mTSP for the case where node 1 is the starting depot,
and the return trip is allowed (n = 10,m = 3).
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Figure 2.2: The Optimal mTSP for the case where node 6 is the starting depot
(worst-case scenario), and the return trip is allowed (n = 10,m = 3).
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Figure 2.3: The Optimal mTSP for the case where the starting depot is not
prespeci�ed and the return trip is allowed (n = 10,m = 3).

performed o�ine, which is not completely unimportant, but has no impact on the

patrolling operation.

19



Table 2.1: Comparison between the results of scenarios 1-3.

Scenario 1
Scenario 2 Scenario 3

(worst-case scenario) (non-prespeci�ed starting depot)

Starting depot
node 1 node 6 node 2

(prespeci�ed) (prespeci�ed) (calculated)
Total travel

101.1687m 108.5846m 77.8158m
distance per tour
Computation time 0.23s 0.2s 0.44s

Reduction in 23.3529m 30.7688m −
travel distance per tour (23.08%) (28.34%)

Figs. 2.4-2.6 show the optimal results for the case where the return trip is not

allowed, analogous to Figs. 2.1-2.3, with a comparison summarized in Table 2.2. As

expected, due to the additional constraint on the trajectory (concerning the return

trips), the overall travel distance in this case is more than the previous case (when

comparing same scenarios in both cases). Furthermore, the optimal starting depot

when it is not prespeci�ed is node 5 (see Fig. 2.6), which results in major reduction

in total travel distance (22% compared to scenario 1 and 32% compared to scenario

2). It is worth noting that here the worst-case scenario with the return trip not

allowed is again when the starting depot is node 6 (see Fig. 2.5).
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Figure 2.4: The Optimal mTSP for the case where node 1 is the starting depot,
and the return trip is not allowed (n = 10,m = 3).

20



0 2 4 6 8 10 12 14 16 18 20 0
0 0

2 2

4 4

6 6

8 8

10 10

12 12

14 14

16 16

18 18

20 

x [m] 

1010y
 [

m
] 

6 

3 

7 

8 

5 

4 

1 

2 

9 

10 

Figure 2.5: The Optimal mTSP for the case where node 6 is the starting depot
(worst-case scenario), and the return trip is not allowed (n = 10,m = 3).
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Figure 2.6: The Optimal mTSP for the case where the starting depot is not
prespeci�ed and the return trip is not allowed (n = 10,m = 3).

Table 2.2: Comparison between the results of scenarios 1-3 for the case where the
return trip is not allowed.

Scenario 1
Scenario 2 Scenario 3

(worst-case scenario) (non-prespeci�ed starting depot)

Starting depot
node 1 node 6 node 5

(prespeci�ed) (prespeci�ed) (calculated)
Total travel

113.6117m 130.4827m 88.5289m
distance per tour
Computation time 0.2s 0.31s 1.19s

Reduction in 25.0828m 41.9538m −
travel distance per tour (22.08%) (32.15%)

Fig. 2.7 depicts the average reduction in the total travel distance per tour

over 10 di�erent con�gurations with di�erent numbers of viewpoints. The results
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Figure 2.7: The average total travel distance reduction between the best and worst
choice of the starting depot, and both cases of the return trip allowed (red curve)

and not allowed (blue curve).

are given for both cases of the return trip allowed and not allowed, and are obtained

by randomly generating the location of the viewpoints in a 20m by 20m area for

di�erent values of n between 7 and 20 (the number of robots in all simulations

is m = 3). The �gure demonstrates the e�cacy of the proposed non-prespeci�ed

starting depot method compared to existing prespeci�ed starting depot techniques,

as considerable reduction in travel distance could be achieved by using the proposed

method. In particular, compared to the worst-case scenario (in terms of the starting

depots), the resultant average reduction in travel distance per tour will be 25m when

the return trip is allowed, and 35m per tour when the return trip is not allowed (note

that a tour may be traveled several times in real world applications leading to sizable

reduction in overall travel distance, as mentioned earlier).

Fig. 2.8 shows a comparison between the greedy algorithm, where the opti-

mization framework is repeated at each viewpoint, and the result obtained by the

new formulation, where the optimization framework is only used once to result in the

optimal solution. The average computation time over 10 di�erent random con�gura-

tions for n = 3, 4, . . . , 13 viewpoints is calculated and repeated form = 1, 2, . . . , n−1
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Figure 2.8: A comparison between the greedy algorithm and the result obtained by
the new formulation.

robots. The comparison can be summarized as follows:

i) For a given number of viewpoints, the computational time of the greedy algo-

rithm becomes higher than that of the new formulation as the number of the robots

increases.

ii) The computational time is highly dependant on the con�guration of the view-

points in the patroled area.

iii) For a given number of viewpoints, as the number of the robots increases, the

computational time decreases. Similarly, Fig. 2.9 shows a comparison between the

same two proposed approaches, where the average computation time of 10 di�er-

ent random con�gurations at each possible number of the robots (from m = 1 to

m = n−1) is calculated and repeated this time for all values of number of viewpoints

(from n = 3 to n = 13). The comparison result can be stated as follows:

i) For larger number of robots (m), the computational time of the greedy algorithm

is higher than that of the new formulation as the number of the viewpoints (n)

increases.

ii) The computational time is dramatically related to the con�guration of the view-

points in the area to be patrolled.
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Figure 2.9: A comparison between the greedy algorithm and the result obtained by
the new formulation.

iii) For a given number of robots (m), as the number of the viewpoints (n) increases,

the computational time increases. Fig. 2.10 provides a 3-D graph to demonstrate

the dependancy of the computational time on both the number of the robots and

the number of the viewpoints at the same time.
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Figure 2.10: Comparison between the new greedy algorithm and the new
formulation approaches.

In the next chapter, the MmTSP-based patrolling operation, as a generalization of
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the mTSP-based one, is investigated to the case where more than one depot exists

and there are a number of robots at each depot [46]. The assumptions that exist

in the literature for having a prespeci�ed set of depots, a prespesi�ed set costumer

nodes and an initial prespeci�ed number of robots at each depot are relaxed. The

problem is optimally solved for the case of non-prespeci�ed as well as unknwown

number of depots and robots.
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Chapter 3

Generalized Formulations for

Minimum-Distance Trajectory in

Patrolling Problems

This chapter introduces the MmTSP problem, as a generalization of the mTSP to the

case where more than one depot exists and there are a number of robots at each depot

[46]. Most of the existing results tackle the MmTSP by using prespeci�ed starting

depots [46, 47]. Three main assumptions are typically used: (i) a set of starting

depots for the robots is prespeci�ed; (ii) a set of customer nodes that contains the

rest of all the other nodes which are to be visited by the robots throughout the

process is prespeci�ed; (iii) The number of robots at each starting depot is also

prespeci�ed. These assumptions have a signi�cant impact on the optimal result.

These assumptions distinguish the present work from the existing literature.

These assumptions will be relaxed in order to introduce general formulations which

extend the results developed in Chapter 2. Three general formulations are presented

for minimum-distance trajectory optimization in patrolling problems. In the �rst

formulation, it is assumed that the starting depots are not prespeci�ed. In the
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second and the third, the optimal number of starting depots and patrolling robots are

unknown. It is assumed that the starting depots are among the nodes (viewpoints)

to be visited, and again as assumed in Chapter 2 the robots have the same dynamics

as the TWMRs with the same previous assumptions on their physical constraints.

Using the proposed new formulations for the non-prespeci�ed starting depots and

robots or their unknown numbers, the e�ciency of the strategy is evaluated and

compared to the well-known prespeci�ed starting MmTSP approach. It is con�rmed

by simulation that under the proposed method robots travel smaller distance and

complete the patrolling mission more rapidly.

The rest of this chapter is organized as follows. The problem statement for the

MmTSP is introduced in Section 3.1, Section 3.2 presents the proposed framework

and the new formulations. The simulation results are provided in Section 3.3.

3.1 Problem Statement

Consider a complete undirected graph G(V,E), where V = {v1, . . . , vn} denotes

a set of n viewpoints through which m robots, m < n, will perform a patrolling

operation for monitoring an area. The set of prespeci�ed depots is denoted by

D = {v1, . . . , vd}, from which a prespeci�ed number of m robots will start their

trajectories. Furthermore, V
′

= {vd+1, vd+2, . . . , vn} is the set of customer nodes to

be visited, mk denotes the prespeci�ed number of robots initially located at depot

vk, and E is the set of all edges connecting any two nodes, and represent the motion

trajectories to be tracked by the robots. Let [cij] denote the cost matrix (or weight

matrix), where the element cij is between viewpoints vi and vj, where cij = cji,

∀(i, j) ∈ E. Note that the distance between two connected nodes satis�es the

triangular inequality, i.e., for any three nodes i, j, k, cij + cjk ≥ cik.
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The traditional TSP is formulated using a weighted graph representation in-

troduced above, with the assumption that the starting depots and the number of

robots at each depot are prespeci�ed. In the present work, however, three problems

are investigated, where only the set of n viewpoints V , the number of depots d, and

the total number of robots m are assumed to be given in the �rst problem. In other

words, there is no prespeci�ed set of depots or prespeci�ed set of customer nodes or

even prespeci�ed number of robots at each depot. In the second problem, only the

set of n viewpoints V , is assumed to be given with no assumption on the number of

starting depots and robots. The minimum distance trajectories are required to be

computed such that each robot follows exactly one trajectory connecting a subset of

the viewpoints starting from some depots which are not prespeci�ed, and returning

back to them. There are two cases of interest: (i) when a return trip is allowed, i.e.,

the robot can visit only one viewpoint before returning back to its starting depot,

and (ii) when a return trip is not allowed. The restriction in the second case applies

to applications such as pickup and delivery, where visiting only one node is not al-

lowed. It will be shown later that when it is possible to assign the starting depots to

any existing node, the minimum-distance trajectories highly depend on the starting

depots' positions. This will have a signi�cant impact on the travel distance, and

consequently, can increase the life time of the patrolling operation.

3.2 Proposed Framework

Problem 1: Multidepot multiple Traveling Salesmen Problem (MmTSP)

with non-prespeci�ed starting depots. With the aforementioned graph repre-

sentation G(V,E) and cost matrix [cij], the Multidepot multiple Traveling Salesmen

Problem can be formulated in an optimization framework for the case when the

return trip is allowed. To this end, let a link connecting two arbitrary nodes vi, vj
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on the trajectory of depot vk be represented by a binary variable xijk which will

be equal 1 if the trajectory is optimal and 0 otherwise. The cost function to be

minimized can be represented as the overall sum of the product of each element in

[cij] and its corresponding variable xijk, and can be formulated as:

minxijk{
∑
k∈D

∑
j∈V ′

ckjxkjk + cjkxjkk +
∑
k∈D

∑
i∈V ′

∑
j∈V ′

j 6=i

cijxijk} (3.1)

The number of departures from any starting depot, which by assumption is equal

to the number of arrivals to the depot, is denoted by mk (note that any starting

depot belongs to the set D). This speci�es two of the constraints of the optimization

problem, corresponding to the number of robots initially located at each depot, as

given below: ∑
j∈V ′

xkjk = mk, k ∈ D (3.2)

∑
j∈V ′

xjkk = mk, k ∈ D (3.3)

In addition, the number of departures from any node other than the starting depots,

which by assumption is equal to the number of arrivals to that node, is one, i.e.:

∑
k∈D

xkjk +
∑
k∈D

∑
i∈V ′

xijk = 1, j ∈ V ′
(3.4)

∑
k∈D

xjkk +
∑
k∈D

∑
i∈V ′

xjik = 1, j ∈ V ′
(3.5)

To ensure that any optimal route is not shared among more than one depot, the
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route continuity constraint is imposed as:

xkjk +
∑
i∈V ′

xijk − xjkk −
∑
i∈V ′

xjik = 0, k ∈ D, j ∈ V ′
(3.6)

On the other hand, the SEC can be presented by the following inequality:

ui − uj + (n−m)
∑
k∈D

xijk ≤ n−m− 1, i, j ∈ V ′
(3.7)

where ui and uj are the two arti�cial integer variables that prevent the formation

of such sub-tours among nodes not belonging to D, thus this optimization problem

is considered an MIP problem. Finally, the binary variable xij is equal to one if the

edge (i, j) is optimal, and is zero otherwise.

For the second case, when the return trip is not allowed, at least two nodes

other than the starting depot are required in each trajectory. A formulation similar

to the previous case is used here along with the new inequality given below:

∑
k∈D

xkjk +
∑
k∈D

xjkk ≤ 1, j ∈ V ′
(3.8)

which will be used to ful�ll the new requirement of the problem.

Remark 3.1. A similar formulation is presented in [46] with a set of constraints

on the maximum and minimum number of nodes that a robot has to visit. How-

ever, the relations introduced here do not include such restrictions, as the proposed

formulation represents a di�erent optimization framework.

It is assumed that for a given set of viewpoints, only the total number of depots

as well as the total number of robots are given, without pre-de�ning a certain set of

starting depots or a speci�c number of robots at any starting depot, initially. A set

of n auxiliary binary variables ωk are introduced, each of which corresponds to one

30



of the possible choices of depots among the n viewpoints in such a way that ωk will

be equal to zero if vk is an optimal starting depot, and one otherwise.

The cost function to be minimized can be reformulated as:

minxijk
∑
k∈V

∑
i∈V

∑
j∈V
j 6=i

cijxijk (3.9)

The number of departures from and arrivals to any starting depot is m, which is the

total number of robots, i.e.: ∑
k∈V

∑
j∈V
j 6=k

xkjk = m (3.10)

∑
k∈V

∑
j∈V
j 6=k

xjkk = m (3.11)

(note that the set of the starting depots is not prespeci�ed in this case). The total

number of departures from and arrivals to any node other than the starting depots

equals (n− d), i.e., only one departure and one arrival for any node other than the

starting depots. This is expressed by:

∑
k∈V

∑
j∈V
j 6=k

xkjk +
∑
k∈V

∑
i∈V
i6=k

∑
j∈V
j 6=i,k

xijk = n− d (3.12)

∑
k∈V

∑
j∈V
j 6=k

xjkk +
∑
k∈V

∑
i∈V
i6=k

∑
j∈V
j 6=i,k

xjik = n− d (3.13)

respectively. To ensure that any optimal tour is not shared among more than one

depot, the route continuity constraint is imposed as follows:

xkjk +
∑
i∈V
i6=j,k

xijk − xjkk −
∑
i∈V
i6=j,k

xjik = 0, k, j ∈ V, j 6= k (3.14)
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Moreover, a new constraint on the sum of the new auxiliary variables is given by:

∑
k∈V

ωk = n− d (3.15)

which means that the minimum and maximum number of robots that could be

placed at an optimal depot are given by:

1 ≤
∑
j∈V

xkjk + (m− (d− 1))ωk ≤ m− (d− 1) (3.16)

1 ≤
∑
j∈V

xjkk + (m− (d− 1))ωk ≤ m− (d− 1) (3.17)

respectively, for any k ∈ V, j 6= k. The total number of arrivals to and departures

from any node vj belonging to a trajectory which starts from depot vk is one if

vj is not a depot and is zero if vj is another depot as represented in the following

inequalities:

0 ≤
∑
k∈V
k 6=j

xkjk +
∑
k∈V
k 6=j

∑
i∈V
i6=j,k

xijk ≤ 1, j ∈ V (3.18)

0 ≤
∑
k∈V
k 6=j

xjkk +
∑
k∈V
k 6=j

∑
i∈V
i6=j,k

xjik ≤ 1, j ∈ V (3.19)

The following inequality is a constraint that prevents any depot from being part of

another depot's trajectory:

−4 ≤
∑
k∈V
k 6=i,j

xiji + xjii + xkji + xjki + xjij + xijj + xkij + xikj − 2(ωi + ωj) ≤ 0,

i, j ∈ V, i 6= j

(3.20)
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The SEC can be presented by:

ui − uj + (n−m)
∑
k∈V
k 6=i,j

xijk + (n− 2(d− 1))ωj ≤ n−m− 1 + (n− 2(d− 1)),

i, j ∈ V, i 6= j

(3.21)

where xijk, ωk ∈ {0, 1}. The above inequality is di�erent from inequality (3.7) as

a new expression is added in (3.21), where vj will be an optimal depot if ωj = 0,

for which the set of inequalities representing an optimal tour will be valid. The

maximum number of tour links that could exist in any optimal tour is (n − 2(d −

1)). The basic constraint here is that each node can take only one arrival and one

departure. This condition is described by the following inequalities:

0 ≤
∑
i∈V
i6=j

xijk + ωk ≤ 1, j, k ∈ V, j 6= k (3.22)

0 ≤
∑
i∈V
i6=j

xjik + ωk ≤ 1, j, k ∈ V, j 6= k (3.23)

Note that the binary variable xijk is one if the edge (i, j) belonging to the trajectory

of starting depot vk is optimal, and is zero otherwise. The auxiliary binary value

ωk, on the other hand, is equal to zero if vk is the optimal starting depot, and is one

otherwise. The inequality describing that the return trip is not allowed is expressed

by: ∑
k∈V
k 6=j

xkjk +
∑
k∈V
k 6=j

xjkk ≤ 1, j ∈ V (3.24)

The previous formulation (Equations 3.9 - 3.24) was introduced in [103] where both

the depots and the robots are non-prespeci�ed.
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Problem 2: Unknown number of depots and robots in a Traveling Sales-

man Problem (UTSP). The (MmTSP) discussed above was used to obtain the

minimum-distance optimal trajectories, given the number of starting depots and the

number of robots, without prespecifying their locations. However, to further reduce

the travel distance, one can relax the assumption on the prescribed number of robots

and starting depots, making them new minimization variables to obtain by solving

the underlying optimization problem. This will lead to the optimal number of robots

and starting depots, in addition to their speci�c locations, for the minimum-distance

trajectories for the patrolling operation. Thus, the main di�erence between the pre-

viously introduced MmTSP and Problem 2 de�ned here is that in this new and

more challenging framework only the set of viewpoints V is known. The problem is

formulated in the sequel for both cases of the return trip allowed and not allowed,

analogously to Problem 1.

Problem 2 can now be formally de�ned as an mTSP or MmTSP with a given

number and con�guration of viewpoints, and unknown number of starting depots

and robots as well as nonprespeci�ed set of nodes considered as the starting depots.

Given the generality of the problem, its solution will outperform that of any variant

of TSP in terms of travel distance.

Theorem 3.1. In the optimal solution of Problem 2, the number of robots is the

same as the number of starting depots, i.e., each starting depot has exactly one robot,

initially.

Proof. (i) Single depot case. This is a rather trivial case which can be demonstrated

through a simple example, with no loss of generality. To this end, consider the

con�guration in Fig. 3.1, with one robot, with one starting depot and four view-

points. Assume that the total travel distance i → j → k → l → i is P , i.e.,

cij + cjk + ckl + cli = P . Now, if two robots start from depot i and move on two
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separate trajectories both starting and ending at depot i, due to the triangular in-

equality, the travel distance will be longer. For the trajectories shown in Fig. 3.2,

it can be shown that: P1 + P2 = P + cji + cik − cjk where P1 and P2 denote the

length of the trajectories of the two robots. This justi�cation can be generalized

to a graph with any number of viewpoints and robots, as long as there is only one

starting depot. This implies that in the optimal setting in this case m = d = 1.
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Figure 3.1: A simple example of TSP with 1 depot and 1 robot
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Figure 3.2: The same con�guration of Fig. 3.1 but with two robots

(ii) Multidepot Case. Using 2 robots for 2 non-prespeci�ed depots using our

previous formulation, the non-prespeci�ed MmTSP will result in the optimal mini-

mum distance as shown in Fig. 3.3. The total optimal distance in this case = P +Q.

Increasing the number of robots can occur in three scenarios:
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Figure 3.3: Optimal TSP using 2 depots and 2 robots

Scenario 1. A robot starts from a depot in the �rst route and moves towards

another node inside the same route. This is similar to the single depot case which

was previously proved to have more travel distance as shown in Fig. 3.4.

Figure 3.4: Optimal TSP using 2 depots and 3 robots

Scenario 2. A robot starts from a depot in the second route and moves towards

another node inside the same route. This is again similar to the single depot case

which was previously proved to have more travel distance as shown in Fig. 3.5.

Scenario 3. A robot starts from a depot in one of the two routes and moves

towards another node inside the opposite route, respectively, as shown in Fig. 3.6.

Searching for the closest nodes in both routes that can be linked in the new optimal
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Figure 3.5: Optimal TSP using 2 depots and 3 robots

solution, without loss of generality, here they are i andm. The total optimal distance

in this case = P +Q+ 2cim + csj − csm − cmj. Comparing the two distances before

and after adding a third robot, if 2cim + csj > csm + cmj, thus the new distance is

more than the old one. If 2cim + csj < csm + cmj, then the new distance is less than

the old one. If 2cim + csj = csm + cmj, then the new distance is equal to the old one.

Figure 3.6: Optimal TSP using 2 depots and 3 robots

As node m was not included in the �rst route in the �rst solution (2 depots

and 2 robots), thus:

cim + cml > cil (3.25)
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P − cil + cim + cml +Q− csm − cmj + csj > P +Q (3.26)

cim + cml + csj > cil + csm + cmj (3.27)

Then there could be two assumptions, either cml = cim + ε or cml = cim − ε, where

ε is any positive real number.

First assumption:

cml = cim + ε (3.28)

2cim + ε+ csj > cil + csm + cmj (3.29)

But

cim + cil > cml (3.30)

cim + cil > cml + ε (3.31)

cil > ε (3.32)

Thus

2cim + csj > cil − ε+ csm + cmj (3.33)

2cim + csj > csm + cmj (3.34)

Thus, the new distance is more than the old one.

Second assumption:

cml = cim − ε (3.35)
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2cim − ε+ csj > cil + csm + cmj (3.36)

But

cim + cil > cml (3.37)

cim + cil > cml − ε (3.38)

ε > cil (3.39)

Thus

2cim + csj > cil + ε+ csm + cmj (3.40)

2cim + csj > csm + cmj (3.41)

Thus, the new distance is more than the old one.

From the previous possible two assumptions, the minimum travel distance will

occur when m = d = 2, and with the same procedures for larger number of depots,

the result will be the same, i.e., a depot should have only one starting robot for

optimal minimum travel distance.

(iii) Single and Multiple robots. For one robot, the only choice is to have one

depot (one of the previous mentioned optimal cases). For m robots, the possible

choices of the number of depots are {1, 2, . . . ,m}. Without loss of generality, de-

creasing the number of depots from the same number of robots will always increase

the total travel distance as shown in Figs. 3.7, 3.8. The total travel distance for 2

robots and 2 depots = P + Q. The total travel distance for 2 robots and 1 depot

= P + Q − cij + cik + cjk > P + Q. This will always happen for decreasing the
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number of depots. Thus the minimum travel distance will occur when d = m.

Figure 3.7: Optimal TSP using 2 depots and 2 robots

Figure 3.8: Optimal TSP using 1 depot and 2 robots

The new proposed formulation depends only on a given number of viewpoints,

with the previous theorem result , i.e., the number of robots should be equal to

the number of depots, whereas the number of depots ranges between 1 and n/2. A

set of n auxiliary binary variables ωk are introduced, where each possible optimal

depot has its corresponding ωk such that ωk equals 0 if the corresponding node is an

optimal depot, and ωk equals 1 otherwise. This formulation runs with O(n3) binary

variables, and O(n2) constraints. The framework of this formulation can be stated
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as follows. The cost function to be minimized can be formulated as in the following

equation:

minxijk
∑
k∈V

∑
i∈V

∑
j∈V
j 6=i

cijxijk (3.42)

The number of departures from and arrivals to all the starting depots which are

here unknown equals the optimal number of the starting depots as proved in the

previous theorem are given by:

∑
k∈V

∑
j∈V
j 6=k

xkjk +
∑
k∈V

ωk = n (3.43)

∑
k∈V

∑
j∈V
j 6=k

xjkk +
∑
k∈V

ωk = n (3.44)

respectively. The total number of departures from and arrivals to all other nodes not

including the depots which are here again unknown equals (n−the optimal number

of depots), i.e., equals the sum of the auxiliary binary variables. This is expressed

by: ∑
k∈V

∑
j∈V
j 6=k

xkjk +
∑
k∈V

∑
i∈V
i6=k

∑
j∈V
j 6=i,k

xijk =
∑
k∈V

ωk (3.45)

∑
k∈V

∑
j∈V
j 6=k

xjkk +
∑
k∈V

∑
i∈V
i6=k

∑
j∈V
j 6=i,k

xjik =
∑
k∈V

ωk (3.46)

To ensure that any optimal route is not shared among more than one depot, the

following equation presents the route continuity constraint:

xkjk +
∑
i∈V
i6=j,k

xijk − xjkk −
∑
i∈V
i6=j,k

xjik = 0, j, k ∈ V, j 6= k (3.47)
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The next equation represents a new constraint on the sum of the new auxiliary

variables, where there sum ranges between n/2 and (n− 1).

n/2 ≤
∑
k∈V

ωk ≤ n− 1 (3.48)

The following two equations represent the direct result of the proved theorem, where

each depot has only one arrival and one departure.

∑
j∈V
j 6=k

xkjk + ωk = 1, k ∈ V (3.49)

∑
j∈V
j 6=k

xjkk + ωk = 1, k ∈ V (3.50)

The total arrivals to and departure from any node vj from any starting depot vk or

from any other node vi belonging to this depot trajectory is 1 in case of vj is not a

depot and equals 0 in case vj is another optimal depot or this link is not an optimal

link as represented in the following inequalities:

0 ≤
∑
k∈V
k 6=j

xkjk +
∑
k∈V
k 6=j

∑
i∈V
i6=j,k

xijk ≤ 1, j ∈ V (3.51)

0 ≤
∑
k∈V
k 6=j

xjkk +
∑
k∈V
k 6=j

∑
i∈V
i6=j,k

xjik ≤ 1, j ∈ V (3.52)

respectively. The next inequality is a constraint that prevents any depot to be
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included in another depot trajectory.

−4 ≤
∑
k∈V
k 6=i,j

xiji + xjii + xkji + xjki + xjij + xijj + xkij + xikj − 2(ωi + ωj) ≤ 0,

i, j ∈ V, i 6= j

(3.53)

The SEC can be presented by:

ui − uj + n
∑
k∈V
k 6=i,j

xijk + n ωj ≤ n− 1 + n, i, j ∈ V, i 6= j (3.54)

The main basic constraint in such problems is that each node has only one arrival

and one departure through one optimal starting depot trajectory, this is presented

as follows:

0 ≤
∑
i∈V
i6=j

xijk + ωk ≤ 1, j, k ∈ V, j 6= k (3.55)

0 ≤
∑
i∈V
i6=j

xjik + ωk ≤ 1, j, k ∈ V, j 6= k (3.56)

respectively. The de�nitions of the variable xijk as well as the auxiliary binary

variable ωk are as presented in Problem 1. The following inequality ensures the case

of the return trip not allowed, i.e., visiting only one node is not allowed.

∑
k∈V

xkjk +
∑
k∈V

xjkk ≤ 1, j ∈ V (3.57)

Equations 3.42 - 3.57 compose the new TSP-based formulation for the unknown

depots and robots.

A simpler proposed formulation non-TSP-based that gives the same optimal

results as the previous proposed formulation is introduced without having all these
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constraints, and thus without using a notation for a depot node with much less

computation time. It states that the number of either the arrivals or the departures

from any node is at least 1 and at most n − 1, in addition to the constraint of the

route continuity and in case of the return trip not allowed case, the corresponding

constraint is also added. This formulation runs with O(n2) binary variables, and

O(n2) constraints.

minxij
∑
i∈V

∑
j∈V
j 6=i

cijxij (3.58)

1 ≤
∑
j∈V
j 6=i

xij ≤ n− 1, i ∈ V (3.59)

1 ≤
∑
j∈V
j 6=i

xji ≤ n− 1, i ∈ V (3.60)

∑
i∈V
i6=j

xij −
∑
i∈V
i6=j

xji = 0, j ∈ V (3.61)

xij + xji ≤ 1, i, j ∈ V, i 6= j (3.62)

Equations 3.58 - 3.62 compose the new non-TSP-based formulation for the unknown

depots and robots. Problems 1 and 2 are both expressed in MIP framework with

linear constraints. Thus, they are convex and always have a feasible optimal solution.
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3.3 Simulation Results

Consider the patrolling problem for a �eld of size 20m by 20m, where a set of n = 10

nodes (viewpoints) are to be visited. Let the number of robots be m = 4, with the

number of depots d = 2. Using the formulation for the prespeci�ed starting set of

depots as well as the proposed formulation for the non-prespeci�ed starting depots,

it is desired to �nd the minimum-distance trajectories. MATLAB was used with

the Gurobi Optimizer 6.0 [102] optimization software to obtain all the results using

Intel Core i7-3537U @ 2.00GHz processor with 8 GB RAM.

Scenario 1. The optimal results are obtained for the case of prespeci�ed depots

with the return trip allowed, where the starting depots are considered to be nodes

1 and 2, and the four robots are distributed in di�erent initial locations with all

possible combinations: (m1,m2) = (1, 3) in Fig. 3.9, (m1,m2) = (2, 2) in Fig. 3.10,

and (m1,m2) = (3, 1) in Fig. 3.11 with the total travel distance ranges between

about 80m and 97m.

Scenario 2. In this scenario, the results are computed for the case where the

starting depots are considered to be nodes 6 and 7, which is, in fact, the worst-

case scenario for the present con�guration as far as the minimum travel distance is

concerned (with two starting depots). The results for (m6,m7) = (1, 3), (m6,m7) =

(2, 2) and (m6,m7) = (3, 1) are depicted in Figs. 3.12-3.14, analogously to the

previous �gures with the total travel distance ranges between about 116m and 140m.

Scenario 3. In this scenario, it is assumed that unlike the previous two scenar-

ios, the starting depots are not prespeci�ed, and that, like the previous scenarios,

the return trip is allowed. Using the proposed formulation, the optimal trajectory

depicted in Fig. 3.15 is obtained. The total travel distance in this case is about 74m.

Table 3.1 provides the comparison between the results of scenario 1 and Sce-

nario 3. Similarly, Table 3.2 presents the comparison between the results of scenario

2 (worst-case scenario) and Scenario 3. This shows the signi�cant saving in travel
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Figure 3.9: The Optimal MmTSP for the case where nodes 1 and 2 are the starting
depots, and the return trip is allowed (n = 10,m = 4, d = 2, (m1,m2) = (1, 3)).
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Figure 3.10: The Optimal MmTSP for the case where nodes 1 and 2 are the
starting depots, and the return trip is allowed

(n = 10,m = 4, d = 2, (m1,m2) = (2, 2)).
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Figure 3.11: The Optimal MmTSP for the case where nodes 1 and 2 are the
starting depots, and the return trip is allowed

(n = 10,m = 4, d = 2, (m1,m2) = (3, 1)).
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Figure 3.12: The Optimal MmTSP for the case where nodes 6 and 7 are the
starting depots (worst-case scenario), and the return trip is allowed

(n = 10,m = 4, d = 2, (m6,m7) = (1, 3)).
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Figure 3.13: The Optimal MmTSP for the case where nodes 6 and 7 are the
starting depots (worst-case scenario), and the return trip is allowed

(n = 10,m = 4, d = 2, (m6,m7) = (2, 2)).
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Figure 3.14: The Optimal MmTSP for the case where nodes 6 and 7 are the
starting depots (worst-case scenario), and the return trip is allowed

(n = 10,m = 4, d = 2, (m6,m7) = (3, 1)).
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Figure 3.15: The Optimal MmTSP for the case where the starting depots are not
prespeci�ed and the return trip is allowed (n = 10,m = 4, d = 2).

distance by using the proposed method with non-prespeci�ed starting depots. As

Table 3.1: Comparison between the results of scenarios 1 and 3.

Scenario 1
Scenario 3

(non-prespeci�ed starting depots)

Starting depots
# 1, 2 # 7, 10

(prespeci�ed) (calculated)

Initial number m1 = 1 m1 = 2 m1 = 3 m7 = 2
of robots m2 = 3 m2 = 2 m2 = 1 m10 = 2

at each depot (prespeci�ed) (calculated)

Total travel distance
80.56m 81.03m 97.53m 74.34m

per tour

Computation time 0.11s 0.06s 0.03s 2.84s
Reduction in 6.26m 6.7m 23.18m −

travel distance per tour (7.76%) (8.258%) (23.77%)

Table 3.2: Comparison between the results of scenarios 2 and 3.

Scenario 2 Scenario 3
(worst-case scenario) (non-prespeci�ed starting depots)

Starting depots
# 6, 7 # 7, 10

(prespeci�ed) (calculated)

Initial number m6 = 1 m6 = 2 m6 = 3 m7 = 2
of robots m7 = 3 m7 = 2 m7 = 1 m10 = 2

at each depot (prespeci�ed) (calculated)

Total travel distance
116.69m 127.95m 140.47m 74.34m

per tour

Computation time 0.06s 0.05s 0.03s 2.84s
Reduction in 42.35m 53.61m 66.13m −

travel distance per tour ( 36.3%) (41.9%) (47.08%)

shown in Tables 3.1 and 3.2, the reduced travel distance in only one patrolling tour
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using non-prespeci�ed starting depots approach (instead of prespeci�ed starting de-

pots) could range between 6.26 m (7.76% of the total travel distance) and 66.13

m (47.08% of the total travel distance), for the scenarios considered in this work,

such signi�cant reduction in travel distance can also lead to major improvement in

the operation time of the robots due to the increase of the life time of the batteries

(note that typically the patrolling operation can repeat for a long period of time).

Tables 3.1 and 3.2 also show that the computation time for the new formulation is

more than that of the conventional method. Moreover it is important to note that

the computation is performed o�ine, which is not completely unimportant, but has

no impact on the patrolling operation.

Figs. 3.16-3.22 show the optimal results for the case where return trip is

not allowed, analogous to Figs. 3.9-3.15 with a comparison summarized in Tables

3.3 and 3.4. As expected, due to the additional constraint on the trajectory (con-

cerning the return trips), the overall travel distance in this case is more than the

previous case (when comparing same scenarios in both cases). Furthermore, using

non-prespeci�ed starting depots in this case (Fig. 3.22), the optimal choice for start-

ing depots is obtained as (m7,m9) = (1, 3). In this case, the reduced travel distance

in only one patrolling tour using non-prespeci�ed starting depots approach (instead

of prespeci�ed starting depots) could range between 12.57 m (12.38% of the total

travel distance) and 77.17 m (46.45% of the total travel distance) for the scenarios

considered in this case. It is worth noting that here the worst-case scenario with the

return trip not allowed corresponds to the last con�guration (m6,m7) = (3, 1).

On the other hand, Figs. 3.23, 3.24 show the optimal output results with the

return trip allowed and not allowed cases for Problem 2, respectively.
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Figure 3.16: The Optimal MmTSP for the case where nodes 1 and 2 are the
starting depots, and the return trip is not allowed

(n = 10,m = 4, d = 2, (m1,m2) = (1, 3)).
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Figure 3.17: The Optimal MmTSP for the case where nodes 1 and 2 are the
starting depots, and the return trip is not allowed

(n = 10,m = 4, d = 2, (m1,m2) = (2, 2)).
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Figure 3.18: The Optimal MmTSP for the case where nodes 1 and 2 are the
starting depots, and the return trip is not allowed

(n = 10,m = 4, d = 2, (m1,m2) = (3, 1)).
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Figure 3.19: The Optimal MmTSP for the case where nodes 6 and 7 are the
starting depots (worst-case scenario), and the return trip is not allowed

(n = 10,m = 4, d = 2, (m6,m7) = (1, 3)).
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Figure 3.20: The Optimal MmTSP for the case where nodes 6 and 7 are the
starting depots (worst-case scenario), and the return trip is not allowed

(n = 10,m = 4, d = 2, (m6,m7) = (2, 2)).
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Figure 3.21: The Optimal MmTSP for the case where nodes 6 and 7 are the
starting depots (worst-case scenario), and the return trip is not allowed

(n = 10,m = 4, d = 2, (m6,m7) = (3, 1)).
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Figure 3.22: The Optimal MmTSP for the case where the starting depots are not
prespeci�ed and the return trip is not allowed (n = 10,m = 4, d = 2).

Table 3.3: Comparison between the results of scenarios 1 and 3 for the case where
the return trip is not allowed.

Scenario 1
Scenario 3

(non-prespeci�ed starting depots)

Starting depots
# 1, 2 # 7, 9

(prespeci�ed) (calculated)

Initial number m1 = 1 m1 = 2 m1 = 3 m7 = 1
of robots m2 = 3 m2 = 2 m2 = 1 m9 = 3

at each depot (prespeci�ed) (calculated)

Total travel distance
101.5m 104.72m 118.07m 88.93m

per tour

Computation time 0.02s 0.02s 0.02s 0.98s
Reduction in 12.57m 15.79m 29.15m −

travel distance per tour (12.38%) (15.08%) (24.69%)

Table 3.4: Comparison between the results of scenarios 2 and 3 for the case where
the return trip is not allowed.

Scenario 2 Scenario 3
(worst-case scenario) (non-prespeci�ed starting depots)

Starting depots
# 6, 7 # 7, 9

(prespeci�ed) (calculated)

Initial number m6 = 1 m6 = 2 m6 = 3 m7 = 1
of robots at m7 = 3 m7 = 2 m7 = 1 m9 = 3
each depot (prespeci�ed) (calculated)

Total travel distance
139.57m 152.38m 166.1m 88.93m

per tour

Computation time 0.02s 0.03s 0.03s 0.98s
Reduction in 50.64m 63.45m 77.17m −

travel distance per tour (36.3%) (41.64%) (46.45%)
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Tables 3.5 and 3.6 show a comparison between the two new formulations re-

sults. The �rst is the proposed TSP-based formulation and the second is the non-

TSP-based formulation for the return trip allowed and not allowed cases, respec-

tively. The comparison is related to the outputs in Figs. 3.23, 3.24 respectively.
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Figure 3.23: The optimal MmTSP for a prespeci�ed number of viewpoints only
and unknown number of depots and robots using either the TSP-based or

non-TSP-based formulations with the return trip allowed (n = 10)

Table 3.5: A comparison between TSP-based and non-TSP-based formulations for
the return trip allowed related to Fig. 3.23

TSP-based Non-TSP-based
Formulation Formulation

Total travel distance per tour 57.5254m
Computation time 2.25s 0.01s

Number of depots and robots
m = d = 4

optimally calculated

As shown in Tables 3.5 and 3.6, the total number of robots needed for the

overall minimum travel distance trajectories is only 4 robots in case of return trip

allowed, and 1 robot in case of return trip not allowed. Although, there could be

more robots available in this con�guration, but this would lead to a worse case. Thus

if more robots are available, they shouldn't be used (saving their energy) according
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Figure 3.24: The optimal MmTSP for a prespeci�ed number of viewpoints only
and unknown number of depots and robots using either the TSP-based or
non-TSP-based formulations with the return trip not allowed (n = 10)

Table 3.6: A comparison between TSP-based and non-TSP-based formulations for
the return trip not allowed related to Fig. 3.24

TSP-based Non-TSP-based
Formulation Formulation

Total travel distance per tour 68.6524m
Computation time 1.89s 0.01s

Number of depots and robots
m = d = 1

optimally calculated

to the optimal output to obtain the optimal overall minimum distance. It can be also

shown from the two tables that the TSP-based formulation gave the same results of

another simpler non-TSP-based formulation with much less computation time.

In the next chapter, instead of minimizing the total travel distance in the

patrolling problem, the total patrolling time is minimized. This is investigated

while adopting the approach of having non-prespeci�ed starting depots and robots,

and for the more challenging case when the number of the optimal depots and robots

are unknown.
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Chapter 4

Time-E�cient Trajectory

Optimization in Patrolling Problems

Instead of minimizing the total travel distance in the patrolling problem, it might

be more important in some other scenarios to minimize the total time required to

completely patrol the desired area. Typically, this can be achieved by dividing the

total trajectories that are needed to patrol the whole area among more number of

robots for the same given number of starting depots. Thus, increasing the number

of robots for a given number of starting depots can lead to decreasing the total

patrolling time or at least keeping it as it is.

Two new formulations and two new algorithms are presented in this chapter

for the minimum-time trajectories in the patrolling problem, where a number of

robots are desired to visit a given set of viewpoints in the shortest possible time.

In the �rst problem, it is assumed that the starting depots and their corresponding

robots are non-prespeci�ed. In the second problem, it is desired to obtain the

minimum-distance trajectories among all the possible minimum-time trajectories

that could be the output of the �rst problem. In the third problem, the number of

starting depots and the number of patrolling robots are also part of the optimization
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problem. Finally, the fourth problem is analogous to the second one but this time

for the unknown number of depots and robots. The problem turns out to be a new

variant of the TSP, namely, Minimum-Time Multidepot multiple Traveling Salesmen

Problem (MTMmTSP).

Many articles investigate minimum-distance trajectory in the patrolling prob-

lem or intend to minimize the waiting time of salesmen in TSP with time windows

(TSPTW) [50, 51, 52], which is closely related to the underlying patrolling problem.

In the TSPTW problem, each customer has a service time and a time window be-

tween the ready time and due date. Each customer must be visited before its due

date; otherwise, the tour is said to be infeasible. If, on the other hand, a vehicle

arrives before the above-mentioned time window, it must wait.

The distinguishing features of the proposed problem statement is that �rst of

all the starting depots and the number of robots assigned to each are not prespeci�ed.

The number of starting depots and robots may also be unknown. The cost function

to be minimized is the total travel time of the robots as opposed to the travel

distance or waiting time of the salesmen at the visited nodes for a given TSPTW.

The number of viewpoints (and their con�guration) is assumed to be known. Note

that the starting depots belong to the set of viewpoints to be visited. The same

assumptions for the TWMR dynamics and physical constraints still hold for these

problems. It is also assumed that the robots are agile and can change directions

quickly relative to their inter-activity travel times, the time between two activities

can be described approximately in terms of the distances between the activities [53].

The results are compared to the results of the minimum-distance problem to

clarify the di�erence between the two problems. Simulations con�rm the e�ciency

of the proposed formulation in describing the minimum-time problem, whose solu-

tion demonstrates signi�cant increase in the speed of accomplishing the underlying

mission.
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The rest of this chapter is organized as follows. The problem statement for the

MTMmTSP with unspeci�ed starting depots and robot assignment with both cases

of known and unknown number of starting depots and robots are introduced in

Section 4.1. Section 4.2 presents the proposed frameworks and the new proposed

formulations. Simulation results are presented in Section 4.3.

4.1 Problem Statement

Consider a complete undirected graph G(V,E), where V = {v1, . . . , vn} denotes a set

of n viewpoints, through which a group of m unspeci�ed robots, m < n, represented

by the index setM = {1, . . . ,m} are to perform a patrolling operation for monitoring

an area, starting from d depots (note that here the starting depots and robots

assigned to them are unspeci�ed). Also, E denotes the set of all edges connecting

any two nodes representing the movement of a robot between the corresponding

viewpoints. Let cij represent the path length of the edge between viewpoints vi and

vj, ∀(i, j) ∈ E, and de�ne the symmetric cost (weight) matrix [cij] accordingly. Note

that since the path length is the distance between two connected nodes, it satis�es

the triangular inequality, i.e., for any three nodes (i, j, k), cij + cjk ≥ cik ∀i, j, k ∈ V

[38]. Four di�erent types of patrolling problems are investigated here. In the �rst

problem, it is assumed that the number d of starting depots and m of robots are

known but nonspeci�ed. The second problem is the same as the �rst one but with one

more requirement, which is to obtain the minimum-distance trajectories among all

the possible minimum-time trajectories that were optimally obtained from the �rst

problem. In the third problem, the information about the number of starting depots

d and robots m is not prespeci�ed. The minimum-time trajectories are required to

be computed such that each robot follows one of the trajectories connecting a subset

of the viewpoints starting from one of the depots (which are not prespeci�ed), and
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returns back to it. In the fourth problem, it is required to obtain the minimum-

distance trajectories among all the possible minimum-time trajectories that were

optimally obtained from the third problem. In all problems, there are two cases of

interest: (i) when a return trip is allowed, i.e., the robot can visit only one viewpoint

before returning back to its starting depot, and (ii) when a return trip is not allowed.

4.2 Proposed Frameworks

Problem 1: Minimum-TimeMultidepot multiple Traveling Salesmen Prob-

lem (MTMmTSP) with unspeci�ed starting depots and robots. Given the

graph G(V,E) and cost matrix [cij] de�ned in the previous section, it is desired

to formulate the MTMmTSP in an optimization framework for the case when the

return trip is allowed as follows. Let a link connecting two arbitrary nodes vi, vj on

the trajectory of depot vk and tracked by robot l be represented by a binary variable

xijkl which is equal to 1 if the trajectory is optimal and 0 otherwise. The cost func-

tion to be minimized can be represented as the upper limit of any travel distance of

any robot, assuming that the velocity of all the robots is equal and constant. This

can be expressed as:

minxijkl ε (4.1)

where

∑
k∈V

∑
i∈V

∑
j∈V
j 6=i

cijxijkl ≤ ε, l ∈M (4.2)

where the upper limit of the travel distance is denoted by the variable ε. Thus, the

overall minimum-time trajectory will be equal to the longest travel distance among

the distances traveled by each robot. The number of departures from and arrivals
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at all the starting depots, which are assumed to be unspeci�ed, is equal to the total

number of robots m, i.e.:

∑
l∈M

∑
k∈V

∑
j∈V
j 6=k

xkjkl = m (4.3)

∑
l∈M

∑
k∈V

∑
j∈V
j 6=k

xjkkl = m (4.4)

The total number of departures from and arrivals at all other nodes not including

the depots (which are unspeci�ed as well) equals (n − d), i.e., only one departure

and one arrival for any node not including the starting d depots. This is expressed

by: ∑
l∈M

∑
k∈V

∑
j∈V
j 6=k

xkjkl +
∑
l∈M

∑
k∈V

∑
i∈V
i6=k

∑
j∈V
j 6=i,k

xijkl = n− d (4.5)

∑
l∈M

∑
k∈V

∑
j∈V
j 6=k

xjkkl +
∑
l∈M

∑
k∈V

∑
i∈V
i6=k

∑
j∈V
j 6=i,k

xjikl = n− d (4.6)

respectively. To ensure that any optimal tour is not shared among more than one

depot, the route continuity constraint is imposed as follows:

xkjkl +
∑
i∈V
i6=j,k

xijkl − xjkkl −
∑
i∈V
i6=j,k

xjikl = 0, j, k ∈ V, l ∈M, j 6= k (4.7)

Let ωk be a set of auxiliary binary variables that corresponds to the optimal depots

such that, it is equal to zero if vk is an optimal depot and equals to one otherwise

for any k ∈ V . A constraint on the sum of these auxiliary variables is given by:

∑
k∈V

ωk = n− d (4.8)

Since each robot can follow one trajectory only, the sum of all the departing and
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arriving trajectories of any robot from all starting depots to any other node is always

1. ∑
k∈V

∑
j∈V
j 6=k

xkjkl = 1, l ∈M (4.9)

∑
k∈V

∑
j∈V
j 6=k

xjkkl = 1, l ∈M (4.10)

The minimum and maximum number of robots that could be placed at an optimal

depot are given by:

1 ≤
∑
l∈M

∑
j∈V
j 6=k

xkjkl + (m− (d− 1))ωk ≤ m− (d− 1) , k ∈ V (4.11)

1 ≤
∑
l∈M

∑
j∈V
j 6=k

xjkkl + (m− (d− 1))ωk ≤ m− (d− 1) , k ∈ V (4.12)

respectively. The total number of arrivals at and departures from any node vj from

any node on a trajectory whose starting depot is vk (including depot vk itself) is

one if vj is not a depot and is zero if vj is another optimal depot or this link is not

an optimal link as described by the following inequalities:

0 ≤
∑
l∈M

∑
k∈V
k 6=j

xkjkl +
∑
l∈M

∑
k∈V
k 6=j

∑
i∈V
i6=j,k

xijkl ≤ 1, j ∈ V (4.13)

0 ≤
∑
l∈M

∑
k∈V
k 6=j

xjkkl +
∑
l∈M

∑
k∈V
k 6=j

∑
i∈V
i6=j,k

xjikl ≤ 1, j ∈ V (4.14)

Moreover, the following inequality is a constraint that prevents any depot from being
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part of another depot's trajectory:

−4 ≤
∑
l∈M

∑
k∈V
k 6=i,j

xijil + xjiil + xkjil + xjkil + xjijl + xijjl + xkijl + xikjl − 2(ωi + ωj) ≤ 0,

i, j ∈ V, i 6= j

(4.15)

On the other hand, the SEC can be presented by the following inequality:

ui − uj + (n−m)
∑
l∈M

∑
k∈V
k 6=i,j

xijkl + (n− 2(d− 1))ωj ≤ n−m− 1 + (n− 2(d− 1)),

i, j ∈ V, i 6= j

(4.16)

where vj is an optimal depot if ωj = 0, for which the set of inequalities representing

an optimal tour will be valid. The maximum number of tour links that could exist

in any optimal tour is (n − 2(d − 1)). The basic constraint here is that each node

can take only one arrival and one departure . This condition is described by the

following inequalities which guarantee the formation of the trajectories only from

optimal depots:

0 ≤
∑
l∈M

∑
i∈V
i6=j

xijkl + ωk ≤ 1, j, k ∈ V, k 6= j (4.17)

0 ≤
∑
l∈M

∑
j∈V
j 6=i

xjikl + ωk ≤ 1, j, k ∈ V, k 6= j (4.18)

In the case when the return trip is not allowed, the following additional constraint

is considered: ∑
l∈M

∑
k∈V
k 6=j

xkjkl +
∑
l∈M

∑
k∈V
k 6=j

xjkkl ≤ 1, j ∈ V (4.19)
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Equations 4.1-4.19 represent the new formulation for the minimum time trajectories

for the non-prespeci�ed depots and robots.

Problem 2: Minimum-Distance Multidepot multiple Traveling Salesmen

Problem (MmTSP) among the possible MTMmTSP optimal trajectories

with unspeci�ed starting depots and robots. Given the problem statement

and con�guration of problem 1, the optimal result trajectory is not unique, i.e., there

could be several optimal trajectories with the same upper bound trajectory length

tracked by one of the robots, but for the rest of the robots' trajectories, several

results could be obtained. It is desired to obtain the minimum-distance trajectories

among all these possible optimal trajectories. This is also desired for both cases,

the return trip allowed and not allowed cases.

The new algorithm for obtaining the minimum-distance trajectories among

all the possible minimum-time trajectories can be summarized in two steps. The

�rst step is to solve the minimum-time trajectories as was introduced in problem 1.

The second step is to assign the obtained optimal minimum-time result ε which

represents the maximum travel distance among the robots to the �rst robot, and to

minimize the overall distance of the other robots while preventing any of them to

exceed ε. In other words, the optimal result obtained for problem 1 is considered to

be a constraint in problem 2.

Assuming that the optimal result obtained from problem 1 is ε∗, which rep-

resents the minimum-time optimal result, it will be assigned to the �rst robot as

in Eq. (4.21). Whereas the new cost function representing the minimum overall

distance for all the robots not including the �rst robot is represented in Eq. (4.20).

minxijkl
∑
k∈V

∑
i∈V

∑
j∈V
j 6=i

cijxijkl, l ∈M − {1} (4.20)
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∑
k∈V

∑
i∈V

∑
j∈V
j 6=i

cijxijk1 = ε∗ (4.21)

The set of Eqs. (4.3) - (4.18) or the set of Eqs. (4.3) - (4.19) are reapplied for the

return trip allowed case or for the return trip not allowed case, respectively, without

including the �rst robot in all the equations. Each robot not including the �rst

one is prevented from exceeding the optimal result (ε∗) of problem 1 , this can be

represented as: ∑
k∈V

∑
i∈V

∑
j∈V
j 6=i

cijxijkl ≤ ε∗, l ∈M − {1} (4.22)

Problem 3: Unknown number of depots and robots in the MTMmTSP

problem. The MTMmTSP problem discussed above was used to obtain the minimum-

time optimal trajectories with a given number of d depots and a number ofm robots,

without prespecifying their locations. Solving the minimum-time problem described

above without knowing the number of robots or starting depots would obviously re-

sult in a faster trajectory (due to the removal of the corresponding constraints from

the optimization problem). The possible number of robots to perform a patrolling

operation for monitoring an area ranges between 1 and n − 1 unspeci�ed robots,

represented by the new index set L = {1, . . . , n− 1} .The problem is formulated for

both cases of the return trip allowed and not allowed as introduced before. This

formulation has n4 binary variables, and n3 constraints (with an impact on the com-

plexity of computations). The minimization problem in this case is described as:

minxijkl ε (4.23)
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where ∑
k∈V

∑
i∈V

∑
j∈V
j 6=i

cijxijkl ≤ ε, l ∈ L (4.24)

The number of departures from and arrivals at all the starting depots (which are

unknown in this case), satisfy the following inequalities:

n−
∑
k∈V

ωk ≤
∑
l∈L

∑
k∈V
k 6=j

∑
j∈V

xkjkl ≤
∑
k∈V

ωk (4.25)

n−
∑
k∈V

ωk ≤
∑
l∈L

∑
k∈V
k 6=j

∑
j∈V

xjkkl ≤
∑
k∈V

ωk (4.26)

respectively (note that the left side of the above inequalities is, in fact, the optimal

number of depots). The total number of departures from and arrivals at all other

nodes not including the depots, which are unknown equals the sum of the auxiliary

binary variables (excluding the optimal number of depots from the total number of

viewpoints). This is expressed by:

∑
l∈L

∑
k∈V

∑
j∈V
j 6=k

xkjkl +
∑
l∈L

∑
k∈V

∑
i∈V
i6=k

∑
j∈V
j 6=i,k

xijkl =
∑
k∈V

ωk (4.27)

∑
l∈L

∑
k∈V

∑
j∈V
j 6=k

xjkkl +
∑
l∈L

∑
k∈V

∑
i∈V
i6=k

∑
j∈V
j 6=i,k

xjikl =
∑
k∈V

ωk (4.28)

To ensure that an optimal route is not shared between more than one depot, the

following route continuity constraint is imposed:

xkjkl +
∑
i∈V
i6=j,k

xijkl − xjkkl −
∑
i∈V
i6=j,k

xjikl = 0, j, k ∈ V, l ∈ L, j 6= k (4.29)

The next equation represents a new constraint on the sum of the new auxiliary
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variables, which represents a constraint on the total sum of the optimal depots:

n/2 ≤
∑
k∈V

ωk ≤ n− 1 (4.30)

The sum of all the departing and arriving trajectories of any robot from all starting

depots to any other node is only 1, as described in the following inequalities:

0 ≤
∑
k∈V

∑
j∈V
j 6=k

xkjkl ≤ 1, l ∈ L (4.31)

0 ≤
∑
k∈V

∑
j∈V
j 6=k

xjkkl ≤ 1, l ∈ L (4.32)

The possible number of arrivals and departures from any depot can be represented

by:

0 ≤
∑
l∈L

∑
j∈V
j 6=k

xkjkl + (n− 1)ωk ≤ n− 1, k ∈ V (4.33)

0 ≤
∑
l∈L

∑
j∈V
j 6=k

xjkkl + (n− 1)ωk ≤ n− 1, k ∈ V (4.34)

The total number of arrivals at and departure from any node vj from any node on

a trajectory whose starting depot vk (including depot vk itself) is one in case of vj

is not a depot and equals zero in case vj is another depot. This is described by the

following inequalities:

0 ≤
∑
l∈L

∑
k∈V
k 6=j

xkjkl +
∑
l∈L

∑
k∈V
k 6=j

∑
i∈V
i6=j,k

xijkl ≤ 1, j ∈ V (4.35)

0 ≤
∑
l∈L

∑
k∈V
k 6=j

xjkkl +
∑
l∈L

∑
k∈V
k 6=j

∑
i∈V
i6=j,k

xjikl ≤ 1, j ∈ V (4.36)
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respectively. Now, in order to ensure that no depot is included in another depot's

trajectory, the following constraint is imposed:

−4 ≤
∑
l∈L

∑
k∈V
k 6=i,j

xijil + xjiil + xkjil + xjkil + xjijl + xijjl + xkijl + xikjl − 2(ωi + ωj) ≤ 0,

i, j ∈ V, i 6= j

(4.37)

The SEC can also be presented by:

ui − uj + n
∑
l∈L

∑
k∈V
k 6=i,j

xijkl + (n)ωj ≤ n− 1 + n, i, j ∈ V, i 6= j (4.38)

One of the basic constraints in this kind of patrolling problem is that each node is

arrived at or departed from only once, and by a trajectory which starts from only

one optimal depot. This is formulated as follows:

0 ≤
∑
l∈L

∑
i∈V
i6=j

xijkl + ωk ≤ 1, j, k ∈ V, j 6= k (4.39)

0 ≤
∑
l∈L

∑
i∈V
i6=j

xjikl + ωk ≤ 1, j, k ∈ V, j 6= k (4.40)

respectively. The following additional constraint is imposed if the return trip is not

allowed: ∑
l∈L

∑
k∈V
k 6=j

xkjkl +
∑
l∈L

∑
k∈V
k 6=j

xjkkl ≤ 1, j ∈ V (4.41)

Equations 4.23-4.41 represent the new formulation for the minimum time trajectories

of unknown number of depots and robots.

Problem 4: Minimum-Distance Multidepot multiple Traveling Salesmen

Problem (MmTSP) among the possible MTMmTSP optimal trajectories
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with unknown number of depots and robots. Given the problem statement

and con�guration of problem 3, the optimal result trajectory is not unique, i.e., there

could be several optimal trajectories with the same upper bound trajectory length

tracked by one of the robots, but for the rest of the robots' trajectories, several

results could be obtained. It is desired to obtain the minimum-distance trajectories

among all these possible optimal trajectories. This is also desired for both cases,

the return trip allowed and not allowed cases.

The new algorithm for obtaining the minimum-distance trajectories among all

the possible minimum-time trajectories in the case of unknown number of depots

and robots can be summarized in two steps. The �rst step is to solve the minimum-

time trajectories as was introduced in problem 3. The second step is to assign

the obtained optimal minimum-time result ε which represents the maximum travel

distance among the robots to one robot, and to minimize the overall distance of the

other possible number of robots and depots which are still unknown while preventing

any trajectory to exceed ε. In other words, the optimal result obtained for problem

3 is considered to be a constraint in problem 4.

Assuming that the optimal result obtained from problem 3 is ε+, which repre-

sents the minimum-time optimal result for the case of unknown number of depots

and robots, it will be assigned to one robot as in Eq. (4.43). Whereas the new

cost function representing the minimum overall distance for all the possible robots

is represented in Eq. (4.42).

minxijkl
∑
k∈V

∑
i∈V

∑
j∈V
j 6=i

cijxijkl, l ∈ L− {1} (4.42)

∑
k∈V

∑
i∈V

∑
j∈V
j 6=i

cijxijk1 = ε+ (4.43)

The set of Eqs. (4.25) - (4.40) or the set of Eqs. (4.25) - (4.41) are reapplied for the
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return trip allowed case or for the return trip not allowed case, respectively, without

including the already obtained robot in all the equations. Each robot not including

the �rst one is prevented from exceeding the optimal result (ε+) of problem 3, this

can be represented as:

∑
k∈V

∑
i∈V

∑
j∈V
j 6=i

cijxijkl ≤ ε+, l ∈ L− {1} (4.44)

Problems 1-4 are all expressed in MIP frameworks with linear constraints. Thus,

they are convex and always have a feasible optimal solution. The proposed formula-

tions introduce e�cient optimization frameworks, which can be handled by existing

solvers. For example, Gurobi Optimizer 6.0 [102] optimization software or MOSEK

optimization software [101] can be used to solve the previous formulations where a

linear-programming based branch-and-bound algorithm is used to solve such prob-

lems.

4.3 Simulation Results

Consider the patrolling problem for a �eld of size 20m by 20m, where a set of n = 9

nodes (viewpoints) are to be visited. Let the number of robots be m = 3, with the

number of depots d = 2 for the �rst and second problems. Assuming the robots move

with constant velocity 1 m/s, and using the proposed formulations either for the

unspeci�ed starting depots and their corresponding starting robots or the unknown

number of depots and robots. It is desired to �nd the minimum-time trajectories and

the minimum-distance trajectories among all possible minimum-time trajectories.

MATLAB was used with the Gurobi Optimizer 6.0 [102] optimization software to

obtain all the results using Intel Core i7-3537U @ 2.00GHz processor with 8 GB

RAM.
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Figs. 4.1-4.3 show the minimum-time trajectory, the minimum-distance tra-

jectory that can achieve the obtained minimum-time trajectory and the minimum-

distance trajectory obtained using Chapter 3 formulation for the unspeci�ed depots

and robots, all for the return trip allowed case, respectively. A comparison among

the three �gures is provided in Table 4.1, which clearly demonstrates the di�er-

ence among the proposed problems. Figs. 4.4-4.6 show the corresponding �gures of

Figs. 4.1-4.3, respectively, but this time for the return trip not allowed case. The

corresponding comparison among the these �gures is given in Table 4.2.

Analogously, Figs. 4.7-4.12 present the optimal trajectories analogous to Figs.

4.1-4.6 but for the case where the number of depots and robots are unknown. Similar

comparisons are given in Tables 4.3 and 4.4 among the results for the return trip

allowed and not allowed cases, respectively.

As expected, Tables 4.1-4.4 con�rm that the total travel distance obtained in

the minimum-distance approach is less than that in the minimum-time approach,

whereas the total travel time is less in the case of the minimum-time approach for

di�erent cases of the unspeci�ed starting depots and robots with known or unknown

number, and with the return trip is allowed or not allowed. It can also be veri�ed

from the tables that the computation time for the minimum-time approach is more

than that of the minimum-distance approach. This is due to the nature of the

optimization framework as well as the increase in the number of variables in the

case of the minimum-time approach.
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Figure 4.1: MTMmTSP using unspeci�ed starting depots and robots with the
return trip allowed (n = 9,m = 3, d = 2)
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Figure 4.2: The minimum-distance of the possible MTMmTSP outputs using
unspeci�ed starting depots and robots with the return trip allowed

(n = 9,m = 3, d = 2)
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Figure 4.3: Minimum-distance MmTSP using unspeci�ed starting depots and
robots with the return trip allowed (n = 9,m = 3, d = 2)
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Figure 4.4: MTMmTSP using unspeci�ed starting depots and robots with the
return trip not allowed (n = 9,m = 3, d = 2)
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Figure 4.5: The minimum-distance of the possible MTMmTSP outputs using
unspeci�ed starting depots and robots with the return trip not allowed

(n = 9,m = 3, d = 2)
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Figure 4.6: Minimum-distance MmTSP using unspeci�ed starting depots and
robots with the return trip not allowed (n = 9,m = 3, d = 2)

71



0 2 4 6 8 10 12 14 16 18 20 0
0 0

2 2

4 4

6 6

8 8

10 10

12 12

14 14

16 16

18 18

20 

x [meters] 

1010

1212

y
 [

m
et

er
s]

 

2 

5 5

4 

8 

3 

6 

7 

1 

9 

Figure 4.7: MTMmTSP using unknown starting depots and robots with the return
trip allowed (n = 9)
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Figure 4.8: The minimum-distance of the possible MTMmTSP outputs using
unknown starting depots and robots with the return trip allowed (n = 9)
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Figure 4.9: Minimum-distance MmTSP using unknown starting depots and robots
with the return trip allowed (n = 9)

72



0 2 4 6 8 10 12 14 16 18 20 0
0 0

2 2

4 4

6 6

8 8

10 10

12 12

14 14

16 16

18 18

20 

x [meters] 

y
 [

m
et

er
s]

 

2 

5 

4 

8 

3 

6 

7 

1 

9 

Figure 4.10: MTMmTSP using unknown starting depots and robots with the
return trip not allowed (n = 9)
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Figure 4.11: The minimum-distance of the possible MTMmTSP outputs using
unknown starting depots and robots with the return trip not allowed (n = 9)
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Figure 4.12: Minimum-distance MmTSP using unknown starting depots and
robots with the return trip not allowed (n = 9)
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Table 4.1: Comparison among Figs. 4.1-4.3

MTMmTSP
Minimum-Distance among

MmTSP
MTMmTSP results

Starting depots
# 2, 8 # 2, 8 # 1, 2

(calculated) (calculated) (calculated)

Initial number of robots m2 = 1, m8 = 2 m2 = 1, m8 = 2 m1 = 2, m2 = 1
at each depot (calculated) (calculated) (calculated)

Total travel distance per tour 71.4889m 71.4889m 69.3068m
Total travel time per tour 25.2982s 25.2982s 34.0086s

Computation time 16.36s 23.13s 1.16s

Table 4.2: Comparison among Figs. 4.4-4.6

MTMmTSP
Minimum-Distance among

MmTSP
MTMmTSP results

Starting Depots
# 2, 3 # 2, 9 # 3, 9

(calculated) (calculated) (calculated)

Initial number of robots m2 = 1, m3 = 2 m2 = 1, m9 = 2 m3 = 2, m9 = 1
at each depot (calculated) (calculated) (calculated)

Total travel distance per tour 86.4152m 79.1658m 74.2718m
Total travel time per tour 29.3449s 29.3449s 34.509s

Computation time 4.24s 59.25s 1.11s

Table 4.3: Comparison among Figs. 4.7-4.9

MTMmTSP
Minimum-Distance among

MmTSP
MTMmTSP results

Starting Depots
# 1, 3, 5 # 1, 3, 4, 5 # 1, 2, 5, 8

(calculated) (calculated) (calculated)

Initial number of robots m1 = m3 = 1, m5 = 2 m1 = m3 = m4 = m5 = 1 m1 = m2 = m5 = m8 = 1
at each depot (calculated) (calculated) (calculated)

Total travel distance per tour 80.6524m 69.2859m 62.5939m
Total travel time per tour 23.3238s 23.3238s 25.2982s

Computation time 112.75s 131.17s 0.1s

Table 4.4: Comparison among Figs. 4.10-4.12

MTMmTSP
Minimum-Distance among

MmTSP
MTMmTSP results

Starting Depots
# 3 # 3 # 1

(calculated) (calculated) (calculated)

Initial number of robots m3 = 4 m3 = 4 m3 = 1
at each depot (calculated) (calculated) (calculated)

Total travel distance per tour 109.0865m 99.6818m 65.7487m
Total travel time per tour 28.8685s 28.8685s 65.7487s

Computation time 2541.54s 4088.8s 0.1s
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In the next chapter, the more challenging problem of having Dubins' trajectories

with minimum turning radius are investigated. A new algorithm is introduced to

convert an ETSP optimal solution to a kinematic-feasible Dubins' trajectory suitable

to be tracked by Dubins' vehicles.
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Chapter 5

Pulleys Algorithm for Obtaining

Sub-Optimal Dubins' Trajectories for

Patrolling Problem

In the previous chapters, the patrolling problem was introduced to be performed

using TWMR that were assumed to have the ability of turning on the spot, i.e.,

they have two di�erential servomotors to track the trajectories optimally obtained

as a solution to the ETSP. They were also assumed to be agile and can change

directions quickly relative to the inter-activity travel times, the time between two

activities could then be described approximately in terms of the distances between

the activities. But what if the wheeled robots doesn't have this ability, i.e., the

wheeled robots can only track planar curvature-bounded trajectories due to signi�-

cant kinematic constraints such as limited turning radius, and the inability to move

in a reverse direction, then the problem will be more challenging because the ETSP

solution will provide poor estimates of actual travel time and vehicle location [53].

This kind of robots are known by Dubins' vehicles, they can move with bounded

curvature of minimum-turning radius and constant forward velocity.
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5.1 Background

In 1889, Andrey Andreevich Markov published a paper [104] where he considered

several mathematical problems that represent the minimum-time point-to-point

path planning problem with bounded curvature related to the design of railways.

The simplest among these problems (and the �rst one in course of the presentation)

is described as follows. Find a minimum length curve between two points in the

plane provided that the curvature radius of the curve should not be less than a

given quantity and the tangent to the curve should have a given direction at the

initial point. In 1957, in American Journal of Mathematics, Lester Eli Dubins con-

sidered a problem in the plane on �nding the minimum length curve connecting two

given points among smooth curves of bounded curvature with minimum radius rmin

provided that the initial direction at the �rst point and terminal direction at the

second point are prespeci�ed [54]. He proved that circular arcs of radius rmin and

straight-line segments (of in�nite radius) can be employed to plan a minimum-time

trajectory. He prescribed the set of su�cient family FD of optimal paths as follows:

• Set CCC of types RLR,LRL.

• Set CSC of types RSR,LSL,RSL,LSR.

where C denotes a circular arc of radius of rmin which can be clockwise or counter-

clockwise and thus represented by R or L, respectively. Whereas the straight-line

segment is represented in the di�erent con�gurations by S. A typical method on

how to obtain the optimal path graphically can be found in [105] as in Figs. 5.1,

5.2.

In 1991, Héctor Sussman & Guoqing Tang [106] slightly improved Dubins'

curves by adding some constraints and it must also be mentioned that similar results

were obtained independently and presented almost simultaneously by Boissonnat,

Cerezo and Leblond in [107], these constraints are as follows [105]:
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Figure 5.1: An example of obtaining the optimal path for a Dubins' vehicle for
CSC con�guration

Figure 5.2: An example of obtaining the optimal path for a Dubins' vehicle for
CCC con�guration

• The set of su�cient family FD of optimal paths can be re-written as:

� RaSbRc, LaSbLc, RaSbLc, LaSbRc, RγLeRf , LγReLf

such that:

� a, c ∈ [0, 2π)

� b ≥ 0

� min {γ, f} < e− π

� max {γ, f} < e

where a, c represent the possible circular arc lengths in CSC con�guration, γ, e, f

represent the possible circular arc lengths in CCC con�guration and b represents

the straight-line segment length in CSC con�guration.

Several articles introduced di�erent algorithms to obtain a DTSP trajectory such as

the Alternating Algorithm (AA) [60, 62, 65], the Two-point Algorithm (2PA), the
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Three-point Algorithm (3PA) and the Looking Ahead Algorithm (LAA) [53]. These

algorithms only consider solving for the DTSP depending on the ETSP for solving

a typical TSP, i.e., the ending heading angle that arrives at the initial point (depot)

is not the same as the �rst departing heading angle from the same point. Thus the

DTSP sub-optimal solution obtained from these algorithms are only valid for one

tour, starting from a depot and returning back to it, but it is not applicable for

the patrolling problem. The AA was presented in [60, 62, 65] with some theoretical

derivations for its upper bound, on the other hand, the 2PA, the 3PA, and the

LAA were introduced in [53] without any theoretical derivations or representations

for their upper bounds. Thus, this chapter �rst represents the previous mentioned

algorithms and introduces theoretical derivations for the 2PA and the 3PA for their

upper bounds, followed by proposed enhancements for the 2PA and the AA.

The rest of this chapter is organized as follows. The problem statement for

obtaining sub-optimal kinematic-feasible trajectories for patrolling problem applica-

tions is introduced in Section 5.2. Section 5.3 presents the existing algorithms in the

literature and introduces enhancements for them. Deriving Upper bounds for the

2PA and the 3PA are presented in Section 5.4. A new proposed algorithm named

the Pulleys Algorithm (PA) is introduced in Section 5.5.

5.2 Problem Statement

It is required to generate sub-optimal kinematic-feasible trajectories connecting the

viewpoints preserving the original order of ETSP optimal solution to be applica-

ble for the patrolling problem using Dubins' vehicles. It is clear from the previous

constraints that whenever the euclidean distance between the initial and �nal con-

�gurations is greater than 6rmin, the CCC type of paths are to be disregarded.

The reason for this being that the �nal con�guration then clearly is beyond the
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range of any CCC path, making the 6rmin a limitation [105]. Now, assuming that

rmin is much smaller than the euclidean distances which is a convenient and prac-

tical assumption for the patrolling problem, the CCC type of trajectories won't be

considered in the patrolling problem.

5.3 Existing Algorithms and Enhancements

5.3.1 The 2PA

The 2PA is based on obtaining the optimal DTSP between each two consecutive way-

points where the orientation angle at the second way-point is always assumed to be

free. This in fact reduces the set family of the optimal trajectories con�gurations to

the following set [53]:

• Set CCv of types RL,LR with v > π

• Set CS of types RS,LS

Figure 5.3: Examples of 2PA trajectories for CS and CCv con�gurations

Some graphical examples are shown in Fig. 5.3 where the black points represent

di�erent possible ending points.
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5.3.2 The 3PA

The 3PA is based on obtaining the optimal DTSP between each three consecutive

way-points with a free orientation at the third point such that [53]:

• Dubins paths are computed only at every odd point a2k−1 where k = 1, . . . , (n+

1)/2.

• The solution of the three-point Dubins path from (a2k−1,θ2k−1) through a2k to

a2k+1 yields orientations θ2k and θ2k+1

• Another three-point Dubins path from (a2k+1,θ2k+1) is solved to the next two

way-points, and repeat the process to cover all the way-points.

• When the number of way-points is even, the last segment will only be a two-

point path.

• The trajectories must be in one of these four types: CSCS,CSCC,CCCS,CCCC

or their shortest version, but when the way-points are spaced > 2rmin, the op-

timal path will be of CSCS type.

• The midpoint bisects the turning arc.

Two graphical examples are shown in Fig. 5.4 that represent two possible formations

of the CSCS con�guration.

5.3.3 The LAA

The LAA was introduced in [53] and it is based on RHC principles. Based on the

3PA Dubins' path solution, the basic idea of this algorithm is to use this solution

to determine only the path and orientation up to the middle way-point. Thus, the

solution for (a1,θ1), a2, a3 is only used to determine θ2. Note that the choice of θ2 will

be heavily in�uenced by the location of a3 in the 3PA Dubins path solution. Once θ2

81



Figure 5.4: Examples of 3PA trajectories for CSCS con�guration

is known, the tour can be extended by solving another 3PA problem starting from

(a2,θ2). There is no theoretical prespeci�ed graphical representation of the LAA as

the LAA optimal trajectory as introduced in in [53], will strongly depend on the

performance of the RHC used and consequently on its tuning parameters.

5.3.4 The AA

The AA introduced in [60, 62, 65] depends on keeping the ETSP odd edges as it

is while converting the even edges to its corresponding Dubins' curves according to

the following AA steps stated in [60, 62, 65]:

Given a set Λ of n points in a compact region Q ⊂ R2, optimally ordered using an

ETSP optimal solution as a result of using an ETSP-ALGO(Λ). set A := ETSP-

ALGO(Λ)

set ψ1 := orientation of the edge from a1 to a2

for i = 2 to n− 1 do

if i is even then

set ψi := ψi−1

else

set ψi := orientation of the edge from ai to ai+1

end if
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end for

if n is even then

set ψn := ψn−1

else

set ψn := orientation of the edge from an to a1

end if

Figure 5.5: (a) A graph representing the solution of ETSP over a given Λ, (b) A
graph representing the solution given by the AA over the same Λ [60, 62, 65]

From the AA it is proved that:

• ETSP(Λ) ≤ LAA(Λ,rmin) ≤ ETSP(Λ) + k[
n

2
]πrmin, where k = [2.657, 2.658]

• If there exists η > 0 such that mini,j∈Λ, i6=j cij ≥ ηrmin, then for n ≥ 3

LAA(Λ,rmin) ≤ (1 +
5kπ

6η
) ETSP(Λ)

An important consequence of these results is that, given a point set, for small enough

rmin, the order of points in the optimal path for the ETSP(Λ) is the same as in the
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optimal path for the DTSP(Λ, rmin).

It is worth to say that the AA with odd number of way-points, the 2PA and

the 3PA can be used to obtain a sub-optimal solution for TSP but not for patrolling

problem. The reason is that they neglect the necessity that the �nal edge connecting

the last way-point and the initial one should have the same orientation as the initial

edge departed from the initial way-point, i.e., the robot can't repeat tracking the

same trajectory once more if the patrolling operation is required. Thus, in the

previous mentioned algorithms, if they are to be applied to the patrolling problem,

the edges arriving at and departing from the initial way-point should have the same

orientation. Moreover, no theoretical upper bounds were introduced to the 2PA,

the 3PA and the LAA, in addition, the LAA optimal trajectory as introduced, will

strongly depend on the performance of the RHC used.

5.3.5 Enhancements for the 2PA and the AA

Before introducing the upper bounds for the 2PA and the 3PA, it is preferably to

introduce two enhancements, one for the 2PA and the other for the AA as follows:

• Instead of following the same ETSP(Λ) for the �rst edge and then applying

the 2PA for the rest of the way-points, it would be better if the longest edge

in the ETSP(Λ) is followed �rst with its same length and then apply the 2PA

successively for the rest of the way-points.

• Instead of following the same ETSP(Λ) for the �rst edge and then applying

the AA for the rest of the way-points, it would be better if the longest edge

in the ETSP(Λ) is followed �rst with its same length and then apply the AA

successively for the rest of the way-points.

Fig. 5.6 shows the e�ect of these enhancements on both the 2PA and the AA on one

simple example of 5 way-points without considering applying them to the patrolling

84



problem. The dashed trajectories represent the optimal DTSP obtained by the

algorithms before using the enhancements, whereas the solid trajectories represent

the optimal result after using the enhancements.
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Figure 5.6: (a) A graph representing the solution of ETSP over a given set Λ, (b)
A graph representing the solution given by the 2PA over the same set Λ with and
without enhancement, (c) A graph representing the solution given by the AA over

the same set Λ with with and without enhancement
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5.4 Deriving Upper Bounds for the 2PA and the

3PA

• Deriving Upper bounds for the 2PA:

� For 0 ≤ cij, 2PA(Λ, rmin) < ETSP(Λ) + 2πrmin

� For rmin ≤ cij, 2PA(Λ, rmin) < ETSP(Λ) +
3π

2
rmin

� For rmin << cij, 2PA(Λ, rmin) < ETSP(Λ) + πrmin

�       �   

Figure 5.7: A graph representing the upper bound for the 2PA

Proof. As shown in Fig. 5.7, the result of the ETSP(Λ) = 2cij for n = 2 and is

represented in red color for di�erent cij lengths. Since the 2PA result is composed

of two lengths, the �rst is cij, and the second depends on the Dubins' trajectory

from j to i which depends on the departure angle from j. The worst case for this

departure angle is 0 so calculating the upper bounds for each possible length of cij

is as follows:

* For 0 ≤ cij

The distance from j to i will be 2πrmin for very small cij as represented by the

dashed minimum-radius circle. Thus, 2PA(Λ, rmin) < ETSP(Λ) + 2πrmin.

* For rmin ≤ cij

The worst scenario in this case where cij = rmin, the ETSP(Λ) = 2rmin and

the distance from j to i will be
3π

2
rmin + rmin as represented by the green-dashed

line. Thus, 2PA(Λ, rmin) < ETSP(Λ) +
3π

2
rmin.
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* For rmin << cij

As cij increases, the upper bound decreases to be ETSP(Λ) + πrmin as repre-

sented by the blue-dashed line followed by the yellow-dashed line.

Thus, 2PA(Λ, rmin) < ETSP(Λ) + πrmin.

As a result, for obtaining general upper bounds for n ≥ 3, the �rst edge will always

be the same as in the ETSP(Λ)optimal solution. Therefore the general upper bounds

for n way-points can be as follows:

� For 0 ≤ cij, 2PA(Λ, rmin) < ETSP(Λ) + (n− 1)2πrmin

� For rmin ≤ cij, 2PA(Λ, rmin) < ETSP(Λ) + (n− 1)
3π

2
rmin

� For rmin << cij, 2PA(Λ, rmin) < ETSP(Λ) + (n− 1)πrmin

• Deriving Upper bounds for the 3PA:

To derive the upper bounds for the 3PA, it is assumed that at least 2rmin ≤ cij

to guarantee having a minimum-radius circle at the intermediate way-point of

any three consecutive way-points. It is also necessary to di�erentiate between

the n edges as each edge can have a di�erent upper bound as follows:

n = �rst edge + even edges + odd edges.

� The upper bound of the �rst & even edges:

∗ For 2rmin ≤ cij, 3PA(Λ, rmin) < ETSP(Λ) + (π − 2)rmin

∗ For 2rmin << cij, 3PA(Λ, rmin) < ETSP(Λ) + (
π

2
− 1)rmin

� The upper bound of odd edges:

∗ For 2rmin ≤ cij, 3PA(Λ, rmin) < ETSP(Λ) + 2πrmin

∗ For 2rmin << cij, 3PA(Λ, rmin) < ETSP(Λ) + (
3π

2
− 1)rmin
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Proof. First, for the upper bounds of the �rst & even edges:

As shown in Fig. 5.8, the result of the ETSP(Λ) = cij and is represented in red

color for di�erent cij lengths. Calculating the upper bounds for each possible length

of cij is as follows:

* For 2rmin ≤ cij

The worst scenario in this case where cij = 2rmin, the ETSP(Λ) = 2rmin and

the distance from i to j will be πrmin as represented by the blue-dashed circle or

the yellow-solid arc. Thus, 3PA(Λ, rmin) < ETSP(Λ) + (π − 2)rmin.

* For 2rmin << cij

As cij increases, the upper bound decreases to be ETSP(Λ) + (
π

2
− 1)rmin as

represented by the green-dashed line. Thus, 3PA(Λ, rmin) < ETSP(Λ) + (
π

2
−1)rmin.

Second, for the upper bounds of the odd edges:

As shown in Fig. 5.9, the result of the ETSP(Λ) = cij and is represented in

red color for di�erent cij lengths. The corresponding Dubins' trajectory from j to i

depends on the departure angle from j where the worst case for this departure angle

is 0. Calculating the upper bounds for each possible length of cij is as follows:

* For 2rmin ≤ cij

The worst scenario in this case where cij = 2rmin, the ETSP(Λ) = 2rmin and

the distance from j to i will be 2πrmin+2rmin as represented by the yellow trajectory.

Thus, 3PA(Λ, rmin) < ETSP(Λ) + 2πrmin.

* For 2rmin << cij

As cij increases, the upper bound decreases to be ETSP(Λ) + (πrmin+
π

2
rmin)

as represented by the green trajectory.

Thus, 3PA(Λ, rmin) < ETSP(Λ) + (
3π

2
− 1)rmin.

Thus the total upper bound of the 3PA solution for n way-points can be summarized

in the following table:
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Figure 5.8: The upper bound derivation of the �rst and even edges in 3PA

�       �

Figure 5.9: The upper bound derivation of the odd edges in 3PA

Table 5.1: Upper bounds for the 3PA

2rmin ≤ cij 2rmin << cij

n is odd

3PA(Λ, rmin) ≤ ETSP(Λ) +(
n+ 1

2
)(π − 2)rmin + (

n− 1

2
)2πrmin 3PA(Λ, rmin) ≤ ETSP(Λ) +(

n+ 1

2
)(
π

2
− 1)rmin + (

n− 1

2
)(

3π

2
− 1)rmin

= =

3PA(Λ, rmin) ≤ ETSP(Λ) +n(
3π

2
− 1)rmin + (−π

2
− 1)rmin 3PA(Λ, rmin) ≤ ETSP(Λ) +n(π − 1)rmin −

π

2
rmin

n is even

3PA(Λ, rmin) ≤ ETSP(Λ) +(
n+ 2

2
)(π − 2)rmin + (

n− 2

2
)2πrmin 3PA(Λ, rmin) ≤ ETSP(Λ) +(

n+ 2

2
)(
π

2
− 1)rmin + (

n− 2

2
)(

3π

2
− 1)rmin

= =

3PA(Λ, rmin) ≤ ETSP(Λ) +n(
3π

2
− 1)rmin + (−π − 2)rmin 3PA(Λ, rmin) ≤ ETSP(Λ) +n(π − 1)rmin − πrmin

5.5 Pulleys Algorithm

In all the previous algorithms, the main key in each algorithm was how to �nd the

proper orientation angle at each way-point. What if this is directly taken from a

natural physical system, this system is in fact the system of pulleys. For a given

number of viewpoints, the arriving and departing angles at each viewpoint can be

considered as in the case of a pulley. A typical pulley with a belt tensioned around

it is shown in Fig. 5.10. A new algorithm is introduced with derived upper bounds,

named the Pulleys Algorithm (PA) and it is as follows:
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Figure 5.10: A typical pulley with a belt tensioned around it

1- Place a circle of radius rmin at each viewpoint such that it intersects the arriving

and departing trajectories in two equal chords with the viewpoint in the middle of

the arc that starts with the �rst intersection and ends with the second one.

2- Connect the common tangents of each two consecutive circles with these arcs.

This can be illustrated clearly in a simple 3-viewpoints example as in Fig. 5.11,

where the red trajectory represents the ETSP optimal result and the green one

represents the proposed PA sub-optimal trajectory. There are some special cases

that are discussed later in this chapter while deriving the upper bounds.

� 

  

�

! 

Figure 5.11: A sub-optimal trajectory obtained using the proposed Pulley
Algorithm

• Deriving Upper bounds for the PA:

� For n = 2:

∗ For 2rmin ≤ cij, PA(Λ, rmin) = ETSP(Λ) + (π − 2)rmin
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Proof. As shown in Fig. 5.12, the result of the ETSP form i to j is cij

and is represented in a red color for di�erent cij lengths. The length

of the sub-optimal trajectory using the PA in this case is given by

ETSP + 2(
π

2
− rmin) as represented by the yellow trajectory.

Thus, PA(Λ, rmin) = ETSP(Λ) + (π − 2)rmin.

�   �   �   �

Figure 5.12: A graph for deriving the upper bound of the PA if 2rmin ≤ cij for
n = 2

∗ For rmin ≤ cij < 2rmin, PA(Λ, rmin) = ETSP(Λ) + 3πrmin

(not applicable for the patrolling problem)

Proof. As shown in Fig. 5.13, the worst scenario for this case is

when cij = 2rmin. The result of the ETSP form i to j is 2rmin and is

represented in a red color. The length of the sub-optimal trajectory

using the PA in this case is given by 2(3
π

2
rmin + rmin) as represented

by the yellow trajectory.

Thus, PA(Λ, rmin) = ETSP(Λ) + 3πrmin.

�   �

Figure 5.13: A graph for deriving the upper bound of the PA if rmin ≤ cij < 2rmin
for n = 2

∗ For cij < rmin, PA(Λ, rmin)= ETSP(Λ) + (3π + 2)rmin

(not applicable for the patrolling problem)
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Proof. As shown in Fig. 5.14, the worst scenario for this case is

when cij is too small. The result of the ETSP form i to j is cij and is

represented in a red color. The length of the sub-optimal trajectory

using the PA in this case is given by 2(3
π

2
rmin+2rmin) as represented

by the yellow trajectory.

Thus, PA(Λ, rmin)= ETSP(Λ) + (3π + 2)rmin.

�   �

Figure 5.14: A graph for deriving the upper bound of the PA if cij < rmin for n = 2

� For n ≥ 3:

∗ For 2rmin ≤ cij, PA(Λ, rmin) ≤ ETSP(Λ) + n(π − 2)rmin

Proof. As shown in Fig. 5.15, the result of the ETSP form i to j is

cij and is represented in a red color. From the �gure it is clear that:

ETSP(Λ) = cik + ckl + clj (5.1)

where k and l are the two intersecting points between the two per-

pendiculars from the two centers of the two circles and the link Eij

On the other hand the length of the PA sub-optimal result can be

calculated as follows.

PA(Λ, rmin) = im
_

+mn_ + cns + sj
_

(5.2)

with

mn_ = rs_ (5.3)
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where m and r are the two intersecting points between the two per-

pendiculars from the two centers of the two circles and the circumfer-

ences of the two circles and n and s are the two external tangential

points of the two circles. Eq. 5.2 can then be rewritten as:

PA(Λ, rmin) = im
_

+ cns + rj
_

(5.4)

The worst case then will happen when cij = 2rmin, then the up-

per bound of the PA trajectory which is represented by the yellow

trajectory will be the same as the corresponding case for n = 2.

Thus, PA(Λ, rmin) ≤ ETSP(Λ) + n(π − 2)rmin.
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Figure 5.15: A graph for deriving the upper bound of the PA if 2rmin ≤ cij for
n ≥ 3

∗ For cij < 2rmin (not applicable for the patrolling problem)

· If cij intersects the two circles in two chords,

PA(Λ, rmin) ≤ ETSP(Λ) + n(π − 2)rmin

As shown in Fig. 5.16, the same upper bound will be applied as

for the previous case with the same proof.

· If cij intersects the two circles in one chord only,

PA(Λ, rmin) ≤ ETSP(Λ) + 3nπrmin

Proof. As shown in Fig. 5.17, the result of the ETSP form i to j

is cij and is represented in a red color. From the �gure it is clear
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Figure 5.16: A graph for deriving the upper bound of the PA if cij < 2rmin for
n ≥ 3 and cij intersects the two circles in two chords

that:

ETSP(Λ) = cik + ckl + clj (5.5)

where k and l are as de�ned previously. On the other hand the

length of the PA sub-optimal result can be calculated as follows.

PA(Λ, rmin) = im
_

+mn_ + cns + sr_+ rj
_

(5.6)

with

mn_ = rs_ (5.7)

where m and r are as de�ned before. Eq. 5.6 can then be rewrit-

ten as:

PA(Λ, rmin) = im
_

+ cns + rj
_

+ 2πrmin (5.8)

The worst case then will happen when cij is too small which will

lead to too small cns and the upper bound of the PA trajectory

which is represented by the yellow color can be formulated as:

PA(Λ, rmin) ≤ ETSP(Λ) + 3nπrmin.

• Special cases:

� The external tangent of the two circles touches one of them after the

viewpoint position:

94



� 

  ! " 

# 

$ 

% 

#

"

& 

!  

%%%

&

Figure 5.17: A graph for deriving the upper bound of the PA if cij < 2rmin for
n ≥ 3 and cij intersects the two circles in one chord only

∗ For 2rmin ≤ cij, PA(Λ, rmin) ≤ ETSP(Λ) + n(
5π

2
+
√

2− 2)rmin

i.e.,

For 2rmin ≤ cij, PA(Λ, rmin) ≤ ETSP(Λ) + 7.268 nrmin

To decrease the impact of this case, it is assumed that 6rmin ≤ cij

which not only prevents the formation of a CCC type trajectory but

also decreases the possible di�erence between the actual location of

the viewpoint and the tangential point to 0.2 rmin which is convenient

for the patrolling operation.

Proof. To �nd out the worst scenario that can happen for this case when

2rmin ≤ cij it is required to search for the longest possible distance that

can occur between the missed tangential point and the exact location of

the way-point, this can be achieved if the link (i, j) is considered to be

a diameter in one circle and is tangential to the other circle at one of its

terminal points as illustrated in Fig. 5.18. It is clear from the geometry of

the �gure that maximum length between the viewpoint i and the external

tangential point n which is represented in the �gure by green-dashed line

is:

cni = 2rmin cos(135/2) (5.9)

cni = 0.765rmin (5.10)
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Thus, ETSP from i to j is 2rmin, whereas the length of the sub-optimal

result of PA is given by:

PA(Λ, rmin) ≤ iy
_

+ yn_+ cns + sj
_

(5.11)

with

iy
_

= jx
_

(5.12)

Eq. 5.12 can then be rewritten as:

PA(Λ, rmin) ≤ (3
π

2
rmin + πrmin +

√
2rmin) (5.13)

i.e.,

PA(Λ, rmin) ≤ ETSP(Λ) + 7.268nrmin (5.14)
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Figure 5.18: A graph for the worst special case where the external tangential point
comes before the viewpoint

To calculate a general formulation for this case, as represented in Fig.5.19,

the di�erence between the tangential point and the actual location of the

view-point cni decreases as the distance cij increases. The di�erence can

be clearly seen from Fig. 5.19 to be the length between the external

tangential point and the tangential point caused by the edge (i, j) itself

to the same circle when it is taken to be the diameter inthe second circle.
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The relation between cni and cij can be formulated as:
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Figure 5.19: A graph for derivation of a relation between the special case di�erence
and cij

cni = 2rmin cos(90−
sin−1(

rmin
cpq

)

2
) (5.15)

Thus, for 6rmin ≤ cij, cni = 0.2 rmin.

� The formation of re�ex angles:

∗ For 4rmin ≤ cij, PA ≤ ETSP(Λ) + n(2π − 4)rmin

∗ For 4rmin << cij, PA ≤ ETSP(Λ) + n(π − 2)rmin

Proof. It is clear from Fig. 5.20 that for the occurrence of re�ex angles among the

trajectory that connects the viewpoints, as cij which is represented by red color

increases, the upper bound decreases relative to rmin.

For the case 4rmin ≤ cij, the worst case is to consider as if n = 2, and cij ≤ 4rmin,

thus the upper bound will be

For 4rmin ≤ cij, PA ≤ ETSP(Λ) + n(2π − 4)rmin.

Similarly, As cij increases the upper bound decreases as shown in Fig. 5.21. Thus,

For 4rmin << cij, PA ≤ ETSP(Λ) + n(π − 2)rmin.

Finally, for patrolling operations, assuming 6rmin ≤ cij, the PA can lead to

an upper bound of :

• PA(Λ, rmin) ≤ ETSP(Λ) + n(π − 2)rmin if no re�ex angle is included.
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Figure 5.20: A graph for derivation of the re�ex angle case when cij ≤ 4rmin
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Figure 5.21: A graph for derivation of the re�ex angle case when cij << 4rmin

• PA(Λ, rmin) ≤ ETSP(Λ) + n(2π − 4)rmin if any re�ex angle is included.

It is worth to state that for typical patrolling operations, 6rmin << cij, and thus,

the PA can lead to a general upper bound of :

• PA(Λ, rmin) ≤ ETSP(Λ) + n(π − 2)rmin

Fig. 5.22 represents a graphical comparison among all the previous mentioned

algorithms using an example of 5-viewpoints con�guration to illustrate the e�cacy

of using the PA.

As illustrated in Fig. 5.22, it is clear that the PA not only achieved less

upper bound than the other algorithms but also it achieved the less maximum

deviation from the ETSP(Λ) trajectory among all the optimal solutions of the other

algorithms.

The next chapter introduces the experimental work of this research, MPC con-

troller is applied on the linearized model of the TWMR to feasibly-achieve tracking

98



1 

2 
3 

4 

5 

1 

2 3 

4 

5 5

2

(a) 

(b) 

               ETSP,               2PA,                3PA,                AA,                PA 

Figure 5.22: (a) A graph representing the solution of ETSP over a given set Λ, (b)
A graphical comparison among the 2PA, the 3PA, the AA, and the PA for the

same set Λ

the obtained trajectories, either the ETSP optimal trajectories or the Dubins' tra-

jectories.
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Chapter 6

Experimental Work

In this chapter it is desired to design a controller for the TWMR and the Dubins'

vehicles to track the ETSP optimal and DTSP sub-optimal trajectories for a speci�c

setting. A model predictive control (MPC) scheme is used for trajectory tracking,

and to reduce its computational complexity, the nonlinear model of the TWMR

is linearized accordingly. Three main experiments are performed. The purpose

of the �rst two experiments is to track the exact sharp-turning optimal patrolling

trajectories characterized in Chapters 2-4. The third experiment, on the other hand,

uses the sub-optimal trajectories presented in Chapter 5 by softening the optimal

sharp-turning patrolling trajectories based on Dubins' vehicles.

The rest of this chapter is organized as follows. The LMPC for the TWMR

is �rst introduced in Section 6.1. Section 6.2 presents a description of the testbed

used in the experimental work including the TWMR, the camera tracking system

and the control software. Finally, the results are represented in Section 6.3.

6.1 LMPC for TWMR

As the �rst step in controller design, it is important to study the kinematics of the

TWMR. Fig. 6.1 shows a typical TWMR with a third caster wheel which adds
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stability to the system. The kinematic equations of this mobile robot are given by:
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Figure 6.1: A TWMR with its kinematic model parameters.

ẋ = vcosθ (6.1)

ẏ = vsinθ (6.2)

θ̇ = ω (6.3)

where x, y represent the coordinates of the center of the axle of the robot w.r.t.

the global coordinate frame, b denotes half the distance between the two wheels, r

denotes the radius of the wheel, and ẋ, ẏ are the components of the linear velocity

v in the x and y directions, respectively. Furthermore, θ is the heading of the

robot w.r.t. the x axis in the global coordinate frame, ω is the angular velocity

of the robot, ωL and ωR are the angular velocities of the left and right wheels,

respectively. Assuming that the wheel does not slip in the lateral direction, the
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following nonholonomic constraint is imposed:

ẋ sinθ = ẏ cosθ (6.4)

The physical signi�cance of the nonholonomic constraints is that there is no possible

movement in the axial direction. In other words, the direction of the translational

velocity is the direction of the tangent to the path [56].

The trajectory tracking problem involves a reference robot as shown in Fig. 6.2,

where all kinematic constraints are implicitly expressed by the reference trajectory.

The kinematic model of the TWMR given by (6.1-6.3) can be provided in the form

presented in [82, 83, 85] as follows:

� 

  

Figure 6.2: Trajectory tracking of a TWMR

ẋ = f(x, u) (6.5)

where x
∆
= [x y θ]T , and u

∆
= [v ω]T is the control input. Now, consider the reference

trajectory generated by a reference robot as follows:

ẋr = f(xr, ur) (6.6)
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Expanding the right side of 6.5 using Taylor series around (xr, ur) and neglecting

the second-and higher-order terms yields:

ẋ = f(xr, ur) +
∂f(x, u)

∂x

∣∣∣∣
u=ur

x=xr
(x− xr) +

∂f(x, u)

∂u

∣∣∣∣
u=ur

x=xr
(u− ur) (6.7)

or simply:

ẋ = f(xr, ur) + fxr(x− xr) + fur(u− ur) (6.8)

where fxr , fur are the Jacobians of f w.r.t. x and u, respectively, evaluated around

the reference point (xr, ur). Let x̃
∆
= x-xr represent the error w.r.t. the reference

robot, and ũ
∆
= u-ur be the perturbation control input for x̃. One can write:

˙̃x = fxr x̃ + fur ũ (6.9)

Approximating ˙̃x using forward di�erences leads to the following discrete-time model:

x̃(k + 1) = A(k)x̃(k) + B(k)ũ(k) (6.10)

with

A(k)
∆
=


1 0 −vr(k) sin θr(k)T

0 1 vr(k) cos θr(k)T

0 0 1

 (6.11)

,

B(k)
∆
=


cos θr(k)T 0

sin θr(k)T 0

0 T

 (6.12)

where T is the sampling time and k is the sampling number.
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As shown in Fig. 6.3, the essence of any MPC scheme is to optimize predictions

of system variables over a sequence of future control inputs. Such a prediction

is accomplished by using a process model over a �nite time interval, called the

prediction horizon. At each sampling time, the MPC attempts to generate the best

possible control sequence by solving an optimization problem. The �rst element of

this sequence is applied to the system, and then the problem is solved again at the

next sampling time using the updated process measurements and a shifted horizon

[82, 83, 108]. This procedure continues as the new samples are generated.

Figure 6.3: A basic working principle of Model Predictive Control [109]

The MPC minimizes an objective function which can be introduced here as follows:

Φ(k) =
N∑
j=1

x̃T (k + j|k)Qx̃(k + j|k) + ũT (k + j − 1|k)Rũ(k + j − 1|k) (6.13)

where N is the prediction horizon, Q and R are properly chosen positive de�nite and

positive semi-de�nite weighting matrices, respectively. The notation a(j|k) is the

value of a at the instant j predicted at an earlier instant k. Hence, the optimization
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problem is to �nd ũ∗ such that:

ũ∗ = minũ{Φ(k)} (6.14)

The problem of minimizing (6.13) is solved at each time step k, which yields a

sequence of optimal control signals {ũ∗(k|k), . . . , ũ∗(k + N − 1|k) } as well as the

optimal cost Φ∗(k). The MPC control law is implicitly given by the �rst control

action of ũ∗(k|k). A block diagram of the system is shown in Fig. 6.4. Moreover,

Figure 6.4: The block diagram of an LMPC [82, 83]

(6.13) can be rewritten as follows:

Φ(k) = x̄T (k + 1)Q̄x̄(k + 1) + ūT (k)R̄ū(k) (6.15)

where:

x̄(k + 1)
∆
=


x̃(k + 1|k)

x̃(k + 2|k)

...

x̃(k +N |k)

 (6.16)
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ū(k)
∆
=


ũ(k|k)

ũ(k + 1|k)

...

ũ(k +N − 1|k)

 (6.17)

Q̄
∆
=


Q 0 . . . 0

0 Q . . . 0

...
...

. . .
...

0 0 . . . Q

 (6.18)

R̄
∆
=


R 0 . . . 0

0 R . . . 0

...
...

. . .
...

0 0 . . . R

 (6.19)

This leads to the following equation:

x̄(k + 1) = Ā(k)x̃(k|k) + B̄(k)ũ(k) (6.20)

with

Ā(k)
∆
=


A(k|k)

A(k|k)A(k + 1|k)

...

α(k, 0)

 (6.21)
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B̄(k)
∆
=


B(k|k) 0 . . . 0

A(k + 1|k)B(k|k) B(k + 1|k) . . . 0

...
...

. . .
...

α(k, 0)B(k|k) α(k, 2)B(k + 1|k) . . . B(k +N − 1|k)

 (6.22)

where α(k, j) is de�ned as:

α(k, j)
∆
=

N−1∏
i=j

A(k + i|k) (6.23)

Thus, the objective function (6.13) can be rewritten in a standard quadratic form

as follows:

Φ(k) =
1

2
ūT (k)H(k)ū(k) + fT ū(k) + d(k) (6.24)

with

H(k)
∆
= 2(B̄

T
(k)Q̄(k)B̄(k) + R̄) (6.25)

f(k)
∆
= 2B̄

T
(k)Q̄(k)Ā(k)x̃(k|k) (6.26)

d(k)
∆
= x̃T (k|k)Ā

T
(k)Q̄(k)Ā(k)x̃(k|k) (6.27)

Note that H(k) is a Hessian matrix, and hence positive de�nite. It describes the

quadratic part of the objective function, while the vector f(k) describes the linear

part. Note also that d(k) is independent of ũ and has no impact on u∗.

The control inputs in a real world system are subject to physical limitations.

On the other hand, due to model uncertainties there is always a mismatch between

the plant dynamics and the equations describing them. These practical limitations

and uncertainties should be taken into consideration in the development of the con-

trol inputs. For example, as far as control limitations are concerned, one can de�ne
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some upper and lower bounds on the magnitude of the control input. The opti-

mization problem should then be solved while ensuring that the control will remain

between certain lower and upper bounds [82, 83]. Since the free variable in the

underlying optimization problem is ũ, the control constraint can be described by:

ũmin(k) ≤ ũ(k) ≤ ũmax(k) (6.28)

Thus, Eq. (6.15) can be rewritten as:

ũ∗ = minũ{Φ(k)} (6.29)

with the constraint:  I

−I

 ũ ≤
 ũmax

−ũmin

 (6.30)

6.2 Testbed Description

The Quanser unmanned ground vehicle (QGV) is a testbed shown in Fig. 6.5, de-

signed and manufactured by Quanser Inc. [110], and is available at the Network

Autonomous Vehicle (NAV) lab in the Department of Mechanical and Industrial

Engineering of Concordia University. It represents an innovative vehicle platform

suitable for a wide variety of unmanned ground vehicle (UGV) applications. The

QGV is a di�erential drive ground robot which has a 4 DOF robotic manipula-

tor with a gripper. To measure on-board sensors and drive the motors, the QGV

utilizes Quanser's embedded data acquisition card HiQ DAQ, and the embedded

Gumstix computer. The HiQ DAQ is a high-resolution input/output (I/O) card

designed to accommodate a wide variety of research problems. The Quanser's real-

time control software (QUARC) allows researchers and developers to develop and

test controllers on actual hardware through a MATLAB Simulink interface. QUARC
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can target the Gumstix embedded computer, automatically generating code and ex-

ecuting controllers on-board the vehicle. During the operation of the system, while

the controller runs on the Gumstix, users can tune parameters in real-time and ob-

serve sensor measurements from a host ground station computer (PC or laptop).

The interface to the QGV is MATLAB Simulink with QUARC. The controllers are

developed in Simulink with QUARC on the host computer, and these models are

downloaded and compiled to be executable on the target (Gumstix) seamlessly. A

diagram of this framework is shown in Fig. 6.6. Each robot needs to be energized

Figure 6.5: The Quansar QGV [110]

 

Figure 6.6: The con�guration framework used in the experiments [110]

using two 3-cell 11.1 v, 2500 mAh Lithium-Polymer batteries. The tracking system

is equipped with 24 OptiTrack cameras shown in Fig. 6.7, which can o�er integrated

image capture, processing, and motion tracking.
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Figure 6.7: An OptiTrack camera [110]

6.3 Experimental Results

Three experiments are performed here. In the �rst experiment, it is aimed to follow

the exact sharp-turning minimum-distance patrolling trajectories obtained in Chap-

ters 2-4 for the TWMRs. One robot is used to patrol a prescribed 2m by 2m area

starting from some depot. By applying the proposed LMPC to a QGV to patrol

the area with 6 viewpoints the results depicted in Fig. 6.8 are obtained. The pa-

rameters used in the optimization problem are Q = diag (30,30,8), R = 1 I2x2,N =

5, x(0) =[0 -1.5 π/4]T , and the constraints on the magnitude of the control vari-

ables are vmin = −0.5m/s, vmax = 0.5m/s, ωmin = −1rad/s, and ωmax = 1rad/s.

Fig. 6.9 shows the errors in the x, y directions as well as in the angle θ, and Fig.

6.10 gives the control inputs for the robot.

The second experiment represents the implementation of the exact sharp-

turning patrolling trajectories optimally-obtained in Chapters 2-4 which represent

the minimum-time optimal trajectories using the TWMR dynamics. Fig. 6.11 rep-

resents the experimental result of applying LMPC on two QGV to patrol an area of

size 2m by 2m, where a set of n = 7 viewpoints are to be visited. Two robots are

used to track the minimum time optimal trajectories starting from two depots, where

the design parameters for the �rst robot are : Q = diag (30,30,8), R = 1 I2x2, N =

5, x(0) =[0 -2 π/6]T . Whereas the design parameters for the second robot are: Q =
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diag (30,30,5), R = 1 I2x2,N = 5, x(0) =[-1 1.5 -π/6]T . the constraints on the am-

plitude of the control variables for both robots are: vmin = −0.5m/s, vmax = 0.5m/s,

ωmin = −1rad/s, and ωmax = 1rad/s. Fig. 6.12 shows the errors in the x, y and θ

components for both robots and Fig. 6.13 shows the corresponding robots' control

inputs.

The third experiment represents the implementation of sub-optimal patrolling

trajectories by ful�lling the Pulleys Algorithm introduced in Chapter 5 for soft-

ening the optimally-obtained sharp-turning patrolling trajectories into sub-optimal

trajectories that can be tracked by Dubins' vehicles. Fig. 6.14 represents the ex-

perimental result of applying LMPC on two QGV to patrol an area of size 2m by

2m, where the same set of n = 7 viewpoints are to be visited but this time after

applying the Pulleys Algorithm introduces in Chapter 5, so the robots are not go-

ing to stop and turn on the spot but will keep moving with constant velocity and

with minimum turning radius rmin.Two robots are used to track the minimum time

sub-optimal trajectories starting from two depots, where the design parameters for

the �rst robot are : Q = diag (5,5,12), R = 1 I2x2, N = 5, x(0) =[0 -2 1.75π]T .

Whereas the design parameters for the second robot are: Q = diag (6,6,11), R = 1

I2x2,N = 5, x(0) =[-1 1.5 0.1π]T . the constraints on the amplitude of the control

variables for both robots are: vmin = −0.5m/s, vmax = 0.5m/s, ωmin = −1rad/s,

and ωmax = 1rad/s. Fig. 6.15 shows the errors in the x, y and θ components for

both robots and Fig. 6.16 shows the corresponding robots' control inputs.
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Figure 6.8: Experimental result for optimal patrolling trajectory using LMPC
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Figure 6.9: The errors in x, y and θ
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Figure 6.10: Control inputs v and ω
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Figure 6.11: Experimental result for optimal patrolling trajectory using LMPC for
two robots
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Figure 6.12: The errors in x, y and θ for the two robots
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Figure 6.13: Control inputs v and ω for the two robots
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Figure 6.14: Experimental result for sub-optimal patrolling trajectory using LMPC
for two robots
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Figure 6.15: The errors in x, y and θ for the two robots
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Figure 6.16: Control inputs v and ω for the two robots
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Path planning for mobile robots in the patrolling problem is strongly related to

the Travelling Salesman problem (TSP) and its variants the single depot multiple

Travelling Salesman problem (mTSP) and the multidepot multiple Travelling Sales-

man problem (MmTSP). However, in the patrolling problem the viewpoints visiting

action continues repeatedly as long as the operation lasts. Therefore, moving on

the optimal path (which needs to be determined) with no constraint on the starting

depots and/or the number of robots assigned to each one (which are typically im-

posed on traditional TSP) can have a signi�cant impact on the overall performance

of the system. The present work addresses various aspects of the patrolling problem

introduced above. The results of each chapter can be summarized as follows:

In Chapter 2, two new formulations are developed for the minimum distance

trajectory in patrolling problem with di�erent sets of constraints. Given a set of

viewpoints (depots) and mobile agents (robots), the objective is to visit the view-

points while minimizing the overall travel distance but unlike existing work, it is

assumed that the starting depot is not prespeci�ed. The new formulations employ
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a set of binary variables, one for each pair of nodes, with a value equal to one if

an edge between two nodes is part of the optimal trajectory, and zero otherwise.

Another set of binary variables is also used to determine the optimal starting depot.

The problem is investigated for both cases of return trip allowed and not allowed. It

is shown that solving the minimum distance problem without specifying the start-

ing depot, as suggested here, can lead to signi�cantly better results compared to

the conventional case of prespeci�ed starting depot. Simulations demonstrate the

superiority of the proposed formulations, and also compares the computation time

of the proposed methods for di�erent number of robots and viewpoints.

Chapter 3 introduces three new formulations for the minimum-distance tra-

jectory in patrolling problems with di�erent sets of constraints for a more general

problem, namely, the multidepot multiple Travelling Salesman Problem (MmTSP).

In the �rst problem, unlike existing work, it is assumed that the starting depots and

starting robots are not prespeci�ed. Moreover, in the second problem the number

of depots and robots are considered unknown. For the minimum-distance trajec-

tories, each depot can only have a single robot. Simulations show that solving the

minimum-distance problem without specifying the starting depots and robots, as

suggested in this chapter, can lead to signi�cantly better results compared to the

conventional case of prespeci�ed starting depots and robots.

Chapter 4 introduces new formulations and algorithms for the minimum-time

trajectories in the patrolling problem with di�erent sets of constraints. Unlike exist-

ing results which are mainly focused on minimizing either the total travel distance

or the time window, in this chapter the total travel time is investigated for the

case where neither the starting depots and robots nor their numbers are prespeci-

�ed. The objective is to visit a given set of viewpoints while minimizing the overall

travel time. It is shown that the minimum-time trajectories may not be unique.

Simulations con�rm that solving the minimum-time problem without specifying the
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starting depots, as suggested in this chapter, can lead to completely di�erent re-

sults compared to conventional minimum-distance patrolling problems. Hence, in

the time-sensitive applications (such as rescue missions) using the minimum-time

trajectory can be very important.

Chapter 5 introduces a new patrolling method inspired by the movement of

a pulley to convert the Euclidean Travelling Salesman Problem (ETSP) optimal

solution to a sub-optimal kinematic-feasible Dubins' Travelling Salesman Problem

(DTSP) solution that preserves the original order of ETSP. The new algorithm,

referred to as pulleys algorithm (PA), introduces an upper bound that is less than

the upper bounds obtained by using the two point algorithm (2PA), the three point

algorithm (3PA) and the alternating algorithm (AA). Two enhancements are also

introduced to the 2PA and the AA to improve their optimal solutions.

Chapter 6 introduces the experimental results, where the optimal ETSP tra-

jectories for Chapters (2 - 4) and the sub-optimal DTSP trajectories of Chapter 5

are tested in the lab. To this end, both two-wheeled mobile robots (TWMRs) and

Dubins' vehicles are employed and the linearized model predictive control (LMPC)

approach is used.

7.2 Future Work

In what follows, some of the possible extensions of the results obtained in this

dissertation as well as some relevant problems for future study are presented.

• The patrolling operation for heterogeneous robots and viewpoints would be an

interesting problem to investigate given its practical signi�cance. The problem

involves deriving formulations for the optimal trajectories for both cases of

prespeci�ed and non-prespeci�ed depots and robots.

• Developing a cloud-based patrolling operation for a distributed autonomous
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robotics network using the robot operating system (ROS) would be very im-

portant for emerging applications.

• The patrolling operation with reduced latency, where it is aimed to reduce the

frequency of visiting each viewpoint would be an interesting problem. In par-

ticular, the problem can have applications where secure patrolling performance

is desired.

• Designing fault-tolerant strategies for patrolling operations to account for typi-

cal faults in this type of system would extend the scope of the proposed solution

to more practical scenarios.

• Studying the patrolling operation in a 3D environment would be another direc-

tion for future work, as far as applications involving unmanned aerial vehicles

(UAV) and unmanned underwater vehicles (UUV) are concerned.
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