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Abstract 

A Direct Ridership Model for Rail Rapid Transit in Canada 

Matthew Durning 

Rail rapid transit forms the backbone of many public transportation systems in cities globally 

moving people at both high speed and at high capacity.  As cities seek to alleviate problems of 

congestion and environmental pollution many are constructing or expanding urban and suburban 

rail networks including in Canada where in 2015 numerous projects were underway or recently 

completed.  Traditionally travel choices have been considered to be products of time and 

monetary cost academics and researchers have resented strong evidence also linking travel 

behaviour to factors including the built environment, station amenities, and street networks. 

This thesis links local station level factors, including built form, street network, station amenities 

and service, and socioeconomic characteristics, and rail rapid transit ridership in Canada.  A 

direct ridership model (DRM) approach is used with OLS, robust, and two-stage least squares 

regression and bootstrapping is used to enhance the models.  Data was collected for from 342 

station locations in Canada’s five largest metropolitan areas with an average weekday ridership 

of over 3 million.  Average weekday station boardings were used as the dependent variable and 

53 socioeconomic, built environment, and system attributes were chosen as potential explanatory 

variables that were chosen after a review of the DRM and travel demand literature.  The study 

yielded three sets of models with an adjusted r-squared values ranging between 0.650 and 0.864.  

Canadian rail rapid transit stations were tested together and separately as urban and suburban 

service types.  The most important factor identified in the models was the supply of transit 

service, followed by inter-modal connections (bus stops for urban stations and primarily parking 

for suburban stations), and residential population density.  Socioeconomic factors of the 

population in the area surrounding stations were not found to be significant.  The absence of 

socioeconomic variables in the final model indicates that planners and policy makers have 

significant scope to exert influence over transit use through land use planning, design, and 

service features. 

 



 

iv 

 

Contents 

 

Contents ......................................................................................................................................... iv 

List of Tables ................................................................................................................................. vi 

List of Figures ............................................................................................................................... vii 

List of Equations .......................................................................................................................... viii 

1. Introduction ............................................................................................................................. 1 

1.1. Background ...................................................................................................................... 1 

1.2. Summary ........................................................................................................................ 11 

2. Literature Review.................................................................................................................. 12 

2.1. A Brief History of Urban Transport ............................................................................... 12 

2.2. Direct Ridership Models ................................................................................................ 19 

2.3. Station Access and Catchment Areas ............................................................................. 29 

2.4. Socioeconomics .............................................................................................................. 31 

2.5. Internal Factors ............................................................................................................... 32 

2.6. Urban Form .................................................................................................................... 35 

3. Methods................................................................................................................................. 37 

3.1. Catchment Areas ............................................................................................................ 37 

3.2. Dependent Variable ........................................................................................................ 40 

3.3. Independent Variables .................................................................................................... 41 

3.3.1. Socioeconomics ...................................................................................................... 41 

3.3.2. Station and Network ............................................................................................... 42 

3.3.3. Neighbourhood and Street Network ....................................................................... 43 

3.3.4. Service..................................................................................................................... 47 

3.4. Regression Analysis ....................................................................................................... 50 



 

v 

 

3.4.1. OLS ......................................................................................................................... 50 

3.4.2. 2SLS ........................................................................................................................ 53 

3.4.3. Bootstrapping .......................................................................................................... 54 

3.5. Model Development Process .......................................................................................... 54 

4. Model Results ....................................................................................................................... 57 

4.1. All Stations Models ........................................................................................................ 57 

4.1.1. Suburban Station Models............................................................................................ 70 

4.2. Urban Stations Models ................................................................................................... 76 

5. Conclusions and Recommendations ..................................................................................... 84 

5.1. Summary of Results and Recommendations .................................................................. 84 

5.2. Study Limitations and Future Research ......................................................................... 88 

References ..................................................................................................................................... 89 

Appendix A ................................................................................................................................. 108 

Appendix B ................................................................................................................................. 125 

Appendix C ................................................................................................................................. 134 

Appendix D ................................................................................................................................. 137 

 



 

vi 

 

List of Tables 

Table 1 – List of Canadian Rail Rapid Transit Systems ................................................................. 4 

Table 2 - DRM Literature Review Summary ............................................................................... 22 

Table 3 - Station Access Mode Share by Transit Operator .......................................................... 29 

Table 4 - Variable Descriptions .................................................................................................... 48 

Table 5 - All Stations OLS and Weighted OLS Models VIF Scores............................................ 58 

Table 6 - All Stations Unweighted OLS Model with Bootstrapped Estimates ............................. 60 

Table 7 - All Stations Unweighted Spatial Lag and Spatial Error Models ................................... 61 

Table 8 - All Stations Weighted OLS Model with Bootstrapped Estimates ................................. 63 

Table 9 - All Stations Instrumental Model with Bootstrapped Coefficient Estimates ................. 65 

Table 10 - All Stations Instrumental Spatial Lag and Spatial Error Models ................................ 66 

Table 11 - Elasticity Estimates for All Stations Models ............................................................... 66 

Table 12 - Unweighted Suburban OLS Model ............................................................................. 71 

Table 13 – Suburban Unweighted Spatial Lag and Spatial Error Models .................................... 72 

Table 14 – Suburban Stations OLS and Weighted OLS Models VIF Scores ............................... 72 

Table 15 - Weighted Suburban Stations OLS Models with Bootstrapped Estimates ................... 73 

Table 16 - Comparison of Bootstrapped Elasticity Estimates for Suburban Stations Models ..... 74 

Table 17 - Urban Stations OLS and Weighted OLS Models VIF Scores ..................................... 76 

Table 18 - Unweighted Urban Stations OLS Model with Bootstrapped Estimates ...................... 77 

Table 19 - Urban Stations Spatial Lag and Spatial Error Models ................................................. 78 

Table 20 - Weighted Urban Stations OLS Models with Bootstrapped Estimates ........................ 79 

Table 21 - Weighted Instrumental Variable Model for Urban Stations with Bootstrapped 

Estimates ....................................................................................................................................... 80 

Table 22 - Urban Stations Instrumental Spatial Error Model ....................................................... 81 

Table 23 - Comparison of Elasticity Estimates for Bootstrapped Unweighted OLS and Weighted 

OLS and Instrumental Variable Urban Stations Models .............................................................. 81 

Table 24 – Range of Elasticity Estimates for all Models.............................................................. 85 

  



 

vii 

 

List of Figures 

Figure 1 – Map of Toronto.............................................................................................................. 6 

Figure 2 – Map of Montréal ............................................................................................................ 6 

Figure 3 – Map of Vancouver ......................................................................................................... 7 

Figure 4 – Map of Calgary .............................................................................................................. 7 

Figure 5 – Map of Edmonton .......................................................................................................... 8 

Figure 6 - 1000m Service Area before Addition of Footpaths ..................................................... 39 

Figure 7 - 1000m Service Area after Addition of Footpaths ........................................................ 39 

Figure 8 - Average Weekday Boardings by City .......................................................................... 41 

Figure 9- System Maps ................................................................................................................. 43 

Figure 10 - Montréal CBD Map.................................................................................................... 46 

Figure 11 - Toronto CBD Map ..................................................................................................... 46 

Figure 12- Histogram of Boardings for All Stations .................................................................... 55 

Figure 13 - Histogram of Boardings after Transformation for All Stations ................................. 56 

Figure 14- Boardings by Transit Type .......................................................................................... 57 

 

  



 

viii 

 

List of Equations 

Equation 1 – Entropy Index .......................................................................................................... 36 

Equation 2 – Land Use Mix Index ................................................................................................ 36 

Equation 3 – Walkability Index .................................................................................................... 36 

Equation 4 – Cut-Off Value for Cook’s Distances ....................................................................... 52 

Equation 5 – Elasticity Calculation for Log-Transformed Response Variables ........................... 63 

Equation 6 – Elasticity Calculation for Non-Transformed Response Variables .......................... 63 

Equation 7 – Elasticity Calculation for Discrete Response Variables .......................................... 64 

 

 



 

1 

 

1. Introduction 

1.1. Background 

Rail rapid transit forms the backbone of many public transportation systems in cities globally; it 

moves people at both high speed and high capacity.  Rail rapid transit in this context refers to 

fixed guideway public transit system operating in exclusive or shared rights of way, and includes 

subways, light rail transit (LRT), heavy suburban rail, and elevated rail.   Rail rapid transit, and 

public transit in general, has many benefits when compared with private motorized 

transportation.  Mobility (the potential for movement) and accessibility (the potential for 

interaction) can be provided with less traffic and better public health as a result of more walking 

and less pollution.  Transit can also be cost effective in providing mobility and accessibility as it 

does not require the vast amounts of roads, highways, parking, and energy that automobiles do.  

Shifting the share of travel from automobiles to transit is one way of reducing air pollution and 

greenhouse gas emissions.  Indirectly, transit can also encourage economic growth and urban 

growth leading to agglomeration economies caused by clustering and densification (Chatman & 

Noland, 2014).  Finally, in terms of social justice, public transit can also ensure a more equitable 

distribution of transportation resources and access (Deka, 2004).   

Despite the negative effects of automobile use and the potential benefits of transit in Canada, 

roughly only 20% of people living in urban areas use transit to commute to work in 2011 

(Statistics Canada, 2013).  Toronto and Montréal had the highest transit mode shares (23.3% and 

22.2% respectively), followed by Ottawa-Gatineau (20.1%), Vancouver (19.7%), Calgary 

(15.9%), Winnipeg (13.4%), Halifax (12.5%), and Edmonton (11.3%) (Statistics Canada, 2013).   

Reasons for the relatively low transit commute shares in Canada’s largest cities compared to that 

of private automobiles include low residential densities and low levels of transit provision 

outside of city cores, attitudes towards transit use, and long transit commute times (Turcotte, 

2011). The fact that transit commute times in Canadian cities are significantly longer than those 

for automobiles (44 minutes vs. 27 minutes on average in Canada’s largest cities) indicates that 

transit service does not, in most cases, compete in terms of travel times (Turcotte, 2011).  This is 

likely a major contributing factor that has made large numbers of people reliant on automobiles, 

often used at low capacity, generating considerable congestion at peak hours.  Automobile 
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dependence has also grown globally with countries such as Sweden, France, Germany, and the 

United Kingdom, reaching levels of automobile ownership and use approaching those found in 

the United States (Handy, 2002).  This trend, however, may be on the decline, with some 

researchers suggesting that automobile use in industrialized countries has slowed or halted in 

terms of growth (Jones, 2014; Millard-Ball & Schipper, 2011). 

While transit usage is generally higher in Canada compared with the United States, Canada’s 

transit share is small compared with most other high income countries (Stantec Consulting Ltd. 

& Victoria Transport Policy Institute, 2011).   Despite higher transit use, average commute times 

in Canada’s largest cities are comparable to those south of the border (Statistics Canada, 2013).  

In 2011, Toronto had the longest average automobile commute times in Canada at 29.3 minutes, 

while the longest in 2011 in the United States was found in the New York-Northern New Jersey-

Long Island metropolitan area at 29.02 minutes (Statistics Canada, 2013; U.S. Census Bureau, 

2014a, 2014b).  Transport Canada (2006) estimates the direct costs of congestion in terms of 

delay, emissions, and wasted fuel at $2.3 billion to $3.7 billion for Canada’s nine largest urban 

regions.  The C.D. Howe Institute (Dachis, 2013) estimates a $1.5 billion to $5 billion in 

congestion costs for the Toronto region alone due to economic externalities such as foregone 

income and clustering, and agglomeration benefits.  The effects of congestion are also not spread 

evenly, with 80% of the total costs coming from Canada’s largest cities, 42.5% for Toronto, 

20.6% for Montréal, and 16.6% for Vancouver (COMT, 2012).  Population growth in the largest 

metro areas and increasing private automobile ownership rates are likely to continue the trend of 

increased congestion and associated costs (Transport Canada, 2006).  Increasingly, governments 

at the provincial, regional, and municipal levels are seeking strategies to remediate automobile 

congestion and transportation issues have become important debates in political campaigns.  As 

awareness of transportation issues on the part of the public increases and the need to replace 

aging transport infrastructure in many Canadian cities grows, a major opportunity exists to plan 

and build in more sustainable ways.  

Evidence suggests that increasing road infrastructure is an ineffective means to reducing traffic 

congestion as it reduces the cost of automobile travel and induces new demand, resulting in 

traffic congestion returning to similar levels (Duranton & Turner, 2011).  Therefore new 

strategies including new transit infrastructure and improved transit service that aim to reduce 
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congestion, increase accessibility, and limit the harmful effects of automobile emissions are 

required.  McIntosh et al. (2014) have suggested in a global analysis of travel behaviour that the 

provision of rail-based transit has a strong relationship with decreased automobile travel.  Baum-

Snow & Kahn (2000) have also shown that increasing proximity to transit service can also 

increase transit commuting.  Kohn (2000) observed that service cuts made by transit agencies in 

some Canadian cities in the 1990s contributed to a decrease in riders.  Given this evidence, the 

recent trend of increased transit funding for operations and capital investments in Canada are 

encouraging.  There are currently eight rail rapid transit projects under construction or recently 

completed in Canada: Vancouver’s Evergreen Line, Edmonton’s Metro Line, the Waterloo 

Region’s Ion LRT, Toronto’s York-Spadina Subway Extension, Eglington Crosstown LRT, 

Toronto’s Union-Pearson Airport train, Ottawa’s Confederation Line LRT, and Montréal’s Train 

de l’Est, which will add a total of 109.7 km of new track and 78 new stations.  The Canadian 

Urban Transit Agency (CUTA) in 2012 estimated that the estimated cost of transit infrastructure 

plans in Canada for 2012 to 2016 were $53.3 billion, while existing funding sources only 

amounted to $40 billion (Felio, 2012).  The New Building Canada Plan announced by the federal 

government in 2013 will provide $53 billion in infrastructure investments over 10 years, 

although investments are not limited to transit projects (CUTA, 2014).  Despite these new 

infrastructure investments funding for transit, and equally important integrated land use policies, 

still fall short of the level necessary to effectuate large scale changes in travel behaviour.   

The history of rail rapid transit began in Canada in 1954 when Toronto opened its first subway 

line.  Canadian cities began to transition from bus- and streetcar-based systems to urban rail 

rapid transit soon after.  Montréal inaugurated its Metro in 1966, followed by Edmonton’s (1977) 

and Calgary’s (1982) light rail, and Vancouver’s elevated SkyTrain (1986).  Overall transit 

ridership over this period grew steadily from less than 1.1 billion passengers annually in 1970 to 

1.53 billion in 1990, when it began to decline (Kohn, 2000).  Suburbanization, the falling cost of 

automobile travel, and cuts to funding and service are likely to have played a role in this decline 

by eroding any advantage transit may have had in terms of convenience and travel time 

competitiveness (Kohn, 2000).  More recent data suggests that transit use had rebounded in 

Canada and reached over 2 billion passengers in 2012 (CUTA, 2012).  After several years of 

decline, transit ridership began to rebound in Toronto in 1999, Vancouver in 2000, and Montréal 

in 2003 (Agence Métropolitaine de Transport, 2008; Toronto Transit Commission, 2003; 
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TransLink, 2013).  This was matched by a 9.5% increase in its supply (measured as total vehicle 

kilometres) between 2008 and 2012 and the initiation of several new rail transit infrastructure 

services or expansions (CUTA, 2012).  In North America in general, the 1990s marked a turning 

point in the direction of transit ridership.  Allen & Levinson (2014) present evidence that 

indicates that since then, ridership on commuter rail service, in terms of commuter rail distance 

travelled, has outpaced the growth of highway vehicle distance travelled.  They attribute this 

success in part to the adoption of higher capacity trains, faster service, off-peak scheduling, and 

the growth of park-and-ride lots.  All of these are elements that help to increase the accessibility 

and convenience of transit for growing suburban populations. 

Table 1 – List of Canadian Rail Rapid Transit Systems 

System 
Name & 

Type 

Daily 

Passengers 

(2012) 

Length 
Stations 

(Stations/km) 

Average 

Passengers 

per station 

Calgary C-

Train 

Surface and 

elevated 

LRT 

210,495 49 km 
36 

(0.73) 
5,847 

Edmonton  

LRT 

Surface and 

underground 

LRT 

72,422 21 km 
15 

(0.71) 
4,828 

Montreal 

Metro 
Underground 845,718 69 km 

68 

(0.99) 
12,437 

Toronto 

Subway 

Underground 

and surface 

heavy & 

elevated 

LRT 

881,160 76 km 
75 

(0.99) 
11,749 

Vancouver  

SkyTrain 

Elevated and 

underground 

LRT 

327,625 69 km 
47 

(0.68) 
6,971 

Montreal 

AMT 

Heavy 

railway 
68,887 204 km 

51 

(0.25) 
1,351 

Toronto GO 

Train 

Heavy 

railway 
191,376 450 km 

63 

(0.14) 
3,037 

Vancouver 

West Coast 

Express 

Heavy 

railway 
11,309 69 km 

8 

(0.12) 
1,414 
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The purpose of this study is to determine station-level and network factors that influence transit 

ridership in Canadian cities and to quantify their effects.  Factors at the station level, particularly 

those related to the built environment and station amenities, have the potential to influence 

demand for transit and a better understanding of the magnitude of their effects will help to better 

plan new transit projects and improve existing ones.  One means of assessing the influence of 

these factors is through the use of Direct Ridership Models (DRMs) which typically use a set of 

variables found within a given distance of a station to estimate ridership at the stop, line, or 

system level. 

The scope of this study are the areas immediately surrounding rail rapid transit stations in 

Canada’s five largest metropolitan regions: Toronto, Montréal, Vancouver, Calgary, and 

Edmonton.  Each city has at least one form of rail rapid transit; a summary of system 

characteristics can be found in Table 1 and maps of each city in Figure 1-5. 

Rail rapid transit in Canada encompasses a number of technologies from diesel or electric 

locomotive driven suburban services to subways, light rail on reserved right of way and mixed 

with traffic, and elevated trains.  They also vary significantly in terms network length, stop 

density, service frequency, and average boardings per station.  As a result, two major functional 

classifications are used for this study: suburban rail and urban rail, which generally serve two 

distinct purposes.  Suburban rail is oriented towards commuter service, often exclusively, and 

serves to connect outlying areas directly to the downtown with the bulk of service at peak hours.  

Urban service, on the other hand, serves a more diverse purpose with higher frequencies, all-day 

service, more interconnections, and denser stop spacing.  Montréal’s AMT, Toronto’s GO and 

Vancouver’s West Coast Express train services fall into the suburban rail category, while the 

Calgary C-Train, Edmonton LRT, Vancouver SkyTrain, Montréal Metro, and Toronto Subway 

are considered urban.  Both forms are examined together and in separate models in an effort to 

highlight any effects specific to either type of service.  Temporally, station boarding data was 

collected for 2012 and all other data was collected for dates as close as possible.  Socioeconomic 

data comes from the 2011 Canadian Census and National Household Survey and jobs figures are 

from the 2006 Canadian Census.   
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Figure 1 – Map of Toronto 

 

Figure 2 – Map of Montréal 
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Figure 3 – Map of Vancouver 

 

Figure 4 – Map of Calgary 
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Figure 5 – Map of Edmonton 

 

The shift towards more transit use in Canadian cities can be attributed to factors related to the 

increasing cost of automobile travel (e.g. increasing fuel costs), transit service improvements, 

and greater acceptance of transit particularly among younger segments of the population 

(Turcotte, 2011).  Land use planning and policy can also affect behaviour to favour collective 

and active modes thought changes to neighbourhood and street designs.  As a result, a number of 

planning movements and theories such as Transit Oriented Development (TOD), Smart Growth, 

and New Urbanism have emerged as approaches to designing cities with an aim to reduce 

automobile dependence and increase active and transit mode share.   

TOD refers to planning around transit for existing and future stations, aiming to generate 

ridership and capitalize on development encouraged by proximity to a transit station (Calthorpe, 

1990, 1993).  It can also be used to describe the actual physical environment of station areas.  

TODs generally aim to create mixed-use, high density, and accessible neighbourhoods around 

stations to facilitate transit use and walking, and to discourage automobile travel (Cervero, 

Ferrell, & Murphy, 2002).  New Urbanism and Smart Growth refer to broader urban design 

movements that emphasize walkable communities with a mixture of land uses developed in 
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reaction to automobile induced urban sprawl (Calthorpe, 1990, 1993; Duany & Plater-Zyberk, 

1994; Duany & Talen, 2002). 

The application of TOD principles is not new to Canada; the developments surrounding stations 

of the Yonge Subway line in Toronto in the 1950s and 60s can be seen as early examples of the 

creation of transit-supportive neighbourhoods (CUTA, 2004).  Official plans for transit-

supportive, pedestrian friendly, dense, and diverse neighbourhoods also appear in planning 

documents prepared by the City of Ottawa (RMOC Planning Department, 1973) and the Greater 

Vancouver Regional District (GVRD, 1975) as early as the 1970s.  TOD principles have since 

become common in Canadian urban planning practice and elements have been adopted to 

varying degrees in many station area developments.  The Canada Mortgage and Housing 

Corporation (CMHC) examined 10 TOD applications in Canadian cities, finding a wide range of 

development sizes (0.45ha to 73ha), housing types (single-family homes to high-rise towers), 

pedestrian connectivity features, and land use mix (CMHC, 2009).  What remained constant, 

however, was the fact that residents owned fewer automobiles, drove less, and used transit more 

in these developments (CMHC, 2009).  Another common theme among the case studies was the 

lack of involvement on the part of the local transit agency itself in the planning of these projects, 

perhaps indicating a greater need for the involvement of transit agencies not only in the provision 

of service, but also in land use and development planning. 

Planning for transit and, specifically, in immediate station areas has thus been a major focus in 

transit infrastructure decisions, but their application and their success vary depending on location 

(CMHC, 2009).  Filion & Kramer (2012) have argued that the support for urban intensification 

and a reduction in automobile dependence in planning policies of the six largest metropolitan 

regions in Canada is an indication of the adoption of Smart Growth and New Urbanist principles.  

Further, they argue that most of the six regions have adopted “nodal” development typical of 

TOD.  Generally it has been found that TOD and neighbourhoods that emphasize transit-

supportive density, diversity, and design can achieve higher rates of transit use and active mode 

share, while reducing automobile travel (Evans et al., 2003).   

As transit is seeing a resurgence in popularity among users and increasing government support 

understanding what may influence transit ridership at the station level can be useful for planners.  

As a result, transit agencies and planners seek to optimize the resources allocated to them.  One 
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means to achieving this goal is to use available data and technology to better understand which 

local factors influence transit use to better plan new infrastructure investments.  Traditional four-

stage travel demand models estimate travel flows between traffic analysis zones (TAZs) by first 

estimating the number of trips originating in each TAZ, distributing the trips between TAZs, 

estimating mode choice of travellers, then assigning traffic to the travel networks (Cervero, 

2006).  Four-stage demand models can accurately predict commuting flows at a regional scale 

and are an essential element of long term transit planning but are not capable of assessing the 

role of small scale design and land use factors (Cervero, 2006; Usvyat, Meckel, DiCarlantonio, 

& Lane, 2009).  They are also data-intensive and require specialized knowledge to derive 

accurate results.  A Transit Cooperative Research Program (TCRP) survey found that out of 36 

transit agencies across North America that responded, only 51% used four-stage models (Boyle, 

2006).  Data quality, accuracy, and availability were among major concerns of respondents and it 

is reported that several agencies at the time were in the process of developing new tools to better 

assess local scale factors influencing transit use (Boyle, 2006).  Four-stage models are still seen 

as an effective means to plan in the long term at a regional scale but impractical for smaller scale 

changes where professional judgement, rules of thumb, and service elasticities are widely 

employed (Boyle, 2006; Chatman et al., 2014).   

One alternative to four-stage modelling is station level modelling, also known as direct ridership 

modelling (DRM), which uses ridership as a measure of transit demand, DRMs have been 

developed to better guide the transit planning process at the local scale and to define the factors 

that have the greatest potential to influence ridership.  Transit planners in the United States 

interviewed by Chatman et al. (2014) as part of the development of project level and regional 

scale ridership models indicate that these types of models will be beneficial in future planning.  

To this date most ridership models have been conducted in the United States.  Thus there is an 

academic base of knowledge on what influences transit ridership in the United States.  It is 

likely, given the different historical development processes, roles of government, and social 

structure that some of the factors that influence travel behaviour vary between Canada and the 

United States.  For example, race or ethnicity appears to play an important role in transit use in 

many US studies (e.g. Chu, 2004; Dill et al., 2013; Ryan & Frank, 2009; Chow et al., 2003) 

where racial segregation is stronger than in Canada (Walks & Bourne, 2006) 
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The goal of this study is to develop a direct ridership model in order to predict station-level 

boardings with a variety of socioeconomic, built environment, station, and network 

characteristics mostly within walking catchment areas around stations.  A secondary goal is to 

develop separate models for urban rail rapid transit and suburban commuter rail to see if 

different station-level factors are influential.  Finally, this project also aims to make 

recommendations that could be used to produce greater ridership, better situate planned transit 

stations, and improve existing ones. 

1.2. Summary 

Chapter 2 provides a review of the travel demand literature and a summary of the DRMs 

surveyed for this project.  This is followed by a summary of important factors associated with 

ridership: socioeconomics, internal factors, built form, and station access.  Finally, statistical 

methods used for this analysis are discussed. 

Chapter 3 presents the methodology used in this study describing how catchment areas were 

determined, which variables were used and how they were collected, the statistical methods 

employed in the analysis, and the steps of the modelling process. 

Chapter 4 presents the models that were developed and provides a discussion of the findings. 

Chapter 5 discusses the implications of the findings presented in Chapter 4 and policy 

recommendations, as well as outlines the limitations of the research and proposals for future 

improvements.  
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2. Literature Review 

This section reviews the literature analysing links between factors associated with transit usage 

including the built environment, socioeconomics, and service supply.  It also provides a 

summary of the DRM approach and a survey of published DRMs.  Section 2.1 - A Brief History 

of Urban Transport provides a general overview of the ways in which travel and built form are 

linked through a history of urban development and its relation to transportation technology and 

contemporary research on the topic.  Section 2.2 - Direct Ridership Models describes the DRM 

approach and the links it with the broader travel and built environment research.  A fundamental 

component of DRMs is the delineation of station catchment areas, typically a walking distance 

from a station, which is addressed in Section 2.3.  Finally, sections 2.4 to 2.6 review in detail 

studies of factors influencing transit use, divided into three categories: socioeconomics, internal 

factors, and urban form.  Section 2.4 - Socioeconomics describes the various socioeconomic 

factors found in the literature to be associated with travel behaviour.  Section 2.5 - Internal 

Factors reviews the literature examining the influence of transit service directly influenced by 

transit providers such as pricing, service, and station amenities.  Finally, Section 2.6 - Urban 

Form summarizes research analyzing the elements of the built environment including land uses 

and street networks that are thought to influence travel behaviour. 

2.1. A Brief History of Urban Transport 

One of the most influential forces shaping the spatial patterns of urban growth throughout history 

has been the diffusion of new transportation technology.  Newman and Kenworthy (1999) 

identified three distinct city forms shaped by the dominant transportation technology of the time: 

1. The walking city 

2. The transit city 

3. The automobile city 

Early cities were limited in size to areas accessible by foot, generally no larger than an individual 

could walk more than 45 minutes from the center.  As a result, population densities in major 

centers reached levels similar to those found in the densest modern cities (Muller, 2004; 

Pushkarev & Zupan, 1977).  It was not until the implementation of the first public transit systems 

that cities began to grow to cover larger areas of land and people at lower densities (Kain, 1999).  

The first American mass transit system, a horse-drawn streetcar, was established in New York in 
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1852 (Muller, 2004).  This resulted in the expansion of the city beyond its walking city size, 

enabling the affluent and middle-class to escape the crowded core while maintaining the same 

level of access to employment and services (Kain, 1999; Muller, 2004).   From 1852 to 1888, 

cities across the United States and Canada implemented horse-drawn street car systems and 

slowly expanded outward (Muller, 2004).   

In 1888, the electric street car was used for the first time in North America and spread almost 

immediately to most major cities (Kain, 1999).  Cities began to expand much more rapidly along 

new streetcar lines, affording a larger segment of the population a chance to escape the still 

crowded urban centers (Muller, 2004).  City development in this era occurred in radial corridors 

along the streetcar lines further than ever before from the core (Newman & Kenworthy, 1999; 

Porter, 1997).  Streetcars served as backbones of neighbourhoods, with residential streets fanning 

out for several blocks along the lines (Muller, 2004).  The electric streetcar dramatically 

increased the speed of travel, opening up large areas of new land for residential and commercial 

use and permitting the construction of even lower density neighbourhoods (Newman & 

Kenworthy, 1999).   Harrison & Kain (1974) estimated that each new mile of streetcar track built 

in cities in the United States between 1890 and 1910 resulted in a 3.2% increase in single-family 

homes in an urban region.  The first transit systems clearly exerted a decentralizing effect on 

cities but at the same time, facilitated the clustering of functions, particularly employment, in 

areas with the greatest access (Porter, 1997).  The electric streetcar also increased the economic 

and ethnic segregation initiated by their horse-drawn predecessor, with homes growing larger 

and neighbourhoods more affluent further from downtown (Muller, 2004). 

Although the automobile was introduced in the 1890s, it was not until Henry Ford’s process of 

mass production 20 years later that car ownership rates began to increase and transit use 

decreased dramatically (Kain, 1999; Muller, 2004).  By the 1920s, suburban growth exceeded 

that of the center cities for the first time and the spaces between the streetcar suburbs and beyond 

began to undergo intensive development (Muller, 2004).   

The period between World War I and II was characterized by steady suburban growth and 

increasing ethnic homogenization in neighbourhoods, as well as the suburbanization and 

segregation of industry and commerce (Muller, 2004).  After World War II, the construction of 

freeway networks, improved automobile technology, and still increasing automobile ownership 
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rates facilitated a massive outward expansion (Muller, 2004).  Baum-Snow (2007) has estimated 

that the construction of highways through central cities in the United States, facilitating mobility 

and decreasing the cost of automobile travel, contributed directly to a decline in central area 

populations.  Increasing income levels and preferences for lower density living also contributed 

to the decline of transit in North America (Kain, 1999).  Wealthier families were able to afford to 

live in increasingly lower density neighbourhoods where transit provision is difficult (Kain, 

1999).  Nearly ubiquitous automobile ownership and readily accessible high speed road 

infrastructure effectively rendered most areas of a city easily accessible, drastically reducing the 

need for clustering or concentration of activities.  This, combined with zoning codes that tended 

towards separating land uses, helped to entrench the automobile as the preferred, and often only 

viable, means of transport in North American cities.  Mobility was no longer dependent on fixed 

infrastructure and the cost of moving almost anywhere within an urban region was much more 

equal.  This also served to decrease the importance of the center both in terms of population and 

employment.  This is notable as centralized employment is a particularly important element in 

the success of the fixed guideway transit systems constructed in the early- to mid-19th century, 

which were oriented towards delivering commuters to downtowns from outlying areas (Kain, 

1999). 

By the 1950s and 1960s, academics, planners, and consultants began to recognize the links 

between widespread automobile ownership and the rapid rate of suburbanization.  In the 1970s, 

researchers turned to understanding the interaction between built environment and public transit 

amidst concerns about rapidly declining transit use, particularly in the United States (see Adams, 

1970; Newman & Kenworthy, 1989b; Pushkarev & Zupan, 1977; Smith, 1984).  It became clear 

that transportation technologies and infrastructure played a major role in shaping cities in terms 

of their size and how land uses were distributed, and that automobile use and infrastructure were 

drastically changing the urban environment.  Once the implications of automobile-centered 

development on the environment and social structure of the city were understood attention turned 

to how design and planning could mitigate its negative effects.  In Canada this manifested itself 

in planning policies at the municipal and regional level in cities such as Toronto and Vancouver, 

which favoured intensification of already built-up areas (Taylor & Burchfield, 2010).  Later, 

planning movements such as New Urbanism and Smart Growth emerged as responses to the 

unchecked growth of suburbia and the negative consequences of this type of development.  
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These movements emphasized the creation of relatively dense, mixed use communities that 

supported active transport and the use of transit.  Through the provision of high quality street 

environments, greater residential densities, and a mix of land use functions, it is believed that 

walking and transit trips could be encouraged and automobile trips reduced significantly (Handy, 

2002).   

The relationship between the built environment and travel behaviour continues to be a major 

motivation for research on transport.  Researchers have examined links between travel behaviour 

and the built environment through measurements of vehicle kilometres travelled (VKT), station 

boardings, mode choice, and frequency of walking trips among others at scales varying from the 

metropolitan level to individual travellers (Ewing & Cervero, 2010).  Ewing & Cervero (2010) 

provided a comprehensive meta-analysis of the built environment-travel literature comprising 62 

studies covering a range of methods, data types, statistical controls, and locations.  They 

examined the built environment’s effects, specifically land use intensity, land use mix, and 

design on VKT, the rate of walking trips, and transit use.  They found that individually built 

environment variables had relatively small effects on the three types of travel behaviour but that 

in combination, the effects may be larger.  With respect to walking, they found that intersection 

density, the ratio of jobs to housing, and distance to commercial services exhibited the strongest 

relationships.  For transit use, it was found that access to transit was the most important factor in 

the mode share and likelihood of transit use followed by intersection density and land use mix.  

These findings indicate that the policies encouraging densification and mixed use development 

around bus stops and rail rapid transit stations have the potential to influence travel behaviour.  

Cervero & Kockelman (1997) in an examination of the 3 “D”s (density, diversity, and design) of 

the built environment, found that built form variables had statistically significant, although 

moderate, effects on single occupant vehicle trip making and VMT.  Density, diversity, and 

design later expanded to include distance to transit and destination accessibility, representing 

five major ways that the built environment influences travel behaviour including transit share 

(Cervero & Murakami, 2008).   

Density is typically measured in terms of population and sometimes job concentration, and it is 

broadly accepted that high densities are if not a prerequisite, at least a strong contributing factor 

to the success of transit (Cervero, 1998; Cervero et al., 2002; Ewing, Pendall, & Chen, 2003).  
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Some of the first studies to assess the viability of transit projects conducted by Pushkarev & 

Zupan (1977) and Pushkarev, Zupan & Cumella (1982) established minimum density thresholds 

for various transit types.  Higher densities can increase the potential opportunities for individuals 

to interact and increase the total number of services that can be supported (Banister, 2005; 

ECOTEC, 1993).  Density shortens the distances between work, home, and commercial 

activities, which reduces average travel distances (Banister, 2005; ECOTEC, 1993; Holtzclaw, 

Clear, Dittmar, Goldstein, & Haas, 2002; Steiner, 1994).  If the distance required to travel is 

shortened, the time advantage of driving is reduced. This coupled with parking restrictions 

typically found in denser settings has the potential to make automobile use much less convenient 

than walking, cycling, or transit (Kuzmyak et al., 2003).  The links between densities and travel 

behaviour have received much attention in the past with higher density generally being 

associated with a range of travel-related phenomena at varying scales. Higher population 

densities have been linked to lower levels of energy consumption for transportation (Naess, 

1993; Newman & Kenworthy, 1989a, 1989b), higher work and shopping trip transit mode share 

(Frank & Pivo, 1994; Kitamura, Mokhtarian, & Laidet, 1997), a reduction in total distance 

travelled (Holtzclaw, 1990; Holtzclaw et al., 2002), as well as lower levels of automobile 

ownership (Dunphy & Fisher, 1996) and automobile trip making (Steiner, 1994). 

On a metropolitan scale, there appears to be a correlation between density, road supply, and 

transit usage with less dense and more automobile-oriented North American cities demonstrating 

considerably less transit usage (Cervero, 1998; Kuzmyak et al., 2003).  Both population and job 

density in station areas have also been shown to be associated with passenger distance travelled 

on transit systems at a metropolitan scale in the United States (Chatman et al., 2014).  On a 

smaller scale, Lee et al. (2011) used a cluster analysis to identify a number of neighbourhood 

types, finding that, overall, neighbourhoods with higher densities and better transit access tended 

to produce more transit trips.  Population and employment density at the station catchment level 

is associated with increased ridership for new transit projects (Chatman et al., 2014).  Individuals 

living in compact neighbourhoods (defined as areas with mixed housing, nearby commercial 

services, and transit access) have also been associated with more walking, cycling, and transit 

trips (Dunphy & Fisher, 1996; Karash et al., 2008).  
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Despite a significant body of evidence that connects density to travel behaviour measures used in 

travel behaviour assessments represent density as well as a number of related factors (Kuzmyak 

et al., 2003).  The effects of density then also incorporate the higher levels of accessibility, 

greater congestion, and restrictions on parking that are usually associated with higher density 

environments (Kuzmyak et al., 2003).  Density on its own likely does contribute in a small way 

to travel behaviour, though “second order” effects of density may be more influential (Kuzmyak 

et al., 2003) . 

Diversity, often measured as a jobs-to-housing ratio (Johnson, 2003; Kuzmyak et al., 2003), the 

proportions of various land use types (Dill, Schlossberg, Ma, & Meyer, 2013; Johnson, 2003; 

Sohn & Shim, 2010), or a composite land use mix index (Dill et al., 2013; Estupinan & 

Rodriguez, 2008; Ryan & Frank, 2009), exerts a similar effect as density.  By providing a 

diversity of opportunities to work and shop close to residences, trip lengths can be shortened 

reducing the need to use automobiles and making active transport and public transit more 

feasible alternatives (Banister, 2005).  Diverse neighbourhoods, particularly in suburban centers, 

tend to produce more transit, walking, and cycling trips (Porter, 1997).  Having retail services 

situated between a transit stop and one’s residence has also been shown to increase work transit 

trip rates (Cervero, 1996).  While jobs-to-housing ratios have not generally shown strong 

associations with travel behaviour, other measures such as land use entropy indices and distance 

to nearest commercial location often do (Ewing & Cervero, 2010; Kuzmyak et al., 2003; Vance 

& Hedel, 2007).   

Design refers to street network patterns and amenities (e.g. lighting, sidewalks, and shading) that 

have the potential to influence travel behaviour by providing safe environments and convenient 

routes.  Street network patterns can be measured in a number of ways including intersection 

density, street density, average block length, and intersection to street link ratio.  Intersection 

density is a common measure of neighbourhood permeability that is frequently associated with 

lower VKT and higher rates of walking, cycling, and transit use (Boer, Zheng, Overton, 

Ridgeway, & Cohen, 2007; Ewing & Cervero, 2010).  Street density is a simple measure of the 

length of the street network in a given area divided by the size of the area.  Higher street 

densities would then indicate that road space comprises a large proportion of a given area.  

Average block length is determined by dividing the total number of street links (sections of road 
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between intersections) by the total length of streets.  This yields another measure of network 

permeability with longer average block lengths indicating more distance between intersections 

and therefore fewer options for alternative routes.  Similarly, intersection to street link ratio 

measures the total number of intersections divided by the links between them and provides a 

measure of permeability with higher ratios indicating a wider range of route options.  Cervero & 

Kockelman (1997) found that walking quality, particularly intersection density, block length, 

sidewalk provision, and limited street parking were associated with lower levels of single-

occupant vehicle travel.  Pedestrian friendliness, often measured as a composite index of 

amenities, route directness, and quality, also shows some correlations with higher rates of transit, 

walking, and cycling trips (Ewing & Cervero, 2010; Porter, 1997).  For example, Estupinan & 

Rodriguez (2008) found that a composite factor of ‘walking supports’ including pedestrian and 

bike friendliness, sidewalk quality, and perceptions of safety and cleanliness was strongly 

associated with transit use for Bogota’s BRT stations.  Pedestrian environment factors have also 

been associated with reduced VKT, higher transit and active transport mode shares, and higher 

active transport station access mode share (Kuzmyak et al., 2003). 

Distance to transit refers to the local accessibility of transit services, which may be a determining 

factor in whether or not an individual chooses transit for any trip type (Lee et al., 2011).  Krizek 

(2003) analyzed the effects of residential relocation on mode choice in the Seattle area, finding 

that households that move to areas providing greater options for transit and active transport 

modes tend to drive less.  Baum-Snow & Kahn (2000), using data from five U.S. cities from 

1980 to 1990, found that decreasing distance to rail transit stations from an average of 5.79 km to 

4.79 km increases transit commute shares at the census tract level by 1.4%.  El-Geneidy et al. 

(2014) have presented evidence for Montréal that shows that walking distance to transit can vary 

by transit, trip, and household type, but that the majority of walking access to transit occurs 

between 873 m and 1259 m for rail based transit.  Cervero & Gorham (1995) found that 

neighbourhood type (automobile vs. transit oriented) in San Francisco and Los Angeles also 

influenced commuting behaviour noting, however, that this effect may be dependent on a 

metropolitan area’s orientation towards one form of transit or the other.  This relates to the final 

“D”: destination accessibility, which refers to how well a transit station, for example, connects a 

neighbourhood to the rest of the region (Cervero & Murakami, 2008).  Metropolitan regions that 
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favour transit connectivity with higher overall transit accessibility are likely to produce higher 

transit usage simply by connecting more useful locations (Cervero & Gorham, 1995). 

The nature and strength of the relationship between urban form and travel is still subject to 

debate and is potentially confounded by factors such as residential self-selection (the propensity 

for people who prefer one mode of transportation moving to areas where it is easier to use that 

mode).  When accounted for, researchers generally find that built environment variables are still 

associated with travel behaviour although the effect is mitigated, in part, by residential self-

selection (Cao, Mokhtarian, & Handy, 2009; Ewing & Cervero, 2010; Mokhtarian & Cao, 2008).  

The results, however, vary with Ewing & Cervero (2010) finding that in some cases, self-

selection actually enhanced the built environment’s effect on travel behaviour, while Cao et al. 

(2009) found that the effect is attenuated by it.  Chatman (2009) has also argued that residential 

self-selection may actually underestimate the built environment’s effect on travel choices, 

particularly for transit-preferring households as these households may be opting to use transit 

regardless of their neighbourhood type. 

2.2. Direct Ridership Models 

Predicting potential ridership of proposal is important in the transport planning process.  One 

means of assessing the potential drivers of transit ridership is the use of a direct ridership model 

(DRM).  A DRM is a methodological tool that has grown in popularity owing to ease of 

implementation and interpretation of results.  Fundamentally, DRMs estimate ridership, typically 

measured at the station, line, or system level, and are frequently used in the assessment of transit 

infrastructure proposals and in investigations of built form, station amenity, and service supply 

effects on transit use.  In contrast with the traditional four-stage transit demand modelling, 

DRMs allow for the analysis of small-scale local factors often not included in large-scale 

regional model.  DRMs represent a cost-effective alternative as many transit agencies simply do 

not have the resources available to conduct four-stage demand models (Boyle, 2006; Usvyat et 

al., 2009).  Advances in GIS technology and increasingly large amounts of data available are 

enabling transit agencies to better understand what drives transit ridership and consequently plan 

for better service.  Still, a large proportion of transit agencies rely on rules of thumb, professional 

judgement, comparisons with existing routes, or published elasticities for many planning 

decisions (Boyle, 2006; Chatman et al., 2014). 
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Nineteen DRMs were surveyed for this study: 11 from the United States, two from Spain, and 

one each from Canada, Colombia, Mexico, South Korea, and Taiwan,  Some studies examine 

only one form of transit (Cardozo, Garcia-Palomares, & Gutierrez, 2012; Cervero, 2006; 

Cervero, Murakami, & Miller, 2010; Chan & Miranda-Moreno, 2013; Chow, Zhao, Liu, Li, & 

Ubaka, 2003; Duduta, 2013; Estupinan & Rodriguez, 2008; Gutierrez, Cardozo, & Garca-

Palomares, 2011; Johnson, 2003; Kuby, Barranda, & Upchurch, 2003; Ryan & Frank, 2009; 

Sohn & Shim, 2010) while others combine several (Chu, 2004; Dill et al., 2013; Kohn, 2000; 

Lane, DiCarlantonio, & Usvyat, 2006; Taylor, Miller, Iseki, & Fink, 2008) covering bus, BRT, 

trolley, light rail, heavy rail, and subway systems.  The majority employ standard OLS 

regression, while others use two-stage least squares (2SLS), geographically weighted regression 

(GWR), and structural equation modelling (SEM).  A notable absence in the DRM literature is 

the role of service supply and its interactions with ridership.  Taylor et al., (2008) and Estupinan 

& Rodriguez, (2008) use 2SLS with an instrumental variable finding that service provision is 

strongly associated with demand.  Sohn & Shim (2010) go further using SEM to evaluate two-

way relationships between a range of potentially interacting variables finding a number of 

significant links.  Another element lacking in most DRM studies, including all 19 cited here, is 

the potential for a spatial relationship among variables.  In other words these analyses do not 

account for the fact that ridership at certain stations or in certain areas may be clustered.  

Statistical techniques exist to account for these relationships and may help to explain some of the 

observed variation in ridership that is not captured by traditional regression modelling. 

Five of the 19 studies mentioned here combine multiple cities for their analysis using from 265 

(Taylor, et al., 2008) to 8 different locations (Kohn, 2008).  While aggregating data for multiple 

regions may mask location-specific influences on transit use it has the added benefit of 

increasing the sample size and generating better estimates.  Most cases are limited to one form of 

transit though some combine light rail and commuter services (Lane et al., 2006), multiple transit 

types (Taylor et al., 2008),  bus and light rail (Dill et al., 2013), and bus, trolley, and LRT (Chu, 

2004).  One benefit of combining urban and suburban rail services is again to obtain a large 

sample of stations from which to derive estimates as well as to account for the fact that suburban 

train stations in some cases exist in relatively dense environments more typical of urban rail 

station settings while the opposite is true for many urban rail stations.  The majority of the DRM 

literature surveyed relied on average daily boarding data as opposed to AM/PM or peak/off-peak 
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periods while Chan & Miranda-Moreno (2013) estimated separate models for trip production and 

trip attraction at the AM peak. 

The diversity of locations, methods used, types of transit, and variables considered in the models 

have resulted in a range of potentially significant factors.  In order to simplify the large number 

of variables used in other studies and considered in this one, four categories are used: 

socioeconomics, station, neighbourhood and street network, and service attributes.  Table 2 

contains a summary of the key attributes and findings of the DRMs surveyed for this study.  The 

variables tested in these models guided the choice of variables to be used in this study.



 

22 

 

Table 2 - DRM Literature Review Summary 

Authors Chu, 2004 Cervero et al., 2010 Chan & Miranda-Moreno, 

2013 

Location Jacksonville, Florida Los Angeles, California Montréal, Québec 

Transit Type Bus, trolley, light rail Bus Rapid Transit (BRT) Subway 

Method Poisson regression OLS Regression OLS Regression 

Socioeconomic  Population 

 Age 

 % female pop. 

 Ethnicity 

 Household income 

 No-vehicle households 

 Population  Population 

 Income 

 

Station and Network  Bus stops within walking 

distance 

 Other bus stops in area 

 Trolley stop dummy 

 Bus line dummy 

 Rail line dummy 

 Distance to next closest 

stop 

 Interaction term between 

dedicated BRT lane, bus 

lines, rail lines, population, 

and parking availability 

 Bus stops within walking 

distance 

 Bus routes within walking 

distance 

 Distance to downtown 

terminus 

 Terminal station dummy 

 Transfer station dummy 

Neighbourhood and 

Street Network 
 Jobs   Commercial land use area 

 Government/institutional 

land use area 

Service   Daily bus supply  High frequency service 

dummy 

Other    
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Authors Dill et al., 2013 Kuby et al., 2003 Lane et al., 2006 

Location Portland, Oregon 9 US Cities 17 US Cities 

Transit Type Bus, light rail Light Rail Light and Commuter Rail 

Method OLS Regression OLS Regression OLS Regression 

Socioeconomic  % white population 

 % pop. under 17/over 65 

 Pop. with higher education  

 Households with a vehicle 

 Households > poverty line 

 Population 

 Population 

 % renters 

 % no-vehicle households 

 

 Average household size 

 Total households 

 Population 

 

Station and Network  Distance to downtown 

 Stop location 

 Transfer station dummy 

 Rail or BRT station 

 Park and ride spaces 

 Transit center dummy 

 Total stations in area 

 Parking availability 

dummy 

 Terminal station dummy 

 Transfer station dummy 

 Total bus connections 

 Relative accessibility  

 Parking availability 

dummy 

 Total bus connections 

 Transit center dummy 

 Fare 

 Total stations on network 

 Distance to nearest station 

Neighbourhood and 

Street Network 
 % single floor residential 

 % multi-floor residential  

 % commercial land use 

 Total park area 

 Land use mix index 

 Employment 

 Pedestrian destinations 

 Street connectivity 

 Multi-use/bike paths (km) 

 Employment  Employment 

Service  Average headway 

 Maximum coverage time 

  Time and speed to center 

 Midday headway 

Other  Job accessibility   CBD/metro employment 

 CBD pop. density 

 Metro area pop. 
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Authors Usvyat et al., 2009 Lin & Shin, 2008 Cervero, 2006 

Location 10 US Cities Taipei, Taiwan Charlotte, North Carolina 

Transit Type Heavy Rail Subway Light Rail 

Method OLS Regression OLS Regression OLS Regression 

Socioeconomic  Population  Household income 

 Car ownership 

 Motorcycle ownership 

 Population 

Station and Network  Parking spaces 

 Terminal station dummy 

 Distance to downtown 

 Rail connections 

 

 Transfer station dummy 

 Intermediate station 

dummy 

 Transfer bus availability 

 CBD station dummy 

 Parking availability 

 Total bus connections 

 Terminal station dummy 

 Distance to nearest station 

Neighbourhood and 

Street Network 
 Employment 

 Bus routes within walking 

distance 

 4-way intersections 

 Sidewalk length 

 Retail/service floor/area 

ratio 

 Interaction between CBD 

employment and density 

Service  Midday headway   Level of service 

Other    
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Authors Ryan & Frank, 2009 Duduta, 2013 Sohn & Shim, 2010 

Location San Diego, California Mexico City, Mexico Seoul, South Korea 

Transit Type Bus Bus Rapid Transit (BRT) Subway 

Method OLS Regression OLS Regression OLS Regression/SEM 

Socioeconomic  Income 

 No vehicle households 

 % female pop. 

 % Hispanic pop. 

 % White pop. 

 % youth 

 Population density  Population density 

Station and Network   Microbus connections 

 Microbus terminal dummy 

 Total bus/BRT connections 

 Number of connecting 

subway lines 

 Long distance bus 

connection dummy 

 Direct distance to CBD 

 Number of transfers to 

center 

 Feeder bus connections 

 Transfer station dummy 

Neighbourhood and 

Street Network 
 Walkability index   Employment 

 University dummy 

 Commercial land use area 

Service  Level of service   

Other    
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Authors Estupinan & Rodriguez, 2008 Taylor et al., 2008 Gutierrez et al., 2011 

Location Bogota, Colombia 265 US metro regions Madrid, Spain 

Transit Type Bus Rapid Transit Various Subway 

Method 2SLS 2SLS Distance decay regression 

Socioeconomic  Education 

 Unemployment rate 

 Socioeconomic stratum 

 Population 

 Unemployment rate 

 % college students 

 Recent immigrants 

 Ethnicity 

 No-vehicle households 

 Foreign population 

Station and Network  Total amenities   Urban bus connections 

 Suburban bus connections 

 Parking availability 

 Station accessibility on 

network 

 Number of lines at station 

Neighbourhood and 

Street Network 
 Cleanliness and safety 

 Accidents 

 Thefts and deaths 

 Traffic calming 

 Sidewalk length 

 Bike path length 

 Land use mix 

 Intersection count 

 Road density 

 Freeway lane length  Employment 

 Employment in 

commercial sector 

 Employment in education 

sector 

 Land use mix 

Service   Vehicle revenue hours 

 Fares 

 Headways 

 

Other   Gas prices  
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Authors Chow et al., 2003 Cardozo et al., 2012 Kohn, 2000 

Location Broward County, Florida Madrid, Spain 8 Canadian Cities 

Transit Type Bus Subway Various 

Method Distance decay regression Distance decay regression OLS Regression 

Socioeconomic  Ethnicity 

 No-vehicle households 

 Vehicle ownership rate for 

households with no 

children 

  

Station and Network   Suburban bus connections 

 Number of lines at station 

 

Neighbourhood and 

Street Network 
 Employment  Employment  

Service  Vehicle service hours 

 Fares 

  Fares 

 Vehicle revenue hours 

Other    
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Authors Johnson, 2003 

Location Minneapolis, Minnesota 

Transit Type Bus 

Method OLS Regression 

Socioeconomic  % household with access to 

a car 

 % of pop. 0-16 

 Population density 

Station and Network  

Neighbourhood and 

Street Network 
 Multi-family housing (1/8 

mile and 1/8 to 1/4 mile 

from stops) 

 Mixed use land 

 Retail land use 

 Housing/jobs balance 

 Housing/shopping balance 

Service  

Other  
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2.3. Station Access and Catchment Areas 

How far individuals are willing to walk to access transit is a key consideration for planners and is 

something that can vary dependent on location, time of day, trip purpose, and type of transit used 

(El-Geneidy et al., 2014).  The accessibility of transit is also a key factor in travel decision-

making as Baum-Snow & Kahn (2000) have demonstrated, decreasing the distance to transit has 

a positive effect on transit use in the United States.  Station access modes can be split into three 

categories: automobile, other transit, and active transport.  In Canada, access mode share for rail 

rapid transit varies within a wide range by station, system and by transit type (see Table 3).   

Table 3 - Station Access Mode Share by Transit Operator 

Operator Transit Type Automobile Transit Active 

AMT Suburban 62% 12% 26% 

STM Urban 8% 46% 46% 

GO Suburban 80% 10% 10% 

(Agence Métropolitaine de Transport, 2012)  

(Salsberg, 2013) 

 

Urban stations are typically accessed by active transport and other modes of transit while 

suburban station access is mostly dominated by automobile and other transit (Agence 

Métropolitaine de Transport, 2012; Crowley, Shalaby, & Zarei, 2009).  Quantifying these access 

variables using measures of physical infrastructure rather than surveys of other travel behaviour 

data is relatively easy for automobile (e.g. the number of parking spaces at a station) and other 

transit (e.g. the number of connection bus lines at a station) and are consistently found to be 

associated with ridership in station level models (Cardozo et al., 2012; Cervero, 2006; Cervero et 

al., 2010; Chan & Miranda-Moreno, 2013; Chu, 2004; Dill et al., 2013; Duduta, 2013; Gutierrez 

et al., 2011; Kuby et al., 2003; Lane et al., 2006; Lin & Shin, 2008; Sohn & Shim, 2010; Usvyat 

et al., 2009).  

Active transport access, on the other hand, is less clearly quantified and in most cases requires 

the delineation of a station catchment area from where it is assumed that the majority of local 

riders originate or the use of a distance decay function, which weights the effect of access by 

distance.   
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Variables measuring the permeability of street networks and the diversity of land uses in station 

areas are often positively correlated with transit ridership in stop-level analyses, which aim to 

capture a station area’s potential to facilitate pedestrian trips (Chu, 2004; Estupinan & 

Rodriguez, 2008; Johnson, 2003; Lin & Shin, 2008; Ryan & Frank, 2009).  Permeability simply 

refers to the degree to which a street network facilitates travel by providing a diversity of routes.  

Gridded street networks with relatively short blocks, for example, have a high degree of 

permeability, which can be contrasted with suburban neighbourhoods comprising curvilinear 

streets and cul-de-sacs that limit through traffic.  Estupinan & Rodriguez (2008) found that 

station areas that provided supports to walking, such as sidewalk quality, continuity, and width 

had significant positive effects on BRT station-level ridership in Bogota.  Similarly, Ryan & 

Frank (2009) found that the inclusion of a composite walkability variable capturing land use mix, 

density, and street network form helped to explain station level bus ridership in San Diego.  

Intersection density and sidewalk length (Lin & Shin, 2008), and pedestrian destinations and 

street connectivity measured as the number of intersections divided by the number of links 

between them (Dill et al., 2013) were positively associated with ridership at the stop level as 

well.  Other measures of pedestrian access, such as land use mix or proportions of residentially 

or commercially zoned land, were associated with increased transit use (Chan & Miranda-

Moreno, 2013; Dill et al., 2013; Gutierrez et al., 2011; Johnson, 2003; Lin & Shin, 2008; Sohn & 

Shim, 2010).  In the travel demand literature, intersection density, population and employment 

density, and jobs-housing balance were generally found to be positively associated with an 

increased frequency of walking trips and that more integrated, or mixed, land uses can encourage 

transit trip frequency (Ewing & Cervero, 2010; Kuzmyak et al., 2003).  Regardless of the 

measure employed, all aim to capture how well an area can provide access to non-motorized 

travellers through providing a diversity of opportunities or routes.   

Methods of measuring station catchment areas include fixed boundaries, either network based or 

circular, or without fixed boundaries through the use of geographically, or distance-decay, 

weighted regression that discount the effects of variables as distance from the station increases 

(see: Cardozo et al., 2012; Chow et al., 2003; Gutierrez et al., 2011).  It is generally accepted that 

800 m (≈ ½ mile) is the distance within which most walking trips to rail rapid transit occur, and 

an adequate representation of a person’s willingness to walk to access transit, and there is some 

evidence to suggest that boundary size and shape (network-based vs. circular) have little 
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influence on station level predictions of transit ridership (Guerra, Cervero, & Tischler, 2012).  

However, El-Geneidy et al. (2014) suggest, using origin destination survey data for Montréal, 

that the distances passenger was to stations depends on numerous factors including the type of 

transit being accessed.  They found that travel on foot to access transit varies based on location, 

personal characteristics, and service type.  They found that mean walking distances to Montréal’s 

Metro stations is 565 m (0.35 miles) and 873 m (0.54 miles) at the 85th percentile.  For suburban 

train stations, the mean walking distance was 818 m (0.5 miles) and 1,259 m (0.78 miles) at the 

85th percentile, suggesting that larger service areas for suburban train stations more accurately 

capture its catchment area.   

2.4. Socioeconomics 

The majority of reviewed DRMs found associations between socioeconomic variables and transit 

usage.  The wide range of variables tested in the models and likely high collinearity among them 

makes it difficult to isolate one or even several factors.  Significant predictors included in DRMs 

were income, economic status (e.g. population below poverty line), employment rates, housing 

tenure, and car ownership.  Several studies in the United States found significant relationships 

between variables representing ethnicity (or race) and transit use (Chu, 2004; Dill et al., 2013; 

Ryan & Frank, 2009; Taylor et al., 2008), while those conducted elsewhere did not find these 

factors to be significant.  Several studies found negative associations between income and transit 

ridership (Chan & Miranda-Moreno, 2013; Chu, 2004; Dill et al., 2013; Lin & Shin, 2008; Ryan 

& Frank, 2009), while the inverse was true for unemployment rates (Estupinan & Rodriguez, 

2008; Taylor et al., 2008).   

Car ownership influenced transit ridership in both DRMs (Chow et al., 2003; Dill et al., 2013; 

Johnson, 2003; Kuby et al., 2003; Lin & Shin, 2008; Ryan & Frank, 2009; Taylor et al., 2008) 

and in the travel demand literature (Bento, Cropper, Mobarak, & Vinha, 2005; Paulley et al., 

2006; Taylor & Fink, 2003).  This is likely as a result of the faster speeds and greater 

convenience offered by private automobiles relative to public transit in most places.  Finally, age 

groups in a station area were found to influence boardings with higher proportions of youth and 

seniors positively related to transit ridership (Chu, 2004; Dill et al., 2013; Johnson, 2003; Ryan 

& Frank, 2009).  Dill (2013) and Johnson (2003) found a positive association between the 

proportion of youth in the population and transit use, while Ryan & Frank (2009) observed the 
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opposite relationship.  Differences in the direction of the relationship from one model to the next 

may be explained by local factors.  In the case of Portland, where Dill (2013) conducted a study, 

students were provided free transit passes, which was not the case in San Diego, the location of 

the Ryan & Frank (2009) study.  Possible explanations for the effect age has on transit usage 

include the fact that youth and seniors may not be able to drive or afford an automobile.  Again, 

it is likely that these variables exhibit a high degree of collinearity.  Collinearity among 

socioeconomic variables and the potential complications of residential self-selection discussed 

previously make interpreting the role of socioeconomic variables in ridership models difficult.  

Socioeconomic variables included in ridership models in most cases reflect income or class.  

Housing tenure, unemployment, car ownership, and even age groups can be seen as proxy 

variables for income.   

It is clear from the literature that income affects travel behaviour by reducing the cost of 

automobile travel.  These effects may, however, vary depending on location owing to transit 

service levels and attitudes towards transit use (Buehler & Pucher, 2012).  Regions with more 

integrated and convenient transit service do not have the same relationships between mode share 

and income normally found in North America.  Buehler & Pucher (2012) found that it is the 

“integrated package of complementary policies that explains…” (pg. 563) how German public 

transport succeeds in attracting riders away from automobile use across all income groups.  This 

is achieved through providing transit service that approaches the convenience and speed of 

private automobile use.  This relates to Cervero & Gorham’s (1995) statement that some of the 

variation in the effects of neighbourhood type on travel behaviour observed in San Francisco and 

Los Angeles may be explained by metropolitan scale orientations towards one form of transport 

auto neighbourhoods vs. transit neighbourhoods.  It should therefore be expected that regions 

with more comprehensive transit planning and better transit service will not exhibit the same 

relationships between socioeconomic, and potentially other variables, and transit ridership as 

areas with weaker transit policies.    

2.5. Internal Factors 

Internal factors, as termed by Taylor & Fink (2003), refer to the elements of a transit system 

under the direct control of a transit agency and include elements such as fares, station amenities 

(e.g. shelters or schedule information), and service supply.  Taylor & Fink (2003) in a survey of 
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factors influencing transit ridership concluded that internal factors are related to ridership, but 

their effect is less than that of external factors such as urban form.  In Canada, Syed & Khan 

(2000) found that scheduling information provided at stations was positively associated with bus 

ridership in Ottawa.  In the United States, scheduling information was also associated with 

increased transit ridership (Evans et al., 2004).  Station amenities are, however, typically not 

included in many ridership assessments owing to time consuming data collection that usually 

involve site audits.  Ridership estimations and DRMs typically include fares when comparing 

between different transit agencies and the supply of service at a station. 

Researchers have examined the relative effect of increasing transit capacity (number of 

passenger spaces) or supply (number of trains or busses) and have found that supply is positively 

associated with ridership (Currie & Delbosc, 2011; Peng, Dueker, Strathman, & Hopper, 1997; 

Taylor et al., 2008).  In Canada, Kohn (2000) demonstrated that revenue vehicle hours, a 

measure of transit supply, were positively associated with transit ridership at the system level in 

the period from 1992 to 1998, using data from 85 transit agencies.  In a single equation approach 

to estimating demand, service supply is potentially endogenous as the supply of transit is likely 

to be at least partially related to its demand.  It is reasonable to assume that a transit agency will 

increase service in a particular location in response to increased ridership, while it is also likely 

that more frequent service will then attract more ridership.  As a result, this violates the 

exogeneity assumption of OLS regression.  A violation of this assumption is likely to bias the 

estimates of the model.  Chu (2004) proposes three alternatives when evaluating the potential for 

endogeneity in ridership models:  

a) estimate a reduced form model without the endogenous variable, 

b) account for the endogenous problem within the model, or  

c) include the endogenous variable and ignore the problem.   

Among the DRM studies surveyed some, such as Estupinan & Rodriguez (2008) and Taylor et 

al.(2008), explicitly account for the nature of this relationship through the use of 2SLS where 

supply and demand are estimated in a system of equations, others use supply (Cervero et al., 

2010) or average headways (Dill et al., 2013; Usvyat et al., 2009) directly in a single regression 

equation, while others forgo the use of supply variables altogether.  Whether supply variables are 

estimated directly or in a separate equation it is generally found to increase ridership.  This is 
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likely as a result of making service more convenient and accessible by providing more departure 

times and reducing waiting time and the time spent travelling on linked transit trips.  The effects 

of service increases may, however, not be equal with infrequent services being more sensitive to 

service increases (Evans et al., 2004).  Evans et al. (2004), in a survey of transit scheduling and 

service frequency literature, found that suburban commuter train service was more likely to see a 

larger increase in riders as result of increased frequency than high frequency services such as 

subways.  

In the United States, both Lane et al (2006) and Taylor et al. (2008) found that fares are 

significantly negatively associated with transit ridership at the stop level.  Kohn (2000) also 

found that fares were negatively associated with ridership in Canada at the system level.  

Overall, however, this effect was small and he concluded that demand for transit in Canada was 

relatively inelastic to changes in price.  Similar results were found in the United States where in 

most cases ridership was more strongly affected by service frequency changes than by changes in 

fares (Evans et al., 2004).  The use of fares in ridership models may be useful when comparing 

between different transit agencies but may be strongly correlated with distance from the city if 

there is a variable fare structure as is the case for many suburban rail services. 

In the context of DRMs both Estupinan & Rodriguez (2008) and Taylor et al. (2008) used the 

2SLS method to account for the supply of transit service.  Estupinan & Rodriguez (2008) 

conducted their analysis at the station level for BRT in Bogota.  First they employed factor 

analysis to narrow down the range of potential explanatory variables, then they estimated a two 

equation simultaneous model.  They found that the supply of transit is a strong predictor of 

transit usage in Bogota, along with supports for walking, barriers to car use, and perceptions of 

safety and security.  Talyor et al. (2008) employed a slightly different approach estimating transit 

ridership at the metropolitan level over a sample of 265 US urbanized areas.  First they predicted 

vehicle revenue hours, then estimated total and per capita transit ridership.  They found that 

internal factors (fares and service supply) explained 26% of the observed variance in per capita 

transit usage.  These findings indicated that factors directly under the control of transit agencies 

do play a role in influencing transit ridership but that external factors contribute equally or more. 
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2.6. Urban Form 

As urban form is likely to have at least some effect on travel behaviour and transit ridership at 

the station level, a number of metrics have been developed.  The most basic urban form 

measurement, and one popularly cited in the travel and transit literature, is population density.  

Population density is often cited as one of the most important drivers of transit use leading to the 

popular belief that transit requires a certain level of density to be feasible.  Planning strategies to 

reduce car dependence specifically emphasize density and mixed land uses as a means to 

encourage the use of alternative transport.  Many DRMs also find that population density within 

station areas is positively associated with ridership (Cervero, 2006; Cervero et al., 2010; Chan & 

Miranda-Moreno, 2013; Chu, 2004; Dill et al., 2013; Duduta, 2013; Johnson, 2003; Kuby et al., 

2003; Lane et al., 2006; Sohn & Shim, 2010; Taylor et al., 2008; Usvyat et al., 2009).  Other 

measures, related to population density, that have also been tested include household density and 

population and household intensity (density in residentially zoned land).  It is assumed that 

increasing the number of people in station areas will encourage transit ridership by making 

transit closer to more people and therefore more accessible. 

Job density is another factor often associated with higher transit use.  In fact, some research has 

argued that workplace or trip end attributes such as job density are more important than trip 

origin attributes when assessing travel behaviour (Chatman, 2003; Lee et al., 2011).  In DRMs a 

number of studies have demonstrated links between employment in station areas and transit 

ridership (Cardozo et al., 2012; Chow et al., 2003; Chu, 2004; Dill et al., 2013; Estupinan & 

Rodriguez, 2008; Gutierrez et al., 2011; Kuby et al., 2003; Lane et al., 2006; Sohn & Shim, 

2010; Usvyat et al., 2009). 

Land use variables are also commonly used measures of urban form and often measure either 

their total area or proportion.  Composite metrics have also been developed including land use 

entropy, land use mix, and walkability indices.  The first, taken from Cervero (2010) is a mixed-

use entropy index where 𝑝𝑖 = proportion of land in use 𝑖 of total of all land, 𝑘 = the six categories 

of land use (water is excluded). 
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Equation 1 – Entropy Index 

Entropy = − 1 × (
∑ 𝑝𝑖 × ln(𝑝𝑖)

𝑘
𝑖=1

ln(𝑘)
) 

The second is a land use mix variable adapted from Chan & Miranda-Moreno (2013): 

Equation 2 – Land Use Mix Index 

Mix = 
Household Density × Job Density × Commercial Density

Household Density + Job Density + Commercial Density
 

And finally, a walkability index adapted from Ryan & Frank (2009): 

Equation 3 – Walkability Index 

Walkability = 2× [
Z[Land Use Mix]×Z[Household Density]×

Z[Commercial Sites]×Z[Intersection Density] 
] 

Where Land Use Mix refers to the entropy measure in Equation 1, household density is the total 

number of households in a station area, and Z refers to the Z-scores of the inputs.  The level of 

mix is assumed to be positively associated with transit ridership.  This is partially supported by 

transport and land use literature that indicates that elements such as job-housing balance and 

mixed uses can reduce car travel and increase walking and transit trips (Cervero & Kockelman, 

1997; Ewing & Cervero, 2010; Johnson, 2003).   

Finally, street network characteristics are a means of assessing the built environment in station 

areas.  Numerous methods have been suggested to capture how permeable, pedestrian friendly, 

and complete a street network is (see Tresidder (2005) for a summary).  Intersection density, 

road density, link to node ratio, and average block length have all been examined in either the 

travel demand literature or in DRMs.  More complete or permeable street networks with more 

pedestrian friendly designs are thought to be positively associated with transit by making stations 

more easily accessible.  Estupinan & Rodriguez (2008) found that street environments that 

support walking had a strong effect on BRT boardings in Bogota while Ryan & Frank (2009) 

found that walkability (see Equation 3) was positively related to bus boardings in San Diego.  

Lin & Shin (2008) also found that four-way intersection density and sidewalk length in station 

areas were positively associated with subway boardings.  
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3. Methods 

The purpose of this study was to apply the method of direct ridership modelling of station 

boardings to a series of variables measuring factors mainly within walking catchment areas of all 

urban and suburban rapid transit stations in Canada.  The study began with the selection of 

variables based on a review of the literature.  It then proceeded to the data collection phase.  This 

chapter presents the methods adopted for this study including the selection, collection, and 

treatment of candidate variables, the geographic context of the analysis, and the statistical 

methods used to analyze the data. 

3.1. Catchment Areas 

As discussed in section 2.3 there are several methods of establishing the catchment area of transit 

stations, including fixed distance boundaries with network-based or circular buffers or through 

the use of spatial regression which discounts the effect of a given variable based on distance.  For 

this analysis, fixed distance network-based boundaries are employed to capture the maximum 

distance to which users would be willing to regularly access transit by foot.  800 m buffers were 

used for urban rail and 1000 m were used for suburban rail.  Network-based buffers represent the 

potential for pedestrian access to stations and were used for this analysis.  The benefit of this 

type of buffer is highlighted particularly in suburban train station settings, where road networks 

are not as regular and result in small effective walking areas.  

In order to properly capture station accessibility, RouteLogistics road shapefiles for Canada 

created by DMTI Spatial were used and then manually edited to include footpaths and pedestrian 

access not already included (DMTI Spatial, 2013a).  The manual addition of road links and 

footpaths was accomplished through the use of Google Maps satellite imagery and the Google 

Maps base layer accessed through ArcGIS version 10.2.  This manual editing process resulted in 

the expansion of some catchment areas that the initial road network did not accurately capture.  

This was particularly evident for many suburban rail stations where road access was fairly 

limited but footpaths provided additional accessibility.  As the goal of establishing the catchment 

areas was to capture walking, access highways, and other roadways where pedestrians are not 

permitted were excluded from the network.  Finally, a non-overlapping buffer, or exclusive 

catchment area was chosen for this analysis to prevent overlapping catchment areas and double 

counting.  If non-overlapping buffers were used, certain areas fall within the catchment areas of 
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several stations.  If boundaries were to overlap certain features, such as land uses, amenities, and 

road network, features may be double counted.  Boundaries were determined automatically using 

the service area tool in ArcGIS.  When exclusive service areas are chosen and buffers overlap, 

ArcGIS automatically determines the midpoint between the stations and draws the boundary.  

Figure 6 and Figure 7 depict the areas reachable on foot from the Cedar Park suburban train 

station in Montréal and demonstrate how a station catchment area can change in size and shape 

after the manual addition of missing footpath and road links. 

As the station catchment areas did not align with census tract boundaries, the number of persons, 

for example, was assigned proportionally depending on both how much residentially zoned land 

of a given tract fell within the catchment area.  In other words, it was assumed that population 

and employment were dispersed evenly in the appropriately zoned land (i.e. residential, 

commercial, resource/industrial) derived from the RouteLogistics shapefiles and were then 

assigned proportionally to each catchment area.  While this introduced some error into the 

measurement, it was the best method given the scale of the census data available and the fact that 

it accounted for the varying land uses found within the tracts, rather than assuming population 

and employment are spread evenly throughout the whole tract.   
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Figure 6 - 1000m Service Area before Addition of Footpaths 

 

Figure 7 - 1000m Service Area after Addition of Footpaths 
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3.2. Dependent Variable 

The dependent variable, average daily weekday boardings at 353 stations in 2012, were chosen 

as the highest demand for transit service is experienced on weekdays.  Also, suburban train 

services on some lines only offer service on weekdays.  Each boarding represents one leg of a 

trip.  Boarding data was obtained directly from transit operators either through their websites or 

through access to information requests.  Figure 8 presents the raw boardings data by city, 

demonstrating the large range of the data particularly for Montréal and Toronto that occurs as a 

result of combining suburban and urban train services.  Eight transfer stations in Toronto 

(Spadina, St. George, Bloor-Yonge, Sheppard-Yonge, and Kennedy) and Vancouver (Columbia, 

Commercial-Broadway, and Bridgeport) were removed from the analysis.  In these cases, data 

was collected at the platform level as opposed to at the station entrance, and passengers 

transferring from one platform to another were included in the data resulting in very high 

boarding counts for these stations.  This method of data collection was not used in some of the 

cities in the analysis and would be problematic in the assessment of local area effects on 

boardings.  Data for all agencies except Montréal’s STM were collected from cordon counts at 

the platform level and represent the best available depiction of average daily ridership at the stop 

level.  Data for Montréal’s STM was collected at the turnstiles.  Counts were conducted over a 

period of one to several weeks, mostly in the fall, and were averaged to obtain the figures used.  

While it is likely that motivations for transit use vary dependent on trip purpose and time of day 

data was not available from all transit operators for AM/PM or peak/off-peak periods.  As a 

result the data does not differentiate between work or school trips which make up the bulk of 

transit trips in Canada (e.g. El-Geneidy et al., 2013; TransLink, 2013a) and trips for other 

purposes such as leisure or shopping.  As mentioned in Section 2.2 all but one DRM (Chan & 

Miranda-Moreno, 2013) surveyed used average daily or monthly boardings as a dependent 

variable likely as a result of data availability as in this case. 
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Figure 8 - Average Weekday Boardings by City 

 

3.3. Independent Variables 

Through the review of the literature and examination of 19 DRM studies, a total of 53 

independent variables that may influence transit ridership at the station level were identified.  

These variables were separated into four categories: socioeconomic, station and network, 

neighbourhood and street network, and service attributes. 

3.3.1. Socioeconomics 

In order to understand the effect the presence of different age groups in a station catchment area 

may have on ridership the proportion of ages 20 to 30, 30 to 40, 40 to 50, 50 to 60, and 60 to 70 

were tested in the modelling process.  It was assumed that certain age groups were more likely to 

take transit, therefore, a larger presence of these groups was likely to influence station demand.  

Young people, for example, may not have as high incomes as other age groups and may be more 

reliant on transit.  Other socioeconomic variables that were considered include the share of 

renters, the median household income, and the unemployment rate within a station area.  These 

variables aim to control for the effects of income on transit use.  Data for these variables were 
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collected from Statistics Canada using the 2011 census are were processed as described in 

Section 3.1. 

3.3.2. Station and Network 

A number of variables related to the transit network and the station’s placement within it were 

also considered.  Dummy variables for terminal and transfer stations were tested, as these types 

of stations were observed to attract more ridership.  Terminal stations averaged 11,649 daily 

riders while non-terminal stations averaged 6,982.  Similarly, the average daily ridership at 

transfer stations was 15,719 compared to 7,026 at non-transfer stations.  A transfer station refers 

to a station that either serves more than one line on the same system (except for those that were 

excluded as a result of the data collection method) or connects to other rapid transit systems.  

Distance to the downtown terminus was included as was a measure of centrality similar to the 

one proposed by Kuby et al. (2003). The total distance of each station to the downtown terminus 

was divided by the longest distance on the network to permit comparisons between systems.  

This method accounts for the differing sizes of the rail networks under study as demonstrated 

Figure 9, which shows the rail rapid transit networks at the same scale.  Distance in this case 

refers to network distance as opposed to straight line distance.  Station spacing is included as a 

measurement of the next closest station to account for a station’s catchment outside of the buffer 

and the fact that some catchment areas are relatively small owing to their proximity to other 

stations.  It was expected that stations that were closer together may draw less ridership owing to 

competition between them.    
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Figure 9- System Maps 

 

Station accessibility variables measured the level of other transport infrastructure located at 

stations as well as the location of each station relative to the nearest terminus and to the nearest 

station.  First, the total number of bus routes serving each station was counted from transit 

agency websites and second, the total number of parking spaces provided by the transit agency 

(park and ride) was counted.  Only official park-and-ride lots mentioned on a transit agency’s 

website were included and not private parking lots.  And finally, a bike parking dummy and total 

number of car share reserved space variables were included.  These variables were collected 

through transit agency websites and Google Street View, if the information was not available.   

3.3.3. Neighbourhood and Street Network 

Two measures of residential population density (total residents/total land area of station 

catchment and total dwellings/total land area of station catchment) were used to represent the 

intensity of residential use of land within each station area.  Similarly, two measures of 

employment density (total jobs/total land of station catchment  area and total jobs/total 

commercial, resource or industrial, or government and institutional land in station catchment) 

were used which are termed job density and job intensity.  Jobs data was acquired from the 2006 

census data on place of work by census tract of work and population and dwelling data were 
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collected from the 2011 census and processed in the same manner as described in Section 3.1 

(Statistics Canada, 2006, 2011).   

Total nodes (or three- and four-way intersections), link to node ratio (total links/total nodes), 

total number of links (or blocks), street density (total street length/catchment area size), average 

block length, and intersection density were included as measures of the local street network.  As 

network-based catchment areas were used, the total in square metres was also included as a 

measure of the street network.  Larger catchment areas indicate a more complete or connected 

road network, while smaller ones indicate lower levels of connectivity.  Land use data obtained 

from DMTI Spatial’s RouteLogistics package includes seven types of land use: open area, 

parkland, water, industrial and resource, government and institutional, residential, and 

commercial (DMTI Spatial, 2013a).  These designations were tested as proportions of the total 

station catchment area and also in the composite land use mix or entropy measures described in 

section 2.6. 

The total number of commercial locations was chosen as a variable was collected from the 

DMTI Enhanced Points of Interest shapefile, which contains the locations of over one million 

commercial and recreational points of interest.  Included for each point in the file is a precision 

code ranging from one to eight, with one being the most accurate (point aligned to the building 

using satellite imagery) and eight being the municipality’s centroid.  Only points with a precision 

code up to six (postal code area centroid) were used.  The total number of locations was further 

narrowed down to retail trade, services, and public administration categories by Standard 

Industrial Classification (SIC) code divisions included in the data (DMTI Spatial, 2013b).  This 

variable represents the total commercial and business opportunities present in a station’s 

catchment area and was tested as a total number and as commercial site density. 

As mentioned in section 2.6, three composite land use and street network variables, land use 

entropy, land use mix, and walkability, were found in the literature.  These three metrics were 

included as potential explanatory variables in addition to the Walk Score obtained from the 

website walkscore.com.  The Walk Score is a number from 0 to 100 that aims to measure how 

walkable a given neighbourhood is based on proximity to basic amenities weighted according to 

their distance from the point of interest (WalkScore, 2014).  The Walk Score has been 
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demonstrated to perform as well as other walkability indices (Carr, Dunsiger, & Marcus, 2011) 

and was obtained for each station in the study. 

A central business district (CBD) dummy variable was tested in the models to account for the 

fact that downtown stations may attract more ridership by virtue of their location and the 

surrounding attractions and services.  No clear definition of CBDs exists, so the procedure 

developed by Lane et al. (2006) was used.  The procedure involves computing the job density of 

census tracts, logarithmically transforming the figure, and delimiting the CBD as contiguous 

tracts with job densities at least two standard deviations above the mean for the city.  Where 

census tracts greater than 2 SD above the mean were separated by a tract with a job density at 

least 1.5 SD greater than the mean, both were included as well.  Stations falling within these 

tracts are considered to be CBD stations and are coded 1 while all outside are coded 0.   Figure 

10 and Figure 11 demonstrate the outcome of the procedure for Montréal and Toronto.  The 

CBD stations designated using this method saw an average daily ridership of 16,557 compared 

with 5,779 for non-CBD stations. 

Since built neighbourhood and street network variables have the potential to be correlated with 

one another, factor analysis was tested as a means to reduce the number of variables and to test if 

any combination was better at explaining transit ridership.  Using a limited range of variables 

associated with density produced two useable factors that satisfied basic criteria for factor 

analysis (i.e. Bartlett’s test, Kaiser-Meyer-Olkin index, Cronbach’s Alpha).  One factor showed 

heavy loadings on population density, dwelling density, and the walkability index, while the 

other loaded heavily on commercial site density, jobs density, and the walkability index.  These 

factors, however, added little additional explanatory value compared with using the variables 

themselves when tested in the models and owing to difficulty inherent in the interpretation of 

composite factors the original variables were used instead. 
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Figure 10 - Montréal CBD Map 

 

Figure 11 - Toronto CBD Map 
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3.3.4. Service 

The effect service supply has on ridership is difficult to assess as service supply is likely to be 

decided in conjunction with ridership.  Estupinan & Rodriguez (2008) and Taylor et al. (2008) 

both attempt to control for this effect through the use of  two-stage simultaneous models with 

instrumental variables for supply, both finding that supply does indeed influence ridership even 

when their reciprocal relationship is considered; ignoring this fact has the potential to bias 

regression estimates.  Five service level variables, a peak service only dummy variable, a count 

of the total number of trains stopping at a station daily, average headway, average headway at 

peak hours, and average headway at off-peak hours were included.  The peak-only variable is 

used to differentiate the small number of low ridership stations that only have service during 

peak periods.  While the service count is used to assess the total level of service a station sees on 

a daily basis.  Average headways are simply the average amount of time between trains stopping 

at a station over the whole day, peak period, and off-peak period.  Two fare variables are also 

included in the models, monthly pass cost and cost of a single fare to the downtown, in order to 

assess the direct user cost effects of transit on its use. 
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Table 4 - Variable Descriptions 

 All Stations Suburban Stations Urban Stations 

Variable Mean SD Mean SD Mean SD 

Dependent 

Boardings 7,437.39 8,273.04 1,401.64 1,365.02 10,674.75 8,612.10 

Socioeconomics 

% unemployed 7.8% 2.7% 7.5% 2.6% 8.0% 2.4% 

Median household 

income ($) 
58,545 21,128 66,070 23,335 54,467 18,868 

Median personal 

income ($) 
30,108 9,073 30,697 8,454 29,793 9,392 

% renter households 46.2% 22.6% 30.9% 20.4% 54.4% 19.2% 

% aged 20 to 30 17.3% 7.6% 12.5% 4.9% 19.8% 7.5% 

% aged 30 to 40 15.7% 5.1% 12.9% 4.9% 17.3% 4.5% 

% aged 40 to 50 14.4% 3.1$ 14.8% 3.8% 14.1% 2.7% 

% aged 50 to 60 13.2% 3.1% 13.9% 3.9% 12.9% 2.5% 

% aged 60 to 70 9.0% 2.5% 9.6% 3.0% 8.7% 2.1% 

% aged 70 to 80 5.5% 1.9% 5.8% 2.3% 5.4% 1.8% 

Station attributes 

Bus connections 6.88 9.13 6.07 4.95 6.87 9.19 

Park-and-ride spaces 344.95 599.98 667.65 709.19 171.33 445.52 

Terminal station 

(1=yes) 
9.76% of stations 11.86% of stations 8.63% of stations 

Transfer station 

(1=yes) 
4.73% of stations 3.38% of stations 5.45% of stations 

Distance to terminus 16,006 16,095 30,022 17,751 8,225 5,717 

Relative distance to 

terminus 
0.39 0.24 0.37 0.21 0.40 0.26 

Spacing 2,211 3109 4,609 4,284 895 537.25 

Bike parking dummy 

(1= yes) 
76.33% of stations 93.22% of stations 67.27% of stations 

Car Share Dummy 

(1=yes) 
20.71% of stations 52.54% of stations 3.64% of stations 

Neighbourhood, street network, and land use 

Population density 

(/km2) 
5,279.43 4,392.16 2,705.43 2,257.16 6,660.18 4,634.48 

Jobs + population 

density (/km2) 
21,687.62 39,780.73 7,811.60 13,101.75 29,130.22 46,734.19 

Nodes 74.36 37.47 74.42 46.12 74.34 31.99 

Link/Node Ratio 1.31 0.36 1.34 0.32 1.30 0.38 

Total Links 96.56 54.14 100.26 67.51 92.95 40.66 
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Total Road Length 

(m) 
11,542 5,208 12,906.09 6,731.46 10,700.58 3,767.45 

Street Density (/km2) 3,815.70 5,368.27 10,704.83 3,075.98 120.61 53.90 

Average Block Length 138.38 71.57 164.84 107.76 124.18 32.78 

Intersection Density 

(/km2) 
82.88 36.59 60.53 26.60 94.87 35.62 

% Open Area 9.0% 14.2% 15.7% 20.5% 5.4% 7.3% 

% Park Area 8.0% 9.9% 6.3% 7.3% 8.9% 11.0% 

% Residential Area 51.3% 21.2% 51.8% 23.0% 55.3% 20.0% 

Resource/industrial 

Area 
18.5% 18.6% 19.2% 20.5% 17.8% 17.2% 

%Government/institut

ional Area 
6.0% 11.4% 4.1% 5.4% 8.9% 13.1% 

% Commercial Area 3.0% 6.1% 2.5% 5.2% 3.2% 6.4% 

Residential/non-

residential 
6.91 67.60 11.62 113.81 4.38 9.68 

Job density (/km2) 16,408.10 38,681.35 5,106.17 12,361.08 22,470.04 45,989.92 

Employment intensity 

(/km2) 
50,087.79 94,894.95 21,184.11 33,600.32 65,590.67 112,081.9 

Dwelling density 

(/km2) 
2,820.91 2,770.87 1,219.79 1,187.35 3,679.69 2,989.85 

University Dummy 7.3% of stations 1.6% of stations 10.45% of stations 

CBD Dummy 15.8% of stations 2.5% of stations 22.27% of stations 

Land use Mix 19,597.73 52,446.77 4,427.56 20,144.66 27,730.00 61,850.75 

Land use entropy 0.64 0.16 0.64 0.17 0.64 0.15 

Walkability index -0.07 2.24 -0.54 2.42 0.17 2.12 

Walk Score 73.58 23.18 56.79 23.87 82.59 16.99 

Commercial Sites 383.17 455.19 290.05 459.66 433.12 445.85 

Commercial Site 

Density (/km2) 
524.09 825.67 239.61 449.49 676.68 934.94 

Service attributes 

Peak only 13.5% of stations 38.1% of stations 0% of stations 

Pass cost ($) 128.02 63.22 182.60 77.11 98.75 22.52 

Regular fare ($) 4.20 2.18 6.55 2.12 2.94 0.61 

Supply 305.30 239.88 27.18 23.29 454.47 155.64 

Average  headway 

(Peak) 
13.96 40.43 33.00 64.38 5.09 1.34 

Average  headway 37.05 68.24 96.84 88.93 3.75 1.04 

Average headway (off 

peak) 
97.89 173.14 268.76 202.73 6.24 1.73 
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3.4. Regression Analysis 

3.4.1. OLS 

OLS regression is the most commonly employed statistical tool used for DRM studies and was 

employed by 14 of the 19 studies mentioned in Table 2 at some stage of their analyses and is the 

used as the first stage in this analysis.  Regression analysis is a statistical method that can analyse 

the relationship between two or more variables.  Some basic assumptions must be met when 

employing OLS: 

1. Constant error variance (homoscedasticity) 

2. Independence of errors 

3. Linear relationship between response and predictor variables 

Errors, in this case, refer to the differences between the model’s prediction for a given value and 

the actual value itself.  OLS assumes that the errors follow a normal distribution, that they are 

constant and display no systematic pattern, and that they are independent or uncorrelated with 

one another.  Under these conditions, OLS provides the best linear unbiased estimate (BLUE) of 

the model’s parameters.  If the data fails to meet these basic assumptions estimates from the 

model may be biased and unreliable.   

Several tests can be performed to satisfy these criteria.  Normal error distribution can be tested 

using the Shapiro-Wilk test for normality and visual inspection of error plots (Fox, 1997).   The 

null hypothesis of the Shapiro-Wilk test is that the samples come from a normal distribution, 

when applied to model residuals a significant score on the test indicates a non-normal error 

distribution.  Error variance can also be examined using residual plots as well as a score test for 

heteroscedasticity proposed by Fox & Weisberg (2011a).  The null hypothesis of this test is that 

the samples are homoscedastic meaning that a significant test score for model errors would 

indicate an unequal error distribution (Fox & Weisberg, 2011a).  The independence of errors is 

tested using the Durbin-Watson test for autocorrelation and the Moran’s I test for spatial 

autocorrelation.  If the errors are truly independent most of the autocorrelation among residuals 

should fall within a limited range which is dependent on the sample size and number of 

regressors in the model for the Durbin-Watson test (Kleiber & Zeileis, 2008).  The Moran’s I test 

was implemented using a neighbours matrix generated with GeoDA and tested in R using the 

spdep package (Bivand & Piras, 2015).  The k-nearest neighbours method was chosen for 
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determining the weights matrix with the five geographically closest stations being counted.  

Moran’s I values fall between -1 and 1 with -1 indicating dispersion, 1 meaning perfect 

clustering, and 0 no pattern.  If strong spatial autocorrelation is observed it is possible to create a 

spatial lag or a spatial error model to compensate for this effect.  A spatial lag model involves the 

creation of a lagged independent variable while the spatial error model corrects the error term of 

the model.  Finally, the functional form of the model can be tested using Ramsey’s RESET 

(regression specification error test) which takes the powers of the fitted values and checks if they 

influence the model when added (Kleiber & Zeileis, 2008).  The RESET test’s null hypothesis is 

that the model is properly specified so when tested, a significant result would reject this 

assumption and indicate a misspecification in the model.  Additionally, the gvlma function in R 

provides an assessment of the four main model criteria as well as a global test of model 

suitability (Pena & Slate, 2006, 2014). 

If any models do not meet these criteria, remedial measures can be taken to account for certain 

violations.  In the case of non-constant error variance (heteroscedasticity), the statistical 

significance of variables may not be correct with some variables appearing to be significant 

when they should not.  In this case, it is possible to use a heteroscedasticity-corrected covariance 

matrix to correct for the violation of the assumption and to obtain appropriate p- and t-values 

(Fox, 1997).  In the case of non-normal errors, it is possible to transform variables (e.g. using the 

Box-Cox method) to obtain more normally distributed results or to bootstrap the model for 

reliable confidence interval estimates, as discussed later in this section.   

A final diagnostic for the OLS models is an examination of unusual data points that may cause 

undue influence on the model’s estimates.  Three types of unusual data points can be identified: 

outliers, high-leverage points, and influential observations.  Outliers are simply values with large 

residuals or, in other words, values that the model does not predict well.  High leverage points 

are observations that have a high potential to shift the regression plane, and influential points are 

observations that are both outliers and high leverage points.  A number of tests have been 

developed to detect these types of unusual observations that will be employed for this analysis.  

Outliers can be detected visually by examining residuals plots, as well as through the use of the 

outlierTest function in the car package for the R statistical analysis software program (Fox & 

Weisberg, 2011a).  This test takes the observations with the largest absolute residual value and 
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computes a Bonferonni-corrected t-test to assess whether or not the magnitude of the residual 

value should be expected given the total number of observations (Fox & Weisberg, 2011a).  In 

large sample sizes, it should be expected that some large residual values appear and this test 

allows for an empirical assessment of whether or not these points are abnormally large.  If the 

test returns a significant result for a residual, it suggests that the value is abnormally high and 

should be further examined (Fox & Weisberg, 2011a).  High leverage points can be detected 

again using the car package by examining the hat-values (a measure of the relationship between 

observations and fitted values).  No absolute cut-off for hat-values exists, but it is suggested that 

hat-values three times that of the average may have a significant effect on the model and should 

be examined closely (Fox, 1997; Kleiber & Zeileis, 2008).  Finally, influential observations can 

be identified by computing Cook’s distances, which is a measure of a given data point’s 

influence on the model.  Cook’s distances are calculated for each observation and simply 

compares the model’s prediction with the observation to its prediction with the observation 

removed (Fox, 1997).  It has been suggested that values greater than 1 indicate highly influential 

observations, but that this should not be considered an absolute rule (Fox, 1997).  Rather than 

relying on a fixed maximum value for Cook’s distances, values greater than those calculated by 

Equation 4 (Fox, 1991).   

Equation 4 – Cut-Off Value for Cook’s Distances 

4

𝑛 − 𝑘 − 1
 

Where n is the number of observations and k is the number of predictor variables used. 

If influential points are observed, robust regression methods can be used to account for the 

unusual data.  Robust in this case refers to the robustness of results in the face of violations of the 

OLS assumptions regarding outlying residuals and can produce results similar to those of OLS in 

cases when outliers are present (Fox, 1997).  Robust regression handles influential points by 

reweighting them, effectively decreasing the effect they have on the model’s results.  A number 

of robust regression methods have been developed to deal with data with heavy-tailed 

distributions including so-called M-estimators, MM-estimators, S-estimators, and bounded-

influence regression methods such as least-trimmed squares (Fox, 1997; Fox & Weisberg, 

2011b).  Each method attempts to select “bad” data points based on a breakdown point, or 
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critical value, and reweights them to reduce their influence (Fox, 1997).  This, in effect, down-

weights influential observations, reducing the effect that these points have on the model’s 

estimates. 

3.4.2. 2SLS 

Two-stage least squares regression with instrumental variables is a method of performing a linear 

regression when one or more independent variables are correlated with the error term, such as in 

the case of measuring the effect of service supply on station ridership.  Endogenous variables are 

variables that are, or could be, correlated with the error term and, in this case, arise from the 

simultaneity between the supply of transit service and demand for it.  It is possible that the 

parking and bus services variables are also endogenous in the case of transit demand as transit 

agencies may adapt parking or bus service strategies to meet increasing numbers of users.  

Instruments refer to one or more variables that can be used in substitution for an endogenous 

regressor to correct for the violation of the independence assumption.  This method involves 

replacing the endogenous variable with one (or more) that is not correlated with the error term of 

the model.  There are two main conditions for the use of instrumental variables: 

1. that the instrument must be at least partially correlated with the endogenous variable  

2. that no correlation exists with the independent variable other than through the 

endogenous.   

The first condition is easily tested, however, the second is less apparent, making the choice of 

appropriate instruments sometimes difficult.   

Three tests can be performed to assess the validity of instruments: a simple correlation between 

the instrument and endogenous variable, a test of the strength of the instrument, and the 

Hausmann test for endogeneity.  The first step in selecting an instrument is to find a variable that 

is partially correlated with the endogenous variable.  Once a potential instrument is identified, it 

can be tested in the 2SLS model for validity using the F-statistic of a joint test of whether or not 

the instrument is significant.  The general rule of thumb for this test is if the F-test is greater than 

10, the instrument is valid with one endogenous variable.  Stock & Yogo (2005) expand on this 

general rule and provide a table of critical values for the F-statistic which will be used for this 

study.  If an instrument is determined to be valid, the Hausmann test can then be used to assess 

whether or not the variable in question is actually endogenous in the model. This involves 
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comparing the coefficients of the OLS model with the endogenous regressor to those of the 2SLS 

model and seeing if they are significantly different from one another.  A statistically significant 

score on the Hausmann would indicate that the models do differ significantly and that the 

variable in question is endogenous.  The Hausmann test only performs properly under 

homoscedastic conditions; in the case where this is not met it is possible to run an additional 

regression using the residuals of the first stage with a heteroscedasticity-corrected covariance 

matrix as outlined in Wooldridge (2002).   

3.4.3. Bootstrapping 

Observation bootstrapping is a non-parametric approach to regression that involves the random 

resampling of cases with replacement and does not require any distributional assumptions (Fox, 

1997; Weisberg, 2005).  Two forms of bootstrapping regression models exist: case resampling 

and residual resampling.  Case resampling is considered to be the more robust method to non-

normal error distribution and the type of bootstrapping considered for this study (Chernick, 

2008).  In other words, the bootstrapping method treats the sample as a population and samples 

randomly from within it a large number of times to simulate large sample sizes (Fox & 

Weisberg, 2011a).  In cases where OLS model error distributions are skewed, it is possible to 

bootstrap the model to obtain more accurate coefficient estimates by simulating larger sample 

size and to obtain reliable confidence intervals.   

3.5. Model Development Process 

The first step in the modelling process involved the selection of candidate explanatory variables 

from those presented in Table 4.  Variable selection for the models proceeded generally in a 

backwards stepwise process while some variables were re-added to the models when necessary, 

aiming to maximize the fit of the model while minimizing information loss.  Akaike’s 

Information Criterion (AIC) was used to assess the various iterations of all models and those that 

scored the best (i.e. lowest AIC score) were chosen.  The AIC is a tool for model comparison 

that measures the trade-off between model complexity (the number of parameters in the model) 

and the overall fit of the model to the data. 

Attention was paid to the basic assumptions of OLS regression: linearity, independence, no 

multi-collinearity, and constant error variance.  This was accomplished by conducting a series of 

tests (discussed in section 3.4.1) in order to ensure that the model and data satisfied these criteria 
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and corrective measures were undertaken (i.e. logarithmic/power transformations and corrected 

covariance matrices) if they did not as discussed in section 3.4.1.  Diagnostics plots including 

QQ-Plots, fitted vs. residual plots, and residual histograms are presented in Appendix B.  Two of 

the three initial OLS regression models presented a potential endogeneity problem (a service 

supply variable) and were further assessed using the 2SLS method and all were bootstrapped to 

obtain confidence intervals for coefficient estimates.   

In the process of analysing the data it became apparent that several stations were extreme outliers 

and in total eight stations were omitted from the analysis.  These stations included two 

downtown terminal stations of the heavy rail systems (Toronto’s Union Station, and Montréal’s 

Central Station), which exhibited very high ridership in comparison with others, suburban rail 

terminal stations with very low ridership and low levels of service (Montréal’s Hudson, and 

Toronto’s Allandale Waterfront), and stations serving solely specific destinations (Vancouver’s 

Airport SkyTrain station and the Metro station serving Montréal’s Parc Jean Drapeau).  In total, 

with the eight stations removed for data collection reasons outlined in Section 3.2, 15 stations 

were removed from the initial dataset of 353 leaving 338 observations for the analysis. 

Figure 12- Histogram of Boardings for All Stations 
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Figure 13 - Histogram of Boardings after Transformation for All Stations 
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4. Model Results 

Linear models were developed for urban stations, suburban stations, and for both types 

combined.  Urban and suburban stations were modelled separately because of the large 

difference in average boardings between the two.  Figure 14 demonstrates how large the 

difference in the raw boardings data is between suburban and urban service types.  Raw 

boardings data for each station can be found in Appendix A.  The following section describes the 

model formulation process and presents the findings. 

Figure 14- Boardings by Transit Type 

 

4.1. All Stations Models 

Table 6 presents the results of the first OLS model for all 338 rail rapid transit stations.  The 

dependent variable (station boardings) was log-transformed for all the models to correct for the 

heavy left-skew of the data.  Figure 12 shows the boardings variable for all stations and Figure 

13 shows the boardings data after the log transformation.  Some independent variables were also 

transformed where necessary.  The initial OLS model for all stations produced an adjusted R2 

score of 0.83, indicating that the model explains a large portion of the variation within the data.  
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This result is at the higher end of model fit in comparison to other DRMs using OLS methods 

with R2, which range from 0.51 (Duduta, 2013) to 0.95 (Cervero et al., 2010) with an average of 

0.65.  The associations between population density, the number of bus connections, the CBD 

dummy variable, the number of park and ride spaces, and average headways were all found to be 

highly significant (p-value < 0.001).   

A relatively high degree of positive correlation was observed between many of the variables 

leading to a concern about the potential for small changes in the model to result in large changes 

in coefficient estimates.  The variance inflation factor (VIF) scores shown in Table 5, measure of 

the degree of multicollinearity present between variables, with values representing how much 

larger the variance of each coefficient as a result of collinearity (O’Brien, 2007).  In other words, 

the variance of the service park and ride variable is 1.487 times larger than it would be if it were 

linearly independent of all other variables in the model.  A commonly cited indication of serious 

multicollinearity is a VIF score of 10, although values as low as four have also been suggested 

(O’Brien, 2007).  As Table 5 shows, however, VIFs for the all stations model’s predictors were 

close to their minimum value of one indicating that multicollinearity among them was not a 

serious problem.  Another method for quantifying multicollinearity is through the use of a 

condition index, which is the square root of the ratio of the largest to smallest eigenvalue of the 

model’s matrix (Fox, 1997).  Condition indexes were calculated in this case using the colldiag 

function in the perturb package for R (Hendrickx, 2012).  A commonly cited cut-off value for the 

condition index that indicates serious multicollinearity is 30 (Belsley, Kuh, & Welsch, 1980).  

None of the three models exceeded this cut-off (unweighted: 18.48; weighted: 24.34; 2SLS: 

16.97) and, in conjunction with the low VIF scores, indicate that multicollinearity is not strongly 

present. 

Table 5 - All Stations OLS and Weighted OLS Models VIF Scores 

Coefficients VIF Unweighted VIF Weighted VIF 2SLS 

log(Population Density) 1.261 1.251 1.851 

log(Bus Connections) 1.266 1.268 1.276 

CBD Dummy 1.160 1.164 1.375 

Park and Ride Spaces 1.485 1.472 1.838 

log(Average Headway) 1.226 1.274 2.957 
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The Durbin-Watson test for autocorrelation (DW = 1.4998) showed that some autocorrelation 

was present.  For a sample size of 338 with five regressors (the constant is excluded), the test 

score should fall within the range of 1.787 to 1.845 (Cummins, 2012).  A Durbin-Watson test 

score of 1.5 does then mean that the model’s residuals are not entirely independent of one 

another.  This should not be surprising given the fact that the data comes from five different 

cities and two distinct rail rapid transit technologies, and that stations close to one another may 

experience similar levels of ridership owing to their proximity.  The only added variable that 

caused this test statistic to fall within the acceptable range was the categorical variable for the 

line the station serves.  Some of the variation in station boardings was likely to ridership on the 

line as a whole, despite this finding the degree of autocorrelation is relatively low.  The Moran’s 

I test for the residuals of the OLS model 0.16 (p = <0.000) and 0.15 (p = <0.000) again indicated 

some positive spatial autocorrelation, as a result a spatial lag and spatial error model were also 

tested and presented in Table 7 and Table 10.  A comparison of the spatial lag and error models 

for the initial OLS model reveals that the error model performed better demonstrating better fit 

(log-likelihood of -273 vs. -284) and a lower AIC score (564.89 vs. 581.03).  Comparing the 

spatial models to the original OLS model shows that the model’s fit improved from an AIC score 

of 584.71.  The score test for heteroscedasticity suggested by Fox & Weisberg (2011a) indicated 

that the distribution of errors in the OLS model was heteroscedastic (p = 0.006) and in the spatial 

lag (p = 0.002) and spatial error (p = 0.001) models.  As a result, a heteroscedasticity-corrected 

covariance matrix found in the Sandwich package for R (Zeileis, 2004) is used for the OLS, 

robust, and 2SLS models and the spreg function in the sphet package for the spatial lag and error 

models (Piras, 2010).  The Shapiro-Wilk test for normality (p = 0.103) showed that the errors 

were normally distributed and fall outside the critical value of 0.05.  Finally, the RESET test for 

model specification results in a p-value of 0.74, which is not low enough to reject the assumption 

of a properly specified model.  Further diagnostic plots (QQ-plots and residuals vs. fitted plots 

are presented in Appendix B). 
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Table 6 - All Stations Unweighted OLS Model with Bootstrapped Estimates 

 Dependent variable: 

 log(Boardings) 

 Unweighted 

 OLS 

   Conf. Intervals 

 Estimate (SD) Boot Estimate (SD) 2.5% 97.5% 

log(Population Density) 0.150*** (0.022) 0.153 (0.307) 0.056 0.218 

log(Bus Connections) 0.416*** (0.044) 0.418 (0.044) 0.332 0.505 

CBD Dummy 0.655*** (0.090) 0.652 (0.110) 0.442 0.875 

Park and Ride Spaces 0.0004*** (0.0001) 0.0003 (0.0001) 0.0002 0.0005 

log(Average Headway) -0.735*** (0.024) -0.735 (0.031) -0.795 -0.673 

Constant 7.951*** (0.211) 7.928 (0.307) 7.293 8.501 

Observations 338    

R2 0.830    

Adjusted R2 0.827    

Resid. Std. Err. (df = 213) 0.557    

F Statistic (df = 5; 332) 323.16*** (p = 0.00)    

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 
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Table 7 - All Stations Unweighted Spatial Lag and Spatial Error Models 

 
Dependent variable: 

 log(Boardings) 

 Unweighted 

 Spatial Models 

 Lag Error 

 Estimate (SD) Estimate (SD) 

log(Population Density) 0.150*** (0.022) 0.127*** (0.023) 

log(Bus Connections) 0.422*** (0.044) 0.420*** (0.042) 

CBD Dummy 0.649*** (0.095) 0.707*** (0.113) 

Park and Ride Spaces 0.0004*** (0.0001) 0.0004*** (0.0001) 

log(Average Headway) -0.722*** (0.031) -0.750*** (0.028) 

Constant 7.700*** (0.467) 8.164*** (0.220) 

ρ/λ 0.024 0.368*** 

Observations 338 338 

Log-likelihood -282.52 -274.45 

Wald statistic 6.008 (p = 0.014) 27.404 (p = < 0.000) 

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 

 

The initial examination of outliers in R indicated that two residual values were abnormally large 

(i.e. Bonferonni p value <0.05).  When hat values, a measure of discrepancy between observed 

and predicted values, were examined to assess whether or not a high leverage points were 

present, 12 potentially problematic points were observed using a cut-off value of 0.062 (three 

times the average hat value as suggested by Keliber & Zeileis (2008).  Further inspection using 

Cook’s distances, which combines residual discrepancy and leverage, with a cut-off value of four 

divided by the number of observations minus number of regressors minus one as suggested by 

Fox (1997), in this case 0.012, revealed 22 observations that may be influential (see Appendix C 

for plots of Hat Values and Cook’s Distances for all models).   

Since numerous outliers were present, a robust regression was run to better fit the data.  As 

discussed in section 2.7.1, several types of robust regression estimators can be used, each with 

different breakdown points resulting in different weights and therefore slightly different results.  

The rlm function found in the MASS package for R was used for the robust regression, which 

iteratively reweights observations, in this case using an MM-estimator (Venables & Ripley, 
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2002).  This method was chosen as it achieved the best results as measured by reduction in the 

outlying data compared to other estimator type combinations and R functions.  The results of the 

robust regression are presented in Table 8, which can be compared to the original OLS model 

estimates in Table 6. 

The robust, or weighted, model shows some changes in the magnitude of the estimated 

coefficients, most notably an increase in the strength of the bus connections variable and a 

decrease for the CBD dummy.  The model’s fit improves from an adjusted R2 of 0.827 to 0.864.  

Cook’s distance values dropped significantly in the robust model with only 11 values exceeding 

the upper limit, down from 25, while the largest value dropped from 0.164 to 0.062.  Plots of 

Cook’s Distances and Hat Values are presented in Appendix C.  Deletion of observations with 

the largest Cook’s distance values did not result in significant changes to the model’s coefficient 

estimates, significance, or model fit and were therefore left in the final model.  In addition to 

improvements in the model’s fit, the heteroscedasticity score test (p = 0.14) indicated that error 

variance is constant.  On the other hand, the test for normality of residuals (p = 0.04) suggested 

that the errors of the weighted model were not entirely normally distributed.  A visual inspection 

of residuals also revealed some departures from normality.  The RESET test (p = 0.74) again 

suggested a properly specified model and the Durbin-Watson test (DW = 1.4998) indicated the 

same degree of autocorrelation was present.  VIF scores also remained relatively low for the 

weighted model (see Table 5). 
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Table 8 - All Stations Weighted OLS Model with Bootstrapped Estimates 

 
Dependent variable: 

 log(Boardings) 

 Weighted OLS 

   Conf. Intervals 

 Estimate (SD) Boot Estimate (SD) 2.5% 97.5% 

log(Population Density) 0.180*** (0.021) 0.181 (0.219) 0.139 0.226 

log(Bus Connections) 0.442*** (0.038) 0.444 (0.036) 0.374 0.516 

CBD Dummy 0.570*** (0.080) 0.568 (0.084) 0.405 0.733 

Park and Ride Spaces 0.0003*** (0.0001) 0.0003 (0.0001) 0.0002 0.0004 

log(Average Headway) -0.726*** (0.022) -0.726 (0.022) -0.770 -0.682 

Constant 7.682*** (0.196) 7.792 (0.226) 7.237 8.128 

Observations 338    

R2 0.866    

Adjusted R2 0.864    

Resid. Std. Err. (df = 213) 0.457    

F Statistic (df = 5; 332) 430.29*** (p = 0.00)    

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 

 

The results of the bootstrapped model showed relatively minor changes in the coefficient 

estimates.  The 95% confidence intervals reported also demonstrate that the bootstrapped 

coefficient estimates for all variables were statistically significant at the 0.05 level.  From these 

new coefficient estimates, it is possible to calculate elasticities to evaluate the effects of each 

explanatory variable.  Elasticity conversion formulae used are as shown in equations 5 through 7 

(Fox, 2011).  Histograms of the bootstrap procedure results for each variable are also presented 

in Appendix D showing the bootstrapped estimate and confidence intervals. 

Equation 5 – Elasticity Calculation for Log-Transformed Response Variables 

 𝛽 × 10  

Equation 6 – Elasticity Calculation for Non-Transformed Response Variables 

(𝛽 × 𝑥̅)  × 10 
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Equation 7 – Elasticity Calculation for Discrete Response Variables 

(
exp(𝛽)− 1

exp (𝛽)
) × 100 

Where 𝛽 is the coefficient estimate and 𝑥̅ is the mean of the variable in question. 

For logged response variables the log-log formula was used, which is simply the coefficient 

itself, for linear response variables the log-linear formula was used, and for dummy variables the 

discrete was used.  The variable that exerted the strongest effect on the model was the average 

headway variable, which refers to the average time between trains with an elasticity of -7.26%.  

This means that the model predicts that a 10% increase in headways would result in a 7.3% 

decrease in boardings.  This was followed by the bus connections variable (4.44%), population 

density (1.81%), and finally the number of park and ride spaces (1.06%).  As the CBD dummy is 

a binary variable (1 = station in CBD; 0 = station not in CBD), the elasticity is calculated as a 

change from one to zero, which in this case indicated that CBD stations in this model are 

predicted to have 43.3% more boardings than non-CBD stations. 

Since service supply, as measured by average headways, represents a potential endogeneity 

problem, the model for all Canadian rail rapid transit stations was reassessed using the two-stage 

least squares method with an instrumental variable as described in section 3.4.2.  Unfortunately 

no suitable instruments for the park and ride and bus connections variables, which may also 

exhibit the endogeneity problem, were found.  As the instrumental variable regression works in a 

similar way as an OLS regression the weights from the robust regression were extracted and used 

to weight the observations on the 2SLS model.  Station age was used as an instrument for service 

supply as it is assumed that station age does not directly influence station ridership.  It is possible 

that stations in the period immediately after construction may not reach full ridership but that is 

not a major concern in this case as the large majority of stations are over 10 years old, with a 

mean age of 29.12 years.  Station age also correlates fairly well with service supply with a 

Pearson correlation coefficient of 0.44.  While the correlation is not very strong, it merited 

further testing for validity as an instrument for supply.  Since spatial autocorrelation is 

potentially present a spatial lag and spatial error model using the instrumental variable approach 

were also tested and presented in Table 10. 
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The initial 2SLS model yields an F-test score of 43.304 (p = <0.0005), well above the traditional 

rule of thumb of 10 and Stock & Yogo’s (2005) critical value for one endogenous regressor and 

one instrument of 16.38.  It is therefore safe to conclude that station age is a strong enough 

instrument. The Hausmann test yielded a significant result with a p-value of 0.0196, which 

indicated that the model containing the instrument was significantly different from the model 

containing the supply variable.  Results of the 2SLS model are presented in Table 9 alongside 

bootstrapped coefficient estimates and confidence intervals. 

Table 9 - All Stations Instrumental Model with Bootstrapped Coefficient Estimates 

 Dependent variable: 

 log(Boardings) 

 Instrumental variable 

   Conf. Intervals 

 Estimate (SD) Boot Estimate (SD) 2.5% 97.5% 

log(Population Density) 0.137*** (0.029) 0.114 (0.031) 0.039 0.186 

log(Bus Connections) 0.427*** (0.042) 0.407 (0.048) 0.315 0.503 

CBD Dummy 0.477*** (0.095) 0.560 (0.106) 0.318 0.810 

Park and Ride Spaces 0.0004*** (0.0001) 0.0004 (0.0001) 0.0003 0.0006 

log(Average Headway) -0.887*** (0.072) -0.895 (0.079) -1.062 -0.744 

Constant 8.451*** (0.386) 8.656 (0.410) 7.780 9.629 

Observations 338    

R2 0.844    

Adjusted R2 0.841    

Resid. Std. Err.(df = 332) 0.494    

Wald Test (df = 5; 332) 206.5*** (p = 0.0)    

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 
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Table 10 - All Stations Instrumental Spatial Lag and Spatial Error Models 

 Dependent variable: 

 log(Boardings) 

 Instrumental 

 Spatial Models 

 Lag Error 

 Estimate (SD) Estimate (SD) 

log(Population Density) 0.141*** (0.024) 0.123*** (0.023) 

log(Bus Connections) 0.432*** (0.045) 0.418*** (0.042) 

CBD Dummy 0.545*** (0.104) 0.702*** (0.113) 

Park and Ride Spaces 0.0004*** (0.0001) 0.0004*** (0.0001) 

log(Average Headway) -0.679*** (0.060) -0.766*** (0.028) 

Constant 6.379*** (0.799) 8.176*** (0.220) 

ρ/λ 0.178* 0.387*** 

Observations 338 338 

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 

 

Table 11 - Elasticity Estimates for All Stations Models 

 OLS Spatial  

Error 

Weighted 2SLS 2SLS 

Error 

Population Density 1.50% 1.27% 1.82% 1.14% 1.23% 

Bus Connections 4.16% 4.20% 4.43% 4.07% 4.18% 

CBD Dummy 48.06% 50.72% 43.30% 42.90% 50.43% 

Park and Ride Spaces 1.24% 1.24% 1.06% 1.49% 1.25% 

Average Headway -7.35% -7.50% -7.25% -8.95% -7.66% 

 

Table 11 presents a comparison of the elasticity estimates of the bootstrapped unweighted, 

weighted, and 2SLS models and spatial error corrections for the OLS and 2SLS models.  Service 

supply underwent the largest change ranging in elasticity from -7.05% to -8.95%.  The parking 

supply variable also demonstrated a large range of values from 1.06% to 2.41%.  Population 

density decreased in explanatory power from the original OLS models to the 2SLS models.  The 
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CBD dummy variable appeared to be strongly affected by the spatial error correction with an 

elasticity estimate above 50% for both the OLS and 2SLS.  It is obvious from the results of the 

2SLS model that service supply is an importantfactor in explaining the variation in ridership 

between stations for Canadian rail rapid transit.  This coupled with the two access variables, bus 

connections with a relatively high elasticity and parking supply, indicates that internal factors, 

those under the control of transit agencies, can strongly influence transit ridership.  The sole built 

environment variable, population density, is markedly weaker in its effect although it does 

appear to increase in strength when the spatial component is included in the 2SLS model. 

The strong effect exerted by the average headways and the CBD dummy variables reflect the 

disparity in both boardings and headways for urban and suburban rail transit types.  Suburban 

stations in Canada averaged 1,402 boardings on an average weekday, while urban stations saw 

10,675 riders.  Similarly, the average headway for suburban stations was 96.6 minutes with three 

stations in the CBDs and only 5.1 minutes for urban stations with 49 being in the CBDs.  Large 

disparities also existed for parking spaces (suburban average = 669; urban average = 171) and 

population density (suburban average = 2,705 persons/km2; urban average = 6,660 persons/ 

km2).  The bus connections variable, on the other hand, was much more similar between the two 

types (suburban average = 6.07; urban average = 6.87).   

The relatively small number of explanatory variables found for the all stations model reflects the 

large differences in boardings found among the stations examined (see Figure 14).  Generally 

this model demonstrates that the success of transit in Canada depends first on the frequency of 

service.  This is supported by findings in other research on the topic of determinants of transit 

ridership.  For example, Messenger & Ewing (1996) found that the frequency of bus service had 

a positive increase in ridership in Florida at the TAZ level, while Taylor et al. (2008) found that 

26% of the variance in transit ridership among urban areas in the United States could be 

explained by the effects of service frequency.  In Canada, Habib, Kattan & Islam (2011) 

demonstrated that users’ perception of convenience of transit service, which includes transit 

frequency, may influence transit usage in Calgary.  Similarly, El-Geneidy et al. (2014) 

demonstrate that service frequency may influence users’ inclination to walk longer distances to 

access transit in Montréal.  Supply variables were also found to be significant in several DRM 

studies (Cervero, 2006; Cervero et al., 2010; Chan & Miranda-Moreno, 2013; Chow et al., 2003; 
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Dill et al., 2013; Kohn, 2000; Lane et al., 2006; Ryan & Frank, 2009; Usvyat et al., 2009).  Dill 

et al. (2013).  In an examination of three bus and light rail services in Portland, Oregon, Dill et 

al. (2013) show that service variables including headways explain between 25% and 46% of 

variation in transit ridership and that elasticities for average daily headway are between -9% and 

-11.5% for a 10% increase in headway.  For heavy rail systems only, Lane et al. (2006) report 

that a 10% increase in average midday headway would result in a -7.5% decrease in ridership in 

their model.  These results correspond with the findings in this model in which service supply 

accounted for between 43.11% for the 2SLS model and 47.45% for the unweighted model of the 

variation in total station ridership, and average headway elasticity between -7.25% and -8.95% 

for a 10% increase in average headway. 

Of the DRMs surveyed in Table 2, only Cervero (2006) found a link between a CBD dummy 

variable and station boardings with CBD stations in Charlotte having 36.7% higher ridership 

than non-CBD stations.  In the all stations, model CBD stations show 42.9% to 50.72% more 

boardings than non-CBD stations.   

While the headway and CBD variables explain the differences between the two transit types, the 

significance of the bus connections and parking spaces variables offer valuable insight into the 

role transit agencies may have in generating demand for service.  As discussed in section 2.3, 

automobile and other transit service comprise two of the most important modes of station access 

and are frequently found to be significant contributors to transit ridership in other models (e.g. 

Dill et al., 2013; Sohn & Shim, 2010).  The findings of this model would indicate that the role of 

bus connections is stronger than that of parking provision, although it is important to note that 

the bus connections variable counts the total number of bus lines connecting at a station, while 

the parking variable counts the total number of spaces.  The other station access mode, by foot or 

bicycle, is captured through the population density variable as it is assumed that higher 

population densities are associated with higher levels of pedestrian and cyclist access. 

Several DRMs for rail surveyed for this project found significant positive relationships between 

bus connection variables at the station level and ridership (Cardozo et al., 2012; Cervero, 2006; 

Cervero et al., 2010; Duduta, 2013; Gutierrez et al., 2011; Lane et al., 2006; Lin & Shin, 2008; 

Sohn & Shim, 2010; Usvyat et al., 2009).  As rail services generally operate as trunk lines with 

bus services feeding the stations, it is not surprising that bus connection variables are associated 
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with ridership in a large number of studies.  Park and ride lots serve a similar purpose and 

provide a means for individuals with cars who may lack convenient transit service to access 

stations.  While parking provisions may be useful means to increasing station ridership, 

particularly in outlying areas where bus service may be infrequent, they require large amounts of 

paved land and occupy areas close to stations that may be better suited to development.  This 

would indicate a potential conflict in goals between providing access to stations by automobile 

and creating denser environments to support transit around stations.  As mentioned by Parsons, 

Brinckerhoff, Quade & Douglas, Inc. (1996) and indicated by the large difference in parking 

spaces available at suburban (669) versus urban (171) stations total parking spaces are likely to 

have a larger effect in suburban and outlying locations where connecting bus service is likely 

less extensive and land around stations less likely to be developed.  The difference in effect 

between urban and suburban rail stations are tested in the individual models presented in sections 

4.1 and 4.2. 

The final variable in this model, population density, is the only one that reflects an aspect of the 

built environment.  Between the models, elasticity estimates indicate that a 10% increase in 

population density would correspond with a 1.14% to 1.82% increase in station ridership.  

Population density or total population count within a station service area is consistently found to 

be significantly associated with transit use in DRMs.  As mentioned in section Direct Ridership 

Models, high density has often been seen as necessary to the success of transit but that it may 

also represent aspects of the built environment that are commonly associated with dense urban 

environments (Kuzmyak et al., 2003).  It is impossible to tell whether or not the effect population 

density has according to this model is as a result of either the density itself, related aspects of 

built form, or a combination of both.  Throughout the model building process, however, few of 

the built form variables including measures of street network characteristics, land use, and 

composite indices appeared to have any strong associations with station level ridership 

particularly when compared to the effect of population density.   

In contrast to many DRMs, no other socioeconomic variable was found to have to be associated 

with transit use in Canada.  Income (Chan & Miranda-Moreno, 2013; Dill et al., 2013; Lin & 

Shin, 2008; Ryan & Frank, 2009), age (Chu, 2004; Dill et al., 2013; Johnson, 2003; Ryan & 

Frank, 2009), unemployment (Estupinan & Rodriguez, 2008), ethnicity (Chow et al., 2003; Chu, 
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2004; Dill et al., 2013; Gutierrez et al., 2011; Ryan & Frank, 2009; Taylor et al., 2008), and 

housing status (Kuby et al., 2003) have all been tied to transit use, reflecting the fact that in many 

places transit is most often used by low income groups that are unable to afford a car.  One 

conclusion that can be drawn from this model is that transit in Canada may be more equally 

shared among income or socioeconomic groups. 

4.1.1. Suburban Station Models 

Table 12 presents the results of a regression model run with only the suburban rail stations.  

Variables found in the global model are also found to be significant for the suburban stations, 

along with the addition of a dummy variable representing stations that serve an intermodal or 

transfer function and the relative distance to the downtown terminus from the station.  Like the 

combined model, several influential points were observed and, as a result, a robust regression 

was used to better fit the data (see Appendix C for a comparison between the unweighted and 

weighted models).  Cook’s distances greater than the cut-off value calculated from Equation 4 

were reduced from 11 to six with a reduction in their maximum value from 0.24 in the 

unweighted model to 0.10 in the weighted model.   

The heteroscedasticity score test (unweighted p = 0.016, weighted p = 0.10) indicated that non-

normal error variance may be present in the unweighted model, therefore, the corrected p-values 

are presented.  For both models, autocorrelation was not observed in the residuals according to 

the Durbin-Watson test score of 1.656 (unweighted) and 1.733 (weighted) which were within the 

acceptable range of 1.576 to 1.827 (Cummins, 2012).  Moran’s I results for the suburban model 

indicate some positive spatial autocorrelation with a score of 0.131 (p = 0.001) for the OLS 

model but -0.16 (p = 0.5) for the robust model.  As a result of the spatial autocorrelation 

observed in the OLS model a spatial lag and spatial error models were run and presented in 

Table 12.  The Shapiro-Wilk test indicated that the residuals were normally distributed in the 

unweighted model (p = 0.077) but not in the weighted version (p = 0.002).  Further inspection of 

a quantile plot of residuals revealed some deviations from a theoretical normal distribution, but 

not significantly enough to discount the validity of the model.  The RESET test for model 

specification yielded a p-value of 0.000004, which may indicate an important omitted variable.  

It was, however, not possible to construct a stable model by adding new variables to the existing 

model and was left as is.  VIF scores (Table 14) for both models fall close to their minimum 
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value and the condition is below 30 (unweighted: 29.45; weighted: 12.28) multicollinearity was 

not considered to be a problem. 

Table 12 - Unweighted Suburban OLS Model 

 Dependent variable: 

 log(Boardings) 

 Unweighted OLS 

   Conf. Intervals 

 Estimate (SD) Boot Estimate (SD) 2.5% 97.5% 

log(Population Density) 0.085** (0.029) 0.086 (0.034) 0.017 0.151 

log(Bus Connections) 0.294*** (0.078) 0.299 (0.092) 0.119 0.478 

CBD Dummy 0.840* (0.354) 0.901 (0.435) 0.260 2.179 

Park and Ride Spaces 0.001*** (0.0001) 0.0001 (0.0001) 0.001 0.001 

log(Average Headway) -0.224* (0.090) -0.232 (0.104) -0.440 -0.032 

Transfer Dummy 1.181*** (0.312) 1.156 (0.308) 0.585 1.838 

Rel. Distance to Terminal -0.569* (0.270) -0.546 (0.282) -1.109 -0.005 

Constant 6.270*** (0.456) 6.291 (0.549) 5.203 7.407 

Observations 118    

R2 0.746    

Adjusted R2 0.729    

Resid. Std. Err. (df = 110) 0.491    

F Statistic (df = 7; 110) 46.065***    

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 
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Table 13 – Suburban Unweighted Spatial Lag and Spatial Error Models 

 Dependent variable: 

 log(Boardings) 

 Unweighted 

 Spatial Models 

 Lag Error 

 Estimate (SD) Estimate (SD) 

log(Population Density) 0.082** (0.028) 0.085** (0.028) 

log(Bus Connections) 0.295*** (0.075) 0.296*** (0.075) 

CBD Dummy 0.866* (0.345) 0.834 (0.834) 

Park and Ride Spaces 0.001*** (0.0001) 0.001*** (0.0001) 

log(Average Headway) -0.212* (0.088) -0.219* (0.087) 

Transfer Dummy 1.190* (0.301) 1.150*** (0.300) 

Rel. Distance to Terminal -0.602*** (0.262) -0.592* (0.259) 

Constant 6.780*** (0.794) 6.253*** (0.438) 

ρ/λ -0.077 -0.099 

Observations 118 118 

Log-likelihood -79.13 -79.23 

Wald statistic 0.603 (p = 0.460) 0.361 (p = 0.548) 

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 

 

Table 14 – Suburban Stations OLS and Weighted OLS Models VIF Scores 

Coefficients VIF Unweighted VIF Weighted 

log(Population Density) 1.133 1.105 

log(Bus Connections) 1.339 1.362 

CBD Dummy 1.521 1.539 

Park and Ride Spaces 1.858 1.474 

log(Average Headway) 1.677 - 

Transfer Dummy 1.560 1.582 

Relative Distance to Terminal 1.501 1.820 
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Neither the spatial lag nor spatial error models performed well, showing only slight 

improvements in AIC for the spatial error model and Wald test statistics for the significance of 

the spatial terms too high to consider them good models. 

The most notable difference between the OLS models and the robust (shown in Table 15) is the 

removal of the average headways variable, which, after weighting was found to be not 

statistically significant.  As a result, it was left out of the model and the 2SLS procedure is not 

required.  As with the previous model, bootstrapped coefficient estimates and confidence 

intervals for the weighted model were generated which are presented in Table 15. 

Table 15 - Weighted Suburban Stations OLS Models with Bootstrapped Estimates 

 Dependent variable: 

 log(Boardings) 

 Weighted OLS 

   Conf. Intervals 

 Estimate (SD) Boot Estimate (SD) 2.5% 97.5% 

log(Population Density) 0.098*** (0.025) 0.099 (0.030) 0.037 0.158 

log(Bus Connections) 0.276*** (0.068) 0.284 (0.063) 0.163 0.410 

CBD Dummy 0.800*** (0.285) 0.859 (0.318) 0.525 2.038 

Park and Ride Spaces 0.001*** (0.0001) 0.001 (0.00001) 0.001 0.001 

log(Average Headway) - - - - 

Transfer Dummy 1.205*** (0.253) 1.190 (0.196) 0.789 1.513 

Rel. Distance to Terminal -0.678** (0.210) -0.690 (0.213) -1.118 -0.289 

Constant 5.288*** (0.228) 5.276 (0.274) 4.737 5.831 

Observations 118    

R2 0.777    

Adjusted R2 0.765    

Resid. Std. Err. (df = 110) 0.391    

F Statistic (df = 7; 110) 64.66***    

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 

 

A comparison of the elasticity estimates of the two models presented in Table 16 reveals mostly 

minor changes in the magnitude of effects of the coefficients.  The largest increase in 

explanatory power, that of relative distance to the terminus, was likely as a result of the removal 

of the average headways variable.  Stations that lie further from the terminus generally have less 
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service and greater headways between trains.  Other coefficient estimates remained relatively 

stable between the models with the transfer dummy, park and ride spaces, and CBD dummy 

variables exerting the strongest effect.  The inclusion of the spatial effect reduced the estimated 

effect of the population density variable, bus connections, and the transfer dummy while the park 

and ride spaces stayed roughly the same and the effect of service supply increased.   

Table 16 - Comparison of Bootstrapped Elasticity Estimates for Suburban Stations Models 

 OLS Weighted 

Population Density 0.86% 0.99% 

Bus Connections 2.98% 2.84% 

CBD Dummy 59.38% 57.64% 

Park and Ride Spaces 5.47% 5.76% 

Average Headway -2.32% - 

Transfer Dummy 68.52% 69.58% 

Relative Distance to Terminal -1.99% -2.55% 

 

In comparison to the all stations model, the same variables show sizeable changes in the 

magnitude of their effects.  First, the elasticity for population density in the weighted suburban 

stations model is 0.99%, a decrease from the 1.13% seen in the all stations 2SLS model.  A 

potential explanation for this is that densities around suburban train stations do not draw a large 

number of their riders from the immediate surrounding area and instead rely on other transit 

service and cars for station access.  This is supported by the evidence presented in Table 3, 

which shows that for Canada’s two largest suburban train operators, station access by active 

modes is 26% and 10%, compared with 46% walking access share for Montréal’s urban system 

operator, the STM.  This is corroborated by Parsons, Brinckerhoff, Quade & Douglas (1996) 

who, through their analysis and a number of case studies argue that residential density in station 

areas is less likely to influence ridership than the provision of parking spaces. In a survey of 

station access mode share in the United States, Coffel et al. (2012) also found that there are about 

0.75 parking spaces per boarding for commuter rail stations.  This is supported again by the 

models, where in the all stations 2SLS model a 10% increase in the number of parking spaces at 
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a station would correspond with a 1.49% increase in ridership compared with the weighted 

suburban model elasticity estimate of 5.47%. 

The elasticity of the CBD dummy variable (59.38%) in the weighted suburban model was 

slightly higher than the one estimated by the all stations models (42-50%).  This likely reflects 

the orientation of suburban rail networks, which primarily transport riders from outlying areas to 

downtown locations.  In this case, it is also important to remember that the downtown terminal 

stations located in the CBDs for all three suburban rail networks are not included in this model as 

boarding figures for these stations were significantly larger (Montréal: 15,405; Toronto: 90, 671; 

Vancouver 5,380) than the average (1,402) and were very large outliers.  This means that the 

CBD dummy variable refers only to the non-terminal CBD stations.   

The most notable difference between the previous set of models and the suburban models is the 

effect of the service variable.  The unweighted suburban model estimated that a 10% increase in 

headways would correspond with a 2.32% decrease in ridership, compared with over 8% in the 

2SLS all stations model.  Additionally, when the weights were applied to reduce the effect of 

outliers, the significance of the headway variable changed dramatically (p = 0.04 to p = 0.11) and 

the model’s fit was worse as measured by the AIC (142.96 when average headways were 

included in the weighted model and 139.13 without).  One possible explanation for this is that 

since suburban rail serves mostly commuters and acts as a scheduled service, the changes in the 

amount of time between trains is less likely to influence rider behaviour from a convenience 

standpoint.  

In addition to the variables found in the all stations models, a transfer dummy variable was 

included, which in the weighted model predicts that stations with at least one transfer to a transit 

mode other than buses experience 68% to 70% more boardings than those without.  This is 

unsurprising as intermodal connections help to deliver riders to these rail stations and frequently 

serve as connection points to the urban rail networks.  The final additional variable is the relative 

distance to the downtown terminal, which ranks stations on the rail network according to their 

distance on the same scale.  The results of the weighted model indicate that increasing distance 

from the terminus has a negative effect on boardings.  Other DRMs have shown similar results 

for urban rail systems (Chan & Miranda-Moreno, 2013; Sohn & Shim, 2010), heavy rail (Usvyat 
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et al., 2009), and BRT (Duduta, 2013) and likely reflects the negative effect that longer commute 

times, particularly relative to competing modes, can have on transit ridership. 

4.2. Urban Stations Models 

The final set of models presented uses only the urban stations and was initially tested with the 

coefficients determined to be significant in the first set of models.  As shown in Table 18, the 

population density and bus connections, and a service supply variable were also found to be 

associated with boardings at urban rail stations, while the parking spaces and CBD dummy were 

not.  In addition, the road link to node ratio, the walkability index, and a university dummy 

variable were also found to be significant.  Model diagnostic tests indicated that the model’s 

residuals were homoscedastic (score test p = 0.07), normally distributed (Shaprio-Wilk p = 0.12), 

uncorrelated (Durbin Watson test score = 1.717, within the acceptable range of 1.714 to 1.845 

and a Moran’s I value of 0.08, p = 0.006), and that the model was properly specified (RESET test 

p = 0.04). Similar to the other models the presence of outliers was observed and a robust 

regression was also run, which achieved a reduction in the number of high leverage and 

influential points, and a reduction in their magnitude from a maximum Cook’s Distance of 0.85 

to 0.14 and hat value of 0.91 to 0.27 (see tables in Appendix C for more detail).  The outlierTest 

function in R also indicated that no residual was abnormally large.  Diagnostic tests for the 

weighted model achieved similar results to the unweighted version (score test p = 0.23; Shaprio-

Wilk p = 0.06; Durbin Watson test score = 1.717; Moran’s I = 0.08 p = 0.006; RESET test p = 

0.04).  Coefficient estimates between the two models were also similar with minor changes 

including a decrease in the estimated effect of the bus connections, walkability, and supply 

variables, and increase in the estimated effect of population density.   

Table 17 - Urban Stations OLS and Weighted OLS Models VIF Scores 

Coefficients VIF Unweighted VIF Weighted VIF 2SLS 

log(Population Density) 1.514 1.546 2.077 

Link to Node Ratio 1.064 1.069 1.423 

log(Bus Connections) 1.112 1.117 1.223 

University Dummy 1.024 1.031 1.076 

Walkability 1.577 1.638 1.973 

Service Supply 1.174 1.166 2.995 
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VIF scores, presented in Table 17, were slightly higher than for both the unweighted and 

weighted urban stations models than for the previous ones.  The highest values were found for 

population density and service supply, which may occur as a result of the fact that stations in 

more densely populated closer to the center have a higher level of service than outlying ones.  

The VIF score for the walkability index is also fairly high, which is likely related to the fact that 

more walkable urban environments have higher density population densities.  The higher 

multicollinearity among variables found in the urban models is also reflected in the higher 

condition index of 25.59 for the unweighted model, 19.79 for the weighted model, and 21.26 for 

the 2SLS model.  Despite a higher degree of multicollinearity found in the urban stations models, 

diagnostic score tests still fall within an acceptable range.  Ridge regressions were also run to 

assess the degree of multicollinearity.  Coefficient estimates were plotted to examine the effect 

the introduction of an increasing amount of bias had which showed that they remained relatively 

stable.  

Table 18 - Unweighted Urban Stations OLS Model with Bootstrapped Estimates  

 Dependent variable: 

 log(Boardings) 

 Unweighted OLS 

   Conf. Intervals 

 Estimate (SD) Boot Estimate (SD) 2.5% 97.5% 

log(Population Density) 0.142*** (0.031) 0.155 (0.049) 0.078 0.277 

Link to Node Ratio 0.278** (0.089) 0.269 (0.093) 0.086 0.452 

log(Bus Connections) 0.463*** (0.041) 0.470 (0.047) 0.381 0.563 

University Dummy 0.465*** (0.107) 0.470 (0.138) 0.198 0.741 

Walkability 0.108*** (0.019) 0.105 (0.021) 0.062 0.145 

Service Supply 0.001*** (0.0002) 0.001 (0.0001) 0.001 0.002 

Constant 6.029*** (0.291) 5.920 (0.431) 4.908 6.636 

Observations 220    

R2 0.672    

Adjusted R2 0.663    

Resid. Std. Err. (df = 213) 0.482    

F Statistic (df = 6; 213) 72.85*** (p = 0.000)    

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 
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As with the all stations model, a two-stage least squares regression was also run to account for 

the simultaneity between the supply of transit, in this case the total daily supply of service, and 

demand.  Additionally, the models were bootstrapped to obtain confidence intervals for the 

coefficient estimates presented in Table 18, Table 20, and Table 21. 

Table 19 - Urban Stations Spatial Lag and Spatial Error Models 

 Dependent variable: 

 log(Boardings) 

 Unweighted 

 Spatial Models 

 Lag Error 

 Estimate (SD) Estimate (SD) 

log(Population Density) 0.134*** (0.032) 0.116*** (0.033) 

Link to Node Ratio 0.262** (0.091) 0.262** (0.096) 

log(Bus Connections) 0.471*** (0.042) 0.473*** (0.042) 

University Dummy 0.460*** (0.109) 0.517*** (0.110) 

Walkability 0.102*** (0.0003) 0.125*** (0.022) 

Service Supply 0.001*** (0.0002) 0.001*** (0.0002) 

Constant 5.178*** (0.646) 6.312*** (0.310) 

ρ/λ 0.108 0.258* 

Observations 220 220 

Log-likelihood -154.02 -152.54 

Wald statistic 2.369 (p = 0.124) 7.384 (p = < 0.007) 

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 

 

Results of the spatial lag and spatial error models for urban stations are presented in Table 19.  

The spatial lag model did not show much improvement on the initial model (AIC 326.03 vs. 

325.99) and a Wald test p-value of 0.124.  The spatial error model was a slight improvement in 

terms of AIC (323.08) with a satisfactory Wald test result (p = 0.007).  As the Moran’s I test 

showed relatively weak positive spatial autocorrelation the spatial error model’s estimates are not 

much different from those of the original OLS model. 
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Table 20 - Weighted Urban Stations OLS Models with Bootstrapped Estimates 

 Dependent variable: 

 log(Boardings) 

 Weighted OLS 

   Conf. Intervals 

 Estimate (SD) Boot Estimate (SD) 2.5% 97.5% 

log(Population Density) 0.161*** (0.029) 0.168 (0.037) 0.109 0.259 

Link to Node Ratio 0.244** (0.079) 0.240 (0.076) 0.088 0.388 

log(Bus Connections) 0.449*** (0.037) 0.454 (0.038) 0.382 0.531 

University Dummy 0.489*** (0.097) 0.491 (0.112) 0.270 0.711 

Walkability 0.099*** (0.017) 0.098 (0.018) 0.063 0.132 

Service Supply 0.001*** (0.0001) 0.001 (0.0001) 0.001 0.001 

Constant 5.956*** (0.268) 5.890 (0.328) 5.113 6.434 

Observations 220    

R2 0.717    

Adjusted R2 0.709    

Resid. Std. Err. (df = 213) 0.406    

F Statistic (df = 6; 213) 90.09*** (p = 0.000)    

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 

 

 

 

 

 

 

 

 

 

 

 

 



 

80 

 

Table 21 - Weighted Instrumental Variable Model for Urban Stations with Bootstrapped 

Estimates 

 
Dependent variable: 

 log(Boardings) 

 Instrumental variable 

   Conf. Intervals 

 Estimate (SD) Boot Estimate (SD) 2.5% 97.5% 

log(Population Density)  0.127*** (0.037) 0.109 (0.046) 0.003 0.235 

Link to Node Ratio 0.154 (0.100) 0.159 (0.122) -0.101 0.396 

log(Bus Connections) 0.471*** (0.043) 0.497 (0.051) 0.401 0.601 

University Dummy 0.529*** (0.109) 0.522 (0.132) 0.213 0.839 

Walkability 0.084*** (0.021) 0.086 (0.025) 0.034 0.135 

Service Supply 0.002** (0.001) 0.003 (0.001) 0.001 0.005 

Constant 5.722*** (0.321) 5.660 (0.381) 4.690 6.428 

Observations 220    

R2 0.660    

Adjusted R2 0.650    

Resid. Std. Err. (df = 213) 0.446     

Wald Test (df = 6; 213) 71.87*** (p = 0.000)    

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 

 

 

Table 23 presents elasticity estimates for the bootstrapped instrumental variable and weighted 

regression models.  The most obvious change is in elasticity estimate is the of the supply 

variable.  In the instrumental variable model, it is estimated that a 10% increase in the supply of 

service would correspond with a 13.6% increase in transit ridership, compared with to 5.3% for 

the weighed and unweighted OLS models.  Station age was again used as an instrument for 

supply, with a Pearson correlation coefficient of 0.41, which, like in the all stations model is not 

very high but high enough to investigate further.  The next largest effect is that of bus 

connections, followed by population density and the walkability index.  The university dummy 

variable also exerts a stronger effect in the instrumental variable model with stations with a 

university within the catchment area experiencing almost 41% higher ridership than those 

without.   
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Table 22 - Urban Stations Instrumental Spatial Error Model 

 Dependent variable: 

 log(Boardings) 

 Instrumental 

 Spatial Model 

 Error 

 Estimate (SD) 

log(Population Density) 0.093* (0.038) 

Link to Node Ratio 0.167 (0.110) 

log(Bus Connections) 0.488*** (0.047) 

University Dummy 0.516*** (0.120) 

Walkability 0.104*** (0.024) 

Service Supply 0.003*** (0.001) 

Constant 5.877*** (0.355) 

ρ 0.178x 

Observations 220 

Note: p < 0 ‘***’ p < 0.001 ‘**’ p < 0.01 ‘*’ p < 0.05 ‘x’ p < 0.1 

 

Table 23 - Comparison of Elasticity Estimates for Bootstrapped Unweighted OLS and Weighted 

OLS and Instrumental Variable Urban Stations Models 

 OLS Spatial Error Weighted 2SLS 2SLS 

Error 

log(Population Density) 1.55% 1.16% 1.68% 1.09% 0.93% 

Link to Node Ratio 3.50% 3.41% 3.15% 2.07% 2.17% 

log(Bus Connections) 4.70% 4.73% 4.54% 4.97% 4.88% 

University Dummy 37.50% 40.35% 38.80% 40.67% 40.29% 

Walkability 0.18% 0.20% 0.17% 0.15% 0.17% 

Service Supply 5.32% 4.61% 5.28% 13.63% 11.97% 

 

It is clear again from the elasticity estimates that the supply of transit service has the greatest 

potential to influence transit ridership.  Although not directly comparable, the estimated change 

in ridership in response to a 10% change in the supply variable is larger for urban stations than in 

the all stations model.  The elasticity of the effect of the supply of busses remains consistent with 

the previous models (between 2 and 5%) and other studies and reinforces the point that 
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intermodal connections play a significant role in generating rapid transit ridership.  The 

estimated elasticity of population density is also similar between all models (between 1 and 2%) 

reflecting partially the aspects of urban form can play.   

Link to node ratio, which is the ratio of street links between two intersections to the total number 

of intersections within a catchment area, is estimated to result in a 2 to 3.5% increase in ridership 

for a 10% increase in the ratio of links to nodes indicating that more permeable street networks 

have the potential to increase transit ridership. Using the same measure, Dill et al. (2013) found 

that the link to node ratio exerts a small but significant effect on transit use in the Portland, 

Oregon area.  Similarly, Lin & Shin (2008) found that the percentage of four-way intersections, 

another measure of street network connectivity, was positively associated with rapid transit 

usage in Taipei, Taiwan.  Walkability, a composite measure that includes land use mix, 

commercial sites, residential density, and number of intersections is also positively associated 

with boardings, although the magnitude of the effect is much smaller.  The urban models 

estimate that a 10% increase in the walkability score of a station would correspond with a 0.15 to 

0.18% increase in station ridership.  Ryan & Frank (2009) also used the same walkability index 

and similarly found that it explained only a small portion of the variation (0.5%) in bus transit 

ridership in the San Diego area.  The significance of the three urban form related variables 

supports the notion that urban rapid transit stations draw a significant portion of their ridership 

base from the immediate surrounding area and that urban form that supports pedestrian access 

can have a strong positive influence on transit ridership at the station level.   

The final variable in the urban stations model is a dummy variable for the presence of a 

university within a station’s catchment area.  These models predict that stations that serve 

university campuses experience between 37.5 to 41% more ridership than stations that do not.  

This finding occurs likely as a result of the large number of students and faculty that access 

university campuses and the fact that students, with lower incomes and consequently lower 

automobile ownership rates, are more likely to be dependent on transit.  Another related reason 

for why university stations experience more ridership is that campuses counted by this variable 

are often in higher density central locations, where the provision of parking is limited and cost is 

high.  Sohn & Shim (2010), one of the DRMs included in the literature review, found that the 

presence of a university in a station’s catchment area had a strong positive association with 
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metro ridership in Seoul, South Korea.  In Canada, Chan & Miranda-Moreno (2013) found that a 

similar variable, the area occupied by government and institutional land uses (which included 

universities), had a strong relationship to metro ridership in Montréal, where it was estimated 

that a 10% increase in area would correspond with a 6.7% increase in transit ridership. 
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5. Conclusions and Recommendations 

The goal of this thesis was to develop a station-level direct ridership model of rail rapid transit in 

Canada to assess which local level factors were associated with rapid transit ridership and to 

compare models for different transit types.  Data for 53 variables were used to develop three 

models of boardings at different types of transit stations: urban, suburban, and both urban and 

suburban together.  This final chapter summarizes the results of the models, answers the research 

questions, makes recommendations for policy-makers and planners, and proposes refinements to 

the models and data collection methods.  

5.1. Summary of Results and Recommendations 

The models fit the ridership data well with adjusted R2 values of 0.841 for the all stations 2SLS, 

0.765 for the suburban robust, and 0.650 for the urban 2SLS models offering a relatively high 

degree of explanatory value.  Several variables also appear to be consistently significantly 

associated with ridership between the models.  The population density and bus connections 

variables appear in all three, while the CBD dummy, parking spaces, and average headways 

variables appear in two of the models.  Table 24 presents the range of elasticity estimates derived 

(representing the change in boardings expected if the variable in question were to increase by 

10%) from the models generated.   

The elasticity estimate for population density remained consistent between the models and 

ranged between 0.86% and 1.82% (see Table 24).  This finding supports policies designed to 

raise population densities in order to increase transit usage.  Unfortunately the population density 

variable on its own does not provide any means to differentiate between the actual effects of 

population density and its accompanying “second-order” effects mentioned by Kuzmyak et al. 

(2003).  For example, higher density areas tend to coexist with gridded street patterns, greater 

street network permeability, and mixed land uses.  The significance of the link to node ratio and 

walkability variables, in conjunction with the lower elasticity estimate of population density, 

compared to those of the all stations model may be an indication that these effect have been 

partially captured.  This is further supported by the fact that when the urban model was run 

omitting the two built environment variables, link to node ratio and walkability, the estimated 

elasticity of population more than doubled to 2.32%  
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Table 24 – Range of Elasticity Estimates for all Models 

 Elasticity 

All Stations 

Elasticity 

Suburban 

Elasticity 

Urban 

Population Density 1.14% - 1.82% 0.86% - 0.99% 0.93% - 1.68% 

Bus Connections 4.07% - 4.43% 2.84% - 2.98% 4.54% - 4.97% 

CBD Dummy 42.90% - 50.72% 57.64% - 59.38% - 

Park and Ride Spaces 1.06% - 1.49% 5.47% - 5.76% - 

Average Headway -8.95% - -7.35% -2.32% - 

Transfer Dummy - 65.52% - 69.58% - 

Relative Distance to Terminal - -2.55% - -1.99% - 

Link to Node Ratio - - 2.07% - 3.50% 

University Dummy - - 37.50% - 40.67% 

Walkability - - 0.15% - .020% 

Service Supply - - 4.61% - 13.63% 

 

The elasticity for the bus connections variable is strongest in the urban stations model.  This 

makes sense as there are likely to be people beyond walking distance but who are unwilling or 

unable to access stations by car.  Its estimated effect on suburban stations also indicates that 

providing bus service to commuter rail stations increases transit use.  The effect of bus service in 

the suburban model is outweighed by that of park and ride spaces where the model estimates that 

a 10% increase in parking spaces would correspond with a 5.42% to 5.76% increase in ridership 

at that station.  This finding, in conjunction with the data presented in Table 3, supports the 

observation that many Canadian commuter rail riders either depend on or prefer to use their cars 

to access transit.  This can be considered evidence to support the policies already adopted by 

Metrolinx for Toronto’s GO rail transit stations, where the number of spaces available at stations 

between 2000 and 2013 has doubled; Metrolinx plans to continue to add parking spaces at new 

and existing stations (Metrolinx, 2013).  Similar plans exist to expand the park and ride service 

offered among other transit providers owing to increasing levels of demand for spaces in these 

lots, which in many cases operate near or at maximum capacity (Agence Metropolitaine de 

Transport, 2014; Metrolinx, 2013; The City of Edmonton, 2015).  The ridership effects of 

parking spaces should also consider the potentially negative effects increased parking and 
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consequently increased driving may have.  Evidence in has been presented by Parkhurst (1995, 

2000) that argues that park-and-ride provision may increase road traffic in station areas.  

Wiseman et al. (2012) also show that newly constructed park-and-ride lots can, in fact, divert 

commuters away from other forms of transit and into their cars for station access trips.   

The supply of transit (as measured by total number of trains or by average headways) was a 

significant factor in two of the final models with relatively high elasticity estimates.  In the all 

stations model, it was estimated that 10% increase in the time between trains at a stations would 

correspond with an almost 7% to 9% reduction in the use of that station.  In the urban model, a 

different supply variable was shown to exert an even stronger effect where the model estimated 

that a 10% increase in the supply of service (measured as the total number of trains arriving at a 

station on an average weekday) would correspond with as much as a 13.6% increase in station 

ridership.  The significance of these variables and their strong estimated effect reflect findings in 

the literature (e.g. Peng et al., 1997; Taylor & Fink, 2003; Taylor et al., 2008) that indicate that 

as transit service provision increases demand for service does as well.   

Inherent in the use of transit supply as a predictor of transit use is the problem of endogeneity or 

the cyclical relationship between supply for transit and its demand as discussed previously.  This 

makes it difficult to separate the effect supply or the availability can have on its demand as 

transit agencies can respond to increases in demand for service with greater supply.  It is hoped 

that the use of the 2SLS model with an instrumental variable adequately compensates for this 

effect and provides a more accurate depiction of the role service supply plays in influencing 

transit usage.  Model elasticity estimates for both supply variables were observed to change 

significantly between the standard OLS and robust models and the 2SLS models.  For the all 

stations models, the original OLS model estimated a -7.35% elasticity, the robust estimated it at -

7.26%, while the 2SLS result was nearly -9%.  Similarly for the urban OLS model, the estimated 

elasticity of service supply was 5.32% and 5.27% for the robust compared to 13.63% in the 

2SLS model.  When a spatial component was added as in the urban and all stations 2SLS models 

the effect of supply was shown to decrease slightly but still remained higher than in the weighted 

and unweighted OLS.   These results indicate that increases in the supply of transit should be met 

with increases in the use of transit.  This cannot be the case forever and as supply increases, 

demand would likely level off and increases in transit provision would be met with decreasing 
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gains in use.  It is possible to argue that transit agencies already provide transit service meeting 

existing demand and that further increases in service would not translate into greater use.  This, 

however, is unlikely given the fact that transit use in Canada’s major cities has continued to rise 

since the early 2000s (Statistics Canada, 2015) in conjunction with increases in transit funding 

(CUTA, 2012).  Recent evidence from Montréal’s STM 2014 annual report also shows that 

ridership on the transit network as a whole (including buses and the Metro) only grew by 0.2% 

from 2013, a period where transit service was cut by almost 5% (STM, 2015).  The case of 

Montréal does not provide adequate evidence to conclusively link the decrease in funding to 

much smaller gains in ridership than in previous years (1% between 2012-2013 and 1.9% 

between 2011-2012) but, combined with evidence presented here and in other studies suggests 

that ridership is still sensitive to supply of service (STM, 2013, 2014) 

Results of the all stations model demonstrate the strongest fit as measured by R2 also has the 

most limited range of significant explanatory variables.  Among them, the bus connections, 

parking spaces, and average headways variables could be of use in the transit planning process.  

While no new variables previously tested in other DRMs are found to be significant, the 

estimated effects of each provide some insight into the effectiveness of certain strategies transit 

providers can easily adopt.   

The suburban model suffers from a similar problem, although with the addition of the transfer 

dummy variables it is clear that stations serving an alternative mode are important points on a 

suburban rail network.  The relative distance to the terminus indicates that greater travel times 

are more likely to discourage transit use.  Again, the estimated magnitude of each effect may be 

of more interest than the variables themselves.  Generally the suburban model demonstrates that 

commuter rail use in Canada is largely dependent on ease of access particularly by car but also 

by transit, as well as access to other rapid transit networks.  The comparatively similar elasticity 

estimate of population density to that of the urban model highlights the potential for development 

in station areas even in suburban settings.   

Finally, the urban model offers more insight into the role urban form and the street network can 

play in influencing transit use.  The findings indicate that stations in denser, more permeable, and 

more walkable settings can encourage ridership.  In addition to the urban form variables, the 

university dummy variable is significant with the presence of a university in a station area 
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corresponding with a roughly 40% increase in ridership at that station.  This may indicate the 

role large destinations and centers of employment can have in generating significant transit 

usage.  The prominence of universities is owed likely to the fact that they are visited most often 

by younger people, who are less likely to own cars and increasingly more likely to live in urban 

and transit-accessible environments. 

5.2. Study Limitations and Future Research 

One major limitation of the research is the temporal scale of the ridership data.  For several 

cities, only data for 2012 were available.  Historical ridership data may have enabled a better 

estimation of the effect of supply by using the previous year’s ridership data as a predictor of the 

next year’s transit supply.  Where historical data was readily available (for Edmonton’s LRT and 

Toronto’s Subway), this approach was attempted and achieved similar results to the 2SLS model.  

Another area in which the analysis may be improved is through the use of one or more better 

instrumental variables for transit supply.  Similarly, the use of alternative modelling techniques, 

such as structural equations modelling (as used by Sohn & Shim, 2010), may help to better 

account for the interrelationships between supply and demand, as well as the relations between 

other variables tested.  Measures of service quality may also have improved the models as it has 

been argued that aspects of service quality such as timeliness and comfort can influence a 

commuter’s decision to take transit (Taylor & Fink, 2003).  Separating boardings by AM and PM 

peak periods may also help to further refine the models.  Additionally estimating models using 

alighting data may help to better define factors associated with trip attraction which has been 

shown to be an important element in transit use decision making (Barnes, 2005; Chatman, 2003) 
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Note: Union Station (90,671 boardings) is omitted. 
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Note: Bloor-Yonge Station (208,085 boardings) is omitted. 
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Note: St. George Station (133,385 boardings) is omitted. 
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Note: Gare Centrale (15,405 boardings) and Lucien-L’Allier Station (7431 boardings) are 

omitted. 
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Appendix D 

 

Histograms of Bootstrapped Variable Estimates for All Stations OLS 



 

138 

 

 

 

Histograms of Bootstrapped Variable Estimates for All Stations Robust 
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Histograms of Bootstrapped Variable Estimates for Suburban OLS 
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Histograms of Bootstrapped Variable Estimates for Suburban Robust 
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Histograms of Bootstrapped Variable Estimates for Urban OLS 
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Histograms of Bootstrapped Variable Estimates for Urban Robust 
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