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Abstract 

Digital Predistortion for Broadband Radio-over-Fiber Transmission Systems 

Zichen Xuan 

Concordia University 2015 

      With the increase of the demand of high capacity wireless access, design of cost 

effective broadband wireless signal distribution system is required, particularly for future 

massive multi-input and multi-output (MIMO) wireless. Recently, Radio-over-Fiber (RoF) 

transmission systems have been revisited for broadband wireless signal distribution 

between central processing unit (CPU) and remote radio unit (RRU) (i.e., antenna towers). 

RoF, which is based on optical subcarrier modulation and thus an analog transmission 

system, fully utilize the advantages of broadband and low-loss fiber transmission, and also 

radio signal transmission.  

      Unfortunately, RoF transmission systems are very susceptible to nonlinear distortions, 

which can be generated by all inline functional components of the RoF systems. However, 

two typical functions, i.e., optical subcarrier modulation and RF power amplification, are 

the two key sources of the nonlinear distortions. Various linearization techniques have been 

investigated for power RF amplifiers. It has been found that digital predistortion (DPD) 

linearization is one of the best approaches for RF bandwidth of up to 20 MHz.  

      In this thesis, DPD linearization is explored for broadband RoF transmission systems. 

Instead of DPD implemented in baseband previously, a DPD linearization technique 

implemented in RF domain is investigated and demonstrated experimentally for broadband 

RoF transmission systems. Memory polynomial (MP) model is used for theoretical 

modeling of nonlinear RoF transmission systems, in which both nonlinear distortion and 
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memory effect can be included. In order to implement the predistorter of the DPD using 

the MP model, least square (LS) method is used to extract the coefficients of the 

predistorter. Using the obtained coefficients, the trained predistorter is implemented and 

then verified in two experiments of directly modulated RoF transmission systems. In the 

first experiment, the DPD is verified in WiFi over fiber transmission systems, and more 

than 8 dB and 5.6 dB improvements of error vector magnitude (EVM) are achieved in back 

to back (BTB) and after 10 km single mode fiber (SMF) transmission. In the second 

experiment, both WiFi and ultra wide band (UWB) wireless signals are transmitted in the 

RoF system, which occupies over 2.4 GHz transmission bandwidth. It is shown that the 

implemented DPD leads to EVM improvements of 4.5 dB (BTB) and 3.1 dB (10 km SMF) 

for the WiFi signal, and 4.6 dB (BTB) and 4 dB (10 km SMF) for the UWB signal.  
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Chapter 1   Introduction 

      With the rapid development of advanced technologies, our modern life depends heavily 

on laptops, smart phones and tablets, more than ever before. These devices share one 

common feature: the demand of a high capacity wireless network. As shown in Figure 1-

1, the back-haul and the front-haul transmission systems make-up the wireless access 

network. Basically, the back-haul system relies on high capacity digital fiber transmission. 

To distribute wireless signals to antenna towers in front-haul transmission systems, 

traditional technologies such as narrow band analog radio frequency (RF) transmission 

over coaxial cables and digital fiber transmissions are applied. However, microwave 

coaxial cables are too costly, and high frequency RF signals suffer from high attenuation 

in the cables. Moreover, digital fiber transmission technology has been investigated for 

years, but it still suffers from a serious drawback which is the complexity of the remote 

radio unit (RRU) site, since digital from and to analog signal processing is involved. Under 

these circumstances, Radio-over-Fiber (RoF) transmission systems provide a good solution 

for these disadvantages [1]. 

 

Figure 1-1 Infrastructure of wireless access network including back-haul and front-haul 

transmission systems [1]. 
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1.1 Radio over Fiber (RoF) 

      Over two decades ago, A. J. Cooper firstly proposed and experimentally demonstrated 

RoF technology [2]. RoF systems transmit modulated light signals through optical fiber. 

With the growing demands of broadband wireless services and lower costs of optical 

components in recent years, RoF transmission systems have developed tremendous market 

advantages and attracted a large attention of research interests. 

1.1.1 Basic configuration of RoF transmission system 
 

 
Figure 1-2 Configuration of RoF system. 

      The basic configuration of RoF transmission system is shown in Figure 1-2, consisting 

of the central processing unit (CPU) and the remote radio unit (RRU), which are both 

connected to each other by an optical fiber. The transmission direction from the CPU to 

the RRU is commonly phrased as downlink. An optical modulator in optical transmitter 

(OTx) is required to modulate the amplified RF signal to light signal. Laser Diode (LD) 

can be used as the direct optical modulator. To achieve larger modulation bandwidth, 

electro-absorption modulators (EAMs) and Mach–Zehnder modulators (MZMs) are also 
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widely used as the external optical modulators. Single mode fibers (SMFs) and multimode 

fibers can be used as the optical transmission media of RoF systems. After the transmission 

through optical fiber, an optical receiver (ORx) that transferring the carrier from optical to 

electrical domain is applied at RRU. The Photodiodes (PDs), which convert light to 

electrical signal, are widely used in ORx. Afterwards, the demodulated signal is amplified 

to feed an antenna, and information is finally distributed to users. Conversely, uplink is the 

opposite transmission direction to downlink. In this direction, the OTx converts RF signal 

received by antenna of RRU to light signal, then CPU can process RF signal demodulated 

by ORx [3-4]. 

1.1.2 Advantages of RoF transmission systems 
 

      RoF transmission systems support one CPU to multiple RRUs communication. In 

traditional transmission systems, all the frequency up/down conversion, frequency 

multiplexing and signal modulations are processed in the RRU. On the other hand, the RoF 

system has the advantage of centralizing most of signal processing procedures in the CPU, 

and the RRU has only the OTx, ORx, amplifier and antenna. As a result, this simplified 

device management of RRU reduces system complexity, power consumption and 

maintenance costs.  

      In addition, low attenuation and broad transmission bandwidth are the major 

advantages of RoF transmission systems. Using optical fiber instead of coaxial cable, the 

attenuation in signal transmission is much reduced. For instance, the SMFs have the optical 

attenuations of 0.5 dB/km at 1310 nm wavelength and 0.2 dB/km at 1550 nm wavelength, 

which are much lower than the RG-58 coaxial cable, which has the attenuation of 1056 
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dB/km. 850 nm, 1310 nm, and 1550 nm wavelengths are the three main transmission 

windows that offer low attenuation in optical fiber communications, and all of these three 

combined windows will result in a 50 THz transmission bandwidth. Furthermore, with the 

matured technologies such as wavelength division multiplexing (WDM) and sub-carrier 

multiplexing (SCM) being applied to optical communications, it is easy to realize the 

sufficient usage of the broad bandwidth of RoF transmission systems [5-8]. Apart from the 

advantages above, immunity to radio frequency interference and easy installation also 

render that RoF transmission systems will play a critical role in transmitting and 

distributing wireless signals in the future 

1.1.3 Limitations of RoF transmission systems 
 

      In RoF systems, both analog modulations and detection of light are involved, therefore, 

the RoF transmission system is fundamentally an analog inclusive system, which means it 

can suffer from some of the analog communication systems’ typical issues such as signal 

noises and nonlinear distortions. Major nonlinear distortion sources in RoF transmission 

systems include optical modulators and RF power amplifiers. These impairments result in 

the limitations of noise figure (NF) and dynamic range (DR). NF indicates the degradation 

of signal to noise ratio (SNR) of a system or a component, and it represents the quantity of 

noise which will be generated by the system or device. DR introduces the operational range 

of a system or a component, which is limited by the range from its noise floor to its 

compression point. DR is very important to mobile communications from RRUs to CPUs 

since the signal power received at RRU depends on the distance. For instance, within the 

same communication cell, compared to the RRU close to the CPU, the signal power 

received at a distant RRU is much smaller.   
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1.1.4 Optical subcarrier modulation 

 

Figure 1-3 Principle of optical subcarrier modulation. 

      As discussed, RoF transmission systems have the advantages of transmitting and 

distributing RF signals. Taking RoF system downlink for example, as shown in Figure 1-

3, an RF signal in the CPU is sent to modulate the optical signal in order to transmit 

information to the RRU. Then, optical subcarriers carry the RF signal in which the process 

is the optical subcarrier modulation. At the RRU, the received optical signal is converted 

back to the RF domain and amplified, after which information is finally distributed to the 

users by an antenna. As shown in Figure 1-4, optical subcarrier modulation can be realized 

by (a) direct modulation and (b) external modulation. Direct modulation uses only a laser, 

while external modulation uses a continuous wave (CW) laser and an external modulator 
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such as a MZM or an EAM. In comparison, direct modulation is simpler and cheaper than 

external modulation. However, direct modulation introduces a higher chirp which results 

in more chromatic dispersion (CD) effect. CD happens when two or more light signals with 

different frequencies are being transmitted in optical fiber, the arrival times of the 

transmitted signals are different.  

 

Figure 1-4 Optical subcarrier modulation (a) direct modulation and (b) external modulation. 

      Besides, as shown in Figure 1-3, the transmission of optical subcarriers occupies larger 

bandwidth than the transmission of RF carriers. This also makes the system more 

susceptible to CD since the broad transmission bandwidth is capable of transmitting more 

carriers. Thus, in order to reduce CD, other than using double sideband (DSB) modulation 

as shown in Figure 1-5 (a), single sideband (SSB) modulation, as shown in Figure1-5 (b) 

is investigated [9-10]. SSB modulation can be realized by biasing a dual-electrode MZM 

at quadrature and carefully controlling its phase difference. SSB modulation generates one 
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optical sub-band which is half of the modulation bandwidth of DSB modulation. The 

reduced modulation bandwidth of SSB modulation leads to the reduction of CD.  

 

Figure 1-5 (a) DSB modulation and (b) SSB modulation. 

1.2 Wireless signal formats  

      Using RoF links to transmit and distribute wireless signals, a lot of the signal distortions 

are caused by optical subcarrier modulations. However, other than the analog RoF 

transmission system, the distributed radio systems can be digitalized by using multi signal 

modulation formats such as quadrature amplitude modulation (QAM) and orthogonal 

frequency division multiplexing (OFDM). With the increasing demands of data rate and 

transmission bandwidth in wireless communication, OFDM is now considered the most 

promising approach by its capability of high data transmission rate and highly sufficient 

usage of bandwidth. Specifically, OFDM is a digital multi-carrier modulation scheme by 

using a large number of closely spaced orthogonal subcarriers to carry data, where each 

subcarrier is modulated by conventional modulation methods such as QAM and phase-shift 

keying (PSK). Popular OFDM based wireless signal formats include wireless local area 

network (WLAN) and ultra wideband (UWB).  
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1.2.1 Wireless local area network (WLAN) overview  
 

      WLAN is a local wireless communication method which links to two or more devices. 

The mobility and flexibility of this technology allow users to move freely in the coverage 

area, and WLANs have been widely deployed because of its easy to install feature and the 

trend of using mobile devices in recent years. IEEE 802.11 is the dominant standard in 

WLAN communications, and it is first released in 1997 as a set of specifications for 

computer communications at the frequency bands of 2.4 and 5 GHz. IEEE 802.11a and 

IEEE 802.11g are the two early protocols which were specifically assigned to use OFDM 

modulation. For IEEE 802.11g, the transmission channel consists of 52 sub-carriers where 

each subcarrier has a bandwidth of 312.5 KHz, then the subcarriers combined channel 

occupies 16.25 MHz bandwidth at the frequency of 2.4 GHz with the data rate up to 54 

Mbits/s. In addition, every sub-carrier can use a unique modulation scheme. In the past few 

years, the above specifications are widely deployed to family internet routers and office 

WLAN implementation, and has made our life much more convenient than ever before.  

 

Figure 1-6 Spectrum of 802.11a WiFi signal.  
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Figure 1-7 Time domain of 802.11a WiFi signal.  

      Figure1-6 shows the RF spectrum of 802.11a WiFi signal at the center frequency of 2.4 

GHz with the data rate of 32 Mbits/s, and Figure 1-7 shows the time domain of 802.11a 

WiFi signal.  

      With the rapid development in this field, the IEEE 802.11n and IEEE 802.11ac were 

proposed in 2009 and 2013, respectively. Recently, Bell Canada deployed the IEEE 

802.11ac protocol to their internet routers which support both 2.4 and 5 GHz frequency 

bands with the practical data rate up to 175 Mbits/s, and its fiber optic network where RoF 

technology can be applied has already replaced the traditional digital subscriber line (DSL) 

services.  

1.2.2 Ultra wide band (UWB) overview 
 

      Nevertheless, people expect larger operational bandwidth and higher data rate. With its 

huge bandwidth (0.5 to 10.6 GHz), high data rate (55 to 480 Mbits/s) and low power 

spectral density, UWB is expected to have a major impact on next generation wireless 

communication such as 5G systems. In 2002, US Federal Communications Commission 
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(FCC) became the first to allocate the UWB application using the spectral band from 3.1 

to 10.6 GHz with the less than -41.3 dBm/MHz transmitted power spectral density (PSD). 

Furthermore, the FCC defined UWB formats are specified to occupy an over 500 MHz 

frequency bandwidth, or its 10 dB bandwidth has at least 20% of the carrier frequency [11].   

 

Figure 1-8 FCC indoor communication system emission level [11]. 

      As shown in Figure 1-8, the FCC UWB operating range is from 3.1 to 10.6 GHz, but 

there is no specific regulation on the exact physical infrastructure. Therefore, several UWB 

techniques have been proposed such as direct sequence (DS-UWB) [11] and multiband 

orthogonal frequency division multiplexing (MB-OFDM).   

      The DS-UWB is a directly modulated single band approach which has a huge 

bandwidth of 7.5 GHz.  As shown in Figure 1-9, MB-OFDM is a multiband modulation 

format which divides the entire 7.5 GHz bandwidth into 14 sub-bands, and these 14 sub-

bands are being assigned to 6 large band groups [12]. Band group 1 to band group 5 consist 

of three sub-bands and there are two sub-bands in band group 6. Note that each sub-band 

contains 122 carriers that are spaced 4.125 MHz apart, then each sub-band occupies a total 
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bandwidth of 528 MHz. Only band group 1 is mandatory now, and the rest are reserved for 

the future.  

 

Figure 1-9 MB-OFDM UWB band groups [12]. 

 

Figure 1-10 Spectrum of MB-OFDM UWB signal.  
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Figure 1-11 Time domain of MB-OFDM UWB signal. 

      Figure 1-10 shows the RF spectrum of three sub-bands in UWB band group 1 with the 

data rate of 200 Mbits/s. These three sub-bands are centered at the frequencies of 3.432, 

3.96 and 4.488 GHz, respectively. The time domain of this UWB signal is shown in Figure 

1-11. 

      As mentioned above, the UWB signal contains a low power spectral density feature, so 

propagating in the cable or in the free air will cost massive attenuation. Since one of the 

major limitations of WLAN is bandwidth, when a large amount of users are signed into the 

same WLAN communication system, the data transfer rate will be greatly reduced. 

However, optical fiber has the advantages of minimized loss, lower cost and large 

bandwidth, and thus it is very promising to use RoF transmission systems to transmit and 

distribute WLAN and UWB signals.  



13 
 

1.3 Nonlinearities of RoF transmission systems 

 

Figure 1-12 Schematic of (a) linear transmission and (b) nonlinear transmission of RoF systems. 

      In RoF transmission systems, the output power is expected to be linear to its input 

power which is shown in Figure 1-12 (a). However, the output of the system is always 

nonlinear to its input in practical transmissions. As shown in Figure 1-12 (b), as RoF input 

power increases, the RoF output power is not increasing as expected, which means the 

transmission of the RoF system is being suppressed. This introduces nonlinear distortions 

of RoF transmission systems. Fiber dispersion such as chromatic dispersion will be 

introduced by using optical fiber as the signal transmission media. In multimode fibers, 

modal dispersion (MD) introduces signal spread in time due to the different propagating 

velocities of optical signals, which are transmitting in different modes. However, for 

example, fiber dispersion generated by the transmission of wireless signals such as UWB 

and WiFi over a few kilometers single mode fiber (SMF), has very little influence on the 

nonlinearities of RoF transmission systems.  

      The major nonlinear distortion in RoF link is caused by the usage of RF components 

like RF power amplifiers (PAs) and optical components such as laser diodes, external 

electro-optical modulators, semiconductor optical amplifiers (SOAs) and photodiodes. The 
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nonlinear transfer functions of these devices result in harmonic distortion (HD) and 

intermodulation distortion (IMD). When considering single tone signal transmission in a 

RoF link, the output signal contains products at frequencies of integer multiples of the 

fundamental frequency which is shown in Figure 1-13, and this phenomenon is caused by 

HD.  

 

Figure 1-13 Harmonic distortion at RoF output. 

      IMD happens when two or more signals at adjacent frequencies are being transmitted 

in an RoF link, intermodulation between these signals generates more distortion products 

at frequencies other than harmonic frequencies. To analyze IMD mathematically, Taylor 

series as shown in equation (1.1) is used to model the nonlinearity of RoF transmission 

systems [13].  

 𝑣𝑜 = 𝑎0 + 𝑎1𝑣𝑖 + 𝑎2𝑣𝑖
2 + 𝑎3𝑣𝑖

3 + ⋯, (1.1) 

where 𝑣𝑖  and 𝑣𝑜  are the input and output, respectively, and 𝑎  denotes the coefficients. 

When the two tones of input signal are closly spaced at frequencies 𝑓1 and 𝑓2,  

 𝑣𝑖 = 𝑉0(𝑐𝑜𝑠2𝜋𝑓1𝑡 + 𝑐𝑜𝑠2𝜋𝑓2𝑡) (1.2) 

Then from equation (1.1), the output of the RoF system can be derived as,  
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𝑣𝑜 = 𝑎0 + 𝑎1𝑉0(𝑐𝑜𝑠2𝜋𝑓1𝑡 + 𝑐𝑜𝑠2𝜋𝑓2𝑡) + 𝑎2𝑉0(𝑐𝑜𝑠2𝜋𝑓1𝑡 + 𝑐𝑜𝑠2𝜋𝑓2𝑡)2

+ 𝑎3𝑉0(𝑐𝑜𝑠2𝜋𝑓1𝑡 + 𝑐𝑜𝑠2𝜋𝑓2𝑡)3 + ⋯ 

= 𝑎0 + 𝑎1𝑉0𝑐𝑜𝑠2𝜋𝑓1𝑡 + 𝑎1𝑉0𝑐𝑜𝑠2𝜋𝑓2𝑡 +
1

2
𝑎2𝑉0

2(1 + 𝑐𝑜𝑠2𝜋𝑓1𝑡)

+
1

2
𝑎2𝑉0

2(1 + 𝑐𝑜𝑠2𝜋𝑓2𝑡) + 𝑎2𝑉0
2 cos(2𝜋𝑓1 − 2𝜋𝑓2) 𝑡

+ 𝑎2𝑉0
2 cos(2𝜋𝑓1 + 2𝜋𝑓2) 𝑡 + 𝑎3𝑉0

2 (
3

4
𝑐𝑜𝑠2𝜋𝑓1𝑡 +

1

4
𝑐𝑜𝑠6𝜋𝑓1𝑡)

+ 𝑎3𝑉0
2 (

3

4
𝑐𝑜𝑠2𝜋𝑓2𝑡 +

1

4
𝑐𝑜𝑠6𝜋𝑓2𝑡) + 𝑎3𝑉0

2[
3

2
𝑐𝑜𝑠2𝜋𝑓2𝑡

+
3

4
cos(4𝜋𝑓1 − 2𝜋𝑓2) 𝑡 +

3

4
cos(4𝜋𝑓1 + 2𝜋𝑓2) 𝑡]

+ 𝑎3𝑉0
2[

3

2
𝑐𝑜𝑠2𝜋𝑓1𝑡 +

3

4
cos(4𝜋𝑓2 − 2𝜋𝑓1) 𝑡

+
3

4
cos(4𝜋𝑓2 + 2𝜋𝑓1) 𝑡] 

(1.3) 

The third order intermodulation (IMD3) products are at 2𝑓1 − 𝑓2, 2𝑓2 − 𝑓1, 2𝑓1 + 𝑓2and 

2𝑓2 + 𝑓1  frequencies. 2𝑓1 − 𝑓2 and 2𝑓2 − 𝑓1  are located right next to the fundamental 

frequencies f1 and f2. Similarly, it is easy to derive from equation (1.1) that 3𝑓1 − 2𝑓2 and 

3𝑓2 − 2𝑓1  are the two of fifth order intermodulation (IMD5) products that are closely 

located to fundamental frequencies. From equation (1.3), it is also possible to obtain the 

values of coefficients which represent the amplitudes of intermodulation products. The 

obtained amplitudes of IMD3 and IMD5 are related to their powers in RoF transmission. 

From Figure 1-14, it can be derived that second order intermodulation (IMD2) products 

have the largest powers among all IMD products, however IMD2s are located far from the 

fundamental frequencies. IMD3 has the second largest power among IMDs which is 

located in the transmission passband. IMD5 is also in the passband but with a lower power. 

Hence IMD3 should be considered the most important intermodulation product.  
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Figure 1-14  Schematic of the generated intermodulation products in nonlinear systems. 

      Note that, four wave mixing (FWM) is the most stand out optical nonlinear effect in 

RoF transmission systems. It is generated by the included optical components such as 

SOAs and optical modulators. As shown in Figure 1-15, two lights at the frequencies of 𝑓1  

and 𝑓2 are generated by two CW lasers, respectively. Then, at the output of external optical 

modulator, two more lights at the frequencies of 2𝑓1 − 𝑓2and 2𝑓2 − 𝑓1 are generated. Thus 

it can be noticed that the FWM is an IMD phenomenon.  

 

Figure 1-15 Schematic of four wave mixing (FWM) phenomenon. 
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      It is possible to infer from equation (1-3) that odd order IMD products are formed 

closely to the fundamental frequencies which could be within the transmission passband. 

As shown in Figure 1-16, this kind of phenomenon is called ‘spectrum regrowth’. Thus 

linearization techniques are highly needed in RoF links. As mentioned, the major causes 

of nonlinear distortions in RoF links are optical subcarrier modulation and RF power 

amplification, so most proposed techniques are targeted at these aspects.  

 

 

Figure 1-16 Spectrum regrowth. 

1.4 Linearization techniques for RoF systems 

     Due to the nonlinearities of RoF links, various linearization techniques have been 

proposed within the past years. As shown in Figure 1-17, optical linearization and electrical 

linearization are the two principal approaches in the linearization for RoF transmission 

systems. Optical Linearization includes mixed-polarization [14-15], dual-wavelength [16] 

and etc, while electrical linearization includes analog predistortion circuit [17-19], digital 

predistortion (DPD) [20-26] and digital post-compensation (DPC) [27-30]. In predistortion, 

a spurious distortion is firstly generated and is applied to input of nonlinear systems, then 

the spurious distortion carried by the transmitted signal will suppress the nonlinear 
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distortion generated from RoF systems. The processing sequence of post-compensation is 

opposite to predistortion.  

 

Figure 1-17 Linearization techniques [1]. 

1.4.1 Optical linearization  

      The principle of optical linearization is to use the two nonlinear products generated in 

RoF links to cancel each other while maintaining the linear products such as subcarrier 

carrying wireless signals. Mixed-polarization and dual-wavelength are the typical optical 

linearization methods for RoF links. 

 

Figure 1-18 Schematic of mixed polarization EAM [14]. 

      In [14], Hraimel et al. proposed and experimentally demonstrated optical mixed 

polarization technique for an EAM modulated RoF link. As shown in Figure 1-18, the 
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polarizers are, respectively, set to angle α and β with respect to z-axis. The light signal, 

which consists of the superposition of TE and TM optical field will be modulated by EAM 

first, then EAM output carries certain amounts of intermodulation products in its TE and 

TM optical fields. Because of the two angles in polarizers are carefully set which makes 

them related to each other, nonlinear distortion of the RoF system can be suppressed. In 

experimental demonstration, the mixed polarization EAM achieved a spurious-free 

dynamic range (SFDR) improvement of 8.1 and 9.5 dB in back to back and after 20 km 

fiber transmission. 

 

Figure 1-19 Schematic of dual-wavelength linearization [16]. 

      Similarly, dual-wavelength method is using the nonlinear distortion products generated 

at different wavelengths λ 1 and λ 2 to cancel each other. In [16], Zhu et al. investigated 

linearization for RoF link with two lasers working at different wavelengths. As shown in 

Figure1-19, the wavelength of the two lasers are 1552.6 nm and 1510 nm, respectively. A 

C-band EAM is used as optical sub-carrier modulator. By carefully setting the power ratio 

of the two lasers, the nonlinearities from both lasers can be set antiphase. In this way, 

nonlinear distortions of both lasers are expected to be suppressed. The experimental results 

show that both HD2 and HD3 can be suppressed by 23 and 2.1 dB, respectively.  
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      The optical linearization is considered as the predistortion method which can suppress 

both odd and even orders nonlinearities, and the suppression of nonlinearity covers the 

whole RF modulation bandwidth of the external modulator.  

1.4.2 Analog predistortion circuit  
 

      Analog predistortion circuit is a typical technique in electrical RoF linearization. The 

principle of analog predisortion circuit is shown in Figure1-20, IMD3 is the suppression 

target in the diagram. The optical modulator in OTx for electrical to optical (E/O) 

conversion is modulating two signals adjacently centered at 𝑓1 and 𝑓2.  The upper part of 

Figure 1-20 shows the intermodulation products introduced by IMD3 at  2𝑓1 − 𝑓2 

and 2𝑓2 − 𝑓1. When applying analog predistortion circuit which is shown in the lower part 

of the figure, the antiphase IMD3 products which generated from the analog predistortion 

circuit will cancel the IMD3 products generated from RoF link. In this way, the suppression 

of IMD3 is realized.  
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Figure 1-20 Principle of analog predistortion circuit linearization technique [1]. 

      Using analog predistortion circuit to linearize RoF transmission systems, the 

conventional configurations of the circuits are shown in Figure1-21. The input signal has 

been split into two propagating paths, the lower path goes through the predistortion unit, 

and the upper path got time delay. At the output end of the circuit, a power combiner is 

used to combine the two paths.  

 

Figure 1-21 Predistortion circuit block [18]. 

      In [17], Zhu et al. designed a low cost broadband predistortion circuit. As shown in 

Figure 1-22, the circuit uses two Wilkinson power dividers (WPDs) to split and combine 
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the transmitted signal. Two GaAs beam lead detector diodes at zero bias are used to 

generate the predistortion signals. In the experiment, the circuit is applied to remove the 

IMD3 of an EAM based RoF system. Around 9 dB improvement of spurious-free dynamic 

range (SFDR) from 7 to 14 GHz, and around 4 dB improvement of SFDR from 15 to 18 

GHz were achieved. 

 

Figure 1-22 Schematic of broadband predistortion circuit [17]. 

      Shen et al. proposed and experimentally demonstrated a simple analog predistortion 

circuit as shown in Figure 1-23 [18]. The power splitter splits the input signal into two 

transmission paths, and odd order nonlinear distortion products are generated after the 

signals have gone through the two antiparallel diodes. The applied quarter wave 

transformers are used for impedance matching. In the circuit, neither phase shifters nor 

amplifiers are used. In the experiment, the circuit is implemented for the linearization of 

MB-OFDM RoF transmission system. The verification results show a more than 7 dB 

suppression of IMD3 and 11 dB improvement in SFDR over 1.7 GHz transmission 

bandwidth.   
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Figure 1-23 Reflective antiparallel diodes based analog predistortion circuit [18]. 

      In [19], Zhu et al. designed a broadband analog predistortion circuit to suppress IMD3 

which is generated from an RoF transmission system. The analog predistortion circuit is 

shown in Figure 1-24, consisting of a dual Schottky diode and broadband resistors. And 

broadband capacitors and inductors are applied as bias tees. Only one direct current (DC) 

source is used to bias the dual Schottky diode. To evaluate the performance of the circuit, 

EAM is used for optical subcarrier modulation in an RoF system. More than 10 dB 

improvement in SFDR from 1 to 5 GHz was achieved.  

 

Figure 1-24 Schematic of broadband analog predistortion circuit circuit [19]. 

      Analog predistortion circuit method is economically friendly because the analog 

components are cheap, and by integrating all components in a signal circuit, the compact 

size of the circuit benefits the allocation of this technology. However, it can be found out 

from the above circuits, all the components are fixed on the circuit board, so it is hard to 
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control phase and amplitude in analog circuit linearization techniques. Besides, the 

amplifiers used in the analog circuit might generate new nonlinear distortion and mix it 

with the original nonlinearities. Furthermore, analog circuit technology cannot provide 

enough linearization because it cannot suppress even order nonlinearities in broadband RoF 

transmissions. 

      Digital linearization is another technique among electrical RoF linearization 

approaches, which provides higher accuracy and better improvement. The detailed 

explanation of digital linearization will be presented in the next chapter.  

1.5 Thesis outline 
 

The rest of the thesis is organised as follows,  

Chapter 2 discussed the digital linearization techniques for RoF links and RF power 

amplifiers. DPD and DPC are the two approaches in digital linearization. After reviewing 

the techniques of recent years. Research goals are proposed.  

Chapter 3 theoretically analyzed the nonlinear distortions of RoF links, and the 

nonlinearities of RoF transmission system are modeled. To train the digital predistorter, 

the extraction of predistorter coefficients is explained and performed.  

Chapter 4 presents the DPD verifications for RoF links in the experiments, and the DPD 

for WiFi over fiber transmission systems is implemented and verified. The same adaptive 

DPD technique for WiFi and MB-OFDM UWB over fiber transmission systems is verified 

as well.  
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Chapter 5 concludes the works that have been accomplished in the thesis and suggests the 

future works. 
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Chapter 2 Digital Linearization  

 

2.1 Digital linearization techniques 
 

      As we discussed, DPD and DPC are the two approaches of digital linearization for RoF 

transmission systems. In digital linearization, an analog to digital converter (ADC) is used 

to sample the transmitted signals, then linearization is  achieved by digital signal processing 

(DSP), where the opposite nonlinear distortion products are generated to compensate or 

post-compensate for nonlinearity generated from RoF transmission. Among all 

linearization techniques, digital linearization is the most flexible and accurate approach.  

      The schematic of DPC technique is shown in Figure 2-1: at the output of RoF link, a 

postdistorter is applied to compensate for the nonlinear distortion generated in RoF 

transmission.  To extract the coefficients of postdistorter, monitoring of the received signal 

is needed. Coefficients of postdistorter are obtained when desired output signal is acquired. 

In DPC, the training of the postdistorter requires data analysis based on multiple cycles of 

the output signal sweep which limits processing speed and efficiency.   

 

Figure 2-1 Schematic of DPC technique. 
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      Compared to DPC, DPD technique can be more straight-forward and provide better 

results. Certain equations are applied to model the nonlinear RoF transmission systems. 

The schematic of DPD is shown in Figure 2-2, which contains the procedures: first step is 

to apply the signal data which is extracted from RoF input and output in an algorithm, 

second step is to calculate the coefficients of predisorter, the last step is to use the 

predistorter to generate spurious distortion products. x and y are the extracted input and 

output of RoF transmission system, 𝑦/𝑔 is the predistorter input where 𝑔 denotes the gain 

of RoF system, then the output of predistorter training block 𝑥′ can be obtained from the 

modeling equation of the RoF system, and coefficients of the predistorter training block 

are extracted by applying an estimation algorithm to minimize the difference 𝑒 = |𝑥′ − 𝑥|. 

By using the obtained coefficients, it is able to generate the spurious distortion by the 

trained predistorter. Note that in broadband RoF transmissions, the output signal might not 

only be related to the simultaneous input signal, but is also affected by the previous inputs. 

Memory model in the DPD is then studied with respect to nonlinearity and memory effect 

of RoF systems. The predistorter can be adaptive for various transmission signal formats 

and broadband RoF links. By directly processing the input and output signal data of RoF 

systems, DPD is much more flexible and efficient than any other linearization techniques. 
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Figure 2-2 Schematic of DPD technique. 

2.2 Literature review 
 

      As the discussed linearization techniques for RoF transmission systems, the optical 

methods are able to realize linearization for ultra-broad transmission bandwidth. However, 

they are more complex than analog predistortion circuit and optical components are hard 

to integrate. Analog predistortion circuits are cheap and simple, but even order 

nonlinearities are almost impossible to be suppressed. Due to these issues, digital 

linearization which includes DPD and DPC approaches provides better solutions. Note that 

DPD was firstly proposed to linearize RF power amplifiers (PAs) [31-39]. After many 

years of investigations on DPD and the alike nonlinearities, DPD is then applied in 

linearization for RoF transmission systems. 

2.2.1 DPD for RF power amplifiers  

      The early proposed DPD techniques focused on linearizing memoryless RF power 

amplifiers (PAs). By using pulse shaping filters, the predistortion can be directly applied 

to the constellation points of input signal. However, the transmission bandwidth of 

memoryless PAs is limited.  
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Figure 2-3 Schematic diagram of data predistortion for RF power amplifiers [35]. 

      In [35], Karam et al. proposed a data predistortion technique to compensate for 

nonlinearities of a high power amplifier. As shown in Figure 2-3, a pulse shaping filter is 

located right after the predistorter. The pulse shaping filter generates values of input signal 

at three data points per symbol interval. Nonlinear distortion of the PA is reduced by 

predistorting each data point. The simulation shows that an up to 3.5 dB gain was achieved. 

Similarly, the RF bandpass filter in Figure 2-4 is used as the pulse shaping filter [36]. Then 

using the same technique, the predistorter is capable to compensate for the nonlinearities 

of PAs.  

 

Figure 2-4 Schematic diagram of digital predistortion linearizer [36]. 

      PAs of wideband RF transmission systems usually contain memory effects. Then 

theoretical modeling of PAs needs to include both nonlinear distortions and the memory 

effect. As shown in Figure 2-5, a couple of models have been proposed. Wiener model 
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which includes a linear time-invariant (LTI) system and a memoryless module (NL), is 

used by Clark et al. for wideband PA modeling [37]. Compared to conventional 

memoryless model, Wiener model provides a better accuracy in PA modeling. Kang et al. 

used DPD based on Hammerstein model to compensate for nonlinear distortions of an 

OFDM system [38]. However, the predistorter had limited performance. The Wiener-

Hammerstein model is shown in Figure 2-5 (c), LTI system is followed by a NL which is 

followed by another LTI.  Wiener-Hammerstein model is usually used to model amplifiers 

of satellite communication channels [39].  

 

Figure 2-5 Model nonlinearities of power amplifiers with memory effect: (a) Wiener model (b) 

Hammerstein model (c) Wiener-Hammerstein model. 

      In [31], Ding et al. proposed the memory model which describes the nonlinearities and 

memory effect of PAs. Simulation results show that odd order nonlinearities are slightly 

suppressed by implementing DPD which is based on early memoryless model. Whereas 

odd order nonlinearities are almost completely suppressed by performing DPD based on 

memory model. Using similar methods to linearize a system with a transmission bandwidth 

of 20 MHz, an around 10 dB improvement of EVM was achieved [32-33].  
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      To perform DPD for PA with a larger transmission bandwidth, Hammi et al. proposed 

a DPD technique based on a cascade model as shown in Figure 2-6. The proposed model 

is similar to Wiener model [34]. The experiment results show that nonlinearity can be 

suppressed over 300 MHz transmission bandwidth. However, the proposed DPD technique 

suffers from a serious drawback which is the lack of computational efficiency. 

 

Figure 2-6 Model nonlinearities of power amplifiers: Cascade model [34]. 

2.2.2 Digital linearization for RoF transmission systems 

      RoF transmission systems include RF power amplifiers (PAs), so the nonlinearities of 

RoF transmission systems include the nonlinearity generated by PAs. Digital linearization 

techniques are therefore investigated and applied in linearization for RoF systems. As 

discussed in section 2.1, DPC and DPD are the two major research fields of digital 

linearization for RoF transmission systems. 

      Lee et al. proposed a postdistortion compensation technique [27]. The proposed 

postdistorter is allocated at the output of RoF system. According to the nonlinear 

characteristics of RoF systems, a related inverse function is loaded in the postdistorter. So 

after the distorted signal goes through the inverse function, nonlinearities are expected to 

be suppressed. Simulation results show that a 10 dB improvement of DR is realized. 

However, other than simulation, a more persuasive demonstration is not given.  
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      Pei et al. proposed a digital multichannel post linearization technique [28] to linearize 

broadband RoF transmission systems and considering the analog to digital conversion 

limitations. As shown in Figure 2-7, a multi-band RF signal is transmitted through RoF 

system. The post compensation is then performed at the output of RoF after frequency 

down conversion. The experimental results show a more than 3 dB improvement of DR of 

a two-band RoF link. Since the nonlinearity of the RoF is unknown, it has to recursively 

sweep the output signal of RoF system, to monitor the adjacent channel power (ACP) to 

extract the postdistorter coefficients. The recursive sweeping decreases the linearization 

efficiency. Besides, every channel in the transmission system needs to extract its own 

coefficients, which increases the computational complexity. 

 

Figure 2-7 Digital multi-channel post linearization technique [28]. 

      DPD is another digital linearization approach, compared to postdistortion 

compensation, it is more straight forward and precise. Other than applying inverse function 

or blind learning the nonlinearity of the applied RoF system, it directly uses an algorithm 

where the RoF system’s input and output signal data are applied to train a predistorter. 

Reversed nonlinear products are then generated in predistorter before the signal is 

transmitted into the RoF system.  

      Due to memory effects, the memoryless polynomial is not sufficient to model 

broadband RoF transmission systems. The memory polynomial is then applied to model 
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the RoF transmission.  Vieria et al. used a scheme which is shown in Figure 2-8 to study a 

behavioral model [20]. RoF system is transmitting a signal at 1 GHz with 20 MHz 

bandwidth.  By putting the complex baseband RoF input and output signals into the Agilent 

Distortion Suite software, coefficients are estimated and applied directly to the predistorter. 

It was shown that a 10 dB better accuracy of normalized mean square error (NMSE) was 

achieved in the proposed DPD than in previous memoryless model based DPD. However, 

DPD is applied in a narrowband transmission system, so the demonstration of DPD for 

broadband RoF transmission system is required to be verified.  

 

Figure 2-8 Behavioral modeling DPD [20]. 

      Similar to the earlier mentioned DPC techniques, in order to improve the performance 

of linearization for broadband RoF transmission systems, Chen et al. proposed a DPD 

technique for multi-channel RoF link [21]. As shown in Figure 2-9, two baseband signals 

are generated separately from two devices and up converted to 2.3 and 2.462 GHz, then 

the combined signal is transmitted through optical link. To estimate the coefficients, an 

offline signal processing in Matlab using the input baseband signal data and down 

converted output signal data is carried out. In the end, linearization for multi-channel RoF 

is realized in this research, and experimental results show an around 12 dB error vector 
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magnitude (EVM) improvement. However, the calculation efficiency of the coefficients 

estimation from complex baseband signal is low. The number of coefficients increases 

dramatically as more channels are added into the system.  

 

Figure 2-9 Multi-band digital predistortion [21]. 

      Omomukuyo proposed an architecture to linearize MB-OFDM ultra wideband (UWB) 

over fiber system [22]. Compared to [20] [21], the MB-OFDM signal with a large 

bandwidth is transmitting in a RoF system. A 9 dB improvement of EVM has been 

achieved in the experiment. However, the implemented DPD was targeted at only one sub-

band of 528 MHz centered at 3.432 GHz from FCC UWB band group 1, and extraction of 

coefficients is lack of efficiency. Among all reviewed DPD technologies, extra frequency 

up and down conversions are needed since predistorters are placed at baseband, this 

reduces the speed of calculation. Besides, signals with different formats will be transmitted 

simultaneously in actual RoF systems. Thus, DPD technique with better efficiency for 

linearization of broadband RoF systems is required to be investigated.  
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2.3 Research motivations 

  
      This research is focused on designing a DPD technique with highly computational 

efficiency for broadband RoF transmission systems. WiFi signal at 2.4 GHz and whole 

band group 1 of FCC UWB signal at 3.96 GHz are applied in this work.  

      In order to achieve good computational efficiency, unlike most of the digital 

predistortion techniques of using complex baseband signal data, this DPD technique is 

implemented in RF domain. There is no extra frequency up and down conversion 

procedures in the verifications. The proposed DPD technique is applied to linearize the 

directly modulated RoF transmission systems. The implemented DPD is targeted at the 

broad transmission bandwidth of over 2.4 GHz. 
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Chapter 3  Theoretical Analysis of Digital Predistortion 
 

      RoF transmission systems are popularly used to transmit and distribute RF signals over 

long distance for broad operational bandwidth and low attenuation advantages. To 

sufficiently use the broad bandwidth, deployment of multiple signals in RoF transmission 

such as WLAN, worldwide interoperability for microwave access (WiMAX) and ultra 

wide band (UWB) signals, is preferred. And all of RoF links exhibit some nonlinear 

behaviors due to the nonlinear transfer functions of the included optical and RF 

components. Linearization is thus important in RoF system implementations. Among all 

linearization techniques over RoF links, the digital linearization is the most effective way 

to suppress the nonlinear distortion of RoF links. Digital Predistortion (DPD) is a typical 

digital linearization approach which is more adaptive and precise. The adaptive DPD is a 

technique which is regardless of the modulation formats of transmitted signals. To achieve 

this adaptive feature, an adaptive algorithm is needed in the DPD. As discussed, the training 

of predistorter is required in the DPD implementation. The first step in training is to apply 

RoF input and output data reversely to the predistorter block as its output and input. Note 

that the predistorter block is modeled by a nonlinear transfer function. The second step is 

to use an algorithm to estimate the coefficients of predistorter. After acquiring the 

coefficients, the last step is to apply the trained predistorter directly to the RoF input to 

generate the opposite nonlinear products. As thus, it is expected that the suppression of 

nonlinear distortion of RoF transmission systems is obtained. In this chapter, the order of 

sections is following the above sequence to discuss and analyze the proposed DPD 

technique.  
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3.1 Modeling nonlinearities of RoF systems 
 

      As mentioned earlier, the major problems of transmitting wireless signals in an RoF 

link are the generation of nonlinear distortion. If the nonlinear system is transmitting a 

single tone signal, only harmonic distortion (HD) will be generated. At the output of the 

nonlinear system, some signals with frequencies of integer multiple of the fundamental 

frequency will be received. While there are two or more tones signals transmitting in the 

nonlinear system, both HD and intermodulation distortion (IMD) will be generated. As 

multi-carrier signal formats are widely used in RoF links, compared to HD, IMD is more 

of the metric which determines nonlinear degrees of an RoF transmission system. Both RF 

nonlinearity and optical nonlinearity will be generated in RoF transmission. Since the 

major optical nonlinearity (four wave mixing) is similar to IMD of RF nonlinearity in 

principle, mathematical modeling nonlinearities of RoF transmission systems will be 

carried out in RF domain.  

 

Figure 3-1 Nonlinear RoF system. 

     The nonlinear RoF system that has the input 𝑥(𝑛) and output 𝑧(𝑛) as shown in Figure 

3-1 can be generally modeled based on the Taylor series in (1.1) [13],  

 𝑧(𝑛) = 𝑎0 + 𝑎1𝑥(𝑛) + 𝑎2𝑥(𝑛)2 + 𝑎3𝑥(𝑛)3 + 𝑎4𝑥(𝑛)4 + 𝑎5𝑥(𝑛)5 …, (3.1) 

      In Taylor series, only instant relation between system input and output is considered. 

Then, we can model a nonlinear system by eliciting the memoryless polynomial from 
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equation (3.1), where 𝑥(𝑛) and 𝑧(𝑛) are system input and output, respectively. 𝑎𝑘 denotes 

the coefficients of the nonlinear system (𝑘 ≥ 1).  

 
𝑧(𝑛) = ∑ 𝑎𝑘𝑥(𝑛)

𝐾

𝑘=1

 (3.2) 

      However, in broadband RoF transmission systems, the system output may not only be 

related to the instantaneous input, but is also related to previous inputs. This phenomenon 

is referred as the memory effect. Thus in order to model the nonlinearity of RoF systems 

with memory effects, it is required to add memory variables into the existing memoryless 

polynomial, Volterra series [40] is then used which describes nonlinearities of RoF systems 

by considering both nonlinear distortion and the memory effect. Volterra series is similar 

to Taylor series but has the ability to describe memory effects, from equation (3.2), by 

adding memory variable ′𝑚′, 

 
𝑎𝑘𝑥(𝑛) = ∑ , … , ∑ ℎ𝑘(𝑚1, … , 𝑚𝑘) ∏ 𝑥(𝑛 −  𝑚𝑘)

𝐾

𝑙=1

𝑀−1

𝑚𝑘=0

𝑀−1

𝑚1=0

 (3.3) 

where ℎ𝑘 is called Volterra kernels, and 𝑚 denotes the memory depth which indicates how 

many system inputs are related to the system output. And in RoF transmission systems, the 

memory depth  𝑚 ≥ 0, nonlinear order 𝑙 = 1,2,3, … , 𝑘 − 1, then we can apply (3.3) to 

(3.2), we have,  

 
𝑧(𝑛) = ∑ ∑ ∑ , … , ∑ ℎ𝑘(𝑚1, … , 𝑚𝑘) ∏ 𝑥(𝑛 −  𝑚𝑘)

𝐾

𝑘=1

𝑀

𝑚𝑘=𝑘−1

𝑀

𝑚2=1

𝑀

𝑚1=0

𝐾

𝑘=1

 (3.4) 

where 𝐾and 𝑀 denote nonlinear order and memory depth, respectively. Since Volterra 

series contains a lot of coefficients. So in extraction of coefficients, Volterra series might 

not be able to provide a good computational efficiency. Memory Polynomial [41] in 



39 
 

equation (3.5) is a simplified case to model the nonlinearities of RoF systems when 

considering memory effects.  

 

𝑧(𝑛) = ∑ ∑ 𝑘𝑝𝑞𝑥(𝑛 − 𝑞)|𝑥(𝑛 − 𝑞)|𝑝−1

𝑄

𝑞=0

𝑃

𝑝=1

 (3.5) 

where 𝑝 is nonlinear order, 𝑞 is memory length, 𝑘𝑝𝑞 is the coefficient of predistorter which 

is related to both nonlinear order and memory depth. Also, the memory polynomial 

considers both even and odd order nonlinearities. In this thesis, this memory polynomial is 

directly used to model the nonlinearities of WiFi and UWB over fiber transmission systems. 

And to obtain highly computational efficiency, other than applying complex baseband 

signal data in the polynomial, RF signal is directly used in the extraction of coefficients. In 

the upcoming section, the explanation of highly computational efficiency will be presented. 

3.2 Extraction of model coefficients  
 

 

Figure 3-2 Schematic of predistorter training block. 

      After modeling the nonlinear broadband RoF transmission system, it is required to train 

a digital predistorter by extracting its coefficients as shown in Figure 3-2. As the 

predistorter training block is modeled by (3.5), the corresponding equation for this case is, 
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𝑧(𝑛)′ = ∑ ∑ 𝑘𝑝𝑞

𝑥(𝑛 − 𝑞)

𝑔
|
𝑥(𝑛 − 𝑞)

𝑔
|

𝑝−1
𝑄

𝑞=0

𝑃

𝑝=1

 (3.6) 

where 𝑥(𝑛 − 𝑞)/𝑔 and 𝑧(𝑛)′ are the input and output of the predistorter, respectively. 𝑔 

denotes the gain of the RoF system.  

3.2.1 Least square (LS) method 
 

      In DSP process of the DPD, it is required to sample the transmitted signal, then use the 

data to extract coefficients of the predistorter. Due to the sample by sample feature of the 

sampled digital signals, least square (LS) method is a good approach for its fast 

convergence rate when limited variables are applied in the estimation of coefficients. The 

proposed model requires exactly this kind of computational efficiency and accuracy. Thus, 

LS method is considered the most appropriate approach in estimation of coefficients. As 

shown in Figure 3-2, to calculate the coefficients, LS method is used to minimize the square 

errors which is the difference between predistorter output 𝑧(𝑛)′ and RoF input 𝑧(𝑛).  

In equation (3.6), if we define that, 

 
𝑢𝑝𝑞 =

𝑥(𝑛 − 𝑞)

𝑔
|
𝑥(𝑛 − 𝑞)

𝑔
|

𝑝−1

 (3.7) 

then we can derive a simple relation between predistorter output and coefficients by 

applying (3.7) into (3.6), 

 𝑍 = 𝐾𝑈 (3.8) 

where,  

 𝑍 = [𝑧(0), 𝑧(1), … , 𝑧(𝑛)]𝑇 

𝐾 = [𝑘10, … , 𝑘𝑝0, … , 𝑘1𝑞 , … , 𝑘𝑝𝑞]
𝑇
 

(3.9) 
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𝑈 = [𝑢10, … , 𝑢𝑝0, … , 𝑢1𝑞 , … , 𝑢𝑝𝑞] 

𝑢𝑝𝑞 = [𝑢𝑝𝑞(0), 𝑢𝑝𝑞(1), … , 𝑢𝑝𝑞(𝑛)]
𝑇
 

[. ]𝑇  denotes matrix transpose. The elements in matrixes 𝑍 and 𝑈 are related to the input 

and output of the predistorter. And the number of the elements in both matrixes depends 

on the actual samples that are used in the extraction of coefficients. The subscripts 𝑝 and 𝑞 

denote nonlinear order and memory depth, respectively. Since the RoF transmission system 

input and output signal data are already sampled, LS method is applied to acquire the matrix 

𝐾  which contains the coefficients elements. The idea of applying LS method in the 

proposed model is shown in Figure 3-3, the input ∑ 𝑍(𝑖)  and output ∑ 𝑋(𝑖)  of RoF 

transmission link are obtained firstly. Then, the input of the predistorter is acquired by 

using the output divided by the gain 𝑔 of RoF transmission link which results in ∑ 𝑋(𝑖)/𝑔. 

And from equation (3.6), ∑ 𝑍(𝑖)′is the predistorter output. 

 

Figure 3-3 Schematic of LS method in extraction of coefficients. 

      In estimation of coefficients, it is expected to minimize the squared error 𝐸 which 

describes the difference between ∑ 𝑍(𝑖) and ∑ 𝑍(𝑖)′, given by, 

 

𝐸 = ∑(𝑍𝑖 − 𝐾𝑋𝑖)
2

𝑖=𝑛

𝑖=1

 (3.10) 
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where 𝑍𝑖and 𝑋𝑖 contain the system input and output data, respectively. From equation (3.6), 

∑ 𝐾𝑋𝑖 is expression of the output ∑ 𝑍(𝑖)′ of the predistorter, and 𝑖 = 𝑛 denotes that there 

are 𝑛 signal samples being calculated in the estimation of coefficients. To minimize the 

error 𝐸, the following condition must be satisfied,  

 𝜕𝐸

𝜕𝐾
= 0 (3.11) 

Then by taking partial derivative of (3.10), we obtain (3.12),  

 

∑(2 × (𝐾𝑋𝑖 − 𝑍𝑖))𝑋𝑖 = 0

𝑖=𝑛

𝑖=1

 (3.12) 

      In the broadband RoF transmission system, high sampling rate is needed in sampling 

the broadband carrier. Then the offline DSP in Matlab is going to process the massive 

signal data. Thus, it is tended to operate the LS estimation in matrix form as defined in 

(3.9). By solving (3.12) with the processed data in matrix form, we can derive the solution 

for extraction of coefficients which is shown in (3.13),  

 𝐾 = (𝑈𝑇𝑈)−1𝑈𝑇Z (3.13) 

where (. )𝑇 denotes matrix transpose, and matrixes 𝑈 and 𝑍 contain elements which are 

related to the extracted input and output signal data of the RoF transmission system. 𝐾 is 

the 𝑁 × 1 matrix, where the included elements are the coefficients of predistorter.   

3.2.2 Experimental extraction of model coefficients: a case 
 

      As discussed in the above section, we modeled the predistorter and derived the solution 

of LS method for the extraction of coefficients. Then, in this section, a specific extraction 

of coefficients in experiment is introduced. In DPD technique, both nonlinear orders and 
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memory effect are considered. The number of coefficients increases when higher nonlinear 

order and more memory depths are included in the extraction of coefficients, and number 

of coefficients is related to the time which is required in the extraction of coefficients. 

Besides, LS method has the high accuracy advantage under the limited variables involved 

circumstance.  

      Thus, by considering the above reasons, a case is presented as an example: up to third 

order nonlinearities and two memory depths. When applying nonlinear order 𝑝 = 3 and 

memory depth 𝑞 = 2  in equation (3.6), we can derive the elements of matrix 𝑈  from 

equation (3.9) as shown in Table 3-1 

Table 3-1 Memory polynomial model expansion 

Coefficients (kpq) Matrix 𝑈 Coefficients (kpq) Matrix 𝑈 

k10 𝑢10 =
𝑥(𝑛)

𝑔
 k31 

𝑢31

=
𝑥(𝑛 − 1)

𝑔
|
𝑥(𝑛 − 1)

𝑔
|

𝟐

 

k20 𝑢20 =
𝑥(𝑛)

𝑔
|
𝑥(𝑛)

𝑔
| k12 𝑢12 =

𝑥(𝑛 − 2)

𝑔
 

k30 𝑢30 =
𝑥(𝑛)

𝑔
|
𝑥(𝑛)

𝑔
|

𝟐

 k22 

𝑢22

=
𝑥(𝑛 − 2)

𝑔
|
𝑥(𝑛 − 2)

𝑔
| 

k11 𝑢11 =
𝑥(𝑛 − 1)

𝑔
 k32 

𝑢32

=
𝑥(𝑛 − 2)

𝑔
|
𝑥(𝑛 − 2)

𝑔
|

𝟐

 

k21 

𝑢21

=
𝑥(𝑛 − 1)

𝑔
|
𝑥(𝑛 − 1)

𝑔
| 

  

 

From Table 3-1, it is seen that the elements in matrix U are listed, then every element value 

can be determined from the sampled data of the predistorter input 𝑥(𝑛). In experiment, 

𝑥(𝑛) data and system gain 𝑔 can be acquired from the output of RoF transmission system. 
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Note that each upq also represents a  𝑛 × 1  matrix whose size is dependent on the number 

of samples 𝑛, for example,  

 𝑢10 = [𝑢10(1), 𝑢10(2), … , 𝑢10(𝑛) ]𝑇 (3.14) 

As seen in Table 3-1, the matrix 𝑈 in this case is expressed as, 

 𝑈 = [𝑢10, 𝑢20, 𝑢30, 𝑢11, 𝑢21, 𝑢31, 𝑢12, 𝑢22, 𝑢32] (3.15) 

Also, from equation (3.9), matrix 𝑍 contains the predistorter output signal data which can 

be acquired from the input of RoF transmission system. 𝑍 has the same matrix size as 𝑢𝑝𝑞.  

The final step is to apply these matrixes in LS method solution (3.13). Matrix 𝐾 which 

contains predistorter coefficients is then obtained as, 

 𝐾 = [𝑘10, 𝑘20, 𝑘30, 𝑘11, 𝑘21, 𝑘31, 𝑘12, 𝑘22, 𝑘32, ]𝑇 (3.16) 

As shown in (3.16), nine coefficients are calculated in the extraction of coefficients when 

considering up to third order nonlinearities and the memory depth of two. Then it is easy 

to infer that fifteen coefficients should be calculated when considering up to fifth order 

nonlinearities and memory depth of two. In this situation, an extra 67% of calculation time 

is added. Similarly, when longer memory depth is considered, the calculation time will be 

added relatively. So the number of coefficients is the most important criteria which 

influences the computational efficiency and processing rate of the proposed DPD technique. 

In the considered method, compared to the extraction of coefficients shown in [23], only 

half number of the coefficients are calculated for an RoF system modeled using the same 

nonlinear order and memory depth. Table 3-2 presents the number of coefficients 

associated with nonlinear order and memory depth of the proposed DPD for RoF 

transmission systems. 
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Table 3-2 Number of coefficients in DPD 

Nonlinear order Memory depth Number of coefficients 

Up to third 0 3 

Up to third 1 6 

Up to third 2 9 

Up to fifth 0 5 

Up to fifth 1 10 

Up to fifth 2 15 

 

3.3 Summary 
 

      At this point, the calculation method of coefficients in DPD technique has been 

presented and analyzed step by step. The obtained coefficients can be directly applied to 

the predistorter. We can then apply the trained predistorter in linearization of an RoF 

transmission system as shown in Figure 3-4. 

 

Figure 3-4 Implementation of DPD technique. 

      The predistorter follows equation (3.5) and also contains the transmission coefficients 

as shown in matrix 𝐾 . After applying the predistorter to the input of RoF links, the 

predistorted RoF transmission system input 𝑍(𝑛)′′  which contains opposite nonlinear 
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distortion products can be easily obtained. So far, DPD process for RoF transmission 

systems is finished and RoF systems nonlinearity are expected to be suppressed.  

      In the next chapter, DPD technique will be implemented and verified experimentally. 

Besides, multiple signals with various modulation schemes will be transmitted 

simultaneously in real broadband RoF transmission systems. So other than applying DPD 

technique to linearize RoF systems which are transmitting one signal, a DPD for RoF 

systems which are transmitting two signals will be implemented and tested in the upcoming 

chapter.   
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Chapter 4  DPD Verifications in RoF Transmission Systems 
 

      In this chapter, the adaptive DPD technique is verified experimentally. To evaluate the 

performance of the DPD for broadband RoF transmission systems, two experiments are 

carried out. The first one is DPD for WiFi over fiber transmission system. The WiFi signal 

is centered at 2.4 GHz. The second one is DPD for WiFi and UWB over fiber system. The 

WiFi and UWB signals are centered at 2.4 GHz and 3.96 GHz, respectively. In the 

experiments, scenarios of both back to back (BTB) and 10 km single mode fiber (SMF) 

transmission are included. The measured error vector magnitudes (EVMs) of the RoF 

transmission system outputs without and with the DPD are given to evaluate the 

performance.  

4.1 Experimental setup with related characterization instruments  
 

      In the predistorter training of DPD, it is required to extract the sampled signal data from 

input and output of RoF transmission systems. Usually, data extraction is realized by signal 

generators and signal analyzers. Thus, these instruments are crucial to the calculation and 

evaluation of DPD.  

 

Figure 4-1 Signal generator and analyzer in RoF digital predistortion 
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      In the experiments, firstly, we need to generate an RF signal as the input of the RoF 

links. Arbitrary Waveform Generator (AWG) and Vector Signal Generator (VSG) are the 

two most commonly used instruments in signal generation. In this work, a Tektronix 

AWG7122B is used to generate the inputs of the RoF links. AWG7122B has a maximum 

sampling rate of 24 GSa/s which supports the effective RF output frequency up to 9.6 GHz. 

The embedded RFXpress software (RFX100) fully exploits the wideband signal generation 

capacities of AWG7122B by supporting a wide range of signal modulation formats. For 

example, MB-OFDM UWB signal which occupies over 1.5 GHz bandwidth can be defined 

and modified in RFX100.  

      At the RoF output, Vector Signal Analyzer (VSA) is needed to analyze the received 

signal. In this thesis. Agilent real-time oscilloscope DSO81204B is applied to extract RoF 

output data. DSO81204B has the maximum sampling rate of 40 GSa/s which supports the 

receivable frequency up to 12 GHz. Then the embedded software VSA89600 in 

DSO81204B is used to acquire EVM to mark the quality of the received signal.  

      In the experiments, the proposed DPD is verified in directly modulated RoF 

transmission systems. The experimental setup is given in Figure 4-1. A MITEQ SCM fiber 

optical link (MITEQ-SCML-100M6G) which has a 3 dB bandwidth of 6 GHz is used in 

the RoF transmission systems. The block diagram of the MITEQ link is shown in Figure 

4-2. A laser with 1550 nm wavelength is integrated in the optical transmitter (OTx) for 

optical subcarrier modulation. An optical signal with the power of 5 mW is then transmitted 

to the optical receiver (ORx). For optical to electrical (O/E) conversion, the modulated 

optical signal at 1550 nm wavelength is detected and demodulated by a photodiode with 

the responsivity of 0.6 A/W. Two direct current (DC) power supplies are used to bias the 
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OTx and ORx. Also as shown in Figure 4-2, a low noise amplifier (LNA) and a 

transimpedance amplifier are integrated in both the OTx and ORx, respectively. The related 

gain of the link is 18 dB. Besides, 1 m SMF (BTB) and a 10 km SMF are used to connect 

the OTx to ORx, respectively. The applied SMF has an optical attenuation of 0.28 dB/km.   

 

Figure 4-2 MITEQ optical transmitter and receiver [42] 
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4.2 DPD verifications in WiFi over fiber systems  

 

Figure 4-3 Experimental configuration of the DPD for WiFi over fiber systems  

      The experimental configuration is shown in Figure 4-3. Tektronics AWG7122B and 

RFXpress software are used to generate a WiFi signal as the input of RoF system. The 

WiFi signal follows IEEE 802.11a protocol at the center frequency of 2.4 GHz. The data 

rate is 36 Mbit/s and 16 QAM modulation scheme is used. By using 52 subcarriers OFDM 

modulation format, in which the subcarrier spacing is 312.5 KHz, the created WiFi signal 

occupies 20 MHz bandwidth. Two scenarios are included in the optical signal transmission: 

one is by connecting OTx to ORx with 1 m SMF, i.e., BTB, and the other is by connecting 

OTx to ORx with 10 km SMF. DSO81204B and VSA89600 are used to capture and 

analyze RoF output signal. After extracting the sampled RF input and output signals from 

AWG7122B and DSO81204B, respectively, a Matlab offline processing in a PC is 

performed to extract the coefficients and generate predistorted signal. As discussed at the 

end of Chapter 3, the predistorted signal will be fed into AWG7122B, and then sent to the 

RoF transmission system. The linearization performance is evaluated by comparing the 

EVM of the received signals before and after applying DPD for WiFi over fiber 
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transmission systems. The EVM can be acquired in VSA89600 software of DSO81204B 

oscilloscope. 

4.2.1 DPD verification in back to back WiFi over fiber system 

Table 4-1 Extracted coefficients of the predistorter for BTB WiFi over fiber system  

Up to third order 

nonlinearities 

k10 = 0.8929 

k20 = -0.2291 

k30 = 0.7248 

           Up to  

       fifth order  

nonlinearities 

k10 = 0.8324 

k20 = 0.3194 

k30 = -0.6919 

k40 = 1.0433 

k50 = 0.0863 

 

      Firstly, the DPD for BTB WiFi over fiber transmission system is verified. Two cases 

are considered: up to third order and fifth order nonlinearities. Coefficients of the 

predistorter are calculated and shown in Table 4-1. The DPD performance is analyzed in 

BTB WiFi over fiber transmission system.  As shown in Figure 4-4, the measured EVM 

versus input RF power is given for three cases: without the DPD and the DPD for up to 

third and fifth order nonlinearities. After the DPD is applied, the measured EVMs are 

decreased with the input RF power. However, the improvements of the EVMs are reduced 

when the system input power is too low. In other words, the performance of the DPD is 

dependent on the input RF power, and the DPD provides the best performance at the input 

power of -18.5 dBm, where the EVM is improved from -23.7 dB to -31.9 dB, i.e., an 

improvement of 8.2 dB. However, the increase of nonlinear order from third to fifth does 

not leads to better improvement in linearization. The possible reason could be that the 
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power of the fifth order nonlinearity is much lower compared to the third order nonlinearity. 

The third order nonlinearity is the dominant nonlinear component in this directly 

modulated WiFi over fiber system.  

 

Figure 4-4 Measured EVM at output of BTB WiFi over fiber system. DPD30: up to third order 

nonlinearities. DPD50: up to fifth order nonlinearities   

      The constellation diagram of the transmitted WiFi signal, i.e., 16 QAM at the system 

output is shown in Figure 4-5. At the input RF power of -18.5 dBm, by using the DPD for 

up to fifth order nonlinearities, constellation diagram is improved since the signal is more 

concentrated.  



53 
 

 

Figure 4-5 Measured constellation diagrams of the output signals in BTB WiFi over fiber system 

(a) without and (b) with the DPD for up to fifth order nonlinearities 

      Secondly, when memory effects are included, the extracted coefficients of the two 

cases are given in Table 4-2, i.e., the DPD for up to third order and fifth order nonlinearities 

with memory depth of zero, one and two. Better improvements are achieved by considering 

higher order nonlinearity and more memory effect. As shown in Figure 4-6, the measured 

EVM versus the input RF power is illustrated in seven cases: without the DPD, the DPD 

for up to third order nonlinearities, the DPD for up to third order nonlinearities with 

memory depth of one, the DPD for up to third order nonlinearities with memory depth of 

two, the DPD for up to fifth order nonlinearities, the DPD for up to fifth order nonlinearities 

with memory depth of one and the DPD for up to fifth order nonlinearities with memory 

depth of two. At the input RF power of -16.9 dBm, the DPD for up to third order 

nonlinearities with the memory depth of zero results in an EVM improvement from -20.6 

dB to -23.7 dB, i.e., 3.1 dB. However, by using the DPD for up to fifth order nonlinearities 

with the memory depth of two, the EVM improvement becomes from -20.6 dB to -26.6 dB, 

i.e., 6 dB. It is seen that, the EVM is improved by up to 3 dB when the memory effect is 

considered for the input RF power of -16.9 dBm and -20.9 dBm.  However, there is no 
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improvement of EVM at other input RF power. It can be seen that the memory effect in the 

directly modulated RoF transmission system is input RF power-sensitive.   

Table 4-2 Extracted coefficients of the predistorter for BTB WiFi over fiber system 

Memory depth 𝑞 = 0 𝑞 = 1 𝑞 = 2 

Up to third order 

nonlinearities 

k10 = 0.8430 k11 = 0.6099 k12 = -0.0435 

k20 = -0.3348 k21 = -0.4055 k22 = -0.2556 

k30 = 0.7214 k31 = 0.9504 k32 = 0.6634 

Up to fifth order 

nonlinearities  

 

k10 = 0.7140 k11 = 0.4597 k12 = -0.0435 

k20 = 1.2030 k21 = 0.8248 k22 = -0.0044 

k30 = -5.1732 k31 = -1.9746 k32 = 2.3064 

k40 = 9.0086 k41 = 2.1179 k42 = -5.9338 

k50 = -4.7513 k51 = -0.0297 k52 = 4.7118 

 

 

 

 



55 
 

 

Figure 4-6 Measured EVMs at output of WiFi BTB RoF transmission system. DPD30: up to third 

order nonlinearities. DPD31: up to third order nonlinearities with one memory depth. DPD32: up 

to third order nonlinearities with two memory depths. DPD50: up to fifth order nonlinearities. 

DPD51: up to fifth order nonlinearities with one memory depth. DPD52: up to fifth order 

nonlinearities with two memory depths. 

      As shown in Figure 4-7, the constellation diagrams of the transmitted WiFi signal, i.e., 

16 QAM at the system output are compared. By using the DPD for up to fifth order 

nonlinearities with memory depth of two, the constellation diagram is clearly improved at 

the input RF power of -16.9 dBm. The improvement of EVM from -20.6 dB to -26.6 dB, 

i.e., 6 dB is achieved.  
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Figure 4-7 Measured constellation diagrams of the output signals in BTB WiFi over fiber system 

(a) without and (b) with the DPD for up to fifth order nonlinearities with two memory depths 

4.2.2 DPD verification in WiFi over 10 km SMF transmission system 

Table 4-3. Extracted coefficients of the predistorter for WiFi over 10 SMF transmission system 

Up to 

third order 

nonlinearities 

k10 = -0.6339 

k20 = -0.1522 

k30 = -0.0401 

Up to 

fifth order 

nonlinearities 

k10 = -0.4859 

k20 = -1.9801 

k30 = 7.0582 

k40 = -10.8169 

k50 = 5.6170 

 

      To verify the DPD for WiFi over 10 km SMF transmission system, Still, two cases are 

considered: up to third order and fifth order nonlinearities. The extracted coefficients of 

the predistorter for the above cases are given in Table 4-3. The DPD performance is 

analyzed in the WiFi over 10 km SMF, as shown in Figure 4-8, in which the measured 

EVM versus the input RF power is given in three cases: without the DPD, the DPD for up 

to third order nonlinearities and the DPD for up to fifth order nonlinearities. Again, the 

improvement by the DPD is dependent on the input RF power, and the DPD results in the 

best improvement at -16.5 dBm, where the EVM is improved from -21.6 dB to -27.2 dB, 
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i.e., a 5.6 dB improvement. At the input power of -16.5 dBm and -19.5 dBm, the EVMs 

are improved when considering fifth order nonlinearity. However, there is no additional 

improvement at other input power when considering fifth order nonlinearity. The reason is 

that the power of the fifth order nonlinearity achieves the minimum for the input RF power 

of –17.5 and -18.5 dBm. And the fifth order nonlinearity is saturated when the input RF 

power is higher than -15.5 dBm.  

 

Figure 4-8 Measured EVMs at the output of WiFi over 10 km SMF transmission system. DPD30: 

up to third order nonlinearities. DPD50: up to fifth order nonlinearities.  

      To clearly show the improvement achieved by the DPD, we also measure the signal 

constellation diagrams of the transmitted signals, i.e., 16QAM, at the system output. For 

using the DPD for up to fifth order nonlinearities, the constellation diagrams at the input 

RF power of -16.5 dBm are compared in Figure 4-9, clearly illustrating the improvement 

of signal integrity.  
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Figure 4-9 Measured constellation diagrams at the output of WiFi over 10 km SMF transmission 

system (a) without and (b) with the DPD for up to fifth order nonlinearities  

      Similarly, when the memory effect is included, the extracted coefficients for the two 

cases are given in Table 4-4, i.e., the DPD for up to third order nonlinearities and for up to 

fifth order nonlinearities. By considering higher order nonlinearity and memory effect, 

better improvements are achieved as shown in Figure 4-10, in which the measured EVM 

versus the input RF power is illustrated in seven cases: without the DPD, the DPD for up 

to third order nonlinearities, the DPD for up to third order nonlinearities with memory 

depth of one, the DPD for up to third order nonlinearities with memory depth of two, the 

DPD for up to fifth order nonlinearities, the DPD for up to fifth order nonlinearities with 

memory depth of one and the DPD for up to fifth order nonlinearities with memory depth 

of two. At the input RF power of -17.5 dBm, the DPD for up to third order nonlinearities 

results in an EVM improvement from -21.9 dB to -24.2 dB, i.e., 2.3 dB. When using the 

DPD for up to fifth order nonlinearities with memory depth of two, the EVM improvement 

becomes from -21.9 dB to -27.4 dB, i.e., 5.5 dB. It is seen that, further EVM improvements 

of up to 3.1 dB are achieved when the memory effect is considered for the input RF power 

of -15.5 dBm and -17.5 dBm.  However, there is no improvement of EVM at other input 
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RF power. It can be seen that the memory effect in the WiFi over 10 km SMF transmission 

system is input RF power-sensitive.   

Table 4-4 Extracted coefficients of the predistorter for WiFi over 10 SMF transmission system 

Memory depth 𝑞 = 0 𝑞 = 1 𝑞 = 2 

Up to third order 

nonlinearities 

k10 = -0.8275 k11 = -0.4876 k12 = 0.1169 

k20 = 0.0951 k21 = -0.3503 k22 = -0.6065 

k30 = -0.2759 k31 = 0.1834 k32 = 0.5439 

Up to Fifth order 

nonlinearities  

 

k10 = -0.7259 k11 = -0.4337 k12 = 0.0935 

k20 = -1.0732 k21 = -1.1290 k22 = -0.5727 

k30 = 4.0291 k31 = 3.5393 k32 = 1.1305 

k40 = -6.3035 k41 = -5.5161 k42 = -1.7399 

k50 = 3.1733 k51 = 3.0368 k52 = 1.2562 
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Figure 4-10 Measured EVM at the output of WiFi over 10 km SMF transmission system. DPD30: 

up to third order nonlinearities. DPD31: up to third order nonlinearities with one memory depth. 

DPD32: up to third order nonlinearities with two memory depths. DPD50: up to fifth order 

nonlinearities. DPD51: up to fifth order nonlinearities with one memory depth. DPD52: up to 

fifth order nonlinearities with two memory depths. 

      Figure 4-11 shows the comparison of signal constellation diagrams in the two cases: 

without the DPD and with the DPD for up to fifth order nonlinearities and memory depth 

of two, at the input RF power of -17.5 dBm, compared to (a) without the DPD, (b) with the 

DPD for up to fifth order nonlinearities with memory depth of two shows that the signal 

integrity is improved. 
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Figure 4-11 Measured constellation diagrams at the output of WiFi over 10 km SMF transmission 

system (a) without and (b) with the DPD for up to fifth order nonlinearities with two memory 

depths. 

      It is noticed that after adding 10 km SMF to the system, the improvements by using the 

DPD in WiFi over fiber transmission system are slightly reduced. The added SMF 

introduces optical nonlinear distortion to the RoF transmission system. Thus, compared to 

the output of BTB WiFi over fiber system, the output of WiFi over 10 km SMF 

transmission system includes nonlinear distortion introduced by the inlined optical, RF 

components and SMF. The improvements are slightly reduced by using the same DPD 

technique for WiFi over 10 km SMF transmission system.  
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4.3 DPD verifications in both WiFi & UWB over fiber systems  

 

Figure 4-12 Experimental configuration of the DPD for both WiFi & UWB over fiber system  

      In Figure 4-12, a similar experimental configuration as mentioned in section 4.2 is used 

for the DPD verifications in both WiFi and UWB over fiber transmission system. Firstly, 

WiFi and UWB signal are created and extracted separately from RFXpress software and 

AWG7122B, and Matlab in a PC is used to combine the signals. Then the combined signal 

which occupies a bandwidth of over 2.4 GHz is sent to AWG7122B as the input of the RoF 

transmission system. The generated WiFi signal is the same as the one in previous 

experiment which follows IEEE 802.11a protocol. The generated UWB signal is centered 

at 3.96 GHz with data rate of 200 Mbit/s. It uses MB-OFDM which has 3 sub-bands. By 

using 128 subcarriers in each band, the subcarrier spacing is 4.125 MHz, UWB signal 

occupies the bandwidth of over 1.5 GHz. WiFi and UWB signals use 16 QAM and QPSK 

modulation schemes, respectively. After extracting the input and output RF signal data 

respectively from AWG7122B and DSO81204B, the Matlab offline signal processing in a 
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PC is carried out for extraction of the coefficients, and generation of the predistorted signal. 

Note that DPD is used for the whole transmission band. Still, two scenarios as mentioned 

in section 4.2 are included in optical signal transmission: BTB and 10 km SMF 

transmission between OTx and ORx. By comparing the EVM of received signal before and 

after applying the DPD for WiFi and UWB over fiber transmission systems, linearization 

performance is evaluated in VSA89600 of DSO81204B.  

4.3.1 DPD verification in back to back WiFi and UWB over fiber system 

Table 4-5 Extracted coefficients of the predistorter for BTB WiFi and UWB over fiber system 

Up to 

third order 

nonlinearities 

k10 = 0.4772 

k20 = -0.1220 

k30 = 0.2793 

Up to 

fifth order  

nonlinearities  

k10 = 0.4709 

k20 = 0.3054 

k30 = -2.7631 

k40 = 6.8966 

k50 = -4.8834 

 

      In the verification of the DPD for BTB WiFi and UWB over fiber transmission system, 

WiFi signal is firstly analyzed. Two cases are considered: up to third order nonlinearities 

and fifth order nonlinearities. The extracted coefficients of the predistorter for the above 

cases are given in Table 4-5. The DPD performance is shown in Figure 4-13, in which the 

measured EVM of WiFi signal versus the input RF power is given in three cases: without 

the DPD, the DPD for up to third order nonlinearities and the DPD for up to fifth order 

nonlinearities. After applying the DPD for BTB WiFi and UWB over fiber system, the 

measured EVM of WiFi signal is improved with the decrease of input RF power. However, 
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the improvement is reduced when system input power is low. So the performance of the 

DPD is still dependent on the system input RF power, and at the WiFi input power of -17.5 

dBm, the DPD results in the best improvement, where the EVM of WiFi signal is improved 

from -23.9 dB to -28.4 dB, i.e., 4.5 dB improvement. It is seen that the increase of nonlinear 

order from third to fifth order does not lead to a significant improvement in linearization. 

It is because that the power of the fifth order nonlinearity is low. 

 

Figure 4-13 Measured EVMs of WiFi signal at the output of BTB WiFi and UWB over fiber 

system. DPD30: up to third order nonlinearities. DPD50: up to fifth order nonlinearities. 

       To give a clear impression on the improvement by the DPD, the signal constellations 

of the transmitted WiFi signal, i.e., 16QAM, at the system output are shown in Figure 4-

14. By using the DPD for up to fifth order nonlinearities, the constellation diagram at the 

signal of -17.5 dBm is improved since the signal integrity are clearly better. 
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Figure 4-14 Measured constellation diagrams of WiFi signal at the output of BTB WiFi and 

UWB over fiber system (a) without and (b) with the DPD for up to fifth order nonlinearities. 

      Now we analyze the UWB signal, still, two cases are considered: up to third order and 

fifth order nonlinearities. By using the same extracted coefficients which are given in Table 

4-5, the DPD performance is analyzed, as shown in Figure 4-15, in which the measured 

EVM of the UWB signal versus the input RF power is given in three cases: without the 

DPD, the DPD for up to third order nonlinearities and the DPD for up to fifth order 

nonlinearities. Again, the improvement by the DPD is dependent on the input RF power, 

and at the input RF power of -24.3 dBm, the DPD results in the best improvement, where 

the EVM of the UWB signal is improved from -24.3 dB to -28.9 dB, i.e., 4.6 dB 

improvement. It is seen that when the input RF power keeps decreasing, the improvement 

by the DPD is reduced. The possible reason could be: since the nonlinearity of the RoF 

transmission system is dependent on the input RF power, when the input RF power is 

reduced, the power of the nonlinearities of the system is low. 
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Figure 4-15 Measured EVMs of the UWB signal at the output of BTB WiFi and UWB over fiber 

system. DPD30: up to third order nonlinearities. DPD50: up to fifth order nonlinearities. 

     Figure 4-16 shows a comparison of the UWB signal constellation diagrams, i.e., QPSK.  

Two cases are presented: without the DPD and with the DPD for up to fifth order 

nonlinearities. At the input RF power of -24.3 dBm, the signal integrity is obviously 

improved since it is more concentrated.  

 

Figure 4-16 Measured constellation diagrams of the UWB signal at the output of BTB WiFi and 

UWB over fiber system (a) without and (b) with DPD for up to fifth order nonlinearities. 
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      In this verification of the DPD for BTB WiFi and UWB over fiber transmission system, 

the EVM improvement of WiFi signal is not as good as in the previous experiment. Note 

that the WiFi and UWB signals are transmitted simultaneously in the RoF systems, more 

nonlinear components will be generated from the intermodulation between UWB 

subcarriers. Besides, intermodulation between WiFi subcarriers and UWB subcarriers will 

also introduce more nonlinear components. Thus, compared to the previous experiment, 

broadband RoF transmission system suffers from severer nonlinear distortions. By using 

the same DPD technique, improvements are reduced a little. However, according to the 

results, the DPD still provides decent improvements for the whole broad transmission band.  

4.3.2 DPD verification for both WiFi and UWB over 10 km SMF 

transmission system 

Table 4-6 Extracted coefficients of the predistorter for both WiFi and UWB over 10 km SMF 

transmisson system 

Up to  

third order 

nonlinearities 

k10 = 0.2279 

k20 = -0.0860 

k30 = 0.1696 

Up to 

fifth order  

nonlinearities  

k10 = 0.2231 

k20 = 0.0117 

k30 = -0.3495 

k40 = 1.0017 

k50 = -0.6317 

 

      For the verification of the DPD for both WiFi and UWB over 10 km SMF transmission 

system, two cases are considered: up to third order and fifth order nonlinearities. The 

extracted coefficients of the predistorter for the cases are given in Table 4-6. As shown in 

Figure 4-17, showing the measured EVM of WiFi signal versus the input RF power, the 
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performance of the DPD is shown in three cases: without the DPD, the DPD for up to third 

order nonlinearities and the DPD for up to fifth order nonlinearities. It is found that at input 

RF power of -18.6 dBm, the DPD provides the best improvement, where the EVM of WiFi 

signal is improved from -23.2 dB to -26.3 dB, i.e., 3.1 dB improvement. However, the 

improvement by the DPD for up to fifth order nonlinearities is not significant compared to 

the case of that for up to third order nonlinearities. The reason could be: compared to the 

third order nonlinearity, the power of the fifth order nonlinearity is much lower.  

 

Figure 4-17 Measured EVMs of WiFi signal at output of both WiFi and UWB over 10 km SMF 

transmission system. DPD30: up to third order nonlinearities. DPD50: up to fifth order 

nonlinearities. 
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Figure 4-18 Measured constellation diagrams of WiFi signal at the output of WiFi & UWB over 

10 km SMF transmission system (a) without and (b) with the DPD for up to fifth order 

nonlinearities. 

     To clearly show the improvement by the DPD, the signal constellation diagrams of the 

transmitted WiFi signal, i.e., 16QAM, at the system output are shown in Figure 4-18. By 

using the DPD for up to fifth order nonlinearities, the signal integrity at the input RF power 

of -18.6 dBm is improved. 

       Now we analyze the UWB signal, still, the same two cases are considered: up to third 

order and fifth order nonlinearities. By using the same extracted coefficients which are 

given in Table 4-6, the DPD performance is investigated, as shown in Figure 4-19, in which 

the measured EVM of the UWB signal versus the input RF power is given for the three 

cases: without the DPD, the DPD for up to third order nonlinearities and the DPD for up 

to fifth order nonlinearities. Again, the improvement by the DPD is dependent on the input 

RF power, and at the input RF power of -25.6 dBm, the DPD results in the best 

improvement, where the EVM of the UWB signal is improved from -21.9 dB to -25.9 dB, 

i.e., 4 dB improvement. It is seen that, the improvement by DPD is reduced when the input 

RF power is lower than -25.6 dBm, since the nonlinearity of the system is low.  
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Figure 4-19 Measured EVMs of the UWB signal at the output of WiFi & UWB over 10 km SMF 

transmission system. DPD30: up to third order nonlinearities. DPD50: up to fifth order 

nonlinearities. 

 

 

Figure 4-20 Measured constellation diagrams of the UWB signal at the output of both WiFi and 

UWB over 10 km SMF system (a) without and (b) with the DPD for up to fifth order 

nonlinearities. 
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        Again, a comparison of the UWB signal constellation diagrams, i.e., QPSK, is shown 

in Figure 4-20.  Two cases are presented: without the DPD and with the DPD for up to fifth 

order nonlinearities, at the input RF power of -25.6 dBm, the signal integrity is obviously 

improved since it is more concentrated. 

      Memory effect also has been included in the DPD verification in the WiFi and UWB 

over fiber systems. However, almost no improvement was achieved. For example, the 

improvements of the EVM were almost the same in the cases: the DPD for up to fifth order 

nonlinearities and the DPD for up to fifth order nonlinearities with memory depth of two. 

Thus, no detailed memory effect included verification is given in this section. Compared 

to the output of WiFi over fiber transmission system, extra nonlinearities included in the 

output of WiFi and UWB over 10 km SMF transmission system are: optical nonlinearities 

introduced by SMF, nonlinear distortion introduced by the intermodulation between the 

UWB subcarriers and nonlinear distortion introduced by the intermodulation between the 

WiFi and UWB subcarriers. Thus, more RF nonlinear distortions and severer optical 

nonlinearities in SMF are induced in WiFi and UWB over fiber transmission systems, the 

memory effect of WiFi over fiber transmission systems is relatively lower, the 

improvements are reduced by using DPD for WiFi and UWB over 10 km SMF 

transmission system.    
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Chapter 5 Conclusion 

 

5.1 Thesis conclusion 
 

      RoF supports the broad bandwidth and transparent infrastructure that is able to support 

diverse wireless technologies. However, the directly modulated RoF transmission system 

which is based on optical subcarrier modulation, is vulnerable to nonlinear distortions. 

Compared to optical linearization and analog predistortion methods, DPD provides a more 

adaptive and precise solution in linearization of RoF transmission systems. In this thesis, 

the DPD technique implemented in RF domain is investigated for broadband RoF 

transmission systems. Both nonlinear distortions and memory effects are included in 

memory polynomial model, which is used to model the nonlinear RoF systems. After using 

least square (LS) method to extract the coefficients of the predistorter, the trained 

predistorter is implemented and then verified in two experiments of directly modulated 

RoF transmission systems.  

      In the first experiment, the DPD is verified in WiFi over fiber transmission systems. 

The EVM improvements of 8.2 dB and 5.6 dB are achieved in BTB and after 10 km single 

mode fiber (SMF) transmission, respectively. When memory effect is included, compared 

to the situation without memory effect, further 3 dB and 3.1 dB EVM improvements are 

achieved in BTB and after 10 km SMF transmission.   

      In the second experiment, the DPD is verified in both WiFi and ultra wide band (UWB) 

over fiber transmission systems. WiFi and UWB signals are centered at 2.4 and 3.96 GHz, 

respectively, and the combined transmission bandwidth is over 2.4 GHz. It is shown that 

the implemented DPD leads to EVM improvements of 4.5 dB (BTB) and 3.1 dB (10 km 
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SMF) for the WiFi signal, and 4.6 dB (BTB) and 4 dB (10 km SMF) for the UWB signal 

simultaneously.  

     Note that EVM improvements using the implemented DPD are slightly reduced when 

10 km SMF is added to the RoF transmission systems. This is because the added SMF 

introduce optical nonlinear distortions to RoF transmission systems. Also, note that when 

the same DPD is implemented at a larger bandwidth, EVM improvements are reduced a 

little. When both WiFi and UWB signals are transmitted in the broadband RoF system 

simultaneously, the intermodulation between UWB subcarriers and the intermodulation 

between WiFi subcarriers and UWB subcarriers introduces more nonlinear distortions. The 

improvements are reduced in DPD for WiFi and UWB over fiber transmission systems.  

Furthermore, the RF domain based DPD linearization technique has the advantage of 

better computational efficiency.  

5.2 Future work 

Future research on DPD techniques over broadband RoF transmission system will be: 

      Firstly, in this work, the performance of DPD for WiFi over fiber transmission systems 

improves, when considering memory effect at some of the input power. However, in WiFi 

and UWB over fiber transmission system, by considering memory effect at some of the 

input power. However, in the verification of DPD for both WiFi and UWB over fiber 

systems, when the memory effects are included, almost no further improvements from the 

implemented DPD is found. Digital filter assisted digital linearization may be better to 

attack memory effect. So further research on this topic needs to be investigated in order to 

have better results at large bandwidths.  
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      Secondly, since the improvements of DPD for simultaneously transmitted signals are 

realized, the implemented DPD is able to linearize the broadband RoF transmission 

systems. Still, linearization for an RoF link to transmit more RF signals in a larger 

bandwidth needs to be verified.  

      Thirdly, compared to the previous DPD techniques, by considering the same nonlinear 

order and memory effect, only half of the number of coefficients are calculated in the 

implemented DPD technique. However, the improvements of the implemented DPD are 

reduced when 10 km SMF is added to the RoF transmission systems. To achieve better 

improvements, the modeling of optical nonlinear distortions introduced by SMF in DPD 

techniques needs to be investigated in the future work.  
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