
ilable at ScienceDirect

Digital Investigation 14 (2015) S146eS155

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository
Contents lists ava
Digital Investigation

journal homepage: www.elsevier .com/locate/di in
DFRWS 2015 USA
BinComp: A stratified approach to compiler provenance
Attribution*

Ashkan Rahimian, Paria Shirani, Saed Alrbaee*, Lingyu Wang, Mourad Debbabi
Computer Security Laboratory, Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Quebec, Canada
Keywords:
Compiler provenance
Reverse engineering
Binary program analysis
Digital forensics
Programming analysis
* This research is the result of a fruitful collab
Computer Security Laboratory (CSL) of Concordia
Research and Development Canada (DRDC) Valcartie
DND/NSERC Research Partnership Program.
* Corresponding author.

E-mail address: s_alraba@encs.concordia.ca (S. A

http://dx.doi.org/10.1016/j.diin.2015.05.015
1742-2876/© 2015 The Authors. Published by Else
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Compiler provenance encompasses numerous pieces of information, such as the compiler
family, compiler version, optimization level, and compiler-related functions. The extraction
of such information is imperative for various binary analysis applications, such as function
fingerprinting, clone detection, and authorship attribution. It is thus important to develop
an efficient and automated approach for extracting compiler provenance. In this study, we
present BinComp, a practical approach which, analyzes the syntax, structure, and seman-
tics of disassembled functions to extract compiler provenance. BinComp has a stratified
architecture with three layers. The first layer applies a supervised compilation process to a
set of known programs to model the default code transformation of compilers. The second
layer employs an intersection process that disassembles functions across compiled binaries
to extract statistical features (e.g., numerical values) from common compiler/linker-
inserted functions. This layer labels the compiler-related functions. The third layer ex-
tracts semantic features from the labeled compiler-related functions to identify the
compiler version and the optimization level. Our experimental results demonstrate that
BinComp is efficient in terms of both computational resources and time.
© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

articleunder theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Program binaries are often the focus of forensic in-
vestigations, covering numerous issues ranging from
copyright infringement to malware analysis. Program bi-
nary analysis can be extremely challenging due to the
absence of high level information, which is found in source
code, and the myriad variations in compilers, versions, and
optimization levels (Balakrishnan & Reps, 2010). The term
compiler provenance refers to information about the
compiler family, compiler version, optimization level, and
oration between the
University, Defence
r and Google under a

lrbaee).

vier Ltd on behalf of DFRW
compiler-related functions. Extracting compiler prove-
nance is important in digital forensics, as it provides crucial
information about the process by which a malware binary
is produced.

Few studies have been conducted on extracting
compiler provenance (Jacobson et al., 2011; Rosenblum
et al., 2010, 2011a). The existing body of work can be
considered as a series of pioneering efforts, beginning with
labeling functions in stripped binaries (Jacobson et al.,
2011), followed by identifying the source compiler of pro-
gram binaries (Rosenblum et al., 2010), and culminating in
recovering the toolchain provenance of binary code
(Rosenblum et al., 2011a). Inspired by such efforts, we
provide improvements by addressing the following issues:
1) the features used in the aforementioned works follow
generic templates, which may not always provide mean-
ingful information about compilers; 2) large data sets are
S. This is an open access article under the CC BY-NC-ND license (http://

https://core.ac.uk/display/211518494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:s_alraba@encs.concordia.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.05.015&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.05.015
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.diin.2015.05.015
http://dx.doi.org/10.1016/j.diin.2015.05.015


Fig. 1. BinComp architecture.

A. Rahimian et al. / Digital Investigation 14 (2015) S146eS155 S147
usually necessary for the training phase; and 3) significant
computational power and time are often needed to rank
the features. More recently, the compiler was identified in
Toderici and Stamp (2013) based on a hidden Markov
model that is intended for malware detection. However, it
does not extract information regarding the compiler
version or optimization level. Furthermore, there are
certain tools that are capable of identifying compilers (e.g.,
IDA Pro (IDA Pro multi-processor disassembler and
debugger, ), PEiD (The PEiD tool, ), and RDG (The RDG
Packer Detector)); however, these tools typically suffer
from various drawbacks. For instance, most of these tools
apply an exact matching algorithm, which may fail when
even a slight difference between signatures is present.
Motivation

Our motivation is twofold:

� Existing techniques (Rosenblum et al., 2010, 2011a) rely
on generic feature templates and feature ranking. This
usually leads to large amounts of irrelevant features and
consequently results in prohibitive time and computa-
tional complexity. Moreover, top-ranked features are
not necessarily related to the structure or semantics of
compiler-related functions. In contrast, BinComp uses
syntactic, semantic, and structural features to extract
compiler provenance in a more efficient manner.

� Existing techniques (Rosenblum et al., 2010, 2011a) do
not explicitly label compiler-related functions, which
provides vital help to various tasks in binary analysis,
such as authorship attribution (Alrabaee et al., 2014;
Rosenblum et al., 2011b), function recognition
(Alrabaee et al., 2015; Ruttenberg et al., 2014; Stojanovic
et al., 2014), and clone detection (Edler et al., 2014;
Farhadi et al., 2014), in which filtering out compiler-
related functions is a critical pre-processing step for
reducing false positives. In contrast, BinComp allows
labeling compiler-related functions.

Our approach is based on the hypothesis that compiler-
helper functions are preserved throughout the compilation
process. These functions can be used to identify the source
compiler of the binary. The stratified architecture of
BinComp consists of three layers. The first layer extracts
syntax features, namely, Compiler Transformation Profile
(CTP), and compiler tags (CT). The second layer extracts
Compiler Function (CF) features, which are represented as
symbolic and numerical feature vectors used to label the
compiler-related functions. This layer provides a list of
compiler-helper functions. The third layer extracts se-
mantic features, namely, the Compiler Constructor Termi-
nator (CCT) graph and the Annotated Control Flow Graph
(ACFG). This layer identifies the version and the optimiza-
tion level from the helper functions. The architecture of
BinComp is illustrated in Fig. 1. Each layer relies on a
different detection technique: Layer 1 employs signatures
to perform exact matching; Layer 2 uses the distances be-
tween the numerical vectors to label compiler-related
functions; and Layer 3 extracts semantic graphs that are
represented as feature vectors, after which hashing is
applied to control the granularity level over the program
components.

The novelty of the proposed approach is that it com-
bines prior knowledge of compiler code transformations
with an incremental learning component. This serves to
adjust source compiler features as well as to update them
when compiler-related functions undergo changes due to
new versions or updates. Our experimental results show
that BinComp identifies compiler families effectively, and
that the approach is efficient in terms of both time and
computational resources. This makes BinComp a practical
approach for binary analysis.

Contribution

Our paper makes following contributions:

� BinComp introduces a stratified approach which simul-
taneously achieves several goals, including compiler
identification, compiler-related function labeling,
compiler version detection, and optimization level
recognition.

� The signatures used in most tools depend on meta-data
or other details of program headers. This can be prob-
lematic as such information might be unavailable in
stripped binaries or might be easily altered. However,
the signature used in BinComp relies on the character-
istics of the binary, which are available even in stripped
form.

� We evaluate BinComp on a large set of real-world bi-
naries across several compiler families, versions, and
optimization levels. Our results show that compiler
provenance can be extracted with high accuracy;
BinComp identifies the compiler with an accuracy that is
above 0.90, the versionwith an average accuracy of 0.86
and the optimization level with accuracy of over 0.90.

The remainder of this paper is organized as follows:
Section Motivating Example provides a motivating
example. Section Evaluation of the ECP Approach in-
troduces the re-evaluation of the technique used by Rose-
nblum et al. Section BinComp Approach details the main
methodology. Section Evaluations evaluates the proposed
approach and provides comparisons against existing work.
Section Conclusion presents some concluding remarks on
this work together with a discussion of future research.



A. Rahimian et al. / Digital Investigation 14 (2015) S146eS155S148
Motivating example

Consider the simple program shown in Listing 1.
Compilation of this program with Visual Studio 2010 in
release mode results in 34 functions. These include one
user function (main), five library functions (e.g., iostream),
and 28 compiler-related functions. Subsequently, we
compile the same example with Visual Studio 2012. Upon
disassembling the binary, we find 73 functions: three user
functions, 18 library functions, and 52 compiler-related
functions. By checking the compiler-related functions, we
find that 25 functions remain the same. In addition, we
conduct the same simple experiment with a slightly com-
plex program, and we find the same set of 25 compiler-
related functions. To obtain the exact list of these func-
tions, we intersect the sets of disassembled compiled bi-
naries. However, we cannot relymerely on the names of the
functions, as in most cases functions are given generic
names (i.e., sub-xxx) by the disassembler. Therefore, after
listing the helper functions (common compiler-related
functions), two feature vectors are created for each func-
tion, as detailed in BinComp Approach Section. These
feature vectors are used to ascribe a profile to each
compiler.

In addition, we extract the compiler effect (compiler
transformation profile) from the user functions, since
different compilers may generate distinct binary repre-
sentations for analogous source code. Several parameters,
such as compiler families, mapping profiles of operations to
instructions, conditional/loop structures, optimization op-
tions, etc., govern the way compilers transform code from
high-level source to low-level machine code. Listing 2
shows a simple C program consisting of a single function
call to printf. Listings 3, 4, and 5 display the compiled
versions with MSVC (Windows), GCC (Linux), and Clang
(OS X), respectively. It is evident that each compiler gen-
erates a different sequence of instructions for the source
program. Given a list of assembly functions (similar to
listings 3, 4, and 5) from a target disassembly, wewill show
how to identify the most likely compiler with which the
binary is built.
Evaluation of the ECP approach

ECP models compiler identification as a structured
classification problem and labels each byte of the binaries
with the information whether it is compiled with one or
two compilers (statically linked code). The authors use
wildcards idiom features, which are defined as short se-
quences of instructions that neglect details such as literal
arguments and memory offsets. After extracting the fea-
tures from a large number of binaries, redundant features
can be found, which are related to the user functions or the
architecture. Therefore, the authors consider top-ranked



A. Rahimian et al. / Digital Investigation 14 (2015) S146eS155 S149
features based on the results of mutual information
computation between the features and compiler classes.
They train the linear-chain model's parameters to assign
high probabilities to correct compiler classes. The proposed
technique is performed on three sets of binaries containing
code from three compilers: GNU C Compiler (GCC), Intel C
Compiler (ICC), and Visual Studio (VS). The data set is
collected for GCC and VS on Linux and Microsoft Windows
workstations, respectively. In addition, they have compiled
various open-source software packages with the ICC
compiler.

Most of these data sets are not publicly available. We
have collected different source files from various years of
the Google Code Jam (referred to as the G data set) (The
Google Code Jam, ) (2008e2014). We have also gathered
several source code samples from our university (referred
to as the U data set). Our experimental corpus comprises
three sets of binaries: GNU C Compiler (GCC), Intel C
Compiler (ICC), and Visual Studio compiler (VS). We
disassemble each program binary using IDA Pro (IDA Pro
multi-processor disassembler and debugger, ) dis-
assembler. Furthermore, we test their approach with an
additional compiler, Clang (XCode).
ECP evaluation results

We generate our data set after considering all applicable
combinations of compilers, various data set combinations,
and different optimization levels. In what follows, we
discuss our results based on a specific process of validation.
First, we split the training data into ten sets, reserving one
set as a testing set. We then train a classifier on the
remaining sets and evaluate its accuracy on the testing set.
In addition, we perform various experiments, as shown in
Fig. 2: (i) changing the number of files; (ii) modifying the
threshold value of the ranked features; and (iii) mixing
various percentages of data sets to observe the effect of
data set diversity. Finally, we measure the time efficiency
by showing the relationship between the number of fea-
tures and the total elapsed time.

The ECP approach can attain relatively high accuracy, as
shown in Fig. 2 (a), where the accuracy for the G data set is
between 0.89 and 0.98. This is higher than the accuracy
obtained using the U data set (min ¼ 0.82, max ¼ 0.95). By
Fig. 2. Re-evaluation results: (a) Relation between accuracy and number of files (b)
datasets; (d) Time versus number of features.
analyzing the source code, we find out that the user
contribution in the U data set is greater than that of the G
data set. The U data set is also more complex than the G
data set, as it consists of classes, methods, etc. In addition,
we studied how changing the threshold value for the
number of top-ranked features affects accuracy. We find
out that the accuracy of their method may depend on the
choice of the threshold value, as shown in Fig. 2 (b). For
instance, the best threshold values for GCC and XCode
compilers are 16,000 and 18,000, respectively. In practice,
finding the best threshold for a given compiler and data set
combination may be a task that is both time-consuming
and prone to errors.

Finally, we perform an experiment to study the effects of
data set diversity on accuracy, as illustrated in Fig. 2 (c). We
consider different percentages ofmixed data sets (e.g., 100%
G data set, and 20% G - 80% U data sets). As shown, the
accuracy decreases when the diversity of the data set in-
creases, especially when the percentage of university pro-
jects increases, since the user contribution in the U data set
is higher than that of the G data set. We measure the time
efficiency of the ECP approach by calculating the total
required time for feature extraction and feature ranking.
Fig. 2 (d) shows the total time versus the number of fea-
tures for different experiments.
Discussion and limitation

The ECP approach represents pioneering effort on
compiler identification and may attain relatively high ac-
curacy. This approach can also identify the compilers of
binaries containing a mixture of code from multiple com-
pilers, such as statically linked library code. However, a few
limitations could be observed. First, as the number of fea-
tures increases, the running time may increase even more
rapidly. Second, the features of specific compilers may only
become apparent after examining a large number of bi-
naries. Third, the accuracy may depend on both the data set
and the choice of threshold.

The BinComp approach

We present the different layers of our solution.
Relation between accuracy and threshold of ranked features (c) Diversity in



A. Rahimian et al. / Digital Investigation 14 (2015) S146eS155S150
First layer: Compiler identification

The purpose of in this layer is to derive unique signa-
tures for compilers by collecting a set of known source code
and observing the compiled outputs. We tailor BinComp to
C-family compilers due to their popularity and widespread
adoption, especially in the development of malicious pro-
grams (Lindorfer et al., 2012). The steps used in this layer
are displayed in Fig. 3. As can be seen, we use the artifacts of
each compilation step to generate specific types of features.

1. Pre-processing: The input of this step is the original
source code (SRC), and the output is a pre-processed
source file that includes the contents of header files
imported into the source code. The symbolic constants
are replaced with their values as a result of this process.
To support the signature generation process, we extract
the values of constants and the list of source-level
functions along with their prototypes.

2. Compilation: The expanded source file generated in
Step 1 is fed into the compilation step, which results in a
platform-dependent assembler file (IAS). In support of
the signature generation process, the list of assembly
functions is extracted.

3. Assembly: We use the disassembled version of the ob-
ject file (OBJ) dthe output of this stepd to extract the
relevant features. To support the signature generation
process, we match each assembly-level function with
the corresponding source-level function obtained from
Step 1. At this point, we are able to establish a mapping
between assembly code profiles (sequences) and the
source code. This mapping provides us with clues about
the compiler code transformation process and syntactic
styles (compiler transformation profile, as described
later in BinComp Approach Section).

4. Linking: The linking step deals with the integration of
the library object code (LIB) with the user object code
(OBJ) built in Step 3 to produce the final binary file (BIN).

5. Disassembly: We utilize the disassembled version of the
binary file to extract compiler tags (compiler tags are
described later in BinComp Approach Section).
First layer: feature description

Compiler transformation profile (CTP)
CTP is a syntactic feature that highlights how certain

syntactic source-level data and control structures (such as
conditional/unconditional jumps, loops, arrays, structs,
etc.) are reflected in the assembly output of compilers. The
compiler transformation profile captures the code trans-
formation process and maps the chosen source-level
Fig. 3. Compilation steps.
statements to a sequence of assembly-level instructions
in order to profile the code transformation for each
compiler. For instance, the assembly code translation of a
simple if/else construct involves a comparison instruction
followed by a conditional jump at the assembly level, which
can be stated as if/else: cmp or test, then jcc, in binaries
compiled by VS.

Compiler tags (CT)
Compilers may embed in output binaries certain tags in

the form of strings or constants. For instance, GCC-
compiled binaries carry a tag that survives even after the
symbol stripping process. Similarly, programs compiled
with VS have an XOR-encoded value in the file header
section that indicates the compiler version. These values
can therefore be considered as compiler indicators. We
apply a file parsing mechanism (PE/COFF/ELF) to obtain
such values.
First layer: Detection method

All extracted features in this layer are recorded as
strings and used for exact matching. The features in this
layer, including the compiler transformation profile and
compiler tags, captures the behavior of the compiler to
access primitive and composite data structures and code
structures (e.g., control statements, loop structures, register
utilization, and memory access). We combine them into a
single signature entity Sigci that is used to identify the
compiler ci.
Second layer: Compiler functions labeling

The aim in this layer is to label compiler-related func-
tions. To support our goal, we select a pair of source pro-
grams P1 and P2 and direct them through the supervised
compilation process using the compiler ci. The outcome of
this process includes two sets of disassembled functions FP1
and FP2 as well as their corresponding symbolic V

!
s and

numeric V
!

n feature vectors for each function. We perform
a similarity measurement based on the numerical values of
feature vectors. We use a standard clustering algorithm (k-
means) (Farnstrom et al., ) to group functions with similar
attributes ðvn1 ;…; vnz Þ into k clusters S ¼ S1;…; Sk and
ðk � ��FP1

��þ ��FP2
��Þ to minimize the intra-cluster sum of

squares. In the following equation, mi denotes the mean of
the numerical feature values of each cluster.

arg min
S

Xk

i¼1

X
vj2Si

��vj � mi

��2 (1)

The parameter k may be estimated either by following
standard practices in k-means clustering (Farnstrom et al.,
), or by beginning with one cluster and continually
dividing the clusters until the points assigned to each
cluster have a Gaussian distribution as described in
Hamerly and Elkan (2004). If function names are available
in symbolic vectors (which is the case for debug binaries),
we would have the option to intersect functions based on
their symbolic names. In this case, we compute



Table 2
Profiling compiler functions based on numerical vectors.

COMP OPL Symbolic function ID DTR, DTO, FLG, ATH, LGC,
CTL, INO, INT, FLT, REG,
MEM, IMM, IFA, INA

VS OP2 @__security_check_cookie@4 0, 0, 0, 0, 0, 4, 0, 0, 0, 001,
001, 000, 000, 002

VS OP2 ___tmainCRTStartup 3, 0, 1, 2, 1, 6, 0, 0, 0, 077,
028, 017, 000, 025

GCC OP0 ___mingw_CRTStartup 3, 1, 1, 3, 6, 7, 0, 0, 0, 216,
015, 068, 000, 071

GCC OP0 ___gcc_register_frame 3, 0, 1, 1, 0, 3, 0, 0, 0, 029,
001, 014, 000, 009

A. Rahimian et al. / Digital Investigation 14 (2015) S146eS155 S151
listðsetðV!P1 :namesðÞÞ∩setðV!P2 :namesðÞÞÞ, where the listðÞ
function returns the list of commonly disassembled func-
tions and the namesðÞmethod returns the property name of
each function.

Second layer: Feature description

Compiler functions (CF)
Compiler function features are extracted in two steps: i)

intersect a set of disassembled files, and ii) extract symbolic
and numerical vectors for each compiler function. Given a
target binary B (with unknown compiler) and its set of
disassembled functions FB ¼ ff1;…; fmg, which are classi-
fied into two groups of functions (compiler-related func-
tions and user-related functions), we extract symbolic
feature vectors Vs ¼ fVs1 ;Vs2 ;…;Vszg and numerical feature
vectors Vn ¼ fVn1 ;Vn2 ;…;Vnzg from each disassembled
compiler/linker-related function fi2FB. We group the in-
structions according to the instruction categories as shown
in Table 1. The numerical vectors are generated using a
function fingerprinting technique (Rahimian et al., 2013),
which encodes and quantifies the syntactic and structural
features of binary functions. Table 2 shows an example of
numerical vectors.

Second layer: Detection method

We introduce a function fingerprinting approach for the
generation and detection of abstract representations of
assembly functions. We consider a program P to be
comprised of a set of functions F ¼ ff1;…; fmg. A feature
extraction function X : F/S maps each function fi2F to a
set of features si2S, where F is the set of compiler/linker-
related functions and S is the set of all possible features:

si ¼ XðfiÞ (2)

We define G : S/T as a fingerprint computation func-
tion that takes the set of features to generate the finger-
prints. Each fingerprint ti2T represents the encoded
characteristics of function fi:

ti ¼ GðsiÞ ¼ GðXðfiÞÞ (3)

At a different level of abstraction, this function is similar
to a hash function since it generates a fixed length output
for an arbitrary length assembly function and compresses
the information. However, this function computes the
output based on a normalized form of assembly in-
structions. This function can be interpreted as a semantic
Table 1
Instruction Categories.

Feature Description Feature Description

DTR Data Transfer INA Indirect Near Address
INO Input/Output DTO Data Transfer Object
FLT Float Point FLG Flag Manipulation
REG Registers LGC Logical Instructions
MEM Memory CTL Control Instructions
IMM Immediate Value IFA Indirect Far Address
INT Interrupt/System ATH Arithmetic Instructions
hash function, which builds a bit vector of length m from
the subset of features S that appear in fi. The mechanics of
the hash function can be balanced according to the required
level of strength (number of feature bits) and the size of the
feature space.

ti2domainðSÞ/f0;1gm (4)

For function fingerprinting, we calculate the similarity
between pairs of functions. It is also necessary to determine
the similarity between a target function and a group of
functions (e.g., incremental clustering). The similarity
function M assigns a score to a pair of candidate finger-
prints using a similarity metric. The similarity score can be
computed at the level of features (i.e.,M0 : F � F/ℝþ) or at
the level of fingerprints (i.e., M : T � T/ℝþ). There are
various metrics for the computation of vector similarity
scores (e.g., Jaccard similarity). Let ti and tj be two finger-
print vectors generated from the candidate function pairs
ðfi; fjÞ, respectively. The Jaccard similarity can be calculated
using the following equation (Gascon et al., 2013):

dJ
�
ti; tj

� ¼ S
�
ti∧tj

�

S
�
ti∨tj

� (5)

where the SðÞ function counts the number of ones in the
fingerprint bit vector.
Third layer: Version and optimization recognition

The aim in this layer is to detect the version and the
optimization level of the binary code. During the training
phase, we observe that two features are slightly distinct:
the annotated control flow graph (ACFG) and the compiler
constructor terminator (CCT) graph. In such cases, we use
neighborhood hashing (Gascon et al., 2013) to provide a
level of granularity over the program components and
features used that is more refined than graph encoding.
Third layer: Feature description

Annotated control flow graph (ACFG)
We present a new scheme, the Annotated Control Flow

Graph (ACFG), to efficiently detect the version and opti-
mization levels. It is an abstracted version of the CFG, which
generalizes specific types of CFG features according to
multiple criteria. We build an annotated control flow graph



A. Rahimian et al. / Digital Investigation 14 (2015) S146eS155S152
for each disassembled compiler-related function according
to the type of operations that take place in each basic block.
Each node in this graph represents a basic block, and each
edge connects basic block B1 to basic block B2 if basic block
B2 can directly follow basic block B1 in execution. The
method for extracting an ACFG can be summarized in the
following steps: First, we consider a CFG as an input and
compute the frequency of opcodes across instruction
groups. Second, each assembly instruction can be catego-
rized according to the mnemonic groups and types of op-
erands. As one category, the x86 instructions can be
classified into six groups, as shown in Table 3. Third, we
treat the ACFG as a structural feature and complement it
with subgraph encoding values.

Definition 1. An Annotated Control Flow Graph
ACFG ¼ (N,E,z,g) is an attributed graph where N is a set of
nodes each representing a basic block, E 4 (N � N) is a set of
edges which represents a control flow statement, g is a
function that groups the instructions, and z is a function
which colors nodes according to the type of operations that
take place.
ACFG construction
We use one compiler function (e.g., setprecision) to

illustrate the steps involved in translating CFG to ACFG, as
shown in Fig 4. The first part on the left side represents the
standard control flow graph. As illustrated in the middle
part, we convert each basic block in accordance with Table
3. Finally, function z converts these values to a specific
color.

Consider the last basic block in Fig. 4 which contains the
two instructions pop esi and retn. Function g groups the
two operators to STK and MSC, and the esi operand to REG.
To color the nodes, z intersects the opcode and operands
according to Table 3. For instance, DTR & STK ¼ 0 & 1 ¼ 0,
whileMSC¼ 1. Each basic block ends upwith a six-bit value
(e.g. 000001) whichwill be represented in a newgraph by a
decimal value equivalent to its binary. The ACFG captures
the control flow semantics of a program, which contains
more information and hence provides more accuracy than
a CFG. An ACFG can convert equivalent compiler functions
to a similar ACFG because the compiler functions are
semantically similar. In contrast, a CFG deals only with the
structure of the function; since different functions may
have the same structure, this fact makes compiler function
identification more difficult.

Compiler constructor terminator (CCT)
One important application of call graphs and control

flow graphs is in the recognition of compiler-related call
Table 3
Patterns for annotation.

Feature Description Example

DTR & STK Data Transfer and Stack push, mov, etc
ATH & LGC Arithmetic and Logical add, xor, etc
CAL & TST Call and Test call, cmp, etc
REG & MEM Register and Memory esi, [esiþ4]
REG & CONST Register and Constant esi, 30
MSC Milestones MEM and Const
sequences. Each compiler exhibits a relatively unique
signature for initialization, startup, and termination code.
In both the initialization and termination part of the pro-
gram, there are compiler functions that call other functions
or are called by other functions. The order of these func-
tions, number of nodes, flow, and other characteristics are
some of the signatures that we use for the compiler
constructor terminator (CCT) feature.

During the execution of the system, the call graph of the
application is traversed until it reaches the main function.
Every sequence of function calls taking place before and
after the main function (initialization and terminators) is
recorded in the compiler constructor terminator (CCT) of
each compiler. Fig. 5 shows an example of a GCC compiler
constructor terminator.
Third layer: Detection method

In certain applications, it may be necessary to match
subsets of multiple graphs. For instance, we consider the
initialization part of a call graph as a startup signature for
compiler identification (compiler constructor terminator
profile). In such cases, neighborhood hashing provides a
more refined level of granularity compared to graph
encoding. In order to fingerprint adjacent nodes, a neighbor
hash graph kernel (NHGK) can be applied to subsets of the
call graph (Gascon et al., 2013). The function Gmaps the set
of annotated graphs AG to a bit vector of length m.

G : AG/f0;1gm (6)

The neighborhood hash value h for a function fi and its
set of neighbor functions Nfi can be computed using the
following formula [8]:

hðfiÞ ¼ shr1ðGðfiÞÞ4
�
4fj2Nfi

G
�
fj
��

(7)

where shr1 denotes a one-bit shift right operation and 4

indicates the XOR function.

Evaluation

Data set

Gathering a data corpus for the evaluation of compiler
provenance extraction is challenging. For example, despite
the fact that collecting code from open-source projects may
be attractive, the source files usually have numerous de-
pendencies which complicates the compilation process.
Nonetheless, we choose four free open-source projects and
use them to test BinComp. In addition, we have gathered
programs written for the Google Code Jam (The Google
Code Jam, ) as well as university projects from a program-
ming course at our university. All of our data sets are
publicly accessible in (The data set, ).

We generate the binaries that make up our data set by
compiling the source codewith all applicable combinations
of compiler versions and optimization levels (O0 and O2),
as shown in Table 4. Our data set consists of 1177 files, 232
of which belong to the Google Code Jam data set, 933 of



Fig. 4. ACFG construction.

Fig. 5. Sample of GCC compiler constructor terminator.

A. Rahimian et al. / Digital Investigation 14 (2015) S146eS155 S153
which belong to the Students Code Projects, and 12 of
which belong to the Open Source Projects.

Evaluation results

We evaluate our compiler provenance approach using
the aforementioned data sets. We split the training data
into ten sets, reserving one set as a testing set, and using
nine sets as training sets to evaluate our approach; we
Table 4
Data set compilation settings.

Compiler Version Optimization

GCC 3.4 O0
4.4 O2

ICC 10 O0
11 O2

VS 2010 O0
2012 O2

XCODE 5.1 O0
6.1 O2s
repeat this process numerous times. To evaluation our
appraoch, we use precision (P) and recall (R) as follows.

P ¼ TP
TP þ FP

(8)

R ¼ TP
TP þ FN

(9)

Since our application domain is much more sensitive to
false positives than false negatives, we use the F-measure
as follows.

F0:5 ¼ 1:25 $
PR

0:25P þ R
(10)

Our results of F0:5 measure is summarized in Table 5.
As depicted separately in Fig. 6(aed), BinComp can

detect the VS compiler with an average accuracy of 0.97,
while ECP average accuracy is 0.93. The main explanation
for this difference lies in the type of features used in the
technique; BinComp uses different kind of features (syn-
tactical, structural, and semantical), whereas ECP uses only
syntactical features. In addition, we record the overall run
time and compare BinComp and ECP approaches in terms of
time complexity, as shown in Fig. 7.

We test BinComp using different variations of compiler
versions and optimization levels, as shown in Table 6 and
Table 7. Table 6 indicates that identifying the version of
Table 5
F0:5 results.

Feature F0:5(Data set ¼ 500 files) F0:5(Data set ¼ 1000 files)

Idioms 0.789 0.812
Graphlet 0.602 0.62
CF 0.72 0.745
CTP 0.694 0.708
CCT 0.807 0.877
CT 0.689 0.70
ACFG 0.634 0.671



Fig. 6. The accuracy against different compilers.

Fig. 7. Time efficiency.

A. Rahimian et al. / Digital Investigation 14 (2015) S146eS155S154
compiler is significantly more difficult than recognizing the
compiler and optimization levels. For instance, the accu-
racy to identify the version of XCode compiler is below
0.80. In addition, we observe that the features of VS and
XCode compilers are slightly different when we change
either the version or the optimization level, which makes
the detection process more challenging. However, the GCC
and ICC compilers produce more various code amongst
versions compared to the VS and XCode compilers.

We find that up to 75% of the functions in our data set
are identical when generated by Visual Studio 2010 or 2012
Table 6
Accuracy for variations of compiler versions.

Compiler Version Accuracy

GCC 3.4.x 86%
4.4.x 89%

ICC 10.x 83%
11.x 90%

VS 2010 70%
2012 71%

XCode 5.x 78%
6.1 74%

Table 7
Accuracy for variations of compiler optimization levels.

Compiler Optimization Average Accuracy

GCC O0, O2 91%
ICC O0, O2 89%
VS O0, O2 95%
with the same optimization level. In other words, the code
generator in Visual Studio has remained relatively stable
between these versions, which offers an explanation for the
low accuracy for VS version detection. On the other hand,
we found that up to 85% of the functions of XCode are
identical among two versions. However, we have observed
changes in our proposed features for the GCC and ICC
compilers which allow us to detect the version and opti-
mization level bymeasuring the differences in the features.

A comparison between BinComp, ECP, and IDA Pro based
on four open source projects named SQLite, libpng, zlib, and
OpenSSL are illustrated in Fig. 8.We compile SQLite and zlib
with VS 2010 (O2), and the compiler is successfully iden-
tified by these three approaches; whereas libpng and
OpenSSL are compiled with GCC (O2), which IDA Pro is not
able to identify the source compiler of these binaries.
BinComp and ECP provide more accurate results in identi-
fying the VS compiler, while IDA cannot identify the GCC
compiler.
Discussion and limitations

We evaluate compiler provenance recovery on different
data sets across several compiler families, versions, and
optimization levels. We check the applicability of the fea-
tures used in BinComp and the features used in the existing
techniques (e.g., idioms, Graphlet) to identify the compiler,
version, and optimization level based on our observations
during the experiments. For instance, CT has the same
pattern in the binaries that are compiled with the same
compiler. Furthermore, we formulate a template called
compiler transformation profile (CTP) that maps the in-
structions underlying a binary according to the most likely
compiler family by which it was generated. We use such
features as a unique signature (fingerprint) to identify a
Fig. 8. Comparison the accuracy of BinComp, ECP, and IDA Pro on free open-
source projects.



Table 8
Feature abstraction levels: instruction-level (inst), control flow, and
external library (ext) interaction properties level.

Features Code property

Inst. Control flow Ext.

Idioms *
Graphlet * * *
CF * *
CTP *
CCT * *
CT *
ACFG * * *

A. Rahimian et al. / Digital Investigation 14 (2015) S146eS155 S155
binary source compiler. We use other features (e.g., ACFG,
and CCT) to identify the version and optimization level. The
variations in compiler provenance lead to variations in the
structure of the binary code. We introduce features that
capture detailed provenance at function-level granularity,
allowing us to recover the optimization levels used to
produce binary code. We design ACFG and compiler
constructor terminator (CCT) features to explicitly capture
such changes and identify the version.

BinComp uses different features that cover various as-
pects of the binary. Each feature captures one or more of
the code instruction-level (inst), control flow, or external
library (ext) interaction properties, as shown in Table 8. The
features used in BinComp cover all aspects of compiler
transformations and behaviors.

BinComp still suffers from some limitations. For
instance, like most existing methods, BinCompworks under
the assumption that the binary code is already de-
obfuscated. In practice, the de-obfuscation of malware
can be very demanding. How to extract compiler prove-
nance directly over obfuscated code is an important but
very challenging future avenue of research. BinComp also
assumes the binary code is not stripped. In addition, for this
work, only Intel x86/x86-64 architecture is considered, and
we evaluate BinComp only over compiled Cþþ programs.

Conclusion

We have presented a technique called BinComp for
accurately and automatically recovering the compiler
provenance of program binaries using syntactical, seman-
tical, and structural features to capture the compiler
behavior. BinComp extracted specific features from pro-
gram binaries, which enabled us to build representative
and meaningful features to describe each compiler char-
acteristics better. Our results show that compiler prove-
nance can be extracted accurately. Moreover, the results
indicate that the approach was efficient in terms of
computational resources and time requirements, and could
thus be considered as a practical approach for real-world
binary analysis.

Acknowledgments

The authors thank the anonymous reviewers for their
valuable comments. They are also thankful to Dr. Vassil
Roussev for his constructive comments. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the sponsoring organizations.
References

Alrabaee S, Saleem N, Preda S, Wang L, Debbabi M. OBA2: an onion
approach to binary code authorship attribution. Digit Investig 2014:
S94e103. Elsevier.

Alrabaee S, Shirani P, Wang L, Debbabi M. SIGMA: a semantic integrated
graph matching approach for identifying reused functions in binary
code. Digit Investig 2015;12:S61e71.

Balakrishnan G, Reps T. Wysinwyx: what you see is not what you execute.
ACM Trans Program Lang Syst (TOPLAS) 2010;32(6) [ACM].

Edler K, Franke T, Bhandarkar P, Dasgupta A. Exploiting function similarity
for code size reduction. In: Proceedings of the 2014 SIGPLAN/SIGBED
conference on Languages, compilers and tools for embedded systems;
2014. p. 85e94 [ACM].

Farhadi M, Fung B, Charland P, Debbabi M. BinClone: detecting code
clones in malware. In: Software Security Reliability, 2014 Eighth In-
ternational Conference on. IEEE; 2014. p. 78e87.

F. Farnstrom, J. Lewis, and C. Elkan, Scalability for clustering algorithms
revisited, ACM SIGKDD Explor Newsl, Vol 21, 51e57.

Gascon H, Yamaguchi F, Arp D, Rieck K. Structural detection of android
malware using embedded call graphs. In: Proceedings of the 2013 ACM
workshop onArtificial intelligence and security; 2013. p. 45e54 [ACM].

Hamerly G, Elkan C. Learning the k in A > means. In: Advances in neural
information processing systems16; 2004. p. 281.

IDA Pro multi-processor disassembler and debugger, Available from:
https://www.hex-rays.com/products/ida/, [accessed 09.06.14].

Jacobson E, Rosenblum N, Miller B. Labeling library functions in stripped
binaries. In: The 10th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools (SIGSOFT '11); 2011. p. 1e8 [ACM].

Lindorfer M, Di Federico A, Maggi F, Comparetti PM, Zanero S. Lines of
malicious code: insights into the malicious software industry. In:
Proceedings of the 28th Annual Computer Security Applications
Conference; 2012, December. p. 349e58 [ACM].

Rahimian A, Charland P, Preda S, Debbabi M. RESource: a framework for
online matching of assembly with open source code. In: Foundations
and Practice of Security (FPS 2013). Springer Berlin Heidelberg; 2013.
p. 211e26.

Rosenblum N, Miller B, Zhu X. Extracting compiler provenance from
program binaries. In: The 9th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering (SIGSOFT '10);
2010. p. 21e8. ACM.

Rosenblum N, Miller B, Zhu X. Recovering the toolchain provenance of
binary code. In: The 2011 International Symposium on Software
Testing and Analysis; 2011. p. 100e10 [ACM].

Rosenblum N, Zhu X, Miller B. Who wrote this code? Identifying the
authors of program binaries. In: Computer security-ESORICS. Springer
Berlin Heidelberg; 2011. p. 172e89.

Ruttenberg B, Miles C, Kellogg L, Notani V, Howard M, LeDoux C, et al.
Identifying shared software components to support malware foren-
sics. In: Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer International Publishing; 2014. p. 21e40.

Stojanovic S, Radivojevic Z, Cvetanovic M. Approach for estimating sim-
ilarity between procedures in differently compiled binaries, infor-
mation and software technology. Elseiver; 2014.

The data set. Available from: https://github.com/BinSigma/BinComp/tree/
master/Dataset, [accessed 30.04.15].

The Google Code Jam. Available from: https://code.google.com/codejam,
[accessed 27.10.14].

The PEiD tool. Available from: http://www.woodmann.com/collaborative/
tools/index.php/PEiD, [accessed 14.08.14].

The RDG Packer Detector. Available from: http://www.woodmann.com/
collaborative/tools/index.php/RDG_Packer_Detector, [accessed
14.08.14].

Toderici A, Stamp M. Chi-squared distance and metamorphic virus
detection. J Comput Virol Hacking Tech 2013;9(0):1e14. Springer.

http://refhub.elsevier.com/S1742-2876(15)00060-2/sref1
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref1
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref1
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref1
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref2
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref2
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref2
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref2
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref3
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref3
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref4
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref4
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref4
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref4
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref4
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref5
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref5
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref5
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref5
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref6
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref6
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref6
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref6
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref7
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref7
https://www.hex-rays.com/products/ida/
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref9
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref9
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref9
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref9
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref10
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref10
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref10
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref10
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref10
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref11
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref11
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref11
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref11
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref11
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref12
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref12
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref12
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref12
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref12
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref13
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref13
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref13
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref13
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref14
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref14
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref14
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref14
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref15
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref15
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref15
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref15
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref15
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref16
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref16
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref16
https://github.com/BinSigma/BinComp/tree/master/Dataset
https://github.com/BinSigma/BinComp/tree/master/Dataset
https://code.google.com/codejam
http://www.woodmann.com/collaborative/tools/index.php/PEiD
http://www.woodmann.com/collaborative/tools/index.php/PEiD
http://www.woodmann.com/collaborative/tools/index.php/RDG_Packer_Detector
http://www.woodmann.com/collaborative/tools/index.php/RDG_Packer_Detector
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref17
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref17
http://refhub.elsevier.com/S1742-2876(15)00060-2/sref17

	BinComp: A stratified approach to compiler provenance Attribution
	Introduction
	Motivation
	Contribution

	Motivating example
	Evaluation of the ECP approach
	ECP evaluation results
	Discussion and limitation

	The BinComp approach
	First layer: Compiler identification
	First layer: feature description
	Compiler transformation profile (CTP)
	Compiler tags (CT)

	First layer: Detection method
	Second layer: Compiler functions labeling
	Second layer: Feature description
	Compiler functions (CF)

	Second layer: Detection method
	Third layer: Version and optimization recognition
	Third layer: Feature description
	Annotated control flow graph (ACFG)
	ACFG construction
	Compiler constructor terminator (CCT)

	Third layer: Detection method

	Evaluation
	Data set
	Evaluation results
	Discussion and limitations

	Conclusion
	Acknowledgments
	References


