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Abstract 

 

A systematic approach of integrated building control for optimization of energy and cost 

 

Hatef Aria, Ph.D. 

Concordia University, 2015 

 

More efficient building energy management leads to lower energy consumption and cost, higher 

occupancy comfort and less detrimental effects on the environment. Improving building energy 

management with advanced integrated building control provides a tool to coordinate and 

optimize control of multiple indoor parameters by considering their interconnected effects on 

building energy consumption and comfort. 

A building integrated optimization requires an approach to calculate building energy 

consumption, operate in real time, optimize building control parameters, and be able to modify 

systems operations or schedules in response to environmental or demand response signals inputs. 

The integrated optimization has significant effects on reductions in energy use and energy costs, 

reductions in peak load, and improvement of indoor environment quality without replacing the 

existing equipment. Most of previous research in integrated building control just focused on 

optimization of specific zone or some of the possible parameters. They also applied their 

optimization for the current hour without considering its effect on future-hours. 

The main goal of this research is to develop an advanced building operation optimization tool for 

integrated control of lighting, shade, ventilation and heating and cooling systems for whole 

buildings to reduce building energy consumption, operation cost, and peak load while satisfying 

occupancy comfort. Also, this optimization tool is capable of coordinating integrated control and 

demand response by real-time modification of time-of-use prices that are received from utilities. 

In addition, it applies multi-hour optimization by optimizing several hours simultaneously and 

considering effects of current hour control parameters on future hour energy consumption.  

As a first step, integrated optimization is investigated based on a developed and validated RC-

network model of a typical small office building. Nonlinear optimization is applied to the RC-

network model that is created in MATLAB. The optimization results show energy savings up to 
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35% more than the scheduled control. In addition, multi-hour optimization saved up to 4% of 

energy cost compare to optimization based on the current hour. 

For more accurate building energy and cost calculation, using building simulation software is 

essential. In this research DOE-2 is chosen as an open source building energy use analysis tool 

and modified based on integrated optimization requirements by adding functions to DOE-2 

source code. DOE-2 requires modifications to accept the control parameters’ online and hourly 

bases. Accomplished modification is validated by simulating nighttime ventilation strategy. 

Also, the daylighting and window energy calculation algorithm is modified to operate based on 

shade position instead of just open or closed shade. 

A building-integrated optimization tool is developed by integrating the genetic algorithm 

optimization method in MATLAB with building energy and cost calculation software (DOE-2). 

This integrated optimization tool simulates and optimizes building control parameters such as 

indoor temperatures, shade position, artificial light power, and outdoor air ventilation rates for an 

entire building. This optimization tool can be easy applied to any type of building and system 

when their models are available in DOE-2. Moreover, different strategies are proposed for 

increasing speed of optimization. First, a rule-based decision-making tool is used before 

integrated optimization that modifies the control parameters optimization domain. Decision-

making rules are developed based on sample integrated optimization results. Second, the neural 

network is trained for energy consumption prediction of building based on energy consumption 

results from DOE-2 for random control parameters. This trained neural network is connected to a 

genetic algorithm and replaces DOE-2 for the energy consumption calculation.  Finally, a local 

optimization method is used after the genetic algorithm to search around genetic algorithm 

results of control parameters for new control parameters with lower building energy 

consumption. 

The integrated MATLAB and DOE-2 optimization tool is initially evaluated by investigating 

nighttime ventilation and shade position optimization. The results for nighttime ventilation 

optimization show total energy savings up to 8% and cooling energy consumption reduction up 

to 23%. Higher savings occurred on days with high diurnal temperature range and average 

outdoor temperature near 17 ˚C. The results for shade position optimization indicate that in hot 

days shades stay nearly closed since the effect of solar heat gain, which increases cooling energy 

consumption in addition to the detrimental effect of conduction heat transfer, is more effective 
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and important than lighting energy reduction from daylighting. Also, in transient seasons when 

the building is in heating mode, shades mostly stay open since heat gain and illuminance 

transmission from windows reduce both heating and lighting energy consumption. In addition, 

using thick shades and a lower illuminance set-point give optimization more flexibility for 

energy savings.  

Finally the integrated MATLAB and DOE-2 optimization tool for whole building energy 

optimization is applied to a typical office building in Montreal. The results show energy savings 

between 10% and 30%; also higher energy savings potential could be expected during transient 

seasons compared to very hot or very cold seasons. The results also show peak load savings up to 

40%.  

Keywords: building model, energy consumption, integrated control, optimization, DOE-2 
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1 Introduction  

1.1 Building energy consumption 

Energy consumption in the commercial and institutional building sector accounts for almost 17% 

of total energy use in Canada and almost 13% of the country’s greenhouse gas (GHG) emissions, 

approximately 60 Mt of CO2 equivalents in 2006 [1]. The inefficient consumption of energy has 

more detrimental effects on the natural environment. The environmental damage from particulate 

pollution, acid rain, and climate change, all resulting from burning fossil fuel, has been 

documented extensively in many publications (e.g., [2]). The need to reduce the environmental 

impact of buildings is clear, particularly through reducing their wasteful use of energy. 

In Canada 76% of energy used by building services (e.g., heating, cooling, lighting, etc.) are 

powered by electricity, accounting for 35% of the total electricity consumed nationally [3]. 

Heating, ventilation and air-conditioning (HVAC) systems in commercial buildings account for 

nearly 80% of the total building energy. 

1.2 Making our buildings smart and intelligent with integrated control 

Building energy consumption can be improved by using efficient systems and operating them 

efficiently, through better control. “Intelligent efficiency” is defined by the American Council for 

an Energy-Efficient Economy (ACEEE) in 2012 [4] as “a systems-based, holistic approach to 

energy savings, enabled by information and communication technology and user access to real-

time information. Intelligent efficiency differs from component energy efficiency in that it is 

adaptive, anticipatory, and networked.” Generally the word “smart” is used for equipment, 

appliances, or networks with ability to communicate information, and changing their control 

parameters for better efficiency based on this information. Smart buildings have sensors and 

controls that communicate with a central building automation system. Intelligent efficiency 

includes an approach in which system-wide energy savings can be achieved by coordinating 

operations of interconnected devices. Integrated building control optimization, which coordinates 

multiple demand-side control parameters, can offer a more advanced approach to building 

energy management for higher cost-effective savings and control opportunities, while increasing 

occupant comfort. 
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An effective smart integrated building control typically has the following characteristics: 

evaluate and calculates building energy consumption in some methods, operates in real time, is 

capable of understand relevant control parameters (e.g., building operation and occupancy), and 

is able to change systems operations or scheduling in response to inputs. In order to optimally 

control system energy use and cost, a smart controller could understand and consider any of the 

following inputs. 

Outdoor air conditions: Outdoor air temperature, air quality, and solar illuminance and heat gain 

can affect building load and lighting. Hence knowing outdoor conditions can help to optimize 

building energy consumption more efficiently. 

Utility rates: The cost of each unit of energy may vary, for example, because of time-of-use 

rates. Therefore, it may be optimal to shift the systems operation away from high-cost periods. 

This can be done using both current and anticipated rates. 

Occupancy: Limiting pollutant levels, narrow temperature set-point, and higher lighting levels 

are only necessary when a space is occupied. Knowing when the space is or is not occupied can 

help reduce the amount of necessary energy compare to when it is occupied.  

1.3 Integrated control potential 

According to Brambley’s market surveys [5], building controls can potentially reduce energy 

consumption significantly in commercial buildings. Brambley’s survey demonstrates how a 

traditional Energy Management and Control System (EMCS) can save between 5 and 15% of a 

building’s energy, or occupancy sensors for lighting control can save 20 to 28% energy, or 

demand controlled ventilation can lead to 10–15% energy savings. In addition, controlling 

HVAC systems to improve temperature control and provide thermal comfort for occupants has 

significant effects on the building energy consumption, without replacing the existing (less 

efficient) with new (more efficient) equipment. 

A building’s electromechanical systems operation is critical to optimizing energy use, reducing 

energy and maintenance costs, ensuring occupant comfort and maintaining the quality of indoor 

air. Today’s buildings are complex and have interdependent systems with sophisticated controls 

(such as fuzzy logic, adaptive and predictive controls). Optimizing a building’s energy 

consumption requires an approach that allows devices and systems to work together in an 

efficient and cost-effective way to meet occupant requirements and expectations. Many case 

studies have shown an integrated control opportunity for significant energy savings ([6–8]). 
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Another advantage of an advanced building control system is flexibility to participate in utility-

initiated demand-response (DR) programs. DR manages customer consumption of electricity in 

response to supply conditions. DR strategies focus on controlling an entire building instead of 

specific parts. Such strategies include demand limiting or demand shifting and shedding. 

Smart integrated control could provide the following benefits to building occupants, utility 

companies, and efficiency program managers: (1) reductions in energy use and energy costs, (2) 

improvement of indoor environment quality, (3) reductions in peak load (or equivalently time-of-

use pricing), (4) ability to respond to demand response events, (5) flexibility that allows a wide 

variety of goals to be implemented on one platform, without expensive hardware/equipment 

changes, and (6) a platform that simplifies future adjustments to control algorithms in response 

to ongoing changes in climate, regulation, energy prices, grid dynamics, or occupant behavior. 

1.4 Integrated control versus typical local control 

Typical control functions in buildings can be divided into two categories: local control and 

supervisory control. Local control provides basic control and automation functions, such as 

ON/OFF control and proportional-integral-derivative (PID) control that allows building services 

to operate properly. Several studies have shown that local controls can provide thermal comfort 

and satisfy goals for indoor air quality without significant effect on energy savings [9–11]. 

Supervisory control functions are higher level controls that include local control functions while 

considering whole system characteristics and operations interaction, and energy optimization for 

total building energy use. During the last decade, research has increasingly focused on 

supervisory control, primarily caused by higher energy prices and tighter energy supply. 

Many buildings have multiple systems that typically work independent of each other. These 

systems include heating, cooling, lighting, ventilation, automated blinds, and domestic hot water. 

The control strategies of existing building systems are mostly based on an open-loop controller 

or predefined relation between parameters. These control methods lead to poor energy 

management and comfort [5]. In addition these methods require significant effort during 

installation and continuous adaptation of control parameters in order to provide acceptable 

energy management and environmental comfort. Most advanced building energy management 

systems do not work at their fullest potential. Usually they are just used for applying fixed 

schedules to the operation of the systems or individual control of each system. As an example, 

typical ventilation controls are usually met by continuous ventilation for the whole building 
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without considering demand. Lower HVAC power and energy consumption and higher indoor 

air quality (IAQ) performance can be achieved by being smarter about using ventilation. High-

performance buildings can take advantage of smart ventilation strategies, such as increasing 

ventilation when the outdoor temperature is less extreme, increasing ventilation during off-peak 

hours, managing ventilation based on outdoor air quality, and reducing whole-building 

ventilation operation in response to occupancy and building situations [12]. 

Parameters that influence indoor environment quality such as temperature, humidity, CO2 

concentration, and lighting can be adjusted optimally through operating integrated control 

instead of separate controllers. Furthermore, it is not easy to obtain the right combinations of 

values of these parameters since operating a single device might have several effects on building 

environment comfort parameters. As an example, bringing in fresh air for reducing CO2 

concentration can affect inside temperature and humidity. As a result in terms of total 

performance, individual and independent control systems do not usually work in an optimal 

manner. Instead, integrated control systems have the potential to improve energy efficiency, 

occupant comfort and cost efficiency. Integrated building control connects the operation of 

various local controls through a computerized supervisory monitoring and control system. 

For an accurate integrated control, information from different parameters and communication 

between controller device, plant, and building management are necessary. The zone level 

information required includes: illuminance, glare, occupancy, inside temperature and humidity, 

and air quality. The plant-level parameters for an integrated control include control parameters of 

air handling unit controller, chiller controller, and boiler controller. Figure 1-1 shows the relation 

of zone actuators and goal parameters, also the effect of different systems and parameters on 

each other.  
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Figure ‎1-1: (left) Relation of zone actuators and goal parameters, (right) effect of different 

systems and parameters on each others 

1.5 Integrated control applications 

Integrated control of the building can be an effective tool in implementing energy efficiency and 

conservation measures, peak load management, and dynamic demand response to varying 

electric prices. 

Energy efficiency and conservation: Energy efficiency lowers energy use while providing the 

same level of services. Energy conservation reduces unnecessary energy use. Both energy 

efficiency and conservation provide environmental protection and utility bill savings. Energy 

efficiency measures can permanently reduce peak demand by reducing overall consumption. In 

buildings this is typically done by installing energy-efficient equipment and/or operating 

buildings efficiently. Integrated building control mostly focuses on energy conservation by 

reducing energy use with efficient control systems.  

Peak Load Management: Peak load management changes the building energy use pattern (load 

shape) to reduce energy use during peak hours. Daily peak load management has been applied in 

many buildings to minimize the impact of peak demand charges and time‐of‐use rates. 

Smart controls allow us to easily shift the times of energy consumption away from peak demand 

periods, when loads on the gas and electricity distribution infrastructures reach a maximum. 

Reducing peak demand benefits both utility companies and consumers, through lower prices and 

greenhouse gas emissions, as well as increased grid stability and avoidance of service outages.  
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Demand Response: Demand response (DR) is a dynamic and event‐driven strategy that can be 

defined as short‐term modifications in customer end‐use electric loads in response to dynamic 

price and reliability information. 

Typical peak load management and demand response methods include load limiting, load 

shifting, and load shedding. Load limiting refers to dropping loads when predetermined peak 

load limits are about to be exceeded. This is done to flatten the load shape when the 

predetermined peak is schedule. Load shifting is shifting the loads from peak periods to off-peak 

periods. Load shedding is dynamic temporary reduction or curtailment of peak load when 

dispatched and refers to strategies that can be possibly implemented within a shorter period of 

response time.  

HVAC systems can be an excellent resource for DR for the following reasons. First, HVAC 

systems include a significant portion of the electric load in commercial buildings. Second, the 

thermal storage effect of indoor environments allows HVAC systems to be temporarily unloaded 

without immediate impact on the building occupants. Third, it is common for HVAC systems to 

be at least partially automated with energy management and control systems (EMCS). Lighting 

and daylighting can also be effective in reducing peak demand. 

1.6 Research objectives  

For improvement of energy efficiency and conservation, an optimal operation and control 

method is developed that reduces all unnecessary energy consumption in the building and 

optimizes all operation parameters with respect to efficiency of equipment to minimize energy 

consumption of the building while providing a comfortable environment for occupants. For peak 

demand management, demand charges and time-of-use rates are considered in the optimization 

objective function to identify multi-hour control options for the best response to peak load price. 

Based on the speed of the developed building simulation and optimization technique, the energy 

use in a building can be simulated each time the building receives new energy price or 

emergency signals from the utility, to generate a new optimal dynamic response. 

The main interest of this research is to develop an advanced building operation system for 

integrated control of lighting, blinds, ventilation and heating and cooling systems for whole 

buildings, in order to: 

1) Improve the indoor environment (thermal comfort, visual comfort and air quality) 

2) Reduce operation cost (energy consumption, energy price and maintenance) 
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3) Reduce peak load (response to peak demand charge and time-of-use rates) 

Also, integrated control and demand response are coordinated, and new rules for whole-building 

control are created based on optimization results.  In addition, a systematic approach to connect 

optimization method and building energy calculation, as well as, algorithms to increase speed of 

optimization are introduced.    

Although the previous researches introduced earlier tried to control different effective parameters 

in single or multiple zones, some limitations in those researches (about all possible strategies and 

effective parameters and methods of optimization) highlight the need for a more accurate and 

efficient integrated control. Indeed, a building management system should be developed that is 

able to optimize effective parameters accurately according to current and predicted future 

building situations in order to reduce building energy consumption and improve the indoor 

comfort level. Therefore, the objectives of this research are to: 

• Develop suitable integrated optimization for whole buildings, in all zones and with all 

systems 

• Consider and model the effect of current hour parameters in future hour energy 

consumption by multi-hour optimization  

• Investigate different objectives for optimization (energy and cost) 

To achieve each of these objectives, the desired work steps are: 

1. Developing suitable integrated optimization for whole buildings  

1.1. Literature review and parametric simulation for identification of all possible strategies 

and control parameters  

1.2. Modification of simulation tool (DOE-2), adding specific functions for investigation of 

all strategies and control parameters  

1.3. Selection of suitable optimization method and finding effective parameters for that 

optimization method  

1.4. Integration of the simulation tool with the optimization method to develop integrated 

control optimization with consideration of demand response 

1.5. Investigation of advanced methods for increasing accuracy and speed of optimization  

1.5.1. Developing fuzzy logic rules for recognition of suitable optimization domain 

according to conditions before simulation and optimization. 

1.5.2. Using neural network between optimization and simulation tools 
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1.5.3. Using optimization based on building an RC-Network model as an initial point for 

integrated optimization 

2. Multi-hour optimization  

2.1. Finding appropriate effective parameters for an accurate multi-hour optimization 

2.2. Comparing different time steps for multi-hour optimization, and selecting proper time 

step 

3. Different objective functions 

3.1. Adding ability to accept demand response signals as time-of-use price inputs for 

modification of cost objective function, or using them for modifying optimization 

constraints  

3.2. Comparing objective function of energy and cost for optimization 

 

Required work steps and objectives of this thesis are investigated and organized in seven 

chapters. Chapter 2 reviews the majority of the literature related to building integrated control 

optimization and discusses further opportunities in this field that required more investigation. 

Chapter 3 investigates methodologies and methods of developing advanced integrated building 

optimization, which includes methods of modeling the building energy consumption, methods of 

optimizing building control parameters, and integrating the optimization method with a building 

energy calculation method, as well as different methods of increasing speed of optimization. 

Chapter 4 discusses the results of integrated optimization with the RC-networks model and 

nonlinear programming. Chapter 5 addresses modifications of simulation tools by adding 

functions to DOE-2 and their applications for nighttime ventilation and shade position. Chapter 6 

discusses integration of MATLAB and DOE-2 to develop an optimization tool; the chapter 

includes different applications of the developed optimization tool and methods of increasing its 

speed, as well as final results of building energy consumption and cost optimization. Finally 

chapter 7 presents remarks and conclusions of this thesis, in addition to recommending future 

works for further investigations. 
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2 Literature review  

The present chapter aims to prepare a complete background of the existing efforts to develop 

integrated building control and optimization. The optimal control and building energy 

consumption optimization are investigated with different methods in many studies. For 

understanding opportunities and potentials in integrated building control, first important and 

general literatures in this field are discussed. Thereafter, literature with more detail and focus on 

each method and steps for integrated control are reviewed. Topics of these detailed researches 

include:  

 Building energy and cost calculation methods 

 Building optimization techniques 

 Important methods for increasing optimization speed and accuracy 

 Building load and occupancy prediction 

 Including demand response in integrated control 

Finally, based on the literature review, unsolved areas that required more investigation are 

specified and my research objectives are developed based on them. 

2.1 Integrated control research opportunities  

An intelligent integrated control of building systems can achieve significant energy savings 

while maintaining a high level of indoor comfort [13]. Most previous work in integrated building 

control focuses on one zone instead of the whole building, and the authors applied their 

integrated control to some of the parameters instead of all possible parameters. Mathews et al. 

[14, 15] and Vakiloroaya et al. [13] focused on HVAC system integration. Daylighting and 

illuminance control integration was investigated by Pandharipande and Caicedo [16], Shen and 

Hong [17], Mukherjee et al. [18], and Rubinstein et al. [19]. Roche and Milne [20] investigated 

the effect of combining smart shading and ventilation; and integrated control of heating, 

illuminance and daylighting without consideration of air quality was studied by Kolokotsa et al. 

[8] and Guillemin and Morel [6]. 

Kolokotsa et al. [8] applied a fuzzy logic algorithm to analyze the performance of an integrated 

Indoor Environment Energy Management System (IEEMS) for two buildings in Greece. The 

energy savings achieved by the IEEMS operation is more than 30% compared to the existing 
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control system. The fuzzy controller satisfies the indoor comfort requirements, giving priority to 

passive techniques for heating, cooling and lighting, while minimizing the energy use. 

Gyalistras et al. [21] investigated the energy savings potential of simultaneous control of blinds, 

electric lighting, heating, cooling and ventilation in a single building zone. They compared 

whole-year hourly time step simulations with rule-based control and model predictive control for 

several factors (such as comfort range, air quality controlled ventilation, and façade orientation). 

The largest energy savings potential was found for the use of CO2-controlled ventilation (average 

savings of 13%–28%). A previous study about the impact of shading devices on energy use 

showed that shading devices reduce the cooling load of building by 23%–89%, with the highest 

savings attained for devices with low shading coefficient [22]. 

Karjalainen and Lappalainen [23] provided integrated control for a space and describe various 

inputs and outputs for integrated controls. The optimization strategy was first simulated and then 

implemented in a real building. Their simulations showed that more than 20% of the heating 

energy and the electricity used by ventilation fans could be saved.  

Shen et al. [17] used existing simulation tools to compare the energy savings benefits of 

integrated controls in office buildings. They examined the energy saving benefits of three 

possible control strategies, combining different strategies in dimming of electric lighting and 

controllable window transmission (electrochromic windows) compared to a benchmark case 

across 16 DOE climate zones in the US with EnergyPlus software. Their analysis specified that 

the current simulation programs could not model sophisticated integrated control strategies.  

Guillemin and Morel [6] developed a self-adaptive integrated system for building energy and 

comfort management. Both artificial and natural lighting controllers were designed in order to fit 

the integrated approach. They used a genetic algorithm to look for the most efficient set of small 

variations to the parameters of all controllers for better optimization results. Their experiment 

results demonstrated that this integrated system can lead to 25% energy savings. 

Gwerder and Gyalistras [24] investigated the use of a weather and occupancy forecast for 

optimal building control. They present a potential savings of both non-predictive and predictive 

rule-based control for integrated control of one zone. Different rule-based control algorithms 

were examined and compared in a test field (real scale model of the zone). 

Kaya et al. [25] developed an optimal control method for a single air-conditioned zone. The main 

objective of their study was to demonstrate improvement in control performance and reduction in 
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energy consumption through simultaneous (rather than independent) control of temperature, 

humidity, and air velocity. The results indicated that the optimal control strategy could reduce 

energy use. 

Sun et al. [26] developed a methodology to get a near-optimal control commands for the blinds, 

natural ventilation, lights and HVAC system jointly. Numerical simulation results showed that 

both traditional and integrated strategies can effectively reduce the total energy cost. The 

integrated control can save more energy than the selected traditional non-integrated control 

strategies. Their methodology was tested for a fresh-air unit (FAU) of two rooms, but it can be 

extended to a whole building.  

2.2 Building energy and cost calculation methods 

Building simulation is an acceptable tool to estimate energy use of a building in response to 

changes in parameters for complex building and plant dynamics. A simulator is essentially a 

function evaluator in many optimization systems. Three types of simulation models are common 

in research: full-scale [27, 28], statistics-based [29, 30], and simplified [31]. EnergyPlus, DOE-2 

and BLAST are examples of full-scale system simulation packages. They cover a wide range of 

building systems and components, take detailed system description, and produce a large number 

of energy and comfort output reports. A full-scale simulation package can be integrated in the 

optimization process, but the full-scale simulator would make the optimization process time-

consuming and data processing complex. As an alternate method, statistical function 

approximation is a widely used approach to represent the nonlinear building dynamics. A variety 

of neural networks (NNs) and time series models have been used in load prediction and control 

research. In addition, simplified models fall between full-scale simulation and statistical models. 

They consist of approximate functional relations for components and systems under study, which 

makes them computationally more efficient than full-scale simulation while providing a fair 

amount of insight into the energy balance and transfer processes. In this research all of these 

methods are used to utilize their advantages and compensate for their disadvantages by using the 

other methods.  

2.3 Building optimization techniques 

A variety of methods have been applied to building controls and optimization (overviews can be 

found in [32–34]). Methods proposed for integrated building control include the usage of neural 
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networks [35-37], fuzzy logic approaches [8, 38], rule-based control [21, 24, 39, 40], simulation-

based control [13, 17, 23, 41], model predictive control [42, 43], and adaptive control [44, 6]. 

In order to use optimal control or adaptive control a model of the building is necessary. 

Predictive control includes a model for prediction of future condition (e.g., solar gains, presence 

of humans, etc.). This prediction improves thermal comfort mainly by reducing overheating [45–

47]. Adaptive controllers have the ability to self-regulate and adapt to the climate conditions or 

building characteristics in various buildings. In addition, adaptive fuzzy controllers are regarded 

as the most promising adaptive control systems for buildings [24, 45]. 

Moreover, a variety of optimization methods have been applied in building control problems, 

such as linear and non-linear optimization (LP & NLP) [48, 49], genetic algorithm optimization 

technique [50-52], and dynamic programming (DP) [53]. Linear programming is a mathematical 

method to optimize an objective function (e.g., maximum gain or minimize cost) subject to a 

linear convex set of constraints [54]. The linear programming method is an appropriate tool that 

it is used widely to solve and optimize various types of economic and industrial problems. 

Therefore, many researchers have applied LP to optimize operation of an integrated building 

control system.  

Petri et al. [55] present a modular-based optimization system efficiently used for running energy 

simulation and optimization in order to fulfill a number of energy-related objectives. The 

solution can address the variability in building dynamics and provide support for building 

managers in implementing energy-efficient optimization plans. 

Görkem et al. [56] used the linear programming method to optimize the allocation of limited 

amount of budget for modification of a household in Turkey in order to maximize the energy 

savings. The energy conservation measures considered in that study included installing 

photovoltaic solar cells, replacing regular windows with double-glazed ones, replacing 

incandescent bulbs with compact fluorescent light bulbs, and replacing household appliances 

with more efficient appliances. Their results indicated that double-glazed window installation 

and installing compact fluorescent lights was the optimum combination because of the relative 

low cost.  

Braun [57] studied dynamic building control and dynamic adjustment of the indoor temperature 

set-points in order to minimize overall operating costs by applying dynamic optimization 

techniques to computer simulations of buildings and equipment. The approach taken discretized 
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the cost function and applied a non-smooth optimization algorithm to determine the set of 

controls that minimize the sum of costs over the specified time. 

Genetic Algorithms (GA) are stochastic search algorithms that borrow some concepts from 

nature. At the start of the algorithm, an initial population is generated, either randomly or 

according to some rules. The reproduction operator selects population members (set of 

optimization variables) from the previous population to be parents for new members. This 

parenthood selection can range from a totally random process to one that is based on the 

member's fitness value (value of the objective function for each member). 

Each new generation is formed by the action of genetic operators on the older population. 

Finally, the members of the population pool are compared via their fitness value in order to 

choose the optimal solution. A GA is left to progress through generations, until certain criteria 

(such as a fixed number of generations, or a time limit) are met [25]. 

Artificial neural networks are computational models of which the most important features are the 

abilities to learn, to associate, and to be error-tolerant [58]. Unlike conventional problem-solving 

algorithms, neural networks can be trained to perform a particular task. This is done by 

presenting the system with a representative set of examples describing the problem, namely pairs 

of input and output samples; the neural network will then extrapolate the mapping between input 

and output data. The neural network consists of an input layer and an output layer of neurons. 

The neurons are the processing units within the neural network and are usually arranged in 

layers. The information is propagated through the neural network layer by layer, always in the 

same direction. Besides the input and output layer there can be other intermediate layers of 

neurons, which are usually called hidden layers. 

After training, the neural network can be used to recognize data that is similar to any of the 

examples shown during the training phase. This method can be suitable for outside conditions 

and internal load prediction [29, 59]; also it is possible to train the neural network with 

simulation results and use it to increase optimization speed [50]. 

Fuzzy Logic was initiated in 1965 [60], by Lotfi A. Zadeh, professor for computer science at the 

University of California in Berkeley. Basically, Fuzzy Logic (FL) is a multi-valued logic that 

allows intermediate values to be defined between conventional evaluations like true/false, 

yes/no, high/low, etc. Fuzzy Logic provides a different way to approach a control or 

classification problem. This method focuses on what the system should do rather than trying to 
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model how it works. One can concentrate on solving the problem rather than trying to model the 

system mathematically, if that is even possible. On the other hand the fuzzy approach requires a 

sufficient expert knowledge for the formulation of the rule base, the combination of the sets and 

the defuzzification. In general, the employment of fuzzy logic might be helpful, for very 

complex processes, when there is no simple mathematical model (e.g., inversion problems), for 

highly nonlinear processes or if the processing of expert knowledge is to be performed [61]. 

Keeney and Braun [62] developed a building optimization with zone temperature setting as 

controls and a combination of energy cost and penalized human comfort as the cost. The 

“complex” method, an extension of the “simplex” method to constrain optimization problems, 

was used to solve this optimization problem over a 24-hour horizon. Based on detailed 

optimization, two simplified approaches were proposed for online implementations, where one 

approach takes two constant zone-sensible pre-cooling rates and the other applies a constant 

cooling rate for a given amount of time prior to building occupancy. Their simplified strategies 

achieved significant energy savings compared to conventional control.  

The most common method of building optimization is the genetic algorithm, a search technique 

used in computing to find solutions to optimization problems. This method will be explained in 

detail later. Magnier and Haghighat [50] described an optimization methodology based on a 

combination of an artificial neural network and a multi-objective evolutionary algorithm. They 

first used a simulation-based Artificial Neural Network (ANN) to characterize building behavior, 

and then combined this ANN with a multi-objective genetic algorithm (NSGA-II) for 

optimization. Results of the optimizations showed significant reduction in terms of energy 

consumption as well as improvement in thermal comfort. Finally, by using the multi-objective 

approach, dozens of potential designs were revealed, with a wide range of trade-offs between 

thermal comfort and energy consumption. 

Palonen et al. [63] developed a genetic algorithm model for simulation-based optimization 

problems to solve for the optimal design of building parameters. Their optimization method was 

mostly based on NSGA-II and Omni-optimizer. The developed genetic algorithm was used to 

solve single-objective and two-objective problems. As a result of that study, a collection of 26 

evolutionary strategies was implemented with three different coding schemes. 

 Parameshwaran et al. [64] experimentally investigated the combined effect of the energy 

conservation of the variable refrigerant volume (VRV) system and variable air volume (VAV) 
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system, using a genetic fuzzy optimization method that yielded better thermal comfort and 

indoor air quality (IAQ) requirements without compromising on the energy savings potential. 

Based on the three strategies of the supply air temperature, the proposed system achieved 54% in 

summer and 61% in winter energy savings in design conditions. Furthermore, for the strategies 

considered the proposed system achieved an annual energy conservation potential of 36%. 

Congradac and Kulic [65] discuss the importance of CO2 control to enhance the IAQ and energy 

savings potential of the HVAC system through the application of the GA. A simulation was 

developed in order to power savings by using the suggested method of CO2 concentration control 

in a standard HVAC system. They concluded that the savings should not be disregarded. Their 

results showed up to 20% energy savings for the chiller. They applied results from the 

optimization problem with MATLAB to the EnergyPlus model of the building and simulations 

gave them expected results in energy and cost savings. 

Wang et al. [52] presented a multi-objective optimization model that could assist designers in 

green building design. Life cycle analysis methodology was employed to evaluate design 

alternatives for both economic and environmental criteria. This paper presented the use of an 

optimization program coupled with an energy simulation program, which allows the design 

space to be explored in the search for an optimal or near-optimal solution(s) for a predefined 

problem. 

Wright and Farmani [66] simultaneously optimized the building's construction, the size of 

heating, ventilating and air-conditioning systems, and the HVAC system supervisory control 

strategy in order to account automatically for the thermal coupling between these building 

elements. The problem formulation was described in terms of the optimization problem 

variables, the design constraints, and the design objective functions. The optimization problem 

was solved using a GA search method. The conclusion was that the GA is able to find a feasible 

solution with an exponential convergence on that solution. The solutions obtained were near-

optimal, the lack of final convergence being related to variables having a secondary effect on the 

energy cost objective function. 

The literature review on building optimization methods showed that the most common, tested, 

and validated method of optimization for integrating with simulation tools is the genetic 

algorithm.  
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2.4 Important methods for increasing optimization speed and accuracy 

The class of optimization problems solved in this thesis is non-linear that for many conditions a 

global solution may not be reached. Using different optimization algorithm may result in 

different solutions with varying computational time. In this thesis for different optimization 

algorithms whenever calculation of an algorithm takes less time to reach similar energy savings 

of another algorithm it is called faster optimization and whenever by spending similar calculation 

time the results show higher energy savings it is called increasing optimization accuracy. 

Researchers develop new optimization algorithms continuously to improve speed and accuracy 

of solutions to local and global optimization problems. However, none of these algorithms can be 

introduced as the best optimization algorithm. Each algorithm can be more suitable in a different 

problems compared to the other algorithms. Hybrid optimizations are introduced to implement 

two or more algorithms for the same optimization problem. A hybrid optimization uses 

advantages of each algorithm to compensate for disadvantages of the others [67]. 

All stochastic methods are very time-consuming because of the large number of calculation of 

the objective function that is necessary for optimization. The idea of coupling them with a more 

efficient local search, leading to one type of hybrid optimization, this method has shown its 

efficiency in many problems in the last decade [68–71]. Evolutionary algorithms as strong global 

optimization techniques are very useful to apply in large-scale problems that have many local 

optima. However, these optimization algorithms are very time-consuming, and their convergence 

performance is very poor. On the other hand, local search algorithms have very fast convergence 

but they can easily be trapped in local optimum. The incorporation of global and local search 

methods could eliminate their difficulties and disadvantages while offering the advantage of both 

optimization methods. Combining a local search with a GA as a global optimization method can 

be done in different ways [72]. 

A combination of GAs with the conventional optimization techniques is recommended to 

improve the convergence and the search efficiency [73, 74]. GAs are powerful at global 

searching with very slow convergence, while the local optimization techniques can converge 

very fast with lack of a global search opportunity; so the hybrid of these algorithms can benefit 

the global search potential of GAs with conventional optimization techniques, local search 

accuracy and speed, and compensate for their individual deficiency, thus outperforming either 

one them [75]. 
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Mousa and Kotb [76] proposed a hybrid multi-objective approach for computing fuel cost and 

emission. They implemented their approach to iteratively update a finite-sized archive of non-

dominated solutions. Also, a local search method was introduced as a neighborhood search 

engine. The proposed technique has been effectively applied to solve a problem considering two 

objectives simultaneously, with no limitation in handing more than two objectives.  

Genetic algorithm method is combined with fuzzy logic systems to improve their performance, 

for example, to provide an appropriate set of fuzzy rules for classification problems [77] and to 

improve the fuzzy logic controller [78]. Konga et al. [79] proposed a case-based reasoning 

(CBR) hybrid strategy to enhance multi-objective evolutionary algorithms. Their experimental 

results show low accuracy and divergence potential in handling the multi-objective optimization 

problems for pure evolutionary algorithms, and that the hybrid strategy based on CBR can 

improve optimization results by reusing historical cases in dynamic environments. 

Ishibuchi et al. [77] proposed a GA-based method for choosing an appropriate set of fuzzy if-

then rules. They introduced a method to find a minimum set of fuzzy if-then rules that can 

correctly classify all training patterns. A combination of optimization problems with two 

objectives are formulated and solved in their research. These objectives include maximizing the 

number of correctly classified patterns and minimizing the number of fuzzy if-then rules. The 

self-tuning fuzzy logic design was investigated by many researchers for various problems [82–

83]. Rahil et al. [84] proposed an approach for learning uncertain linguistic rules from training 

data and improved it for uncertain rule-based pattern classification systems. The main 

advantages of the proposed rule extraction method are higher interpretability of the rule set and 

more robust and reliable results than the other methods. 

Researchers compared GAs and PSOs (particle swarm optimization) and approve that a hybrid of 

the standard GA and PSO models could lead to further advances [80]. Chia-Feng [81] proposed a 

new evolutionary algorithm, HGAPSO. He combined the new individual generation function of 

both GA and PSO. His results show the advantages of HGAPSO over GA and PSO by applying 

them in temporal sequence production and dynamic plant control problems. One hybrid 

algorithm is developed based on a combination two global optimization algorithms, genetic 

algorithm (GA) and particle swarm optimization (PSO), and is thus called HGAPSO. In 

HGAPSO, individuals in a new generation are created, not only by crossover and mutation 

operation as in GA, but also by PSO. Since PSO and GA both work with a population of 
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solutions, combining the searching abilities of both methods seems to be a good approach. 

Parallel and sequential genetic algorithms (P-GAs) are other techniques for searching complex 

problem spaces for an optimum. Parallel GAs have many interesting unique features that deserve 

in-depth analysis [85, 86]. These characteristics include [87]: 

(1) The reduction of the time to locate a solution (faster algorithms), 

(2) The reduction of the number of function evaluations (cost of the search), 

(3) The possibility of having larger populations with the parallel platforms used for running the 

algorithms, and 

(4) The improved quality of the solutions worked out. 

The common problems faced by researchers and developers in using neural network techniques 

are optimization of input selection, network design and learning conditions. Various problems of 

neural network design can be optimized using GAs. Examples include selecting relevant input 

variables, determining the optimal number of hidden layers, nodes and connectivity, and tuning 

the learning parameters [88]. Another approach of combining neural networks and GAs is 

genetic training. GAs have been used to search the weight space of a neural network without the 

use of any gradient information. 

The good approximation performance of the neural network (NN) and the effective and robust 

evolutionary searching ability of the genetic algorithm are very useful in a hybrid sense, where 

NNs are employed in predicting the objective value, and GA is adopted in searching optimal 

designs based on the predicted fitness values. Forms of objective functions of many practical 

problems are often not explicitly known in terms of design variables, or sometimes it is not easy 

to obtain the objective value efficiently. So, it needs complicated analysis or time-consuming 

simulation to evaluate the performance of design variables. If the GA is applied to such 

problems, much computational time will be spent in fitness evaluation while less time will be 

paid for space search, so that the efficiency and quality of the algorithm would be degraded. 

Recently techniques such as regression and neural network have been pursued to approximate 

the usually unknown input-output function implied by the underlying simulation. 

Wang [89] proposed a hybrid GA–NN strategy for optimization problems without an explicitly 

known form of objective functions, and the feasibility and effectiveness of the framework are 

demonstrated by successfully applying it to a pressure vessel design problem. 



 

19 
 

2.5 Building load and occupancy prediction for multi-hour optimization 

A fundamental goal of energy-efficient and high-performance buildings is to create a 

comfortable, healthy and productive environment for the occupants while maintaining minimum 

energy consumption. Information regarding the number of occupants in a building space is an 

important component to achieving this task and is useful for numerous applications, such as 

lighting control or demand-controlled ventilation. Occupant presence and behavior in buildings 

has been shown to have large impacts on space heating, cooling and ventilation demand, energy 

consumption of lighting, and building controls [89]. The energy performance in buildings is 

influenced by many factors, such as ambient weather conditions, building structure and 

characteristics, the operation of sub-level components like lighting and HVAC systems, 

occupancy and their behavior. This complex situation makes it very difficult to accurately 

implement the prediction of building energy consumption. In this case prediction of effective 

parameters separately and simulating the building energy consumption base on predicted 

parameters seems the best solution for this problem.  

Reinhart et al. [90] determined occupant presence for lighting software by using a simplified 

stochastic model of arrival and departure. Bourgeois et al. [91] integrated an occupancy model 

based on Reinhart’s algorithm into ESP-r to investigate lighting use. However, most of the 

previous occupancy presence models were either tested on a single-person office or presented a 

specific application such as lighting control. Page et al. [92] have targeted individual occupancy 

behaviors by developing a generalized stochastic model for the simulation of occupant presence 

with derived probability distributions based on Markov chains. However, some of the occupant 

behavior derived from the stochastic model was based on the assumption that occupants will 

interact with different appliances in the space, and the validation was conducted in single-person 

occupied offices. 

Yamada et al. [93] developed an air-conditioning control algorithm that combines neural 

networks, fuzzy systems, and predictive control. This system predicts weather parameters and 

the number of occupants. The predictions were later used to estimate building performance in 

order to achieve energy savings and indoor comfort. 

Westphal and Lamberts [94] predicted non-residential buildings’ annual heating and cooling load 

simply based on some weather variables, including monthly average of maximum and minimum 

temperatures, atmospheric pressure, cloud cover and relative humidity. Their results showed 
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good accuracy on low mass envelope buildings, compared to detailed simulation tools such as 

ESP, BLAST, and DOE-2. 

Lei and Hu [95] evaluated regression models for predicting energy savings from retrofit projects 

of office buildings in a hot summer and cold winter region. They showed that a single variable 

linear model is sufficient and practical to model the energy use in hot and cold weather 

conditions. 

Olofsson and Andersson [96] developed long-term energy demand (the annual heating demand) 

predictions based on short-term (typically 2–5 weeks) measured data for single-family buildings 

by using the neural network method. 

Kubota et al. [97] used a genetic algorithm for variable extraction, which means translating 

original variables into meaningful information that is used as input in the fuzzy inference system. 

2.6 Including demand response in integrated control 

A variety of demand response methods have been applied to building system management for 

different components such as HVAC, lighting and daylighting, and miscellaneous equipment. 

These methods are used to find the best response to input signals of energy price or energy 

consumption limitation.  

Some of these methods for HVAC and lighting are mentioned in Table 2-1. Only a few major 

demand response studies that relate to building energy efficiency and integrated control are 

discussed here.  
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Table  2-1: Demand response strategies for HVAC and lighting [98] 

System Strategy 

HVAC 

Global Zone control with EMCS Zones (VAV) Global set-point relaxation 

EMCS (DDC) Zones (VAV) Set point relaxation at zones 

Reduce fan speed or volume 

Reduce duct pressure set point 

Any equipment with EMCS Depending on equipment 

Roof Top Units without EMCS Quantity reduction 

Constant Volume, Pneumatic Reduce cooling 

Lighting 

Zoned lighting with dimmable ballasts and 

central control 

Dimming 

Zoned lighting with small zones and central 

control 

Switching perimeter zones or bi-level 

switching 

Zoned lighting with local control Panel based switching 

Local switches in workplaces Panel based switching 

 

Kiliccote and Piette [45] discussed recent research results and new opportunities for advanced 

building control systems to provide demand response (DR) to improve electricity markets and 

reduce electric grid problems. The main focus of this paper was the role of new and existing 

control systems for HVAC and lighting in commercial buildings. A demand-side management 

framework from the building operations perspective with three main feature, daily energy 

efficiency, daily peak load management, and event-driven and dynamic demand response, was 

presented. The paper also described results from three years of research in California to automate 

DR in buildings. In another paper [46] they presented a preliminary framework to describe how 

advanced controls can support multiple modes of operations including both energy efficiency 

and demand response (DR). In this paper they provided an overview of the economic 

opportunities for demand-responsive control technologies and strategies in commercial 

buildings. 
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Carmen et al. [47] presented three case studies on commercial buildings that were using 

advanced monitoring and control technologies to implement integrated energy efficiency (EE) 

and demand response (DR) strategies. This research established that integrating EE and DR can 

generate substantial value by increasing the demand-side resource potential while reducing 

overall administrative and implementation costs. 

Charles et al. [99] reviewed the relationship between energy efficiency and demand response and 

discussed approaches and barriers to coordinating energy efficiency and demand response. The 

paper was intended to support the 10 implementation goals of the National Action Plan for 

Energy Efficiency’s Vision to achieve all cost-effective energy efficiency by 2025. Objectives of 

this paper were 1) summarizing existing research on the relationship between energy efficiency 

and demand response; 2) presenting new information, gathered through interviews with program 

administrators, customers, and service providers, on the coordination of energy efficiency and 

demand response, focusing in particular on current practices and opportunities; 3) discussing 

barriers to coordinating energy efficiency and demand response programs. 

2.7 Summary of literature review 

The main literature related to integrated building optimization and important methods and 

strategies are reviewed and discussed. Based on the literature review, several issues emerge that 

warrant further research in order to achieve better integrated building control and optimization. 

These issues include: 

 Whole-building integrated control vs. limited number of zones: very few studies 

investigate integrated control for an entire building.  

 All building control parameters versus a subset of parameters: most previous work in 

integrated building control just focused on integrating some of the possible parameters. 

Identification of all possible parameters and strategies for integration and development of 

a corresponding advanced control method still need more investigation. Modification in 

current simulation tools (e.g., DOE-2) is necessary for investigating all parameters and 

strategies.  

 Multi-hour optimization versus static optimization: most previous work applied their 

optimization just for the current hour without considering the effect of this optimization 
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on future-hours. Dynamic optimization requires accurate prediction of building load and 

outside conditions for future hours.  

 Introducing a fast and accurate optimization strategy that can be integrated with building 

energy simulation software that can accept a large number of variables.  
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3 Methodology 

In this research the integrated building energy optimization tool is developed based on 

connecting the building energy simulation software (DOE-2) and the optimization method in 

MATLAB (GA). Developed optimization tools can be used for integrated energy optimization of 

any building types and sizes. It can be used for energy optimization of building with different 

structures and materials, systems, and schedules. By developing considered building model in 

DOE-2, integrated energy and cost optimization can be applied to the model without significant 

effort. In this research application of the developed integrated optimization tool on nighttime 

ventilation and optimal shade position are investigated for comparison and validation. The 

developed integrated tool for the whole building energy optimization was applied to a typical 

office building in Montreal. The results are used to investigate potential of energy savings and 

evaluating optimization tools. 

To reach the main objective of this research—developing an integrated optimization tool that can 

improve whole-building energy consumption and energy cost while satisfying occupancy 

comfort—a few necessary steps should be done. These steps include: 

 Selecting or developing an appropriate building 

energy consumption and cost calculation model 

 Choosing a suitable optimization and decision-

making method 

 Integrating the building model and optimization 

method for whole-building optimization 

 Developing strategies and techniques to 

increase speed and accuracy of optimization 

To obtain necessary knowledge for satisfying these 

required steps, simplified and small problems are 

defined and solved. These problems include: 

 Night-time ventilation strategy investigation 

o Adding function to DOE-2 

o Using genetic algorithm 

o Training neural network 
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 Shade position effect and optimization 

 Optimization methods comparison (GA, SA, PS, Fuzzy) and their integration 

 Building integrated optimization development 

o Using RC-network model and nonlinear optimization 

o Developing integrated optimization tool 

Methodologies used for each of these steps and problems are discussed in detail in this chapter. 

3.1 Governing equation for building energy calculation 

For each zone in a building, it is possible to apply energy, mass and momentum balances, 

depending on the type of required analysis. In addition, the zones of the building are subject to 

many energy exchange processes, such as heat and vapour gains from occupants, solar energy 

transmitted through glazing, infiltration, and air exchange with other spaces. Finally, the heat 

gain to the building interior from lights and other electrical appliances serves as a coupling 

between this control volume and the electrical instruments. At the basic level, a single control 

volume represented by a single node can be used to describe the volume of fluid inside the zone. 

This volume is bounded by solid constructions and is subject to heat transfer by convection, fluid 

exchange with its neighboring volumes, infiltration from the exterior, heat and vapour gains from 

occupants, plant interaction, and so on.  

The fundamental equation governing these exchanges is an energy balance of the form 

       

   

  
          

 

   

 (3-1) 

Vi is the volume (m
3
) of the fluid volume i,    is its average density (kg/m

3
), ci is its average 

specific heat (J/kgK) and Ti is its average temperature (°C). The left-hand side of the equation 

represents the thermal capacitance of the fluid volume. In the right-hand side of the equation the 

    
 
    term is the sum of the energy rate (W) that interacts with the control volume (surface to 

fluid heat transfer and fluid flow from other fluid volumes) and the qin term is the energy 

generation inside control volume.  

The general form of the equation describing the convective heat transfer rate (W) between a 

surface s and the fluid volume i is 

                 (3-2) 
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Ts is the surface temperature, As is the contact area (m
2
) with the fluid volume and hcs is the heat 

transfer coefficient (W/m
2
K). 

The form of the equation describing the rate of energy exchange (W) due to fluid flow between 

two fluid volumes i and j is 

                  (3-3) 

     is the pressure/temperature driven mass flow rate (kg/s) between the two volumes, cj is the 

specific heat of the fluid transferred from the neighboring volume and Tj is its temperature. 

Applying the previously defined equations to the building zone with convection to interior and 

exterior walls, also infiltration and ventilation and internal heat gain gives the following 

expression 

        
   

  
                  

 

   

                

 

   

    (3-4) 

Appling forward time step to the partial derivative term, over some finite time interval lead to: 

   

  
  

  
       

 

  
 (3-5) 

The net rate of heat flow,     , radiated by a body at temperature    surrounded by an 

environment at temperature    is given by the Stefan-Boltzmann Law [100] 

           
    

   (3-6) 

Where   is the Stefan-Boltzmann constant, A is the surface area of the radiating object and   is 

the total emissivity of its surface having absolute temperature of   . 

If the temperature difference          is small, then it is possible to expand radiation heat 

flow equation as Taylor series around    and obtaining a linear relationship: 

           
                  (3-7) 

in this equation            
  can be considered as a radiation heat transfer coefficient. 

These are the basic equations that can be used for the calculation of a fluid volume’s 

temperature. Using these equations for calculating energy consumption for an entire building 

with several zones and parameters is very complicated. As a result, to have an accurate and fast 

energy calculation for all kinds of buildings and systems, it is necessary to use building 

simulation tools. Integrating optimization and simulation tools requires an optimization method 

that can work without knowing the exact equation for calculation of energy consumption. One 

widely used and validated method of this kind of optimization is the genetic algorithm. 
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3.2 Genetic algorithm 

Genetic Algorithms (GA) are stochastic and random search algorithms that borrow their ideas 

from nature [101]. GA maintains a population pool of candidate solutions called variable-sets. 

Each variable-set is a collection of optimization variables values. Associated with each variable-

set there is a fitness value which is determined by a user defined function or program, called the 

objective function. The objective function calculates the value proportional to the candidate 

solution's suitably and/or optimality. Figure 3-1 shows the control and data flow of GA [102]. At 

the start of the algorithm, an initial population of variable-sets is generated. Initial members of 

the population may be randomly generated, or generated according to some rules. In this research 

random population generation is chosen for creating initial population. The reproduction operator 

selects variable-sets from the population to be parents for a new variable-set and enters them into 

the population pool. Selection of a variable-set for parenthood can range from a totally random 

process to one that is based by the variable-set's fitness. Stochastic uniform method was chosen 

for selection method. This method creates a line in which the line is divided to sections 

proportional to parents’ scaled value. The algorithm moves along the line in steps of equal size. 

At each step, the algorithm selects a parent from the section it lays on. The first step is a uniform 

random number less than the step size. 

 

Figure ‎3-1: Control and data flow of Genetic algorithm optimization method [102] 
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The cross-over operator decides changing process of two variable-sets. Two parent variable-sets 

are selected from the population pool then based on the cross-over rate, which is a real number 

between zero and one, a new variable-set from the parents are produced with determined 

probability. If the cross-over was performed, a child variable-set is created. The cross-over 

operator decides what characteristic of parents is passed onto the child variable-set; in other 

word, it defines the equation of calculating the new variable-set from parents’ variable-sets. The 

new variable-set is entered into the population pool and it may represent an unexplored point in 

the search space. 

The mutation operator takes each variable-set in the population pool and randomly changes it. 

The probability of mutation occurring on any variable-set is determined by the user specified 

mutation rate. Variable-sets mutated or otherwise, are put back into the population pool after the 

mutation process. Thus each new generation of variable-sets are formed by the action of genetic 

operators (reproduction, cross-over and mutation) on the older population. The variable-sets are 

compared based on their fitness value to derive a new population, where the variable-sets with 

worse fitness value may be eliminated. The exploring for assessing the survival of each variable-

set into the next generation is called the replacement strategy. 

The process of reproduction, cross-over, mutation and formation of a new population completes 

one generation cycle. A GA is left to progress through generations, until certain criteria (such as 

a fixed number of generations, or a time limit) are met. Table 3-1 shows options and values that 

are chosen for genetic algorithm optimization in this research. 

Table ‎3-1: Options and values that are used in genetic algorithm in MATLAB 

Option Set 

Population type Double vector 

Population size Depends on number of variables 

Creation function Uniform 

Scaling function Rank 

Selection function Stochastic uniform 

Elite count 0.05 * Population size 

Crossover fraction 0.8 

Mutation function Adaptive Feasible 

Stopping Criteria Generations (depends on number of variables) 
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3.3 Neural network 

Artificial neural networks are computational models that are used for estimation or 

approximation of functions that are generally unknown and they can depend on a large number 

of inputs. The most important feature of a neural network is its abilities to learn that means it can 

be trained to do a specific job. This is done by describing the problem with presenting set of 

examples, namely pairs of input and output samples; the neural network will then learn the 

approximate relation between inputs and outputs to estimate the output based on new input. The 

neural network at least consists of an input layer and an output layer. Each layer includes 

neurons that are the processing units within the neural network. The calculation is propagated 

through the neural network from input layer to output layer [103]. In addition to input and output 

layer there can be layers of neurons between them, which are usually called hidden layers 

(Figure 3-2). Finding relations and equations that connect neurons of each layer to the next layer 

require training process. After training, the neural network can be used to recognize data that is 

similar to any of the examples shown during the training phase. This method can be suitable for 

outside condition and internal load prediction, also it is possible to train neural network with 

simulation results and use it for optimization to increase optimization speed. 

The trained network for building energy and cost prediction problems in this research is a feed 

forward network with the tan-sigmoid transfer function in the hidden layer and linear transfer 

function in the output layer. The trained network inputs are control variables and it has one 

hidden layer that number of neurons in this hidden layer depends on number of control variables. 

The number of neurons in hidden layer changed from 15 to 25 neurons based on number of 

control variables and it is chosen by comparing mean square error of sample data and predicted 

results from NN for different number of neurons. 

According to McKay [104], a sample of about two times of control variables should be sufficient 

to accurately sample the search space. For building energy and cost prediction, this number of 

sampling data underestimated the number of cases required for NN training, estimated sampling 

data that are required for training approximately equals to 30 times of the number of control 

variables. 

During training process sampling data are divided in three groups, 70% of them are used for 

training, 15% are used to validate that the network is generalizing and to stop training before 

overfitting, and The last 15% are used as a completely independent test of network validation. 
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Levenberg-Marquardt is selected as training algorithm for this research. Other available methods 

are Bayesian Regularization that can be used for some noisy and small problems, and Scaled 

Conjugate Gradient that uses gradient calculations compare to Jacobian calculations that the 

other two algorithms use.  

If the magnitude of the gradient of performance and the number of validation checks reach to 

certain amount the training convergence was considered to be acceptable. When the training 

reaches a minimum of the performance the gradient will become very small. If the magnitude of 

the gradient is less than 1e-10, the training will stop. The number of validation checks shows the 

number of successive iterations that the validation performance stays the same. If this number 

reaches 10, the training will stop. The network's performance can be improved by train it again, 

increase the number of neurons in hidden layer, and increase the training data set. In case of 

overfitting that the training set performance is acceptable, but the performance on the test set is 

significantly worse, then the results can be improved by reducing the number of neurons. If 

training performance is poor, then increasing the number of neurons should be considered [105]. 

 
 

Figure ‎3-2: Neural Network process and structure [106] 

 

3.4 Integrated optimization with RC-network model and nonlinear programming 

The goal of optimization problem is represented by an objective function or cost function. 

Solving optimization problem is the process of finding the set of design variables, under design 
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constraints, which suit objective function the best. The general optimization problem can be 

expressed as: 

 
             

 
              

  

Where   : a decision variable and  : the constraint set 

            the cost or objective function 

Optimal decision is an      such that:                   

Constraint can be defined in equality form                     or inequality form 

                    . If        is continuous, different type of optimization problem can 

be defined such as: 

 Linear programming (LP):   is linear and   is a polyhedron specified by linear equalities 

and inequalities. 

 Quadratic programming (QP):   is convex quadratic and X is a polyhedron specified by 

linear equalities and inequalities. 

 Convex programming:   is a convex function and   is a convex set. 

 Nonlinear programming:   is nonlinear, and/or   is specified by nonlinear equalities and 

inequalities. 

Developing building optimization problem require a building model for calculating building 

energy consumption as an objective function. For investigation of building integrated control 

effectiveness the RC-network model is chosen for building energy calculation. Developed RC-

network model in this research is used to show energy savings potential by applying integrated 

optimal control, in addition to investigate effectiveness of control parameters in energy savings 

potential. RC-network model subdivides the thermal system into a number of finite subvolumes 

called nodes. The thermal properties of each node are considered to be concentrated at the central 

nodal point of each subvolume. Each node represents two thermal network elements, a 

temperature (potential) and a thermal mass (capacitance). Resistance are used to represent the 

heat flow paths through which energy is transferred from one node to another node by 

conduction, convection, and radiation.  

Based on materials discussed in previous chapters, a five zones RC-network model is developed 

for investigations. In this model resistances are the network elements used to represent the heat 

flow paths through which energy is transferred from one node to another node. Conduction 
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resistance is computed from the equation:   
 

   
. Convection resistance is computed from the 

expression:   
 

   
 where A is heat transfer surface area, h is convection heat transfer 

coefficient, k is thermal conductivity and L is the wall thickness.  

The overall U-value for the wall can be calculated by:   
 

   
  
   

 where i is number of layers 

(NL) in each wall and    is conduction resistance of each layer. 

The conductive interaction in a multi-zone building can be modeled with simple RC-networks as 

building blocks. In this formulation, the building is represented by a graph with nodes and edges. 

A node may represent a physical zone or point inside a wall.  

 The resulting model of the building consists of a large electrical network of resistors and 

capacitors of all zones that are connected to each other the RC-network model of one zone is 

shown in Figure 3-3. For each zone, conduction heat transfer from interior walls, exterior walls 

with thermal storage and windows with variable conductance (depending on shade position) is 

considered. Also indoor air heat gains from solar (qs), artificial light (ql), occupancies (qi), 

ventilated air (qv), and heating and cooling (qh/c) are calculated. Heat transfer from roof and 

ground are neglected for simplification. RC-network model of entire building and detail 

information of parameters and schedules are presented in appendix A.  



 

33 
 

  

Figure ‎3-3: RC-network model of one zone. Variables are: C1: air capacitance, C2: Exterior wall 

capacitance, R1: Interior wall R value, R2: Exterior wall indoor surface convection resistance, 

R3: Exterior wall R value, R4: Exterior wall outdoor surface convection resistance, R5: variable 

window conduction, R-value depends on shade position 

 

For calculation of energy or cost function based on RC-network model first it is necessary to 

calculate total energy consumption of the building: 

                                    (3-8) 

Energy consumption of chiller, boiler, and fan is related to the cooling and heating load of zones. 

Heating and cooling load and related energy consumptions can be defined by the following 

equations 
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(3-9) 

In these equations “z” is zone number, “i” is optimization hour and “x” is vector of control 

variables.           that is conductance heat transfer from the exterior surface can be calculated 

by following equations  

                                                (3-10) 

                
     

  
       

                                                 

(3-11) 

                  
        

  
 

(3-12) 

In these equations    is indoor air temperature,    is outdoor air temperature,    is windows 

thermal resistance considering effect of shade position,       is exterior wall inside surface 

temperature, and    is exterior wall inside surface convection resistance. 

           that shows amount of building load caused by outdoor air mass transfer to the building   

is calculated by: 

                                         (3-13) 

                                                           (3-14) 

where     is ventilated air mass flow rate,       is infiltrated air mass flow rate, and    is air 

capacitance.  
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          is calculated based on zone air temperature   , neighbor zone air temperature     , and 

interior wall resistance value. 

             
       

  
 (3-15) 

Energy consumption of chiller, boiler, and fan are calculated based on heating and cooling 

energy consumption. 

         
  

   
            

  

 
            (3-16) 

Qc and Qh are cooling and heating load. COP and η are performance coefficient of chiller and 

boiler that are assumed to be constant for simplification of the calculation. Ventilation fan power 

and energy consumption depends on building required heating and cooling, the value of α that 

shows the relation between building load and distribution fan energy consumption is assumed 

equal to 0.25 [107]. 

In real building heat flows from the human body and lights include both convection and 

radiation, in developed RC-network model the radiation part ignored for simplification of the 

model.   

For building optimal control two types of objective functions are used: 

1. Energy consumption (over several time-interval span) 

2. Cost function (over several time-interval span) 

Energy objective function is defined as: 

                                     

 

   

 

   

 (3-17) 
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The second summation adds energy consumption of all zones from zone 1 to zone “m” and the 

first summation considers energy consumption of the current hour (n=1) and future-hours. The 

cost objective function is defined as:  

                                    
    

 

   

          
 

   

 

   

 

 

   

 (3-18) 

where EPi and GPi are the electricity and gas price, respectively, at each hour based on time-of-

use price.  

In this research cost objective function calculation includes time-of-use price associated with 

hourly energy costs but not demand tariffs that are based on the highest consumption in a billing 

period. 

Table 3-2 shows effective variables and disturbance of the optimization problem. Variables x1, 

x2, x5, and x6 are independent control variables and the other variables are dependent variables 

that were calculated based on independent variables. 

Table ‎3-2: Effective variables and disturbance of optimization problem 

Variables  Disturbances 

  = Light ratio 

  = Blind position 

  = Cooling energy 

  = Heating energy 

  = Inside air temp. 

  = Outside air flow rate 

  = Exterior wall inside temp. 

  = Exterior wall outside temp. 

V1= Outside air Temp. 

V2= Solar gain 

V3= Solar illuminance 

V4= Internal heat gain  
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Format and matrices of developed optimization problem constraints for one zone based on RC-

network model are: 

 
 
 

 
 

                                     
                                     

                         

                                                      

  

where the matrices for one zone and current hour optimization can be written as: 

   

  
  

  
  

  
  

  
                     

  
  

  
  

  

  
  
  
  

  

   

 
 

   

     

  

     
                       

                     
  

     
              

                    
  

                                   

(3-19) 

 

The nonlinear constraint can be written as exact equation instead of matrix format in MATLAB 

                                                        

                                               

                                      

                                    

(3-20) 

Elements of the matrices are calculated based on building parameters and outdoor air conditions 

such as temperature and solar illuminance and heat gain. These elements show the relation 

between parameters, constraints and optimization objective function. The objective function is 

the sum of energy consumptions of lighting, chiller, boiler, and fan that are related to variables 

x1, x2, x5, and x6. Objective function is defined as:  

                        
 

   
                           (3-21) 
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Above objective function and constraints matrices are developed for one zone RC-network 

model optimization of current hour. The objective function and constraints matrices for multi 

zone and multi hour optimization become very huge and complicated. For example the objective 

function for multi zone (i=1..n) and multi hour (j=1..n) with zones temperature      become : 

                                                             
 
       

 

                                                    
 
       

    
         

 

                                                      
 
         

               

                                                
    

       

     

(3-22) 

Feasible domains for this optimization were developed according to the relation between 

variables and their constraints. Nonlinear constraints are developed based on effect of thermal 

storage of external walls and also effect of blind position on conductance heat transfer of the 

window. Limitations of inside air temperature and outside air flow rate are developed based on 

thermal comfort range and air quality; moreover, limitations of light ratio and blind position are 

introduced based on visual comfort range. 

All calculations are performed on an hourly basis. For multi-hour optimization, control variables 

of current hour and the considered period of future-hours are optimized together. Since each hour 

controller variable affects future hours energy consumption because of the thermal storage of the 

walls and air, it is possible to increase energy savings potential by optimization of all the hours 

of the considered time period simultaneously. 

Outdoor air temperature is used for the current hour and future-hours from the meteorological 

weather data of Montreal. In addition, solar heat gain and solar illuminance from windows are 

obtained from the DOE-2 (building energy simulation software) by modeling the same building.  

Optimization variables and constraints were defined for the 5-zone (4 perimeters and 1 center 

zone) office building with 1) heat transfer, solar heat gain, and illuminance from window; 2) heat 

transfer from internal and external walls; 3) external walls heat storage; 4) internal heat gain 

from occupants and equipment; 5) ventilation rate; 6) cooling and heating systems load; and 7) 
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illuminance and heat gain from artificial lights. This model was used for integrated optimization 

of HVAC and artificial lighting systems with the nonlinear optimization method in MATLAB.  

3.5 Developing required simulation tool by adding function to DOE-2 (application for 

nighttime ventilation) 

Nighttime Ventilation is a strategy to cool the building with outside air at night to minimize the 

cooling load during the next hot day. This problem is defined to increase my understanding of 

building models their advantages and disadvantages. DOE-2.1E is chosen for detailed building 

energy use and cost analysis. DOE-2 is a widely used, validated and accepted freeware building 

energy analysis program. It can calculate the energy use and cost for all types of buildings. It has 

a complete library of building materials and weather data. Most importantly it has available 

source code and the possibility to add functions to modify the software as it is required for 

optimization.  

The calculation of heat conduction through walls involves solving the one dimensional diffusion 

equation 

   

   
 

 

 

  

  
 (3-23) 

where T is the temperature and α is the thermal diffusivity. In DOE-2 the equation is pre-solved 

for each wall or roof using triangular temperature pulses as excitation functions. The resulting 

solutions, called "response factors" are then used in the hourly simulation modulated by the 

actual indoor and outdoor temperatures [108]. 

                           

 

   

                   

 

   

 (3-24) 

Here,    and    are response factors,         is the heat flow at the inside wall surface, and 

         and         are temperatures at the outside and inside wall surfaces, and   is the time 

step. This approach assumes that the wall properties, including inside film coefficients, do not 

change during the simulation. The DOE-2 program in Systems part contains algorithms for 

simulating performance of the secondary HVAC equipment used to control the temperature and 

humidity of each zone within the building. DOE-2 does not consider moisture storage effects in 

the building zone. Instead, it calculates the steady-state moisture balance for each hour and 

solves for the space humidity that achieves a balance. The moisture content of the air is 

calculated at three points in the system: the supply air leaving the cooling coil, the return air from 
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the spaces, and the return air after being mixed with outside ventilation air. These values are 

calculated assuming that a steady state solution of the moisture balance equations each hour will 

closely approximate the real world. The return air humidity ratio is used as the input to the 

controller activating a humidifier in the supply airflow or resetting the cooling coil controller to 

maintain maximum space humidity set points. The moisture condensation on the cooling coils is 

simulated by solving the coil leaving air temperature and humidity ratio simultaneously with the 

system moisture balance. Detail information about DOE-2 can be found in the software manuals 

and references [109, 110]. 

For further investigation of adding function to DOE-2, the nighttime ventilation strategy was 

chosen. Methodology included parametric simulations of a typical small office building to 

estimate the total heating and cooling energy use of the building. Two nighttime ventilation 

strategies were used: DOE-2 built in schedules and a predictive algorithm to allow nighttime 

ventilation based on the predicted next day outdoor temperature. The DOE-2 default algorithm 

requires pre-defined schedules from the operator (that vary by climate region) for duration of 

nighttime ventilation. The predictive algorithm does not require a pre-defined schedule for 

nighttime ventilation and it makes decisions for nighttime ventilation schedule throughout the 

year for all climate regions by itself. The strategies investigated are: 

1. Scheduled nighttime ventilation during summer (as defined by the building operator) 

2. Nighttime ventilation using a predictive algorithm applied to the entire year 

3. Pre-cooling of the building during morning hours and allowing the temperature to 

gradually increase to the set-point temperature in the afternoon 

4. Pre-cooling + nighttime ventilation cooling. 

Details of these four strategies are as follows: 

Scheduled-driven ventilation during summer, in this strategy, without respect to outside 

temperature and building cooling or heating mode, a ventilation fan brings in outside air from 

midnight till the beginning of working hours with a constant air flow rate to cool the building. In 

our investigations this fixed schedule is set to three months of June, July, and August those have 

the highest potential of energy savings compared to different months.  

Predictive method for nighttime ventilation, in this method a function is added to DOE-21E to 

change the fan ventilation working hours according to the prediction of the next day outside air 

temperature that is applied to the entire year. Based on today’s minimum and maximum outside 
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temperature and trend of temperature during hours 21 to 24, average, maximum, and minimum 

outside temperatures for the next day are predicted (Eq 3-25 and 3-26) [111]. The equations are 

developed through regressions of temperature data and minimizing the error of estimates for 

predicted temperatures for the summer period. This type of predictive algorithm can be improved 

through a more thorough analysis of building-related weather data in different climates. This 

strategy uses predicted temperatures and the cooling characteristics of our building to decide 

whether to have nighttime ventilation and duration of ventilation (Eq 3-27). 

                                                (3-25) 

                                                   (3-26) 

where 

    : outside temperature at hour (i) 

        : outside temperature at hour (i) for previous day 

TMin and TMax: minimum and maximum outside temperature. TPMin and TPMax: minimum and 

maximum predicted outside temperature for next day. 

                      

           
        

  

                                     
                                         

                                    

  
(3-27) 

Pre-cooling strategy, in this strategy cooling set-points are changed during occupancy hours. 

For this strategy, the set-point is changed from a lower temperature at the beginning of the day to 

a higher temperature in the afternoon, when the cooling load is greatest. 

 Integration of different combinations of two strategies on energy savings, effects of these 

combinations are investigated by first, combining the strategies 1 and 3, and then combining 

strategies 2 and 3. 

The effects of other parameters such as ventilation rates 0.24 m
3
/s to 1.9 m

3
/s (500-4000 CFM), 

temperature difference between inside and outside air 2.7°C to 11°C (5°F - 20 °F), and building 

thermal mass 488kg/m
2
 (100 lb/ft

2
) and 976.5 kg/m

2
 (200 lb/ft

2
) are analyzed with respect to 

their effects on cooling energy and peak demand. 
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3.6 Developing required simulation tool by adding function to DOE-2 (prepare for real 

time optimization) 

DOE2 building simulation software was developed mostly for energy calculation of specific 

building design and comparing effect of building parameters on energy consumption. DOE-2 in 

its common usage is not designed for real-time building energy optimization. To use it for that 

purpose requires some modification in accepting input data and in some of the calculation 

process. The most important limitations of DOE-2 for real-time optimization are: 

 Require pre-scheduling of all parameters before simulation 

 Do not accept hourly bases input for some parameters even in pre-scheduling 

 Could not be run from defined hour with specific conditions in previous hours 

 Require modifications in some of the energy calculation process  

To overcome these limitations first it is necessary to make sure DOE-2 accepts hourly bases 

input for all control parameters including, indoor temperature, shade position, artificial light 

power, and outdoor air ventilation rate. DOE-2 does not accept hourly bases input for shade 

position and outdoor air ventilation rate. To solve this problem functions are added to DOE-2 

source code to change these parameters based on inputs in hourly bases instead of a constant 

number for entire run. 

As a next step DOE-2 needs modification to obtain the ability to simulate energy consumption 

from a specific hour while considering conditions such as indoor temperature of previous hours. 

In the current calculation process of DOE-2, the simulation can be run from a specific hour; 

however, the initialization process would be applied to the first hour in the calculation process of 

DOE-2, and it does not accept indoor conditions of the previous hours as inputs. By adding 

functions to the source code of DOE-2, the required indoor conditions of the building could be 

replaced with arbitrary amounts after the initialization process. Having this ability, it would be 

possible to rerun the simulation hour by hour based on optimization control parameters for the 

current hour, using necessary previous hours’ indoor conditions of the building as an input to this 

run (calculated in previous hours’ runs). 

Finally, some of the energy calculation process of DOE-2 required modification by adding 

functions. For example, the current calculation process of DOE-2 simulates the building with 

completely open or closed shades, while control optimization requires energy calculation based 

on exact position of the shade.  
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3.7 Integrating MATLAB with DOE-2 for detail integrated optimization (Application for 

nighttime ventilation) 

To develop an integrated optimization tool, building energy use and cost analysis software 

(DOE-2.1E) was used for the building simulation, and a genetic algorithm was used as an 

optimization method. For integrating MATLAB and DOE-2, first, the genetic algorithm 

generates variable-sets that are matrices of control parameters values. These matrices include 

shade position, light power, temperature and outside air flow rate for each zone. In the case of 

multi-hour optimization, variable-sets include zone-control parameters for the current hour and 

future-hours. The number of future hours depends on the multi-hour considered time period. 

After generating a variables-set, MATLAB calls AWK (a text-processing programme) [112] that 

creates an input file of DOE-2 based on the variable-set. For this step a sample text input file of 

DOE-2 with marked hourly base control variables is necessary. In this sample input file the 

values of control variables are replaced with specific and predefined characters that can be 

identified by AWK software. AWK replaces these characters with the variables-set from 

MATLAB and creates an input file for DOE-2. Then, DOE-2 is called with MATLAB to run this 

input file to simulate the building. In the next step, MATLAB calls AWK to search the output 

file of DOE-2 for desired values of building energy consumption and cost and returns them to 

MATLAB for that specific variable-set as a fitness value. There are two options available for 

optimization with integrated DOE-2 and MATLAB, direct and indirect connection between GA 

and DOE-2. In direct connection MATLAB receives a fitness value for each population during 

optimization from the DOE-2 calculation. This method is more accurate than indirect connection, 

since MATLAB optimized energy consumption and cost based on detailed calculated results 

from DOE-2. However, this process is very time consuming. In indirect optimization, first a 

neural network (NN) is trained with random generated variables-sets, and then this NN is used 

instead of DOE-2 for energy and cost calculation during optimization. After optimization with 

NN, optimized variables are used for energy consumption and cost calculation with DOE-2. 

Figure 3-4 shows the optimization process.  
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Figure ‎3-4 : Optimization process; A: direct connection of MATLAB and DOE-2; B: indirect 

connection of MATLAB and DOE-2 by using NN 

 

In a specific case study of nighttime ventilation optimization, nighttime ventilation is optimized 

by using the above mentioned MATLAB and DOE-2 integrated tool. In this integration the GA 

method generates a set of flow rates for different hours during the night and sends them to DOE-

2. DOE-2 calculates building energy consumption for the entire day based on the specified 

nighttime fan flow rates and returns the results to GA. This process is continued until GA 

reaches its maximum iteration and GA introduces the final set of nighttime fan flow rates that 

reduce building energy consumption. The results of this optimization were used to investigate the 

effect of influencing parameters such as outdoor temperature, indoor-outdoor temperature 

difference, and nighttime ventilation duration. 
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3.8 Integrating MATLAB with DOE-2 for detail integrated optimization (Application for 

shade position optimization) 

Shades positions are optimized by using the same integrated MATLAB and DOE-2 tool that is 

applied to nighttime ventilation optimization. In this optimization GA generates initial inputs that 

are matrices of shades positions. Each of these inputs has four elements that are filled in with a 

number between zero and one (1 = completely closed, 0 = completely open). These numbers 

show the fraction of each shade position relative to its maximum position. The process of 

optimization is continued until the GA reaches to its maximum iteration and introduces the final 

set of shades positions that decreases building energy consumption. The results of this 

optimization were used to investigate the effect of influencing parameters such as space 

illuminance set-point, artificial lighting energy consumption and shading conduction and 

transmission coefficient on building energy use.  

Shading of the windows has three different effects on windows coefficients; these coefficients 

are: 1) radiation heat transmission, 2) illuminance transmission, and 3) conduction heat transfer. 

Three different types of shading are studied based on their effects on these coefficients:  

1) Thin shade, which reduces radiation, illuminance and conduction coefficients when it 

is completely closed to 25%, 20% and 65% of completely open shade coefficients, 

respectively; 

2) Normal shade, which reduces radiation, illuminance and conduction coefficients 

when it is completely closed to 15%, 10% and 55% of completely open shade 

coefficients, respectively; and 

3) Thick shade, which reduces radiation, illuminance and conduction coefficients when 

it is completely closed to 0%, 0% and 45% of completely open shade coefficients, 

respectively. 

The above mentioned values of coefficients for different types of shading are obtained from solar 

shading and building energy researches [113–115]. 

Since shade positions have two separate and very important effects, first on building heating and 

cooling energy and second on building lighting, we investigated these effects based on different 

shade positions of a window for one specific zone. 
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3.9 Increasing speed and accuracy of optimization  

The most common methods for increasing speed and accuracy of the main optimization 

algorithm are combining different optimization methods, incorporating an optimization method 

with a decision-making method, improving optimization parameters and variables, and replacing 

simulation software with a statistical approach. In this research applying a method to reach 

higher energy savings while optimization requires same calculation time called increasing 

accuracy of optimization. Also, reaching similar energy savings in less calculation time called 

increasing speed of optimization.  

3.9.1 Neural network training (application for predicting nighttime fan flow rates) 

The application of Neural Networks (NN) is explored to predict the fan flow rate for nighttime 

ventilation. Diurnal average temperature, temperature range, and hourly outside and inside 

temperature, in addition to nighttime average temperature, are chosen as possible input data for 

predicting fan flow rate fractions during the night. Multi-Layer Perceptron (MLP) is used for 

modelling and neural network is trained and tested using obtained optimized data. The chosen 

optimized data is divided into three randomly selected groups: the training group, corresponding 

to 70% of the data; the validation group, corresponding to 15% of data; and the testing group, 

corresponding to 15% of data. Mean Squared Error (MSE) is used to measure the neural network 

accuracy. The three-layer network with sigmoid transfer function for the hidden layer and linear 

transfer function for the output layer is chosen; it can represent any functional relationship 

between inputs and outputs if the sigmoid layer has enough neurons [116]. Consequently, this 

three-layer NN is applied with back propagation training algorithms. Finding appropriate 

architecture needs a trial-and-error method. Input parameters and numbers of neurons in the 

hidden layer are two effective categories that need to be investigated. Three different types of 

inputs were investigated: 1) hourly inputs, which include hourly outdoor temperature and hourly 

indoor temperature; 2) daily inputs, which include diurnal average and range temperature and 

nighttime average temperature; 3) combination of daily and hourly inputs. The fan flow rate 

fraction is a number between 0 and 1; as a result, the combination of daily and hourly inputs with 

MSE less than 0.035 are suitable inputs for the neural network 
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3.9.2 Stochastic search coupling with local search  

The proposed approach integrates the merits of both stochastic method (SM) and local search 

(LS). To improve the solution quality, the global search technique is applied to whole 

optimization domain to search for optimal answer area and the local search technique is applied 

as a neighborhood search engine, where it intends to explore the area near optimal answer to find 

final result. For coupling global and local search we need to know the appropriate time to shift 

from the global search to the local search and come back to the global search if it is necessary; 

also, it is important to find suitable elements and variables for applying the local search. The 

shift from a global search to a local search is useful when the exploration ability of the global 

search is no longer efficient. A local search can be called when convergence ratio or difference 

between mean fitness values of two consecutive generations of the global search reaches an 

acceptable value. The local search is aimed at making the cost function locally decrease more 

efficiently than the normal random mutation. For comparison and understanding of the 

effectiveness and requirements of this coupling method, the pattern search method, as a 

recommended local search method, and a genetic algorithm, as a stochastic optimization method, 

are applied to the building RC-network model. The results of applying each of these methods and 

their integration are compared based on accuracy and time consumption. 

3.9.3 Rule-base decision making coupled with stochastic optimization 

Stochastic optimization methods have been increasingly applied in conjunction with other 

techniques such as neural networks, rule-based systems and fuzzy theory. Fuzzy logic and rule 

base systems have an advantage of using expert knowledge and historical results to generate 

rules and controlling based on them. However, fuzzy systems become difficult to design for large 

systems and complicated problems. As a first method for integrating these techniques the genetic 

algorithm offers an advantage for optimizing the membership function and developing rules for a 

fuzzy logic system. A hybrid strategy of a stochastic method and a rule-based system also can be 

developed by using rule-base system to learn the case solutions to guide and promote the search 

of the evolutionary algorithm, and the best solutions found by the evolutionary algorithm can be 

used to update the case library to improve the accuracy of case-based reasoning for the following 

process. 

For investigation of these methods first a rule-based system is developed based on results of 

optimization with a genetic algorithm. Then, rule-base and genetic algorithm are used separately 
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for optimization of building parameters and optimization results are compared. Using rule-base 

algorithm for better savings required modified and more complex rules based on GA 

optimization results. Finally, the fuzzy system is coupled with the GA, combining rule-base with 

a genetic algorithm increases speed of optimization by reducing optimization variables and 

domain or by using rule-base results as initial population for the GA. 
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4 Results and discussion of building energy optimization 

with the RC-network model 

Based on a simplified RC-network modeling methodology, the 5-zone (4 perimeters and 1 center 

zone) office building was modelled with 1) heat transfer, solar heat gain, and illuminance from 

window; 2) heat transfer from internal and external walls; 3) external walls heat storage; 4) 

internal heat gain from occupants and equipment; 5) ventilation rate; 6) cooling and heating 

systems load; and 7) illuminance and heat gain from artificial lights. This model was used for 

integrated optimization of HVAC and artificial lighting systems with nonlinear optimization 

method in MATLAB (using “fmincon” routine). 

4.1 Building model 

The selected prototype building is a one-story office building with 5 zones and a plenum. The 

building has four perimeter space and one core space that are divided from each other by interior 

walls. Each space considered as one zone for building thermal model. Each zone has one 

window with wall to window ratio of 0.5 (Figure 4-1). The total floor area is 464.5 m
2
 (5000 ft

2
) 

with a height of 2.4 m (8 ft). There is no shade from other nearby facilities. The building is built 

with medium weight construction. Interior loads are surface mounted fluorescent lighting at 16 

W/m
2
, equipment at 10.8 W/m

2
, and peak occupancy of 9.3 m

2 
(100 ft

2
) per person. Infiltration is 

0.25 air changes per hour (ACH). Design temperatures for cooling and heating are set at 25.5°C 

(78 °F), and 21°C (70 °F), respectively. A single variable air volume system serves the entire 

building.  

 

Figure ‎4-1: Sample building model  
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The system has a variable speed fan motor, and VAV boxes with a minimum stop of 30%. The 

cooling and heating system operate from 8am to 6pm weekdays and is off during nights and 

weekends. The HVAC plant works with gas fired hot water generator and reciprocating air-

cooled chiller. Details of building construction and systems are shown in Table 4-1. Building 

model was developed in DOE-2 software and validated based on results from DOE-2 sample run 

book [117]. The most similar RC-network model to the described building was developed for 

optimization in MATLAB that is shown in Figure 3-3. DOE-2 model is used to obtain some of 

the parameters such as solar heat gain and illuminance from windows that are required in RC-

network model.  

Table ‎4-1: Detail of building description 

Parameters Description 

Floor area [m
2
] (ft

2
) 464.5 (5000) 

Wall construction 
Wood shingles, plywood, R-11 fiber insulation, 

gypsum board 

Roof construction 
Roof gravel, built-up roofing, R-3 to R-30 mineral 

board insulation, wood sheathing ceiling 

Window glass 0.6 cm plate double pane 

Door glass 1.3 cm plate single pane 

Interior loads 
Lighting=16 W/m

2
, equipment = 10.8 W/m

2
, 

people = 9.3 m
2 
(100 ft

2
) per person 

Interior partitions [W/m
2
K] (BTU/hr ft

2
 F ) U-value = 8.5 (1.5) 

Infiltration 0.25 ACH 

Chiller Reciprocating air cooled chiller ( COP=3.65 ) 

Boiler Gas fired hot water boiler ( Eff = 85% ) 

 

4.2 Optimization variables and constraints 

As discussed in chapter 3, Table 3-2 shows effective variables and disturbances of the 

optimization problem. Variables x1, x2, x5, and x6 are independent control variables and the other 

variables are dependent variables that were calculated based on independent variables. 

The objective function is the sum of energy consumption of lighting, chiller, boiler, and fan 

Objective Function:           
   

 
    for one zone (m=1) and current hour optimization (n=1) 

become                              
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where x1, x2, x5, and x6 are light ratio, cooling energy, heating energy, and outside air flow rate, 

respectively. The values of ai coefficients are calculated based on building and systems 

characteristics. Details of equations and objectives function calculations are explained in the 

methodology chapter. 

Constraints for this optimization were developed according to the relation between variables and 

their limitations. Nonlinear constraints were developed based on the effect of thermal storage of 

external walls and also effect of blind position on conductance heat transfer of the window. 

Limitations of inside air temperature and outside air flow rate were developed based on thermal 

comfort range and air quality; moreover, limitations of light ratio and blind position were 

developed based on visual comfort range. 

All calculations are performed on an hourly basis. For multi-hour optimization, control variables 

of current hour and the considered period of future-hours were optimized together. Since each 

hour controller variable affects future hours energy consumption because of the thermal storage 

of the walls and air, it is possible to increase energy savings potential by optimization of all the 

hours of the considered time period simultaneously. 

Outdoor air temperature is used for the current hour and future-hours from the meteorological 

weather data of Montreal. In addition, solar heat gain and solar illuminance from windows are 

obtained from the DOE-2 (building energy simulation software) by modeling the same building.  

4.3 RC-network model validation 

To validate the model, the RC-network model is compared with the results of energy 

consumption for similar building, as described in Table 4-1, from eQuest (DOE-2) software. The 

DOE-2 model simulates the building with daylighting control that can open or close the shade 

based on heat gain as a control parameter. Building temperature and illuminance set-points are 

equal in both DOE-2 and RC-network models. Building materials and heat transfer coefficients 

are made as similar as possible. A constant air film heat transfer coefficient and an adiabatic roof 

in the RC-network model are the most important differences between these two models. To 

increase similarity of these models, the roof is modeled in DOE-2 with high insulation. Lighting, 

heating and cooling energy consumptions from DOE-2 and RC-network models are shown in 

Figure 4-2. The results show good agreement, with less than 15% difference between these two 

models.  
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 Figure  4-2: Building lighting and heating and cooling energy consumption modeled with eQuest 

and RC-network. ( H/C: heating and cooling energy consumption, Light: lighting energy 

consumption) 

 

4.4 Integrated optimization and effect of control variables 

Scheduled control with constant control parameters is defined for estimating integrated control 

energy saving potential. Figure 4-3 shows integrated control and scheduled control energy 

consumption, showing energy savings potential from 20% to 60% by using integrated control 

compared to scheduled operations. Highest absolute energy savings is about 70 MJ from 

scheduled control energy consumption of about 140 MJ (50% savings) that occurred during 

March. Also simulations indicate higher energy savings potentials in transient months (March, 

April, October and November). 

Four control methods were added for investigating the effect of each control parameter 

separately. We considered and simulated the effect of several control strategies including:  

Integrated control: all control variables are optimized based on current hour outdoor conditions 

and building schedules; 
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Open shade: window shades are kept open for the entire day while all other parameters are 

optimized; 

Closed shade: window shades are kept closed for the entire day while all other parameters are 

optimized; 

Constant temperature: inside temperature set-point set to 23.8 °C during occupied hours and it 

can be changed from 18.3 °C to 26.6 °C during unoccupied hours; 

Constant fresh air flow rate: fresh air flow rate is kept at minimum for the entire day and all 

other parameters are optimized; and 

Schedule: window shades are always closed, temperature is kept at 23.8 °C during occupied 

hours, and fresh air flow rate is kept at minimum for the entire day. 

Energy consumption related to lighting, and total energy consumption, are shown in Figure 4-4 

and Figure 4-5, respectively, for each month for different strategies. 

In all strategies artificial lights are optimized to provide required illuminance set-point, while it 

can go beyond this level to operate as a heat source. 

The results showed the fresh air flow rate has less effect on building energy consumption, since 

using more fresh air increases fan energy consumption. Also, on most days outdoor air 

temperature is out of range of indoor control set-points. Therefore, using fresh air increases 

heating or cooling energy consumption. The results also show that the shade position has a very 

significant effect on energy consumption, since it affects many parameters such as indoor 

illuminance, solar heat gain and windows conductance. As a result of this important effect of 

shading, energy consumption of most of the control strategies are approximately the same during 

the summer since they have same shade position (Figure 4-5). Open shades increased total 

energy consumption during summer significantly, since solar heat gain has detrimental effects on 

cooling energy consumption.  
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Figure ‎4-3: Integrated control and schedule control energy consumption 

 

 

Figure ‎4-4: Lighting energy consumption for different control methods 
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Figure ‎4-5: Total energy consumption for different control methods 

 

4.5 Effect of integrated control parameters 

In addition to the scheduled and integrated control strategies explained before, three new control 

strategies were further investigated. These semi-integrated strategies are outlined below. 

Control of shade based on illuminance: in this control method, shade position is controlled 

with respect to outdoor illuminance without considering its effect on heating and cooling. The 

shade is closed during the night and it is open as much as required for indoor illuminance; that is, 

if outdoor illuminance is less than the indoor set-point, the shade is completely open, and if the 

outdoor illuminance is more than the indoor set-point, shade position is equal to the ratio of set-

point and outdoor illuminance. 

Control of shade based on thermal effect: in this case shade position is controlled with respect 

to heating and cooling without considering its effect on indoor illuminance for control. 

Control of individual zones: in this method control variables for each zone are optimized 

separately. In this case conduction heat gains from neighboring zones are calculated by assuming 
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building energy consumption is recalculated based on applying these separate optimized control 

0 

50 

100 

150 

200 

250 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

 M
J/

m
2
) 

Integrated Control 

Open Shade 

Close Shade 

Constant T 

Constant CFM 

Schedule 



 

56 
 

variables on each zone of the building and considering their correct heat transfer among each 

other. 

The results from Figure 4-6 and Table 4-2 show that the amount of energy saved by controlling 

the shade based on heating and cooling is more than the amount of energy saved by controlling 

the shade based on indoor illuminance. This effect is more important in hot months since shade 

opening has a detrimental effect on cooling energy. Table 4-2 also shows that by using individual 

zone control, energy savings will be reduced between 1% and 10%. 

 

Figure ‎4-6: Total energy consumption for different strategies 
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Table ‎4-2: Illuminance, HVAC system and total energy consumption (MJ/m
2
) for each month for 

different control strategies 

Date Energy Schedule 
Shade base on 

Illuminance 
Shade base on 

Thermal 
Individual 

Zone 
Integrated 

Jan 
Light Energy 37 16 17 35 35 

HVAC Energy 153 141 134 108 105 
Total Energy 191 157 152 144 140 

Feb 

Light Energy 33 14 14 30 30 

HVAC Energy 132 109 105 82 80 

Total Energy 165 123 120 113 110 

Mar 

Light Energy 36 14 15 28 28 

HVAC Energy 102 64 64 43 40 

Total Energy 138 78 79 71 68 

Apr 

Light Energy 29 13 17 19 19 

HVAC Energy 49 21 23 15 10 

Total Energy 78 35 41 34 30 

May 

Light Energy 24 12 20 16 16 

HVAC Energy 18 15 5 10 6 

Total Energy 43 28 26 27 23 

Jun 
Light Energy 21 11 20 18 18 
HVAC Energy 18 34 10 15 12 

Total Energy 39 45 31 33 30 

Jul 
Light Energy 21 11 21 19 19 
HVAC Energy 24 47 17 20 18 

Total Energy 46 59 38 40 38 

Aug 
Light Energy 22 12 21 19 19 

HVAC Energy 21 75 13 17 14 

Total Energy 43 87 34 37 34 

Sep 
Light Energy 23 13 20 17 17 
HVAC Energy 15 17 5 10 6 

Total Energy 38 30 25 27 24 

Oct 
Light Energy 27 15 19 21 21 

HVAC Energy 40 23 20 16 12 

Total Energy 68 38 40 37 34 

Nov 
Light Energy 31 17 18 29 29 
HVAC Energy 72 57 55 38 36 

Total Energy 104 74 73 68 66 

Dec 

Light Energy 37 17 18 35 35 

HVAC Energy 127 123 115 93 91 
Total Energy 164 141 134 128 127 
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4.6 Multi-hour optimization 

Optimization based on the effect of current hour control variables on future-hours energy 

consumption are defined as multi-hour optimization.  

An important parameter in multi-hour optimization is the number of future-hours to be modelled. 

Considering the effect of more future hours increases the potential of energy savings, though it 

decreases speed of optimization significantly because of increasing optimization variables. A 

large number of optimization variables also increases the possibility of divergence of the 

optimization. As a result, it is very important to find the best possible optimization period by 

investigating different time periods and comparing their energy consumptions. Table 4-3 shows 

optimization by considering the effect of the current hour on different future-hours periods, from 

the next 2 hours to the next 8 hours, and optimizing the entire day at the same time. This 

investigation just applied to the first day of each month since multi-hour optimization is very 

time-consuming; these results are sufficient for studying the energy savings potential of multi-

hour optimization with different time periods.  

Table ‎4-3: Total daily energy consumption (kJ/m
2
) for multi-hour optimization periods from next 

2 hours to next 8 hours and optimizing entire day at same time 

Optimization period 

Date Current Hr 2hr 4hr 8hr Entire day 

1-Jan 4214 4214 4214 4214 4214 

1-Feb 1628 1616 1611 1606 1606 

1-Mar 2199 2189 2180 2180 2180 

1-Apr 1885 1858 1834 1826 1826 

1-May 937 932 927 917 915 

1-Jun 835 831 827 816 813 

1-Jul 904 897 891 885 885 

1-Aug 899 897 895 887 887 

1-Sep 936 933 927 916 916 

1-Oct 669 670 669 669 669 

1-Nov 1123 1122 1121 1119 1119 

1-Dec 2840 2840 2840 2840 2840 

 

The simulations show that in the multi-hour optimization, considering the next 2 hours has a 

small effect on building energy consumption, and it is not sufficient as a duration for multi-hour 

optimization. 
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By gradually increasing optimization duration, energy savings increase. However, the 

optimization time and possibility of divergence also increase. Increasing the optimization 

duration shows that considering the next 8 hours is sufficient for optimization of the entire day. 

Optimization of current hour control parameters by considering 8 future-hours energy 

consumption is sufficient for multi-hour optimization and most of available energy savings 

potential are used since current hour building condition affect on more than 8 hours is negligible. 

Investigating more days with higher energy savings potential shows up to 6% more energy 

savings by using multi-hour optimization compared to using current hour optimization.  

For multi-hour optimization, time-of-use (TOU) price and energy cost should be investigated 

since different energy prices at different hours could affect the optimization results. TOU price 

was considered by defining a multiplier for different hours, as is shown in Figure 4-7. 

 

Figure ‎4-7: Time of use price multiplier at different hours 

 

The simulated building energy costs are shown in Table 4-4. This table shows energy cost for 

optimization based on current hour and multi-hour optimization while considering the effect on 

the next 8 hours. Also it shows energy and cost savings for 8 hours optimization based on energy 

and cost. 
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Table ‎4-4: Energy cost for optimization based on current hour and multi-hour optimization and 

percentage of cost and energy savings  

Date Opt-current Hr Opt-Dyn 8hr Energy savings % Cost savings % 

1-Jan 37330 37330 0.0 0.0 

1-Feb 13568 13330 1.4 1.8 

1-Mar 17680 17497 0.9 1.0 

1-Apr 16196 15576 3.1 3.8 

1-May 9362 9053 2.2 3.3 

1-Jun 8337 8077 2.2 3.1 

1-Jul 8915 8661 2.1 2.9 

1-Aug 8898 8702 1.2 2.2 

1-Sep 9335 9068 2.0 2.9 

1-Oct 6131 6127 0.1 0.1 

1-Nov 9081 9045 0.3 0.4 

1-Dec 24204 24204 0.0 0.0 

 

Multi-hour optimization can save more energy and expenditure compared to current hour 

optimization because of two different energy storage effects. On cooling days, the building can 

store cooling energy during nights and early morning hours and use it during the hot hours; this 

process happens during May, June, July, and August. On heating days, the building can store 

solar heating energy from morning to noon and use this heating energy during the afternoon; this 

process happens during February, March, April, and November. Considering multi-hour prices 

for multi-hour cost optimization can lead to more savings, since considering different prices at 

different hours gives more flexibility to multi-hour optimization for saving energy cost by 

shifting energy consumption from peak price hours to off-peak. 
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5 Results and discussion of modification of building 

simulation software (DOE-2) 

5.1 Developing required simulation tool by adding function to DOE-2 (application for 

nighttime ventilation) 

The objective of this task is to assess the performance of mechanical nighttime ventilation 

cooling and optimize the control strategies in typical conditioned office buildings in North 

America. An hourly building energy simulation model, DOE-2.1E [109, 110], was used to 

investigate the potential for improving indoor environment and energy savings. In addition, the 

effect of different parameters was studied to evaluate the effectiveness of nighttime ventilation 

techniques as a function of flow rate and indoor-outdoor temperature difference in several 

climate conditions. 

In this strategy next day outdoor average temperatures is predicted and based on the cooling 

characteristics of sample building, nighttime ventilation and duration of ventilation are 

determined. 

Next day prediction of outdoor average temperature calculation equations [111] and decision 

making process (Figure 5-1) are: 

                                                

                                                   
(5-1) 

                      (5-2) 

where     : outside temperature at hour (i),         : outside temperature at hour (i) for 

previous day, TMin and TMax: minimum and maximum outside temperature, and TPMin and 

TPMax: minimum and maximum predicted outside temperature for next day. Detail 

methodology of this research was discussed in previous chapters. 
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Figure ‎5-1: Control strategy diagram of the predictive method 

 

Table ‎5-1: Annual energy consumption for basecase in investigated cities 

Parameters Montreal Victoria Portland 

Cooling [kWh] 5289 2520 5851 

Fan [kWh] 2598 2214 2606 

Heat reject [kWh] 1165 549 1245 

Pump & Misc [kWh] 1197 888 1087 

Reheat [kWh] 3480 1458 1087 

Total cooling (Cooling + Fan + Heat 

reject) [kWh] 
9052 5283 9702 

Peak cooling load [W/m
2
] (Btu/hr-ft

2
) 132.2 (41.9) 93.4 (29.6) 122.3 (38.7) 

Zone under cooled [hours] 6 0 0 
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Basecase building cooling energy consumption and peak cooling load in different cities are listed 

in Table 5-1. Reheat system energy consumption related to resistance heating system at zone 

level that controls the inlet air temperature to the zone. Heat rejects energy consumption related 

to electrical energy consumption of condenser, fans and pumps in cooling towers system. 

The occupancy comfort can be investigated based on the zone under cooled hours. This 

parameter represents the total hours when the inside temperature of the building exceeds the 

cooling set-point during a year. 

5.1.1  The effect of schedules on nighttime ventilation 

The effectiveness of the scheduled-driven ventilation is very sensitive to the assumption of what 

is the summer period. This is considered as a severe disadvantage for this strategy. In contrast, 

with the predictive algorithm, there is no need to pre-define a summer period schedule. This 

strategy automatically decides about using nighttime ventilation based on the prediction of next 

day temperature. The simulated cooling energy consumptions using the scheduled-driven 

strategy with different summer periods are shown in Table 5-2. The results show that the optimal 

cooling energy savings is 7.7% for the best defined summer period. Adding two weeks to this 

period, savings reduces to 7.4% approximately equal to the amount of savings by using the 

predictive method in Montreal. The amount of savings decreases to 6.5% by adding two more 

weeks.  

Table ‎5-2: The effect of scheduled nighttime ventilation for different periods in Montreal 

(DT=5.5°C, Flow rate= 1.4m
3
/s, FW=490kg/m

2
) 

Parameter Basecase 

 

Predictive 

method 

Scheduled ventilation during summer 

Entire 

Year 

1 JUN to 

31 AUG 

24 MAY 

to 7 SEP 

17 MAY 

to 14 SEP 

10 MAY 

to 21 SEP 

1 MAY 

to 31 SEP 

Cooling [kWh] 5289 4365 4397 4354 4324 4317 4298 

Fan [kWh] 2598 2986 2915 2987 3106 3229 3376 

Heat reject [kWh] 1165 1039 1045 1039 1031 1029 1023 

Total Cooling (Cooling+ Fan 

+ Heat reject) [kWh] 
9052 8390 8357 8380 8461 8575 8697 

Savings % (Cooling+ Fan 

+Heat reject) 
0 7.3 7.7 7.4 6.5 5.3 3.9 

Savings % (Total) 0 4.7 5 4.7 3.9 2.8 1.5 

Peak cooling load 

[W/m2] (Btu/hr-ft2) 

132.2 

(41.9) 

128.7 

(40.8) 

128.7 

(40.8) 

128.7 

(40.8) 

128.7 

(40.8) 

128.7 

(40.8) 

128.7 

(40.8) 

Zone under cooled (hours) 6 2 2 2 2 2 2 
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Table ‎5-3: The effects of nighttime ventilation fan flow rate on scheduled ventilation during 

summer, predictive method, and pre-cooling integrated with predictive method for Montreal and 

Portland. The simulations are performed for an indoor-outdoor temperature difference (ΔT) of 

5.5°C and floor weight of 490kg/m
2
 

Location Parameter Basecase 

Ventilation rate [m3/s] 

Schedule ventilation during 

summer 
Predictive method 

Pre-cooling+Nighttime 

cooling 

0.47 0.94 1.4 1.9 0.47 0.94 1.4 0.47 0.94 1.4 

Montreal 

Cooling [kWh] 5289 4845 4522 4397 4110 4829 4495 4365 4622 4332 4105 

Fan kWh 2598 2681 2848 2915 3332 2707 2903 2986 2756 2931 3180 

Total cooling 

(Cooling+Fan+Heat 

reject) [kWh] 

9052 8633 8430 8357 8438 8641 8454 8390 8470 8318 8309 

Savings % (Cooling 

+ Fan+Heat reject) 
0 4.6 6.9 7.7 6.8 4.5 6.6 7.3 6.4 8.1 8.2 

Peak cooling load 

[W/m2] (Btu/hr-ft2) 

132.1  

(41.9) 

129.3 

 (41) 

127.4 

(40.4) 

125.2 

(39.7) 

123.9 

(39.3) 

129.3 

(41) 

127.3 

(40.3) 

125.2 

(39.7) 

129.3  

(41) 

127.8 

(40.5) 

126.6 

(40.1) 

Zone under cooled 

[hours]  
6 2 2 1 1 2.0 2.0 1.0 24.0 19.0 17.0 

Portland 

Cooling [kWh] 5851 5367 5023 4764 4585 5268 4853 4540 4775 4433 4186 

Fan [kWh] 2606 2661 2824 3064 3341 2698 2916 3229 2712 2894 3160 

Total cooling 

(Cooling + Fan + 

Heat reject) [kWh] 

9702 9199 8967 8911 8983 9126 8871 8828 8557 8355 8343 

Savings % (Cooling 

+ Fan+Heat reject) 
0.0 5.2 7.6 8.2 7.4 5.9 8.6 9.0 11.8 13.9 14.0 

Peak cooling load 

[W/m2] (Btu/hr-ft2) 

122.2 

(38.8) 

117.9 

(37.4) 

115 

(36.5) 

112.4 

(35.6) 

110.4 

(35.0) 

117.9 

(37.4) 

115 

(36.5) 

112.4 

(35.6) 

101 

(32.0) 

98.6 

(31.3) 

97.5 

(30.9) 

Zone under cooled 

[hours]  
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 

 

5.1.2 Nighttime ventilation fan flow rate 

The effect of different nighttime ventilation fan flow rates during summer with the scheduled-

driven, the predictive method and with the integrated pre-cooling and predictive method for 

Montreal and Portland are shown in Table 5-3. The results show that increasing fan flow rate 

reduces cooling energy consumption, but increases fan energy consumption. Moreover, results of 

the energy savings illustrate that there is fairly flat total energy consumption in the range of 1 

m
3
/s to 1.5 m

3
/s (2200-3200 CFM) with optimal flow rate near 1.4 m

3
/s (3000 CFM) (Figure 5-

2). Simulation for Montreal shows that the savings at 1.4 m
3
/s (3000 CFM) with scheduled 

ventilation during summer is 7.7% and with the predictive method is 7.3%. The predictive 
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method, which works during the entire year, shows less savings as a result of incorrect prediction 

about the next day’s need for cooling. For Portland the simulation results show an inverse trend; 

savings with the predictive method is higher than with scheduled ventilation. The predictive 

nighttime ventilation worked better in Portland since its weather conditions are fairly smooth in 

transition seasons. Whereas, the unpredictable weather condition of Montreal makes the 

predictive nighttime ventilation less efficient. 

With integration of pre-cooling and nighttime ventilation more energy can be saved. Whereas, 

the hours of zone being under-cooled are increased using this combination method. The 

increased hours of being under-cooled affect the occupant comfort, yet still in an acceptable 

range. Combined nighttime ventilation and pre-cooling reduced peak cooling load up to 20%. 

 

Figure ‎5-2: Energy use for Cooling, Fan and Total (cooling + fan + heat reject) with different air 

flow rates (CFM) in Montreal 

 

5.1.3 Thermal mass effect 

Table 5-4 shows the effect of building thermal mass on nighttime ventilation. Here, three 

different floor weights with three different strategies are considered for Montreal. These 

strategies are without nighttime ventilation (WO NV), with scheduled ventilation during summer 

(W NV), and with predictive method (W FUNC). For very low thermal mass there was not any 
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savings, as was expected. It is possible to see that for high thermal mass, the predictive method 

works better than scheduled ventilation during the summer. 

Table ‎5-4: The effect of building thermal mass on nighttime ventilation for three different floor 

weights with three different strategies in Montreal (ΔT=5.5°C, Flow rate= 0.47m
3
/s) 

Parameter 
49kg/m2 (10 lb/ft2) 490kg/m2 (100 lb/ft2) 980kg/m2 (200 lb/ft2) 

WO NV W NV W FUNC WO NV W NV W FUNC WO NV W NV W FUNC 

Total cooling (Cooling+ 

Fan+Heat reject) [kWh] 
10081 10072 10142 9052 8633 8641 8811 8430 8425 

Savings %  

(Cooling+Fan+ Heat reject) 
0.0 0.1 -0.6 0.0 4.6 4.5 0.0 4.3 4.4 

Peak cooling load 

[W/m2] (Btu/hr-ft2) 

122.2  

(38.7) 

122.2 

 (38.7) 

124.5  

(39.4) 

132.2 

 (41.9) 

130.2 

 (41.2) 

129.4  

(41.0) 

125.6  

(39.8) 

123.9  

(39.3) 

123.1 

 (39.0) 

Zone under heated [hours]  346 425 704 49 49 49 35 35 35 

Zone under cooled [hours]  1 1 2 6 3 2 3 3 2 

W-With, WO-Without, NV-Nighttime Ventilation, FUNC-Predictive Function 

 

5.1.4 Temperature difference between inside and outside air 

The temperature of outside air that the ventilation fan brings in during the night for cooling the 

building has an important effect on effectiveness of nighttime ventilation. When the temperature 

difference between inside and outside air is low, the brought in air is not useful in cooling the 

building. In this case, the ventilation fan energy use increases total energy consumption, while 

having little effect on cooling the building. On the other hand, if outside air is just brought in 

when its temperature is significantly lower than the inside air, the hours of nighttime ventilation 

decrease and a significant amount of cooling potential that exists in the outside air is not utilized. 

So, an optimal situation should be found between these two conditions in order to reach the 

maximum energy savings. Table 5-5 shows the building energy consumption with different 

temperature differences between outside and inside air for nighttime ventilation. According to 

these results, optimum savings for Montreal happens when the temperature difference is 

approximately 5.5 °C (10 °F) (Figure 5-3). It is possible to see that cooling energy consumption 

first decreases with increasing temperature difference from 0.5 to 4.5 °C (1 to 8 °F), while this 

trend changes by continuing to increase the temperature difference. 
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Table ‎5-5: The effect of ventilation temperature difference between inside and outside air in 

Montreal (Flow rate= 1.4m
3
/s, FW=490kg/m

2
) 

Parameter 

Scheduled ventilation during summer Predictive method 

2.8°C 

(5.0°F) 

5.5°C 

(10.0°F) 

8.3°C 

(15.0°F) 

2.8°C 

(5.0°F) 

5.5°C 

(10.0°F) 

8.3°C 

(15.0°F) 

11.1°C 

(20°F) 

Cooling [kWh] 4274 4397 4697 4238 4365 4677 4966 

Fan [kWh] 3077 2915 2710 3164 2986 2748 2632 

Total cooling (Cooling+  

Fan+Heat reject) [kWh] 
8372 8357 8501 8418 8390 8515 8725 

Savings % 

(Cooling+Fan+Heat reject) 
7.5 7.7 6.1 7.0 7.3 5.9 3.6 

Savings % (Total) 4.8 5.0 3.9 4.5 4.7 3.8 2.3 

Peak cooling load 

[W/m2] (Btu/hr-ft2) 

125.3  

(39.7) 

128.6  

(40.8) 

131.7  

(41.8) 

125.3 

 (39.7) 

128.6 

 (40.8) 

154.5 

 (49.0) 

132.0  

(41.8) 

Zone under cooled [hours]  1.0 2.0 4.0 1.0 2.0 4.0 5.0 

 

 

Figure ‎5-3: Energy use for Cooling, Fan and Total (cooling + fan + heat reject) for different 

indoor-outdoor temperature difference in Montreal 
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5.1.5 Pre-cooling 

Pre-cooling is another strategy for reducing the energy consumption and especially reducing the 

peak load in the building. This strategy works by changing the cooling set-point during the day. 

In the morning, when the outside air temperature is low, the cooling set-point is set to a lower 

temperature than the regular value. So, the building will store some cooling energy. In the 

afternoon, when the outside air temperature is at the highest, more cooling is required for the 

building. Consequently, the set-point is increased to reduce the amount of cooling energy 

consumption. The stored cooling energy in the building mass is then used in the afternoon. In 

order to find the minimum cooling energy consumption, various pairs of set-points with the same 

daily average were investigated. The results, illustrated in Table 5-6 show the pre-cooling 

strategy that kept the set-point temperature till afternoon and changed it at peak hour could save 

more energy than the other strategies. This strategy, though, has a higher peak load since the 

peak hour at the specific day happened at hour 14. 

Table ‎5-6: The HVAC electricity use for different Pre-cooling Methods in Portland 

Parameter Basecase 

Pre-Cooling (Time)(Temp. °C) (Time)(Temp. °C) 

(9-12)(24)  

(13-18)(26.6) 

(9-13)(24.4) 

 (14-18)(26.6) 

(9-14)(24.7) 

 (15-18)(26.6) 

Cooling [kWh] 5851 5434 5264 5202 

Fan [kWh] 2606 2653 2677 2685 

Total Cooling (Cooling+Fan 

+Heat reject) [kWh] 
9702 9294 9070 9018 

Savings % 

(Cooling+Fan+Heat reject) 
0 4.2 6.5 7.1 

Peak cooling load 

[W/m
2
] (Btu/hr-ft

2
) 

122.3 

(38.8) 

116.1 

(36.8) 

105.7 

(33.5) 

107.6 

(34.1) 

Zone under cooled [hours] 0 10 26 60 

 

5.1.6 Effect of climate on nighttime cooling and pre-cooling 

Results of the simulations for nighttime ventilation and pre-cooling show up to 15% savings for 

cooling and ventilation energy consumption in the three climates simulated (Table 5-7). The 

highest savings is achieved in Portland and lowest in Montreal. Because of the unpredictable 

weather condition of Montreal as well as its cold weather, the scheduled ventilation strategy 

works better than the predictive method. On the other hand, in Portland and Victoria, the 

predicted ventilation strategy always leads to more energy savings. By adding pre-cooling to 
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nighttime ventilation, energy savings increased significantly, especially when lower nighttime 

ventilation flow rate was used. 

Table ‎5-7: Energy savings with different strategies for three different flow rates in investigated 

cities (DT=5.5°C, FW=490kg/m
2
) 

Cities Strategy 
Flow rate 

0.47 m3/s (1000 CFM) 0.94 m3/s (2000 CFM) 1.4 m3/s (3000 CFM) 

Montreal 

Scheduled ventilation during summer 4.6 6.9 7.7 

Predictive method 4.5 6.6 7.3 

Pre-cooling + Night-time cooling 6.4 8.1 8.2 

Victoria 

Scheduled ventilation during summer 6.2 7.9 6.1 

Predictive method 6.3 8.0 6.2 

Pre-cooling + Night-time cooling 11.2 11.7 9.4 

Portland 

Scheduled ventilation during summer 5.2 7.6 8.2 

Predictive method 5.9 8.6 9.0 

Pre-cooling + Night-time cooling 11.8 13.9 14.0 

 

5.1.7 Roof insulation 

In the above simulations, the roof insulation was set at R-03 (h ft
2
 F/Btu in) that is very low 

insulation. In order to investigate the effect of the roof insulation on the effectiveness of the 

nighttime ventilation strategies, we simulated our building with different roof insulations. These 

simulation results (Table 5-8) illustrated that the higher the roof insulation the higher the energy 

savings (both in absolute and relative terms).  

In Montreal, the scheduled ventilation resulted in more savings compared to the predictive 

model. As the roof insulation increases, the difference between the savings estimated by the 

scheduled and the predictive model strategies become less significant. For Portland and Victoria, 

the energy savings using the predictive method becomes even higher than that of the scheduled-

driven strategy. In addition the predictive nighttime ventilation worked better in Portland since 

its weather conditions are fairly smooth in transition seasons. Whereas, the unpredictable 

weather condition of Montreal makes the predictive nighttime ventilation less efficient. Based on 

the control strategies simulated for the office buildings in the three cities, it is found that most 

energy savings are achieved when the building is cooled by nighttime ventilation integrated with 

pre-cooling. 
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Table ‎5-8: The effect of roof insulation in nighttime ventilation for three different cities with 

three different strategies in Montreal (DT=3°C, Flow rate= 1.4m
3
/s, FW=490kg/m

2
) 

Location Parameter 

R-03 R-13 R-30 

Basecase 
Scheduled 

ventilation  

Predictive 

method 
Basecase 

Scheduled 

ventilation  

Predictive 

method 
Basecase 

Scheduled 

ventilation  

Predictive 

method 

Montreal 

Cooling [kWh] 5289 4397 4365 5032 3901 3856 5003 3811 3761 

Fan [kWh] 2598 2915 2986 2531 2938 3016 2494 2880 2950 

Heat reject [kWh] 1165 1045 1039 1088 930 923 1090 906 899 

Total cooling [kWh]  9052 8357 8390 8651 7769 7795 8587 7597 7610 

Cooling Savings [kWh] 0 -695 -662 0 -882 -856 0 -990 -977 

Cooling Savings %  0.0 7.7 7.3 0.0 10.2 9.9 0.0 11.5 11.4 

Portland 

Cooling [kWh] 5851 4764 4540 5530 4362 4107 5453 4267 4002 

Fan [kWh] 2606 3064 3229 2652 3037 3164 2678 3045 3154 

Heat reject [kWh]  1245 1083 1059 1154 989 966 1117 958 938 

Total cooling [kWh] 9702 8911 8828 9336 8388 8237 9248 8270 8094 

Cooling Savings [kWh] 0 -791 -874 0 -948 -1099 0 -978 -1154 

Cooling Savings %  0.0 8.2 9.0 0.0 10.2 11.8 0.0 10.6 12.5 

Victoria 

Cooling [kWh] 2520 1775 1762 2395 1603 1590 2368 1564 1550 

Fan [kWh] 2214 2745 2750 2283 2724 2727 2332 2738 2741 

Heat reject [kWh] 549 443 442 503 405 404 486 394 393 

Total cooling [kWh] 5283 4963 4954 5181 4732 4721 5186 4696 4684 

Cooling Savings [kWh] 0 -320 -329 0 -449 -460 0 -490 -502 

Cooling Savings % 0.0 6.1 6.2 0.0 8.7 8.9 0.0 9.4 9.7 

 

5.2 Predicting nighttime fan flow rates with neural network 

Neural network developments and applications, in addition to detailed structure of trained NN, 

are explained in previous chapters. Input parameters and numbers of neurons in the hidden layer 

are two effective categories that need to be investigated. Figure 5-4 shows the results of MSE 

between simulated and predicted fan flow rate fraction for different types of inputs for neural 

network. Three different types of inputs were investigated: 1) hourly inputs, which include 

hourly outdoor temperature and hourly indoor temperature; 2) daily inputs, which include diurnal 

average and range temperature and night average temperature; 3) combination of daily and 

hourly inputs. The fan flow rate fraction is a number between 0 and 1, as a result, combination of 

daily and hourly inputs with MSE less than 0.035 are suitable inputs for the neural network.  
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Figure ‎5-4: MSE of predicted fan flow rate fraction (a number between 0 and 1) versus different 

types of inputs for neural network 

 

The results show that using both daily and hourly inputs are necessary for developing accurate 

neural network. 

The number of neurons in the hidden layer should be adequate to the complexity of the problem 

data. Underfitting occurs when neurons in the hidden layers are too few to appropriately detect 

the relation in a complicated data set. Overfitting may occur when unnecessary too many 

neurons are present in the network, which means that the neural networks over-estimate the 

complexity of the target problem. It can leads to significant deviation in predictions. As a result, 

determining the proper number of hidden neurons to prevent overfitting and underfitting is 

critical in using NN [118]. 

Figure 5-5 shows MSE versus number of neurons in the hidden layer. According to the results, 

hidden layer with 18 neurons was picked since it has the minimum MSE. 
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Figure ‎5-5: MSE versus number of neurons in hidden layer 

 

A developed neural network based on daily and hourly inputs with 18 neurons in the hidden 

layer trained and tested with results of fan flow rate optimization. This trained NN can be used 

for prediction of fan flow rate fraction for other days without using optimization, which is time 

consuming. Figure 5-6 shows good agreement between predicted results of fan flow rate and 

optimization results for the same hour. 
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Figure ‎5-6: Neural Network results of fan flow rate fraction compare to optimization results 

 

5.3 Investigation of shading and daylighting 

Shading devices can improve the light distribution in the room and they are flexible and can be 

removed when the outdoor light level is low. Also they can adjust the window heat losses and 

gains through changing the window U-value. Thus, the potential for daylight and solar heat gain 

utilization is significant with shading devices. Most of the previous research about solar shading 

devices has focused on the energy aspect. Only a few studies have considered the impact of 

shading devices on daylighting and the visual (comfort) aspect [114]. For better understanding of 

shading effects, in this section the shading effect on daylight savings and energy consumption 

are investigated in a heating day at November 18 hour 9 (Figure 5-7 and Figure 5-8). The results 

show that closing the shade up to 70% did not affect lighting energy consumption in this specific 

hour since outdoor illuminance was much higher than the room illuminance set-point. Also the 

results for heating energy consumption show that heating energy consumption decreases by 

closing the shade since it decreases solar heat gain and heat transfer from the window. When 

investigating the same parameters in different hours and different outdoor conditions, the results 

show that there could be an optimal position of the shade that keeps the heat gain at a minimum 

amount while still taking advantage of daylighting. 
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Figure ‎5-7: Effect of shade position on light power for November 18 hour 9 

 

 

Figure ‎5-8: Effect of shade position on heating energy for November 18 hour 9 
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In addition, the potential of daylight as a natural renewable source of energy in providing the 

required illumination requirements and reducing energy consumption in a typical office building 

is studied. To investigate the effect of daylighting in building energy consumption, DOE-2 

building simulations is used. DOE-2 uses a daylight factor for calculation of daylighting by 

integrating transmitted luminous flux over the area of each window (or skylight). Interior 

illuminance at user-selected room locations is calculated for a standard overcast sky and for clear 

sky conditions with 20 different sun positions. Dividing the interior illuminance by the 

corresponding exterior illuminance gives daylight factors that are stored for later interpolation in 

the hourly simulation. Analogous factors for the discomfort of glare from each window are also 

calculated and stored for each sun angle and sky condition. The hourly illuminance and glare 

contribution from each window are found by interpolating the stored daylight factors using the 

current hour sun position and cloud cover, then multiplying by the current-hour exterior 

horizontal illuminance. If the glare-control option has been specified, the program automatically 

closes window blinds or drapes in order to decrease glare below a pre-defined comfort level. A 

similar option uses window shading devices to automatically control solar gain. One 

disadvantage of DOE-2 in daylight modeling is that it cannot control the blind position according 

to glare and heat gain, so for solving this problem some functions are added to the source code of 

DOE-2.This function calculates new shading coefficients for solar radiation and illuminance 

transmittance considering shade position and modified close shade coefficients based on these 

new coefficients.  

 
                 

 
                    

   
               
              

  (5-3) 

The control parameters and results of energy saving for using default control method of DOE-2 

and the positioning control method are shown in Figure 5-9. The results show 25% energy 

savings for the default control method and 34% energy savings for the blind positioning control 

method. 
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Figure ‎5-9: The control parameters and results of energy saving for using open or close control 

method of DOE-2 and positioning control method 
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6 Results and discussion of integration of MATLAB and 

DOE-2 

An integrated building control optimization tool is developed based on connecting a genetic 

algorithm as an optimization tool in MATLAB, and DOE-2 as a building energy and cost 

calculation software. Details of this integration were discussed in chapter 3. The developed 

optimization tool is evaluated by investigating its application to nighttime ventilation and 

shading position optimization. Thereafter, rule-based decision making before optimization and 

local search after optimization are added to the optimization tool to make it faster. Finally the 

integrated optimization tool is applied to the whole sample building for optimization of all indoor 

controllable parameters, including: indoor temperature, shade position, artificial light power, and 

outdoor air ventilation rate. In this chapter results of applying the integrated optimization tool in 

nighttime ventilation and shade position optimization are discussed. Also, development and 

evaluation of different methods for increasing speed of optimization are investigated. In addition, 

results of whole-building optimization are presented.  

6.1 Integrating MATLAB with DOE-2 (application for nighttime ventilation)  

Nighttime fan flow rates optimization was applied for five hours before working hours during the 

summer (Jun, July and August) in Montreal. The results for days with energy savings during 

summer are listed in Table 6-1. These results show total energy savings up to 8% and cooling 

energy saving up to 23%. These savings happened on a day with high diurnal temperature range 

and average temperature near 17 ˚C.  

Optimization of nighttime ventilation fan flow rates with direct connection of DOE-2 and 

MATLAB is very time consuming as a result optimization just applied to some specific days 

with outdoor condition suitable for nighttime ventilation. These sample days are chosen based on 

their daily average and range outdoor temperature. 

The results show less than 10% total energy savings since using nighttime ventilation increases 

building ventilation fan energy consumption that decreases total energy savings.  

The results for total-building and cooling-energy consumption with and without nighttime 

ventilation during some days of summer are shown in Figure 6-1 and Figure 6-2.  
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Table ‎6-1: Daily weather conditions and optimization results during summer in Montreal 

Day 

No. 
Date 

Diurnal 

ave temp.  

Diurnal 

temp. range 

Night ave 

temp. 

Ave fan flow 

rate fraction 

Energy 

savings 

(kWh) 

Cooling 

savings 

(kWh) 

% Energy 

savings 

% Cooling 

savings 

1 8-Jun 20.2 13.9 14.0 0.4 2.1 6.7 2.0 9.7 

2 10-Jun 23.4 14.4 17.4 0.3 0.8 4.5 0.5 4.2 

3 13-Jun 13.6 8.9 10.0 0.3 1.2 1.1 1.9 6.2 

4 14-Jun 17.1 16.1 10.2 0.6 7.8 13.6 8.1 23.0 

5 15-Jun 19.9 15.0 13.3 0.7 5.5 13.8 4.3 16.6 

6 16-Jun 20.0 8.3 16.6 0.4 1.9 7.3 1.6 10.1 

7 17-Jun 22.1 11.7 17.1 0.4 0.1 5.3 0.1 5.8 

8 22-Jun 19.4 11.1 14.8 0.4 1.4 5.8 1.4 9.0 

9 23-Jun 20.1 12.8 14.1 0.5 4.5 10.6 3.9 14.2 

10 24-Jun 22.5 15.6 15.7 0.5 2.4 10.0 1.7 10.5 

11 28-Jun 16.6 15.0 10.0 0.1 1.1 2.4 1.7 6.3 

12 29-Jun 16.7 9.4 13.6 0.5 3.7 8.7 4.9 22.1 

13 6-Jul 17.4 8.9 14.0 0.3 1.2 4.3 1.1 6.7 

14 7-Jul 19.3 11.1 14.7 0.5 2.8 8.3 2.2 10.8 

15 8-Jul 20.1 10.6 15.7 0.4 1.9 6.4 1.4 7.2 

16 14-Jul 20.6 11.1 16.7 0.5 1.3 7.6 1.1 10.2 

17 22-Jul 15.7 9.4 13.0 0.2 0.4 2.3 0.5 6.2 

18 27-Jul 17.2 13.9 10.8 0.4 1.6 6.2 2.1 14.2 

19 28-Jul 20.0 12.2 14.7 0.5 1.7 7.9 1.5 10.8 

20 29-Jul 21.3 8.9 17.3 0.4 1.7 6.2 1.3 7.4 

21 5-Aug 19.9 12.2 14.3 0.4 2.5 7.3 2.2 10.4 

22 11-Aug 20.4 12.8 14.3 0.5 4.4 11.3 3.2 12.8 

23 12-Aug 20.0 11.1 16.2 0.5 2.5 9.1 1.9 10.9 

24 18-Aug 18.8 10.6 15.1 0.2 0.6 3.1 0.7 5.4 

25 19-Aug 22.2 12.2 16.4 0.4 0.6 5.9 0.4 6.5 

26 22-Aug 19.9 12.2 14.7 0.9 7.3 15.5 4.4 15.4 

27 23-Aug 18.8 8.3 16.7 0.4 0.6 6.4 0.5 8.9 

28 25-Aug 15.2 11.7 9.8 0.1 0.8 1.6 1.7 5.9 

29 26-Aug 15.9 12.8 11.9 0.4 1.3 6.5 2.1 19.7 

30 30-Aug 18.5 11.1 13.8 0.4 1.1 6.2 1.4 12.8 
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Figure ‎6-1: Building total energy consumption with and without nighttime ventilation during 

summer in Montreal 

 

 

Figure ‎6-2: Building cooling energy consumption with and without nighttime ventilation during 

the summer in Montreal 
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6.1.1 Diurnal outdoor air temperature 

Figure 6-3 shows total energy savings percentage verses outdoor average and diurnal 

temperature range. Based on the results at constant outdoor average temperature, energy savings 

increase when there is a higher temperature range. Also the results show that higher energy 

savings happen at outdoor average temperatures between 15 ˚C and 22 ˚C and energy savings 

decrease when outdoor average temperature is out of this range. 

 

Figure ‎6-3: Total energy saving percentage verses diurnal outdoor average temperature and 

diurnal temperature range for investigated date. 

 

6.1.2 Hourly outdoor air temperature 

Figure 6-4 and Figure 6-5 show results for fan flow rates during the night between hour 7 (7 

a.m.) and hour 3 (3 a.m.) versus outdoor temperature at that specific hour and temperature 

difference between indoor and outdoor. The results show that the minimum suitable temperature 

difference between outdoor and indoor to apply nighttime ventilation is 8 ˚C. Using the outdoor 

air with temperature difference less than 8 ˚C cannot reduce building energy consumption. Also, 

outdoor temperatures between 10 ˚C and 18 ˚C are appropriate for nighttime ventilation and 

energy savings of nighttime ventilation reduce significantly when the outdoor temperature is out 

of this range.  



 

81 
 

 

Figure ‎6-4: Nighttime fan flow rate fraction versus temperature difference between outdoor and 

indoor temperature for 5 hours before working hour during summer in Montreal 

 

 

Figure ‎6-5: Nighttime fan flow rate fraction versus temperature difference between outdoor and 

indoor temperature for 5 hours before working hour during summer in Montreal 
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6.1.3 Results of hourly fan flow rates 

To better understand the nighttime ventilation optimization, the hourly results for fan flow rates 

for some days with higher energy savings potential are shown in Figure 6-6, Figure 6-7, and 

Figure 6-8. The results show that optimization is converging towards an indoor temperature of 

about 23 ˚C at the beginning of the day. To reach this goal, optimization uses higher fan flow 

rates during hours with lower outdoor air temperatures and higher temperature differences 

between outdoor and indoor. 

 

 

Figure ‎6-6: Hourly fan flow rate fraction and temperatures from 3am to 7am for August 22 in 

Montreal 
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Figure ‎6-7: Hourly fan flow rate fraction and temperatures from 3am to 7am for Jun 14 in 

Montreal 

 

Figure ‎6-8: Hourly fan flow rate fraction and temperatures from 3am to 7am for Jun 15 in 

Montreal 
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6.2 Integrating MATLAB with DOE-2 (application for shading position optimization)  

A building energy use and cost analysis tool (DOE-2.1E) was used for building simulation and 

integrated with MATLAB for accurate building energy optimization. Results of shade position 

optimization are discussed in this section. 

6.2.1 Effects of shading coefficients 

Shading of the windows has three different effects on windows coefficients, these coefficients 

are: 1) radiation heat transmission, 2) illuminance transmission, and 3) conduction heat transfer. 

Three different types of shading are studied based on their effects on these coefficients. Thin 

shade reduces radiation, illuminance and conduction coefficients when it is completely closed to 

25%, 20% and 65% of completely open shade coefficients, respectively. 

Normal shade reduces radiation, illuminance and conduction coefficient when it is completely 

closed to 15%, 10% and 55% of completely open shade coefficients, respectively. Thick shade 

reduces radiation, illuminance and conduction coefficient when it is completely closed to 0%, 

0% and 45% of completely open shade coefficients, respectively. The optimization results (Table 

6-2) show that on very cold and hot days shades stay closed since the effect of heat conduction is 

more important than the effect of solar heat gain and illuminance transmission from windows. 

Also, on very hot days closing shades reduces solar heat gain through windows (decreasing 

cooling energy consumption). During transient seasons with mild temperature during the day, 

optimization of shading position becomes more effective. In these seasons optimization can find 

the correct combination of shade position for different zones to benefit from both heat gains and 

lighting without unnecessary increase of heating and cooling energy consumption of zones. 
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Table ‎6-2: Optimized shade position of different zones in different date 

Date 

D/M/H 

Outdoor 

Temp. 

Horizontal 

solar radiation 

w/m
2 

Shade 

position of 

zone 1 

Shade 

position of 

zone 2 

Shade 

position of 

zone 3 

Shade 

position of 

zone 4 

10 Jan 09 -12 50 0.94 0.85 0.92 0.86 

10 Feb 09 2.8 91 0.1 0 1 0.9 

10 Feb 17 0.5 19 1 1 0.93 0.93 

10 Mar 09 -10 343 0 0 0.7 0.92 

10 Mar 17 -7 227 0.4 0 0.4 0.3 

21 Mar 11 -3 753.5 0 0 0 0 

12 Apr 09 4.5 646 0 0 0 0 

12 May 09 19.5 441 0.9 0.95 1 0.86 

21 Jun 13 22 892 1 0.9 0.95 1 

15 Jul 11 26 883 1 0.9 0.95 0.85 

15 Jul 14  27 751 0.98 1 1 0.97 

21 Jul 11 26 451 0.9 0.95 0.95 0.8 

18 Aug 09 65 185 0.95 0.9 0.6 0 

13 Sep 16 23 375 1 0.9 0.95 1 

14 Sep 09 15.5 41 0.1 0 0.2 0 

14 Sep 16 16 101 0.5 0.8 0.3 0.6 

12 Oct 14 14 378 1 0.95 0.95 1 

14 Oct 09 15.5 70 0.15 0.65 0.3 0.1 

19 Nov 09 -7 205 0.7 0.8 0.8 0.8 

21 Nov 13 0.5 145 0.9 0.9 0.9 0.7 

26 Dec 09 -3 35 0.95 0.9 0.9 0.8 

 

It is possible to see that shade positions are different in different zones based on solar heat gain 

and illuminance at each zone orientation. On hot days optimization keeps the shade open up to 

position that the reference point illuminance is satisfied; at the same time it reduces solar heat 

gain to decrease building cooling energy consumption. Figure 6-9 shows building energy 

consumption on a sample day in transient seasons for completely closed and open shades, 

compared to optimized shade position. Results show that using thick shades gives optimization 

more flexibility for energy savings compared to thin shades. 
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Figure ‎6-9: Building energy consumption in sample day for completely close and open shade 

compare to optimized shade position 

 

6.2.2 Artificial light energy consumption 

Three different artificial lighting energy consumptions are investigated. These energy 

consumptions are 5.4, 10.7, and 16 w/m
2
. Results show that building energy consumption 

increases with rising artificial lighting energy consumption as we expected (Figure 6-10). 

Comparing the percentage of energy savings between optimized and open shade cases show that 

lower artificial lighting energy consumption has a higher potential for energy savings (25%) 

compared to higher artificial lighting energy consumption (20%). The energy savings potential 

of lower artificial lighting energy consumption becomes more important in cooling seasons when 

solar heat gain has a detrimental effect on building energy consumption. Lower artificial lighting 

energy consumption helps optimization to keep shades closed as much as possible during 

summer in order to reduce solar heat gain without significant increase in light energy 

consumption. 
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Figure ‎6-10: Building energy consumption for different artificial lighting energy consumption  

 

6.2.3 Zones illuminance set-point 

Illuminance set-points of 25, 50, and 100 foot-candles for each zone are investigated. Results of 

building energy consumption and optimized energy savings are shown in Figure 6-11 for these 

set-points. Increasing the indoor illuminance set-point increases closed-shades building energy 

consumption as it expected, since zones require more lighting energy to satisfy higher 

illuminance set-points. Also lower set-points have higher energy savings potential, since shading 
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keeping shade at a lower position to prevent unnecessary heat gains from windows. 
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Figure ‎6-11: Building energy consumption for different illuminance set-point 

 

6.3 Methods of increasing speed and accuracy of optimization (stochastic search coupling 

with local search) 

Pattern search (PS) is a family of numerical optimization methods that do not require the 

gradient of the equations for solving the optimization problem. Hence PS can be used on 

functions that are not continuous or differentiable and when the exact equations for objective 

function calculation are not available. 
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minimum. Figure 6-12 shows the energy optimization results of a sample RC-network model of 
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Figure ‎6-12: Investigation of pattern search method by comparing different start point in respect 

to nonlinear optimization results for 5 zones 

 

Since the genetic algorithm searches the specific domain randomly it is time consuming for big 

domain optimization. It is possible to stop GA after a finite number of iterations and easily 

combine the GA with the Pattern Search (PS) algorithm to produce a hybrid algorithm that uses 

the GA for the global search and uses the PS for the local search. Thus, the global exploration of 

the GA reduces the risk of getting attracted by a local minimum which is not global, and the PS 

enables clear convergence statements in domains where the cost function is smooth. Figure 6-13 

shows the results of energy optimization of one zone by using GA and combination of GA and 

PS. The results show GA optimization with limited number of iterations is not accurate enough 

and using a multi-start GA increases the accuracy while making the optimization very time 

consuming. Combining global optimization with local optimization is possible by applying local 

search to the results of GA for faster and more precise optimization.  

The combination of GA and PS finds better control parameters and saves more energy. In 

addition, it is faster than GA since this optimization requires less iteration in the GA part, which 

increases the speed of optimization significantly. 
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Figure ‎6-13: Comparison of different GA optimization methods and combination of GA and PS 

(Pattern Search) method for one zone 

 

Figure 6-14 shows the results for energy consumption of one zone with different optimization 

methods compared to the scheduled basecase. The results show that the combination of GA and 

PS saves more energy and optimizes faster. Also in most cases applying PS only on shade 

position as a most effective parameter is enough for precise building energy optimization.  

Figure 6-15 shows energy savings percentage and optimization time for genetic algorithm and 

combination of genetic algorithm and pattern search method with different iteration number. The 

combination of genetic algorithm and pattern search optimization leads to higher energy savings 
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to reach similar energy savings in less time when the fast optimization becomes the priority in 

real time control.  
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Figure ‎6-14: Results for energy consumption of one zone with different optimization methods 

compare to scheduled basecase for May 3, hours 10 to 12 (GA: Genetic Algorithm, PS: Pattern 

Search) 

Figure  6-15: Results of energy savings percentage and optimization time for one zone with 

different optimization methods and iteration number compare to scheduled basecase for May 3, 

hours 10 (GA: Genetic Algorithm, PS: Pattern Search) 
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6.4 Methods of increasing speed and accuracy of optimization (Rule-base decision 

making coupled with stochastic search) 

Several methods are available for solving an optimization problem such as: constraint based 

algorithms, which try to find out the relation between the variables and optimization objectives 

in order to extract the algorithm for finding an optimized result; search and scoring based 

algorithms, which search in a variables domain, looking for set of variables that obtain the best 

optimized results, based on objective function for scoring. In this section, rule-base decision 

making as an example of constraint method is compared with genetic algorithm as an example of 

search method. Also these two methods are combined to take advantage of each one for fast and 

accurate optimization. 

The results in Figure 6-16 and Table 6-3 show that applying simple rules (four rules between 

three variables) can reduce building energy consumption. Having better savings requires 

modified and more complex rules based on optimization results. Optimization based on the 

genetic algorithm reduces energy consumption more than rule-base while it requires significant 

time for optimization. Combining the rule-base and the genetic algorithm increases speed and 

accuracy of optimization by reducing optimization variables and domain. in this method rule-

base decision making runs before GA to make decisions for some of the variable amounts or 

modifing the search domian for them. Rule-base algorithm makes decision about shade position, 

indoor temperature, and fresh air fan flow rate based on outdoor air temperature and solar 

radation. Decision about exact value of these parameters or their acceptable range decreases 

optimization domain that leads to faster optimization. 
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Figure ‎6-16: Energy consumption on one zone for GA and combination of GA + Rule-base for 

August 18, hours 10 to 12 

 

Table ‎6-3: Comparison of genetic algorithm optimization and Rule-base (Rb) combined with 

genetic algorithm (GA) 
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(min) 
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6.5 Effect of optimization parameters on optimization speed and energy savings  

Effects of number of iterations and number future-hours variables on multi-hour optimization 

results with GA are investigated in this section. In this case for the current hour all of the control 

variables are optimized while some of them are chosen for optimization for future-hours and the 

rest are assumed equal to the current hour amount. Results show that the number of variables has 

significant effect and should be chosen correctly for multi-hour optimization. Optimization with 

a huge number of variables reduces the speed of optimization and also increases the chance of 

divergence or incorrect results with constant number of iterations. Using very small number of 

variables reduces the potential of energy savings. The other effective parameter on optimization 

results is the number of iteration. A higher number of iterations increases accuracy of final 

results for reaching to optimal answer; on the other hand it decreases optimization speed 

significantly. As a result, finding the correct balance for the number of iterations and variables is 

very important. Figure 6-17 and Figure 6-18 show the building energy consumption results of 

GA for different numbers of iterations in current hour optimization. The results show that by 

increasing number of iteration accuracy of optimization increase while the optimization speed 

decreases.  

 

Figure ‎6-17: Building energy consumption results of GA for different number of iteration in 

current hour optimization for May 3, hours 10 to 12 

0 

2 

4 

6 

8 

10 

12 

10 11 12 

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

k
W

h
) 

Time (Hr) 

Schedule 

Current hour (50 Iteration)  

Current hour (200 Iteration) 

Current hour  (350 Iteration) 



 

95 
 

 

Figure ‎6-18: Best fitness value and mean fitness value of objective function based on number of 

iteration for genetic algorithm optimization 
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Figure ‎6-19: Energy consumption results of multi hour optimization whit different number of 

iteration and variables for August 18, hours 10 to 12 

 

 

Figure ‎6-20: Time consumption results of direct multi hour optimization whit different number 

of iteration and variables for August 18, hours 10 to 12 
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The method of calculating the objective function is another important parameter in speed of 

optimization. As it is discussed in previous chapters, the direct and the indirect methods for 

calculating the objective function are introduced. In the direct method the objective function is 

calculated by the DOE-2 and in the indirect method it is calculated by trained neural network. 

Figure 6-21 compares the energy consumption of direct and indirect method. The results show 

energy calculation difference less than 1.5% between these two methods. By comparing the 

energy calculation results of rerunning one of these methods for specific hour, the results show 

similar difference between the energy calculations that is came from the optimization with 

stochastic method (Figure 6-22). Comparing the optimization computational time of the direct 

and the indirect optimizations show significant difference between them. The indirect method 

required more time for first iterations since it needs initial time for training neural network. 

However, computational time does not increase considerably by increasing the number of 

iterations. While, the direct method computational time increases significantly by increasing the 

number of iterations (Figure 6-23). 

 

Figure ‎6-21: Energy consumption results of direct and indirect method for calculating of 

objective function for Aug 18, hours 9 to 14 
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Figure ‎6-22: Energy consumption results of rerunning indirect method for calculating of 

objective function for Aug 18, hours 9 to 14 

 

 

Figure ‎6-23: Computational time of the direct and indirect methods for objective function 

calculation versus number of iterations 
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6.5.1 Comparison between energy and cost objective functions 

Two objective functions could be defined for optimizations: energy consumption and cost. Based 

on the importance of each of these objectives, one of them can be chosen. The results for control 

parameters and savings can be different when using each of these objectives. 

For investigation of the effects and differences of these objectives a sample hour is optimized 

based on each of them. The difference between these two objectives could be more important in 

multi-hours optimization. 

The results for sample hour optimization of shade position with objective functions of cost and 

energy are shown in Figure 6-24 and Figure 6-25. The results show different optimized shade 

position based on objective function that leads to different cost and energy consumption.  

  

Figure ‎6-24: Zone energy cost of close, open, and optimized position based on cost and energy 

objective functions for September 12, hour 13 
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Figure ‎6-25: Zone energy consumption of close, open, and optimized position based on cost and 

energy objective functions for September 12 hour 13 
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decision making algorithm before the genetic algorithm optimization to decrease optimization 

domain and range of variables. 

The genetic algorithm is used as the main optimization method for current hour or multi-hour 

optimization based on cost or energy objective functions. GA can be connected directly with 

DOE-2 for energy and cost objective function calculation or indirectly with a neural network that 

is trained with DOE-2 results. 

After optimization with GA, its results are used as an initial value for local search to improve the 

optimization results. Figure 6-26 shows the complete process of integrated optimization. 

 

 

Figure ‎6-26: Integrated building optimization process 
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during transient seasons compared to very hot or very cold seasons. Sources of energy savings 

come from various strategies; using solar outdoor illuminance from the windows to reduce 

indoor lighting energy consumption; using solar heat gain from the windows during the heating 

periods to reduce heating energy consumption; controlling temperature during the day for 

minimum energy consumption and storing cooling or heating energy; adjusting outdoor air flow 

rate for air quality and energy consumption management. 

 

Figure ‎6-27: Building total energy savings for different months with current hour integrated 

optimization 
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consumption to cost can affect percentage of savings. In the case of current hour optimization in 

a building with a complete electrical HVAC system the results of cost savings are similar to 

energy savings results. However, for a building with an HVAC system that works with gas and 

electricity, time-of-use price of electricity and its ratio to gas price can affect optimization 

results. 

 

Figure  6-28: Maximum energy savings potential based on working hours daily average 

temperature 

 

For example when it is peak hours with high electricity, cost optimization gives priority to 

reducing lighting power instead of heating energy consumption. In this case demand response 

and time-of-use price from the utility becomes more important. Figure 6-29 shows the results of 

cost savings based on time-of-use price compare to energy savings. 

Reducing peak load is another advantage of integrated optimization. Using integrated 

optimization can reduce energy consumption at peak hours, which leads to lower building energy 

cost as well as the potential of reducing cooling and heating systems sizes. It also can help 

utilities during peak hours as a part of a demand response project. Table 6-4 shows results of 

peak load in each month and their savings by using integrated optimization. 

 

0 

5 

10 

15 

20 

25 

30 

-30 -20 -10 0 10 20 30 40 

E
n
er

g
y
 s

av
in

g
s 

%
 

Temperature ( ºC) 



 

104 
 

 

Figure ‎6-29: Cost savings based on time-of-use price compare to energy savings 

 

Table  6-4: Monthly peak load and possible peak load savings by using integrated control 

Month Peak load (kW) Savings % 

Jan 219.64 32% 

Feb 233.79 34% 

Mar 165.4 42% 

Apr 146.72 40% 

May 74.98 36% 

Jun 29 21% 

Jul 34.2 23% 

Aug 36.4 26% 

Sep 35.09 31% 

Oct 110.26 40% 

Nov 173.99 43% 

Dec 219.24 35% 
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The results show peak load savings from 21% to 43%. The effective parameters on these peak 

load savings are: (1) solar illuminance control to reduce lighting energy consumption by 

optimizing shade position, (2) solar heat gain and conduction heat transfer optimization by 

controlling shade position, (3) temperature control and using stored energy in building envelope, 

and (4) outdoor air flow rate control based on outdoor air temperature that can reduce building 

energy consumption. 

6.6.1 Developing rules for rule-Base decision making 

Optimization of energy and peak load depends on finding the right combination of control 

parameters such as indoor temperature, shade position, light power, and outdoor air fan flow 

rates. Investigating optimized value of these control parameters leads to better understanding of 

building energy optimization process and developing new rules for decision making algorithm 

before optimization. Figure 6-30 shows the results of indoor temperature and shade position for 

four zones in transient season in April 1 to April 6. For better comparison results of the indoor 

temperatures are demonstrated with the outdoor temperature. Also, results of the shade positions 

for each zone are demonstrated with the solar heat gain and the solar illuminance from that zone 

window.  

Developed decision making rules are introduced below: these are obtained based on investigated 

control parameters results. Values of the constraints depend on building envelope and systems. 

 In very cold and very hot outdoor temperatures, indoor temperature should be kept in its 

extremums. 

The Figure 6-31 shows the results of integrated optimal control for indoor temperature based 

on outdoor temperature. For investigated office building in Montreal the indoor temperature 

should be kept at its minimum for outdoor temperature lower than -5 ˚C and it should be kept 

at its maximum for outdoor temperature higher than 21 ˚C. 
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Zone 2 – East side 
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Zone 3 – North side 
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Zone 4 – West side 

Figure ‎6-30: Results of the indoor temperature and outdoor temperature, as well as, shade 

position, solar heat gain, and solar illuminance for each zone from April 1 to April 6  
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Figure ‎6-31: Results of optimized indoor temperature based on outdoor temperature 

 

 In very cold and very hot outdoor temperatures, shade position should be closed. 

 In cooling seasons with mild outdoor temperature, it is most suitable to keep shade 

position open. 

The results of optimized shade position of sample office building versus outdoor temperature 

show that shade position should be kept closed for outdoor temperature higher than 20 ˚C 

and lower than -20 ˚C. Also, for outdoor temperature between 0 ˚C and 10 ˚C open shade 
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Figure ‎6-32: Results of optimized shade position based on outdoor temperature 

 

 In very cold and very hot outdoor temperatures, outdoor air fan flow rate should be kept 

at its minimum. 

 Outdoor air fan flow rate could be kept at higher rate during cooling season when outdoor 

air is lower than indoor temperature with proper temperature difference. 

Figure 6-33 shows the results of outdoor air fan flow rate versus outdoor temperature in 

sample office building in Montreal. For outdoor temperature higher than 22 ˚C and lower 

than 2 ˚C fan flow rate should be kept at minimum amount.  
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Figure ‎6-33: Results of optimized fan flow rate based on outdoor temperature 

 

Comparing similar results of shade position and zones orientation in figure 6-28 for entire year 

show that 

 Zone in North side of the building receives lower solar heat gain and illuminance and 

shade position has small effect in zone load calculation 

 Zone in East side of the building receives higher solar heat gain and illuminance during 

the morning and shade position is more effective than the afternoon. 

  Zone in West side of the building receives higher solar heat gain and illuminance during 

the afternoon and shade position is more effective than the morning. 
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Figure ‎6-34: Sample energy savings potential of multi hour optimization of May 3, hours 10 to 

12 

 

 

Figure ‎6-35: Sample cost saving potential of multi hour optimization of August 18, hours 10 to 

12 
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Figure 6-36 shows the results of multi-hour energy optimization. Increasing the period of multi-

hour optimization increases the energy savings potential but decreases the speed and accuracy of 

optimization and increases the chance of divergence. As a result, considering more than 3 hours 

for multi-hour optimization is neither accessible nor accurate. By using more than 3 hours 

unacceptable results and divergence occurred more than the allowable amount and the results are 

not reliable anymore.  

 

Figure ‎6-36: Building total energy savings for different months with current hour and multi hour 

integrated optimization 
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7 Conclusion and Remarks 

Building system operations are critical to optimizing energy use, reducing energy and 

maintenance costs, ensuring occupant comfort and maintaining the quality of indoor air. Today’s 

buildings are complex and have interdependent systems that require sophisticated controls. 

Optimizing a building’s energy consumption requires an approach that allows devices and 

systems to work together, while considering their effect on each other in an efficient and cost-

effective way to meet occupant requirements and expectations. 

Many buildings have multiple systems that typically work independently of each other. These 

systems include heating, cooling, lighting, ventilation, automated blinds, and domestic hot water. 

The control strategies of existing building systems usually do not work at their fullest potentials. 

These control methods lead to poor energy management and comfort. Comprehensive integrated 

algorithms for building control are not completely investigated yet. Although the previous 

researches tried to control different effective parameters in one or multiple zones, some 

limitations in those researches (about all possible strategies and effective parameters and 

methods of optimization) highlight the need for a more accurate and efficient integrated control. 

The main interest of this research is to develop an advanced building operation system for 

integrated control of lighting, blinds, ventilation and heating and cooling systems for whole 

buildings, in order to 

1) Improve the indoor environment (thermal comfort, visual comfort and air quality) 

2) Reduce operation cost (energy consumption, energy price and maintenance) 

3) Reduce peak load (response to peak demand charge and time-of-use rates) 

Also, effect of current hour parameters on future hour energy consumption is considered by 

multi-hour optimization. In addition, approaches are developed to coordinate integrated control 

and demand response and develop new rules that help whole building control. 

Three main steps to reach the objective of the research are: 

 Optimization of building energy consumption based on developed RC-network model  

 Modification of simulation tool (DOE-2) by adding specific functions for investigation of 

all strategies and control parameters 

 Integration of optimization method and energy simulation software, as well as increasing 

speed of optimization  
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An RC-network model of a typical one-story office building is developed and created in 

MATLAB. Building control parameters of temperature, light, shade position and outdoor fan 

flow rate are optimized by using a nonlinear optimization method and results compared with 

scheduled control of the same building. Yearly energy savings of about 35% is achieved by using 

integrated control instead of scheduled control. The results show that the amount of energy saved 

by controlling the shade based on heating and cooling is more than the amount of energy saved 

by controlling the shade based on indoor illuminance. In addition, by using individual zone 

control energy savings will be reduced between 1% and 10%. Also, multi-hour optimization 

saves up to 4% of energy cost compared to optimization, based on the current hour for 

mentioned days.  

DOE-2 as an open source building simulation software is chosen for the building energy and cost 

calculation method. This software required some modification for satisfying integrated 

optimization requirements. DOE-2 required predefining of all building and control variables 

before yearly optimization; it is modified to accept control parameters from optimization 

methods and also to receive previous hour building control parameters and indoor conditions as 

an input, which made it possible to do online and hourly simulation and optimization. In 

addition, the shade position simulation method of DOE-2 was modified to calculate energy 

consumption of the building based on shade position instead of just with open or closed shade. 

The results of using the modified DOE-2 for controlling nighttime ventilation show nearly 5% 

energy savings with medium and high building thermal mass in Montreal. Also, simulations with 

different temperature difference between inside and outside air show that when outdoor 

temperature is approximately 5.5 °C (10 °F) lower than indoor temperature, nighttime ventilation 

works more efficiently. 

The integrated optimization tool is developed based on connecting DOE-2 and the optimization 

method in MATLAB. Several methods such as applying the rule-based decision-making method 

before optimization with a GA, in addition to training the neural network for optimization and 

using local search after the GA, are introduced to increase optimization speed and accuracy.  

Application of the developed integrated optimization tool on nighttime ventilation and shade 

position optimization are investigated for comparison and validation. The results for nighttime 

ventilation show total energy savings up to 8% and cooling energy consumption up to 23%. 

These savings occurred on days with high diurnal temperature range and average temperature 
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near 17 ˚C. Higher energy savings are calculated for days with an outdoor average temperature 

between 15 ˚C and 22 ˚C. The results for shade position optimization show that on very cold 

days shades stay closed, since the effect of conduction heat transfer is more significant than solar 

heat gain and illuminance transmission from windows. Also on very hot days, in addition to the 

detrimental effect of conduction heat transfer, shades stay nearly closed, since the effect of solar 

heat gain which increases cooling energy consumption is more pronounced and important than 

lighting energy reduction from daylighting. In transient seasons when the building is in heating 

mode, shades stay mostly open, since heat gain and illuminance transmission from windows 

reduces both heating and lighting energy consumption. Results show that using thick shades, 

lower light energy consumption and lower illuminance set-point give optimization more 

flexibility for energy savings. 

Finally, the developed integrated tool for whole building energy optimization was applied to a 

typical office building in Montreal. The results show energy savings between 10% and 30%; also 

higher energy savings potential could be expected during transient seasons compared to very hot 

or very cold seasons. The results also show peak load savings from 21% to 43%. Applying multi-

hour optimization increases energy savings potential by considering the effect of the current hour 

on future hour energy consumption and energy storage possibility of the building. Increasing the 

period of multi-hour optimization increases the energy savings potential but decreases the speed 

and accuracy of optimization and increases the chance of divergence. 

7.1 Contributions 

This reseach advances the investigation and development of integrated building control 

optimization through the following contributions: 

1. Developing a basic building-integrated optimization to investigate effective control parameters 

and characterize the effect of integrated control on building energy consumption. The integrated 

building control optimization based on a developed RC-network model provides a fast and 

tolerable tool to researchers for investigating different parameters and approaches for 

optimization of building energy consumption. 

2. Introducing required modification in building energy and cost calculation software to prepare 

it for using in the real-time optimization process. The set of modifications that are applied to 

DOE-2 as a building energy calculation software to use for real-time integrated control can 

provide a guideline for modifying other building energy calculation software in other research. 
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3. Developing an algorithm to connect any optimization methods (MATLAB) with building 

energy calculation software with text format of input and output. The methodology that is used 

for connecting a genetic algorithm in MATLAB and DOE-2 can be used by researchers for 

developing their optimization tools with other methods or in other applications. 

4. Introducing a systematic approach for increasing speed of optimization in building integrated 

control optimization. Investigation of using a decision-making algorithm before global 

optimization and using local search after global optimization provides a framework for 

developing a fast and accurate integrated optimization method. 

5. Presenting a set of rule-based recommendations for whole building integrated control. 

Possibility of developing decision-making rules for building integrated control based on 

integrated control optimization results provides the opportunity to decrease building energy 

consumption even without a real-time optimization tool. Also these rules increase the speed of 

real-time optimization significantly by decreasing the optimization domain. 

Based on the developments and investigations of this thesis, several papers are published, 

including journals papers: 

 Aria and Akbari, “Integrated and multi-hour optimization of office building energy 

consumption and expenditure,” Energy and Building Journal (2014). 

 Aria and Akbari, “Optimisation of night-time ventilation parameters to reduce building's 

energy consumption by integrating DOE-2 and MATLAB,” International Journal of 

Sustainable Energy (2014). 

 Aria and Akbari, “A predictive nighttime ventilation algorithm to reduce energy use and 

peak demand in an office building,” Journal of Energy and Power Engineering (2013).  

7.2 Future works 

As is discussed in this thesis, a framework is introduced for integrated building control 

optimization, and the optimization tool is developed and applied in a typical office building in 

Montreal. The results show significant energy consumption and peak load reduction compared to 

fixed-schedule building control. Simulating different types of buildings in more cities and 

comparing the building energy consumption results as a future work would be beneficial to 

evaluate possible energy savings potential of integrated control and to develop new rules for the 

decision-making section. Multi-hour optimization for integrated control of a whole building 
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investigated up to the next three hours, since considering more future-hours was very time-

consuming or increased optimization divergence probability. As a future work, using a high-

speed computer for simulating multi-hour optimization with more time periods and higher 

numbers of iteration could lead to higher savings. Developed control optimizations are evaluated 

and validated by comparing their applications (nighttime ventilation and shade position 

optimization) with similar cases. As a future work, the developed optimization tool could be 

applied in real buildings to have experimental results for validation of simulated results. In 

addition, Adding objective function of occupancy comfort and using multi-objective 

optimization can be considered as a future work. 
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Appendix A: Nonlinear optimization based on RC-network 

model MATLAB program 

This program optimizes a five zones building energy consumption based on RC-network model 

by using nonlinear optimization. The flowchart of this program, RC-network model of entire 

building, and parameters values are shown in below. 

 

 

 Figure A-1: Program flowchart 
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Figure A-2: Building RC-network model 
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Table A-1: Detail of building construction and systems 

Building parameters Value 

Chiller COP 3.5 

Electrical heater efficiency 1 

Open shade window U value 2.3 W/m
2
 K (0.4 Btu/hr ft

2
 °F) 

Close shade window U value 1.4 W/m
2
 K (0.25 Btu/hr ft

2
 °F) 

Fluorescent lamp efficacy 70 lumens/W 

Exterior wall U value 0.4 W/m
2
 K (0.073 Btu/hr ft

2
 °F) 

Exterior wall specific heat 42 kJ/kg K (10 Btu/ °F lb) 

Exterior wall outdoor surface convection heat coefficient 34 W/m
2
 K (6 Btu/hr ft

2
 °F) 

Exterior wall indoor surface convection heat coefficient 8.5 W/m
2
 K (1.5 Btu/hr ft

2
 °F) 

Interior wall U value 1.53 W/m
2
 K (0.27 Btu/hr ft

2
 °F) 

Fan energy consumption 0.88 W (3 Btu/hr) per CFM of air 

Maximum lamp power 15.8 W/m
2
 (1.5 W /ft

2
) 

 

 

Table A-2: Building schedule 

Schedule Occupied  Un-occupied 

Minimum indoor illuminance 753.5 lux (70 Foot-candle) 430.5 lux (40 Foot-candle) 

Occupancy heat generation 12.6 W/m
2
 (4 Btu/hr ft

2
)  1.6 W/m

2
 (0.5 Btu/hr ft

2
) 

Equipment heat generation  10.7 W/m
2
 (3.4 Btu/hr ft

2
) 3 W/m

2
 (1 Btu/hr ft

2
) 

Cooling temperature set-point 25.5 °C (78 °F) 26.6 °C (80 °F) 

Heating temperature set-point 21 °C (70 °F) 18.3 °C (65 °F) 

Minimum fresh air flow rate 0.01 m
3
/s per m

2
  

(0.2 CFM per ft
2
) 

0.003 m
3
/s per m

2
 

(0.05 CFM per ft
2
) 
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function RCnetwork_Nonlinear 
clc 
clear all  
% Properties 
COP=3.5;Uo=0.4;Uc=0.25;Eff=70; 
ILLsp=70;MAXlp=5;Equ=3.4;Occ=4; 
Uw=0.069;Bv=0.25;Av=3;EtaH=1; 
rho=0.08;CP=0.24; 

  
% read input data of temperature, window heat gain and illuminance for all 
% zones 
fid = fopen('Inout.txt'); 
P = fscanf(fid, '%g %g', [12 inf]); 
P=P'; 
n=24; 
h=31; 
T=70*ones(n*h,38); 
ET=0; 
EE=0; 
EH=0; 
for r=0:(h-1) 

  
   for i=1:n 
        % Properties and inputs  
        COP=3.5;Uo=0.4;Uc=0.25;Eff=70; 
        ILLsp=70;MAXlp=5;Equ=3.4;Occ=4; 
        Uw=0.069;Bv=0.25;Av=3;EtaH=1; 
        rho=0.08;CP=0.24; 
        rhow=8;CPw=10;L=0.2;hi=1.5;ho=6; 
        Uw1=0.0732;Tii=67; 
       % Calculating elements of optimization matrices   
        if i<=8 || i>=19 
           ILLsp=40;Equ=1;Occ=0.5; 
        end 
        for j=1:4 
           D(i+(24*r),10*(j-1)+1:10*j)=[MAXlp,(Uo-Uc),(Uc+hi)+rho*8*CP,-

MAXlp,... 
                -((Uo-Uc)*P(i+(24*r),1+3*(j-1))+P(i+(24*r),2+3*(j-1))),... 
                rho*CP*60*P(i+(24*r),1+3*(j-1)),... 
                rho*CP*60,MAXlp*Eff/3.4,P(i+(24*r),3+3*(j-1)),ILLsp];         
           D(i+(24*r),53)=rho*8*CP;%D53 
          if i+(24*r)==1 
            K(i+(24*r),j)=((Uc)*P(i+(24*r),1+3*(j-1))+Occ+Equ+rho*8*CP*Tii); 
            K(i+(24*r),5)=(Occ+Equ+rho*8*CP*Tii); 
          else 
            K(i+(24*r),j)=((Uc)*P(i+(24*r),1+3*(j-

1))+Occ+Equ+rho*8*CP*T(i+(24*r)-1,5+8*(j-1))); 
            K(i+(24*r),5)=(Occ+Equ+rho*8*CP*T(i+(24*r)-1,32+3)); 
          end 
        end 
   end 

    
 % Building set-point       
   for i=1:n     

  
        if i==1 
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            Tcs(i+(24*r),1:5)=80;Ths(i+(24*r),1:5)=65;cfm(i+(24*r),1:5)=0.05; 
        elseif i<=7 || i>=20 
            for j=1:4 
            Tcs(i+(24*r),j)=min(80,T(i+(24*r)-1,5+8*(j-1))+3); 
            Ths(i+(24*r),j)=max(65,T(i+(24*r)-1,5+8*(j-1))-3); 
            end 
            Tcs(i+(24*r),5)=min(80,T(i+(24*r)-1,3+32)+3); 
            Ths(i+(24*r),5)=max(65,T(i+(24*r)-1,3+32)-3); 
            cfm(i+(24*r),1:5)=0.05; 
        elseif i==8    
            Tcs(i+(24*r),1:5)=78;Ths(i+(24*r),1:5)=70;cfm(i+(24*r),1:5)=0.2; 
        elseif i==19   
            Tcs(i+(24*r),1:5)=80;Ths(i+(24*r),1:5)=65;cfm(i+(24*r),1:5)=0.2; 
        else 
            for j=1:4 
            Tcs(i+(24*r),j)=min(78,T(i+(24*r)-1,5+8*(j-1))+3); 
            Ths(i+(24*r),j)=max(70,T(i+(24*r)-1,5+8*(j-1))-3); 
            end 
            Tcs(i+(24*r),5)=min(78,T(i+(24*r)-1,3+32)+3); 
            Ths(i+(24*r),5)=max(70,T(i+(24*r)-1,3+32)-3); 
            cfm(i+(24*r),1:5)=0.2; 
        end 
end 
% Solver loop 
    for i=1:n 
      % Properties 
      COP=3.5;Uo=0.4;Uc=0.25;Eff=70; 
      ILLsp=70;MAXlp=5;Equ=3.4;Occ=4; 
      Uw=0.069;Bv=0.25;Av=3;EtaH=1; 
      rho=0.08;CP=0.24; 
      rhow=8;CPw=10;L=0.2;hi=1.5;ho=6; 
      Uw1=0.0732;    Tii=67; 
     if i<=8 || i>=19 
         ILLsp=40;Equ=1;Occ=0.5; 
     end 
%     --------------------------------------------------------------------- 
     for j=1:4 
        if i+(24*r)==1 
            K(i+(24*r),j)=((Uc)*P(i+(24*r),1+3*(j-1))+Occ+Equ+rho*8*CP*Tii); 
            K(i+(24*r),5)=(Occ+Equ+rho*8*CP*Tii); 
        else 
            K(i+(24*r),j)=((Uc)*P(i+(24*r),1+3*(j-

1))+Occ+Equ+rho*8*CP*T(i+(24*r)-1,5+8*(j-1))); 
            K(i+(24*r),5)=(Occ+Equ+rho*8*CP*T(i+(24*r)-1,32+3)); 
        end 
     end 
     if i==1 
         Tcs(i+(24*r),1:5)=80;Ths(i+(24*r),1:5)=65;cfm(i+(24*r),1:5)=0.05; 
     elseif i<=7 || i>=20 
            for j=1:4 
                Tcs(i+(24*r),j)=min(80,T(i+(24*r)-1,5+8*(j-1))+3); 
                Ths(i+(24*r),j)=max(65,T(i+(24*r)-1,5+8*(j-1))-3); 
            end 
            Tcs(i+(24*r),5)=min(80,T(i+(24*r)-1,3+32)+3); 
            Ths(i+(24*r),5)=max(65,T(i+(24*r)-1,3+32)-3); 
            cfm(i+(24*r),1:5)=0.05; 
     elseif i==8    
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            Tcs(i+(24*r),1:5)=78;Ths(i+(24*r),1:5)=70;cfm(i+(24*r),1:5)=0.2; 
     elseif i==19   
            Tcs(i+(24*r),1:5)=80;Ths(i+(24*r),1:5)=65;cfm(i+(24*r),1:5)=0.2; 
     else 
            for j=1:4 
              Tcs(i+(24*r),j)=min(78,T(i+(24*r)-1,5+8*(j-1))+3); 
              Ths(i+(24*r),j)=max(70,T(i+(24*r)-1,5+8*(j-1))-3); 
            end 
            Tcs(i+(24*r),5)=min(78,T(i+(24*r)-1,3+32)+3); 
            Ths(i+(24*r),5)=max(70,T(i+(24*r)-1,3+32)-3); 
            cfm(i+(24*r),1:5)=0.2; 
        end 
 %-------------------------------------------------------------------------  
% Start point 
    Xst=[zeros(1,4),70,0.2,70,P(i,1)];       
    xstart=[Xst,Xst,Xst,Xst,0,0,70,0.2]; 

  
% Creating the optimization matrices 

  
    aa=zeros(3,8);aa(1,1)=1;aa(2,2)=1;aa(3,5)=1; 
    Ap=[blkdiag(aa,aa,aa,aa),zeros(12,4);zeros(1,34),1,0]; 
    aap=zeros(4,8); 

  
% Matrix A 
    for j=1:4 
         aap(j,:)=[-D(i+(24*r),8+10*(j-1)),-D(i+(24*r),9+10*(j-

1)),zeros(1,6)]; 
    end 
    App=[blkdiag(aap(1,:),aap(2,:),aap(3,:),aap(4,:)),zeros(4,4)]; 
    A=[Ap;App]; 
% Creating matrices b, lb 
    

b=[1;1;Tcs(i+(24*r),1);1;1;Tcs(i+(24*r),2);1;1;Tcs(i+(24*r),3);1;1;Tcs(i+(24*

r),4);Tcs(i+(24*r),5);-D(i+(24*r),10);-D(i+(24*r),20);-D(i+(24*r),30);-

D(i+(24*r),40)];         
    lb=[0 0 0 0 Ths(i+(24*r),1) cfm(i+(24*r),1) -20 -20 0 0 0 0 

Ths(i+(24*r),2) cfm(i+(24*r),2) -20 -20 0 0 0 0 Ths(i+(24*r),3) 

cfm(i+(24*r),3) -20 -20 0 0 0 0 Ths(i+(24*r),4) cfm(i+(24*r),4) -20 -20 0 0 

Ths(i+(24*r),5) cfm(i+(24*r),5)];     
% Creating Aeq         
       Aeq=[0 0 0 0 -hi 0 rhow*CPw*L+Uw1+hi -Uw1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
             0 0 0 0 0 0 -Uw1 rhow*CPw*L+Uw1+ho 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 
             0 0 0 0 0 0 0 0 0 0 0 0 -hi 0 rhow*CPw*L+Uw1+hi -Uw1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
             0 0 0 0 0 0 0 0 0 0 0 0 0 0 -Uw1 rhow*CPw*L+Uw1+ho 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 
             0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -hi 0 rhow*CPw*L+Uw1+hi 

-Uw1 0 0 0 0 0 0 0 0 0 0 0 0 
             0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -Uw1 

rhow*CPw*L+Uw1+ho 0 0 0 0 0 0 0 0 0 0 0 0 
             0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -hi 0 

rhow*CPw*L+Uw1+hi -Uw1 0 0 0 0 
             0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -Uw1 

rhow*CPw*L+Uw1+ho 0 0 0 0]; 
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% Creating beq    
     if i+(24*r)==1 
         

beq=[rhow*CPw*L*Tii;rhow*CPw*L*P(i+(24*r),1)+P(i+(24*r),1)*ho;rhow*CPw*L*Tii;

rhow*CPw*L*P(i+(24*r),1+3)+P(i+(24*r),1+3)*ho;rhow*CPw*L*Tii;rhow*CPw*L*P(i+(

24*r),1+6)+P(i+(24*r),1+6)*ho;rhow*CPw*L*Tii;rhow*CPw*L*P(i+(24*r),1+9)+P(i+(

24*r),1+9)*ho]; 
     else 
         beq=[rhow*CPw*L*T(i+(24*r)-1,7);rhow*CPw*L*T(i+(24*r)-

1,8)+P(i+(24*r),1)*ho;rhow*CPw*L*T(i+(24*r)-1,7+8);rhow*CPw*L*T(i+(24*r)-

1,8+8)+P(i+(24*r),1+3)*ho;rhow*CPw*L*T(i+(24*r)-

1,7+16);rhow*CPw*L*T(i+(24*r)-

1,8+16)+P(i+(24*r),1+6)*ho;rhow*CPw*L*T(i+(24*r)-

1,7+24);rhow*CPw*L*T(i+(24*r)-1,8+24)+P(i+(24*r),1+9)*ho]; 
     end 

      
        

a1=D(i+(24*r),1);a2=D(i+(24*r),2);a3=D(i+(24*r),3);a4=D(i+(24*r),4);a5=D(i+(2

4*r),5);a6=D(i+(24*r),6);a7=D(i+(24*r),7);a8=D(i+(24*r),8);a10=D(i+(24*r),10)

; 
        

a11=D(i+(24*r),11);a12=D(i+(24*r),12);a13=D(i+(24*r),13);a14=D(i+(24*r),14);a

15=D(i+(24*r),15);a16=D(i+(24*r),16);a17=D(i+(24*r),17); 
        

a21=D(i+(24*r),21);a22=D(i+(24*r),22);a23=D(i+(24*r),23);a24=D(i+(24*r),24);a

25=D(i+(24*r),25);a26=D(i+(24*r),26);a27=D(i+(24*r),27); 
        

a31=D(i+(24*r),31);a32=D(i+(24*r),32);a33=D(i+(24*r),33);a34=D(i+(24*r),34);a

35=D(i+(24*r),35);a36=D(i+(24*r),36);a37=D(i+(24*r),37); 
        a53=D(i+(24*r),53); 
        

K1=K(i+(24*r),1);K2=K(i+(24*r),2);K3=K(i+(24*r),3);K4=K(i+(24*r),4);K5=K(i+(2

4*r),5); 
 % Nonlinear optimization         
        [x,fval,exitflag,output] = ...  
        fmincon(@(x) 

myfun(x,D(i+(24*r),1),D(i+(24*r),11),D(i+(24*r),21),D(i+(24*r),31),COP,D(i+(2

4*r),8),D(i+(24*r),10)),xstart,A,b,Aeq,beq,lb,[],... 
        @(x) 

mycon(x,i+(24*r),D(i+(24*r),2),D(i+(24*r),3),D(i+(24*r),4),D(i+(24*r),5),D(i+

(24*r),6),D(i+(24*r),7),K(i+(24*r),1),D(i+(24*r),12),D(i+(24*r),13),D(i+(24*r

),14),D(i+(24*r),15),D(i+(24*r),16),D(i+(24*r),17),K(i+(24*r),2),D(i+(24*r),2

2),D(i+(24*r),23),D(i+(24*r),24),D(i+(24*r),25),D(i+(24*r),26),D(i+(24*r),27)

,K(i+(24*r),3),D(i+(24*r),32),D(i+(24*r),33),D(i+(24*r),34),D(i+(24*r),35),D(

i+(24*r),36),D(i+(24*r),37),K(i+(24*r),4),hi,D(i+(24*r),53),K(i+(24*r),5),T))

; 
        T(i+(24*r),1:38)= [x,fval,exitflag]; 
 % calculation of building energy consumption based on optimized parameters        
        Q1=a4*x(1)+a5*x(2)+a2*x(5)*x(2)+a3*x(5)-a6*x(6)+a7*x(6)*x(5)-hi*x(7)-

K1-0.27*(x(5+8)-x(5))-0.27*(x(5+24)-x(5))-0.27*(x(32+3)-x(5)); 
        Q2=a14*x(1+8)+a15*x(2+8)+a12*x(5+8)*x(2+8)+a13*x(5+8)-

a16*x(6+8)+a17*x(6+8)*x(5+8)-hi*x(7+8)-K2-0.27*(x(5)-x(5+8))-0.27*(x(5+16)-

x(5+8))-0.27*(x(32+3)-x(5+8)); 
        Q3=a24*x(1+16)+a25*x(2+16)+a22*x(5+16)*x(2+16)+a23*x(5+16)-

a26*x(6+16)+a27*x(6+16)*x(5+16)-hi*x(7+16)-K3-0.27*(x(5+8)-x(5+16))-

0.27*(x(5+24)-x(5+16))-0.27*(x(32+3)-x(5+16)); 
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        Q4=a34*x(1+24)+a35*x(2+24)+a32*x(5+24)*x(2+24)+a33*x(5+24)-

a36*x(6+24)+a37*x(6+24)*x(5+24)-hi*x(7+24)-K4-0.27*(x(5)-x(5+24))-

0.27*(x(5+16)-x(5+24))-0.27*(x(32+3)-x(5+24)); 
        Q5=a4*.68+a53*x(32+3)-a6*x(32+4)+a7*x(32+3)*x(32+4)-K5-0.27*(x(5)-

x(32+3))-0.27*(x(5+8)-x(32+3))-0.27*(x(5+16)-x(32+3))-0.27*(x(5+24)-x(32+3)); 

  
        if Q1>0  
            y(2)=Q1; y(1)=0; 
        else 
            y(1)=-Q1; y(2)=0; 
        end 
        if Q2>0  
            y(4)=Q2; y(3)=0; 
        else 
            y(3)=-Q2; y(4)=0; 
        end 
        if Q3>0  
            y(6)=Q3; y(5)=0; 
        else 
            y(5)=-Q3; y(6)=0; 
        end 
        if Q4>0  
            y(8)=Q4; y(7)=0; 
        else 
            y(7)=-Q4; y(8)=0; 
        end 
        if Q5>0  
            y(10)=Q5; y(9)=0; 
        else 
            y(9)=-Q5; y(10)=0; 
        end 
% Each zone energy consumption        
        ff(i+(24*r)) = 

a1*x(1)+(1/COP+0.25)*y(1)+1.25*y(2)+3*x(6)+a11*x(1+8)+(1/COP+0.25)*y(3)+1.25*

y(4)+3*x(6+8)+a21*x(1+16)+(1/COP+0.25)*y(5)+1.25*y(6)+3*x(6+16)+a31*x(1+24)+(

1/COP+0.25)*y(7)+1.25*y(8)+3*x(6+24)+a1*a10/a8+(1/COP+0.25)*y(9)+1.25*y(10)+3

*x(32+4); 
        fh1(i+(24*r))=(1/COP+0.25)*x(3)+1.25*x(4)+3*x(6); fl1(i+(24*r))= 

a1*x(1); 
        fh2(i+(24*r))=(1/COP+0.25)*x(3+8)+1.25*x(4+8)+3*x(6+8); 

fl2(i+(24*r))=a11*x(1+8); 
        

fh3(i+(24*r))=(1/COP+0.25)*x(3+16)+1.25*x(4+16)+3*x(6+16);fl3(i+(24*r))=a21*x

(1+16); 
        

fh4(i+(24*r))=(1/COP+0.25)*x(3+24)+1.25*x(4+24)+3*x(6+24);fl4(i+(24*r))=a31*x

(1+24); 
        

fh5(i+(24*r))=(1/COP+0.25)*x(32+1)+1.25*x(32+2)+3*x(32+4);fl5(i+(24*r))=a10/a

8; 

         
        ET=ET+ff(i+(24*r)); 
        

EE=D(i+(24*r),1)*x(1)+D(i+(24*r),11)*x(1+8)+D(i+(24*r),21)*x(1+16)+D(i+(24*r)

,31)*x(1+24)+D(i+(24*r),1)*D(i+(24*r),10)/D(i+(24*r),8)+EE; 
        EH=ET-EE; 
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    end 
end 

  
% Reporting the results 
fout1 = fopen('Res1.txt', 'w'); 
fprintf(fout1, '%8.6f\r\n', EE,EH,ET); 
fclose(fout1); 

  
T; 
T1=T'; 
T1(37,1:72)=ff(1:72); 
%T2=[T1(1:8,:);fh1;fl1;T1(9:16,:);fh2;fl2;T1(17:24,:);fh3;fl3;T1(25:32,:);fh4

;fl4;T1(33:36,:);fh5;fl5;T1(37:38,:)]; 
fout = fopen('exp5.txt', 'w'); 
fprintf(fout, '%8.6f %12.8f %8.6f %12.8f %8.6f %12.8f %12.8f %12.8f %8.6f 

%12.8f %8.6f %12.8f %8.6f %12.8f %8.6f %12.8f %8.6f %12.8f %8.6f %12.8f %8.6f 

%12.8f %8.6f %12.8f %8.6f %12.8f %8.6f %12.8f %8.6f %12.8f %8.6f %12.8f %8.6f 

%12.8f %8.6f %12.8f %8.6f %12.8f\r\n', T1); 
fclose(fout); 

  
function f = myfun(x,a1,a11,a21,a31,COP,a8,a10)       
         f = 

a1*x(1)+(1/COP+0.25)*x(3)+1.25*x(4)+3*x(6)+a11*x(1+8)+(1/COP+0.25)*x(3+8)+1.2

5*x(4+8)+3*x(6+8)+a21*x(1+16)+(1/COP+0.25)*x(3+16)+1.25*x(4+16)+3*x(6+16)+a31

*x(1+24)+(1/COP+0.25)*x(3+24)+1.25*x(4+24)+3*x(6+24)+a1*a10/a8+(1/COP+0.25)*x

(32+1)+1.25*x(32+2)+3*x(32+4); 

  
% Nonlinear constraints           
function 

[c,ceq]=mycon(x,i,a2,a3,a4,a5,a6,a7,K1,a12,a13,a14,a15,a16,a17,K2,a22,a23,a24

,a25,a26,a27,K3,a32,a33,a34,a35,a36,a37,K4,hi,a53,K5,T) 

  
    if i==1  
            ceq=[a4*x(1)+a5*x(2)+x(3)-x(4)+a2*x(5)*x(2)+a3*x(5)-

a6*x(6)+a7*x(6)*x(5)-hi*x(7)-K1-0.27*(x(5+8)-x(5))-0.27*(x(5+24)-x(5))-

0.27*(x(32+3)-x(5)) 
            a14*x(1+8)+a15*x(2+8)+x(3+8)-x(4+8)+a12*x(5+8)*x(2+8)+a13*x(5+8)-

a16*x(6+8)+a17*x(6+8)*x(5+8)-hi*x(7+8)-K2-0.27*(x(5)-x(5+8))-0.27*(x(5+16)-

x(5+8))-0.27*(x(32+3)-x(5+8)) 
            a24*x(1+16)+a25*x(2+16)+x(3+16)-

x(4+16)+a22*x(5+16)*x(2+16)+a23*x(5+16)-a26*x(6+16)+a27*x(6+16)*x(5+16)-

hi*x(7+16)-K3-0.27*(x(5+8)-x(5+16))-0.27*(x(5+24)-x(5+16))-0.27*(x(32+3)-

x(5+16)) 
            a34*x(1+24)+a35*x(2+24)+x(3+24)-

x(4+24)+a32*x(5+24)*x(2+24)+a33*x(5+24)-a36*x(6+24)+a37*x(6+24)*x(5+24)-

hi*x(7+24)-K4-0.27*(x(5)-x(5+24))-0.27*(x(5+16)-x(5+24))-0.27*(x(32+3)-

x(5+24)) 
            a4*.68+x(32+1)-x(32+2)+a53*x(32+3)-a6*x(32+4)+a7*x(32+3)*x(32+4)-

K5-0.27*(x(5)-x(32+3))-0.27*(x(5+8)-x(32+3))-0.27*(x(5+16)-x(32+3))-

0.27*(x(5+24)-x(32+3))]; 
    else 
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        ceq=[a4*x(1)+a5*x(2)+x(3)-x(4)+a2*x(5)*x(2)+a3*x(5)-

a6*x(6)+a7*x(6)*x(5)-hi*x(7)-K1-0.27*(T(i-1,(5+8))-x(5))-0.27*(T(i-1,(5+24))-

x(5))-0.27*(T(i-1,(32+3))-x(5)) 
            a14*x(1+8)+a15*x(2+8)+x(3+8)-x(4+8)+a12*x(5+8)*x(2+8)+a13*x(5+8)-

a16*x(6+8)+a17*x(6+8)*x(5+8)-hi*x(7+8)-K2-0.27*(T(i-1,(5))-x(5+8))-0.27*(T(i-

1,(5+16))-x(5+8))-0.27*(T(i-1,(32+3))-x(5+8)) 
            a24*x(1+16)+a25*x(2+16)+x(3+16)-

x(4+16)+a22*x(5+16)*x(2+16)+a23*x(5+16)-a26*x(6+16)+a27*x(6+16)*x(5+16)-

hi*x(7+16)-K3-0.27*(T(i-1,(5+8))-x(5+16))-0.27*(T(i-1,(5+24))-x(5+16))-

0.27*(T(i-1,(32+3))-x(5+16)) 
            a34*x(1+24)+a35*x(2+24)+x(3+24)-

x(4+24)+a32*x(5+24)*x(2+24)+a33*x(5+24)-a36*x(6+24)+a37*x(6+24)*x(5+24)-

hi*x(7+24)-K4-0.27*(T(i-1,(5))-x(5+24))-0.27*(T(i-1,(5+16))-x(5+24))-

0.27*(T(i-1,(32+3))-x(5+24)) 
            a4*.68+x(32+1)-x(32+2)+a53*x(32+3)-a6*x(32+4)+a7*x(32+3)*x(32+4)-

K5-0.27*(T(i-1,(5))-x(32+3))-0.27*(T(i-1,(5+8))-x(32+3))-0.27*(T(i-1,(5+16))-

x(32+3))-0.27*(T(i-1,(5+24))-x(32+3))]; 
    end 
        c=[]; 
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Appendix B: DOE-2 program and function for nighttime 

ventilation modeling 

 

This appendix includes the input file of DOE-2 for modeling five zones building with described 

HVAC system (DOE-2 sample file). As well as, the nighttime ventilation prediction function 

(NV-FUN) for controlling working hours of the building fan during the night. Detail description 

of the function can be found in chapter 5. 

 

INPUT LOADS  .. 

  

TITLE    LINE-1 *SIMPLE STRUCTURE RUN, *..  

             ABORT              ERRORS     .. 

             DIAGNOSTIC         WARNINGS   .. 

              RUN-PERIOD          

                                JAN 1 2000 THRU DEC 31 2000  .. 

$             LOADS-REPORT       VERIFICATION = (ALL-VERIFICATION) 

$                                SUMMARY      = (ALL-SUMMARY)  .. 

             BUILDING-LOCATION  LATITUDE=45.5  LONGITUDE=73.8 

                                ALTITUDE=0 

                                TIME-ZONE=5  AZIMUTH=0.0   .. 

                        $ BUILDING DESCRIPTION 

 

$ STRUCTURE  WOOD FRAME WALLS AND ROOF; 4IN CONCRETE SLAB-ON-GRADE. 

 

$ WALLS      USING CODE-WORDS FROM DOE-2 LIBRARY ( REFERENCE MANUAL PART 2 ) 

$            STARTING WITH OUTSIDE MATERIAL: WOOD SHINGLES (WD01); PLYWOOD 

$            (PW03); R-11 FIBER INSULATION (IN02); AND GYPSUM BOARD (GP01). 

                                                                                 

$ ROOF       ROOF GRAVEL (RG01), BUILT-UP ROOFING (BR01), R-3 MINERAL BOARD 

$            INSULATION (IN22), WOOD SHEATHING CEILING (WD01), AND I-F-R=.76 . 

  

$ SLAB-ON-GRADE EFFECTIVE U-VALUE = .05  (I.E., ASSUMING 4" HEAVY CONCRETE SLAB 

$ U-EFF= (U SLAB + AIR FILM) * AREA (1FT PERIMETER)/ TOTAL AREA 

$      = 0.8 * 300/5000 = .05  

$ WINDOW GLASS:  1/4IN PLATE DOUBLE PANE AND NO INTERNAL SHADING DEVICE. 

$ DOOR GLASS:    1/2IN PLATE SINGLE PANE. THERE IS A 10FT WIDE X 4FT DEEP 

$                OVERHANG AT THE FRONT DOOR DF-1. 

$ INTERIOR LOADS: ADD SURFACE MOUNTED FLUORESCENT LIGHTING AT 

$                  1.5 WATTS/SQFT. 

$                 ADD RECEPTACLES FOR EQUIPMENT AT 1 WATT/SQFT. 

$                 ADD PEOPLE AT 100 SQFT PER PERSON. 

$ BUILDING WITH THE ADDITION OF A PLENUM.  THE SPACES ARE ALSO REDEFINED, WITH 

$               INTERIOR AND EXTERIOR AREAS SEPARATED BY PARTITIONS WITH 

$               A U-VALUE OF 1.5 TO SIMULATE CONVECTIVE HEAT TRANSFER BETWEEN 

$               THEM.  INFILTRATION IS ALSO ADDED AT .25 AIR CHANGES/HR. 

  

$ LIGHTING FIXTURES ARE RECESSED FLUORESCENT WITH 20% OF THE HEAT FROM LIGHTING 

$               GOING TO THE CEILING PLENUM AND THEREFORE INTO THE RETURN AIR. 
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                        $ HVAC SYSTEM DESCRIPTION 

  

$ DESIGN TEMPS  COOLING 78F - HEATING 70F. 

$ SYSTEM TYPE   A SINGLE VARIABLE AIR VOLUME SYSTEM SERVES THE ENTIRE BUILDING. 

$               THE SYSTEM HAS A DRYBULB CONTROLLED ECONOMIZER WITH A LIMIT 

$               TEMP OF 65F, VARIABLE SPEED FAN MOTOR, AND VAV BOXES WITH 

$               A MINIMUM STOP OF 30%.  THE TEMPERATURE OF THE SUPPLY AIR IS 

$               RESET BY OUTSIDE AIR - 60F AT FULL COOLING TO 65F IN WINTER. 

$               MINIMUM VENTILATION AIR IS 20 CFM/PERSON.  THE SYSTEM OPERATES 

$               FROM 8AM TO 6PM WEEKDAYS AND IS OFF ON WEEKENDS.  THERE IS A 

$               NIGHT LOW LIMIT SETPOINT OF 55F TO PREVENT FREEZING. THE FAN IS 

$               ALLOWED TO START AT 6AM WHEN NECESSARY FOR BLDG PICK-UP, BUT 

$               IS DELAYED AS LONG AS POSSIBLE (I.E., OPTIMUM START).  HEATING 

$               AND COOLING ARE NOT ALLOWED TO OPERATE SIMULTANEOUSLY. 

  

$ HVAC PLANT    GAS FIRED HOT WATER GENERATOR  PRESIZED AT .15 MBTUH. 

$               RECIPROCATING AIR COOLED CHILLER  PRESIZED AT .18 MBTUH. 

  

$ UTILITIES     NATURAL GAS AT 1.50 DOLLARS PER THERM. 

$               ELECTRICITY HAS A TIME-OF-DAY CHARGE AS FOLLOWS: 

$                        OFF-PEAK 5 CENTS/KWH  NIGHTS AND WEEKENDS 

$                        SHOULDER 6 CENTS/KWH  8AM TO 12 NOON AND FROM 

$                                              6PM TO 10 PM WEEKDAYS 

$                                              8AM TO 5PM SATURDAYS 

$                        ON-PEAK  7 CENTS/KWH  1PM TO 5PM WEEKDAYS 

  

                      $ CONSTRUCTIONS AND GLASS-TYPES 

  

WA-1-2=LAYERS   MATERIAL=(WD01,PW03,IN02,GP01)  .. 

RB-1-1=LAYERS   MATERIAL=(RG01,BR01,IN22,WD01)  I-F-R=.76  .. 

WALL-1         =CONSTRUCTION       LAYERS=WA-1-2  .. 

ROOF-1         =CONSTRUCTION       LAYERS=RB-1-1  .. 

CLNG-1         =CONSTRUCTION       U = 0.27  ..              $CEILING 

SB-U           =CONSTRUCTION       U = 1.5   ..              $PARTITION 

FLOOR-1        =CONSTRUCTION       U = 0.05  .. 

W-1            =GLASS-TYPE         GLASS-TYPE-CODE = 3  PANES = 2  .. 

DOORS          =GLASS-TYPE         GLASS-TYPE-CODE = 5   .. 

  

                       $ OCCUPANCY SCHEDULE 

  

OC-1           =DAY-SCHEDULE       (1,8) (0.0) 

                                   (9,11) (1.0) 

                                   (12,14) (0.8,0.4,0.8) 

                                   (15,18) (1.0) 

                                   (19,21) (0.5,0.1,0.1) 

                                   (22,24) (0.0)  .. 

  

OC-2           =DAY-SCHEDULE       (1,24) (0.0)  .. 

OC-WEEK        =WEEK-SCHEDULE      (WD) OC-1 (WEH) OC-2  .. 

OCCUPY-1       =SCHEDULE           THRU DEC 31 OC-WEEK  .. 

  

                       $ LIGHTING SCHEDULE 

  

LT-1           =DAY-SCHEDULE       (1,8) (0.05) 

                                   (9,14) (0.9,0.95,1.0,0.95,0.8,0.9) 

                                   (15,18) (1.0) 
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                                   (19,21) (0.6,0.2,0.2) 

                                   (22,24) (0.05)  .. 

  

LT-2           =DAY-SCHEDULE       (1,24) (0.05)  ..  

LT-WEEK        =WEEK-SCHEDULE      (MON,FRI) LT-1   (WEH) LT-2  ..  

LIGHTS-1       =SCHEDULE           THRU DEC 31 LT-WEEK  .. 

  

                      $ OFFICE EQUIPMENT SCHEDULE 

  

EQ-1           =DAY-SCHEDULE       (1,8) (0.02) 

                                   (9,14) (0.8) 

                                   (15,20) (0.8,0.7,0.5,0.5,0.3,0.3) 

                                   (21,24) (0.02)  .. 

  

EQ-2           =DAY-SCHEDULE       (1,24) (0.02)  .. 

EQ-WEEK        =WEEK-SCHEDULE      (MON,FRI) EQ-1   (WEH) EQ-2  .. 

EQUIP-1        =SCHEDULE           THRU DEC 31 EQ-WEEK  .. 

  

                       $ INFILTRATION SCHEDULE 

  

INFIL-SCH      =SCHEDULE         THRU DEC 31 (ALL) (1,24) (1)  ..  

                       $ SET DEFAULT VALUES 

  

                SET-DEFAULT FOR SPACE FLOOR-WEIGHT=100  .. 

                SET-DEFAULT FOR WINDOW HEIGHT=4.0 GLASS-TYPE=W-1  Y=3  .. 

  

                       $ GENERAL SPACE DEFINITION 

  

OFFICE         =SPACE-CONDITIONS 

                                   PEOPLE-SCHEDULE      =OCCUPY-1 

                                   NUMBER-OF-PEOPLE     =50 

                                   PEOPLE-HEAT-GAIN     =400 

                                   LIGHTING-SCHEDULE    =LIGHTS-1 

                                   LIGHTING-TYPE        =REC-FLUOR-RV 

                                   LIGHT-TO-SPACE       =.80 

                                   LIGHTING-W/SQFT      =1.5 

                                   EQUIP-SCHEDULE       =EQUIP-1 

                                   EQUIPMENT-W/SQFT     =1 

                                   INF-METHOD           =AIR-CHANGE 

                                   AIR-CHANGES/HR       =0.25 

                                   INF-SCHEDULE         =INFIL-SCH  .. 

  

                       $ SPECIFIC SPACE DETAILS 

  

PLENUM-1       =SPACE              ZONE-TYPE=PLENUM 

                                   VOLUME=10000          FLOOR-WEIGHT=5 

                                   AREA=5000             Z=8  .. 

    WALL-1PF   =EXTERIOR-WALL      HEIGHT = 2            WIDTH = 100 

                                   AZIMUTH = 180 

                                   CONSTRUCTION = WALL-1   .. 

    WALL-1PR   =EXTERIOR-WALL      HEIGHT = 2            WIDTH =  50 

                                   AZIMUTH =  90         X = 100 

                                   CONSTRUCTION = WALL-1   .. 

    WALL-1PB   =EXTERIOR-WALL      HEIGHT = 2            WIDTH = 100 

                                   AZIMUTH = 0           X = 100 

                                   Y = 50 
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                                   CONSTRUCTION = WALL-1   .. 

    WALL-1PL   =EXTERIOR-WALL      HEIGHT = 2            WIDTH =  50 

                                   AZIMUTH = 270         Y = 50 

                                   CONSTRUCTION = WALL-1   .. 

    TOP-1      =ROOF               HEIGHT=50             WIDTH=100 

                                   X=0   Y=0   Z=2       AZIMUTH = 180 

                                   TILT=0                GND-REFLECTANCE=0 

                                   CONSTRUCTION = ROOF-1   .. 

SPACE1-1       =SPACE              SPACE-CONDITIONS = OFFICE 

                                   AREA = 1056           VOLUME = 8448 

                                   NUMBER-OF-PEOPLE = 11   .. 

    FRONT-1    =EXTERIOR-WALL      HEIGHT = 8            WIDTH = 100 

                                   X=0   Y=0   Z=0       AZIMUTH = 180 

                                   CONSTRUCTION = WALL-1   .. 

      WF-1     =WINDOW             WIDTH = 45            X = 10  .. 

      DF-1     =WINDOW             WIDTH = 8             HEIGHT = 8 

                                   X = 70                Y = 0 

                                   GLASS-TYPE = DOORS 

                                   OVERHANG-A=1          OVERHANG-B=.5 

                                   OVERHANG-W=10         OVERHANG-D=4  .. 

    C1-1       =INTERIOR-WALL      AREA = 1056           NEXT-TO  PLENUM-1 

                                   CONSTRUCTION = CLNG-1   .. 

    F1-1       =UNDERGROUND-FLOOR  AREA = 1056 

                                   CONSTRUCTION = FLOOR-1   .. 

    SB12       =INTERIOR-WALL      AREA = 135.76         NEXT-TO  SPACE2-1 

                                   CONSTRUCTION = SB-U   .. 

    SB14       =INTERIOR-WALL      LIKE SB12             NEXT-TO  SPACE4-1   .. 

    SB15       =INTERIOR-WALL      AREA = 608            NEXT-TO  SPACE5-1 

                                   CONSTRUCTION = SB-U   ..  

SPACE2-1       =SPACE              SPACE-CONDITIONS = OFFICE 

                                   AREA  = 456           VOLUME = 3648 

                                   NUMBER-OF-PEOPLE =  5   ..  

    RIGHT-1    =EXTERIOR-WALL      HEIGHT = 8            WIDTH =  50 

                                   X=100  Y=0   Z=0      AZIMUTH =  90 

                                   CONSTRUCTION = WALL-1   ..  

      WR-1     =WINDOW             WIDTH = 25            X = 12.5  .. 

    C2-1       =INTERIOR-WALL      AREA =  456           NEXT-TO  PLENUM-1 

                                   CONSTRUCTION = CLNG-1   ..  

    F2-1       =UNDERGROUND-FLOOR  AREA = 456 

                                   CONSTRUCTION = FLOOR-1   .. 

    SB23       =INTERIOR-WALL      AREA = 135.76         NEXT-TO  SPACE3-1 

                                   CONSTRUCTION = SB-U   .. 

    SB25       =INTERIOR-WALL      AREA = 208            NEXT-TO  SPACE5-1 

                                   CONSTRUCTION = SB-U   .. 

SPACE3-1       =SPACE              SPACE-CONDITIONS = OFFICE 

                                   AREA  =   1056        VOLUME = 8448 

                                   NUMBER-OF-PEOPLE   =  11   .. 

    BACK-1     =EXTERIOR-WALL      HEIGHT = 8            WIDTH = 100 

                                   X=100  Y=50  Z=0      AZIMUTH =   0 

                                   CONSTRUCTION = WALL-1   ..  

      WB-1     =WINDOW             WIDTH = 45            X = 10  .. 

      DB-1     =WINDOW             WIDTH = 7             HEIGHT = 7 

                                   X = 70                Y = 0 

                                   GLASS-TYPE=DOORS   ..  

    C3-1       =INTERIOR-WALL      AREA = 1056           NEXT-TO  PLENUM-1 

                                   CONSTRUCTION = CLNG-1   .. 
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    F3-1       =UNDERGROUND-FLOOR  AREA = 1056 

                                   CONSTRUCTION = FLOOR-1   .. 

    SB34       =INTERIOR-WALL      AREA = 135.8          NEXT-TO  SPACE4-1 

                                   CONSTRUCTION = SB-U   ..  

    SB35       =INTERIOR-WALL      AREA = 608            NEXT-TO  SPACE5-1 

                                   CONSTRUCTION = SB-U   .. 

SPACE4-1       =SPACE              SPACE-CONDITIONS = OFFICE 

                                   AREA = 456            VOLUME = 3648 

                                   NUMBER-OF-PEOPLE   =  5   .. 

    LEFT-1     =EXTERIOR-WALL      HEIGHT = 8            WIDTH = 50 

                                   X=0   Y=50  Z=0       AZIMUTH = 270 

                                   CONSTRUCTION = WALL-1   .. 

      WL-1     =WINDOW             WIDTH = 25            X = 12.5  .. 

    C4-1       =INTERIOR-WALL      AREA =  456           NEXT-TO  PLENUM-1 

                                   CONSTRUCTION = CLNG-1   .. 

    F4-1       =UNDERGROUND-FLOOR  AREA = 456 

                                   CONSTRUCTION = FLOOR-1   .. 

    SB45       =INTERIOR-WALL      AREA = 208            NEXT-TO  SPACE5-1 

                                   CONSTRUCTION = SB-U   .. 

SPACE5-1       =SPACE              SPACE-CONDITIONS = OFFICE 

                                   AREA  =   1976        VOLUME =15808 

                                   NUMBER-OF-PEOPLE   =  20   .. 

    C5-1       =INTERIOR-WALL      AREA = 1976           NEXT-TO  PLENUM-1 

                                   CONSTRUCTION = CLNG-1   .. 

    F5-1       =UNDERGROUND-FLOOR  AREA = 1976 

                                   CONSTRUCTION = FLOOR-1   .. 

 

                     $ LOADS HOURLY REPORT 

 

  HR-SCH-1     =SCHEDULE        THRU AUG 4  (ALL)(1,24)(0) 

                                THRU AUG 5  (ALL)(1,24)(0) 

                                THRU DEC 31 (ALL)(1,24)(0) .. 

 

    LRB-1      =REPORT-BLOCK       VARIABLE-TYPE=GLOBAL 

                VARIABLE-LIST=(4,17,15) .. $ dbt, wind speed, hor. solar $ 

 

    LRB-2      =REPORT-BLOCK        VARIABLE-TYPE=BUILDING 

                VARIABLE-LIST=(19) .. $ building cooling load $ 

 

    LDS-REP-1  =HOURLY-REPORT      REPORT-SCHEDULE=HR-SCH-1 

                REPORT-BLOCK=(LRB-1,LRB-2) .. 

 

END  .. 

COMPUTE LOADS   .. 

INPUT SYSTEMS   .. 

  

               SYSTEMS-REPORT  SUMMARY=(ALL-SUMMARY)  .. 

 

 SUBR-FUNCTIONS 

 

  VARVOL-1Z=*SAVETEMP* 

  DAYCLS-3=*NV-FUN* 

    .. 

  

               $ SYSTEMS SCHEDULES 
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FAN-1          =DAY-SCHEDULE       (1,8)(0)(9,18)(1)(19,24)(-1)  .. 

FAN-2          =DAY-SCHEDULE       (1,24)(0)   .. 

FAN-3        =DAY-SCHEDULE       (1,8)(0)(9,18)(1) (19,24)(-1) .. 

FAN-SCHED      =SCHEDULE 

       THRU MAY 31 (WD) FAN-1 (WEH) FAN-2 

                                   THRU AUG 31 (WD) FAN-1 (WEH) FAN-2 

                                   THRU DEC 31 (WD) FAN-1 (WEH) FAN-2  .. 

 

N_FAN-1          =DAY-SCHEDULE      (1,8)(1)(9,21)(0)(22,24)(0)  .. 

N_FAN-2          =DAY-SCHEDULE       (1,24) (0)   .. 

 

N_FAN-SCHED      =SCHEDULE 

       THRU MAY 31 (WD) N_FAN-2 (WEH) N_FAN-2 

                                   THRU AUG 31 (WD) N_FAN-1 (WEH) N_FAN-2 

                                   THRU DEC 31 (WD) N_FAN-2 (WEH) N_FAN-2  .. 

 

N_TEMP-1          =DAY-SCHEDULE    (1,8)(65)(9,21)(99)(22,24)(99).. 

N_TEMP-2          =DAY-SCHEDULE       (1,24) (99)   .. 

 

N_TEMP-SCHED      =SCHEDULE 

       THRU MAY 31 (WD) N_TEMP-2 (WEH) N_TEMP-2 

                                   THRU AUG 31 (WD) N_TEMP-1 (WEH) N_TEMP-2 

                                   THRU DEC 31 (WD) N_TEMP-2 (WEH) N_TEMP-2  .. 

  

HEAT-1      =DAY-SCHEDULE    (1,8) (55)   (9,18) (70)  (19,24) (55)  .. 

HEAT-2      =DAY-SCHEDULE    (1,24) (55)   .. 

HEAT-WEEK   =WEEK-SCHEDULE   (MON,FRI)  HEAT-1   (WEH)  HEAT-2   .. 

HEAT-SCHED  =SCHEDULE        THRU DEC 31   HEAT-WEEK   .. 

 

 

COOLOFF     =SCHEDULE        THRU DEC 31 (ALL) (1,8)(0)(9,24)(60) .. 

HEATOFF     =SCHEDULE        THRU DEC 31 (ALL) (1,8)(0)(9,24)(60)  .. 

  

COOL-1      =DAY-SCHEDULE    (1,8)(99)(9,18)(78)(19,24)(99)  .. 

COOL-2      =DAY-SCHEDULE    (1,24) (99)   .. 

COOL-WEEK   =WEEK-SCHEDULE   (MON,FRI)  COOL-1   (WEH)  COOL-2   .. 

COOL-SCHED  =SCHEDULE        THRU DEC 31   COOL-WEEK   .. 

  

R1 DAY-RESET-SCH  SUPPLY-HI 65  SUPPLY-LO 60 

                  OUTSIDE-LO 30  OUTSIDE-HI 75  .. 

SAT-RESET RESET-SCHEDULE  THRU DEC 31 (ALL) R1  .. 

  

  

                    $ SYSTEM DESCRIPTION 

  

ZAIR         =ZONE-AIR      OA-CFM/PER=20  .. 

  

 CONTROL     =ZONE-CONTROL  DESIGN-HEAT-T=70  DESIGN-COOL-T=76 

                            HEAT-TEMP-SCH= HEAT-SCHED 

                            COOL-TEMP-SCH= COOL-SCHED 

                            THERMOSTAT-TYPE=REVERSE-ACTION  .. 

  

SPACE1-1     =ZONE          ZONE-AIR=ZAIR  SIZING-OPTION= ADJUST-LOADS 

                            ZONE-CONTROL=CONTROL .. 

SPACE2-1     =ZONE          LIKE SPACE1-1   .. 
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SPACE3-1     =ZONE          LIKE SPACE1-1   .. 

SPACE4-1     =ZONE          LIKE SPACE1-1   .. 

SPACE5-1     =ZONE          LIKE SPACE1-1  .. 

  

PLENUM-1     =ZONE          ZONE-TYPE=PLENUM  SIZING-OPTION= ADJUST-LOADS 

                            DESIGN-HEAT-T=50  DESIGN-COOL-T=95  .. 

  

S-CONT       =SYSTEM-CONTROL  COOLING-SCHEDULE= COOLOFF 

                              HEATING-SCHEDULE= HEATOFF 

                              HEAT-SET-T=65 

                              COOL-CONTROL=RESET 

                              COOL-RESET-SCH=SAT-RESET 

                              MIN-SUPPLY-T=60 .. 

 

S-AIR        =SYSTEM-AIR      OA-CONTROL=TEMP .. 

  

S-FAN        =SYSTEM-FANS     FAN-SCHEDULE=FAN-SCHED  FAN-CONTROL=SPEED 

                              SUPPLY-STATIC=5.5  SUPPLY-EFF=.7     .. 

  

S-TERM       =SYSTEM-TERMINAL REHEAT-DELTA-T=58 

                              MIN-CFM-RATIO=0.3   .. 

  

SYST-1       =SYSTEM          SYSTEM-TYPE=VAVS 

                              SYSTEM-CONTROL= S-CONT 

                              SYSTEM-FANS= S-FAN 

                              SYSTEM-TERMINAL= S-TERM 

         SYSTEM-AIR=S-AIR 

                              ECONO-LIMIT-T=65 

 

         NIGHT-VENT-CTRL= SCHEDULED+DEMAND 

         NIGHT-VENT-SCH= N_FAN-SCHED 

         NIGHT-VENT-DT= 5 

         NIGHT-VENT-RATIOS= (0.63,0.7,0.63,0,0,0) 

         VENT-TEMP-SCH= N_TEMP-SCHED  

 

 

                              RETURN-AIR-PATH=PLENUM-ZONES 

                              PLENUM-NAMES=(PLENUM-1) 

                              ZONE-NAMES=(SPACE1-1,SPACE5-1,SPACE2-1 

                                         SPACE3-1,SPACE4-1,PLENUM-1)   

 

$         FUNCTION=(*H-NV-FON-FUNBFSYS4*,*none*)   .. 

 

                     $ SYSTEMS HOURLY REPORT 

 

  HR-SCH-2     =SCHEDULE        THRU AUG 4  (ALL)(1,24)(1) 

                                THRU AUG 5  (ALL)(1,24)(1) 

                                THRU DEC 31 (ALL)(1,24)(1) .. 

 

    SRB-1      =REPORT-BLOCK       VARIABLE-TYPE=GLOBAL 

                VARIABLE-LIST=(8) .. $ outside dbt, wbt $ 

 

    SRB-2      =REPORT-BLOCK       VARIABLE-TYPE=SPACE1-1 

                VARIABLE-LIST=(7) .. $ thermostat setpoint, 

                                         $ zone temp, extraction rate 

    SRB-4      =REPORT-BLOCK       VARIABLE-TYPE=SPACE5-1 
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                VARIABLE-LIST=(6) .. $ thermostat setpoint, 

                                         $ zone temp, extraction rate 

 

    SRB-3      =REPORT-BLOCK       VARIABLE-TYPE=SYST-1 

                VARIABLE-LIST=(5,6,17,23,33,32,39,25) .. $ coil leaving air temp, 

                                         $ return air temp, coil load.  

 

    SYSS-REP-1 =HOURLY-REPORT      REPORT-SCHEDULE=HR-SCH-2 

                REPORT-BLOCK=(SRB-1,SRB-2,SRB-4,SRB-3) .. 

 

END   .. 

 

##INCLUDE NV- FUN.inc 

 ED NV- FUN.inc 

 

 

COMPUTE SYSTEMS   .. 

  

INPUT PLANT   .. 

  

              PLANT-REPORT  SUMMARY=(ALL-SUMMARY) 

                            VERIFICATION = (ALL-VERIFICATION)  .. 

  

                $ HOT-WATER GENERATOR 

  

HWG      =PLANT-EQUIPMENT  TYPE=HW-BOILER  SIZE=-999  ..  

 PLANT-PARAMETERS  HERM-REC-COND-TYPE=AIR  .. 

  

                $ AIR-COOLED RECIPROCATING CHILLER 

  

CHIL1       =PLANT-EQUIPMENT  TYPE=HERM-REC-CHLR  SIZE=-999 ..  

  

 PLANT-COSTS      PROJECT-LIFE=25  DISCOUNT-RATE=5  .. 

 ENERGY-RESOURCE  RESOURCE=ELECTRICITY  .. 

 ENERGY-RESOURCE  RESOURCE=NATURAL-GAS  ENERGY/UNIT=100000 

                  UNIT-NAME=THERMS   .. 

 

                $ PLANT HOURLY REPORT 

 

    HR-SCH-3   =SCHEDULE        THRU AUG 4  (ALL)(1,24)(0) 

                                THRU AUG 5  (ALL)(1,24)(0) 

                                THRU DEC 31 (ALL)(1,24)(0) .. 

 

    PRB-1      =REPORT-BLOCK       VARIABLE-TYPE=END-USE 

                VARIABLE-LIST=(6) .. $ chiller load, 

                                           $ part load ratio, EIR 

    PLT-REP-1  =HOURLY-REPORT   REPORT-SCHEDULE=HR-SCH-3 

                REPORT-BLOCK=(PRB-1) .. 

  

END  .. 

COMPUTE PLANT   .. 

 

INPUT ECONOMICS  .. 

DIAGNOSTIC WARNINGS .. 

ECONOMICS-REPORT  SUMMARY (ALL-SUMMARY)  .. 

 



 

146 
 

BELOW-50KW  = UTILITY-RATE 

              RESOURCE=ELECTRICITY 

              DEMAND-QUALS = (0,50) 

              USE-MIN-qUALS = NO 

              QUALIFY-RATE = ALL-MONTHS 

              BLOCK-CHARGES = (SMALL-BLOCK).. 

 

SMALL-BLOCK = BLOCK-CHARGE 

              BLOCK1-TYPE = ENERGY 

              BLOCK1-DATA = (900 0.0539 

                             1  0.0751) .. 

 

ABELOW-50KW  = UTILITY-RATE 

               RESOURCE=ELECTRICITY 

               DEMAND-QUALS = (50,0) 

               USE-MIN-qUALS = NO 

               BLOCK-CHARGES= (WINTER-BLK, SUMMER-BLK) .. 

                

      

     WINTER-BLK= BLOCK-CHARGE 

                 BLOCK-SCH=SEASONS-SCH 

                 SCH-FLAG=1 

                 BLOCK1-TYPE=DEMAND 

                 BLOCK1-DATA= (1,6.21) .. 

 

     SUMMER-BLK= BLOCK-CHARGE 

                 BLOCK-SCH=SEASONS-SCH 

                 SCH-FLAG=2 

                 BLOCK1-TYPE=DEMAND 

                 BLOCK1-DATA= (1,1.26) .. 

 

    SEASONS-SCH=SCHEDULE THRU MAR 31 (ALL) (1,24) (1) 

                         THRU NOV 30 (ALL) (1,24) (2) 

                         THRU DEC 31 (ALL) (1,24) (1) .. 

 

 GAS-COST   = UTILITY-RATE   RESOURCE = NATURAL-GAS 

                             ENERGY-CHG = .60  ..  

END  .. 

COMPUTE ECONOMICS  .. 

            STOP .. 

 

Function 
FUNCTION NAME NV–FUN  .. 

 

ASSIGN MON=IMO        DAY=IDAY       HR=IHR 

       INILZE=INILZE 

       TOUT=DBT        

       HEATON=HON     COOLON=CON 

       FONX=FON 

       POX=PO 

       CFMX=CFM 

       QCX=QC 

       QHX=QH 

       TSPACE=XXX10 

       W_H_DAY=ISCDAY 
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       .. 

 

      CALCULATE .. 

 

C  FOR ADDING CONSTRAINTS OF INDOOR AND OUTDOOR TEMPERATURE DIFFERENCE       

C        IF (TOUT+5.GT.TSPACE) GOTO 1010 

 

         IF (MON.EQ.6.OR.MON.EQ.7.OR.MON.EQ.8) GOTO 1010 

         IF (HR.EQ.24) FONX=0              

         TPAV=(TP_OUTMAX+TP_OUTMIN)/2 

          

        IF(TPAV.LT.61) GOTO 1020 

        IF(TPAV.LT.63) GOTO 1030 

        IF(TPAV.GE.63) GOTO 1010 

         

1020    CONTINUE  

        IF (MON.LE.3.AND.HR.LE.8) FONX=0 

        IF (MON.GE.11.AND.HR.LE.8) FONX=0 

        IF (MON.GE.4.AND.MON.LE.10.AND.HR.LE.7) FONX=0 

        IF (HR.EQ.24) FONX=0         

         

1030    CONTINUE  

        IF (MON.LE.3.AND.HR.LE.3) FONX=0 

        IF (MON.GE.11.AND.HR.LE.3) FONX=0 

        IF (MON.GE.4.AND.MON.LE.10.AND.HR.LE.3) FONX=0 

        IF (HR.EQ.24) FONX=0   

          

1010    CONTINUE  

        IF (HR.EQ.1) TOUT_MIN = TOUT 

        IF (HR.EQ.1) TOUT_MAX = TOUT 

        IF(TOUT_MIN.GE.TOUT)TOUT_MIN=TOUT 

        IF(TOUT_MAX.LE.TOUT)TOUT_MAX=TOUT 

        IF(HR.EQ.20)TOUT20=TOUT 

        IF(HR.EQ.21)TOUT21=TOUT 

        IF(HR.EQ.21)TTREND=TOUT-TOUT21PRE 

        IF(HR.EQ.21)TOUT21PRE=TOUT 

        IF(HR.EQ.22)TDROP=TOUT20-TOUT 

 

 

        IF(HR.LT.24) GO TO 1040 

C   Calculate Vent Temperature at Hour 24 

         TOUT24=TOUT 

         TIN24=TSPACE 

         TP_OUTMIN=0.659*TOUT_MIN+0.307*TOUT24-0.184*TDROP 

         TP_OUTMAX=TOUT_MAX+0.349*TTREND-0.1*TDROP 

         IF (HR.EQ.24) NV_ON =0 

         IF((TP_OUTMAX+TP_OUTMIN)/2.GT.63) NV_ON =1 

 

1040    CONTINUE      

         FON=FONX 

         

        PRINT 51,MON,DAY,HR,TP_OUTMIN,TP_OUTMAX,FONX,POX,NV_ON,TOUT 

51      FORMAT(' ',3F5.0,F7.1,F7.1, F7.0,F20.10,F8.2,F8.2) 

 

C  IF (INILZE.LT.8) RETURN  

        END 
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        END-FUNCTION ..  

         

        FUNCTION NAME=SAVETEMP .. 

 $ 

 $ saves last hours zone temps for next hour's heat load calculations 

 $ 

ASSIGN MON=IMO DAY=IDAY HR=IHR TNOW=TNOW 

    FONX=FON 

       TSPACE=XXX10 DBT=DBT  NZ=NZ HUMRAT=HUMRAT .. 

       CALCULATE .. 

   

      IF (NZ.LT.1) GO TO 100 

      IF (NZ.EQ.1) GO TO 40 

      IF (NZ.GE.2) GO TO 100 

  40  TSPACE=TNOW 

 100  CONTINUE 

      END 

      END-FUNCTION .. 
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Appendix C: DOE-2 and MATLAB integrated program 

In this section MATLAB program to connect DOE-2 and genetic algorithm for current hour 

integrated building optimization by using decision making and pattern search algorithm is 

presented.  

  

Previous zones parameters 

from yearly or previous runs 

Decision making 

Rule base 

algorithm 
Modified 

variables domain 

Building energy 

consumption prediction 

with NN 

Random variables 

set generator 

DOE2 

Building energy 

consumption 

Neural Network 

training 

Genetic Algorithm 

optimization 

Optimized 

parameters from GA 

Pattern search 

optimization 

DOE2 

Optimized control 

variables and energy 

consumption  
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function RT_OPT_GA_NonDyn_PS 

  
clc 
clear all 

  
global ELE 
global IT 
Month=8 
Months='Aug' 
Day=int32(18) 
Hr=int32(11) 
Dur=4 
IT=0; 
% replacing zone temp for first hours of day from yearly simulation   
%************** 
     foutD = fopen('c:\doe21e\Date.txt', 'w'); 
     fprintf(foutD, 'Date %2.0f %2.0f %2.0f \n', Hr,Day,Month); 
     fclose(foutD); 

      
     [s,r] = system('read-HR-T.bat'); 
     fhrt = fopen('c:\doe21e\ZONETEMP.txt'); 
     T = fscanf(fhrt, '%g %g', [6 inf]); 
     fclose(fhrt); 
     T=T'; 

      
    foutT = fopen('c:\doe21e\OUTMAT-T.txt', 'w'); 
    fprintf(foutT, '$ 10002 %1.0f %1.0f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f 

%8.2f %8.2f %8.2f %8.2f %8.2f %8.2f\n', ... 
    Day,Month,T(1,1),T(1,2),T(1,3),T(1,4),T(1,5),T(1,6),... 
    T(2,1),T(2,2),T(2,3),T(2,4),T(2,5),T(2,6)); 
    fclose(foutT); 
    [s,r] = system('readreplaceRT-Z-Temp.bat'); 

     
%*************** 

     
    % previous hours optimized variables will be stored in PrHr matrice to 

apply in DOE2 file (From hour 9 to 18 of working hours)  
     PrHr1=[0 0 0 0 50 70 78 70 78 70 78 70 78 70 78]; 
     PrHr=[PrHr1;PrHr1;PrHr1;PrHr1;PrHr1;PrHr1;PrHr1;PrHr1;PrHr1;PrHr1]; 
    %********  
    % generating data for NN training     
    % Working hour period (Hr must be higher than 8) 
    for i=Hr:(Dur+Hr) 

 

% fuzzy logic 

 

     foutF = fopen('c:\doe21e\DateFu.txt', 'w'); 
     fprintf(foutF, 'Date %2.0f %2.0f %2.0f \n', i,Day,Month); 
     fclose(foutF); 

 

  
   [s,r] = system('fuzzyrulesvariables.bat'); 
    foutV = fopen('c:\doe21e\var-domain.txt', 'w'); 
    fprintf(foutT, '$ 10002 %1.0f %1.0f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f 

%8.2f %8.2f %8.2f %8.2f %8.2f %8.2f\n', ... 
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Vu1,Vu2,Vu3,Vu4,Vu5,Vu6,Vu7,Vu8,Vu9,Vu10,Vl1,Vl2,Vl3,Vl4,Vl5,Vl6,Vl7,Vl

8,Vl9,Vl10); 
    fclose(foutV); 

 

         
    % optimization variables limit 
        nvars=10; 
%   without fuzzy modification         
%        ub=[1,1,1,1,300,77.5,77.5,77.5,77.5,77.5]; 
%        lb=[0,0,0,0,50,70,70,70,70,70]; 

  
%   with fuzzy modification   
        ub=[Vu1,Vu2,Vu3,Vu4,Vu5,Vu6,Vu7,Vu8,Vu9,Vu10]; 
        lb=[Vl1,Vl2,Vl3,Vl4,Vl5,Vl6,Vl7,Vl8,Vl9,Vl10]; 

  
        options = gaoptimset('Generations',2,'PopulationSize',50); 
        options = gaoptimset(options,'PlotFcns',@gaplotbestf); 

          
        fop= @(x) myfun(x,i,ELE,Months,Day,PrHr); 
        [x,fval,exitflag] = ga(fop,nvars,[],[],[],[],lb,ub,[],options); 

  

    
% generating required results for using in NN based on previous results  
   % building energy consumption 
        

EC(1:IT)=(ELE(:,11)+ELE(:,12)+ELE(:,13)+ELE(:,14)+ELE(:,15)+ELE(:,16)+ELE(:,1

7)/(3*3412.14)); 
   % total res 
        resNN=[ELE(:,1:10),EC']; 

    
        ROW_DATAS = resNN; 
%        ROW_DATAS=ROW_DATAS'; 
        INP=ROW_DATAS(:,1:10); 
        OUT=ROW_DATAS(:,11); 

         
        ptr=(INP(1:IT,:))'; ttr=(OUT(1:IT,:))'; 

             
            numHiddenNeurons = 30;  % Adjust as desired 
            net1 = newfit(ptr,ttr,numHiddenNeurons); 
            net1.divideParam.trainRatio = 70/100;  % Adjust as desired 
            net1.divideParam.valRatio = 15/100;  % Adjust as desired 
            net1.divideParam.testRatio = 15/100;  % Adjust as desired 

  
            net1.trainParam.goal=1e-15; 
            net1.performParam=1e-15; 
            net1.adaptParam=1e-15; 

  
% Train and Apply Network 
            [net1,tr] = train(net1,ptr,ttr); 

  
% optimization based on trained NN 
        option = gaoptimset('Generations',20,'PopulationSize',100); 
        option = gaoptimset(option,'PlotFcns',@gaplotbestf); 
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        fp= @(x) opfun(x,net1,PrHr,i); 
        [x,fval,exitflag] = ga(fp,nvars,[],[],[],[],lb,ub,[],option); 

  

 
%   Applying local search 

  
      x0=x;       
      %**** 
      

ubps=[min(x(1)+0.1,1),min(x(2)+0.1,1),min(x(3)+0.1,1),min(x(4)+0.1,1),min(x(5

)+10,300),min(x(6)+0.5,77.5),min(x(7)+0.5,77.5),min(x(8)+0.5,77.5),min(x(9)+0

.5,77.5),min(x(10)+0.5,77.5)]; 
      lbps=[max(x(1)-0.1,0),max(x(2)-0.1,0),max(x(3)-0.1,0),max(x(4)-

0.1,0),max(x(5)-10,50),max(x(6)-0.5,70),max(x(7)-0.5,70),max(x(8)-

0.5,70),max(x(9)-0.5,70),max(x(10)-0.5,70)]; 

  
      optionps = psoptimset('MaxIter',100); 

       
      PS= @(x) myfun(x,i,ELE,Months,Day,PrHr); 
      [x,fval,exitflag] = patternsearch(PS,x0,[],[],[],[],lbps,ubps); 

  
% finding energy consumption based on optimization result 
% y2 and y3 can be used in multi hour optimization 
%************************* 
    y1=[x(1) x(2) x(3) x(4) x(5) x(6) x(6)+0.5 x(7) x(7)+0.5 x(8) x(8)+0.5 

x(9) x(9)+0.5 x(10) x(10)+0.5]; 
%    y2=[x(11) x(12) x(13) x(14) x(5) x(15) x(15)+0.5 x(16) x(16)+0.5 x(17) 

x(17)+0.5 x(18) x(18)+0.5 x(19) x(19)+0.5]; 
%    y3=[x(20) x(21) x(22) x(23) x(5) x(24) x(24)+0.5 x(25) x(25)+0.5 x(26) 

x(26)+0.5 x(27) x(27)+0.5 x(28) x(28)+0.5]; 
    y=PrHr; 
    y((i-8),:)=y1; 

  

  
%    y((i-8)+1,:)=y2; 
%    y((i-8)+2,:)=y3; 

  

  
    PrHr((i-8),:)=y1; 

     
    for j=1:10 
        R(j,:)={1000+j,Months,Day,i,(1-0.75*y(j,1)),(1-0.80*y(j,1)),(1-

0.35*y(j,1)),(1-0.75*y(j,2)),(1-0.80*y(j,2)),(1-0.35*y(j,2)),(1-

0.75*y(j,3)),(1-0.80*y(j,3)),(1-0.35*y(j,3)),(1-0.75*y(j,4)),(1-

0.80*y(j,4)),(1-

0.35*y(j,4)),y(j,5),y(j,6),y(j,7),y(j,8),y(j,9),y(j,10),y(j,11),y(j,12),y(j,1

3),y(j,14),y(j,15)}; 
    end 

     
   fout = fopen('c:\doe21e\OUTMAT.txt', 'w');  
    for row=1:10  
        fprintf(fout,... 
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    '$ %4.0f %s %1.0f %1.0f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f 

%8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f 

%8.2f %8.2f\r\n',R{row,:}); 
    end 
    fclose(fout); 
    [s,r] = system('readreplaceRT1-Tot-Dyn-Res-PrHr.bat'); 

     
    [s,r] = system('readRT1-F-Tot-Res.bat'); 

       
    fF = fopen('c:\doe21e\FRes.txt'); 
    P = fscanf(fF, '%g %g', [7 inf]); 
    fclose(fF); 
    P=P'; 

         
    RE((i-Hr)+1,1:10)=x(1:10); 
    P1((i-Hr)+1,1:17)=[RE((i-

Hr)+1,1:10),P(1,1),P(1,2),P(1,3),P(1,4),P(1,5),P(1,6),P(1,7)];       
    end        
        fres = fopen('c:\doe21e\resOPT.txt', 'w'); 
        fprintf(fres,'%8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f 

%8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f\r\n', P1'); 
        fclose(fres); 

  
%************************* 

  

     

         
function f = myfun(x,i,ELE,Months,Day,PrHr) 
global ELE 
global IT 

  
IT=IT+1; 

  
% modifying PrHr by each of GA population to apply in DOE2 for finding each 

of population energy consumption  
% y2 and y3 can be used in multi hour optimization 
    y=PrHr; 
    y1=[x(1) x(2) x(3) x(4) x(5) x(6) x(6)+0.5 x(7) x(7)+0.5 x(8) x(8)+0.5 

x(9) x(9)+0.5 x(10) x(10)+0.5]; 
%    y2=[x(11) x(12) x(13) x(14) x(5) x(15) x(15)+0.5 x(16) x(16)+0.5 x(17) 

x(17)+0.5 x(18) x(18)+0.5 x(19) x(19)+0.5]; 
%    y3=[x(20) x(21) x(22) x(23) x(5) x(24) x(24)+0.5 x(25) x(25)+0.5 x(26) 

x(26)+0.5 x(27) x(27)+0.5 x(28) x(28)+0.5]; 

     
    y((i-8),:)=y1; 
%    y((i-8)+1,:)=y2; 
%    y((i-8)+2,:)=y3; 

     
 % generate and store all required variables in OUTMAT    
    for j=1:10 
    R(j,:)={1000+j,Months,Day,i,(1-0.75*y(j,1)),(1-0.80*y(j,1)),(1-

0.35*y(j,1)),(1-0.75*y(j,2)),(1-0.80*y(j,2)),(1-0.35*y(j,2)),(1-

0.75*y(j,3)),(1-0.80*y(j,3)),(1-0.35*y(j,3)),(1-0.75*y(j,4)),(1-

0.80*y(j,4)),(1-
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0.35*y(j,4)),y(j,5),y(j,6),y(j,7),y(j,8),y(j,9),y(j,10),y(j,11),y(j,12),y(j,1

3),y(j,14),y(j,15)}; 
    end 

     
   fout = fopen('c:\doe21e\OUTMAT.txt', 'w');  
 for row=1:10  
    fprintf(fout,... 
    '$ %4.0f %s %1.0f %1.0f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f 

%8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f 

%8.2f %8.2f\r\n',R{row,:}); 
 end 
    fclose(fout); 

     
 % Create DOE2 file and run it 
    [s,r] = system('readreplaceRT1-Tot-nonDyn-Run-PrHr1.bat'); 

  
 %read the results of energy consumption from DOE2 file 
    [s,r] = system('readRT1-F-Tot-Run.bat'); 

       
    fF = fopen('c:\doe21e\FRun.txt'); 
    P = fscanf(fF, '%g %g', [7 inf]); 
    fclose(fF); 

  
%    res=[R(1),R(2),R(3),R(4),R(5),R(6),R(7),R(8)]; 
    P=P'; 
    ELE(IT,1:17)=[x(1:10),P(1,:)]; 
    f=(P(1,1)+P(1,2)+P(1,3)+P(1,4)+P(1,5)+P(1,6)+P(1,7)/(3*3412.14)) 

     

     
function fo = opfun(x,net1,PrHr,i) 

  
% generating required variables for using in NN based on x 
% energy consumption for hour i 

  
   inNN1=[x(1:10)]; 
   outputs1 = sim(net1,inNN1'); 
   fo=outputs1; 

 

 


