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ABSTRACT 

Models for Efficient Automated Site Data Acquisition 

Accurate and timely data acquisition for tracking and progress reporting is essential for efficient 

management and successful project delivery. Considerable research work has been conducted to 

develop methods utilizing automated site data acquisition for tracking and progress reporting. 

However, these developments are challenged by: the dynamic and noisy nature of construction 

jobsites; the indoor localization accuracy; and the data processing and extraction of actionable 

information. Limited research work attempted to study and develop customized design of wireless 

sensor networks to meet the above challenges and overcome limitations of utilizing off-the-shelf 

technologies.  

The objective of this research is to study, design, configure and develop fully customized 

automated site data acquisition models, with a special focus on near real-time automated tracking 

and control of construction operations embracing cutting edge innovations in wireless and remote 

sensing technologies. In this context, wireless and remote sensing technologies are integrated in 

two customized prototypes to monitor and collect data from construction jobsites. This data is then 

processed and mined to generate meaningful and actionable information. The developed 

prototypes are expected to have wider scope of applications in construction management, such as 

improving construction safety, monitoring the condition of civil infrastructure and reducing energy 

consumption in buildings. 

Two families of prototypes were developed in this research; Sensor Aided GPS (SA-GPS) 

prototype, which is designed and developed for tracking outdoor construction operations such as 

earthmoving; and Self-Calibrated Wireless Sensor Network (SC-WSN), which is designed for 
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indoor localization and tracking of construction resources (labor, materials and equipment). These 

prototypes along with their hardware and software are encapsulated in a computational framework. 

The framework houses a set of algorithms coded in C# to enable efficient data processing and 

fusion that support tracking and progress reporting. Both the hardware prototypes and software 

algorithms were progressively tested, evaluated and re-designed using Rapid Prototyping 

approach. The validation process of the developed prototypes encompasses three steps; (1) 

simulation to validate the prototypes’ design virtually using MATLAB, (2) laboratory experiments 

to evaluate prototypes’ functionality in real time, and (3) testing on scaled case studies after fine-

tuning the prototype design based on the results obtained from the first two steps.  

The SA-GPS prototype consists of a microcontroller equipped with GPS module as well as a 

number of sensors such as accelerometer, barometric pressure sensor, Bluetooth proximity and 

strain gauges. The results of testing the developed SA-GPS prototype on scaled construction 

jobsite indicated that it was capable of estimating project progress within 3% mean absolute 

percentage error and 1% standard deviation on 16 trials, in comparison to the standalone GPS 

which had approximately 12% mean absolute percentage error and 2% standard deviation. The 

SC-WSN prototype incorporates two main features. The first is the use of the Kalman filtering and 

smoothing for the RSSI signal to provide more stable and predictable signal for estimating the 

distance between a reader and a tag. The second is the use of a developed dynamic path-loss model 

which continually optimizes its parameters to cope with the dynamically changing construction 

environment using Particle Swarm Optimization (PSO) algorithm. The laboratory testing indicated 

the improvement in location estimation, where the produced location estimates using SC_WSN 

had an average error of 0.66m in comparison to 1.67m using the raw RSSI signal. Also the results 

indicated 60% accuracy improvement in estimating locations using the developed dynamic model. 
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The developed prototypes are not only expected to reduce the risk of project cost and duration 

overruns by timely and early detection of deviations from project plan, but also enables project 

managers to observe and oversee their project’s status in near real-time. It is expected that the 

accuracy of the developed hardware, can be achieved on large-scale real construction projects. 

This is attributed to the fact that the developed prototype does not require any scalable 

improvements on its hardware technology, nor does it require any additional computational 

changes to its developed algorithms and software.  
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Chapter 1 : INTRODUCTION 

1.1 General  

Timely and accurate data acquisition is essential for any effective project tracking and control 

system. Based on current practice in construction projects, two methods are commonly used for 

data acquisition: manual and semi-automated methods. These methods can be untimely, subjective 

and expensive. Considerable research work has been conducted to develop methods utilizing 

automated site data acquisition for tracking and progress reporting. However, these developments 

are challenged by: the dynamic and noisy nature of construction jobsites; the indoor localization 

accuracy; and the data processing, including extraction of actionable Information. Limited research 

work attempted to study and develop customized design of wireless sensor networks to meet the 

above challenges and overcome limitations of related off-the-shelf technologies. 

In 2014, over than 1000 construction management professionals and practitioners from the USA 

and Canada, participated in a survey of IT technologies used to support construction project 

collaboration (JBKnowledge, 2014). The results indicated that 75% of survey respondents use a 

manual or spreadsheet process to collect and transfer data from construction jobsites as shown in 

Figure 1-1. Only 19.3% used a dedicated IT solution, most of them use mobile apps for 

smartphones or tablets that track one aspect of field operations, such as time entry, plan viewing, 

crew alert and GPS location.     
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Figure 1-1: Data Collection on Construction Jobsites (JBKnowledge, 2014) 

1.2 Problem Statement  

Efficient management of construction operations relies on accurate and timely monitoring, 

tracking and reporting of onsite progress. There is considerable need to improve current practice 

and to advance research in automated site data acquisition to address this challenge. The limitations 

of the state of the art in automated site data acquisition articulate the problem in this field. These 

limitations in relation to this research are clustered in four main areas: outdoor tracking, indoor 

localization, data organization and processing, and hardware customizations. 

For outdoor tracking applications, GPS and radio frequency identification (RFID) technologies 

had been utilized for tracking of earthmoving operations (Alshibani & Moselhi, 2010; Hildreth, 

Vorster, & Martinez, 2005; Montaser & Moselhi, 2012b; Navon & Shpatnitsky, 2005; 

Vahdatikhaki & Hammad, 2014). However, these methods suffer from the following limitations: 

 Utilizing GPS data (location, speed, and distance) as the only source of information, might 

not be able to capture the big picture of the earthmoving operation nor accurately 

distinguish between productive, idle and out of service times.  
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 Utilization of fixed RFID readers at gates of loading and dumping sites is cumbersome in 

linear projects such as road and highway construction. 

 GPS and RFID data cannot confirm whether the truck is actually fully loaded. 

 The accuracy of these systems can be impacted with low GPS accuracy at urban 

construction jobsites. 

For indoor localization applications, researchers experimented with multiple wireless 

technologies, such as radio frequency identification (RFID), ultra wideband (UWB) and wireless 

local area network (WLAN) (Ergen & Akinci, 2007; H. M. Khoury & Kamat, 2009; Montaser & 

Moselhi, 2014; Saiedeh Navabzadeh Razavi, 2010; Rueppel & Stuebbe, 2008; Soltani, Motamedi, 

& Hammad, 2013; Teizer, Lao, & Sofer, 2007). Several challenges with indoor localization had 

been identified: 

 Passive RFID tags suffer from their short read range, which entails the deployment of a 

large number of tags and hence additional cost (N. Li & Becerik-Gerber, 2011).  

 Ultra wideband (UWB) commercially available hardware is very costly and the 

deployment requires installation of fiber optic cables for timing synchronization (Aryan et 

al., 2011).  

 Wireless local area network (WLAN) accuracy had been reported by researchers to be low; 

approximately 4–7 m with 97% confidence (Bahl & Padmanabhan, 2000; Deasy & 

Scanlon, 2004; Elnahrawy, Xiaoyan, & Martin, 2004; H. Khoury & Kamat, 2007; H. M. 

Khoury & Kamat, 2009; Woo et al., 2011).  

 Utilization of static path-loss models to estimate distances between readers and tags, is not 

practical for dynamic and continually changing construction environment.  
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As to data organization and processing, various data sources are utilized to capture a complete 

picture of the on-going construction operations, and to extract actionable information. The 

utilization of multiple sources of data provides a large amount of data (Soibelman, Wu, Caldas, 

Brilakis, & Lin, 2008). However, processing and reducing data to actionable information and 

fusing the data from different sources remains as obstacles to achieving a practical automated 

progress tracking in near real-time. 

For the hardware customization, most of previous research work focused on the use of off-the-

shelf data acquisition technologies. Such use of one size fits all may not be efficient and incapable 

of addressing the targeted needs. 

This research is motivated to utilize emerging advances in mobile computing, wireless 

communication and remote sensing technologies, to design and develop fully customized and cost 

effective automated site data acquisition tools addressing the above stated challenges.  

1.3 Research Objectives 

To address the challenges highlighted above, this research aims to study, design, configure and 

develop fully customized automated site data acquisition solutions, with a special focus on 

automated tracking and control of construction projects embracing cutting edge innovations in 

wireless and remote sensing technologies. This is to be achieved through the following sub-

objectives: 

1- Study previous research efforts made in the area of automated site data acquisition and 

identify gaps and limitations of these efforts, and the challenges in the use of related off-

the-shelf technologies. Explore and experiment with wireless sensor networks (WSN) and 

internet of things (IoT) for possible use in this field. 
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2- Design and configure prototypes for outdoor construction progress tracking and control 

with a special focus on earthmoving operations, along with productivity assessment and 

analysis algorithms. 

3- Select most suitable wireless technology for indoor localization and best RSSI smoothing 

algorithm, along with the development of a dynamic path-loss model to improve the indoor 

localization accuracy. 

4- Develop self-adaptive algorithm for forecasting project cost at completion, and an 

algorithm for automated generation of as-built schedules. 

5- Test and validate functions of the developed prototypes using MATLAB simulation and 

experiments in laboratory and outdoors environments.  

1.4 Research Methodology 

Figure 1-2 illustrates the methodology to achieve the objective of this research. The methodology 

is summarized in four stages: analysis stage, conceptual design stage, detailed design and 

experimental validation stage, conclusion and documentation stage. The analysis stage began with 

a problem statement and the definition of the objectives. Then, it focuses on performing a 

comprehensive state of the art review on the following domains: 

 Current practices in project tracking and control. 

 Automated data acquisition technologies and techniques. 

 Emerging new technologies for automated site data acquisition. 

 Data fusion models. 

The conceptual design of the framework was developed embracing flexibility and adaptability. It 

encapsulates customized hardware prototypes and software algorithms for tracking and progress 
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reporting of construction operations. Simulation and laboratory experiments are utilized to test, 

evaluate and re-design prototypes and algorithms using Rapid Prototyping approach.  

 

Figure 1-2: Research Methodology 
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1.5 Thesis Organization 

This thesis consists of six chapters and seven appendices. Chapter 2 presents the literature review 

Summary of the limitations and gaps in previous research is presented at the end of that chapter. 

Chapter 3 presents the research vision, along with the conceptual design of the developed 

framework. An overview of developed framework is introduced, describing its main hardware 

prototypes and software algorithms. Chapter 4 presents a detailed design, testing and validation of 

the developed sensor aided GPS prototype (SA-GPS) for outdoor tracking of construction 

operations. Chapter 5 presents detailed design, testing and validation of Self-Calibrated Wireless 

Sensor Network (SC-WSN) for indoor localization. Chapter 6 highlights contributions and 

limitations of the developments made in the thesis along with suggested future research work. 
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Chapter 2 : LITERATURE REVIEW 

2.1 General 

This Chapter provides a literature review on current practices in data collection and 

analysis using EV tool for track and control construction projects. It also presents an overview of 

previous research efforts on automated data acquisition technologies and their implementation in 

the construction industry. A state of the art review for emerging new technologies such as wireless 

sensor networks (WSN) and data fusion models and their applications in construction 

management. Furthermore, indoor localization techniques are described and their applicability on 

construction jobsites. Finally, the identified gaps and limitations are outlined. Figure 2-1 illustrates 

the structure of this chapter. 

 

Figure 2-1: Chapter 2 Structure 

2.2 Current Practices in Project Tracking and Control  

Traditionally, Earned Value Management (EVM) is conducted, integrating time and cost to 

measure the performance of a project by comparing its planned performance to the actual work 
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performed on construction jobsites. EVM works by comparing three curves to display and evaluate 

the project performance. These curves typically have S shape, and they namely are: Budget Cost 

for Work Scheduled (BCWS), Actual Cost for Work Performed (ACWP), and Budget Cost for 

Work Performed (BCWP), as shown in Figure 2-2 (J. Li, 2004). The curve representing the base 

line planned project is the BCWS curve. The actual expenditure to date is represented through the 

ACWP curve. The third and final curve is the BCWP; it represents the budgeted cost of the work 

that is performed to date, which is the actual value earned for the project. 

 

Figure 2-2: Earned Value Method (J. Li, 2004) 

The main challenge in applying EV is the calculation of the Budget Cost for Work Performed 

(BCWP). Current practices utilize manual and semi-automated method for site data collection, 

then the data is analyzed to estimate the percentage of actual work completed. Project controllers 

also utilize templates to measure percentage complete of various construction tasks and/or process 
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on jobsites. Templates are developed to represent a set of control points and earning percentages 

for each process as shown in Table 2-1 (Moselhi, 1993). However, manual and semi-automated 

data collection and analysis approaches are subjective, expensive and time consuming. Studies 

estimated that field supervisory personnel spend between 30-50% of their time on construction 

sites recording and analyzing field data (McCullouch, 1997) and 2% of the work on construction 

sites is devoted to manual tracking and recording of progress data (Cheok et al., 2000). Such 

practice leads to ineffective project management and creates the need for automated solutions that 

are accurate, efficient, timely and autonomous with minimal user intervention (Sacks et al., 2005).  

Table 2-1: Earned Value Template (Moselhi, 1993) 

Task Work Content Cumulative % Earned 

Earthworks 

01 Excavation 50 

02 Backfill 60 

03 Compact 90 

04 Fine grade 95 

05 Hand over 100 

Foundations 

01 Building 5 

02 Formwork 50 

03 Rebar and embedment 80 

04 Pour 87 

05 Strip cure and grout 95 

06 Hand over 100 

 

Forecasting is a frequent task performed by project managers from start to completion of their 

projects. Accurate forecasts enable project management teams to early estimate potential impacts 

on cost and/or schedule, and hence provide a room to take timely and necessary corrective actions. 

Several forecasting methods for project cost and duration at completion were introduced. These 

methods can be categorized as detailed estimates of remaining work, index-based, stochastic, 

regression-based, and artificial intelligence methods. Detailed cost estimation method is used to 
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estimate the cost of the remaining work, and hence forecast the project cost at completion. The 

accuracy of this method is very high, however, it requires substantial effort for detailed quantity 

takeoffs of remaining work items and estimating their costs.   

As for the index-based forecasting methods, different equations working under different 

assumptions have been utilized to forecast project cost and duration at completion, as shown from 

Equations (2-1) till (2-5) (Hassanien, 2002; J. Li et al., 2006; Moselhi et sl., 2004). However, such 

method suffers from its general assumption that either the performance efficiency achieved up to 

the reporting date remains unchanged throughout the rest of the project, or that the performance 

will be as planned beyond the reporting date (Alshibani, 1999; Christensen, 1993; Fleming & 

Koppelman, 2000; Moselhi, 2011; Zwikael et al., 2000). Better forecasts can be achieved by 

removing specific time periods during which exceptional conditions are known to have prevailed 

and are not likely to be repeated beyond the reporting date (Hassanein & Moselhi, 2003). 

EAC =  
BAC

CPI
         (2-1) 

D =  
PD

SPI
         (2-2) 

EAC =  
BAC

CPI×SPI
        (2-3) 

D =  
PD

CPI×SPI
         (2-4) 

EAC = ACWP (to date) +
BAC−BCWS(to date)

index
     (2-5) 

Where: BAC is Budget at Completion, D is duration at completion, and PD is planned duration. 

For the stochastic techniques, the variability in the cost of individual activities within Work 

Breakdown Structure (WBS) is expressed in terms of stochastic S curves, which were utilized to 

provide probability distributions of forecasted cost at completion (Acebes et al., 2014; Alshibani 
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& Moselhi, 2012; Barraza et al., 2004; Caron et al., 2013). However, these stochastic methods are 

more suitable when historical data of similar projects are available and when the duration of the 

project is relatively long to establish distributions of the activities and their respective remaining 

work.  

As for regression based methods, the relationship between the actual cost and time is modelled to 

predict the project's Estimate-At-Completion (EAC) (Aliverdi et al., 2013; Narbaev & De Marco, 

2014). However, for short term forecasting or with a limited number of observations, regression 

analysis is impractical. Also the performance of such models depends mainly on the availability 

of historical data of similar projects, and the correlation between the data used in the analysis.  

For artificial intelligence methods, fuzzy logic and artificial neural networks (ANN) were utilized  

to forecast project cost and duration at completion under uncertainty (Iranmanesh & Mokhtari, 

2008; J. Li et al., 2006; Naeni et al., 2011).  However, the utilization of fuzzy logic requires an 

expert’s knowledge to express the relationship between the linguistic terms and fuzzy numbers. 

Also, the application of ANN requires a large historical data for training and testing of the network. 

A recent study explored previous research works for forecasting cost at completion in both 

construction and other industries, revealed that the construction industry has difficulties in 

adequately importing advanced tools, and highlighted the need for future research emphasizing the 

adoption of methods from other experienced fields to reflect more reliable and consistent cost 

forecasting capabilities (Narbaev & Marco, 2011). 

2.3 Automated Data Acquisition 

Previous research work on automated data acquisition in construction operations can be grouped 

in five main categories: Automated identification technologies; Outdoor localization and tracking; 
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Indoor localization and tracking; Mobile computing; 3D Imaging and Photogrammetry; and 

Visualization and Building Information Modeling. Each of these categories is explained in details 

in the following sections highlighting their advantage and limitations. 

2.3.1 Automated Identification 

Barcodes and Radio Frequency Identification (RFID) are used for tracking progress of structural 

steel erection (Cheng & Chen, 2002), on-site data collection and information sharing between 

project participants (Tserng et al., 2005), and tracking of material delivery (Akinci et al., 2002; 

Jaselskis et al., 1995; Lee et al., 2008; Montaser, 2013; Song et al., 2006). However, these 

technologies suffer from their limited read range, where barcodes read range is about few inches 

and passive RFID read range is (3-5) meters. Also the cost of RFID readers is quite high where 

the reader costs around $1500. Furthermore, the manual scanning and data analysis process is time 

consuming.  

2.3.2 Outdoor Localization and Tracking 

Global positioning system (GPS), radio frequency identification (RFID), ultra-wideband (UWB), 

attitude and heading reference system (AHRS), and vision based technologies have been utilized 

for progress tracking of outdoor construction operations.  

Standalone GPS technology was utilized to track earthmoving operations (Alshibani & Moselhi, 

2007; Hildreth et al., 2005; Montaser et al., 2012; Navon & Shpatnitsky, 2005), and tracking the 

position of pipe spools on a construction project (Caldas et al., 2006). However, there are a number 

of shortcomings associated with the usage of standalone GPS. The acquired data are limited to 

time and location, which sometimes makes it difficult to distinguish between productive and idle 

times. Also, these records do not provide enough to estimate the quantities of the excavated soil 

or confirm that the trucks are fully loaded.  
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As for Passive RFID, fixed readers installed at the entrance gates of loading and dumping sites 

were utilized for progress tracking of earthmoving operations, by recording the entrance and exit 

of RFID tags attached to dump trucks (Montaser & Moselhi, 2012b). However, passive RFID has 

a limited read range of 3 to 5 meters, which is not suitable for implementation in mega earthmoving 

operations or linear projects such as road and highway construction, where there is no entrance 

gates to the cut or fill locations, and equipment many entries the jobsite from several directions 

without detection. Furthermore, RFID alone cannot detect the truck load, and in that study, the 

dump truck was always assumed to be fully loaded. 

For UWB, a combination of UWB integrated with AHRS was used to collect and process 

earthmoving equipment data, and update corresponding discrete event earthmoving simulation 

model (Akhavian & Behzadan, 2013). However, the utilization of UWB for location tracking 

specially on hauling routes is not applicable for real road construction projects due to the limited 

range of the UWB (100–200 m) (Teizer et al., 2007). Also, the results in this study shown several 

errors regarding the loader ideal time and the operation total cost (Ibrahim & Moselhi, 2014c). A 

novel framework for near real-time simulation of earthmoving operations based on the application 

of UWB and/or GPS tracking technologies was developed encompassing a rule set to  capture 

details of truck and excavator operations (Vahdatikhaki & Hammad, 2014). However, their 

prototype required some manual data handling and processing for inputting real time location 

system (RTLS) files and averaging data over time.  

As for computer vision–based methods, several studies have used video processing, including 

object tracking (Brilakis et al., 2011; Kim et al., 2011; Park et al., 2011; Golparvar-Fard et al., 

2013) and object recognition (Chi & Caldas, 2011; Jog et al., 2011; Azar et al., 2013; Azar & 

McCabe, 2012). However, computer vision methods can fail under certain conditions, particularly 
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in visually noisy images common to construction sites. Also, these methods are limited to the use 

of one camera, which is not adequate to cover large construction jobsites.  

2.3.3 Indoor Tracking and Localization 

In the construction management domain, several researchers have investigated indoor localization 

using a wide range of technologies, which can be divided into three main categories as shown in 

Figure 2-3: (1) wave propagation based; (2) image based; and (3) motion based.  

 

Figure 2-3: Indoor Localization Technologies 

For wave propagation based technologies, propagation models are utilized to estimate the distance 

between a transmitter unit and a receiver unit. Researchers experimented with multiple wireless 

technologies specially radio frequency identification (RFID), ultra wideband (UWB), wireless 

local area network (WLAN). Each technology has its own inherited advantage and disadvantage 
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with relative to accuracy, cost, coverage range, deployment requirements and scalability (Mahalik, 

2007). RFID had been used for object tracking without localization (Goodrum, McLaren, & 

Durfee, 2006; Jaselskis et al., 1995) and tracking with localization (Ergen & Akinci, 2007; 

Montaser & Moselhi, 2014). N. Li & Becerik-Gerber (2011) reported that passive RFID tags are 

a cost effective solution for indoor localization, however, they suffer from their short read range, 

which entails the deployment of a large number of tags and hence requires additional cost. 

Research studies utilizing ultra wideband (UWB) had reported higher localization accuracy of 

approximately < 1m (H. M. Khoury & Kamat, 2009; Rueppel & Stuebbe, 2008; Teizer et al., 

2007), however the measurement accuracy is highly dependent upon the line of sight of the point 

to be located (Aryan et al., 2011). Furthermore, cost of commercially available hardware is very 

high. WLAN is an attractive solution for indoor localization due to its existing universal 

infrastructure availability (Mazuelas et al., 2009). However, several researchers have reported its 

low accuracy to be approximately 4–7 m with 97% confidence (Bahl & Padmanabhan, 2000; 

Deasy & Scanlon, 2004; Elnahrawy et al., 2004; H. Khoury & Kamat, 2007; H. M. Khoury & 

Kamat, 2009; Woo et al., 2011). W. Jang & Skibniewski (2007) implemented combined radio 

frequency and ultrasound architecture using ZigBee wireless sensor modules for indoor position 

estimation. However, traditional ultrasound positioning is limited by line of sight, which is 

challenging in complicated construction environments (Shen et al., 2008). Combinations of RFID 

and ZigBee based sensor networks had been experimented by researchers for materials tracking 

and supply chain management (Cho, Kwon, Shin, Chin, & Kim, 2011; Shin, Park, & Kwon, 2007). 

In these studies, RFID tags were used for identification of construction materials, and ZigBee 

communication was used for wireless data transfer. While, wireless sensor network (WSN) was 
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only used in these studies for data transfer, they confirmed the positive contribution of WSN on 

communication and network flexibility. 

Shahi et al. (2013) developed a 3D marking method using UWB positioning system to track the 

progress of both structural and non-structural activities on construction projects. The developed 

method is able to quantify the progress of the activities that are not directly associated with the 

addition or removal of physical entities on a site, such as the welding or inspection of pipe-spools. 

This method also addresses another shortcoming of existing object-based models with respect to 

detecting progress for situations where the as-built location is different than the as-planned 

location. Therefore, the 3D marking approach can be used as a progress data source in progress 

tracking models, providing a unique dimension of site information that has not been incorporated 

in the previous attempts at automating construction progress tracking. However, the utilization of 

UWB has a main limitation due to wiring, calibration, and security, as explained in detail in (Aryan 

et al., 2011).  

Montaser & Moselhi (2014) presented a detailed methodology on utilizing a low cost location 

identification and material tracking for indoor construction using a two-step algorithm. Their 

proposed method utilizes UHF passive RFID technology for capturing spatial data in an indoor 

environment. In this study, the work-active area is divided into exclusive zones, and each zone is 

spatially covered with a number of passive RFID tags. The user and material locations are 

estimated using two different RFID methods (triangulation and proximity) based on RSSI signal 

measurement. A specially designed relational database was used to store and organize RFID 

captured signals. The methodology was experimented on a construction facility in Montreal and a 

lab environment. The results were compared with 5 different test beds in different construction 

time intervals and 1 test bed in a lab environment. The results showed a mean error of 1.0 m and 
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1.9 m for user location identification and material tracking using the triangulation method, 

respectively. The results showed a mean error of 1.9 m and 2.6 m for user location identification 

and material tracking using the proximity method, respectively. The main limitations of the 

developed methodology are the need to generate a path-loss model for each type of tag used in 

case of using the triangulation method, the variability associated with deployment of tags, the 

uncontrolled influence of noisy signals and potential interference from equipment and/or vehicles 

located between the tags and between tags and the mobile reader. 

Soltani et al. (2013) investigated the usage of active RFID technology for the localization of 

movable objects (e.g. components, equipment, and tools) equipped with RFID tags using handheld 

readers by extending a Cluster-based Movable Tag Localization (CMTL) technique which uses a 

k-Nearest Neighbor (k-NN) algorithm. CMTL uses a multidimensional clustering technique that 

considers the signal pattern similarity between the target and reference tags together with the 

spatial distribution of reference tags for detecting the region where the target tag is located. The 

proposed method uses artificial neural networks (ANNs) for positioning the target tag, as opposed 

to empirical weighted averaging formulas used in similar k-NN based methods. The proposed 

method adapts its performance to the environment and reduces the deployment cost of dense 

RFID-tagged environment, while achieving high accuracy by adding virtual tags (VRTs). The 

developed method was tested during the operational phase of a facility using 20 target tags, the 

localization results were compared to the LANDMARC and CMTL methods. The average errors 

considering only centered tags inside each room, which are surrounded by four tags were 1.55 m, 

0.77 m, and 0.38 m for LANDMARC, CMTL, and CMTL+, respectively. However, the developed 

method showed an improvement of 38% compared to LANDMARC, and 7% compared to CMTL 

considering all the tags. The developed method utilizes irregular bilinear interpolation algorithm 



19 

 

to simulate the RSSI for the grid of VRTs surrounded by real reference tags. The basic principle 

of the bilinear interpolation is that the 2-D interpolation is broken down into three 1-D 

interpolations. While the algorithm accounts for nonlinearity in 2D space, it assumes that the RSSI 

distribution is linear in 1D space. Moreover, ANN is applied as an alternative method for 

positioning, where RSSIs are processed and then summarized into dissimilarity indicators (β 

values). However, it is assumed that the target tags are stationary for the period of the training the 

ANN after each data collection step and localization. 

Li et al. (2015) proposed the development and application of a real time locating system (RTLS) 

based on the chirp spread spectrum (CSS) technique, which is described in this paper for tracking 

the real time position of workers on construction sites. Experiments and tests were carried out both 

on- and off-site to verify the accuracy of static and dynamic targets by the system, indicating an 

average error of within 1m. Due to the limitations of the construction site involved, the developed 

system was only verified in one wing of a public residential construction project in Hong Kong for 

a short duration.  

The second category of localization technology is image based localization, which utilizes image 

matching and computer vision techniques for determining user's location. Image matching detects 

distinguish visual patterns and characteristics in an indoor environment with images in a database 

(Ferdaus, Vardy, Mann, & Gosine, 2008). However, image matching approach has low accuracy 

such as room level accuracy, and it suffers from occlusions and changes in environments. 

Computer vision-based localization methods utilize sensors, such as laser scanners and video 

cameras for data acquisition and high processing power to process the data, and are mostly suitable 

for robot navigation (Taneja et al., 2012). 
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The third category of localization is Motion based technologies, which utilizes acceleration and 

heading measurements to determine an object's location relative to its last know location. This 

approach utilizes sensors, such as an accelerometer to measure acceleration in three dimensional 

spaces, a gyroscope to calculate the heading and a dead reckoning algorithm to fuse acceleration, 

and heading direction (Ibrahim & Moselhi, 2015b; Randell, Djiallis, & Muller, 2003). Unlike radio 

frequency localization, motion sensing technology is independent of any infrastructure (Gelb, 

1974). However, the motion sensing does not provide high location accuracies, but the accuracy 

can be improved by smart algorithms, which able to correct drift errors (Glanzer, Bernoulli, 

Wiessflecker, & Walder, 2009). 

A summary of localization technologies, advantages and disadvantages of the above mentioned 

technologies is presented in Table 2-2.  

Table 2-2: Summary of Localization Technologies 

Category Technology Advantages Disadvantages Accuracy 

Wave 

Based 

Infrared 

Low power requirements 

Low circuitry costs 

Higher security 

Portable 

High noise immunity 

Only works with line of sight 

Blocked by common 

materials   

Short range 

Light and weather sensitive 

Low data transmission rate 

Down to a 

few 

centimeters 

WLAN 

Usage of readily 

deployed infrastructure, 

reduced cost 

Coarse localization  

Requires an offline phase 

Sensitive to interference, 

signal propagation effects, 

and dynamic environmental 

changes 

Down to a 

few meters 

RFID 

Low tag cost 

Active tags are more 

expensive and require a 

battery 

Limited localization accuracy 

Limited range with passive 

tags 

High reader cost 

Down to a 

few meters 

UWB 

High data transmission 

rate 

Capability for expansion 

in the number of devices 

used simultaneously 

Dedicated transmitter‐receiver 

infrastructure 

Require time synchronization 

between nodes  

Down to a 

few 

centimeters 
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Ultrasound 

Extremely high 

localization accuracies 

Require external 

synchronization 

Affected by ambient noise.  

Accuracy affected by 

propagation issues and 

NLOS. 

Speed of sound variations, 

dependent on temperature and 

other environmental 

conditions 

Down to a 

few 

centimeters 

Image 

based 

Computer 

vision 

Hardware needed is 

becoming cheaper with 

off-the shelve 

components 

Coarse accuracy  

Susceptible to occlusions and 

changes in indoor 

environments. 

Very computationally 

expensive and memory 

consuming. 

Cumulative error built-up 

Down to a 

few meters 

Image 

matching 

Data sources are already 

available in security 

System cameras 

Complete prior knowledge of 

the fixed geometrical 

structure 

Down to a 

few meters 

Motion 

based 

Inertial 

Navigation 

Self-containment  

Resilience to 

environmental 

conditions.  

Continuous update of 

location estimates 

Drift inherent to sensors.  

Relative localization  

Require initialization and 

calibration 

Dependent 

on 

recalibration  

 

Three main location estimation techniques had been utilized in literature to locate an object using 

radio frequency (RF): Trilateration, Scene Analysis and Proximity.  

Trilateration is based on geometric properties, where the object's position is determined by 

measuring its distance from several reference points (Gonçalo & Helena, 2009). Trilateration 

method determines the position of a tag or reader using distance estimated at three reference points. 

Consider a tag positioning problem in a 2-D space as an example. Figure 2-4 shows how the tag 

position can be estimated using the trilateration method, where the range of the unknown tag to 

reference points (reader antennas) P1(x1, y1), P2(x2, y2), and P3(x3, y3) are estimated as d1, d2 and 

d3 respectively.  
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Figure 2-4: Tag Positioning using Trilateration 

The location of the unknown tag, denoted as (x, y), can be determined by solving the following 

three equations  

(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 = 𝑑𝑖
2,                    𝑖 = 1,2,3.                                 (2-6) 

As a result, the coordinate of the unknown tag is obtained as 

{
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                              (2-7) 

As for scene analysis technique, which estimates the object's location using a pre-defined data set 

of observations about the surrounding scene. Such method requires offline training phase and data 

storage to maintain pre-defined observation data, which is not practical for dynamic environments 

such as construction jobsites (Fu & Retscher, 2009; Woo et al., 2011). In this technique, the 

location of the object is computed using features of a “scene” constituted of the electromagnetic 

signal characteristics map defined by the attenuation of a transmitted signal from multiple locations 
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in the “field of view” for the scene. Therefore, there is an “RF signature” unique to a given location 

and combination of receivers (Bulusu, Heidemann, & Estrin, 2000; Hightower & Borriello, 2001). 

The major disadvantage of this technique is the extensive effort required to generate the signal 

signature database and reconstruct an entirely new database due to significant changes in the 

environment which typically occur on a large industrial construction project. Thus, this approach 

requires a fixed reader grid, a static signal transmission degradation map, and much recalibration 

when the transmission space changes.  

For the proximity method, object’s distance to reference points is not actually measured, but only 

its presence within a certain range is determined (Aryan et al., 2011). Therefore, proximity 

algorithm is simple to apply, but has a coarse localization accuracy (N. Li & Becerik-Gerber, 

2011). The proximity technique determines whether an object is near one or more known locations, 

by monitoring physical phenomena with limited range, such as physical contact and 

communication connectivity to the scanner or access points in a wireless cellular network. The 

method of constraints, accumulation arrays, Dempster-Shafer theory, and fuzzy logic are some of 

the approaches that can be used individually or in combination of proximity based localization 

models (Caron et al., 2007). A crude variation on this approach is the center of gravity (COG) 

analysis, where the COG of the RSSI readings of a tag is used to estimate its location. In 

LANDMARC, the concept of reference tags is introduced, which can provide reference locations. 

The known locations of the nearest neighboring reference tags and nearness to the tracking tag are 

used in computing the tracking tag’s location. The algorithm has the following advantages. First, 

the algorithm uses tags instead of more readers, which greatly reduces the cost of the system. 

Second, the reference tags and target tags are in the same environment, and the effect of 

environmental factors can be effectively off-settled. However, the algorithm has the following 
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drawbacks. First, it does not work well in a closed area with severe radio signal multipath effects. 

Second, to further improve the localization accuracy, more reference tags are needed, which is 

costly and may cause RF interference phenomenon. The virtual reference tags were used to achieve 

a higher accuracy. These tags are virtually distributed linearly between real reference tags, which 

increase the density of the reference tag grids. The locations of the virtual reference tags are known 

and recorded, and their signal strength is estimated by linear interpolation of that of the real tags 

next to them. The sensing area is divided into small regions, and each reader maintains its own 

proximity map. As a result, the most probable location can be estimated. 

2.3.4 Mobile Computing 

Previous studies of mobile computing for construction demonstrated that mobile computing 

technologies have great potential to significantly improve various construction activities, including 

material tracking, safety management, defect management, and progress monitoring. The potential 

improvement is largely attributed to the enhanced mobility of computing devices, which allows 

users in any location to access and share important construction project information in an efficient 

manner. The recent advent of smart phones strengthens the trend of high mobility. The advantages 

of using mobile computing devices in the construction industry have been well described (Baldwin 

et al., 1994; Fayek et al., 1998; Kimoto et al., 2005; McCullouch, 1997; Saidi et al., 2002). Mobile 

computing devices have been used in the construction industry for a number of applications such 

as: (1) to develop a field inspection support system for civil systems inspections (Sunkpho & 

Garrett, 2003); (2) to develop a pen-based computer field application of an automated bridge 

inspection system (Elzarka & Bell, 1997); (3) to provide collaborative and information sharing 

platforms (Kim et al., 2013; Penã-Mora & Dwivedi, 2002); (4) to use mobile computers to capture 

data for piling works (Ward et al., 2003), and (5) to use PDAs in construction supply chain 
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management systems (Tserng et al., 2005). Montaser & Moselhi (2012a) presented an automated 

methodology utilizing BIM 4D modeling and tablet PC for progress reporting in construction 

jobsites as shown Figure 2-5.  The tablet PC was used to collect the as built progress data using 

RFID data, barcode data, images, notes, sounds and video clips. The collected data is then used to 

update project status on the 4D model, which is subsequently used for comparison with the as 

planned conditions.  

 

Figure 2-5: Tablet PC and BIM (Montaser & Moselhi, 2012a) 

2.3.5 3D Imaging and Photogrammetry 

3D imaging is used for a range of applications such as the creation of accurate as-built models, 

and the rapid surveying of highways and mines. Laser Detection and Ranging (LADAR) is a 3D 

laser scanner that is mainly used for spatial measurement. Other applications include surveying, 

earthmoving operations, monitoring the progress of concrete casting, highway alignment, paving 

operations and construction quality control (Lytle, 2011). Bosche et al. (2008) developed a method 

of inferring the presence of model objects in range images. Their approach focused on the 

comparison of a 3D image of a construction scene with a simulated scan of a 4D building model 

using similar scan parameters. The approach was successfully demonstrated in a steel construction 

project, as shown in Figure 2-6. Turkan et al. (2013) presented a system integrating 3D object 
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recognition technology and schedule information into a combined 4D object-based construction 

progress tracking system. During the construction of a reinforced concrete structure, they 

performed and extensive field study to investigate the performance of the system. 

Photogrammetry is the extraction of the geometrical properties of an object from photographic 

images (Styliadis, 2007). The value of photo images is that they can obtain information about 

texture and color, which is an advantage to Photogrammetry over laser scanning (Zhu, German, & 

Brilakis, 2010). Fard & Peña-Mora (2007) developed a methodology for construction progress 

monitoring that leverages the large number of photographs that are already taken on construction 

sites for production documentation. By analyzing imagery taken daily, a time-based visualization 

can be generated which compares the 4D as-built data with the 4D as-planned data within a 

common user interface.  

Photogrammetry and 3D scanning was integrated to track changes for work accomplished. 

Integrating 3D imaging and Photogrammetry mitigates the limitations associated with each of 

them individually, such as the number of scans required and the time needed for each scan to 

produce satisfactory results during the 3D modeling process (El-Omari, 2008; Moselhi & El-

Omari, 2007). Khosrowpoura et al. (2014) presented a new method for activity analysis of 

construction workers using inexpensive Microsoft Kinect RGB-D sensors. The developed method 

has an average accuracy of 76% and a maximum accuracy of 92% in activity analysis for interior 

operations. However, the sensor is affected by direct sunlight, and the sensor coverage is limited 

to 5 m, and hence multiple sensors are needed to cover several work areas but interferences need 

to be managed. Furthermore, occlusions and tool-interactions affect the accuracy of detecting body 

postures. 
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Figure 2-6: 3D Scan and 3D Model Object Recognition (Bosche et al., 2008) 

2.3.6 Visualization and Building Information Modeling (BIM) 

The National BIM Standard defines a Building Information Model (BIM) as a digital 

representation of the physical and functional characteristics of a facility (Eastman et al., 2008). 

BIM is a shared knowledge resource for information about a facility that forms a reliable basis for 

decisions during its life cycle, which is defined as existing from the earliest conception to 

demolition. A basic premise of a BIM is a collaboration among different stakeholders at different 

phases in the life cycle of a facility, which involves the insertion, extraction, updating or 

modification of information in the BIM to support and reflect the roles of that stakeholder. One of 

the advantages of a BIM over a 3D AutoCAD format is that the objects in the BIM are parametric, 

are linked to each other, and contain a variety of attributes. This long-term advantage of the BIM 

may justify the permanent attachment of sensors, such as RFID tags, to a number of key 

components (Motamedi & Hammad, 2009). The permanent RFID tags can be used for material 
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tracking at the manufacturing and delivery stages (Razavi et al., 2008), for progress tracking during 

the construction stage, and for maintenance during the entire life cycle of the component.  

4D BIM is a visual representation that combines an object oriented 3D BIM model with time. 4D 

BIM is information visualization that is easier to understand than traditional methods. 4D BIM 

models are a form of visual representation of a project that also takes into consideration the 

temporal aspect of how project teams plan to actually build a project, according to construction 

schedules (Hartmann et al., 2008). 4D BIM could be used strategically by on-site management for 

progress visualization and presentation, locating equipment such as material hoists, checking 

access/openings for equipment, storage visualization and the utilization and estimation of 

quantities. Moreover, 4D BIM can assist site personnel in brainstorming sessions and discussions 

about access, storage and sequencing of works (Chau et al., 2005). Better visualization facilitates 

team collaboration in removing logical errors in construction operations. Owners of the 

constructed facilities may have little experience in construction projects, and are often unable to 

truly participate in the construction plan development process unless a simple method of 

visualization and communication is made available to them (Kang et al., 2007). Montaser & 

Moselhi (2012a) presented an automated methodology utilizing BIM 4D modeling and tablet PC 

for progress reporting in construction jobsites as shown in Figure 2-7. The method integrates the 

project schedule and BIM, a 4D model is generated to simulate a planned construction sequence. 

A tablet PC is used to collect the as built progress data using RFID data, barcode data, images, 

notes, sounds and video clips. The collected data is then used to update project status on the 4D 

model, which is subsequently used for comparison with the as planned conditions. An example 

project was considered to apply to the proposed methodology on a construction jobsite of research 

laboratory building in the west end of Montreal. 
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Figure 2-7: Four Dimensional Model (Montaser & Moselhi, 2012a) 

2.4 Emerging Technologies 

Recent advancement in computing and information technologies has presented tremendous 

opportunities for better automation in the construction industry. These technologies present 

advanced methodologies in data acquisition, capable of gathering on-site data wirelessly in near 

real-time. Wireless sensor networks (WSN) and Internet of Things (IoT) have many potential 

applications in construction project management, such as building automation, project tracking 

and control, job site safety, and civil infrastructure monitoring. WSN is equipped with a number 

of sensors and communication devices, which provide the capability to automate and integrate 

multiple data sources. WSN (hardware and software) configuration is highly dependable on their 

potential application objectives and required performance.  

The idea of the internet of things (IoT) was developed in parallel to WSNs. The term internet of 

things was devised by Kevin Ashton in 1999 and refers to uniquely identify objects and their virtual 
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representations in an “internet-like” structure. The Internet of Things (IoT) refers to machine-to-

machine (M2M) technology enabled by network connectivity and cloud infrastructure, to reliably 

transform data into useful information. The value of IoT isn’t only gathering data, but also its 

ability to make better decisions. The potential for IoT applications in a wide range of industries 

has grown massively in the last couple of years due to the declining cost of sensors, connectivity, 

and data processing power, which is making the return on investment for IoT projects become 

more appealing. 

2.4.1 Wireless Sensor Networks (WSN) 

A WSN can generally be described as a network of nodes that cooperatively sense and may control 

the environment, enabling interaction between persons or computers and the surrounding 

environment. The development of WSNs was inspired by military applications, notably 

surveillance in conflict zones. Today, they consist of distributed independent devices that use 

sensors to monitor the physical conditions with their applications extended to industrial 

infrastructure, automation, health, traffic, and many consumer areas. 

Research on WSNs dates back to the early 1980s, when the United States Defense Advanced 

Research Projects Agency (DARPA) carried out the distributed sensor networks (DSNs) program 

for the US military. Even though early researchers on sensor networks had the vision of a DSN in 

mind, the technology was not quite ready. More specifically, the sensors were rather large, and the 

number of potential applications was thus limited. Furthermore, the earliest DSNs were not tightly 

associated with wireless connectivity. 

Recent advances in computing, communication and micro-electromechanical technology has 

resulted in a significant shift in WSN research and brought it closer to the original vision. The new 

wave of research on WSNs started around 1998 and has been attracting more and more attention 
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and international involvement. The new wave of sensor network research puts its focus on 

networking technology and networked information processing suitable for highly dynamic ad hoc 

environments and resource-constrained sensor nodes. Furthermore, the sensor nodes have been 

much smaller in size and much cheaper in price, and thus many new civilian applications of sensor 

networks such as environmental monitoring, vehicular sensor network and body sensor networks 

have emerged. 

WSNs nowadays usually include sensor nodes, actuator nodes, gateways and clients. A large 

number of sensor nodes deployed randomly inside of or near the monitoring area (sensor field), 

form networks through self-organization. Sensor nodes monitor the collected data to transmit along 

to other sensor nodes by hopping. During the process of transmission, monitored data may be 

handled by multiple nodes to get to the gateway node after multi-hop routing, and finally reach the 

management node through the internet or satellite as shown in Figure 2-8.  

 

Figure 2-8: Wireless Sensor Networks 

The sensor node is one of the main parts of a WSN. The hardware of a sensor node generally 

includes four parts: the power and power management module, a sensor, a microcontroller, and a 
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wireless transceiver. The power module offers the reliable power needed for the system. The sensor 

is the bond of a WSN node which can obtain the environmental and equipment status. A sensor is 

in charge of collecting and transforming the signals, such as acceleration, vibration and position, 

into electrical signals and then transferring them to the microcontroller. The microcontroller 

receives the data from the sensor and processes the data accordingly. The Wireless Transceiver 

(RF module) then transfers the data, so that the physical realization of communication can be 

achieved. 

Generally, a WSN consists of a number of sensor network nodes and a gateway for the connection 

to the internet as shown in Figure 2-8. The general deployment process of a WSN is as follows: 

firstly, the sensor network nodes broadcast their status to the surroundings and receive status from 

other nodes to detect each other. Secondly, the sensor network nodes are organized into a 

connected network, according to a certain topology (linear, star, tree, mesh, etc.). In order to 

expand the coverage of a network, the sensor network uses multi-hop transmission mode. That is 

to say the sensor network nodes are both transmitter and receiver. The first sensor network node, 

the source node, sends data to a nearby node for data transmission to the gateway. The nearby node 

forwards the data to one of its nearby nodes that are on the path towards the gateway. The 

forwarding is repeated until the data arrives at the gateway, the destination.  

Data aggregation is the process of integrating multiple copies of information into one copy, which 

is effective and able to meet user needs in middle sensor nodes. The introduction of data 

aggregation benefits both saving energy and obtaining accurate information. The energy consumed 

in transmitting data is much greater than that in processing data in sensor networks. Therefore, 

with the node’s local computing and storage capacity, data aggregating operations are made to 

remove large quantities of redundant information, so as to minimize the amount of transmission 
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and save energy. In the complex network environment, it is difficult to ensure the accuracy of the 

information obtained only by collecting few samples of data from the distributed sensor nodes. As 

a result, monitoring the data of the same object requires the collaborative work of multiple sensors 

which effectively improves the accuracy and the reliability of the information obtained. The 

performance of the data aggregation protocol is closely related to the network topology.  

A number of research efforts have investigated the use of WSNs for building management 

(Grindvoll et al., 2012; Huang et al., 2008; Jang et al., 2008; Kintner-Meyer, 2005; Osterlind et 

al., 2007). The application of WSNs has been extended to building automation (Feng et al., 2008; 

Huang et al., 2011; Huang et al., 2008; Malatras et al., 2008).  

Also, some research efforts have investigated the use of WSNs for infrastructure monitoring. 

Sadeghioon et al. (2014) developed a methodology for leak detection in water pipelines using 

wireless smart sensor networks. Their developed method is able to monitor the condition, in 

particular the pressure and hence leaks, of buried water pipelines. This method allows easy 

installation of the sensor nodes on the pipes without jeopardizing the pipes’ structural integrity. 

Their advantage over other commonly used leak detection methods is that they have a degree of 

redundancy as individual faulty nodes do not render the whole system obsolete and allow for 

continuous monitoring without operator intervention.  

Jang & Skibniewski (2007) implemented a tracking architecture using wireless sensor modules by 

combining radio frequency signals and Ultrasound; the results showed accurate position 

estimations with enhanced network flexibility. However, traditional ultrasound positioning has 

some disadvantages, including line-of-sight transmission, multipath, high cost and power 

consumption, which may hinder the possible applications in complicated construction 

environments (Shen et al., 2008). Various combinations of RFID and Zigbee-based sensor 
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networks have also been applied for materials tracking and supply chain management (Cho et al., 

2011; Shin et al., 2007). These studies confirmed that WSN can improve the wireless 

communication and network flexibility, but their primary use was only data transmission, and not 

positioning. Shen & Lu (2012) investigated the application of ZigBee-based WSN for indoor 

positioning and tracking of construction resources. Real-time positions of the mobile nodes were 

determined by applying the RSSI method and the trilateration algorithm. However the RSSI values 

were susceptible to application environments, which presented difficulties and challenges to 

implementation of such positioning methodologies in complicated and dynamic settings in 

construction. 

2.4.2 Data Fusion Models in Construction 

Data fusion refers to the combining of information from multiple sources in order to improve the 

quality of information obtained separately from each source. It is utilized to make inference 

decisions about the state of a construction project based on data from different sources. For 

informed decisions and objective assessments of progress at a construction site, data from a 

number of sources must be combined because not all of the necessary information can be captured 

using a single data source.  

In recent years, a number of studies have considered multi-sensor data fusion models in order to 

capture a more complete picture of the progress of a project by using information acquired from 

GPS, RFID, and other sources of information for tracking and locating construction materials 

(Cheng & Chen, 2002; Ergen & Akinci, 2007; Moon & Yang, 2009; Razavi, 2010; Song et al., 

2006). With the development of all of these technologies, a large amount of data can be collected 

from construction sites both semi-automatic and semi continuous. However, challenges related to 

the processing and reduction of data to produce meaningful conclusions and the fusing of data 
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from a variety of sources remain obstacles to the achievement of a practical and comprehensive 

automated progress-tracking solution for construction sites. 

Studies of data fusion for the particular application of automated progress tracking in construction 

projects have focused primarily on automated object-recognition models (Cheng et al., 2012; 

Golparvar-Fard et al., 2013; Y. Turkan et al., 2013) and on automated object-tracking models 

(Khaleghi et al., 2013; Shahandashti et al., 2011). These object-based models have shown 

promising results for projects in which progress is tracked in terms of a bulk quantity of materials 

or objects, such as steel-framed building construction, where the progress of the building project 

is reported in tons of steel installed; in such a context, recognition of the number of objects that 

have been installed provides an adequate level of detail for that type of progress tracking. However, 

many activities on construction projects, entail specific elements (welding, inspection, etc.) that 

are not associated directly with the movement or addition of a physical entity at the site and 

therefore cannot be tracked effectively using object based models.  

Shahi et al. (2014) and Shahi (2012) presented an activity-based data fusion model, which 

incorporated an Ultra Wide Band (UWB) positioning system to track activities in a construction 

project. A field experimentation, study on an industrial-type building construction project was 

conducted to validate the model presented in this research. The scope of the experimental program 

was limited to ductwork, HVAC, and piping activities on the project. It was noted that the number 

of changes occurring during construction may be significantly higher for piping and industrial 

projects in comparison to steel or concrete building construction. The significance of the design 

change variability is that although automated object recognition and material or asset tracking 

algorithms that use the 3D CAD or BIM model as a-priori information may be accurate for concrete 
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or steel structures, they may be ineffective in tracking the progress of piping and many other 

mechanical and electrical services found throughout most projects. 

2.5 Summary and Identified Limitations 

The literature was reviewed in areas pertinent to automated data acquisition technologies, indoor 

localization and data visualization. The literature review was conducted with prime focus on the 

impact of those areas on the development of efficient automated site data acquisition models. The 

following gaps and limitations are identified accordingly: 

 While a significant number of researchers have investigated the field of automated site data 

acquisition, in all cases the focus has been on using off-the-shelf technologies. Off-the-shelf 

technologies are produced to meet the perceived needs of a particular market or application. 

Where their generic features are designed as a one size fits all, which may not form a perfect 

fit for complex applications such as construction operations. 

 Although WSN technologies promise a great potential for applications in construction, little 

research has been pursued to develop customized and flexible automated site data acquisition 

models for tracking and progress reporting on construction operations.  

 Outdoor automated progress tracking and reporting methods which are limited to only one 

source of data such as GPS or RFID. Might not be able to capture a complete picture of the on-

going construction operations. 

 Standalone GPS and RFID based earthmoving tracking methods have a main underlying 

assumption that the hauling units are loaded to their full capacity, which is not a valid 

assumption in many cases, especially in a situation where a carry back is building up on the 

truck bed as shown in Figure 2-9, decreasing the carrying capacity of the truck and wasting a 

considerable amount of fuel. 
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Figure 2-9: Truck Carry back Buildup 

 Standalone GPS tracking methods accuracy might be impacted with the limited GPS accuracy 

in urban construction jobsites due to limited satellite reception as shown Figure 2-10, or even 

complete failure to report the progress in case of  GPS hardware malfunction. 

 

Figure 2-10: GPS Accuracy in Urban Locations (Courtesy of Agi.org) 

 Standalone GPS data alone is not enough to distinguish between different modes of operations 

of construction equipment, for example, it might not be possible to distinguish between trucks 

queuing for loading or the loading activity itself in a situation similar to the setting shown in 

Figure 2-11. 
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Figure 2-11: Truck Loading Queue 

 Several heavy construction equipment such as excavators, stay stationary for long durations 

while executing their work. Location sensing alone cannot give a direct indication whether 

they are operational or ideal. Detection of equipment interaction and poses is essential to 

identify the various modes of operations of such equipment. Real-time measurement of 

durations spent by each equipment with respect to their mode of operation enables contractors 

to optimize their operation and fleet configuration in real-time to maximize their profit. 

 Expensive technology such as On Board Instrumentation System (OBIS) and its black box 

format, prevents users from accessing its respective algorithms and modifying it as they see 

fit. Also, these systems store data in propriety data formats, and the stored data is often difficult 

to access without using the vendor specific software. 

 In the literature, there is a lack of data fusion algorithms for near real-time productivity 

analysis.   

 Automated progress tracking and reporting described in literature lacked the collection of 

contextual data such as weather conditions. This type of data is important for realistic 

productivity analysis and it enables better estimates on future jobs. 

 Several researchers studied the utilization of various technologies for indoor localization, 

especially radio frequency and wireless protocols. While each technology has its own 
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advantage and disadvantage, there is no experimental analysis studies to guide the selection of 

best performing wireless protocols indoor.  

 Received signal strength (RSSI) is affected by the several interferences such as multi path and 

shadow fading interference, which causes fluctuations in the measured RSSI signals. In 

literature moving average filter is commonly used to remove noise from measured RSSI, 

however, it has several limitations such as time lag and the removal of important features of 

the original signals. There are no experimental studies to compare the performance of different 

filtering techniques for RSSI, and their effect on the localization accuracy. 

 The fundamental key for reliable and accurate indoor location estimation is path-loss models, 

which are used to convert measured received signal strength (RSSI) into the corresponding 

distances. Researchers commonly conduct laboratory experiments in an offline phase to 

construct static path-loss models. Using a static path loss model might be valid for a constant 

environment, where minimal changes in the physical layout of the building. However, in the 

presence of moving resources, metallic objects and structural barriers, static path-loss models 

produce poor distance estimates. In order to alleviate such impact, smart and adaptive path-

loss models are required to cope with the fast-changing construction jobsites environment. 

 Indoor location estimation in two dimensional spaces is not practical for multiple floor jobsites. 

There is a need for three dimensional indoor localization systems for accurate tracking of 

resources on high rise building projects. 
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Chapter 3 : PROPOSED FRAMEWORK 

3.1 General 

The aim of this chapter is to provide a comprehensive overview of the developed framework with 

a special focus on automated tracking and progress reporting of construction operations. The 

research vision and approach are presented; highlighting the main concepts of rapid prototyping, 

objective driven design and modular configuration. Figure 3-1 depicts the main sections of this 

chapter.  

 

Figure 3-1: Chapter 3 Overview 

3.2 Research Vision and Approach 

While a number of researchers have conducted in-depth studies in the field of automated site data 

acquisition, in most cases, the focus has been on utilizing off-the-shelf systems. The vision for this 
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research was formed based on the identified knowledge gaps and current practice limitations 

described in section 2.5. This vision can be summarized as follows: 

 Fundamental experimental studies with various sensors and wireless protocols in 

laboratory and outdoor environments to test, validate and assist in the design of automated 

site data acquisition prototypes. 

 Design of adaptable, flexible and cost effective automated site data acquisition prototypes 

integrating various sensor technologies to address limitations of off-the-shelf technologies. 

 Study and experiment with various RSSI filtering techniques to assist in the selection of 

the best RSSI filter to improve indoor localization accuracy. 

 Design and validate a self-calibrating and dynamic path-loss model to cope with 

continuous changes in the construction environment. 

This research vision was guided by three main principles: 

 Rapid prototyping to speed up the development and enable continuous improvement in the 

design. 

 Objective driven design to ensure a structured mechanism for setting the design objectives 

and the performance measures of the prototype. 

 Modular configuration to provide the flexibility for customized project configuration and 

enables re-usability of hardware components in order to cut the development cost.  

3.2.1 Rapid Prototyping Approach 

The use of the rapid prototyping technique in mobile wireless systems differs from the traditional 

technique used in mechanical engineering, in this context, rapid prototyping is mainly associated 

with the experimental implementations and development of hardware and software prototypes. In 
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this research, rapid prototyping is utilized to allow development of prototypes in lab and/or 

simulation virtual environment. The hardware functions are tested and validated using simulation 

and lab experiments. In this way, an economy of time and material are obtained. It is fundamental 

that the design of the hardware prototype architecture to be flexible for necessary modifications 

required for system optimization. The choice of the Arduino UNO microcontroller board for 

developing prototypes in this research is based on two main factors. First, its low cost (about $25) 

combined with its great processing capacity, operating at 16 MHz clock frequency and executing 

up to 16 million instructions per second (MIPS). Which makes the prototype sufficiently efficient 

for implementations of complex software algorithms required for on-site data acquisition. An 

overview of the Arduino UNO characterizes and size is shown in Figure 3-2 and Table 3-1.  

 

Figure 3-2: Arduino UNO Microcontroller Board 

Table 3-1: Arduino UNO Microcontroller Characteristics 

Microcontroller ATmega328 

Operating Voltage 5V 

Digital I/O Pins 14 (of which 6 provide PWM output) 

Analog Input Pins 6 

Flash Memory 32 KB (ATmega328) 

Clock Speed 16 MHz 

Length 68.6 mm 

Width 53.4 mm 

Weight 25 g 
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Second, Virtual Breadboard Emulation Package for Arduino hardware enables virtual utilization 

and designing of Arduino UNO microcontroller in real time with Hardware-In-Loop (HIL) 

techniques. The HIL technique is commonly used by the aerospace industry for real time 

simulation and development of embedded mobile robotic controllers (Ledin, 2001). The Virtual 

Breadboard package is able to emulate program runs on the board, which listens to commands 

arriving via serial port, executes the commands, and, if needed, returns a result. Also, SIMULINK® 

and MATLAB® support running program algorithms on Arduino for control system and robotics 

applications and then simulate to verify that your algorithms work during simulation as shown in 

Figure 3-3.  

 

Figure 3-3: Simulink® Support for Arduino 

3.2.2 Objective Driven Design 

The initial step of developing a prototype is to identify the requirements and objectives governing 

the system operation. An objective driven development approach forms system goals based on 

initial functional directives, and then elaborates and refines these objectives until they have been 

broken down into functions that can be achieved by single modules, forming the requirements 

specifications. By ensuring that the requirements specifications achieve all high-level objectives, 

this approach provides a precise criterion for sufficient completeness of requirements specification 

(Lamsweerde, 2001).  
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The initial list of objectives is generally a high-level abstract description of the prototype target 

application. The developer then identifies sub-objectives, considering how each objective can be 

achieved. This results in a hierarchy of goals, which are then regrouped by similarity to produce 

system’s functionalities. Sequence of steps is then formed to further refine the objectives, each 

step is either an action or an event. Every step lists data inputs and outputs, as well as data 

processing algorithms involved, and interfaces between the prototype and surrounding 

environment. When designing wireless sensor network prototypes for applications in automated 

site data acquisition, two major classes of design objectives must be considered; network 

architecture and application requirements (Ibrahim & Moselhi, 2014e). 

The network architecture requirements contain the physical and logical organization of the 

network as well as the density of the sensor nodes. In general, the objective of sensor networks is 

to efficiently cover the deployment area. The logical and hierarchical organization of the network 

also impacts energy consumption and the selection of communication protocols. In addition, based 

on topology requirements, sensor networks can have a distributed organization or a clustered 

organization, where selected nodes can handle data forwarding. The network architecture 

requirements for construction applications can be determined by answering the following 

questions:  

 What type of network topology best fits the application? (One-to-one, one-to-many, 

many-to-one or many-to-many?)  

 How will the monitoring network work? (Master–slave, point-to-point, point-to-

multipoint or peer-to-peer?)  

 What are the worst case ambient conditions in the coverage area?  
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 Are there any known potential interference problems due to physical obstructions, RF 

interference? 

The application requirements identify the information to be collected and processed by the sensor 

network. This data should be classified and quantified based on the type of the data and the required 

sensors for collecting such data. These classifications can be achieved by a comprehensive analysis 

of the targeted application. Based on the application requirements, configurations of individual 

sensor nodes can be identified which enables the selection of the sensors and communication 

protocols. The following questions can help to determine these configurations:  

 What is the Quality of Service requirements of the application? (Does it require real-

time monitoring or delay tolerant monitoring?)  

 Does the system continuously poll for the information (periodic monitoring) or is it 

generated by exception (event-based monitoring)?  

 What is the type of the data, i.e., location, proximity, tilt, height, etc.?  

As a result of answering the above mentioned questions, the design objectives can be determined 

by the network topology, architecture and application requirements comprehensively. Full 

consideration of different sensor network options and how they will fit the targeted application is 

critical for a successful development. 

3.2.3 Modular Configuration 

Designing and configuring a WSN prototype to work seamlessly for various applications with little 

user intervention is not a simple task. In fact, it is difficult to design a platform that can satisfy a 

wide range of applications without sacrificing performance. The user has to reprogram the 

microcontroller to read a specific digital or analog port connected to a sensing element. 
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Reprogramming the sensor platform's microcontroller to use a given sensor element could involve 

a very daunting sequence of tasks including learning the embedded operating system, MCU 

architecture, middleware, application support layer, etc. (Kouche, Hassanein, & Obaia, 2014). 

The target users of the prototypes developed in this research are the construction project 

management community, and therefore we cannot assume that the users of such systems have a 

strong background in electrical engineering. Therefore, it is desirable to limit the input sensors to 

a predefined set of simple "plug and play" modules. The software interfaces should also share this 

characteristic of simplicity while maintaining flexibility. The user should not be required to learn 

a new programming language in order to use the system. The cost of the platform must also be 

sufficiently cost-effective to justify its use.  

The vision of this research is to develop a modular hardware design to make the rapid prototyping, 

easier, as well as to allow for quicker redesign and the ability to reuse some of the hardware 

modules. Such approach enables redesign the prototype to adapt to different applications with 

relative ease. The main features of these modules are low cost, small size, and easy adaptation to 

different applications. The modular platform used in this research consists of three-layer as shown 

in Figure 3-4. This modular platform is divided into three functional layers: processing, 

communication, and sensing.  

 

Figure 3-4: Modular Configuration 
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This modular design enables its users to simply plug a sensing module and the on-board software 

auto detect the hardware module and enables its software configuration and algorithms. 

3.3 Automated Framework 

The developed framework for automated project tracking and progress reporting encompasses two 

types of data acquisition prototypes as shown in Figure 3-5. The first prototype is Sensor Aided 

GPS (SA-GPS), which is designed for tracking outdoor activities such as earthmoving operations. 

This prototype consists of a microcontroller equipped with GPS module as well as a number of 

sensors such as accelerometer, barometric pressure sensor, Bluetooth proximity and strain gauges. 

This configuration is able to overcome standalone GPS limitations through data fusion of sensor 

data with the GPS data, which in turn enhances progress assessment and productivity analysis. The 

detailed description of the SA-GPS prototype developments for this prototype is presented in 

chapter 4. The second prototype is Self-Calibrated Wireless Sensor Network (SC-WSN), which is 

designed for indoor localization and tracking of construction resources (labor, materials and 

equipment). This prototype is able to enhance the indoor localization accuracy by consistently 

adapting its parameters to cope with the changing construction environment. The detailed 

description of the SC-WSN prototype developments is presented in chapter 5. Contextual data are 

collected with respect to weather conditions using a cluster of sensors integrated into a weather 

station. The details of the weather station components are presented in Appendix A.   

The data acquisition prototypes collect the on-site progress data and send it to the progress 

measurement and productivity analysis algorithms. The captured data is utilized to estimate the 

actual progress, which is then compared to the as-planned baseline progress, using earned value 

analysis (EVA) to measure the project’s performance. The productivity analysis is responsible for 
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analyzing the measured productivity and the contextual data to identify any bottlenecks. Then, the 

progress reports are generated and the project cost and duration at completion are forecasted. 

 

Figure 3-5: Proposed Framework Conceptual Design 

3.3.1 Data Management Scheme 

In automated site data acquisition methods such as those cited in literature, data collection schemes 

commonly use sensors or readers to relay raw data to a mobile computing unit. Such raw data have 

little value in themselves and need to be processed to extract meaningful information. The data 

collection scheme adopted in these methods suffers from a high volume of data traffic toward the 

sink node, which creates a bottleneck and results in long processing times (Figure 3-6).  

We propose a scheme that supports localized cooperation of sensor nodes to perform complicated 

tasks, and in-network data processing to transform raw data into high level useful and actionable 

information. Toward this direction, data aggregation and processing, rendering its value for near 

real-time application. In the developed framework, sensory data are collected, aggregated, and 

interpreted at the sensor node level. This decreases post-processing time and user intervention 
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required for data analysis. The proposed scheme is composed of a gateway node and multiple 

sensor nodes. The gateway node, which acts as an interface to the system, has sufficient computing 

power, essential energy and memory. The sensor nodes, on the other hand, are resource constrained 

devices, running on batteries and performing actual data acquisition. The sensor nodes are 

organized into a tree that routes data directly to the gateway node, as shown in Figure 3-6. Such a 

tree configuration facilitates data aggregation and reduces data routing. 

 

Figure 3-6: Data Management Schemes 

3.3.2 Framework Input/output Interface 

The developed framework had two main inputs: 3D Building information model, and resource 

loaded schedule as shown in Figure 3-7. In this research, Autodesk Navisworks with Timeliner is 

utilized to create the 4D model. The Autodesk process of creating the 4D model consists of three 

steps: 

 Add the project 3D model to the Navisworks project file. 

 Add the project schedule using the Navisworks Timeline module. 

 Link the 3D objects to the schedule activities. 



50 

 

 

Figure 3-7: Developed Framework In/Out Interface 

Autodesk BIM 360™ Field is a field management software for 2D and 3D environments that 

combines mobile technologies (iPad) at the construction site with cloud-based collaboration and 

reporting. BIM 360 Field™ enables remote access to project information by field personnel, 

helping to improve quality, safety, and commissioning for construction projects. Although BIM 

360 Field™ offers some integrated reporting capabilities, they do not fully address the needs of 

automated progress reporting. It requires field personnel to manually enter information regarding 

the on-going construction operations. To overcome this limitation, this research utilizes BIM 360 

Field API to provide inputs for the proposed automated tracking and progress reporting 

framework. In this context, BIM 360 Field API is used to exchange 4D model and construction 

site data through the Autodesk 360 cloud services.  
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3.3.3 Framework Structure 

The developed tracking and progress reporting framework consists of six main modules as shown 

in Figure 3-8: 

 Automated site data acquisition module, which is responsible for site data collection 

utilizing the two developed automated data acquisition prototypes. These prototypes are 

especially designed for tracking construction activities using low cost open source 

microcontrollers and a number of sensors (Ibrahim & Moselhi, 2013a). A detailed 

description of the developed prototypes is presented in chapters 4 and 5. 

 Input data module, which is responsible for extracting the planned activities and their 

planned information such as: work zones, start dates, end dates, durations, planned 

quantities, man-hours, resources, and productivity. Work zones are created based on layout 

points created at the design and planning phases, where fixed points are marked on objects 

in 3D model using Autodesk Revit®. Then contractors at the execution phase can also 

create points on almost any object and export point locations to automated site data 

acquisition using Autodesk Points Layout® software. Project plan data along with 

quantities are extracted from the 4D model using the BIM 360 Field API and fed 

automatically to the database. A brief description of C# code utilized for connecting to the 

BIM 360 Field API and extracting the data is presented in Appendix B. 

 Database module, which is responsible for storing processed data in a relational SQL® 

database. The upper level of the database represents a project entity connected to activity 

entity through one to many relationship. An activity entity represents the project scope of 

work on time phase. Then a many to one relationship is used to link an object entity to an 

activity entity. The object entity includes geometrical properties of this object such as 
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length, surface area and volume based on its activity units of measurement. Also an activity 

entity, is linked with a one to many relationship to resources entity, where each resource 

has a unique id that is used for tracking of this resource during the execution of the project. 

This id is the MAC address of the attached tag on the resource. The details of the database 

are presented in Appendix C. 

 

Figure 3-8: Proposed Automated Progress Tracking Framework 

 Progress assessment module, which is responsible for comparing the actual progress 

gathered from the on-site data after applying the data fusion algorithms with the planned 

baseline progress. The module utilizes the earned value management (EVM) and progress 

templates for measuring the project performance. The module updates the baseline 
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schedule with the actual progress to generate automatically as-built schedules (Ibrahim, 

Germain, Guevremont, Forcier, & Moselhi, 2013). The details of the developed as-built 

schedule generation algorithm is presented in Appendix D. 

 Productivity analysis module, which is responsible for comparing actual and planned 

productivity. It also associates any deviation in productivity with the weather and operating 

condition existed on the site and captured using the on-site data acquisition. The 

productivity deviation indices can be used for identifying bottlenecks and provides better 

forecasting of project duration or for future estimates. The productivity analysis module 

was designed for analyzing only earthmoving operation in this research. The details of the 

developed productivity analysis algorithm is presented in chapter 4. 

 Forecasting module, which is responsible for forecasting the at-completion project cost and 

duration using the newly developed self-adaptive forecasting technique (Ibrahim & 

Moselhi, 2013b). It takes into account any productivity deviation encountered on site and 

measured by the productivity analysis module. The module produces periodical progress 

reports according to the period specified by the user. The self-adaptive forecasting is 

applied to earthmoving productivity estimates in chapter 4 and the developed algorithm is 

described in details in Appendix E. 

3.4 Summary 

This chapter presented the research vision and an overview of the developed framework. The 

framework embraced integration and automation; utilizing wireless sensor network prototypes. 

The rapid prototyping approach is used for the development of the WSN prototypes. The 

developed framework input/output interface described in details showing the main inputs and 

outputs of the developed framework, along with its six modules. 
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Chapter 4 : SENSOR-AIDED GPS PROTOTYPE 

4.1 General 

The aim of this chapter is to describe the detailed development, testing and validation of sensor 

aided GPS prototypes for automated tracking and progress reporting of construction operations in 

outdoor environment. Figure 4-1 depicts the main sections of this chapter.  

 

Figure 4-1: Chapter 4 Overview 

The developed prototype is designed with a special focus on earthmoving operation, however, it 

can be easily reconfigured for other outdoor construction operations such as concreting, steel 

structure, building envelopes, and landscape …etc.  

In order to follow the rapid prototyping and objective driven design principles described in chapter 

3, prototypes design objectives and performance measures are defined in the following sections. 

4.2 Design Objectives 

The main design objectives for the SA-GPS prototype are: 

 To design prototypes for tracking earthmoving operation with a focus on improve the 

accuracy and robustness. 
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 To implement effective algorithms for data aggregation and processing to support near 

real-time progress tracking. 

 The prototype must be able to work autonomously with minimal user intervention. 

 Extraction of timely and accurate actionable information and maximizing the useful 

utilization of collected data, to support near real-time productivity analysis. 

 The prototype must be scalable for application on real construction jobsites.  

4.3 Performance Measures 

The prototype development process requires a methodical and iterative approach through all levels 

of data collection and analysis. The five main performance measurement are explained as 

following: 

 Accuracy: The main performance measure in comparing the developed prototype to 

traditional methods is the productivity measurement accuracy. The higher the accuracy, the 

better the system; however, there is often a trade-off between accuracy and other 

characteristics such as cost. The accuracy is measured as the average error in the 

productivity estimates. 

 Latency: The prototype latency is attributed to hardware, computing, and human 

intervention/efforts during data transfer and processing. The proposed prototype is 

designed to measure the productivity in near real-time, which requires fast and efficient 

data processing with minimal human intervention. 

 Scalability: The proposed prototype is required to be deployed to any project size without 

any need for further adjustment or development. 
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 Robustness: The prototype robustness is defined by its ability to function normally even 

when some signals are not available. The proposed prototype is designed to have multiple 

data sources from different sensors and be able to function even if some sensor data is 

missing or corrupted. 

 Cost: The proposed prototype must be cost effective with respect to traditional methods. 

4.4 Experimental Study 

To design prototypes for the data acquisition models, an experimental study was conducted in 

laboratory and outdoor environments, to explore and test the suitability of various sensors, and 

wireless protocols for the intended application. A university lab kit was purchased from Libelium® 

(Spain). This kit included 7 microcontrollers, 18 sensors and 7 wireless communication modules. 

This experimental study investigated the functionality, accuracy, robustness and range of various 

components of the kit. 

4.4.1 GPS Sensor 

The GPS functionality is tested for the logging and reporting capabilities of accurate location for 

the outdoor environment. The prototype was programmed to report several parameters as shown 

in Figure 4-2: 

 Date and Time  

 Latitude, longitude in millionths of a degree and elevation in meters  

 Course in degrees and speed in Km/hr. 

 Number of locked satellites and age of fix in milliseconds. 

 Distance between last logged coordinates in meters. 

 Horizontal dilution of precision in 100ths. 
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Figure 4-2: GPS Tracking and Logging Field Test 

DOP is an indicator of three dimensional positioning accuracy as consequence of relative position 

of GPS satellites with respect to a GPS receiver. Table 4-1 shows the range of values for the 

dilution of precision for the GPS and their meaning in respect to the location measurement. The 

DOP of the tested GPS module ranged from 2.4 to 0.7, where better DOP was achieved after 

locking on 7 to 10 satellites as shown in Figure 4-3. 
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Table 4-1: Dilution of Precision Values 

DOP Value Rating Description 

Less than 1 Ideal 
This is the highest confidence level to be used for applications 

demanding the highest possible precision at all times. 

1-2 Excellent 
Positional measurements are considered accurate enough to 

meet all but the most sensitive applications. 

2-5 Good 
Positional measurements could be used to make reliable in-

route navigation. 

5-10 Moderate 
Positional measurements could be used for calculations, but 

more open view of the sky is required. 

10-20 Fair 
Represents a low confidence level. Very rough estimate of the 

current location. 

Greater than 20 Poor 
At this level, measurements are inaccurate by as much as 300 

meters. 

 
Figure 4-3: Measured DOP and Number of Satellites 

4.4.2 3 Axel Accelerometer Sensor 

The 3D accelerometer had been tested for the detection of aggressive driver behavior, and the 

detection of dump action of hauling trucks. The aggressive driver behavior was tested on a truck 

during a road test. 50 accelerations and braking runs were performed, of which 12 harsh 
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accelerations and 12 harsh brakes. The algorithm was able to detect 10 of the harsh acceleration 

and 11 of the harsh brakes, with a detection percentage of 83.33% and 91.67% respectively. The 

higher detection accuracy in braking is due to the surge measured in x axis acceleration because 

the accelerometer experiences a force pushing it to the front. This surge is significant even when 

the brake is applied at low speed. Figure 4-4 illustrates a sample of the level of accelerations 

measured during the test.    

 

Figure 4-4: Truck Operator Behavior Monitoring Field Test using SA-GPS 

The dump action of hauling truck was simulated to calculate the tilt angle of the truck bed as shown 

in Figure 4-5. The accelerometer measures the projection of the gravity vector on the sensing axis. 

The amplitude of the sensed acceleration changes as the sin of the angle α between the sensitive 

axis and the horizontal plane. 

𝐴 = 𝑔 × sin(𝛼)                                                (4-1) 

The raw accelerometer signal was noisy and needed to be filtered. A moving average filter was 

applied to the signal, where the window for the filter was varied from 0.1 to 2 seconds. It was 

found out that a 1 Second filter removed the noise while keeping acceptable lag time.  
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Figure 4-5: Accelerometer Installed on Hauling Truck 

The test was conducted using the setup indicated in Figure 4-6. The sensor was attached to a flat 

piece of cardboard, and placed flat on the floor. The test starts by recording the readings of the 

accelerometer in the flat position, and then the cardboard is lifted from one end for a tilt angle of 

approximately 45⁰ degrees.   

 

Figure 4-6: ADXL355 Accelerometer Test Setup 

The measured acceleration by the ADXL355 accelerometer in the X-axis is plotted against time as 

indicated in 
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Figure 4-7. The blue curve is the calculated tilt angle. A 1 second filter was applied to the 

calculated angle value to smooth the readings and enable true detection as shown by the red curve. 

The results indicate that the average measured angle is 39.80⁰ degrees. 

 (ms) 
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Figure 4-7: Accelerometer Test Results 

4.4.3 Bluetooth Proximity 

Bluetooth is used to detect equipment proximity to each other, therefore a test was conducted to 

measure the average proximity detection time. Where, 860 data sets were collected in outdoor 

environments with line of sight and non-line of sight, Figure 4-8 illustrates the histogram for the 

proximity detection time in seconds. The average detection time was found to be 10.52 seconds.  

 

Figure 4-8: Bluetooth Proximity Detection Time 

 (ms) 
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The cumulative distribution function of the Bluetooth detection time illustrated in Figure 4-9 

shows that with a 95% confidence level, the detection time is 14.16 seconds.  

 

Figure 4-9: Bluetooth Proximity Detection Time CDF 

In the context of detecting moving objects, it is important to calculate the maximum object speed. 

Figure 4-10 illustrates the moving object speed verses the detection time window, given a range 

of 100 m for the detection. It is possible to detect moving with an average speed up to 25 Km/hr 

within a 14.16 seconds window.  

 

Figure 4-10: Moving Object Speed Vs Bluetooth Detection Time 
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4.4.4 Barometric Pressure Sensor 

The BMP180 barometric pressure sensor was tested to evaluate its performance for detecting 

change in elevation. The test setup shown in Figure 4-11 was utilized by placing the barometric 

pressure sensor in position 1 for 30 seconds, and then placing it in position 2 for another 30 

seconds.   

 

Figure 4-11: Barometric Pressure Sensor Test Setup 

A 1 second moving average filter was utilized to smooth and remove noise from the sensor raw 

measurement as shown in Figure 4-12. While the actual elevation difference between position 1 

and 2 is 0.75 m, the calculated elevation from measured barometric pressure values, was 0.60 m, 

which yield a 20% error as shown in Figure 4-12. However, in the context of the proposed 

application, this accuracy is adequate enough for the designed purposes.   

 

Figure 4-12: Barometric Pressure Sensor Test Results 
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The barometric pressure sensor was also tested for elevation estimation in the EV-building at 

Concordia University. The sensor was carried during travelling in the elevator as indicated in 

Figure 4-13. The elevation was calculated from the barometric pressure data using the following 

equation: 

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 (𝑚) = 44330 ∗ (1 − (
𝑃

𝑃0
)

1

5.255
)                                                          (4-2) 

Where P is the measured pressure in hPa and P0 is the atmospheric pressure at sea level 

 

Figure 4-13: Barometric Pressure Test in Elevator 
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4.4.5 Wireless Protocols 

In order to experiment and investigate indoor propagation of different wireless networks, 21 

experiments are conducted and 1752 data sets are recorded for more than 876 minutes (grand total 

of all experiments). All these experiments are performed in different scenarios either in terms of 

number of nodes, distance between the nodes, line of sight and finally, in terms of topology i.e. 

straight-line/grid as shown in Figure 4-14.  

 

Figure 4-14:  Straight Line (a) and Grid (b) deployment 

A Waspmote platform is used to build the mobile nodes for the experimentations, which includes 

a microcontroller operating at 14MHz, 128K of memory, a wireless transceiver interface socket, 

and a USB interface for device programming and logging. Each device operates on rechargeable 

batteries. Its wireless interface socket is compatible with different communication protocols 

(WLAN, Bluetooth, Zigbee and Synapse SNAP) and frequencies (2.4GHz, 868MHz, 900MHz) as 

shown in Figure 4-15.  

 

Figure 4-15: Waspmote platform mobile nodes 
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Four wireless technologies are used in the experiments, in particular, Wireless Local Area 

Networks (WLAN), Bluetooth, Zigbee and Synapse SNAP. Their technical details with respect to 

frequency, output power, range, sensitivity and cost are summarized in Table 4-2. All experiments 

are summarized in Table 4-3. The setup for straight line experiments is shown in Figure 4. The 

path is 20 m long, straight track with 20 waypoints with a distance of 1 m between two consecutive 

waypoints. Two stationary sensor nodes are placed next to the track at 0 m and 21 m. Each 

experiment is repeated for each of the four wireless networks (WLAN, Bluetooth, Zigbee and 

Synapse SNAP). The setup for grid setting experiments is shown in figure 5. The grid size changes 

from 3m x 3m to 6m x 6m, with a distance of 1 m between two consecutive nodes. One stationary 

sensor node is placed next to the grid at 1 m and center of the grid. Each experiment is repeated 

for each of the four wireless protocols (WLAN, Bluetooth, Zigbee and Synapse SNAP). 

Table 4-2: Wireless protocols hardware  

Wireless 

Network 
Bluetooth Zigbee WLAN Synapse 

Hardware Module 
Roving Network 

(RN-41) 
Xbee 802.15.4 

Roving Network 

(RN-171) 
RF300 

Frequency 2.4 GHz 2.4 GHz 2.4 GHz 915MHz 

Data Rate Kbps 3x1024 250 921 150 

Power dBm 15 0 10 20 

Range m 100 90 75 250 

Sensitivity dBm -80 -92 -83 -99 

Tx current mA 65 35 120 85 

Rx current mA 35 50 38 18.5 

Cost $24.95 $31.95 $39.95 $28.95 

 

RSSI of data packets received by the mobile node is measured using a program written using C++ 

and installed on the fixed node. In this program, a stationary node sends a PING packet to the 

mobile node and the mobile node responds with another data packet that contains the RSSI value 

with which the PING packet was received. The two stationary nodes send PING packets in a strict 
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round-robin fashion to avoid packet collisions. Each node sends 3 packets per second, which 

results in 3 RSSI samples per second per link.  

 

 

Figure 4-16: Experimental setup for evaluation of wireless networks in a straight line setting 

 

Figure 4-17: Experimental setup for grid setting 
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Table 4-3: Experiments Scenarios 

Exp. 

# 

Nodes 

# 

Dist. 

(m) 

TX  

Level 

LOS Topology 

1 3 1=>20 0 Y S.L 

2 3 1=>20 0 N S.L 

3 3 1=>20 1 Y S.L 

4 3 1=>20 1 N S.L 

5 3 1=>20 2 Y S.L 

6 3 1=>20 2 N S.L 

7 3 1=>20 3 Y S.L 

8 3 1=>20 3 N S.L 

9 3 1=>20 4 Y S.L 

10 3 1=>20 4 N S.L 

11 3 1=>20 5 Y S.L 

12 3 1=>20 5 N S.L 

13 3 1=>20 6 Y S.L 

14 3 1=>20 6 N S.L 

15 4x4 3 6 Y Grid 

16 4x4 6 6 Y Grid 

17 6x6 3 6 Y Grid 

18 6x6 6 6 Y Grid 

19 3X4 3 6 Y Grid 

20 3X6 3 6 Y Grid 

21 4X6 3 6 Y Grid 

 

 
Figure 4-18: RSSI measurement program interface 

Date Time Mac Address AP RSSI Vendor

13/02/2014 14:02:00 00:06:66:80:C6:82 roving1 46 Roving Networks

13/02/2014 14:02:01 00:06:66:80:C6:82 roving1 35 Roving Networks

13/02/2014 14:02:02 00:06:66:80:C6:82 roving1 35 Roving Networks

13/02/2014 14:02:03 00:06:66:80:C6:82 roving1 41 Roving Networks

13/02/2014 14:02:04 00:06:66:80:C6:82 roving1 41 Roving Networks

13/02/2014 14:02:05 00:06:66:80:C6:82 roving1 49 Roving Networks

13/02/2014 14:02:06 00:06:66:80:C6:82 roving1 49 Roving Networks

13/02/2014 14:02:07 00:06:66:80:C6:82 roving1 34 Roving Networks

13/02/2014 14:02:08 00:06:66:80:C6:82 roving1 50 Roving Networks

13/02/2014 14:02:09 00:06:66:80:C6:82 roving1 50 Roving Networks

13/02/2014 14:02:10 00:06:66:80:C6:82 roving1 50 Roving Networks

1
PING Packet

RSSI Value
2

3

RSSI Value
4

PING Packet

Mobile 
node

Stationary 
node

Stationary 
node
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The collected data was averaged and presented in Figure 4-19, which clearly show that the received 

signal strength at each point is declining as expected. Even though, the declining rate is 

inconsistent with all wireless technologies. For example the node at 4 meters receives a weaker 

signal on the incoming packets with Bluetooth and WLAN than the node at 5 meters. Also the 

node at 7 meters receives a weaker signal on the incoming packets with Zigbee than the node at 8 

meters. In all measurements Synapse hardware showed more consistency in returning RSSI values 

in declining order. 

 
Figure 4-19: RSSI measurement straight line formation 

A major source of error when measuring RSSI is due to multipath effects caused by objects in the 

environment. In the office environment, where the tests were performed, the radio environment is 

likely to change between every measurement point as the room contains quite many things that 

could cause multipath effects. Multipath in indoor environment is caused by multiple signal 

reflections from walls, ceilings and other objects as shown in Figure 4-20. This directly affects the 
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measured RSSI. Any type of reflected signal that can be additive or destructive to the original 

signal is identified as multipath interference.  

 

Figure 4-20: Multipath interference 

As the signal strikes an objective, it can react in several ways, creating a reflection, scattering, 

refraction, diffraction or all of the above. Reflection is simply when the signal is reflected back 

towards the transmitter. Scattering occurs when the signal is scattered back towards the transmitter 

into multiple new signals. Refraction occurs when the signal is bent as it passes through an object 

and Diffraction happens when the signal changes direction as it passes around an object. RF signal 

strength is reduced as it passes through various materials. This effect is referred to as Attenuation. 

As more Attenuation is applied to a signal, its effective range will be reduced. The amount of 

Attenuation will vary greatly based on the composition of the material the RF signal is passing 

through. 

 

Figure 4-21: Attenuation interference 
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Using frequencies below 900 MHz can significantly improve connectivity in an indoor 

environment as shown in Figure 4-21. Low frequencies also exhibit more uniform signal 

propagation, which simplifies the network design and deployment problems. 

Each antenna has its own radiation pattern that is not uniform. The measured RSSI value is 

impacted by the antenna orientation of the transmitting and receiving nodes. To quantify the 

antenna orientation impact, the average RSSI is measured at 24 different degrees with a fixed 

receiver node and a rotating transmitter node at a 1m distance in a relatively obstacle-free 

environment (No obstacles making reflections within three meters). As shown in Figure 4-22(a), 

the radiation pattern of the antenna is asymmetrical and suffers from distortion with difference in 

the measured RSSI. One of the main factors that cause the antenna orientation phenomenon is the 

magnetic field of the antenna, which is distorted by the interference from nearby devices. 

Figure 4-22(b) illustrates the coverage range, which is calculated based on the radiation pattern. 

Synapse has shown a wider and higher coverage range than the other three wireless technologies.  

The results of the above experiments were scored on a level from 1 to 4, where 4 is the best and 1 

is the worst performance in each criteria as shown in Table 4-4. The Synapse protocol has the 

highest total score.  

Table 4-4: Wireless Protocols Test Summary 

 Bluetooth Zigbee WLAN Synapse 

RSSI Vs Distance 2 4 1 4 

Range 2 3 2 4 

Attenuation 2 4 2 4 

Cost 4 2 1 3 

Total Score 10 13 6 15 
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Figure 4-22: Antenna orientation and range 
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4.5 Prototype Design 

The SA-GPS prototype consists of mobile units installed on equipment and gateway fixed unit 

installed on construction jobsite, the conceptual deployment of the developed prototype is shown 

in Figure 4-23. The mobile units collect data from each piece of equipment, and then data is sent 

to the gateway fixed unit. The gateway fixed unit performs data pre-processing and fusion then 

upload the data to a remote database server, where the final data processing and storage takes 

place. 

 

Figure 4-23: Conceptual deployment of Sensor Aided GPS Prototype 

The rapid prototyping approach was utilized to realize the design for the SA-GPS, where a basic 

version of the prototype was configured, assembled and tested. From a data acquisition 

perspective, the SA-GPS prototype consists of three main entities, namely; data sources, network 

infrastructure, and data sinks. Data Acquisition Sources are sensors, which generates data 

regarding the construction operations. These sensors are directly integrated to collect various types 

of information about construction equipment utilization, and interactions, which requires several 

levels of configuration and automation. Wireless network infrastructure to provide end-to-end data 
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routing and transfer. The function and performance of the network infrastructure are a crucial key 

for real-time application. Therefore, it was very important to efficiently configure and test its 

operation in lab experiments and outdoor environment. Data Acquisition Sinks are entities for data 

aggregation, processing and fusing. They interact with the network infrastructure to extract 

actionable information from raw data for later processing and analysis.  

The required data acquisition entities for the developed prototype are illustrated in Figure 4-24. 

The developed prototype integrates redundant data sources to enhance its overall robustness.  

 

Figure 4-24: Proposed SA-GPS Entities 

Selecting the sensor type depends on the hosting earthmoving equipment, data to be collected and 

the physical pose or movement of equipment that need to be captured. Table 4-5, illustrates sensor 

configurations for some of the most common heavy equipment used in earthmoving operations. 
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Equipment positions are captured by the GPS modules, excavator and loader boom swing angle is 

sensed by accelerometer, excavator and loader bucket height is sensed by the barometric pressure 

sensor, truck bed tilt angle is sensed by accelerometer, and truck load weight is measured by strain 

gauges. 

Table 4-5: Sensors Configuration for Earthmoving Equipment 

Equipment Type Sensor Measured data 

Hauling Truck 

Three-axis accelerometer 

Tilt-sensing of truck bed. 

Dynamic acceleration resulting from 

motion, shock, or vibration 

Strain gauges Truck load weight 

Piezoelectric sensor Truck bed vibration 

Loader / Excavator 
Three-axis accelerometer Bucket tilt /boom swing 

Barometric pressure sensor Bucket vertical movement 

Dozer 
Three-axis accelerometer 

(Two Sensors) 

Blade tilt 

Ripper tilt 

Scraper Limit Switches (Three) 
Status of apron, bucket and gate 

(open/close) 

The fixed gateway unit is a Meshlium, which is a Linux router which contain 5 different radio 

interfaces: Wi-Fi, Synapse SNAP, 3G/GPRS, Bluetooth and ZigBee. The gateway has a 500MHz 

(x86) processor with 256MB RAM, and it has three data storage options including 160GB internal 

storage as shown in Figure 4-25. It can be powered by solar and/or battery. The gateway is enclosed 

in an aluminum IP65 casing, which allows placing in harsh outdoor construction environments. 

  
Figure 4-25: Meshlium Gateway 
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The proposed communication scheme for the SA-GPS prototype is depicted in Figure 4-26, where 

Synapse SNAP communication protocol is used to transfer the data between the mobile nodes and 

the fixed gateway node after pre-data fusion and processing. In order to get the big picture of the 

construction operation, data is post processed on the gateway node, by aggregating data from 

various mobile nodes and perform data fusion. Finally information gained from the data fusion is 

transfer using wireless LAN to server based database through the internet cloud. 

 

Figure 4-26: Prototype Communication Configuration 



78 

 

4.6 Hardware Assembly and Configuration 

Three prototypes were developed: a loader mobile unit, an excavator mobile unit, and a truck 

mobile unit. The developed mobile unit prototype consists of a microcontroller with data logger, 

Bluetooth module, GPS module, Synapse RF module and a power supply. The block diagram of 

the mobile unit is shown in Figure 4-27 and Figure 4-28. The description of each hardware 

component is explained as follows: 

 Arduino UNO microcontroller, which is based on the ATmega328, it has 14 digital 

input/outputs and 6 analog inputs. It is reasonably priced (about $25.00), and the development 

software is open source.  

 Roving Networks (RN-41) module is a Class 1 Bluetooth Module with a range of up to 100 m.  

 SkyTraq (Venus638FLPx) GPS module is a high performance, low cost, single chip GPS 

receiver with low power consumption, high sensitivity, and a low time-to-first-fix.  

 Adafruit Industries (DS1307) data logger, which has a real-time clock with backup battery for 

up to seven years of timekeeping. It can fit any SD/MMC storage up to 32 GB. 

 

Figure 4-27: Mobile Unit Block Diagram and Hardware Prototype 
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Figure 4-28: SA-GPS Basic Configuration Prototype 

 

Figure 4-29: SA-GPS Loader/Excavator Prototype Wiring Diagram 
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The wiring diagram presented in Figure 4-29 depicts the assembly of the SA-GPS prototype for 

loader / excavator type of equipment. In the Loaded/Excavator prototype three-axis accelerometer 

from Analog Devices (ADXL335) is integrated to measure tilt and swing of the loader bucket and 

the excavator arm. Also, another prototype for hauling trucks was developed as shown in 

Figure 4-30 

 

Figure 4-30: SA-GPS Hauling Truck Prototype Wiring Diagram 

4.7 Prototype Software/ Algorithm 

Four software algorithms are developed on the mobile nodes microcontrollers, namely: 

localization algorithm, proximity detection, payload volume estimation and data fusion algorithm.  
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4.7.1 Localization Algorithm 

The localization algorithm is responsible for identifying the work zone for construction equipment 

based on the GPS data. Two localization algorithms are developed in this research: Finely 

algorithm, and fuzzy c-mean (FCM) algorithm. If the boundaries for the cut and fill locations are 

known, Finley algorithm is utilized. The steps of Finley (2007) algorithm are illustrated in 

Figure 4-31 and Figure 4-32. 

 
Figure 4-31: Finely (2007) Method for Solving Point in Polygon Problem 

 
Figure 4-32: Point in Polygon Algorithm Flowchart 
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If the boundaries of the cut and fill locations are dynamically changing as the case in highway 

construction, fuzzy C-mean clustering algorithm is utilized to cluster GPS data to identify locations 

where loading equipment and spreading equipment spend more time, which in-turn dynamically 

identifies the cut and fill locations. In case of malfunctioning sensor on loading equipment, truck 

data are also clustered with respect to their location and speed to extract the correct locations. A 

sample of GPS data for a dump truck was clustered using FCM algorithm and two clusters were 

identified as shown in Figure 4-33.  

 

Figure 4-33: FCM Localization Algorithm 

4.7.2 Proximity Identification Algorithm 

Equipment proximity identification algorithm is responsible to discover equipment and reference 

areas such as entrances and exits of jobsites. Continues Bluetooth radio scanning is utilized for the 

proximity detection as shown in Figure 4-34. The discovered equipment type is identified by cross 
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matching their media access control (MAC) address against a pre-defined list stored on the 

microcontroller’s SD memory card. The pre-defined list is generated by the planning algorithm 

from the planned resources. The maximum proximity detection range is 100m, however, it can be 

adjusted using software parameters, which in turn control the power of RF transmitter on seven 

levels from - 20 to 12 dBm. This range is adjusted based on the size of the jobsite; a small size will 

require a lower setting for proximity detection.   

 

Figure 4-34: Equipment Proximity State Diagram 

4.7.3 Hauling Volume Algorithm 

Hauling volume calculation algorithm utilizes the methodology presented by (Yang et al., 2008), 

which estimates truck's payload weight from readings of four strain gages mounted on truck's 

suspension leaf springs. This feature enables improved progress tracking accuracy using the 

estimated quantities of soil excavated, also it enables alarming equipment's operator for any 

overloading conditions, and hence protects the contractor from possible extra costs for fuel, tires 
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and mechanical failures. The weight at each suspension is calculated based on voltage signals of 

strain gages. The total payload of the vehicle is obtained by summing load readings in all 

suspensions; but resultant error can be very high. To reduce that error, a Kalman filter is used to 

account for nonlinearity in measurement. Once the payload is measured the volume of the payload 

can be estimated based on the excavated soil properties. The truck suspensions are denoted as Left-

Front (LF), Left-Rear (LR), Right-Front (RF), and Right-Rear (RR), respectively. In Figure 4-35, 

the cross mark denotes the center of gravity of the payload with a value represented by W. 

 

Figure 4-35: Schematics Diagram for Truck Payload 

The measured strain gauge voltage is converted to weight, and hence the load applied to each 

suspension is calculated, then the gross payload W is calculated using Eq. (4-3). 

𝑃𝐿𝐹 + 𝑃𝑅𝐹 + 𝑃𝐿𝑅 + 𝑃𝑅𝑅 = 𝑊       (4-3) 

Where: W is the gross payload weight in Kg, PLF , PRF, PLR, PRR are the measured weight 

in Kg at the left front, right front, left rear and right rear truck suspensions respectively. 

The Payload volume is calculated from the measured load weight using Eq. (4-4). 
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𝑉 =
(𝑊𝑔𝑟𝑜𝑠𝑠−𝑊𝑡𝑟𝑢𝑐𝑘 𝑏𝑒𝑑)

𝜌𝑠𝑜𝑖𝑙
× 𝑆𝑤𝑒𝑙𝑙 𝑓𝑎𝑐𝑡𝑜𝑟      (4-4) 

Where: 

 Wgross is the gross payload weight in Kg., 

 Wtruck bed is the weight of the truck bed in Kg., and 

 soil is the soil density in Kg/m3. 

After calculating the load volume, a Kalman filter is applied to the measurement to reduce the 

error in the measurement. The Kalman filter is modeled as following: 

�̂�𝑘 = 𝐾𝑘 𝑍𝑘 + (1 − 𝐾𝑘)�̂�𝑘−1       (4-5) 

Where: 

�̂�𝑘is the current volume measurement, 

𝐾𝑘 is Kalman gain, and 

�̂�𝑘−1is the previous volume measurement. 

4.7.4 Data Fusion Algorithm 

Accurate identification of equipment modes of operations is crucial for realistic productivity 

estimates of ongoing earthmoving operations. Observing trends and patterns in the sensor data 

enables better identification of equipment modes of operations. However, these data are collected 

from multiple sources, which are heterogeneous and diverse in nature, content and format. 

Therefore, data fusion algorithms are required to stitch these data together and extract information 

pertinent to equipment modes of operation, and hence enable better estimation of activities start, 

finish, durations and resource utilization.  
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Typical earthmoving hauling equipment (dump truck) has seven modes of operation: queuing for 

loading, loading, travelling, queuing for dumping, dumping, returning and out-of-service. These 

modes are repeated regularly by a truck in earthmoving operation. The developed data fusion 

algorithm provides joint assessment of the data captured by the seven sensors integrated in the SA-

GPS prototype as shown in Figure 4-36 (Ibrahim & Moselhi, 2014b). This is carried out by the 14 

if-then rules shown in Figure 4-37 and listed in Appendix G. The sensor raw data is aggregated, 

filtered and transformed into logical levels. The logical representation of collected sensors data is 

passed onto the reasoning engine which performs logical reasoning against the pre-set modes of 

operations. 

 

Figure 4-36: Hauling Truck Modes of Operations (Ibrahim & Moselhi, 2014b) 

For example, a dump truck is identified as being loaded if it is in the cut area, its speed is below 

zero speed, it is in proximity to a loader, the loader is busy by detecting its boom angle and bucket 
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height, and its load weight is increasing. Similarly, if the truck is travelling with speed higher than 

zero speed and its load weight is near maximum, then it can be identified as hauling task. 

 

Figure 4-37: Hauling Truck's Modes of Operation Reasoning Engine 
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Such algorithm does not require pre-existing large-scale dataset, however, its main drawback is its 

inability to represent uncertainty, but this can be alleviated by integrating fuzzy logics into the 

logical approaches. Table 4-6 lists the seven modes of operation and the sensors readings during 

these modes.  

Table 4-6: Haul Truck Modes of Operation 

Mode of 

Operation 

Location Speed Load 

Weight 

Proximity Tilt Angle Previous 

State 

Load Queue Loading 

Area 

= 0  0 Trucks = 0 Return 

Load Loading 

Area 

= 0 ++ Loader = 0 Return or Q. 

Loading 

Travel Road > 0 > 0 Non = 0 Loading 

Dump Queue Dump Area = 0 > 0 Trucks = 0 Travel 

Dump Dump Area = 0 -- Spotter > 0 Travel or Q. 

Dump 

Return Road > 0  0 Non = 0 Dump 

Service Service Area = 0 Any Any = 0 Any 

 

An effort was made to enhance the robustness of the developed prototype and to provide fault 

tolerance, a fuzzy rule based reasoning engine was developed in MATLAB and converted to C++ 

to be loaded on the microcontroller. The developed fuzzy reasoning algorithm consists of the 

following steps: 

 Fuzzification on-sensor node of both the sensor raw values and their differential variations 

using membership functions.  

 For simplicity triangle membership functions were utilized. 

 The fuzzified values are broadcasted to the gateway node. 

 The gateway node merges the single nodes fuzzy values into a multi node fuzzy rules. 

These rules have the following structure: 
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IF (Ti=Loading) or (Lj=Busy Loading Ti) Then (Ti = Loading) 

Where: Ti is Truck number i, and Lj is Loader number j. 

Figure 4-38 illustrated the fuzzy reasoning engine for a hauling truck node. Such distributed 

reasoning scheme increase the degree of reliability and robustness of the developed prototype in 

case of a failure in one of the sensors or even the whole node. 

 

 
Figure 4-38: Hauling Truck Fuzzy Reasoning Engine 
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4.8 Framework Implementation 

To link the developed SA-GPS with the automated framework described in chapter 3, three 

algorithms were developed: planning algorithm, progress estimation and forecasting algorithm, 

and productivity analysis algorithm as shown in Figure 4-39 (Ibrahim & Moselhi, 2014a). Their 

respective input and output is briefly summarized in Table 4-7, detailed description of these 

algorithms is presented subsequently. 

 

Figure 4-39: SA-GPS Software/Algorithms 
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Table 4-7: Developed Software Algorithms (Input / Output) 

Algorithm Input Output 

Planning 

Algorithm 
4D Model 

Planned Activities  

Planned Locations 

Planned Resources 

Planned Productivity 

Planned Quantities 

Productivity 

Analysis 

Equipment Modes of Operations 

Actual Durations 

Actual Excavated Soil Quantities 

Weather conditions 

Actual Productivity 

Bottlenecks 

Aggressive Operator Flags 

Weather Impact Flags 

Progress 

Estimation and 

Forecasting 

Current Undergoing Activity 

Planned Quantities 

Actual Productivity 

Actual Durations 

Real-Time Progress Reports 

 

4.8.1 Planning Algorithm 

The purpose of this algorithm is to extract input data from the 4-D model and save it in the 

framework database as outlined in chapter 3. This 4-D model is developed by integrating resource-

loaded project schedule and the 3D terrain model of the earthmoving project (Shah et al., 2008). 

With these inputs, project's resources and their interaction onsite are effectively tracked with 

respect to their locations. The 4-D model houses necessary inputs for effective project control such 

as planned activities (start dates, finish dates, durations, and job logic), their physical locations, 

their planned resources (materials, labor, equipment) and planned quantities (cut, fill).  

The planning algorithm depicted in Figure 4-40 identifies pending activities based on scheduled 

dates and job logic. Then extracts from the 4-D model the assigned resources for each pending 

activity, its planned work zone (location), and its planned quantities of cut and/or fill. The work 

zone is defined by a set of points, which serves as boundaries for equipment tracking. 
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Figure 4-40: Planning Algorithms Flowchart 

4.8.2 Productivity Analysis Algorithm 

This Algorithm is responsible for calculating actual productivity of the earthmoving operation 

being considered and analyzing the productivity with respect to the contextual data to identify 

potential bottlenecks in the site operations. Productivity calculation is based on actual measured 

cycle times and actual estimates of excavated soil volumes, to calculate productivity per 

equipment. Overall productivity is calculated by summing the productivity of individual trucks in 

the fleet using Eq. (4-6). 
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𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  ∑ 𝑇𝑟𝑢𝑐𝑘 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖
𝑛
𝑖=1     (4-6) 

Where: 

 Truck Productivityi is truck i productivity in m3/hr, and n is the number of trucks. 

The truck productivity is calculated using Eq. (4-7). 

𝑇𝑟𝑢𝑐𝑘 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑆𝑜𝑖𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑚3)× 𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟

𝑇𝑜𝑡𝑎𝑙 𝐶𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 (ℎ𝑟)
    (4-7) 

Where: 

 Total cycle time = sum of loading, travel, dumping, returning and service time 

 Load factor = factor for converting soil material to a compact state 

The American Society for Testing and Materials (ASTM) standard practice for Job Productivity 

Measurement (ASTM E2691-09) provides a metric for measuring productivity differential. The 

Productivity differential can be calculated using Eq. (4-8): 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 =  
(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦−𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
               (4-8) 

The data required to create a baseline for average productivity can be drawn from company’s past 

practice or industry standards (ASTM E2691-09). JPM measures productivity changes, trends and 

anomalies and it can be considered as an early warning signal for construction productivity (ASTM 

E2691-09) problems. Five signals are proposed in the standard to represent anomalies and 

deviations from the reference point: Trends, shifts in the mean, extreme points, saw tooth pattern 

and missing data. For instance, if 6 or more consecutive points (productivity differentials) show 

an increasing or decreasing trend, the signal is representing “Trends” (ASTM E2691-09) as shown 

in Figure 4-41. 
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Figure 4-41: Example of Productivity Differential (Shahandashti et al., 2010) 

The developed SA-GPS prototype is able to provide the necessary information for automated 

earthmoving productivity assessment for the different scenarios. Table 4-8 depicts 21 different 

scenario, where SA-GPS data are proposed to identify bottlenecks and problems in earthmoving 

productivity. The potential of using SA-GPS in automated productivity assessment is supported 

with the multisensory data capture technologies integrated in the hardware developed, as well as 

the data fusion algorithm described above.  

Table 4-8: Scenarios for Automated Productivity Assessment using SA-GPS 

NO Scenario Required information Sensor data 

1 Adverse loading 

site condition 
 Increase in the average 

duration that a truck spends in 

the earthmoving site  

 Exclude the waiting times and 

loading times 

 Proximity Detection (Bluetooth) 

 Truck Speed (GPS) 

 Location (GPS) 

2 Adverse access 

road condition 
 Increase in the average 

duration that a truck spends on 

access road 

 Proximity Detection (Bluetooth) 

 Truck Speed (GPS) 

 Location (GPS) 

3 Changing soil type  Soil percent swell 

 Soil Density 

 Loading time 

 Load Weight (Strain gauge) 

 Number of Buckets (Altimeter) 

 Loading Time (Bluetooth+GPS) 

4 Excavator 

breakdown 
 Increase in the average hauler 

queue time in loading 

 Excavator in service area 

 Proximity Detection (Bluetooth) 

 Truck Speed (GPS) 
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 Location (GPS) 

 Load Weight (Strain gauge) 

 Number of Buckets (Altimeter) 

5 Depth of cut is 

changing 
 Change in the number of 

passes to fill the bucket  

 Change in the number of 

passes to fill the truck  

 Change in the average loading 

time 

 Proximity Detection (Bluetooth) 

 Truck Speed (GPS) 

 Location (GPS) 

 Load Weight (Strain gauge) 

 Number of Buckets (Altimeter) 

6 Over time  Labor  hours  related  to  

workers who work overtime 

 Labor  hours  related  to  

workers who do not work 

overtime 

 Proximity Detection (Bluetooth) 

 Time (GPS) 

7 Day and night shift  Day-shift expended labor 

hours  

 Night-shift expended labor 

hours  

 Day-shift percent complete  

 Night-shift percent complete 

 Proximity Detection (Bluetooth) 

 Time (GPS) 

8 One-way 

hauling road 

 Duration that a hauler waits to 

enter the hauling road 

 Proximity Detection (Bluetooth) 

 Truck Speed (GPS) 

 Location (GPS) 

9 Heavy traffic in 

hauling road 
 Increase in the average 

duration  that  a  hauler  

spends  in hauling road 

 Hauling Time (Bluetooth+GPS) 

 Truck Speed (GPS) 

 Truck Engine Idle 

(Accelerometer) 

 Location (GPS) 

10 Changing dumping 

location 
 Hauling distance  Distance (GPS) 

 Hauling Time (Bluetooth+GPS) 

 Truck Speed (GPS) 

 Location (GPS) 

11 Adverse weather 

conditions 
 Temperature 

 Humidity 

 Precipitation 

 Weather measurement station 

12 Truck breakdown  Increase in the average 

loading unit idle time 

 Truck in service area 

 Loader Idle Time (Bluetooth, 

GPS, Altimeter) 

 Location (GPS) 

 Location + Speed + Load weight 

13 Adverse dump site 

condition 
 Increase in the average 

duration that a truck spends in 

the dump site  

 Exclude the actual dumping 

times 

 Proximity Detection (Bluetooth) 

 Dump Time (Accelerometer) 

 Truck Speed (GPS) 

 Location (GPS) 

14 Excessive 

Excavator Idle  
 Increase in the average 

loading unit idle time 

 Loader Idle Time (Bluetooth, 

GPS, Altimeter) 
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15 Excessive Hauler 

Idle 
 Increase in the average hauler 

unit idle time 

 Proximity Detection (Bluetooth) 

 Truck Speed (GPS) 

 Location (GPS) 

 Load Weight (Strain gauge) 

 Number of Buckets (Altimeter) 

16 Aggressive Hauler 

operator 
 Harsh braking 

 Harsh acceleration 

 Acceleration and Swing 

(Accelerometer)  

17 Hauler over 

loading 
 Payload exceed maximum 

payload 

 Load Weight (Strain gauge) 

18 Bucket Not Full  Increased number of buckets 

to load 

 Load Weight (Strain gauge) 

 Number of Buckets (Altimeter) 

19 Low Dump Angle  Increase in the average dump 

time 

 Dump Time (Accelerometer) 

 Truck bed tilt angle 

(Accelerometer) 

20 Sticky material  Increase in average load 

weight while truck returning 

 Decreased number of buckets 

to load 

 Load Weight (Strain gauge) 

 Number of Buckets (Altimeter) 

21 Excavator 

repositions 
 Time between excavator 

movements  

 Location (GPS) 

 Arm Swing (Accelerometer) 

 

Equipment operators are usually under a great deal of pressure to achieve target production rates. 

While the operator may push the equipment to the maximum to achieve the requested production, 

it is beneficial to the contractor to monitor the operator behavior for equipment abuse. Speeding is 

a huge factor in high fuel consumption. The developed SA-GPS prototype allows monitoring of 

the operator and equipment to flag and report any undesirable behavior. Alerts are triggered for 

excessive speeding, harsh breaking and excessive idling. A three axial accelerometer is used for 

detecting aggressive driver behavior such as sudden acceleration and breaking. Measured 

acceleration in x-axis and y-axis reflects the driver’s direct control of the vehicle while accelerating 

or applying the brakes. The margin for safe acceleration and brake is ±0.3g, while harsh 

acceleration and brake can reach ±0.5g (Fazeen et al., 2012). The algorithm shown in Figure 4-42 

utilizes these limits to flag aggressive driving behavior. 
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Figure 4-42: SA-GPS Operator Behavior Detection Flowchart 

4.8.3 Progress Estimation and Forecasting Algorithm 

This algorithm is responsible for estimating and forecasting project’s progress and generating 

automated progress reports. The percentage completed of each activity is calculated based on the 

measured actual quantities of work completed on each activity. Then the percentage completed is 

used to calculate the budgeted cost of work performed (BCWP), which is rolled up to the project 

level. The Earned value analysis is performed to calculate both cost performance index and 

schedule performance index. The progress is forecasted based on the self-adaptive forecasting 

method of (Ibrahim & Moselhi, 2013b), which enhances forecasting accuracy through continues 

iteration to reduce the forecasting error. This method is based on the principles of iterated multi-

step forecasting method. The proposed method forecasts the final cost of a project according to the 

following steps: 
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At time period t, the forecasting factor (δt) is calculated from the actual productivity, and the 

planned productivity, 

δt = 
𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑡

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑡
,        (4-9) 

Then, the estimated productivity for the next period t+1 is forecasted using the previously 

calculated forecasting factor at time period t.  

Estimated Productivityt+1  =  δt × Planned Productivityt+1,        (4-10) 

At time period t+1, the forecasting factor (δt+1) is calculated, 

δt+1 = 
Actual Productivityt+1

Planned Productivityt+1
 ,        (4-11) 

The forecast error correction factor (εt+1) is calculated by dividing the estimated productivity by 

the actual productivity, 

εt+1 = 
Actual Productivityt+1

Estimated Productivityt+1
,        (4-12) 

Then, the estimated productivity for the next period t+2 is forecasted based on the forecasting 

factor and the forecast error correction factor, 

Estimated Productivityt+2  = (δt+1 × εt+1) × Planned Productivityt+2,        (4-13) 

The total project duration is forecasted based on estimated productivity, 

Total Duration =  Duration to data + (
Total Planned Qty −Actual  Completed Qty

Estimated Productivityt+2 ×Number of work hrs per day
) (4-14) 

The total project cost (EACt) is forecasted from the total project budget (BAC),  

EACt = ACt + (BAC × (
Total Planned Qty −Actual  Completed Qty

Total Planned Qty
))              (4-15) 
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The above steps are repeated for the following time periods as shown in Figure 4-43. 

 

Figure 4-43: Self-Adaptive Forecasting Algorithm (Ibrahim & Moselhi, 2013b) 
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4.9 Prototype Laboratory Validation 

Laboratory experiments were conducted to test the developed SA-GPS prototype latency and 

energy consumption.  

4.9.1 Prototype Latency Test 

Latency is the measure of time delay between the sending and receiving of a message. Data latency 

is very critical especially for real time tracking and control applications. Therefore it was necessary 

to measure the latency of the developed prototype. The test-bed consisted of one gateway and five 

SA-GPS mobile nodes as shown in Figure 4-44.   

 

Figure 4-44: Latency Test-bed 

The gateway is used for initiating the latency measurements, retrieving the measured times and 

storing these locally, then send these data over WLAN to server based database for processing. 

The gateway performs a double task, first, receiving and sending packets from/to the mobile node 

and second, communicating data through WLAN. Latency is measured in terms of the round trip 
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time (RTT) measured from the start of data transmission from the gateway node, traveling to a 

destination node where it is then echoed back and returned to the gateway as shown in Figure 4-45. 

The RTT is measured by adding a start-time timestamp in the data packet when the packet is 

leaving the gateway, and later adding an end-time timestamp and a delta-time indicator (delta-time 

= end-time − start-time) in the same data packet when it returns back to the gateway. This 

measurement identify the in-network latency. The data size was varied from 1 to 8000 bytes. The 

8kb size was validated by experiments to be the largest size of data to be transferred from the 

mobile unit to the gateway at any time. Each test was repeated for 100 runs then results were 

averaged and summarized in Table 4-9. 

 

Figure 4-45: RTT Measurement 

Table 4-9: SA-GPS Latency Test Results 

Data Bytes Average Latency (ms) Maximum Latency (ms) 

1 4.05 15.60 

2 4.07 16.30 

12 4.09 18.70 

30 4.67 21.10 

62 8.19 24.20 

71 8.64 32.40 

128 13.63 46.80 

500 45.05 56.80 

1000 87.72 93.60 

2000 172.07 187.20 

4000 344.04 358.80 

8000 683.99 686.40 
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4.9.2 Prototype Energy Consumption Test 

Measuring the energy consumption of the developed SA-GPS prototype was very important to 

validate the possibility to power the prototype from backup battery in case of failure in the external 

power supply. The energy consumption was measured as j/hr to accomplish the complete 

performance of the developed prototype. The measurement were performed in the lab over 8 hours 

period, where the values obtained averaged over that period. The energy consumption was 

measured per each application component: Data Sensing, Data Recording, Data Processing, and 

Data Transmission. The results summary presented in Table 4-10 indicated that, data transmission 

is the highest energy consuming application component with 38.40% of the total consumption. 

Data sensing came in the second place with 28.61%. The total power for the prototype can be 

supplied from 2xAA batteries for almost 8.4 hours. Keeping the data transmission to minimum is 

essential to improve the developed prototype energy performance.  

Table 4-10: SA-GPS Energy Consumption Test Results 

Application Component Energy Usage (j/hr) Energy Consumption 

Percentage 

Data Sensing 752.33 28.61% 

Data Processing 630.00 23.96% 

Data Recording 237.60 9.04% 

Data Transmission 1,009.80 38.40% 

Total 2,629.73 100.00% 

Expected Lifetime on 

2XAA (hours) 

8.40  
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4.10   Prototype Validation / Case Study  

The developed prototype was tested on a scaled case study, where remotely controlled scaled 

equipment (1:50) were used for a dirt road construction project as shown in Figure 4-46. The 

purpose of this case study was to validate results obtained in laboratory experiments and measure 

the prototype accuracy. In this project, several scenarios were simulated to test the performance of 

the developed prototype in estimating the project progress and in identifying productivity 

bottlenecks.  

 

Figure 4-46: SA-GPS Prototype Mounted on Scaled Equipment 

In this case study, a simple 10 m length and 1 m wide dirt road was constructed. The utilized 

construction equipment fleet composed of a dozer, excavator, wheeled loader, two trucks, and 

roller. Seven main activities were performed during the construction of this project, namely, 

excavate, load, haul, dump, return, spread and compact. A team of 8 personnel executed this 

project controlling the scaled equipment. The total quantity of the excavation was 2.9 m3 and the 

total quantity of fill was 1.37 m3. The project was completed in 15 hours with a total cost of 

$5382.15 (estimated based on hourly rate). The road design is shown in Figure 4-47, where the 

quantity of earthwork was calculated assuming typical trapezoidal sections at 1 m intervals along 
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the road profile. A video camera was used to record the actual construction progress in order to 

compare it with the results obtained from the SA-GPS prototype. 

 

Figure 4-47: Case Study Jobsite 

The project plan was to cut 2.805 m3 of dry sand and back filling of 1.37 m3. However the actual 

total volume of soil in cut locations was 2.9 m3 due to the unstable sandy soil in the cut areas.  

4.10.1 Results  

In order to benchmark the accuracy of the developed prototype, the performance of developed 

prototype is compared to standalone GPS method developed by Montaser et al (2012). The project 

progress was also calculated manually with the aid of video camera recording and actual 

measurements of cut and fill quantities. Figure 4-48 illustrated the project progress using both 

methods. The results presented in Table 4-11 show that the standalone GPS method estimated the 

progress of earthwork with an average absolute percentage error of 12.26%, and the developed 

SA-GPS prototype estimated the project progress with an average absolute percentage error of 

2.88%. The project duration was forecasted at T=9 h using both methods as shown in Table 4-12. 

The forecasted project duration and cost using the standalone GPS method were 13.7 h and 
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$4,915.70, respectively, with error of 8.66%. On the other hand, the forecasted project duration 

and cost using the developed framework where 15.7 h and $5,633.32, respectively, with error of 

4.66%. 

 

Figure 4-48: Project Progress Tracking 

Table 4-11: Project Progress Comparison 

Time 

(h) 

Planned 

Qty 

m3 

Actual 

Qty 

m3 

Measurement 

Qty (m3) 

Estimation Error Absolute % Error 

GPS SA-GPS GPS SA-GPS GPS SA-GPS 

1 0.216 0.182 0.197 0.178 8.31% -2.41% 8.31% 2.41% 

2 0.432 0.368 0.403 0.342 9.50% -7.06% 9.50% 7.06% 

3 0.647 0.544 0.606 0.511 11.30% -6.17% 11.30% 6.17% 

4 0.863 0.738 0.823 0.690 11.54% -6.46% 11.54% 6.46% 

5 1.079 0.904 1.003 0.872 10.92% -3.57% 10.92% 3.57% 

6 1.295 1.101 1.228 1.043 11.58% -5.21% 11.58% 5.21% 

7 1.511 1.281 1.444 1.231 12.68% -3.92% 12.68% 3.92% 

8 1.726 1.450 1.642 1.425 13.23% -1.76% 13.23% 1.76% 

9 1.942 1.636 1.850 1.599 13.06% -2.27% 13.06% 2.27% 

10 2.158 1.827 2.069 1.822 13.21% -0.31% 13.21% 0.31% 

11 2.374 2.020 2.299 2.008 13.84% -0.56% 13.84% 0.56% 

12 2.590 2.210 2.513 2.226 13.71% 0.71% 13.71% 0.71% 

13 2.805 2.428 2.758 2.435 13.60% 0.32% 13.60% 0.32% 

14  2.626 2.987 2.654 13.76% 1.07% 13.76% 1.07% 

15  2.900 3.295 2.940 13.62% 1.38% 13.62% 1.38% 

   Average 12.26% -2.41% 12.26% 2.88% 
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Table 4-12: Project Estimate at Completion and Duration Forecasting 

T = 9 h GPS SA-GPS Planned Actual 

Progress to date (m3) 1.850 1.599 1.942 1.636 

Percentage Complete 64.35% 57% 69.23% 58.32% 

Forecasted Project duration (h) 13.7 15.7 13 15 

Forecasted Cost $4,915.70 $5,633.32 $4664.53 $5382.15 

Forecast Error -8.66% 4.66% 

 

The productivity estimation using both methods was also evaluated in this case study. Table 4-13 

illustrated the results of the productivity comparison, where the average actual productivity 

measured using manual method was lower by 10.41% than the planned productivity as shown in 

Figure 4-49. The estimated average productivity using the GPS was higher than the average actual 

productivity by 13.62%, while the estimated average productivity using SA-GPS was only 1.38% 

higher than the average actual productivity. The productivity estimation using GPS had 13.65% 

mean absolute percentage error in comparison to 8.27% using SA-GPS prototype. 

Table 4-13: Hourly Productivity Comparison 

Time 

(h) 

Planned 

Productivity 

m3/hr 

Actual 

Productivity 

m3/hr 

Productivity Error Absolute %Error 

GPS 

m3/hr 

SA-GPS 

m3/hr 

GPS SA-GPS GPS SA-GPS 

1 0.216 0.182 0.197 0.178 8.31% -2.41% 8.31% 2.41% 

2 0.216 0.186 0.206 0.164 10.66% -11.61% 10.66% 11.61% 

3 0.216 0.177 0.203 0.169 15.07% -4.31% 15.07% 4.31% 

4 0.216 0.194 0.217 0.180 12.20% -7.27% 12.20% 7.27% 

5 0.216 0.166 0.180 0.182 8.19% 9.23% 8.19% 9.23% 

6 0.216 0.196 0.225 0.171 14.62% -12.77% 14.62% 12.77% 

7 0.216 0.181 0.216 0.188 19.37% 3.96% 19.37% 3.96% 

8 0.216 0.169 0.198 0.194 17.37% 14.60% 17.37% 14.60% 

9 0.216 0.186 0.208 0.175 11.77% -6.22% 11.77% 6.22% 

10 0.216 0.191 0.219 0.222 14.50% 16.44% 14.50% 16.44% 

11 0.216 0.192 0.230 0.186 19.85% -2.92% 19.85% 2.92% 

12 0.216 0.191 0.214 0.218 12.27% 14.12% 12.27% 14.12% 

13 0.216 0.217 0.245 0.210 12.53% -3.58% 12.53% 3.58% 

14  0.198 0.230 0.219 15.68% 10.25% 15.68% 10.25% 

15  0.274 0.308 0.286 12.30% 4.32% 12.30% 4.32% 

   Average 13.65% 1.46% 13.65% 8.27% 
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Figure 4-49: Project Hourly Productivity 

 

Another Important performance measure is the differential productivity, which enables detection 

of trends and patterns in operations on-site. Table 4-14 and Figure 4-50 depict the actual 

differential productivity encountered on site, and the estimates using both methods. The actual 

average differential productivity was -10.41%, and it reflected the learning curve of the crew 

utilizing the remote controlled equipment, where the differential productivity started to trend up 

around T=9 and all the way to the end of the project duration. The SA-GPS had better estimate of 

the average differential productivity as -9.18%, while the standalone GPS estimate was way off 

with an average value of 1.79%. 
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Table 4-14: Differential Productivity Comparison 

Time 

(h) 

Planned 

Productivity 

m3/hr 

Actual 

Productivity 

m3/hr 

Productivity Differential Productivity 

GPS 

m3/hr 

SA-GPS 

m3/hr 

Actual GPS SA-GPS 

1 0.216 0.182 0.197 0.178 -15.70% -8.70% -17.73% 

2 0.216 0.186 0.206 0.164 -13.92% -4.74% -23.91% 

3 0.216 0.177 0.203 0.169 -18.10% -5.77% -21.64% 

4 0.216 0.194 0.217 0.180 -10.24% 0.71% -16.76% 

5 0.216 0.166 0.180 0.182 -22.93% -16.63% -15.82% 

6 0.216 0.196 0.225 0.171 -9.09% 4.21% -20.69% 

7 0.216 0.181 0.216 0.188 -16.22% 0.01% -12.90% 

8 0.216 0.169 0.198 0.194 -21.72% -8.13% -10.30% 

9 0.216 0.186 0.208 0.175 -13.74% -3.59% -19.10% 

10 0.216 0.191 0.219 0.222 -11.50% 1.34% 3.05% 

11 0.216 0.192 0.230 0.186 -11.01% 6.65% -13.61% 

12 0.216 0.191 0.214 0.218 -11.68% -0.85% 0.79% 

13 0.216 0.217 0.245 0.210 0.76% 13.39% -2.84% 

14 0.216 0.198 0.230 0.219 -8.04% 6.38% 1.39% 

15 0.216 0.274 0.308 0.286 26.97% 42.58% 32.45% 

   Average -10.41% 1.79% -9.18% 

 

 

Figure 4-50: Project Differential Productivity 
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Equipment utilization was calculated using SA-GPS, the loader utilization was 29%, where the 

trucks utilization was 99% as shown in Figure 4-51.  

 

Figure 4-51: Equipment Utilization 

In order to validate the functionality of the developed productivity analysis algorithm. Simulated 

scenarios are used to test the capabilities of the developed algorithm in identifications of 

bottlenecks in the earthmoving operations. The algorithm use IF-Then rules to check for conditions 

listed in table Table 4-8. For example, the rule to check for changing soil conditions is: 

If  

{(Loading Time > Average Loading Time) and (Number of Buckets > Average 

Number of Buckets) and (Load Weight > Average Load Weight)}  

Or  

{(Loading Time < Average Loading Time) and (Number of Buckets < Average 

Number of Buckets) and (Load Weight < Average Load Weight)} 

Then (Soil type is changing) 
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A scenario for a change in soil conditions was simulated by adding some rocks to the sandy soil. 

The loading time started to increase and the number of buckets required to fill the truck was 

increased from 5 to 6. A flag for changing soil was identified at cycle 16 as shown in Figure 4-52. 

 

Figure 4-52: Changing Soil Conditions Scenario 

Another scenario was test, a truck out of service on the road, which in turn cause excessive loader 

idle time. The rule to check for truck out of service conditions is: 

If  

{(Loader Idle Time > Average Loader Idle Time) and (Trucki Cycle Time > Average 

Trucks Cycle Time)}  

Then (Potential Trucki Out of Service) 

This scenario was simulated by taking one truck out of service between times (12,770 to 13,770) 

and (26,360 to 27,360). The loader idle time started to increase and a flag was raised by the 

algorithm as shown in Figure 4-53. 
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Figure 4-53: Truck Out of Service Scenario 

4.10.2 Discussion of Results 

The cumulative probability functions (CDF) of a system’s estimation error is used to measure its 

precision. To compare the developed SA-GPS prototype with the standalone GPS method with 

respect to accuracies and precision, the technique whose CDF graph reaches high probability 

values faster is more preferable, because its estimation error is more concentrated in small values. 

With 95% confidence, the developed SA-GPS has a progress estimation accuracy of 93.36%, while 

the standalone GPS has a progress estimation accuracy of 85.05% as shown in Figure 4-54. 

The lower accuracy of the standalone GPS method is attributed to its complete reliance on only 

one source of data, which is used to detect equipment location onsite. Then an algorithm correlates 

that location to activities (load, haul, dump and return) being executed, to identify their parameters 

such as start, finish and durations. It also assumes that hauling units are loaded to their full capacity. 

Although that GPS accuracy is independent of scale of jobsite, location detection accuracy is 

directly proportional to size and scale of jobsite. So given the small size of the jobsite considered 
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in this case study, the location detection accuracy is lower compared to that expected on larger 

real-size jobsites. 

 

Figure 4-54: Progress Estimation Errors CDF 

Contrary to the standalone GPS method, the accuracy of the developed SA-GPS prototype is not 

size or scale dependent of the construction operation being monitored. The prototype is designed 

and configured to detect equipment physical movement and their inter-action which also is 

independent of size and scale. The results showed that using multiple sensors in addition to GPS, 

augments its capabilities. The improved accuracy can be attributed to the whole cluster of sensors 

and the reasoning engine used to fuse sensors data as described earlier in the productivity 

assessment module. 
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The improved progress estimation of the developed prototype not only reduces the risk of project 

cost and duration overruns, but also enables project managers to observe and oversee their project’s 

status in real-time with the support of intuitive and timely progress reports. It is expected that the 

accuracy of the developed prototype can be achieved on large-scale road and highway construction 

projects. This is attributed to the fact that the developed prototype does not require any scalable 

improvements on the hardware technology used, nor does it require any additional computational 

changes in the developed software. The performance of the developed SA-GPS prototype was 

measured against the five performance measures described in section 4.3. Table 4-15 summaries 

the performance measures for the SA-GPS: 

Table 4-15: SA-GPS Performance Measures 

Performance Measure Value 

Accuracy 93.36% 

Precision 95% 

Latency Less than 700 milliseconds 

Scalability Up to 15,000 nodes can be connected at one time 

Robustness It is able to perform if sensor data is noisy, corrupted or missing 

Cost $100-150 (depends on number of sensors) 

The developed prototype is able to capture real-time operating information such as equipment idle 

and out of service times, along with operator driving behavior and weather conditions, which 

facilitates operations optimization and potentially reduce their costs. The developed prototype 

paves the road to a wide range of applications in construction such as progress tracking, jobsite 

safety and security enhancement, productivity assessment and facilities management.  

4.11 Summary  

This chapter described the development of the SA-GPS prototype for outdoor automated data 

acquisition on construction jobsites. The developed prototype was designed with a special focus 
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on automated tracking and control of earthmoving operations in near real time. The developments 

made in this chapter is contributing to the body of knowledge in: 

 Experimental investigation to assist designing flexible and customized automated data 

acquisition prototypes utilizing latest innovations in sensory and wireless technologies. 

 Testing and selecting wireless protocols, sensors for efficient coverage, data capturing and 

communication 

 Design, configure, test and validate the developed prototype to address limitations in 

current practice in automated site data acquisition and off-the-shelf technologies. 

 Design data fusion algorithm for timely extraction of actionable information in support of 

near real-time productivity analysis for earthmoving operations. 

 Validation of concurrent design and testing of the developments made for automated site 

data acquisition using rapid prototyping techniques. 

 Development of efficient data management scheme that utilizes integrated on-sensor node 

data processing and in-network data processing to transform raw data into high level useful 

and actionable information. In this context, data aggregation and processing render much 

faster near real-time progress measurements. 

 Development of fuzzy reasoning data fusion and knowledge extraction algorithm to 

provide a higher level of system redundancy in case of sensors malfunctions. 
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Chapter 5 : SELF-CALIBRATED WSN PROTOTYPE 

5.1 General 

The aim of this chapter is to describe the study made leading to the development of Self-Calibrated 

Wireless Sensor Network (SC-WSN) for indoor tracking and progress reporting of construction 

operations, with a focus on improving the localization accuracy. Figure 5-1 depicts the main 

sections of this chapter.  

 

Figure 5-1: Chapter 5 Overview 

5.2 Design Objectives 

The main design objectives for the SC-WSN prototype are: 

 Select best filtering technique for RSSI for indoors localization. 

 Improve indoor localization accuracy. 

 Design a dynamic and adaptable path-loss model. 

 Test and validate the prototype design using simulation and laboratory testing. 
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5.3 Performance Measures 

The performance measures are similar to those utilized in chapter 4, with a focus on the localization 

accuracy. The Euclidean distance is used to measure the localization error. The average distance 

error is adopted as the performance metric, which is calculated using equation (5-1):  

𝐸(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑒𝑟𝑟𝑜𝑟) = 𝐸(√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2)                             (5-1) 

5.4 Prototype Design 

Similar to the iterative process of rapid prototyping design presented in chapters 3 and 4, a similar 

approach was utilized. The SC-WSN prototype is designed to address the limitations highlighted 

in chapter 3. The developed prototype consists of fixed readers, gateway and mobile tags as shown 

in Figure 5-2. This prototype is based on radio frequency technology, and its hardware components 

are selected to satisfy the performance matrices (accuracy, precision, robustness and cost). Tags 

are the mobile units, which will be carried by or mounted on tracked resources (labor, material and 

equipment).  

 

Figure 5-2: Indoor Positioning prototype Components 

Readers are the fixed units, which are mounted at key locations on a construction site to provide 

appropriate RF coverage. Each reader has a unique ID, and a predefined location. A reader is 
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continually scanning for nearby tags, once a tag is detected; it measures its signal strength. Then 

the microcontroller converts the measured signal strength to distance according to a predefined RF 

propagation model. It transmits the distance value with the reader coordinates (x,y) back to the tag. 

Once it receives three readings from three different readers, a 2D trilateration is applied to calculate 

the tag location in 2D, then it adds the third dimension (elevation) from the reading of its pressure 

sensor. Finally the tag transmits its ID, and location to the nearest gateway. Gateways are fixed 

units with higher processing and storage capabilities. A gateway consists of a microcontroller with 

RF transceiver, a wireless LAN communication module, a real time clock, a data logger and a 

power supply. The gateway collects the data from the tags and readers, then performs pre-data 

processing. Locations are recorded with time stamp on the gateway internal storage and 

transmitted periodically to a cloud based algorithm for linking with BIM and post processing. In 

order to increase accuracy without placing more readers, the model employs the idea of having 

extra fixed location reference tags to help location calibration. These reference tags serve as 

reference points in the system as shown in Figure 5-3. 

 

Figure 5-3: Reference Tags for Self Calibration 
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A two stage process is implemented in this prototype, prediction stage and calibration stage as 

shown in Figure 5-4. Each reader measures the signal strength (RSSI) from nearby tags and filter 

it to remove uncorrelated noise. The prediction stage is initiated by converting the filtered RSSI to 

its corresponding distance using the dynamic path-loss model. The initial settings for the signal 

propagation model parameters are calculated using indoor experimentations as explained by 

(Ibrahim & Moselhi, 2014d). Once three distances from three readers for a given tag are available, 

its location is estimated using the LSE trilateration algorithm. The localization accuracy is 

continually monitored by measuring the errors in location estimation generated based on a number 

of reference tags. These reference tags are deployed on site at pre-defined locations. When the 

system accuracy is degraded due to on-site interferences, a system calibration request is initialized. 

The user can define the accuracy limits to initiate the calibration requests. The calibration stage 

utilizes a particle swarm optimization (PSO) to find the best values for the path-loss model 

parameters which maximize the system localization accuracy. Finally, at the end of the calibration 

stage, the dynamic path-loss model is updated with a new set of optimized parameters. 

 

Figure 5-4: Developed Localization Prototype Overview 
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Several researchers have used different wireless technologies at 2.4 GHz and RF lower frequency 

bands (433 MHz - 928 MHz) in indoor localization research. When choosing a frequency band for 

an indoor positioning system; key criteria are power management, network reliability, and network 

density. Many researchers are tempted to choose the 2.4 GHz band because it is the most globally 

accepted. However, its popularity carries increasing demand on the band, which results in 

deteriorating performance and requires complicated RF protocols to overcome interference. 

(Ibrahim & Moselhi, 2014d) indicated that when considering several factors such as coverage 

range, data transfer rate and radio interference, the 900 MHz frequency band is consider the best 

trade-off between all these factors (considering equal weights) as shown in Figure 5-5.  

900 MHz has a much longer wavelength, which provides greater physical barrier penetration and 

is far less popular, which makes the frequency range less crowded. Because of these two factors, 

given enough transmit power and receptor sensitivity, it is considered the best alternative for 

indoor localization.  

 

Figure 5-5: Operating Frequency Vs Performance 

Three major hardware components are used to build the prototype: microcontroller, RF module 

and Barometric pressure sensor. Waspmote microcontroller is used which is a more advanced 

microcontroller than the Arduino Uno used in the SA-GPS as shown in Figure 5-6. It is a 32 bit 
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microcontroller with 128 Kb of flash memory, which enables executing advanced optimization 

algorithms. It can be programmed using C++, and it has an Open Source API to program using 

high level functions without having to deal with hardware-specific commands. 

 
Figure 5-6: Waspmote Microcontroller 

Synapse SNAP radio frequency module RF300 is used based on the experimental study presented 

in chapter 4. BMP180 barometric pressure sensor as explained in chapter 4, is used for elevation 

measurement identical to that used in chapter 4. 

5.5 Hardware Assembly and Configuration 

Considering the function and design objectives, the prototype is designed to be consisted of three 

main parts: the tag, the reader and the gateway. Each of them encompass hardware components 

and firmware scripts. The firmware scripts are programmed to set the main parameters required 

for the prototype and to control hardware functions. The tag is equipped with the Synapse 

RF300PC engine and the BMP180 pressure sensor. The communication between the BMP180 and 

RF300PC is established through Inter-Integrated Circuit (I2C) communication. The required 

minimum power is 2.5V. So the tag will be powered by a Li-Ion Rechargeable Coin Cell batteries 

(PD3555) to keep the tag small as shown in Figure 5-7. 
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Figure 5-7: Tag Wiring Diagram 

Tag’s firmware consists of two main scripts. The first script performs a multicast function to 

surrounding readers. The multicast function pings the nearby readers and passes the tag MAC 

address to the readers to perform the RSSI measurement as shown in Figure 5-8. The second script 

performs the localization when three distance are received from surrounding readers, and it 

measures the barometric pressure then converts into corresponding altitude. Finally, it transmits 

the 3D location of the tag to the nearest gateway as shown in Figure 5-9.  

 

Figure 5-8: Tag Multicast Script Flowchart 
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Figure 5-9: Tag Localization Script Flowchart 

The reader is equipped with the Synapse RF300PC engine and powered by a 3 V DC 400 mA 

Power Adapter. The RF module has Omni directional antenna for extended range. Similar to the 

tag wiring setup, (-) on the DC plug goes to the pin 24 on the module and (+) goes to pin 21 on the 

module, as shown in Figure 5-10. The reader listens to ping requests from tags. Once a request is 

received the reader records the RSSI of the transmitted packet, then it is filtered and converted to 

its corresponding distance. The reader then sends the distance with the reader coordinates back to 

the tag as shown in Figure 5-11. 

 

Figure 5-10: Reader Wiring Diagram 
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Figure 5-11: Reader Script Flowchart 

The Gateway node is used to collect data from the readers, and tags; then transmit the data to the 

cloud based database for post-processing. The Gateway node also responsible for monitoring the 

system performance and auto calibrating the system when the localization accuracy is low as 

shown in Figure 5-12. It consists of a Waspmote microcontroller, Synapse RF300 module, RN-

171 WLAN module and 2GB SD card as shown in Figure 5-13.  
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Figure 5-12: Gateway Script Flowchart 

 

Figure 5-13: Gateway Node Wiring Diagram 
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5.6 RSSI De-Noising Filter 

Theoretical laws of electromagnetic wave propagation describe propagation losses when waves 

are travelling in ideal free-space situations, which become very challenging when applied to actual 

indoor localization situations. These challenges arise from the lack of prediction methods for actual 

propagation losses on complex and dynamic jobsites. In ideal free-space situations, 

electromagnetic waves travel or propagate in direct rays from transmitter to receiver. However in 

actual situations, waves pounce as they are reflected and scattered from surrounding environment 

such as floor, ceiling, walls and various objects. Which in turn cause multipath waves, which can 

be either constructive or destructive, resulting in a positive or a negative effect on the received 

signal strength. Such interference is more complicated in complex and dynamic environments such 

as construction jobsites, where losses are continually changing. Theoretically, RSSI is inversely 

proportional to the distance between a transmitter and a receiver. However, interferences such as 

multipath and shadow fading affects RSSI as shown in Figure 5-14. It is obvious that the RSSI 

heavily depends on surrounding environment. The comparison between electromagnetic signal 

propagation in free-space (Anechoic chamber) and corridor environments shows the multipath 

effect, where the electromagnetic signal is pouncing in a random manner.  

 

Figure 5-14: Signal Propagation in Different Environments (Rensfelt, 2012) 
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From the collected RSSI data as explained in details in chapter 4, it was clear that RSSI is affected 

by the periodic/random changes in the physical properties of the surrounding environment or even 

a group of people passing around the transmitter or receiver as shown in Figure 5-15. Such 

variations in the RSSI readings (even when the node is at standstill) produce huge errors in the 

estimate distance. A simple moving average could be used to filter out small oscillations in the 

RSSI, however further investigation is required to select the best filtering and smoothing method. 

The following section will present a deep analysis for selecting the most effective filtering scheme 

for the localization problem.  

 

Figure 5-15: Real-Time RSSI VS Moving Average Filtered RSSI 

RSSI measurements presented chapter 4 can be unreliable for localization due to the noise 

interference. Signal de-noising is required to generate a signal which is representative of the 

original RSSI but less noisy and suppresses interferences caused by surrounding environment 

(Ibrahim & Moselhi, 2015a). The goal of a filter is to reduce noise while maintaining the shape 
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and height of waveform peaks. Moving average filter is the most common filter used for RSSI (eg. 

(Montaser & Moselhi, 2014)), however it has several limitations that are explained in detailed in 

the following section. It was important to investigate different filtering techniques in order to 

choose the best filtering technique for RSSI with a focus on indoor localization application. Three 

main filters are considered in this study: Moving Average filter, Savitzky-Golay filter, and Kalman 

filter. 

5.6.1 Moving Average Filter 

The moving average is the most common filter in digital signal processing, mainly because it is 

easy to understand and use. It is optimal for reducing random noise while retaining a sharp 

amplitude response. However, it has a major limitation due to its inability to separate band 

frequencies. The moving average operates by averaging a number of points from the input signal 

to produce each point in the output signal. In equation form, this is written:  

𝑌(𝑖) =
1

𝑚
∑ 𝑋(𝑖 + 𝑗)𝑚−1
𝑗=0        (5-2) 

Where X(i+j) is the input signal, Y(i) is the output signal, and m is the number of points in the 

average. 

5.6.2 Savitzky-Golay Filter 

Savitzky and Golay (1964) presented an algorithm for data smoothing using least squares fit of a 

small set of consecutive data points to a polynomial and then calculates central point of the fitted 

polynomial curve as the new smoothed data point. The main advantage of this filter is its ability 

to keep features of the original data distribution such as relative maxima and minima which are 

often flattened by other smoothing techniques such as moving average (Hassanpour, 2008; Luo, 
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Ying, & Bai, 2005; Savitzky & Golay, 1964). The mathematical formula for Savitzky-Golay 

algorithm is given by the following equation: 

𝑌𝑘 =
∑ 𝐴𝑖𝑋𝑘+𝑖
𝑛
𝑖=−𝑛

∑ 𝐴𝑖
𝑛
𝑖=−𝑛

        (5-3) 

Where Yk is the smoothed data point, Xk-n --- Xk+n are the original data points, (2n+1) is the window 

width for the filter, and Ai are the convolution integers which depends on the filter width and the 

polynomial degree. Typical sets of convolution integers for “quadratic smooth” are shown in the 

Table 5-1. 

Table 5-1: Convolution Integers for “Quadratic Smooth” 

 Filter width (2n+1) 

i 11 9 7 5 

-5 -36    

-4 9 -21   

-3 44 14 -2  

-2 69 39 3 -3 

-1 84 54 6 12 

0 89 59 7 17 

1 84 54 6 12 

2 69 39 3 -3 

3 44 14 -2  

4 9 -21   

5 -36    

 

The performance of Savitzky-Golay filter is usually better than the standard averaging filters. It is 

able to preserve the signal’s high frequency, however it is not effective in rejecting noise. 

Kalman filter was first introduced in 1960 to present a solution for discrete data linear filtering 

problem (Kalman, 1960). Since then, extensive research and applications had been proposed 

particularly in the areas of robotics and navigation. The key advantage of the Kalman filter is its 
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simple computational algorithm, adaptive recursive nature, and its status as the optimal estimator 

for one-dimensional linear systems with Gaussian error statistics (Anderson & Moore, 2012).  

5.6.3 Kalman Filter 

Kalman filter estimation process is based on a feedback loop control system. Which first estimates 

the process's state at a point in time and then obtains feedback of measurements. This feedback 

measurement is used to adjust the model parameters for next estimate. The model assumes that the 

state of a system at a time t evolved from the prior state at time t-1 according to the equation: 

𝑋𝑡 = 𝐴𝑡𝑋𝑡−1 + 𝐵𝑡𝑢𝑡−1 + 𝑤𝑡       (5-4) 

where Xt is the process state vector at time t, At is the state transition matrix which is applied to 

the previous state Xt-1, ut is the control input vector, Bt is the control-input model which is applied 

to the control vector ut, and wt is the process noise which is assumed to be drawn from a zero mean 

multivariate normal distribution with covariance Qt. 

At time t a measurement Zt of the true state Xt is calculated according to 

𝑍𝑡 = 𝐻𝑡𝑋𝑡 + 𝑣𝑡        (5-5) 

Where Ht is the measurement model for mapping true state space into measurement space and vt 

is the measurement noise which is assumed to be zero mean Gaussian white noise with covariance 

Rt. 

The Kalman filter recursive estimator model as shown in Figure 5-16 has two phases, the 

prediction phase, which estimates the priori process state at next observation time, and the 

correction phase, which incorporates a new measurement into the a priori estimate to obtain an 

improved a posterior estimate. 

http://en.wikipedia.org/wiki/White_noise
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Figure 5-16: Kalman Filter Recursive Estimator Model 

In the context of RSSI de-noising, a simplified version of the above equations will be used. It will 

be assumed that the process is governed by a linear equation: 

𝑋𝑘 = 𝑋𝑘−1 + 𝑤𝑘         (5-6) 

With a measurement equation: 

𝑍𝑘 = 𝑋𝑘 + 𝑣𝑘          (5-7) 

 And Hence the Kalman filter prediction phase equation can be rewritten as: 

�̂�𝑘
− = �̂�𝑘−1          (5-8) 

𝑃𝑘
− = 𝑃𝑘−1 + 𝑄        (5-9) 

And the measurement update equations are: 

𝐾𝑘 = 𝑃𝑘
−(𝑃𝑘

− + 𝑅)−1 =
𝑃𝑘
−

𝑃𝑘
−+𝑅

       (5-10) 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑍𝑘 − �̂�𝑘

−)       (5-11) 
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𝑃𝑘 = (1 − 𝐾𝑘)𝑃𝑘
−        (5-12) 

It is assumed that the process has a very small variance Q=1e-5 (for filter tuning flexibility). The 

initial seed for the filter, Xk-l will be assumed to be zero. Similarly the initial value for Pk-1, which 

is called P0 will be any value but not equal to zero. The measurement variance R will be initially 

assumed very large number in order to express the uncertainty in the measurement accuracy. 

5.7 Filters Performance Comparison Study 

To compare the performance of the above mentioned three filters, they were applied to the 

collected RSSI raw data. The goal of this comparison is to determine which filtering algorithm is 

preferable for improving indoor localization accuracy. The performance of these filter was 

measured based on local and global measures. The local measures consists of four matrices: (1) 

comparison between the original signal and filtered signal in terms of shape and height of 

waveform peaks, (2) mean and standard deviation, (3) Signal-to-Noise Ratio (SNR), and (4) 

Correlation coefficient (R) between original and filtered signals. The global measure is the 

absolute distance estimation error. 

The three filters settings were selected to make closest possible performance as following:  

 Moving average filter with 9 observations window.  

 Savitzky-Golary filter with 9 observations window. 

 Kalman filter with process error equal 1e-5; and measurement error equal 0.15. 
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5.7.1 MATLAB Simulation 

In order to generate RSSI signals in MATLAB, the collected RSSI data in chapter 4 was plotted 

versus the distance as shown in Figure 5-17, then the RSSI average and standard deviation were 

calculated as shown in Figure 5-18 and Figure 5-19. Two equation were generated using regression 

to represent the RSSI mean and standard deviation with respect to distance: 

𝑅𝑆𝑆𝐼𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = −7.635 ln(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) − 40.635     (5-33) 

𝑅𝑆𝑆𝐼𝑆𝑡𝑑𝐷𝑒𝑣 = 0.5658 ln(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) + 4.0113     (5-34) 

 

Figure 5-17: Raw RSSI Vs Distance 

 

Figure 5-18: Raw RSSI Average 
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Figure 5-19: Raw RSSI Standard Deviation 

The two generated equations (5-33) and (5-34) are used to build the path loss model and generate 

RSSI signals in the simulator. The second step of the simulator test is to validate the RSSI filtering 

techniques, where the moving average filtering was compared to Savitzky-Golary filter and 

Kalman filtering technique. The distance estimation errors were calculated using each filter and 

presented in the following figures. 

 

Figure 5-20: RSSI Signal Filtering at Distance 5 m 
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Figure 5-21: Absolute Distance Estimation Error at 5 m 

 

Figure 5-22: RSSI Signal Filtering at Distance 10 m 
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Figure 5-23: Absolute Distance Estimation Error at 10 m 

 

Figure 5-24: RSSI Signal Filtering at Distance 15 m 
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Figure 5-25: Absolute Distance Estimation Error at 15 m 

 

Figure 5-26: RSSI Signal Filtering at Distance 20 m 
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Figure 5-27: Absolute Distance Estimation Error at 20 m 

 

Figure 5-28: Mean Absolute Distance Estimation 
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5.7.2 Laboratory Experiments 

Figure 5-29 present the original RSSI signal and the signal after applying the three filters. By 

comparing original and filtered signals, it is obvious that moving average filter did not remove 

coherent noise from the original signal. For example noise in time interval between the samples 

5498 to 5766 as shown in Figure 5-30.  

 

Figure 5-29: Raw RSSI Vs Filtered RSSI 

The Kalman filter performed better in clearing the original signal from the underlying noise, while 

providing fast convergence for on-line estimations. The filter perfectly removed most of 
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uncorrelated noise (such as small variations and narrow spikes) and reduced bias components. 

Meanwhile, the Savitzky-Golary resulted in a significantly worse performance. The smoothing 

effects of the moving average and Savitzky-Golay filters is less aggressive than the Kalman filter 

and the distortion is comparatively limited. However, it should be stressed that both the first 

mentioned filters are providing signal smoothing with only cosmetic value. 

 

Figure 5-30: Coherent Noise in Raw RSSI Vs Filtered RSSI 

In order to establish the validity of the above results, it is important to quantify the uncertainty in 

filter performance. Statistical uncertainties in the measured signal should be reduced by filtering 



140 

 

out uncorrelated noise from measured signal. Figure 5-31 compares the original signal probability 

distribution and the filtered signals distribution at different distances.  

 

Figure 5-31: Original and Filtered Signals Probability Distribution at Different Distances 
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Given that all filters has the same number of observation samples, a smaller standard deviation of 

the filter output, means better filter performance. The Kalman filter reduced variance in the filtered 

signal, which in turn enhanced the confidence and lowered the uncertainty in the RSSI value at all 

distances as shown in Table 5-2, Figure 5-32 and Figure 5-33. 

Table 5-2: Filtered Signals Statistics 

distance Raw RSSI MAV Savitzky-Golay Kalman 

Average StdDev Average StdDev Average StdDev Average StdDev 

1 -35.29 4.35 -35.30 4.05 -35.30 4.10 -35.74 3.31 

2 -44.90 6.40 -44.91 6.04 -44.90 6.12 -45.22 4.21 

3 -54.52 7.71 -54.51 6.60 -54.52 6.79 -53.96 4.49 

4 -53.01 5.75 -53.02 5.17 -53.02 5.30 -52.97 2.67 

5 -50.74 6.92 -50.73 6.65 -50.74 6.73 -50.50 3.82 

 

Figure 5-32: Filtered Signals Standard Deviation 

 

Figure 5-33: Filtered Signals Average 

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7

d
B

m

Distance (m)

RSSI Standard Deviation

Raw RSSI Kalman MVA

-60

-55

-50

-45

-40

-35

-30

0 1 2 3 4 5 6 7

d
B

m

Distance (m)

RSSI Average

Raw RSSI Kalman MVA



142 

 

Signal-to-noise ratio (SNR) is a measure used in electromagnetic engineering to estimate the level 

of a measured signal to the level of background noise. The higher the SNR indicates more signal 

than noise. Several calculation methods can be used for calculating SNR. In this research the SNR 

is calculated as the ratio of mean to standard deviation of the RSSI signal 

𝑆𝑁𝑅 =
𝜇

𝜎
         (5-13) 

Where µ is the signal mean and σ is the standard deviation of the signal. 

The raw RSSI signal had an average SNR of 7.75 dB, after applying the filters to the RSSI; the 

Kalman filter has an average SNR of 13.33 dB. In comparison to the moving average and Savitzky-

Golay, which had an average SNR of 8.46 and 8.30 dB respectively as shown in Figure 5-34. 

The final test for the applied filters is the coefficient of correlation (R), which reflects the degree 

of linear relationship between two sets of data. It has a value between -1 and +1. A value of +1 

means that there is a perfect positive linear relationship between the two data sets. A value of -1 

means that there is a perfect negative linear relationship, and a value of 0 means there is no linear 

relationship at all between the data sets. The R is calculated as follows: 

𝑅 =
∑ 𝑋(𝑛)𝑌(𝑛)𝑛−1
𝑛=0

√(∑ 𝑋2(𝑛)∑ 𝑌2(𝑛)𝑛−1
𝑛=0

𝑛−1
𝑛=0 )

      (5-14) 

Where X(n) and Y(n) refer to the filtered signal and reference signal respectively. 

Table 5-3, presents the calculated R for each filter. All filters show good performance with respect 

to correlation to the original signal, with a slight better performance for Savitzky-Golay filter. 

Table 5-3: Filters Coefficient of Correlation (R) 

 Moving Average Savitzky-Golay Kalman Filter 

Coefficient of Correlation (R) 0.997 ± 0.001 0.999 ± 0.001 0.996 ± 0.002 
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Figure 5-34: Signal to Noise Ratio at Different Distances 

In conclusion of the above mentioned results, it is clear that the Kalman filter outperformed other 

filters in removing the noise, and provided an output filtered signal with less variations. The result 

obtained using Kalman filter is less noisy, consistent and reliable compared with the other filters 

presented above. 

5.8 Prototype Software/Algorithms 

The developed SC-WSN is composed of two stages, prediction stage and calibration stage as 

shown in Figure 5-35. Each reader measures the signal strength (RSSI) from nearby tags and filter 

it to remove uncorrelated noise. Then the filtered RSSI data is converted to its corresponding 

distance using a newly developed dynamic path-loss model, and forwarded to the tag again for 

location calculation. Based on three distances from three readers for a given tag, its location is 

estimated using the LSE trilateration algorithm (Karl & Willig, 2007). The localization accuracy 

is continually monitored by measuring the errors in location estimation generated based on a 

number of reference tags. These reference tags are installed on site at pre-defined locations. When 
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the system accuracy is degraded due to on-site interferences, a system calibration request is 

initialized. The threshold of an acceptable error was set to 20% in this research, which defines the 

accuracy limits to initiate the calibration requests. Finally, at the end of the calibration stage, the 

dynamic signal propagation model is updated with new set of optimized parameters. 

 

Figure 5-35: Developed SC-WSN Localization Overview 

5.8.1 Dynamic Path-Loss Model 

Free-space path-loss models are not suitable for indoor localization in real world environment due 

to the presence of shadow fading and multipath effects. It is important to investigate signal 

propagation in real situations in order to design a more realistic path-loss model which is able to 

handle uncertainties and noise in RSSI measurements. In the following section, real signal 

propagation scenarios are analyzed in order to provide solutions for indoor localization in 

construction jobsites environment. 

Both theoretical and measurement based propagation models indicate that average received signal 

power decreases logarithmically with distance. Empirical models help in reducing computational 
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complexity as well as increasing the accuracy of the predictions. The empirical model used in this 

study is Log-distance Path Loss Model. The path loss PL (d) for a transmitter and a receiver with 

distance d is: 

𝑃𝐿(𝑑) ∝  (
𝑑

𝑑0
)
𝑛

                                                   (5-15) 

𝑃𝐿(𝑑𝐵) = 𝑃𝐿(𝑑0) + 10 𝑛 𝑙𝑛 (
𝑑

𝑑0
) + 𝜎2                                             (5-16) 

Where n is the path loss exponent which indicates the rate at which path loss increases with 

distance d. The reference distance (d0) is determined from measurements at 1 meter distance from 

the transmitter. 2 is the shadowing variance in mdB.  

The value of n depends on the specific propagation environment, i.e., type of construction material, 

architecture, location within building. Table 5-4 lists typical path loss exponents obtained in 

various radio environments (Rappaport, 1996). 

Table 5-4: Path Loss Exponents for Different Environments (Rappaport, 1996) 

Environment Path Loss Exponent, n 

Free Space 2 

Urban area cellular radio 2.7 to 3.5 

Shadowed urban cellular radio 3 to 5 

In building line-of sight 1.6 to 1.8 

Obstructed in buildings 4 to 6 

Obstructed in factories 2 to 3 

 

Given that d0 = 1 m, Equation (5-16) can be simplified as: 

𝑃𝐿(𝑑𝐵) = 𝐴 + 𝐵 𝑙𝑛(𝑑)                                                 (5-17) 
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Where A & B are the parameters for the signal propagation model. In this research, the signal 

propagation model parameters (A&B) are estimated using lab experiments, then automatically 

adjusted on-site using the Particle Swarm Optimization. 

The Kalman filtered signal collected in laboratory experiments were used to generate the RSSI 

propagation model, which is used for distance estimation and hence location estimation. 

Figure 5-36 illustrates the Kalman filtered RSSI with respect to the actual distance between the 

transmitter and receiver nodes. Least square method is used to fit this relation in exponential 

equation format: 

𝑑 =  𝑒(
𝑅𝑆𝑆𝐼−𝐴

𝐵
)
        (5-18) 

Where A & B are constant confidents and d is the distance between the transmitter and receiver 

nodes. From the Figure 5-36, the distance can be estimated as: 

𝑑 = 𝑒
(
𝑅𝑆𝑆𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑+38.909

−8.989
)
      (5-19) 

 

Figure 5-36: Kalman Filtered RSSI Vs Actual Distance between Tx And Rx Nodes 
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5.8.2 Positioning Algorithm 

The multilateration (Karl & Willig, 2007) algorithm is applied, where the position of an object 

(tag) is calculated based on its estimated distances from fixed location devices (readers) (Stüber & 

Caffrey, 1999). When three readers are used, it is called trilateration, as shown in Figure 5-37.  

 

Figure 5-37: Localization using Trilateration 

The intersection of the three circles gives an exact solution for the tag’s location under ideal free 

space signal propagation (no fading or shadowing effect). However, in real environment, the three 

circles might not even intersect due to errors in distance estimates by RSSI path-loss model. 

(Stüber & Caffrey, 1999) presented an optimal localization using least square estimation (LSE) as 

shown in Figure 5-38. 

 

Figure 5-38: Localization using Least Square Estimation Trilateration 
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Given the readers coordinates as following: A(x1, y1), B(x2, y2), and C(x3, y3); and their 

corresponding distances to the tag are d1, d2, and d3; the three circles equations can be formatted 

as following: 

(𝑥1 − 𝑥)
2 + (𝑦1 − 𝑦)

2 = 𝑑1
2       (5-20) 

(𝑥2 − 𝑥)
2 + (𝑦2 − 𝑦)

2 = 𝑑2
2       (5-21) 

(𝑥3 − 𝑥)
2 + (𝑦3 − 𝑦)

2 = 𝑑3
2       (5-22) 

Where x and y are the coordinates for the tag location. 

Using the LSE method the tag coordinates can be calculated using the following equation: 

2 [
𝑥3 − 𝑥1 𝑦3 − 𝑦1
𝑥3 − 𝑥2 𝑦3 − 𝑦2

] [
𝑥
𝑦] = [

(𝑑1
2 − 𝑑3

2) − (𝑥1
2 − 𝑥3

2) − (𝑦1
2 − 𝑦3

2)

(𝑑2
2 − 𝑑3

2) − (𝑥2
2 − 𝑥3

2) − (𝑦2
2 − 𝑦3

2)
]          (5-23) 

5.8.3  Self-Calibration Algorithm 

In order to improve the positioning accuracy in indoor location algorithm based on RSSI, the 

developed prototype monitors the indoor propagation conditions and adapts its parameters when 

necessary (Ibrahim & Moselhi, 2015c). Static lognormal path-loss models are commonly utilized, 

where their parameters are calculated during an offline measurement phase before the deployment 

(Razavi & Moselhi, 2012). A disadvantage of this approach is its inability to adapt to different 

environments.  

The developed self-calibration algorithm relies on periodic calculation of reference tags locations 

and computation of system accuracy, and then find near optimum value for the path-loss model 

parameter in order to minimize the Mean Absolute location error.  

𝑍 = 𝑚𝑖𝑛 (
1

𝑚
 ∑ |𝑑𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑑𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖|

𝑚
𝑖=1 )                                     (5-24) 
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This objective function is non-linear which does not allow for an exact solution. Evolutionary 

optimization methods such as Genetic Algorithm (GA) or Particle Swarm Optimization (PSO) can 

be used to solve these kind of problems. PSO has the same effectiveness (finding the true global 

optimal solution) as the GA but with significantly better computational efficiency (Hassan, 

Cohanim, de Weck, & Venter, 2005). The computational efficiency of the selected optimization 

algorithm is very important for the developed method due to the limited computational resources 

of the microcontroller (memory and speed). Therefore it was used in the developed prototype. 

In the context of path-loss model optimization, each particle consists of two members: the 

coefficient A and B of the path loss model as shown in Figure 5-39. In this problem space, each 

particle keeps track of its A and B values, which are associated with the best solution (fitness) it 

has achieved so far. This value is called pBest. When a particle takes all the population as its 

topological neighbors, the best value is a global best and is called gBest. The developed PSO 

algorithm for optimizing the solution is formulated with the following procedures: 

 Step 1: Measure the RSSIs between the reference nodes and readers. 

 Step 2: Generate a random population of N particles, a random initial set of velocities, 

pBest and gBest. Each particle has 2 dimensions which are A and B. 

 Step 3: For each particle of the population, compute d from Equation (5-18): 

𝑑𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑒
(
𝑅𝑆𝑆𝐼−𝐴

𝐵
)
                                                  (5-25) 

 Step 4: Determine the fitness function, which is the Mean Absolute distance error for m 

readings collected from readers: 

|𝑑𝑒𝑟𝑟𝑜𝑟| = |𝑑𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑑𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑| = |𝑑𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑒
(
𝑅𝑆𝑆𝐼−𝐴

𝐵
)|                (5-26) 
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|𝑑𝑒𝑟𝑟𝑜𝑟|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  
1

𝑚
 ∑ |𝑑𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑒

(
𝑅𝑆𝑆𝐼𝑖−𝐴

𝐵
)
|𝑚

𝑖=1                                   (5-27) 

 Step 5: Repeat steps 4 and 5 for all the N particles in the population. 

 Step 6: Compare each particle’s fitness with its pBest. If it is better, then its value and pBest 

are updated. The best fitness value among the pBest is used as the gBest. 

 Step 7: Let c1 and c2 be two constants. Set the member velocity v of each particle as 

follows: 

𝑣𝑖,𝐴(𝑘 + 1) =  𝜔𝑖,𝐴(𝑘) + 𝑐1𝜆1. (𝑝𝐵𝑒𝑠𝑡𝑖 − 𝐴𝑖(𝑘)) + 𝑐2𝜆2. (𝑔𝐵𝑒𝑠𝑡𝐴 − 𝐴𝑖(𝑘))    (5-28) 

𝑣𝑖,𝐵(𝑘 + 1) =  𝜔𝑖,𝐵(𝑘) + 𝑐1𝜆1. (𝑝𝐵𝑒𝑠𝑡𝑖 − 𝐵𝑖(𝑘)) + 𝑐2𝜆2. (𝑔𝐵𝑒𝑠𝑡𝐵 − 𝐵𝑖(𝑘))    (5-29) 

where i =1,2,….., N. vi,A , vi,B represents the velocity of the ith particle for A and B , and ω 

is the inertia weight that controls the exploration of local and global search space. λ1 and 

λ2 are random numbers between 0 and 1. The constants c1 and c2 are also known as the 

acceleration constants. They are the cognition and social components respectively that 

determine the speed a particle would accelerate towards the pBest and the gBest. In this 

research, the inertia weight is varied linearly according to the following equation: 

𝜔 = 𝜔𝑚𝑎𝑥 −
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
 × 𝑘      (5-30) 

Where k is the current iteration number and kmax is the maximum iteration number. 

 Step 8: The particle position is modified by adding the new velocity to the existing particle 

position as follows: 

𝐴𝑖(𝑘 + 1) =  𝐴𝑖(𝑘) + 𝑣𝑖,𝐴(𝑘 + 1)      (5-31) 
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𝐵𝑖(𝑘 + 1) =  𝐵𝑖(𝑘) + 𝑣𝑖,𝐵(𝑘 + 1)      (5-32) 

 Step 9: If the number of the iteration is less than the maximum number of iterations and 

the stopping criterion is not met, repeat step 3. Otherwise, proceed to step 10.  

 Step 10: The resulting gBest gives the near optimum coefficient A, B. 

 

Figure 5-39: Path Loss Model Parameters Optimization using PSO 
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5.9 Prototype Validation 

The validation of this prototype was conducted in two phases. Phase one, MATLAB simulation. 

The prototype design was fine-tuned based on simulation results. Then, phase two, where 

laboratory experiments for the final design of the prototype were conducted to validate simulation 

results. 

5.9.1 Phase One: MATLAB Simulator Testing 

MATLAB simulator is programmed to mimic the indoor localization in lab environment according 

to the collected data in phase one. Three simulation tests were performed. First, localization using 

raw RSSI signal, this simulation is intended to calculate the expected localization accuracy using 

the raw RSSI signal. Second, localization with Kalman filtered RSSI signal, the purpose of this 

simulation is to calculate expected localization accuracy using the Kalman filtered RSSI signal in 

order to evaluate it is applicability. Third, the self-calibration algorithm using PSO is tested to 

validate its capability in reducing the localization error when the environment changes or the signal 

interference increases. 

The localization with raw RSSI signal was tested by generating 100 random tags in a space 20 m 

x 20 m, with 3 readers. The RSSI was generated using equations (5-33) and (5-34). The localization 

error was measured as the Euclidian distance between the actual tag location and the estimated tag 

location using the following equation: 

 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑒𝑟𝑟𝑜𝑟 = √(𝑋 − 𝑎)
2 + (𝑌 − 𝑏)2     (5-35) 

Where: (X, Y) is the actual tag location, and (a, b) is the estimated tag location. 

The mean location error was 2.547 meters and a standard deviation of 1.841 meter. Figure 5-40 

illustrated the actual tags location verses the estimated tags location using raw RSSI. The 
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cumulative distribution function of the localization error in Figure 5-41 illustrates 5.574 m error 

with 95% confidence. 

 

Figure 5-40: Localization using Raw RSSI 

 

Figure 5-41: Localization Error CDF using Raw RSSI 
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It is clear from the above figures that the Kalman filter is outperforming the commonly used 

moving average filter in de-noising the RSSI, where it provide very stable signal that can be used 

in distance estimation with higher accuracy. 

The distance was ranged from 1 to 100 meter and the mean Kalman filtered RSSI signal was 

calculated and plotted against the distance as shown in Figure 5-42. Regression was used to derive 

the equation for the path loss model as following: 

𝑅𝑆𝑆𝐼𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = −7.935 ln(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) − 38.57     (5-36) 

 

Figure 5-42: Kalman Filtered RSSI Signal Vs Distance 

The third step is to test the localization accuracy using the Kalman filtered RSSI. 100 random tags 

were generated in a space 20 m x 20 m, with 3 readers. The RSSI was generated using equations 

(5-33) and (5-34). The localization error was calculated using Equation (5-35) and the tag’s 

distances from readers were estimated using the Kalman filtered RSSI path-loss model Equation 

(5-36). Figure 5-43 illustrated the actual tags location verses the estimated tags location using 

Kalman filtered RSSI, where the mean location estimation error was 0.4406 meter and standard 

deviation of 0.3354 meter. 
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Figure 5-43: Localization using Kalman Filtered RSSI 

The cumulative distribution function of the localization error in Figure 5-44 shows 0.992 m error 

with 95% confidence. 

 

Figure 5-44: Localization Error CDF using Kalman Filtered RSSI 
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In order to show the improvement from using the Kalman filtered RSSI in comparison to raw 

RSSI, the two error CDF were compared in Figure 5-45. The Kalman filtered RSSI technique has 

better performance than the commonly used moving average method. 

 

Figure 5-45: Localization Error CDF Comparison 

The final step of the simulator test is to validate the Self-Calibration algorithm described in section 

5.4.5. In order to simulate a change in the surrounding environment (interference), the standard 

deviation for the raw RSSI is increased to reflect higher noise in the system, and hence introduce 

higher noise in the location estimation. The following equation was used to reflect the higher noise 

in the environment: 

𝑅𝑆𝑆𝐼𝑆𝑡𝑑𝐷𝑒𝑣 = 0.5658 ln(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) + 6.0113     (5-37) 

100 random tags were generated in a space 20 m x 20 m, with 3 readers. The RSSI was generated 

using equations (5-33) and (5-37). The localization error was calculated using Equation (5-35) and 

the tag’s distances from readers were estimated using the Kalman filtered RSSI path loss model 

Equation (5-36). Figure 5-46 illustrated the actual tags location verses the estimated tags location 
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using Kalman filtered RSSI, where the mean location estimation error was 3.368 meter and 

standard deviation of 1.359 meter. The cumulative distribution function of the localization error in 

Figure 5-47 shows 5.604 m error with 95% confidence. 

 

Figure 5-46: Localization using Kalman Filtered RSSI in High Noise Environment 

 

Figure 5-47: Localization Error CDF using Kalman Filtered RSSI in High Noise Environment 
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The Particle Swarm Optimization algorithm was applied to the noisy data to optimize the 

propagation model parameters. The A and B parameters were optimized after 39 iterations as 

shown in Figure 5-48. The path-loss after optimization is: 

𝑅𝑆𝑆𝐼𝑃𝑆𝑂 = −37.6061 − 7.9361 ln (𝑑)      (5-38) 

Tag’s actual location is plotted verses the estimated tag’s location after the optimization as shown 

in Figure 5-49, where the mean location error was 0.837 meter and standard deviation of 0.639 

meter as shown in Figure 5-50.  

 

Figure 5-48: Objective Function Optimization 
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Figure 5-49: Localization using Kalman Filtered RSSI after Optimization 

 

Figure 5-50: Localization Error CDF using Kalman Filtered RSSI after Optimization 
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The comparison between the localization error before and after the optimization illustrated in 

Figure 5-51 and Table 5-5 shows that the self-calibration algorithm is able to improve the 

localization accuracy and cope with changes in the surrounding environment. 

 

Figure 5-51: Localization Error CDF Comparison Before and After Optimization 

Table 5-5: Mean Localization Errors before and after Optimization 

 Before Optimization After Optimization 

Location Estimation Error (m) 3.368 0.837 

Standard Deviation 1.359 0.639 

 

5.9.2 Phase Two: Laboratory Experiments 

To validate the results obtained by simulation and to test the overall performance of the developed 

prototype, several experiments were conducted in Concordia University Construction Automation 

Lab, apartment building, underground parking and warehouse environment. Table 5-6 shows the 

characteristics of each experiment, including the total number of data sets collected, date, location, 
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total surface area and number of tags used in each experiment. The location’s error is calculated 

as the distance in meters between the estimated and actual locations using Equation (5-35).  

Table 5-6: Experiments Characteristics 

Experiment Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Date 01/12/2014 05/12/2014 08/12/2014 18/12/2014 

Location 
Lab 

Environment 

Apartment 

Building 

Underground 

Parking 

Warehouse 

Environment 

No of data sets 130 105 86 94 

Surface Area (m2) 15 42 140 92 

No of Deployed Tags 21 15 36 27 

No of Readers 3 3 6 5 

Area per tag m2 1.40 2.80 3.89 3.41 

A grid formation test bed was utilized as shown in Figure 5-52, where readers are installed at the 

corners of the area, then tags where placed one meter apart in the grid formation.  

 

Figure 5-52: Sample of the Grid Formations used in Experiments 

Figure 5-53 shows graphical display of a sample for actual verses estimated locations of tags using 

both raw RSSI and Kalman filtered RSSI signals. The yellow triangles represent the actual 

locations, the black crosses represent the calculated locations using raw RSSI and the red circles 

represent the calculated location using Kalman filtered RSSI method. The results show higher 

uncertainty and variances in location estimation using raw RSSI, which can be identified from the 
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scattered nature of the calculated location. On the other hand, the locations estimated using the 

proposed filtered RSSI indicated higher certainty and less variances in the estimated locations. 

Such higher certainty is translated into less location estimation errors as shown in Figure 5-54, 

where the mean location error using raw RSSI and Kalman filtered RSSI method were 1.67 and 

0.66 meters, respectively.  

 

Figure 5-53: Graphical Representation of Actual vs Estimated Tag’s Locations (Exp. 1) 

A comparison between the histogram for the localization errors using raw RSSI and Kalman 

filtered RSSI, presented in Figure 5-54, shows that the location error using raw RSSI has a mean 

value of 1.673 m and standard deviation of 1.765 m (for 415 data sets). The developed Kalman 

Filtered RSSI method had a mean error of 0.66 m and standard deviation of 0.58 m. 
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Figure 5-54: Location Errors Histograms (Exp. 1) 

For validating the self-calibration algorithm, experiments were conducted using a grid formation 

test bed, where readers are installed at the corners of the area, then tags were placed one meter 

apart in grid formation as shown in Figure 5-55a. This test setup is repeated after adding physical 

obstacles in the surrounding environment (as shown in Figure 5-55b) to simulate the change in the 

environment and test how the proposed method self-calibrates its model to account for 

interferences caused by the surrounding environment. Experiments were conducted in a laboratory 

environment at Concordia University Construction Automation Lab. A total of 1062 data sets were 

collected covering 15 m2 of surface area. The test bed had 17 mobile tags, 4 reference tags and 3 

fixed readers, with an average density of one reader per 5 m2 and one reference tag per 3.75 m2. 

In the first experimental step the setup in Figure 5-55 was used and dynamic signal propagation 

model, which has been initialized with initial values based on experimental measurements (A= -

38.57 and B= -7.935) and tags’ distances from the fixed readers were estimated accordingly. The 

system localization accuracy was measured at 87%. 
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Figure 5-55: Grid Formation Test Bed (Exp. 1) 

After adding physical obstacles as shown in Figure 5-55, the system location accuracy fall below 

80% and the distance error were increased. Figure 5-56 shows a graphical display of the actual 

locations verses the estimated tag’s locations after adding the obstacles, the orange triangles 

represent the actual tag’s locations, and the black crosses represent the calculated tag’s location. 

 

Figure 5-56: Actual vs Estimated Tag’s Locations before Calibration Stage (Exp. 1) 

The calibration stage was initiated based on encountering low system accuracy. Each reader signal 

propagation model is optimized using PSO algorithm and the RSSI from reference tags, the 

enhancement in the location estimation is clearly identified in Figure 5-57, which shows a 

graphical display of actual tag’s locations verses the estimated tag’s location after calibration. 
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Figure 5-57: Actual vs Estimated Tag’s Locations after Calibration Stage (Exp. 1) 

Figure 5-58 shows the CDF of estimated distance errors for reader 1 before and after the calibration 

stage, where the mean error in the distance shows a decreasing trend. The mean absolute 

percentage error before calibration was 37.69%, while it was 14.96% after calibration. The SC-

WSN method decreased the mean absolute percentage error by 60%.  

 

Figure 5-58: CDF of Estimated Distance Errors for Reader 1 before and after Calibration (Exp.1) 
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5.9.3 Discussion of Results 

The cumulative probability density functions (CDF) of the distance error are usually used for 

measuring the precision of a system. To compare two positioning techniques with respect to 

accuracies and precision, the technique whose CDF graph reaches high probability values faster is 

more preferable, because its distance error is more concentrated in small values. In order to 

compare the proposed localization technique to those developed by others, the distance error CDF 

of the proposed technique is compared to the CDF graph for the system developed by Montaser 

and Moselhi (2014). The proposed Kalman filtered RSSI localization technique has a location 

precision of 90% within 1.16 m (the CDF of distance error of 1.16 m is 0.9) and 80% within 0.85 

m, while the raw RSSI localization technique has a location precision of 90% within 3.70m and 

80% within 2.60m as shown in Figure 5-59. 

 

 (a)                                                                       (b) 

Figure 5-59: Proposed Localization Error CDF vs Montaser and Moselhi (2014) 

Moreover, the system developed by Montaser and Moselhi (2014) has a location precision of 90% 

within 1.60m and 80% within 1.40m as shown in Figure 5-59. The developed localization yields 

68.6% and 27.5% enhancement over that based on unfiltered RSSI and that of Montaser (2014), 

respectively. In addition, the computational time required for that of Montaser (2014) is three times 

the time required for the proposed method due to the three location reading required in Montaser 
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(2014), which presents higher advantage for the proposed method in real time localization 

applications. 

To evaluate the performance of proposed method, several indoor experiments were conducted in 

different environments; lab environment, apartment building, indoor parking and warehouse 

environment. The proposed method produced location estimates with an average error of 0.66m in 

comparison with 1.67m using the raw RSSI signal. And with a likelihood of 80% the localization 

error of the proposed method is 0.85m in comparison to 2.60m using the raw RSSI signal. 

Moreover the performance of the proposed method was compared to previously developed system 

(Montaser and Moselhi 2014) using the cumulative distribution function (CDF) of the localization 

error. It was found that the proposed method has 27.5% less location absolute error than their 

method with a likelihood of 90%. The developed method would potentially improve indoor 

localization applications in construction such as automated project control and jobsite safety. The 

summary of the results obtained in this study are presented in Table 5-7. 

Table 5-7: Localization Errors Summary 

 Raw Signal Localization 

(Exp.1) 
Montaser and Moselhi 2014 SC-WSN 

(Exp.1) 

Mean Absolute Error 1.67 1.01 0.66 

Standard Deviation 1.77 0.67 0.58 

90 %Percentile 3.70 1.80 1.16 

80% Percentile 2.60 1.60 0.85 

 

5.10 Summary  

Despite recent advances in wireless sensor technologies, mobile computing, and tracking 

techniques, indoor localization remains a technically challenging problem. Modeling indoor radio 

frequency signal propagation is not a simple task, especially in harsh and dynamic environments 

such as construction jobsites. This research presented an efficient localization prototype utilizing 
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low cost radio frequency hardware modules for indoor localization based on RSSI signal 

smoothing and filtering. The proposed signal smoothing technique, which utilizes Kalman filter, 

not only increases the certainty in the estimated locations, but also enhanced the localization 

accuracy by over 68.6% of that based on the use of unfiltered RSSI. Such enhancement can be 

attributed to the filtering of the uncorrelated signal noise. 

To evaluate the performance of proposed method, several indoor experiments were conducted in 

lab environment. The proposed method produced location estimates with an average error of 0.66m 

in comparison to 1.67m using unfiltered RSSI signals. And with a likelihood of 80% the 

localization error of the proposed method is 0.85m in comparison to 2.60m using unfiltered RSSI 

signals. Moreover the performance of the proposed method was also compared to that previously 

developed by Montaser and Moselhi (2014) using the cumulative distribution function (CDF) of 

localization errors. It was found that the proposed method outperformed their method by 27.5% 

with a likelihood of 90%. The developed method is expected to improve indoor localization 

applications in construction such as automated project control and onsite safety. 

This paper presented a newly developed method for indoor localization on dynamic construction 

jobsites utilizing a self-calibrated wireless sensor network (SC-WSN). The developed SC-WSN 

hardware consists of fixed gateway unites mounted at predefined locations, reference tags and 

mobile tags mounted on tracked objects. The developed method consists of a prediction stage and 

calibration stage. The prediction stage estimates the tag’s location based on its measured signal 

strength (RSSI), which in turn is converted to the corresponding distance from fixed readers by a 

dynamic signal propagation model. The calibration stage is executed whenever the system 

accuracy falls below 80%, where the dynamic propagation model parameters are optimized to 

minimize the distance estimation errors of the reference tags. A particle swarm optimization (PSO) 
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algorithm is used to find a near optimum solution for this non-linear problem. The PSO is not only 

able to find a solution effectively, but also has significantly better computational efficiency. 

Experimental results illustrated the significant accuracy improvement in estimating locations on 

construction jobsites, where the mean absolute percentage error before calibration was 37.69% 

while it was 14.96% after calibration. The SC-WSN method decreased the mean absolute 

percentage error by 60%. 

 

 

 

 

 

 

 

 

 

 

 

 

 



170 

 

Chapter 6 : CONCLUSIONS AND FUTURE WORK 

 

6.1 Summary and Conclusions 

This research aimed to study, design, configure and develop fully customized automated site data 

acquisition models, with a special focus on improving the accuracy of automated tracking and 

control of construction operations. A framework for automated progress tracking and control was 

developed encompassing two newly developed prototypes. The first is sensor aided GPS (SA-

GPS) for tracking of outdoor construction operations and the second is self-calibrated wireless 

sensor Network (SC-WSN) for indoor localization.  

Rapid prototyping technique was used as a vehicle for the hardware and software development in 

the two prototypes. The utilization of rapid prototyping in this research, allowed for faster 

development using virtual simulation environment and laboratory experiments. The hardware 

functions were tested and validated using simulation and lab experiments, then the prototype 

design was fine-tuned based on the results from these experiments. In this way, an economy of 

time and material are obtained. A modular hardware designing and configuring approach was 

utilized to allow for speedy redesign, increased ability to reuse some of the hardware modules and 

hence cut the development cost. 

The SA-GPS prototype was designed with a special focus on earthmoving operations. This 

prototype consists of a microcontroller equipped with GPS module as well as a number of sensors 

such as accelerometer, barometric pressure sensor, Bluetooth proximity and strain gauges. The 

developed prototype is able to overcome standalone GPS limitations through data fusion of sensor 

data with GPS data, which enhances the progress assessment and productivity analysis. A fuzzy 
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reasoning rule-based engine is designed to fuse data from various sensors to provide a 

comprehensive status of ongoing construction operations. A productivity analysis algorithm is 

developed to flag early operational bottlenecks, which provides project management personnel 

with a room to take necessary corrective actions in a timely manner. The SA-GPS prototype 

performance was compared to the standalone GPS through a case study. The results indicate 

superiority of the developed prototype over the standalone GPS, with mean absolute percentage 

error being 3% compared to 12% for the two methods respectively. The second prototype is the 

self-calibrated wireless sensor network (SC-WSN), which is designed for indoor localization and 

tracking of construction resources (labor, materials and equipment) inside buildings. This 

prototype enhanced the indoor localization accuracy by consistently adapting its parameters to 

cope with the changing construction environment. The SC-WSN prototype utilized a Kalman filter 

to filter and smooth the RSSI signal, which not only increased the certainty in the estimated 

location, but also reduced the localization error by 68.4% in comparison to that resulting from 

using the raw RSSI. Such enhancement can be attributed to the filtering of the uncorrelated white 

signal noise which enhanced the signal to noise ratio (SNR) by 72%.  

The performance of the developed SC-WSN was compared to the system of previously developed 

by Montaser and Moselhi (2014) using the cumulative distribution function (CDF) of the 

localization error. The average absolute localization error dropped by 33%. The self-calibration 

feature was also tested on noisy simulated environment to measure the percentage of location 

improvement before and after the calibration. Accuracy improved by approximately 60% was 

achieved.  
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The captured data of the two prototypes is used to estimate the actual progress and hence enabled 

accurate and timely earned value analysis (EVA) 

6.2 Research Contributions 

The contributions of this research are expected to circumvent a number of limitations and 

challenges associated with current practice in tracking and progress reporting, and in existing 

automated site data acquisition methods. Specifically, the research contributions are: 

 Design and conduct of a fundamental experimental investigation for design of customized 

automated data acquisition prototypes for efficient tracking and control of construction 

projects utilizing latest innovations in sensory and wireless technologies. 

 Validation of concurrent design and testing of the developments made for automated site 

data acquisition using rapid prototyping techniques. 

 Development of efficient data management scheme that utilizes integrated on-sensor node 

data processing and in-network data processing to transform raw data into high level useful 

and actionable information. In this context, data aggregation and processing render much 

faster near real-time progress measurements. 

 Utilization of low-cost microcontrollers, sensors and wireless modules to design fully 

customized and flexible automated data acquisition prototypes for applications in 

construction. The adopted flexibility is expected to facilitate a wider scope of applications 

in construction safety, condition monitoring of civil infrastructure and energy management 

in built facilities. 

 Development of fuzzy reasoning data fusion and knowledge extraction algorithm to 

provide a higher level of system redundancy in case of sensors malfunctions. 
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 Development of SA-GPS prototype to improve the accuracy of estimating earthmoving 

progress and related productivity in comparison to standalone GPS use. 

 Development of SC-WSN to improve indoor localization accuracy while dynamically 

adapting its parameters to cope with the noisy, dynamic and continually changing 

construction environment. As well the utilization of Kalman filter to remove white 

uncorrelated noise from the RSSI.  

6.3 Limitations 

The following are the limitations of the developments made in this research: 

 The developed prototypes were validated using simulation and laboratory experiments and 

not applied to real construction projects. The developed SA-GPS prototype was designed 

for earthmoving operations and not generic for outdoor construction. It, however, can be 

easily configured for applications such as concreting and landscape. 

 The link between BIM 360 Field and the developed framework was proved in concept by 

only developing the necessary functions for importing and exporting data. A web-based 

software development with user graphical interface is needed. 

 The self-calibrating algorithm was tested only on the Synapse SNAP wireless protocol. 

Further testing on other protocols and network configurations is needed.  

6.4 Future Work 

The following are some recommendations for future work areas: 

 Development of a web-based software to link BIM 360 Field to the developed framework, 

and experiment with the self-calibrating algorithm on other wireless technologies. 
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 Deployment of the developed prototypes on a real construction projects to assess their 

performance in real construction environment. 

 Expand on the productivity analysis algorithm to include more types of construction 

operations. 
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Appendix A: Weather Station 

The Libelium weather station can monitor 6 parameters related to the weather, such as ambient 

temperature and humidity, atmospheric pressure, precipitation and wind speed and direction. The 

kit comprises of 6 sensors: temperature sensor, humidity sensor, barometric pressure sensor, wind 

gauge, anemometer and wind vane, as shown in figure (A-1).  

 

Figure A-1: Libelium Weather Station 

Example of data collected with the weather station is shown in Figure (A-2). 

 

Figure A-2: Sample Weather Data 
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Appendix B: BIM360 FIELD API CODE 

Code Snippet for connecting to the BIM360 server 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using Autodesk.BIM360Field.APIService; 

using Autodesk.BIM360Field.APIService.Models; 

using Autodesk.BIM360Field.APIService.Support; 

 

namespace APIExample 

{ 

    class APIExample 

    { 

        static void Main(string[] args) 

        { 

            string username = "m_omari@encs.concordia.ca"; 

            string password = "password"; 

            string server = "https://api.velasystems.com"; 

 

            switch (args.Length) 

            { 

                case 0: 

                case 1: 

                    Console.WriteLine("You must specify a username, password 

and optionally the server to connect to"); 

                    Console.WriteLine(string.Format("APIExample.exe {0} {1} 

{2}", username, password, server)); 

                    Environment.Exit(1); 

                    break; 

                case 2: 

                    username = args[0]; 

                    password = args[1]; 

                    break; 

                case 3: 

                    username = args[0]; 

                    password = args[1]; 

                    server = args[2]; 

                    break; 

            } 

 

            Console.WriteLine(string.Format("Connecting to BIM 360 Field API 

service on {0} as {1}", server, username)); 

 

 

            try 

            { 

                API api = new API(server); 

 

                api.authenticate(username, password); 

 

                Console.WriteLine("Authenticated successfully. Retrieving 

project list.\n\n"); 
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                List<Project> projects = api.getProjects(); 

 

                Console.WriteLine("Project ID\t\t\t\tProject Name"); 

                Console.WriteLine("----------\t\t\t\t------------"); 

                foreach (Project project in projects) 

                { 

                    Console.WriteLine(string.Format("{0}\t{1}", 

project.project_id, project.name)); 

                } 

 

                Console.WriteLine("Retrieving list of Checklists for first 

project\n\n"); 

 

                 

                api.DefaultProject = projects[0]; 

 

                List<Checklist> checklists = api.getChecklists(null, null, 

0, 10000); // Defaults to 25 

                Console.WriteLine(string.Format("The project {0} has {1} 

checklist(s)", api.DefaultProject.name, checklists.Count)); 

 

                if (checklists.Count > 0) 

                { 

                    Console.WriteLine("Checklist ID\t\t\t\tName"); 

                    Console.WriteLine("------------\t\t\t\t----"); 

 

                    foreach (Checklist checklist in checklists) 

                    { 

                        Console.WriteLine(string.Format("{0}\t{1}", 

checklist.id, checklist.name)); 

                    } 

 

                    Console.WriteLine("\n\n"); 

 

                    Checklist firstChecklist = 

api.getChecklist(checklists[0].id); 

                    Console.WriteLine(string.Format("The checklist with ID 

{0} has {1} sections. Please inspect this object to see what else is 

available!", firstChecklist.id, firstChecklist.sections.Count)); 

                } 

            } 

            catch (BIM360FieldAPIException ex) 

            { 

                Console.WriteLine(string.Format("API service threw an 

exception: {0} {1}", ex.Code, ex.Message)); 

            } 

            catch (UnauthorizedAccessException ua) 

            { 

                Console.WriteLine("Failed to authenticate with the supplied 

credentials."); 

            } 

        } 

    } 

} 

 



192 

 

Code Snippet for extracting 4D model information 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Web; 

using System.Web.UI; 

using System.Web.UI.WebControls; 

using System.Web.Services; 

using System.IO; 

using System.Text; 

 

namespace DataExtraction 

{ 

  public partial class project : System.Web.UI.Page 

  { 

    protected void Page_Load(object sender, EventArgs e) 

    { 

      BIM360WebServiceAPI apiObj = new BIM360WebServiceAPI(Request); 

 

      // If no logged on, just redirect to the home page 

      if (!apiObj.userLoggedIn) 

      { 

        string redirURL = BIM360WebServiceAPI.GetBaseURL() + 

"/default.aspx"; 

        Response.Redirect(redirURL); 

      } 

 

      // Get the Project ID from the URL.. if not valid, just display 

message 

      string projectID = Request.Params["id"]; 

      if (projectID == "") 

      { 

        this.page_header.InnerHtml = "<h1>Invalid Project ID</b>: [" + 

projectID + "]</h1>"; 

        return; 

      } 

      project_info_response_v1 tProj = apiObj.getProjectInfo(projectID); 

      if (tProj != null) 

      { 

        string tHead = "<h1>Project: " + 

HttpUtility.UrlDecode(tProj.project_name) + " [ID=" + projectID + "]</h1>"; 

        this.page_header.InnerHtml = tHead; 

 

        string tHead2 = "<b>Project Created: </b>" + tProj.created_date + " 

<b>Roster Count: </b>" + tProj.project_roster.Count(); 

        tHead2 += " <a class=\"roster_link\" id=\"roster_link\" 

href=\"javascript:void();\" onClick=\"viewProjectRoster('" + projectID + 

"');\">(View Roster)</a>"; 

        this.page_sub_header.InnerHtml = tHead2; 

      } 

      else 

      { 

        this.page_header.InnerHtml = "<h1>Project: [ID=" + projectID + 

"]</h1>"; 

      } 
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      string tJS = ""; 

      tJS += "<script>"; 

      tJS += "loadProjectTree(\"" + projectID + "\");"; 

      tJS += "</script>"; 

      this.page_contents.InnerHtml = tJS; 

    } 

 

    [WebMethod] 

    static public string ajax_GetProjectTree() 

    { 

      string buildHTML = ""; 

      HttpRequest aRequest = HttpContext.Current.Request; 

      BIM360WebServiceAPI apiObj = new BIM360WebServiceAPI(aRequest); 

 

      // If no logged on, just redirect to the home page 

      if (!apiObj.userLoggedIn) 

      { 

        return "[]"; 

      } 

 

      // Get the ID 

      string projectID = aRequest.Params["id"]; 

      HttpContext.Current.Response.ContentType = "application/json; 

charset=UTF-8;"; 

 

      // Build project list... 

      buildHTML += apiObj.getProjectTreeView(projectID); 

      return buildHTML; 

    } 

 

    [WebMethod] 

    static public string ajax_GetModelInfo() 

    { 

      string buildHTML = ""; 

      HttpRequest aRequest = HttpContext.Current.Request; 

      BIM360WebServiceAPI apiObj = new BIM360WebServiceAPI(aRequest); 

 

      // If no logged on, just redirect to the home page 

      if (!apiObj.userLoggedIn) 

      { 

        return "<b>Unauthorized: Please login to continue</b>"; 

      } 

 

      // Get the ID 

      string modelID = aRequest.Params["id"]; 

 

      // Get the model info... 

      model_info_response_v1 tModel = apiObj.getModelInfo(modelID); 

      if (tModel == null) 

      { 

        return "<b>Model Not Found</b>"; 

      } 

 

      buildHTML += "<center>"; 

      buildHTML += "<table width=500 style=\"border: 1px solid #CCCCCC;\">"; 

      buildHTML += "<tr bgcolor=\"#CCCCCC\">"; 

      buildHTML += "<td><b>Attribute</b></td>"; 
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      buildHTML += "<td><b>Value</b></td>"; 

      buildHTML += "</tr>"; 

      buildHTML += addRow("company_id", tModel.company_id); 

      buildHTML += addRow("project_id", tModel.project_id); 

      buildHTML += addRow("model_name", tModel.model_name); 

      buildHTML += addRow("model_id", tModel.model_id); 

      buildHTML += addRow("model_version", tModel.model_version.ToString()); 

      buildHTML += addRow("model_version_id", tModel.model_version_id); 

      buildHTML += addRow("is_merged_model", 

tModel.is_merged_model.ToString()); 

      buildHTML += addRow("action_id", tModel.action_id); 

      buildHTML += addRow("created_by", tModel.created_by); 

      buildHTML += addRow("created_date", tModel.created_date); 

      buildHTML += addRow("modified_by", tModel.modified_by); 

      buildHTML += addRow("modified_date", tModel.modified_date); 

      buildHTML += addRow("parent_folder_id", tModel.parent_folder_id); 

      buildHTML += addRow("file_parsed_status", 

tModel.file_parsed_status.ToString()); 

 

      // Build the URL to view the model 

      string timestamp = 

BIM360WebServiceAPI.getUNIXEpochTimestamp().ToString(); 

      string tURL = ""; 

      tURL += BIM360SDKDeveloperConfig.GLUE_VIEWER_BASE_URL; 

 

      // Add question mark if needed  

      if (tURL.Substring(tURL.Length - 1) != "?") 

      { 

        tURL += "?"; 

      } 

 

      // Parameters for viewer 2  

 

      tURL += "<br/>api_key=" + 

BIM360SDKDeveloperConfig.BIM360GLUESDK_API_KEY; 

      tURL += "<br/>&amp;timestamp=" + timestamp; 

      tURL += "<br/>&amp;sig=" + 

BIM360WebServiceAPI.generateAPISignature(timestamp);  

      tURL += "<br/>&company_id=" + 

BIM360SDKDeveloperConfig.BIM360GLUESDK_COMPANY_ID; 

      tURL += "<br/>&amp;auth_token=" + apiObj.auth_token; 

      tURL += "<br/>&runner=embedded/#" + 

BIM360SDKDeveloperConfig.BIM360GLUESDK_COMPANY_ID  

        + "/action" + "/" + tModel.action_id;  

 

      buildHTML += addRow("View URL", tURL); 

 

      buildHTML += "</table>"; 

      return buildHTML; 

    } 

 

    static string addRow(string aField, string aVal) 

    { 

      string rHTML = ""; 

      rHTML += "<tr style=\"border-bottom: 1px solid #CCCCCC\">"; 

      rHTML += "<td style=\"border-right: 1px solid #CCCCCC\">"; 

        rHTML += "<b>" + aField + "</b>"; 
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        rHTML += "</td>"; 

 

        rHTML += "<td>"; 

        rHTML += aVal; 

        rHTML += "</td>"; 

      rHTML += "</tr>"; 

      return rHTML; 

    } 

 

    [WebMethod] 

    static public string ajax_GetProjectRoster() 

    { 

      string buildHTML = ""; 

      HttpRequest aRequest = HttpContext.Current.Request; 

      BIM360WebServiceAPI apiObj = new BIM360WebServiceAPI(aRequest); 

 

      // If no logged on, just redirect to the home page 

      if (!apiObj.userLoggedIn) 

      { 

        return "<b>Unauthorized: Please login to continue</b>"; 

      } 

 

      // Get the ID 

      string projectID = aRequest.Params["id"]; 

 

      // Get the model info... 

      project_info_response_v1 tProj = apiObj.getProjectInfo(projectID); 

      if ((tProj == null) || (tProj.project_roster == null)) 

      { 

        return "<b>Roster Not Found</b>"; 

      } 

 

      buildHTML += "<center>"; 

      buildHTML += "<table width=500 style=\"border: 1px solid #CCCCCC;\">"; 

      buildHTML += "<tr bgcolor=\"#CCCCCC\">"; 

      buildHTML += "<td><b>Login Name</b></td>"; 

      buildHTML += "<td><b>Date Added</b></td>"; 

      buildHTML += "</tr>"; 

 

      foreach (user_info_response_v1 tUser in tProj.project_roster) 

      { 

        buildHTML += addRow(tUser.login_name, tUser.created_date); 

      } 

 

      buildHTML += "</table>";  

       

      return buildHTML; 

    } 

 

    [WebMethod] 

    static public string ajax_GetModelViews() 

    { 

      string buildHTML = ""; 

      HttpRequest aRequest = HttpContext.Current.Request; 

      BIM360WebServiceAPI apiObj = new BIM360WebServiceAPI(aRequest); 

 

      // If no logged on, just redirect to the home page 
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      if (!apiObj.userLoggedIn) 

      { 

        return "<b>Unauthorized: Please login to continue</b>"; 

      } 

 

      // Get the ID 

      string modelID = aRequest.Params["id"]; 

 

      // Get the model info... 

      model_info_response_v1 tModel = apiObj.getModelInfo(modelID); 

      if (tModel == null) 

      { 

        return "<b>Model Not Found</b>"; 

      } 

 

      if (tModel.view_tree == null) 

      { 

        return "<div class=\"message notice\" style=\"margin: 0px 16px 6px 

16px;\"><b>This model does not contain any Views.</b></div>"; 

      } 

 

      buildHTML += "<center>"; 

      buildHTML += "<table width=500 style=\"border: 1px solid #CCCCCC;\">"; 

      buildHTML += "<tr bgcolor=\"#CCCCCC\">"; 

      buildHTML += "<td><b>Name</b></td>"; 

      buildHTML += "<td><b>Create Date</b></td>"; 

      buildHTML += "<td><b>Creator</b></td>"; 

      buildHTML += "</tr>"; 

 

      foreach (model_view_node tView in tModel.view_tree) 

      { 

        if (tView.type != "VIEW") 

        { 

          continue; 

        } 

 

        buildHTML += "<tr style=\"border-bottom: 1px solid #CCCCCC\">"; 

 

        buildHTML += "<td style=\"border-right: 1px solid #CCCCCC\">"; 

 

          // Build the URL to view the model 

          string timestamp = 

BIM360WebServiceAPI.getUNIXEpochTimestamp().ToString(); 

          string tURL = ""; 

          tURL += BIM360SDKDeveloperConfig.GLUE_VIEWER_BASE_URL; 

 

          // Add question mark if needed  

          if (tURL.Substring(tURL.Length - 1) != "?") 

          { 

            tURL += "?"; 

          } 

 

          // Set parameters for viewer 2  

 

          tURL += "api_key=" + 

BIM360SDKDeveloperConfig.BIM360GLUESDK_API_KEY;           

          tURL += "&timestamp=" + timestamp; 
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          tURL += "&sig=" + 

BIM360WebServiceAPI.generateAPISignature(timestamp); 

          tURL += "&company_id=" + 

BIM360SDKDeveloperConfig.BIM360GLUESDK_COMPANY_ID; 

          tURL += "&auth_token=" + apiObj.auth_token; 

          tURL += "&runner=embedded/#" + 

BIM360SDKDeveloperConfig.BIM360GLUESDK_COMPANY_ID   

            + "/action" + "/" + tView.action_id;      

          

          buildHTML += "<a href=\"javascript:void(0);\" 

onClick=\"loadModel('" + tURL + "');\">"; 

          buildHTML += HttpUtility.UrlDecode(tView.name); 

          buildHTML += "</a>"; 

 

          buildHTML += "</td>"; 

 

          buildHTML += "<td style=\"border-right: 1px solid #CCCCCC\">"; 

          buildHTML += tView.created_date; 

          buildHTML += "</td>"; 

 

          buildHTML += "<td>"; 

          buildHTML += tView.created_by; 

          buildHTML += "</td>"; 

        buildHTML += "</tr>"; 

      } 

 

      buildHTML += "</table>"; 

      return buildHTML; 

    } 

 

    [WebMethod] 

    static public string ajax_GetModelMarkups() 

    { 

      string buildHTML = ""; 

      HttpRequest aRequest = HttpContext.Current.Request; 

      BIM360WebServiceAPI apiObj = new BIM360WebServiceAPI(aRequest); 

 

      // If no logged on, just redirect to the home page 

      if (!apiObj.userLoggedIn) 

      { 

        return "<b>Unauthorized: Please login to continue</b>"; 

      } 

 

      // Get the ID 

      string modelID = aRequest.Params["id"]; 

 

      // Get the model info... 

      model_markup[] tMarkups = apiObj.getAllModelMarkups(modelID); 

      if (tMarkups == null) 

      { 

        return "<div class=\"message notice\" style=\"margin: 0px 16px 6px 

16px;\"><b>This model does not contain any Markups.</b></div>"; 

      } 

 

      buildHTML += "<center>"; 

      buildHTML += "<table width=500 style=\"border: 1px solid #CCCCCC;\">"; 

      buildHTML += "<tr bgcolor=\"#CCCCCC\">"; 



198 

 

      buildHTML += "<td><b>Name</b></td>"; 

      buildHTML += "<td><b>Create Date</b></td>"; 

      buildHTML += "<td><b>Creator</b></td>"; 

      buildHTML += "</tr>"; 

 

      // Show the markups 

      foreach (model_markup aMarkup in tMarkups) 

      { 

        buildHTML += "<tr style=\"border-bottom: 1px solid #CCCCCC\">"; 

 

        buildHTML += "<td style=\"border-right: 1px solid #CCCCCC\">"; 

 

        // Build the URL to view the model 

        string timestamp = 

BIM360WebServiceAPI.getUNIXEpochTimestamp().ToString(); 

        string tURL = ""; 

        tURL += BIM360SDKDeveloperConfig.GLUE_VIEWER_BASE_URL; 

 

        // Add question mark if needed  

        if (tURL.Substring(tURL.Length - 1) != "?") 

        { 

          tURL += "?"; 

        } 

 

        // Set parameters for viewer 2  

 

        tURL += "api_key=" + BIM360SDKDeveloperConfig.BIM360GLUESDK_API_KEY; 

        tURL += "&timestamp=" + timestamp;  

        tURL += "&sig=" + 

BIM360WebServiceAPI.generateAPISignature(timestamp);         

        tURL += "&company_id=" + 

BIM360SDKDeveloperConfig.BIM360GLUESDK_COMPANY_ID; 

        tURL += "&auth_token=" + apiObj.auth_token; 

        tURL += "&runner=embedded/#" + 

BIM360SDKDeveloperConfig.BIM360GLUESDK_COMPANY_ID 

          + "/action" + "/" + aMarkup.action_id;       

        buildHTML += "<a href=\"javascript:void(0);\" onClick=\"loadModel('" 

+ tURL + "');\">"; 

        buildHTML += HttpUtility.UrlDecode(aMarkup.name); 

        buildHTML += "</a>"; 

 

        buildHTML += "</td>"; 

 

        buildHTML += "<td style=\"border-right: 1px solid #CCCCCC\">"; 

        buildHTML += aMarkup.created_date; 

        buildHTML += "</td>"; 

 

        buildHTML += "<td>"; 

        buildHTML += aMarkup.created_by; 

        buildHTML += "</td>"; 

        buildHTML += "</tr>"; 

      } 

      buildHTML += "</table>"; 

      return buildHTML; 

    } 

  } 

} 
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Appendix C: DATABASE STRUCTURE 
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Appendix D: AS-BUILT SCHEDULES GENERATION 

The as-built schedules generation algorithm was developed in collaboration with a major utility 

company in Quebec (Ibrahim et al., 2013). This appendix describe in details the automated 

generation of as-built schedules. The work on sites was monitored daily with the inspectors and 

using the iPad portable computers. These electronic inspection reports are collected and stored in 

a SQL database.  The goal of this project is to develop a program that able to link the progress data 

from SQL database with the Primavera project as planned and generate the as built schedule. Two 

major developments were achieved in this project. First, a revised version of the SQL database 

was produced. Second, a computer program tool for generating the as built schedule was 

developed. In order to establish the link between the inspection reports database and the primavera 

schedule, two new fields were added to the SQL database.  The two new fields were the activity 

identification as per the primavera schedule, and The work breakdown structure code based on the 

primavera schedule. 

The new added fields facilitated the linking and the data exchange between the SQL database and 

the primavera schedule. The addition of these fields is done automatically by the developed 

software, using the following SQL queries: 

if not exists (select column_name from HQ2.INFORMATION_SCHEMA.COLUMNS  

where table_name = 'tbl_Rapport_Journalier' and column_name = 'WBS') 

  alter table [HQ].[dbo].[tbl_Rapport_Journalier] add WBS varchar(50) 

if not exists (select column_name from HQ2.INFORMATION_SCHEMA.COLUMNS  

where table_name = 'tbl_Rapport_Journalier' and column_name = 'ACT_ID') 

  alter table [HQ].[dbo].[tbl_Rapport_Journalier] add ACT_ID varchar(50) 

 

 



201 

 

Each inspection report in the database includes the following information: 

 Type of the report (NoRapport), 

 Location of the work (NoLocalisation) , and 

 Task description (NoActivite).  

These three pieces of information were used to execute a three-phase scanning algorithm as shown 

in Figure D-1. 

 

Figure D-1: Database Update Algorithm Flowchart 
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The Update of the database Fields is executed by the SQL query: 

UPDATE HQ.dbo.tbl_Rapport_Journalier   

SET tbl_Rapport_Journalier.WBS = '1LS.6.6802.1200.211', 

tbl_Rapport_Journalier.ACT_ID = 'D180'  

WHERE NoActivite='E356F399-7AE0-445B-8143-CDD1CFB66018'  

and NoLocalisation='D4705505-2BFD-43B6-ADB6-7FAC46FB11EC'  

and NoRapport='2BC0F785-13B0-4557-9425-7D29BD4B667C' 

 

The Automated schedule generation is based on the actual data stored in the SQL database. After 

implementing the linking fields in the database as explained in the previous section, the process of 

extracting the actual data from the database is initiated. 

The extracted data are: 

 The Actual start and finish dates for the activities. 

 The Actual assigned resources for each activity. 

 The Actual labor and equipment working hours. 

 The Actual placed concrete quantities. 

The data extraction algorithm based on aggregation process, which is applied on the records in the 

database. As the database is a relational database, the required data is extracted by joining multiple 

tables using SQL queries. 

Actual labor resources assignments query: 

select tbl_Rapport_Journalier.ACT_ID, tbl_Code_Main_Oeuvre.CorpsMetier,  

min(tbl_Rapport_Journalier.DateRapport) as Actual_start, 

max(tbl_Rapport_Journalier.DateRapport) as Actual_Finish,  

sum(tbl_Main_Oeuvre.Nombre * tbl_Main_Oeuvre.NbreHreRegulier + 

tbl_Main_Oeuvre.Nombre * tbl_Main_Oeuvre.NbreHreSup * 1.5)  as Total_ManHrs  

from HQ.dbo.tbl_Rapport_Journalier   

left join HQ.dbo.tbl_Activite on 

tbl_Rapport_Journalier.NoActivite=tbl_Activite.NoActivite  

left join HQ.dbo.tbl_Main_Oeuvre on 

tbl_Rapport_Journalier.NoFormulaire=tbl_Main_Oeuvre.NoFormulaire  
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left join HQ.dbo.tbl_Code_Main_Oeuvre on tbl_Main_Oeuvre.NoCodeMainOeuvre = 

tbl_Code_Main_Oeuvre.NoCodeMainOeuvre  

where(tbl_Rapport_Journalier.ACT_ID Is Not NULL) And 

(tbl_Code_Main_Oeuvre.CorpsMetier Is Not NULL)  

group by tbl_Rapport_Journalier.ACT_ID, tbl_Code_Main_Oeuvre.CorpsMetier  

order by tbl_Rapport_Journalier.ACT_ID 

Actual equipment resources assignments query: 

select tbl_Rapport_Journalier.ACT_ID, tbl_Code_Equipement.[Description],  

min(tbl_Rapport_Journalier.DateRapport) as Actual_start, 

max(tbl_Rapport_Journalier.DateRapport) as Actual_Finish,  

sum(HreTravaille)  as Total_ManHrs from HQ2.dbo.tbl_Rapport_Journalier   

left join HQ2.dbo.tbl_Equipement on tbl_Rapport_Journalier.NoFormulaire = 

tbl_Equipement.NoFormulaire  

left join HQ2.dbo.tbl_Code_Equipement on 

tbl_Equipement.NoCodeEquipement=tbl_Code_Equipement.NoCodeEquipement  

left join HQ2.dbo.tbl_Type_Equipement on 

tbl_Code_Equipement.NoTypeEquipement=tbl_Type_Equipement.NoTypeEquipement  

where (tbl_Rapport_Journalier.ACT_ID Is Not NULL) And 

(tbl_Code_Equipement.[Description] Is Not NULL)  

group by tbl_Rapport_Journalier.ACT_ID, tbl_Code_Equipement.[Description], 

tbl_Code_Equipement.NoEquipement  

order by tbl_Rapport_Journalier.ACT_ID 

Actual Placed Concrete Quantities Query: 

select ACT_ID, 'Beton' as Resource ,MIN(tbl_Rapport_Journalier.DateRapport) 

as Actual_Start ,MAX(tbl_Rapport_Journalier.DateRapport) as Actual_Finish 

,SUM(tbl_Beton_Place.Quantite) as Total_Qty 

from HQ2.dbo.tbl_Rapport_Journalier   

left join HQ2.dbo.tbl_Beton on 

tbl_Rapport_Journalier.NoFormulaire=tbl_Beton.NoFormulaire  

left join HQ2.dbo.tbl_Beton_Place on 

tbl_Beton.NoBeton=tbl_Beton_Place.NoBeton  

where tbl_Beton_Place.Quantite > 0  

group by ACT_ID 

Actual Activity Start and Finish Dates Query: 

select tbl_Rapport_Journalier.ACT_ID, 

max(tbl_Rapport_Journalier.DateRapport) as Actual_Finish, 

min(tbl_Rapport_Journalier.DateRapport) as Actual_Start  

from HQ2.dbo.tbl_Rapport_Journalier   

where tbl_Rapport_Journalier.ACT_ID Is Not NULL  

group by tbl_Rapport_Journalier.ACT_ID  

order by tbl_Rapport_Journalier.ACT_ID 

The resources Cross check algorithm is responsible for identifying any mismatch between the 

allocated resources to the planned schedule and the actual resources utilized in the actual inspection 

reports.  If the resources were not assigned in the planned schedule, the algorithm generates a list 
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of the new resources, and creates them in order to assign them in the as-built schedule as per the 

actual data. The actual resources list is extracted from the database using the following queries: 

Select tbl_Code_Main_Oeuvre.CorpsMetier  

from HQ2.dbo.tbl_Rapport_Journalier  

left join HQ2.dbo.tbl_Main_Oeuvre on 

tbl_Rapport_Journalier.NoFormulaire=tbl_Main_Oeuvre.NoFormulaire  

left join HQ2.dbo.tbl_Code_Main_Oeuvre on tbl_Main_Oeuvre.NoCodeMainOeuvre = 

tbl_Code_Main_Oeuvre.NoCodeMainOeuvre  

where ACT_ID Is Not null and tbl_Code_Main_Oeuvre.CorpsMetier is not null  

group by tbl_Code_Main_Oeuvre.CorpsMetier 

select tbl_Code_Equipement.Description  

from HQ2.dbo.tbl_Rapport_Journalier  

left join HQ2.dbo.tbl_Equipement on tbl_Rapport_Journalier.NoFormulaire = 

tbl_Equipement.NoFormulaire  

left join HQ2.dbo.tbl_Code_Equipement on tbl_Equipement.NoCodeEquipement = 

tbl_Code_Equipement.NoCodeEquipement  

left join HQ2.dbo.tbl_Type_Equipement on 

tbl_Code_Equipement.NoTypeEquipement = tbl_Type_Equipement.NoTypeEquipement  

where ACT_ID Is Not null and tbl_Code_Equipement.Description is not null  

group by tbl_Code_Equipement.Description 

The as-built schedule is then generated according to the actual data from the inspection reports in 

the SQL database. The schedule generation algorithm update the planned schedule with the actual 

progress from the extracted data in the previous section as illustrated in Figure D-2. 

The software was developed in Microsoft Visual Basic.net environment. The developed tool 

generates the as-built schedule in primavera .Xer format. The Program requires two main inputs: 

as Planned Schedule in Primavera .xer format, and site inspection reports database (SQL format). 
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Figure D-2: As-built Schedule Generation Algorithm 
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Appendix E: SELF-ADAPTIVE FORECASTING 

Adaptive filtering is a technique, which had been widely used in telecommunications to forecast 

and to build mathematical models of unknown dynamic systems, where the parameters of the filter 

are updated continuously to achieve better estimates for output signals. Figure (E-1) depicts the 

general filter setup with its inputs and outputs. The filter self-leaning process is defined by 

adjusting the filter parameters to reduce the error between the output signal y(t) and the estimated 

signal Y’(t). As the input data x(t) and output data y(t) changes, the filter adapts to the new values 

by generating a new values for its parameters. As a result, when the estimation error e(t) become 

smaller, the adaptive filter output converges to the unknown system performance. A one-step look 

ahead forecast is estimated based on the weighted sum of past observations. In general terms, this 

approach is represented as: 

𝑌′𝑡+1 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1                                                          (E-1) 

Where Y’t+1 is the forecast at the end of period t + 1; wi, the weight assigned to observation i; xi, 

the ith observed value, and n, the number of periods.  

 

Figure E-1: Self-Adaptive Filtering General Model 
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The forecasting process starts by obtaining a series of n past observations of the variable to be 

forecasted. Then, an initial value for each of the weights is assumed to be equal, and a forecast, 

Y’t+1, is made using Equation (E-1). The forecasted value is compared later (at the next reporting 

period) with the actual value recorded at that time period, and hence the forecast error is computed 

to adjust the weights subsequently and hence reduce the error of the next forecast. This process is 

repeated for each of the following time intervals. This technique is reliable in forecasting even in 

situations where relatively small amount of data is available. The fundamentals of adaptive 

filtering are not only technically sound, but also can be explained in an intuitively appealing 

manner to management. The original work on adaptive filters is attributed to (Pertuz, 1968; 

Widrow, 1966).  

The self-adaptive filtering, explained in the previous section, is utilized in the developed 

forecasting method using periodic actual and planned costs data as inputs for the iterative self-

learning process. The block diagram presented in Figure (E-2) illustrates the developed self-

adaptive cost forecasting method.  

 

Figure E-2: Developed Self-Adaptive Filtering Cost Forecasting Method 

In this method, a one-step-ahead cost forecast is calculated as weighted sum of the n most recent 

observations values, using the following equation: 
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𝐹𝑉𝑡 = ∑ 𝑤𝑖 (kαi × αi × PVt−i + kβi × βi × FVt−1)
𝑛
𝑖=0                         (E-2) 

Where FVt is the forecasted cost of work performed at the end of period t, Wi is the weight for the 

ith forecast, kαi and kβi are adjustment coefficients for the ith forecast, αi is the forecasting factor at 

the ith previous observation, βi is the forecasted cost correction factor for the ith forecast and PVt-i 

is Planned Cost of work scheduled for periods t to t-n. 

Figure (E-3) to Figure (E-6) illustrate the developed iterative mechanism for calculating the 

weights and coefficients for the developed self-adaptive filter form the last n observations. The 

sequence of the developed iterative mechanism shown in Figure (E-3), is explained in the 

following four steps: 

Step 1: The process start at the end of reporting period t-1, by computing a forecast factor α for 

each past observation as shown in Figure (E-3), and forecasting the actual cost at the following 

time step t using n equal weights.  

 

Figure E-3: Step 1 of the Iterative Mechanism 
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At the end of time period t-1 calculate the forecasting factor: 

 αi =
ACt−1

PVt−i
       (E-3) 

Where ACt-1 = Actual cost of work performed in period (t-1); PVt-i = Planned cost of work 

scheduled for periods t-1 to t-n; n = number of previous observation used in the forecast; i = 1 to 

n, and αi = the forecast factor at the ith previous observation. 

Calculate the forecasted cost at end of period t (next observation): 

Fi = PVt × αi       (E-4) 

FVt = ∑ wi × Fi
n
i=1       (E-5) 

Where PVt = planned cost of work scheduled for next period; αi= the forecast factor at the ith 

previous observation; Fi = the ith forecasted cost of work performed based on the ith observation; 

Wi = the weight for the ith Forecast (equal to 1/n for the first cycle), and FVt = forecasted cost of 

work performed in period t. 

Step 2: At the end of reporting period t, and after the actual cost become know, the relative weights 

for next forecast are calculated based on previous forecast error as shown in Figure (E-4). The key 

to the adaptive filtering effectiveness is the rule to adapt the weights at the end of each cycle based 

on the measured error in the forecasted value.  

By definition, the error as the difference between the actual cost and the forecasted cost, the 

weights are calculated as the reciprocal of the forecast error divided by the sum of the reciprocals 

of all forecast errors.  
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ei = |ACt − Fi|     (E-6) 

 wi =

1

ei

∑
1

ei

n
i=1

      (E-7) 

Where ACt = actual cost of work performed in period t, and ei = ith forecast error at period t. 

 

Figure E-4: Step 2 of the Iterative Mechanism 

Step 3: The forecasted cost FVt+1 using Equation (2) is a function of planned value PVt during the 

next time period and the forecasted cost Ft at the end of current time period. Therefor two 

adjustment coefficients kα and kβ are calculated to add more weight on the closest value of the Ft 

and PVt with respect to the AC. The Accounting Cost Variance (ACV) and the forecast error (FE) 

are used to calculate the two adjustment coefficients kα and kβ as shown in Figure (E-5). 

These two coefficients are calculated by:  

kαi =
|ACt−Fi|

(|ACt−PVt|+|ACt−Fi|)
                                   (E-8) 
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 kβi =
|ACt−PVt|

(|ACt−PVt|+|ACt−Fi|)
                                                   (E-9) 

 

Figure E-5: Step 3 of the Iterative Mechanism 

For example, considering a project at the end of period 4 has its AC4 equals to $900.00, its 

budgeted cost of work scheduled PV4 equals $380.00, its predicted cost F1 using the data of the 

first period at this reporting date equals $1,300.00. Therefore, coefficient Kα1 can be calculated as 

= |$900.00-$1300.00|/ (|$900.00-$380.00| + |$900.00-$1300.00|) = 0.43. coefficient Kβ1 can be 

calculated as = |$900.00-$380.00|/(|$900.00-$380.00| + |$900.00-$1300.00|) = 0.57, which means 

that the next period forecast will yields an adjusted forecast 43% on the next planned value and 

57% based on actual cost of last period. 

Step 4:  In order to account for a situation when the underlying trend in project performance is 

changing over time, a correction factor β is calculated to periodically compensate for cost variances 

due to unusual events in a reporting period which is not likely to happen in another period as shown 

in Figure (E-6). This forecast correction factor is calculated by: 
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βi =
ACt

Fi
               (E-10) 

Then the forecasting factor for next period is recalculated: 

αi =
ACt

PVt−i+1
                      (E-11) 

The forecasted cost for period t+1 is calculated as: 

Fi = kαi × αi × PVt+1 + kβi × βi × FVt                            (E-12) 

 FVt+1 = ∑ wi × Fi
n
i=1                       (E-13) 

Where PVt+1 = Planned cost of work scheduled at next period; Wi = the weight for the ith Forecast 

from step 2, and FVt+1 = Forecasted cost at next period. 

 

Figure E-6: Step 4 of the Iterative Mechanism 

Finally the Project Cost at Completion is then forecasted by: 

EACt = BAC + FVt+1 − PVt+1                                               (E-14) 
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Where BAC = Planned budget at completion; FVt+1 = Forecasted cost at the end of next period; 

PVt+1 = Planned cost of work scheduled in next period, and EACt = Estimate at completion at the 

end of period t. Steps from 2 to 4 are repeated until the end of the project. 

Overall, the suitability of the self-adaptive filtering method for project cost forecasting is validated 

using twelve projects of different type, size and performance. The proposed method was able to 

forecast the project cost at-completion and at intermediate periods with higher accuracy than 

methods based on index (EVM) and regression. The enhanced accuracy can be attributed to 

iterative nature of the proposed method, which calibrates the forecasting factor based on actual 

and future planned costs. As a result, the methodology developed in this paper contributes to the 

forecasting techniques used for project control body-of-knowledge. 

The proposed method is a simple and accurate, and can be easily integrated in any cost control 

system. Unlike the index based methods of EVM, the proposed method does not require the 

collection of periodical progress data (EV and % complete), which in turn saves substantial effort 

for project management personnel. Also, it can effectively be applied to short-duration project 

because it only require as little as one data point to forecast project's cost with acceptable accuracy. 

The proposed method, however requires the availability of project's planned cost data, and accurate 

actual cost accounting updates.  
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Appendix F: MATLAB SIMULATION CODE 

% Localization Raw RSSI 

%**************************** 

x_limit=[-20,20]; 

y_limit=[-20,20]; 

num_points=100; 

p=zeros(num_points,2); 

estimated_p=zeros(num_points,2); 

d=zeros(num_points,3); 

rssi=zeros(num_points,3); 

estimated_d=zeros(num_points,3); 

d_error=zeros(num_points,3); 

loc_error=zeros(num_points); 

r1=[-10,-10]; 

r2=[-10,10]; 

r3=[10,10]; 

error_distance = 0; 

error_loc= 0; 

 

for i=1:num_points 

    p(i,1)=(x_limit(1)+abs(x_limit(2)-x_limit(1))*rand()); 

    p(i,2)=(y_limit(1)+abs(y_limit(2)-y_limit(1))*rand()); 

    d(i,1)= sqrt(((p(i,1)-r1(1))^2)+((p(i,2)-r1(2))^2)); 

    d(i,2)=sqrt(((p(i,1)-r2(1))^2)+((p(i,2)-r2(2))^2)); 

    d(i,3)=sqrt(((p(i,1)-r3(1))^2)+((p(i,2)-r3(2))^2)); 

end 

 

se = RandStream('mt19937ar','Seed',1); 

RandStream.setGlobalStream(se); 

for i=1:num_points 

    for j=1:3 

        e = -0.5658*log(d(i,j))+4.0113; 

        rssi_error = e*rand(1,100); 

        rssi(i,j)= -7.635*log(d(i,j))-40.635+mean(rssi_error); 

        estimated_d(i,j) = exp((rssi(i,j)+40.635)/-7.635); 

    end 

end 

 

for i=1:num_points 

   va=((estimated_d(i,2)^2-estimated_d(i,3)^2)-(r2(1)^2-r3(1)^2)-(r2(2)^2-

r3(2)^2))/2; 

   vb=((estimated_d(i,2)^2-estimated_d(i,1)^2)-(r2(1)^2-r1(1)^2)-(r2(2)^2-

r1(2)^2))/2; 

   estimated_p(i,2)=(vb*(r3(1)-r2(1))-va*(r1(1)-r2(1)))/((r1(2)-

r2(2))*(r3(1)-r2(1))-(r3(2)-r2(2))*(r1(1)-r2(1))); 

   estimated_p(i,1)=(va-estimated_p(i,2)*(r3(2)-r2(2)))/(r3(1)-r2(1)); 

     

end 

 

for i=1:num_points 

   for j=1:3 

       d_error(i,j)=abs(d(i,j)-estimated_d(i,j)); 

       error_distance=d_error(i,j)+error_distance; 

   end 
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   loc_error(i)=sqrt((p(i,1)-estimated_p(i,1))^2+(p(i,2)-

estimated_p(i,2))^2); 

   error_loc=loc_error(i)+error_loc; 

end 

 

error_distance = error_distance/(num_points*3) 

error_loc= error_loc/num_points 

 

figure 

plot(p(:,1),p(:,2),'o') 

hold; 

plot(estimated_p(:,1),estimated_p(:,2),'k+') 

plot(r1(1),r1(2),'r*') 

plot(r2(1),r2(2),'r*') 

plot(r3(1),r3(2),'r*') 

legend('Actual Tag Location','Estimated Tag Location','Reader Location'); 

xlabel('X (m)') % x-axis label 

ylabel('Y (m)') % y-axis label 

 

% RSSI Filtering 

% ************************** 

m=200; 

rssi=zeros(m); 

x=zeros(m); 

d=15; 

E = -0.5658*log(d)+4.0113; 

PL = -7.635*log(d)-40.635; 

 

R=0.15; 

Q=0.00001; 

x1=0; 

p=1000; 

 

for i=1:m 

    rssi(i)= PL+E*rand(); 

    p1=p+Q; 

    y=rssi(i); 

    k=p1/(p1+R); 

    x(i)=x1+k*(y-x1); 

    p=(1-k)*p1; 

    x1=x(i);   

end 

 

window_size = 9; 

simple = tsmovavg(rssi,'s',window_size,1); 

 

j =linspace(0,m,m); 

figure 

plot(j,rssi(:,1),'b.'); 

 

axis([0 m min(rssi(:,1))-1 max(rssi(:,1))+1]); 

 

%axis([0 m -54 -49]); 

hold on 
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plot(j,x(:,1),'r'); 

plot(j,simple(:,1),'k'); 

 

legend('Raw RSSI','Kalman Filter', 'MVA'); 

xlabel('Sample') % x-axis label 

ylabel('dBm') % y-axis label 

 

 

% Localization Kalman Filtered RSSI 

%*********************************** 

x_limit=[-20,20]; 

y_limit=[-20,20]; 

num_points=100; 

p=zeros(num_points,2); 

estimated_p=zeros(num_points,2); 

d=zeros(num_points,3); 

rssi=zeros(num_points,3); 

estimated_d=zeros(num_points,3); 

d_error=zeros(num_points,3); 

loc_error=zeros(num_points); 

r1=[-10,-10]; 

r2=[-10,10]; 

r3=[10,10]; 

error_distance = 0; 

error_loc= 0; 

 

P_rssi=zeros(100,1); 

x=zeros(100,1); 

R=0.15; 

Q=0.00001; 

x1=0; 

pp=1000; 

temp_d=zeros(100,1); 

k=0; 

 

for i=1:num_points 

    p(i,1)=(x_limit(1)+abs(x_limit(2)-x_limit(1))*rand()); 

    p(i,2)=(y_limit(1)+abs(y_limit(2)-y_limit(1))*rand()); 

    d(i,1)= sqrt(((p(i,1)-r1(1))^2)+((p(i,2)-r1(2))^2)); 

    d(i,2)=sqrt(((p(i,1)-r2(1))^2)+((p(i,2)-r2(2))^2)); 

    d(i,3)=sqrt(((p(i,1)-r3(1))^2)+((p(i,2)-r3(2))^2)); 

end 

 

se = RandStream('mt19937ar','Seed',1); 

RandStream.setGlobalStream(se); 

for i=1:num_points 

    for j=1:3 

        d1=d(i,j); 

        E = -0.5658*log(d1)+4.0113; 

        PL = -7.635*log(d1)-40.635; 

        for n=1:100 

            P_rssi(n,1)= PL+E*rand(); 

            p1=pp+Q; 

            y=P_rssi(n,1); 
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            k=p1/(p1+R); 

            x(n,1)=x1+k*(y-x1); 

            pp=(1-k)*p1; 

            x1=x(n,1); 

            temp_d(n,1) = exp((x(n,1)+38.57)/-7.935); 

        end 

        x1=0; 

        pp=1000; 

        rssi(i,j)= mean(P_rssi); 

        estimated_d(i,j) = mean(temp_d); 

    end 

end 

 

for i=1:num_points 

   va=((estimated_d(i,2)^2-estimated_d(i,3)^2)-(r2(1)^2-r3(1)^2)-(r2(2)^2-

r3(2)^2))/2; 

   vb=((estimated_d(i,2)^2-estimated_d(i,1)^2)-(r2(1)^2-r1(1)^2)-(r2(2)^2-

r1(2)^2))/2; 

   estimated_p(i,2)=(vb*(r3(1)-r2(1))-va*(r1(1)-r2(1)))/((r1(2)-

r2(2))*(r3(1)-r2(1))-(r3(2)-r2(2))*(r1(1)-r2(1))); 

   estimated_p(i,1)=(va-estimated_p(i,2)*(r3(2)-r2(2)))/(r3(1)-r2(1)); 

     

end 

 

for i=1:num_points 

   for j=1:3 

       d_error(i,j)=abs(d(i,j)-estimated_d(i,j)); 

       error_distance=d_error(i,j)+error_distance; 

   end 

   loc_error(i)=sqrt((p(i,1)-estimated_p(i,1))^2+(p(i,2)-

estimated_p(i,2))^2); 

   error_loc=loc_error(i)+error_loc; 

end 

 

error_distance = error_distance/(num_points*3) 

error_loc= error_loc/num_points 

 

figure 

plot(p(:,1),p(:,2),'o') 

hold; 

plot(estimated_p(:,1),estimated_p(:,2),'k+') 

plot(r1(1),r1(2),'r*') 

plot(r2(1),r2(2),'r*') 

plot(r3(1),r3(2),'r*') 

legend('Actual Tag Location','Estimated Tag Location','Reader Location'); 

xlabel('X (m)') % x-axis label 

ylabel('Y (m)') % y-axis label 
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% Localization Kalman Filtered RSSI High Noise Environment 

%************************************************************ 

x_limit=[-20,20]; 

y_limit=[-20,20]; 

num_points=100; 

p=zeros(num_points,2); 

estimated_p=zeros(num_points,2); 

d=zeros(num_points,3); 

rssi=zeros(num_points,3); 

estimated_d=zeros(num_points,3); 

d_error=zeros(num_points,3); 

loc_error=zeros(num_points); 

r1=[-10,-10]; 

r2=[-10,10]; 

r3=[10,10]; 

error_distance = 0; 

error_loc= 0; 

 

P_rssi=zeros(100,1); 

x=zeros(100,1); 

R=0.15; 

Q=0.00001; 

x1=0; 

pp=1000; 

temp_d=zeros(100,1); 

k=0; 

 

for i=1:num_points 

    p(i,1)=(x_limit(1)+abs(x_limit(2)-x_limit(1))*rand()); 

    p(i,2)=(y_limit(1)+abs(y_limit(2)-y_limit(1))*rand()); 

    d(i,1)= sqrt(((p(i,1)-r1(1))^2)+((p(i,2)-r1(2))^2)); 

    d(i,2)=sqrt(((p(i,1)-r2(1))^2)+((p(i,2)-r2(2))^2)); 

    d(i,3)=sqrt(((p(i,1)-r3(1))^2)+((p(i,2)-r3(2))^2)); 

end 

 

se = RandStream('mt19937ar','Seed',1); 

RandStream.setGlobalStream(se); 

for i=1:num_points 

    for j=1:3 

        d1=d(i,j); 

        E = -0.5658*log(d1)+6.0113; 

        PL = -7.635*log(d1)-40.635; 

        for n=1:100 

            P_rssi(n,1)= PL+E*rand(); 

            p1=pp+Q; 

            y=P_rssi(n,1); 

            k=p1/(p1+R); 

            x(n,1)=x1+k*(y-x1); 

            pp=(1-k)*p1; 

            x1=x(n,1); 

            temp_d(n,1) = exp((x(n,1)+37.6061)/-7.9361); 

        end 

        x1=0; 

        pp=1000; 

        rssi(i,j)= mean(P_rssi); 

        estimated_d(i,j) = mean(temp_d); 

    end 
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end 

 

for i=1:num_points 

   va=((estimated_d(i,2)^2-estimated_d(i,3)^2)-(r2(1)^2-r3(1)^2)-(r2(2)^2-

r3(2)^2))/2; 

   vb=((estimated_d(i,2)^2-estimated_d(i,1)^2)-(r2(1)^2-r1(1)^2)-(r2(2)^2-

r1(2)^2))/2; 

   estimated_p(i,2)=(vb*(r3(1)-r2(1))-va*(r1(1)-r2(1)))/((r1(2)-

r2(2))*(r3(1)-r2(1))-(r3(2)-r2(2))*(r1(1)-r2(1))); 

   estimated_p(i,1)=(va-estimated_p(i,2)*(r3(2)-r2(2)))/(r3(1)-r2(1)); 

     

end 

 

for i=1:num_points 

   for j=1:3 

       d_error(i,j)=abs(d(i,j)-estimated_d(i,j)); 

       error_distance=d_error(i,j)+error_distance; 

   end 

   loc_error(i)=sqrt((p(i,1)-estimated_p(i,1))^2+(p(i,2)-

estimated_p(i,2))^2); 

   error_loc=loc_error(i)+error_loc; 

end 

 

error_distance = error_distance/(num_points*3) 

error_loc= error_loc/num_points 

 

figure 

plot(p(:,1),p(:,2),'o') 

hold; 

plot(estimated_p(:,1),estimated_p(:,2),'k+') 

plot(r1(1),r1(2),'r*') 

plot(r2(1),r2(2),'r*') 

plot(r3(1),r3(2),'r*') 

legend('Actual Tag Location','Estimated Tag Location','Reader Location'); 

xlabel('X (m)') % x-axis label 

ylabel('Y (m)') % y-axis label 

 

% Self-Calibrating Path-Loss 

%**************************** 

population_size= 50; 

k_max= 500; 

opt_error=zeros(k_max,1); 

temp_error=zeros(population_size,1); 

w_max=0.9; 

w_min=0.4; 

c1=2; 

c2=2; 

old_gen=zeros(population_size,5); 

bBest=zeros(population_size,5); 

a_max = -30; 

a_min = -46; 

b_max = -6.35; 

b_min =-9.52; 

va=0; 
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vb=0; 

intial_bBest = 1000; 

gBest=zeros(1,5); 

 

%intialize population 

rand_gen1=randn(population_size,1); 

rand_gen2=randn(population_size,1); 

old_gen(1,1)= a_min+(abs(a_max-a_min))*rand_gen1(1,1); 

old_gen(1,2)= b_min+(abs(b_max-b_min))*rand_gen2(1,1); 

old_gen(1,3)= va; 

old_gen(1,4)= vb; 

old_gen(1,5)= find_error(p,old_gen(1,1),old_gen(1,2)); 

 

 

gBest(1,1)=old_gen(1,1); 

gBest(1,2)=old_gen(1,2); 

gBest(1,3)=old_gen(1,3); 

gBest(1,4)=old_gen(1,4); 

gBest(1,5)=old_gen(1,5); 

 

 

for i=2:population_size 

     

    old_gen(i,1)= a_min+(abs(a_max-a_min))*rand_gen1(i,1); 

    old_gen(i,2)= b_min+(abs(b_max-b_min))*rand_gen2(i,1); 

    old_gen(i,3)= va; 

    old_gen(i,4)= vb; 

    old_gen(i,5)= find_error(p,old_gen(i,1),old_gen(i,2)); 

     

    if old_gen(i,5)< gBest(1,5) 

        gBest(1,1)=old_gen(i,1); 

        gBest(1,2)=old_gen(i,2); 

        gBest(1,3)=old_gen(i,3); 

        gBest(1,4)=old_gen(i,4); 

        gBest(1,5)=old_gen(i,5); 

    end 

             

end 

 

bBest=old_gen; 

 

for k=1:k_max 

     

   w= w_max-((w_max-w_min)*(k/k_max)); 

    

   for i=1:population_size 

      va=w*old_gen(i,3)+c1*rand*(bBest(i,1)-

old_gen(i,1))+c2*rand*(gBest(1,1)-old_gen(i,1)); 

      vb=w*old_gen(i,4)+c1*rand*(bBest(1,2)-

old_gen(i,2))+c2*rand*(gBest(1,2)-old_gen(i,2)); 

      old_gen(i,1)=old_gen(i,1)+va; 

      old_gen(i,2)=old_gen(i,2)+vb; 

      old_gen(i,3)= va; 

      old_gen(i,4)= vb; 

      old_gen(i,5)= find_error(p,old_gen(i,1),old_gen(i,2)); 

      if old_gen(i,5)< gBest(1,5) 

          gBest(1,1)=old_gen(i,1); 
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          gBest(1,2)=old_gen(i,2); 

          gBest(1,3)=old_gen(i,3); 

          gBest(1,4)=old_gen(i,4); 

          gBest(1,5)=old_gen(i,5); 

      end 

      if old_gen(i,5)< bBest(i,5) 

          bBest(i,1)=old_gen(i,1); 

          bBest(i,2)=old_gen(i,2); 

          bBest(i,3)=old_gen(i,3); 

          bBest(i,4)=old_gen(i,4); 

          bBest(i,5)=old_gen(i,5); 

      end 

       

   end 

     

   %temp_error=old_gen(:,5); 

   opt_error(k,1)=gBest(1,5); 

     

end 

 

 

% PSO fitness function 

%**************************** 

function location_error= find_error(ref_points,par_A,par_B) 

 

num_points=length(ref_points); 

rssi=zeros(num_points,3); 

P_rssi=zeros(100,1); 

estimated_d=zeros(num_points,3); 

estimated_p=zeros(num_points,2); 

loc_error=zeros(num_points); 

x=zeros(100,1); 

R=0.15; 

Q=0.00001; 

x1=0; 

pp=1000; 

temp_d=zeros(100,1); 

k=0; 

r1=[-10,-10]; 

r2=[-10,10]; 

r3=[10,10]; 

d=zeros(num_points,3); 

location_error=0; 

 

for i=1:num_points 

    d(i,1)= sqrt(((ref_points(i,1)-r1(1))^2)+((ref_points(i,2)-r1(2))^2)); 

    d(i,2)=sqrt(((ref_points(i,1)-r2(1))^2)+((ref_points(i,2)-r2(2))^2)); 

    d(i,3)=sqrt(((ref_points(i,1)-r3(1))^2)+((ref_points(i,2)-r3(2))^2)); 

end 

 

se = RandStream('mt19937ar','Seed',1); 

RandStream.setGlobalStream(se); 

    for i=1:num_points 

        for j=1:3 
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            d1=d(i,j); 

            E = -0.5658*log(d1)+6.0113; 

            PL = -7.635*log(d1)-40.635; 

            for n=1:100 

                P_rssi(n,1)= PL+E*rand(); 

                p1=pp+Q; 

                y=P_rssi(n,1); 

                k=p1/(p1+R); 

                x(n,1)=x1+k*(y-x1); 

                pp=(1-k)*p1; 

                x1=x(n,1); 

                temp_d(n,1) = exp((x(n,1)-par_A)/par_B); 

            end 

            x1=0; 

            pp=1000; 

            rssi(i,j)= mean(P_rssi); 

            estimated_d(i,j) = mean(temp_d); 

        end 

    end 

    for i=1:num_points 

       va=((estimated_d(i,2)^2-estimated_d(i,3)^2)-(r2(1)^2-r3(1)^2)-

(r2(2)^2-r3(2)^2))/2; 

       vb=((estimated_d(i,2)^2-estimated_d(i,1)^2)-(r2(1)^2-r1(1)^2)-

(r2(2)^2-r1(2)^2))/2; 

       estimated_p(i,2)=(vb*(r3(1)-r2(1))-va*(r1(1)-r2(1)))/((r1(2)-

r2(2))*(r3(1)-r2(1))-(r3(2)-r2(2))*(r1(1)-r2(1))); 

       estimated_p(i,1)=(va-estimated_p(i,2)*(r3(2)-r2(2)))/(r3(1)-r2(1)); 

    end 

    for i=1:num_points 

       loc_error(i)=sqrt((ref_points(i,1)-

estimated_p(i,1))^2+(ref_points(i,2)-estimated_p(i,2))^2); 

       location_error=loc_error(i)+location_error; 

    end 

 

    location_error= location_error/num_points; 

     

end 
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Appendix G: IF-Then Rules 

Queue Load: 

 

entry /  

if ((Return finshed) and (Truck in proximity) and (Location = Cut) and (Truck 

speed = 0) and (Truck weight =0)) 

 { 

  Queue Loading Start = True 

 } 

 

do /  Start Counting Queue Loading Duration 

 

exit /   

if ((Queue Loading Start) and (Location = Cut) and (Loader in proximity) and 

(Truck speed =0) 

 { 

  Queue Loading Finished = True 

 } 

Load: 

 

entry /  

if ((Queue Loading finished or Return finshed) and (Loader in proximity) and 

(Loader cycles are detected) and (Location = Cut) and (Truck speed = 0) and 

(Truck weight increasing)) 

 { 

  Loading Start = True 

 } 

 

do /  Start Counting Loading Duration 

 

exit /   

 if ((Loading Start) and (Location = Road)  and (No Entities in proximity) and 

(Truck  speed >0) 

 { 

  Loading Finished = True 

 } 
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Travel: 

 

entry /  

if (Loading Finished) and (Location = Road) and (Truck speed > 0) and (Truck 

weight >0)) 

 { 

  Travel Start = True 

 } 

 

do /  Start Counting Travel Duration 

 

exit /   

if (Travel Start) and (Location = Fill) and  (Truck or Spotter in proximity) and 

(Truck  speed=0) 

 { 

  Travel Finished = True 

 } 

Queue Dump: 

 

entry /  

if (Travel Finshed) and (Location =Fill) and (Truck speed = 0) and (Truck weight 

>0)) and (Truck in Proximity) and (Tilt angle =0) 

 { 

  Queue Dump Start = True 

 } 

 

do /  Start Counting Queue Dump Duration 

 

exit /   

if (Queue Dump Start) and (Tilt angle >0) and (Location = Fill) and (Truck 

weight>0) 

 { 

  Queue Dump Finished = True 

 } 
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Dump: 

entry /  

if (Travel Finshed or Dump Queue Finished) and (Location =Fill) and (Truck 

speed = 0) and (Truck weight >0)) and  (Spotter in Proximity) and (Tilt angle 

>0) 

 { 

  Dump Start = True 

 } 

 

do /  Start Counting Dump Duration 

 

exit /   

if (Dump Start) and (Tilt angle =0) and (Location = Fill) and (Truck weight=0) 

 { 

  Dump Finished = True 

 } 

Return: 

 

entry /  

if (Dump Finished) and (Location = Road) and (Truck speed > 0) and (Truck 

weight >0)) 

 { 

  Return Start = True 

 } 

 

do /  Start Counting Return Duration 

 

exit /   

if (Return Start) and (Location = Cut) and (Truck or Loader in proximity) and 

(Truck speed=0) 

 { 

  Return Finished = True 

 } 
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Out of Service: 

 

entry /  

if ((Location = Service or Any) and (Truck speed = 0) and (Time since last state > 

 Average Cycle Time)  

 { 

  Service Start = True 

 } 

 

do /  Start Counting Service Duration 

 

exit /   

 if (State changed) 

 { 

  Service Finished = True 

 } 
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Appendix H: SOURCE CODE 

SA-GPS Code Snippet for Arduino Uno 

#include <SD.h> 

#include <SoftwareSerial.h> 

#include <TinyGPS.h> 

// Include the Wire library for I2C access. 

#include <Wire.h> 

// Include the Electronics BMP180 library. 

#include <BMP180.h> 

 

// Store an instance of the BMP180 sensor. 

BMP180 barometer; 

// Store the current sea level pressure at your location in Pascals. 

float seaLevelPressure = 101325; 

 

TinyGPS gps; 

SoftwareSerial ss(6,5); 

bool firstData = false; 

float flat1, flon1; 

const int chipSelect = 10; 

const int writeLED = 3; 

const int removeLED = 4; 

const int startLogPin = 2; 

int logState = 0; 

 

void setup() 

{ 

   

  ss.begin(38400); 

  pinMode(chipSelect, OUTPUT); 

  pinMode(writeLED, OUTPUT); 

  pinMode(removeLED, OUTPUT); 

  pinMode(startLogPin, INPUT); 

 

  // We start the I2C on the Arduino for communication with the BMP180 sensor. 

  Wire.begin(); 

  // We create an instance of our BMP180 sensor. 

  barometer = BMP180(); 

  if(barometer.EnsureConnected()) 

  { 

    // When we have connected, we reset the device to ensure a clean start. 

    barometer.SoftReset(); 

    // Now we initialize the sensor and pull the calibration data. 

    barometer.Initialize();  } 

  else 

  { 

    Serial.println("Could not connect to BMP180."); 

    digitalWrite(indicatorLed, LOW); // Set our LED. 

  } 

   

  digitalWrite(writeLED, LOW); 

  digitalWrite(removeLED, LOW); 

   

  String headerStr = "Date;Time;Lat;Long;Alt;Course;Speed;Sat;Age;Distance;Prec"; 

  // see if the card is present and can be initialized: 

  if (!SD.begin(chipSelect)) { 

    //Serial.println("Card failed, or not present"); 

    // don't do anything more: 

    return; 

  } 

  //Serial.println("card initialized."); 

  if (SD.exists("datalog.csv")){ 

    SD.remove("datalog.csv"); 

  } 



228 

 

  Serial.begin(115200); 

  File dataFile = SD.open("datalog.csv", O_CREAT | O_WRITE); 

  digitalWrite(writeLED, HIGH); 

  if (dataFile) { 

    dataFile.print(headerStr); 

    dataFile.println(); 

    dataFile.close(); 

    digitalWrite(writeLED, LOW);  

  }   

  // if the file isn't open, pop up an error: 

  else { 

    Serial.println("error opening datalog.csv"); 

  }  

   

} 

 

String printDigits(int digits){ 

  // utility function for digital clock display: prints preceding colon and leading 0 

  String str; 

  if(digits < 10) 

    str = "0" + String(digits); 

  else 

    str = String(digits);   

  return str; 

    //Serial.print('0'); 

  //Serial.print(digits); 

} 

 

 

void loop() 

{ 

  logState = digitalRead(startLogPin); 

  if (logState == HIGH) 

  { 

    SD.begin(chipSelect); 

    digitalWrite(removeLED,LOW); 

    bool newData = false; 

     

   

    for (unsigned long start = millis(); millis()-start <1000;) 

    { 

      while (ss.available()) 

      { 

        char c = ss.read(); 

        if (gps.encode(c)) 

        { 

          newData = true; 

          if (!firstData) 

          {           

            unsigned long fix_age; 

            gps.f_get_position(&flat1, &flon1, &fix_age); 

            Serial.println("Intial Data"); 

            Serial.print("Lat = "); Serial.println(flat1); 

            Serial.print("Long = "); Serial.println(flon1); 

            Serial.println(); 

          } 

          firstData = true;      

        }   

      }   

    } 

   

    if (newData) 

    { 

      float flat2, flon2, falt, fc, fkmph, distance; 

      unsigned long fix_age, prec; 

      unsigned short sat; 

      int year; 

      byte month, day, hour, minute, second, hundredths; 

      String timeStr, dateStr; 

      if(barometer.IsConnected) 

      { 
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       // Retrive the current pressure in Pascals. 

       long currentPressure = barometer.GetPressure(); 

      // Retrive the current altitude (in meters).  

      float altitude = barometer.GetAltitude(seaLevelPressure); 

        

     } 

       

     gps.crack_datetime(&year, &month, &day, &hour, &minute, &second, &hundredths, &fix_age); 

      timeStr = printDigits((int)hour) + ":" + printDigits((int)minute) + ":" + 

printDigits((int)second); 

      dateStr = printDigits((int)day) + "/" + printDigits((int)month) + "/" + 

printDigits(year); 

      gps.f_get_position(&flat2, &flon2, &fix_age); 

      falt = gps.f_altitude(); // +/- altitude in meters 

      fc = gps.f_course(); // course in degrees 

      fkmph = gps.f_speed_kmph(); // speed in km/hr 

      sat = gps.satellites(); 

      distance = gps.distance_between (flat1, flon1, flat2, flon2); 

      prec = gps.hdop(); 

     

      Serial.print("Date = "); Serial.println(dateStr); 

      Serial.print("Time = "); Serial.println(timeStr);  

      Serial.print("Lat = "); Serial.println(flat2,6); 

      Serial.print("Long = "); Serial.println(flon2,6); 

      Serial.print("Alt = "); Serial.println(falt); 

      Serial.print("Course = "); Serial.println(fc); 

      Serial.print("Speed = "); Serial.println(fkmph); 

      Serial.print("Sat = "); Serial.println(sat); 

      Serial.print("Age = "); Serial.println(fix_age); 

      Serial.print("Distance = "); Serial.println(distance); 

      Serial.print("Prec = "); Serial.println(prec); 

      Serial.print("Pressure = "); Serial.println(currentPressure,4); 

      Serial.print("Altitude = "); Serial.println(altitude,4); 

      Serial.println(); 

       

      File dataFile = SD.open("datalog.csv", O_CREAT | O_APPEND | O_WRITE);   

      if (dataFile) { 

        digitalWrite(writeLED, HIGH); 

        //dataString = flat & ";" & flon & ";" & gps.satellites() & ";" & gps.hdop(); 

        dataFile.print(dateStr); dataFile.print(";"); 

        dataFile.print(timeStr); dataFile.print(";"); 

        dataFile.print(flat2,6); dataFile.print(";"); 

        dataFile.print(flon2,6); dataFile.print(";"); 

        dataFile.print(falt,2); dataFile.print(";"); 

        dataFile.print(fc,2); dataFile.print(";"); 

        dataFile.print(fkmph,2); dataFile.print(";"); 

        dataFile.print(sat); dataFile.print(";"); 

        dataFile.print(fix_age); dataFile.print(";"); 

        dataFile.print(distance,2); dataFile.print(";"); 

        dataFile.print(prec); dataFile.print(";"); 

        dataFile.print(currentPressure,4); dataFile.print(";"); 

        dataFile.print(altitude,4); dataFile.print(";"); 

        dataFile.println(); 

        dataFile.flush(); 

        dataFile.close(); 

        digitalWrite(writeLED, LOW); 

      } 

      else { 

        Serial.println("error opening datalog.csv"); 

        digitalWrite(removeLED,HIGH); 

        digitalWrite(writeLED,HIGH); 

        return; 

      }      

      flat1 = flat2; 

      flon1 = flon2; 

    }     

  } 

  else 

    digitalWrite(removeLED,HIGH); 

   

} 
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SC-WSN (Tag) Code Snippet 

# Use Synapse Pin definitions 

from synapse.nvparams import * 

from synapse.switchboard import * 

from synapse.platforms import * 

 

BMP180_ADDRESS = 0x77 

seaLevelPressure = 101325 

numRegs = 0x34 

 

def intialize(): 

     

    #Set transmit power level 

    txPwr(17) 

 

    #Disable UART 0 

    initUart(0, 0) 

    flowControl(0, False) 

 

    #Disable UART 1 

    initUart(1, 0) 

    flowControl(1, False) 

 

    #Set all GPIOs to inputs with pullup to cut down on current use 

    setPinDir(0, 0) 

    setPinPullup(0, 1) 

 

    setPinDir(1, 0) 

    setPinPullup(1, 1) 

 

    setPinDir(2, 0) 

    setPinPullup(2, 1) 

 

    setPinDir(3, 0) 

    setPinPullup(3, 1) 

 

    setPinDir(4, 0) 

    setPinPullup(4, 1) 

 

    setPinDir(5, 0) 

    setPinPullup(5, 1) 

 

    setPinDir(6, 0) 

    setPinPullup(6, 1) 

 

    setPinDir(7, 0) 

    setPinPullup(7, 1) 

     

 

    setPinDir(8, 0) 

    setPinPullup(8, 1) 

 

    setPinDir(9, 0) 

    setPinPullup(9, 1) 
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    setPinDir(10, 0) 

    setPinPullup(10, 1) 

 

    setPinDir(11, 0) 

    setPinPullup(11, 1) 

 

    setPinDir(12, 0) 

    setPinPullup(12, 1) 

 

    setPinDir(13, 0) 

    setPinPullup(13, 1) 

     

    setPinDir(14, 0) 

    setPinPullup(14, 1) 

 

    setPinDir(15, 0) 

    setPinPullup(15, 1) 

 

    setPinDir(16, 0) 

    setPinPullup(16, 1) 

 

    setPinDir(17, 0) 

    setPinPullup(17, 1) 

 

    setPinDir(18, 0) 

    setPinPullup(18, 1) 

     

    #Disconnect and do not use UARTs 

    crossConnect(DS_NULL, DS_PACKET_SERIAL) 

 

 

    #Turn off node relaying packets for others 

    saveNvParam(NV_MESH_OVERRIDE_ID, 1) 

 

def poll():     

 

    #init I2C 

    i2cInit(True) 

    #Read pressure value 

    cmd = chr( BMP180_ADDRESS | 1 ) 

    result = i2cRead(cmd, numRegs, 1 , False) 

    #Calculate altitude 

    altitude = 44330*(1-(result/seaLevelPressure)^(0.19029496)) 

    #Send Ping broadcast 

    mcastRpc(1, 1, "tag_ping", localAddr(), altitude) 

    #Go back to sleep 

    sleep(0, 10) 

     

 

#Install event handlers 

snappyGen.setHook(SnapConstants.HOOK_STARTUP, intialize) 

snappyGen.setHook(SnapConstants.HOOK_100MS, poll) 

 


