1	Do juvenile Atlantic salmon (Salmo salar) use chemosensory cues to detect and avoid
2	risky habitats in the wild?
3	
4	Jae-Woo Kim ¹ · James W.A. Grant · Grant E. Brown
5	
6	Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, Quebec, H4B
7	1R6, Canada
8	Email: JW. Kim jaew.kim@utoronto.ca (corresponding author)
9	J. W.A. Grant <u>grant@alcor.concordia.ca</u>
10	G. E. Brown <u>gbrown@alcor.concordia.ca</u>
11	
12	Corresponding author: Jae-Woo Kim
13	Department of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord St.
14	Toronto, Ontario, M5S 3G5 Canada
15	Tel.: +1-416-946-7230
16	Fax: +1-416-978-8532
17	Email: jaew.kim@utoronto.ca

¹ Jae-Woo Kim is currently a FQRNT Postdoctoral Fellow in the Department of Ecology and Evolutionary Biology at the University of Toronto, 25 Harbord St. Toronto, Ontario, M5S 3G5 Canada, E-mail: jaew.kim@utoronto.ca

19 Abstract

20	We examined whether juvenile Atlantic salmon (Salmo salar) in the wild adjust their
21	behaviour in response to chemical cues of predator activity during a four-week period after
22	emergence from gravel nests. In each of seven 75 m ² sites in Catamaran Brook, New
23	Brunswick, we established three contiguous sections differing in perceived predator activity
24	by releasing stream water in control sections, conspecific alarm cues in risky sections, and
25	nothing in buffer sections in both 2006 and 2007. As predicted, the density of YOY salmon
26	tended to decrease in alarm-cue sections, while increasing in control and buffer sections. After
27	the two week manipulation in 2006, we switched treatments so that buffer sections became
28	alarm-cue sections and alarm-cue sections became buffer sections for an additional two-week
29	period. After the switch, the number of YOY increased least in the new alarm-cue sections
30	and most in control and new buffer sections. In contrast to YOY, the density of age 1+ parr
31	was not affected by the experimental treatments. Our results suggest that YOY salmon can use
32	chemical alarm cues to assess the predator activity of habitats in the wild.
33	
34	Keywords Habitat selection · Damage-released chemical alarm cue · Long-term
35	perceived predation risk \cdot Population density
36	

38 Introduction

39	Habitat selection has a profound influence on a number of vital processes including
40	population regulation, species interactions, the assembly of ecological communities, and the
41	origin and maintenance of biodiversity (Morris 2003). Given that habitats differ in growth
42	potential and/or risk of predation, animals should prefer the habitat that maximizes their
43	fitness (Dill 1978). However, the best areas for foraging are often the most dangerous, forcing
44	individuals to trade off energy gain against safety from predators when deciding where to feed
45	(Lima and Dill 1990). In perhaps the most elegant demonstration of this trade-off, Abrahams
46	and Dill (1989) titrated the extra energy required to induce guppies (Poecilia reticulata) to
47	forage in a more dangerous patch.
48	Prey capable of reliably assessing predation risk at the scale of whole habitats should
49	presumably be at a selective advantage. To assess the safety of habitats, animals in the wild
50	rely on various sources of information, including the direct assessment of the presence or
51	abundance of predators via visual, chemosensory, auditory, and/or tactile cues (Lima and Dill
52	1990; Kelley and Magurran 2003). For example, fathead minnows (Pimephales promelas)
53	avoid areas labelled with the faeces of predatory northern pike (Esox lucius) (Brown et al.
54	1995), and Hawaiian roof rats (Rattus rattus) avoid the fecal odours of their predators, the
55	mongoose (Herpestes auropunctatus) and red fox (Vulpes vulpes) (Burwash et al. 1998).
56	Animals also use chemosensory cues to assess the level of immediate predation risk

57	(Lima and Dill 1990). Chemosensory cues released from the skin of injured fish provide
58	reliable information about current and past predation events (Smith 1992). Many freshwater
59	fishes, including fathead minnows, avoid areas that have been recently labelled with
60	conspecific alarm cues under laboratory and natural conditions (Mathis and Smith 1992;
61	Chivers and Smith 1998; Brown 2003). Similarly, terrestrial invertebrates avoid areas
62	containing dead congeners (Grostal and Dicke 1999; Dukas 2001; Nilsson and Bengtsson
63	2004).
64	Because it is often difficult to obtain reliable information about predator abundance
65	or activity, animals can use indirect measures such as habitat features to assess predation risk
66	(Lima and Dill 1990; Verdolin 2006). Deer mice (Peromyscus maniculatus) and white-
67	throated sparrows (Zonotrichia albicollis) prefer feeding stations close to or containing
68	abundant cover (Schneider 1984; Anderson 1986). Similarly, juvenile lingcod (Ophiodon
69	elongatus) and winter flounder (Pseudopleuronectes americanus) prefer habitats with
70	structure (rock, shell, or seagrass) compared to bare sand habitats (Petrie and Ryer 2006;
71	Pappal et al. 2009).
72	In stream-dwelling salmonids, studies of habitat selection typically focus on physical
73	variables, such as current velocity and depth, which affect foraging profitability (Girard et al.
74	2004; Rosenfeld and Taylor 2009). Although juvenile salmon prefer sites with an abundance
75	of cover (Culp et al. 1996; Dolinsek et al. 2007; Venter et al. 2008), little is known about how

76	they actually assess predator abundance or activity when selecting habitats. In the short term,
77	juvenile salmonids exhibit antipredator behaviour when exposed to visual and/or chemical
78	cues indicating the presence or activity of predators under laboratory and field conditions
79	(Leduc et al. 2006; Blanchet et al. 2007; Kim et al. 2009). While the short-term benefits
80	associated with antipredator behaviour are clear, whether and how juvenile Atlantic salmon
81	(Salmo salar) in the wild use chemical information to assess the relative predator activity of
82	alternative habitats at larger temporal and spatial scales are unknown.
83	The objectives of this study were to examine (1) whether wild juvenile Atlantic
84	salmon use chemical information to avoid habitats that have a higher perceived predator
85	activity when settling in a new habitat, and (2) how they respond to changes in perceived
86	predator activity after settling in a habitat and establishing a territory. Juvenile Atlantic
87	salmon are ideal subjects for our study because they are relatively sedentary (Steingrímsson
88	and Grant 2003; Breau et al. 2007), which allows us to manipulate the perceived predator
89	activity of small sections of habitat while monitoring abundance during the four weeks after
90	emergence from redds.
91	
92	Materials and methods
93	Study site and species

94 We conducted this study in the lower reach of Catamaran Brook, located in

95	Northumberland County, New Brunswick, Canada (46°52'42"N, 66°06'00"W) from 17 June
96	to 22 July 2006 and 21 June to 25 July 2007. Catamaran Brook is a nursery stream for a
97	naturally reproducing population of anadromous Atlantic salmon (Cunjak et al. 1990). Young-
98	of-the-year (YOY) Atlantic salmon emerge from gravel nests in mid-June at about 2.6 cm in
99	fork length (Randall 1982). Upon emergence, juvenile salmon disperse from redds (gravel
100	nests) and begin defending foraging territories, even at 2-3 cm in length (Keeley and Grant
101	1995).
102	We selected seven sites of relatively shallow depth (< 50 cm) and slow current (0.2 –
103	0.5 m \cdot s ⁻¹), which are the preferred habitats for YOY Atlantic salmon in Catamaran Brook
104	(Girard et al. 2004). Within each site (mean width $\pm SD = 8.18 \pm 1.60$ m), we manipulated the
105	perceived activity of predators in three 5 X 5 m sections as follows: a risky section received
106	conspecific alarm cues; a control section received stream water; and, a buffer section received
107	nothing (Fig. 1a). Sections of this size (25 m^2) were chosen as an appropriate scale for our
108	study because YOY salmon typically defend a territory of about 1 m ² (Steingrímsson and
109	Grant 2008) and typically move less than 5 m during their growing season (Steingrímsson and
110	Grant 2003). Consequently, YOY salmon respond to changes in habitat quality at spatial
111	scales as small as 6 m^2 (Dolinsek et al. 2007; Venter et al. 2008). To ensure that chemical
112	alarm cues from the risky section had no effect on the control section (Blanchet et al. 2008),
113	we always assigned the control to the upstream quadrat of the site (Fig. 1a). Furthermore, we

114	added a buffer section between the control and risky sections so that the buffer and risky
115	sections could be switched during late settlement (Fig. 1b) and fish emigrating from the risky
116	section in an upstream direction could settle in habitat other than the control section during
117	early settlement (Fig. 1a). Because there were no barriers or enclosures, each site was also
118	exposed to the ambient risk of predation from potential predators, such as common merganser
119	(Mergus merganser), belted kingfisher (Megaceryle alcyon), brook charr (Salvelinus
120	fontinalis), and Atlantic salmon (Scott and Crossman 1973; Dolinsek et al. 2007). To
121	minimize the potential cumulative effects of chemical alarm cues dispersing from upstream to
122	downstream (Dionne and Dodson 2002; Kim et al. 2009), sites were at least 30 m (range: 30 -
123	93 m) apart.
124	To ensure that the three sections within a site were similar in habitat characteristics,
124 125	To ensure that the three sections within a site were similar in habitat characteristics, we measured the depth and current velocity at 40% of the water column depth, using a Marsh-
124 125 126	To ensure that the three sections within a site were similar in habitat characteristics, we measured the depth and current velocity at 40% of the water column depth, using a Marsh- McBirney meter (Model 201D, Fredericton, MD, U.S.A.) at five locations along a transect
124 125 126 127	To ensure that the three sections within a site were similar in habitat characteristics, we measured the depth and current velocity at 40% of the water column depth, using a Marsh-McBirney meter (Model 201D, Fredericton, MD, U.S.A.) at five locations along a transect across each section. The depth (mean $\pm SD = 45.75 \pm 13.43$ cm) and current velocity (0.40 \pm
124 125 126 127 128	To ensure that the three sections within a site were similar in habitat characteristics, we measured the depth and current velocity at 40% of the water column depth, using a Marsh-McBirney meter (Model 201D, Fredericton, MD, U.S.A.) at five locations along a transect across each section. The depth (mean $\pm SD = 45.75 \pm 13.43$ cm) and current velocity (0.40 \pm 0.27 m \cdot s ⁻¹), the two key variables used in habitat selection (Girard et al. 2004), did not differ
124 125 126 127 128 129	To ensure that the three sections within a site were similar in habitat characteristics, we measured the depth and current velocity at 40% of the water column depth, using a Marsh-McBirney meter (Model 201D, Fredericton, MD, U.S.A.) at five locations along a transect across each section. The depth (mean $\pm SD = 45.75 \pm 13.43$ cm) and current velocity (0.40 \pm 0.27 m \cdot s ⁻¹), the two key variables used in habitat selection (Girard et al. 2004), did not differ significantly among treatments or sites (<i>P</i> -values all > 0.18).
 124 125 126 127 128 129 130 	To ensure that the three sections within a site were similar in habitat characteristics, we measured the depth and current velocity at 40% of the water column depth, using a Marsh-McBirney meter (Model 201D, Fredericton, MD, U.S.A.) at five locations along a transect across each section. The depth (mean $\pm SD = 45.75 \pm 13.43$ cm) and current velocity (0.40 \pm 0.27 m \cdot s ⁻¹), the two key variables used in habitat selection (Girard et al. 2004), did not differ significantly among treatments or sites (<i>P</i> -values all > 0.18). For the purpose of this study, we defined the early settlement period for YOY Atlantic
 124 125 126 127 128 129 130 131 	To ensure that the three sections within a site were similar in habitat characteristics, we measured the depth and current velocity at 40% of the water column depth, using a Marsh-McBirney meter (Model 201D, Fredericton, MD, U.S.A.) at five locations along a transect across each section. The depth (mean $\pm SD = 45.75 \pm 13.43$ cm) and current velocity (0.40 \pm 0.27 m \cdot s ⁻¹), the two key variables used in habitat selection (Girard et al. 2004), did not differ significantly among treatments or sites (<i>P</i> -values all > 0.18). For the purpose of this study, we defined the early settlement period for YOY Atlantic salmon as June 15 – July 7, the time when salmon typically emerge and disperse from their

133	select a suitable habitat and begin defending a territory (Armstrong and Nislow 2006). We
134	defined the late settlement period as July $8 - 21$. During this late settlement period, fewer
135	YOY Atlantic salmon emerge from redds and more fish have settled into feeding territories
136	for the summer than during the early settlement period (Steingrímsson and Grant 2003).
137	Collection of alarm cue
138	Hatchery-reared Atlantic salmon parr (1+) from the Rocky Brook population of the
139	Miramichi watershed (2006, $n = 199$, mean $\pm SD$, standard length = 8.57 ± 0.74 cm; 2007, $n =$
140	163, fork length = 10.64 ± 0.72 cm) were obtained from the Miramichi Salmon Conservation
141	Centre, South Esk, New Brunswick for use as skin donors. Skin donors were killed with a
142	single blow on the head in accordance with Concordia Animal Care Committee Protocol AC-
143	2005-BROW. Skin fillets from both sides were removed and immediately placed into an ice-
144	chilled container filled with stream water. Skin fillets were homogenized and diluted with
145	stream water. The resulting concentration (0.09 cm ² of skin \cdot ml ⁻¹) of cue from this population
146	elicits a consistent anti-predator response in juvenile Atlantic salmon in Catamaran Brook
147	under natural conditions (Leduc et al. 2006; Leduc et al. 2007; Kim et al. 2009). Furthermore,
148	alarm cues are equally effective at eliciting anti-predator behaviour in field and laboratory
149	settings for a variety of prey fishes (Brown and Godin 1999; Wisenden et al. 2004; Wisenden
150	et al. 2010). The alarm cue was frozen in 50 ml aliquots at -20 °C until needed, whereas
151	stream water was obtained at the site. The frozen solutions were thawed 60 min prior to use.

152	For this study, 630 and	315 50-ml aliquots of alarm c	ue were used in 2006 and 2007,
-----	-------------------------	-------------------------------	--------------------------------

- 153 sufficient for 30 and 15 days of the experiment, respectively. The remainder of the alarm cue
- 154 was used in other cognate studies.
- 155 Experimental protocol
- 156 *Early settlement*

157	We manipulated the long-term perceived predator activity in each site by releasing
158	either the alarm cue or stream water twice a day for 17 and 15 days in 2006 and 2007,
159	respectively (Fig. 1a). To coincide with the peak activity of YOY Atlantic salmon (Breau et al.
160	2007), we released either 50 or 100 ml of the chemical stimuli (alarm cue or stream water) at
161	1100 h (1030-1130) and 1700 h (1630-1730) for a total volume of 150 ml per day per section;
162	the amount released in the morning was alternated each day. Studies simulating a single
163	predation event typically use about 20 ml from 1.8 cm ² of skin (Leduc et al. 2006; Kim et al.
164	2009), roughly equivalent to the size of a wound left by a predator (Smith and Lemly 1986).
165	Hence, the release of 150 ml per section per day would be equivalent to about eight predation
166	events, equivalent to the skin of one parr, being released in the 25 m^2 section per day. The
167	background predation rate in Catamaran Brook is estimated to be lower than 13 predation
168	events per section over eight weeks if fish density is 1 YOY \cdot m ⁻² (Girard et al. 2004). We used
169	a 60-ml syringe to release the chemical stimuli continuously within 20 cm of the substrate,
170	while slowly walking across the site. To minimize the potential disturbance when releasing

171	the stimulus (alarm cue or stream water), we always entered the stream upstream of the
172	section receiving the stimulus. Hence, we walked across the stream upstream of the control
173	section to release stream water and across the buffer section to release the alarm cue in risky
174	sections. Furthermore, YOY Atlantic salmon do not seem to react to overhead movements,
175	including a person walking slowly in the stream (personal observation).
176	To determine how long the chemical stimulus remained in a section, we released
177	samples of either milk or salt water ($n = 3$ for milk and $n = 4$ for salt water) in similar stream
178	reaches ($n = 7$; current velocity = 0.70 m \cdot s ⁻¹ , depth = 0.44 m). The initial plume of milk or
179	salt water, detected by eye and using a conductivity meter, respectively, took an average of
180	11.5 sec to reach 5 m downstream of the point of release. However, milk could be detected in
181	the 5 m-section for up to 20 sec and the salt water for up to 34 sec after release (JW. Kim,
182	unpublished data).
183	Juvenile salmon can minimize their predation risk by either settling in alternative
184	habitats or hiding in the substrate of risky habitats. To estimate both components of avoidance,
185	we recorded the number, age class (only for Atlantic salmon), and species of all visible fishes
186	in each site via snorkelling. Snorkelling is a useful technique for estimating the abundance of
187	active fishes with a minimum of disturbance (Breau et al. 2007), particularly when
188	electrofishing is ineffective, such as in small areas of stream or at night (Gries et al. 1997;
189	Mullner et al. 1998; Dolinsek et al. 2007). In response to an increase in predation risk, salmon

190	parr often become more active at night (Gries et al. 1997; Imre and Boisclair 2004; Breau et al.
191	2007). Hence, we estimated density during both the day and night. For all surveys, the
192	snorkeler moved slowly upstream, completing each 1-m subsection by moving from the left
193	bank to the right bank, taking approximately 30 - 40 min to complete one 15-m site during
194	either the day or night. The daytime surveys of all sites were completed within the same day.
195	For night surveys, we used a waterproof handheld flashlight (20 watt) to illuminate fish,
196	which were typically lethargic and unresponsive when approached. Night surveys of all sites
197	were completed either in one or two consecutive nights.
198	For the initial counts, three density surveys were conducted on day 1 and 2 for each
199	section: two during the day (between 1200 h and 1600 h) and one at night (between 2300 and
200	0300 h). All daytime surveys were conducted at least one hour after or before the release of
201	the chemical stimuli at 1100 and 1700, respectively. For the final counts, we conducted three
202	density surveys on day 17 and 18 in 2006, and on day 14 and 15 in 2007: two during the day
203	and one at night. We had planned to release chemical stimuli for 14 consecutive days during
204	early settlement period. In 2006, however, heavy rain increased the water level and turbidity
205	of all sites on day 14. Hence, to minimize any potential effects of this rainfall, we continued
206	the treatments for a total of 17 days.
207	Late settlement

208 To investigate whether juvenile Atlantic salmon that have likely established territories

209	respond to changes in the long-term riskiness of their local habitat, the 17-day experiment was
210	extended for another 13 days in 2006. The treatment protocol was similar to the 17-day
211	experiment except the buffer section during the early settlement now received the alarm cue
212	making it the risky section and the risky section now received nothing making it the buffer
213	section (see Fig. 1b). We expected the density to decrease the most in the new risky sections
214	(formerly the buffer sections), where the perceived predator activity increased the most. All
215	sections received a total of 150 ml of chemical stimulus (alarm cue or stream water) twice
216	daily for 13 days on July 8-21 in 2006 (Fig. 1b). The density survey protocol was similar to
217	that used in early settlement.
218	Statistical analysis
219	Because YOY are primarily day-active (Breau et al. 2007), whereas 1+ parr are active
220	during the day and night (Imre and Boisclair 2004: Dolinsek et al. 2007), we analyzed the
	during the day and hight (line and Dolselan 2004, Dollisek et al. 2007), we analyzed the
221	data separately for each age class. In addition, because of different diel activity patterns of
221 222	data separately for each age class. In addition, because of different diel activity patterns of YOY and 1+ parr, we analyzed the YOY data separately for day and night, whereas we used
221222223	data separately for each age class. In addition, because of different diel activity patterns of YOY and 1+ parr, we analyzed the YOY data separately for day and night, whereas we used the average of the mean daytime densities and night-time densities for 1+ parr. To test for the
221222223224	data separately for each age class. In addition, because of different diel activity patterns of YOY and 1+ parr, we analyzed the YOY data separately for day and night, whereas we used the average of the mean daytime densities and night-time densities for 1+ parr. To test for the effects of perceived predator activity on the population density of YOY and 1+ parr Atlantic
 221 222 223 224 225 	data separately for each age class. In addition, because of different diel activity patterns of YOY and 1+ parr, we analyzed the YOY data separately for day and night, whereas we used the average of the mean daytime densities and night-time densities for 1+ parr. To test for the effects of perceived predator activity on the population density of YOY and 1+ parr Atlantic salmon during the early settlement periods, a repeated measures two-way ANOVAs (three
 221 222 223 224 225 226 	data separately for each age class. In addition, because of different diel activity patterns of YOY and 1+ parr, we analyzed the YOY data separately for day and night, whereas we used the average of the mean daytime densities and night-time densities for 1+ parr. To test for the effects of perceived predator activity on the population density of YOY and 1+ parr Atlantic salmon during the early settlement periods, a repeated measures two-way ANOVAs (three treatments by two years with the early and late settlement periods as the repeated measure,

228	beginning and end of the early settlement periods. After we switched treatment in 2006, the
229	repeated measures analysis compared the numbers at the beginning (i.e. the number at the end
230	of the early settlement period) and end of the late settlement period.
231	For all analyses, only significant interactions between the effects of treatments, years,
232	sites, and time periods were reported, unless a non-significant interaction between the effects
233	of treatments, years, sites, and time periods might appear to be significant to the reader and
234	hence require an explanation. Results of all analyses are also presented in Table S1. To meet
235	the assumptions of parametric analyses, the number of YOY salmon counted during the day
236	and night and of parr salmon at the start and end of the treatment during early and late
237	settlement periods were log_{10} (X+1) transformed. For visual purposes, all data were back
238	transformed following the analyses and are shown with asymmetric S.E. bars.
239	
240	Results
241	A total of 3682 fishes was counted in the two years, including six species: Atlantic
242	salmon, blacknose dace (Rhinichthys atratulus), lake chub (Couesius plumbeus), brook charr,
243	white sucker (Catostomus commersonii), and slimy sculpin (Cottus cognatus). YOY Atlantic
244	salmon were the most abundant (64.4 % of all observed fishes), followed by 1+ parr Atlantic
245	salmon (14.6 %), blacknose dace (11.4 %), 2+ parr Atlantic salmon (4.8 %), lake chub (2.7 %),
246	brook charr (1.6 %), white sucker (0.6 %), and slimy sculpin (one count).

247 Early settlement

248	As expected, the final number of YOY salmon in the 75 m^2 sites after the early
249	settlement period was higher during the day than at night (repeated measures one-way
250	ANOVA: $F_{1,12} = 130.99$, $P < 0.001$; mean $\pm SE = 31.18 \pm 4.92$ for day and 1.36 ± 0.62 for
251	night). Furthermore, the final number of YOY was higher in 2006 than in 2007 (repeated
252	measures one-way ANOVA: $F_{1, 12} = 20.60$, $P < 0.001$; mean $\pm SE = 22.75 \pm 6.63$ for 2006
253	and 9.79 ± 2.89 for 2007). Hence, we analyzed the YOY data separately for day and night.
254	The final number of 1+ parr salmon in the 75 m^2 sites after the early settlement period
255	was higher in 2007 than in 2006 (repeated measures one-way ANOVA: $F_{1, 12} = 54.71$, $P < $
256	0.001; mean $\pm SE = 2.21 \pm 1.50$ for 2006 and 12.43 ± 5.58 for 2007), but did not differ
257	significantly between day and night (repeated measures one-way ANOVA: $F_{1, 12} = 2.18$, $P =$
258	0.17; mean $\pm SE = 8.64 \pm 2.00$ for day and 6.00 ± 1.45 for night). Hence, for the subsequent
259	analyses of parr, we used the average of the mean daytime and night-time densities.
260	As expected, the number of YOY salmon counted during the day increased over the
261	early settlement period (repeated measures two-way ANOVA, with site as block: $F_{1,30}$ =
262	40.04, $P < 0.001$; Fig. 2a). As predicted, there was a significant interaction between the effects
263	of treatments and the time periods on the number of YOY salmon counted during the day
264	(repeated measures two-way ANOVA, with site as block: $F_{2,30} = 5.12$, $P = 0.012$; Fig. 2a).
265	The number of salmon in the alarm-cue sections decreased in 2006 and increased the least in

266	2007 (Fig. 2a). Contrary to our expectations, however, the increase in number of YOY was
267	greatest in the buffer sections rather than control sections. The effect of treatments on the
268	number of YOY per section also appeared stronger in 2006 than in 2007; however, there was
269	no significant interaction among the effects of treatments, years, and time periods (repeated
270	measures two-way ANOVA, with site as block: $F_{2,30} = 1.76$, $P = 0.19$; Fig. 2a). The number
271	of YOY counted during the day was greater in 2006 than in 2007 (repeated measures two-way
272	ANOVA, with site as block: $F_{1, 30} = 39.30$, $P < 0.001$; Fig. 2a).
273	Because YOY salmon were absent at night in 19 out of 21 sections in 2007, we only
274	tested the effect of treatments on the number of YOY at night during the early settlement
275	period in 2006. Moreover, because YOY salmon were absent at night in all 21 sections at the
276	start of early settlement period in 2006, we analyzed the data using a one-way ANOVA with a
277	randomized block design on the final number of YOY at night during early settlement. In
278	contrast to the patterns in the daytime data, the number of YOY at night appeared to increase
279	least in the buffer section and most in the alarm-cue and control sections (Fig. 2b), however,
280	this difference was not significant (one-way ANOVA, with site as block: $F_{2, 12} = 1.84$, $P =$
281	0.20; Fig. 2b). However, the contrasting patterns between the day and night data in 2006 led
282	to a significant interaction among the effects of treatments, time of the day, and time periods
283	(repeated measures two-way ANOVA, with site as block: $F_{2,30} = 8.73$, $P = 0.001$). Hence, the
284	treatments had opposite effects on the number of YOY during the day and at night during the

285 early settlement period in 2006.

286	In contrast to YOY salmon, there was no significant interaction between the effects of
287	treatments and the time periods on the number of 1+ parr (repeated measures two-way
288	ANOVA, with site as block: $F_{2,30} = 2.31$, $P = 0.12$; Fig. 2c). However, there was a significant
289	interaction between the effects of time periods and years on the number of parr (repeated
290	measures two-way ANOVA, with site as block: $F_{1,30} = 17.01$, $P < 0.001$); the number of parr
291	increased over the early settlement period in 2007 (repeated measures one-way ANOVA, with
292	site as block: $F_{1, 12} = 38.21$, $P < 0.001$; Fig. 2c), but remained the same in 2006 (repeated
293	measures one-way ANOVA, with site as block: $F_{1, 12} = 0.17$, $P = 0.68$; Fig. 2c). Furthermore,
294	the number of parr was greater in 2007 than in 2006 (repeated measures two-way ANOVA,
295	with site as block: $F_{1, 30} = 73.12$, $P < 0.001$; Fig. 2c).
296	Late settlement
297	As expected, the number of YOY during the day increased over the 13-day late-
298	settlement period (repeated measures one-way ANOVA, with site as block: $F_{1, 12} = 45.24$, $P < 10^{-1}$
299	0.001; Fig. 3a), indicating that some fish were still selecting habitats in which to settle at this
300	time. The number of YOY salmon increased significantly more in control and buffer sections
301	than in risky sections (repeated measures one-way ANOVA, with site as block: $F_{2,12} = 6.26$,
302	P = 0.014; Fig. 3a). Perhaps because of alarm cues dispersing downstream, the buffer section
303	had an intermediate final number of YOY (Fig. 3a).

304	At night, the number of YOY per section increased over the 13-day late-settlement
305	period (repeated measures one-way ANOVA, with site as block: $F_{1, 12} = 10.80$, $P = 0.007$; Fig.
306	3b), and this increase differed between treatments (interaction between treatments and time
307	periods: $F_{2,12} = 5.84$, $P = 0.017$; Fig. 3b). Again, in contrast to the patterns during the day
308	time, the number of YOY salmon increased more in the risky sections than in the control or
309	buffer sections (Fig. 3a and 3b). Hence, the treatments again had opposite effects on the
310	number of YOY during the day and at night during the late settlement period in 2006.
311	Contrary to the results for YOY, the number of 1+ parr per section did not differ
312	significantly over the 13-day late-settlement period (repeated measures one-way ANOVA,
313	with site as block: $F_{1, 12} = 3.82$, $P = 0.074$; Fig. 3c). Furthermore, there was no significant
314	interaction between the effects of the treatments and the time periods on the number of parr
315	per section (F $_{2, 12} = 1.70$, P = 0.22; Fig. 3c).
316	
317	Discussion
318	Our results suggest that YOY Atlantic salmon can use chemical information to
319	directly assess the relative activity of predators in different habitats and then avoid
320	particularly dangerous habitats. During the early settlement period, the number of YOY
321	during the day in risky sections decreased or increased less than in the buffer and control
322	sections. The magnitude of increase in density in the buffer sections was not expected and

323	may have been caused by fish moving upstream out of the risky sections. During the late
324	settlement period, the number of YOY salmon increased most in the control and buffer
325	sections and least in the risky sections, where the perceived predator activity increased the
326	most.
327	It is also possible that YOY salmon remained within risky sections but altered their
328	behaviour, by spending more time hidden in the substrate (Leduc et al. 2007), and were not
329	counted during surveys. We think this explanation of our results is unlikely for three reasons.
330	First, the delay between the release of the stimulus and the subsequent density survey (i.e. $>$
331	one hour) was much longer than the latency to resume feeding in response to the same
332	stimulus (i.e. < 50 sec; Kim et al. 2009). Second, YOY salmon are most active during the day
333	(Breau et al. 2007), so it is unlikely that the decrease in daytime density could be entirely
334	accounted for by more YOY salmon hiding in refuges. Third, if YOY were indeed hiding in
335	the substrate during the day, then we would have presumably detected them during night
336	surveys. While the increase in night densities was greatest in the risky sections, the magnitude
337	of this increase could not account for differences observed during the day. Nevertheless, we
338	cannot rule out the alternate explanation that YOY salmon responded to the alarm cues by
339	hiding in the substrate during the day and night. If true, this result would suggest that YOY
340	salmon hide in the substrate much longer during the summer than previously thought (Breau
341	et al. 2007). Taken together, these results suggest that YOY salmon detect and avoid the sites

342	with alarm cues. Furthermore, our data suggest that alarm cues have longer-lasting effects on
343	the behaviour of YOY salmon at larger spatial scales than is typically measured during short-
344	term anti-predator experiments (Leduc et al. 2006; Kim et al. 2009).
345	Following the switch of treatments in 2006, we found no significant decline in
346	numbers in the alarm-cue sections (formerly the buffer sections), suggesting that once YOY
347	have settled on a foraging territory within a habitat, an increase in predator activity is not
348	sufficient to cause them to relocate to 'safer' habitats. Because the quality of alternative
349	locations is uncertain, the increased energy expenditure and decreased energy intake during a
350	relocation may decrease the net benefits of leaving risky sections (McDougall and Kramer
351	2007). In addition, if most YOY salmon have established their territories, then the prior
352	residency effect (Cutts et al. 1999) may make the costs of relocation outweigh the costs of
353	staying in risky habitats. Alternatively, YOY salmon can defend smaller territories to
354	compensate for the increased risk (Kim 2009; Kim et al. in press). However, the increase was
355	less in the alarm cue than in the other treatments, suggesting that new settlers either avoided
356	risky sites or hid in the substrate.
357	Interestingly, the patterns of YOY abundance at night during early and late settlement
358	periods were significantly different from and opposite to those observed in the day; the
359	increase in density at night was highest in the alarm-cue sections and lowest in the buffer
360	sections. The relatively few YOY found in risky habitats may become more night-active to

361	avoid the higher perceived activity of predators during the day. Furthermore, the few fish in
362	risky habitats may benefit from the reduced competition for food and space, which often leads
363	to an increased growth rate (Imre et al. 2005).
364	Contrary to our results for YOY, 1+ parr did not respond to the experimental
365	treatments. 1+ parr clearly detect and respond to alarm cues in the short term by decreasing
366	their foraging rates and increasing their latency to foraging (Kim et al. 2009). Because 1+ parr
367	already forage primarily at night (Imre and Boisclair 2004; Breau et al. 2007), they may be
368	less influenced by the increased perceived predator activity of alarm-cue sections during the
369	day. Alternatively, 1+ parr may have reached a size that makes them less vulnerable to gape-
370	limited fish predators such as brook charr and Atlantic salmon (Sogard 1997).
371	Overall, our data suggest that YOY Atlantic salmon can use chemical information to
372	assess the quality of habitat in terms of predator activity. Our study suggests that if habitats
373	differ markedly in ambient predator activity, YOY will avoid settling in particularly risky
374	habitats, or hide in the substrate for long periods of time. Whether the differences in perceived
375	predator activity between the treatments in our study represent the degree of spatial variability
376	in actual predation risk in salmon streams is an open question, especially so given that the
377	treatment effect was not strong enough to over-ride the differences in initial density. While
378	our study tested whether the differences in perceived predator activity in each section
379	influence settling decisions, it would be important to examine how the intrinsic riskiness of

380	habitat (Lima and Dill 1990; Verdolin 2006) influence the population density of a given
381	habitat, potentially affecting the relative predation risk of an individual. It would also be
382	interesting to examine whether and how predators redistribute themselves in response to the
383	altered distribution of prey. Moreover, investigating the potential interaction between the
384	effects of predation risk and population density on habitat selection would lead to the better
385	understanding of population consequences at broader spatial and temporal scales (Werner and
386	Peacor 2003; Blanchet et al. 2008). Further research is also needed to determine if YOY
387	salmon use alarm cues to assess the spatial variation in predation risk in an unmanipulated
388	system. Furthermore, given the well known difficulties in studying long-term predation risk in
389	natural populations (Lima and Steury 2005), our current study suggests that chemical alarm
390	cues may provide a valuable tool for future studies examining the ecologically relevant effects
391	of predation.
392	
393	Acknowledgements
394	Authors thank Timothy Gray, Lia Clark, Asra Toobaie, Taryn Roberts, Jacquelyn
395	Wood, Amanda Lindeman, Rick Cunjak, and the Catamaran crew for assistance in the field
396	and Mark Hambrook, Jenny Reid, and the Miramichi Salmon Association for use of their

- 397 facilities and logistical support. This manuscript was greatly improved by comments from Ian
- 398 Ferguson, Daniel Boisclair, Steve Kohler, Ian Fleming, and three anonymous reviewers. This

399	study was conducted in accordance with Concordia University Animal Care Protocol No. AC-
400	2005-BROW and complies with current Canadian laws. This research was financially
401	supported by research grants from the Natural Science and Engineering Research Council of
402	Canada (NSERC) to G.E.B. and J.W.A.G., and scholarships to JW.K.: NSERC Alexander
403	Graham Bell Canada Graduate Scholarship, Postdoctoral Fellowship from le Fonds
404	Québécois de la Recherche sur la Nature et les Technologies, Jack TH Fenety Conservation
405	Scholarship from the Miramichi Salmon Association, Olin Fellowship from the Atlantic
406	Salmon Federation, the SK Life Science Scholarship from the Korean Canadian Science
407	Scholarship Foundation, the Korean Honor Scholarship from the Embassy of the Republic of
408	Korea in the United States of America, and a Doctoral Thesis Completion Award from
409	Concordia University. This paper is contribution No. 109 to the Catamaran Brook Habitat
410	Research Project.
411	
412	References
413	Abrahams, M.V., and Dill, L.M. 1989. A determination of the energetic equivalence of the risk
414	of predation. Ecology 70 : 999-1007.
415	Anderson, P.K. 1986. Foraging range in mice and voles: the role of risk. Can. J. Zool. 64:
416	2645-2653.

417 Armstrong, J.D., and Nislow, K.H. 2006. Critical habitat during the transition from maternal

418	provisioning in freshwater fish, with emphasis on Atlantic salmon (Salmo salar) and
419	brown trout (Salmo trutta). J. Zool. 269: 403-413. doi 10.1111/j.1469-
420	7998.2006.00157.x.
421	Blanchet, S., Bernatchez, L., and Dodson, J.J. 2007. Behavioural and growth responses of a
422	territorial fish (Atlantic salmon, Salmo salar, L.) to multiple predatory cues.
423	Ethology 113 : 1061-1072. doi 10.1111/j.1439-0310.2007.01410.x.
424	Blanchet, S., Loot, G., and Dodson, J.J. 2008. Competition, predation and flow rate as
425	mediators of direct and indirect effects in a stream food chain. Oecologia, 157: 93-
426	104. doi 10.1007/s00442-008-1044-8.
427	Breau, C., Weir, L.K., and Grant, J.W.A. 2007. Individual variability in activity patterns of
428	juvenile Atlantic salmon (Salmo salar) in Catamaran Brook, New Brunswick. Can. J.
429	Fish. Aquat. Sci. 64: 486-494.doi 10.1139/F07-026.
430	Brown, G.E. 2003. Learning about danger: chemical alarm cues and local risk assessment in
431	prey fishes. Fish. Fish. 4: 227-237.
432	Brown, G.E., and Godin, JG.J. 1999. Chemical alarm signals in wild Trinidadian guppies
433	(Poecilia reticulate). Can. J. Zool. 77: 562-570.
434	Brown, G.E., Chivers, D.P., and Smith, R.J.F. 1995. Fathead minnows avoid conspecific and
435	heterospecific alarm pheromones in the feces of northern pike. J. Fish. Biol. 47: 387-
436	393.

437	Burwash, M.D., Tobin, M.E., Woolhouse, A.D., and Sullivan, T.P. 1998. Laboratory
438	evaluation of predator odors for eliciting an avoidance response in roof rats (Rattus
439	<i>rattus</i>). J. Chem. Ecol. 24 : 49-66.
440	Chivers, D.P., and Smith, R.J.F. 1998. Chemical alarm signalling in aquatic predator-prey
441	systems: A review and prospectus. Ecoscience 5: 338-352.
442	Culp, J.M., Scimgeour, G.J., and Townsend, G.D. 1996. Simulated fine woody debris
443	accumulations in a stream increase rainbow trout fry abundance. T. Am. Fish. Soc.
444	125 : 472-479.
445	Cunjak, R.A., Caissie, D., El-Jabi, N. 1990. The Catamaran Brook habitat research project:
446	description and general design of study. Can. Tech. Rep. Fish. Aquat. Sci. 1751:
447	14pp.
448	Cutts, C.J., Brembs, B., Metcalfe, N.B., Taylor, A.C. 1999. Prior residence, territory quality
449	and life-history strategies in juvenile Atlantic salmon (Salmo salar L.). J. Fish. Biol.
450	55 : 784-794.
451	Dill, L.M. 1978. An energy-based model of optimal feeding-territory size. Theor. Popul. Biol.
452	14 : 396-429.
453	Dionne, M., and Dodson, J.J. 2002. Impact of exposure to a simulated predator (Mergus
454	merganser) on the activity of juvenile Atlantic salmon (Salmo salar) in a natural
455	environment. Can. J. Zool. 80: 2006-2013. doi 10.1139/Z02-176

456	Dolinsek, I.J., Grant, J.W.A., and Biron, P.M. 2007. The effect of habitat heterogeneity on the
457	population density of juvenile Atlantic salmon Salmo salar L. J. Fish. Biol. 70: 206-
458	214. doi 10.1111/j.1095-8649.2006.01296.x.
459	Dukas, R. 2001. Effects of perceived danger on flower choice by bees. Ecol. Lett. 4: 327-333.
460	Girard, I.L., Grant, J.W.A., and Steingrímsson, S.Ó. 2004. Foraging, growth and loss rate of
461	young-of-the-year Atlantic salmon (Salmo salar) in relation to habitat use in
462	Catamaran Brook, New Brunswick. Can. J. Fish. Aquat. Sci. 61: 2339-2349 doi
463	10.1139/F04-216.
464	Gries, G., Whalen, K.G., Juanes, F., and Parrish, D.L. 1997. Nocturnal activity of juvenile
465	Atlantic salmon (Salmo salar) in late summer: evidence of diel activity partitioning.
466	Can. J. Fish. Aquat. Sci. 54: 1408-1413.
467	Grostal, P., and Dicke, M. 1999. Direct and indirect cues of predation risk influence behavior
468	and reproduction of prey: a case for acarine interactions. Behav. Ecol. 4: 422-427.
469	Imre, I., and Boisclair, D. 2004. Age effects on diel activity patterns of juvenile Atlantic
470	salmon: parr are more nocturnal than young-of-the-year. J. Fish. Biol. 64: 1731-1736
471	DOI 10.1111/j.1095-8649.2004.00417.x.
472	Imre, I., Grant, J.W.A., and Cunjak, R.A. 2005. Density-dependent growth of young-of-the-
473	year Atlantic salmon Salmo salar in Catamaran Brook, New Brunswick. J. Anim.
474	Ecol. 74: 508-516. DOI: 10.1111/j.1365-2656.2005.00949.x

475	Johnston, T.A. 1997. Downstream movements of young-of-the-year fishes in Catamaran
476	Brook and the Little Southwest Miramichi River, New Brunswick. J. Fish. Biol. 51:
477	1047-1062.
478	Keeley, E.R., and Grant, J.W.A. 1995. Allometric and environmental correlates of territory
479	size in juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 52: 186-196.
480	Kelley, J.L., and Magurran, A.E. 2003. Learned predator recognition and antipredator
481	responses in fishes. Fish. Fish. 4: 216–226.
482	Kim, JW. 2009. Behavioural and ecological implications of predation risk in juvenile
483	Atlantic salmon (Salmo salar). Ph.D. thesis, Department of Biology, Concordia
484	University, Montreal, QC.
485	Kim, JW., Brown, G.E., Dolinsek, I.J., Brodeur, N.N., Leduc, A.O.H.C., and Grant, J.W.A.
486	2009. Combined effects of chemical and visual information in eliciting antipredator
487	behaviour in juvenile Atlantic salmon Salmo salar. J. Fish. Biol. 74: 1280-1290. doi
488	10.1111/j.1095-8649.2009.02199.x.
489	Kim, JW., Wood, J.L.A.W., Grant, J.W.A., and Brown, G.E. In press. Acute and chronic
490	increases in predation risk affect the territorial behaviour of juvenile Atlantic salmon
491	in the wild. Anim. Behav. doi 10.1016/j.anbehav.2010.09.017
492	Leduc, A.O.H.C., Roh, E., Harvey, M.C., and Brown, G.E. 2006. Impaired detection of
493	chemical alarm cues by juvenile wild salmon (Salmo salar) in a weakly acidic

494	environment. Can. J. Fish. Aquat. Sci. 63: 2356-2363. doi 10.1139/F06-128.
495	Leduc, A.O.H.C., Roh, E. Breau, C., and Brown, G.E. 2007. Learned recognition of a novel
496	odour by wild juvenile Atlantic salmon, Salmo salar, under fully natural conditions.
497	Anim. Behav. 73(3): 471-477. doi 10.1016/j.anbehav.2006.09.005.
498	Lima, S.L., and Dill, L.M. 1990. Behavioral decisions made under the risk of predation: a
499	review and prospectus. Can. J. Zool. 68: 619-640.
500	Lima, S.L., and Steury, T.D. 2005. Perception of predation risk: the foundation of nonlethal
501	predator-prey interactions. In Ecology of Predator-Prey Interactions. Edited by P.
502	Barbosa and I. Castellanos. Oxford University Press, New York, NY. pp. 166-188.
503	Mathis, A., and Smith, R.J.F. 1992. Avoidance of areas marked with a chemical alarm
504	substance by fathead minnows (Pimephales promelas) in a natural habitat. Can. J.
505	Zool. 70 : 1473-1476.
506	McDougall, P.T., and Kramer, D.L. 2007. Short-term behavioral consequences of territory
507	relocation in a Caribbean damselfish, Stegastes diencaeus. Behav. Ecol. 18: 53-61.
508	doi 10.1093/beheco/ar1055
509	Morris, D.W. 2003. Toward an ecological synthesis: a case for habitat selection. Oecologia.
510	136 : 1-13. doi 10.1007/s00442-003-1241-4.
511	Mullner, S.A., Hubert, W.A., and Wesche, T.A. 1998. Snorkeling as an alternative to depletion
512	electrofishing for estimating abudance and length-class frequencies of trout in small

513	streams. N. Am.	J. Fish. Manage.	18 : 947-953.	doi 10.1577/1548-
-----	-----------------	------------------	----------------------	-------------------

- 514 8675(1998)018<0947:SAAATD>2.0.CO;2
- 515 Nilsson, E., and Bengtsson, G. 2004. Death odour changes movement pattern of a Collembola.
- 516 Oikos. **104**: 509-517.
- 517 Pappal, A.L., MacDonald, D.G., and Rountree, R.A. 2009. Evidence of cobble habitat
- 518 preference in age-0 winter flounder, *Pseudopleuronectes americanus*. Mar. Freshw.
- 519 Behav. Phy. **42**: 43-53. doi 10.1080/10236240902765269.
- 520 Petrie, M.E., and Ryer, C.H. 2006. Laboratory and field evidence for structural habitat affinity
- 521 of young-of-the-year lingcod. T. Am. Fish. Soc. **135**: 1622-1630. doi 10.1577/T05-
- 522 164.1.
- 523 Randall, R.G. 1982. Emergence, population density, and growth of salmon and trout fry in two
- 524 New Brunswick streams. Can. J. Zool. 60: 2239-2244.
- 525 Rosenfeld, J.S., and Taylor, J. 2009. Prey abudance, channel structure and the allometry of
- 526 growth rate potential for juvenile trout. Fisheries. Manag. Ecol. 16: 202-218. doi
- 527 10.1111/j.1365-2400.2009.00656.x.
- 528 Schneider, K.J. 1984. Dominance, predation, and optimal foraging in white-throated sparrow
- 529 flocks. Ecology. **65**: 1820-1827.
- 530 Scott, W.B., and Crossman, E.J. 1973. Freshwater fishes of Canada. Fish. Res. Bd. Can. Bull.
- **184**: 192-197.

532	Smith, R.J.F. 1992. Alarm signals in fishes. Rev. Fish. Biol. Fish. 2: 33-63. doi
533	10.1007/BF00042916.
534	Smith, R.J.F., and Lemly, A.D. 1986. Survival of fathead minnows after injury by predators
535	and its possible role in the evolution of alarm signals. Environ. Biol. Fishes. 15: 147-
536	149.
537	Sogard, S.M. 1997. Size-selective mortality in the juvenile stage of teleost fishes: a review. B.
538	Mar. Sci. 60: 1129-1157.
539	Steingrímsson, S.Ó., and Grant, J.W.A. 2003. Patterns and correlates of movement and site
540	fidelity in individually tagged young-of-the-year Atlantic salmon (Salmo salar). Can.
541	J. Fish. Aquat. Sci. 60: 193-202. doi 10.1139/F03-012.
542	Steingrímsson, S.Ó., and Grant, J.W.A. 2008. Multiple central-place territories in wild young-
543	of-the-year Atlantic salmon Salmo salar. J. Anim. Ecol. 77: 448-457. doi
544	10.1111/j.1365-2656.2008.01360.x
545	Venter, O., Grant, J.W.A., Noel, M.V., and Kim, JW. 2008. Mechanisms underlying the
546	increase in young-of-the-year Atlantic salmon (Salmo salar) density with habitat
547	complexity. Can. J. Fish. Aquat. Sci. 65: 1956-1964. doi 10.1139/F08-106.
548	Verdolin, J.L. 2006. Meta-analysis of foraging and predation risk trade-offs in terrestrial
549	systems. Behav. Ecol. Sociobiol. 60: 457-464. doi 10.1007/s00265-006-0172-6.
550	Werner, E.E., and Peacor, S.D. 2003. A review of trait-mediated indirect interactions in

551	ecological communities. Ecology. 84: 1083-1100.
552	Wisenden, B.D., Vollbrecht, K.A., and Brown, J.L. 2004. Is there a fish alarm cue? Affirming
553	evidence from a wild study. Anim. Behav. 67(1): 59-67. doi
554	10.1016/j.anbehav.2003.02.010.
555	Wisenden, B.D., Binstock, C.L., Knoll, K.E., Linke, A.J., and Demuth, B.S. 2010. Risk-
556	sensitive information gathering by cyprinids following release of chemical alarm
557	cues. Anim. Behav. 79 (5): 1101-1107. doi 10.1016/j.anbehav.2010.02.004.
558	
559	
560	
561	
562	
563	
564	
565	
566	
567	
568	
569	

570 Figure legends

571	Figure 1. Experimental design in one of seven stream sites during the (a) early and (b) late
572	settlement periods of YOY salmon where a risky section received conspecific alarm
573	cues; a control section received stream water; and, a buffer section received nothing,
574	twice a day for 13-17 days in 2006 and 2007.
575	Figure 2. Mean number (\pm SE, $n = 7$) of Atlantic salmon exposed to three treatments: stream
576	water (•, solid line), alarm cue (•, dashed line), and a buffer (•, dotted line) during
577	the early settlement period in 2006 (closed symbols) and 2007 (open symbols) for
578	young-of-the-year (a) during the day, (b) at night, and (c) for parr during the day and
579	night (Note that the results for YOY at night is reported for 2006 only)
580	Figure 3. Mean number (\pm SE, $n = 7$) of Atlantic salmon exposed to three treatments: stream
581	water (•, solid line), alarm cue (•, dashed line), and a buffer (•, dotted line) during
582	the late settlement period in 2006 for young-of-the-year (a) during the day, (b) at
583	night, and (c) for parr during the day and night

