65

Chapter 4

Component-Based
Modeling for Information
Systems Reengineering

Malleswara Talla
Concordia University, Canada

Raul Valverde
Concordia University, Canada

ABSTRACT

An Information System can be envisioned as a set of interdependent components that provide the intended
services. The component based modeling serves as a tool for collecting requirements of an Information
System in user perspective and business perspective at various stages of software development. The
chapter presents a methodology for component based modeling and development of an Information
System, starting from the requirements definition phase, arriving at candidate components and creation
of final components and their interfaces. The methodology aims at clarifying the intricate details and
usage of an Information System via business type models and use-case models. The chapter presents the
interaction diagrams in order to describe interactions among objects in systems perspective, and context
diagrams for reflecting upon the business domain. Finally, the chapter proposes component replacement
as a methodology for system reengineering, and model-view-control framework for component refine-
ment and evolution in order to achieve a reengineered information system that reflects upon current
requirements in business domain. The reengineering techniques proposed in this chapter can be applied
to legacy systems to turn them into a component-oriented reengineered system.

DOI: 10.4018/978-1-4666-0155-0.ch004

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Component-Based Modeling for Information Systems Reengineering

1. INTRODUCTION

Recenttrend in systems engineering is component-
based using the technologies such as Component
Object Model (COM), Common Object Request
Broker Architecture (CORBA), Easy Java Simula-
tions (EJS), etc. A component-based model is an
interconnected set of software components that
collectively represent an information system. A
component is a modular piece of software that
provides a service. Components communicate
via interfaces. Component-based software ar-
chitecture allows system design in a pragmatic
manner, either for developing a new system or
reengineering an existing system via reverse en-
gineering where needed. The reengineering of a
system is actually examining and modifying the
system that has been in-use for a long time, to
improve it and turn it up-to-date in terms of busi-
nessrules and system performance needs. Reverse
engineering is proposed in (Landry Chouambe,
Benjamin Klatt, and Klaus Krogmann, 2008)
when the interfaces are not explicit or composite
components are not supported in a system. An
adaptive component model can be dynamic and
evolve with the changing needs via adaptation
to different execution contexts (Xin Peng, Yijian
Wu, Wenyun Zhao, 2007). The component-based
modeling offers an opportunity to speed up the
systems development via Commercial Off-The-
Shelf (COTS), Open Source, or In-House com-
ponents readily available for inclusion during
design stage (Pasquale Ardimento, Giovanni
Bruno, Danilo Caivano, Giuseppe Visaggio,
2007). The component based modeling also pro-
motes an incremental specification validation and
runtime adaptability in a distributed component
information systems (Nasreddin Aoumeur, Kamel
Barkaoui, Gunter Saake, 2007). An information
system is a computer application that efficiently
processes, stores and relays information within an
organization and across its customers, suppliers,
and all other public relationship organizations.
The component-based models are so flexible that

66

these models can support dynamic decisions in
concurrent via component selection and reuse
at runtime (Biplav Srivastava, 2004). Likewise,
component based modeling resulted in efficient
system design, development, and reengineering.

This chapter presents a methodology for
component-based modeling and development of
an information system, starting from the require-
ments definition phase, identification of compo-
nents and their interfaces. The methodology uses
business type models and use case models for
understanding the requirements and identifying
the system components. A business type model
is a conceptual map of all data and information
of interest for the information system. A use Case
model is a description of steps that reflect upon a
usage scenario or a system feature with respect to
a systemuser or actor. The component interaction
diagrams describe the interactions among objects
in the systems perspective, and context diagrams
for reflecting upon the business domain. While
design follows a well defined methodology, sys-
tem reengineering is proposed via component
replacement strategies, where complexity of
components is analyzed for appropriate resizing
of components. The same methodology can be
used for reengineering legacy information sys-
tems where parts of legacy system features can
be turned into new components or replaced with
existing components.

2. COMPONENT BASED
SYSTEM MODELING

A component is a reusable piece of software that
offers a defined service as a part of a system in
which it is used. The challenge in component
based architecture and design is to reuse as many
existing components and designing new ones
that are not already available. Component-based
modeling includes several activities to start with
an objective of defining the requirements of an
information system at the technical and user

Component-Based Modeling for Information Systems Reengineering

level. The first phase of the component-based
modeling methodology is to capture the require-
ments and preparing an appropriate business type
models which serves as a basis for a component
architecture by identify component specifica-
tions, interfaces and dependencies. The Figure 1
presents a series of activities performed during
requirements definition phase of component-based
systems development.

The system requirements are captured via use
case model, and appropriate system components
are identified (Cheesman, J. & Daniels J. 2001).
The business type models define the information
in terms of software specifications, whereas the
Use Case modelling provides the requirements in
terms of system usage point of view. Based on
these two types of models, a component architec-
ture is constructed, and the component responsi-
bilities and dependencies are defined. The com-
ponents provide interfaces to the direct users,
where a user can be another system component
which may be processing intensive, or the one
that may provide a graphical user interface (GUI)
for seeking input or presenting the results. There-
fore, system components are characterized by an
interface model, which is a reflection of input or
output to a component as a set of attributes or data
structures, operations and invariants at the inter-
face level. The Figure 2 starts with business type
models and use case models for identifying the
components that serve as input to systems analy-
sis phase during which a set of components are
identified. The Figure 2 also identifies a compre-
hensive architecture which is a set of interacting
components that provide the required results.

In this methodology, an information system
canbe viewed as asetofcollaborating components.
Each component acts upon a set of input param-
eters and states, and provide an interface to other
components. The component interfaces in the
interface diagram have operations with data sig-
natures and use the terminology defined in the
business type model or use case model.

Figure 1. Requirements definition

Gather
Requirements

Business Type
model

Identify System
Components

h 4

Component-based
Architecture for
the System

The component interactions at the interfaces
can be detailed in the component interaction dia-
grams which as the messages or data exchanged
between the collaborating objects whereas the
functionality resulted among these interactions can
be characterized in context diagrams (Brown, A.W.
2000). The Figure 3 presents a comprehensive set
of components interacting among one another that
constitute a component-based systems architec-
ture. The incoming arrows represent input to a
component whereas an outgoing arrow present
a result or a service offered by that component.
The overall system provides the intended results.

67

Component-Based Modeling for Information Systems Reengineering

Figure 2. Deriving component based systems architecture

Business Type
models

A 4

Use Case models

A 4

Components

System Analysis

Components

Component-based
Systems Architecture

Graphical User
Interface based User
interaction

2.1 Business Type Models

The goal of business type modeling is to gather vari-
ous information that helps the systems architect
in conceiving a set of components each of which
works with unique data structures, and provide
interfaces to the users or other components. The
requirements gathering via business type models
can be performed in the following steps (Brown,
A.W. 2000):

a. Collect information of interest, type of in-

formation, and limitations such as maximum
and minimum values,

68

b. Conceptual map of information collected in
step (a) while eliminating redundant infor-
mation, and

c. Identifying the system components.

First, the information of interest and core types
are identified and a type model depicting how the
concepts of one entity relates to another entity.
Next, the conceptual map is refined into a non-
redundant type model that details various stages of
data processing in the information system, which
is just like the traditional Entity Relationship
Diagrams (ERD); where entities are called types
and relationships are called associations. Finally,

Component-Based Modeling for Information Systems Reengineering

Figure 3. Component based system architecture

Interface

Component
C1

Interface

A 4

Component

Interface

Interface

Component
C2

Interface

Component

C3

Interface

Ca

l Interface

Component
Cc5

Component
C6

Interface

Interface

[Interface
A

refine the business type model eliminating the
redundant types for identifying the unique busi-
ness elements (Brown, A.W. 2000) that specify
structured data types. The resulting diagram can
be called as business type model which provides
the required information to the systems architect
in modeling component-based architecture. The
Figure 4 presents a set of information entities and
their relationships with one another that serves as
a source of systems architecture and design. The
conceptual map is further detailed into actionable
at runtime as business information in Figure 5.

2.2 Use Case Modeling

Use case modeling is the process of modeling
a system functions in terms of usage scenarios
and business events, that detail how the system
responds to the events (Whitten, J. L., Bentley

D. L. and Dittman K.V. 2000). A Use Case is a
description of a user interaction with the infor-
mation system (Brown, A.W. 2000). An use case
contains the participating actors. An actor could
be anything (a user, a role, a person) internal or
external that interacts with system to exchange
information. An actor can be a user, a role, or a
person, who can be inside or outside the system.
(Rumbaugh, J. 1994). The Figure 6 presents a set
of users, actually customers receiving service of
a sales system.

2.3 Interaction Diagrams

An interaction diagram is a reflection of a use
case detailing the interactions among the objects
to provide the functionality specified in the use
case. The Unified Modeling Language (UML)
tools provide two types of diagrams: sequence

69

Component-Based Modeling for Information Systems Reengineering

Figure 4. Conceptual map of information

Sales person < Customer order

A 4
Order Processing order Book Product Catalog

4 A 4

Shipping and Handling Accounts Receivable
Figure 5. Business type model
Product Group Customer
contains places
Product order Order processing employee
requests takes

70

Component-Based Modeling for Information Systems Reengineering

Figure 6. Use

i Service
i Service

case model

'il Service

Sales

Business Customers

Individual Customers

Online Sales

Business Customers

Individual Customers

Figure 7. Sequence diagram

Service 'i‘

Direct Sales

Business Customers

Individual Customers

Service 'i'
Service 'i'

Customer

Sales Person

1. Order in

A 4

2. Check Inventory

Inventory
Manager

5. Goods Delivery

3. Order Processing

Shipping and
Handling

>

4. Generate Invoice

Accounts
Receivable

A

A

6. Invoice

7. Payment

A 4

71

Component-Based Modeling for Information Systems Reengineering

Figure 8. Collaboration diagram

1: New()

Sales Person

Customer

diagram, and collaboration diagramto graphically
depict these interactions. A sequence diagram
provides interactions among objects that complete
desired operation or result. (Brown, A.W. 2000).
The Figure 7 presents a set of objects interacting
one another via messages exchange, where each
message triggers further actions in the system.

A collaboration diagram is to get a quick
overview of all the objects that collaborate to
support a given use case scenario. The Figure 8
represents a collaboration among objects for a
specific use case.

In UML, both sequence diagrams, and col-
laboration diagrams are often used for eventu-
ally reflect upon the use cases.

2.4 Interface Modeling

An interface to a component consists of a set
of parameters or data structures, messages, or
procedure triggering a certain processing, which
provide the required information eitheras an input
for further processing, or for an output to present
the results. The goal of interface modelling is to
define a set of parameters and messages at the
interfaces and describe their details. An interface
is used for detailing the common behaviour of a
set of objects (Brown, A.W. 2000). It specifies
collaborations between components and illustrates

72

A 4

2: Check()

Inventory

how components will collaborate to support each
atomic use case.

User components access them through their
interfaces; these are usually described using three
kinds of information:

. Attributes for recording information about
the state of instances of the interface;

. Operations supported by that interface pro-
viding access that the interface offers; and

* Invariants constraining the allowable
states of objects supporting that interface.

The Figure 9 presents various input and output
details at the interface. The components receive
input data at the interface and provides output
data as a set of parameters. Once an understand-
ing of the roles and responsibilities of each of the
interfaces are established, the interface details can
be completed. First, the signature and behaviour
are considered. For each operation, its param-
eters are defined by making use of appropriate
types. Two different types of conditions namely
pre-condition and post-condition behaviours are
defined (Brown, A.W. 2000).

Component-Based Modeling for Information Systems Reengineering

Figure 9. Interface model

IC30A Interface IC4OA1 1C408 Interface

4

ICS0A R
Component Component
C5 IC50B R Cé
Interface
IC50C IC50D IC50E Interface IC60A IC60H 1C60C Interface
v ¥ v \ 4

2.5 Context Modeling

Once a candidate component architecture has been
created, the behaviour of each component and the
resulting system can be analysed in more detail.
At this stage, the expected system functionality
is defined through interfaces. Context model-
ling focuses on the system being developed, and
the responsibilities of all involved components.
A context model is a high-level view of busi-
ness context in terms of procedures, roles and
responsibilities. A context model can be used to
describe a complete system in the context of a
business domain or can be scoped to describe a
particular component and its context. An example
of a context model is depicted below (Brown,
A.W. 2000). The Figure 10 presents the details
of processing a use case, as a set of sequential or
parallel processing procedures.

2.6 Component Architecture

The component architecture model should define
all components, their responsibilities, specifica-
tions, interfaces and dependencies. The Figure
11 presents a set of components that collectively
provide a service of the system. The very inputs
are received via user interface which can be a
graphical user interface (GUI) involving a real

person, or another system that provides all input
via systems interaction.

3. COMPONENT REPLACEMENT
FOR REENGINEERING

The component-based reengineering involves
either redesigning and revising an existing com-
ponent for the required changes, or replacing an
existing component with an equivalent new one
that provides the same service. Redesigning an
existing component requires reverse engineering
to fully understand the existing software com-
ponent, when software evolution was not fully
documented. The overall effort for redesigning
a component could be expensive, and a simple
componentreplacement could be a better strategy
for reengineering. It is hard to find another com-
ponent that provides an exact interface; however
it may be possible to take into consideration only
therequired services and ignore irrelevant services
atthe interface; on the other hand, a glue code can
be triggered for any required trivial changes at the
interface level. Component replacement strategy
for system reengineering requires a careful evalu-
ation for plug-and-playing a component since a
component requires all relevant inputs in order to
produce the required output. Ifan input parameter

73

Component-Based Modeling for Information Systems Reengineering

Figure 10. Context model

Customer Management
Create()
Delete()
> Type()
Customerinfo: 1.1 Sales()
GetDetails()
Use Case: Customer Order
Customer Order Processing
Product details CreateCustomer()
Quantity > CreateOrder() InventoryManagement
Delivery details Order In: 1 Checkinventory() Inventorylinfo: 1.2
ProcessOrder() A | QuantityAvailable()
ReplenishmentOrder()

toasoftware componentis notrequired, such input
parameter can be ignored and be left to a default
value atthe interface level. Whilereplacing a com-
ponent with another that provides similar but not
exactly the same service, then a trivial glue code
may help to revise the service as required. The
glue code framework is analogous to the control
part of Model-view-Control (MVC) framework,
which not only provides an opportunity for test-
ing but also tuning the component services to
meet the user expectations. A MVC framework
involvesamodel as asetofclasses reflecting upon
a component, view as a GUI interface to the user,
and control as acommunication control providing
the required interface. The Figure 12 presents a
MVC framework where the glue code can be on
the model side in (a) and on the view side in (b).

A carefully documented component provides
all information regarding the service offered by
a component and how it is accomplished; and

74

ProcessOrder: 1.3

A/

Order Processing

TriggerShipping()
Generatelnvoice()

such documentation provides a basis for evaluat-
ing the feasibility of using the component as a
replacement for an existing component ina system
reengineering. The component replacement strat-
egy could be implemented in an appropriate
manner based on complexity as follows:

One-to-One component replacement,
One-to-Many component replacement,
Many-to-One component replacement, and
Many-to-Many component replacement.

/o op

A component of moderate size and complexity
can be replaced with an equivalent component
that provides the same service. Consider a system
consisting six components with well defined inter-
faces, the above component replacement strategies
can be implemented as described below. In Figure
13, component C6 is replaced with a new compo-
nent NC6. While conducting such replacement, it

Component-Based Modeling for Information Systems Reengineering

Figure 11. Component architecture modeling

IC1IA IC1IB Interface IC2IA Interface
Y Y
Component Component
C1 C2
IC10A Interface IC20A Interface
Y Interface A
IC308B
Component | Component
C3 Interface C4
IC30A Interface IC40A l 1C408B Interface
Y A
Component Component
C5 C6
Interface
IC50C| IC50D| ICSOE| Interface IC60A IC60d 1C60C Interface
A Y Y A

isimportant that the interface provided by the new
component NC6 should be exactly same as that
of C6. However, due to system evolution if any
of the input interface elements (IC40A, IC40B,
IC50A, and IC50B) or output elements (IC60A,
IC60B, and IC60C) become redundant, such
elements can be omitted in the new component
NC6. On the other hand, if any of these elements
require some kind of transformation, the glue code
can do the needful.

When a component is very complex and an
equivalent component is not available, but a set

of components collectively match the services
offered by the existing one, it can be replaced
with those new components by carefully reengi-
neering the interfaces, and eventually accomplish-
ing the same service. In Figure 14, component
C6isreplaced withNC61 and NC62 whichreceive
their required interfaces from other components
and collectively provide a matching interface of
C6. Suchreengineering simplifies the architecture
and enhances system maintenance and the scope
for system evolution.

75

Component-Based Modeling for Information Systems Reengineering

Figure 12. MVC framework

Model

(a component or a set of components)

Control
(glue code)

(a) glue code at model side

Model

(a component or a set of components)

Control
(glue code)

(b) glue code at view side

Figure 13. One-to-one component replacement for reengineering

View
(Graphical User Interface)

View
(Graphical User Interface)

IC1IA IC1IB Interface IC2IA Interface
A Y
Component Component
C1 Cc2
1C208B
IC10A Interface IC20A Interface
y Interface 4
1C308B
Component Component
c3 Interface ca
IC30A Interface IC4OA1 1C408
Y y
ICS0A N
Component Component
G5 IC508 N NCé
Interface
1IC50C IC50D IC50E Interface IC60A 1C608 1C60C
Y Y A 4 y

Interface

Interface

76

Component-Based Modeling for Information Systems Reengineering

Figure 14. One-to-many component replacement for reengineering

IC1IA IC11B Interface IC21A Interface
Y Y

Component Component

C1 C2
IC10A Interface IC20A Interface

Y Interface A 4

Component Component

c3 Interface C4

IC30A Interface 1C408B Interface
v IC40A
v
Component
NC61
Component
y
G5 Component
i NC62
Interface
Interface
1C50C IC50D IC50E IC60A IC608 1C60C Interface
v v v v v Y

When several trivial components collectively
can be replaced with a moderate component that
provides all services, then it is worthwhile to use
the new set of components to replace the existing
complex component and reengineer the system
to accomplish the same service. In Figure 15, the
components C5 and C6 are replaced with a new
component NC5C6 whilereflectingupon the same
interface of both C5 and C6.

When the above strategies are not viable and
a group of components that define a service can
be collectively replaced with anew modular group
of components to accomplish the same service.
The resulting reengineered system will look well
adapted at a multitude of aspects of the system.

In Figure 16, the components C4, C5 and C6 are
replaced with a new component NC41, NC42,
and NC5NC6 while reflecting upon the same
final interface of both C5 and C6 provided by
NC5NC6.

A careful reengineering of a system involves
a keen evaluation of all above strategies in order
to choose the one which is the most economical.
While testing an existing component to understand
its functionality, or anew component to check the
results atthe component level, interface simulators
can be used which enhance the speed of testing,
and any required changes can be quickly per-
formed.

77

Component-Based Modeling for Information Systems Reengineering

Figure 15. Many-to-one component replacement for reengineering

IC1IA IC11B Interface IC21A Interface
Y Y
Component Component
C1 C2
1C208B
IC1I0A | Interface / IC20A Interface
4 nterface x
1C308B
Component R Component
c3 Interface c4
IC30A Interface IC4OAl 1C40B Interface
Y Y
Component
NC5C6
IC50C IC50D ICSOE Interface IC60A 1C60B 1C60C Interface
A y y A Y

4. CONCLUSION

The component based modelling methodology
presented in this chapter can be used for both
new systems as well as reengineering an existing
legacy system. If the existing system is already
component-based, it can be replaced with new
components that use the latest business rule set;
however if the existing system is a legacy system,
component-based modelling allows reengineering
of such systems via plugging equivalent compo-
nents and a gradual system reengineering and
development could be possible. The contribution
of this chapter is in reengineering via component
replacement where resizing of components is

78

proposed that balances the complexity among the
components. Suchreengineered system enhances
system maintenance and evolution in an efficient
manner. One way to look at the complexity is
the size of software component via the amount
of processing. When a component is processing
intensive, it can be divided into multiple compo-
nents all of which can exist with in the system,
or distributed over a network. The glue code
proposed in this chapter allows a client/server
architecture in systems reengineering. A legacy
system can be reengineered to adopt a new cli-
ent/server architecture. Further work involves in
evaluating component-based modelling to exploit
network oriented client/server architecture where

Component-Based Modeling for Information Systems Reengineering

Figure 16. Many-to-many component replacement for reengineering

IC1IA IC1IB Interface IC2IA Interface
y Y Y
Component Component
C1 C2
IC10A Interface IC20A | Interface
y Interface Component
NC41
IC30B
Component Component
NC42
c3 Interface
IC30A Interface IC40A 1C408 Interface
Y h 4 A
Component
NC5C6
IC50C IC50D ICSOE Interface IC60A IC60B 1IC60C Interface
Y Y A A
most common components can be centralized at REFERENCES

server end whereas the user interface components
canbe located at client end. Likewise, component-
based modelling opens a gateway for numerous
applications reengineering.

Aoumeur, N., Barkaoui, K., & Saake, G. (2007).
Incremental specification validation and runtime
adaptativity of distributed component informa-
tion systems. Proceedings of IEEE Conference
on Software Maintenance and Reengineering.
0-7695-2802-3/07

79

Component-Based Modeling for Information Systems Reengineering

Ardimento, P., Bruno, G., Caivano, D., & Visaggio,
G. (2007). Amaintenance oriented framework for
software components characterization. Proceed-
ings of IEEE Conference on Software Maintenance
and Reengineering. 0-7695-2802-3/07

Brown, A. W. (2000). Large-scale, component-
based development. New Jersey: Prentice Hall.

Cheesman, J., & Daniels, J. (2001). UML compo-
nents: Simple process for specifying component-
based software. Addison Wesley.

Chouambe, L., Klatt, B., & Krogmann, K.
(2008). Reverse engineering software-models
of component-based models. Proceedings of
1IEEE Conference on Software Maintenance and
Reengineering, (pp. 93-102).978-1-4244-2157-2

Peng, S., Wu, Y., & Zhao, W. (2007). A feature
oriented adaptive component model for dynamic
evolution. Proceedings of IEEE Conference
on Software Maintenance and Reengineering.

0-7695-2802-3/07

Rumbaugh, J. (1994). Getting started: Using use
cases to capture requirements. Journal of Object-
Oriented Programming, 7(5), 8-23.

Srivastava, B. (2004). A feature oriented adaptive
component model for dynamic evolution. Pro-
ceedings of IEEE Conference on Software Main-
tenance and Reengineering. 0-7695-2802-3/07

Whitten, J. L., Bentley, D. L., & Dittman, K. V.
(2000). Systems analysis and design methods.
New York, NY: McGraw-Hill.

80

KEY TERMS AND DEFINITIONS

Business Type Model: A conceptual map of
all data and information of interest for the infor-
mation system.

Component-Based Model: Aninterconnected
set of components that collectively represent an
information system. A component is a modular
piece of software that provides a service. Com-
ponents communicate via interfaces.

Context Model: A high-level view of busi-
ness context in terms of procedures, roles and
responsibilities.

Information System: A computer application
system thatefficiently processes, stores and relays
information within an organization and across its
customers, suppliers, and all other public relation-
ship organizations.

Interface Model: A reflection of input or out-
puttoacomponentas aset ofattributes, operations
and invariants at the interface level.

Legacy System: An application that uses an
outdated hardware or software platform.

MVC Framework: Model-View-Control
where model is a set of classes reflecting upon a
component, View is a GUI interface to the user,
and Control is communication control providing
the required interface.

Reengineering: Examining and modifying
a system that has been in-use for a long time, in
order to improve itand make it up-to-date in terms
of business rules and system performance needs.

Use Case: A description of steps that reflect
upon a usage scenario or a system feature with
respect to a system user (or actor).

