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Abstract

Foraging Algorithms for Robotic Swarms

Sunidhi Azad

Foraging is the process of looking for food or other resources to survive in an unknown

environment. Various animals exhibit foraging behavior to fend for themselves in the

wild. We study group foraging by a swarm of robots, which involves collectively

searching for an object of interest and bringing it back to a central location.

We assume n robots start at the center of a g × g grid, called the nest. They are

looking for some units of food placed at an unknown location in the grid. When the

food is found by one of the robots, it must communicate its location to the other

robots, which then collectively transport the food back to the nest. We divide the

task into three phases: the exploration phase, in which the robots search different parts

of the grid for the food; the communication phase, in which robots communicate the

location of the food to each other; and the transportation phase, in which the robots

transport the food back to the nest. We give five novel algorithms for the exploration

phase, and analyze their competitive ratios. For the transportation phase, we give two

different approaches, and give a theoretical analysis of a simple case. We implemented

all our algorithms and compared their performance to an existing algorithm in the

literature.
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Chapter 1

Introduction and preliminaries

1.1 Swarm Intelligence

Collective behavior is the term coined by Robert E. Park [10] to describe the aligned

conduct of large groups of similar individuals. The main idea behind such a be-

havior is that there is no central leader yet the individuals work together towards

achieving a common goal. The key features of collective behavior include strategies

to fairly divide the workload among the group members, the propagation of infor-

mation across the group, the decision-making process, and the synchronized group

movement. These individuals can be mammals, birds, ungulates, fish, small robots,

programmable entities or software agents in a simulation. We have been intrigued

by the challenge of determining how the limited intelligence and actions of these

relatively simple individuals gel together to solve the more complex problems.

There are countless examples that illustrate the existence of such behavior in

natural ecosystems. Group operations in biological systems usually include migrating

to a new place in herds, protection from predators, finding food in the wild. The

term schooling is used to describe the behavior when fish swim together really close

to each other [11, 12, 13]. They just follow a simple rule to stay close enough to their
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neighbors so that they don’t stray away from the group and far enough to not collide

with fellow fish. Flocking [14] is the term used for the swarm behavior exhibited by

a large number of birds when flying together. Every bird tries to stay close to its

neighboring birds but far enough to have its own space to fly, same as the fish do

when schooling.

The behavior of nest building ants [15] is the most commonly studied example

for both biological swarming behavior as well its application to computer science.

Ants are so little in size yet they achieve so much by working in groups. They

communicate indirectly by leaving pheromone trails on the ground for the other ants

to follow so that they remain together. Their main tasks include searching for food

or for material to build or strengthen their nest, and then bring this material back

to their nest following the pheromone trail which they laid on the ground. Achieving

these tasks is way beyond the capabilities of a solitary ant.

Swarm Intelligence [16] is the term used to describe collective behavior of au-

tonomous agents in the field of Computer Science. It has its roots with the study of

behavior of social insects. The application of swarm intelligence to robotics gave rise

to the study of Swarm Robotics. The main idea is to use several simple robots instead

of a single powerful one. The most obvious and important benefit is fault tolerance.

Even if some of the robots fail in the middle of an operation, it does not affect the

whole system. Among other benefits to this arrangement is the reduction in the cost

of robotic hardware. Smaller robots are simpler in terms of hardware complexity and

smaller sensors are enough to support them. They need minimal processing power

and limited means of communication. There is yet another advantage to using a

swarm rather than a single agent and that is the amount of parallelism achieved by

dividing the overall task into subtasks which can be performed simultaneously.

However, there are two sides to every coin. Swarm behavior is not just the
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addition of individual agents’ actions, it is how they work together to achieve the

global goal. This is the main drawback of the swarm approach, i.e., the agents need to

coordinate their actions and communicate their findings to their fellow agents. With

the increase in the number of agents in the swarm, management of movement of every

individual agent is necessary to ensure that there are no collisions and the agents

coordinate their actions. In addition, the agents are believed to have very limited

communication hardware and hence, they have to be physically close in order to

share the information. Therefore, swarm intelligence can be seen as the emergence of

a global behavior among the agents from the distributed execution of the algorithms,

sensing of the local environment and the minimum-to-zero communication among the

agents.

1.2 Problem Description

The term foraging means to wander in search of food or provisions in an unknown

environment [17]. The problem discussed in this thesis is Central P lace Foraging

[18, 19] in which a swarm of agents or robots assumed to start at a central location,

called the nest is required not only to find food located at an unknown location in

the environment, but also to bring it back to the nest. Some applications for this

problem that have been studied previously include a set of robots that need to find

construction blocks and carry them to the construction site [20] or a set of robots

that need to locate energy sources to recharge before returning to the base.

In this thesis, we consider a swarm of n agents gathered at the nest initially

to perform the task of foraging. They leave the nest in a pre-determined order to

start searching for an object of interest. We use the term food for it, since we take

motivation from ants foraging for food. Once the food is located, it has to be brought

back to the nest one unit at a time. The amount of food is such that at least several

3



rounds of pick ups and drops are needed. For this reason, we want the food location

to be shared with all the agents after it is discovered so that they can help transport

it back to the nest as quickly as possible. This requires a protocol for the agents

to communicate the food location to agents in such a way that ultimately the entire

swarm can be made aware of the food location.

We assume the environment to be a square region and a synchronous system

model in which at every step, each agent performs a Look-Compute-Move cycle, as is

standard in the autonomous mobile robot literature [21, 22, 23]. In the Look phase,

an agent looks for agents in its proximity to avoid any collision situations in the

subsequent time step and may sense for food in its current location. Then, depending

upon its perception of the environment, it computes its next step. Finally, in the

Move phase, it moves to its next location. One such cycle happens in one time step.

More details about our model are given in the later sections of this chapter.

In this thesis, given n agents initially located at the nest, and k units of food placed

at an arbitrary unknown location in the environment, the problem of central-place

foraging is considered solved when all the food units have been transported back to the

nest. The time taken is the number of Look-Compute-Move cycles needed. We broke

down the problem into the following sub-problems; finding the food, communicating

its location to all the agents, and transporting the food back to the nest. Accordingly,

all our algorithms take a three-phase approach to solving the problem: Exploration,

Communication and Transportation Phase. Every agent in the swarm goes through

all these phases though not necessarily at the same time.

• Exploration Phase - This phase involves the agents searching for the food in

the given region. We give strategies for the agents to follow so that they cover

the whole region with the minimum amount of the grid being visited more than

once.
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• Communication Phase - Each agent enters this phase once it has the food loca-

tion, either it discovers the food itself or receives the location information from

one of its neighbors. This phase involves propagating this food location further

to it’s neighbors and once this has been done, the agent can move onto the next

phase. The agents know their set of neighbors and their locations at every point

of time. Since long-distance communication is not possible in our model, they

have to reach their neighbors to share the information.

• Transportation Phase - The agents in this phase have the food location and they

have shared this information with their neighbors. This phase involves picking

up one unit from the food location and taking it back to the nest and back and

forth again.

1.3 The System Model

1.3.1 Environment Model

The search space is a square region that we divide into g2 smaller grid cells. A cell

is uniquely identified by its cartesian coordinates. The size of the grid is represented

as g × g. The center of the grid is referred to as the nest in the remainder of this

thesis. The distance metric we use is the Manhattan distance: the distance between

cells with coordinates (p1, p2) and (q1, q2) is given by |p1 − q1|+ |p2 − q2|.

1.3.2 Agent Model

An agent is simply a computational entity which has very limited capabilities. A

swarm of n identically programmed agents is initially located at the nest. These

agents are capable of taking independent decisions towards the completion of the
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overall goal. These agents are very minimal in design. In particular, each agent

possesses θ(log g) memory to perform the needed computations and store some limited

information. Every agent possesses the following modules:

• Sensing Module: At every step, an agent can sense for the presence of the food

in its current cell. It can also sense the boundary of the square region.

• Visibility Module: Every agent can see another agent in any cell at a distance

of at most 2 from its current cell. As can be seen in figure 1, agents located

in cells B1, B2, B3, B4 are the 1-hop neighbors of AgentA and agents in cells

C1, C2, C3, C4, C5, C6, C7, C8 are the 2-hop neighbors. When observing its envi-

ronment, AgentA sees all the agents which are located in these cells.

Figure 1: 2-hop neighbors of AgentA

• Movement Module: In one Look-Compute-Move cycle of an agent, it can move

to its adjacent cell, in any one of the cardinal directions: North, South, West

or East.

• Communication Module: Every agent can communicate, for example, using

wireless transmission with agents in any cell at a distance of 1 from its current

cell. Since communication is considered the most expensive task in the robotics
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literature, the agents use this module only to communicate the location of the

food. They compute and execute all other actions without any communication

with other agents.

• Transportation Module: Agents can pick, carry, exchange and drop one unit of

food at a time.

• Memory Module: Agents possess enough memory to store the program that

dictates the execution of the algorithms and location of the food if they know

it.

• Computational Module: Agents are capable of performing some needed com-

putations such as determining the current location of any other agent on the

grid.

Since it is assumed that all the agents are present at the same location initially, it

is safe to say that they can determine their total population and number themselves

using any naive algorithm. Therefore, each agent has a unique ID. All agents have the

same program in their memory, which gives instructions for their next steps depending

upon the assigned ID to them and the perception of their local environment. For the

same reason, total agreement on the coordinate system is safe to assume i.e. they

have a global sense of direction. Every agent is aware of its global position i.e. which

cell it is in at the time.

Agents, however, are not aware of the total size of the search space beforehand.

But they do know that they are located at the central location of a square grid initially.

So, if they encounter the grid boundary at any point, they can easily determine the

size of the search grid by doubling the distance traveled from the nest to reach there.
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1.3.3 Collision Situations and Avoidance

Th nest can be seen as collection of cells in which all the agents are present initially.

1e assume the nest to be a single cell for simplicity. However, no two agents can

be present in the same cell at the same time other than the nest. As we can see in

Figure 2, agents A and B are aiming to move to the same location which will result

in a collision. We forbid such collisions in our model. However, when two agents

are in adjacent cells, they can switch places. Referring to Figure 3, agents A and

B can make their moves and take each other’s locations at the next time-step since

a collision is said to have happened only when two agents are in the same location.

When realizing the same situation with actual robots, we can say that they reverse

their roles, meaning they can resume each other’s operations as before.

We want to have a Collision-Avoidance mechanism in our algorithms in which

Figure 2: Conflict Situations

Figure 3: Non-Conflict Situation

an agent needs no communication at all with its fellow agents. We have designed the

1W
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exploration phase in such a way that every agent has a unique non-overlapping path

to follow so that no two agents ever end up in the same cell. In the later phases of

the algorithm, we give some basic collision-avoidance techniques in which an agent

weighs its priority against the other agents in its vicinity before making its move.

The low-priority contenders wait at their current positions and weigh their options

again in the next time step.

Based on the observation of its environment, if AgentA at timestep Tk suspects

Algorithm 1 GetNextMove-CA (AgentA, target, contenders)

In this algorithm, target is the location where AgentA intends to move to and
contenders is the list of locations where the presence of other agents can cause a
collision with AgentA in the subsequent time step.

1: possibleMoves← nil
2: for each C in 1-hop neighboring cells of currentPosition do
3: if distance(C, target) < distance(currentPosition, target) then
4: Add C to possibleMoves.
5: end if
6: end for
7: for each cell C in possibleMoves do
8: if C.contenders is empty then
9: Move to C.
10: else
11: flag ← true
12: for each B in C.contenders do
13: if currentPosition.x < B.x ∨ (currentPosition.x = B.x ∧

currentPosition.y < B.y) then
14: flag ← false
15: exit loop
16: end if
17: end for
18: if flag then
19: Move to C.
20: end if
21: end if
22: end for

that making a move might cause a collision, it weighs its priority against the other

agents in its vicinity which can also move to its next intended location. If it reckons
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that it has the highest priority, it makes the move, otherwise it waits at the current

location for Tk and calculates its priority again at Tk+1. Even if one of the contenders

has x-coordinate higher than AgentA or same x-coordinate with higher y-coordinate,

AgentA does not have the priority to make the move. Other involved agents also use

the same technique and only one of them moves to the location in question.

In Figure 1, suppose AgentA wants to move to B2 in the next step, it compares

its priority against the agents situated at locations C2, C3, C4, we call these agents

as contenders for AgentA. It then waits or makes the move accordingly. Agents in

the other locations in its 2-hop radius does not affect or get affected by AgentA’s

movement in the North direction. Similarly, if it wants to move one step to the

West, the list of contenders contain agents at the locations C1, C2, C8. The collision-

avoidance procedure is summarized in Algorithm 1.

1.4 Thesis Contribution

We study the problem of central-place foraging by a swarm of k agents in a square

region divided into g2 square cells. We solve the problem in three phases: exploration

phase in which the agents collectively search for the food in the grid, communication

phase in which the agents communicate the food location information to their neigh-

bors, and transportation phase in which the agents transport the food back to the

nest one unit at a time. We give four new strategies for exploration, communication

strategies that match with the exploration strategies, and two transportation strate-

gies. We analyze the competitive ratio of our algorithms for exploration and present

a theoretical analysis of our transportation algorithms. We also implemented all our

algorithms and give an empirical analysis of their performance.
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1.5 Thesis Outline

The aim of this thesis is to investigate various algorithms for solving the problem

of foraging executed by a swarm of autonomous agents. Chapter 2 outlines some

of the previous work done in the field of swarm robotics. In Chapter 3, we explain

various exploration algorithms in detail. In Chapter 4, we describe the communication

strategies employed by the agents according to the exploration algorithm they use

explained in the previous chapter. In Chapter 5, we explain two transportation

algorithms and compare their running times. Chapter 6 contains the experimental

results and the comparison of all the algorithms based on various factors. Chapter 7

contains the conclusion of the thesis and some leads for future work.
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Chapter 2

Related Work

The problem of foraging originated from the study of the behavior of ants which

have been known to accomplish complex goals in spite of them being such miniature

individuals. They do so by exhibiting highly structured behavior and possessing the

ability to work cooperatively to achieve a common goal. These goals typically include

searching for food, storing it for future consumption, feeding the offspring or looking

out for intruders to their nests [24]. In a natural setting, ants go looking out for food

in groups in an unknown environment. A solitary ant has no idea where the food is

or where it is currently located. To search for the food and to bring it back to the

nest with absolutely no information at all, ants use a mechanism called stigmergy,

[25] which is essentially communicating implicitly by leaving pheromone trails on the

ground that will attract other ants to follow that path. Before moving in a particular

direction, ants sense for pheromones in their surrounding areas, and move in the

direction where its smell is the strongest.
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2.1 Foraging using implicit communication

This concept of implicit communication via pheromone trails has always fascinated

computer scientists. Multiple researchers have worked on exploiting this approach to

design algorithms for finding shortest paths between two points, routing in networks,

combinatorial optimization problems [26, 27, 28, 29], and so on.

Nagpal et al [30, 31] tapped the uncanny potential of communicating via the

environment to solve the problem of central-place foraging on a continuous plane by

a swarm of robots present at a central location initially. They substituted virtual

pheromones in place of the actual chemical ones since using such substances in the

field is not always feasible because of technical difficulties and increased hardware

complexity. Their work focused on the foraging task implemented by a swarm of

simple sensing robots with the use of short-range communication.

In their solution, each robot can either be a stationary beacon for holding the

pheromone values or a wandering walker for doing the rambling work. They used two

kinds of pheromone value, foodPheromone and nestPheromone, which are simply

floating-point numbers or integers depending upon which one of the three suggested

algorithms they use. All the robots walk out of the nest as walkers initially, some

of them will decide to become beacons and stay still at their current positions. The

walker robots lay nestPheromone on all the beacons in their range when they are

looking for food and foodPheromone when they are carrying food. The beacon

robots decrease their pheromone values too with time to simulate the decaying effect

of physical chemical pheromones on the ground. They measure the bearing to the

maximum pheromone value in their range and start moving in that direction.

Using beacons in the field for holding pheromone values has its own drawbacks.

First and foremost, those beacon robots could have been utilized to search for food

rather than standing still, which certainly accelerates the process of the food discovery.
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Secondly, beacons are continuously transmitting their pheromone values, walkers are

laying pheromones on all the beacons in their respective ranges which is a lot of

communication happening. In our work, we utilize all the robots for the search

operation with minimal amount of communication.

Nilkhamhang et al [32] gave two decentralized foraging algorithms when using a

limited number of swarm robots in a continuous plane. Each robot has a small amount

of memory for storing map information and is capable of broadcasting its location

to other agents. They assumed that the agents have infrared sensors and visual

aid to detect obstacles and the target. They also made use of virtual pheromones

stored in the form of a map in every agent’s memory. These values are updated

accordingly whenever a robot receives location information from fellow robots. They

always try to move in the strongest pheromone values’ direction. If the pheromones

are not detected in their immediate surroundings, they just walk randomly. When

the food is discovered, they carry it back to the colony using the pheromone trail

again. As is obvious, communication is being used extensively for the execution of

these algorithms.

Watanabe et al [33] introduced a new way to communicate implicitly by substi-

tuting the chemical pheromones with graphics projected on the floor through the for-

aging task. They proposed V -DEAR(Virtual Dynamic Environment for Autonomous

Robots) for experiments on real robots. In this system, CG graphics/colored lights

are projected on the floor. The robots are provided with sensors capable of determin-

ing the color and brightness of the CG. Whenever a robot locates the food, it turns

on its LED and starts moving towards the nest. The V-DEAR system will detect this

LED and projects a CG pheromone trail on the ground. The other robots follow this

light trail to get to the food and while bringing the food back to the nest, strengthen

the trail further by turning on its LED.
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2.2 Collective Treasure Hunt Problem

Collective treasure hunt, i.e. search for an object of interest in an unknown envi-

ronment by multiple agents, is yet another classical problem that has been studied

extensively in computer science [34]. Search can be seen as a significant part of the

whole foraging process. Feinerman et al [35] introduced the problem of Ants Nearby

Treasure Search (ANTS), a generalization of the classic cow-path problem [36], in

which k identical agents, initially present at a central location, have to search for a

treasure on an infinite two-dimensional plane collectively. This problem also takes

motivation from the ants searching for food sources near their nests.

Agents are seen as identical probabilistic machines that can only communicate

between themselves at the origin and are synchronous in the sense that they traverse

one edge of the planar graph in one time unit precisely. They employed a simple

technique for agents to go to a randomly chosen node from the set of nodes of the

planar graph according to some criterion, perform a spiral search around that node

for a fixed amount of time and returning back to the central place and repeat the

whole process again if the treasure is not located. They showed that the agents can

perform well without being aware of their population. However, the running time of

the algorithm can be improved by a significant amount by having a constant approx-

imation of their total number.

Emek et al [1] further worked on the Ants Nearby Treasure Search (ANTS)

problem. In contrast to the agent model studied in [35], they let the agents commu-

nicate anywhere on the grid in the sense that they can merely see the states of other

agents present in the same cell. Every agent can decide to either move to one of the

four neighboring cells or stay put depending upon its perceived surroundings. They

gave a collective search strategy called RectSearch in which the swarm is divided into

teams of five agents. Each team is emitted from the origin, all five agents at the
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same time out of which four agents become guides, one for every cardinal direction

and the fifth one becomes an explorer. The guides can be seen as marking the axes

of the grid. The explorer does the search work by going from one guide to the next

following a zig-zag path as shown in Figure 4. Whenever a guide is visited by an

explorer, it moves to the next cell in its cardinal direction. In this way, the grid is

traversed by the agents covering the cells which are at a distance d from the origin in

one round.

Emek et al [2] analyzed the minimum number of agents required to locate the trea-

sure within a given time frame. They showed that a minimum of four agents are re-

quired to locate the treasure in an asynchronous system out of which three are guides -

NorthGuide(N), WestGuide(W ) & EastGuide(E) and one is an explorer(X) which

is responsible for exploring the grid in triangular fashion going from one guide to the

next as shown in Figure 5. Further, they showed that if it is a synchronous system,

only three agents are enough to search the grid out of which one is an explorer to

do the search work, the second one is a guide to depict the axes and the third is an

origin-guide to mark the origin.

The closest model to our work is used in Lopez-Ortiz et al [3], which also studied

the problem of collective treasure hunt in which k agents were used to search for an

object of interest on an infinite lattice. They gave a search strategy for k = 2i agents

in which every agent moves in spiral paths around the origin but their paths don’t

overlap as shown in Figure 4. They analyzed the total time taken to locate the object

as well as the total effort put in by the agents which is the total distance traversed

by them compared to the shortest path from the origin to the object. In Chapter 6,

we compare the performance of our algorithms with their algorithm.

Another related problem that is receiving interest recently is the so-called evac-

uation problem[37, 38]. In this problem, a team of robots is looking for an exit to a
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Figure 4: Four guides(G) and one Explorer(E) searching the grid using RectSearch
in [1]

region. When a robot finds the exit, it must communicate the location of the exit

to the remaining robots, which then move towards the exit. The performance metric

is the time taken for the last robot to reach the exit. Two different communication

models have been proposed: the face-to-face model, in which two robots can only

communicate when they are at the same location, and the wireless model, in which

two robots can communicate instantly regardless of their positions in the region. Our

work assumes the face-to-face model, and is similar to the evacuation problem in the

sense that we ask that all robots reach the food/exit. However, we ask not just that

all robots reach the food/exit, but that they transport food back to the nest.
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Figure 5: Four agents searching the grid using TriangleSearch in [2]

2.3 Miscellaneous multi-agent problems

The domain of multi-agent systems is not only limited to the foraging and search

operations but also include problems such as pattern formation[39, 4], uniform scat-

tering on a grid[40], map building[41], blocks construction[42] among various others.

In pattern formation problems, the main goal is usually to form a visually coher-

ent pattern by multiple agents. The main task towards the solution of this problem is

to assign final positions to individual agents in the swarm which would amount to the

whole pattern. After the positions has been assigned, it is up to the agents to reach

there from their initial positions avoiding collisions on the way. The positioning of the

agents should be done in such a way that every agent moves only as little as required

from its current position to form the bigger pattern at hand. This can be useful in

variety of situations such as deployment of sensors in an unknown field, selection of

a leader based on the geographical positions of the agents among many others.

Gordon et al [43] studied the problem of pattern formation by a swarm of agents

on a grid with limited communication capabilities. They took inspiration from the

biological system as well, the dancing bees to be precise. They exploited the fact

that bees are known to communicate their findings by performing dance-like motions.
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Figure 6: Grid covered by 4 and 8 agents using the search pattern introduced in [3]

Figure 7: Before & After snapshot of 50 agents perform the Pattern-Formation [4]

In their algorithm, every agent calculates their CenterofMass(COM) based on the

positions of all the other agents and they try to move towards COM . Eventually,

they will all be located in the COM cell and will use that cell as their origin. Once

they are all set up at one place, they agree on x-axis, y-axis and total ordering by

performing a series of little dances. Then, the formation of pattern is left a trivial

task. Every agent i goes to a unique position qi on the pattern.

Construction is yet another problem which can benefit from automation by robots

immensely, especially in dangerous terrains. Nagpal et al [20] have been vigorously

studying the construction problem using a swarm of autonomous robots and different

kinds of blocks ranging from just inert to highly intelligent blocks. In their algorithm,

agents do not communicate between themselves but rely on the information gained
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from the partially built structure and the final user-specified structure.

2.4 Robotic hardware

There has been a lot of research happening in the field of robotics hardware. Re-

searchers are particularly looking to make the robots smaller in size and cheaper in

cost and provide them with more sophisticated sensors and actuators at the same

time. This piqued the interests of computer scientists to work on the distributed al-

gorithms for swarms of robots. We conduct our experiments on a simulator. However,

the algorithms we give can be easily implemented by the actual robots. The actions

we require them to perform include walking on the grid, basic odometry skills, sense

for food, short-range one-to-one communication, picking and dropping of one food

unit at a time.

Mondada et al[6] developed a miniature robot, s-bot which was approximately 116

mm in diameter. The main focus of this project was inter-robot communication and

the level of team work that could be productively exploited. The s-bots were provided

with a gripper which was used to attach themselves to other s-bots in the team. They

called this artifact as a Swarm-bot in which multiple s-bots were physically intercon-

nected in order to adapt to their environment. For example, to overcome a cavity

that is not doable by an individual s-bot, to lift a heavy substance, or when they are

required to follow a common path as shown in Figure 8.

There is yet another project building on the concept of swarm-bot called swarmanoid

[7] in which they emphasized that the insistence on the homogeneity of the agents

in a swarm is holding back the researchers to further exploit swarm intelligence.

Swarmanoid was introduced to curb this problem and consists of three distinct robot

types - foot-bots, hand-bots and eye-bots. As their names would suggest, foot-bots

are locomotory robots specializing in the transportation of goods, traversing even and
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Figure 8: Tasks performed by a swarm-bot [5]

Figure 9: The s-bot robot[6]

uneven terrains, hand-bots are the robots used for vertical climbing, working on small

artifacts and picking up and dropping off of items, eye-bots are the robots used to

visually analyze the environment. It is quite clear that having specialized robots in

the swarm could really change the way the problems are being solved in the swarm

robotics field. This principle is still very new and is expected to be utilized in solving

various swarm-related problems in the near future.

The e-puck robot, shown in figure 11, was developed by Martinoli et al [8] in 2009

as an open tool for educational purposes. It is capable of performing all the actions
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Figure10:Theswarmanoidrobots:onehand-botwiththreefoot-bots&oneeye-bot
attachedtotheceilingtomonitortheenvironment[7]

requiredfortheforagingtaskandisveryeasilyavailable.Itissoldfor 550bymost

companies.Ithasamicro-controllerwith8kBofRAMand144kBofflashmemory

whichissufficientfortherequiredcomputationsandtheamountofinformationwe

needthemtostore.Ithastheinfraredproximitysensorsembeddedwhichhelpsto

identifyitsneighborsintheadjacentlocations.Variousmechanicextensionsarealso

availableincasewerequiretoincorporatecomplexfunctionalitieslater.

Kilo-botisyetanotherminiaturerobotdevelopedbyNagpaletal[9],shown

Figure11:Thee-puckrobot[8]

inFigure12,whichiscapableofcarryingoutcomplextasksinalargecollective.
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This robot was specifically designed for educational purposes with its hardware parts

costing only $14 and assembly time of just 5 minutes. It is capable of performing the

basic operations expected of a swarm robot such as moving, rotating, communicat-

ing with nearby robots, measuring bearing to the agents in proximity and possessing

enough memory to perform basic computations.

Figure 12: Kilo-bot in [9]

2.5 Challenges in our work

The main challenge of swarm robotics in general is the inter-robot coordination.

A solitary robot in the field might not produce the desired results. Particularly

for the task of foraging, it is strikingly clear that having multiple agents on the

field speeds up the process. To achieve that, the agents should be able to share
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their findings with their fellow agents. Parallelism can not be achieved if only a

single agent is aware of the location of the food. There should be a way for this

information to get propagated throughout the swarm since the agents are not capable

of broadcasting any information. They can only communicate with agents in their

immediate proximity. Designing algorithms for exploration by multiple agents along

with facilitation of communication strategy is the most challenging part of our work.

Since communication is considered as an expensive task in the robotics community,

we try to keep it as minimum as possible.
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Chapter 3

Exploration Phase

Exploration Phase is the most crucial of all phases in the foraging problem. As its

name would suggest, it involves searching the grid for the food source by a swarm

of agents which is centrally located initially. They have no preliminary knowledge

of the size of the grid. The algorithms that we give in this chapter basically give a

particular pattern for the agents to follow to cover the grid. There are two parts to

the decision making process of following a pattern:

• The first one incorporates the strategy of fairly partitioning the square grid

among the agents of the swarm.

• The second part is about choosing the right movement pattern to cover the

ground.

Evidently, the agents are required to know the grid size in order to partition the grid

equally among themselves. They determine it by moving to any of the four borders

following a straight path and doubling the number of steps to get there since they

are all aware that they are located at the nest initially which is known to be in the

middle of the grid. They move out of the nest in a pre-determined order. Since we

assume that they are numbered, there is no ambiguity in the ordering of the agents.
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Once the size of the grid is known, they divide the grid into equal sized regions. Every

agent knows exactly which region it is supposed to cover and the exact location from

where to start the exploration in that region. We call this location as the Start-Cell

of the region in the remainder of this chapter. The phase starting from the time

when the agents start moving out of the nest till they reach their Start-Cell is known

as Initial-Deployment Phase. After an agent has taken its position at Start-Cell,

it starts exploring the assigned region following a particular pattern. This phase is

known as the Exploration Phase. We give five novel algorithms to explore the grid

in the following sections. Please note that in the remainder of this chapter, we assume

that in a grid of size g × g, the x-coordinate and the y-coordinate of the cells lie in

the interval [0, g − 1] where the cell (0, 0) is located at the top-left corner of the grid

and (g − 1, g − 1) at the bottom-right corner.

3.1 Strips

As is clear from its name, the square grid is partitioned into equal-sized rectangular

bands in Strips. The pre-requisite for this algorithm to work is that the grid size

should be a multiple of the number of agents. Every agent is assigned a single strip to

cover. After determining the grid size by making the trip to the border, every agent

divides it by their total population to ascertain the strip size.

As shown in Figure 13, the agents move out of the nest one at a time in a

single direction and depending upon the chosen direction, the grid is divided into

either horizontal or vertical strips. We assume, for simplicity, that the agents move

out from the nest in West direction. 1 In this case, they partition the grid into

horizontal strips and start the search from the west end and go towards the east end

of the grid. Depending upon the assigned number to the agent, it knows which strip

1It can be easily adjusted for other cardinal directions.
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Figure 13: Division of the grid depending upon the direction in which the agents
move out from the nest : Horizontal Strips when EAST/WEST & Vertical Strips
when NORTH/SOUTH

it has to cover. Our goal was to design a pattern for the agents such that they meet

their neighbors regularly while exploring the environment so as to facilitate quick

propagation of food location information throughout the swarm. All the agents in

the swarm need to start the exploration at the same time to achieve this.2

Every strip has its Start-Cell on the intersection of the grid-border and the strip-

border from where the assigned agent starts searching the region. The first strip has

its Start-Cell at the bottom corner and the second one has it at the top corner making

them adjacent cells across the strip-border. Similarly, the rest of the strips also have

their Start-Cells marked in this fashion. If the number of agents is even, every agent

has a partner in the adjacent strip as shown in figure 14 but if it is odd, there is one

2Two agents meet on their shared strip border only if they start the exploration together, i.e.,
follow the mirror image of each other’s movement pattern in its own strip.
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agent who has its Start-Cell at the bottom corner of the grid with no partner as

shown in figure 15. However, this does not affect the execution of the algorithm.

Figure 14: Positions of Start-Cells and the path followed by agents in Strips when n
is even

When an agent touches the border and determines the strip size, it also calculates

the list of Start-Cells and sort them in descending order of their distance from the

location where it touched border. The agent which comes out first from the nest gets

the strip with the farthest Start-Cell, the second agent gets the next in the list and so

on. Now that the agents know their Start-Cell, they take the shortest path to reach

there i.e. the path along the grid border. Since the first agent to come out of the nest

gets the farthest strip to cover, it is the last agent to complete its Initial-Deployment

phase. It is at this time step that all the agents enter into the Exploration Phase

together.
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Figure 15: Positions of Start-Cells and the path followed by agents in Strips when n
is odd

Let g denote the grid size, n the total number of agents and Tdep the time step

at which the last agent completes its Initial Deployment phase, and hence, the time

step at which all the agents enter into Exploration phase. Then, referring to Figures

16 and 17, Tdep is given by:

Tdep =


g − 1 when n is odd

g(1− 1/n) when n is even

Depending on the corner on which an agent’s Start-Cell is located, it either

moves in the North or South direction. Suppose an AgentA has its Start-Cell on the

bottom corner of the strip. First, it moves in the North direction for strip number

of steps where strip = g
n
. When it touches the border of the strip, it moves one step
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Algorithm 2 StripsInitialDeployment (AgentA)

1: Start moving in WEST direction at time step AgentA.id till the border is en-
countered.

2: g ← 2 * Distance traveled from the nest to border
3: strip← g/n
4: Start-Cell← GetStartPosition−Strips(strip, n, AgentA)
5: Go to Start-Cell.
6: if n is odd then
7: Wait till Tg−1.
8: else
9: Wait till Tg(1−1/n).
10: end if
11: StripsExplorationPhase(Start-Cell, strip).

Algorithm 3 GetStartPosition-Strips (strip, n, AgentA)

1: ListS ← nil
2: while ListS.size 6= n do
3: i← strip− 1
4: ADD cell(0, i) to ListS
5: if ListS.size = n then exit loop.
6: ADD cell(0, i+ 1) to ListS
7: i← i+ 2 ∗ strip
8: end while
9: Sort cells in ListS in descending order o f their distance from the current position.
10: return Start-Cell from ListS corresponding to AgentA.id.
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Figure 16: Farthest StartCell when n is even

in the East direction and then strip number of steps in the South direction. It keeps

repeating this process either until it is aware of the food location or its has finished

searching its region. If Start-Cell was at the top corner instead, the agent would

have moved the mirror image of this movement pattern. Because of this reason,

the partner agents meets regularly on the border after covering one North(strip)-

East(1)-South(strip) trip.

Note that Dirk in Algorithm 4 means moving in Dir direction for k number of

time-steps.

Theorem 3.1.1. The competitive ratio of Strips is Θ(g).

Proof. It is not difficult to see that the worst case is obtained when the food is in the

same row as the origin at the opposite end from where the robots start after their

initial deployment. Thus, the Nest-food distance is g
2
, while the time taken by the

algorithm is g − g
n

+ g2

n
when n is even and g − 1 + g2

n
when n is odd. Thus, the
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Figure 17: Farthest StartCell when n is odd

Algorithm 4 StripsExplorationPhase (Start-Cell, strip)

1: repeat
2: if Start-Cell is in bottom corner of the strip then
3: Move North(strip);East(1);South(strip);East(1).
4: end if
5: if Start-Cell is in top corner of the strip then
6: Move South(strip);East(1);North(strip);East(1).
7: end if
8: until East border is encountered

competitive ratio is Θ(g) as claimed.

3.2 ZigZag

We designed ZigZag keeping in mind that an ideal pattern should cover the region

which is closer to the starting location before moving on to the farther regions as

shown in Figure 19. But since diagonal movement in the grid is not allowed as per
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Figure 18: The cell with the highest competitive ratio when n is even and odd in
Strips

our system model, we adjusted the zigzag motion for the agents.

Figure 20 shows the grid covered by a single agent using zigzag pattern which is

Figure 19: Original & adjusted Zigzag pattern

essentially spiraling around the nest. Following the same pattern by four agents on

the grid would need them to start from the center of their respective quadrants as

shown in Figure 21.

However with this strategy, the agents meet only towards the end of the search

process. To facilitate quick communication between the agents, we introduced the
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Figure 20: Grid covered by a single agent using Zigzag pattern

search pattern shown in Figure 22. The agents start the exploration from the nest

itself and they meet two of their fellow agents regularly along the axes as shown in

Figure 22. Hence, Initial-Deployment Phase is not needed at all. This pattern only

works when the number of agents is a power of 4. We only divide a square region

into four further square sub-regions. Following this, the next possible configuration

is having 16 agents in the field. Each quadrant is divided into four squares as shown

in Figure 23 and the Start-Cells are present on the point of intersection of those 4

squares. In order to determine and reach these Start-Cells, the agents are required

to know the size of the grid. They use the same technique as in Strips to determine

the size of the grid i.e. moving to the border of the grid and setting the grid size as

twice the distance traveled to get there.

As shown in the figure 24, the time step at which the last agent completes its

Initial Deployment phase is given by:

Tdep = 3× g

2
− 2× g√

n

The movement of the agents depend on whether they move out horizontally or ver-

tically from their Start-Cells. Figure 25 shows different codes agents follow to have
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Figure 21: Grid covered by four agents using Zigzag pattern

symmetric movement in their respective regions.

3.3 Hilbert

Hilbert Curve [44] was first introduced in 1891 as a continuous fractal space-filling

curve. It maps 2D space into a 1D line in such a way that the line never goes in the

same direction for more than three steps, never revisits a site and still manages to

cover every point in the space. A fractal [17] is defined as a geometric pattern that

is repeated at every scale. The basic building block of this curve is an open square

with three connected lines [45] which will cover four cells if drawn on a grid as shown

in Figure 26 and the pattern is built using these multiple open squares in a certain
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Algorithm 5 ZigZag (AgentA)

1: Start moving in WEST direction at timestep AgentA.id till the border is encoun-
tered.

2: g ← 2 * Distance traveled from Nest to border
3: size← g√

n

4: Start-Cell← GetStartPosition−Hierarchical(g, n, AgentA)
5: Go to Start-Cell.
6: Wait till time T3× g

2
−2×size.

7: i← 1
8: while i 6= size do
9: Follow Direction(i) for AgentA.code from Table 1
10: i← i+ 2
11: end while

Algorithm 6 GetStartPosition-Hierarchical (g, n, AgentA)

1: ListS ← nil
2: size← g√

n

3: while ListS.size 6= n do
4: for j = size− 1 to g STEP 2× size do
5: for i = size− 1 to g STEP 2× size do
6: ADD cell(i, j) to ListS
7: ADD cell(i+ 1, j) to ListS
8: ADD cell(i, j + 1) to ListS
9: ADD cell(i+ 1, j + 1) to ListS
10: end for
11: end for
12: end while
13: Sort cells in ListS in descending order of their distance from the current position.
14: return Start-Cell from ListS corresponding to AgentA.id.
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Figure 22: Grid covered by four agents using Zigzag

Code Direction(i)

1 E −Ni −Wi −N − Ei+1 − Si+1

2 W −Ni − Ei −N −Wi+1 − Si+1

3 S − Ei −Ni − E − Si+1 −Wi+1

4 S −Wi −Ni −W − Si+1 − Ei+1

5 N − Ei − Si − E −Ni+1 −Wi+1

6 N −Wi − Si −W −Ni+1 − Ei+1

7 E − Si −Wi − S − Ei+1 −Ni+1

8 W − Si − Ei − S −Wi+1 −Ni+1

Table 1: Code-Direction Table for Zigzag

manner repetitively. Figure 27 shows expanded version of the open squares in Figure

26.

Hilbert algorithm follows the same strategy as that of Zigzag for the division

of grid and the assignment of respective Start-Cells. Hence, the initial deployment

phase is the same for both the patterns. They differ in the way the agents move

to cover the ground after they have reached their respective Start-Cells. The pre-

requisites for following the Hilbert algorithm is that the grid size should be a power of

2 and the number of agents should be a power of 4. We gave a recursive solution
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Algorithm 7 Hilbert Algorithm (AgentA)

1: Start moving in WEST direction at timestep AgentA.id till the border is encoun-
tered.

2: g ← 2 * Distance traveled from Nest to border
3: Start-Cell← GetStartPosition−Hierarchical(g, n, AgentA)
4: Go to Start-Cell.
5: size← g√

n
.

6: Wait till time T3× g
2
−2×size.

7: HilbertExplorationPhase(g, n, AgentA)

Algorithm 8 HilbertExplorationPhase(g, n, AgentA)

1: size← g√
n

2: order ← 2× log4(size)
3: codelist← nil, route← nil
4: codelist.add(A.code)
5: route.add(START )
6: while order 6= 0 do
7: route← GetRoute(codelist, route)
8: codelist← GetSubCodes(codelist)
9: order ← order − 1
10: end while

Algorithm 9 GetRoute (codelist, route)

1: updatedRoute← nil
2: for i = 1 to codelist.size do
3: Add Directions(route[i]) for codelist[i] to updatedRoute.
4: end for
5: return updatedRoute

Algorithm 10 GetSubCodes (codelist)

For every code in the codelist, this algorithm returns 4 sub-codes.

1: sublist← nil
2: for i = 0 to codelist.size do
3: code← codelist[i]
4: if code ≤ 4 then
5: Add code+ 4, code, code, 9− (code+ 4) to sublist.
6: else
7: Add code− 4, code, code, 9− (code− 4) to sublist.
8: end if
9: end for
10: return sublist
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Figure 23: Grid covered by 16 and 64 agents using ZigZag Algorithm

Code Directions

1 X − E −N −W
2 X −W −N − E
3 X − S − E −N
4 X − S −W −N
5 X −N − E − S
6 X −N −W − S
7 X − E − S −W
8 X −W − S − E

Table 2: Directions(X,code) Table for Hilbert Algorithm

for the formation of the pattern given by Hilbert by using the same codes we used for

zigzag shown in Figure 25 and the corresponding direction instructions given in Table

2 for every code. Suppose AgentA wants to follow code = 3 for covering a grid of size

8 ∗ 8. This code is repeatedly broken down into sub codes as shown in Figure 30. At

the root node, sits the agent’s code and the Start-Cell of that agent. This code is

further broken into four sub-codes using Algorithm 10 and the directions from the

parent node are passed on to the child nodes. The leaf nodes are converted into a

route for AgentA to follow by going from the leftmost node towards the rightmost

node, and taking the directions for codes from Table 2. For example, when we give
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Figure 24: Path to the farthest StartCell from the border

Figure 25: Codes for different orientations: Squares depict the starting positions of
the agents

3(St) as an input to Table 2, it gives us St − S − E − N as the output, 7(E) gives

E − E − S −W and so on.

Theorem 3.3.1. The competitive ratio of Zigzag and Hilbert is Θ(g) when the num-

ber of agents is 4 and Θ(g2) when there are more than 4 agents.

Proof. The worst case occurs when the food is placed in the same row as the origin

at the end of the grid when there are only 4 agents as shown in Figure 31. Thus,

the nest-food distance in this case is g
2
, while the time taken by our algorithms is g2

4

which proves the competitive ratio is Θ(g) as claimed.

When there are more agents, the worst case happens when the food is placed
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Figure 26: Hilbert’s basic building blocks covering four cells in a grid (order = 1)

Figure 27: Hilbert curves of different orientations covering 16 cells in a grid (order =
2)

just one step away from the nest as shown in Figure 31, while the time taken by

our algorithms is 3g
2
− 2g√

n
+ g2

n
. Therefore, the competitive ratio in the worst case is

Θ(g2).

3.4 Sectors

The exploration strategies we have seen so far require the agents to take certain

positions in the grid first, wait for a fixed amount of time and then start exploring the

environment together. They are also required to be aware of the grid size beforehand

to determine these positions for which they move to the border first. The motivation

behind Sectors was to think of a way to get rid of this Initial Deployment phase
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Figure 28: Hilbert curves of different orientations covering 64 cells in a grid (order =
3)

and start the exploration from the nest itself. It can also be seen as a different

generalization of the Zigzag pattern.

3.4.1 Division of the grid into exploration areas for agents

The strategy suggested for the division of grid among agents is to cut it into sectors.

We want these sectors to be equal in area so that there is fair division of the cells to

be traversed among the agents. Every agent is responsible for covering its own sector

by exploring the region around the nest first and then moving away to the farther

regions. When there are only four agents in the field, division into sectors is equivalent

to dividing the grid into 4 quadrants and the movement pattern to cover the ground

is identical to that of Zigzag strategy for 4 agents. We use this pattern when the

total number of agents is a multiple of 8 for symmetry purposes. However, it is easily

adjustable for other numbers too. Every AgentA has a slope range [α, β) associated

with it. AgentA only covers the cells in the grid whose slope w.r.t. the nest falls
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Figure 29: Grid covered by 4 and 64 agents following Hilbert Algorithm

Figure 30: Steps involved in forming Hilbert Pattern when Agent.code = 3 for cover-
ing a grid of size 23 × 23

within this range. Suppose the total number of agents on the grid is n = 8k implying

there are 2k agents in each quadrant. Our aim is to partition every quadrant into 2k

equal-sized triangles/sectors. We divide the quadrant into 2 triangles by connecting

the origin to the opposite vertex and each of these triangles is further divided into

k triangles having a base of length 1
k

as shown in Figure 32. Clearly, since all the

triangles have the same height and base, they are equal in area. We divide the

East and North border of the first quadrant into k equal-sized segments each and

connect the nest to the partitioning points to get 2k sectors of equal areas as shown

in Figure 32. There are 2k−1 lines dividing the sectors and their slopes will be given

by (0, 1
k
, 2
k
, ...., k−2

k
, k−1

k
, 1, k

k−1 , ....,
k
2
, k). Agent0 is responsible for covering the cells
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Figure 31: The cell with the highest competitive ratio when the number of agents is
4 and when there are more than 4 agents in Zigzag & Hilbert

whose slope falls in the range of [tan−1 0, tan−1 1
k
), Agent1 gets the cells whose slope

falls in the range of [tan−1 1
k
, tan−1 2

k
) and so on. Agents in the other quadrants also

follow the same technique to determine their slope range.

3.4.2 Start-Cell determination

Every agent determines the nearest cell from the nest that falls into its range, i.e. its

Start-Cell and also for the other agents using Algorithm 11.

Algorithm 11 Start Cell Assignment - Sectors (AgentA)

1: i← 1
2: while Start-Cell not assigned to every agent do
3: nlist← i-hop cells
4: for j = 1 to nlist.size do
5: Calculate slope of nlist[j] w.r.t. origin.
6: Find the agent in whose range this slope falls.
7: Assign it as Start-Cell to that agent; if not already assigned.
8: end for
9: i← i+ 1
10: end while
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Figure 32: Division of a square into equal-sized sectors

3.4.3 Emission order of agents

The ordering scheme that was followed by the previously mentioned patterns does

not work here since the distance of an agent’s Start-Cell from the nest does not

depend on the ID assigned to it. The agents whose Start-Cells are farther should

come out of the nest earlier than the ones whose Start-Cells are nearer to the nest.

Suppose A0, A1, ..., A7 are the Start-Cells for 8 agents in a quadrant. This quadrant is

further sub-divided into 2 sub-quadrants. The agents A0, A1, A2, A3 have their Start-

Cells in the lower sub-quadrant lq and A4, A5, A6, A7 in the upper sub-quadrant uq.

The agents sort the cells in lq in decreasing order of their horizontal distance from

the nest and cells in uq in decreasing order of their vertical distance from the nest.

After sorting, they get lq : A3, A1, A2, A0 and uq : A7, A5, A6, A4. Note that when

horizontal/vertical distance is the same for two cells, they consider the other distance.

Then, they intermingle these two sorted sub-lists of Start Cells. One agent comes
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Figure 33: Start Cells of 12 sectors

out from the nest in lq followed by the next agent from uq and so on. Final emission

order in this case is A7 → A3 → A5 → A1 → A6 → A2 → A4 → A0. We prove

later in this section that following this scheme for the emission order, there are no

collisions between the agents.

3.4.4 Initial Deployment

After the agents know their order and the Start-Cell, they only move towards it

using two directions depending upon the quadrant they are in. For example, agents

in Figure 33 are present in the first quadrant, they go to their Start-Cells initially

in East direction and turn towards North only when they reach the same column as

their Start-Cell.

3.4.5 Exploration Strategy

After the grid has been divided into sectors, Start-Cells have been determined and

the ordering of agents has been decided, the next step is to find a movement pattern
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to cover the ground. In the patterns we have seen so far, the grid was divided in rect-

angular regions and the movement patterns suggested covered the ground completely

without any cells being visited more than once. There is no such definite movement

pattern to cover all the cells when the grid is partitioned into sectors. If the agents

follow some basic rules that we give, they cover the ground with only a few of the

cells being visited twice. The first rule that the agents follow is to always move

Figure 34: Division of a grid into 16 sectors

Sub-Quadrants transition forbidden tlevel

11 & 42 East West V ertical
12 & 21 North South Horizontal
22 & 31 West East V ertical
32 & 41 South North Horizontal

Table 3: Parameter values for covering sectors

away from the nest. We use tlevel, short for TransitionLevel, to specify the level

that should be covered first before moving away from the nest. The division of each
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Figure 35: tlevels and Sub−Quadrants for the division of grid into sectors

quadrant into sub-quadrants and the corresponding tlevels are shown in figure 35.

In sub-quadrants 11 and 42, tlevel is V ertical meaning all the cells which have the

same x-coordinate value as the cell in which the agent is located currently and fall

within range should be visited before making the transition to the next level in East

direction. The forbidden direction for these sub-quadrants is West since making

a move in this direction will take the agent towards the nest. Similarly, tlevel for

sub-quadrants 12 and 21 is Horizontal meaning the agents in this region should visit

the cells with the same y-coordinate values as the cell in which the agent is located

currently before transitioning to the next tlevel.

Algorithm 12 Sectors Exploration Phase (AgentA)

1: while Border is not encountered do
2: Go to Start-Cell.
3: Visit all the cells within range in the current tlevel.
4: Determine the cells falling within range in the next tlevel.
5: Make the move in transition direction to the next tlevel staying within the

sector.
6: end while
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3.4.6 Collisions

We designed Initial-Deployment phase of the Sectors algorithm in a way such that

no two agents end up in the same place. Also, in the Exploration phase, agents don’t

step out of their sectors. However, at a given point of time, some agents could be

in their exploration phase while some are still in their initial deployment phase. We

claim that no collisions occur even then.

Refer to Figure 36 for possible collision scenarios in lower sub-quadrant of the

first quadrant. In this case, the agents are only allowed to move in East while still in

the same row as the nest and North otherwise when in initial deployment and East,

North and South directions in exploration phase.

In Figure 33(a), Agent2 can only be in exploration phase since it is moving in

South direction. Agent1 has to be in initial deployment phase if it is moving to the

cell assigned to Agent2 since agents don’t step out of their own region in exploration.

However, it is not possible that Agent2 is already in its exploration phase while Agent1

whose Start-cell is clearly farther than that of Agent2, and hence should have moved

out of the nest before Agent2, has not even reached there yet. Therefore, this collision

situation will never happen.

The situation shown in Figures 33(b),(c) and (f) will never happen because agents

are not allowed to move in West direction no matter the phase they are in.

In Figure 33(d) and (e), Agent2 has to be in exploration phase because of the

direction it is in while Agent1 can only be in initial deployment phase if it is moving

to a cell assigned to Agent2. However, if that is the case, Start-Cell of Agent1 is

clearly farther from the nest than Agent2 and it should have been gotten out of the

nest before Agent2 in which case these situations could never have arisen.

In all the other exploration strategies, it is quite clear that the agents can never

collide. It is not that obvious in Sectors. However, the above discussion led us to the
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Figure 36: Possible collision scenarios: N is the nest

following proposition.

Proposition 1. There are no collisions in the Sectors algorithm.

Theorem 3.4.1. The competitive ratio of Sectors is Θ(g).

Proof. We observe that in the worst case, the food is placed at the location shown

in Figure 37 which is g
2

steps away from the nest while the time taken by Sectors is

approximately g2

n
. Therefore, the competitive ratio of Sectors is Θ(g) as claimed.

3.5 Spiral Search

Lopez-Ortiz et al [3] studied the problem of multiple agents with limited visibility

searching for an object of interest on a lattice. These agents start searching from the

same point initially i.e. the center of the grid. They gave this spiral search strategy

for exploring the region with n = 2k agents. It involved symmetric movements of

agents on the lattice in such a way that it gave an impression of agents spiraling
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Figure 37: The cell with the highest competitive ratio in Sectors

around the origin.

Figures 39 and 40 show the pattern followed by four and eight agents respec-

tively. Note that the original pattern introduced by Lopez-Ortiz involved searching

on an infinite lattice but since we have a finite grid to search, the movement pattern

needed to be slightly adjusted. Referring to Figure 39, whenever an agent touches the

grid boundary, instead of going the full circle as it is supposed to go in the original

pattern, it moves along the boundary to reach the point from where it can continue

following the original path. If an agent is not aware of the food location at the end

of the search operation, it will just halt at its last location and wait for some fellow

agent to come to it with this information.
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Figure 38: Spiral Search by a single agent on a finite grid

3.6 Modified Zigzag

As we have already established, the primary goal of the agents is to locate the food

as quickly as possible. All the agents start the search together in the patterns we

have seen so far, either from the very end of the grid or from the nest itself. As is

expected,their performance depends on how far the food is placed from the nest. We

wanted to design such an algorithm in which the area closer to the nest and the far out

areas of the grid get explored for food simultaneously to accelerate the search process.

We call this algorithm Modified Zigzag because the pattern agents to follow to cover

their share of the ground is the same as Zigzag algorithm, the difference lies in the

division of grid among agents.

This algorithm is only given for a swarm consisting of 8 agents, two in every

quadrant. At time T1, four agents, one in every quadrant, move out from the nest

towards the border, the rest of the agents come out in the next time step following
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Figure 39: Spiral Search by four agents

the previous agents to the border. The first set to come out of the nest touches

border first and establish the grid size, all four at the same time in their respective

quadrants. These agents constitute the Outer Agent Set. At the very next time step,

the remaining four agents, constituting the Inner Agent Set touch border, determine

the grid size and move back towards the nest. When they reach the nest, they

start covering the grid following the Zigzag strategy. Communication Phase is

Code Direction(i)

1 Ni − Ei − S −Wi−1 − Si−1 − E
2 N −Wi − Si −W −Ni+1 − Ei+1

3 Ni −Wi − S − Ei−1 − Si−1 −W
4 N − Ei − Si − E −Ni+1 −Wi+1

5 Si −Wi −N − Ei−1 −Ni−1 −W
6 S − Ei −Ni − E − Si+1 −Wi+1

7 Si − Ei −N −Wi−1 −Ni−1 − E
8 S −Wi −Ni −W − Si+1 − Ei+1

Table 4: Code-Direction Table for Modified Zigzag
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Figure 40: Spiral Search by eight agents

dependent on the fact that the agents know the path their neighbors are going to follow

and they can get to them when they want to share the food location information.

For that reason, each agent is required to know the grid size even though the inner

agents will only cover the area nearby the nest and does not really need the grid size

information for the exploration phase. If any one of the inner agents locates the food,

it shares that information with its outer counterpart and it can only do that if it

knows how to reach the agent.
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Figure 41: Modified Zigzag Pattern by 8 agents

Algorithm 13 Modified Zigzag (AgentA)

1: Start moving away from the Nest horizontally till the border is encountered.
2: g ← 2 * Distance traveled from Nest to border
3: if outerCircleAgent then
4: i← g

2

5: while ¬haveFood ∨ has not met inner counterpart do
6: Follow Direction(i) for AgentA.code from Table 4.
7: i← i− 2;
8: end while
9: else
10: Go back to Nest.
11: i← 1
12: while ¬haveFood ∨ has not met outer counterpart do
13: Follow Direction(i) for AgentA.code from Table 4.
14: i← i+ 2;
15: end while
16: end if
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Chapter 4

Communication Phase

In this chapter, we describe our approach to the communication phase. The goal of

this phase, which commences as soon as one of the robots finds the food, is to enable

all agents to discover the location of the food via inter-agent communication. Recall

that in our model, two agents communicate only when they are in adjacent cells.

The communication phase ends when all agents know the location of the food. The

algorithm for the communication phase for an agent A that has come to know the

location of the food must specify:

• To which agents should A communicate the location of the food?

• In what order should it try to meet these agents, and where should it meet

them?

Observe that for n agents foraging in a g × g grid, the exploration phase takes Ω(g
2

n
)

time in the worst case, but the communication phase for any agent takes O(g) time.

Therefore, the total time for the communication phase is O(gn). Note that this is

a very loose upper bound and the actual time taken for the communication phase is

much lower than this.

For all exploration strategies, we follow the same strategy for communication.
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Every agent is responsible to communicate the location of the food to its neighbors,

that is, the agents who are exploring an adjacent area of the grid. We assume that an

agent can determine the location of any agent on the grid and hence, can figure out

where it can meet the other agent. Then, it takes the shortest possible path to reach

its neighbor. However, the communication phase for our four different exploration

strategies differ in the sense that they have a different set of neighbors to share the

information with depending upon the strategy they used to divide up the search grid.

4.1 Strips Communication

Strips is specifically designed to accelerate the propagation of information across the

swarm. The agents start exploring their respective regions from some designated

spots all at the same time so that they can meet at the border region after regular

intervals. When an agent locates the food, it is responsible for taking that information

to two of its fellow agents if it is in the middle of the grid, and only one agent when

it is either covering the first or the last strip. It does so simply by following its

regular path because it is anyway taking the shortest path to get to its strip’s border

where its neighboring agent will also be present in the adjacent location. An agent

who is not a locater but received the location from a neighbor will be responsible for

communicating it to its other neighboring agent and it will achieve that simply by

following its regular path. If an agent does not find the food in its entire search area

and does not get any information from its neighbors, it will just remain stationery at

the last location of its search region and wait for its neighbors to bring the information

to it.

Suppose the food was located by the agent assigned to the jth strip in the ith row

of the grid. If the agent was moving in the North direction when it discovered food

as shown in Figure 42, total time taken to propagate the food location information
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Figure 42: Agent in jth strip locates food in the ith row while going up

throughout the swarm would include the time taken to reach the border shared with

j − 1st strip plus the time taken by the information to travel through either n− j or

j − 2 strips, whichever is greater because the information flow on both the sides is

happening simultaneously and the greater number of strips on one side would be the

maximum time taken. Time steps to cover one strip is g
n
. Total time taken can be

given by i− [ g
n
× (j − 1)] + g

n
×max (n− j, j − 2).

If the agent was moving in the South direction at the time of discovery as shown

in Figure 43, total time for the information propagation includes time taken to reach

to the border shared with j+1st strip plus the time taken by the information to travel

through either j − 1 or n − j − 1 strips, whichever is greater. This time is given by

i− [ g
n
× (j − i− 1)] + g

n
×max (n− j − 1, j − 1).
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Figure 43: Agent in jth strip locates food in the ith row while going down

4.2 Communication strategy for ZigZag & Hilbert

ZigZag and Hilbert patterns use the same strategy to divide the grid into squares

repeatedly as shown in Figure 44. Hence, they have the same procedure for deciding

their neighboring agents. Agents can be present in one of the three kinds of regions-

corner(A), border(C) or central(B) as shown in Figure 45. Whenever an agent has

been assigned a region, it has a set of neighbors which consists of the agents sharing

the region boundaries with it. Referring to Figure 45, A has 2 neighbors, B has 4 and

C has 3. If the said agent is the food locater, it is required to get that information to

all its neighbors. Otherwise, an agent not being the locater implies that one of the

neighboring agents has communicated the food location information to it. In that

case, it is required to meet all its other neighbors except that particular agent.

Once an agent has figured out its neighbors, the next step is to determine the
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Figure 44: Division of the square grid into further squares

order in which it meets them. It chooses one particular order on the basis of its

completion time step. For example, AgentA has three neighbors,A1, A2, A3 and it is

the food locater. In this case, it has to communicate to all three of them. First, it

determines the time it will take to meet all of them in all possible orders of meetings

i.e. (A1, A2, A3); (A1, A3, A2); (A2, A1, A3); (A2, A3, A1); (A3, A1, A2); (A3, A2, A1).

AgentA then selects the order which gives the least completion time step. Once it has

communicated to all its neighbors, it enters into the next phase i.e. Transportation-

Phase. When the grid is covered by only four agents following ZigZag algorithm,

the movement of all the agents is symmetrical in their respective quadrants as is

shown in figure 46. Every agent meets two of the other agents on a regular basis.

Suppose AgentA locates the food at the highlighted location in Figure 46, it just

keeps following its exploration path and after some time, it meets AgentB and shares

the food location information with it. At this time, only AgentA and AgentB are

aware of the food location. Both of them again continue on their exploration paths.

After a few more time steps, AgentB meets AgentC and AgentA meets AgentD at the
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Figure 45: Neighbors according to the positioning of agents

same time step since their movements are identical and symmetrical. At this time,

Communication Phase is over i.e. all the agents are aware of the food location and

they all enter into the Transportation Phase together.

4.3 Modified Zigzag Communication

Modified Zigzag is only designed to work for eight agents. As already discussed,

the swarm is divided into two sets, Inner Agent Set and Outer Agent Set consisting of

four members each in this strategy. Referring to Figure 47, suppose Agent2 from the

Inner Agent Set locates the food at the highlighted position while it is moving towards

Agent4, it shares this information with Agent4 when they meet at the border, say at

Tk. Now, both of them are aware of the food location and they take this information

to the rest of the members of the Inner Agent Set. They reach their neighbors at the

same time, Agent2 shares the information with Agent8 and Agent4 with Agent6 at

the same time step, say Tk+δ. At this point, all the members of the Inner Agent Set

are aware of the food location.
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Figure 46: Grid covered by 4 agents using ZigZagPattern

Since they also determined the size of the grid in the Initial Deployment Phase,

every member of the Inner Agent Set can reach its counterpart from the Outer Agent

Set. Note that the outer agents initiated their search operation together at the same

time and they follow the same pattern in their respective quadrants. When the inner

agents at the axis at Tk+δ determine where to reach their counterparts, every agent

gets the same location to reach them and they take the shortest path to reach them.

After some time, Agent2 communicates to Agent1, Agent4 to Agent3, Agent6 to

Agent5, Agent8 to Agent7 at the same time.

If the food location discoverer belongs to the Outer Agent Set, it can communicate

the information to the fellow members from its set first and then every outer agent

takes the information to its inner counterpart in the same way as they did in the

above example. Note that every agent in the swarm is entering into the next phase

at the same time. It is not the case with the other exploration strategies in which

there is a period when some agents are still in Communication Phase when some have

already entered Transportation Phase
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Figure 47: Communication Phase in Modified Zigzag algorithm

4.4 Communication for Spiral Search and Sectors

For communication in Spiral Search and Sectors, we again exploit the fact that the

agents can determine the paths followed by their neighbors and hence, can figure out

where to reach them to share the location of the food. Referring to Figure 48, every

agent’s path in spiral search is enclosed by two fellow agents’ paths and these are the

ones which constitutes the neighbors of that agent. The food locater will take the

information to both the agents and the rest will take it to only one neighbor. Similarly,

in Sectors, every agent has two neighbors which are exploring the neighboring sectors.
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Figure 48: Agents following Lopez-Ortiz and Sectors patterns
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Chapter 5

Transportation Phase

When an agent has completed the Exploration and Communication phases, it enters

into Transportation-Phase. Making multiple round trips from Food to Nest might

be required of an agent depending upon the amount of food present at the source since

it can only hold one food unit at a time. We have designed the Exploration-Phase

in such a way that every agent follows a well-defined path without any possibility

of collisions. However, in the Communication-Phase, we already saw that we opt

to have every agent follow the shortest path to the agents with which it needs to

communicate, which necessitates the use of collision avoidance mechanism since such

situations can be arisen in which multiple agents are contending for the same lo-

cation on the way. Similarly, agents in the Transportation-Phase determine their

movements on the fly which can result in collisions. Hence, this phase also calls for

following Algorithm 1 for collision avoidance. We investigate two approaches for the

execution of this phase:

• End-to-End Transportation: As the name suggests, every agent picks up one

unit of food, takes it to the Nest, drops it off, goes back to the Food location

and repeat the process.
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• Relay Transportation: In this technique, there will be a single direct path

from Food to Nest on which the agents will form a relay network and the food

units will be handed over from one agent to the next when they are in adjacent

locations.

5.1 End-to-End Transportation

When an agent enters Transportation-Phase, it is already aware of the location of

the food. It will try to reach there taking the shortest path possible. When it reaches

at the food location, it will pick up one unit of food and head straight for the Nest.

Upon reaching there, it will drop the food unit it was carrying and repeat the whole

process again till there is no food left at the source location. In this technique, every

agent is working on its own making the rounds from Food to Nest and vice versa.

Algorithm 14 End-to-End Transportation (AgentA)

1: target← Food
2: while haveFood ∨ foodUnits > 0 do
3: if currentLocation = Food then
4: foodUnits - -;
5: haveFood← true
6: target← Nest
7: end if
8: if haveFood ∧ currentLocation = Nest then
9: haveFood← false
10: target← Food
11: end if
12: GetNextMove-CA(AgentA, target, contenders)
13: end while
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5.2 Relay Transportation

As its name would suggest, Relay Transportation involves forming a relay network

of agents on a single path between Nest and food as shown in figure 49. Every agent

uses the same algorithm to determine the path once it knows the food location and

joins the relay network upon finishing its Communication-Phase. They can do so

by either moving to the closest location on the path or by entering the path from

the Food end. Once on the path, every agent will follow algorithm 15 till the food

has been transported back to the Nest completely. Agents are, basically, oscillating

to-and-fro on the path and the food units are being picked up by agent nearest to

the Food location, handed over from agent-to-agent in the middle, and dropped off

at the Nest by the agent closest to the Nest.

We have four possibilities when AgentA and AgentB find themselves in adjacent

Figure 49: Agents performing Relay Transportation on Nest-Food path

locations as shown in figure 50. They all will be handled differently as follows:

• A.haveFood ∧ ¬B.haveFood

Since AgentA is closer to Nest than AgentB in this case, food will not be
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Figure 50: Two agents in adjacent locations on Nest-Food path:Dark agents carry
food

exchanged. Rather, AgentA will continue moving towards Nest and AgentB

towards Food.

• ¬A.haveFood ∧B.haveFood

Food will get exchanged in this case since AgentA is closer to Nest than AgentB.

After the exchange, they will both turn in opposite directions.

• A.haveFood ∧B.haveFood

Since both the agents are carrying food, no exchange can take place. They will

keep moving back-to-back towards Nest.

• ¬A.haveFood ∧ ¬B.haveFood

When none of the agents is carrying food, they will keep moving towards Food

back-to-back.

5.3 Equidistant agents on a Nest-Food Path

In this section, we analyze the behavior of the two transportation algorithms we

presented in the previous section. For comparison purposes, we assume that all n

agents have entered Transportation phase at the same time and they are all placed
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Algorithm 15 Relay-Path-Transportation (AgentA)

1: while haveFood ∨ foodUnits > 0 do
2: if haveFood then
3: nextStep← adjacent location on the path closer to Nest
4: if currentLocation = Nest then
5: haveFood← false
6: Relay-Path-Transportation(AgentA)
7: else AgentB at nextStep & ¬AgentB.haveFood
8: haveFood← false
9: Relay-Path-Transportation(AgentA)
10: end if
11: end if
12: if ¬haveFood then
13: nextStep← adjacent location on the path closer to Food
14: if currentLocation = Food then
15: foodUnits - -;
16: haveFood← true
17: Relay-Path-Transportation(AgentA)
18: else AgentB at nextStep & AgentB.haveFood
19: haveFood← true
20: Relay-Path-Transportation(AgentA)
21: end if
22: end if
23: GetNextMove-CA(AgentA, nextStep, contenders)
24: end while
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equidistant on the Nest-Food path initially. 1 Further, we assume that n units of

food are placed at the source location and the agents have to transport them back

to the Nest. We compare the total time taken by the agents to complete this task

using both the algorithms.

Let Lk denote the kth location on the path and Tj be the jth timestep in the sim-

ulation. We assume that they are all moving towards the Food initially. We consider

the cases when the separation between adjacent agents is odd and even separately.

Assume there are n agents placed equidistant on the Nest-Food path and the dis-

tance between every pair of adjacent agents is 2i+ 1 units. Then, the total length of

the path is (n+1)(2i+1). When Nest and Food are placed in the same row/column,

End-to-End Transportation will not allow the agents to take the shortest path be-

tween them. Since multiple agents will be making these trips from Nest to Food

and back, they will have to move out of the way to avoid colliding with fellow agents

and hence, not taking the shortest path. So, for simplicity, we assume that Nest

and Food are not in the same row/column when determining the running time of

End-to-End Transportation algorithm.

Theorem 5.3.1. Given n agents placed x units of distance apart on a path from

Nest to Food, transportation of n units of food takes x(2n + 1) time steps using

End-to-End Transportation.

Proof. Suppose the agents are located equidistant on the Nest-Food path at T0 as

shown in Figure 51. They start moving towards Food in the next time step. Every

agent is responsible for picking up one unit food from the Food location and dropping

it off at the Nest.

1It is not necessary that all the agents enter this phase at the same time. Some of them might
still be communicating the food location information to their neighbors while others have already
started transporting the food.
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Figure 51: n agents placed equidistant on a bent Nest-Food path at T0

AgentN will be the first one to reach Food at Tx and it will pick up one food unit

and move towards the Nest using the alternate path. After every x time steps, the

subsequent agents in the line will repeat the process. Agent1 will reach Food at Tnx

and since this is the last agent in the line, the time step at which this agent reaches

Nest will be the time step at which the transportation is concluded. Agent1 will take

another x(n+1) time-units after reaching Food to reach Nest which gives us Tx(2n+1)

as the completion time step. This proves that theorem 5.3.1 holds true.

Figure 52: When two agents located 2i+1 units of distance apart want to meet, they
will be in adjacent cells after moving i steps towards each other

By substituting x = 2i+ 1 in Theorem 5.3.1, we get the following corollary.

Corollary 5.3.1.1. Given n agents placed (2i+ 1) units of distance apart on a path

from Nest to Food, transportation of n units of food takes (2i+ 1)(2n+ 1) time steps

using End-to-End Transportation.

Next we analyze the behavior of Relay-Transportation algorithm. It is clear that

in this algorithm, all the agents can stay on the Nest-Food path at all times i.e. it is

irrelevant whether the Food and Nest are in the same row/column. For simplicity,
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we assume that Nest and Food are situated in the same row/column as shown in

figure 54 in which case there is only a single shortest path between them. Nest is

located at L0 and the food is placed at L(n+1)(2i+1). Every Agentk for k ∈ [1, n] is

placed at location Lk(2i+1) at time T0.

Figure 53 shows four agents placed 2i + 1 units of distance apart using Relay-

Figure 53: Relay transportation of 4 food units on a path of length 10i + 5 with 4
agents placed 2i+ 1 units of distance apart initially

Transportation algorithm to transport n units of food in 18i + 3 time steps. We

observe that since the food units are being transferred from agent-to-agent on the
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Figure 54: Agents placed equidistant on a straight Nest-Food path at T0: Every
Agentk is at location Lk(2i+1) for ∀k ∈ [1, N ]

path, it can be said that the meetings between the agents play a crucial role in the

execution. If we want to determine the running time of this algorithm for n agents,

we need to analyze where and when the meetings are happening. For the remainder of

this section, when we say Agenta meets Agentb at location Lk, it means that Agenta

is located at Lk and Agentb at Lk−1 if b < a and at Lk+1 otherwise. Now, we analyze

the meetings between the adjacent agents on the path.

Lemma 5.3.2. Agentk meets Agentk+1 for the first time to receive the first food unit

at location Li(n+k+2)+k+1 and time Ti(n−k+2)+1 for ∀k ∈ (1, N − 1).

Proof. We give a proof by induction on k. For the base case with k = N − 1, we

claim that AgentN−1 has its first meeting with AgentN to receive the first food unit

at location Li(2n+1)+n and time T3i+1. As we already know that AgentN is located at

Ln(2i+1) at T0, and is separated by 2i+ 1 units of distance from the Food location, it

will reach there at T2i+1. It will pick up the first food unit and turn back on the path

in the next time step. AgentN−1 is located at Ln(2i+1) at this time, which is 2i + 1

steps away from AgentN . After moving i steps towards each other, AgentN−1 will

meet AgentN at location Li(2n+1)+n and time T3i+1 to receive the first food unit that

AgentN was carrying which proves that the basis holds true.

Assume that Lemma 5.3.2 holds true for k = m, i.e. Agentm has its first meeting

with Agentm+1 to receive the first food unit at location Li(n+m+2)+m+1 and time

Ti(n−m+2)+1 after which both of them will turn in opposite directions. At this time,

Agentm−1 is located 2i + 1 units of distance left to the location of Agentm i.e. at

Li(n+m)+m. It has not yet met any of its fellow agents. After moving i steps towards
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each other, Agentm−1 will meet Agentm for the first time at location Li(n+m+1)+m

and time Ti(n−m+3)+1. Since Agentm was carrying the first food unit, Agentm−1 will

receive the first food unit at this time. This proves that the statement also holds for

k = m− 1 which completes our proof by induction.

We now use the above lemma to determine the time steps and the locations of

the subsequent meetings between agents in the following lemma.

Lemma 5.3.3. Agentk has its jth meeting with Agentk+1 to receive jth food unit at

location Li(n+k+2)+k+1 and time Ti(n−k+2j)+1 for 1 ≤ j ≤ k and ∀k ∈ (1, N − 1).

Proof. We prove this by induction on j. For the base case with j = 1, the lemma

states that Agentk has its first meeting with Agentk+1 to receive the first food unit

at location Li(n+k+2)+k+1 and time Ti(n−k+2)+1. We know this to be true from Lemma

5.3.2.

For the induction step, we assume that Lemma 5.3.3 holds true for j = m

i.e. Agentk has its mth meeting with Agentk+1 to receive mth food unit at loca-

tion Li(n+k+2)+k+1 and time Ti(n−k+2m)+1. We claim that Agentk has its (m + 1)st

meeting with Agentk+1 to receive (m + 1)st food unit at the same location at time

Ti(n−k+2m+2)+1.

When Agentk meets Agentk+1 for the mth time and receives the mth food unit,

both of them will move in opposite directions in the next time step. After i time steps

at Ti(n−k+2m+1)+1, Agentk−1 meets Agentk at Li(n+k+1)+k to receive the mth food unit

and Agentk+1 meets Agentk+2 at Li(n+k+3)+k+2 to receive the (m+ 1)st food unit. At

this point, Agentk carrying no food and Agentk+1 with the (m+ 1)st food unit, sep-

arated by 2i+ 1 units of distance, start moving towards each other again. Evidently,

Agentk will meet Agentk+1 for the (m + 1)st time to receive the (m + 1)st food unit

after moving i steps at Li(n+k+2)+k+1 and Ti(n−k+2m+2)+1 which shows that the lemma

also holds for j = m+ 1. This completes our proof by induction.
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As is clear from the lemma, subsequent meetings between two given agents hap-

pens after every 2i time steps at the same location for k times. Now, we analyze what

happens after they have met k times.

Lemma 5.3.4. After meeting Agentk+1 for the kth time to receive the kth food unit at

time T(n+k)+1, Agentk continues to move left without meeting Agentk−1 for the next

i(n+ 3) + 2 time steps for ∀k ∈ [1, N ].

Proof. We prove this by induction on k. For the base case, we claim that the lemma

holds true for k = 1. We know from Lemma that Agent1 receives the first unit at

location Li(n+3)+2 and time Ti(n+1)+1. At this time, when Agent1 turns back on the

path, there are no agents to its left. Hence, it will keep moving unhindered towards

the Nest for another i(n + 3) + 2 time steps and will reach there at Ti(2n+4)+3 and

drop the food unit it was carrying2.This proves our base case to be true.

Now we assume that the lemma holds true for k = m and claim that it is also

true for k = m + 1. We know from Lemma 5.3.3 that Agentm receives the mth food

unit at location Li(n+m+2)+m+1 and time Ti(n+m)+1. We also know from the same

lemma that Agentm+1 receives the m+ 1st food unit at location Li(n+m+3)+m+2 and

time Ti(n+m+1)+1 after which it turns towards the Nest. At this time, Agentm is

located 2i + 1 units of distance to its left but is moving towards the Nest. Hence,

they will not meet at the regular location and time. As per the inductive assumption,

Agentm continues to move left for another i(n+2)+2 time steps and meets Agentm−1

at location Li(m−1)+m−1 and time Ti(2n+m+3)+3 and then turns towards the Food.

Agentm+1 will be located at Li(m+1)+m at this time. Intuitively, after another i steps,

Agentm+1 will meet Agentm at location Lim+m and time Ti(2n+m+4)+3 which is exactly

i(n+ 3) + 2 time steps after it received the (m+ 1)st food unit. The sequence of these

2Nest can be seen as an agent too and Agent1 reaching the Nest can be considered as a meeting
with the agent to its left.
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events is shown in Figure 55. This proves that the lemma also holds for k = m + 1

which completes the inductive proof.

Figure 55: Meetings between Agentm−1, Agentm & Agentm+1

Now that we know the time and location of the (k + 1)st meeting of Agentk and

Agentk+1, let us proceed to find out where and when will the subsequent meetings

happen in the following lemma.

Lemma 5.3.5. Agentk has its jth meeting with Agentk+1 to receive jth food unit at

location Lki+k−1 and time Ti(2n−k+2j+2)+3 for k + 1 ≤ j ≤ n and ∀k ∈ (1, N − 1).

Proof. We give a proof for this lemma by induction on j. For the base case with

j = k + 1, it states that Agentk has its (k + 1)st meeting with Agentk+1 to receive

(k + 1)st food unit at location Lki+k−1 and time Ti(2n+k+4)+3. We know from Lemma

5.3.4 that after meeting Agentk+2 for the (k + 1)st time to receive the (k + 1)st food

unit at time T(n+k+1)+1, Agentk+1 continues to move left for the next i(n+3)+2 time

steps and meets Agentk at Ti(2n+k+4)+3 which proves that our basis holds true.

For the induction step, we assume that the lemma holds for j = m and claim that

it also holds for j = m + 1 where k ≤ m ≤ n − 1. From our assumption, we know

that Agentk has its mth meeting with Agentk+1 to receive mth food unit at location
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Lki+k−1 and time Ti(2n−k+2m+2)+3. After this meeting happens, both of them will move

in opposite directions in the next time step. After i time steps at Ti(2n−k+2m+3)+3,

Agentk meets Agentk−1 at L(k−1)i+k−1, hands over the mth food unit and Agentk+1

meets Agentk+2 at L(k+1)i+k, receives the (m+ 1)st food unit.

At this point, Agentk carrying no food at L(k−1)i+k−1 and Agentk+1 with the (m+

1)st food unit at L(k+1)i+k, separated by 2i+1 units of distance, start moving towards

each other again. Evidently, Agentk will meet Agentk+1 for the (m + 1)st time to

receive the (m+1)st food unit after moving i steps at Lki+k−1 and Ti(2n−k+2(m+1)+2)+3

which shows that the lemma also holds for j = m + 1. This completes our proof by

induction.

We can now determine the time at which Agent1 receives the jth food unit using

the above lemmas. Let us compute the time step at which it is dropped at the Nest.

Lemma 5.3.6. Agent1 drops the jth food unit at the Nest at T2i(n+j+1)+3 for 1 ≤

j ≤ N .

Proof. We know from Lemma 5.3.3 that Agent1 has its first meeting with Agent2 to

receive the first food unit at location Li(n+3)+2 and time Ti(n+1)+1. After this meeting

when Agent1 turns around on the path towards the Nest, there are no agents to its

left. Hence, it will not turn back again till it has reached the Nest. Since distance

from the meeting location to the Nest is i(n+ 3)+ 2 units, Agent1 will reach there at

Ti(2n+4)+3 and it will drop the first food unit at this time which proves that Lemma

5.3.6 holds for j = 1.

Substituting k = 1 in Lemma 5.3.5, we get that Agent1 has its jth meeting with

Agent2 to receive jth food unit at location Li and time Ti(2n+2j+1)+3 for 2 ≤ j ≤ n.

After every meeting, Agent1 will take i steps from Li to reach Nest i.e. at Ti(2n+2j+2)+3

which proves that Lemma 5.3.6 also holds for 2 ≤ j ≤ N .
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Substituting j = N in Lemma 5.3.6 gives us the time step at which the nth food

unit is dropped at the Nest by Agent1 which is Ti(4n+2)+3 which leads to the following

theorem:

Theorem 5.3.7. Given n agents placed 2i+ 1 units of distance apart on a path from

Nest to Food, transportation of n units of food takes i(4n + 2) + 3 time steps using

Relay-Transportation.

We deduce from Corollary 5.3.1.1 and Theorem 5.3.7 that n agents take 2(n− 1)

fewer time steps using Relay-Transportation to transport n units of food than the

End-to-End Transportation.
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Chapter 6

Empirical Analysis

In this chapter, we present the results of our experiments comparing the performance

of all the algorithms described so far. First we compare the time taken by each of

the algorithms in the exploration phase. Next we compare the time taken by each

of the algorithms in the exploration as well as the communication phase. Finally, we

compare the time taken for all three phases of foraging to be completed. We study

the performance of the algorithms for different ranges of food locations.

6.1 Simulation

We developed our own simulator in Java for the comparison of these algorithms and

it is available online1. We ran simulations keeping the grid size constant at 128 ∗ 128

with other varying parameters such as nest-food separation, the number of agents and

the transportation techniques. We vary the Nest-Food separation in the following

ranges: 0% − 20%, 20% − 40%, 40% − 60%, 60% − 80%, 80% − 100% meaning we

choose the location of food randomly in such a way that its distance from the nest

falls within the range. Every result shown in the following graphs has been averaged

1Source Code can be found at https://code.google.com/p/foraging-sunidhi/source/

browse/
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over 40 results taken from 40 randomly chosen food locations within the respective

range of Nest-Food separation.

6.2 Exploration

First, we compare the time taken by all algorithms to locate the food in the grid. This

time also includes the initial deployment phase time. As we have already established,

some algorithms require the agents to move to some designated spots first so that

they can coordinate their movements to meet each other regularly. While this may

help them in the later communication phase, we analyze whether this overhead leads

to a considerable increase in the exploration time. Figure 56 shows the performance

Figure 56: Exploration time when food is randomly placed

of all algorithms when food is placed at random locations in the grid. As expected,
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we observe that increasing the number of agents in the foraging process decreases

the time taken to locate the food in almost every case. Figures 57, 58, 59, 60 and

61 present the exploration time for all algorithms with 1, 4, 8 and 16 agents when

the Nest-Food separation is 0% − 20%, 20% − 40%, 40% − 60%, 60% − 80% and

80%− 100% respectively.

As shown in Figure 57, breaking the usual trend, the time taken to locate the

food by Zigzag and Hilbert algorithms increases with an increase in their number

from 4 to 16 when the food is placed very near to the nest i.e. within 0%-20% of

distance. This is because when there are only 1 or 4 agents on the grid, they start

the search from the Nest itself eliminating the need for Initial Deployment phase.

However, when there are 16 agents on the grid, every agent goes to the center of its

respective quadrant as shown in Figure 23 to start the search due to which the area

closer to the nest is explored for food much later. So, increasing the number of agents

has a detrimental effect in this case. Note that when the food is placed farther from

the nest, the initial deployment phase does not have a detrimental effect for these

two algorithms.

When the Nest-Food separation is between 0%-60%, Spiral [3] search gives the

best results with Sectors as a close second no matter the number of agents. Strips

take significantly higher time when the food is located this near to the nest because

the agents move to the end of the grid in their Initial-Deployment phases due to

which they explore the region closer to the nest after covering almost half of the

grid. However, Strips algorithm starts performing substantially better than the other

algorithms when the separation between the nest and the food is greater than 60%.

The performance of Strips also depends on which end of the grid the food is placed.

Suppose the agents start the search from the west-end of the grid, then the food will

be located almost immediately if the food was placed at this end and if it was on the
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Figure 57: Exploration time when Nest-Food separation is 0%-20%

east-end, it will be located after the agents have covered almost all the grid. As

we increase the Nest-Food separation further, the performance of Spiral [3] declines

and Sectors algorithm starts performing better. In Spiral search, the agents have

to modify their paths towards the end to limit their movement to the finite grid and

many cells are visited several times because of that as shown in Figures 38, 39 and

40. The agents spiraling across the grid cease to give the best results when the food

is placed far away from the nest. Spiral search was designed to cover an infinite

grid while Sectors, on the other hand, was designed for a finite one, which is more

realistic and does not have a strong dependency on the food location. When the

food is placed in the farthest regions of the grid, Strips comes out as a clear winner

because of the way it is designed irrespective of the number of agents as shown in

Figure 61. The performance of Spiral deteriorates when the food is placed far away
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Figure 58: Exploration time when Nest-Food separation is 20%-40%

from the nest relative to the other algorithms. Hilbert performs better than Zigzag

and Sectors because it is designed in such a way that it covers the closer regions to

its starting point first, then goes out to the farthest regions and then come back for

the region that falls in the middle range. Hence, the food gets located earlier.

6.3 Search and Communication

Now that we have seen the performance of the algorithms in locating the food, the next

step is to compare them on how quick they are able to communicate their findings

to the fellow agents. The communication time shown in graphs in this section is

calculated from the moment the first agent locates the food till the time the last

agent completes its Communication Phase and enters into the transportation phase.
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Figure 59: Exploration time when Nest-Food separation is 40%-60%

Note that for this period of time, some agents will still be communicating while others

may already have been entered into the Transportation Phase.

Figure 62 shows the time taken to find the food plus the time taken for the last

agent to complete the communication phase when the food is randomly placed over the

grid. We observe that the communication time increases slightly with an increase in

the number of agents for every algorithm. Figure 63 shows the ratio of the time taken

in Communication Phase to the Exploration Phase time as a function of the number

of agents. As we already know, the agents spend a lot of time in Strips algorithm

in Initial Deployment phase to coordinate their movements to meet regularly. Due

to this arrangement, we observe in our experiments that communication time for

Strips is almost negligible as compared to the exploration time no matter the number

of agents or Nest-Food Separation. For the other algorithms, communication time
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Figure 60: Exploration time when Nest-Food separation is 60%-80%

increases with an increase in the number of agents marginally except for Zigzag and

Hilbert in which the communication time increases drastically because of the way

agents start their exploration.

Figures 64, 65, 66, 67 and 68 present the exploration and the communication

time for all algorithms with 4, 8 and 16 agents when the Nest-Food separation is

0% − 20%, 20% − 40%, 40% − 60%, 60% − 80% and 80% − 100% respectively.

Communication time also increases with an increase in the Nest-Food separation

for all the algorithms except Zigzag and Hilbert. For these two algorithms, the

communication time increases for a nest-food separation up to 40%, decreases for

40%-60% separation range and then increases again. This is because agents start

their search from the region falling in 40%-60% separation range when there are 16

agents on the field and they are nearby each other in that period.
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Figure 61: Exploration time when Nest-Food separation is 80%-100%

6.4 Exploration, Communication and Transporta-

tion

In this section, we compare the transportation costs incurred by all algorithms over

different ranges of separation. In Figure 69, we compare the performance of the three

Transportation-Phase algorithms i.e. Relay-Food, Relay-Path and End-to-End.

We executed Relay-Transportation introduced in Chapter 5 in two variants: Relay-

Food and Relay-Path. Since an agent is aware of the food location when it enters

into Transportation-Phase, it can easily determine the relay path. In Relay-Food

technique, the agent enters the relay path from the food location itself after picking

one food unit from there whereas in Relay-Path technique, the agent enters the relay

path by moving to the closest location on the path from its current location and then
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Figure 62: Exploration and Communication time when the food is randomly placed

starts moving towards the food. After the agent has entered the relay path following

either one of these techniques, the rest of the algorithm to transport the food remains

the same. We observe that Relay-Food transportation gives better results than the

other two in every case. Therefore, in the rest of this section, we only use Relay-Food

as the transportation algorithm.

There is a period of time in the execution of the algorithms in which some of the

agents are communicating while some of them have already entered their transporta-

tion phases. In the previous section, we presented this time period as a part of the

communication phase. However, in this section, we show this time period separately.

Also, data used for the graphs shown in this section is given at the end in Figures 78

and 79.

Figure 70 presents the total execution time of the algorithms when the food is
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Figure 63: Ratio of the time taken in Communication Phase to the Exploration Phase
time

placed randomly on the grid. As expected, the transportation time increases with in-

creasing Nest-Food separation and decreases with an increase in the number of agents

irrespective of the algorithm followed for exploration. We observe that Sectors algo-

rithm gives the best performance no matter the number of agents with Strips as a

close second.

Figures 71, 72, 73, 74 and 75 present the execution time for all algorithms with 4,

8 and 16 agents when the Nest-Food separation is 0%−20%, 20%−40%, 40%−60%,

60% − 80% and 80% − 100% respectively. As expected, we observe that the trans-

portation time increases with the increasing separation between nest and the food.

We observe that for all the nest-food separations, the time period where some

of the agents are communicating while some are transporting keeps increasing with

an increase in the number of agents irrespective of the algorithm they follow for the
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Figure 64: Search and Communication time when the Nest-Food separation is 0%-
20%

exploration phase. Also, this time period is the longest for Spiral Search [3] followed

by Hilbert and the shortest for Strips irrespective of the number of agents.

Although the time spent in the Transportation Phase is almost the same for all

the algorithms for a given number of agents, we observe that it is the lowest for Strips

among all. This is because whenever an agent locates the food in Strips, it communi-

cates this information to its neighbors quickly as compared to the other algorithms.

Therefore, the agents are not that far from the food location when they get this infor-

mation and it does not take them long to reach there. Four agents following zigzag

strategy for the exploration also reach the food location quickly because of the same

reason. Spiral Search [3] has the longest communication plus transportation period

which makes its transportation phase the costliest compared to the other algorithms

with the same number of agents and same nest-food separation.
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Figure 65: Search and Communication time when the Nest-Food separation is 20%-
40%

Figure 76 shows the percentage of total time of execution spent in different phases.

It is quite clear that Strips spends the minimum portion of the execution time in the

communication phase. With four agents on the grid, Zigzag and Sectors spends very

less time in the communication phase and there is no time period when some agents

are communicating while some are transporting meaning that all four agents enter

the Transportation Phase at the same time. When there are 16 agents on the grid fol-

lowing Zigzag and Hilbert, they spend a considerable amount of their execution time

communicating. It is also quite clear that the time spent in Communication phase

increases consistently with an increase in the number of agents for Spiral search [3]

and Sectors.
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Figure 66: Search and Communication time when the Nest-Food separation is 40%-
60%

6.5 Modified Zigzag

We developed a variant of the zigzag algorithm for 8 agents wherein half of them start

the search from the end of the grid and half of them start from the nest itself. Figure

77 presents the comparison of this variant with the other algorithms. We observe

that it gives the best results when the food is placed in the farthest regions of the

grid, even better than the Strips algorithm which gave very good results when the

food was placed far in the grid.
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Figure 67: Search and Communication time when the Nest-Food separation is 60%-
80%

6.6 Discussion

All our algorithms divide the grid so that the agents can search in parallel. How-

ever, the exact manner of dividing the grid can affect many factors influencing the

performance of the foraging algorithms:

• How much time is spent in the Initial Deployment phase?

• How often do the agents meet?

• How many cells are traversed repeatedly?

We found from our simulations that although the agents following Strips algorithm

spend extra time in the Initial Deployment Phase for dividing up the grid into strips,

they meet regularly and none of the cells are traversed twice in the Exploration Phase.
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Figure 68: Search and Communication time when the Nest-Food separation is 80%-
100%

Also, because of the quick communication, they perform slightly better in Transporta-

tion Phase too. For Zigzag and Hilbert with only 4 agents, they divide the grid into

four quadrants and there is no Initial Deployment Phase and they perform the best

in locating the food. Their performance declines with an increase in the number of

agents as compared to the other algorithms. Spiral Search [3] gave the best results at

locating the food when the nest-food separation is up to 60% of distance. However, its

performance deteriorates with an increase in this separation as this strategy was de-

signed for an infinite grid and a lot of cells are traversed repeatedly when we adjusted

it for our finite grid model which affected its performance. Also, its communication

cost is also high as compared to the other algorithms. Sectors came out to be the

best performer on an average as expected. It is quick at locating the food and the

communication cost is also low as compared to the other algorithms since the agents
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are always close to their neighbors in their respective sectors.
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Figure 69: Comparison of different Transportation algorithms
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Figure 70: Total execution time when food is randomly placed over the grid

Figure 71: Total execution time when Nest-Food separation is 0%-20%
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Figure 72: Total execution time when Nest-Food separation is 20%-40%

Figure 73: Total execution time when Nest-Food separation is 40%-60%
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Figure 74: Total execution time when Nest-Food separation is 60%-80%

Figure 75: Total execution time when Nest-Food separation is 80%-100%

98



Figure 76: Percentage of the total execution time spent in different phases
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Figure 77: Comparison of Modified Zigzag algorithm with other algorithms when the
number of agents is 8
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Figure 78: Simulation results-1
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Figure 79: Simulation results-2
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Chapter 7

Conclusion and Future Work

This chapter summarizes the thesis and contains some recommendations for future

work concerned with the distributed algorithms for a swarm of agents to forage for

food on a finite grid and related topics.

7.1 Conclusion

We studied the central place foraging problem in this thesis: Given n robots initially

present at the nest at the center of a square region, and multiple food units at a

single unknown location in the region, find an efficient algorithm for the robots to

collectively discover the food and bring it all back to the nest. We divided the problem

into three phases: exploration, communication and transportation. The main aim of

the Exploration phase was to find efficient ways to search the space so that the

food gets discovered as soon as possible no matter where it is placed. We gave five

different algorithms for the execution of this phase: Strips, Zigzag, Hilbert, Sectors

and Modified Zigzag. We analyzed the competitive ratios of all our algorithms, and

ran extensive simulations to analyze their performance. We also implemented the

Spiral Search pattern introduced by Lopez-Ortiz [3] and compared its performance
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with our algorithms. Our experiments show that Strips is the fastest at locating the

food when the food is relatively far from the nest, while Spiral Search is the best

at locating the food when the food is relatively close to the nest. However, Sectors

algorithm is the best on an average when the food is placed at any random location.

The Zigzag and Hilbert algorithms have the best performance for 4 agents at locating

the food but do not do so well with other number of agents.

For the Communication phase, the agents just need to know the set of neighbors

to whom they are supposed to communicate as they are capable of determining the

locations of their neighbors and reaching them. The time taken to complete this

communication phase depends on how the grid is divided initially and the movement

pattern the agents follow to cover the ground. We found that Strips algorithm has

the cheapest communication phase. Zigzag and Hilbert have fast communication

when there are only 4 agents. However, this cost increases drastically when there

are more agents because of the Initial-Deployment phase. The Sectors algorithm

has consistently average communication phase over different number of agents and

various nest-food separations. We also found out that the communication phase is

costlier for the Spiral Search than the Sectors algorithm and it gets costlier with the

increasing number of agents and the nest-food separation.

We investigated two approaches for the transportation phase of the problem:

Relay and End-to-End. We found out that relay transportation performs better

than the latter. We also investigated their performance theoretically by considering

the case when agents are placed equidistant on the path between the nest and the

food and analyzing the time taken by them to transport the food back to the nest

using both the approaches.
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7.2 Future Work

There is a lot of scope for further research in this field. One direction is to try to find

ways to make the exploration algorithms fault-tolerant, i.e., handle the situations in

which some of the agents are not able to finish their share of the execution. There

can be a lot of reasons for agent failure in the real world. For example, they can

die of energy deprivation. Another direction for investigation is to find ways for the

agents to re-adjust their paths if they come across obstacles on the grid, which is a

more realistic situation than having a square grid with no obstacles. We consider the

case in this thesis where all the food units are placed at a single location in the grid.

Another possible direction is to investigate the case where the food is scattered all

over the grid, and all the food units have to be brought back to the nest.

In this thesis, we do not take into account the costs associated with different

kinds of operations performed by the agents such as carrying food, picking up and

dropping of food, exchange of food between agents, transmitting and receiving data,

among many others. In reality, these operations have different costs. One direction

for new research is to assign realistic costs to each of these operations and analyze

the total cost of all the algorithms.

Dividing the region to be explored into discrete grid cells facilitated the explo-

ration of the region in a systematic fashion. However, as soon as an agent is aware

of the food location, in the communication and transportation phases, the agent can

simply take a straight-line path to its next location. Indeed, in these phases, the

agent does not even really need the Look phase of the Look-Compute-Move cycles. It

would be interesting to remove the restriction on directions of movement for agents;

assume a fixed velocity for agents, and compute the time taken by different algo-

rithms. Considering other shapes of search spaces, such as other polygons, would

also be an interesting avenue for further study. For example, a hexagonal space could
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be divided into hexagonal cells, and might be amenable to interesting exploration

strategies.

We gave some algorithms in which the paths followed by the agents are designed

so that they meet after regular intervals. However, the Sectors algorithm was not

designed in such a way. In the future, it can be investigated whether it is possible to

adjust this algorithm, that is, make the agents wait at specific locations so that they

do meet their neighbors regularly. Also, after the grid has been divided into sectors

in this algorithm, new movement patterns to cover the grid can be investigated. For

example, the cells at a distance of i from the nest get visited by the respective agent

before the cells at a distance of i+ 1.

Another possible area of research is in finding the running time of relay trans-

portation when the agents are placed arbitrarily on the Nest-Food path initially.

Finally, there is yet another interesting investigation that can be done using these

algorithms. We are capturing the time at which the agents locate the food, the time

taken by them to communicate this to their neighbors and the time taken to transport

the food. However, the time taken for the last agent to reach the food location can

also be calculated after it has completed its communication phase, which can be seen

as the time taken to evacuate the grid. This time has been called the evacuation time

and has received some interest recently.
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