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Montréal, Québec, Canada

June 2015

c© Asma Mistadi, 2015



Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Asma Mistadi

Entitled: Requirements for Modern Genome Browsers

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Software Engineering

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair

Dr. Nematollaah Shiri

Examiner

Dr. Constantinos Constantinides

Examiner

Dr. Joey Paquet

Supervisor

Dr. Gregory Butler

Approved by
Chair of Department or Graduate Program Director

20

Dean of Faculty



Abstract

Requirements for Modern Genome Browsers

Asma Mistadi

Genome browsers are widely used tools for the visualization of a genome and related data. The

demands placed on genome browsers due to the size, variety, and complexity of the data pro-

duced by modern biotechnology is increasing. These demands are poorly understood, and are not

documented. Our study is establishing and documenting a clear set of requirements for genome

browsers.

Our study reviewed all widely used genome browsers, as well as notable research prototypes of

genome browsers. This involved a review of the literature, executing typical uses of the genome

browsers, program comprehension, reverse engineering, and code analysis.

The key outcome of the study is a clear set of requirements in the form of a requirement document

which conforms to the IEEE Std 830-1998 Standard of a Software Requirement Specification. This

contains a domain model of concepts, the functional requirements as use cases, a definition of

visualizations as metaphors, glyphs, or icons, formal specification of the system in Z notation and

a specification of all widely used file formats.

Genome browsers share a set of basic features like display, scroll, zoom, and search. How-

ever, they differ in their performance, maturity level and the implementation technologies. Our

requirements also document the major non-functional requirements.

The outcome of our study can be used in several ways: it can be used as a guide for future

developers of Genome Browsers; it can form the basis of future enhancements of features in existing

genome browsers; and it can motivate the invention of new algorithms, data structures, or file

formats for implementations.
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Chapter 1

Introduction

The genome of an organism is the complete collection of deoxyribonucleic acid (DNA) in that

organism. It contains all of the information needed to build and maintain that organism. It has

four different molecules called nucleotides Adenine (A), Thymine (T), Cytosine (C), and Guanine

(G), which are the units of DNA. Because of their structure, A can only bind with T, and C can

only bind with G. Inside the nucleus of each cell, the DNA molecule consists of two strands that

wind around each other like a twisted ladder and packaged into compact units called chromosomes

as shown in Figure 1.

Figure 1: Chromosome Helix Structure, source:www. nia. nih. gov

In other words, a genome is a set of DNA sequences, each sequence is a string of four let-

ters/nucleotides [ A , G , C , T ], known as base pairs, or bp, which are the units of measuring a
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genome’s size [NIH, 2014].

In 1995, the first complete genome of a free-living organism, the bacterium Haemophilus influenzae,

was sequenced. After that, during the past decade or so, new technologies helped sequence the

genomes of thousands of organisms. Genomes can be very long from mega-bases to hundreds of

giga-bases, e.g. the human genome is around 3 billion base pairs. High-throughput sequencing

(HTS) technology or Next-Generation Sequencing (NGS) technology has enabled rapid sequencing

of large stretches of DNA base pairs, which made genome sequencing quicker and more affordable

than ever, with the latest instruments producing hundreds of giga-bases of data in a single run

[NGS, 2014].

More importantly, inside these DNA sequences are regions that play important roles in various

functions of the cell such as cell metabolism, defence, reproduction and signalling. The result of

finding and interpreting functionally significant regions of the genome is called ‘annotation’ and is

now the major focus of the genome project. The annotation of a genome typically generates far

more data than the raw DNA sequence itself, e.g. the whole human genome sequence occupies just

three gigabytes uncompressed, but its current annotation uses many terabytes. There are numerous

types of data collected about genomes such as genes, proteins, transcription data, variation data,

and regulation data.

These massive amounts of sequence data need to be stored, analyzed, and manipulated in so

many ways in order to understand what happens inside the cells of organisms and that’s where

bioinformatics, which is defined as the application of computer science and software engineering

to the problems of biological data management, comes into play. Besides their enormous size,

sequence data are also very complex and although the analysis process can be automated, there is

still a significant need for human interpretation.

Genome browsers are well known bioinformatics tools, that are used for the visualization of the

genome sequence and it annotations. Since looking at the textual representation of genomic data

is not very helpful, visualization techniques and tools significantly aid the study and interpretation

of these complex datasets [Oram and Wilson, 2007, Pevsner, 2009].

1.1 A Genome Browser Example

A Genome browser can be defined as a visualization tool used to display genome data and their

annotations using a graphical user interface. It can help visualize and integrate different genomic

data by displaying a representation of genome information and other data as a function of posi-

tion across the genome sequence. It is an essential tool for organizing and investigating multiple

information about genomes [Pevsner, 2009, Soh et al., 2012].

The Caenorhabditis elegans (C. elegans) is a free-living, transparent nematode (roundworm,

2



earthworm). It is small, growing to about 1 mm in length, and lives in the soil. It survives by

feeding on microbes such as bacteria [Mark Edgley and the Riddle lab, 2014]. A picture of the

C.elegans is shown in Figure 2. The sequence of the 100-Mb genome of C. elegans was published

in 1998, and it has 6 chromosomes (named I, II, III, IV, V and X) [Hillier et al., 2005].

Figure 2: Picture of C. elegans, source: www. news. wisc. edu

In Figure 3, an example of an annotated region of the C. elegans sequence is visually presented

inside a genome browser, specifically GBrowse, which is a mature and capable genome browser that

is distinguished by its use of ‘glyphs’, which are graphical representations of annotations/features of

the genome. This example explains in a brief manner the general layout and functions of a genome

browser.

A genome browser, just like any other software, takes inputs and presents outputs. The inputs

in any genome browser are the sequence and annotation data that are usually stored in specially

formatted files. Today, there are many file format standards used to save different types of genomic

data, such as FASTA format (a standard for saving genome sequences) and GFF3 format (a standard

for storing gene data).

The outputs are a graphical user interface representing each type of data inside a display unit

called ‘tracks’. Tracks are horizontally aligned on top of each other under a unified coordinate

system (the sequence coordinate). Inside each track are a set of features/annotations displayed using

special graphical representations called ‘glyphs’, which are organized according to their positions

on the sequence. In this example, the name of the sequence under investigation is ‘C01F4’, which

is the name/ID of a contig of the C. elegans sequence (a contig being a consensus region of DNA).

The entire contig sequence is displayed in this view from 1..40,000 bp. Data is displayed at three

different levels: overview, region, and details. There are three tracks named ‘ESTs’ (used to display

alignments between C. elegans expressed sequence tags ESTs in GenBank and the genome), ‘Protein-

coding genes’ (used to display the protein-coding genes data), and ‘DNA/GC Content’ (the sequence

track used to display the GC content of the DNA sequence at low resolutions and the individual

DNA base pair at high resolution). The reference ruler is helpful in identifying the location of

genomic features across the sequence. The different data types are inspected in a vertical manner

3
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Figure 3: A Genome Browser Example, source: local GBrowse installation

according to their location on the sequence.

To navigate this genome, we could zoom in/out, pan left/right, search for specific features or

an exact location on the genome. The tracks are the essence of a genome browser, which can be

customized by the user. Tracks can be reordered, hidden/shown, added/closed. The graphical

representations of annotations in each track can be customized by changing several attributes of

their appearance such as their color, size and shape. In this example of genome browser, there

is a list of sources to choose from, which is used to change the genome and the datasets under

investigation. As mentioned above, the genome browser inputs are normally specially formatted

files that are used as a standard in the genomic community to save and transmit genomic data.

In Figure 4, an example input file format is shown and contains the underlying data of the

‘Protein-coding genes’ track. The file is in GFF3 format, which is a tab-delimited file format that

has nine columns. A summary of the information stored in each of these columns is in Table 1. The

data in this file is easily parsed for information and the graphical representations are presented to

the user.

4



Figure 4: An Example of an Input File in Genome Browser

Column Description

Seqid This is the id of the landmark, which establishes the coordinate system for the annotation

or current feature. This is usually the name of a chromosome, clone, or contig.

Source The column lists the source of the annotation or describes how the feature was derived.

Type This column describes the feature type.

Start This column lists the position that the feature starts at, relative to the reference sequence.

The first base of the reference sequence is position 1.

End This column lists the end of the feature, again relative to the reference sequence. The end

is always greater than or equal to start.

Score For features that have a numeric score, such as sequence similarities, this field holds the

score.

Strand For features that are strand-specific, this field is the strand on which the annotation

resides. It is ‘+’ for forward strand, ‘−’ for reverse strand, or ‘.’ for annotations that are

not stranded.

Phase For CDS features that encode proteins, this field describes the part of the codon on which

the first base falls. The field is a number from 0 to 2, where 0 means that the first base

of the feature corresponds to the start of the codon, 1 means that the second base of the

feature corresponds to the start of the codon, and 2 means that the third base of the

feature corresponds to the start of the codon.

Attributes A list of feature attributes in the format tag=value. Multiple tag=value pairs are separated

by semicolons. 1

Table 1: GFF3 File Specification

1The full GFF3 specification can be found at http://www.sequenceontology.org/gff3.shtml.
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1.2 Importance of Genome Visualization

Genome browsers address the problem of how to visualize the genome and its various annotations.

Visualization of genomic data can aid the analysis of this information in a more natural and inter-

pretable way compared to their textual representation [Fiume et al., 2010]. According to [Fiume

et al., 2010]:

“ Visualization can facilitate a number of tasks including:

i The integration of multiple related data into a single view, to gain insight into the interaction

between genomic features.

ii Algorithm development, where visualization of many putative calls (e.g. genomic variants,

promoter sites, intron/exon boundaries, etc.) helps with debugging and identification of true

and false positives.

iii Exploration of various genomic regions for specific signatures of functional sites that may be

difficult to describe within a computer program. ”

Accordingly, genome browsers are very powerful research tools that can help investigate sequence

data and test any hypothesis generated by multiple sources of evidence. They also provide a

collaborative framework for researchers to share, retrieve, and view their own annotations in the

context of the genome. There are many existing genome browsers, that are different in their

implementations and focus. Many of these tools are not properly documented or supported and

they lack the proper application of correct and rigorous software engineering practices [Okonechnikov

et al., 2012]. Today, genome browsers face numerous challenges and demands that should be

accounted for. Therefore, there is a constant need to document these demands and build some clear

set of requirements for this valuable bioinformatics tool.

1.3 Thesis Motivation and Objective

The motivation of our work is based on the importance of genome browsers in the bioinformatics

field. A genome browser today is considered an indispensable visualization tool, as it facilitates the

investigation of complex and huge genomic datasets. The term genome browser is largely used but

there is no clear set of requirements to specify what a genome browser really is.

The main objective of this thesis is to have a usable requirements document for the development

of a software system that embodies the key elements of what the community considers a “genome

browser” so that it is responsive to the demands of today’s datasets, and the possible introduction

of new data formats and associated visualizations. Genome browsers have been around for some

time now, therefore we work under the assumption that the existing genome browsers provide a
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complete set of adequate features. In our choice of requirements, we focus on the basic functionality

and specifications that any genome browser should have. We discuss the major challenges facing

this type of tool and the available technologies used in implementing genome browsers.

The process involves investigating a number of genome browsers, reviewing literature, program

comprehension, reverse engineering, and code analysis. The key outcome of the study is a clear

set of requirements in the form of a requirements document which conforms to the IEEE Std 830-

1998 Standard for Software Requirements Specification. This includes a domain model of concepts,

the functional requirements as use cases, a definition of visualizations as metaphors, glyphs, or

icons, and a specification of widely used file formats. We also wrote a formal specification model of

genome browsers in Z notation. During the process of conducting this thesis we faced a number of

challenges. The main challenge being that most of the tools are under active development and the

number of mature genome browsers is small.

1.4 Organization

This thesis document is organized as follows:

Chapter 2, introduces the background needed to understand the content of this document.

Chapter 3, establishes the Requirement document that includes use cases as functional require-

ments, a Domain Model and a Z specification of genome browsers.

Chapter 4, concludes this document by summarizing our contributions, pointing out its limita-

tions and making suggestions for future work.

Appendices, documents a table of visualization metaphors, a specification of several file formats

and a Glossary of definitions.

1.5 Template Conventions

The following templates/guidelines were used for this thesis:

• IEEE Std 830-1998 Standard of a Software Requirements Specification: [IEEE, 1998], used

for writing the whole Requirement Document.

• Fully Dressed Use Cases template: [Cockburn, A., 2001], used for documenting the use cases.

• Z notation: [Spivey, 1992], used to write formal requirements of a genome browser.
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Chapter 2

Background

This Chapter introduces the background knowledge needed to understand Genome Browsers. It

covers the definition of a genome browser, the history and evolution of genome browsers, informa-

tion visualization and their relation to genome browsers. Then a documented description and a

comparison of four selected genome browsers are presented. Those genome browsers are GBrowse,

JBrowse, Dalliance and Savant. The first three of the investigated genome browsers are web-based

and the fourth is a stand-alone application. Our main focus is on web-based genome browsers since

they serve a much larger user community. The investigation of those four genome browsers is done

in order to come up with a solid set of requirements for modern genome browsers. After that,

we present a discussion of the technologies used in web-based genome browsers, issues related to

genome browsers, non-functional requirements issues and a simple background of Z notation.

2.1 Introducing Genome Browsers

Genome Browsers are a class of a well known visualization tools in the bioinformatics field. They

provide a unified platform to browse, search, retrieve, analyze and access large amounts of sequence

data. Through a graphical interface, they present a comprehensible, high level, visual representation

of huge textual genomic data. They show both global and detailed view of the genome sequence

and its annotations. They help users analyze, summarize, extract information from various datasets

in the context of genomic DNA sequences [McKay and Cain, 2009, Wang et al., 2013a].

Generally, genome browsers can present any type of information that can be mapped to DNA

sequence coordinates. This information is presented inside ‘tracks’, piled up rows of various data

types, which are basically horizontal graphical units. Figure 5 5 shows a simple sketch that illus-

trates the basic concept of tracks in a genome browser, with each track used to represent a type

of data (a collection of data) on the genomic sequence. Inside those tracks the data is presented
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using graphical clues or metaphors, known as ‘glyphs’, positioned according to their sequence coor-

dinate. An example track with glyphs is shown in Figure 6, which presents a region of the ‘Curated

Genes’ track of the C.elegans chromosome with the sequence coordinate III:7,500,002..7,550,001

(ch: start..end). Organizing the different data types vertically inside horizontal tracks facilitates

the comparison of diverse data types and also works as a gateway to more detailed information

[Kuhn et al., 2012].

To demonstrate genome browsers capabilities and major functions, we will look into JBrowse

genome browser, which is one of the GMOD (Generic Model Organism Database) tools. JBrowse is

a next-generation web-based genome browser for visualizing genomic data that benefit from modern

web technologies to provide a more interactive user experience than its predecessor GBrowse. In

JBrowse, most of the work involved in visualizing the data is done on the client web-browser: A

JBrowse instance is created by adding genomic data of an organism (sequence and annotations) to

the JBrowse software which is placed on a server, and the end users are allowed to visit the site

from their web browser [Skinner and Holmes, 2010].

Figure 5: Genome Browser Sketch, illustrating the tracks concept.

9



Figure 6: Example Track, Source: the WormBase website http: // www. wormbase. org/ tools/

genome/ gbrowse/ c_ elegans_ PRJNA13758/

Figure 7: Example of JBrowse Instance, showing the primary test data set used in the development (the

Volvox example): (A) A list of available tracks, (B) A menu for selecting another source/organism—displaying

the name of the current source, (C) Panning controls left/right, (D) Zooming controls, (E) A menu for selecting

the current sequence, and a text box (which can be used for searching) showing the exact coordinate of the

visible region, (F) The highlight button, (G) The share button, (H) The track name, (I) A track. Source:

JBrowse demonstration at http: // jbrowse. org

A detailed description of this tool is later mentioned in Section 2.4.2.2. There are many tasks

the users can perform in a genome browser:

• Users can change the current source by selecting a different source from a list. Figure 8, shows
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an example of sources list found in this JBrowse demonstration.

Figure 8: Example of JBrowse Sources List, showing a list of existing sources. Source: JBrowse demon-

stration at http: // jbrowse. org

• Users can select the sequence they want to investigate, as shown in Figure 9, and tracks of

interest from the list of available tracks, as shown in Figure 7-(A).

Figure 9: Example of JBrowse Sequence List, showing a list of sequences (contigs, chromosomes) belonging

to an organism’s genome. Source: JBrowse demonstration at http: // jbrowse. org

• Users can rearrange the order of tracks, hide/show tracks, or click on tracks for additional

information.

• Users can also upload their own custom tracks, as shown in Figure 10.

• Genome browsers are designed to allow users to view data at any scale in an interactive way

(zooming in/out) using the zooming controls, as in Figure 7-(D)). Users can zoom from single

base pair resolution to a whole chromosome, and the genome browser will try to fit as much

information into the browser view as the scale permits [Kuhn et al., 2012]. Figure 11 shows a

region of a ‘Reference Sequence’ track zoomed in at different scales. This track displays the

individual base pairs at high zoom levels.
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(a) Open File Option

(b) Open Files Dialog

Figure 10: Example of Custom Track Upload in JBrowse: (a) shows the list containing the open files

option to add custom tracks to JBrowse, (b) shows the dialog presented to the user to upload a custom track

and the various options of upload depending on the location of the file. Source: JBrowse demonstration at

http: // jbrowse. org
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(a) Low Zoom Level

(b) High Zoom Level

(c) Higher Zoom Level

Figure 11: Example of Sequence Track, zoomed at different zoom levels in JBrowse. Source: JBrowse

demonstration at http: // jbrowse. org

• Users can browse the genome in several ways in genome browsers. They can pan left/right

using panning controls as in Figure 7-(C), or go to specific features or positions using the

searching capability of the genome browser (as shown in Figure 7-(E) and Figure 12, when

the user types any letter, an auto-complete generated list of available features is shown to the

user to navigate to the wanted feature).
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(a) Entering Search Term

(b) Search Result

Figure 12: Example of Feature Search in JBrowse, (a) showing a generated list of available features matching

the entered name in the search box, and (b) showing the result of the navigation to the feature (f01) location.

Source: JBrowse demonstration at http: // jbrowse. org
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• Tracks can be configured and customized in different ways, like changing their height or glyph

or pinning them to the top of the display. Figure 13-(a), shows a list of different actions that

the user can do to ‘Reference Sequence’ track and Figure 13-(b), shows a configuration dialog

that the user can use to change the track configurations.

(a) List of Possible Track Manipulation Options

(b) Edit Track Configuration Dialog

Figure 13: Example of Track Configuration, (a) shows a list of track options like Pin to top, Edit config,

Delete track, Save track data and more or less depending on the track type, (b) ‘Reference Sequence’ track

Edit track configuration dialog in JBrowse. Source: JBrowse demonstration at http: // jbrowse. org

• Users can also share their genome view with other research group members by using the

sharing capability of the genome browser. As in JBrowse, this is done by clicking the share

button shown in Figure 7-(G) and this will present a generated link that can be copied to be

sent to other users (see Figure 14).
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Figure 14: Share Genome Browser View, where a generated link is shown to share the current view in

JBrowse. Source: JBrowse demonstration at http: // jbrowse. org

• Another useful feature is the highlight feature, where the user can select a region to highlight.

In JBrowse, this is done by pressing the highlight button shown in Figure 7-(F) and selecting

a region with the mouse. An example of highlighted region from (15000 bp to 17500 bp) is

shown in Figure 15.

Figure 15: Example of Region Highlight, with a highlighted region (from 15000 to 17500)bp in JBrowse.

Source: JBrowse demonstration at http: // jbrowse. org

• The underlying track data can be downloaded in several file formats for further analysis, as

shown in Figure 16.
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(a) Save Track Data Option

(b) Save Track Data Dialog

(c) Track Data View

Figure 16: Example of Save Track Data in JBrowse, (a) the option list containing the ‘save track data’

option, (b) the dialog presented to the user to save track’s data, presenting options about the region to save,

the type of file, and the name of the file, (c) a view of the tracks data in GFF3 format. Source: JBrowse

demonstration at http: // jbrowse. org

As the amount of sequenced organisms increase so are the number of available genome browsers.
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Genome browsers can be classified based on different characteristics including their platform plat-

form (web based or standalone), type of genome (linear or circular), or the number of genomes

displayed (single organism or multiple organisms). There are a large number of genome browsers

out there, including the three most popular ones: the University of California Santa Cruz (UCSC)

Genome Browser (http://genome.ucsc.edu/), Ensembl (http://www.ensembl.org/), and Na-

tional Center for Biotechnology Information (NCBI) Map Viewer (http://www.ncbi.nlm.nih.

gov/mapview/). Their popularity comes from the amount of information they serve since they are

used as repositories for genome projects [Cline et al., 2009].

2.1.1 Genomic Data

Genomes are a huge source of information that is used to shape who we are. They contain all the

information needed to develop and maintain organisms. Genomic data includes the genome sequence

produced by sequencing machines and their manually or automatically generated annotations. This

data can be very noisy and with varying degree of accuracy and as our genomic knowledge expands

so are the types of data and information discovered. Normally, genome related data are produced

by diverse genome research groups and projects. Consequently, they vary in their type, size and

accuracy. Data aggregation and visualization are used in genome browsers to help reduce the

uncertainty of multiple data sources and drive more accurate information [Cline et al., 2009].

Recent technologies has made sequencing of thousands of organisms faster and cheaper than ever.

These advancements resulted in massive amount of DNA sequences and associated annotations.

Consequently, genomic data is very large and continues to grow over time. For instance, the

Arabidopsis thaliana (thane cress, a weed and a model plant species), has a total of 119,146,348 bp as

indicated by the PlantGDB (http://www.plantgdb.org/AtGDB/) and according to the Arabidopsis

Information Resource (TAIR) (http://arabidopsis.org/), the latest version of the Arabidopsis

genome annotation (TAIR10) has around 33,602 total annotations.

2.1.1.1 Genomic Sequence

The genome of any organism is the complete set of DNA within the nucleus of that organism. The

DNA molecule is double stranded and packaged into chromosomes. The genome can be seen as a an

information resource. As mentioned earlier in the context of a genome browser, the sequence can be

chromosomes, plasmids, contigs, scaffolds or any other sequence of interest. “The sequence provides

a reference coordinate system and a natural platform on which to assemble scientific annotations

and genome-mapped data sets from diverse sources” [Nielsen et al., 2010]. Interestingly enough,

there is no correlation between the apparent physical size or complexity of an organism and their

genome size. For example, the human genome contains about 3 billion DNA bases, while a single

wheat genome contains about 17 billion DNA bases.
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The genome sequence can be seen as a huge text of a four letter alphabet (four bases A, C,

G, T) and in order to understand this text (the genetic code), we need to extract its underlying

information. This process of taking raw genome sequences and attaching biological information

to them is called ‘Genome Annotation’. In fact the genome sequence is only as valuable as its

annotation [Stein, 2001].

2.1.1.2 Genomic Annotation/Features

In general, annotations are some kind of explanatory data or comments attached to a specific

part of the original data. According to [Yandell and Ence, 2012], “genome annotation is a term

used to describe two distinct processes. I- ‘Structural’ genome annotation, which is the process of

identifying genes and their intron-exon structures. II- ‘Functional’ genome annotation, which is the

process of attaching meta-data such as gene ontology terms to structural annotations.” A genomic

feature/annotation can be seen as a tuple containing coordinates on the genome (sequence, strand,

start, and end) augmented by additional data specific to a particular type of feature. Examples of

features includes genes, microarray probe values, peptide measurements, or protein-DNA binding

sites, single-nucleotide polymorphisms (SNPs) and repeats that have positions on the DNA sequence

[Bare et al., 2010].

The genome is a huge information source that encodes our genetic code. It basically has all

the information needed to determine who we are, how we look like, think and grow. Therefore,

annotating the huge sequence of bases is extremely important and a difficult part of genome analysis.

Genomic annotation can also be defined more generally as the process of identifying important

information about a genome. It is how we attach what we know about a genome and this is done

by applying a standardized scientific nomenclature [Kaps et al., 1997]. An annotation example

is a gene that ranges from position 10 to 50 bp. In the case of genomes, annotation is done

by using a structured controlled vocabulary for the parts of a genomic annotation known as the

Sequence Ontology (SO). Huge efforts are made by sequencing centers, model organism databases

and academic/institutional laboratories around the world to annotate the genomes of different model

organisms [Madupu et al., 2010]. Evidently, the quality of the genomic data is mainly determined

by the completeness and correctness of both sequence and annotation [Kaps et al., 1997].

2.1.2 Genomic Data File Formats

Genomic datasets can be taken from various online repositories such as GenBank, EMBL-EBI

Nuclutide sequence database, and it can also be taken from existing genome projects databases like

Ensembl and UCSC, which both have genome browsers interfaces. The data in those repositories

can be saved in archival or relational databases or any other type of databases. The simplest form

of databases are flat-files, which are widely used in the bioinformatics field because they are easy
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to distribute, easy to handle by computers and comprehensible by humans. Through time, there

has been several introduced flat files (text or binary format) that are used to store genomic data

such as FASTA (for storing genomic sequences), GFF (for storing gene related data), SAM/BAM

(for storing alignment data), Wiggle (for storing quantitative data), VCF(for storing variant data)

and many more [Letovsky, 1999]. The size of data files can range from several megabytes of

processed genomic data (e.g. GFF or VCF) to more than 50 GB of intermediate genomic data (e.g.

exome BAM files, with sizes more than 200 GB in low coverage genomes) [Medina et al., 2013]. A

comprehensive specification for those types of formats is presented in Appendix A and Appendix B.

2.1.3 The Sequence Ontology (SO)

Genomic data is being massively produced by various different research groups and projects around

the world (such as GenBank, UniProt), and because each group hosts their own databases and

uses their own data models to describe their annotations. This will eventually present a real data

inconsistency problem when attempting to compare the annotations of different sources. Besides,

biological terms are very ambiguous in nature (e.g. the same word is often used to describe more

than one thing, as in the case of a stop codon being part of CDS or the 3’-untranslated region (3’

UTR)). These problems motivate the need of a controlled vocabulary for genomic annotations that

will facilitate data management, exchange and analysis.

As a result, the sequence ontology project began with a group of scientists and developers from

the model organism databases (FlyBase, WormBase, Ensembl, SGD and MG) that got together to

collect and unify the terms they used in their sequence annotation. The result was a well controlled

vocabulary of terms or concepts with a restricted set of relationships between those terms. The

scope of the sequence ontology project is the description of the features and properties of biological

sequence [Eilbeck et al., 2005]. As described by [Eilbeck et al., 2005] ], “the Sequence Ontology

(SO) is a well known, open source, structured and controlled vocabulary for the various parts of a

genomic annotation.” Genome browsers use the sequence ontology to control the naming of different

annotations and to correctly specify their relationships, which helps in their visualization.

2.2 History and Evolution of Genome Browsers

Before genome browsers existed, genomes of today were made available to science because of the

huge discovery made in 1977 by two scientists, Walter Gilbert and Frederick Sanger, who invented

the first DNA sequencing technology. They were awarded the Nobel Prize three years later. It

was certain that their discovery would have enormous implication for science. This sequencing

technology known as the ‘Sanger method’ was very expensive (e.g. the human genome costs 3

billion dollars and around 13 years to sequence with this technology). Still, this did not stop
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biologists from making advancements in this new and exciting field [Hutchison, 2007].

The first genome to be sequenced was that of the bacterium Haemophilus influenzae in 1995.

After that several genome sequencing projects were established to sequence many other organisms.

As a result several genomes have been sequenced including Baker’s yeast (Saccharomyces cevevisiae),

Nematode worm (Caenorhabditis elegans), Thale cress or Arabidopsis (Arabidopsis thaliana) and

many others.

In 1990, the Human Genome Project, which was one of the largest international collaboration

ever undertaken in biology, was initiated with thousands of scientists involved. The initial goal was

to sequence the human genome and deliver it to the public by 2005. In 2000, the completion of

the first draft of the human genome was announced. Two years ahead of schedule, in 2003, the

human genome has been sequenced, as mentioned in the timeline of the Human Genome Project

(http://www.yourgenome.org/facts/timeline-the-human-genome-project).

Today, with the rapid growth of genome sequencing projects, the ‘Genome Browser’ has become

a standard and an indispensable tool for exploring genomes and their data [Nielsen et al., 2010],

since it plays an essential role in genomics by providing comprehensible visualizations that elicit the

understanding and the analysis of genome sequences and their annotated features (e.g., chromosomal

position, genes, protein/nucleotide sequences, structures of exon/intron, and promoters) [Jung et al.,

2008]. It even provides a common platform for researchers to share, store, and publish scientific

discoveries [Nielsen et al., 2010, Kong et al., 2012]. A genome browser is also used as a gateway to

more detailed information. It allows viewing data at any scale, from single base pair resolution to

a whole chromosome, and shows as much information into the Browser view as the scale permits.

Basically any data that can be mapped to genomic coordinates can be presented in the genome

browser [Kuhn et al., 2012].

Nowadays, there are almost as many genome browsers as there are genome projects. A simple

and comprehensible timeline is shown in Figure 17, which illustrates the chronology of introducing

several reviewed genome browsers and some milestones affecting their developments.
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Figure 17: Genome Browser Timeline, displaying the chronology of available genome browsers.
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Table 2: A List of Genome Browsers

Name Date Description URL Reference

Web-Based Genome Browsers

ABrowse 2010 A customizable genome browser framework with

google-map like navigation, rich functions and flexi-

ble configuration to facilitate various genome research

projects.

http://www.abrowse.org [Kong et al., 2012]

Annmap/

X:Map

2007 A free genome browser that shows Affymetrix Exon

Microarray hit locations alongside the gene, transcript

and exon data on a Google Maps API.

http://annmap.picr.man.

ac.uk/

[Yates et al., 2008]

Anno-J v1.0 2008 A Web 2.0 application designed for visualizing deep se-

quencing data and other genome annotation data. It is

intended to run in modern W3C compliant browsers,

and allows flexible configuration of plugins and data

streams from providers located anywhere on the inter-

net.

http://www.annoj.org [Lister et al., 2008]

BioViews 1998 An intuitive, platform-independent, Java-based

Genome browser prototype developed for the BDGP

and runs as an applet in any Java-enabled web

browser.

N/A∗ [Helt et al., 1998]

ChromoZoom 2012 A flexible, fluid, next-generation web-based genome

browser. It uses a local installation of the UCSC

Genome Browser to generate and pre-cache tiled PNG

images.

http://chromozoom.org/ [Pak and Roth, 2013]

Dalliance 2010 A fast, interactive, next-generation genome visualiza-

tion tool and DAS client, that is easy to embed in web

pages and applications.

http://www.

biodalliance.org

[Down et al., 2011]

Ensembl 2000 A online genome browser developed collaboratively

by the European Bioinformatics Institute and Sanger

Center for the human genome project to be used as a

single point access to annotated genomes.

http://www.ensembl.org/ [Birney et al., 2004]

Gaggle

Genome

Browser

(GGB)

2010 The Gaggle Genome Browser is a cross-platform desk-

top program for interactively visualizing high through-

put data in the context of the genome.

http://gaggle.

systemsbiology.

net/docs/geese/

genomebrowser/

[Bare et al., 2010]

GBrowse 2001 An open-source browser developed as part of the

Generic Model Organism Database project.

http://gmod.org/wiki/

Gbrowse

[Stein et al., 2002]

Genome Maps 2012 A next-generation web-based genome browser. It uses

highly efficient technologies from the new HTML5

standard, such as scalable vector graphics, that op-

timize workloads at both server and client sides and

ensure future scalability.

http://www.genomemaps.

org

[Medina et al., 2013]

Genome Pro-

jector

2009 A web-based gateway for genomics information with

a zoomable user interface using Google Maps API

equipped with four seamlessly accessible and search-

able views: a circular genome map, a traditional

genome map, a biochemical pathways map, and a

DNA walk map.

http://www.g-language.

org/g3/

[Arakawa et al., 2009]

Genoverse

interac-

tive genome

browser

2013 Genoverse is a portable, customizable, back-end in-

dependent JavaScript and HTML5 based genome

browser which allows the user to explore data in a

dynamic and interactive manner.

http://www.genoverse.

org

Not published yet
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JBrowse 2008 A Javascript-based genome browser that provides a

fast, highly interactive interface for visualizing ge-

nomic data.

http://jbrowse.org/ [Skinner et al., 2009,

Westesson et al., 2012]

myKaryoView 2010 A web tool for visualization of genomic data specif-

ically designed for direct-to-consumer genomic data

that uses publicly available data distributed through-

out the Internet. It does not require data to be held

locally and it is capable of rendering any feature as

long as it conforms to DAS specifications.

http://mykaryoview.com [Jimenez et al., 2011]

NCBI Map

Viewer

2000 Vertically oriented viewer, integrated with NCBI re-

sources and tools.

http://www.ncbi.nlm.

nih.gov/mapview/

[Dombrowski and Ma-

glott, 2002]

OmicBrowse 2006 A genome browser designed as a scalable system for

maintaining numerous genome annotation datasets. It

is a Flash-based high-performance graphics interface

for genomic resources.

http://gremlinViz.org [Toyoda et al., 2007,

Matsushima et al.,

2009]

STAR 2013 An integrated web application that enables online

management, visualization and track-based analysis of

next-generation Sequence data.

http://wanglab.ucsd.

edu/star/browser

[Wang et al., 2013b]

SViewer N/A∗ NCBI’s new Sequence Viewer is the graphical display

for the Nucleotide and Protein databases.

http://www.ncbi.nlm.

nih.gov/projects/

sviewer/

Not published yet

TGAC Browser 2013 A new open-source Genomic Browser developed to

visualise genome annotation from Ensembl Database

Schema.

http://tgac-browser.

tgac.ac.uk

Not published yet

Trackster 2012 A visual analysis environment for next-generation se-

quencing data that tightly couples interactive visual-

ization with data analysis.

http://galaxyproject.

org

[Goecks et al., 2012]

UCSC 2000 An on-line genome browser hosted by the University

of California, Santa Cruz (UCSC). It is an interactive

website offering access to genome sequence data from a

variety of vertebrate and invertebrate species and ma-

jor model organisms, integrated with a large collection

of aligned annotations.

http://genome.ucsc.edu/

cgi-bin/hgGateway

[Kent et al., 2002,

Kuhn et al., 2012,

Rosenbloom et al.,

2015]

VEGA 2004 The Vertebrate Genome Annotation (Vega) database

is a community resource for browsing manual annota-

tion from a variety of vertebrate genomes of finished

sequence. Vega is based on the Ensembl schema.

http://vega.sanger.ac.

uk/index.html

[Loveland, 2005]

WashU

EpiGenome

Browser

2013 A next-generation web-based genomic data visualiza-

tion system.

http://

epigenomegateway.wustl.

edu/browser/

[Zhou et al., 2011],

[Zhou et al., 2013]

Stand-alone Genome Browsers

Avadis NGS/

v 2.0 Strand

NGS

2011 Strand NGS - Formerly Avadis NGS is commercial, in-

tegrated platform developed by Strand Life Sciences to

provide analysis, management and visualization tools

for next-generation sequencing data. It supports work-

flows for RNA-Seq, DNA-Seq, ChIP-Seq, Methyl-Seq

and small RNA-Seq experiments.

http://www.strand-ngs.

com/features/

genome-browser

Not published yet

CGView 2004 A circular Genome Viewer, a Java application that

can be used to generate both static and interactive

graphical maps of circular DNA molecules, such as

plasmids and bacterial genomes.

http://wishart.biology.

ualberta.ca/cgview/

[Stothard and Wishart,

2005]

∗N/A=Not Available
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GenPlay 2011 A desktop genome analyzer and visualizer that was

written in Java used for high-throughput data that is

being developed by the Stem Cell Genomic Unit at the

Albert Einstein College of Medicine

http://www.genplay.net [Lajugie and Bouhas-

sira, 2011]

Golden Helix

GenomeBrowse

2012 A free, desktop tool that delivers visualizations of ge-

nomic data. It has a high performance backend that

is paired with an intuitive user interface.

http://www.goldenhelix.

com/GenomeBrowse/

Not published

Integrated

Genome

Browser (IGB)

2003 An open source, desktop graphical display tool imple-

mented in Java. It is a highly customizable genome

browser that can be used to view and explore genomic

data and annotations, especially RNA-Seq and ChIP-

Seq data sets.

http://igb.bioviz.org [Nicol et al., 2009]

MochiView

Genome

Browser

2009 A Java software that integrates browsing of genomic

sequences, features, and data with DNA motif visual-

ization and analysis.

http://johnsonlab.ucsf.

edu/mochi.html

[Homann and Johnson,

2010]

Savant 2010 A next-generation genome browser designed for the

latest generation of genome data.

http://genomesavant.

com/p/savant/index

[Fiume et al., 2010,

2012]

The Genome

Environment

Browser (GEB)

2008 The Genome Environment Browser (GEB) is a Java

application developed to visualise distribution of ge-

nomic features in high resolution.

http://web.

bioinformatics.ic.

ac.uk/geb/

[Huntley et al., 2008]

Viral Genome

Organizer

(VGO)

2000 A genome browser providing visualization and analy-

sis tools for annotated whole genomes from the eleven

virus families in the VBRC (Viral Bioinformatics Re-

source Center) databases.

http://athena.

bioc.uvic.ca/

virology-ca-tools/vgo/

[Upton et al., 2000]

Back in 1996, the first reference of a genome browser named Genomebrowser was introduced

by[Heumann et al., 1996], and is a web-based genome browser developed for the visualization of

homologies within the S. cevevisiae genome [Kaps et al., 1997]. This genome browser follows a

top-down approach of presenting the genome data [Heumann et al., 1996]. After that, several other

genome browsers were introduced. Some are web-based genome browsers, such as GBrowse [Stein

et al., 2002], JBrowse [Skinner et al., 2009] and Dalliance [Down et al., 2011]. Others are standalone

applications, such as Savant [Fiume et al., 2010] and the Integrated Genome Browser (IGB) [Nicol

et al., 2009].

Besides their platforms, genome browsers can be divided according to the type of genome they

represent: circular and linear. There are a few circular genome browsers, such as CGView [Stothard

and Wishart, 2005], Leproma [Jones et al., 2001] and Genome Projector [Arakawa et al., 2009](a

screenshot of Genome Projector is shown in Figure 18), which are all used to represent circular

genomes, usually bacteria. Most genome browsers are used to represent linear genomes, since they

represent a much wider number of organisms. In linear genome browsers, a one dimensional coor-

dinate system is used to map genomic data and annotations. This coordinate system corresponds

to the base positions in the genome sequence. Typically, the different types of annotations are

organized inside tracks [Gel Moreno and Messeguer Peypoch, 2014]. While most genome browsers

follow a horizontal orientation of the data tracks under the coordinate system, a few follow a vertical

orientation, a good example being the well known NCBI’s Map Viewer [Dombrowski and Maglott,

2002]. They also have zooming and panning capability to navigate to interesting regions. The linear
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genome browsers implement a one-dimensional zooming (only the chromosome or the sequence scale

changes) [Gel Moreno and Messeguer Peypoch, 2014].

Figure 18: Screenshot of Genome Projector, a zoomable circular genome browser based on the G-

Language and the Google Maps technology, displaying the genome of Escherichia coli.source: http: // www.

g-language. org/ g3/

Stand-alone browser programs are installed locally and provide better visualization and inter-

activity but they burden users with keeping data up-to-date, constantly having to download and

reformat data. They are not suited for distributive and collaborative research approaches [Mader

et al., 2014]. In contrast, web-based genome browsers do not require the user to download, install

or update. Typically they delegate computational load to remote servers, and store data centrally

for all users to immediately dive into the data [Wang et al., 2013b].

Since genomic data like DNA sequences and protein sequences and their annotations are mainly

stored in online databases like GenBank (http://www.ncbi.nlm.nih.gov/genbank/), DDBJ (DNA

Data Bank of Japan, http://www.ddbj.nig.ac.jp), and the European Bioinformatics Institute

(http://www.ebi.ac.uk/about), web-based genome browsers have a much larger community than
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standalone applications that are more dedicated to fulfill the needs of individual users. Online re-

sources and analysis are increasing, which results in the pressing need to design integrative genome

browsers that provide open data access [Kong et al., 2012].

In this document we are mostly focusing on web-based genome browsers. The main platform

of this type of genome browsers is the client’s web browser. As such, web-based genome browsers

largely depend on the advancements of web technology. During the Web 1.0 paradigm, the web

was about navigating through a set of static web pages. Therefore, genome browsers during that

time were page-based applications that rendered static images of the current region of the genome

and sent it to the client web-browser. The main approach used by major genome browsers was to

let the server do all the work of querying databases, integrating information, and creating bitmap

image files and displaying them through the user’s web browser [Down et al., 2011].

Several popular web-based browsers, such as the University of California, Santa Cruz (UCSC)

genome browser [Kent et al., 2002], and the Ensembl genome browser [Birney et al., 2004] were used

to access huge databases and create visual representations of that data. Those genome browsers

took advantage of the server capabilities and their main approach was to let the servers suffer

all the computational costs of rendering a static pictorial image of the requested region, which the

client’s web browser just passively displayed. They also used the Common Gateway Interface (CGI)

protocol, which poses a page-based model of viewing the data. For instance, in GBrowse, the main

approach is to let the server query a database of genomic features and render the HTML and graphics

files needed to display a region of the genome [Skinner et al., 2009]. As a result, those early and

classical genome browsers lacked the interactivity found in stand-alone applications. Since the first-

generation technologies suffered from server-side rendering delays and static page-based transition,

it could not support smooth navigation through large genomic regions and annotations. As such,

every user action would result in the server rendering an image which is passively delivered to the

client web browser [Mungall, 2011]. It also did not benefit from the clients computational power

and disrupted the user attention [Wang et al., 2013b, Kong et al., 2012].

After that, data representation improved over the years, as well as data access, with the intro-

duction of distributed sources via DAS [Dowell et al., 2001] or other means, but the interactivity

was still limited by the Web 1.0 technologies [Gel Moreno and Messeguer Peypoch, 2014]. The basic

functions provided by earlier browsers are a graphical interface to view different data types in the

context of genomic sequences, basic navigation (panning and zooming) through page-based transi-

tions, searching for regions of interests, and adding third party annotation by uploading data files

in standard supported formats, and configuring the display by manipulating tracks (like hide/show

tracks, reorder, change track appearance (glyph shape/color/size)) [Stein et al., 2002].

Hybrid approaches, such as Java applets, were developed to overcome the limits of HTML and

provide more interactivity. Those applets can be downloaded from a server and run in a Java virtual
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machine on the user’s computer. One of the early examples of that is BioViews [Helt et al., 1998].

Nevertheless, Java applets suffering from their own problems and limitations, this approach was not

adopted by other genome browsers [Loraine and Helt, 2002, Gel Moreno and Messeguer Peypoch,

2014].

In recent years and with the introduction of the second-generation (Web 2.0) technologies such

as JavaScript, Asynchronous Javascript and XML (AJAX), RESTful architecture, client-side ren-

dering and HTML5 technologies, a new class of web applications were introduced named ‘Rich

Internet applications’. These applications decouple server and user interactions (communication

between the web browser and the server takes place asynchronously in the background), and move

from the page-based model to a more interactive solution. This approach is achieved by tech-

niques such as client-side scripting (using JavaScript and related dynamic HTML technologies)

and structured data representation (using file formats like XML and JSON). These techniques are

often collectively called AJAX(Asynchronous JavaScript and XML; http://www.adaptivepath.

com/ideas/essays/archives/000385.php), Figure 19 showing the traditional model for web ap-

plications compared to the AJAX model [Skinner et al., 2009].

Around 2005, next-generation sequencing technologies have emerged and provided cheaper and

faster genome sequencing solutions. For example, the current 454 Life Sciences (Roche) GS FLX

system can produce 100 million bases per run in less than eight hours, is hundreds of times faster and

over 10 times cheaper than the conventional Sanger sequencing. Another example is the Illumina

sequencing (formerly Solexa sequencing) technology, which is able to generate over 1 billion bases

of high-quality DNA sequence per run at less than 1 % of the cost of Sanger sequencing. These new

technologies have produced massive amount of sequence data, which presented another challenge

for genome visualization and analysis tools [Huang and Marth, 2008].

In the same year, 2005, Google Maps API was launched (http://maps.google.com/), which

was one of the earliest examples of AJAX applications. Google Maps demonstrated the possibility

of creating a rich web application that can provide direct image manipulations by using AJAX

to provide more interactivity to web applications [Gel Moreno and Messeguer Peypoch, 2014].

”Google Maps achieves this by pre-rendering an image of the entire world map at multiple zoom

levels, breaking this image into tiles of 256 X 256 pixels, and having a JavaScript client, which runs

in the user’s web browser, downloading only those tiles visible in the current view“ [Skinner et al.,

2009].
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Figure 19: The traditional model for web applications (left) compared to the AJAX model (right). source:

http: // www. adaptivepath. com/ ideas/ ajax-new-approach-web-applications/

Soon after, this improvement in web technologies had impacted genome browsers and intro-

duced new AJAX and HTML5 based genome browsers that became the ‘Next-generation genome

browsers’. Three examples of implementing Google Maps approach in genome browsers are XMap

[Yates et al., 2008], ABrowse [Kong et al., 2012] and Genome Projector [Arakawa et al., 2009]. All

three genome browsers follow the Google Maps approach of pre-rendering, such that each track is

rendered and broken up into tiles which are served up on demand depending on the genome region

that the user is viewing [Skinner et al., 2009, Medina et al., 2013, Pak and Roth, 2013]. However,

Genome Projector only shows bacterial genomes and both XMap and Genome Projector genome

browsers do not support zooming to view individual DNA bases. This is due to the space required

to store pre-rendered image tiles on the server [Skinner et al., 2009]. Another example that follows

Google Maps approach is ChromoZoom [Pak and Roth, 2013], which also pre-renders and caches

general-use tracks into tiled images on the server and serves them in an interactive web interface

with inertial scrolling and zooming via the mouse wheel or trackpad. ChromoZoom is the first

online genome browser to provide client-side parsing and rendering of user-provided custom data

[Pak and Roth, 2013].

Another example of these next-generation browsers is Genome Maps [Medina et al., 2013],

which also takes advantage of new HTML5 standard, specially the scalable vector graphics (SVG)

and the FileReader API. At that time, this was the only web-based solution that allows users to

upload local large BAM or VCF files and navigate through them dynamically on the client side
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[Medina et al., 2013]. Another feature to genome browsers was implemented in JBrowse version

1.10.0 (http://jbrowse.org/jbrowse-1-10-0/), which is the creation of ‘combination tracks’ that

can combine data from multiple other tracks using range, arithmetic, or masking operations. For

example, a BigWig track can be masked to highlight only regions that lie within features from a

BAM track, or the intersection of two or more feature tracks can be calculated.

Several recent genome browsers avoid the cost of pre-rendering in several different ways. For

instance, the NCBI Sequence Viewer (http://www.ncbi.nlm.nih.gov/projects/sviewer) uses

the CGI-based traditional approach of rendering an image of the current region on the server and

sending it to the client, but it also allows dragging the image from side to side, as in Google Maps.

After user drags the image, the server renders a new image representing the new region. This

approach is not a big improvement from the traditional genome browsing and it also suffers from

server-side computational costs. Another example is Anno-J [Lister et al., 2008], which implements

a different strategy that relieves the server from the costs of rendering, by rendering the genomic

information on the client’s web browser using the ‘canvas’ HTML element. Still, the database

query costs remains. The second version of GBrowse [Stein, 2013] improves the user experience by

benefiting from AJAX to dynamically load, reorder, and update browser tracks without triggering

a full page reload. However, it still does not support smooth panning and zooming and suffers

the cost of server-side rendering. On the other hand, JBrowse [Skinner et al., 2009] implements a

different strategy where both database-query (determining what genomic features are in the region

of interest) and rendering those features using standard HTML and JavaScript functionality are all

done by the client [Skinner et al., 2009]. Both Anno-J and JBrowser render genomic data on the

browser-side, the former drawing pixels on HTML5 Canvas elements and the latter manipulating

standard HTML elements. However, both require pre-processing of custom data by an administrator

before it can be rendered within the browser [Pak and Roth, 2013]. Several other web-based

genome browser examples have been presented, which offer a more interactive and smoother genome

browsing experience. This is due to the distribution of work between the server and the client which

reduces network loading time and does not require page reloading. Such as myKaryoView [Jimenez

et al., 2011](a genome browser and DAS client with client side data rendering based on HTML

elements), Dalliance [Down et al., 2011] (an interactive genome browser and DAS client with client

side data rendering based on SVG, and the WashU epigenome browser) [Zhou et al., 2011, Wang

et al., 2013b, Sen et al., 2010, Gel Moreno and Messeguer Peypoch, 2014].

The UCSC Genome Browser (http://genome.ucsc.edu.) [Kent et al., 2002], Ensembl (http:

//www.ensembl.org/) [Birney et al., 2004], and NCBI Map Viewer (http://www.ncbi.nlm.nih.

gov/projects/mapview) [Dombrowski and Maglott, 2002] are the most widely used genome browsers,

since they are gateways to genome projects and serve a large amount of data.

30

http://jbrowse.org/jbrowse-1-10-0/
http://www.ncbi.nlm.nih.gov/projects/sviewer
http://genome.ucsc.edu.
http://www.ensembl.org/
http://www.ensembl.org/
http://www.ncbi.nlm.nih.gov/projects/mapview
http://www.ncbi.nlm.nih.gov/projects/mapview


The Ensembl genome browser was launched by the Sanger Centre and EMBL-European Bioin-

formatics Institute in the year 2000 [Brooksbank et al., 2003]], the year after the University of

California, Santa Cruz (UCSC) launched its Human Genome Browser [Rosenbloom et al., 2015].

Table 2 provides a reference to view a list of the available and reviewed genome browsers.

The development of a fully functional genome browser is a time-consuming and tedious process.

A well designed genome browser framework, like the widely known and used GBrowse [Stein et al.,

2002]], and the reuse of readily available open-source genome browser implementations are very

important aspects [Kong et al., 2012].

There are several examples of software reuse in genome browsers. For instance, the Ensembl

code has been reused on sites such as the Gramene rice genome (http://www.gramene.org/), the

Vega curated annotation browser (http://vega.sanger.ac.uk/) and VectorBase (http://www.

vectorbase.org) [Stalker et al., 2004, McKay and Cain, 2009].

In addition, several genome browser toolkits and libraries, that help in the development and

implementation of genome browsers, have been introduced, such as: the UTGB Toolkit [Saito

et al., 2009]] (which offers easy ready-to-use functions to develop genome browsers and can act as

a DAS client), Scribl [Miller et al., 2013] (an HTML5 Canvas-based graphics library for visualizing

genomic data over the web) [Gel Moreno and Messeguer Peypoch, 2014], SVGenes [Etherington

and MacLean, 2013](a library for rendering genomic features in scalable vector graphic format).

There also have been several reviews of genome browsers including [Cline et al., 2009], [Nielsen

et al., 2010], [Wang et al., 2013a], [Karnik and Meissner, 2013], [Pabinger et al., 2013] and even a

framework [Lacroix et al., 2011] for the evaluation and comparison of genome browsers has been

created [Gel Moreno and Messeguer Peypoch, 2014].

2.3 Information Visualization and Genome Browsers

Since the genomic era and the completion of the human genome project, the quantity of biological

data and information has been vastly growing, causing a problem in investigating and analyzing this

plethora of data. In order to solve this problem, Information Visualization (IV) provides various

techniques to aid the analysis of these huge amounts of data. In general, information visualization

techniques can be defined according to [Tao et al., 2004] as:

Computerized methods that involve selecting, transforming and representing data

in a visual form that facilitates human interaction for exploring and understanding the

data.

Information visualization techniques take advantage of two properties of the human visual system.

First, its ability to deal with very large amount of information at a time (large bandwidth). Second,
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its ability to distinguish trends and patterns within visual fields, like location, shape, size, and color

of objects.

In general, information visualization techniques can be used to serve two goals: first, to visualize

large amounts of information; second, to aid and accelerate the analysis of massive amounts of

information by the recognition of patterns and trends [Tao et al., 2004].

Genome browsers, as defined in Section 2.1, are a well known visualization tool, which is used to

visualize the genome of any organism and its annotations. Analyzing the genome of any organism

in their original textual format is a very challenging task. The human genome for instance, is about

3 billion base pairs, which is like going through a huge text book of a very long sequence of A, C, G,

T (base pairs). Looking at this massive text is not helpful, since we cannot keep a global overview

of the data and still get interesting detailed information. Therefore, there is a huge demand for

tools that can help biologists analyze genomes and their annotations. Genome browsers are an

essential visualization tool used on a daily basis by biologists investigating genomes and related

information. Information visualization techniques are used in genome browsers to facilitate the

analysis of genomic datasets [Tao et al., 2004].

The principles used in designing and implementing genome browsers are based on the fact

that spatial relationships often indicate functional relationships in genomes. They are therefore

used to visually show the spatial relationships between different pieces of genomic data as shown in

Figure 20, which shows the position and structure of a gene named ‘lin-12’ in C.elegans chromosome

III:9060242..9071760 (following the format used to indicate the exact position of any feature on the

genome chr:start..end).

It is evident that good representations of data can greatly help us understand and generate some

useful knowledge. It is important that the representations used are meaningful and suitable for the

type of data being presented and the kind of information we want to extract from it, e.g. line graphs

are used to represent GC content of a sequence data type and rectangles connected with lines are

used to represent gene position and structure (see Figure 22-(a) and Figure 20). This visual repre-

sentation of different data types helps users form hypotheses about their functional relationships.

They also help to visually compare and correlate information from several different sources, thus it

is used to evaluate multiple forms of evidence, looking at interesting biological cases, linking out to

more detailed sources of information, such as genomic databases. For example, the user can click

on a gene feature, as in Figure 20, and it will open another page presenting more detailed informa-

tion as in Figure 21. They are also helpful in communicating information to collaborators, visually

preparing publication figures, and their availability on the web provides a link with numerous other

web-based sources of information [Skinner et al., 2009].
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(a) Gene Track

Figure 20: Example of Gene Track, screen shot taken from the WormBase website http://www.wormbase.

org/tools/genome/gbrowse/c_elegans_PRJNA13758/

(a) Detail Page

Figure 21: Example of a Detail Page, screen shot taken from the WormBase website http://www.

wormbase.org/species/c_elegans/transcript/R107.8#05--10

The basic approach used by most genome browsers is to represent the genome and all its other

data along the DNA sequence in a linear, one dimensional representation, since most of the genomes

are considered as linear data, with the DNA sequence being the main coordinate. The other types

of annotation information are represented as parallel piled up “tracks” under the same coordinate

along the Y-axis. Visual hints like “glyphs” are designed to represent the type of information on

the tracks. For example, colored rectangles could be used for coding exons and thin lines for coding

introns, as shown in Figure 20.

It is important that the right level of detail is emphasized while other distracting aspects of the data

are hidden. Since an over complex representation will show more distracting information and an over

simplified representation will discard important information [Gel Moreno and Messeguer Peypoch,

2014]. In the context of genome browsers, it is extremely helpful to show information in different
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levels of detail, each level emphasizing different aspects of the data in a seamless and interactive

way. In order to accomplish this, one of the key information visualization techniques, ‘dynamic

semantic zooming’ , is used in genome browsers: it automatically changes the semantics of the

displayed content based on different levels of zooming, which helps view genomes in different levels

of detail, such as the chromosome level, locus level, gene level and DNA bases level. An example of

this is shown in Figure 22 [Tao et al., 2004, Wang et al., 2013a].

(a) Low Zoom

(b) High Zoom

Figure 22: (a) DNA track at low resolution shows the GC content. (b) The same track as (a) but at high

resolution (or zoom levels) shows the individual DNA base pairs.

The strategy used in implementing most visualization tools in bioinformatics including genome

browsers consist of the same three main steps for implementing any general information visualization

system as summarized by [Lang et al., 1996], which include data acquisition, data mapping, and

rendering. The first step is to acquire data and perform any needed pre-processing operation so

that the data is in the appropriate format ready to be mapped to visual spaces. This is available

in genome browsers in the form of pre-processing code, which takes data in a special file format,

or from databases, and format it to be usable by the browser. The second step is to map the

pre-processed data to visualizable geometrical shapes with appropriate attributes, such as location,

color, and size. In our example, the pre-processed data can be mapped to glyphs of different sizes,

colors, and shapes. Different groups of data could be encoded using different glyphs with specified

size and color. The last step is to render the final output images to a visible graphical view. In

the genome browsers case, the genomic data available is rendered into tracks under a sequence
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coordinate and presented to the user [Tao et al., 2004].

2.4 Comparison of Major Genome Browsers

2.4.1 Meta Level Information

We chose four specific genome browsers for our study, because they are well known research pro-

totypes. The description of the four investigated genome browsers (GBrowse, JBrowse, Dalliance

and Savant) follow the same layout with 4 main sections that comes after a brief introduction of

each genome browser. The 4 main sections are: user interface, implementation, functionality and

features (which in turn is divided into 8 subsections that are dedicated to a particular aspect or

functionality of a genome browser), and the final section is the non-functional requirements section.

User Interface section, contains a screenshot annotated with the various parts of the user inter-

face of a genome browser, followed by a description of the user interface look and design.

Implementation section, describes general implementation details like the programming lan-

guages used, the basic architecture of the implementation and sometimes describes some used

data structures.

Functionality and Features section, describes the various functionalities of each of the inves-

tigated genome browsers, which are divided into 8 important functionality aspects that are

considered in our work.

Visualization, describes the basic layout of the display and the visualization aspect of each

genome browser and how they visualize the genome and its related annotations.

Supported Data Files and Sources, lists the supported data files and sources of each

genome browser.

Navigation, talks about the various ways of navigating through the genomic view of each

genome browser.

Customization, discusses the customization options that is available to the end user of each

genome browser.

Third-party Annotations, talks about how each genome browser will help end users view

third-party annotations.

Searching Capabilities, explains the search capabilities of each genome browser.

Sharing Annotations, talks about the available sharing options of each genome browser.

Data Retrieval, talks about data access and retrieval options found in the genome browsers.
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Non-Functional Requirements section, mentions the supported non-functional requirements

of each genome browser.

2.4.2 Genome Browser Description

2.4.2.1 GBrowse

The GBrowse is short for the Generic Genome Browser. It is a combination of databases and

interactive web pages for displaying annotations and other features on genomes. It is a mature,

open source and web-based genome browser which can be deployed on public and private websites.

It was originally developed for WormBase (www.wormbase.org) and then released as a standalone

project in January 2002 and its latest release (version 2.54) was available in 2012. It is one of

the first web-based genome browsers and it was the first genome browser to be used outside its

original site. It is one of the most popular tools of the Generic Model Organism Database (GMOD)

project (www.gmod.org/). GBrowse is very popular and is used by many public sites including

WormBase (wormbase.org/), COSMIC (www.sanger.ac.uk/perl/genetics/CGP/cosmic), mod-

ENCODE (www.modencode.org), the human HapMap project (www.hapmap.org), BeeBase (www.

beebase.org), FlyBase (flybase.org), the Database of Genetic Variants (projects.tcag.ca/

variation) and many others. GBrowse is well supported by a mailing list, a WIKI, a help desk

and both physical and online tutorials. As of 2012 there were no major new features being added

to GBrowse. Instead, new development efforts were going to JBrowse, GBrowse’s designated re-

placement in the GMOD suite [Stein, 2013, Mao and McEnhimer, 2010]. In this section we are

investigating this genome browser to capture its main functionality and user interface design, which

will give us more knowledge about this type of tool and help drive the first set of requirements.

2.4.2.1.1 User Interface

The main interface of GBrowse is the genome browser page with the tracks aligned horizontally

along the Y-axis under the same genomic coordinate. The following information was found on

GBrowse’s help page. The browser display has three panels as shown in Figure 23.

(A) The overview panel: This panel displays the genomic context, typically an entire assembled

chromosome or a large portion of the sequence assembly such as a scaffold or contig.

(B) The region panel: This panel displays a portion of the genome surrounding the region of

interest.

(C) The detail panel: This panel displays a zoomed-in view of the genome corresponding to

the overview’s selection rectangle. The detail panel consists of one or more tracks showing

annotations and other features that have been placed on the genome.
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Figure 23: Screenshot of GBrowse, illustrating the various parts of the user interface. (A) The overview

panel, (B) The region panel, (C) The detail panel, (D) The tabbed menu, (E) The search box, (F) The data

sources menu, (G) The navigation control panel, (H) The track control buttons. Source: local installation of

GBrowse

At the top of the genome browser page there is a tabbed menu, as in Figure 23-(D), which

consists of several tabs that can take us to other useful pages.

The list of tabs are (numbered from left to right):

(D.1) Browser tab: This is the genome browser’s page that displays the genome with its annotation

tracks.

(D.2) Select Tracks tab: This is the page of the list of existing predefined tracks that the user can

select to display in the browser.
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(D.3) Snapshots tab: This is where the user goes to take snapshots of the display for presentation

or publication usage.

(D.4) Community Tracks tab: This is where public or community tracks are kept and it is used to

share files between users from a community repository of available tracks. This was introduced

starting GBrowse version 2.20 and above.

(D.5) Custom Tracks tab: This is where the user goes if he wants to display third party annotation

and features by either uploading a file, creating their own tracks using one of the supported

file formats or pasting the URL of a remote file.

(D.6) Preferences tab: This is the place where users can change their preferences like the size of the

region, the size of the genome browser image or whether or not to cache tracks.

There are several navigation controls on the top right of the browser’s page above the overview panel

shown in Figure 23-(G), which are used to scroll and zoom to regions of interest. There are two

configured speeds of scrolling left or right and several configured zoom levels and, for fine zooming,

the + and − signs are used. In Figure 23-(E), a search box can be used to directly navigate to

interesting regions or search for specific features or annotations. From Figure 23-(F) the user can

change the displayed dataset from a list of available data sources (This is helpful to change the

organism that is being investigated or even just change the source of data if there are multiple

sources). Several control and configuration buttons are found next to each track’s name, as shown

in Figure 23-(H).

2.4.2.1.2 Implementation

In general, GBrowse is a web application that has differently implemented server and client sides.

The server side is written in Perl using two libraries, BioPerl and Bio::Graphics, and a little C

code to accelerate critical functions like reading sequence or feature files, calculating alignments

or even writing tracks’ data in special formatted files to be viewed and downloaded by the user.

The server side manages a series of databases containing genome annotation information, receives

requests from the web browser to view regions of interest and renders these regions as PNG, SVG

or PDF images.

The client side has a series of Javascript functions to handle the user interface, allowing the user

to pan and zoom across the genome, select a region via click-and-drag, configure tracks via popup

menus and upload track data [Stein, 2013].

GBrowse has a 3 layer architecture.

First layer: This layer has the CGI (Common Gateway Interface) script named gbrowse which

is the main component, it is responsible for accepting user requests and processing them,

managing the user interface and displaying rendered images of annotated regions.
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Second layer: This layer has two software libraries BioPerl and Bio::Graphics. The first library

is responsible for interceding between the CGI script and the underlying database, while the

second is responsible for rendering the genome images and uses the GD module which is a

Perl library that is capable of generating many image formats such as JPEG, WBMP, PNG.

Third layer: This layer is a relational database, MySQL, which is responsible for storing and

retrieving features [Stein et al., 2002].

GBrowse uses simple configuration text files (.conf) where the data administrator can configure var-

ious aspect of the browser’s workings and user interactions like specifying the different datasources,

tracks and their configurations, directory information and more.

2.4.2.1.3 Functionality and Features

Visualization

Aggregating different types of genomic data and annotations into one graphical view is the main

function of every genome browser. GBrowse does this by providing three annotation views with

different scales. Those views are the chromosome view, a regional view and a detailed view. In

GBrowse, those views are called “panels” and their purpose is to ease the spatial correlation between

the features and their location on the sequence. GBrowse’s display of annotations and genomic fea-

tures are organized in the form of tracks along the Y-axis and under the same genomic coordinate

which is used as the X-axis.Those tracks contain features of some type in the form of distinctively

shaped “glyphs” and those glyphs are graphical objects that determine the shape of each of the

displayed genomic features associated with a specific GBrowse track. Those glyphs present a con-

figurable set of parameters specific to their type allowing further control over the display of features

such as height, color, width etc. GBrowse has a open source library of almost 79 glyphs of different

shapes and behaviours and this library continues to grow. The use of glyphs distinguishes GBrowse

user interface from the UCSC and Ensembl browsers, which rely more heavily on color to distinguish

different genomic features [Wang et al., 2013a, Stein et al., 2002].

Supported Data Files and Sources

GBrowse supports the following types of file formats: GFF, GFF3, BED for simple data and Wiggle

(WIG) for dense quantitative data. It also accepts simple internal format called feature file format

(FFF) and, as of version 2.0, GBrowse also supports next-generation sequencing data by displaying

SAM and BAM sequence alignment files [Stein, 2013].

GBrowse can display annotations and genomic features from multiple types of data sources like flat
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files, or different databases including MySQL, BioSQL and Chado. It can also act as a DAS client

or a DAS server [Stein, 2013].

Navigation

GBrowse offers zooming and scrolling capabilities and this can be done in several ways like using the

search box to navigate to a particular region or feature, jumping from region to region by clicking in

the overview panel, scrolling or zooming with the navigation bar controls described in Figure 23-(G)

[Stein et al., 2002].

Customization

There are several ways to customize the view in GBrowse. For the administrative user, there are

specially formatted configuration files (.conf) that are used to customize GBrowse and its local data.

Using the ‘Preferences tab’, as shown in Figure 23-(D.6), the end-user can change his preferences

like, the size of the region, the size of the genome browser image or whether or not to cache tracks.

For more specific customizations of the display, the user can configure the display of tracks in several

ways:

• Selecting a set of tracks to display using the list of checkboxes;

• Changing the order of the tracks by simple drag and drop;

• Hide/show or even close tracks in the detailed region; and

• Change the appearance of the track by manipulating its glyphs, which is done by changing

several attributes of the glyphs display like the color, size, height and width etc.

Semantic zooming does further customization of the display, GBrowse demonstrates this by first

inhibiting the display of feature labels and descriptions, and then deactivates collision control to

allow glyphs to overlap densely. Some glyphs will also change appearance during semantic zooming.

GBrowse can remember the user’s settings between sessions so that at the user’s next visit to the

GBrowse page, his or her preferences in terms of tracks, track options, track order, display width,

and genomic region of interest are automatically restored to their previous values. There is a reset

button located to the right of the navigation bar, that will restore the standard settings. The next

section will discuss one of the most important customizations of GBrowse which is the ability to

add private user tracks [Stein et al., 2002].

Third-party Annotations

One of the most important features of GBrowse is the ability to display third-party local or remote

annotations. This is done by a set of controls. The user can create their annotations and write

40



them in a provided textfield by using the ‘From Text’ option. GBrowse accepts either the full nine-

column GFF format or a simplified three-column version. Both formats allow the user to create

complex multipart features. Local annotations can be added to the genome by uploading one or

more user prepared text files describing the nature and position of the annotations to GBrowse

using a standard file upload accessed from the ‘From a file’ option. The user can also control the

way that the features are formatted by specifying their glyph, color, height, and other graphical

attributes. Once a feature file is uploaded, it persists on the GBrowse server for a period of time

established by the database administrator, typically 60 days since the last time the uploaded file

was accessed. Then end-users can manipulate the uploaded files, modify them, or delete them.

Those files are only accessible via a secret key that is stored in a cookie on the end-user’s machine.

In the case of remote files all the user needs to do is paste the URL of the file and import it to

GBrowse using the ‘From a URL’ option. Both uploaded and remotely located feature files are

stored at the server side as a set of flat files [Stein et al., 2002]. Figure 24, shows the Custom Track

page and the various ways of adding custom tracks.

Searching Capabilities

GBrowse provides a very flexible search functionality. It can search by annotation ID, name,

or comment. It accepts multiple types of search terms such as a chromosome name using the

nomenclature, a contig name, a clone accession number, a GenBank accession number, a gene

symbol, a genetic marker name, an SNP ID, or any other unique feature name that is known to the

database.

By default, after the search is complete, GBrowse will fit the entire landmark into the detailed view,

and if a search term was found in multiple locations, the browser will display an intermediate screen

that graphically shows the regions and prompts the user to select one to view. In the case that the

selected region is too large, the browser will show the region in the “overview panel” (Figure 23-(A))

and will ask the user to zoom in. Also if the searched landmark does not correspond to a feature

name, GBrowse will perform a keyword search on the underlying database, presenting the user with

a list of matching features and their genomic coordinates [Stein et al., 2002].
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(a) Custom Track Page

(b) Track Upload Options

Figure 24: Custom Track Page in GBrowse, (a) the user enters this page to add custom tracks, (b) the

different ways of adding user’s annotations

Sharing Annotations

GBrowse provides different ways of sharing tracks or files. It works on the basis that every file has

a permission setting which is a kind of sharing policy that specifies exactly who can access a file.

The user can use one of the following policies of sharing:

• Public/community: the users can add their tracks to a community tracks repository which is

available to all users.

• Casual: The user can click on the sharing icon found above each track and GBrowse will

provide a sharing link that the user can copy and send to other users. This can be done to
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all the selected tracks as shown in Figure 25-(a).

• Group sharing: is a more secure way for an owner to share a track with a specific user.

This can be done by simply entering the username or user ID of the user that the owner of the

track wishes to share the file with, and hitting ‘Add’. That user will have the track automatically

added to their session so he/she can use it. This is accessed by the Custom Tracks tab found in

Figure 23-(D.5) under a track’s sharing section as shown in Figure 25-(b) [GMOD, 2015].

(a) Track Casual Sharing

(b) Track Group Sharing

Figure 25: Track Sharing in GBrowse, (a) ‘Casual’ sharing, (b)‘Group’ sharing.
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Data Retrieval

GBrowse can help the user retrieve data by either using the ‘save track’ data control found in the

track controls (Figure 23-H) to save the data associated to a particular track or by using a variety

of available dumper plug-ins.

Gbrowse has three types of plug-ins:

1. Dumper plug-in: dumps the currently displayed region of the genome in a text, HTML or

another format. Example, FASTA and GFF dumping functions implementation.

2. Finder plug-in: searches the underlying databases for features, returns a list of features or

genomic regions found, then displays the results. For example, OligoFinder plug-in.

3. Annotator plug-in: adds annotations to the current view, for example standard restriction

map generator [Stein et al., 2002].

2.4.2.1.4 Non-Functional Requirements

GBrowse focuses on several non-functional requirements including extensibility, portability and

performance. Extensibility, as it was designed to be easily extended at the database layer (to

communicate to other databases), at the data model layer (to add new sequence objects with

different relationships), at the graphics rendering layer (to create new Glyph modules), and at

the topmost application layer (to add plugins that extends the GBrowse capabilities). Portability,

as it was designed to be modular and easily portable (depends on readily available software).

Performance, hence C code is used on server side to accelerate critical functions [Stein et al., 2002].

2.4.2.2 JBrowse

JBrowse is an open source JavaScript-based genome browser, hence the name JBrowse. It is also

a GMOD project being developed as the successor of GBrowse. Its first version 1.0 was developed

in 2009, as the first online publication of JBrowse suggests, and its second version 1.1 was released

in September 2010, which was the first in a planned series of quarterly releases. It is still under

active maintenance and development and it is actively documented and supported by a mailing list,

bug-tracking, request-tracking system and tutorials. There is an Amazon virtual machine image

available at the tool’s official site (http://jbrowse.org). Until now only two web-sites are using

JBrowse as their genome browser: Personal Genomic website (http://genomesunzipped.org/)

and the 150 Tomato Genome ReSequencing project (http://www.tomatogenome.net).

This section will discuss JBrowse looking at several aspects of the tool.

2.4.2.2.1 User Interface
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Figure 26: Screenshot of JBrowse, illustrating the various parts of its user interface. (A) A list of available

tracks, (B) The genome view, (C) The name of the track, (D) A menu for selecting a dataset—displaying the

name of the current dataset , (E) The tool panel, (F) The reference ruler, (G) Panning controls left/right,

(H) Zooming controls, (I) A menu for selecting the current sequence, (J) A text box (which can be used for

searching) showing the exact coordinate of the visible region, (K) The highlight button, (L) The share button

Source: JBrowse demonstration at http: // jbrowse. org

A reference ‘ruler’ at the top of the window indicates the chromosome, with the current viewing

area encapsulated by a red box. A pane on the left of the display stores the available tracks which

the user can select for display in the viewing area. The user can also move the tracks vertically to

reorder them in the viewing area. The panning and zooming controls are used to pan and zoom to

interesting regions of the genome.

2.4.2.2.2 Implementation

JBrowse is a client-server application that works over the Internet. The server-side is implemented
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in Perl using the BioPerl library and the client-side is implemented in JavaScript using the Dojo li-

brary. JBrowse uses client-side rendering, which means that the client does all the work, determines

what features are in a region of interest and renders those features using HTML and JavaScript

functionality (it draws those features live). In fact, all track manipulation is done live with no page

reload, by using AJAX technology. The only server-side work is preparing new data for JBrowse

to use, by sending static files to the client browser routines. Those static files are organized in

a way that enables the client browser to do the work done by the server in traditional genome

browsers. Like GBrowse, the server requires preprocessing of tracks before serving them to clients

and this is done by available Perl script. Those scripts preprocess raw annotation files (GFF/GFF3

for simple/compound feature tracks, WIG for quantitative tracks, and FASTA for sequence tracks)

and generate the relevant files that are downloaded by the client (JSON files for simple/compound

feature tracks, PNG images for quantitative tracks, and chunked strings for sequence tracks). Be-

sides flat files, the annotations can be fetched from a BioPerl genome database (BioTDB, BioTDasI,

etc.), in which case a configuration file (styled after the GBrowse configuration file, but using the

JSON format) identifies the database and determines the track listing and types.

In JBrowse, there are different data structures used to make loading and querying data faster.

Feature tracks are stored in Nested Containment Lists (NCLists) [Alekseyenko and Lee, 2007] data

structure for indexing features. This data structure is an efficient way of determining the intervals

contained within a given query interval. In the genome browser case, we use it to determine the

features contained within a viewing region. On the other hand, Patricia tries data structures are

used to store gene names and other text navigable labels and then index them on the server.

JBrowse implements a strategy where the server divides large data sets into small regional chunks

which helps provide quicker downloads.

There are two types of basic tracks in JBrowse: ‘feature’ tracks (for discrete features with start

and end points), and ‘image’ tracks (for quantitative (wiggle) tracks) that are rendered as image files

displayed along the genome. JBrowse is modular and it can be embedded in other web-applications

like a wiki or a blog. It works on most modern browsers like Firefox (version 2 or later), Safari

(version 3 or later), or Internet Explorer (version 6 or later) [Skinner et al., 2009].

2.4.2.2.3 Functionality and Features

Visualization

JBrowse is also a track-oriented browser, where features are drawn inside tracks and the layout of

tracks under a reference sequence coordinate is the same as many genome browsers layout. However,

the technologies used to render the features are different. JBrowse uses HTML5 canvas to represent

features and a number of feature classes built into JBrowse using HTML CSS. JBrowse displays data
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at various scales (from chromosome levels to base paris levels) which can be changed by zooming

in/out, this being called semantic zooming [Skinner et al., 2009].

Supported Data Files and Sources

JBrowse’s data can be drawn from flat files. The supported file formats are FASTA (for sequence

files), GFF , BED files (for simple discrete feature tracks), GFF3 files (for compound feature tracks),

WIG files (for quantitative per-base annotation tracks), BAM binary files (for alignment features).

Alternatively, data can be imported from a BioPerl database (Bio::DB, Bio::DasI, etc) or others like

Chado database. JBrowse also comes with a script that automatically downloads track data from

the UCSC human genome database and uses it to initialize a JBrowse instance. It can also display

data from a SPARQL endpoint, MAKER results and BioSQL [Skinner et al., 2009, Westesson et al.,

2012, Skinner and Holmes, 2010].

Navigation

JBrowse supports the basic navigation capabilities provided in GBrowse but much smoother (no

page reload) due to the client-side rendering and the AJAX technology. The user can navigate

by dragging the display left and right, up or down or by clicking the navigation arrow buttons.

Figure 26-(G) shows how to move the view left or right, ‘+’ and ‘−’ buttons, Figure 26-(H) shows

how to zoom in and out, or use the text box, Figure 26-(J) shows how to navigate directly to a

region or feature by typing the exact coordinate or the name of the feature into the search box

[Westesson et al., 2012].

Customization

Flexible configuration files (styled after the GBrowse configuration file, but using the JSON format)

allow the database administrator to customize the tracks and their behaviour and other aspects like

glyphs and feature-click actions. As for end-users, they can customize the display as follows: reorder

tracks, hide/show tracks, pin some tracks to the top of the display, add their own tracks and change

tracks visualization attribute (like glyph shape, color), and change the layout options of some types

of tracks. A list of several track manipulation controls are available in a menu by the track name

Figure 27.

47



Figure 27: Track Configuration in JBrowse, shows a list of various track configuration and manipulation

options Source: JBrowse demonstration at http: // jbrowse. org

The user can also highlight a region of interest (Figure 26-(K)) for further investigation and the

state of the browser can be preserved by the use of HTTP cookies. The navigation state, track

selection and ordering are saved for future investigation.

A new kind of track named “a combination track” was introduced in (version 1.10.0). This track

is used to combine data from multiple other tracks using range, arithmetic, or masking operations.

For example, a BigWig track can be masked to highlight only regions that lie within features from a

BAM track or the intersection of two or more feature tracks. Creating a combination track is done

by selecting ‘File—>Add combination track’ from the menu bar (Figure 28), then adding tracks to

the new combination track by dragging them into it [Skinner et al., 2009, Westesson et al., 2012,

Skinner and Holmes, 2010].
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(a) Add Combination Track Option

(b) Combination Track Dialog

Figure 28: Creating a Combination Track in JBrowse, (a) shows the list containing the add combination

track option to add combination tracks to JBrowse, (b) shows the dialog presented to the user to create

a combination track and the various options used for combining the two selected tracks. Source: JBrowse

demonstration at http: // jbrowse. org

Third-party Annotations

JBrowse allows the end user to add their own annotation files to display as a track under the same

coordinate sequence aligned with other tracks. Those annotation files can be of any of the supported
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file formats [Skinner et al., 2009]. This was previously demonstrated in Section 2.1, Figure 10.

Searching Capabilities

JBrowse allows searching for features by entering a part of the feature’s name into the navigation

text box which will display a list of available features matching the entered part. The user then

selects one to be displayed. This creates a navigation effect to view the desired feature into the

viewing area. This is done by feature name indexing of the entire available feature names using

Patricia trie or radix trie [Skinner et al., 2009]. This was previously demonstrated in Section 2.1,

Figure 12.

Sharing Annotations

JBrowse users can share the entire view of the JBrowse by clicking on the share button (Figure 26-

(L)), which will bring an assembled URL for the user to copy and send to other users [Skinner et al.,

2009]. This was previously demonstrated in Section 2.1, Figure 14.

Data Retrieval

Since 1.7.0 release of November, 2012, genomic data can be downloaded to the client machine by

exporting and saving sequence and annotation data in FASTA, GFF3, bed, bedGraph, and Wiggle

formats. This is done by turning on the desired track and clicking on its track label to bring up a

new menu of the tasks you can perform with that track, one of which is ‘Save track data’ [Skinner

et al., 2009]. This was previously demonstrated in Section 2.1, Figure 16.

2.4.2.2.4 Non-Functional Requirements

JBrowse focuses on the following non-functional requirements:

• Fast response, interactivity: demonstrated in the use of new web technologies like AJAX to

aid the continuity of user attention.

• Modularity: JBrowse implements the Model-View-Controller design paradigm: the users ac-

tions in the View (browser) prompt the Controller (Javascript on the client and Perl on the

server) to interact with the Model (MySQL database tables on the server) to accomplish

specific tasks.

• Interoperability: JBrowse is interoperable with various GMODs tools.

• Extensibility: JBrowse can be extended to view more data types and more glyphs.

• Portability: JBrowse is portable to many web browsers including Mozilla Firefox (10 and

later), Google Chrome (17 and later), Apple Safari (5 and later, 6 required for BAM, Big-

Wig, VCF+Tabix), Microsoft Internet Explorer (9 and later, 10 required for BAM, BigWig,
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VCF+Tabix).

2.4.2.3 Dalliance

Dalliance is a new genome browser that is written in JavaScript and uses new technologies like DAS

and SVG. It is still under development by Thomas Down, Matias Piipari and Tim Hubbard. Its

first public version 0.4.0 was released in August, 2010 and its latest version at the time of writing

this document (V 0.13) was released in February, 2015 and it is being updated every few months.

It can be easily embedded in web pages and applications and it integrates data from a wide variety

of sources, including popular genomics file formats like bigWig, BAM, and VCF. Dalliance can be

built using only a standard web server and a directory of files, with no databases or server-side

support code. The official website of this tool is (http://www.biodalliance.org/index.html). ).

There are three public sites known to use Biodalliance: Mouse phenotyping consortium, OpenSNP,

and GenomeRNAi [Down et al., 2011].

2.4.2.3.1 User Interface

The main interface of Dalliance is the genome browser page with the tracks aligned horizontally

along the Y-axis under the same genomic coordinate.

At the top of the browser, there is a toolbar on the right of the display (Figure 29-(C)) that is

used to add tracks, configure them, and export options (e.g. export an image of the current view

of the browser). Also there is some indicators of the current genomic location and a text box for

searching (Figure 29-(A)), a slider to control zoom levels (Figure 29-(B)), and also a left and right

panning control (Figure 29-(D)) located at the top left and right corners of the display. The rest of

the view should be a familiar genome display. After launching Dalliance, the user can add tracks

from the DAS registry or from local or remote files and start browsing and navigating to interesting

regions of the genome.

2.4.2.3.2 Implementation

Dalliance is implemented in JavaScript and it uses recent extensions to web standards “HTML5” to

offer a higher level of interactivity than most previous genome viewers. It uses SVG to represent the

genomic features, which offers more interactive rich graphics that is easily exported as SVG graphics

and pdf. It uses the standard DAS distributed annotation system protocol to add sequences,

features, and alignments from servers around the network and support all the glyph types from

the DAS stylesheet specification. The source code is freely available and written to be a self-

contained Javascript. It is possible to change several aspects of the view and the configurations

using JavaScript and it can also be extended and customized using the plugin API. In Dalliance,

each ‘track’ is fetched using a separate and usually concurrent network request, and is displayed as
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Figure 29: Screenshot of Dalliance, illustrating (A) The locator section which displays the exact coordinate

of the viewed region, (B) The zoom slider used to zoom in/out, (C) The tool bar , (D) The panning controls

to pan left or right, (E) The genome view containing the tracks, and (F) The name of a track.

soon as the data arrives, therefore one slow data source does not hold up the display of the rest of

the data. It works on Mozilla Firefox (3.6 or later), Safari (5.0 or later) and Google Chrome (5.0

or later) but not Microsoft Internet Explorer, which does not currently include SVG support, but

it is promised for version 9 [Down et al., 2011].

2.4.2.3.3 Functionality and Features

Visualization

Dalliance is a track-oriented genome viewer, like most genome browsers (e.g. Ensembl, UCSC,

or GBrowse). Therefore, it displays the sequence and annotation tracks along the Y-axis under

the same genomic coordinate which is treated as the X-axis and the features are represented as

glyphs inside these tracks. Furthermore, Dalliance uses new technologies like SVG (scalable vector

graphics) model for integrating data, which improves the genome browser interactivity and pro-

vides some high-quality graphics. Dalliance also includes a full implementation of the glyph types

of DAS style sheet systems, which controls how the data appears to the end user [Down et al., 2011].
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Supported Data Files and Sources

Dalliance was built mainly to display genomic data (e.g. sequences, features, and alignments)

from servers around the network using the standard DAS distributed annotation system protocol,

which means that it doesn’t need a server-side database to function. Nowadays, it also supports

some flat file sources and the following types of file formats: bigBed, bigWig, BAM, .2bit , VCF,

BED and WIG. Data can be fetched from the Ensembl-REST API (since version 0.9) and also from

JBrowse-REST API [Down et al., 2011].

Navigation

Users can navigate in multiple ways in Dalliance. The simplest way is by dragging the display left

or right or by using the pan left and right buttons on the user interface (Figure 29-(D)). While the

zoom in/out can be done by dragging the tab of the zoom slider (Figure 29-(B)), at the highest

zoom level the user can see the actual sequence of the genome. While zooming in and out, any

feature directly underneath the blue guideline remains centred and double-clicking on any feature

can center it.

In some tracks, the user can navigate between features. This is called “leaping”. Leaping is

activated by clicking the ‘left’ and ‘right’ buttons on the toolbar. For tracks containing simple

features (like genes, peak calls, etc), leaping will take you to the next feature in the selected

direction. Quantitative tracks support a variant of leaping where you can select a threshold, and

leap to the next region containing scores greater than the selected threshold. If this is available, a

red line is seen, indicating the threshold that can be adjusted in the track editor [Down, 2014].

Customization

The user can customize the display of Dalliance in several ways: General customization of the

genome view, such as changing tracks order, adding/deleting tracks, changing the location of the

blue vertical guideline; Track specific customization, such as changing several attributes — depend-

ing on the track type — like their height, name, max and min values. This is done by selecting

a track then clicking the track button to open the track editor from the tool bar (Figure 29-(C)).

Currently, quantitative tracks are the easiest to customize [Down et al., 2011].

Third-party Annotations

Dalliance’s main way of adding third party tracks is by using DAS, which is straight forward since

Dalliance is a DAS client and can access DAS registry. Therefore, anyone can add their own data

by running a DAS server and hosting data on that server to be added to Dalliance. Another way

of adding data to Dalliance is by uploading indexed binary data in a supported format hosted on

an accessible server or located on the user machine. Integrating data from certain types of indexed
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binary file directly, is considered the easiest way of adding user data to Dalliance, since it can be

viewed directly from the disk with no server requirements needed [Down, 2014].

Figure 30: Adding Tracks in Dalliance, with several options of adding tracks. From DAS registry, binary

files, and several others.

Searching Capabilities

Dalliance implements simple searching mechanism to navigate directly to specific coordinates, or

to search for a named feature. This can be done by typing in the location box in the toolbar

(Figure 29-(A)). If a named feature can be found in any searchable active track, it will be displayed

and highlighted in the browser [Down et al., 2011].

Sharing Annotations

Not supported for now.

Data Retrieval

Not supported for now.

2.4.2.3.4 Non-Functional Requirements

Dalliance focuses on the following requirement:

• Fast response and interactivity, as it uses SVG and HTML5 technology to offer a faster and

more interactive genome browsing experience to aid the continuity of user attention.

• Portability: Dalliance is a self-contained Javascript object which can be inserted into almost

any web page and can work on any web browser that support HTML5 technology.
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2.4.2.4 Savant

Savant is short for the Sequence Annotation, Visualization and ANalysis Tool, which is a desktop

visualization and analysis browser for genomic data. It is an open source software supported by a

large and growing community and it was designed to be extensible through a rich plugin framework.

The Savant platform was written by Marc Fiume, James Vlasblom, Eric Smith, Andrew Brook,

Vanessa Williams, Orion Buske, Misko Dzamba, and Michael Brudno of the Computational Biology

Lab at the University of Toronto. The first version of Savant was released on 2010 and the latest one,

V 2.0.4, was released on November, 2013, is still under active development and is being updated

every couple of months or more and extended with new plugins. The official site of this tool is

http://genomesavant.com/p/home/index.

2.4.2.4.1 User Interface

Savant has a simple interface which can be seen in Figure 31.

Figure 31: Screenshot of Savant. (A) and (B) Range controls, (A ) text fields for fine navigation; (B)

Selection, zoom and pan controls for coarse navigation. (C) The cytogenetic representation of the current

chromosome. (D) Tracks, these ones represent the data in current range. (E) Bookmarks module. (F) Table

View module.

As it can be seen from the screenshot, Savant follows the basic layout of a standard genome

browser with the navigation controls (Figure 31-(A) and (B)) on the top of the screen, the basic
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buttons of zooming and panning and a text field that shows the exact sequence coordinate, and

undo/redo buttons to go back to a previous position or to redo the navigation and return to the

new position or scale.

Savant uses a cytogenetic representation (Figure 31-(C)) of the current chromosome, which

is based on a distinctive pattern of bands created when chromosomes are stained with certain

chemicals. This is used for navigation and as an overview of the sequence with the current viewed

region on the chromosome (shown in blue rectangles). Figure 31-(D) shows the tracks representing

the data shown in the current region.

There are two shown modules: (i) the bookmarking module in Figure 31-(E), which is located

on the right side of the interface and used to save the current region for later reference; (ii) The

table view module in Figure 31-(F), which represents the underlying textual data of the tracks in

a table format. Savant also provides another module called the variation module, which can be

opened by clicking the “Variation tab” at the right side of the user interface. This last module

provides a variety of ways of exploring variation data.

When the user first launches Savant, he/she will be presented with the start screen, which shows

a list of recent projects and a feed of news stories from the Savant web-site, then, the first thing

the user should do is ‘choose File > Load Genome’ to tell Savant what reference genome he/she

wants to work with. Then the user can add any number of annotation tracks, local or remote, by

choosing ‘File > Load Track’. After that he/she can navigate through the sequence and investigate

interesting regions [Fiume and Smith, 2012].

2.4.2.4.2 Implementation

Savant was written in Java, which makes it portable to many platforms including Windows, Mac

OSX and Linux. For optimum performance it should run on a computer with at least 2GB of RAM

and internet connection. Savant was designed under the Model-View-Controller software engineering

paradigm and it was also designed to be extensible via a rich plugin framework, allowing developers

to add extra functionality to the software. Furthermore, most of Savant analytical functionality

are implemented through plug-in and its API provides visualization, analytical, navigation and

datasource functionality to plug-in development.

Savant was also designed to be fast, therefore some text files containing genomic annotation

are formatted and this formatting involves converting text records into an indexed binary data

structure specific to each data type. Sequence and continuous tracks are stored as fixed-width

records, enabling direct lookup of records of interest. Annotation ranges (such as genes) are stored

using a binning scheme similar to the one used in the UCSC Browser [Fiume, 2010].

2.4.2.4.3 Functionality and Features
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Visualization

Savant offers the same horizontal layout as most of the genome browsers but it has several extra

features related to visualization of the data. It shows both nucleotide and genome-scale visualization

of tracks. It even offers several display modes for specific track types, which helps emphasize different

aspects of the data. For example, interval annotations can be squished together on a single line or

packed neatly so that none overlap (mimicking the squish and pack modes of the UCSC browser).

The variant and strand modes for read alignments, for instance, use colors to emphasize mismatches

in reads and the strands to which reads are mapped, respectively. There is a “Variation module”

which groups together four different ways of viewing aggregated variant data. The visualization

on the Variation module comprises data from all currently-open variant tracks and it has its own

visible range, which is distinct from the visible range of the main track display area. The variation

module also has its own Zoom In and Zoom Out buttons to alter its visible range.

Supported Data Files and Sources

Savant works with local files and supports a number of common text-based file formats includ-

ing sequence (FASTA), the common standards for read alignment (SAM/BAM), genetic variants

(VCF), interval (BED, GFF, Tabix) and continuous-valued (WIG, BigWig, TDF) data and any

tab-delimited text file containing positional annotations. Savant automatically formats, indexes

and compresses all these data types to provide fast random access.

In addition Savant also supports the use of remote (through the internet) files and data sources.

Those remote resources are cached locally, to enable rapid visualization upon re-loading of a previ-

ously visited region. Tracks can also be quickly loaded directly from the UCSC Genome Database,

by using the plugin framework and without a need for manual download [Fiume et al., 2012].

Navigation

There are several ways to navigate in Savant:

• Course navigation: by using the selection panel whose horizontal length represents the length

of the genome. It is a cytogenetic representation of the current chromosome, which can be

used to choose subranges using the mouse.

• Fine navigation: by entering the desired range or feature ID into the location field (e.g textual

search of features name), and also through bookmarks.

• Zooming in/out and panning left and right by buttons, Mouse or keyboard [Fiume et al.,

2012].

Customization

Savant users can configure the interface in several ways due to some of Savant embedded design
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features. One of those features is that Savant uses a modular docking framework, like the one used

in most Integrated Development Environments (IDEs) such that each module within the application

appears as a separate window that can be shown, hidden, maximized, minimized, resized, closed

or rearranged in any configuration the user desires. Furthermore, each track is considered as a

separate module that can do all the above and it can also be detached from the main interface and

moved to a separate location, which can be helpful. It also has a Bookmarking functionality to save

favourite locations in the genome. The user can even Lock tracks and use them as overview tracks

[Fiume et al., 2010].

Third-party Annotations

Savant is a desktop application so it was basically designed to visualize the user annotations.

Therefore, it supported adding local or remote files such that their format is one of the supports

data formats mentioned earlier [Fiume et al., 2010].

Searching Capabilities

Savant can search for feature names using the location text field Figure 31-(A).

Sharing Annotations

In Savant, sharing capabilities are not implemented directly as part of the main implementation

but through the use of export options. For instance, user sessions can be saved for later use, or

exported for sharing among users (by using the bookmark module), ensuring that collaborators

have identical views of the same data. Savant also has an export option that saves the relevant

track information to an image file to use in presentations or publications [Fiume et al., 2010].

Data Retrieval

As previously mentioned, most of Savant’s analytical functionality comes with its wide range of

available plug-ins, so for example, in order to export data from Savant, we use a plug-in module

like the Data Table plug-in which is installed as part of Savant by default. The data being viewed

in the Data Table can be exported to a text file by clicking the Export button. The format of the

resulting text file depends on the type of the track being exported. Sequence tracks are exported as

Fasta files, BAM alignment tracks are exported as SAM files, and all other track types are simply

exported as tab-delimited text. Savant also provides a variety of ways of exploring and analyzing

variation data which is available in the variation module [Fiume and Smith, 2012].

2.4.2.4.4 Non-Functional Requirements

Savant was designed to be fast, interactive, accessible and extensible. As mentioned in [Fiume et al.,

2010],
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“Savant feature set was guided by three key design principles: (i) Ease of use: users can easily

install the application, obtain and load data, and navigate to specific regions of interest. The

general layout of data mirrors the standard genome browsers to shorten the learning curve. (ii)

Speed and efficiency: the program quickly and dynamically sifts through very large datasets while

maintaining a reasonable memory footprint. (iii) Access and extensibility: the underlying data is

readily accessible from within the tool itself, and users can extend the application by adding any

number of plug-ins for specific tasks.”

2.4.3 Genome Browser Comparison

After briefly introducing the four investigated genome browsers, a comparison between those four

can be very helpful, to summarize the main differences between them, and is documented in the

form of a table.

As it can be noted from Table 3, both GBrowse and JBrowse are GMOD tools. GBrowse being the

most mature browser of the four and Dalliance being the most immature one. All of the first three

are web-based and Savant is a desktop application. It can be noted that those four browsers share a

large amount of similarities in their layout and user interface design and they are all track-oriented

browsers, such that each track represents a type of features located in the genome and it is aligned

horizontally with the other tracks under the same coordinate system which is the genome sequence.

There is also an obvious overlap both in terms of functionality and in types of accessible data,

shared functionality includes zooming, panning, searching, uploading of private tracks and a simple

interactive customization settings for the user display.

Regarding the needed requirements to download theses browsers, all four are platform indepen-

dent so they can be installed on most operating systems and the first three requires a server to

work properly and longer setup time than Savant (a desktop application). The first three web-

based browsers mainly differ in their implementations and in the set of technologies used to render

features and their tracks.

GBrowse has some great benefits over other genome browsers: it is a very mature genome

browser which has most of the features of a genome browser like track uploading, sharing and

configuration, semantic zooming and limited track panning. It also supports quantitative (e.g.

CG content) and qualitative (e.g. genes) tracks and next-generation sequencing (NGS) data by

supporting SAM and BAM sequence alignment files. GBrowse is very appropriate for collaborative

environments in which groups can display and share genome annotations in an accessible format.

It can be installed on public web sites, as well as the web sites of small-to-medium groups. Other

benefits are that it is open source,relays on available components, can easily be installed using

basic command line knowledge and works well with any web browser that supports HTML level

4.0 or higher and cascading style-sheets level 2 or higher. This includes Netscape 4.0 and higher,
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Internet Explorer 5.0 and higher, and many other popular browsers such as Opera and Mozilla.

GBrowse is easily portable, configurable and extensible with plug-ins. It also integrates easily with

other components of GMOD and since version 2.0, GBrowse uses AJAX to improve the original

user interface. GBrowse 2.0 can dynamically load, reorder, and update browser tracks without

triggering a full page reload and uses a “rubber band” interface to select and zoom into a region of

interest faster [Stein et al., 2002, Stein, 2013, Skinner et al., 2009].

On the other hand, it has some drawbacks related to the use of CGI, which imposes a page-based

model (a static model) of viewing the data such that every action will trigger a reload of the entire

genome browser page. This means that the user will have to wait after every action for the genome

browser to reload. GBrowse uses server-side rendering and this means that the server is responsible

of all the computational costs of rendering a genomic region. The client in GBrowse just passively

display a rendered image of the genomic region. This server-side rendering costs will become worse

with the increase of the number of users and the amount of genomic data viewed. As a result,

GBrowse does not support smooth zooming and panning [Stein et al., 2002, Stein, 2013, Skinner

et al., 2009].

JBrowse uses AJAX and client-side rendering where the client does all the work usually done

by the server such that it is responsible of determining and then rendering the features located in a

region of interest using standard HTML and JavaScript functionality. JBrowse provides smoother

zooming and panning than its predecessor GBrowse and works on almost all modern web browsers.

JBrowse can also integrate with the GMOD suite of tools [Skinner et al., 2009].

Despite the benefits of this approach, it has the following drawbacks: the main one being that the

environments for server-side web applications are far more mature and reliable than those for client-

side applications. Since client-side applications cannot be properly tested and since the quality of

the visualization depends largely on the capabilities of client web browser and hardware, this will

properly impose some unpredicted limitations on JBrowse that cannot be measured. However, the

limits can be any of the following: slower animations, longer download waits, and garbage collection

pause times [Skinner et al., 2009, Westesson et al., 2012].

Dalliance on the other hand, follow the DAS model which means that users can show their own

data without hosting copies of the data. It also uses SVG which gives a rich graphics platform with

smooth zooming and panning. In Dalliance, each track is fetched using a separate and concurrent

network request. So one slow data source does not affect the display of others. Dalliance is still

under development and it is still missing some important features like sharing and retrieving data

[Down et al., 2011].
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Savant is different in the sense that it is a desktop application that it is not constrained by the

user web browser environment and the server-client architecture and that can take full advantage

of the users operating system in such a way that makes the application much more interactive and

responsive than usual web-based genome browsers which suffers from limitations imposed by the

web environment. So, once the data are loaded into Savant, there is no need to ask a server for more

information to zoom or pan, therefore there is no network related latency and it does not require

uploading the data to websites in order to view them. Notable shortcomings of Savant include the

need to download annotation files as well as the user’s responsibility to keep annotations up-to-date

[McKay and Cain, 2009, Pabinger et al., 2013].

In this thesis we focus on web-based genome browsers since genomic data is mainly accessible

through the web. Therefore, web-based genome browsers facilitate data investigation in the con-

text of readily available annotations and data tracks. Web-based genome browsers are accessible

and support collaboration within or between different research groups or communities. Web-based

genome browsers provide a valuable service to the research community by providing tools for inves-

tigating genomic data and supporting the complex and robust informatics infrastructure required

to make the data accessible. Most important is their main objective, which is the visualization of

genomic data that gives researchers the benefit of looking at information in a more natural and in-

terpretable way compared with other textual representations of the data [Fiume et al., 2010, McKay

and Cain, 2009, Pabinger et al., 2013].

2.5 Technologies used in Genome Browsers

Web-based genome browsers are implemented using a server-client architecture, using the HTTP

protocol to send client requests and receive server responses. Therefore, they can take advantage

of new web advances and technologies. In this section, we discuss several web related technologies

that are used in genome browser implementations.

2.5.1 Server-side Rendering and Client-side Rendering

We have established so far that one of the key genome browser functions is rendering visual represen-

tations of the genomic data inside tracks. The rendering process can happen either in the server-side

or the client-side. Traditional genome browsers (e.g. GBrowse, UCSC genome browser and En-

sembl genome browser) use the first approach, while modern next-generation genome browsers uses

the second approach (e.g. JBrowse and Dalliance). This section will discuss the main differences

between the two approaches and both their advantages and disadvantages:
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Server-side Rendering

In server-side rendering, the server generally does most of the work involved in showing genomic

data to users. A genome browser using this type of rendering can typically be described as a

program running on the server, which queries a database for genomic data in the region viewed by

the user, and then renders a static pictorial representation of that region, which the web browser

(the client) passively displays.

The main drawback of this approach is that the server suffers the majority of the computational

expense, which increases with the number of users and with the amount of genomic data. As that

computational expense increases, so does the amount of time the user has to wait for each new

page, which will negatively affect the interactivity of the system [Skinner et al., 2009].

Client-side Rendering

In client-side rendering, the user’s web browser does most of the work. The client’s web browser

is responsible of arranging the browser’s display, which both minimizes the amount of client-server

communication and enables many viewers to view the same centralized data without overloading

the server.

The main drawback of this approach is that its performance is dependent on the capabilities of the

client machine and web browser. Those limitations may affect the scaling of the genome browser im-

pose slower animations, longer download waiting time, and garbage collection pause times [Skinner

et al., 2009].

2.5.2 Glyphs

Glyphs are visual representations of individual features which are drawn inside tracks such that

each track contains a collection of features of the same type. Glyphs can be drawn using different

technologies: it can be drawn in the server side using graphical libraries (e.g. Bio::Graphics used

in GBrowse), or it can be drawn using web graphics technologies like Canvas and SVG which is

discussed below.

For more visual details and examples of some existing glyphs refer to table Table 31 found in

Appendix C.

2.5.2.1 SVG

Scalable Vector Graphics (SVG) is a declarative, vector based graphical language for describing two-

dimensional graphics in XML. It is used to describe geometrical primitives via DOM elements. It

was developed by the World Wide Web Consortium (W3C) since 1999 so it is much older technology

than canvas. SVG images and their behaviour are defined in XML text files. This means that every
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element is within the SVG DOM so they can be searched, indexed, scripted, and compressed. SVG

images can be created and edited with any text editor, but are more often created with drawing

software. They are used by some genome browsers (e.g Dalliance) to render the display of the

genome view [Erik Dahlström and Watt, 2011].

Figure 32: SVG example

2.5.2.2 Canvas

The Canvas is an HTML5 element <canvas>, that is used to draw 2D graphics and bitmap images

on the fly on a web page by scripting, usually using JavaScript. It is only a container for graphics

and a script is used to actually draw the graphics. Some genome browsers use the <canvas>

element to render some genomic features on the client web browser. It was originally introduced

by Apple in WebKit builds. Nowadays Internet Explorer 9+, Firefox, Opera, Chrome, and Safari

support the <canvas> element, but IE8 and earlier versions do not support the <canvas> element

[W3Schools, 2014a]. The main differences between SVG and Canvas is summarized in Table 4 found

in [W3Schools, 2014b].

Figure 33: Canvas example
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Canvas SVG

Resolution dependent Resolution independent

No support for event handlers Support for event handlers

Poor text rendering capabilities Best suited for applications with large

rendering areas (Google Maps)

You can save the resulting image as

.png or .jpg

Slow rendering if complex.

Well suited for graphic-intensive games Not suited for game applications

Table 4: Canvas and SVG Comparison

2.5.3 Page-based Loading and AJAX-based Loading

Page-based Loading

The page-based model of viewing data over the web is one of the oldest methods used in Web 1.0,

which basically view the data in static web pages. This means that the client’s send requests and the

server’s responses are static web pages. Most current web-based genome browsers are implemented

using the Common Gateway Interface (CGI) protocol (e.g. GBrowse), which provides a mechanism

for a web server to generate a web page to send to the user which imposes a page-based model of

user interaction. This approach can disrupt the user attention with each navigation or interaction

event [Westesson et al., 2012].

AJAX-based Loading

AJAX (Asynchronous JavaScript and XML) is a collection of techniques that shift the overhead from

the server to the client and enables users to interact with web applications without the overhead

of waiting for server response, since the communication with the server happens asynchronously in

the background. Those techniques are client-side scripting (using JavaScript and related HTML

technologies) and structured data representations (using data formats like XML and JSON).

Therefore, using AJAX in web-based genome browsers creates smooth panning and zooming transi-

tions which can help keep the user oriented and focused on exploring and investigating the genomic

data. JBrowse is one example of AJAX-based genome browsers [Skinner et al., 2009].

2.5.4 DAS

The Distributed Annotation System (DAS) is a widely adopted network protocol for exchanging

biological data. DAS is a simple client-server network protocol that was developed by WormBase
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for sharing genome annotations, and was adopted by several projects after that including genome

browsers. It is mainly used to share annotations of genomes and protein sequences and to dy-

namically integrate a wide range of biological data from geographically diverse sources. The key

motivation for heving DAS protocol is data integration, therefore its basic functionality is to define

how data should be represented and communicated. It has a “dumb server, clever client” architec-

ture: the DAS server may host a number of sources, each differing in the services provided and the

type of underlying data; the DAS client issues an HTTP request of a specific URL format, called

(a DAS command ) used to ask for a class of data like a sequence or annotations; the server re-

sponds with an XML document representing the requested data. Furthermore, due to the growth of

the publicly available DAS sources, a discovery mechanism was implemented called DAS Registry.

This service allows data providers to publish their DAS sources to allow their automatic discovery

by DAS clients. Most genome browsers today support the DAS protocol including Dalliance and

GBrowse, which makes integration of data simpler than hosting their own data [Prlić et al., 2007,

Jenkinson et al., 2008].

2.5.5 Semantic Zooming

Semantic zooming means representing the data differently at different zoom levels in order to ease

user interpretation, a feature that is implemented in most genome browsers. For example, in

GBrowse the gene glyph shows the internal intron/exon structure at high magnification. But, at

low magnification, it is rendered as a solid arrow pointing in the direction of transcription and the

‘dna’ glyph shows the literal DNA sequence at very high levels of magnification and the GC content

histogram at lower levels [Stein et al., 2002].

2.5.6 Other

Other technologies or utilities are “Track Hubs” which are used in UCSC genome browser. Track

hubs are web-accessible directories of genomic data that can be viewed on the UCSC genome browser

as defined on the UCSC website http://genome.ucsc.edu/goldenpath/help/hgTrackHubHelp.

html. They are very useful for visualizing a large number of genome-wide data sets.

2.6 Genome Browser Challenges

The first human genome was a 3 billion dollar project that spanned a decade, to complete in

2003. With the introduction of next-generation sequencing technologies (e.g Illumina, ABI and

Roche 454), we are able to sequence and analyze an entire genome in a few hours for less than a
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thousand dollars [Costa, 2012]. This revolution in DNA sequencing technology has made sequencing

genomes faster and cheaper than ever (compared to the previous ‘Sanger sequencing method’),

Figure 34 showing the decrease in the cost of sequencing. All this will result in the production of

massive amounts of genomic data that will continue to grow and present unpredictable challenges

in bioinformatics.

Figure 34: Sequencing Costs per Genome, illustrating the decrease of sequencing costs per genome from

2001 to 2013. Source: NIH National Human Genome Research Institute.

According to [Marx, 2013], one of the world’s largest biology data repositories, “the European

Bioinformatics Institute” (EBI), part of the European Molecular Biology Laboratory, currently

stores 20 petabytes (1 petabyte is 1015 bytes) of data and back-ups about genes, proteins and small

molecules. Genomic data accounts for 2 peta-bytes of that, a number that more than doubles

every year as shown in Figure 35. Today, the limiting factor has shifted from data acquisition to

data analysis. Accordingly, there has been a change in the type of sequence data being generated.

Instead of the traditional relatively long reads produced by Sanger sequencing, a large amount of

short reads is now the output coming out of these new sequencing machines. These changes in data

quantity and format is providing a challenge for bioinformatics, which will affect how sequence data

is stored, managed and visualized [Batley and Edwards, 2009].
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Figure 35: Data Explosion, illustrating data explosion around 2008. Source : EMBL-EBI.

The amount of information generated by these technologies compares to the enormous data

produced by astronomy and high-energy physics (petabytes in size= 1000 terabytes) [Batley and

Edwards, 2009]. This will result in both computational and representational challenges [Nielsen

et al., 2010].

Generally, everything related to genomic data, from data formats, data storage to data visualiza-

tion, is being redesigned and reformatted to accommodate the huge demands of ever more growing

genomic data [Baker, 2010].

Since every new sequencing platform relies on a different technology and uses different file

types to store their sequence data, this will result in wasting resources to make these different

file outputs compatible [Baker, 2010]. There are several new file formats that are being used to

store these read alignment data, including the Sequence Alignment Map (SAM), adopted for the

1,000 Genomes Project, as well as the Compact Alignment Format, CALF (http://www.phrap.

org/phredphrap/calf.pdf). Binary files are also used to aid the fast retrieval of data and reduce

memory requirements, such as BAM files (the binary version of SAM) [Nielsen et al., 2010].

As sequencing throughput increases and costs decrease, sequencing human genome has become

an attainable and has led to the initiation of genome projects such as the 1,000 Genomes project

(http://www.1000genomes.org/, with the goal of sequencing 1000 human genomes [Nielsen et al.,

2010].

There is a constant need to store all the data produced by these many genome projects. As

a result, cloud-computing emerged to deal with the storage of massive biological datasets. In

fact, cloud computing is the only current storage model that can provide the needed flexible scale

for next-generation DNA sequencing technologies, and that exceeds Moore’s Law (the doubling of

computer power every two years) [Costa, 2012]. Cloud computing allows scientists to rent both

storage and processing power virtually by accessing servers as per their needs, so that they do
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not have to buy their own hardware and maintain it on site [Marx, 2013, Baker, 2010]. Several

genome databases from Ensembl, GenBank and preliminary data from the 1000 Genomes Project

are already accessible via clouds [Baker, 2010]. As an example, DNAnexus, a cloud-based genome

informatics and data management platform, has an innovative genome browser benefiting from

cloud computing [Baker, 2010].

Third-generation sequencing technologies are now on the horizon, which will possibly decrease

the cost and time of sequencing even more. They are promising longer reads, which will improve

data quality and make sequence assembly easier, but they will not solve the fundamental issue of

data overload that far exceeds conventional solutions [Baker, 2010].

Genome browsers are already an essential tool in bioinformatics, and will gain more importance

as more genomes and genomic data become available. However, the massive data produced by

next-generation sequencing technologies is affecting the efficiency of traditional genome browsers

[Medina et al., 2013].

There are many challenges that genome browsers face, that require the introduction of high

throughput technologies. With the advent of these new technologies, these challenges grow bigger

and more prominent than ever. They can be categorized into the following.

Data visualization challenges: The visual representation of any data can either hinder or help

the user to correctly interpret those data. Visualization approaches need to represent the

data in a coherent and concise way that makes the understanding and interpretation of data

easier [Pavlopoulos et al., 2013]. Therefore, one of the first challenges in designing genome

browsers is deciding on a comprehensible graphical representation of the underlying data.

This basically means, encoding the various genomic data into colours and shapes or transform

them into different scales like representing gene models, as shown in Figure 36, with lines for

introns and rectangles for exons [Nielsen et al., 2010].

Figure 36: Gene Model Representation, lines for introns and rectangles for exons. Source: MaizeGDB

Maze Genetics and Genomics Database. http: // www. maizegdb. org/

There are a number of issues that can make the visualization of sequence data a nontrivial

task. The fact that genomic data is produced by various sources and research groups, using

different techniques and tools, each with its own experimental errors, dictates the existence
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of different data types that are increasing with the advancement of our knowledge. A lot of

the data produced by these various experimental methods are error-prone. Those technical

uncertainties and their resulting inconsistencies need to be somehow accounted for in their

visual representations. Another issue is related to the huge and growing size of biological data

(e.g. a single sequenced human genome is around 140 gigabytes in size), which makes some

of those data unavailable due to their prohibitive online storage requirements. In addition,

enabling real-time interaction with large-scale datasets is nontrivial. Also, biological data are

inherently complex, which is the result of many different types of experiments and studies that

produce various datasets, such as sequences, transcription data, variant data and alignment

data and many others. Researchers and scientists need to investigate this heterogeneous data

inside a single representation and this requires genome browsers to be able to present both

a high-level overview of the data and an interactive representation to the underling details

of data. Performing meaningful aggregation and summarization that highlight only the most

well-supported connections is a daunting challenge. All this makes the representation of

genomic data one of the main challenges of any genome browser [Wang et al., 2013a, Nielsen

et al., 2010, Marx, 2013].

Data management challenges: The simple facts that are stated above are also causing data

management challenges. A large number of genome projects that are producing various ge-

nomic datasets are creating different data formats to store them. This is causing a challenge

on how to integrate those different data types stored in different formats. Also there is still

so much to know about genomic data, that can be mapped to the genome sequence, so we are

left with this open-ended problem that presents some serious challenges in the bioinformatics

community. As a result, the bioinformatics community has designed a multitude of databases

ranging from simple flat files to sophisticated relational databases and will continue to design

more to accommodate the expanding data. Consequently, genomic data used in a genome

browser can be obtained from various sources and in various formats, such as text files (e.g

GFF, GTF, BED,SAM) and binary files (e.g BigBed, BigWig, BAM). Both the sources and

the formats are continuously changing, which poses a real problem on genome browsers being

able to manage those various data types and formats and aggregate them into a unified display

[Wang et al., 2013a, Gollery, 2011].

Data transmission challenges: Most genome browsers, like GBrowse, UCSC and Ensembl, re-

quire the user to upload their custom data to their servers to be able to visualize them in

the context of available data [Mader et al., 2014]. Still, the definition of appropriate data

exchange formats is largely unresolved. This makes the fast and safe transmission of sequence

related data more challenging as their sizes continue to grow, which puts high demands on the
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server capacity and network bandwidth [Wang et al., 2013a]. Possible solutions presented by

[Wang et al., 2013a], includes the implementation of high-speed network facilities, powerful

servers. Placing both the genome browser and the bioinformatics application platform on a

cloud environment and allowing them to share the same storage could be a possible solution

to avoid heavy data transmission. Cloud solutions is also presenting data transmission chal-

lenges manifesting in the transmission of data between the cloud and the researcher [Baker,

2010].

Data security and privacy challenges: The current requirement to transmit private data over

the web to be able to visualize them in the context of other data inside the genome browser

presents serious security and privacy threats. This is not an issue for standalone applications

because they do not need to transmit data over the web, since everything is located on the

users machine [Costa, 2012]. Possible solutions to this issue is the use of direct access of local

files presented by several genome browsers that do not require uploading files to the servers.

Other solutions presented by [Costa, 2012], include the use of better security systems with

advanced encryption algorithms, connecting forms that allow study participants or patients

to openly share the data generated on them and the use of local hardware solutions instead of

cloud computing which could also ease the implementation of big data with more information

protection [Costa, 2012]. Using cloud-based solutions means that valuable and private data

are being entrusted to a distant service provider who may be subject to power outages or

other disruptions [Marx, 2013].

Performance challenges: Developing genome browsers that achieve fast performance on common

desktop computers is also a challenge due to the size and complexity of genomic data. Next

generation web-based genome browsers benefit from advancements in web technology and

exploit the computational power of the user’s web browser. They tend to divide the work

between the server and the client, use indexed and compact data structures, and cache data

to provide faster user experience. While standalone genome browsers use multithreading,

innovative data structures, pre-loading the data to be visualized into the main memory in

order to accomplish better performance, still the rate of DNA sequencing technologies far

exceeded the current computational power [Lajugie and Bouhassira, 2011]. Genome browsers

are also moving to cluster servers, mirror implementations and cloud environments to achieve

better performance [Wang et al., 2013a]. The Ensembl Genome Browser presents an obvious

example of such solutions. “The main Ensembl site is based on hardware in the United

Kingdom, but when users in the United States and Japan had difficulty accessing the data

quickly, the EBI resolved the bottleneck by hosting mirror sites at three of the many remote

data centres that are part of Amazon Web Services Elastic Compute Cloud (EC2). Since
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Amazon’s data centres are geographically closer to the users than the EBI base, it gives

researchers quicker access to the information they need” [Marx, 2013].

2.7 Discussion of Non-functional Requirements Issues

According to [ISO, 2011], “a product quality model categorizes system/software product quality

properties into eight characteristics: functional suitability, performance efficiency, compatibility,

usability, reliability, security, maintainability and portability (which are further subdivided into

sub-characteristics) that relate to static properties of software and dynamic properties of the com-

puter system”. The ISO/IEC 25010 document in general is useful for specifying requirements,

establishing measures, and performing quality evaluations. We used this document as a guideline

to the statements of the non-functional requirements in Chapter 3 — Section 3.4.4. Non-functional

requirements define the overall qualities or attributes of the resulting system. Existing genome

browsers support a combination of the following non-functional requirements: performance, exten-

sibility, interoperability, portability, usability and security.

We have collected the data on the non-functional requirements from studying the code and doc-

umentation of several existing implementations of genome browsers, including GBrowse, JBrowse,

Savant and Dalliance. We have further investigated several mailing lists of those genome browsers

to come up with the most important and wanted non-functional requirements of the user commu-

nity. Performance requirements mainly concern the speed of operation of a system, in our case the

system being a genome browser. Performance requirements have several types, including response

requirements — how quickly the genome browser reacts to a user input, throughput requirements —

how much the system can accomplish within a specified amount of time, availability requirements

— is the system available for service when requested by end-users?

Extensibility, according to [Suryanarayana et al., 2014],“is the ease with which a design fragment

can be enhanced or extended (without ripple effects) for supporting new functionality”. In genome

browsers, this requirement is an important one since genomic data types and formats are continu-

ously increasing and will require the need to extend the genome browser to accept and process new

data formats, add new visualizations (glyphs) and new tracks to view those data types.

Interoperability, according to [ISO, 2011], “is the degree to which two or more systems, products or

components can exchange information and use the information that has been exchanged”. Genome

browsers should be interoperable to work with other software. For example, The Gaggle Genome

Browser is interoperable. By connecting to the Gaggle framework the genome browser joins a suite

of interconnected bioinformatics tools for analysis and visualization with connectivity to major pub-

lic repositories of sequences, interactions and pathways.
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Portability, according to [ISO, 2011], “is the degree of effectiveness and efficiency with which a sys-

tem, product or component can be transferred from one hardware, software or other operational or

usage environment to another”. Genome browsers today run on most popular platforms including

Linux, Windows and OS X. We do not document portability requirements.

Usability, according to [ISO, 2011], “is the degree to which a product or system can be used by

specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified

context of use”. Most existing genome browsers’ user interfaces have a familiar look and feel, aimed

at easing the learning process. Unfortunately usability is one of the hardest requirements to quan-

tify. We do not attempt to record usability requirements.

Security, according to [ISO, 2011], “is the degree to which a product or system protects information

and data so that persons or other products or systems have the degree of data access appropriate

to their types and levels of authorization”. In genome browsers, users who want to view their own

data alongside the available genomic data are required to upload their data files to servers through

the web, which imposes security issues for sensitive and private data. Therefore, there has to be an

authentication or a restriction process to ensure that these data will not be shown to unauthorized

individuals. In this work, we did not document security requirements since they are orthogonal to

the genome browser core functionality.

We document both performance and extensibility requirements, since they are important aspects

of any genome browser. It is important to understand that this work is a first step to document the

requirements of a genome browser. We do not attempt to create solid or unchangeable requirements.

Our main concern being to establish a clear starting point to understand what a genome browser

is, depending on available research genome browser prototypes.

According to [Nielsen, 1993], response time guidelines for web-based applications are the same

for all other applications: 0.1 second for direct manipulation, 1 second for free navigation and 10

seconds to keep the user attention. We use these guidelines to determine the response times of a

genome browser bearing in mind the challenge of the huge size and complexity of genomic datasets.

The entire list of performance requirements was derived from testing the following genome

browsers: GBrowse, JBrowse, Dalliance, UCSC and Ensembl. Most of these browsers took 1 second

to execute general functions and at most 5 seconds loading data files. The UCSC [Rosenbloom et al.,

2015], which is one of the biggest repositories of sequence data, can host a 2 terabyte dataset that

belongs to a track named ‘100-way multiple alignment on hg19’. Some of the tested genome browsers

are able to serve at least 100 datasets to the users and handle 10,000 tracks without performance

loss as indicated by a GBrowse wiki page http://gmod.org/wiki/GBrowse_FAQ. Most of these

genome browsers can handle at least 10 concurrent users.

Generally speaking, genome browsers do not have actual limit on the size of datasets being used

or the number of tracks. They adapt and improve depending on the users’ needs and the existing

73

http://gmod.org/wiki/GBrowse_FAQ


technologies. In the case of the number of concurrent users and response times, a lot of genome

browsers develop mirror sites for both better response times and larger bandwidth. Others use

server farms to distribute the work and expand the storage size.

Extensibility requirements are documented using the amount of working person days. We set 6

working days as a requirement to extend a data format or a visualization (glyph and track), and

we assume that the developer works from scratch and does not reuse any available code.

2.8 Z Notation

Z is a formal specification language used for describing and modelling computing systems. It is

based on the standard mathematical notation used in axiomatic set theory, lambda calculus, and

first-order predicate logic. Z describes what the system must do without saying how it is to be

done. The main ingredient in Z are ‘schemas’, which is used to represent software systems piece by

piece. In Z, schemas are used to describe both static and dynamic aspects of a system, the static

aspects include: the states it can occupy; the invariant relationships that are maintained as the

system moves from state to state. The dynamic aspects include: the operations that are possible;

the relationship between their inputs and outputs; the changes of state that happen [Spivey, 1992].

A schema consists of: a name, which identifies the schema; a declaration part, which introduces

local state variables; a predicate part, constraining the values of the variables.

A system specification in Z consists of some state variables, an initialization, and a set of operations

on the state variables. The state variables will also have some invariants associated with them

representing “healthiness conditions” which must always be satisfied.

Example: Here is an example of a Birthday Book system which records people’s birthdays men-

tioned in [Spivey, 1992]:

[NAME, DATE]

BirthdayBook

known : PNAME

birthday : NAME 7→ DATE

known = dom birthday

Every system has a special state in which it starts up. In Z this state is described by a schema

conventionally named Init
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InitBirthdayBook

BirthdayBook

known = ∅

The first operation is to add a new birthday, and we describe it with a schema:

AddBirthday

∆BirthdayBook

name? : NAME

date? : DATE

name? /∈ known

birthday′ = birthday ∪ {name? 7→ date?}

The declaration ∆ BirthdayBook means a state change: it introduces four variables known, birthday,

known’ and birthday’. The first two are the state before the change, and the last two are the state

after the change. Each pair of variables is implicitly constrained to satisfy the invariant, so it must

hold both before and after the operation. Next come the declarations of the two inputs to the

operation. By convention, the names of inputs end in a question mark ‘?’. The part of the schema

below the line gives a pre-condition for the success of the operation. The name to be added must

not already be one of those known to the system. The second line says that the birthday function

is extended to map the new name to the given date. Another operation is to find the birthday of a

person known to the system.

FindBirthday

ΞBirthdayBook

name? : NAME

date! : DATE

name? ∈ known

date! = birthday(name?)

This operation schema illustrates two new notations. The declaration Ξ BirthdayBook indicates an

operation that does not change the state: the values known’ and birthday’ after the operation are

equal to their values known and birthday before the operation.

We used Z notation, a mature formal language that uses a graphical notation ‘schemas’, to

model a genome browser specifications and to describe what the system must do, which improves

its readability and encourages incremental development of specifications compared to other formal
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languages, such as the Vienna Development Method (VDM) [Alagar and Periyasamy, 2011], which

involves the use of a number of specialized symbols that must be memorized, leading to a significant

learning curve. Z has what we need to represent a genome browser system, apart from the details of

any programming language paradigm such as Object-Z [Smith, 2000] which is an extension of the

Z formal specification language to accommodate object orientation. Z is also widely known, used

and understood, was standardized in 2002 and is now supported by a wide range of tools.

Z specifications can also be validated. We may reason about Z specifications using the proof

techniques of mathematical logic. This is a compelling property because if we reason about a

specification, and we attempt to construct proofs about its properties, then we are more likely to

detect problems at an early stage of system development. The process of constructing proofs can

help us understand the requirements upon a system and can assist us in identifying any hidden

assumptions. In addition, validation at the specification stage can make a significant contribution

to the quality of software. In Z, the validation process attempts to prove that the specification

is correct and consistent. It also ensures that its internal structure is sound and free from logical

defects. This is done by reasoning about the specification. Proving that the operations with their

pre-conditions and post-conditions do not contradict the state invariants is one consistency check.

It is referred to as proof obligations [Woodcock and Davies, 1996].
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Chapter 3

Requirements Document

3.1 Introduction

The requirements document conforms to the IEEE Std 830-1998 Standard of a Software Require-

ment Specification. Generally speaking a genome browser is a visualization tool designed to view

genomes and their numerous annotations. It can show a graphical representation of specific regions

of the genome and its various functional elements. The basic principle of a genome browser is to

display various annotations inside a piled up list of tracks each containing a single type of feature or

annotation like genes, SNPs and the DNA sequence itself. Virtually anything that can be mapped

to a genomic coordinate can be viewed inside a genome browser. Using genome browsers, users can

analyze the different and various annotation data and infer their functions and importance [Wang

et al., 2013a]. These type of tools are becoming a big part of the daily routine of every genomic

researcher since the visualization of genomic data gives them the advantage of looking at the com-

plex genomic information in an easily interpretable way compared with their textual representation

[Fiume et al., 2010].

Today genome browsers face many challenges with the recent advances of biotechnology that is

producing a plethora of genomic data that needs to be visualized, integrated and investigated. The

growing increase in both the type of annotation produced by research communities and the type

of designed file formats and databases used to save them, is putting a lot of pressure on available

genome browsers to meet this open-ended problem of sequence data visualization. Having a clear

set of requirements for this tool can really help their development and advancement in various ways

to face the challenges that lie ahead, therefore this document is written to establish this ground

set of requirements for this tool. Here we are focusing on web-based genome browsers for several

reasons. First of all, genomic databases that serve genome and protein sequences and annotations

are available on the web. Secondly, they serve a much larger user community than standalone ap-

plications. Third, they support sharing and collaborative research environments. Finally, they do
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not require the inconvenience of installing and maintaining the software and its data on the user’s

local computer.

3.1.1 Purpose

The present document serves many purposes: it can be used as a guide for future developers

of Genome Browsers, it can form the basis of future feature enhancements in existing genome

browsers and it can motivate the invention of new algorithms, data structures, or file formats

implementations. It is intended for use by bioinformatics developers and scientists.

3.1.2 Scope

This document is designed to establish a clear set of requirements for the widely used tool ‘genome

browser’, we focus on web-based genome browsers . We assume that the existing genome browsers

possess a complete set of adequate features, therefore we do not suggest new features or functions

of genome browsers. The scope of the requirements cover both the server and the client part of the

genome browser.

This Requirements Document discusses the basic functional and non-functional requirements

that any genome browser must have independent of the technology and the technical or imple-

mentation details. The requirements related to security, user authentication, search, user session

management and the addition of user defined datasets files is not part of the present specifications

and is outside the scope of this document.

3.1.3 Definitions, Acronyms, and Abbreviations

For organization purposes, the definitions are mentioned in the Appendix D.

3.1.4 References

The references used in this chapter are mentioned at the end of the document under the bibliography

section.

3.1.5 Overview

Section 3.2 (Overall Description) documents the general factors that may affect genome browsers

and their requirements. It does not necessarily state specific requirements. It only provides a

background for those requirements, which makes them easier to understand.

Section 3.3 (Domain Model) establishes the main concepts of a genome browser.

Section 3.4 (Specific Requirements) contains the functional and the non-functional requirements for
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genome browsers, using use cases to describe the functional requirements.

Section 3.5 (Formal Specification of a Genome Browser) introduces a formal specification of genome

browsers in Z notion.

3.2 Overall Description

3.2.1 Product Perspective

Genome browsers are well known, useful and already existing class of tools in the bioinformatics

field. A genome browser is widely used by a growing community of geneticists in the form of

individuals or research groups around the world. The genome browser is normally open source and

it can be either a standalone desktop application or a web-based application, but we are going to

focus on the web-based ones for reasons mentioned earlier in this document, in Section 3.1.

Furthermore, a web-based genome browser is a web application that all users can access and use

by a web browser over a network. The web browser will be the main user interface through which

the user can access an instance of the genome browser software. This makes it accessible to a large

number of users and communities since they only need a web browser to access the application.

After installing the genome browser data and software on a server, other users can access the

application by their web browser via typing the URL address of the installed instance of the software

located on a server. The application’s main function is integrating genomic data taken from various

sources into a unified display of tracks with a common sequence coordinate.

The administrator of a genome browser installs a genome browser system on a server, adds

genomic datasets and creates tracks using the command line to run available code. The datasets

that are being visualized are stored in either local or remote database servers which can be relational

databases or flat file databases. Datasets can be viewed from DAS sources as well. Figure 37, shows

a block diagram illustrating the genome browser context and components.
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Figure 37: Block Diagram of a Genome Browser, illustrating the basic components and context of a genome

browser

3.2.2 Product Functions

This section provide a summary of the major functions that a genome browser must perform The

functionalities of the product can be summarized under the following categories:

User sessions: The genome browser will create a session id to each user session to keep a reference

to that session. The genome browser will also provide a way to save those user sessions for

future use.

Configurations: The genome browser will provide flexible customization options to the adminis-

trator of a genome browser instance and to the end user sessions.

Navigation: The genome browser will support the following types of navigation over the genome:

browsing, panning, zooming, and scrolling so the user will be able to view the genome sequence

at different levels of details or resolutions from mega-bases to individual DNA bases.

Downloading: The genome browser will provide data downloading options for individual tracks

in several file formats and with different ranges. It will also provide saving capabilities of

the current view as images of different formats, a minimal list of those format includes PNG,

JPG, SVG and PDF for use in publications or presentations.
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Data sources: The genome browsers will support and accept data from standard file formats used

by most sequence data, DAS sources, and common relational database schemas.

Track Management: The genome browser will provide several ways to manage tracks including

hide/show tracks, reorder tracks, upload user tracks, create combination tracks(track display-

ing several datasets).

Search: The genome browser will also allow users to search for features (by key word or ID search)

and navigate to them.

3.2.3 User Characteristics

There are two types of users that will interact with the genome browser tool:

The Scientist: who is using the genome browser on a regular basis to accomplish his genomic

data analysis and research. This user normally possesses biological knowledge and has some

knowledge about genome browser functionality.

The Administrator: who will download and install the genome browser software, create a working

instance of the genome browser and have the responsibility of maintaining it. This user

possesses basic to advance knowledge of computer systems so that he would be able to perform

the installation and configuration.

It is also important to mention all the stakeholders, which will include the two mentioned above,

for the system to be able to protect their interests when documenting the system requirements. A

list of stakeholders of this tool can be summarized in Table 5:

Stakeholder Description

Research Group A group of geneticists of small to medium size, working

on a shared topic of interest.

Research Community A large research group, sharing the same topic of re-

search and collaborating to achieve useful results.

Data Provider Single researchers or research groups or large community

that produce curated or experimental data.

Scientist A researcher who is interested in genetics.

Administrator A scientist or any individual or a team with basic to

advanced knowledge in computer science.

Table 5: Genome Browser Stakeholders
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3.2.4 General Constraints

The genome browser software is constrained by the web browser since it is the main interface be-

tween the user and the genome browser application.

The Internet connection is also a constraint since the genome browser software mainly exists on a

web server that is accessed by the client’s web browser by a HTTP/HTTPS request to fetch data

from either a database or files on other servers over the Internet. It is crucial that there is an

Internet connection for the application to function at a suitable bandwidth.

A genome browser is a web application so it has to conform to the HTTP protocol and to the DAS

protocol.

The system shall be in compliance with all accessibility, web design, data exchange format, HTML

and security standards and policies applicable.

3.2.5 Assumptions and Dependencies

Minimum System Requirements:

Depending on some existing genome browsers we can present a list of the minimal requirements

needed to install and use a genome browser software:

Note: the list of minimum requirements were driven from existing genome browsers’ requirements.

The two modes (single user and multiple users) are mentioned because some individual users need

to view their own data and they are not part of a group.

Hardware:

• Client side: Unix, Windows, or Macintosh workstation on desktop or laptop computers with

an Internet connection.

• Server side: a minimum of 2 GHz processor, 8 GB of RAM and 200 GB of free disk space.

Software:

• Client side: a web browser with HTML 4.0 or higher.

• Server side: an HTTP web server.

It is assumed that those system requirements will be met in order for the genome browser to work

properly on the user’s system.

Application mode Assumptions:

We assume that the architecture design of the genome browser will follow either one of these modes:

1. Single user Standalone.
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(a) This is a single-user, local server.

(b) The database will reside on the user’s workstation.

This mode is used for visualizing the genomic data of a single user.

2. Multiple users Network (client/server).

(a) The genome browser instance will be set up on the data provider server.

(b) The client user has a web browser to access the genome browser page.

(c) The database will reside on the data provider server.

This mode can be used by a research group or research community.

User Interface Assumptions:

We assume that the general layout of the genome browser main interface will conform to the com-

mon layout used by most genome browsers, which is a list of horizontal tracks containing features

that belongs to a genomic sequence and uses this sequence as the main coordinate system. The

page will have navigation controls used by most browsers like panning and zooming which the user

will use to navigate to regions of interest. A search box is also present in this interface to search

for features and navigate to them.

Existing Dependencies:

The technologies used to render the genome browser display will determine the version of the web

browser needed to meet the intended visualizations.

Depending on the type of monitor used by the client, the quality of the graphical items displayed

to the user will change.

The speed of accessing remote/centrally-stored data is inevitably limited by the bandwidth of remote

data servers.

3.3 Domain Model

Representing the vocabulary and the key concepts of genome browsers is helpful for understanding

the problem domain. This is an attempt to gather all the major concepts related to a genome

browser, it is not intended to be used as a definitive model of the problem area. We have arrived at

two versions of the domain model: the first version models the key concepts of a genome browser

(Figure 38), the second version will add some identified types of some of the main concepts.
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Figure 38: Domain Model, Version1 models the basic concepts of a genome browser

Genome browsers have interwinding concepts that are presented in the domain model, those

concepts are either computer related, biological terms or visualization concepts. A Genome Browser

Installed System models the entire genome browser system and it is comprised of several Genome

Browser Instances. Each Genome Browser Instance has several Datasets that belongs to one Genome.

A Genome Browser Instance can have several user Sessions and it also has a Configuration default

configuration Admin Configuration and session-specific configuration Session Configuration. The Ad-

min Configuration represents the permanent default configurations of a genome browser instance. It

contains information about the genome under investigation, the set of available tracks with their

underlying datasets, the default viewed genomic region and the visible tracks. It also contains

the directory information of the sessions and datasets. The Session Configuration represents the
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temporary session configurations of a genome browser instance that is related to a session.

Each Genome Browser Instance is visualized in a Virtual View, both Virtual View and Actual View

being visual components of a genome browser. They respectively represent the entire genomic view

containing the entire genomic sequence with the whole list of selected tracks. The view that the

user sees is basically a projection of the Virtual View. Both views have a Window Coordinate and a

Sequence Coordinate. Users can browse the genome by performing operations that changes either

Session Configuration or the Actual View. Those operations either directly or implicitly change the

Actual View seen by the user.

A Genome consists of a single or multiple Sequences and every Sequence is used as a Sequence

Coordinate that is used to map Features to their locations on the Sequence.

Every Dataset has several Features and it is used to create one or more tracks, such that each

Track is an aggregate of features of a single type that are stored in a Dataset and conform to the

Sequence Ontology. Every Track has a Feature Visualization capability that visualizes the features

inside that track.
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Figure 39: Domain Model, Version2 is the same as Version 1, adding identified types of some of the main

concepts

In the second version of the domain model (Figure 39) we have identified several types of

some of the main concepts. A Feature can be a Gene Feature (fundamental information units of

DNA), a Transcript Feature (a sequence of RNA produced by transcription from a DNA template),

an Alignment Feature (consists of nucleotide sequence alignments), a Quantitative Feature (dense,

continuous data such as alignment scores).

A Sequence can be a Chromosome, a Contig (a contiguous length of genomic sequence in which the

order of bases is known to a high confidence level), a Scaffold (a portion of the genome sequence re-

constructed from end-sequenced whole-genome shotgun clones). The Sequence Coordinate/locations

on the sequence can be a Point Coordinate (a location that spans a single base pair position), an
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Interval Coordinate (a location that has a start and end position on the sequence and spans more

than one base pair position), or a Continuous Coordinate(a location that spans the whole length of

a sequence).

3.4 Specific Requirements

3.4.1 External Interface Requirements

3.4.1.1 User Interfaces

The user interface will be consistent and simple to use by the intended users, without the need of

previous training, and it should work on modern web browsers such as Internet Explorer, Firefox,

Google Chrome, Safari and Netscape. It will use the common and familiar layout of most modern

genome browsers using a widely used and understood terminology by the intended users of the tool.

The main user interface would be the genome browser’s page. The header will have the name and

coordinate of the genome under investigation and it will have a search field and the rest of the

navigation control like zooming and scrolling.

The body of the page will have the piled up set of tracks with the main track being the one

containing the genome sequence. A set of configuration controls will be associated with each track

in order to provide a lot of customization capabilities for the intended user.

In the case of errors, the system should provide comprehensible error messages to the user and

error log files as well. The error messages shall be accurate and simple to understand. There shall

be a help menu. There is a file upload dialog to walk through the uploading steps with the user

with clear and simple instructions. A list of all the available tracks shall be presented to the user

with clear classification of the type and content of the provided available tracks.

3.4.1.2 Hardware Interfaces

Server Side: The genome browser will be hosted on any available machine with a working HTTP

web server, usually the web server is listening on the web standard port, port 80, or any other

available port.

Client Side: The genome browser is a client-server application therefore, in order to access it, the

user will need a computer with an Internet connection, which means that hardware interfaces

are required to connect to the internet, like wireless or Ethernet network connection devices

(e.g. Internet Service Provider (ISP) or DSL and a Modem).
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3.4.1.3 Software Interfaces

In order for the genome browser to work properly it needs several software components:

Server Side:

A HTTP Server Application: like Apache.

A Relational Database Management System, or file based databases: for storing genomic data like

MYSQL database.

Command line: the command line is used to run external code to prepare the genomic data to be

displayed inside tracks of the genome browser and also for other purposes.

Client Side:

A Web Browser: The genome browser’s main user interface will be on the users web browser,

therefore any modern web browser should work just fine.

3.4.1.4 Communications Interfaces

The HTTP protocol will be used to facilitate communications between the client (web browser) and

server, as well as the TCP/IP protocol for transferring data. The system can be accessed via any

available port. It also uses the DAS protocol to communicate with DAS sources [Prlić et al., 2007].

3.4.2 Functional Requirements

This section describes specific requirements for modern genome browsers, that will be described in

two forms: statements and use cases.

SR 1: The genome browser shall allow the administrator to add new datasets and update/delete

existing datasets.

SR 2: The genome browser shall allow the administrator to create tracks from the added datasets.

SR 3: The genome browser shall allow the administrator to define the system default settings and

configurations.

SR 4: The genome browser shall provide several genomes to browse. Each genome is associated

with its annotation datasets and the genome browser displaying the annotations of a specific genome

is called a genome browser instance. A genome browser installed system has several genome browser

instances, each displaying one specific genome along with its annotation tracks.

SR 5: The genome browser shall display genomic data in several level of details or perspectives to

ease the user understanding of complex genomic data.

SR 6: The genome browser shall provide navigation capabilities to browse different regions of the

genome.
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SR 7: The genome browser shall provide flexible customization to a genome browser instance.

SR 8: The genome browser shall provide user sessions saving capabilities.

3.4.3 Use Cases

The section presents the rest of the genome browser requirements as use cases.

3.4.3.1 Actor-Goal List

Actor Goal

Administrator Manage configurations of a Genome Browser instance.

Scientist

Navigate.

Save session state.

Export data.

Manage configurations of a Genome Browser instance.

Table 6: Actor-Goal Table

Comments:

The documented use cases are considered high-level with the focus of understanding the basic

functionality of a genome browser. As mentioned previously, security requirements, such as authen-

tication, log-in and log-out, are not considered. We also do not cover the searching of features and

it is assumed that there is only one genome in a genome browser instance associated with several

feature tracks. In the extension part of the use cases, low level errors associated with internal server

errors or inexperienced users and administrators are not considered.
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3.4.3.2 Use Case Model

Figure 40: Use Case Model

3.4.3.3 Fully Dressed Use-Cases

ID: UC-1

Use Case: Manage configurations of a Genome Browser instance.

Level: User-goal

Primary Actor: Administrator

Stakeholders and Interests:

1.Research Group members: They need the Genome Browser instance to contain genomic se-

quences and data in their field of research and to be correctly visualized, maintained (up to

date), easily accessible and interpretable.

Preconditions:

1.The Genome Browser software is successfully installed on a server machine.

2.The server is successfully running.

3.Data sources are accessible.
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Minimal Guarantees: The system keeps a log.

Success Guarantees: The Genome Browser instance is set up and ready for use.

Trigger: The administrator defines the configuration of a Genome Browser instance.

Main Success Scenario:

1.The administrator adds the datasets.

2.The Administrator creates the tracks from the datasets.

3.The Administrator defines the global/Admin configurations.

4.The Administrator creates a genome browser instance visualization from the configuration and

the tracks.

ID: UC-2

Use Case: Browse the Genome.

Level: Summary-goal

Primary Actor: Scientist

Stakeholders and Interests:

1.Research Group members: They need to be able to choose the sequence that they need to

investigate with their available annotation tracks.

Preconditions:

1.The Genome Browser is accessible.

Minimal Guarantees: The Scientist can return to the default view.

Success Guarantees: The Scientist is able to view specific regions of interest.

Trigger: The Scientist selects a genome to browse.

Main Success Scenario:

1.The Scientist selects one of the available sequences of that genome.

2.The Genome Browser displays the selected sequence with public tracks in the Actual View.

3.The Scientist selects one of the extended use cases to perform.

ID: UC-2.a

Use Case: Navigate.

Level: User-goal

Primary Actor: Scientist

Stakeholders and Interests:
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1.Research Group members: They need to be able to navigate to interesting regions of the

genome.

Preconditions:

1.The Genome Browser is accessible.

Minimal Guarantees: The user can return to the default view.

Success Guarantees: The Scientist is able to navigate to regions of interest.

Trigger: The Scientist navigates to interesting regions of the genome.

Main Success Scenario:

1.The Scientist navigates to interesting regions of the genome.

2.The Genome Browser presents the annotations of the selected region in the Actual View.

Comments:

1.In this Use Case, Navigates, includes scrolling, zooming, returning to the default view, spec-

ifying specific coordinates or features to view. This is documented in the sub function use

cases.

2.Presents can be handled differently depending on the Genome Browser initial configurations.

ID: UC-2.b

Use Case: Save session state.

Level: User-goal

Primary Actor: Scientist

Stakeholders and Interests:

1.Research Group members: They need to be able to access their session to continue their work.

Preconditions:

1.The Scientist changes the default settings of the genomic view.

Minimal Guarantees: The state of the user current session is available to the user.

Success Guarantees: The Scientist can refer or access their session using the session ID.

Trigger: The Scientist chooses to save his session.

Main Success Scenario:

1.The Scientist selects to save the state of his session.
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2.The Genome Browser creates a copy of the session, assigns a session ID and stores it in a

permanent storage.

ID: UC-2.c

Use Case: Export data.

Context of Use: The user wants to extract the sequence itself, or all the data in the selected

tracks, or even just the annotations found in a single track.

Level: User-goal

Primary Actor: Scientist

Stakeholders and Interests:

1.Research Group members: They need to be able to export data from the Genome Browser

instance in various formats.

2.Research community: They need to export data from Genome Browser instances in order to

share them among the community members.

Preconditions:

1.The Scientist is viewing a genomic region with a set of annotation tracks.

Minimal Guarantees: The sequence track’s data is available for exporting.

Success Guarantees: A file containing the selected data in the appropriate format is created.

Trigger: The Scientist selects to export data from tracks.

Main Success Scenario:

1.The Scientist selects to export data.

2.The Scientist chooses the range of data to be exported and the format of exporting.

3.The Genome Browser exports the selected data according to the selected format.

ID: UC-2.d

Use Case: Manage configurations of a Genome Browser instance.

Level: User-goal

Primary Actor: Scientist

Stakeholders and Interests:
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1.Research Group members: They need to be able to customize the Genome Browser instance

and change the default configurations for the duration of their session.

Preconditions:

1.The Scientist is viewing a genomic region with a set of annotation tracks with the default

configurations.

Minimal Guarantees: The Scientist can always go back to the default configurations.

Success Guarantees: The Scientist creates a new configuration.

Trigger: The Scientist chooses to change the configurations.

Main Success Scenario:

1.The Scientist defines a new session configuration.

2.The Genome Browser applies the configurations in the context of a session.

Comments:

1.This use case, uses “Save sessions state” use case, , meaning the new defined user configuration

can be saved using the ”Save session state” use case.

2.To define new configurations means that the user can do the following:

•Show/hide tracks.

•Reorder tracks.

•Change the appearance of features inside tracks like colour, size, shape, etc.

ID: UC-2a.1

Use Case: Position.

Level: Sub-function

Primary Actor: Scientist

Stakeholders and Interests:

1.Research Group members: They need to be able to position the Genome Browser view to

specific regions or features.

Preconditions:

1.The Scientist is viewing a genomic region with a set of annotation tracks.
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Minimal Guarantees: The user can always go back to the default position.

Success Guarantees: The Scientist is able to change the current viewed region.

Trigger: The Scientist chooses to change the current viewed region.

Main Success Scenario:

1.The Scientist specifies a new position.

2.The Genome Browser determines the sequence coordinate of the new region.

3.The Genome Browser presents the annotations of the new region in the Actual view.

Comments:

1.In this use case, a new position could be a feature name/ID, a specific region coordinate in

the form of ch: start..end, or a point location.

ID: UC-2a.2

Use Case: Changing level of detail.

Level: Sub-function

Primary Actor: Scientist

Stakeholders and Interests:

1.Research Group members: They need to be able to view data at different levels of detail.

Preconditions:

1.The Scientist is viewing a genomic region with a set of annotation tracks.

Minimal Guarantees: The user can always go back to the default level of detail.

Success Guarantees: The Scientist is able to navigate in increasing/decreasing level of detail

while allowing to concentrate on a restricted slice of data with more details shown

Trigger: The Scientist chooses to change the current level of detail of the viewed region.

Main Success Scenario:

1.The Scientist chooses a new level of detail (Scale Factor) for viewing the data.

2.The Genome Browser determines the sequence coordinate of the new region.

3.The Genome Browser presents the annotations of the new region in the Actual View.
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Comments:

1.In this use case, chooses means either setting a new scale or just zooming In/Out using

pre-configured zoom settings.

ID: UC-2a.3

Use Case: Changing the viewed region.

Level: Sub-function

Primary Actor: Scientist

Stakeholders and Interests:

1.Research Group members: They need to be able to navigate to regions of interests by panning

the view left or right.

Preconditions:

1.The Scientist is viewing a genomic region with a set of annotation tracks.

Minimal Guarantees: The user can always go back to the default view.

Success Guarantees: The Scientist is able to navigate to other regions of the genome.

Trigger: The Scientist chooses to navigate to other regions of the genome.

Main Success Scenario:

1.The Scientist navigates horizontally to view other interesting regions.

2.The Genome Browser determines the sequence coordinate of the new region.

3.The Genome Browser presents the annotations of the new region in the Actual View.

ID: UC-2a.4

Use Case: Setting a perspective.

Level: Sub-function

Primary Actor: Scientist

Stakeholders and Interests:

1.Research Group members: They need to be able to view a large number of tracks.

Preconditions:

96



1.The Scientist is viewing a genomic region with a set of annotation tracks, the set of tracks

exceeds the user’s view (not all tracks are shown).

Minimal Guarantees: The user can always go back to the default view perspective.

Success Guarantees: The Scientist is able to view wanted annotation tracks.

Trigger: The Scientist wants to view the annotations belonging to out of view tracks.

Main Success Scenario:

1.The Scientist sets a new perspective.

2.The Genome Browser determines the window coordinate and annotations of the Actual View.

3.The Genome Browser presents those annotations in the Actual View.

Comments:

1.This use case is needed in the case that the list of selected tracks exceeds the height of the

user’s view.

2.sets a new perspective, means navigating longitudinally in the data to view other wanted

tracks of data.

3.4.4 Non-Functional Requirements

3.4.4.1 Performance Requirements

SR 9: Number of users: The genome browser shall support at least 10 concurrent users.

SR 10: General Response time: The response time of the genome browser functions shall not

exceed 1 second.

SR 11: Loading time: The loading time of data files shall not exceed 5 seconds.

SR 12: Size of a single dataset: The genome browser shall be able to display the features

contained in at least 2 terabytes of data inside a track.

SR 13: Number of datasets or tracks: The system should be able to serve at least 100

datasets to the user. It should be able to display 10000 tracks.

Note: This does not imply that it can host 10000 tracks of 2 terabyte datasets; it means that it

can handle the visualization of 10000 tracks without performance loss.
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3.4.4.2 Extensibility Requirements

SR 14: The system shall be extendable to add new data formats and new visualizations (new

glyphs and tracks).

SR 15: A developer shall spend a maximum of 6 working days in order to extend a genome browser

with one data format or one visualization (glyph and track).

3.4.5 Design Constraints

The genome browser shall use and conform to the genomic file format standards and specifications,

since the genome browser will use those files as inputs that will be parsed to draw genomic features

inside their designated tracks. The minimal set of data formats that need to be supported by a

genome browser is (FASTA, GFF, BED, WIG, SAM/BAM, BegBed and BigWig) documented in

both Appendix A and Appendix B. The minimal set of visualizations supported is (Generic, DNA,

Alignment, Arrow, Box, CDS, Gene, Processed Transcript, Protein, Transcripts, XY Plot, Wiggle

density), which can be found in Appendix C. The genome browser shall be compatible with multiple

genomic databases like MYSQL or BioMysql, since they are commonly used to save genomic data.

The genome browser’s underlying naming of data types and their relationships should conform

to the sequence ontology, since the user will use them in the searching capability of the genome

browser.

3.5 Formal Specification of a Genome Browser

This section establishes a formal specification of a genome browser in “Z Notation”. We introduce

the different components of the system in an incremental manner, starting with the basic types,

and then the various components represented as state schemas, after that the operations and finally

the validation. The validation process checks proof obligations: that the pre-conditions and post-

conditions do not contradict the state invariants.

3.5.1 Overview

A Genome Browser complexity arises from the complexity of the genomic data that it represents,

since we cannot separate the computer aspects of the system (e.g. window, datasets) from both

the visual (e.g. tracks, feature visualization) and the biological aspects (e.g. genome, sequence,

feature). We needed to have a flexible and easily comprehensible specification model that relates
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those aspects or concepts in a meaningful way, which can be later used in designing and verifying

that the genome browser conforms to the specifications.

We are trying to represent a visualization tool where the visualized data is very big and complex.

In genome browsers, the genome sequence is used as the main coordinate system for the biological

data and annotations that are grouped, according to their types, inside horizontally aligned tracks

and visualized using glyphs or icons inside those tracks. The specifications are organized into the

following sections: Section 3.5.2 identifies the basic types used to model our system; Section 3.5.3

models the basic components of a genome browser including Sequence, Genome, Feature, DataSet,

FeatureVisulization and Track; Section 3.5.4 models the two coordinate systems used in genome

browsers; Section 3.5.5 models the different configurations of the system, their operations and

associated validation; Section 3.5.6 models the views used in our system, their operations and

associated validation; Figure 41 shows a sketch that represents our views and their coordinates and

illustrates their special relationships. Section 3.5.7 models the genome browser instance and the

genome browser installed system, their initialization, operations and associated validation.

3.5.2 Basic Types

We start the specification by introducing several basic types:

[SEQNAME,FEATURE, SCALE, SESSION,GLYPH,TYPE,NAME]

STRAND ::= − | +

NUCLEOTIDE ::= A | C | G | T

DNAsequence == seq1 NUCLEOTIDE

A genome browser system will need, SEQNAME, to represent the set of all sequence names available

in the system and FEATURE, to model the set of all possible feature types available in the system.

We also must have a variable of type SCALE to represent the scale that is used to map base pairs

to window units on the screen. The end-user needs to save his/her session SESSION is used to

represent a user session.

In genome browsers, each track uses a different icon or glyph to visualize the features, so to represent

those different types of graphical representations we use GLYPH. Also there are several dataset types

(e.g. genes and transcript datasets) that can be visualized in a genome browser, so TYPE is used to

represent the set of all possible dataset types. There are different tracks in a genome browserNAME

is used to represent the set of all possible track names. Genomic features can reside on the positive

strand or the negative strand of a sequence STRAND is used to reflect that. The genomic sequence
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is a sequence of nucleotides, represented by DNAsequence, and NUCLEOTIDE models any one of the

DNA nucleotides { A, C , G , T}.

There is a constant to model the maximum region size that can be viewed in a genome browser

MaxViewWidth.

MaxViewWidth : N1

3.5.3 Basic Components of a Genome Browser

There are two essential biological data types including Sequence and Feature, two visual data types

that are a Track and FeatureVisulization, and a computer related aspect which is a DataSet. There-

fore, we need to define a schema type for each of them. Features belonging to a sequence have

locations on that sequence and each type of feature is presented inside horizontal tracks.
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Figure 41: Diagram of Spacial Concepts in Z Model, shows the different spacial distribution of concepts

and their spacial relationships.

A Sequence schema type is defined to represent a genomic sequence that can be a chromosome, a

contig or a scaffold, actually any sequence belonging to an organism’s genome. A Sequence basically

has several variables: a name, the actual sequence of nucleotides sequenceText, the start and end

coordinate of the sequence and the length of the sequence SeqLength.
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Sequence

name : SEQNAME

sequenceText : DNAsequence

start, end : N1

SeqLength : N1

start ≤ end

start = 1

end = #sequenceText

SeqLength = end− start + 1

A Genome Browser can have a number of sequences which together form the Genome of an organism.

Genome == P Sequence

BasePairPos model the base pair positions on the sequence. We are using a one-based coordinate

to number the sequence bases such that the first base has the position of 1.

BasePairPos == 1..SeqLength

The Feature schema type has several variables including their type, and a location which is defined

by 4 attributes strand, seqName sequence name, start and end.

Feature

type : FEATURE

strand : STRAND

seqName : SEQNAME

start : BasePairPos

end : BasePairPos

start ≤ end

A DataSet represents the data underlying a track which can be taken from a file, a DAS source

or even a database. Each DataSet belongs to a genome and has a type like a gene model data or

expression data.

DataSet

genome : GENOME

type : TYPE
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A FeatureVisualization schema models the visualization of features inside tracks and has a glyph

variable that defines the glyph used to visualize the features.

FeatureVisualization

glyph : GLYPH

The Track schema type represents a visual aspect of the system. Each track in the system has a

Name, a TrackHeight with a set of all the features it contains, a featureType that is used to specify

the type of the features in the track (allowing only one type of features in each track, as emphasized

in the predicate part). Every track in a genome browser belongs to a dataset that represents the

underlying textual data of a track. Another variable, visualizationType, is used to specify the type

of visualization used to visualize the features in the track.

Track

name : NAME

TrackHeight : N1

features : PFeature

featureType : FEATURE

dataset : DataSet

visualizationType : FeatureVisualization

∀ f : Feature | f ∈ features • f.type = featureType

3.5.4 Coordinate Systems

In a genome browser, we need two coordinate systems: the sequence coordinate in base pairs and

the window coordinate in an arbitrary window unit. The size of the sequence coordinate is normally

bigger than any screen size, so we need to convert between those two coordinate systems and this

is done using a scale factor. For instance, the human genome consists of over 3 billion nucleotide

base pairs, which requires a many-to-one mapping of bases to window units on modern displays

[O’Brien et al., 2010]. A schema type named SequenceCoordinate models the sequence coordinate

of a genome browser. This has several variables used to specify the locations of features on the

sequence and the start and end of the viewed region of the genome. These include the name of the

sequence seqName, the strand, the minBP position and the maxBP position. The only constraint is

that the minBP is less than or equal to the maxBP. We are assuming that the sequence coordinate

uses the one-base genomic coordinate.
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SequenceCoordinate

seqName : SEQNAME

strand : STRAND

minBP,maxBP : BasePairPos

minBP ≤ maxBP

The second coordinate system named WindowCoordinate is used to specify the positions of tracks

in the user’s display. We used an arbitrary window unit to represent positions on the WindowCoor-

dinate.

The display is a fixed size bounded rectangle in the X-Y plane [Bowen, 1992], where left and right

are the start and the end range on the X coordinate, while top and bottom are the start and the

end range on the Y coordinate. Xsize represents the width of the display and Ysize is the height of

the display. Xrange and Yrange are used to define the range of window units of our WindowCoordi-

nate. The WindowCoordinate has 4 different variables, the left and right, the top and bottom of the

WindowCoordinate, with the constraints that left is less than right and top is less than bottom.

Xsize,Ysize : N1

Xrange == 0..Xsize− 1

Yrange == 0..Ysize− 1

WindowCoordinate

left, right : Xrange

top, bottom : Yrange

(left < right) ∧ (top < bottom)

3.5.5 Genome Browser Configurations

The genome browser has two types of configurations that are used to configure the genome browser

instance Admin Configuration and Session Configuration. A genome browser instance represents

a single organism/genome as modelled in Section 3.5.7. Before we can define the two types of

configurations we need to define the genome browser zoom levels which are used to scale the sequence

coordinate to the more limited window coordinate. A scale is in window units per base pairs. There

are several configured zoom levels in a genome browser which are modelled in availableZoomLevels.

These zoom levels include a MaxZoom and a MinZoom, which respectively represent the maximum
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zoom level and the minimum zoom level available. Those two model the highest and lowest zoom

levels in our system. It is important to know that there is no repetitive zoom levels and every zoom

level is either the MaxZoom or MinZoom or a zoom level value in between.

availableZoomLevels : P SCALE

MaxZoom : SCALE

MinZoom : SCALE

MaxZoom ∈ availableZoomLevels

MinZoom ∈ availableZoomLevels

∀ z, x : SCALE | z ∧ x ∈ availableZoomLevels • (z 6= x) ∧ (z < x) ∨ (z > x)

∀ z : SCALE | z ∈ availableZoomLevels • (z ≤ MaxZoom) ∧ (z ≥ MinZoom)

After having identified the availableZoomLevels, we need to order them and save them in some sort

of array data structure for easy access during zooming operations. So we have defined an Index to

number our zoom level array from 0 to the size of (availableZoomLevels − 1). Then we created our

data array structure of ZoomLevels such that the availableZoomLevels is ordered from MinZoom to

MaxZoom.

Index == 0..#availableZoomLevels− 1

ZoomLevels : Index 7� availableZoomLevels

ZoomLevels(0) = MinZoom

ZoomLevels(#availableZoomLevels− 1) = MaxZoom

∀ i, j : Index | 0 ≤ i < j ≤ (#availableZoomLevels− 1) • ZoomLevels(i) < ZoomLevels(j)

3.5.5.1 Admin Configuration schema

Now we model the two types of configurations: the AdminConfiguration is the permanent/default

configuration of our instance defined by the administrator of the system, while the SessionConfig-

uration is our changing/temporary configuration defined by the user of the genome browser. Both

configurations have the same set of variables: genome to identify the genome under investigation,

refseq to define our exact default reference sequence presented to the user. Variable availableDatasets

models all the underlying datasets of our tracks. The scaleFactor identifies the default zoom level

used to map base pairs to window units. regionStart andregionEnd define the coordinate of our

default viewed region of the genome, while availableTracks, selectedTracks and unselectedTracks re-

spectively represent all the available tracks in our instance, all the default or currently selected

tracks, and all the unselected tracks.
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Several constraints exist, including the fact that the scaleFactor is part of availableZoomLevels;

refseq variable is part of the genome under investigation; The set of availableTracks is all the tracks

in selectedTracks and unselectedTracks; The tracks in either selectedTracks or unselectedTracks is not

part of the other; The regionStart and regionEnd is between the start and end values of our refseq;

All the availableDatasets are containing data of our current genome and every track in the set of

availableTracks belong to a dataset that is part of our availableDatasets.

AdminConfiguration

genome : Genome

refseq : Sequence

availableDatasets : PDataSet

scaleFactor : SCALE

regionStart, regionEnd : BasePairPos

availableTracks, selectedTracks, unselectedTracks : PTrack

scaleFactor ∈ availableZoomLevels

refseq ∈ genome

selectedTracks ∪ unselectedTracks = availableTracks

selectedTracks ∩ unselectedTracks = ∅
refseq.start ≤ regionStart < regionEnd ≤ refseq.end

∀ d : availableDatasets • d.genome = genome

∀ t : Track | t ∈ availableTracks • t.dataset ∈ availableDatasets

3.5.5.2 Session Configuration schema

The SessionConfiguration has the same set of variables and predicates as the AdminConfiguration.

The only difference is that AdminConfiguration represents the default settings of our instance and

SessionConfiguration represents our user session settings.
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SessionConfiguration

genome : Genome

refseq : Sequence

availableDatasets : PDataSet

scaleFactor : SCALE

regionStart, regionEnd : BasePairPos

availableTracks, selectedTracks, unselectedTracks : PTrack

scaleFactor ∈ availableZoomLevels

refseq ∈ genome

selectedTracks ∪ unselectedTracks = availableTracks

selectedTracks ∩ unselectedTracks = ∅
refseq.start ≤ regionStart ≤ regionEnd ≤ refseq.end

∀ d : availableDatasets • d.genome = genome

∀ t : Track | t ∈ availableTracks • t.dataset ∈ availableDatasets

3.5.5.3 Session Configuration Operations and Validation

Show Track Operation

ShowTrack operation changes the SessionConfiguration and consequently the VirtualView (introduced

in Section 3.5.6) by adding track? to the set of selectedTracks, which will update the TrackList. This

increases the virtualHeight by the trackHeight?.

ShowTrack

∆SessionConfiguration

track? : Track

trackHeight? : N1

track? ∈ unselectedTracks

selectedTracks′ = selectedTracks ∪ track?

unselectedTracks′ = unselectedTracks \ track?

virtualHeight′ = virtualHeight + trackHeight?

Validation:

This validation is introduced to prove that ShowTrack operation does not contradict the Session-

Configuration state invariants:
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selectedTracks ∪ unselectedTracks = availableTracks

selectedTracks ∩ unselectedTracks = ∅

The pre-condition of the ShowTrack operation is: track? ∈ unselectedTracks

From the invariant the following is also true: track? /∈ selectedTracks

This means that the ShowTrack operation will only be used in the case where the track being shown

is part of the unselectedTracks and not of the selectedTracks.

We expect that at the conclusion of a ShowTrack operation, the availableTracks would be un-

changed.That is:

selectedTracks’ ∪ unselectedTracks’ = selectedTracks ∪ unselectedTracks

We can prove that this is indeed the case using the following argument:

selectedTracks’ ∪ unselectedTracks’

=(selectedTracks ∪ track?) ∪ (unselectedTracks \ track?)

[from post-conditions of ShowTrack] (1)

=(unselectedTracks \ track?) ∪ (selectedTracks ∪ track?) [union is commutative] (2)

=(unselectedTracks \ track?) ∪ (track? ∪ selectedTracks) [union is commutative] (3)

=((unselectedTracks \ track?) ∪ track?) ∪ selectedTracks [union is associative] (4)

=(unselectedTracks ∪ track?) ∪ selectedTracks [law relating set difference to union] (5)

=unselectedTracks ∪ selectedTracks [from pre-condition of ShowTrack] (6)

Hide Track Operation

HideTrack operation changes the SessionConfiguration and consequently the VirtualView (introduced

in Section 3.5.6). It takes a track? from the selectedTracks set and add it to the unselectedTracks,

which will update the TrackList. This will result in hiding the track from the list of visible tracks

and decreasing the virtualHeight by trackHeight?.
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HideTrack

∆SessionConfiguration

track? : Track

trackHeight? : N1

track? ∈ selectedTracks

selectedTracks′ = selectedTracks \ track?

unselectedTracks′ = unselectedTracks ∪ track?

virtualHeight′ = virtualHeight− trackHeight?

Validation:

This validation is introduced to prove that HideTrack operation does not contradict the SessionCon-

figuration state invariants:

selectedTracks ∪ unselectedTracks = availableTracks

selectedTracks ∩ unselectedTracks = ∅

The pre-condition of the HideTrack operation is: track? ∈ selectedTracks

From the invariant the following is also true: track? /∈ unselectedTracks

This means that the HideTrack operation will only be used in the case where the track being shown

is part of the selectedTracks and not of the unselectedTracks.

We expect that at the conclusion of a HideTrack operation, the availableTracks would be un-

changed.That is:

selectedTracks’ ∪ unselectedTracks’ = selectedTracks ∪ unselectedTracks

We can prove that this is indeed the case using the following argument:

selectedTracks’ ∪ unselectedTracks’

=(selectedTracks \ track?) ∪ (unselectedTracks ∪ track?)

[from post-conditions of ShowTrack] (1)

=(selectedTracks \ track?) ∪ (track? ∪ unselectedTracks) [union is commutative] (2)

=((selectedTracks \ track?) ∪ track?) ∪ unselectedTracks [union is associative] (3)

=(selectedTracks ∪ track?) ∪ unselectedTracks [law relating set difference to union] (4)

=selectedTracks ∪ unselectedTracks [from pre-condition of ShowTrack] (5)
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Pan Operation

The following set of operations will cover the navigation aspect of a genome browser. The Pan

operation implicitly navigates the ActualView (introduced in Section 3.5.6) horizontally, which we

represented by a variable named panDistance? of type Z, so that positive values demonstrate right

panning and negative values have a left panning effect. This navigation changes two state variables

of the SessionConfiguration regionStart and regionEnd, which implicitly changes the seqCoor of the

ActualView which in turn changes the position of the ActualView on the viewCoor.

Pan

∆SessionConfiguration

panDistance? : Z

panDistance? ≤ (refseq.end− regionEnd)

panDistance? ≥ (refseq.start− regionStart)

regionStart′ = regionStart + panDistance?

regionEnd′ = regionEnd + panDistance?

Validation:

This validation is introduced to prove that Pan operation does not contradict the SessionConfigura-

tion state invariant:

refseq.start ≤ regionStart ≤ regionEnd ≤ refseq.end

The pre-conditions of the Pan operation are:

panDistance? ≤ (refseq.end − regionEnd )

panDistance? ≥ (refseq.start − regionStart )

This means: (refseq.start − regionStart) ≤ panDistance? ≤ (refseq.end − regionEnd)

(refseq.start − regionStart) ≤ (refseq.end − regionEnd) [Transitive Property, if a<b and b<c, then

a<c], which makes sure that we do not pan over the start and end of the reference sequence.

We need to prove that regionStart’ ≤ regionEnd’ is true and does not contradict with regionStart ≤
regionEnd.

We can prove this using the following argument:

regionStart’ ≤ regionEnd’

≡ regionStart + panDistance? ≤ regionEnd + panDistance?

[from post-conditions of Pan] (1)

≡ regionStart ≤ regionEnd [since the same value is added to both sides] (2)

≡ true (3)
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Set Scale Operation

After that, there are three very similar zooming operations, all of them implicitly affect the Vir-

tualView presented in Section 3.5.6. The first operation is SetScale, which is done by selecting a

newScale? factor that will affect the size and seqCoor of the viewed region.

SetScale

∆SessionConfiguration

newScale? : SCALE

newScale? ∈ availableZoomLevels

scaleFactor′ = newScale?

regionStart′ = viewCenter − (viewWidth div scaleFactor′) div 2

regionEnd′ = viewCenter + (viewWidth div scaleFactor′) div 2

Validation:

This validation is introduced to prove that SetScale operation does not contradict the SessionCon-

figuration state invariants:

refseq.start ≤ regionStart ≤ regionEnd ≤ refseq.end

scaleFactor ∈ availableZoomLevels

The SetScale pre-condition is: newScale? ∈ availableZoomLevels, which means that the SetScale

operation can only work if newScale? is part of the availableZoomLevels.

This operation affects scaleFactor, regionStart and regionEnd and from the pre-condition we have

established that the state invariant scaleFactor ∈ availableZoomLevels is satisfied.

We need to prove that regionStart’ ≤ regionEnd’ is true.

We can prove this using the following argument:

regionStart’ ≤ regionEnd’

≡ (viewCenter − (viewWidth div scaleFactor′)) div 2) ≤

(viewCenter + (viewWidth div scaleFactor′) div 2) [from post-conditions of SetScale] (1)

≡ true (2)
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Zoom In Operation

The second zooming operation is ZoomIn, which increments the zoom level by selecting the next

level of zoom from the ZoomLevels, if it is not already in the MaxZoom.

ZoomIn

∆SessionConfiguration

scaleFactor 6= MaxZoom

scaleFactor′ = ZoomLevels(ZoomLevels∼(scaleFactor) + 1)

regionStart′ = viewCenter − (viewWidth div scaleFactor′) div 2

regionEnd′ = viewCenter + (viewWidth div scaleFactor′) div 2

Validation:

This validation is introduced to prove that ZoomIn operation does not contradict the SessionCon-

figuration state invariants:

refseq.start ≤ regionStart ≤ regionEnd ≤ refseq.end

scaleFactor ∈ availableZoomLevels

The ZoomIn pre-condition is: scaleFactor 6= MaxZoom, which means that the ZoomIn operation can

only work if scaleFactor is not the maximum zoom level.

The operation only affects scaleFactor, regionStart and regionEnd. After the operation scaleFactor’

is still part of availableZoomLevels.

We need to prove that regionStart’ ≤ regionEnd’ is true.

We can prove this using the following argument:

regionStart’ ≤ regionEnd’

≡ (viewCenter − (viewWidth div scaleFactor′)) div 2) ≤

(viewCenter + (viewWidth div scaleFactor′) div 2) [from post-conditions of ZoomIn] (1)

≡ true (2)

Zoom Out Operation

The third zooming operation is ZoomOut, which decrements the zoom level by selecting the previous

level of zoom from the ZoomLevels, if it is not already in the MinZoom.
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ZoomOut

∆SessionConfiguration

scaleFactor 6= MinZoom

scaleFactor′ = ZoomLevels(ZoomLevels∼(scaleFactor)− 1)

regionStart′ = viewCenter − (viewWidth div scaleFactor′) div 2

regionEnd′ = viewCenter + (viewWidth div scaleFactor′) div 2

Validation:

This validation is introduced to prove that ZoomOut operation does not contradict the SessionCon-

figuration state invariants:

refseq.start ≤ regionStart ≤ regionEnd ≤ refseq.end

scaleFactor ∈ availableZoomLevels

The ZoomOut pre-condition: scaleFactor6= MinZoom, which means that the ZoomOut operation can

only work if scaleFactor is not the minimum zoom level.

The operation only affects scaleFactor, regionStart and regionEnd. After the operation scaleFactor’

is still part of availableZoomLevels.

We need to prove that regionStart’ ≤ regionEnd’ is true.

We can prove this using the following argument:

regionStart’ ≤ regionEnd’

≡ (viewCenter − (viewWidth div scaleFactor′)) div 2) ≤

(viewCenter + (viewWidth div scaleFactor′) div 2) [from post-conditions of ZoomOut] (1)

≡ true (2)

3.5.6 Basic Views of a Genome Browser

In order to represent the genome browser view of genomic regions, we have modelled two views: (i)

The virtual view that contains the entire reference sequence and all visible tracks (this view does

not have any constraint on the sequence size or on the number of tracks); (ii) The actual view seen

by the user that displays a region of the genome with its annotations in tracks. Nevertheless, before

we represent both views, we need to identify the list of visible tracks that occupy our views in this

schema TrackList. In order to do that, we have defined an Order for each of the selectedTracks.

TrackOrder is used to assign an Order for each of the selectedTracks. Once the track is part of the
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selectedTracks, that means that it has a coordinate TrackCoor on our window. Every one of the

features that belongs to a track have a coordinate on the SequenceCoordinate.

The domain of both TrackOrder and TrackCoor represents all the set of selectedTracks. The TrackCoor

of each track is less than the coordinate of the higher track in order. For instance, the first track

coordinate is less than every other track and the second track coordinate is less than the 3rd or 4th

track window coordinate.

Order == 1..#selectedTracks

TrackList

TrackOrder : Track 7� Order

TrackCoor : Track 7� WindowCoordinate

FeatureCoor : Feature 7→ SequenceCoordinate

dom TrackOrder = selectedTracks

dom TrackCoor = selectedTracks

∀ i, j : Order; t, s : dom TrackOrder | 1 ≤ i < j ≤ #visibleTracks;

TrackOrder(t) = i ∧ TrackOrder(s) = j • TrackCoor(t) < TrackCoor(s)

∀ f : Feature; t : Track | f ∈ t.features •
FeatureCoor(f).minBP = f.start ∧ FeatureCoor(f).maxBP = f.end

3.5.6.1 Virtual View schema

Now we model the VirtualView of a genome browser. The VirtualView has the TrackList organized

horizontally on top of each other, the sequence under investigation. It also has a width and a

height in terms of our window coordinate represented by virtualWidth and virtualHeight, respectively.

The virtualWidth spans the whole length of the sequence on the X coordinate. Accordingly, the

tracks in the TrackList also span the same length. The virtualHeight is the summation of the

selectedTracks heights in TrackList and can accommodate the entire set of available tracks. The

virSeqCoor represents the sequence coordinate of the VirtualView, while virtualCoor is used as the

window coordinate of the VirtualView. The virRegionLength represents the length of our sequence.

The virSeqCoor spans the whole length of the sequence. The left and right of our virtualCoor spans

from 0 to the our last base.
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VirtualView

TrackList

sequence : Sequence

virtualWidth : N1

virtualHeight : N1

virSeqCoor : SequenceCoordinate

virtualCoor : WindowCoordinate

virRegionLength : N1

virSeqCoor.minBP = sequence.start

virSeqCoor.maxBP = sequence.end

virRegionLength = sequence.end− sequence.start + 1

3.5.6.2 Actual View schema

The ActualView models the current visible view seen by the user. It includes the VirtualView, since

it displays a portion of that view, and the SessionConfiguration, since it is being configured using

it. Like the VirtualView, it has a width and a height modelled by these two variables, respectively

viewWidth and viewHeight. It also has a viewCenter to model the base at the centre of the view, this

being needed in several operations on that view, including zooming and panning. It also models

the RegionLength, which is basically the size of the viewed region in bp. seqCoor is the sequence

coordinate of the ActualView and viewCoor is the window coordinate of the ActualView.

Several variables are set using the current SessionConfiguration, including the sequence on the Vir-

tualView, the seqCoor, the RegionLength and the viewCenter on the ActualView. It is important to

restrict the RegionLength to the constant MaxViewWidth. Both the virtualWidth and virtualHeight

are larger than or equal to the viewWidth and viewHeight, respectively.
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ActualView

VirtualView

SessionConfiguration

viewWidth : N1

viewHeight : N1

viewCenter : BasePairPos

RegionLength : N1

seqCoor : SequenceCoordinate

viewCoor : WindowCoordinate

sequence = refseq

seqCoor.minBP = regionStart

seqCoor.maxBP = regionEnd

RegionLength = regionEnd− regionStart + 1

RegionLength ≤ MaxViewWidth

(virtualWidth ≥ viewWidth)

(virtualHeight ≥ viewHeight)

viewCenter = seqCoor.minBP + (RegionLength div 2)

viewCoor.left = regionStart ∗ scaleFactor

viewCoor.right = regionEnd ∗ scaleFactor

3.5.6.3 Actual View Operations and Validation

Scroll Operation:

Scroll operation is presented, which demonstrates vertical navigation of the ActualView, navigation

that only affects the window coordinate viewCoor of the ActualView. The input in this case is

scrollDistance? where positive values represent scrolling down and negative values scrolling up, an

operation that is only needed if the virtualHeight exceeds the viewHeight.
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Scroll

∆ActualView

scrollDistance? : Z

virtualHeight > viewHeight

scrollDistance? ≤ (virtualcoor.bottom− viewCoor.bottom)

scrollDistance? ≥ (virtualcoor.top− viewCoor.top)

viewCoor.top′ = viewCoor.top + scrollDistance?

viewCoor.bottom′ = viewCoor.bottom + scrollDistance?

Validation:

This validation is introduced to prove that Scroll operation does not contradict the ActualView state

invariant:

(virtualHeight ≥ viewHeight).

The pre-condition of the Scroll operation is virtualHeight > viewHeight, which satisfies the state

invariant.

Consider the effect of scrolling on the state invariants. At the end of a Scroll operation, we expect

that:

virtualHeight’ ≥ viewHeight’

We can prove that by the following argument:

virtualHeight’ ≥ viewHeight’

≡ virtualHeight ≥ (viewCoor.bottom′ − viewCoor.top′)

[since virtualHeight’=virtualHeight] (1)

≡ virtualHeight ≥ (viewCoor.bottom + scrollDistance?)−

(viewCoor.top + scrollDistance?) [from post-conditions of Scroll] (2)

≡ virtualHeight ≥ (viewCoor.bottom + scrollDistance?−

viewCoor.top− scrollDistance?) (3)

≡ virtualHeight ≥ (viewCoor.bottom− viewCoor.top) (4)

≡ virtualHeight ≥ viewHeight [definition of viewHeight] (5)
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3.5.7 Genome Browser System

3.5.7.1 Genome Browser Instance schema

A GenomeBrowserInstance models a genome browser with a single organism or genome. It has a set

of sessions availableSessions and every user session has a configuration modelled in SessionConfig,

such that the domain of SessionConfig is the set of availableSessions.

GenomeBrowserInstance

genome : Genome

availableSessions : P SESSION

SessionConfig : SESSION 7→ SessionConfiguration

dom SessionConfig = availableSessions

3.5.7.1.1 Initialization of Genome Browser Instance schema

At the initialization of every genome browser instance there is no AvailableSessions and the Ses-

sionConfiguration is set to the defaults of the AdminConfiguration.

InitGenomeBrowserInstance

GenomeBrowserInstance

SessionConfiguration

AdminConfiguration

AvailableSessions = ∅
θSessionConfiguration = θAdminConfiguration

3.5.7.1.2 Genome Browser Instance schema Operations and Validation

Save Session State Operation

SaveSessionState operation is performed on the GenomeBrowserInstance. This operation saves the

session of the user with its configurations. This is performed on new sessions only.
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SaveSessionState

∆GenomeBrowserInstance

newSession? : SESSION

currentConfig? : SessionConfiguration

newSession? /∈ availableSessions

availableSessions′ = availableSessions ∪ newSession?

SessionConfig′ = SessionConfig ⊕ {newSession? 7→ currentConfig?}

Validation:

This validation proves that the SaveSessionState operation does not contradict the GenomeBrowserIn-

stance state invariant:

dom SessionConfig = availableSessions

dom SessionConfig’= availableSessions’ should be true. We can prove this using the following argu-

ment:

dom SessionConfig’

= dom(SessionConfig ⊕ {newSession? 7→ currentConfig?})

[from post-condition of SaveSessionState] (1)

= (dom SessionConfig) ∪ (dom({newSession? 7→ currentConfig?}))

[dom law, if Q and R are sets, then dom(Q ⊕ R) = (dom Q) ∪ (dom R)] (2)

= availableSessions ∪ newSession? [fact of dom] (3)

= availableSessions′ [from post-condition of SaveSessionState] (4)

3.5.7.2 Genome Browser Installed System schema

GenomeBrowserInstalledSystem models the entire Genome Browser System, which is also the installed

genome browser that has several organisms to choose from, modelled by the set of AvailableInstances.

There is a single working instance modelled by currentInstance, which is part of the AvailableInstances.

GenomeBrowserInstalledSystem

AvailableInstances : PGenomeBrowserInstance

currentInstance : GenomeBrowserInstance

currentInstance ∈ AvailableInstances
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3.5.7.2.1 Initialization of Genome Browser Installed System schema

When the user first initializes the genome browser system, there is no currentInstance and the

first thing the user has to do is to select an organism genome/an instance to work with.

InitGenomeBrowserInstalledSystem

GenomeBrowserInstalledSystem

currentInstance = ∅

3.5.7.2.2 Genome Browser Installed System schema Operations and Validation

Select Instance Operation

SelectInstance operation is used to select a genome/instance to work with. Such that this instance

selectedInstance? is part of the set of AvailableInstances.

SelectInstance

∆GenomeBrowserInstalledSystem

selectedInstance? : GenomeBrowserInstance

selectedInstance? ∈ AvailableInstances

currentInstance′ = selectedInstance?

AvailableInstances′ = AvailableInstances

Validation:

This validation proves that SelectInstance operation does not contradict the state invariant of

GenomeBrowserInstalledSystem:

currentInstance ∈ AvailableInstances

From the pre-condition of SelectInstance operation: selectedInstance? ∈ AvailableInstances and from

the post-conditions currentInstance’ = selectedInstance? and AvailableInstances’ = AvailableInstances.

Hence,

currentInstance’ ∈ AvailableInstances’

≡ selectedInstance? ∈ AvailableInstances′ (1)

≡ selectedInstance? ∈ AvailableInstances (2)

≡ true (3)
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Chapter 4

Conclusion and Future Work

4.1 Description of Work and Contributions

Genome browsers are one of the most important tools in the bioinformatics field. This work has

been dedicated to documenting the different requirements of this tool. The contributions made in

this thesis are:

• Comparative analysis of some prominent research genome browsers prototypes.

• A requirements document that conforms to the IEEE Std 830-1998 Standard of a Software

Requirements Specification, that documents both the functional and the non-functional re-

quirements of a genome browser.

• Use cases to document functional requirements.

• A domain model of a genome browser’s key concepts.

• A formal specification of genome browsers in Z notation.

• A definition of visualizations as metaphors, glyphs, or icons.

• A Specification of data formats, documented in the Appendixes.

Our work started with the investigation of genome browsers functions and features and their

various input formats. We looked into four genome browsers (GBrowse, JBrowse, Dalliance, Savant)

gathering information on their common features, supported input file formats and their internal

workings. Then we documented several aspects of these four tools including their user interface,

implementation, features and supported non-functional requirements. In this work we focused on

web-based genome browsers since they have a larger user community. Then we summarized both

the key challenges faced by these tools and some available technologies used by them.
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During this process, we had to determine which of the features are essential and which are not.

After that, we came up with a clear set of requirements documented in the form of a “Require-

ments Document” that conforms to the IEEE Std 830-1998 Standard of a Software Requirements

Specification. This requirements document includes the functional requirements in the form of use

cases, since use cases offer a simple and comprehensible way to describe the functions of a soft-

ware such as genome browsers. Those functional requirements illustrate the basic functions of a

genome browser like managing configurations, panning and zooming. We have also documented

some performance-related non-functional requirements of web-based genome browsers.

The requirements document can be used independently, as an SRS for genome browsers. Also a

domain model has been introduced to summarize and connect the basic concepts found in genome

browsers, which included interwinding of biological, computer related data representations and

visualization concepts. We have also introduced a formal specification model for genome browsers

documented in Z notation. The specification fully formalizes the basic concepts and operations

of a genome browser. It can serve as a convenient reference for understanding genome browsers

and their various aspects. This work also includes documenting several file format specifications

and presenting a library of available glyphs for both quantitative and qualitative data. In the non-

functional requirements, we were able to document some important performance and extensibility

related non-functional requirements.

During our study, we came to realize that genome browsers can fall into different and sometimes

overlapping kinds or categories like circular genome browsers, linear genome browsers, general

genome browsers, species-specific genome browsers, horizontally-oriented and vertically-oriented

genome browsers that differ in the type and number of genomes and datasets served, the visual

representations used and the layout of those representations. We also noted that genome browsers

are widely addressed as collaborative environments but they are really used to serve the needs of a

single user.

The non-functional requirements were one of the challenging aspects of our work, owing to their

lack of documentation and their challenging measurements, especially on a web platform subject to

many different implementation varieties and many more assumptions and affecting factors.

4.2 Limitations and Recommendations for Future Research

The requirements analysis in this thesis was focused on web-based genome browsers. Those browsers

are limited by the capabilities of the web environment and the client’s web browser. The scope of our

requirements did not include authentication and security aspects of the system and also searching

was not part of the functional requirements. The set of non-functional requirements only focused

on performance and extensibility requirements of the system.
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The Z specification operations of the genome browser conforms with the scope of the requirements,

and they can be further extended to cover other operations like adding custom tracks, downloading

tracks data, searching for features and sharing genome view.

Both the requirements and the Z specification could be further extended or modified to model

comparative genome browsers, which are used to compare between several genomes, or basically

any other type of genome browser. They also can be used as a source of developing new file formats,

data structures and algorithms.

123



Bibliography

[Alagar and Periyasamy, 2011] Alagar, V. and Periyasamy, K. (2011). Vienna development method. In

Specification of Software Systems, Texts in Computer Science, pages 405–459. Springer London.

[Alekseyenko and Lee, 2007] Alekseyenko, A. V. and Lee, C. J. (2007). Nested Containment List

(NCList): a new algorithm for accelerating interval query of genome alignment and interval

databases. Bioinformatics, 23(11):1386–1393.

[Arakawa et al., 2009] Arakawa, K., Tamaki, S., Kono, N., Kido, N., Ikegami, K., Ogawa, R., and Tomita,

M. (2009). Genome Projector: zoomable genome map with multiple views. BMC bioinformatics,

10(1):31.

[Baker, 2010] Baker, M. (2010). Next-generation sequencing: adjusting to data overload. Nature methods,

7(7):495–499.

[Bare et al., 2010] Bare, J. C., Koide, T., Reiss, D. J., Tenenbaum, D., and Baliga, N. S. (2010). Inte-

gration and visualization of systems biology data in context of the genome. BMC bioinformatics,

11(1):382.

[Batley and Edwards, 2009] Batley, J. and Edwards, D. (2009). Genome sequence data: management,

storage, and visualization. Biotechniques, 46(5):333–336.

[Birney et al., 2004] Birney, E., Andrews, D., Bevan, P., Caccamo, M., Cameron, G., Chen, Y., Clarke,

L., Coates, G., Cox, T., Cuff, J., et al. (2004). Ensembl 2004. Nucleic Acids Research, 32(suppl

1):D468–D470.

[Bowen, 1992] Bowen, J. P. (1992). X: Why Z? Computer Graphics Forum, 11(4):221–234.

[Brooksbank et al., 2003] Brooksbank, C., Camon, E., Harris, M. A., Magrane, M., Martin, M. J., Mul-

der, N., O’Donovan, C., Parkinson, H., Tuli, M. A., Apweiler, R., et al. (2003). The European

Bioinformatics Institute’s data resources. Nucleic Acids Research, 31(1):43–50.

[Cline et al., 2009] Cline, M. S., Kent, W. J., et al. (2009). Understanding genome browsing. Nature

biotechnology, 27(2):153.

124



[Cockburn, A., 2001] Cockburn, A. (2001). Writing Effective Use Cases. Crystal collection for software

professionals. Addison-Wesley.

[Collins, 2014] Collins, F. S. (2014). National Institutes of Health. National Human Genome Research

Institute. “Talking Glossary of Genetic Terms.”. http://www.genome.gov/glossary/.

[Costa, 2012] Costa, F. F. (2012). Big Data in Genomics: Challenges and Solutions. G.I.T. Laboratory

Journal 11-12/2012, pages 2–4.

[Dombrowski and Maglott, 2002] Dombrowski, S. M. and Maglott, D. (2002). Using the Map Viewer to

explore genomes. The NCBI handbook.

[Dowell et al., 2001] Dowell, R. D., Jokerst, R. M., Day, A., Eddy, S. R., and Stein, L. (2001). The

distributed annotation system. BMC bioinformatics, 2(1):7.

[Down, 2014] Down, T. (2014). BioDalliance. http://www.biodalliance.org/index.html.

[Down et al., 2011] Down, T. A., Piipari, M., and Hubbard, T. J. P. (2011). Dalliance: interactive genome

viewing on the web. Bioinformatics, 27(6):889–90.

[Eilbeck et al., 2005] Eilbeck, K., Lewis, S. E., Mungall, C. J., Yandell, M., Stein, L., Durbin, R., and

Ashburner, M. (2005). The Sequence Ontology: a tool for the unification of genome annotations.

Genome biology, 6(5):R44.

[Erik Dahlström and Watt, 2011] Erik Dahlström, Patrick Dengler, A. G. C. L. C. M. D. S. and Watt, J.

(2011). Scalable vector graphics (svg) 1.1 Specification. http://www.w3.org/TR/SVG/Overview.

html.

[Etherington and MacLean, 2013] Etherington, G. J. and MacLean, D. (2013). SVGenes: a library for

rendering genomic features in scalable vector graphic format. Bioinformatics, 29(15):1890–1892.

[Fiume, 2010] Fiume, M. (2010). Savant Genome Browser: Developer Manual. savant@cs.toronto.edu.

[Fiume and Smith, 2012] Fiume, M. and Smith, E. (2012). Savant Genome Browser: User Manual.

savant@cs.toronto.edu.

[Fiume et al., 2012] Fiume, M., Smith, E. J. M., Brook, A., Strbenac, D., Turner, B., Mezlini, A. M.,

Robinson, M. D., Wodak, S. J., and Brudno, M. (2012). Savant Genome Browser 2: visualization

and analysis for population-scale genomics. Nucleic Acids Research, 40(Web Server issue):W615–

21.

[Fiume et al., 2010] Fiume, M., Williams, V., Brook, A., and Brudno, M. (2010). Savant: genome browser

for high-throughput sequencing data. Bioinformatics, 26(16):1938–1944.

125

http://www.genome.gov/glossary/
http://www.biodalliance.org/index.html
http://www.w3.org/TR/SVG/Overview.html
http://www.w3.org/TR/SVG/Overview.html


[Gel Moreno and Messeguer Peypoch, 2014] Gel Moreno, B. and Messeguer Peypoch, X. (2014). Dissem-

ination and Visualisation of Biological Data. PhD thesis, Universitat Polit‘ecnica de Catalunya.

[GMOD, 2015] GMOD (2015). GBrowse User Uploads. http://gmod.org/mediawiki/index.php?

title=GBrowse_User_Uploads&oldid=16348.

[Goecks et al., 2012] Goecks, J., Coraor, N., Nekrutenko, A., Taylor, J., Team, G., et al. (2012). NGS

analyses by visualization with Trackster. Nature biotechnology, 30(11):1036–1039.

[Gollery, 2011] Gollery, M. (2011). What to do about data? Bioinformation, 5(9):367.

[Helt et al., 1998] Helt, G. A., Lewis, S., Loraine, A. E., and Rubin, G. M. (1998). BioViews: Java-based

tools for genomic data visualization. Genome research, 8(3):291–305.

[Heumann et al., 1996] Heumann, K., Harris, C., and Mewes, H.-W. (1996). A Top-Down Approach to

Whole Genome Visualization. In ISMB, pages 98–108.

[Hillier et al., 2005] Hillier, L. W., Coulson, A., Murray, J. I., Bao, Z., Sulston, J. E., and Waterston,

R. H. (2005). Genomics in C. elegans: so many genes, such a little worm. Genome research,

15(12):1651–1660.

[Homann and Johnson, 2010] Homann, O. R. and Johnson, A. D. (2010). MochiView: versatile software

for genome browsing and DNA motif analysis. BMC biology, 8(1):49.

[Huang and Marth, 2008] Huang, W. and Marth, G. (2008). EagleView: a genome assembly viewer for

next-generation sequencing technologies. Genome research, 18(9):1538–1543.

[Huntley et al., 2008] Huntley, D., Tang, Y. A., Nesterova, T. B., Butcher, S., and Brockdorff, N. (2008).

Genome Environment Browser (GEB): a dynamic browser for visualising high-throughput exper-

imental data in the context of genome features. BMC bioinformatics, 9(1):501.

[Hutchison, 2007] Hutchison, C. A. (2007). DNA sequencing: bench to bedside and beyond. Nucleic

Acids Research, 35(18):6227–6237.

[Illuminal, 2013] Illuminal (2013). An Introduction to Next-Generation Sequencing Technology. http:

//www.illumina.com/Documents/products/IlluminaSequencingIntroduction.pdf.

[ISO, 2011] ISO, I. (2011). Iec 25010: 2011: Systems and software engineering–systems and software

quality requirements and evaluation (square)–system and software quality models. International

Organization for Standardization.

126

http://gmod.org/mediawiki/index.php?title=GBrowse_User_Uploads&oldid=16348
http://gmod.org/mediawiki/index.php?title=GBrowse_User_Uploads&oldid=16348
http://www.illumina.com/Documents/products /Illumina Sequencing Introduction.pdf
http://www.illumina.com/Documents/products /Illumina Sequencing Introduction.pdf


[Jenkinson et al., 2008] Jenkinson, A. M., Albrecht, M., Birney, E., Blankenburg, H., Down, T., Finn,

R. D., Hermjakob, H., Hubbard, T. J., Jimenez, R. C., Jones, P., et al. (2008). Integrating

biological data–the distributed annotation system. BMC bioinformatics, 9(Suppl 8):S3.

[Jimenez et al., 2011] Jimenez, R. C., Salazar, G. A., Gel, B., Dopazo, J., Mulder, N., and Corpas,

M. (2011). myKaryoView: a light-weight client for visualization of genomic data. PloS one,

6(10):e26345.

[Jones et al., 2001] Jones, L., Moszer, I., and Cole, S. (2001). Leproma: a Mycobacterium leprae genome

browser. Leprosy review, 72(4):470–477.

[Jung et al., 2008] Jung, K., Park, J., Choi, J., Park, B., Kim, S., Ahn, K., Choi, J., Choi, D., Kang,

S., and Lee, Y.-H. (2008). SNUGB: a versatile genome browser supporting comparative and

functional fungal genomics. BMC genomics, 9(1):586.

[Kaps et al., 1997] Kaps, A., Heumann, K., Frishman, D., Bahr, M., and Mewes, H. (1997). Visualization

and Analysis of the Complete Yeast Genome. In Hofestädt, R., Lengauer, T., Löffler, M., and
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Appendix A

Flat File Format

In bioinformatics, Flat Files are text files used to store and transfer various biological data and there

are numerous file formats used to represent those various types of information. These files normally

contain records each record correspond to a row in a table and these records have no structured

relationships and to interpret these files, the format properties of the file should be known [McEntyre

and Ostell, 2002]. Nonetheless ,they are considered as the basic data representation of biological data

due to their simplicity and ease of distribution. Consequently,they became the center of data flow

in molecular biology and as a result,today every biological data collection has to be represented as

flat files since most of the biological analysis programs use them as their main data source including

Genome Browsers [Letovsky, 1999]. A lot of file formats are used by Genome browsers as their main

input or data source so knowing those format is very important.Therefore, this section is dedicated

to gather and document the specification of the different flat file formats.

A.1 FASTA File Format

A.1.1 Definition

FASTA is a text-based format for representing either nucleotide sequences or peptide sequences, in

which nucleotides or amino acids are represented using single-letter codes. The format also allows

for sequence names and comments to precede the sequences. It originates from the FASTA software

package, but has now become a standard in the field of bioinformatics.FASTA is pronounced ”fast

A”, and stands for ”FAST-All”, because it works with any alphabet,The FASTA format is sometimes

also referred to as the ”Pearson” format (after the author of the FASTA program).The simplicity

of FASTA format makes it easy to manipulate and parse sequences using text-processing tools and

scripting languages like Python, Ruby, and Perl.The information provided here are gathered from

two sources http://zhanglab.ccmb.med.umich.edu/FASTA/ and [Pearson, 2013].
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A.1.2 Description

The FASTA format specification are listed below: FASTA format files consist of a description line,

beginning with a (”>”) character, followed by the sequence itself:

>sequence name and description 1

A F A S Y T .... actual sequence.

F S S .... second line of sequence.

>sequence name and description 2

PMILTYV ... sequence 2

FASTA format files from major sequence distributors, like the NCBI and EBI, have specially

formatted description lines, e.g.:

>gi|54321|ref|np 12345| example NCBI refseq sequence

or

>sw:gstm1 human P01234 glutathione transferase GSTM1 - human

Sequences are expected to be represented in the standard IUB/IUPAC amino acid and nucleic acid

codes, with these exceptions:

• lower-case letters are accepted and are mapped into upper-case.

• a single hyphen or dash can be used to represent a gap of indeterminate length.

• in amino acid sequences, U and * are acceptable letters (see below).

• any numerical digits in the query sequence should either be removed or replaced by appropriate

letter codes (e.g., N for unknown nucleic acid residue or X for unknown amino acid residue).

A.1.3 Details

The detail specification of FASTA files are listed below:

• A sequence in FASTA format begins with a single-line description, followed by lines of sequence

data.

• The description line is distinguished from the sequence data by a greater-than (”>”) symbol

in the first column, followed by a sequence identification code which optionally can be followed

by a textual description of the sequence.
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• A file in FASTA format may comprise more than one sequence.

• There is no standard file extension for a text file containing FASTA formatted sequences.

• There should be no space between the ”>” and the first letter of the identifier.

• It is recommended that all lines of text be shorter than 80 characters.

• The sequence ends if another line starting with a ”>” appears; this indicates the start of

another sequence.

• Blank lines are not allowed in the middle of FASTA input.

• Normally, identifiers are simply protein accession, name or Entrez gi’s (e.g., Q5I7T1, AG10B HUMAN,

129295), but a bar-separated NCBI sequence identifier (e.g., gi—129295) will also be accepted.

• There are no standard file extension for FASTA files all the following are treated as FASTA

files in most programs .fa(most commonly used extension), .fasta, .fast, .seq, .dna.

An example sequence in FASTA format is:

>crab_anapl ALPHA CRYSTALLIN B CHAIN (ALPHA(B)-CRYSTALLIN).

MDITIHNPLIRRPLFSWLAPSRIFDQIFGEHLQESELLPASPSLSPFLMR

SPIFRMPSWLETGLSEMRLEKDKFSVNLDVKHFSPEELKVKVLGDMVEIH

GKHEERQDEHGFIAREFNRKYRIPADVDPLTITSSLSLDGVLTVSAPRKQ

SDVPERSIPITREEKPAIAGAQRK

The accepted nucleic acid codes are:

A → adenosine M → A C (amino)

C → cytidine S → G C (strong)

G → guanine W → A T (weak)

T → thymidine B → G T C

U → uridine D → G A T

R → G A (purine) H→ A C T

Y→ T C (pyrimidine) V → G C A

K → G T (keto) N → A G C T (any)

- gap of indeterminate length.
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The accepted amino acid codes are:

A alanine P proline

B aspartate or asparagine Q glutamine

C cystine R arginine

D aspartate S serine

E glutamate T threonine

F phenylalanine U selenocysteine

G glycine V valine

H histidine W tryptophan

I isoleucine Y tyrosine

K lysine Z glutamate or glutamine

L leucine X any

M methionine * translation stop

N asparagine - gap of indeterminate length

A.2 GFF File Format

A.2.1 Definition

GFF is one of the standard and widely used plain text file format for transferring and storing of

genomic data. GFF stands for ‘Gene-Finding Format’ or ‘General Feature Format’. This format

has been proposed by Richard Durbin and David Haussler as a protocol for transferring of feature

information. In this file format each feature is described in one line without order relevance in a

record-based structure that has nine required fields or columns that must be tab-separated. A GFF

record is an extension of the basic (name, start, end) or ‘NSE’ tuple that can be used to identify

substring of a biological sequence. It is basically implemented to be easy to parse and proceed by

different programs and languages .

This file format has undergone three version changes until now and the last version being

GFF3. Furthermore, the following specification are gathered from their original sources as the

specification of the first two versions (GFF and GFF2) are found at the Sanger Institute website

https://www.sanger.ac.uk/resources/software/gff/spec.html while the specification of the

third version GFF3 is on the Sequences Ontology website http://www.sequenceontology.org/

resources/gff3.html.
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A.2.2 Description of GFF version1 and 2

This section describes the GFF version 1 and version 2 file format which is basically a simple
tab-separates text file that has nine required fields. All values of the mandatory fields should not
include whitespace (i.e. the strings for < seqnam>, < source> and < feature> fields). The fields
of a GFF file are:

< seqname> <source> <feature> <start> <end> < score> < strand> <frame> [attribute] [comments]

With the changes taking place to version 2 of the format, the feature sets can be defined over

RNA and Protein sequences, as well as genomic DNA.

A.2.3 Details of GFF version1 and 2

Column Desceiption

<seqname> The name of the sequence. This column is normally filled with the sequence identi-

fier in a fasta format file or in a public database, such as the accession numbers in an

EMBL/Genbank/DDBJ databases.

< source> The source of this feature. This field is used to indicate the program that is making

the prediction, or if the feature comes from a public database annotation, or if it is

experimentally verified, etc.

< feature> The feature type name. The name of this type of feature.

< start>, <

end>

< start> is the starting position of the feature in the sequence while < end> is the ending

position of the feature (inclusive). < start> and < end> are integer values such that <

start> must be less or equal to < end>. Sequence numbering start at 1, so < start> and

< end> should be between 1 and the length of the relevant sequence, inclusive.

< score> This field takes a floating-point value. In the case of no score a ‘.’ is used.

< strand> This field takes ,‘+’ for positive strand, or ‘-’ for negative strand, or ‘.’ when the strand

is not relevant such in the case of dinucleotide repeats.

< frame> This field is used to indicate the reading frame of the first base in the case of a coding

exon feature in that case it should be a number between 0-2. If the feature is not a coding

exon, the value should be ‘.’. So this field takes one of ‘0’ ,‘1’, ‘2’, ‘.’ . ‘0’ indicates that

the specified region is in frame, i.e. that its first base corresponds to the first base of a

codon. ‘1’ indicates that there is one extra base, i.e. that the second base of the region

corresponds to the first base of a codon, and ‘2’ means that the third base of the region is

the first base of a codon. If the strand is ‘-’, then the first base of the region is value of <

end>, because the corresponding coding region will run from < end> to < start> on the

reverse strand. As with < strand>, if the frame is not relevant then set < frame> to ‘.’.
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[attribute] From version 2 onwards, the attribute field must have a tag value structure following the

syntax used within objects in a .ace file, flattened onto one line by semicolon separators.

Tags must be standard identifiers ([A-Za-z][A-Za-z0-9]*). Free text values must be quoted

with double quotes. Note: all nonprinting characters in such free text value strings (e.g.

newlines, tabs, control characters, etc) must be explicitly represented by their C (UNIX)

style backslash escaped representation (e.g. newlines as ‘\n’, tabs as ‘\t’). As in ACEDB,

multiple values can follow a specific tag.

[Comments]

Comments are allowed and they start with # so everything follows the # until the end of the line

is ignored. Comments can be either at the beginning of a line to make the whole line a comment

or it can be after all the required fields of the line.

There is a set of standardized (i.e parsable) ## line types that can be optionally used at the top

of a GFF file, the proposed ## lines are as follows:

Gff-version ##gff-version 2

Specifies the GFF verion.

Source-

version

##source-version <source> <version text>

Records what version of a program or package was used to make the data in this file. It

is suggested that the version is text without whitespaces.

Date ##date <date>

The date the file was made. It has been suggested to use astronomical format like 1997-11-

08 for two reasons first, because they sort properly and second, to avoid any US/European

bias.

Type ##Type <type> [<seqname>]

The type of host sequence described by the features. Standard types are ‘DNA’, ‘Protein’

and ‘RNA’. The optional <seqname> allows multiple ##Type definitions describing mul-

tiple GFF sets in one file, each of which have a distinct type.

DNA ##DNA <seqname>

##acggctcggattggcgctggatgatagatcagacgac

##...

##end-DNA

Used to give a DNA sequence because it was thought of as being convenient yet very little

used since the sequence name is a well known identifier to an easily retrievable sequence

located in a database or in another file.

RNA ##RNA <seqname>
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##acggcucggauuggcgcuggaugauagaucagacgac

##...

##end-RNA

This is similar to DNA. Creates an implicit ##Type RNA <seqname> directive.

Protein ##Protein <seqname>

##MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSF

##...

##end-Protein

Also similar to DNA. Creates an implicit ##Type Protein <seqname> directive.

Sequence-

region

##sequence-region <seqname> <start> <end>

Used to indicate that this file only contains entries for the specified sub-region of a se-

quence.

A.2.4 Description of the GFF3 file format

GFF3 files are nine-column, tab-delimited, plain text files.

Undefined fields in a GFF3 file are replaced with the“.” character, as described in the original GFF

specification.

The GFF3 file formats has the following properties:

1. Adds a mechanism for representing more than one level of hierarchical grouping of features

and sub-features.

2. Separates the ideas of group membership and feature name/id.

3. Constrains the feature type field to be taken from a controlled vocabulary.

4. Allows a single feature, such as an exon, to belong to more than one group at a time.

5. Provides an explicit convention for pairwise alignments.

6. Provides an explicit convention for features that occupy disjunct regions.

The GFF3 file contents may include any character in the set supported by the operating environ-

ment, although for portability with other systems, use of Latin-1 or Unicode are recommended.

The nine columns of the GFF3 file record are described bellow:

<seqid> <source> <type> <start> <end> <score> <strand> <phase> [attributes]
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A.2.5 Details of the GFF3 file format

Column Desceiption

<seqid> The ID of the landmark used to establish the coordinate system for the current fea-

ture. IDs may contain any characters, but must escape any characters not in the set

[a-zA-Z0-9.:^ *$@!+_?- |]. In particular, IDs may not contain unescaped whitespace and must

not begin with an unescaped “ > ”.

<source> The source is a free text qualifier intended to describe the algorithm or operating procedure that

generated this feature. Typically this is the name of a piece of software.

<type> The type of the feature. This column is constrained to be either: a term from the “lite” version

of the Sequence Ontology or a SOFA, a term from the full Sequence Ontology,or SO accession

number.

<start>,<end>The start and end coordinates of the feature are given in positive 1-based integer coordinates,

relative to the landmark given in column 1. Start is always less than or equal to end. For features

that cross the origin of a circular feature (e.g. most bacterial genomes, plasmids, and some viral

genomes), the requirement for start to be less than or equal to end is satisfied by making end =

the position of the end + the length of the landmark feature. For zero-length features, such as

insertion sites, start equals end and the implied site is to the right of the indicated base in the

direction of the landmark.

<score> The score of the feature, a floating point number. As in earlier versions of the format, the semantics

of the score are ill-defined. It is strongly recommended that E-values be used for sequence similarity

features, and that P-values be used for ab initio gene prediction features.

<strand> The strand of the feature. + for positive strand (relative to the landmark), - for minus strand, and

. for features that are not stranded. In addition, ? can be used for features whose strandedness is

relevant, but unknown.

<phase> For features of type “CDS”, the phase indicates where the feature begins with reference to the

reading frame. The phase is one of the integers 0, 1, or 2, indicating the number of bases that

should be removed from the beginning of this feature to reach the first base of the next codon. In

other words, a phase of “0” indicates that the next codon begins at the first base of the region

described by the current line, a phase of “1” indicates that the next codon begins at the second

base of this region, and a phase of “2” indicates that the codon begins at the third base of this

region. This is NOT to be confused with the frame, which is simply start modulo 3. For forward

strand features, phase is counted from the start field. For reverse strand features, phase is counted

from the end field. The phase is REQUIRED for all CDS features.

[attributes] A list of feature attributes in the format tag=value. Multiple tag=value pairs are separated by

semicolons. URL escaping rules are used for tags or values containing the following characters:

“,=;”. Spaces are allowed in this field, but tabs must be replaced with the %09 URL escape.

Attribute values do not need to be and should not be quoted. The quotes should be included as

part of the value by parsers and not stripped.

The tags of the attributes filed have predefined meanings which is listed below:

Tag Description
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ID Indicates the ID of the feature. IDs for each feature must be unique within the scope of

the GFF file.

Name Display name for the feature. This is the name to be displayed to the user. Unlike IDs,

there is no requirement that the Name be unique within the file.

Alias A secondary name for the feature. It is suggested that this tag be used whenever a

secondary identifier for the feature is needed, such as locus names and accession numbers.

Unlike ID, there is no requirement that Alias be unique within the file.

Parent Indicates the parent of the feature. A parent ID can be used to group exons into tran-

scripts, transcripts into genes, an so forth. A feature may have multiple parents. Parent

can *only* be used to indicate a partof relationship.

Target Indicates the target of a nucleotide-to-nucleotide or protein-to-nucleotide alignment. The

format of the value is “target id start end [strand]”, where strand is optional and may be

“+” or “-”. If the target id contains spaces, they must be escaped as hex escape %20.

Gap The alignment of the feature to the target if the two are not collinear (e.g. contain

gaps). The alignment format is taken from the CIGAR format described in the Exonerate

documentation.

Derives from Used to disambiguate the relationship between one feature and another when the relation-

ship is a temporal one rather than a purely structural ”part of” one. This is needed for

polycistronic genes.

Note A free text note.

Dbxref A database cross reference.

Ontology termA cross reference to an ontology term.

Is circular A flag to indicate whether a feature is circular.

Multiple attributes of the same type are indicated by separating the values with the comma ”,”

character, as in:

Parent=AF2312,AB2812,abc-3

In addition to Parent, the Alias, Note, Dbxref and Ontology term attributes can have multiple

values. Note that attribute names are case sensitive. ”Parent” is not the same as ”parent”. All

attributes that begin with an uppercase letter are reserved for later use. Attributes that begin with

a lowercase letter can be used freely by applications.

A.2.6 The main differences between the three GFF versions

Version 1 note:

In version 1 each string had to be under 256 characters long, and the whole line should under 32k
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long. This was to make things easier for guaranteed conforming parsers, but seemed unnecessary

given modern languages.

Version 2 changes:

• Version 2 tolerates values of <start> and <end> that extend outside the reference sequence.

• In the <score> field in case of no score 0 was used in version 1.

• <strand> and <frame> fields are left empty ‘.’ in the case of RNA and protein features.

• In version 1 the attribute field was called the group field, with the following specification: The

[group] field is an optional string-valued field that can be used as a name to group together

a set of records. This field was used typically to group the introns and exons in one gene

prediction (or experimentally verified gene structure), or to group multiple regions of match

to another sequence, such as an EST or a protein.

Version 3 changes:

• The naming of some columns have been changed: <seqname> is now <seqid>, <feature> is

now <type> and <frame> in now <phase>.

• Backslash and other ad-hoc escaping conventions are not allowed.

• Literal use of tab, newline, carriage return, the percent (%) sign, and control characters must

be encoded using RFC 3986 Percent-Encoding and no other characters may be encoded. like

the following:

; semicolon (%3B)

= equals (%3D)

& ampersand (%26)

, comma (%2C)

• In this version unescaped spaces are allowed within fields, which means that parsers must

split on tabs, not spaces.

• The use of the plus ‘+’ character to encode spaces is no longer allowed.

A.3 GTF File Format

A.3.1 Definition

GTF (Gene Transfer Format) is a file format used to hold information about gene structure. It is a

tab-delimited text format based on the general feature format (GFF), but contains some additional

142



conventions specific to gene information. A significant feature of the GTF is that it is validatable:

given a sequence and a GTF file, one can check that the format is correct. The specification of this

format can be found at http://mblab.wustl.edu/GTF22.html.

A.3.2 Description

The GTF files follows the same structure as GFF. The only difference is in its use of the attribute

filed. An example is mentioned below.

Example:-

Here is a simple example with 3 translated exons.

AB000381 Twinscan CDS 380 401 . + 0 gene_id "001"; transcript_id "001.1";

AB000381 Twinscan CDS 501 650 . + 2 gene_id "001"; transcript_id "001.1";

AB000381 Twinscan CDS 700 707 . + 2 gene_id "001"; transcript_id "001.1";

AB000381 Twinscan start_codon 380 382 . + 0 gene_id "001"; transcript_id "001.1";

AB000381 Twinscan stop_codon 708 710 . + 0 gene_id "001"; transcript_id "001.1";

A.3.3 Details

The GTF (General Transfer Format) is identical to GFF version 2. So they both have the same
fields and their fields must be separated by a single TAB and no white space.

<seqname> <source> <feature> <start> <end> <score> <strand> <frame> [attributes] [comments]

To refer to the detail definition of each of this fields, it can be found in the table at page 138.

In both GTF and GFF version 2 each attribute consists of a type/value pair and attributes must

end in a semi-colon, and it must be separated from any following attribute by exactly one space.

In GTF, the attribute list must begin with the two mandatory attributes:

gene id value A globally unique identifier for the genomic locus of the transcript. If empty, no

gene is associated with this feature.

transcript id value A globally unique identifier for the predicted transcript. If empty, no tran-

script is associated with this feature.

These attributes are designed for handling multiple transcripts from the same genomic region. Any

other attributes or comments must appear after these two and will be ignored. Attributes must end

in a semicolon which must then be separated from the start of any subsequent attribute by exactly

one space character (NOT a tab character). Textual attributes should be surrounded by double

quotes.
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A.4 BED File Format

A.4.1 Definition

The BED (Browser Extensible Data) format is is a tab-delimated text file, that has been developed

by UCSC for displaying transcript structures in the genome browser and their full description

can be found on their website, which was used as the main source for writing this section http:

//genome.ucsc.edu/FAQ/FAQformat.html.The BED (.bed) format is a flexible format to define

the data lines that are displayed in an annotation track. It is now widely supported in almost every

genome browser.

A.4.2 Description

The BED format consists of one line per feature, each containing 3-12 columns of data, plus optional

track definition lines. The first three fields are required and remaining nine are optional fields.

In this format the number of fields per line must be consistent throughout any single set of data in

an annotation track.

A.4.3 Details

As mentioned in the description the first three fields in each feature line are required.The nine

additional fields are optional.

Note: The order of the optional fields is binding and the columns cannot be empty lower-numbered

fields must always be populated if higher-numbered ones are used. The following table will provide

a description of the 12 fields of the BED format.

# Name Description

1 chrom Name of chromosome (e.g. chr1, chr2, etc.) or scaffold (e.g.

scaffold1).

2 chromStart Start position of the feature in standard chromosomal coor-

dinates (the first base is numbered 0).

3 chromEnd End position of a feature in a the chromosome or scaffold.

4 name Name of the feature.

5 score A number between 0 and 1000 that controls shading of item

(0 if unused).

6 strand Defines the strand + (forward) or - (reverse)(or . for un-

known).

7 thickStart The starting position at which the feature is drawn thickly

(for example, the start codon in gene displays).
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8 thickEnd The ending position at which the feature is drawn thickly

(for example, the stop codon in gene displays).

9 itemRgb Comma-separated list of red, green, blue values from 0-255

(0 if unused).

10 blockCount For multipart items, the number of blocks corresponds to

exons for genes.

11 blockSizes Comma-separated list of block sizes. Must include final

comma.The number of items in this list should correspond

to blockCount.

12 blockStarts Comma-separated list of block starts relative to chrom-

Start.The number of items in this list should correspond

to blockCount.

Table 11: The standard predefined BED fields.Note:the mandatory field are emphasized

Example:-

Here’s an example ( from the UCSC website ) of an annotation track that uses a complete BED

definition:

track name=pairedReads description="Clone Paired Reads" useScore=1

chr22 1000 5000 cloneA 960 + 1000 5000 0 2 567,488, 0,3512

chr22 2000 6000 cloneB 900 - 2000 6000 0 2 433,399, 0,3601

A.5 BedGraph File Format

A.5.1 Definition

The bedGraph format is line-oriented text files developed by UCSC to allow the display of continuous-

valued data in track format. This display type is useful for probability scores and transcriptome

data. This track type is similar to the WIG format, but unlike the WIG format, data exported in

the bedGraph format are preserved in their original state. The following description of this format

is taken from http://genome.ucsc.edu/goldenPath/help/bedgraph.html

Note: Any valid seq region name can be used, and chromosome names can be given with or without the ’chr’
prefix.

The chromEnd base is not included in the display of the feature. For example, the first 100 bases of a chromosome
are defined as chromStart=0, chromEnd=100, and span the bases numbered 0-99 (chromEnd - chromStart = size).

This is used in the track lines to configure the display style of the scored data. While in UCSC If the track line
useScore attribute is set to 1 for this annotation data set, the score value will determine the level of gray in which
this feature is displayed (higher numbers = darker gray).

If the track line itemRgb attribute is set to ”On”, this RBG value will determine the display color of the data
contained in this BED line.
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A.5.2 Description

BedGraph format is a line oriented textual files, which is suitable for displaying moderate amounts

of scored data. It is a BED variant in which the fourth column is a floating point value that is

associated with all the bases between the chromStart and chromEnd positions.

The general structure of these files:

Track definition lines proceed the BedGraph data, which uses a number of options for controlling

the default display of this track. Following the track definition line are the track data in a four

column BED format.

chromA chromStartA chromEndA dataValueA

chromB chromStartB chromEndB dataValueB

This format is based on the BED format with the following differences:

• The score is placed in column 4, not column 5.

• Track lines are compulsory, and must include type=bedGraph.

A.5.3 Details

The Parameters for bedGraph track definition lines

All options are placed in a single line separated by spaces:

track type=bedGraph name=track_label description=center_label visibility=display_mode color=r,g,b altColor=r,g,b priority=priority autoScale=on|off

alwaysZero=on|off gridDefault=on|off maxHeightPixels=max:default:min graphType=bar|points viewLimits=lower:upper yLineMark=real-value

yLineOnOff=on|off windowingFunction=maximum|mean| minimum smoothingWindow=off|2-16

Note: The above example is spread across multiple lines in order to fit into paper, so if you

copy/paste the above example, you have to remove the carriage returns.

The track type is REQUIRED, and must be bedGraph:

type=bedGraph

The remaining values are OPTIONAL.
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Data Values:

Bedgraph track data values can be integer or real, positive or negative values. Chromosome positions

are specified as 0-relative. The first chromosome position is 0. The last position in a chromosome

of length N would be N - 1. Only positions specified have data. Positions not specified do not have

data and will not be graphed. All positions specified in the input data must be in numerical order.

The bedGraph format has four columns of data:

chrom chromStart chromEnd dataValue

Note: These coordinates are zero-based, half-open.

Example:-

This example specifies 9 separate data points in three tracks on chr19 in the region 49,302,001 to

49,304,701. This example is specific to the UCSC genome browser.

browser position chr19:49302001-49304701

browser hide all

browser pack refGene encodeRegions

browser full altGraph

# 300 base wide bar graph, autoScale is on by default == graphing

# limits will dynamically change to always show full range of data

# in viewing window, priority = 20 positions this as the second graph

# Note, zero-relative, half-open coordinate system in use for bedGraph format

track type=bedGraph name="BedGraph Format" description="BedGraph format" visibility=full color=200,100,0 altColor=0,100,200 priority=20

chr19 49302000 49302300 -1.0

chr19 49302300 49302600 -0.75

chr19 49302600 49302900 -0.50

chr19 49302900 49303200 -0.25

chr19 49303200 49303500 0.0

chr19 49303500 49303800 0.25

chr19 49303800 49304100 0.50

chr19 49304100 49304400 0.75

chr19 49304400 49304700 1.00

A.6 WIG File Format

A.6.1 Definition

A WIG file OR Wiggle format (.wig) is a text file that defines either a feature or data track. It

is an older format of the more widely used BigWig format. This format allows the display of

dense, continuous data such as GC percent, probability scores, and transcriptome data in a track

format. The format specification written here is taken from the UCSC Genome Bioinformatics web
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site: http://genome.ucsc.edu/goldenPath/help/wiggle.html. Wiggle data elements must be

equally sized.

A.6.2 Description

Wiggle format is line-oriented. According to the UCSC, the first line of wiggle custom tracks must

be a track definition line, which designates the track as a wiggle track and adds a number of options

for controlling the default display. The Wiggle format in general is composed of declaration lines

and data lines.

There are two options for formatting wiggle data:

variableStep and fixedStep. These formats were developed to allow the file to be written as compactly

as possible.

• variableStep is for data with irregular intervals between new data points and is the more

commonly used wiggle format. It begins with a declaration line and is followed by two columns

containing chromosome positions and data values:

variableStep chrom=chrN [span=windowSize]

chromStartA dataValueA

chromStartB dataValueB

... etc ... ... etc ...

The declaration line starts with the word variableStep and is followed by a specification for

a chromosome. The optional span parameter (default: span=1) allows data composed of

contiguous runs of bases with the same data value to be specified more succinctly. The span

begins at each chromosome position specified and indicates the number of bases that data

value should cover. For example, this variableStep specification:

variableStep chrom=chr2

300701 12.5

300702 12.5

300703 12.5

300704 12.5

300705 12.5
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is equivalent to:

variableStep chrom=chr2 span=5

300701 12.5

Both versions display a value of 12.5 at position 300701-300705 on chromosome 2.

Caution for sparse variableStep data The wiggle format was designed for quickly display-

ing data that is quite dense. The variableStep format, in particular, becomes very inefficient

when there are only a few data points per 1,024 bases. If variableStep data points (i.e., chrom-

Starts) are greater than about 100 bases apart, it is advisable to use BedGraph format.

• fixedStep is used for data with regular intervals between new data values and it is the more

compact wiggle format. It begins with a declaration line and is followed by a single column

of data values:

fixedStep chrom=chrN start=position step=stepInterval [span=windowSize]

dataValue1

dataValue2

... etc ...

The declaration line starts with the word fixedStep and includes specifications for chromosome,

start coordinate, and step size. The span specification has the same meaning as in variableStep

format. For example, this fixedStep specification:

fixedStep chrom=chr3 start=400601 step=100

11

22

33

displays the values 11, 22, and 33 as single-base regions on chromosome 3 at positions 400601,

400701, and 400801, respectively. Adding span=5 to the declaration line:
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fixedStep chrom=chr3 start=400601 step=100 span=5

11

22

33

causes the values 11, 22, and 33 to be displayed as 5-base regions on chromosome 3 at positions

400601-400605, 400701-400705, and 400801-400805, respectively.

Note that for both variableStep and fixedStep formats, the same span must be used throughout the

dataset. If no span is specified, the default span of 1 is used.

As the name suggests, fixedStep wiggles require the same size step throughout the dataset. If

not specified, a step size of 1 is used.

Data Values:

Wiggle track data values can be integer or real, positive or negative values. Chromosome posi-

tions are specified as 1-relative. For a chromosome of length N, the first position is 1 and the last

position is N. Only positions specified have data. Positions not specified do not have data and will

not be graphed. All positions specified in the input data must be in numerical order.

Example:-

This example specifies 19 separate data points in two tracks in the region chr19:49,304,200-49,310,700. This example is specific to the UCSC genome browser.

browser position chr19:49304200-49310700

browser hide all

# 150 base wide bar graph at arbitrarily spaced positions,

# threshold line drawn at y=11.76

# autoScale off viewing range set to [0:25]

# priority = 10 positions this as the first graph

# Note, one-relative coordinate system in use for this format

track type=wiggle_0 name="variableStep" description="variableStep format" visibility=full autoScale=off viewLimits=0.0:25.0 color=50,150,255

yLineMark=11.76 yLineOnOff=on priority=10

variableStep chrom=chr19 span=150

49304701 10.0

49304901 12.5

49305401 15.0

49305601 17.5

49305901 20.0

49306081 17.5

49306301 15.0

49306691 12.5

49307871 10.0

# 200 base wide points graph at every 300 bases, 50 pixel high graph

# autoScale off and viewing range set to [0:1000]

# priority = 20 positions this as the second graph

# Note, one-relative coordinate system in use for this format

track type=wiggle_0 name="fixedStep" description="fixedStep format" visibility=full autoScale=off viewLimits=0:1000 color=0,200,100 maxHeightPixels=100:50:20

graphType=points priority=20
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fixedStep chrom=chr19 start=49307401 step=300 span=200

1000

900

800

700

600

500

400

300

200

100

A.7 The Chain File Format

A.7.1 Definition

The chain format describes a pairwise alignment that allow gaps in both sequences simultaneously.

Each set of chain alignments starts with a header line, contains one or more alignment data lines,

and terminates with a blank line. The format is deliberately quite dense. This specification is found

on the UCSC website https://genome.ucsc.edu/goldenPath/help/chain.html.

A.7.2 Description

This format has header lines and alignment data lines which can be seen in the following example.
Example:-

chain 4900 chrY 58368225 + 25985403 25985638 chr5 151006098 - 43257292 43257528 1

9 1 0

10 0 5

61 4 0

16 0 4

42 3 0

16 0 8

14 1 0

3 7 0

48

chain 4900 chrY 58368225 + 25985406 25985566 chr5 151006098 - 43549808 43549970 2

16 0 2

60 4 0

10 0 4

70
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A.7.3 Details

This section will mention the details of this format.

Header Lines:

The initial header line starts with the keyword chain, followed by 11 required attribute values, and

ending with a blank line.

chain score tName tSize tStrand tStart tEnd qName qSize qStrand qStart qEnd id

Those 11 attributes are:

score chain score.

tName chromosome (reference sequence).

tSize chromosome size (reference sequence).

tStrand strand (reference sequence).

tStart alignment start position (reference sequence).

tEnd alignment end position (reference sequence).

qName chromosome (query sequence).

qSize chromosome size (query sequence).

qStrand strand (query sequence).

qStart alignment start position (query sequence).

qEnd alignment end position (query sequence).

id chain ID.

The alignment start and end positions are represented as zero-based half-open intervals. For

example, the first 100 bases of a sequence would be represented with start position = 0 and end

position = 100, and the next 100 bases would be represented as start position = 100 and end

position = 200. When the strand value is ”-”, position coordinates are listed in terms of the

reverse-complemented sequence.

Alignment Data Lines:

Alignment data lines contain three required attribute values:

size dt dq
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size the size of the ungapped alignment.

dt the difference between the end of this block and the beginning of the next block (reference

sequence).

dq the difference between the end of this block and the beginning of the next block (query sequence).

NOTE: The last line of the alignment section contains only one number: the ungapped alignment

size of the last block.

A.8 The SAM File Format

SAM stands for Sequence Alignment/Map format. It is a TAB-delimited text format consisting of

a header section, which is optional, and an alignment section. If present, the header must be prior

to the alignments. Header lines start with ‘@’, while alignment lines do not. Each alignment line

has 11 mandatory fields for essential alignment information such as mapping position, and variable

number of optional fields for flexible or aligner specific information. The master version of this

document can be found at https://github.com/samtools/hts-specs.

An example

Suppose we have the following alignment with bases in lower cases clipped from the alignment.

Read r001/1 and r001/2 constitute a read pair; r003 is a chimeric read; r004 represents a split

alignment.

Coor 12345678901234 5678901234567890123456789012345

ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

+r001/1 TTAGATAAAGGATA*CTG

+r002 aaaAGATAA*GGATA

+r003 gcctaAGCTAA

+r004 ATAGCT..............TCAGC

-r003 ttagctTAGGC

-r001/2 CAGCGGCAT

The corresponding SAM format is:

153

https://github.com/samtools/hts-specs


@HD VN:1.5 SO:coordinate

@SQ SN:ref LN:45

r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *

r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *

r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;

r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *

r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;

r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1

Terminologies and Concepts

Template A DNA/RNA sequence part of which is sequenced on a sequencing machine or assembled

from raw sequences.

Segment A contiguous sequence or subsequence.

Read A raw sequence that comes off a sequencing machine. A read may consist of multiple

segments. For sequencing data, reads are indexed by the order in which they are sequenced.

Linear alignment An alignment of a read to a single reference sequence that may include inser-

tions, deletions, skips and clipping, but may not include direction changes (i.e. one portion

of the alignment on forward strand and another portion of alignment on reverse strand). A

linear alignment can be represented in a single SAM record.

Chimeric alignment An alignment of a read that cannot be represented as a linear alignment.

A chimeric alignment is represented as a set of linear alignments that do not have large

overlaps. Typically, one of the linear alignments in a chimeric alignment is considered the

“representative” alignment, and the others are called “supplementary” and are distinguished

by the supplementary alignment flag. All the SAM records in a chimeric alignment have the

same QNAME and the same values for 0x40 and 0x80 flags (see Section 1.4). The decision

regarding which linear alignment is representative is arbitrary.

Read alignment A linear alignment or a chimeric alignment that is the complete representation

of the alignment of the read.

Multiple mapping The correct placement of a read may be ambiguous, e.g. due to repeats. In

this case, there may be multiple read alignments for the same read. One of these alignments

is considered primary. All the other alignments have the secondary alignment flag set in the
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SAM records that represent them. All the SAM records have the same QNAME and the

same values for 0x40 and 0x80 flags. Typically the alignment designated primary is the best

alignment, but the decision may be arbitrary.

1-based coordinate system A coordinate system where the first base of a sequence is one. In this

coordinate system, a region is specified by a closed interval. For example, the region between

the 3rd and the 7th bases inclusive is [3, 7]. The SAM, VCF, GFF and Wiggle formats are

using the 1-based coordinate system.

0-based coordinate system A coordinate system where the first base of a sequence is zero. In

this coordinate system, a region is specified by a half-closed-half-open interval. For example,

the region between the 3rd and the 7th bases inclusive is [2, 7). The BAM, BCFv2, BED, and

PSL formats are using the 0-based coordinate system.

Phred scale Given a probability 0 < p 6 1, the phred scale of p equals −10 log10 p, rounded to

the closest integer.

A.8.1 The header section

Each header line begins with character ‘@’ followed by a two-letter record type code. In the header,

each line is TAB-delimited and except the @CO lines, each data field follows a format ‘TAG:VALUE’

where TAG is a two-letter string that defines the content and the format of VALUE. Each header line

should match: /^@[A-Za-z][A-Za-z](\t[A-Za-z][A-Za-z0-9]:[ -~]+)+$/ or /^@CO\t.*/. Tags containing

lowercase letters are reserved for end users.

The following table give the defined record types and tags. Tags with ‘*’ are required when the

record type is present.

Tag Description

@HD The header line. The first line if present.

VN* Format version. Accepted format : /^[0-9]+\.[0-9]+$/.

A chimeric alignment is primarily caused by structural variations, gene fusions, misassemblies, RNA-seq or
experimental protocols. It is more frequent given longer reads. For a chimeric alignment, the linear alignments
consisting of the aligment are largely non-overlapping; each linear alignment may have high mapping quality and
is informative in SNP/INDEL calling. In contrast, multiple mappings are caused primarily by repeats. They are
less frequent given longer reads. If a read has multiple mappings, all these mappings are almost entirely overlapping
with each other; except the single-best optimal mapping, all the other mappings get mapping quality <Q3 and are
ignored by most SNP/INDEL callers.
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SO Sorting order of alignments. Valid values: unknown (default), unsorted,

queryname and coordinate. For coordinate sort, the major sort key is the

RNAME field, with order defined by the order of @SQ lines in the header. The

minor sort key is the POS field. For alignments with equal RNAME and POS,

order is arbitrary. All alignments with ‘*’ in RNAME field follow alignments with

some other value but otherwise are in arbitrary order.

@SQ Reference sequence dictionary. The order of @SQ lines defines the alignment sort-

ing order.

SN* Reference sequence name. Each @SQ line must have a unique SN tag. The value of

this field is used in the alignment records in RNAME and PNEXT fields. Regular

expression: [!-)+-<>-~][!-~]*

LN* Reference sequence length. Range: [1,231-1]

AS Genome assembly identifier.

M5 MD5 checksum of the sequence in the uppercase, excluding spaces but including

pads (as ‘*’s).

SP Species.

UR URI of the sequence. This value may start with one of the standard protocols,

e.g http: or ftp:. If it does not start with one of these protocols, it is assumed to

be a file-system path.

@RG Read group. Unordered multiple @RG lines are allowed.

ID* Read group identifier. Each @RG line must have a unique ID. The value of ID is

used in the RG tags of alignment records. Must be unique among all read groups

in header section. Read group IDs may be modified when merging SAM files in

order to handle collisions.

CN Name of sequencing center producing the read.

DS Description.

DT Date the run was produced (ISO8601 date or date/time).

FO Flow order. The array of nucleotide bases that correspond to the nu-

cleotides used for each flow of each read. Multi-base flows are encoded in IU-

PAC format, and non-nucleotide flows by various other characters. Format :

/\*|[ACMGRSVTWYHKDBN]+/

KS The array of nucleotide bases that correspond to the key sequence of each read.

LB Library.

PG Programs used for processing the read group.

PI Predicted median insert size.

PL Platform/technology used to produce the reads. Valid values: CAPILLARY, LS454,

ILLUMINA, SOLID, HELICOS, IONTORRENT and PACBIO.

PU Platform unit (e.g. flowcell-barcode.lane for Illumina or slide for SOLiD). Unique

identifier.
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SM Sample. Use pool name where a pool is being sequenced.

@PG Program.

ID* Program record identifier. Each @PG line must have a unique ID. The value of ID

is used in the alignment PG tag and PP tags of other @PG lines. PG IDs may be

modified when merging SAM files in order to handle collisions.

PN Program name

CL Command line

PP Previous @PG-ID. Must match another @PG header’s ID tag. @PG records may be

chained using PP tag, with the last record in the chain having no PP tag. This

chain defines the order of programs that have been applied to the alignment. PP

values may be modified when merging SAM files in order to handle collisions of

PG IDs. The first PG record in a chain (i.e. the one referred to by the PG tag

in a SAM record) describes the most recent program that operated on the SAM

record. The next PG record in the chain describes the next most recent program

that operated on the SAM record. The PG ID on a SAM record is not required to

refer to the newest PG record in a chain. It may refer to any PG record in a chain,

implying that the SAM record has been operated on by the program in that PG

record, and the program(s) referred to via the PP tag.

DS Description.

VN Program version

@CO One-line text comment. Unordered multiple @CO lines are allowed.

A.8.2 The alignment section: mandatory fields

In the SAM format, each alignment line typically represents the linear alignment of a segment. Each

line has 11 mandatory fields. These fields always appear in the same order and must be present, but

their values can be ‘0’ or ‘*’ (depending on the field) if the corresponding information is unavailable.

The following table gives an overview of the mandatory fields in the SAM format:
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Col Field Type Regexp/Range Brief description

1 QNAME String [!-?A-~]{1,255} Query template NAME

2 FLAG Int [0,216-1] bitwise FLAG

3 RNAME String \*|[!-()+-<>-~][!-~]* Reference sequence NAME

4 POS Int [0,231-1] 1-based leftmost mapping POSition

5 MAPQ Int [0,28-1] MAPping Quality

6 CIGAR String \*|([0-9]+[MIDNSHPX=])+ CIGAR string

7 RNEXT String \*|=|[!-()+-<>-~][!-~]* Ref. name of the mate/next read

8 PNEXT Int [0,231-1] Position of the mate/next read

9 TLEN Int [-231+1,231-1] observed Template LENgth

10 SEQ String \*|[A-Za-z=.]+ segment SEQuence

11 QUAL String [!-~]+ ASCII of Phred-scaled base QUALity+33

1. QNAME: Query template NAME. Reads/segments having identical QNAME are regarded to

come from the same template. A QNAME ‘*’ indicates the information is unavailable. In a

SAM file, a read may occupy multiple alignment lines, when its alignment is chimeric or when

multiple mappings are given.

2. FLAG: bitwise FLAG. Each bit is explained in the following table:

Bit Description

0x1 template having multiple segments in sequencing

0x2 each segment properly aligned according to the aligner

0x4 segment unmapped

0x8 next segment in the template unmapped

0x10 SEQ being reverse complemented

0x20 SEQ of the next segment in the template being reversed

0x40 the first segment in the template

0x80 the last segment in the template

0x100 secondary alignment

0x200 not passing quality controls

0x400 PCR or optical duplicate

0x800 supplementary alignment

• For each read/contig in a SAM file, it is required that one and only one line associated

with the read satisfies ‘FLAG & 0x900 == 0’. This line is called the primary line of the

read.

• Bit 0x100 marks the alignment not to be used in certain analyses when the tools in use

are aware of this bit. It is typically used to flag alternative mappings when multiple

mappings are presented in a SAM.
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• Bit 0x800 indicates that the corresponding alignment line is part of a chimeric alignment.

A line flagged with 0x800 is called as a supplementary line.

• Bit 0x4 is the only reliable place to tell whether the read is unmapped. If 0x4 is set,

no assumptions can be made about RNAME, POS, CIGAR, MAPQ, bits 0x2, 0x10, 0x100

and 0x800, and the bit 0x20 of the previous read in the template.

• If 0x40 and 0x80 are both set, the read is part of a linear template, but it is neither the

first nor the last read. If both 0x40 and 0x80 are unset, the index of the read in the

template is unknown. This may happen for a non-linear template or the index is lost in

data processing.

• If 0x1 is unset, no assumptions can be made about 0x2, 0x8, 0x20, 0x40 and 0x80.

3. RNAME: Reference sequence NAME of the alignment. If @SQ header lines are present, RNAME

(if not ‘*’) must be present in one of the SQ-SN tag. An unmapped segment without coordinate

has a ‘*’ at this field. However, an unmapped segment may also have an ordinary coordinate

such that it can be placed at a desired position after sorting. If RNAME is ‘*’, no assumptions

can be made about POS and CIGAR.

4. POS: 1-based leftmost mapping POSition of the first matching base. The first base in a

reference sequence has coordinate 1. POS is set as 0 for an unmapped read without coordinate.

If POS is 0, no assumptions can be made about RNAME and CIGAR.

5. MAPQ: MAPping Quality. It equals −10 log10 Pr{mapping position is wrong}, rounded to the

nearest integer. A value 255 indicates that the mapping quality is not available.

6. CIGAR: CIGAR string. The CIGAR operations are given in the following table (set ‘*’ if

unavailable):

Op BAM Description

M 0 alignment match (can be a sequence match or mismatch)

I 1 insertion to the reference

D 2 deletion from the reference

N 3 skipped region from the reference

S 4 soft clipping (clipped sequences present in SEQ)

H 5 hard clipping (clipped sequences NOT present in SEQ)

P 6 padding (silent deletion from padded reference)

= 7 sequence match

X 8 sequence mismatch

• H can only be present as the first and/or last operation.
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• S may only have H operations between them and the ends of the CIGAR string.

• For mRNA-to-genome alignment, an N operation represents an intron. For other types

of alignments, the interpretation of N is not defined.

• Sum of lengths of the M/I/S/=/X operations shall equal the length of SEQ.

7. RNEXT: Reference sequence name of the primary alignment of the NEXT read in the template.

For the last read, the next read is the first read in the template. If @SQ header lines are present,

RNEXT (if not ‘*’ or ‘=’) must be present in one of the SQ-SN tag. This field is set as ‘*’ when

the information is unavailable, and set as ‘=’ if RNEXT is identical RNAME. If not ‘=’ and the

next read in the template has one primary mapping (see also bit 0x100 in FLAG), this field

is identical to RNAME at the primary line of the next read. If RNEXT is ‘*’, no assumptions

can be made on PNEXT and bit 0x20.

8. PNEXT: Position of the primary alignment of the NEXT read in the template. Set as 0 when

the information is unavailable. This field equals POS at the primary line of the next read. If

PNEXT is 0, no assumptions can be made on RNEXT and bit 0x20.

9. TLEN: signed observed Template LENgth. If all segments are mapped to the same reference,

the unsigned observed template length equals the number of bases from the leftmost mapped

base to the rightmost mapped base. The leftmost segment has a plus sign and the rightmost

has a minus sign. The sign of segments in the middle is undefined. It is set as 0 for single-

segment template or when the information is unavailable.

10. SEQ: segment SEQuence. This field can be a ‘*’ when the sequence is not stored. If not a ‘*’,

the length of the sequence must equal the sum of lengths of M/I/S/=/X operations in CIGAR.

An ‘=’ denotes the base is identical to the reference base. No assumptions can be made on

the letter cases.

11. QUAL: ASCII of base QUALity plus 33 (same as the quality string in the Sanger FASTQ

format). A base quality is the phred-scaled base error probability which equals −10 log10

Pr{base is wrong}. This field can be a ‘*’ when quality is not stored. If not a ‘*’, SEQ must

not be a ‘*’ and the length of the quality string ought to equal the length of SEQ.

A.8.3 The alignment section: optional fields

All optional fields follow the TAG:TYPE:VALUE format where TAG is a two-character string that

matches /[A-Za-z][A-Za-z0-9]/. Each TAG can only appear once in one alignment line. A TAG containing

lowercase letters are reserved for end users. In an optional field, TYPE is a single case-sensitive letter

which defines the format of VALUE:
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Type Regexp matching VALUE Description

A [!-~] Printable character

i [-+]?[0-9]+ Singed 32-bit integer

f [-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)? Single-precision floating number

Z [ !-~]+ Printable string, including space

H [0-9A-F]+ Byte array in the Hex format

B [cCsSiIf](,[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)+ Integer or numeric array

For an integer or numeric array (type ‘B’), the first letter indicates the type of numbers in the

following comma separated array. The letter can be one of ‘cCsSiIf’, corresponding to int8 t

(signed 8-bit integer), uint8 t (unsigned 8-bit integer), int16 t, uint16 t, int32 t, uint32 t

and float, respectively. During import/export, the element type may be changed if the new type

is also compatible with the array.

Predefined tags are shown in the following table. You can freely add new tags, and if a new

tag may be of general interest, you can email samtools-devel@lists.sourceforge.net to add

the new tag to the specification. Note that tags starting with ‘X’, ‘Y’ and ‘Z’ or tags containing

lowercase letters in either position are reserved for local use and will not be formally defined in any

future version of this specification.

Tag Type Description

X? ? Reserved fields for end users (together with Y? and Z?)

AM i The smallest template-independent mapping quality of segments in the rest

AS i Alignment score generated by aligner

BC Z Barcode sequence, with any quality scores stored in the QT tag.

BQ Z Offset to base alignment quality (BAQ), of the same length as the read

sequence. At the i-th read base, BAQi = Qi − (BQi − 64) where Qi is the

i-th base quality.

CC Z Reference name of the next hit; ‘=’ for the same chromosome

CM i Edit distance between the color sequence and the color reference (see also

NM)

CO Z Free-text comments

CP i Leftmost coordinate of the next hit

CQ Z Color read quality on the original strand of the read. Same encoding as

QUAL; same length as CS.

CS Z Color read sequence on the original strand of the read. The primer base

must be included.

For example, a byte array {0x1a,0xe3,0x1} corresponds to a Hex string ‘1AE301’.
Explicit typing eases format parsing and helps to reduce the file size when SAM is converted to BAM.
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CT Z Complete read annotation tag, used for consensus annotation dummy fea-

tures.

E2 Z The 2nd most likely base calls. Same encoding and same length as QUAL.

FI i The index of segment in the template.

FS Z Segment suffix.

FZ B,S Flow signal intensities on the original strand of the read, stored as

(uint16 t) round(value * 100.0).

LB Z Library. Value to be consistent with the header RG-LB tag if @RG is present.

H0 i Number of perfect hits

H1 i Number of 1-difference hits (see also NM)

H2 i Number of 2-difference hits

HI i Query hit index, indicating the alignment record is the i-th one stored in

SAM

IH i Number of stored alignments in SAM that contains the query in the current

record

MC Z CIGAR string for mate/next segment

MD Z String for mismatching positions. Regex :

[0-9]+(([A-Z]|\^[A-Z]+)[0-9]+)*

MQ i Mapping quality of the mate/next segment

NH i Number of reported alignments that contains the query in the current

record

NM i Edit distance to the reference, including ambiguous bases but excluding

clipping

OQ Z Original base quality (usually before recalibration). Same encoding as

QUAL.

OP i Original mapping position (usually before realignment)

OC Z Original CIGAR (usually before realignment)

PG Z Program. Value matches the header PG-ID tag if @PG is present.

PQ i Phred likelihood of the template, conditional on both the mapping being

correct

PT Z Read annotations for parts of the padded read sequence

PU Z Platform unit. Value to be consistent with the header RG-PU tag if @RG is

present.

QT Z Phred quality of the barcode sequence in the BC (or RT) tag. Same encoding

as QUAL.

Q2 Z Phred quality of the mate/next segment sequence in the R2 tag. Same

encoding as QUAL.

R2 Z Sequence of the mate/next segment in the template.
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RG Z Read group. Value matches the header RG-ID tag if @RG is present in the

header.

RT Z Deprecated alternative to BC tag originally used at Sanger.

SA Z Other canonical alignments in a chimeric alignment, in the format of:

(rname,pos,strand,CIGAR,mapQ,NM ;)+. Each element in the semi-colon

delimited list represents a part of the chimeric alignment. Conventionally,

at a supplementary line, the first element points to the primary line.

SM i Template-independent mapping quality

TC i The number of segments in the template.

U2 Z Phred probility of the 2nd call being wrong conditional on the best being

wrong. The same encoding as QUAL.

UQ i Phred likelihood of the segment, conditional on the mapping being correct

A.9 VCF Version 4.2 File Format

VCF stands for the Variant Call Format, it is a text file format (most likely stored in a compressed

manner) used in bioinformatics for storing gene sequence variations.By using the variant call format

only the variations need to be stored along with a reference genome. It contains meta-information

lines, a header line, and then data lines each containing information about a position in the genome.

The format also has the ability to contain genotype information on samples for each position. The

The GS, GC, GQ, MF, S2 and SQ are reserved for backward compatibility.
The CT tag is intended primarily for annotation dummy reads, and consists of a strand, type and zero or more

key=value pairs, each separated with semicolons. The strand field has four values as in GFF3, and supplements
FLAG bit 0x10 to allow unstranded (‘.’), and stranded but unknown strand (‘?’) annotation. For these and
annotation on the forward strand (strand set to ‘+’), do not set FLAG bit 0x10. For annotation on the reverse
strand, set the strand to ‘-’ and set FLAG bit 0x10. The type and any keys and their optional values are all percent
encoded according to RFC3986 to escape meta-characters ‘=’, ‘%’, ‘;’, ‘|’ or non-printable characters not matched
by the isprint() macro (with the C locale). For example a percent sign becomes ‘%2C’. The CT record matches:
“strand ;type (;key (=value ))*”.

The MD field aims to achieve SNP/indel calling without looking at the reference. For example, a string ‘10A5^AC6’
means from the leftmost reference base in the alignment, there are 10 matches followed by an A on the reference
which is different from the aligned read base; the next 5 reference bases are matches followed by a 2bp deletion from
the reference; the deleted sequence is AC; the last 6 bases are matches. The MD field ought to match the CIGAR
string.

The PT tag value has the format of a series of tags separated by |, each annotating a sub-region of the
read. Each tag consists of start, end, strand, type and zero or more key=value pairs, each separated with
semicolons. Start and end are 1-based positions between one and the sum of the M/I/D/P/S/=/X CIGAR op-
erators, i.e. SEQ length plus any pads. Note any editing of the CIGAR string may require updating the
‘PT’ tag coordinates, or even invalidate them. As in GFF3, strand is one of ‘+’ for forward strand tags, ‘-’
for reverse strand, ‘.’ for unstranded or ‘?’ for stranded but unknown strand. The type and any keys
and their optional values are all percent encoded as in the CT tag. Formally the entire PT record matches:
“start ;end ;strand ;type (;key (=value ))*(\|start ;end ;strand ;type (;key (=value ))*)*”.
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following specification is describing VCF version 4.2 file format. The master version of this docu-

ment can be found at https://github.com/samtools/hts-specs.

An example

##fileformat=VCFv4.2

##fileDate=20090805

##source=myImputationProgramV3.1

##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta

##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>

##phasing=partial

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">

##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">

##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">

##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">

##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">

##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">

##FILTER=<ID=q10,Description="Quality below 10">

##FILTER=<ID=s50,Description="Less than 50% of samples have data">

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">

##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003

20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.

20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3

20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4

20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2

20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3

This example shows (in order): a good simple SNP, a possible SNP that has been filtered out

because its quality is below 10, a site at which two alternate alleles are called, with one of them (T)

being ancestral (possibly a reference sequencing error), a site that is called monomorphic reference

(i.e. with no alternate alleles), and a microsatellite with two alternative alleles, one a deletion of 2

bases (TC), and the other an insertion of one base (T). Genotype data are given for three samples,

two of which are phased and the third unphased, with per sample genotype quality, depth and

haplotype qualities (the latter only for the phased samples) given as well as the genotypes. The

microsatellite calls are unphased.

A.9.1 Meta-information lines

File meta-information is included after the ## string and must be key=value pairs. It is strongly

encouraged that information lines describing the INFO, FILTER and FORMAT entries used in the

body of the VCF file be included in the meta-information section. Although they are optional, if

these lines are present then they must be completely well-formed.

164

https://github.com/samtools/hts-specs


File format

A single ‘fileformat’ field is always required, must be the first line in the file, and details the VCF

format version number. For example, for VCF version 4.2, this line should read:

##fileformat=VCFv4.2

Information field format

INFO fields should be described as follows (first four keys are required, source and version are

recommended):

##INFO=<ID=ID,Number=number,Type=type,Description="description",Source="source",Version="version">

Possible Types for INFO fields are: Integer, Float, Flag, Character, and String. The Number entry

is an Integer that describes the number of values that can be included with the INFO field. For

example, if the INFO field contains a single number, then this value should be 1; if the INFO field

describes a pair of numbers, then this value should be 2 and so on. There are also certain special

characters used to define special cases:

• If the field has one value per alternate allele then this value should be ‘A’.

• If the field has one value for each possible allele (including the reference), then this value

should be ‘R’.

• If the field has one value for each possible genotype (more relevant to the FORMAT tags)

then this value should be ‘G’.

• If the number of possible values varies, is unknown, or is unbounded, then this value should

be ‘.’.

The ‘Flag’ type indicates that the INFO field does not contain a Value entry, and hence the

Number should be 0 in this case. The Description value must be surrounded by double-quotes.

Double-quote character can be escaped with backslash \ and backslash as \\. Source and Version

values likewise should be surrounded by double-quotes and specify the annotation source (case-

insensitive, e.g. “dbsnp”) and exact version (e.g. “138”), respectively for computational use.

Filter field format

FILTERs that have been applied to the data should be described as follows:

##FILTER=<ID=ID,Description="description">
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Individual format field format

Likewise, Genotype fields specified in the FORMAT field should be described as follows:

##FORMAT=<ID=ID,Number=number,Type=type,Description="description">

Possible Types for FORMAT fields are: Integer, Float, Character, and String (this field is

otherwise defined precisely as the INFO field).

Alternative allele field format

Symbolic alternate alleles for imprecise structural variants:

##ALT=<ID=type,Description=description>

The ID field indicates the type of structural variant, and can be a colon-separated list of types and

subtypes. ID values are case sensitive strings and may not contain whitespace or angle brackets.

The first level type must be one of the following:

• DEL Deletion relative to the reference

• INS Insertion of novel sequence relative to the reference

• DUP Region of elevated copy number relative to the reference

• INV Inversion of reference sequence

• CNV Copy number variable region (may be both deletion and duplication)

The CNV category should not be used when a more specific category can be applied. Reserved

subtypes include:

• DUP:TANDEM Tandem duplication

• DEL:ME Deletion of mobile element relative to the reference

• INS:ME Insertion of a mobile element relative to the reference

In addition, it is highly recommended (but not required) that the header include tags describing

the reference and contigs backing the data contained in the file. These tags are based on the SQ

field from the SAM spec; all tags are optional (see the VCF example above).
For all of the ##INFO, ##FORMAT, ##FILTER, and ##ALT metainformation, extra fields

can be included after the default fields. For example:

##INFO=<ID=ID,Number=number,Type=type,Description="description",Source="description",Version="128">

In the above example, the extra fields of “Source” and “Version” are provided. Optional fields

should be stored as strings even for numeric values.
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Assembly field format

Breakpoint assemblies for structural variations may use an external file:

##assembly=url

The URL field specifies the location of a fasta file containing breakpoint assemblies referenced

in the VCF records for structural variants via the BKPTID INFO key.

Contig field format

As with chromosomal sequences it is highly recommended (but not required) that the header include

tags describing the contigs referred to in the VCF file. This furthermore allows these contigs to come

from different files. The format is identical to that of a reference sequence, but with an additional

URL tag to indicate where that sequence can be found. For example:.

##contig=<ID=ctg1,URL=ftp://somewhere.org/assembly.fa,...>

Sample field format

It is possible to define sample to genome mappings as shown below:

##SAMPLE=<ID=S_ID,Genomes=G1_ID;G2_ID; ...;GK_ID,Mixture=N1;N2; ...;NK,Description=S1;S2; ...;SK>

Pedigree field format

It is possible to record relationships between genomes using the following syntax:

##PEDIGREE=<Name_0=G0-ID,Name_1=G1-ID,...,Name_N=GN-ID>

or a link to a database:

##pedigreeDB=<url>

A.9.2 Header line syntax

The header line names the 8 fixed, mandatory columns. These columns are as follows:

1. #CHROM

2. POS

3. ID

4. REF
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5. ALT

6. QUAL

7. FILTER

8. INFO

If genotype data is present in the file, these are followed by a FORMAT column header, then

an arbitrary number of sample IDs. The header line is tab-delimited.

A.9.3 Data lines

Fixed fields

There are 8 fixed fields per record. All data lines are tab-delimited. In all cases, missing values are

specified with a dot (‘.’). Fixed fields are:

1. CHROM - chromosome: An identifier from the reference genome or an angle-bracketed ID

String (“<ID>”) pointing to a contig in the assembly file (cf. the ##assembly line in the

header). All entries for a specific CHROM should form a contiguous block within the VCF

file. The colon symbol (:) must be absent from all chromosome names to avoid parsing errors

when dealing with breakends. (String, no white-space permitted, Required).

2. POS - position: The reference position, with the 1st base having position 1. Positions are

sorted numerically, in increasing order, within each reference sequence CHROM. It is permit-

ted to have multiple records with the same POS. Telomeres are indicated by using positions 0

or N+1, where N is the length of the corresponding chromosome or contig. (Integer, Required)

3. ID - identifier: Semi-colon separated list of unique identifiers where available. If this is a

dbSNP variant it is encouraged to use the rs number(s). No identifier should be present in

more than one data record. If there is no identifier available, then the missing value should

be used. (String, no white-space or semi-colons permitted)

4. REF - reference base(s): Each base must be one of A,C,G,T,N (case insensitive). Multiple

bases are permitted. The value in the POS field refers to the position of the first base in the

String. For simple insertions and deletions in which either the REF or one of the ALT alleles

would otherwise be null/empty, the REF and ALT Strings must include the base before the

event (which must be reflected in the POS field), unless the event occurs at position 1 on the

contig in which case it must include the base after the event; this padding base is not required

(although it is permitted) for e.g. complex substitutions or other events where all alleles have
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at least one base represented in their Strings. If any of the ALT alleles is a symbolic allele

(an angle-bracketed ID String “<ID>”) then the padding base is required and POS denotes

the coordinate of the base preceding the polymorphism. Tools processing VCF files are not

required to preserve case in the allele Strings. (String, Required).

5. ALT - alternate base(s): Comma separated list of alternate non-reference alleles called on at

least one of the samples. Options are base Strings made up of the bases A,C,G,T,N,*, (case

insensitive) or an angle-bracketed ID String (“<ID>”) or a breakend replacement string as

described in the section on breakends. The ‘*’ allele is reserved to indicate that the allele

is missing due to a upstream deletion. If there are no alternative alleles, then the missing

value should be used. Tools processing VCF files are not required to preserve case in the

allele String, except for IDs, which are case sensitive. (String; no whitespace, commas, or

angle-brackets are permitted in the ID String itself)

6. QUAL - quality: Phred-scaled quality score for the assertion made in ALT. i.e. −10log10

prob(call in ALT is wrong). If ALT is ‘.’ (no variant) then this is −10log10 prob(variant), and

if ALT is not ‘.’ this is −10log10 prob(no variant). If unknown, the missing value should be

specified. (Numeric)

7. FILTER - filter status: PASS if this position has passed all filters, i.e. a call is made at this

position. Otherwise, if the site has not passed all filters, a semicolon-separated list of codes

for filters that fail. e.g. “q10;s50” might indicate that at this site the quality is below 10 and

the number of samples with data is below 50% of the total number of samples. ‘0’ is reserved

and should not be used as a filter String. If filters have not been applied, then this field should

be set to the missing value. (String, no white-space or semi-colons permitted)

8. INFO - additional information: (String, no white-space, semi-colons, or equals-signs permit-

ted; commas are permitted only as delimiters for lists of values) INFO fields are encoded as a

semicolon-separated series of short keys with optional values in the format: <key>=<data>[,data].

Arbitrary keys are permitted, although the following sub-fields are reserved (albeit optional):

• AA : ancestral allele

• AC : allele count in genotypes, for each ALT allele, in the same order as listed

• AF : allele frequency for each ALT allele in the same order as listed: use this when

estimated from primary data, not called genotypes

• AN : total number of alleles in called genotypes

• BQ : RMS base quality at this position

• CIGAR : cigar string describing how to align an alternate allele to the reference allele
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• DB : dbSNP membership

• DP : combined depth across samples, e.g. DP=154

• END : end position of the variant described in this record (for use with symbolic alleles)

• H2 : membership in hapmap2

• H3 : membership in hapmap3

• MQ : RMS mapping quality, e.g. MQ=52

• MQ0 : Number of MAPQ == 0 reads covering this record

• NS : Number of samples with data

• SB : strand bias at this position

• SOMATIC : indicates that the record is a somatic mutation, for cancer genomics

• VALIDATED : validated by follow-up experiment

• 1000G : membership in 1000 Genomes

The exact format of each INFO sub-field should be specified in the meta-information (as described

above). Example for an INFO field: DP=154;MQ=52;H2. Keys without corresponding values are

allowed in order to indicate group membership (e.g. H2 indicates the SNP is found in HapMap 2).

It is not necessary to list all the properties that a site does NOT have, by e.g. H2=0. See below

for additional reserved INFO sub-fields used to encode structural variants.

Genotype fields

If genotype information is present, then the same types of data must be present for all samples. First

a FORMAT field is given specifying the data types and order (colon-separated alphanumeric String).

This is followed by one field per sample, with the colon-separated data in this field corresponding

to the types specified in the format. The first sub-field must always be the genotype (GT) if it is

present. There are no required sub-fields.

As with the INFO field, there are several common, reserved keywords that are standards across

the community:

• GT : genotype, encoded as allele values separated by either of / or |. The allele values are

0 for the reference allele (what is in the REF field), 1 for the first allele listed in ALT, 2 for

the second allele list in ALT and so on. For diploid calls examples could be 0/1, 1 | 0, or 1/2,

etc. For haploid calls, e.g. on Y, male non-pseudoautosomal X, or mitochondrion, only one

allele value should be given; a triploid call might look like 0/0/1. If a call cannot be made

for a sample at a given locus, ‘.’ should be specified for each missing allele in the GT field
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(for example ‘./.’ for a diploid genotype and ‘.’ for haploid genotype). The meanings of the

separators are as follows (see the PS field below for more details on incorporating phasing

information into the genotypes):

◦ / : genotype unphased

◦ | : genotype phased

• DP : read depth at this position for this sample (Integer)

• FT : sample genotype filter indicating if this genotype was “called” (similar in concept to the

FILTER field). Again, use PASS to indicate that all filters have been passed, a semi-colon

separated list of codes for filters that fail, or ‘.’ to indicate that filters have not been applied.

These values should be described in the meta-information in the same way as FILTERs (String,

no white-space or semi-colons permitted)

• GL : genotype likelihoods comprised of comma separated floating point log10-scaled likelihoods

for all possible genotypes given the set of alleles defined in the REF and ALT fields. In

presence of the GT field the same ploidy is expected and the canonical order is used; without

GT field, diploidy is assumed. If A is the allele in REF and B,C,... are the alleles as ordered

in ALT, the ordering of genotypes for the likelihoods is given by: F(j/k) = (k*(k+1)/2)+j.

In other words, for biallelic sites the ordering is: AA,AB,BB; for triallelic sites the ordering

is: AA,AB,BB,AC,BC,CC, etc. For example: GT:GL 0/1:-323.03,-99.29,-802.53 (Floats)

• GLE : genotype likelihoods of heterogeneous ploidy, used in presence of uncertain copy num-

ber. For example: GLE=0:-75.22,1:-223.42,0/0:-323.03,1/0:-99.29,1/1:-802.53 (String)

• PL : the phred-scaled genotype likelihoods rounded to the closest integer (and otherwise

defined precisely as the GL field) (Integers)

• GP : the phred-scaled genotype posterior probabilities (and otherwise defined precisely as the

GL field); intended to store imputed genotype probabilities (Floats)

• GQ : conditional genotype quality, encoded as a phred quality −10log10 p(genotype call is

wrong, conditioned on the site’s being variant) (Integer)

• HQ : haplotype qualities, two comma separated phred qualities (Integers)

• PS : phase set. A phase set is defined as a set of phased genotypes to which this genotype

belongs. Phased genotypes for an individual that are on the same chromosome and have the

same PS value are in the same phased set. A phase set specifies multi-marker haplotypes

for the phased genotypes in the set. All phased genotypes that do not contain a PS subfield
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are assumed to belong to the same phased set. If the genotype in the GT field is unphased,

the corresponding PS field is ignored. The recommended convention is to use the position of

the first variant in the set as the PS identifier (although this is not required). (Non-negative

32-bit Integer)

• PQ : phasing quality, the phred-scaled probability that alleles are ordered incorrectly in a

heterozygote (against all other members in the phase set). We note that we have not yet

included the specific measure for precisely defining “phasing quality”; our intention for now

is simply to reserve the PQ tag for future use as a measure of phasing quality. (Integer)

• EC : comma separated list of expected alternate allele counts for each alternate allele in the

same order as listed in the ALT field (typically used in association analyses) (Integers)

• MQ : RMS mapping quality, similar to the version in the INFO field. (Integer)

If any of the fields is missing, it is replaced with the missing value. For example if the FORMAT

is GT:GQ:DP:HQ then 0 | 0 : . : 23 : 23, 34 indicates that GQ is missing. Trailing fields can be

dropped (with the exception of the GT field, which should always be present if specified in the

FORMAT field).

See below for additional genotype fields used to encode structural variants. Additional Genotype

fields can be defined in the meta-information. However, software support for such fields is not

guaranteed.
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Appendix B

Binary File Format

B.1 Two Bit File Format (2bit)

B.1.1 Definition

A 2bit file format is called a 2bit because it uses 2 bits to represent a single DNA base. It is a

binary file that is used in the bioinformatics field to store multiple DNA sequences (up to 4 Gb in

total) in a compact and accessible format. This type of file contains the DNA and masking infor-

mation. The specification of this format is described in the UCSC website(http://genome.ucsc.edu).

B.1.2 Description

The 2bit binary file has 3 main sections:

1. The first section is the header:

The size of this section is 16-byte and has four fields:

• signature: the number 0x1A412743 in the architecture of the machine that created the

file.

• version: zero for now.

• sequenceCount: the number of sequences in the file.

• reserved: always zero for now.

All fields are 4bytes (32bits) and if the signature value is not as given, the reader program

should byte-swap the signature and check if the swapped version matches. If so, all multiple-

byte entities in the file will have to be byte-swapped. This enables these binary files to be

used unchanged on different architectures.
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2. The second section is the index:

This section contains one entry for each sequence and each index entry has three fields:

• nameSize: this field has one byte containing the length of the name field.

• name: this field has the sequence name itself, of variable length depending on nameSize

• offset: this field has a 4byte (32-bit) offset of the sequence data relative to the start of

the file.

3. The third section is the sequence records:

This section has nine fields:

• dnaSize: this field has the number of DNA bases in the sequence.

• nBlockCount: this contains the number of blocks of Ns in the file (N- representing

unknown sequence).

• nBlockStarts: an array of length nBlockCount of 32-bit integers indicating the starting

position of a block of Ns.

• nBlockSizes: an array of length nBlockCount of 32-bit integers indicating the length

of a block of Ns.

• maskBlockCount: the number of masked (lower-case) blocks.

• maskBlockStarts: an array of length maskBlockCount of 32-bit integers indicating the

starting position of a masked block.

• maskBlockSizes: an array of length maskBlockCount of 32-bit integers indicating the

length of a masked block.

• reserved: always zero for now.

• packedDna: the DNA packed to two bits per base, represented as: T - 00, C - 01, A -

10, G - 11. The first base is in the most significant 2-bit byte and the last base is in the

least significant 2 bits. For example, the sequence TCAG is represented as 00011011.
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Figure 42: 2bit binary file layout

B.2 The Tabix index File Format

This file format document was written by Heng Li. The following table describe the details of this

format. This specification can be found at the samtools website http://samtools.github.io/

hts-specs/tabix.pdf
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Field Descrption Type Value

magic Magic string char[4] TBI\1
n ref # sequences int32 t

format Format (0: generic; 1: SAM; 2: VCF) int32 t

col seq Column for the sequence name int32 t

col beg Column for the start of a region int32 t

col end Column for the end of a region int32 t

meta Leading character for comment lines int32 t

skip # lines to skip at the beginning int32 t

l nm Length of concatenated sequence names int32 t

names Concatenated names, each zero terminated char[l nm]

List of indices (n=n ref)

n bin # distinct bins (for the binning index) int32 t

List of distinct bins (n=n bin)

bin Distinct bin number uint32 t

n chunk # chunks int32 t

List of chunks (n=n chunk)

cnk beg Virtual file offset of the start of the chunk uint64 t

cnk end Virtual file offset of the end of the chunk uint64 t

n intv # 16kb intervals (for the linear index) int32 t

List of distinct intervals (n=n intv)

ioff File offset of the first record in the interval uint64 t

Notes:

• The index file is BGZF compressed.

• All integers are little-endian.

• When (format&0x10000) is true, the coordinate follows the BED rule (i.e. half-closed-half-

open and zero based); otherwise, the coordinate follows the GFF rule (closed and one based).

• For the SAM format, the end of a region equals POS plus the reference length in the alignment,

inferred from CIGAR. For the VCF format, the end of a region equals POS plus the size of the

deletion.

• Field col beg may equal col end, and in this case, the end of a region is end=beg+1.

• Example. For GFF, format=0, col seq=1, col beg=4, col end=5, meta=‘#’ and skip=0.

For BED, format=0x10000, col seq=1, col beg=2, col end=3, meta=‘#’ and skip=0.
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B.3 The BAM File Format

SAM is a TAB-delimited text format. It is easy to understand, easy to parse, easy to generate and

easy to check for errors. However, SAM is a bit slow to parse. Therefore a a binary equivalent

to SAM, called BAM was introduced , for intensive data processing. It was envisioned that BAM

will be used in most production pipelines, but that SAM, which is simpler to parse and can be

produced by streaming from BAM, may be useful for interconversion with external applications

and for exploratory analyses. The master version of this document can be found at https://

github.com/samtools/hts-specs.

B.3.1 The BGZF compression format

BGZF is block compression implemented on top of the standard gzip file format. The goal of BGZF

is to provide good compression while allowing efficient random access to the BAM file for indexed

queries. The BGZF format is ‘gunzip compatible’, in the sense that a compliant gunzip utility can

decompress a BGZF compressed file.

A BGZF file is a series of concatenated BGZF blocks. Each BGZF block is itself a spec-compliant

gzip archive which contains an “extra field” in the format described in RFC1952. The gzip file

format allows the inclusion of application-specific extra fields and these are ignored by compliant

decompression implementation. The gzip specification also allows gzip files to be concatenated.

The result of decompressing concatenated gzip files is the concatenation of the uncompressed data.

Each BGZF block contains a standard gzip file header with the following standard-compliant

extensions:

1. The F.EXTRA bit in the header is set to indicate that extra fields are present.

2. The extra field used by BGZF uses the two subfield ID values 66 and 67 (ascii ‘BC’).

3. The length of the BGZF extra field payload (field LEN in the gzip specification) is 2 (two

bytes of payload).

4. The payload of the BGZF extra field is a 16-bit unsigned integer in little endian format. This

integer gives the size of the containing BGZF block minus one.

On disk, a complete BGZF file is a series of blocks as shown in the following table. (All integers

are little endian as is required by RFC1952.)

It is worth noting that there is a known bug in the Java GZIPInputStream class that concatenated gzip archives
cannot be successfully decompressed by this class. BGZF files can be created and manipulated using the built-in
Java util.zip package, but naive use of GZIPInputStream on a BGZF file will not work due to this bug.
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Field Description Type Value

List of compression blocks (until the end of the file)

ID1 gzip IDentifier1 uint8 t 31

ID2 gzip IDentifier2 uint8 t 139

CM gzip Compression Method uint8 t 8

FLG gzip FLaGs uint8 t 4

MTIME gzip Modification TIME uint32 t

XFL gzip eXtra FLags uint8 t

OS gzip Operating System uint8 t

XLEN gzip eXtra LENgth uint16 t

Extra subfield(s) (total size=XLEN)

Additional RFC1952 extra subfields if present

SI1 Subfield Identifier1 uint8 t 66

SI2 Subfield Identifier2 uint8 t 67

SLEN Subfield LENgth uint16 t 2

BSIZE total Block SIZE minus 1 uint16 t

Additional RFC1952 extra subfields if present

CDATA Compressed DATA by zlib::deflate() uint8 t[BSIZE-XLEN-19]

CRC32 CRC-32 uint32 t

ISIZE Input SIZE (length of uncompressed data) uint32 t

B.3.1.1 Random access

BGZF files support random access through the BAM file index. To achieve this, the BAM file index

uses virtual file offsets into the BGZF file. Each virtual file offset is an unsigned 64-bit integer,

defined as: coffset<<16|uoffset, where coffset is an unsigned byte offset into the BGZF file

to the beginning of a BGZF block, and uoffset is an unsigned byte offset into the uncompressed

data stream represented by that BGZF block. Virtual file offsets can be compared, but subtraction

between virtual file offsets and addition between a virtual offset and an integer are both disallowed.

B.3.1.2 End-of-file marker

An end-of-file (EOF) trailer or marker block should be written at the end of BGZF files, so that

unintended file truncation can be easily detected. The EOF marker block is a particular empty

BGZF block encoded with the default zlib compression level setttings, and consists of the following

28 hexadecimal bytes:

1f 8b 08 04 00 00 00 00 00 ff 06 00 42 43 02 00 1b 00 03 00 00 00 00 00 00 00 00

00
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The presence of this EOF marker at the end of a BGZF file indicates that the immediately following

physical EOF is the end of the file as intended by the program that wrote it. Empty BGZF blocks

are not otherwise special; in particular, the presence of an EOF marker block does not by itself

signal end of file.

The absence of this final EOF marker should trigger a warning or error soon after opening

a BGZF file where random access is available. When reading a BGZF file in sequential streaming

fashion, ideally this EOF check should be performed when the end of the stream is reached. Checking

that the final BGZF block in the file decompresses to empty or checking that the last 28 bytes of the

file are exactly the bytes above are both sufficent tests; each is likely more convenient in different

circumstances.

B.3.2 The BAM format

BAM is compressed in the BGZF format. All multi-byte numbers in BAM are little-endian,

regardless of the machine endianness. The format is formally described in the following table

where values in brackets are the default when the corresponding information is not available; an

underlined word in uppercase denotes a field in the SAM format.

Field Description Type Value

magic BAM magic string char[4] BAM\1

l text Length of the header text, including any NULL

padding

int32 t

text Plain header text in SAM; not necessarily NULL

terminated

char[l text]

n ref # reference sequences int32 t

List of reference information (n=n ref)

l name Length of the reference name plus 1 (including

NULL)

int32 t

name Reference sequence name; NULL terminated char[l name]

l ref Length of the reference sequence int32 t

List of alignments (until the end of the file)

block size Length of the remainder of the alignment record int32 t

Empty in the sense of having been formed by compressing a data block of length zero.
An implementation that supports reopening a BAM file in append mode could produce a file by writing headers

and alignment records to it, closing it (adding an EOF marker); then reopening it for append, writing more alignment
records, and closing it (adding an EOF marker). The resulting BAM file would contain an embedded insignificant
EOF marker block that should be effectively ignored when it is read.

It is useful to produce a diagnostic at the beginning of reading a file, so that interactive users can abort lengthy
analysis of potentially-corrupted files. Of course, this is only possible if the stream in question supports random
access.
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refID Reference sequence ID, −1 ≤ refID < n ref; -1

for a read without a mapping position.

int32 t [-1]

pos 0-based leftmost coordinate (= POS− 1) int32 t [-1]

bin mq nl bin<<16|MAPQ<<8|l read name; bin is

computed by the reg2bin() function;

l read name is the length of read name be-

low (= length(QNAME) + 1).

uint32 t

flag nc FLAG<<16|n cigar op; n cigar op is the number

of operations in CIGAR.

uint32 t

l seq Length of SEQ int32 t

next refID Ref-ID of the next segment (−1 6 mate refID <

n ref)

int32 t [-1]

next pos 0-based leftmost pos of the next segment (=

PNEXT− 1)

int32 t [-1]

tlen Template length (= TLEN) int32 t [0]

read name Read name, NULL terminated (QNAME plus a

tailing ‘\0’)

char[l read name]

cigar CIGAR: op len<<4|op.

‘MIDNSHP=X’→‘012345678’

uint32 t[n cigar op]

seq 4-bit encoded read: ‘=ACMGRSVTWYHKDBN’→
[0, 15]; other characters mapped to ‘N’; high nyb-

ble first (1st base in the highest 4-bit of the 1st

byte)

uint8 t[(l seq+1)/2]

qual Phred base quality (a sequence of 0xFF if absent) char[l seq]

List of auxiliary data (until the end of the alignment block)

tag Two-character tag char[2]

val type Value type: AcCsSiIfZHB, char

value Tag value (by val type)

For backward compatibility, a QNAME ‘*’ is stored as a C string "*\0".
An integer may be stored as one of ‘cCsSiI’ in BAM, representing int8 t, uint8 t, int16 t, uint16 t,

int32 t and uint32 t, respectively. In SAM, all single integer types are mapped to int32 t.
A ‘B’-typed (array) tag–value pair is stored as follows. The first two bytes keep the two-character tag. The 3rd

byte is always ‘B’. The 4th byte, matching /^[cCsSiIf]$/, indicates the type of an element in the array. Bytes from
5 to 8 encode a little-endian 32-bit integer which gives the number of elements in the array. Bytes starting from
the 9th store the array in the little-endian byte order; the number of these bytes is determined by the type and the
length of the array.
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B.3.3 Indexing BAM

Indexing aims to achieve fast retrieval of alignments overlapping a specified region without going

through the whole alignments. BAM must be sorted by the reference ID and then the leftmost

coordinate before indexing.

B.3.3.1 Algorithm

Basic binning index The UCSC binning scheme was suggested by Richard Durbin and Lincoln

Stein and is explained by Kent et al. (2002). In this scheme, each bin represents a contiguous

genomic region which is either fully contained in or non-overlapping with another bin; each align-

ment is associated with a bin which represents the smallest region containing the entire alignment.

The binning scheme is essentially a representation of R-tree. A distinct bin uniquely corresponds

to a distinct internal node in a R-tree. Bin A is a child of Bin B if the region represented by A is

contained in B.

To find the alignments that overlap a specified region, we need to get the bins that overlap

the region, and then test each alignment in the bins to check overlap. To quickly find alignments

associated with a specified bin, we can keep in the index the start file offsets of chunks of alignments

which all have the bin. As alignments are sorted by the leftmost coordinates, alignments having

the same bin tend to be clustered together on the disk and therefore usually a bin is only associated

with a few chunks. Traversing all the alignments having the same bin usually needs a few seek calls.

Given the set of bins that overlap the specified region, we can visit alignments in the order of their

leftmost coordinates and stop seeking the rest when an alignment falls outside the required region.

This strategy saves half of the seek calls in average.

In BAM, each bin may span 229, 226, 223, 220, 217 or 214 bp. Bin 0 spans a 512Mbp region, bins

1–8 span 64Mbp, 9–72 8Mbp, 73–584 1Mbp, 585–4680 128Kbp and bins 4681–37449 span 16Kbp

regions.

Reducing small chunks Around the boundary of two adjacent bins, we may see many small

chunks with some having a shorter bin while the rest having a larger bin. To reduce the number of

seek calls, we may join two chunks having the same bin if they are close to each other. After this

process, a joined chunk will contain alignments with different bins. We need to keep in the index

the file offset of the end of each chunk to identify its boundaries.

Combining with linear index For an alignment starting beyond 64Mbp, we always need to

seek to some chunks in bin 0, which can be avoided by using a linear index. In the linear index,

Due to a limitation in the current indexing scheme, a chromosome sequence longer than 229− 1 is not supported
during indexing.
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for each tiling 16384bp window on the reference, we record the smallest file offset of the alignments

that start in the window. Given a region [rbeg,rend), we only need to visit a chunk whose end file

offset is larger than the file offset of the 16kbp window containing rbeg.

With both binning and linear indices, we can retrieve alignments in most of regions with just

one seek call.

A conceptual example Suppose we have a genome shorter than 144kbp. we can design a binning

scheme which consists of three types of bins: bin 0 spans 0-144kbp, bin 1, 2 and 3 span 48kbp and

bins from 4 to 12 span 16kbp each:

0 (0–144kbp)

1 (0–48kbp) 2 (48–96kbp) 1 (96–144kbp)

4 (0–16k) 5 (16–32k) 6 (32–48k) 7 (48–64k) 8 (64–80k) 9 (80–96k) 10 11 12

An alignment starting at 65kbp and ending at 67kbp would have a bin number 8, which is the

smallest bin containing the alignment. Similarly, an alignment starting at 51kbp and ending at

70kbp would go to bin 2, while an alignment between [40k,49k] to bin 0. Suppose we want to find

all the alignments overlapping region [65k,71k). We first calculate that bin 0, 2 and 8 overlap with

this region and then traverse the alignments in these bins to find the required alignments. With a

binning index alone, we need to visit the alignment at [40k,49k] as it belongs to bin 0. But with a

linear index, we know that such an alignment stops before 64kbp and cannot overlap the specified

region. A seek call can thus be saved.
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B.3.3.2 The BAM indexing format

Field Description Type Value

magic Magic string char[4] BAI\1

n ref # reference sequences int32 t

List of indices (n=n ref)

n bin # distinct bins (for the binning index) int32 t

List of distinct bins (n=n bin)

bin Distinct bin uint32 t

n chunk # chunks int32 t

List of chunks (n=n chunk)

chunk beg (Virtual) file offset of the start of the chunk uint64 t

chunk end (Virtual) file offset of the end of the chunk uint64 t

n intv # 16kbp intervals (for the linear index) int32 t

List of intervals (n=n intv)

ioffset (Virtual) file offset of the first alignment in the interval uint64 t

B.4 BigBed File Format

B.4.1 Definition

The BigBed format is a compressed, indexed, binary format of the BED file developed by the

UCSC genome Center. It is normally created from Browser Extensible Data (BED) files using the

UCSC program bedToBigBed resulting in an indexed binary format. It’s main advantage is for

rapid, random access of genomic data by a genome browser or analysis program, either remotely

or locally mainly to make uploading huge data sets faster than regular BED files and that is done

by transferring only portions of these files to display a particular region. The general specification

is displayed on the UCSC website http://genome.ucsc.edu while the Supplementary byte-level

details of the BigWig and BigBed file formats are available at Bioinformatics online.

B.4.2 Description

As previously mentioned BigBed files are compressed binary files created from BED files and stores

annotation items that can either be simple, or a linked collection of exons. The detailed format of

this binary indexed file is described in B.5.3
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B.5 BigWig File Format

B.5.1 Definition

The bigWig format is for display of dense, continuous data that will be displayed in the Genome

Browser as a graph. BigWig files are created initially from wiggle (wig) type files, using the program

wigToBigWig. Alternatively, bigWig files can be created from bedGraph files, using the program

bedGraphToBigWig. In either case, the resulting bigWig files are in an indexed binary format. The

main advantage of the bigWig files is that only the portions of the files needed to display a particular

region are transferred to UCSC, so for large data sets bigWig is considerably faster than regular

wiggle files. The bigWig file remains on your web accessible server (http, https, or ftp), not on

the UCSC server. Only the portion that is needed for the chromosomal position you are currently

viewing is locally cached as a ”sparse file”.The general specification is displayed on the UCSC

website http://genome.ucsc.edu while the Supplementary byte-level details of the BigWig and

BigBed file formats are available at Bioinformaticsonline. Also parts of the information mentioned

is taken from [Kent et al., 2010] article.

B.5.2 Description

BigWig files are derived from text-formatted wiggle plot (wig) or bedGraph files.They associate a

floating-point number with each base in the genome, and can accommodate missing data points.In

the UCSC Genome Browser, these files are used to create graphs in which the horizontal axis is the

position along a chromosome and the vertical axis is the floating-point data.A wiggly line represents

these graphs, hence the name ”wiggle”.

Three text formats can be used to describe wiggle data at varying levels of conciseness and flex-

ibility. Values may be specified for every base or for regularly spaced fixed-sized windows using

the ”fixedStep” format. The ”variableStep” format encodes fixed-sized windows that are variably

spaced. The ”bedGraph” format encodes windows that are both variably sized and variably spaced.

Data files of fixedStep format are divided into sections, each of which starts with a line of the

form:

fixedStep chrom=chrN start=position step=N span=N

where ”chrom” is the chromosome name, ”start” is the start position on the chromosome, ”step”

is the number of bases between items and ”span” shows the number of bases covered by each item.

Step and span default to 1 if they are not defined. This section line is followed by a line containing
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a single floating-point number for each item in the section.

The variableStep format is similar, but the section starts with a line of the format:

variableStep chrom=chrN span=N

and each item line contains two fields: the chromosome start position, and the floating point

value associated with each base.

The bedGraph format is a BED variant in which the fourth column is a floating point value

that is associated with all the bases between the chromStart and chromEnd positions. Unlike the

zero-based BED and bedGraph, for compatibility reasons the chromosome start positions in vari-

ableStep and fixedStep are one-based.

B.5.3 Details

This section will have the byte-by-byte details of BigBed and BigWig files in the form of table.The

following table shows the overall structure of both BigBed and BigWig files.
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Name Size (bytes) Description

bbiHeader 64 Contains high-level information about file and offsets to var-

ious parts of file. See Table 16.

zoomHeaders N*24 One for each level of zoom built into file. See Table 17.

autoSql Varies Zero-terminated string in autoSql format describing formats.

Optional, not used in BigWig.

totalSummary 40 Statistical summary of entire file. See Table 18. Only in

files of version 2 and later.

chromosomeTree Varies B+ tree-formatted index of chromosomes, their sizes, and a

unique ID for each. See Tables 19-22.

dataCount 4 Number of records in data. For BigWig this corresponds

to the number of sections, not the number of floating point

values.

data Varies Possibly compressed data in format specific for file type. See

Tables 23 and 24.

index Varies R tree index of data. See Tables 25 and 26.

zoomInfo Varies One for each zoom level.

Table 15: Overall structure of BigWig and BigBed files.

After describing the common structure of both binary files more on the details of this structure

are presented below.The next table will demonstrate the fields of the Common header for BigWig

and BigBed files.The overall size of the header is 64 bytes.The last four fields are perhaps surpris-

ingly present in BigBed as well in BigWig.In BigBed the values correspond to those of a BigWig

constructed by the depth of coverage of bases.
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Name Size Type Description

magic 4 uint 0x888FFC26 for BigWig, 0x8789F2EB for BigBed. If byte-

swapped, all numbers in file are byte-swapped.

version 2 uint Currently 3.

zoomLevels 2 uint Number of different zoom summary resolutions.

chromosomeTreeOffset 8 uint Offset in file to chromosome B+ tree index.

fullDataOffset 8 uint Offset to main (unzoomed) data. Points specifically to the

dataCount.

fullIndexOffset 8 uint Offset to R tree index of items.

fieldCount 2 uint Number of fields in BED file. (0 for BigWig)

definedFieldCount 2 uint Number of fields that are predefined BED fields.

autoSqlOffset 8 uint Offset to zero-terminated string with .as spec.

totalSummaryOffset 8 uint Offset to overall file summary data block.

uncompressBufSize 4 uint Maximum size of decompression buffer needed (nonzero on

compressed files). Used only on files of version 3 and later.

reserved 8 uint Reserved for future expansion. Currently 0.

Table 16: Common header for BigWig and BigBed files.

The table below will show the zoom header. One or more of these zoom headers immediately

follow the common header, one for each zoomLevel.

Name Size Type Description

reductionLevel 4 uint Number of bases summarized in each reduction level.

reserved 4 uint Reserved for future expansion. Currently 0.

dataOffset 8 uint Position of zoomed data in file.

indexOffset 8 uint Position of zoomed data index in file.

Table 17: The zoom header.

Total summary block. From these data the mean and the standard deviation can be quickly

calculated. Follows the zoom headers and autoSql string if present. This block exists only in version

2 and later files.
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Name Size Type Description

basesCovered 8 uint Number of bases for which there is data.

minVal 8 float Minimum value in file.

maxVal 8 float Maximum value in file.

sumData 8 float Sum of all values in file.

sumSquares 8 float Sum of all squares of values in file.

Table 18: Total summary block.

Chromosome B+ tree header. This starts at the offset specified in chromosomeTreeOffset in the

common header.

Name Size Type Description

magic 4 uint 0x78CA8C91. If byte-swapped all numbers in index are

byte-swapped.

blockSize 4 uint Number of children per block (not byte size of block).

keySize 4 uint Number of significant bytes in key. That is the minimum

prefix size needed to distinguish one chromosome name from

another.

valSize 4 uint Size of value being indexed. Currently this is 8.

itemCount 8 uint The number of chromosomes/contigs.

reserved 8 uint Reserved for future expansion, currently 0.

Table 19: Chromosome B+ tree header.

Chromosome B+ tree node format. The first of these (which for chromosome-based assemblies

may in fact be the only one) immediately follows the B+ tree header. It is followed by count items

in the format described in table 21 or 22. Table 10 or 11, depending on the value of isLeaf.

Name Size Type Description

isLeaf 1 byte 1 if a leaf node, 0 otherwise.

reserved 1 byte Reserved for future expansion. Currently 0.

count 2 uint Number of items in node.

Table 20: Chromosome B+ tree node format.

Chromosome B+ tree leaf item format.
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Name Size Type Description

key keySize bytes First keySize characters of chromosome name, padded with

zeroes if needed.

chromId 4 uint Numerical ID for chromosome/contig.

chromSize 4 uint Number of bases in chromosome/contig.

Table 21: Chromosome B+ tree leaf item format.

Chromosome B+ tree non-leaf item format.

Name Size Type Description

key keySize bytes First keySize characters of chromosome name, padded with

zeroes if needed.

childOffset 8 uint Offset to child node.

Table 22: Chromosome B+ tree non-leaf item format.

Binary BED data format. The data section of a BigBed file consists of dataCount of these

records sorted by chromId, chromStart. In compressed files these records are grouped together in

blocks as specified by the index, and each block is compressed individually.

Name Size Type Description

chromId 4 uint Numerical ID for chromosome/contig.

chromStart 4 uint Start position (starting with 0).

chromEnd 4 uint End of item. Same as chromStart + itemSize in bases.

rest Varies char Zero-terminated string in tab-separated format containing

any BED fields past the first three.

Table 23: Binary BED data format.

Binary WIG section header. The data that follows this header depends on the type. For

fixedStep it is one 32-bit floating point value for each item. For variableStep the item is chromStart

followed by the floating point value. For bedGraph the item is chromStart, chromEnd, value. In

compressed files each section (including the header) is compressed separately.

189



Name Size Type Description

chromId 4 uint Numerical ID for chromosome/contig.

chromStart 4 uint Start position (starting with 0).

chromEnd 4 uint End of item. Same as chromStart + itemSize in bases.

itemStep 4 uint Spaces between start of adjacent items in fixedStep sections.

itemSpan 4 uint Number of bases in item in fixedStep and varStep sections.

type 1 uint Section type. 1 for bedGraph, 2 for varStep, 3 for fixedStep.

reserved 1 uint Currently 0.

itemCount 2 uint Number of items in section.

Table 24: Binary WIG section header.

R tree index header.

Name Size Type Description

magic 4 uint 0x2468ACE0. If byte-swapped all numbers in index are

byte-swapped.

blockSize 4 uint Number of children per block (not byte size of block).

itemCount 8 uint The number of chromosomes/contigs.

startChromIx 4 uint ID of first chromosome in index.

startBase 4 uint Position of first base in index.

endChromIx 4 uint ID of last chromosome in index.

endBase 4 uint Position of last base in index.

endFileOffset 8 uint Position in file where data being indexed ends.

itemsPerSlot 4 uint Number of items pointed to by leaves of index.

Reserved 4 uint Reserved for future expansion. Currently 0.

Table 25: R tree index header.

R tree node format. The first of these (which for chromosome-based assemblies may in fact be

the only one) immediately follows the R tree header. It is followed by count items in the format

describe in tables 27 or reftable:R tree non-leaf item, depending on the value of isLeaf.
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Name Size Type Description

isLeaf 1 byte 1 if a leaf node, 0 otherwise.

reserved 1 byte Reserved for future expansion. Currently 0.

count 2 uint Number of items in node.

Table 26: R tree node format.

R tree leaf item format.

Name Size Type Description

startChromIx 4 uint ID of first chromosome in item.

startBase 4 uint Position of first base in item.

endChromIx 4 uint ID of last chromosome in item.

endBase 4 uint Position of last base in item.

dataOffset 8 uint Offset to data in this index slot in file.

dataSize 8 uint Size of data in this index slot.

Table 27: R tree leaf item format.

R tree non-leaf item format.

Name Size Type Description

startChromIx 4 uint ID of first chromosome in item.

startBase 4 uint Position of first base in item.

endChromIx 4 uint ID of last chromosome in item.

endBase 4 uint Position of last base in item.

dataOffset 8 uint Offset in file to lower level index node.

Table 28: R tree non-leaf item format.

Overall format of a zoom level.

Name Size Description

zoomCount 4 Number of zoom records in this level.

zoomData Varies See table 30 for record format.

zoomIndex Varies R tree of zoomData. See Tables 26-28.

Table 29: Overall format of a zoom level.
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Format of a zoomData record.

Name Size Type Description

chromId 4 uint Numerical ID for chromosome/contig.

chromStart 4 uint Start position (starting with 0).

chromEnd 4 uint End of item. Same as chromStart + itemSize in bases.

validCount 4 uint Number of bases for which there is data.

minVal 4 float Minimum value in region.

maxVal 4 float Maximum value in region.

sumData 4 float Sum of all data in region (one value for each base where

there is data).

sumSquares 4 float Sum of squares of all data in region.

Table 30: Format of a zoomData record.

B.6 BCF File Format

VCF is very expressive, accommodates multiple samples, and is widely used in the community. Its

biggest drawback is that it is big and slow. Files are text and therefore require a lot of space on

disk. A normal batch of 1̃00 exomes is a few GB, but large-scale VCFs with thousands of exome

samples quickly become hundreds of GBs. Because the file is text, it is extremely slow to parse.

Overall, the idea behind is BCF2 is simple. BCF2 is a binary, compressed equivalent of VCF

that can be indexed with tabix and can be efficiently decoded from disk or streams. For efficiency

reasons BCF2 only supports a subset of VCF, in that all info and genotype fields must have their

full types specified. That is, BCF2 requires that if e.g. an info field AC is present then it must

contain an equivalent VCF header line noting that AC is an allele indexed array of type integer. The

master version of this document can be found at https://github.com/samtools/hts-specs.

B.6.1 Overall file organization

A BCF2 file is composed of a mandatory header, followed by a series of BGZF compressed blocks

of binary BCF2 records. The BGZF blocks allow BCF2 files to be indexed with tabix.

BGZF blocks are composed of a VCF header with a few additional records and a block of records.

Following the last BGZF BCF2 record block is an empty BGZF block (a block containing zero type

of data), indicating that the records are done.

A BCF2 header follows exactly the specification as VCF, with a few extensions/restrictions:
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• All BCF2 files must have fully specified contigs definitions. No record may refer to a contig

not present in the header itself.

• All INFO and GENOTYPE fields must be fully typed in the BCF2 header to enable type-

specific encoding of the fields in records. An error should be thrown when converting a VCF

to BCF2 when an unknown or not fully specified field is encountered in the records.

B.6.2 Header

The BCF2 header begins with the “BCF2 magic” 5 bytes that encode BCFXY where X and Y are bytes

indicating the major number (currently 2) and the minor number (currently 1). This magic can be

used to quickly examine the file to determine that it’s a BCF2 file. Immediately following the BCF2

magic is the standard VCF header lines in text format, beginning with ##fileformat=VCFvX.Y.

Because the type is encoded directly in the header, the recommended extension for BCF2 formatted

files is .bcf. BCF2 supports encoding values in a dictionary of strings. The string map is provided

by the keyword ##dictionary=S0,S1,...,SN as a comma-separate ordered list of strings. See the

“Dictionary of strings” section for more details.

B.6.2.1 Dictionary of strings

Throughout the BCF file most string values are be specified by integer reference to their dictionary
values. For example, the following VCF record:

##INFO=<ID=ASP,Number=0,Type=Flag,Description="X">

##INFO=<ID=RSPOS,Number=1,Type=Integer,Description="Y">

##INFO=<ID=dbSNPBuildID,Number=1,Type=Integer,Description="Z">

##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens">

#CHROM POS ID REF ALT QUAL FILTER INFO

20 10144 rs144773400 TA T . PASS ASP;RSPOS=10145,dbSNPBuildID=134

20 10228 rs143255646 TA T . PASS ASP;RSPOS=10229;dbSNPBuildID=134

would be encoded inline in BCF2 by reference to the relative position of the header line in the header

(ASP=1, RSPOS=2, dbSNPBuildID=3, and PASS implicitly encoded in the last offset PASS=4)

##INFO=<ID=ASP,Number=0,Type=Flag,Description="X">

##INFO=<ID=RSPOS,Number=1,Type=Integer,Description="Y">

##INFO=<ID=dbSNPBuildID,Number=1,Type=Integer,Description="Z">

##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens">

#CHROM POS ID REF ALT QUAL FILTER INFO

0 10144 rs144773400 TA T . s0 s1;s2=10145;s3=134

0 10228 rs143255646 TA T . s0 s1;s2=10229;s3=134

Note that the dictionary encoding has the magic prefix ‘s’ here to indicate that the field’s value

is actually in the dictionary entry giving by the subsequent offset. This representation isn’t actually

the one used in BCF2 records but it provides a clean visual guide for the above example. Note also

how the contig has been recoded as a offset into the list of contig declarations.
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Note that “PASS” is always implicitly encoded as the first entry in the header dictionary. This

is because VCF allows FILTER fields to be PASS without explicitly listing this in the FILTER field

itself.

B.6.2.2 Dictionary of contigs

The CHROM field in BCF2 is encoded as an integer offset into the list of ##contig field headers in

the VCF header. The offsets begin, like the dictionary of strings, at 0. So for example if in BCF2

the contig value is 10, this indicates that the actual chromosome is the 11th element in the ordered

list of ##contig elements. Here’s a more concrete example:

##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens">

##contig=<ID=21,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens">

##contig=<ID=22,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens">

#CHROM POS ID REF ALT QUAL FILTER INFO

20 1 . T A . PASS .

21 2 . T A . PASS .

22 3 . T A . PASS .

the actual CHROM field values in the encoded BCF2 records would be 0, 1, and 2 corresponding

to the first (offset 0) ##contig element, etc.

B.6.3 BCF2 records

In BCF2, the original VCF records are converted to binary and encoded as BGZF blocks. Each

record is conceptually two parts. First is the site information (chr, pos, INFO field). Immediately

after the sites data is the genotype data for every sample in the BCF2 file. The genotype data may

be omitted entirely from the record if there is no genotype data in the VCF file. Note that it’s

acceptable to not BGZF compress a BCF2 file, but not all readers may handle this uncompressed

encoding.

B.6.3.1 Site encoding

BCF2 site information encoding Field Type Notes l shared uint32 t Data length from CHROM to

the end of INFO l indiv uint32 t Data length of FORMAT and individual genotype fields CHROM

int32 t Given as an offset into the mandatory contig dictionary POS int32 t 0-based leftmost

coordinate rlen int32 t Length of the record as projected onto the reference sequence. May be the

actual length of the REF allele but for symbolic alleles should be the declared length respecting

the END attribute n allele info int32 t n info, where n allele is the number of REF+ALT alleles

in this record, and n info is the number of VCF INFO fields present in this record n fmt sample

uint32 t n sample, where n fmt is the number of format fields for genotypes in this record, and

n samples is the number of samples present in this sample. Note that the number of samples
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must be equal to the number of samples in the header QUAL float Variant quality; 0x7F800001

for a missing value ID typed string REF+ALT list of n allele typed strings the first allele is REF

(mandatory) followed by n alleles - 1 ALT alleles, all encoded as typed strings FILTER Typed

vector of integers a vector of integer offsets into dictionary, one for each FILTER field value. “.” is

encoded as MISSING INFO field key/value pairs n info pairs of typed vectors The first value must

be a typed atomic integer giving the offset of the INFO field key into the dictionary. The second

value is a typed vector giving the value of the field Genotype value block see below see below

B.6.3.2 Genotype encoding

Genotype fields are encoded not by sample as in VCF but rather by field, with a vector of values

for each sample following each field. In BCF2, the following VCF line:

FORMAT NA00001 NA00002 NA00003

GT:GQ:DP 0/0:48:1 0/1:48:8 1/1:43:5

would encoded as the equivalent of:

GT=0/0,0/1,1/1 GQ=48,9,43 DP=1,8,5

Suppose there are i genotype fields in a specific record. Each i is encoded by a triplet:

BCF2 site information encoding

Field Type Notes

fmt key typed int Format key as an offset into the dictionary

fmt type uint8 t+ Typing byte of each individual value, possibly followed by

a typed int for the vector length. In effect this is the same

as the typing value for a single vector, but for genotype

values it appears only once before the array of genotype

field values

fmt values

(by fmt

type)

Array of values The information of each individual is concatenated in the

vector. Every value is of the same fmt type. Variable-

length vectors are padded with missing values; a string is

stored as a vector of char

The value is always implicitly a vector of N values, where N is the number of samples. The type

byte of the value field indicates the type of each value of the N length vector. For atomic values this

is straightforward (size = 1). But if the type field indicates that the values are themselves vectors

(as often occurs, such as with the PL field) then each of the N values in the outer vector is itself

a vector of values. This encoding is efficient when every value in the genotype field vector has the

same length and type.
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Note that the specific order of fields isn’t defined, but it’s probably a good idea to respect the

ordering as specified in the input VCF/BCF2 file.

If there are no sample records (genotype data) in this VCF/BCF2 file, the size of the genotypes

block will be 0.

B.6.3.3 Type encoding

In BCF2 values are all strongly typed in the file. The type information is encoded in a prefix byte

before the value, which contains information about the low-level type of the value(s) such as int32

or float, as well as the number of elements in the value. The encoding is as follows:

BCF2 type descriptor byte

Bit Meaning

5,6,7,8 bits The number of elements of the upcoming type. For

atomic values, the size must be 1. If the size is set to 15,

this indicates that the vector has 15 or more elements,

and that the subsequent BCF2 byte stream contains a

typed Integer indicating the true size of the vector. If

the size is between 2-14, then this Integer is omitted

from the stream and the upcoming stream begins im-

mediately with the first value of the vector. A size of 0

indicates that the value is MISSING.

1,2,3,4 bits Type

The final four bits encodes an unsigned integer that indicates the type of the upcoming value in

the data stream.

BCF2 types

Lowest 4 bits Hexadecimal encoding Corresponding atomic type

1 0x?1 Integer [8 bit]

2 0x?2 Integer [16 bit]

3 0x?3 Integer [32 bit]

5 0x?5 Float [32 bit]

7 0x?7 Character, ASCII encoded in 8 bits

Note this is not used in BCF2, but its type is reserved in case this becomes necessary. In BCF2

characters are simply represented by strings with a single element 0,4,6,8-15 reserved for future use.

Integers may be encoded as 8, 16, or 32 bit values, in little-endian order. It is up to the encoder

to determine the appropriate ranged value to use when writing the BCF2 file. For each integer size,
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the value with all bits set (0x80, 0x8000, 0x80000000) for 8, 16, and 32 bit values, respectively)

indicates that the field is a missing value.

Floats are encoded as single-precision (32 bit) in the basic format defined by the IEEE-754-1985

standard. This is the standard representation for floating point numbers on modern computers, with

direct support in programming languages like C and Java (see Java’s Double class for example).

BCF2 supports the full range of values from -Infinity to +Infinity, including NaN. BCF2 needs to

represent missing values for single precision floating point numbers. This is accomplished by writing

the NaN value as the quiet NaN (qNaN), while the MISSING value is encoded as a signaling NaN.

From the NaN wikipedia entry, we have:

For example, a bit-wise example of a IEEE floating-point standard single precision (32-bit) NaN

would be: s111 1111 1axx xxxx xxxx xxxx xxxx xxxx where s is the sign (most often ignored in

applications), a determines the type of NaN, and x is an extra payload (most often ignored in

applications). If a = 1, it is a quiet NaN; if a is zero and the payload is nonzero, then it is a

signaling NaN.

A good way to understand these values is to play around with the IEEE encoder webiste.

BCF2 bit representation for floating point NaN and MISSING

Value 32-bit precision Hexadecimal representation

NaN 0b0111 1111 1100 0000 0000 0000 0000 0000 0x7FC00000

MISSING 0b0111 1111 1000 0000 0000 0000 0000 0001 0x7F800001

Character values are not explicitly typed in BCF2. Instead, VCF Character values should be

encoded by a single character string. As with Strings, UNICODE characters are not supported.

Flags values – which can only appear in INFO fields – in BCF2 should be encoded by any non-

MISSING value. The recommended best practice is to encode the value as an 1-element INT8 (type

0x11) with value of 1 to indicate present. Because FLAG values can only be encoded in INFO fields,

BCF2 provides no mechanism to encode FLAG values in genotypes, but could be easily extended

to do so if allowed in a future VCF version.

String values have two basic encodings. For INFO, FORMAT, and FILTER keys these are

encoded by integer offsets into the header dictionary. For string values, such as found in the ID,

REF, ALT, INFO, and FORMAT fields, strings are encoded as typed array of ASCII encoded bytes.

The array isn’t terminated by a null byte. The length of the string is given by the length of the

type descriptor.

Suppose you want to encode the string ACAC. First, we need the type descriptor byte, which

is the string type 0x07 or’d with inline size (4) yielding the type byte of 0x40 — 0x07 = 0x47.

Immediately following the type byte is the four byte ASCII encoding of “ACAC” 0x41 0x43 0x41
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0x43. So the final encoding is:

0x47 0x41 0x43 0x41 0x43 String type with inline size of 4 followed by ACAC in ASCII

Suppose you want to encode the string MarkDePristoWorksAtTheBroad, a string of size 27.

First, we need the type descriptor byte, which is the string type 0x07. Because the size exceeds the

inline size (27 > 15) we set the size to overflow, yielding the type byte of 0xF0 — 0x07 = 0xF7.

Immediately following the type byte is the typed size of 27, which we encode by the atomic INT8

value: 0x11 followed by the actual size 0x1B. Finally comes the actual bytes of the string: 0x4D

0x61 0x72 0x6B 0x44 0x65 0x50 0x72 0x69 0x73 0x74 0x6F 0x57 0x6F 0x72 0x6B 0x73 0x41 0x74

0x54 0x68 0x65 0x42 0x72 0x6F 0x61 0x64. So the final encoding is:

0xF7 string with overflow size

0x11 0x1B overflow size encoded as INT8

with value 27

0x4D 0x61 0x72 0x6B 0x44 0x65 0x50 0x72 0x69

0x73 0x74 0x6F 0x57 0x6F 0x72 0x6B 0x73 0x41

0x74 0x54 0x68 0x65 0x42 0x72 0x6F 0x61 0x64

message in ASCII

Suppose you want to encode the missing value ‘.’. This is simply a string of size 0 = 0x07.

In VCF there are sometimes fields of type list of strings, such as a number field of unbounded

size encoding the amino acid changes due to a mutation. Since BCF2 doesn’t directly support

vectors of strings (a vector of character is already a string) we collapse the list of strings into a

single comma-separated string, encode it as a regular BCF2 vector of characters, and on reading

explode it back into the list of strings. This works because strings in VCF cannot contain ‘ ,’ (it’s a

field separator) and so we can safely use ‘,’ to separate the individual strings. For efficiency reasons

we put a comma at the start of the collapsed string, so that just the first character can be examined

to determine if the string is collapsed.

To be concrete, suppose we have a info field around X=[A,B,C,D]. This is encoded in BCF2 as a

single string “,A,B,C,D” of size 8, so it would have type byte 0x87 followed by the ASCII encoding

0x2C 0x41 0x2C 0x42 0x2C 0x43 0x2C 0x44.

Vectors — The BCF2 type byte may indicate that the upcoming data stream contains not a

single value but a fixed length vector of values. The vector values occur in order (1st, 2nd, 3rd,

etc) encoded as expected for the type declared in the vector’s type byte. For example, a vector of

3 16-bit integers would be layed out as first the vector type byte, followed immediately by 3 2-byte

values for each integer, including a total of 7 bytes.

Missing values in vectors are handled slightly differently from atomic values. There are two

possibilities for missing values:
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One (or more) of the values in the vector may be missing, but others in the vector are not. Here

each value should be represented in the vector, and each corresponding BCF2 vector value either set

to its present value or the type equivalent MISSING value. Alternatively the entire vector of values

may be missing. In this case the correct encoding is as a type byte with size 0 and the appropriate

type MISSING. Suppose we are encoding the record “AC=[1,2,3]” from the INFO field. The AC

key is encoded in the standard way. This would be immediately followed by a typed 8-bit integer

vector of size 3, which is encoded by the type descriptor 0x31. The type descriptor is immediately

followed by the three 8-bit integer values: 0x01 0x02 0x03, for a grant total of 4 bytes: 0x31010203.

Suppose we are at a site with many alternative alleles so AC=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16].

Since there are 16 values, we have to use the long vector encoding. The type of this field is 8 bit

integer with the size set to 15 to indicate that the size is the next stream value, so this has type

of 0xF1. The next value in the stream is the size, as a typed 8-bit atomic integer: 0x11 with value

16 0x10. Each integer AC value is represented by it’s value as a 8 bit integer. The grand total

representation here is:

0xF1 0x01 0x10 8 bit integer vector with overflow

size

0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10

1-16 as hexadecimal 8 bit integers

Suppose this INFO field contains the “AC=.”, indicating that the AC field is missing from a

record with two alt alleles. The correct representation is as the typed pair of AC followed by a

MISSING vector of type 8-bit integer: 0x01.

Vectors of mixed length — In some cases genotype fields may be vectors whose length differs

among samples. For example, some CNV call sets encode different numbers of genotype likelihoods

for each sample, given the large number of potential copy number states, rather padding all samples

to have the same number of fields. For example, one sample could have CN0:0,CN1:10 and another

CN0:0,CN1:10,CN2:10. In the situation when a genotype field contain vector values of different

lengths, these are represented in BCF2 by a vector of the maximum length per sample, with all

values in the each vector aligned to the left, and MISSING values assigned to all values not present

in the original vector. The BCF2 encoder / decoder must automatically add and remove these

MISSING values from the vectors.

For example, suppose I have two samples, each with a FORMAT field X. Sample A has values

[1], while sample B has [2,3]. In BCF2 this would be encoded as [1, MISSING] and [2, 3]. Diving

into the complete details, suppose X is at offset 3 in the dictionary, which is encoded by the typed

INT8 descriptor 0x11 followed by the value 0x03. Next we have the type of the each format field,

which here is a 2 element INT8 vector: 0x21. Next we have the encoding for each sample, A =
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0x01 0x80 followed by B = 0x02 0x03. All together we have:

0x11 0x03 X dictionary offset

0x21 each value is a 2 element INT8 value

0x01 0x80 A is [1, MISSING]

0x02 0x03 B is [2, 3]

Note that this means that it’s illegal to encode a vector VCF field with missing values; the BCF2

codec should signal an error in this case.

A Genotype (GT) field is encoded in a typed integer vector (can be 8, 16, or even 32 bit if

necessary) with the number of elements equal to the maximum ploidy among all samples at a site.

For one individual, each integer in the vector is organized as (allele + 1) << 1 | phased where allele

is set to -1 if the allele in GT is a dot ‘.’ (thus the higher bits are all 0). The vector is padded with

missing values if the GT having fewer ploidy.

Examples:

0/1 in standard format (0 + 1) << 1 | 0 followed by (1 + 1) <<

1 | 0
0x02 0x04

0/1, 1/1, and

0/0

three samples encoded consecutively 0x020404040202

0 | 1 (1 + 1) << 1 | 1 = 0x05 preceded by the standard first byte

value 0x04

0x0405

./. where both alleles are missing 0x00 0x00

0 as a haploid it is represented by a single byte 0x02

1 as a haploid it is represented by a single byte 0x04

0/1/2 is tetraploid, with alleles 0x02 0x04 0x06

0/1 | 2 is tetraploid with a single phased allele 0x02 0x04 0x07

0 and 0/1 pad out the final allele for the haploid individual 0x04 0x80 0x02

0x04

The final example is something seen on chrX when we have a haploid male and a diploid female.

The spare male allele is just assigned the missing value.

Misc. notes

A type byte value of 0x00 is an allowed special case meaning MISSING but without an explicit

type provided.
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Appendix C

Glyghs

Table 31: Glygh Library of Point/Interval Features, most of the descriptions are from this source:http://

webgbrowse.cgb.indiana.edu/webgbrowse/glyphdoc.html and the rest are from http://search.cpan.

org

Name of

Glygh
Description Single Glyph Glyphs in a track

Generic

Generic is identical to the ”box” glyph

except that it will draw the subparts

of features that contain subfeatures.

Alignment
Drawing features that consist of dis-

continuous segments.

Anchored

Arrow

The anchored arrow glyph draws an

arrowhead which is anchored at one or

both ends (has a vertical base) or has

one or more arrowheads. The arrow-

heads indicate that the feature does

not end at the edge of the picture, but

continues.

Arrow

The arrow glyph draws arrows which

can be labeled, be oriented vertically

or horizontally, or can contain major

and minor ticks suitable for use as a

scale.

Box

Box glyph is the most basic glyph. It

draws a filled box, but It does not draw

subparts.
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Broken

Line

Broken line glyph draws a straight line

whose segment is shifted (sheared) up

or down.

CDS

”cds” glyph draws features associated

with a protein coding region. A se-

ries of color-coded boxes indicating the

translation frame are drawn at high

magnifications. But at low magnifica-

tions, the amino acid sequence of the

resulting protein is drawn.

Christmas

Arrow

The Christmas Arrow glyph draws an

arrow which has a circle (”christmas

ball”) dangling at one end.

Cross Box
Cross Box is a box with an ”X” inside

the glyph.

Dashed

Line

The dashed line glyph draws a dashed

line.

Diamond

The diamond glyph draws a diamond

of fixed size, positioned in the center of

the feature.

Dot The dot glyph draws an ellipse.

Dumbbell
The dumbbell glyph draws a dumbbell

with the same shapes on both ends.

DNA

This glyph draws DNA sequences. At

high magnifications, this glyph will

draw the actual base pairs of the se-

quence (both strands). At low magni-

fications, the glyph will plot the GC

content.

202



Ellipse

Ellipse is identical to the ”box” glyph

except that it will draw an oval instead

of a box.

Ex
Ex is a box with an ”X” inside the

glyph.

Flag
The flag glyph draws a flag with a text

next to it.

Gene

The gene glyph is used for draw-

ing genes that may have alternatively-

spliced transcripts. The various iso-

forms are stacked on top of each other

and given a single label and description

that apply to the entire stack. The

name of each individual transcript is

optionally printed to the left of the

transcript glyph.

Lightning

The lightning glyph draws a lightning

bolt of specified height with relative

width, with the point of the lightning

bolt centered on the feature. This

glyph was designed to indicate point

mutations on a nucleotide or protein

backbone.

Line
The Line glyph draws a line parallel to

the sequence segment.

Pentagram

The Pentagram glyph draws a penta-

gram with the sharp angle pointing

right.

PInsertion

The Pinsertion glyph was designed

to show P-element insertions in the

Drosophila genome, but in fact is suit-

able for any type of zero-width feature.
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Primer

The Primers glyph draws two arrows

oriented towards each other and con-

nected by a line of a contrasting color.

The length of the arrows is immate-

rial, but the length of the glyph itself

corresponds to the length of the scaled

feature.

Processed

Transcript

The processed transcript glyph is used

for drawing processed transcripts that

have both CDS and UTR segments.

Protein

The protein glyph draws protein se-

quences. At high magnifications, this

glyph will draw the actual amino acids

of the sequence. At low magnifications,

the glyph will plot the Kyte-Doolite

hydropathy.

Rndrect

(Rounded

Rectangle)

The rndrect glyph is designed to show

sequence features in round edge rect-

angles.

Ruler

Arrow

The ruler arrow glyph draws arrows

which can be labeled 5’ and 3’, be ori-

ented vertically or horizontally, or can

contain major and minor ticks suitable

for use as a scale.

Saw Teeth
The saw teeth glyph draws a line of

saw teeth.

Segments

The segments glyph is used for drawing

features that consist of discontinuous

segments.

Span
Span glyph draws a span with the ends

bordered by vertical lines.

Splice Site

Splice Site glyph was designed to show

an inverted ”L” representing splice

donors and acceptors. The vertical

part of the L points downwards and is

positioned in the center of the range.
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Text in Box
Text in Box glyph draws the specified

text in a rectangular box.

Three Let-

ter

The three letters glyph draws groups

of three letters separated by horizontal

lines.

Tic Tac

Toe

Tic Tac Toe glyph draws a sequence

of either ”xxx”, ”ooo” or ”xoxo”, de-

pending on the value of ”mode”.

Transcript

The Transcript glyph is used for draw-

ing transcripts. The direction of the

transcript is indicated by an arrow at-

tached to the end of the glyph.

Translation

Translation glyph draws the concep-

tual translation of DNA sequences. At

high magnifications, it simply draws

lines indicating open reading frames.

At low magnifications, it draws a con-

ceptual protein translation.

Triangle

Triangle glyph draws an equilateral tri-

angle when -point is defined. It draws

an isoceles triangle otherwise.

Two Bolts
Two bolts glyph draws two ”bolts” on

a line.

Wave The wave glyph draws a sine wave.

Weighted

Arrow

The Weighted Arrow glyph draws an

arrow which has is ”weighted” by a

square on the left side of the glyph or

a ”weight” and a vertical line.
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Table 32: Glyphs for Continuous Data, most of the descriptions are from this source:http://webgbrowse.

cgb.indiana.edu/webgbrowse/glyphdoc.html and the rest are from http://search.cpan.org

Name of

Glygh
Description Glyphs in a track

XY Plot

XYPlot glyph is used for drawing features that have

a position on the genome and a numeric value. It

can be used to represent gene prediction scores, motif-

calling scores, percent similarity, microarray intensi-

ties, or other features that require a line plot. The X

axis represents the position on the genome, as per all

other glyphs. The Y axis represents the score.

Wiggle

density

This glyph draws quantitative data as a heatmap.

Higher-intensity parts of the feature will be drawn

with more saturation.

wiggle box

This glyph draws genomic features as rectangles. If

the feature contains subfeatures, then the glyph will

draw a single solid box that spans all the subfeatures.
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Appendix D

Glossary

This section will contain a description or a definition for all the basic concepts used in this disser-

tation:

Annotation: Finding and interpreting functionally significant regions of the genome.

Apache: An open-source web server provided by the Apache Software Foundation.

Base pair: Two bases on opposite strands of a DNA molecule that are held together by weak

chemical bonds. The bp is also the measurement unit of DNA; the human genome contains

more than 3,000,000,000 bp.

Binary file: A computer file that is not a text file; it may contain any type of data, encoded in

binary form for computer storage and processing purposes. Many binary file formats contain

parts that can be interpreted as text.

Client: A computer process that requests a service from another computer and accepts the server’s

responses.

Data aggregation: Any process in which information is gathered and expressed in a summary

form, for purposes such as statistical analysis.

Flat File: A flat file is a data file that contains records (each corresponding to a row in a table);

however, these records have no structured relationships. To interpret these files, the format

properties of the file should be known.

Genome: The complete set of DNA within the nucleus of any organism is called its genome.

Genome Browser: In bioinformatics, a genome browser is a graphical interface for display of

information from a biological database for genomic data.

Geneticist: a biologist who specializes in genetics .
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Gigabase (Gb): is one thousand million bases (1000,000,000 b or 1000,000,000 bp).

Glyph: is a graphical object that determine the shape of the displayed genomic features associated

with a specic track.

GMOD: is the Generic Model Organism Database project, a collection of interoperable open-

source software components for annotating, visualizing, managing and analyzing biological

data. GMOD is also an active community of software developers and biologists addressing

common challenges with their data.

HTML: Hyper Text Markup Language.

HTTP: HyperText Transfer Protocol.

ISO Standards: Standards established by International Organization for Standardization.

Kilobase (Kb): One thousand bases, or pairs of bases (1000 b or 1000 bp). In molecular biology,

commonly used to describe the length of a DNA/RNA molecule.

MAKER: A genome annotation pipeline that produces annotated eukaryotic genomes.

Megabase (Mb): One million bases or base pairs (1,000,000 b or 1,000,000 bp). In molecular

biology, commonly used to describe the length of a DNA/RNA molecule.

Model Organism: A model organism is a species that has been widely studied, usually because

it is easy to maintain and breed in a laboratory setting and has particular experimental

advantages.

Performance: A quantitative measure characterizing a physical or functional attribute relating to

the execution of a mission/operation or function.

Perl: Practical Extraction and Report Language.

Portability: (1) A term used to describe an object that can be easily moved, such as a portable

computer; (2) When referring to computer software, portability refers to how easy a software

program can be moved between computer Operating Systems.

Track: is a visual representation of one dataset. Each track shows data of a single type, such as a

genome, read alignment, gene set or generic annotation.

Server: A central computer (server) which provides services such as file storage, printing, and

communications in a network.

Semantic zooming: Representing the data differently at different zoom levels.
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Session: In the computing world, a session refers to a limited time of communication between two

systems. Some sessions involve a client and a server. A common type of client/server session

is a Web or HTTP session. An HTTP session is initiated by a Web browser each time you

visit a website. While each page visit constitutes an individual session, the term is often used

to describe the entire time you spend on the website.

Sequence Ontology (SO): SO is a collaborative ontology project for the definition of sequence

features used in biological sequence annotation.

Sequence: the genomic sequence that represents the genome in the form of base pairs, which used

to define the coordinate system on which track data is plotted.

Sequence Coordinate: the locations on a genomic sequence, which has start and end coordinate

of a sequence. It determines the locations of features on the sequences.

Software requirement: (1) A software capability needed by a user to solve a problem to achieve

an objective; (2) A software capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed document.

SQL: Structured Query Language.

SRS: The Software Requirements Specification is a specification for a particular software product,

program, or set of programs that performs certain functions in a specific environment.

Use cases: A task analysis technique often used in software engineering. For each role of a system,

common tasks are written up with the prerequisites for each task, the steps to take for the user

and the system, and the changes that will be true after the task is completed. Use cases are

especially useful for making sure that common tasks are supported by the system, that they

are relatively straightforward, and that the system architecture reflects the task structure.

User class: A group of users for a system who have similar characteristics and requirements for

the system.

User interface: A user interface(UI) is the visual part of computer application or operating system

through which a user interacts with a computer or a software. It determines how commands

are given to the computer or the program and how information is displayed on the screen.

For examples, the graphical user interfaces (GUIs) – windows, icons, and pop-up menus have

become standard on personal computers.

User requirements: Address what the users need to do their jobs. These requirements are im-

plementation independent and are sometimes called ‘business requirements’.
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