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ABSTRACT

Positive Data Clustering based on Generalized Inverted Dirichlet Mixture Model

Mohamed Al Mashrgy, Ph.D.

Concordia University, 2015

Recent advances in processing and networking capabilities of computers have caused an ac-

cumulation of immense amounts of multimodal multimedia data (image, text, video). These data

are generally presented as high-dimensional vectors of features. The availability of these high-

dimensional data sets has provided the input to a large variety of statistical learning applications

including clustering, classification, feature selection, outlier detection and density estimation. In

this context, a finite mixture offers a formal approach to clustering and a powerful tool to tackle

the problem of data modeling. A mixture model assumes that the data is generated by a set of

parametric probability distributions. The main learning process of a mixture model consists of the

following two parts: parameter estimation and model selection (estimation the number of compo-

nents). In addition, other issues may be considered during the learning process of mixture models

such as the: a) feature selection and b) outlier detection. The main objective of this thesis is to

work with different kinds of estimation criteria and to incorporate those challenges into a single

framework.

The first contribution of this thesis is to propose a statistical framework which can tackle the prob-

lem of parameter estimation, model selection, feature selection, and outlier rejection in a unified

model. We propose to use feature saliency and introduce an expectation-maximization (EM) al-

gorithm for the estimation of the Generalized Inverted Dirichlet (GID) mixture model. By using

the Minimum Message Length (MML), we can identify how much each feature contributes to

our model as well as determine the number of components. The presence of outliers is an added

challenge and is handled by incorporating an auxiliary outlier component, to which we associate
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a uniform density. Experimental results on synthetic data, as well as real world applications in-

volving visual scenes and object classification, indicates that the proposed approach was promis-

ing, even though low-dimensional representation of the data was applied. In addition, it showed

the importance of embedding an outlier component to the proposed model. EM learning suffers

from significant drawbacks. In order to overcome those drawbacks, a learning approach using a

Bayesian framework is proposed as our second contribution. This learning is based on the estima-

tion of the parameters posteriors and by considering the prior knowledge about these parameters.

Calculation of the posterior distribution of each parameter in the model is done by using Markov

chain Monte Carlo (MCMC) simulation methods - namely, the Gibbs sampling and the Metropolis-

Hastings methods. The Bayesian Information Criterion (BIC) was used for model selection. The

proposed model was validated on object classification and forgery detection applications. For the

first two contributions, we developed a finite GID mixture. However, in the third contribution,

we propose an infinite GID mixture model. The proposed model simutaneously tackles the clus-

tering and feature selection problems. The proposed learning model is based on Gibbs sampling.

The effectiveness of the proposed method is shown using image categorization application. Our

last contribution in this thesis is another fully Bayesian approach for a finite GID mixture learn-

ing model using the Reversible Jump Markov Chain Monte Carlo (RJMCMC) technique. The

proposed algorithm allows for the simultaneously handling of the model selection and parameter

estimation for high dimensional data. The merits of this approach are investigated using synthetic

data, and data generated from a challenging namely object detection.
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Chapter 1
Introduction

Due to the evolution of information technology, the amount of data generated everyday have been

growing dramatically. In general, not much data was used for analytic purposes other than making

reports and performing simple statistic operations. Just recently, it became clear that data is an

important asset when used for analysis that help in decision-making. This data can be generated

from different fields, such as bioinformatics, climate, weather, astronomy, visionary, etc. Dealing

with a large amount and variety of data calls for advanced approaches of understanding, process-

ing, and summarizing the data. In general, machine learning algorithms have been widly can be

categorized into supervised or unsupervised learning. Algorithms where the training data com-

prise examples of the input vectors along with their corresponding target "class labels" vectors,

are known as supervised learning, i.e. classification and regression problems. In fact, the labels

are predetermined to verify if the prediction is correct or not. On the other hand, in unsupervised

learning, the training data consist of a set of vectors without corresponding class labels. In fact,

the basic task of unsupervised learning is to discover groups of similar examples within the data,

where the learning process is called clustering.

The problem of clustering, broadly stated, is to group a set of vectors into homogeneous categories.

This problem has attracted much attention from different disciplines as an important step in many

applications. Indeed, clustering is a powerful technique for knowledge discovery, data mining,

and for several theoretical (see for instance [1, 2]) and experimental studies [3–6] that have been

1



conducted in the past. The main goal is to identify patterns and features reflecting the regularities

in data. In fact, the objects with similar characteristics are clustered together and objects with dis-

similar characteristics are in different clusters. Many clustering approaches have been developed

which can be roughly grouped into two categories. The first category contains heuristic algo-

rithms where no probabilistic models are explicitly assumed (e.g. K-Means). The second category

contains model-based methods which make inferences via probabilistic assumptions of the data

distribution. In this thesis, we are interested with model-based approaches and especially mixture

models.

Mixture model approach is the most popular model-based approach to clustering and offers a great

practical value in modeling heterogenous data. The use of mixture models provides a formal

approach to unsupervised learning and allows the incorporation of prior knowledge into cluster

analysis which results in more meaningful clusters. The main driving force behind this interest in

mixture models is their flexibility and strong theoretical foundation.

1.1 Clustering using Mixture Model

Mixture models form one of the most basic classes of statistical models for data clustering. The

leading idea behind mixture models is that the data, which originate from different underlying

sources, can be thought of as being generated using different underlying distributions. Presently,

mixture models are used in many areas which include the statistical modeling of data (i.e. pattern

recognition, computer vision, signal and image analysis, and machine learning). Mixture models

provide suitable models for cluster analysis if we assume that each group of observations in a

data set, contain clusters from a population with a different probability distribution [7]. In fact,

mixture models assume that the data is generated by a set of parametric probability distributions.

Therefore, the main challenge of the clustering process is to estimate the parameters of that mixture

distribution and for each sample, to discover from which distribution it is generated. We suppose

2



that we have a sample of N vectors X = (X1,X2, .........,XN) with Xi = xi1, ...,xiD and that X is

composed of M components. A Mixture model can then be represented by

p(Xi|Θ) =
M

∑
j=1

p j p(Xi|θ j) (1.1)

where p(Xi|θ j) is the probability density function (PDF) describing the jth component. p j is the

mixing weight of component j, representing the probability that a randomly selected Xi was gen-

erated by component j, which are non-negative quantities under the constraints 0 ≤ p j ≤ 1 ( j =

1, ...,M) and ∑M
j=1 p j = 1. Also, the symbol Θ represents all unknown parameters of the mixture

model which is defined as Θ = {p1, ..., pM,θ1, ...,θM}. In general, mixture models can be finite or

infinite depending on the number of components assumed to exist in the model (M).

In mixture modeling, choosing the appropriate PDF for the given data is a crucial decision. Se-

lection of a suitable probability distribution improves the efficiency of modeling the data. Sev-

eral research works use the Gaussian distribution and the corresponding Gaussian mixture models

(GMM) since it has an analytically tractable PDF, and the analysis based on it can be derived in an

explicit form. Since the Gaussian distribution has an unbounded support density, it is, therefore,

not the best choice to model semi-bounded or bounded support densities. Recent works, however,

have shown that other kinds of data are of particular importance. This is especially true for pos-

itive data which are naturally generated by several real life applications as thoroughly discussed

in [8], for example, where a statistical model based on finite inverted Dirichlet mixture has been

proposed for the clustering and modeling of such data. The inverted Dirichlet offers high flexibility

and ease of use for the modeling of positive data [8–11]. However, this mixture has a significant

limitation. Indeed, the inverted Dirichlet typically assumes that the features inside a given vector

are positively correlated - which is not always the case in several real-life applications. Given this

limitation, we propose the consideration of the generalized inverted Dirichlet which has a more

general covariance structure and should be more practical. Throughout this thesis, we propose to

use generalized inverted Dirichlet distribution to model positive data.
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Another important task in mixture modeling is parameter estimation. The approaches used for

this task can be a) deterministic or b) Bayesian. In deterministic approaches, it is assumed that all

parameters are fixed and unknown, and the inference is founded on the likelihood of the data (likeli-

hood function). The Expectation Maximization (EM) [12,13] algorithm is widely used to estimate

the mixture parameters by maximizing the likelihood function. Deterministic approaches suffer

from some drawbacks such as dependency on the initialization, over-fitting, etc. To overcome

those drawbacks in Bayesian approaches, a posterior distribution of each parameter is estimated

by considering the prior of that parameter. Bayesian learning generally based on Markov Chain

Monte Carlo (MCMC) approaches.

Selecting the optimal number of components is a fundamental step in mixture modeling.

Several approaches have been adopted to solve this problem, examples include Bayesian Inference

Criterion (BIC) [14], Minimum Descriptive Length (MDL) [15], Akaike’s information criterion

(AIC) [16], Bayesian Information Criterion [17] or the Deviance Information Criterion (DIC) [18].

There are other approaches that can perform parameters estimation and model selection si-

multaneously as shown in [19]. For instance, it is possible to sample from a posterior where M is

considered unknown using reversible jump MCMC [20, 21]

1.2 Feature Selection

The recent increase of data dimensionality poses severe challenges to many existing data min-

ing, pattern recognition, machine learning, and artificial intelligence methods, as well as feature

selection methods with respect to efficiency and effectiveness [22–28]. These high-dimensional

data need to be analyzed in order to gain the full potential from the gathered information. How-

ever, it pose different challenges for clustering algorithms that require a specialized solution [29].

The problem is that not all features are important to the clustering process. In such cases, choos-

ing a subset of the original features will often lead to better performance. Feature selection has

been shown to be a crucial step in several applications such as the analysis of gene expression
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data [30–32], fraud detection [33], text categorization [34], and user profiling [35]. Feature selec-

tion is a large research area and different approaches have been proposed in both supervised and

unsupervised settings [36–40].

1.2.1 Outlier Rejection

Outlying data (noise data) can lead to inconsistent clustering analysis. An outlier observation is

defined as the data which is deviated so much from other observations as to arouse suspicion that

it was generated by different mechanism [41]. Also, outlier rejection has been extensively studied

using statistical approaches [42]. Indeed, outlier points might lead to biased parameter estimation,

and/or incorrect results. Therefore it is important to identify them prior or during the modeling and

analysis stages [43]. Outlier rejection is extremely important in data mining and pattern recognition

tasks.

1.3 Contributions

The object of this thesis is to propose several novel approaches for high-dimensional positive

data clustering based on Generalized Inverted Dirichlet (GID) distribution using different types

of learning approaches. The contributions of this thesis are given as following:

� Simultaneous Clustering, Feature Selection and Outlier Rejection for Positive Data:

We tackle simultaneously the problems of cluster validation (i.e. model selection), feature

selection, and outlier rejection when clustering positive data. The proposed statistical frame-

work is based on the generalized inverted Dirichlet distribution that offers a more practical

and flexible alternative to the inverted Dirichlet which has a very restrictive covariance struc-

ture. The learning of the parameters of the resulting model is based on the minimization of

a message length objective incorporating prior knowledge.

� Finite Generalized Inverted Dirichlet Mixtures Estimation Using Bayesian Learning

We developed a mixture model which was subjected to a fully Bayesian analysis. This
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analysis was based on Markov Chain Monte Carlo (MCMC) simulation methods - namely

,the Gibbs sampling and Metropolis-Hastings, which were used to compute the posterior

distribution of the parameters, and on Bayesian information criterion (BIC), which was used

for model selection. The adoption of this purely Bayesian learning choice was motivated by

the fact that Bayesian inference allows to deal with uncertainty in a unified and consistent

manner.

� An Infinite Mixture Model of Generalized Inverted Dirichlet Distributions:

We propose an infinite mixture model for the clustering of positive data. The proposed

model was based on the generalized inverted Dirichlet distribution. And was developed in

an elegant way that allowed for simultaneous clustering and feature selection. It was learned

using a fully Bayesian approach via Gibbs sampling.

� A Fully Bayesian Framework Based on Reversible Jump Markov Chain Monte Carlo

(RJMCMC) for Positive Data Clustering:

A fully Bayesian model for finite Generalized Inverted Dirichlet (GID) learning using a Re-

versible Jump Markov Chain Monte Carlo (RJMCMC) approach was developed. RJMCMC

enabled us to deal simultaneously with both model selection and parameter estimation.

1.4 Thesis Overview

The organization of this thesis is as follows:

� In Chapter 1, we give a brief introduction about mixture model and some related problems

(such as feature selection and outlier rejection).

� In Chapter 2, we propose a MML inference framework approach to learn a finite General-

ize Inverted Dirichlet mixture model. Synthetic and real data, generated from challenging

applications such as visual scenes and objects clustering, were used to demonstrate the feasi-

bility and advantages of the proposed method. This work was published in knowledge Based
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System, Journal [44].

� In Chapter 3, a fully Bayesian learning approach is proposed for the GID mixture. This

approach is based on MCMC simulation. In order to verify the effectiveness of the pro-

posed approach, we evaluated it on the basis of two challenging applications concerning

object classification and forgery detection. This work was published in Expert Systems with

Applications, Journal [45].

� In Chapter 4, we propose an infinite mixture of GID based on a fully Bayesian approach

via Gibbs sampling. It allowed for simultaneous parameter estimation and feature selec-

tion. The effectiveness of the proposed work was verified using a challenging application,

namely image categorization. This work was published in Information & Communication

Technology-EurAsia , Conference [46].

� In Chapter 5, we propose a fully Bayesian estimation of GID mixture model using RJMCMC

where we simultaneously were able to estimate the model parameters and select the number

of components. The merits of RJMCMC for GID mixture learning was investigated using

synthetic and real data extracted from an interesting application, namely object detection.

� In Chapter 6, we summarize our contributions and present some potential future works.
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Chapter 2
Robust Clustering and Unsupervised Feature

Selection using Generalized Inverted Dirichlet

Mixture Models

The discovery, extraction and analysis of knowledge from data generally depends upon the use of

unsupervised learning methods, in particular, clustering approaches. Much recent research in clus-

tering and data engineering has focused on the use of finite mixture models. They perform well

when given uncertain data and they learn by example. The adoption of these models becomes a

challenging task in the presence of outliers and in the case of high-dimensional data, which neces-

sitates the deployment of feature selection techniques. In this chapter we simultaneously address

the problems of cluster validation (i.e. model selection), feature selection, and outlier rejection

when clustering positive data. The proposed statistical framework was based on the generalized

inverted Dirichlet distribution. The learning of the parameters, of the resulting model, was based

on the minimization of a message length objective that incorporated prior knowledge. We used

synthetic data and real data generated from challenging applications, namely visual scenes and

object clustering, to demonstrate the feasibility and advantages of the proposed method.
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2.1 Introduction

Finite mixture models are the most popular model-based approaches for clustering and offer great

practical value in modeling heterogenous data. The use of finite mixture models provides a formal

approach to unsupervised learning and allows the incorporation of prior knowledge into cluster

analysis which results in the creation of more meaningful clusters. One of the more challenging

and important aspects of knowledge discovery in general, and of cluster analysis in particular,

is the weighting and selection of variables [47–49]. Feature selection has been shown to be a

crucial step in several applications such as the analysis of gene expression data [30–32], fraud

detection [33], text categorization [34], and user profiling [35]. This is especially true for applica-

tions generating high-dimensional data which modeling has been the subject of extensive research

efforts in the past [23–28]. Indeed, it is well-known that irrelevant variables generally hurt clus-

tering models performance and cause significant over-fitting [50–52]. Feature selection is a large

research area and different approaches have been proposed in both supervised and unsupervised

settings. Of particular interest for us, will be simultaneous clustering and feature selection using

finite mixture models which has received some attention recently (see, for instance, [36, 53] and

references therein). The main motivation of these recent works was the fact that the feature se-

lection problem was highly related to the model selection task and therefore, had to be performed

simultaneously [38–40].

The estimation of the number of components (i.e. model selection or cluster validity) in the case of

finite mixture models has been studied theoretically and experimentally in different ways (see, for

instance, [54]). The most popular approaches have been based on the consideration of penalized

likelihood methods. These approaches add a penalizing term to the likelihood such as a minimum

description length (MDL) [55] or a minimum message length (MML) [56] criteria. In particular,

MML-based learning has been the subject of extensive research recently and has been used for

simultaneous clustering and feature selection [36] within statistical framework adopting a finite

Gaussian mixture. Another kind of data, that has been generated from different real applications,

is positive data. Such type of data is obviously not Gaussian since it has a semi-bounded density
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support. In this chapter, we propose to use a Generalized Inverted Dirichlet (GID) mixture for

modeling positive data. GID sample features can be represented as conditionally independent by

transforming GID into a product of inverted Beta distribution. Therefore, the conditional inde-

pendence assumption among features commonly used by researchers, when assuming a diagonal

covariance matrix in the case of the Gaussian for instance [36], in modeling high-dimensional data,

becomes a fact for GID data sets without loss of accuracy. This interesting advantage of the GID

is used in this work to develop a statistical model for simultaneous high-dimensional positive data

clustering and feature selection. In contrast with previous simultaneous clustering and feature se-

lection approaches, another principal focus of the developed model is outlier detection, which is a

crucial problem in many real applications. Indeed, it is well-known that the clustering performance

can be very sensitive to outliers [57–60] and that the resulting clustering models and selected fea-

tures may be inaccurate in noisy environments [61, 62].

This chapter is organized as follows: in Section 2.1, a brief introduction is given. Then, our simul-

taneous clustering, feature selection, and outliers detection model is discussed in detail in Section

2.2. In Section 2.3, we develop a MML-based approach to learn the proposed model by choosing

its appropriate priors and computing the related Fisher information. Extensive simulations and

experiments are conducted in Section 2.4 to show the merits of the proposed work. Finally, in

Section 2.5, a summary of this chapter is given.
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2.2 The Generalized Inverted Dirichlet Finite Mixture

Model

2.2.1 The Generalized Inverted Dirichlet Distribution

A D-dimensional positive vector �Y = (Y1,Y2, . . . ,YD) ∈ R
D
+ is said to follow an inverted Dirichlet

distribution if its density is given by [11]:

p(�Y |�α) =
Γ(|�α|)

∏D+1
d=1 Γ(αd)

∏D
d=1Y αd−1

d

(1+∑D
d=1Yd)|�α| (2.1)

where Yd > 0 where d = 1 . . . ,D, �α = (α1, . . . ,αD+1) is the vector of parameters, for |�α| =
∑D+1

d=1 αd , αd > 0. This distribution is the multivariate extension of the 2-parameters inverted Beta

distribution which is given by:

pIBeta(Y1|α1,α2) =
Γ(α1 +α2)

Γ(α1)Γ(α2)

Y α1−1
1

(1+Y1)(α1+α2)
(2.2)

The mixed moments are given by:

E(
D

∏
d=1

Y rd
d ) =

Γ(αD+1 − r+)
Γ(αD+1)

D

∏
d=1

Γ(αd + rd)

Γ(αd)
(2.3)

for αD+1 > r+ = ∑D
d=1 rd , and does not exist, otherwise. In particular, the mean and variance of

the inverted Dirichlet satisfy the following conditions:

E(Yd) =
αd

αD+1 −1
(2.4)

Var(Yd) =
αd(αd +αD+1 −1)

(αD+1 −1)2(αD+1 −2)
(2.5)
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and the covariance between Yd and Yl is:

Cov(Yd,Yl) =
αdαl

(αD+1 −1)2(αD+1 −2)
(2.6)

Thus, any two random variables in �Y , are positively correlated when αD+1 > 2, which is actually

the case of the inverted Dirichlet. In real practical cases, however, the correlation may be negative

and then the inverted Dirichlet becomes an inappropriate choice. Lingappaiah [63] has generalized

the inverted Dirichlet distribution as follows:

p(�Y |�θ) =
D

∏
d=1

Γ(αd +βd)

Γ(αd)Γ(βd)

Y αd−1
d

(1+∑d
l=1Yl)γd

(2.7)

where �θ = (α1,β1, . . . ,αD,βD) and γd = βd +αd − βd+1, with βD+1 = 0. It is noteworthy that

it is straightforward to verify that the generalized inverted Dirichlet (GID) has a more general

covariance structure than the inverted Dirichlet and that it is reduced to an inverted Dirichlet with

parameters (α1, . . . ,αD,β1) if we set γ1 = γ2 = . . .= γD−1 = 0 [63].

2.2.2 The Generalized Inverted Dirichlet Finite Mixture Model

Let us consider a data set Y of D-dimensional positive vectors where Y = (�Y1,�Y2, . . . ,�YN). We

assume that Y is governed by a weighted sum of M GID component densities with parameters

Θ = (�θ1,�θ2, . . . ,�θM, p1, p2, . . . , pM), where �θ j is the parameter vector of the jth component and

{p j} are the mixing weights which are positive and sum to one such that:

p(�Yi|Θ) =
M

∑
j=1

p j p(�Yi|�θ j) (2.8)
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where p(�Yi|�θ j) is the GID distribution with parameters �θ j = (α j1,β j1,α j2,β j2, . . . ,α jD,β jD). In

mixture-based clustering, each data point�Yi is assigned to all classes with different posterior prob-

abilities p( j|�Yi) ∝ p j p(�Yi|�θ j). The GID distribution allows the factorization of the posterior prob-

ability as (see Appendix A):

p( j|�Yi) ∝ p j

D

∏
l=1

pIBeta(Xil|θ jl) (2.9)

where we have set Xi1 = Yi1 and Xil =
Yil

1+∑l−1
k=1 Yik

for l > 1. pIBeta(Xil|θ jl) is an inverted Beta

distribution with parameters θ jl = (α jl,β jl), l = 1, . . . ,D. Thus, the clustering structure underlying

Y is the same as the one underlying X = (�X1, . . . ,�XN), where �Xi = (Xi1, . . . ,XiD), for i = 1, . . . ,N.

It is governed by the following mixture model with conditionally independent features:

p(�Xi|Θ) =
M

∑
j=1

p j

D

∏
l=1

pIBeta(Xil|θ jl) (2.10)

In general, when formulating mixture models, we introduce latent allocation vectors�Zi =(Zi1, . . . ,ZiM)

which indicate to which mixture component the vector �Xi belongs to, such that Zi j ∈ {0,1},

∑M
j=1 Zi j = 1, and Zi j = 1 if �Xi belongs to component j, and 0, otherwise. Z = {�Z1, . . . ,�ZN}

is known as the set of "membership vectors" of the mixture model. Thus, the distribution of �Xi

given the class label �Zi is

p(�Xi|Θ,�Zi) =
M

∏
j=1

( D

∏
l=1

pIBeta(Xil|θ jl)

)Zi j

(2.11)

It is noteworthy that the mixture model in Eq. 2.10 supposes that all features Xil have the same

weight and thus, are equally important for the clustering task. Generally, this assumption is not re-

alistic since some of the features might be irrelevant and then compromise the clustering structure.

The goal of the next subsection is to improve our mixture model to take into account this important

issue.
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2.2.3 Feature Selection

Feature selection allows to take into account the fact that different features contribute differently to

the clustering structure according to their degree of relevance which we should determine. Then,

it has the potential to improve modeling and generalization capabilities if performed reliably and

properly. Simultaneous clustering and feature selection (i.e. unsupervised feature selection) is

one of the most difficult problems in data mining and machine learning. Indeed, the selection of

features in this case is performed without a priori knowledge about the data labels. An interesting

unsupervised feature selection/weighting formulation has been previously proposed in [36] in the

case of finite Gaussian mixture-based clustering and has been applied successfully to other models

(see, for instance, [53, 64]). The main idea is to suppose that a given feature Xil is generated from

a mixture of two univariate distributions. The first one is assumed to generate relevant features

and is different for each cluster. The second one is common to all clusters (i.e. independent from

class labels) and assumed to generate irrelevant features. In our case, this idea can be formulated

as follows:

p(�Xi|Θ∗) =
M

∑
j=1

p j

D

∏
l=1

[
ρl pIBeta(Xil|θ jl)+(1−ρl)pIBeta(Xil|λl)

]
(2.12)

where Θ∗ = {Θ,{ρl},{λl}} is the set of all our unsupervised feature selection model parameters.

ρl represents the probability that feature Xil is relevant for clustering, and pIBeta(Xil|λl) is an in-

verted Beta distribution1, with parameter λl = (αλ |l,βλ |l), which is common to all clusters and

designed to generate irrelevant features. The model in Eq. 2.12 is clearly a generalization of our

GID mixture since it is reduced to Eq. 2.10 if we assume that ρl = 1 for l = 1, . . . ,D. In the fol-

lowing subsection we shall see how we can make this model more robust by taking the presence

of potential outliers in the data when taking clustering into account.

1It is noteworthy that it is possible also to consider that irrelevant features are generated by a mixture of inverted
Beta distributions rather than only one distribution.
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2.2.4 Outlier Detection

In the previous model, given by Eq. 2.12, examples are assumed to be noise-free which make

them vulnerable to the presence of outliers. Indeed, real world application examples are generally

afflicted with noise (or outliers) and it is important to deal with such outliers2 [69]. Outlier de-

tection has attracted great interest in the literature and many techniques have been proposed in the

past (see, for instance, [70–74]). Here, we approach the outlier detection problem by incorporat-

ing an auxiliary outlier component, to which we associate a uniform density as done for instance

in [37, 75–77], into the model:

p(�Xi|Θ∗∗) =
M

∑
j=1

p j

D

∏
l=1

[
ρl pIBeta(Xil|θ jl)+(1−ρl)pIBeta(Xil|λl)

]
+ pM+1U(�Xi) (2.13)

where Θ∗∗=(Θ∗, pM+1) and pM+1 = 1−∑M
j=1 p j is the probability that �Xi was not generated by the

central model and U(�Xi) is a uniform distribution common for all data to isolate vectors which are

not generated by any of the M components forming the mixture model (i.e. the outliers). The main

goal of the previous model is to make the unsupervised feature selection process robust to outliers

3 and is clearly a generalization of the model in Eq. 2.12 which can be verified by assuming that

pM+1 = 0. It can be viewed also as a data dynamic weighting [79] approach which increases the

importance of inliers and decreases the importance of outliers in clustering during the iterations.

2.3 Model Learning

2.3.1 MML-Based Learning

In this section, we develop an approach and a detailed algorithm to learn the parameters of our

model in Eq. 2.13. By learning, we mean both the estimation of the parameters and the selection

of the model’s complexity (i.e. determination of the number of mixture components which best

2The problem of outliers detection has been called also anomaly detection, chance discovery [65], novelty detection
[66], exception mining [67], and rare classes mining [68].

3A model which is not greatly altered by outliers can be also said to be resistant [78].
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describes the data). The estimation of the parameters of finite mixture models has been generally

based on the maximum likelihood (ML) approach. In our case, this is equivalent to the maximiza-

tion of the following log-likelihood function:

log p(X |Θ∗∗) =
N

∑
i=1

log
[ M

∑
j=1

p j

D

∏
l=1

[
ρl pIBeta(Xil|θ jl)+(1−ρl)pIBeta(Xil|λl)

]
+ pM+1U(�Xi)

]

(2.14)

Unfortunately ML estimation cannot be deployed for model selection. A better approach is to use

the MML, which has been widely adopted in the past to learn finite mixture models. The MML

principle can viewed as a paradigm for determining a model structure [56]. It aims to strike a

balance between model complexity and goodness of fit. It is a model selection criterion that states

that the best model to represent a set of given data is the one that requires the minimum amount

of information to transmit the data efficiently from a sender to a receiver. Moreover, it prevents

us from over-fitting the data by embodying the well-known Occam’s Razor principle, thus we

shall adopt it here. The message length is based on the following two parts: one representing the

parameter values of the model and one encoding the data using the model itself. The message

length can be written as follows [56]:

MML(M) =− log p(Θ∗∗)+
1
2

log |I(Θ∗∗)|+ c
2
(1+ log

1
12

)− log p(X |Θ∗∗) (2.15)

where p(Θ∗∗) and |I(Θ∗∗)| denote the prior distribution and the Fisher information, respectively.

The constant c = M + 3D+ 2DM is the total number of free parameters in our model. Both the

optimal number of components, M̂, and the best estimate, Θ̂∗∗, correspond to the lowest message

length. The efficiency of the MML approach is highly dependent on the choice of prior distri-

butions which we will tackle, along with the computation of the Fisher information, in the next

subsection.
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2.3.2 Prior Distribution p(Θ∗∗) and Fisher Information |I(Θ∗∗)|

In order to be able to factorize both p(Θ∗∗) and |I(Θ∗∗)|, we use a common assumption by consid-

ering independence among the different groups of parameters �P = (p1, . . . , pM, pM+1), θ jl,λl and

ρl . We begin by selecting the prior distribution p(Θ∗∗):

p(Θ∗∗) = p(�P)
D

∏
l=1

[
p(�ρl)p(λl)

M

∏
j=1

p(θ jl)

]
(2.16)

The Dirichlet distribution is frequently used as a prior to the vector of mixing parameters, �P, due

to its flexibility and suitability in modeling proportional vectors. The same choice is valid also for

the �ρl parameter for which we consider a one-dimensional Dirichlet (i.e. Beta distribution). In

both cases, we set the hyperparameters to 0.5, which gives us the following Jeffrey’s priors [80]:

p(�P) ∝
M+1

∏
j=1

1√p j
p(�ρl) ∝

1√ρl1ρl2
(2.17)

where �ρl = (ρl1 ,ρl2), ρl1 = ρl and ρl2 = 1 − ρl1 . For θ jl , we know experimentally that α jl ∈
[0,e6 α̂ jl+β̂ jl

α̂ jl
] and β̂ jl ∈ [0,e6 α̂ jl+β̂ jl

β̂ jl
], where the hat symbol on parameters indicates estimated quan-

tities. By considering Âθ jl = e6 (α̂ jl+β̂ jl)
2

α̂ jl β̂ jl
, it is clear that the parameters (α jl,β jl) are defined on the

simplex {(α jl,β jl) : α jl +β jl < Âθ jl}. Thus, the two-dimensional Dirichlet distribution can be con-

sidered as a good choice to model prior knowledge about θ jl . In particular, we consider a Dirichlet

distribution with hyper-parameters set to 0 (i.e. Laplace prior):

p(θ jl) =
Âθ jl

α jlβ jl(Âθ jl −α jl −β jl)
(2.18)

It is noteworthy that the development done for θ jl is valid for λl as well. Thus, we obtain the

following prior

p(λl) =
Âλl

αλ |lβλ |l(Âλl −αλ |l −βλ |l)
(2.19)
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where Âλl = e6 (α̂λ |l+β̂λ |l)2

α̂λ |l β̂λ |l
.

The Fisher information |I(�P)| and |I(�ρl)| are computed by taking the determinant of the informa-

tion matrices of the multinomial distributions, having parameters �P and �ρl , respectively:

|I(�P)|= NM
M+1

∏
j=1

1
p j

|I(�ρl)|= N
ρl1ρl2

(2.20)

The Fisher information of the parameters θ jl and λl are computed by considering the log-likelihood

of each feature taken separately. Let X j
l (resp. Xl) be the set of one-dimensional observations

obtained by considering the lth feature of the Njl (resp. Nl) data points of the jth relevant compo-

nent (resp. background common component). The second derivative of the negative log-likelihood

function, corresponding to X j
l , is given by:

−∂ 2 log(p(X j
l |θ jl))

∂θ 2
jl

=−
Njl

∑
i=1

∂ 2

∂θ 2
jl

[
log p j + logρl1 + log pIBeta(Xil|θ jl)

]
(2.21)

which gives us the following equation for the Fisher information of θ jl:

|I(θ jl)|= N2
jl|Ψ′(α jl)Ψ′(β jl)−Ψ′(α jl +β jl)(Ψ′(α jl)+Ψ′(β jl))| (2.22)

where Ψ′(.) is the second derivative of the logarithm of the Gamma function. Using the same

approach, we obtain the Fisher information of λl:

|I(λl)|= N2
l |Ψ′(αλ |l)Ψ′(βλ |l)−Ψ′(αλ |l +βλ |l)(Ψ′(αλ |l)+Ψ′βλ |l))| (2.23)
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The message length is obtained by substituting p(Θ∗∗) and |I(Θ∗∗)| into equation 2.15 (see Ap-

pendix B):

MML(M) =
M+3D+2MD

2
log(N)+D

M

∑
j=1

log p j +M
D

∑
l=1

log(ρl1)+
D

∑
l=1

log(ρl2)

+
1
2

[ M

∑
j=1

D

∑
l=1

(
log |Ψ′(α jl)Ψ′(β jl)−Ψ′(α jl +β jl)(Ψ′(α jl)+Ψ′(β jl))|)

)

+
D

∑
l=1

(
log |Ψ′(αλ |l)+Ψ′(βλ |l)−Ψ′(αλ |l +βλ |l)(Ψ′(αλ |l)+Ψ′βλ |l))|

)]

+
D

∑
l=1

(
logαλ |l + logβλ |l + log(Âλl −αλ |l −βλ |l)

)
− log p(X |Θ∗∗)

+
M

∑
j=1

D

∑
l=1

(
logα jl + logβ jl + log(Âθ jl −α jl −β jl)

)
+

c
2
(1+ log

1
12

)

(2.24)

2.3.3 Parameters Estimation

The estimation of the parameters is based on the minimization of the message length of the data

set X given by Eq. 2.24. The minimization must be done under the constraints ∑M+1
j=1 p j = 1 and

ρl1 + ρl2 = 1, which we can take into account by introducing Lagrange multipliers Λ1 and Λ2.

Thus, we have to optimize the following new objective:

L(Θ∗∗,X ) =−MML(M)+Λ1(1−
M+1

∑
j=1

p j)+Λ2(1−ρl1 −ρl2) (2.25)

We estimate �P by setting to zero the derivatives of L(Θ∗∗,X ) with respect to p j and Λ1 as follow-

ing:

∂L(Θ∗∗,X )

∂ p j
=

⎧⎪⎨
⎪⎩

∂ log p(X |Θ∗∗)
∂ p j

− D
p j
−Λ1 = 0 = 1

p j

(
∑N

i=1 p( j|�Xi)−D
)−Λ1 if j = 1, . . . ,M

∂ log p(X |Θ∗∗)
∂ p j

−Λ1 = 0 = 1
p j

(
∑N

i=1 p( j|�Xi)
)−Λ1 if j = M+1

(2.26)

∂L(Θ∗∗,X )

∂Λ1
= 1−

M+1

∑
j=1

p j = 0 (2.27)
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since the {p j} are positive, their update formula were computed in the M-step as:

p j ∝

⎧⎪⎨
⎪⎩

max(∑N
i=1 p( j|�Xi)−D,0) if j = 1, . . . ,M

∑N
i=1 p( j|�Xi) if j = M+1

(2.28)

where p( j|�Xi) is computed in the E-step as:

p( j|�Xi) ∝

⎧⎪⎨
⎪⎩

p j ∏D
l=1

[
ρl pIBeta(Xil|θ jl)+(1−ρl)pIBeta(Xil|λl)

]
if j = 1, . . . ,M

p jU(�Xi) if j = M+1
(2.29)

The update formulae for ρl1 can be obtained in a similar way as (see Appendix C):

1
ρl1

= 1+
max(∑N

i=1 ∑M
j=1 p( j|�Xi)

ρl2 pIBeta(Xil |λl)

ρl1 pIBeta(Xil |θ jl)+ρl2 pIBeta(Xil |λl)
−1,0)

max(∑N
i=1 ∑M

j=1 p( j|�Xi)
ρl1 pIBeta(Xil |θ jl)

ρl1 pIBeta(Xil |θ jl)+ρl2 pIBeta(Xil |λl)
−M,0)

(2.30)

In order to estimate the θ jl and λl parameters, we will use Fisher’s scoring methods. These methods

are based on the first (Gradient), and mixed derivatives (Hessian) of the function L(Θ∗∗,X ). Given

the initial estimation of the parameters, Fisher’s scoring approach can be used to update them.

Updating θ jl and λl in the M-step is based on the following equations:

θ̂ t+1
jl = θ̂ t

jl −
( ∂ 2

∂θ 2
jl

L(Θ∗∗,X )
)−1

θ jl=θ̂ t
jl
× ( ∂

∂θ jl
L(Θ∗∗,X )

)
θ jl=θ̂ t

jl
(2.31)

λ̂ t+1
l = λ̂ t

l −
( ∂ 2

∂λ 2
l

L(Θ∗∗,X )
)−1

λl=λ̂ t
l
× ( ∂

∂λl
L(Θ∗∗,X )

)
λl=λ̂ t

l
(2.32)

The computation of the gradient and Hessian of L(Θ∗∗,X ) is detailed in Appendix D and the

complete learning process is given in Algorithm 1. The proposed algorithm first detects outlying

data. Then, only the inliers are considered to determine the model of the data (i.e. number of

clusters, relevant features, and optimal parameters). It is noteworthy that the initialization using the

Fuzzy C-Means algorithm and the method of moments is performed by supposing that the initial

number of clusters is M+1. We may also note that our learning process was actually based on the
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Algorithm 1 Learning of the GID mixture model with simultaneous feature selection and outliers
rejection.

Input: D-dimensional data set X = {�X1, . . . ,�XN}, Mmax, Mmin.
Output: M, Θ∗∗.
{Initialization}

M = Mmax, ρl1 = ρl2 = 0.5.
Apply Fuzzy C-Means Algorithm.
Apply the method of moments.

while M ≥ Mmin do
repeat

for all 1 ≤ j ≤ M+1 {[E Step]} do
Compute the posteriors p( j|�Xi) for i = 1, . . . ,N using equation 2.29.

end for

{[M step]}
Update �P using equation 2.28.
for all 1 ≤ l ≤ D do

Update ρl1 using equation 2.30.
Update λl using using Fisher’s scoring method.
for all 1 ≤ j ≤ M do

Update θ jl using Fisher’s scoring method.
end for

end for

if p j = 0 then prune the jth component θ j, M = M−1.
if ρl = 0 then prune the lth feature.

until convergence
Record Θ∗∗, M and MML of the model.
Remove the jth component (θ jl, l = 1, . . . ,D) of the mixture with the smallest weight.
M= M-1.

end while

return Θ∗∗, M with the lowest message length.

expectation-maximization (EM) approach [81] where both the E- and M-steps have a complexity

of O(NMD).

2.4 Experimental Results

In this section, extensive experiments were conducted in order to evaluate the benefits of using the

proposed model. Our experiments involved synthetic data sets as well as real-world challenging

applications that concern unsupervised scenes and objects categorization. The main goal of the
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application on synthetic data was to show the merits of our model and its ability to efficiently

perform simultaneous clustering, feature selection, and outlier rejection, in the case of positive

data. The goal of the real life applications was to compare the performances of the GID mixture

and the widely used Gaussian mixture model (GMM) when feature selection and outlier rejection

are integrated into it in the same way. It is noteworthy that the learning of the GMM in this case has

been based on the same methodology described in the previous section to learn the GID mixture.

It is also worth noting, that we have used a common approach for the definition of the uniform

distribution in our model. The used approach supposes that the data follow a single component

model averaged over all the observations [76] which, in our case, uses the following: U(�X) =

1
N ∑N

i=1 ∏D
d=1

(
ρ̂l p(Xil|θ̂l) + (1− ρ̂l)p(Xil|λ̂l)

)
, where the parameters ρ̂l , θ̂l and λ̂l are estimated

using ML. Of course, other choices are possible, but the main advantage of the used uniform

distribution, which was found appropriate according to our experiments, is the fact that it takes

into account that outliers should be sparsely distributed, which is generally the case for real data

sets.

2.4.1 Evaluation on Synthetic Data

In this experiment, we first start by evaluating the performance of the proposed GID mixture with-

out feature selection and outlier rejections. Second, we consider the case where clustering and

feature selection are performed simultaneously (GIDFS). The main goal here is to evaluate the

ability of the algorithm in selecting features when no outliers are present. Since the proposed

model extracts features of a GID sample in a space where features are independent, we generated

the relevant features of our data in the transformed space from a mixture of inverted beta distri-

butions, and the irrelevant ones from one inverted beta. Using this generation approach, three

3-dimensional data sets are synthesized from 2-, 3-, and 4-components GID mixtures. Table 2.1

shows the parameters used for generating these data sets. Also, eight ’noisy’ features are appended

to these sets which increases the dimensionality of the data to 11 dimensions. The eight irrelevant

features were generated from an inverted beta with parameters (α,β ) = (3,15). Table 2.2 shows
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Table 2.1: Parameters used to generate the three synthetic data sets (n j represents the number of
elements in cluster j).

n j j α j1 β j1 α j2 β j2 α j3 β j3
Data set 1 300 1 40 28 33 46 18 40

300 2 18 35 43 25 21 14
Data set 2 300 1 30 44 25 40 35 22

300 2 16 28 17 32 21 41
300 3 40 28 33 46 18 40

Data set 3 300 1 16 28 17 32 21 41
300 2 18 35 43 25 21 14
300 3 40 28 33 46 18 40
300 4 30 44 25 40 35 22

the classification results for the three synthetic data sets using GIDFS and GID models. According

to this table, using feature selection has improved the clustering performance significantly for the

three generated data sets compared to the case where all features were considered relevant for the

clustering process. It is noteworthy that in all cases, the MML criterion was able to select the

Table 2.2: Classification results for the three synthetic data sets using GIDFS and GID models. n j
represents the number of well-classified vectors.

Data set j GIDFS : n j Accuracy GID : n j Accuracy
Data set 1 1 300 288

2 297 99.50% 282 95.00 %
Data set 2 1 295 275

2 296 280
3 300 99.00 % 289 93.78%

Data set 3 1 283 269
2 296 290
3 291 282
4 293 96.17% 285 93.00%

correct number of clusters. The obtained saliencies of all 11 features for the generated synthetic

data sets, when using GIDFS, are shown in Fig. 2.1. According to this figure, it is obvious that the

model was able to locate the relevant features (i.e. features 1, 2, and 3) and the irrelevant ones (i.e.

features from 4 to 11).

The second experiment was conducted in the presence of noise by appending 10 outliers
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Figure 2.1: Features saliencies for the three synthetic data sets obtained using GIDFS.

to each of the previously generated data sets. The addition of these outliers did not affect the

MML criterion since we were able to find the exact number of clusters for all data sets. Table 2.3

shows the classification results obtained using both GIDFS and GID in this case. From this table,
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we can notice that the classification accuracy has decreased. The feature saliencies are shown in

Fig. 2.2 from which we notice that the presence of outliers has compromised the feature selection

process by affecting high weights to some irrelevant features and by decreasing the saliency of

some relevant ones. Table 2.4 shows the classification results for the contaminated data sets by

Table 2.3: Classification results for the three synthetic data sets, when contaminated with outliers,
using GIDFS and GID. n j represents the number of well-classified vectors.

Data set j GIDFS : n j Accuracy GID : n j Accuracy
Data set 1 1 281 273

2 279 93.33% 255 88.00%
Data set 2 1 288 285

2 292 279
3 291 96.78% 277 93.44%

Data set 3 1 286 270
2 277 273
3 283 280
4 290 94.67% 269 91.00%

performing simultaneous clustering, feature selection, and outlier rejection (GIDFSOL), and by

performing clustering without feature selection but with outlier rejection (GIDOL). In both cases,

the MML criterion performed well by selecting the exact number of clusters for the three data sets.

As shown in Fig. 2.3, the feature saliencies have been identified correctly by GIDFSOL. Moreover,

by comparing tables 2.3 and 2.4, it is clear that the quality of clustering has been improved by

taking outliers into account.

2.4.2 Images Clustering

With advances in multimedia technology, images and videos are becoming available at an explosive

rate. A crucial problem is how to efficiently organize and index those multimedia data. Several

approaches and techniques have been developed in the past to reach this goal. In this section, we

shall focus on two challenging problems related to multimedia data organization - namely visual

scenes and visual object clustering in order to evaluate the merits of our work.
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Figure 2.2: Features saliencies for the three synthetic data sets, in the presence of outliers, obtained
using GIDFS.

Visual Scenes Clustering

The visual scenes clustering application is based on the data set originally collected in [82] from

which five categories were used in our experiments - namely living room, coasts, forest, mountain,
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Table 2.4: Classification results for the three synthetic data sets, when contaminated with outliers,
using GIDFSOL and GIDOL. n j represents the number of well-classified vectors.

Data set j GIDFSOL : n j Accuracy GIDOL : n j Accuracy

Data set 1 1 300 291

2 300 289

outlier 10 100 % 10 96.67%

Data set 2 1 290 282

2 296 290

3 296 292

outlier 10 98% 10 96.00%

Data set 3 1 284 280

2 298 290

3 291 285

4 291 279

outlier 10 96.42% 10 94.50%

and tall buildings (see Fig. 2.4). From each category, 280 images were considered. Moreover, 15

textural images taken from the MIT Vistex gray level texture database 4 were appended to this data

set and considered as outliers (see Fig. 2.5). The main goal of this application is to investigate the

effects of outliers on the performance of the clustering algorithm for positive real data sets using

GID mixture model. Also, the performance of GID mixture has been compared with GMM model.

An important part of visual scenes clustering problem is feature extraction. Many global

and local visual descriptors have been proposed in the past. Here, we use local Histogram of

Oriented Gradient (HOG) descriptor [83] which generates positive features and which we found

efficient and convenient for our applications. Experiments are conducted by considering three

windows for the HOG descriptor, which allows us to represent each image by an 81-dimensional

vector of features. We conducted 5-fold cross-validation experiments, then we report the number

of components returned by the algorithm, features relevancies, and the confusion matrix for each

4http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
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Figure 2.3: Features saliencies for the three synthetic data sets, in the presence of outliers, obtained
using GIDFSOL.

experiment.

In the first experiment, we compared the performance of GID and GMM mixture models without

taking into consideration the relevancy of the features nor the presence of outliers. Table 2.5
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Figure 2.4: Examples of images from the 5 classes of visual scenes considered in our experiments.

Figure 2.5: Examples of outlier images taken from the the MIT Vistex texture data set.

shows the confusion matrix when a GID model was used. According to this table, the number of

misclassified images was 85, which gives us an accuracy of 71.19%. On the other hand, Table 2.5
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presents the confusion matrix when the GMM was applied; the number of misclassified images

is 94 which represents an accuracy of 68.13%. Both models were not able to detect the outlier

images as a different class. In fact, all outliers have been assigned to the five main classes.

Table 2.5: The confusion matrix in the case of the visual scenes clustering problem when applying
GID mixture without feature selection nor outliers detection.

living
room coast forest mountain

tall
building

living room 48 2 0 3 3
coast 0 46 0 10 0
forest 0 0 52 4 0

mountain 0 3 7 34 12
tall building 25 1 0 0 30
outlier class 0 1 0 14 0

Table 2.6: The confusion matrix in the case of the visual scenes clustering problem when applying
GMM without feature selection nor outliers detection.

living
room coast forest mountain

tall
building

living room 43 5 0 5 3
coast 0 46 0 10 0
forest 0 2 50 4 0

mountain 2 3 11 31 9
tall building 23 2 0 0 31
outlier class 3 1 0 11 0

The second experiment was conducted by taking into consideration the relevancy of the

features but without performing outlier detection for both the GID mixture and GMM. Figure 2.6

shows the feature saliencies obtained by both models. Table 2.7 shows the confusion matrix when

GID mixture model was applied. From this table, we can see that the number of misclassified

images was 74, which represents an accuracy of 74.92%. Table 2.8 shows the confusion matrix

when applying GMM, which gives an accuracy of 70.17%. Comparing the results of the first and

the second experiments, we conclude that the feature selection process improves the classification

results. However, the outliers have not been assigned to a separate cluster. In the third experiment,

we considered both the relevancy of features and the presence of outliers. Figure 2.7 shows the
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Figure 2.6: Features saliencies obtained in the case of the visual scenes clustering problem when
performing feature selection without outlier detection using (a) GID mixture and (b) GMM.

Table 2.7: The confusion matrix in the case of the visual scenes clustering problem when applying
GMM with feature selection but without outlier detection.

living
room coast forest mountain

tall
building

living room 47 1 1 2 5
coast 0 48 0 8 0
forest 0 0 50 5 1

mountain 0 2 9 44 1
tall building 22 1 0 1 32
outlier class 0 4 2 9 0

feature saliencies obtained by both models, which were able to detect the class representing the

outliers. The classification accuracy has increased for both mixtures as we can clearly see in
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Table 2.8: The confusion matrix in the case of the visual scenes clustering problem when applying
GMM with feature selection but without outlier detection.

living
room coast forest mountain

tall
building

living room 44 0 1 5 6
coast 1 47 0 6 2
forest 1 0 51 3 2

mountain 4 2 15 34 1
tall building 13 1 4 2 36
outlier class 0 4 0 8 3

Tables 2.9 and 2.10 which show the confusion matrices when using the GID mixture model and

GMM, respectively. The number of misclassified images in the case of the GID mixture was 71,

which corresponds to an accuracy of 79.32% as compared to the 73.22% obtained with the GMM.

Table 2.9: The confusion matrix in the case of the visual scenes clustering problem when applying
GID mixture with feature selection and outlier detection.

living
room coast forest mountain

tall
building

living room 52 0 1 2 1 0
coast 0 42 0 14 0 0
forest 0 0 54 1 1 0

mountain 0 2 14 34 0 0
tall building 20 0 0 1 37 0
outlier class 0 0 0 0 0 15

Table 2.10: The confusion matrix in the case of the visual scenes clustering problem when applying
GMM with feature selection and outlier detection.

living
room coast forest mountain

tall
building

living room 41 2 5 3 5 0
coast 1 45 0 7 0 1
forest 0 0 51 3 1 0

mountain 4 0 18 32 0 2
tall building 19 0 2 1 34 0
outlier class 0 2 1 0 0 12
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Figure 2.7: Features saliencies obtained in the case of the visual scenes clustering problem when
performing simultaneous feature selection and outlier detection using (a) GID mixture and (b)
GMM.

Objects Clustering

In this application, we focused on the object clustering problem which is prevalent in many real-

life applications such as object detection and recognition, automated visual inspection, and video

surveillance [84]. Indeed, our proposed model was evaluated using ETH-80 5 data set from which

we considered four categories (pear, car, cup, and dog), each of which contains 410 images that

were cropped, so that they contained only the object without any border area. In addition, they

were resized to a size of 128×128 pixels. Examples of objects from each category are displayed

5http://www.d2.mpi-inf.mpg.de/Datasets/ETH80
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in Fig. 2.8. The same texture images used in the previous application (see Figure 2.5) were ap-

pended to this objects data set and were considered as outliers. As in the previous application, we

considered HOG features with 3 windows to describe our images.

Tables 2.11 and 2.12 show the confusion matrices for this data set when applying the GID mix-

Figure 2.8: Examples of objects from the four considered categories.

ture and the GMM without performing neither feature selection nor outlier detection. According

to these matrices, the number of misclassified objects in the case of the GID mixture was 77 (i.e.

an accuracy of 77.55%), and the number of misclassified objects in the case of the GMM was 85
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(i.e. an accuracy of 75.22%). Both models were not able to detect the outlying images which were

distributed in different classes. We have also investigated the case where feature selection was

Table 2.11: Confusion matrix for the objects clustering application using GID mixture.

pear car cup dog
pear 73 0 0 9
car 0 54 0 28
cup 0 12 61 9
dog 2 2 0 78

outlier class 0 0 3 12

Table 2.12: Confusion matrix for the objects clustering application using GMM.

pear car cup dog
pear 74 0 0 8
car 0 56 0 26
cup 2 14 53 13
dog 4 3 0 75

outlier class 0 14 1 0

performed without outlier detection as shown in Tables 2.7 and 2.14. We obtained classifica-

tion accuracies of 79.88% and 76.97% for the GID mixture and GMM, respectively. Figure 2.9

shows the feature saliencies resulting from both models. The classification accuracies have clearly

increased, but again both approaches were unable to cluster the outliers into a different class.

Table 2.13: Confusion matrix for the objects clustering application using GID mixture with feature
selection.

pear car cup dog
pear 75 0 0 7
car 0 57 0 25
cup 0 12 63 7
dog 1 2 0 79

outlier class 0 0 3 12

In the last experiment, we considered the scenario where feature selection (see Figure 2.10)

and outlier rejection have been performed simultaneously. Both mixture models were able to
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Table 2.14: Confusion matrix for the objects clustering application using GMM with feature se-
lection.

pear car cup dog
pear 76 0 0 6
car 0 58 0 24
cup 0 17 55 10
dog 4 3 0 75

outlier class 0 4 0 11
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Figure 2.9: Features saliencies obtained in the case of the object clustering problem when perform-
ing feature selection without outlier detection using (a) GID mixture and (b) GMM.

detect the outlier data and the exact number of categories, as shown in Tables 2.15 and 2.16, with

accuracies of 85.71% and 83.96%, respectively.
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Figure 2.10: Features saliencies obtained in the case of the object clustering problem when per-
forming feature selection with outlier detection using (a) GID mixture and (b) GMM.

Table 2.15: Confusion matrix for the objects clustering application using GID mixture with simul-
taneous feature selection and outlier detection.

pear car cup dog outlier class
pear 76 0 0 6 0
car 0 64 0 18 0
cup 0 15 60 7 0
dog 0 3 0 79 0

outlier class 0 0 0 0 15

2.5 Summary

Finite mixture offers a formal approach to clustering and a powerful tool to tackle the problem

of data modeling. It is often applied in signal and image processing, as well as machine learning
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Table 2.16: Confusion matrix for the object clustering application using GMM with simultaneous
feature selection and outlier detection.

pear car cup dog outlier class
pear 78 0 0 4 0
car 1 63 0 14 5
cup 3 15 61 6 0
dog 6 5 0 71 0

outlier class 0 0 0 0 15

and data mining applications. Some special concerns when considering mixture models are the

choice of the components densities, determining the number of components, the selection of the

relevant features, and the detection of potential outliers. In this chapter, we introduce a statistical

framework in which all these problems are addressed simultaneously in the case of non-Gaussian

data, specifically, positive data. The developed statistical framework was based on the finite GID

mixture model and learned via the minimization of a message length objective by deploying an

EM framework. The strength of our learning approach is that it allows a compromise between

goodness of fit and a model’s complexity. Empirical results which involve generated data as well

as real applications concerning visual scenes and objects classification, show that the proposed

approach is promising.

In the next chapter, we investigate the development of a purely Bayesian inference alterna-

tive, for the learning of finite generalized inverted Dirichlet mixture. The main goal is to overcome

problems related to local convergence, dependency on initialization, and model selection.
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Chapter 3
Bayesian Learning of Finite Generalized

Inverted Dirichlet Mixtures

Our focus in this chapter is to develop a Bayesian framework which is based on the generalized in-

verted Dirichlet distribution for modeling positive data. The proposed mixture model is subjected

to a fully Bayesian analysis based on Markov chain Monte Carlo (MCMC) simulation methods.

These methods, the Gibbs sampling and Metropolis-Hastings, were used to compute the poste-

rior distribution of the parameters. The Bayesian information criterion (BIC) was used for model

selection. The adoption of this purely Bayesian learning choice was motivated by the fact that

the Bayesian inference handle uncertainty in a unified and consistent manner. We evaluated our

approach on the basis of generated data and two challenging applications concerning object clas-

sification and forgery detection.

3.1 Introduction

Learning finite mixture models involves the following two important tasks: estimation and selec-

tion. Mixture estimation refers to the estimation of parameters given the data. The maximum

likelihood (ML) has been widely used to perform this task. It is generally implemented using the

39



expectation maximization (EM) algorithm which treats the estimation as a special case of estima-

tion when using incomplete data. The EM algorithm and its several extensions attempt to estimate a

single "best" model, which is not always realistic since the data may suggest many "good" models.

Moreover, the EM has some drawbacks, like convergence to local maxima due to its dependence

on the initialization step [81]. An efficient alternative technique, that we shall adopt in this work,

in the case of generalized inverted Dirichlet mixture, is to consider the average result computed

over several models. This can be done through Bayesian approaches that have become a popular

choice for computer vision applications in general [85] and the estimation of mixture models in

particular [86].

It is well-known that the Bayesian inference provides better generalization capabilities, when

learning mixture models, than the ML method, that tends to generally under- or over-fit the data.

Unlike frequency approaches in general, and ML in particular, which can learn from a single

model, Bayesian approaches can compute distributions over all possible parameter values with re-

spect to the posterior distribution [87]. It can also automatically implement Ockhams Razor by

integrating out irrelevant variables in a given model. This permits it to give preference for simple

models that sufficiently explain the data without additional unnecessary complexity. Markov Chain

Monte Carlo (MCMC) methods have been used extensively in computational statistics, over the last

few years, to perform Bayesian inference [88–90]. For an in-depth overview of MCMC techniques,

the reader is referred to [91]. Model selection is a pivotal issue in mixture-based modeling. This

subject has been under extensive study over the last few years. Within a Bayesian setting model,

this problem had been handled using several approaches [92] such as the reversible jump sam-

pler [21], Bayesian deviance criterion [93], Bayes factor approximation [94], and Birth-and-Death

MCMC [95]. In this chapter, we consider the Bayes factor for the selection of finite generalized

inverted Dirichlet mixture models, which has become a well established powerful model selection

tool.

The following is a brief overview of the chapter. In Section 3.1, the generalized inverted Dirichlet
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mixture model is briefly introduced. In Section 3.2, we motivate and develop the priors and pos-

teriors needed in our learning framework. The complete learning approach is presented in Section

3.3. In Section 3.4, we experimentally examine the effectiveness of our model. Finally, in Section

3.5, a summary of this chapter is given.

3.2 Finite Generalized Inverted Dirichlet Mixture Model

3.2.1 The Mixture Model

Let p(�X |�θ) be a density function of a D-dimensional inverted generalized Dirichlet distribution

whose parameters are �θ = (α1,β1, . . . ,αD,βD). An inverted generalized Dirichlet mixture p(�X |Θ)

of a D-dimensional vector �X ∈ R
D
+ is defined by:

p(�X |Θ) =
M

∑
j=1

p j p(�X |�θ j) (3.1)

where M is an integer which represents the number of components and {p j} is the set of mixing

parameters which are positive and sum to one. Θ = {p j,�θ j = (α j1,β j1, . . . ,α jD,β jd)

}M
j=1 represents the set of the model’s parameters and p(�X |�θ j) is given by [63]:

p(�X |�θ j) =
D

∏
d=1

Γ(α jd +β jd)

Γ(α jd)Γ(β jd)

X
α jd−1
d

(1+∑d
l=1 Xl)

γ jd
(3.2)

where γ jd = β jd +α jd −β jd+1 for d = 1, . . . ,D with β jD+1 = 0. It is noteworthy that it is straight-

forward to verify that the generalized inverted Dirichlet (GID) has a more general covariance struc-

ture than the inverted Dirichlet. Furthermore, it can be reduced to an inverted Dirichlet with pa-

rameters (α j1, . . . ,α jD,β j1) if we set γ j1 = γ j2 = . . .= γ jD−1 = 0 [63].

Let X = (�X1, . . . ,�XN) be a set of N independently and identically distributed vectors taken from

our mixture model. By introducing hidden vectors Z = {�Z1, . . . ,�ZN}, where �Zi = (Zi1, . . . ,ZiM),
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representing the components from which each vector �Xi is generated such that Zi j = 1 if �Xi is gen-

erated from component j, and is equal to 0, otherwise (i.e. ∑M
j=1 Zi j = 1) We can then write the

likelihood corresponding to the GID mixture model as follows:

p(X ,Z |Θ) =
N

∏
i=1

M

∏
j=1

[
p j p(�Xi|�θ j)

]Zi j

(3.3)

3.2.2 Bayesian Inference

Bayesian inference has been used successfully for many problems where the main goal is to infer

the parameters of a model of interest. It is widely used to handle missing data [96] problems in

general and finite mixture learning in particular. In Bayesian learning of finite mixture models,

we first need to set the prior distribution p(Θ) on the mixture parameters. Then, the posterior

distribution is computed from the data and the prior is selected as follows:

p(Θ|X ,Z ) =
p(X ,Z |Θ)p(Θ)∫

p(X ,Z |Θ)p(Θ)∂θ
∝ p(X ,Z |Θ)p(Θ) (3.4)

The denominator in the previous equation,
∫

p(X ,Z |Θ)p(Θ)∂θ , is actually a normalization con-

stant known as the marginal likelihood (or Bayesian evidence). Having this posterior distribution

in hand, the learning problem is now transformed into one of simulating parameters from the pos-

terior distribution Θ ∼ p(Θ|X ,Z ).

Developing algorithms for generating observations from a posterior distribution has been one of the

most active areas in statistical computing [97]. MCMC techniques have revolutionized Bayesian

inferences and the algorithm of choice is the Gibbs sampler among Bayesian statisticians. Gibbs

sampling begins with a random configuration which is then updated over iterations by taking ad-

vantage of the missing data. That is, to associate with each observation �Xi a missing multinomial

variable �Zi ∼ M (1; Ẑi1, . . . , ẐiM), where:

Ẑi j =
p(�Xi|θ j)p j

∑M
j=1 p(�Xi|θ j)p j

(3.5)
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As indicated by p(�p|Z ), where �p = (p1, . . . , pM), is the density of the distribution of �p given Z ,

and p(�θ j|Z ,X ), is the density of the distribution of �θ j given Z and X . The standard Gibbs

sampler for mixture models is based on the successive simulation of Z , �p and �θ j. As a result, the

general Gibbs sampling for mixture models is as follows [91, 98]:

1. Initialization

2. Step t: For t=1,. . .

(a) Generate �Z(t)
i ∼ M (1; Ẑ(t−1)

i1 , . . . , Ẑ(t−1)
iM )

(b) Generate �p(t) from p(�p|Z (t))

(c) Generate �θ (t)
j from p(�θ j|Z (t),X )

3.3 Model Learning

One aspect of Bayesian modeling is that it is typically difficult, yet is crucial in influencing the

chosen results of priors. The prior distributions can be viewed as our prejudice on the model’s

parameters. This prior parameter values can be improved in light of the information provided by

the data [99]. In the following, we specify the priors, as well as the resulting posteriors, that we

consider in our Bayesian framework.

3.3.1 Priors and Posteriors

A standard choice as a prior for the mixing parameters vector �p is the Dirichlet distribution, since

it is defined on the simplex {(p1, . . . , pM) : ∑M−1
j=1 p j < 1} [91]:

p(�p|�η) =
Γ(∑M

j=1 η j)

∏M
j=1 Γ(η j)

M

∏
j=1

pη j−1
j (3.6)
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where �η = (η1, . . . ,ηM) is the parameter vector of the Dirichlet distribution. Moreover, we have:

p(Z |�p) =
N

∏
i=1

p(�Zi|�p) =
N

∏
i=1

pZi1
1 . . . pZiM

M =
N

∏
i=1

M

∏
j=1

pZi j
j =

M

∏
j=1

pn j
j (3.7)

where n j = ∑N
i=1 IZi j=1. Hence,

p(�p|Z ) ∝
Γ(∑M

j=1 η j)

∏M
j=1 Γ(η j)

M

∏
j=1

pη j−1
j

M

∏
j=1

pn j
j =

Γ(∑M
j=1 η j)

∏M
j=1 Γ(η j)

M

∏
j=1

pη j+n j−1
j

∝ D(η1 +n1, . . . ,ηM +nM)

(3.8)

where D is a Dirichlet distribution with parameters (η1 +n1, . . . ,ηM +nM).

In order to specify the priors for the �θ j parameters, we consider an effective strategy that relies on

the fact that the GID belongs to the exponential family of distributions. In fact, if a S-parameter

density p belongs to the exponential family, then we can write it as following [100]:

p(�X |θ) = H(�X)exp(
S

∑
l=1

Gl(θ)Tl(�X)+Φ(θ)) (3.9)

In this case, a conjugate prior on θ is given by [100]:

p(θ) ∝ exp(
S

∑
l=1

ρlGl(θ)+κΦ(θ)) (3.10)

where ρ = (ρ1, . . . ,ρS) ∈ R
S and κ > 0 are referred to as hyperparameters. The GID distribution

can be written as an exponential density (See Appendix E):

p(�X |�θ j) = exp
[ D

∑
d=1

(
log

(
Γ(α jd +β jd)

)− log
(
Γ(α jd)

)− log
(
Γ(β jd)

))

+
D

∑
d=1

(
(α jd −1) log(Xd)

)
−

2D−1

∑
d=D+1

(
(β jd−D +α jd−D −β jd−D+1)

× log(1+
d−l

∑
l=1

Xl)

)
− (α jD +β jD) log(1+

D

∑
l=1

Xl)

]
(3.11)
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Then, by letting

S = 2D

Φ(θ j) =
D

∑
d=1

(
log

(
Γ(α jd +β jd)

)− log
(
Γ(α jd)

)− log
(
Γ(β jd)

))

Gd(θ j) = α jd, d = 1, . . . ,D

Gd(θ j) = β jd−D +α jd−D −β jd−D+1, d = D+1, . . . ,2D−1

G2D(θ j) = α jD +β jD

Td(�X) = log(Xd), d = 1, . . . ,D

Td(�X) =− log(1+
d−D

∑
l=1

Xl), d = D+1, . . . ,2D

H(�X) = exp
(− D

∑
d=1

log(Xd)
)

The prior is defined as:

p(θ j) ∝ exp
[ D

∑
d=1

ρdα jd +
2D−1

∑
d=D+1

ρd
(
β jd−D +α jd−D −β jd−D+1

)

+κ
D

∑
d=1

(
log

(
Γ(α jd +β jd)

)− log
(
Γ(α jd)

)− log
(
Γ(β jd)

))
+ρ2D(α jD +β jD)

]

∝ exp
[

κ
D

∑
d=1

(
log

(
Γ(α jd +β jd)

)− log
(
Γ(α jd)

)− log
(
Γ(β jd)

))

+
D

∑
d=1

ρdα jd +
D

∑
d=1

ρd+Dγ jd

]

(3.12)

The prior hyperparameters are: (ρ1, . . . ,ρ2d,κ). Having this prior, p(θ j), the posterior distribution
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is then (See Appendix F):

p(θ j|Z ,X ) ∝ p(θ j) ∏
Zi j=1

p(�Xi|θ j) ∝ exp
[ D

∑
d=1

α jd

(
ρd + ∑

Zi j=1
log(Xid)

)

+
D

∑
d=1

γ jd

(
ρd+D − ∑

Zi j=1
log(1+

d

∑
l=1

Xil)

)

+(κ +n j)
D

∑
d=1

(
log

(
Γ(α jd +β jd)

)− log
(
Γ(α jd)

)− log
(
Γ(β jd)

))]
(3.13)

According to Eqs. 3.12 and 3.13, we can clearly see that the posterior and the prior distributions

have the same form. Therefore, p(θ j) is really a conjugate prior on θ j. In contrast to p(�p|Z ),

p(θ j|Z ,X ) is not standard and does not have a known form. Thus, we cope with the simulation

from this distribution by considering a random-walk Metropolis-Hastings (M-H) algorithm [91].

3.3.2 Model Selection and Convergence

The model selection problem is a challenging one which does not have any completely satisfactory

solutions. Suppose that there exists a set of candidate models, we need to find the "best" model

that well describes the data without under- or over-fitting (i.e. with good generalization capabil-

ity) [101]. The main goal here is to make a successful trade-off between the complexity and the

goodness of fit. Bayes factor has been widely used in Bayesian inference [102–104] for model

selection and we shall adopt it here in the case of our mixture model. The main idea is to consider

the number of components for which the following approximation to the marginal likelihood is

maximum:

log(p(X |M)) = log(p(X |Θ̂,M))− Np

2
log(N) (3.14)

which is the Bayesian information criterion (BIC) proposed by Schwarz [17], where p(X |Θ̂,M)

is the likelihood function taking into account that the number of components is M. Np is the

number of free parameters to be estimated and is equal to (2d + 1)M − 1, in our case. Θ̂ denotes
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the posterior mode.

The convergence of MCMC techniques, and in particular Gibbs sampling and Metropolis Hastings,

has been widely studied in the literature [105]. Several systematic approaches for establishing

convergence of MCMC have been proposed and one of them that we follow is the diagnostic

approach proposed by Raftery and Lewis [106, 107], which has been shown to often work well in

practice. This approach is based on a single long-run of the Gibbs sampler.

3.4 Experimental Results

3.4.1 Design of Experiments

In this section, extensive experiments are conducted in order to evaluate the benefits of using the

proposed model. Our experiments involved synthetic data sets as well as a real-world challenging

applications that concern object classification and forgery detection. The main goal of the applica-

tion on synthetic data is to show the merits of the proposed model (Bayesian Generalized Inverted

Mixture (B-GIDM)) and its ability to efficiently perform parameter estimation and model selec-

tion. On the other hand, for the real-world applications, the first goal of our experiments was to

compare both Bayesian estimation and maximum likelihood estimation, as proposed in [44], for

the GID mixture that we denote as B-GIDM and the ML-GIDM, respectively. The second goal

was to compare the performance of the GID mixture with the inverted Dirichlet mixture (denoted

as B-IDM) and the Gaussian mixture (denoted as B-GM) when learned in a Bayesian way. It is

noteworthy that, in our applications, we held the hyperparameters η j fixed at 1, which is a classical

and a reasonable choice [91]. Moreover, according to the posterior hyperparameters,

(
ρ1 + ∑

Zi j=1
log(Xi1), . . . ,ρD + ∑

Zi j=1
log(XiD),ρD+1 − ∑

Zi j=1
log(1+

1

∑
t=1

Xit), . . . ,

ρ2D − ∑
Zi j=1

log(1+
D

∑
t=1

Xit),κ +n j

)
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the prior hyperparameters were modified by adding Tl(�X) or n j to the previous values. This infor-

mation, could be used to get the prior hyperparameters. Indeed, following [108,109], once the sam-

ple X is known, we can use it to get the prior hyperparameters. Then, we held (η1, . . . ,ηM) and

(ρ1, . . . ,ρ2d,κ) fixed at: η j = 1, j = 1, . . . ,M, ρl = ∑N
i=1 log(Xil), ρl+d =−∑N

i=1 log(1+∑l
t=1 Xit),

l = 1, . . . ,d, κ = n j.

3.4.2 Evaluation on Synthetic data

The reason for using synthetic data was to evaluate the performance of the proposed B-GID in

terms of estimation and selection on four two-dimensional synthetic data sets. Table 3.1 shows

the real and the estimated parameters for the four generated data sets. According to this table,

the parameter of the model and its mixing coefficients were accurately estimated by B-GID. In

addition, using BIC, the model was able to be correctly identified.

Table 3.1: Parameters of the different generated data sets. α j1,βb j1,α j2,βb j2 and p j are the real
parameters. α̂ j1, β̂b j1, α̂ j2, β̂b j2 and p̂ j are the estimated parameters

j α j1 β j1 α j2 β j2 p j α̂ j1 β̂ j1 α̂ j2 β̂ j2 p̂ j
Data set 1 1 45 50 22 25 0.50 45.89 50.81 20.01 23.26 0.53
(N=600) 2 10 30 16 50 0.50 9.75 29.10 15.85 52.10 0.47
Data set 2 1 45 50 22 25 0.33 44.93 46.27 22.01 23.70 0.34
(N=900) 2 10 30 16 50 0.33 10.86 32.46 17.21 51.24 0.32

3 20 4 38 5 0.33 20.53 3.79 35.15 4.43 0.34
Data set 3 1 45 50 22 25 0.30 44.97 50.69 25.22 28.49 0.31
(N=1000) 2 10 30 16 50 0.30 10.93 31.05 16.21 48.58 0.30

3 20 4 38 5 0.20 23.10 4.72 44.93 6.03 0.21
4 8 58 6 40 0.20 7.76 56.77 6.26 41.46 0.18

Data set 4 1 45 50 22 25 0.25 42.45 46.79 23.59 26.60 0.25
(N=1200) 2 10 30 16 50 0.25 9.86 27.98 18.36 54.30 0.25

3 20 4 38 5 0.25 20.33 3.93 38.78 5.14 0.27
4 8 58 6 40 0.25 7.99 56.33 6.84 42.29 0.23
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3.4.3 Object Classification

Object classification and detection (i.e. distinguishing target objects from nontarget objects) have

been the topic of extensive research in the past and are crucial steps in several applications such as

object recognition, content-based image retrieval, and video surveillance [110–116]. Object clas-

sification task is performed by humans effortlessly, which is not the case for machines that have to

be able to achieve good detection despite variable illumination conditions, orientations, positions

and scales [117–119]. Although different, research efforts can be classified into two groups of

approaches. The first one is concerned with the development of a robust global, such as color and

texture [120], or local visual descriptors. The approaches in the second group have been devoted

to the development of powerful classifiers.

Many global and local visual descriptors have been proposed in the past. Here, we use a local His-

togram of Oriented Gradient (HOG) descriptor [83] which generates positive features and which

we found efficient and convenient by being robust to partial occlusion and image noise [121]. Ex-

periments are conducted by considering three windows for the HOG descriptor which allows to

represent each image by an 81-dimensional vector of features. We tested our mixture model for

the detection of several complex objects by considering the following data sets in our experiments.

The first one is the "INRIA horses" data set [116, 122] which contains 170 positive examples (i.e.

images containing horses) and 170 negative images without horses. 50 positive images and 50

negative ones have been used for training and the remaining 120 positive and 120 negative images

have been used for testing. Figure 3.1 shows examples from the two groups of images. The second

data set is the "Weizmann-Shotton horses" data set which is composed of 327 positive images and

327 negative ones. As for the first data set, 50 positive images and 50 negative negative images

have been used for training and the rest for testing.

Figure 3.2 shows examples from the two groups of images in this data set. The third data set

is the "ETHZ shape classes" which is composed of five classes of objects (bottles, swans, mugs,

giraffes, and apple logos) for a total of 255 images collected from the Web and described in [123].

This data set is particularly challenging when taking into account the wide range of scales, shape
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Figure 3.1: Sample images from "INRIA horses" data set. First row: positive examples. Second
row: negative examples.

Figure 3.2: Sample images from Weizmann-Shotton horses data set. First row: positive examples.
Second row: negative examples.

variations, and clutter that characterize the images it contains. Figure 3.3 displays examples of

images from the different classes in this data set. Following [116], we trained one detector per

class for this data set by using the first half of the positive images (40 apple logos, 48 bottles, 87

giraffes, 48 mugs, and 32 swans). The negative training images for each class in this data set were

taken from the other four remaining classes where each class contributes 1/4 of the total number of

images. For instance, the negative images for the class mugs were built by taking 12 images from

each of the other four classes.

The detection process, in our case, was based on two steps. The first step was training which

allowed the representation of each class as a finite GID mixture. For the second, classification step,

each test image was assigned to the class maximizing more its log-likelihood. It is noteworthy that

comparing our results to those obtained with all recent state of the art approaches, proposed for
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(a) (b) (c) (d) (e)

Figure 3.3: Sample images from ETHZ shape classes data set. (a) apple logos, (b) bottles, (c)
giraffes, (d) mugs, and (e) swans.

the considered data sets, is out of the scope of this work. Indeed, the main goal is to validate the

approach by considering comparable mixture-based techniques. Table 3.2 summarizes the classi-

fication accuracies for the different considered data sets. According to this table, it is clear that

Table 3.2: Classification rates (in %) for the different tested data sets using different approaches.

B-GIDM ML-GIDM B-IDM B-GM

INRIA horses 73.78 72.11 71.02 70.33
Weizmann-Shotton horses 71.01 70.42 69.56 68.77

Apple logo 84.98 84.05 83.69 81.60
Bottle 24.73 24.32 24.03 23.86
Giraffe 48.41 48.11 47.73 74.07
Mug 80.95 79.77 78.59 77.90
Swan 83.06 82.12 81.40 79.95

the B-GIDM provides the best classification rates as compared to the other test models. Moreover,

we can see that the inverted Dirichlet mixture performs better than the Gaussian. Future work,

in the case of this application, could be devoted to the consideration of contextual information as

performed in [121] to further improve the results.

3.4.4 Forgery Detection

Forgery (e.g. cloning, resampling, splicing, etc.) detection is currently one of the most active re-

search topics in image processing [124]. It can be viewed as the problem of reliably distinguishing

between "doctored" images and untampered original ones. Indeed, with the advent of sophisticated

multimedia editing software, that allow the manipulation of images for instance, the integrity of
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image content cannot be taken as granted [125–127]. This strong interest is driven by a wide spec-

trum of promising applications in many areas such as forensics and security (e.g. an image can

contain hidden information), and journalism (e.g. using images as critical evidence) to name a few.

Several techniques have been developed in an attempt to identify forged images, many of which

are reviewed in [124]. Other works include the approaches in [125, 128, 129].

In this section, we apply our model to this challenging problem by focusing on the specific case

of copy-move attack detection which has received some attention recently [130–135]. We follow

the approach proposed in [134], which allows simultaneously to detect copy-move attacks (i.e.

delete some objects from the scene and substitute them with other parts from the same scene) and

to recover the geometric transformation used in cloning. This approach has been shown to be

efficient. It is based on scale invariant features transform (SIFT) [136], which has been widely

used in several image forensics applications [132, 133, 137], to detect points belonging to cloned

areas. The choice of SIFT descriptors is motivated by the fact that they are invariant to changes

in illumination, rotation, scaling and robust to occlusion and clutter. To summarize, the overall

approach proceeds along three central themes. First, SIFT features are extracted and multiple

keypoint matching is performed. The second theme concerns keypoint clustering and forgery de-

tection. Then, an existing geometric transformation is estimated if a tampering is detected. Our

contribution here is directed toward the second theme by applying our GID mixture model for

clustering. Thus, we present our results by focusing on the detection accuracy since estimating

the geometric transformation is clearly out of the scope of this work. However, it can easily be

done using the approach in [134]. Indeed, we integrated the GID mixture in the agglomerative

hierarchical clustering scheme used in [134] to obtain the initial clusters. The reader is referred

to [134] for more details and discussions.

We considered the two data sets introduced in [134]. The first one is the MICC-F220 data set which

consists of 220 images: 110 are tampered images, using 10 different attacks, and 110 are original

with different resolutions varying from 722×480 to 800×600 pixels. In this data set, the size of

the forged parts covers, on average, 1.2% of the image. The second data set is the MICC-F2000
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data set which is composed of 2000 2048×1536 images (1300 original images and 700 tampered

ones using 14 different attacks). In this second data set, the size of the forged parts covers on aver-

age 1.12% of an image. We follow the same experimental settings described in [134] and the same

detection performance measurements. These measurements are: true positive rate (TPR), which

represents the fraction of correctly identified tampered images, and false positive rate (FPR), which

represents the fraction of original images not correctly identified:

T PR =
Number of images detected as forged being forged

Total number of forged images
(3.15)

FPR =
Number of images detected as forged being original

Total number of original images
(3.16)

Tables 3.3 and 3.4 display the results obtained for both MICC-F220 and MICC-F2000, respec-

tively, when considering B-GIDM, ML-GIDM, B-IDM, and B-GM. The obtained results show

again that the B-GIDM performs well as compared to the other tested approaches.

Table 3.3: Detection results, during testing phase, in terms of FPR and T PR in the case of the
MICC-F220 data set using different clustering approaches.

B-GIDM ML-GIDM B-IDM B-GM
FPR(%) 8.10 8.21 8.23 8.39
T PR(%) 98.13 97.91 97.14 96.64

Table 3.4: Detection results, during testing phase, in terms of FPR and T PR in the case of the
MICC-F2000 data set using different clustering approaches.

B-GIDM ML-GIDM B-IDM B-GM
FPR(%) 11.26 11.53 11.67 12.01
T PR(%) 93.27 93.02 92.65 91.84

53



3.5 Summary

In this chapter, we proposed a fully Bayesian analysis procedure based on learning Markov chain

Monte Carlo (MCMC) simulation methods for GID mixture model. The estimation was based on

computing the posterior of the GID parameters by developing a conjugate prior. The posterior was

updated by Gibbs sampling and Metropolis-Hastings methods. Moreover, for model selection, the

Bayesian information criterion was used. The obtained accuracies from two challenging problems

(object classification and forgery detection) show the effectiveness of the proposed method.

It is noteworthy that several modern applications involve dynamic data. Thus, a more con-

venient formulation to handle this kind of data could be based on infinite mixture models. In the

next chapter, we investigate infinite GID mixture models.
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Chapter 4
An Infinite Mixture Model of Generalized

Inverted Dirichlet Distributions for

High-Dimensional Positive Data Modeling

In this chapter, we propose an infinite mixture model for the clustering of positive data. The pro-

posed model was based on the generalized inverted Dirichlet distribution, which has a more general

covariance structure than the inverted Dirichlet and has been widely used in several recent machine

learning and data mining applications. The proposed mixture was developed in an elegant way that

allows for simultaneous clustering and feature selection. Furthermore, it is learned using a fully

Bayesian approach via the Gibbs sampling. The merits of the proposed approach are demonstrated

using a challenging application, namely, image categorization.

4.1 Introduction

The important proliferation of digital content requires the development of powerful approaches

for knowledge extraction, analysis, and organization. Clustering, in particular, has been widely

adopted for knowledge discovery and data engineering. The main goal of any clustering algorithm

is to partition a given data set into groups so that objects within a cluster are more similar than
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those in different clusters [138]. Many clustering techniques have been developed in the past

and have been applied successfully on different data types (e.g. binary, discrete, continuous) and

extracted within various applications [139–141]. Among these techniques, mixture models have

played important roles in many areas including , but not limited to, image processing, computer

vision, data mining, and pattern recognition. This is due to their flexibility and strong statistical

foundations which offer a formal, principled way to clustering. In particular, the Gaussian mixture

model has drawn considerable attention in the machine learning community and has achieved good

results [142]. However, recent concentrated research efforts have shown that this mixture model

may fail to provide good generalization capabilities when the per-cluster data distributions are

clearly non-Gaussian, which is the case for positive data as discussed in [8, 9, 143].

The main contribution of [8, 9] was the introduction of the finite inverted Dirichlet mixture

model for the clustering of positive data, which are naturally generated by many real-world ap-

plications. They have also proposed a detailed approach for the learning of the parameters of this

finite mixture. In order to handle a huge number of classes and avoid over- or under-fitting prob-

lems which are central issues in learning-based techniques, the finite inverted Dirichlet mixture was

extended to the infinite case in [9]. This extension was based on the consideration of Dirichlet pro-

cesses which have been widely used in the case of nonparametric Bayesian approaches [144,145].

Despite its advantages and flexibility, the inverted Dirichlet has a very restrictive covariance struc-

ture that is generally violated by data generated from real-life applications. Thus, we propose an

alternative to the inverted Dirichlet, namely the generalized inverted Dirichlet (GID) that has a

more general covariance structure. Our work can be viewed as a principled and natural extension

to the framework developed in [9], since we consider the GID to be within an infinite mixture

model by taking feature selection into account. The feature selection process was formalized by

introducing a background distribution, common to all mixture components, into the infinite model

to represent irrelevant features. Moreover, we developed an algorithm for the learning of the re-

sulting model using Markov chain Monte Carlo (MCMC) sampling techniques, namely the Gibbs

sampling and Metropolis-Hastings [146].
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This chapter is organized as follows: Section 4.2 presents our infinite mixture model. Sec-

tion 4.3 provides empirical evaluation based on the challenging problem of image categorization.

Finally, in Section 4.4, a summary on this chapter is given.

4.2 The Model

In this section, we start by presenting the finite GID mixture model, then the development of its

infinite counterpart is described. A feature selection approach is also proposed.

4.2.1 Finite Model

Let us consider a data set of Y = (Y1, . . . ,YN) of N D-dimensional positive vectors, where Yi =

(Yil, . . . ,YiD), i = 1, . . . ,N. We assume that Yi follows a mixture of M GID distributions:

p(Yi|Θ) =
M

∑
j=1

p j p(Yi|Θ j) (4.1)

where p(Yi|Θ j) is a GID distribution [63]:

p(Yi|Θ) =
D

∏
l=1

Γ(α jl +β jl)

Γ(α jl)Γ(β jl)

Y
−α jl−1
il

T
η jl

il

(4.2)

where Til = 1+∑l
k=1Yik and η jl = α jl +β jl −β j(l+1) with β j(D+1) = 0. Each Θ j = (α j1,β j1,

. . . ,α jD,β jD) is the set of parameters defining the jth component, and p j is the mixing weight

for that component. The p j must satisfy the following constraints: p j > 0, j = 1, . . . ,M, and

∑M
j=1 p j = 1.

In finite mixture clustering [142], each vector Yi is assigned to all classes with different posterior

probabilities p( j/Yi) ∝ p j p(Yi|Θ j). It is possible to show that the properties of the GID distri-

bution allows the factorization of the posterior probabilities [44] as: p( j|Yi) ∝ p j ∏D
l pib(Xil|Θ j),

where Xil = Yil and Xil =
Yil

1+∑l−1
k=1 Yil

for l > 1, pib(Xil|θ jl) is an inverted Beta distribution with
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θ jl = (α jl,β jl), l = 1, . . . ,D :

pib(Xil|α jl,β jl) =
Γ(α jl +β jl)

Γ(α jl)Γ(β jl)

X
α jl−1
il

(1+Xil)
(α jl+β jl)

(4.3)

Thus, the clustering structure underlying Y is the same as that underlying X = (X1, ...,XN) as

described by the following mixture model with conditionally independent features:

p(Xi|Θ) =
M

∑
j=1

p j

D

∏
l=1

pib(Xil|θ jl) (4.4)

This means that the GID mixture model has the ability to reduce complex multidimensional clus-

tering problems to a sequence of one-dimensional ones.

4.2.2 Infinite Model

Let Zi be a variable that indicates from which cluster each vector Xi came from (i.e Zi = j means

that Xi came from component j). Therefore, p j = p(Zi = j), j = 1, . . . ,M and:

P(Z|P) =
M

∏
j=1

pn j
j (4.5)

where P = (p1, . . . , pM), Z = (Z1, . . . ,ZN) , n j = ∑N
i=1 IZi= j is the number of vectors in cluster j. It

is common to consider a Dirichlet distribution as a prior for P, and is justified by the fact that the

Dirichlet is a conjugate to the multinomial [147]:

p(P|η1, . . . ,ηM) =
Γ(∑M

j=1 η j)

∏M
j=1 Γ(η j)

M

∏
j=1

pη j−1
j (4.6)

where (η1, . . . ,ηM) ∈ R
+M

are the parameters of the Dirichlet. By taking η j =
η
M , j = 1, . . . ,M,

where η ∈ R
+, we obtain:

p(P|η) =
Γ(η)

Γ( η
M )M

M

∏
j=1

pη−1
j (4.7)
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Since the Dirichlet is a conjugate prior to the multinomial, we can marginalize P out of the equa-

tion:

p(Z|η) =
∫

P
p(Z|P)p(P|η)dP =

Γ(η)

Γ(η +N)

M

∏
j=1

( η
M +n j)

Γ( η
M )

(4.8)

which can be considered as a prior on Z. We also have:

p(P|Z,η) =
p(Z|P)p(P|η)

p(Z|η)
=

Γ(η +N)

∏M
j=1 Γ( η

M +n j)

M

∏
j=1

p
n j+

η
M−1

j (4.9)

which is a Dirichlet distribution with parameters (n1 +
η
M , . . . ,nM + η

M ) from which we can show

that:

p(Zi = j|η ,Z−i) =
n−i, j +

η
M

N −1+η
(4.10)

where Z−i = {Z1, . . . ,Zi−1,Zi+1, . . . ,ZN},n−i, j is the number of vectors, excluding Xi, in cluster j.

Letting M → ∞, the conditional prior gives the following limits

p(Zi = j = |η ,Z−i) =

⎧⎪⎨
⎪⎩

n−i, j
N−1+η if n−i, j > 0 (cluster j ∈ R)

η
N−1+η if n−i, j > 0 (cluster j ∈ U )

(4.11)

where R and U are the sets of represented and unrepresented clusters, respectively. Actu-

ally, the previous equation describes a Dirichlet process of mixtures in which learning is generally

based on the Gibbs sampling MCMC technique [143]. This is done by generating the vectors

assignments according to the posterior distribution:

p(Zi = j|Z−i,X) ∝ p(Zi = j|Z−i)
∫

p(Xi|Zi = j,Θ j)p(Θ j|Z−i,X−i)dΘ j (4.12)

where Z−i represents all the vector assignments except Zi and X−i represents all the vectors except

Xi. In order to obtain the conditional posterior distributions of our infinite model’s parameters

given the data that we would like to cluster, we need to choose appropriate priors. Here, we

considered the same priors previously proposed in [143] for the inverted Dirichlet, which is actually
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the multivariate case of the inverted beta in Eq. 4.4. Thus, we need to parameterize the inverted

Beta as follows:

pib(Xil||α jl|,μ jl) =
Γ(|α jl|)

Γ(μ jl(|α jl |−1)
1+μ jl

)Γ( |α jl |+μ jl
1+μ jl

)
X

μ jl (|α jl |−1)
1+μ jl

−1

il (1+Xil)
−|α jl | (4.13)

where |α jl| = α jl +β jl ,μ jl =
α jl

β jl−1 , and for which we impose independent uniform and inverse

Gamma priors, respectively:

p(μ jl)∼ U jl
[a,b] (4.14)

where a = min{Xil} and b = max{Xil}.

p(|α jl||σ ,ϖ)∼
ϖσ exp( −ϖ

|α jl |)

Γ(σ)|α jl|σ+1 (4.15)

where σ and ϖ are hyperparameters, common to all components, representing the shape and scale

of the distribution, respectively. We consider the following priors to add more flexibility to the

model:

p(σ |λ ,δ )∼ δ λ exp(−λ
σ )

Γ(λ )σλ+1 p(ϖ |φ)∼ p(φ)exp(−φϖ) (4.16)

Having all our priors in hand, the calculation of the parameter posteriors, given the rest of the

variables, becomes straightforward:

p(|α jl|| . . .) ∝
ϖσ exp( −ϖ

|α jl |)

Γ(σ)|α jl|σ+1 ∏
Zi= j

p(Xi|Θ) (4.17)

p(μ jl| . . .) ∝ ∏
Zi= j

p(Xi|Θ) (4.18)

p(σ | . . .) ∝
ϖMσ δ λ exp(−δ/σ)

Γ(σ)MΓ(λ )σλ+1

M

∏
j=1

exp( −ϖ
|α jl |)

|α jl|σ+1 (4.19)
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p(ϖ | . . .) ∝
ϖMσ φexp(−φϖ)

Γ(σ)M

M

∏
j=1

exp( −ϖ
|α jl |)

|α jl|σ+1 (4.20)

With these posteriors, the learning algorithm can be summarized in algorithm 2. Note that in

Algorithm 2 Learning of the infinite GID mixture model with simultaneous feature selection
1: {Initialization}
2: Generate Zi from Eq. 4.12, i = 1, . . . ,N using the algorithm in [148].
3: Update the number of represented components M.
4: Update nj and p j =

n j
N+η , j = 1, . . . ,M

5: Update the mixing parameters of unrepresented components pU = η
η+N

6: Generate |μ jl| from Eq. 4.18 and |α jl| from Eq. 4.17, j = 1, ...,M using Metropolis-Hastings
[146].

7: Update the hyperparameters: Generate σ from Eq. 4.19 and from Eq. 4.20 using adaptive
rejection sampling as proposed in [149].

the initialization step, the algorithm starts by assuming that all the vectors are in the same cluster

and that the initial parameters were generated as random samples from their prior distributions.

4.2.3 Feature Selection

It is noteworthy that the model proposed in the previous section does not take into account the fact

that different features may have different weights in the clustering structure. Additionally, some

features may be noisy and may then compromise the generalization capabilities of the model [150].

In order to introduce feature selection in our model, it is possible to use the following formulation:

p(Xi|Ξ) =
M

∑
j=1

p j

D

∏
l=1

[ρl pib(Xil||α jl|,μ jl)+(1−ρl)pib(Xil||α irr
jl |,μ irr

jl )] (4.21)

where Ξ = Θ,ρ,Θ, ,Θirr is the set of all the model parameters, ρ = (ρ1, . . . ,ρD), Θirr = |α irr
jl , and

pib(Xil||α irr
jl |,μ irr

jl ) is a background distribution, common to all mixture components, that represent

irrelevant features. ρl = p(zil = 1) represents the probability that the lth feature is relevant for

clustering where zil is a hidden variable equal to 1, if the lth feature of Xi is relevant, and is

0, otherwise. By introducing feature selection, the learning algorithm proposed in the previous
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section had to be slightly modified by adding simulations from the posteriors of |α irr
jl |,μ irr

jl , for

which we chose the same priors that were considered for |α jl|,μ jl , and ρ . We considered a beta

prior with location δ1 and scale δ2 common to all dimensions:

p(ρ|δ1,δ2) =

[
Γ(δ2)

Γ(δ1δ2)Γ(δ2(1−δ1))

]D D

∏
d=1

ρδ1δ2−1
d (1−ρd)

δ2(1−δ1)−1 (4.22)

Moreover, the zi were generated from a D-variate Bernoulli distribution with parameters ẑil, . . . , ẑiD,

where:

ẑil =
ρl pib(Xil||α jl|,μ jl)

ρl pib(Xil||α jl|,μ jl)+(1−ρl)pib(Xil||α irr
jl |,μ irr

jl )
(4.23)

denotes the expectation for zil:

p(z|ρ) =
N

∏
i=1

D

∏
d=1

ρzid
d (1−ρd)

1−zid =
D

∏
d=1

ρ fd
d (1−ρd)(N − fd) (4.24)

where fd =
N
∑
i
IZid=1. Then, the posterior for ρ is:

p(ρ| . . .) ∝ (ρ|δ1,δ2)p(z|ρ) ∝
D

∏
d=1

ρδ1δ2+ fd−1
d (1−ρd)

δ2(1−δ1)+N− fd−1 (4.25)

Note that the feature selection process starts by assuming that all features have a probability of

0.5 in order to be considered relevant. Then, this relevancy value was updated during the learning

iterations.

4.3 Experimental Result

In this section, we demonstrate the utility of our model by applying it on a challenging applica-

tion, namely, visual scene categorization. Moreover, we compare the proposed approach with the

infinite inverted Dirichlet proposed in [9]. Comparing our results with many other generative and

discriminative techniques is clearly out of the scope of this work. In this application, the values of
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the hyperparameters have been set experimentally to one. This choice has been found reasonable

according to our simulations.

The wealth of images generated everyday has spurred a tremendous interest in developing

approaches to understand the visual content of these images. In this section, we shall focus on the

challenging problem of images categorization, in order to validate our GID infinite mixture model.

This is a crucial step in several applications such as annotation [151,152], retrieval [153,154], and

object recognition [155]. A common recent approach widely used for image categorization, that

we follow in this application, is the consideration of the so-called bag of visual words generated

via quantization of local image descriptors, such as SIFT [136].

We considered two challenging datasets in our experiments, namely, the 15 class scene recogni-

tion data set [156] and the 8 class sport events data set [157]. The 15 class scene recognition

data set contains the following categories: coasts (360 images), forests (328 images), mountains

(374 images), open country (410 images), highways (260 images), inside of cities (308 images),

tall buildings (356 images), streets (292 images), suburb residences (241 images), bedrooms (174

images), kitchens (151 images), livingrooms (289 images), offices (216 images), stores (315 im-

ages), and industrial (311 images). Figure 4.1 displays examples of images from this data set. The

8 class sport events dataset contains the following categories: rowing (250 images), badminton

(200 images), polo (182 images), bocce (137 images), snowboarding (190 images), croquet (236

images), sailing (190 images), and rock climbing (194 images). Figure 2 displays examples of

images from this data set. We constructed our visual vocabulary for each data set from half of

the available images in each data set. We detected interest points from these images using the

difference-of-Gaussians point detector, since it has shown to have excellent performance [136].

Then, we used the SIFT descriptor [136], computed on detected keypoints of all images, gen-

erating a 128-dimensional vector for each keypoint. Moreover, extracted vectors were clustered

using the K-Means algorithm using 250 visual-words. Each image in the data sets was then repre-

sented by a 250-dimensional positive vector describing the frequencies of visual words, obtained

from the constructed visual vocabulary. These vectors were separated into a test set of vectors and
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 4.1: Sample images from each group in the 15 class scene recognition data set. (a) Highway,
(b) Inside of cities, (c) Tall buildings, (d) Streets, (e) Suburb residence, (f) Forest, (g) Coast, (h)
Mountain, (i) Open country, (j) Bedroom, (k) Kitchen, (l) Livingroom, (m) Office, (n) Store, (o)
Industrial.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: Sample images from each group in the 8 class sports event dataset. (a) rowing,(b)
badminton, (c) polo, (d) bocce, (e) snowboarding, (f) croquet, (g) sailing, (h) rock climbing.
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a training set of vectors. Then, we applied our learning algorithm to the training vectors for each

class. After this stage, each class in the database was represented by a statistical model. Finally,

in the classification stage, each unknown image was assigned to the class, thereby increasing its

log-likelihood. A summary of the classification results, measured by the average values of the

diagonal entries in the confusion matrices, that were obtained for the different classification tasks,

is shown in Table 4.1. This table clearly shows that the GID infinite mixture, without feature selec-

tion (IGID) and with feature selection (IGIDFS), outperformed the infinite inverted Dirichlet (IID)

mixture. The results can be explained by the fact that the GID is more flexible than the inverted

Dirichlet. We can clearly notice that introducing feature selection further improved the results.

Table 4.1: Classification performance % obtained for the two tested data sets using three different
approaches

IGIDFS IGID IID

Dataset 1 (15 catgories) 75.31% 74.5% 70.11%
Dataset 2 (8 categories) 74.03% 73.25% 70.72%

4.4 Summary

In this chapter, we developed an infinite generalized inverted Dirichlet distribution. The infinite

mixture models have many advantages over its finite counterpart. One advantage is that the num-

ber of components can be determined automatically, thereby avoiding the drawback of EM based

approaches since the inference is based on MCMC. Using the proposed approach allowed the esti-

mation of the model parameters, model selection, and feature selection accordingly. To confirm the

merits and effectiveness of the proposed approach, experiments were conducted on a real challeng-

ing problem, namely, visual scenes. In the next chapter, we present a fully Bayesian GID mixture

which is based on the Reversible Jump Markov Chain (RJMCMC).
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Chapter 5
A Fully Bayesian Framework for Positive Data

Clustering

The main concern with mixture modeling is to describe the data such that each observation belongs

to one of a number of different groups. Mixtures of distributions provide a flexible and convenient

class of models for density estimation and their statistical learning has been studied extensively.

In this context, fully Bayesian approaches have been widely adopted for mixture estimation and

model selection problems and have shown some effectiveness due to the incorporation of the prior

knowledge about the parameters. In this chapter, we propose a fully Bayesian approach for finite

generalized inverted Dirichlet (GID) mixture model learning using a reversible jump Markov chain

Monte Carlo (RJMCMC) approach [21]. RJMCMC enables us to deal simultaneously with the

model selection and the parameters estimation in one single algorithm. The merits of RJMCMC for

GID mixture learning is investigated using synthetic data and real data extracted from an interesting

application, namely, object detection.

66



5.1 Introduction

A finite mixture model provides a natural representation of heterogeneity when data are assumed

to be generated from two or more distributions mixed in varying proportions. Finite mixture mod-

els provide a powerful, flexible, and well principled statistical approaches and have been com-

monly used to model complex data in many applications [142, 158–160]. Model selection and

estimation of parameters are the fundamental problems in mixture modeling. To date, Gaussian

mixture modeling has been the subject of much research because of its relative simplicity [142].

The Gaussian assumption is, however, not realistic in the majority of signal and image processing

problems [161–163]. In general, numerous approaches have been developed for the learning of

mixture parameters (i.e., for both model selection and parameter estimation). These approaches

can be categorized into deterministic and Bayesian methods. Deterministic inference is an im-

portant branch of inference methodologies. It has been actively studied, especially during the last

fifteen years. Using deterministic methods, data are taken as random while parameters are taken

as fixed and unknown. The inference is generally based on the likelihood of the data. Among

these approaches, the expectation maximization (EM) [12] algorithm has been extensively used

in the case of maximum likelihood estimation. However, it has been shown that the maximum

likelihood estimation suffers from singularities, convergence to local maxima [13], leads to more

complex models, and then to overfitting [164]. Moreover, likelihood is a non-decreasing function

based on the number of components, thus the maximum likelihood approach cannot be used as

a model selection criterion. To overcome this problem, many model selection approaches based

on the Bayesian approximation have been proposed such as, the Bayesian information criterion,

minimum message length, and maximum entropy criterion.

Pure Bayesian techniques can be used as an alternative to learn mixture models and they gener-

ally provide good results. Using Bayesian approaches for finite mixture modeling is performed

by introducing suitable priors distributions for the model parameters. Moreover, Bayesian ap-

proaches provide us with a valid inference without relying on the asymptotic normality assump-

tion since simulation from the posterior distribution of the unknown parameters is feasible [165].
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This simulation is generally based on MCMC, which is an important tool for a statistical Bayesian

inference [164, 166]. In this chapter, we consider a special MCMC technique, which simultane-

ously performs parameter estimation and model selection for generalized inverted Dirichlet (GID)

mixture, namely, the reversible jump MCMC (RJMCMC) sampling method, previously proposed

in [167]. RJMCMC has been applied successfully in the past in the case of the Gaussian [21, 168]

and beta [169] mixtures. It provides a general framework for Markov chain Monte Carlo (MCMC)

simulation in which the dimension of the parameter space can vary between iterations of the

Markov chain.

This chapter is organized as follows. In Section 5.2, we introduce the GID mixture model. Sec-

tion 5.3 defines our fully Bayesian framework for learning the GID mixture using the RJMCMC

technique. In Section 5.4, split/merge and birth/death moves are explained in detail. Section 5.5

presents the experimental results for generated and real data to demonstrate the merits of the pro-

posed approach. Lastly, we provide a summary of this chapter in Section 5.6.

5.2 GID Mixture Model

Let us consider a data set Y composed of N D-dimensional positive vectors, Y = (�Y1,�Y2, . . . ,�YN).

We assume that Y is governed by a weighted sum of M generalized inverted Dirichlet (GID) com-

ponent densities with parameters ΘM = (�θ1,�θ2, . . . ,�θM, p1, p2, . . . , pM) where �θ j is the parameter

vector of the jth component, and {p j} are the mixing weights which are positive and sum to one:

p(�Yi|ΘM) =
M

∑
j=1

p j p(�Yi|�θ j) (5.1)
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where p(�Yi|�θ j) is the GID distribution with parameters �θ j = (α j1,β j1,α j2,β j2, . . . ,α jD,β jD). In

mixture-based clustering, each data point�Yi is assigned to all classes with different posterior prob-

abilities p( j|�Yi) ∝ p j p(�Yi|�θ j). The GID distribution allows the factorization of the posterior prob-

ability as shown in [44]

p( j|�Yi) ∝ p j

D

∏
l=1

pib(Xil|θ jl) (5.2)

where we have set Xi1 =Yi1 and Xil =
Yil

1+∑l−1
k=1 Yik

for l > 1. pib(Xil|θ jl) is an inverted beta distribution

with parameters θ jl = (α jl,β jl), β jl > 2, l = 1, . . . ,D. Thus, the clustering structure underlying Y

is the same as the one underlying X = (�X1, . . . ,�XN), where �Xi = (Xi1, . . . ,XiD), i = 1, . . . ,N, and is

governed by the following mixture model with conditionally independent features:

p(�Xi|ΘM) =
M

∑
j=1

p j

D

∏
l=1

pib(Xil|θ jl) (5.3)

where

pib(Xil|θ jl) =
Γ(α jl +β jl)

Γ(α jl)Γ(β jl)
X

α jl−1
il (1+Xil)

−α jl−β jl (5.4)

The mean and the variance of the inverted Beta distribution are as follows:

μ jl =
α jl

β jl −1
(5.5)

σ2
jl =

α jl(α jl +β jl −1)
(β jl −2)(β jl −1)2 (5.6)

Using Eqs. 5.5 and 5.6, the parameters α jl and β jl of the inverted beta distribution can be written

with respect to the mean and the variance as follows:

α jl =
μ jl

2(1+μ jl)+μ jlσ2
jl

σ2
jl

(5.7)

β jl =
μ jl(1+μ jl)+2σ2

jl

σ2
jl

(5.8)
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then, the probability density function of the inverted beta, as a function of its mean and variance,

can be written as follows:

pib(Xil|μ jl,σ2
jl) =

1

B

(
μ jl

2(1+μ jl)+μ jlσ2
jl

σ2
jl

,
μ jl(1+μ jl)+2σ2

jl

σ2
jl

)

× X

(
μ jl

2(1+μ jl )+μ jlσ2
jl

σ2
jl

−1

)

il (5.9)

×
(

1+Xil

)−
(

μ jl
2(1+μ jl )+μ jlσ2

jl+μ jl (1+μ jl )+2σ2
jl

σ2
jl

)

where B is the beta function which is defined as B(a,b) = Γ(a)Γ(b)
Γ(a+b) .

The main problem, when dealing with mixture models, is to estimate the parameters. A huge

number of methods in the literature have been developed in the past [142]. Among these meth-

ods, the maximum likelihood estimation, which maximizes the likelihood through the expectation

maximization (EM) algorithm [12,13], has received a lot of attention. However, the EM algorithm

suffers from some drawbacks. First, it is highly dependent on the initialization values, which is the

main reason why it may converge to a local maxima. Second, it suffers from the overfitting prob-

lem. In EM-based formulation, a latent allocation vector is introduced �Zi = (Zi1, . . . ,ZiM) and in-

dicates to which mixture component each vector �Xi belongs to, such that Zi j ∈ {0,1}, ∑M
j=1 Zi j = 1

and Zi j = 1 if �Xi belongs to component j, and to 0, otherwise. Z = {�Z1, . . . ,�ZN} is known as the

set of "membership vectors" of the mixture model and its unique elements, Zi, are supposed to be

drawn independently from the following distribution:

p(Zi = j) = p j j = 1, . . . ,M. (5.10)

Thus, the distribution of �Xi, given the class label �Zi, is:

p(�Xi|ΘM,�Zi) =
M

∏
j=1

( D

∏
l=1

pib(Xil|θ jl)

)Zi j

(5.11)
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5.3 GID Bayesian Learning Using RJMCMC

One of the main concerns in mixture modeling is model selection (i.e. determining the number

of components). Within Bayesian modeling, many approaches have been proposed to infer the

optimal number of components. Examples of Bayesian model selection approaches include Bayes

factors, Bayesian information criterion (BIC), deviance information criterion (DIC), RJMCMC,

and birth and death processes [170–172]. In this work, we develop a RJMCMC-based method.

It allows us to successfully perform both model selection and parameter estimation in one single

algorithm. In our proposed Bayesian framework, the number of component M, the parameters

which govern the mixture �θ components, and the mixing weight �P = (p1, . . . , pM), are considered

as drawn from an appropriate distribution. The joint distribution of all variables can be written as:

p(M,�P,Z,�θ ,X ) = p(M)p(�P|M)p(Z|�P,M)p(�θ |Z,�P,M)p(X |�θ ,Z,�P,M) (5.12)

where the conditional independencies p(�θ |Z,�P,M) = p(�θ |M) and p(X |�θ ,Z,�P,M) = p(X |�θ ,Z)
are imposed. The joint distribution can be written as follows:

p(M,�P,Z,�θ ,X ) = p(M)p(�P|M)p(Z|�P,M)p(�θ |M)p(X |�θ ,Z,�P,M) (5.13)

Now, the main goal of the Bayesian inference is to generate realizations from the conditional joint

density p(M,�P,Z,�θ |X ).

5.3.1 Priors and Posteriors

In this section, we will define the priors of the different parameters in our hierarchical Bayesian

model. These parameters are supposed to be drawn independently. For our model, we have chosen

an inverted beta and inverse gamma distributions as priors for the mean μ jl and the variance σ2
jl ,
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respectively.

p(�μ j|ε,ζ ) =
D

∏
l=1

1

B

(
ε2(1+ε)+εζ

ζ , ε(1+ε)+2ζ
ζ

)μ

(
ε2(1+ε)+εζ

ζ −1

)

jl

×
(

1+μ jl

)−
(

ε2(1+ε)+εζ+ε(1+ε)+2ζ
ζ

)
(5.14)

where ε jl is the location and ζ jl is the shape parameter for the inverted beta distribution. A common

choice for a prior, for the variance �σ2
j = (σ2

j1, . . . ,σ
2
jD), is the inverse gamma distribution. Then:

p(�σ2
j |ϑ ,ϖ)∼

D

∏
l=1

ϑ ϖ

Γ(ϖ)
σ2−ϖ−1

jl exp
(

ϑ
σ2

)
(5.15)

where ϑ and ϖ represent the shape and scale parameters of the inverse gamma distribution, re-

spectively. Using Eqs. 5.14 and 5.15, we have:

p(�Θ|M,τ) =
M

∏
j=1

p(�m j|ε,ζ )p(�v j|ϑ ,ϖ) (5.16)

where τ = (ε,ζ ,ϑ ,ϖ) are the hyperparameters of �Θ. Therefore, the full conditional posterior

distribution for mean �m j and the variance �σ2
jl can be written as follows:

p( �μ jl| . . .) ∝
M

∏
j=1

p(�μ jl|ε jl,ζ jl)p(�σ2
jl|ϑ jl,ϖ jl)

N

∏
i=1

p(�Xi|�ΘZi)

∝ p(�μ jl|ε jl,ζ jl)
N

∏
i=1

p(�Xi|�ΘZi) (5.17)

p(�σ2
jl| . . .) ∝

M

∏
j=1

p(�μ jl|ε jl,ζ jl)p(�σ2
jl|ϑ jl,ϖ jl)

N

∏
i=1

p(�Xi|�θZi)

∝ p(�σ2
jl|ϑ jl,ϖ jl)

N

∏
i=1

p(�Xi|�ΘZi) (5.18)
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The | . . . is used to denote conditioning on all other variables. In addition, the typical prior

choice for the mixing weight �P is the Dirichlet distribution since it is defined under the constraint

p1, . . . , pM : ∑M
j=1 p j < 1. Then, the prior can be written as follows:

p(�P|M,δ ) =
Γ(∑M

j=1 δ j)

∏ j = 1MΓδ j

M

∏
j=1

pδ j−1
j (5.19)

Also, the prior of the membership variable Z is:

p(Z|P,M) =
M

∏
j=1

pn j
j (5.20)

where n j represents the number of vectors belonging to the jth cluster. Using Eqs. 5.19 and 5.20

we get:

p(�P| . . .) ∝ p(Z|�P,M)p(�P|M,δ )

∝
M

∏
j=1

pn j
j

Γ(∑M
j=1 δ j)

∏M
j=1 Γ(δ j)

M

∏
j=1

pδ j−1
j ∝ pn j+δ j−1

j (5.21)

which is simply proportional to a Dirichlet distribution with parameters (δ1 + n1, . . . ,δM + nM).

Besides, using Eq. 5.10 the membership variable posterior can be obtained as follows:

p(Zi = j| . . .) ∝ p j

D

∏
l=1

pib(Xil|Θ jl) (5.22)

Another hierarchical level can be introduced to represent the priors of the hyperparameters in the

model. First, the hyperparameters, ε and ζ , which are associated with �μ j, are given uniform and

inverse gamma priors, respectively:

p(ε)∼ U[a,b] (5.23)

p(ζ |ϕ,ρ)∼ ρϕ exp(−ρ/ζ )
Γ(ϕ)ζ ϕ+1 (5.24)
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where a = min{Xil, i = 1, . . . ,N; l = 1, . . . ,D} and b = max{Xil, i = 1, . . . ,N; l = 1, . . . ,D}. Accord-

ing to the two previous equations, the conditional posterior for ε and ζ can be written as:

p(ε| . . .) = p(ε)
M

∏
j=1

p(�μ j|ε,ζ ) (5.25)

p(ζ | . . .) = p(ζ |ϕ,ρ)
M

∏
j=1

p(�μ j|ε,ζ ) (5.26)

Also, the hyperparameters for ϑ and ϖ , which are associated with the variance �σ2
j , are given

inverse gamma and exponential priors, respectively:

p(ϑ |λ ,ν)∼ νλ exp(−ν/ϑ)

Γ(λ )ϑ λ+1 (5.27)

p(ϖ |φ)∼ φ exp(−φϖ) (5.28)

From these two pervious equations, the conditional posteriors for ϑ and ϖ are written as:

p(ϑ | . . .) ∝ p(ϑ |λ ,ν)
M

∏
j=1

p(�σ2
j |ϑ ,ϖ) (5.29)

p(ϖ | . . .) ∝ p(ϖ |φ)
M

∏
j=1

p(�σ2
j |ϑ ,ϖ) (5.30)

Finally, for the number of components, M, the common choice is a uniform distribution between 1

and a predefined integer Mmax.

5.4 RJMCMC Moves

Practically, RJMCMC allows moves between parameter subspaces by allowing the following six

types of moves:

1. Update the mixing parameters �P

74



2. Update the parameters �μ jl and �σ2
jl

3. Update the membership variable Z

4. Update the hyperparmeters ε,ζ ,ϑ ,and ϖ

5. Split one component into two, or merge two into one

6. The birth or death of an empty component

Each step is called a move, t = 1, . . . ,6, and a sweep is defined as a complete pass over the six

moves. Since the first four moves do not change the number of clusters, they can be considered as

classic Gibbs sampling moves. On the other hand, moves 5 and 6 involve changing the number of

components, M, by 1.

Assume that we are in state ΔM, where ΔM = (Z,P,M). Then the MCMC step representing move

(5), takes the form of a Metropolis-Hastings step. This is accomplished by proposing a move from

a state ΔM to a state Δ̂M, with a target probability distribution (posterior distribution) of p(ΔM|χ)
and a proposal distribution qt(ΔM, Δ̂M) for the move t. When we are in the current state ΔM, a

given move t to a destination state Δ̂M is accepted with probability:

pt(ΔM, Δ̂M) =

(
1,

p(Δ̂M|χ)qt(Δ̂M,ΔM)

p(ΔM|χ)qt(ΔM, Δ̂M)

)
(5.31)

In the case of a move type where the dimension of the parameter does not change, we use an

ordinary ratio of densities. A move from a point ΔM to Δ̂M, in a higher dimensional space, is done

by drawing a vector of continuous random variables u, independent of ΔM. The new state Δ̂M is

determined by using an invertible deterministic function of ΔM and u, f(ΔM,u) [21]. On the other

hand, the move from Δ̂M to ΔM can be carried out by using the inverse transformation. Hence, the

move acceptance probability is given by:

pt(ΔM, Δ̂M) = min
(

1,
p(Δ̂M|χ)rm(Δ̂M)

p(ΔM|χ)rm(ΔM)q(u)

∣∣∣∣ ∂ (Δ̂M)

∂ (ΔM,u)

)
(5.32)
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where rm(ΔM) is the probability of choosing move type m when we are in state ΔM, and q(u)

is the density function of u. The last term, ∂ (Δ̂M)
∂ (ΔM ,u) , is the Jacobian function arising from the

variable change from state (ΔM,u) to state Δ̂M. All RJMCMC moves are discussed in the following

subsections.

5.4.1 Gibbs Sampling Move

The first four steps of RJMCMC are based on simple Gibbs sampling where the parameters are

drawn from their known full conditional distributions. The first move is to draw the mixing weight

from a Dirichlet distribution as shown in Eq. 5.21. The second move is based on drawing the

mixture parameters using Eqs. 5.14 and 5.15. According to these equations, it is clear that the full

conditional distributions are complex and are not in well-known forms. So, the use of the Gibbs

sampling is not an appropriate choice in this case. The Metropolis-Hastings (M-H) algorithm

[173, 174] could be used. At sweep t, the mean μ jl can be generated using the M-H algorithm as

follows:

1. Generate μ̂ j ∼ q
(

μ j|μ(t−1)
j

)
and u ∼ U[0,1]

2. Calculate r =
p(μ̂ j|...)q

(
μ(t−1)

j |μ̂ j

)

p(μ(t−1)
j |...)q

(
μ̂ j|μ(t−1)

j

)

3. If r < u then μ t
j else μ t

j = μ(t−1)
j

The most important issue regarding the M-H algorithm, was choosing the candidate generating

density q (proposal distribution), in order to keep the mean within the range of μ ∈ [a,b]. A

popular choice for q is a random walk where the previously simulated parameter (μ jl) value was

used to generate the value μ̂ jl . We propose to generate the new mean, μ(t)
j , from the inverted beta

I B distribution (w.r.t the mean and variance), where its mean is the previously computed mean

value, μ(t−1)
j , and its variance is a constant value C (we take C = 2.5). The new generated value of

the mean, using the proposal distribution, is:

μ̂ j ∼ I B
(

μ(t−1)
j ,C

)
(5.33)
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For the variance, σ2(t), we have:

1. Generate σ̂2 j ∼ q
(

σ2
j|σ2(t−1)

j

)
and u ∼ U[0,1]

2. Calculate r =
p(σ̂2 j|...)q

(
σ2(t−1)

j |σ̂2 j

)

p(σ2(t−1)
j |...)q

(
σ̂2 j|σ2(t−1)

j

)

3. If r < u then σ2t
j else σ2t

j = σ2(t−1)
j

where the proposal distribution, q, is given by:

σ̂2 j ∼ L N
(

σ2
j
(t−1)

,e2
)

(5.34)

where L N refers to the lognormal distribution with mean log
(

σ2(t−1)
j

)
and variance e2. The

third move is to generate the missing data Zi(1 <= i <= N) from simulated standard uniform

random variables, ui. Zi = j if p(Zi = 1| . . .) + · · ·+ p(Zi = j − 1| . . .) < ui ≤ p(Zi = 1| . . .) +
. . . p(Zi = j| . . .). Finally, the Gibbs sampling was used to update the hyperparameters ε,ζ ,ϑ , and

ϖ given by Eqs. 5.25, 5.26, 5.29, and 5.30, respectively.

5.4.2 Split and Combine Moves

In move (5), we made a random choice between attempting to split or combine, with probabilities

aM and bM, where bM = 1− aM, respectively. It is clear that aMmax = 0 and b1 = 0, otherwise we

choose aM = bM = 0.5 for M = 1, . . . ,Mmax, where Mmax is the maximum value allowed for M. The

combined move was constructed by randomly choosing a pair of components ( j1, j2), which must

be adjacent. In other words, they must meet the following constraint: μ j1 < μ j2, when there is no

other μ j in the interval [μ j1,μ j2]. Then, these two components can be merged and M is reduced

by 1. We denote the newly formed component as j∗, which contains all the observations that

were allocated to j1 and j2. Finally, we generated the parameter values for the new components

p j∗,μ j∗,σ2
j∗ by preserving the zeroth, first, and second moments, which are calculated as follows:

p j∗ = p j1 + p j2 (5.35)
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p j∗μ j∗ = p j1μ j1 + p j2μ j2 (5.36)

p j∗(μ j∗+σ2
j∗) = p j1(μ j1 +σ2

j1)+ p j2(μ j2 +σ2
j2) (5.37)

For the split type move, a component j∗ was chosen randomly and split into the two components j1

and j2 with new parameters p j1,μ j1, σ2
j1 and parameters p j2,μ j2, σ2

j2, respectively. This confirms

Eqs. 5.35, 5.36, and 5.37. Since there are 3 degrees of freedom in achieving this, we need to

generate, from a beta distribution, a three-dimensional random vector u = [u1,u2,u3] in order to

define the new parameters [21]. We set:

p j1 = w j∗u1 p j1 = w j∗(1−u1) (5.38)

μ j1 = μ j∗ −u2
√

σ2
j∗

p j2

p j1

μ j2 = μ j∗+u2
√

σ2
j∗

p j1

p j2
(5.39)

σ2
j1 = u3(1−u2

2)σ
2
j∗

p j∗
p j1

σ2
j2 = (1−u3)(1−u2

2)σ
2
j∗

p j∗
p j2

(5.40)

For the newly generated components, the adjacency condition defined in the combine move must

be checked in order to make sure whether the split/combine is reversible or not. If this condition is

rejected, then the split/combine move is not reversible and is rejected. Otherwise, the split move is

accepted and we reallocate the j∗ into the new components j1 and j2 using Eq. ( 5.10). According

to Eq. 5.32, the acceptance probability R for the split and combine move types can be calculated

using the following equation:

R =
P(Z,P,M+1,ε,ζ ,ϖ ,ϑ |X)bM+1

p(Z,P,M,ε,ζ ,ϖ ,ϑ |X)aMPallocq(u)

∣∣∣∣ ∂ Δ̂M

∂ (ΔM,u)

∣∣∣∣ (5.41)

78



where the acceptance probability for the split is min(1,R), and for the combine move, is min(1,R−1).

Palloc is the probability of making this particular allocation to components j1 and j2:

Palloc = ∏
Zi= j1

p j1 p(xi|μ j1,σ2
j1)

p j1 p(xi|μ j1,σ2
j1)+ p j2 p(xi|μ j2,σ2

j2)

× ∏
Zi= j2

p j2 p(xi|μ j2,σ2
j2)

p j1 p(xi|μ j1,σ2
j1)+ p j2 p(xi|μ j2,σ2

j2)
(5.42)

Also,
∣∣∣∣ ∂ Δ̂M

∂ (ΔM ,u)

∣∣∣∣ is the Jacobian of the transformation from the state (w j∗,μ j∗,σ2
j∗

,u1,u2,u3) to state (w j1,μ j1,σ2
j1,w j2,μ j2,σ2

j2):

∣∣∣∣ ∂ Δ̂M

∂ (ΔM,u)

∣∣∣∣= |μ j1 −μ j2|p j∗σ2
j1σ2

j2

u2(1−u2
2)u3(1−u3)σ2

j∗
(5.43)

5.4.3 Birth and Death Moves

In Death/Birth moves, we first made a random choice between birth and death with the same

am and bM as above. If the birth move was chosen, the values of the parameters of the new

components (μ j∗,σ2
j∗) were derived from the associated prior distributions, given by Eqs. 5.17 and

5.18, respectively. Also, the mixing weight of the new component was drawn from:

p j∗ ∼ Be(1,M) (5.44)

In order to keep the constraint ∑M
j=1 p j + p j∗ = 1 true, we re-scale the previous value of p j, j =

1 : M, by multiplying them with 1− p j∗. The acceptance probabilities for the birth and death are

min1,R and min1,R−1, respectively, where:

R =
p(M+1)

p(M)

1
B(δ ,Mδ )

pδ−1
j∗ (1− p j∗)N+Mδ−M(M+1)

aM+1

M0bM

1
p(p j∗)

(1− pM
j∗) (5.45)

where B is a beta function and M0 is the number of empty components before the birth.
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5.5 Experimental Results

In this section, experiments were carried out in order to evaluate the benefits of using the pro-

posed model. The simulations were conducted on both synthetic and real data extracted from a

challenging application, namely, object detection.

5.5.1 Synthetic Data

This section is dedicated to the generation of datasets. Its main aim is to investigate the ability of

our algorithm to estimate the mixture parameters and to select the number of clusters correctly. We

generated three different multidimensional datasets (3-dimensional) from the GID mixture model.

The first dataset was generated from a 2-component model. The second one was generated from

a 3-component mixture. The third dataset was generated from a 4-component model. Table 5.1

shows the real and estimated parameters obtained for these datasets. On the other hand, Table 5.2

Table 5.1: Real parameters used to generate the synthetic data sets (n j represents the number of
elements in cluster j) and the estimated ones using our RJMCMC algorithm.

Real Parameters Estimated Parameters
Dataset j μ j σ2

j p j μ̂ j σ̂2
j p̂ j

1 1.00 2.00 0.50 0.98 2.10 0.45
Dataset1 2 7.00 4.00 0.50 7.50 6.00 0.55

1 1.00 1.25 0.33 0.98 1.56 0.26
Dataset2 2 4.50 2.00 0.33 4.57 3.62 0.34

3 9.00 3.30 0.33 9.37 5.17 0.40
1 1.00 1.25 0.25 0.86 1.21 0.21

Dataset3 2 3.50 2.50 0.25 2.21 6.7 0.24
3 6.50 1.67 0.25 2.24 6.80 0.25
4 12.00 11.11 0.25 12.07 14.06 0.30

shows the estimated posterior probabilities for the considered number of components for the three

datasets, as well as the percentage of accepted split-combine and birth-death moves. According

to this table, it is clear that our algorithm predicts the correct number of components each time.

Figure 5.1 shows how the algorithm moves between the components, which is shown by plotting
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the number of components as a function of the number of sweeps. According to the obtained

results, we can conclude that our algorithm has an excellent learning ability.

Table 5.2: The estimated posterior probabilities of the number of components given the data for
the three datasets

Datasets N p(k|y)
Dataset 1 200 p(1|y) = 0.0017 p(2|y)= 0.9123 p(3|y) = 0.0697

p(4|y) = 0.0113 p(5|y) = 0.0050 p(> 5|y) = 0.0

Dataset 2 300 p(1|y) = 0.0003 p(2|y) = 0.1903 p(3|y)=0.4703

p(4|y) = 0.2948 p(5|y) = 0.1420 p(> 5|y) = 0.0929

Dataset 3 400 p(1|y) = 0.0 p(2|y) = 0.0 p(3|y) = 0.2657
p(4|y)=0.4180 p(5|y) = 0.2190 p(> 5|y) = 0.0973

5.5.2 Object Detection

Advances in multimedia technology has caused an exponential increase in the number of images

generated daily. This huge amount of visual data needs to be efficiently organized and indexed. To

solve this problem, a lot of different approaches have been developed [175, 176]. Object detection

is an important and challenging problem related to content-based image indexing and retrieval. It

has several applications such as video surveillance and object recognition. In this section, we shall

focus on the application of our model to pedestrian and car detection problems.

An important step in object detection is the extraction of low level features to describe the images.

Many visual descriptors have been proposed in the past (see, for instance, [177]). Here, we use the

local Histogram of Oriented Gradient (HOG) descriptor, which generates positive features and has

been shown to be efficient and convenient for different object detection tasks [83]. Experiments

were conducted by considering three windows for the HOG descriptor. This allowed each image to

be represented by an 81-dimensional vector of features. The experimental results were conducted

by considering our proposed GID mixture model using the RJMCMC-based learning model, (GID-

RJMCMC). The performance obtained by the proposed model (GIDM-RJMCMC) was compared

with the GID and GMM mixture models using the EM-based learning [178] (GIDFS/GMMFS).
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(a) Dataset 1

(b) Dataset 2

(c) Dataset 3

Figure 5.1: The number of components vs. the number of sweeps for (a) Dataset 1, (b) Dataset 2,
and (c) Dataset 3.
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This was performed both without and with feature selection (GIDnoFS/GMMnoFS), as developed

in [44].

Car Detection

The dataset that we consider here contains images of car side views which were collected at UIUC

1. The dataset consists of 1050 images (550 car and 500 non-car images). Figures 5.2 and 5.3 show

examples of images from this dataset. The first 100 images from both car and non-car sets were

used for training and the rest for testing.

Figure 5.2: Examples of car images.

Figure 5.3: Examples of non-car images.

Table 5.3 shows the detection accuracies using GIDM-RJMCMC, Gaussian, and GID mix-

tures learned via EM with and without feature selection. According to this table, it is clear that the

GIDM-RJMCMC outperforms the other tested approaches.

1http://cogcomp.cs.illinois.edu/Data/Car/
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Table 5.3: Car detection accuracy when different approaches were considered.

Model Accuracy (%)

GIDM-RJMCMC 85.88%

GIDFS 84.59%

GIDnoFS 80.76%

GMMFS 74.00%

GMMnoFS 72.77%

Human Detection

Another challenging task, that we considered here, is human detection. We considered the INRIA

Static Person dataset 2 to evaluate the proposed model. The data consists of both positive (con-

taining humans) and negative examples (images that do not contain humans). 400 images were

used for training (200 positive examples and 200 negative ones). On the other hand, the testing set

consisted of 741 images, 288 of them were positive examples and the remaining 453 were nega-

tive examples. Figures 5.4 and 5.5 show samples of positive and negative examples, respectively.

Table 5.4 shows the classification accuracy for the INRIA dataset. According to this table, it

Figure 5.4: Examples of images containing humans.

is clear that the proposed model GIDM-RJMCMC outperforms GIDFS, GIDnoFS, GMMFS, and

GMMnoFS. On the other hand, for model selection, and for both datasets (car and human), our

algorithm successfully determined the correct number of components as shown in Table 5.5.

2http://pascal.inrialpes.fr/data/human/
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Figure 5.5: Examples of negative images used for human detection task.

Model Accuracy (%)

GIDM-RJMCMC 72.60%

GIDFS 68.55%

GIDnoFS 65.56%

GMMFS 57.35%

GMMnoFS 53.00%

Table 5.4: Human detection accuracies when different approaches were considered.

Datasets p(k|y)
Car Detection p(1|y) = 0.1361 p(2|y)= 0.7810 p(3|y) = 0.0571
Dataset p(4|y) = 0.0223 p(5|y) = 0.0027 p(> 5|y) = 0.0007

Human Detection p(1|y) = 0.4049 p(2|y)=0.5660 p(3|y) = 0.0291
Dataset p(4|y) = 0.0000 p(5|y) = 0.0000 p(> 5|y) = 0.0000

Table 5.5: The estimated posterior probabilities of the number of components for the car and
human datasets.

5.6 Summary

In this chapter, a fully Bayesian mixture of GID distributions were developed using RJMCMC

methods. The GID distribution has a very nice property which allows for the representation of

GID samples in a transformed space in which features are independent and follow the inverted

beta distributions. In this chapter, the inverted beta distribution was represented by its mean and

variance. A fully Bayesian estimation was used to estimate the mean and variance and the related

hyperparameters. In general, the framework proposed was based on RJMCMC, which is capable

of jumping between the parameter subspace corresponding to different numbers of mixture com-

ponents. Moreover, we were able to simultaneously estimate the model parameters and the number
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of components. In order to demonstrate the merits of the proposed model, generated datasets com-

posed of two, three, and four components, as well as the real life problem of object detection, were

used.
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Chapter 6
Conclusion and Future Work

Clustering plays a crucial role in various data mining and knowledge discovery applications. The

majority of existing clustering algorithms assume that clusters follow Gaussian distributions. This

assumption is not practical in the majority of signal and image processing problems. This is the

case of positive data that are naturally appear in several real life applications. The inverted Dirichlet

distribution has been proposed for modeling such data. However, it suffers from major drawbacks

such as its very restrictive, strictly positive covariance structure. In this thesis, we considered

applying the generalized inverted Dirichlet in order to overcome this limitation. Our approach

achieved the clustering by representing the data using a mixture model of GID distributions. In

fact, based on this distribution, throughout this thesis, we have developed different estimation

approaches.

Feature selection algorithms, which are based on mixture models, assume that the data in

each component follow Gaussian distribution. Unlike these approaches, in Chapter 2, we proposed

an unsupervised feature selection robust to outliers. The developed statistical framework in Chap-

ter 2 was based on the finite GID mixture model and learned via the minimization of a message

length objective by deploying an EM framework. We have presented an algorithm in which the

problems of model selection, determining the relevant features, and outlier rejection were tackled

simultaneously. The great advantage of our learning approach was that it allowed a compromise

between goodness of fit and a model‘s complexity. Empirical results which involve generated data,
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as well as real applications concerning visual scenes and objects classification, show that the pro-

posed approach was promising. In terms of feature selection, our model not only maintained the

accuracy, but improved it. Also, it showed the influence of outlier observations on the performance

of the developed framework.

Finite mixture modeling addressed two problems: parameter estimation and selection of the

number of clusters. Computational approaches like EM [80] suffer from several drawbacks [91].

Most of them are optimization drawbacks such as the appearance of local maxima and singularities.

Moreover, in the case of high dimensional data, it is hard to obtain a reliable estimation, which is

the capability to predict the densities at new data points [68]. Given a proper prior, a Bayesian

approach to the mixture estimation problem always provides estimations which can be written

explicitly for conjugate priors [122]. In order to overcome the problems related to EM-based

estimation, we developed and evaluated a comprehensive framework for the Bayesian learning of

finite GID mixture models in Chapter 3. The Bayesian learning was performed by considering

the Gibbs sampling, with the Metropolis-Hastings algorithm, which allows obtaining Monte Carlo

estimates from the model’s posterior quantities of interest. We addressed various aspects of the

inference problem, including the choice of the priors and the selection of optimal models from

the simulation outputs using the BIC criterion. The proposed approach has been validated using

two problems that have received widespread research interest, namely, object classification and

forgery detection. According to the obtained results, we can first point out that it is important to

pay attention to both modeling assumptions and flexibility. Second, we can conclude that choosing

a single model, as done in the case of the ML approach, may be not satisfactory. A better approach

is to consider a set of plausible models built from the observed data and from prior knowledge that

we need to select.

In Chapter 4, a statistical approach representing the data using an infinite mixture model of

GID distributions which used a feature weighting component, was introduced. Feature selection

was introduced in order to remove irrelevant features that may compromise the clustering pro-

cess. Our simulations, based on the challenging problem of image categorization, have shown the
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efficiency of the proposed model.

In Chapter 5 we were able to establish a reversible jump MCMC algorithm for a full Bayesian

analysis of Generalized Inverted Dirichlet mixtures. The proposed learning approach allowed for

the simultaneous model selection and parameter estimations in one single algorithm. We presented

experimental results using synthetic data and a challenging real-life application, namely, object

detection. According to the obtained results, it is clear that the proposed approach is promising.

Although good results have been obtained by using the Bayesian inference, its computational

(proposed in Chapter 3) cost is high. As a deterministic alternative to fully Bayesian learning, some

researchers have turned their attention to variational learning. Thus, a potential future work could

be devoted to the development of a variational inference framework for this model as described

in [179]. Future work could also be devoted to the extension of the proposed framework in order to

handle semi-supervised learning, which has been shown to offer significant advantages in several

applications [180]. Several other directions present themselves for future efforts. Indeed, future

work could be devoted to the application of the proposed work to problems where the rare events

(i.e. outliers) are more interesting than inliers. Two such problems are the detection of credit card

fraud and the monitoring of criminal activities. Moreover, the introduction of feature selection, as

shown in [44], to a GID based on RJMCMC methodology, may improve the learning results.
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Appendix A
We know that the posterior probability is p( j|�Yi) ∝ p j p(�Yi|�θ j), so every vector�Yi is assigned to its

cluster j, such that j = argmax j p( j|�Yi) = argmax j p j p(�Yi|�θ j). For GID, it is possible to compute

the posterior probability by examining the form of the product in Equation 2.7 by considering each

feature separately. So if we want to consider the feature D, in Equation 2.7, it becomes, for a

specific vector�Yi = (Y1,Y2, ...,YD):

1
B(θ jD)

Y α jD−1
D (1+

D

∑
l=1

Yl)
−β jD−α jD+β j(D+1)

D−1

∏
l=1

1
B(θ jl)

Y
α jl−1
D (1+

l

∑
k=1

Yk)
−β jl−α jl+β j(l+1) (A.1)

where 1
B(θ jl)

=
Γ(α jd+β jd)

Γ(α jd)Γ(β jd)
. As β j(D+1) = 0 , Equ. A.1 becomes :

1
B(θ jD)

Y α jD−1
D (1+

D

∑
l=1

Yl)
−β jD−α jD

D−1

∏
l=1

1
B(θ jl)

Y
α jl−1
D (1+

l

∑
k=1

Yk)
−β jl−α jl+β j(l+1) (A.2)

by multiplying equation A.2 by the following constant:(1+∑D−1
l=1 Yl)

β jD+α jD−α jD+1 =(1+∑D−1
l=1 Yl)

β jD+1.

Equation A.2 becomes proportional to:

1
B(θ jD)

(
YD

1+∑D−1
l=1 Yl

)α jD−1(1+
YD

1+∑D−1
l=1 Yl

)−β jD−α jD

×
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∏
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B(θ jl)

Y
α jl−1
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l
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Yk)
−β jl−α jl+β j(l+1)

(A.3)
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We know that:

1
B(θ jD)

(
YD

1+∑D−1
l=1 Yl

)α jD−1(1+
YD

1+∑D−1
l=1 Yl

)−β jD−α jD = pib(
YD

1+∑D−1
l=1 Yl

|θ jD) (A.4)

so equation A.2 becomes:

pib(
YD

1+∑D−1
l=1 Yl

|θ jD)
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∏
l=1

1
B(θ jl)

Y
α jl−1
D (1+

l

∑
k=1

Yk)
−β jl−α jl+β j(l+1) (A.5)

For every remaining feature l in the product from 1 to D− 1, we multiply Equation A.5 by the

constant (1+∑l−1
k=1Yk)

β jl+α jl−α jl+1(1+∑l
k=1Yk)

−β j(l+1) = (1+∑l−1
k=1Yk)

β jl+1(1+∑l
k=1Yk)

−β j(l+1) .

So equation A.5 will be proportional to: ∏D
l=1 pib(

Yl
1+∑l−1

k=1 Yk
|θ jl), which the first term is pib(Y1|θ jl).

So, we finally have:

p( j|�Yi) ∝ p j p(�Yi|�θ j) ∝ p j pib(Y1|θ jl)
D

∏
l=2

pib(
Yl

1+∑l−1
k=1Yk

|θ jl) (A.6)

111



Appendix B
Here, we show how to derive the message length formula by substituting p(Θ∗∗) and |I(Θ∗∗)| into

Equation 2.15:

MML(M) =
1
2

M+1

∑
j=1

log p j +
1
2

D

∑
l=1

(
log(ρl1)+ log(ρl2)

)
+

c
2
(1+ log

1
12

)− log p(X |Θ∗∗)

+
1
2

[
M logN −

M+1

∑
j=1

log p j +
D

∑
l=1

(logN − logρl1 − logρl2)

]

+
1
2

[ M

∑
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D

∑
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(
2log(N p jρl1)+ log |Ψ′(α jl)Ψ′(β jl)−Ψ′(α jl +β jl)(Ψ′(α jl)Ψ′(β jl))|)
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D

∑
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+
D

∑
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(
logαλ |l + logβλ |l + log(Âλl −αλ |l −βλ |l)
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)
+

c
2
(1+ log

1
12

)− log p(X |Θ∗∗)

(B.1)
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Appendix C
In this appendix, we show how to obtain the update formulae for ρl1 = ρl and ρl2 = (1−ρl). By

computing the derivative of L(Θ∗∗,X ) w.r.t ρl1 , we obtain:

∂L(Θ∗∗,X )

∂ρl1
=

∂ log p(X |Θ∗∗)
∂ρl1

− M
ρl1

−Λ2 = 0

=

∂ ∑N
i=1 log

(
∑M

j=1 p j ∏D
l=1

[
ρl1 pib(Xil|θ jl)+ρl2 pib(Xil|λl)

]
+ pM+1U(�Xi)

)

∂ρl1

− M
ρl1

−Λ2 = 0

=
N

∑
i=1

M

∑
j=1

p( j|�Xi)

(
∂
[
ρl1 pib(Xil|θ jl)+ρl2 pib(Xil|λl)

]
∂ρl1

)
− M

ρl1
−Λ2 = 0

=
N

∑
i=1

M

∑
j=1

p( j|�Xi)

(
pib(Xil|θ jl)

ρl1 pib(Xil|θ jl)+ρl2 pib(Xil|λl)

)
− M

ρl1
−Λ2 = 0

(C.1)

Multiplying by ρl1 , we obtain:

N

∑
i=1

M

∑
j=1

ρl1 p( j|�Xi)

(
pib(Xil|θ jl)

ρl1 pib(Xil|θ jl)+ρl2 pib(Xil|λl)

)
−M−Λ2ρl1 = 0

By computing the derivative of L(Θ∗∗,X ) w.r.t ρl2 , we obtain:

N

∑
i=1

M

∑
j=1

p( j|�Xi)

(
pib(Xil|λl)

ρl1 pib(Xil|θ jl)+ρl2 pib(Xil|λl)

)
− 1

ρl2
−Λ2 = 0 (C.2)
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Multiplying by ρl2 , we obtain:

N

∑
i=1

M

∑
j=1

ρl2 p( j|�Xi)

(
pib(Xil|λl)

ρl1 pib(Xil|θ jl)+ρl2 pib(Xil|λl)

)
−1−ρl2Λ2 = 0 (C.3)

By summing Eqs. C.2 and C.3, we obtain:

N

∑
i=1

M

∑
j=1

p( j|�Xi)−M−1 = N −M−1 = Λ2 (C.4)

then, according to Eq. C.2, we have:

ρl1 =
∑N

i=1 ∑M
j=1 p( j|�Xi)

ρl1 pib(Xil |θ jl)

ρl1 pib(Xil |θ jl)+ρl2 pib(Xil |λl)
−M

N −M−1
(C.5)

ρl2 =
∑N

i=1 ∑M
j=1 p( j|�Xi)

ρl2 pib(Xil |λl)

ρl1 pib(Xil |θ jl)+ρl2 pib(Xil |λl)
−1

N −M−1
(C.6)

It is noteworthy that both previous equations can be summarized as follows. We have ρl1 +ρl2 = 1,

thus 1
ρl1

= 1+
ρl2
ρl1

, then since ρl1 and ρl2 must be positive, we obtain:

1
ρl1

= 1+
max(∑N

i=1 ∑M
j=1 p( j|�Xi)

ρl2 pib(Xil |λl)

ρl1 pib(Xil |θ jl)+ρl2 pib(Xil |λl)
−1,0)

max(∑N
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j=1 p( j|�Xi)
ρl1 pib(Xil |θ jl)

ρl1 pib(Xil |θ jl)+ρl2 pib(Xil |λl)
−M,0)

(C.7)
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Appendix D
The first derivatives of L(Θ∗∗,X ) w.r.t θ jl are given by:

∂L(Θ∗∗,X )

∂α jl
=

N

∑
i=1

p( j|�Xi)

( ρl1
∂ pIBeta(Xil |θ jl)

∂α jl

ρl1 pIBeta(Xil|θ jl)+ρl2 pIBeta(Xil|λl)

)
(D.1)

where ∂ pIBeta(Xil |θ jl)

∂α jl
= pIBeta(Xil|θ jl)

[
Ψ(α jl +β jl)−Ψ(α jl)+ logXil − log(1+Xil)

]
. Moreover,
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=

N

∑
i=1

p( j|�Xi)

( ρl1
∂ pIBeta(Xil |θ jl)

∂β jl

ρl1 pIBeta(Xil|θ jl)+ρl2 pIBeta(Xil|λl)

)
(D.2)

where ∂ pIBeta(Xil |θ jl)

∂β jl
= pIBeta(Xil|θ jl)

[
Ψ(α jl +β jl)−Ψ(α jl)− log(1+Xil)

]
. The second derivative

w.r.t α jl is given by:
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] (D.3)

where:

∂ 2 pIBeta(Xil|θ jl)

∂ 2α jl
=

∂ pIBeta(Xil|θ jl)

∂α jl

[
Ψ(α jl +β jl)−Ψ(α jl)− log(1+Xil)

]

+ pIBeta(Xil|θ jl)
[
Ψ′(α jl +β jl)−Ψ′(α jl)

] (D.4)

116



The same development can be straightforwardly followed for the second derivative w.r.t β jl . As

for the mixed derivative, it is given by the following:

∂ 2L(Θ∗∗,X )

∂α jl∂β jl
=

∂ 2L(Θ∗∗,X )

∂β jl∂α jl

=
N

∑
i=1

ρl1 p( j|�Xi)

[ ∂ 2 pIBeta(Xil |θ jl)

∂α jlβ jl

ρl1 pIBeta(Xil|θ jl)+ρl2 pIBeta(Xil|λl)

−
ρl1

∂ pIBeta(Xil |θ jl)

∂α jl

∂ pIBeta(Xil |θ jl)

∂β jl(
ρl1 pIBeta(Xil|θ jl)+ρl2 pIBeta(Xil|λl)

)2

]
(D.5)

where

∂ 2 pIBeta(Xil|θ jl)

∂α jl∂β jl
=

∂ pIBeta(Xil|θ jl)

∂β jl

[
Ψ(α jl +β jl)

−Ψ(α jl)− log(1+Xil)
]
+ pIBeta(Xil|θ jl)

[
Ψ(α jl +β jl)

] (D.6)

Similarly, we can obtain the derivatives w.r.t λl .
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Appendix E

p(�X |�ξk) =
D

∏
d=1

Γ(αkd +βkd)

Γ(αkd)Γ(βkd)

Xαkd−1
d

(1+∑d
l=1 Xl)γkd

= exp
[ D

∑
d=1

log
(
Γ(αkd +βkd)

)− log
(
Γ(αkd)

)

− log
(
Γ(βkd)

)
+(αkd −1) log(Xd)− γkd log(1+

d

∑
l=1

Xl)

]

= exp
[ D

∑
d=1

(
log

(
Γ(αkd +βkd)

)− log
(
Γ(αkd)

)− log
(
Γ(βkd)

))

+
D

∑
d=1

(
(αkd −1) log(Xd)− γkd log(1+

d

∑
l=1

Xl)

)]

= exp
[ D

∑
d=1

(
log

(
Γ(αkd +βkd)

)− log
(
Γ(αkd)

)− log
(
Γ(βkd)

))

+
D

∑
d=1

(
(αkd −1) log(Xd)

)
−

2D−1

∑
d=D+1

(
(βkd−D +αkd−D −βkd−D+1) log(1+

d−l

∑
l=1

Xl)

)

− (αkD +βkD) log(1+
D

∑
l=1

Xl)

]

(E.1)
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Appendix F

p(ξk|Z ,X ) ∝ p(ξk) ∏
Zik=1

p(�Xi|ξk)

∝ exp
[

κ
D

∑
d=1

(
log

(
Γ(αkd +βkd)

)− log
(
Γ(αkd)

)− log
(
Γ(βkd)

))
+

D

∑
d=1

ρdαkd

+
D

∑
d=1

ρd+Dγkd

]
×
( D

∏
d=1

Γ(αkd +βkd)

Γ(αkd)Γ(βkd)

)nk

∏
Zik=1

( D

∏
d=1

Xαkd−1
id

(1+∑d
l=1 Xil)γkd

)

∝ exp
[ D

∑
d=1

ρdαkd +
D

∑
d=1

ρd+Dγkd +κ
D

∑
d=1

(
log

(
Γ(αkd +βkd)

)

− log
(
Γ(αkd)

)− log
(
Γ(βkd)

))]× exp
[

nk

D

∑
d=1

(
log

(
Γ(αkd +βkd)

)

− log
(
Γ(αkd)

)− log
(
Γ(βkd)

))
+ ∑

Zik=1

[ D

∑
d=1

(
(αkd −1) log(Xid)

)

−
D

∑
d=1

(
γkd log(1+

d

∑
l=1

Xil)

)]]

∝ exp
[ D

∑
d=1

αkd

(
ρd + ∑

Zik=1
log(Xid)

)
+

D

∑
d=1

γkd

(
ρd+D − ∑

Zik=1
log(1+

d

∑
l=1

Xil)

)

+(κ +nk)
D

∑
d=1

(
log

(
Γ(αkd +βkd)

)− log
(
Γ(αkd)

)− log
(
Γ(βkd)

))]

(F.1)
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