
Probabilistic and Epistemic Model Checking for

Multi-Agent Systems

Wei Wan

A Thesis

In

The Department

Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University

Montréal, Québec, Canada

October 2014

c© Wei Wan, 2014

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Ms. Wei Wan

Entitled: Probabilistic and Epistemic Model Checking for Multi-

Agent Systems

and submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. TBD (Chair)

Dr. Nadia Tawbi

Dr. Olga Ormandjieva

Dr. Roch Glitho

Dr. Abdelwahab Hamou-Lhadj

Dr. Jamal Bentahar

Dr. Abdessamad Ben Hamza

Approved by

Chair of the ECE Department

2014

Dean of Engineering

Abstract

Probabilistic and Epistemic Model Checking for Multi-Agent Systems

Wei Wan

Doctor of Philosophy (Computer Engineering)

Concordia University, 2014

Model checking is a formal technique widely used to verify security and commu-

nication protocols in epistemic multi-agent systems against given properties. Qualita-

tive properties such as safety and liveliness have been widely analyzed in the literature.

However, systems also have quantitative and uncertain (i.e., probabilistic) proper-

ties such as degree of reliability and reachability, which still need further attention

from the model checking perspective. In this dissertation, we analyze such properties

and present a new method for probabilistic model checking of epistemic multi-agent

systems specified by a new probabilistic-epistemic logic PCTLK. We model multi-

agent systems distributed knowledge bases using probabilistic interpreted systems. We

also define transformations from those interpreted systems into discrete-time Markov

chains and from PCTLK formulae to PCTL formulae, an existing extension of CTL

with probabilities. By so doing, we are able to convert the PCTLK model checking

problem into the PCTL one. We address the problem of verifying probabilistic prop-

erties and epistemic properties in concurrent probabilistic systems as well. We then

prove that model checking a formula of PCTLK in concurrent probabilistic systems is

PSPACE-complete. Furthermore, we represent models associated with PCTLK logic

symbolically with Multi-Terminal Binary Decision Diagrams (MTBDDs).

Finally, we make use of PRISM, the model checker of PCTL without adding

new computation cost. Dining cryptographers protocol is implemented to show the

applicability of the proposed technique along with performance analysis and compar-

ison in terms of execution time and state space scalability with MCK, an existing

epistemic-probabilistic model checker, and MCMAS, a model checker for multi-agent

systems. Another example, NetBill protocol, is also implemented with PRISM to

verify probabilistic epistemic properties and to evaluate the complexity of this verifi-

cation.

iii

To My Husband and all My Family Members

iv

Acknowledgments

I take this opportunity to express my profound gratitude and deep regard to my su-

pervisors Dr. Jamal Bentahar and Dr. Abdessamad Ben Hamza for their exemplary

guidance, monitoring, constant encouragement, enduring patience, and financial sup-

port throughout the course of this thesis work. Everything that I have learned from

them shall carry me a long way in my journey of life into which I am about to embark.

I am grateful for the opportunity to study in Electrical and Computer Engineering

(ECE), which has provided an excellent environment in which to cross-fertilize re-

search ideas.

I thank all my co-authors, discussion partners and all those who have commented

on the papers that I have written as a basis for this work. I would like to thank all of

the people in my laboratory for their discussions on knowledge representation, model

checking techniques, logics, and programming. I would also like to thank all the fac-

ulty and staff at ECE and CIISE for their assistance during my studies.

I am most fortunate to have loving family members. I dedicate this thesis to

them for their enthusiasm and expectations of me. Thank you Bad, Mom, my sister

Hong, my father-in-law Dr. Stan Shapiro, my brother Jun, Pam, Jun Wang . Sincere

appreciation is extended to my mother-in-law, Dr. Anna-Beth Doyle for her immense

help to me in editing my papers and thesis. Special thanks is extended to my beloved

husband Mark for helping me face my difficulties, improve my vocabulary, and for his

enduring support, and endless love.

Special thanks to my friends (in alphabetical order), without them, my student

life would not have been so much fun: Dongbai, Helen, Keichun, Li, Ming, Peijun,

Qingwei, Tao, Wei Wu.

Last but not least, I would like to thank Fonds de recherche nature et technolo-

gies (FQRNT) for its financial support which has helped me sustain my research.

v

Table of Contents

List of Tables . ix

List of Figures . x

List of Acronyms . xii

1 Introduction 1

1.1 Research Scope . 1

1.2 Motivations . 4

1.3 Research Questions . 7

1.4 Proposed Solutions . 8

1.5 Methodology . 9

1.6 Layout of This Dissertation . 11

2 Background and Literature Review 13

2.1 Probabilistic Models . 13

2.2 Epistemic Models . 18

2.3 Computation Tree Logic of Knowledge (CTLK) 20

2.4 Probabilistic Temporal Logic . 21

2.5 Model Checking Algorithms in MAS 25

2.5.1 Automata-Based Approaches 26

2.5.2 Symbolic Model Checking . 29

2.5.3 SAT-Based Model Checking Algorithms 31

2.5.4 Probabilistic Model Checking Algorithms 33

2.6 Model Checking Tools . 35

3 Related Work 40

3.1 Models . 40

vi

3.2 Logics . 43

3.3 Model Checking Approaches . 49

4 Probabilistic Computation Tree Logic of Knowledge 52

4.1 Probabilistic Interpreted Systems . 52

4.2 Epistemic-Probabilistic Logic . 55

4.2.1 Syntax of PCTLK . 56

4.2.2 PCTLK Semantics for DTMC 58

4.2.3 Properties of Probabilistic Knowledge 65

4.3 Model Checking Technique . 68

4.3.1 Translation of MPIS Models . 69

4.3.2 Reducing PCTLK to PCTL . 74

4.4 Case Study . 77

4.4.1 Protocol Description . 78

4.4.2 Protocol Encoding . 79

4.4.3 Experimental Results . 81

4.4.4 Comparison with Existing Work 85

5 Model Checking Knowledge in Concurrent Probabilistic Systems 91

5.1 Concurrent Probabilistic Systems . 92

5.2 Model Checking PCTLK in Concurrent Systems 94

5.2.1 Models Reduction . 95

5.2.2 Formula Reduction . 98

5.3 Complexity Analysis . 102

5.3.1 Time Complexity . 103

5.3.2 Space Complexity . 105

5.4 Symbolic Representation with MTBDDs 107

vii

5.4.1 Introduction to MTBDDs . 107

5.4.2 MTBDDs Model Representation 108

5.5 Case Study . 113

5.5.1 Encoding . 114

5.5.2 Experimental Results . 118

6 Conclusions and Future Work 122

6.1 Contributions . 122

6.2 Future Work . 125

Bibliography 127

viii

List of Tables

2.1 CTLK Basic Modalities Definition . 20

2.2 Algorithm for Automata-Based Model Checking 27

2.3 Tableau Rules for CTL∗CA Propositional and Universal Formulae . . . 28

2.4 Algorithm for Basic Idea of CTL Model Checking 32

2.5 Comparison of Model Checkers . 39

4.1 PCTLK to PCTL Transformation Rules 74

4.2 Example of Reduction of The Formula K1(Pr≥0.50((Pr>0.70 © p)Uq)) . 77

4.3 Experimental Results with PRISM . 82

4.4 Examples of Verified Properties for The CDC Protocol with 3 Cryp-

tographers . 84

4.5 Experimental Results with MCK, PRISM and MCMAS 88

5.1 PCTLK to PBTL Transformation Rules 99

5.2 The Function that The MTBDD Represents 112

5.3 Formula Examples . 116

5.4 Experimental Results for Netbill Protocol with PRISM 118

5.5 Verification Results for Formula φ4 . 120

5.6 Percentage of Successful Delivery . 121

ix

List of Figures

1.1 Methodology Overview . 10

2.1 Markov Chains and Markov Decision Processes example 15

2.2 Schematic View of The Model-checking Approach from [6] 30

2.3 OBDD Example for f = x1 ∨ (x2 ∧ x3) 30

2.4 An MTBDD Example Figure 2.1 (a) DTMC model 32

2.5 MCMAS Overview . 35

2.6 PRISM Overview . 39

4.1 Model MPIS . 54

4.2 An Example of MPIS Model . 63

4.3 Another Example of MPIS Model . 64

4.4 Verification Workflow for PCTLK . 69

4.5 (a): MDP MP
IS Model. (b): Scheduler λ1 at State g1 73

4.6 Cheating Cryptographers Protocol (a. Flipping Coins, b. Stating

Outcomes) . 81

4.7 Construction and Execution Time for The CD and CDC Protocols . . . 83

4.8 Verification Results of Some Properties in The CDC Protocol for 3

Cryptographers with Regard to The Cheating Index 85

4.9 Runtime for Verifying The DC Protocol 89

5.1 Structure of PCTLK . 101

5.2 An Example of Probabilistic Interpreted System Model 109

5.3 An MTBDD Encoding Example . 111

5.4 NetBill Protocol Probability Transition (a) Merchant, (b) Customer . . 115

x

5.5 Model Construction Time/Memory Usage 119

5.6 Verification Result of Formula φ4 . 121

5.7 The Probability for a Successful Delivery 121

6.1 Theoretical Contributions . 123

xi

List of Acronyms

ARCTL Action-Restricted Computation Tree Logic

BDD Binary Decision Diagram

BDI Belief-Desire-Intention

CDC Cheating Dining Cryptographers Protcol

CTL Computation Tree Logic

CTLK Computation Tree Logic for Knowledge

CTMC Continues-Time Markov Chain

CSL Continuous Stochastic Logic

DC Dining Cryptographers Protocol

DTMC Discrete-Time Markov Chain

LTL Linear Temporal Logic

MC Markov Chain

MDP Markov Decision Process

MTBDD Multi-Terminal Binary Decision Diagram

OBDD Ordered Binary Decision Diagram

PCTL Probabilistic Computation Tree Logic

PCTLK Probabilistic Computation Tree Logic of Knowledge

xii

Chapter 1

Introduction

In this chapter, we explain what initiated our interest in probabilistic and epistemic

model checking in Multi-agent systems (MAS). We also specify research problems

under consideration, propose solutions, and present the structure of this dissertation.

1.1 Research Scope

Agents are autonomous entities with reactive, pro-active, and rational properties.

MAS are comprised of a set of intelligent agents interacting with each other to solve

problems that are difficult or impossible for an individual agent. In the past two

decades, MAS have been very successfully implemented as a new paradigm for Web

services, network security, and distributed systems, amongst others. However, MAS

are complex systems where functional and non-functional properties cannot be checked

easily by simply inspecting the system models. Since it is very expensive to modify

MAS after deployment, it is desirable to have automatic verification methods apriori

checking the correctness of designed systems. Model checking [32] is one of the most

widely used automatic techniques to verify whether or not system design models sat-

isfy given requirements. In model checking, the system to be verified is described as a

1

model of a given logic, while the property to be verified is expressed as a formula in the

same logic. Model checking is a well-designed formal technique allowing the automatic

verification of the models against specific properties that capture the requirements.

Many researchers have proposed a variety of model checking approaches for modeling

and verifying MAS [8, 10, 22, 39, 47, 57, 59, 78, 79, 95, 99]. Three processes for model

checking these systems, namely modeling, specification, and verification, are the main

foci in this dissertation.

Models, i.e., formal description and representation of the structure, behavior,

and object of systems, are used to help us know and understand the subject matter

that they represent. A Kripke structure, one of the most popular models in model

checking, is a finite automaton that represents reachable states and state transitions

in a graph. There are many different formalizations of Kripke structures. Interpreted

systems, one type of formalization of a Kripke structure, is frequently used for defining

the semantics to reason about time and knowledge in MAS. However, a finite automa-

ton cannot express likelihood activities. If there are uncertainties about the system’s

events, a probabilistic counterpart of finite automata, Markov chains, are used to

represent the system models. Markov chains are transition systems with probabilistic

distributions over the transitions. In our research, we focus on interpreted systems

and Markov chains for representing epistemic (i.e., about knowledge) and probabilistic

models.

Specification, a formal method of expression the requirements of a system, is

usually given in some logical formalism. For software systems, specification often

uses temporal logics to assert how the behavior of the system evolves over time.

Temporal logics are often classified into linear or branching according to the underlying

time structure. Linear Temporal Logic (LTL) is a basic linear structure logic while

Computation Tree Logic (CTL) [44] is a basic branching structure. Several specific

2

languages are extensions of the basic propositional language to express epistemic,

probabilistic, and dynamic properties. Examples of those languages are Computation

Tree Logic for Knowledge (CTLK) [72], Probabilistic Computation Tree Logic (PCTL)

[52], Probabilistic Branching Time Logic (PBTL) [7], Continuous Stochastic Logic

(CSL), etc. In this dissertation, we design a new language that can express both

probabilistic and epistemic properties.

Formal verification refers to the algorithms used to verify whether or not system

models satisfy specification properties. For verifying specific properties such as epis-

temic and probabilistic properties, we can either develop dedicated tools, for example

MCK (Model Checking Knowledge) [47] and MCMAS (Model Checking MAS) [78]

for epistemic properties, PRISM (Probabilistic Model Checking) [67] for probabilis-

tic ones, or refine some existing model checking tools to suit the specific properties.

Examples of proposals using the second approach include [105] where the authors pro-

posed an imperative programming language, MABLE, to specify MAS along with a

Belief-Desire-Intention (BDI) logic to express the properties and showed how to verify

this language using SPIN [55]. Similarly, Lomuscio et al. [73] described a reduction

process from model checking CTLK into the problem of verifying Action-Restricted

CTL (ARCTL). The authors extended the NuSMV model checker to verify epis-

temic properties in CTLK. In our research, we focus on refinement of existing model

checking tools by specifying general construct models to represent specific systems.

Therefore, a reduction model checking algorithm is developed for verifying epistemic

and probabilistic properties. Complexity analysis of this algorithm is also included in

this dissertation.

3

1.2 Motivations

Epistemic logic [82] provides a formal language for reasoning about states of knowledge

in Artificial Intelligence (AI), especially in MAS. Epistemic logic is an instance of

multimodal logic that includes temporal modalities and epistemic modalities. The

basic epistemic modality is K, which is used to express “agent a knows that...”,

written as Kaφ, where φ is the content that agent knows. This formula is true if and

only if in all agent a’s possible worlds, the content φ is true. Indeed the epistemic

modal logic is considered as S5n combined with a temporal logic [104] interpreted on

interpreted systems [45]. Epistemic modalities have also been investigated within a

first order logic to reason about knowledge and time in a first order setting [8].

In conventional model checking, the results of verification only focus on the

absolute accuracy of properties in the model being constructed. For example, we

can verify “it is always possible to restart the system after failure”, or in a card game

scenario that “agent 1 knows for sure that agent 2 has a diamond Ace card”. However,

there is uncertain and/or incomplete knowledge to be expressed as well. For instance,

in distributed systems, situations such as “the message will be delivered successfully

with probability of 95%”, or in auction systems that “agent a knows that he only has

70% chance to get the auction item”, or in a card game scenario that “agent b only

knows 80% of the information”. To express these uncertainties, we need logics that

can express quantitative aspects. Knowledge is extremely important for an agent to

make decisions, and these decisions strongly depend on the confidence the agent has

in his knowledge. Knowing a fact for sure and reacting according to it are definitely

different from reacting to the same fact knowing that it holds with 50% probability.

For illustration, if the agent knows that the message will be successfully delivered

with a probability 0.5, then she will probably consider other solutions such as sending

duplicate copies in order to increase the chance of successful delivery. Accounting

4

for stochastic phenomena of epistemic systems and verifying the correctness of such

systems in uncertain environments are key aspects in concrete applications [39, 59]. It

is also important to analyze quantitative properties, such as reliability, responsiveness,

degree of reachability, and degree of persistence (does eventually an event always

hold?). These quantitative properties and uncertainty cannot be expressed in regular

epistemic logics. Therefore, we need to consider probabilistic aspects when modeling

the system to allow providing such estimations by assessing the likelihood of different

events.

Probabilistic logic [52] aims to combine the capacity of probability theory to han-

dle uncertainty with the capacity of logic to express and reason about facts. Several

probabilistic logics [37, 7, 13, 24, 54, 67] have been proposed to specify probabilistic

properties, such as “the system satisfies property φ with probability at least p”. Like

epistemic logic, probabilistic logic is an instance of multimodal logic. Probabilistic

logic usually includes temporal modalities and probabilistic modalities. Probabilis-

tic modalities vary among logics. A probabilistic operator P��p is adopted by many

probabilistic logics, where ��∈ {≤, <,>,≥} and p ∈ [0, 1]. A basic formula for prob-

abilistic logic is of the form P>0.95φ. This formula is true at a given state s if and

only if the probability of all the infinite paths starting from that state and satisfy-

ing φ is greater than 0.95. (for basic notions of measure and probability theory, see

[40]). Nevertheless, as mentioned in previous examples, probabilistic logic cannot ex-

press uncertain/incomplete knowledge. We will explore methods to express uncertain

knowledge in this dissertation.

Using interpreted systems to formalize agents’ models has been useful in repre-

senting, modeling, and verifying epistemic systems [41, 56, 78, 95, 83, 85]. Interpreted

5

systems capture the philosophical foundations of knowledge naturally by using pos-

sible and accessible worlds, agent local states, and system global states. In this for-

malism, an agent obtains his knowledge from the information stored in all equivalent

states of the current local state, which means that the agent cannot distinguish those

states. Thus, an agent knows φ in a given global state if and only if φ is true in all

its global accessible states, in which the local components of that particular agent are

equivalence. Nevertheless, the specification of agents’ uncertainty of knowledge with

interpreted systems is still in the early stages and needs to be further investigated. In

this dissertation, we introduce the new formalism of probabilistic interpreted systems

and use it to express not only certain, but also quantitative and uncertain knowledge.

As a model grows, model checking can face a serious state explosion problem,

which means that the size of the model grows exponentially with the number of

components. One technique to alleviate this problem is symbolic model checking on

Ordered Binary Decision Diagrams (OBDDs). However, OBDDs cannot represent

probabilistic systems. Recently, Multi-Terminal Decision Diagrams (MTBDDs) [30]

have been used successfully to represent probabilistic systems and have been applied in

several probabilistic model checking approaches [37, 26, 70, 103]. MTBDDs have the

same structure as BDDs, except that terminals in MTBDDs can be real numbers other

than 0 and 1. MTBDDs are known to be compact and efficient representations for

sparse matrices [30]. We will explore the issue of representing probabilistic interpreted

systems by MTBDDs data structure in our research in order to apply symbolic model

checking techniques to probabilistic and epistemic logic.

6

1.3 Research Questions

As described above, it is necessary to verify uncertain epistemic properties in MAS.

There are two questions that must be answered in order to check quantitative-epistemic

properties: how to specify measurable epistemic properties and how to represent

models capturing measurable epistemic features? Quantitative knowledge can be

represented using probabilities and MAS can be modeled as a probabilistic Kripke-

like model. Nevertheless, neither interpreted systems that formalize agents’ models

nor Markov chains that describe probabilistic models are able to express uncertain

MAS completely and accurately. The problem of state explosion that exists for non-

probabilistic systems remains a problem when we specify the requirements of uncertain

MAS. In this dissertation, we 1) build a model that captures uncertainty in MAS; 2)

create a new language to express uncertain epistemic properties; and 3) develop a new

technique to verify whether or not probabilistic models satisfy probabilistic-epistemic

properties.

To verify epistemic and probabilistic properties in MAS, the issues we face in-

clude:

1. How can we model uncertainty of the knowledge in MAS in order to formalize

probabilistic (or quantitative) and epistemic properties for future model verifi-

cation?

2. How can we specify probabilistic MAS to formulate systems requirements?

3. What model checking techniques and algorithms can be used to verify epistemic

and probabilistic properties?

4. How can we refine existing model checking tools to verify epistemic and proba-

bilistic models?

7

5. Is the proposed approach decidable? What is the time and space complexity of

this method?

1.4 Proposed Solutions

In this dissertation, we integrate Markov chains structure into interpreted systems to

express probabilistic MAS. To specify the quantitative properties of these systems, a

probabilistic-epistemic logic which combines the temporal logic with epistemic logic

is defined at the probabilistic level by adding the degree of epistemic properties.

Specifically, uncertain knowledge can be represented using probabilities and the MAS

can be modeled as a probabilistic Kripke-like model. We extend interpreted systems

for Discrete-Time Markov Chains (DTMC) MPIS to specify probabilistic MAS. A

new logic that can specify probabilistic and epistemic properties, called Probabilistic

Computation Tree Logic for Knowledge (PCTLK), is introduced. The semantics for

this logic is associated with the model MPIS. Then, we design reduction-based model

checking techniques for probabilistic MAS on PCTLK.

Our proposed research solutions are listed as follows:

1. Extend the conventional formalism of interpreted systems by allowing transi-

tions with probabilities to describe probabilistic MAS. The extended interpreted

systems are Kripke structure models for n agents with probability transitions.

2. Define probabilistic-epistemic temporal logic PCTLK. PCTLK not only allows

probabilistic paths to be accounted for, but also represents uncertainty/quantified

knowledge.

3. Develop model checking techniques for PCTLK. We define equivalence trans-

formations from PCTLK formulae to PCTL formulae to convert the problem of

model checking PCTLK to PCTL.

8

4. Analyze the complexity of PCTLK model checking. We prove that PCTLK

model checking problem in concurrent probabilistic systems is PSPACE-complete

and can be solved in polynomial time in the size of the model and length of the

formula.

5. Represent probabilistic interpreted systems with MTBDDs.

1.5 Methodology

In this dissertation, we put forward probabilistic model checking to verify agents’

uncertain knowledge in MAS. A general overview of our methodology is depicted in

Figure 1.1. To apply our probabilistic model checking for MAS, the first step is to

construct the formal system model and formal specifications. We need to model MAS

in order to describe the behavior and knowledge of agents in a concise and unam-

biguous way; and define probabilistic epistemic model MPIS. Properties should also

be described in a precise and unambiguous manner using probabilistic and epistemic

logic PCTLK. Then the model and properties are transformed into equivalent discrete

time Markov chains and probabilistic computation tree logic PCTL. The second step

is to run the PRISM model checker to check the validity of the properties in the sys-

tem model. The ultimate objective is to analyze the model checking results. There

are then three possible outcomes: positive, negative, or lack of memory.

In the case of positive result, we conclude that the property is satisfied in the

system model. If a negative result is given, either we need to generate a counterexam-

ple and simulate to locate errors; or if the verified property is measurable, we can then

calculate the probability and analyze the uncertainty by comparing the probability

with the required value to locate errors. Then, we can refine the model design and

repeat the verification process until the property is getting satisfied. If the model is

9

Probabilistic MAS System requirements

Formal system model:

Probabilistic epistemic model MPIS

Formal specifications:

Probabilistic-epistemic logic PCTLK

Discrete Time Markov Chains
Probabilistic Computation Tree logic

PCTL

Probabilistic Model Checker:

PRISM

Positive result Negative result

Generated

counterexample

Simulation

Locate error and refine

the model

Out of memory

Reduce the model

Calculate

probability

Analyze uncertainty

System modeling

(Chapter 4)

Property formalizing

(Chapter 4)

Verification phase

(Chapters 4 & 5)

Analysis phase

Satisfied

Figure 1.1: Methodology Overview

10

too large to be verified with the model checker, we need to consider some techniques

that can reduce the system model and repeat the verification process until the size of

the model becomes manageable.

1.6 Layout of This Dissertation

This dissertation is organized as follows. In Chapter 2, we briefly introduce the

relevant background and relevant literature. We show how to model probabilistic

systems and epistemic systems. We describe three kinds of probabilistic models:

discrete-time Markov chains, continuous-time Markov chains, and Markov decision

process along with the formalism of interpreted systems. We also review different

model checking techniques and tools. In Chapter 3, we discuss three areas of related

work: models, logics, and model checking approaches.

Chapter 4 and Chapter 5 present the main outcome of our research project.

Chapter 4 is based on a published paper in Knowledge-based Systems [102]. The

research questions 1 to 4 are answered in this chapter. We explain how we extend

the regular interpreted systems to express probabilistic models and introduce the new

formalism of probabilistic interpreted systems. We define a new logic PCTLK and

state its syntax and semantics. Furthermore we explain how model checking PCTLK

can be reduced to model checking PCTL and implement our approach with PRISM

[66].

Chapter 5 is based on a manuscript [98] submitted to Journal of Computers

and Mathematics with Applications. The answer to research question 5 is given in

this chapter. We review concurrent probabilistic systems and explain how model

checking PCTLK can be reduced to model checking PBTL. The complexity of PCTLK

model checking is analyzed as well. Time complexity over Markov chains and space

11

complexity over concurrent probabilistic systems are proved to be polynomial in the

size of the model and length of the formula. We then explore MTBDD-based symbolic

model representation. We implement our approach using the MTBDD engine of

PRISM and analyze the experimental results.

Finally, Chapter 6 concludes the dissertation. We summarize the main contri-

butions of our research. At the end of this chapter, we list potential directions for

future work.

12

Chapter 2

Background and Literature Review

This chapter presents and discusses the relevant background of probabilistic and epis-

temic model logic in MAS. In Section 2.1, we introduce how Kripke-like Markov chains

are used to specify the probabilistic model. Interpreted systems that are used to ex-

press temporal epistemic models are discussed in Section 2.2. Computation Tree Logic

of Knowledge (CTLK) is presented in Section 2.3. We also discuss two probabilistic

temporal logics PCTL and PBTL in Section 2.4. Then we overview model checking

techniques in Section 2.5 and compare several of the most popular model checkers in

probabilistic or epistemic logic in Section 2.6.

2.1 Probabilistic Models

Probability is used in the design and analysis of an agent to measure the likelihood

that some specific events will occur. In order to model these uncertaint events, mea-

surable features such as probabilities should enrich transition systems. There are

several methods of systems modeling to express probabilistic attributes. One of the

most popular operational probabilistic models is Markov chains [49], named after

Russian mathematician Andrei Markov (1856 -1922). Markov chains are probabilistic

13

finite automata with probability distributions over transitions and are widely used in

modeling probabilistic properties in MAS [38, 39]. There are two types of Markov

chain models: Discrete-Time Markov chains (DTMC) and Continuous-Time Markov

Chains (CTMC). In DTMC, a system is in a given state at each “step”, with the

state changing randomly between steps. Thus, the next state in DTMC is chosen

stochastically or probabilistically. In [6], a DTMC model is defined as follow:

Definition 2.1. Over a set of atomic propositions AP , a model of DTMC can be

expressed as a tuple {S, P , Iinit, L, AP}, where:

• S is a nonempty and finite set of states.

• P : S×S → [0, 1] is the transition probability function, such that for every state

s ∈ S, we have
∑

s′∈S P (s, s′) = 1.

• Iinit : S → [0, 1] is the initial distribution such that for all states s ∈ S,∑
s∈S Iinit(s) = 1.

• L : S → 2AP is a state labeling function.

For mathematics treatment purposes, the initial distribution Iinit can be viewed

as an ordered list of row vectors (Iinit(s))s∈S, in which the value of every row represents

the initial probability from all states in the model. The transition probability function

P : S × S → [0, 1] is represented by the matrix (P(s, t))s,t∈S. The probabilities of

state s to its successors t are shown on the row of the matrix, while the probabilities

of entering state s from state t are shown on the column of the matrix.

Figure 2.1 (a) is a graph example of a DTMC model. S = {s0, s1, s2, s3} is the

set of states. The atomic proposition set is given by AP = {r, f, s}. State labeling

functions are: L(s0) = {∅}, L(s1) = {r}, L(s2) = {s} and L(s3) = {f}. The initial

distribution Iinit and the transition probability function P viewed as a 4 × 4 matrix

are as follows:

14

s0 s1

s2

s3

1

0.9

0.1

1

1

{f}

{s}

{r}

(a)

s0 s1

s2

s3

r1:1

r1:0.9

r1:0.1

r2: 1

r2:1

{f}

{sl}

{r}

(c)

r2:1

s0 s1 s3
s2

3

3/2
{e}

{f}

(b)

3/2 3/2

3 3

Figure 2.1: Markov Chains and Markov Decision Processes example

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 0.9 0.1

0 0 1 0

1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Iinit =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In DTMCs, the progress of time is modeled by discrete time steps, one for each

transition of the model. However, the progress of time needs to be modeled as continue

time in some systems. In CTMC, transition delays are assumed to be modeled by

exponential distributions. According to [5], CTMC can be defined as follow:

Definition 2.2. Over a set of atomic propositions AP , a model of CTMC can be

expressed as a tuple {S, sinit, R, L, AP}, where:

• S, L : S → 2AP are as for DTMC

• sinit ∈ S is the initial state.

• R : S × S → R+ is the transition rate matrix.

The matrix R assigns possible transitions for each pair of states if and only if

R(s, s′) > 0 in CTMC models. A transition can occur if and only if it can be modeled

as an exponential distribution with rate R(s, s′) [68]. CTMC models are much more

15

complex than the DTMCs. As our main focus is on agents with discrete time steps,

for the rest of this dissertation when we talk about Markov chain probabilistic models

in MAS, we refer only to DTMC probabilistic models.

Figure 2.1 (b) is a graph example of a CTMC model. S = {s0, s1, s2, s3} is

the set of states. The initial state is s0 and the atomic proposition is defined by

AP = {e, f}. State labeling functions are: L(s0) = {e}, L(s1) = L(s2) = {∅} and

L(s3) = {f}. The transition rate matrix R is:

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 3/2 0 0

3 0 3/2 0

0 3 0 3/2

0 0 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Both DTMCs and CTMCs can only model deterministic systems; they cannot

model randomized distributed systems characterized by interleaving the concurrent

processes. Markov Decision Processes (MDPs) are appropriate substitutes for Markov

chains since they can be viewed as a variant of Markov chains with both probabilistic

and nondeterministic choices.

Definition 2.3. Over a set of atomic propositions AP , a model of MDP can be

expressed as a tuple {S, Act, P , Iinit, L, AP}, where:

• S, Iinit, L : S → 2AP are as for DTMC

• P : S×Act×S → [0, 1] is the transition probability function, such that for every

state s ∈ S and actions α ∈ Act, we have
∑

s′∈S P (s, α, s′) ∈ {0, 1}.

• Act is a set of actions, ∀α ∈ Act,
∑

s′∈S P (s, α, s′) = 1

Figure 2.1 (c) is a graph example of a MDP model. S = {s0, s1, s2, s3} is the set

of states. AP = {r, f, s} is the set of atomic proposition. L(s0) = {∅}, L(s1) = {r},

16

L(s2) = {s} and L(s3) = {f} are state labeling functions. The initial distribution

Iinit is the same as in our DTMC example. The transition probability functions P are:

P(s0) = {(s0, r1, s1 → 1)}, P(s1) = {(s1, r1, s2 → 0.9), (s1, r1, s2 → 0.1), (s1, r2, s1 →

1)}, P(s2) = {(s2, r2, s2 → 1)}, and P(s3) = {(s3, r2, s0 → 1)}.

If there is only one element in Act set for all states in an MDP model, an

MDP model becomes a Markov chain. Therefore, Markov chains are specific Markov

decision processes.

Markov chains and Markov decision processes are widely used for constructing

stochastic systems. The standard models of Markov decision processes with belief

are Partially Observable Markov Decision Processes (POMDPs), which assume that

agents cannot observe the current state. In POMDP, an agent maintains a probability

distribution over possible observations for each action and resulting state and retains

its goal to maximize expected future reward. To deal with the partially observable

case, belief states [23] are introduced in a standard way as sets of states to model

what the agent believes at different times. Updating the next belief state depends on

the current belief state, the current action, and observations. POMDPs are widely

studied in AI for their heuristic approaches to discovering optimal strategies that can

be taken by agents, but they cannot observe independent knowledge relation, such

as, agent i knows X and X ⇒ Y , so agent i knows Y . The formal definition is the

following [62]:

Definition 2.4. A model of POMDP is a tuple < S, Act, P, Ω, O >, where:

• S, Act, P are as for MDP

• Ω is finite set of observations that agents can explore of their world.

• O : S × Act → Π(Ω) is the observation function. It presents a probability

distribution Π(Ω) over possible observations for each action and resulting state.

17

A Partially Observable Markov decision process (POMDP) is a special case of

MDP in which the agent is in a partially observable environment. It has been used to

model the uncertainty of knowledge and behavior for stochastic agents since the 1990s

[23, 48, 61, 62]. POMDP have been widely adopted in machine learning [4, 89, 91],

agent decision making [83], and robotic applications [63, 92].

2.2 Epistemic Models

An interpreted system is a framework based on a number of other possible states

of affairs besides the true state of affairs. It was introduced by Fagin et al in [45].

The formalism of interpreted systems, which provides well-defined semantics to reason

about time and knowledge in MAS, is frequently used in epistemic model checkers,

such as MCMAS [76] and MCK[93].

Let A = {1, . . . , n} be a set of n agents in the system. Every agent i ∈ A is

associated with its local state set Li, and possible actions set Acti. Besides Li and

Acti, there are also a set Le and a set Acte for the environment, a special agent for

providing global variables and actions that all agents are able to access. Therefore,

for the system, a set of global states G ⊆ L1 × . . .× Ln × Le is the set of all possible

tuples (l1, . . . , ln, le), and each tuple represents a computational state for the whole

system. For each agent i, we also use a set of protocols Pi : Li → 2Acti assigning a list

of enabled actions to each local state. Associated with the environment is a protocol

Pe : Le → 2Acte that represents the functioning behavior of the environment agent.

The probabilistic transition function T for the system can be defined as T : G×Act×

G → [0, 1], where Act is the set of joint actions Act ⊆ Act1× . . .×Actn×Acte that are

performed by all the agents and environment respectively. Each agent is associated

with a local probabilistic transition function ti ⊆ T . Given a global initial state I, a set

18

of atomic propositions AP and an interpretation V ⊆ G×AP , an interpreted system

over probabilistic transition function is a tuple: IS =< (Li, Acti, ti, Pi)i∈A, I, V >

The epistemic accessibility relation is defined to associate a Kripke model with

a given interpreted system IS to express an epistemic model.

Definition 2.5. The epistemic accessibility relations ∼i is a binary relation between

two global states. (l1, . . . , ln) ∼i (l′1, . . . , l′n) iff li = l′i.

The epistemic accessibility relations are equivalence relations on W . Therefore,

∼i is reflexive, symmetric and transitive. Based on these relations, an epistemic

Kripke model can be defined as follows:

Definition 2.6. An epistemic Kripke model is a tuple MIS = (W, I, Rt,∼1, . . . ,∼n

, V), where:

• W ⊆ G : the set reachable states of G,

• I ⊆ W : the set of initial states,

• Rt ⊆ W × W : the temporal relation which is obtained using the protocols Pi

and evolutions functions ti

• ∼i⊆ W × W for i ∈ A : the epistemic accessibility relation for each agent

i ∈ A,

• V ⊆ W × AP : the evaluation relation as in IS.

In the following section, we introduce how to evaluate Computation Tree Logic

of Knowledge (CTLK) formulae for epistemic models.

19

2.3 Computation Tree Logic of Knowledge (CTLK)

CTLK was first put forward by Lomusico [72] and Penczek [85]. It uses CTL (pro-

posed by Clarke and Emerson [32]) as basic temporal language and adds an epistemic

component. The syntax of CTLK based on [85] is listed in Definition 2.7.

Definition 2.7. (Syntax of CTLK)

Let φ and ψ be CTLK formulae. We use p, p1, p2, . . . to range over the set of atomic

propositions AP . Given a set of agents A = {1, . . . , n} as a group, the CTLK for-

mulae follow BNF grammar:

φ, ψ ::= true | p | ¬φ | φ ∧ ψ | AXφ | AGφ | A(φU ψ) |Kiφ | EΓφ | CΓφ | DΓφ

The syntax above defines standard CTL operators and epistemic operators in

CTLK. The notation of standard CTL operators in CTLK has the same meaning as

in CTL. For example, the formula AXφ has the meaning of “in all possible paths in

the next step φ holds,” AGφ stands for “along all possible paths φ is always true.”.

A(φUψ) represents that “in all possible paths at some point ψ holds and before then

φ is true along the path.” The epistemic operators include Kiφ, EΓφ, CΓφ, and DΓφ

and represent “agent i knows φ”, “everyone in group Γ knows φ”, “φ is common

knowledge in group Γ”, “φ is distributed knowledge in group Γ”, respectively. Other

basic modalities are defined in Table 2.1

Table 2.1: CTLK Basic Modalities Definition

Temporal Logic Epistemic Logic

AFφ ≡ A(trueUφ) Kiφ ≡ ¬Ki¬φ
EGφ ≡ ¬AF (¬φ) DΓφ ≡ ¬DΓ¬φ
EXφ ≡ ¬AX¬φ CΓφ ≡ ¬CΓ¬φ
φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ) EΓφ ≡ ¬EΓ¬φ

Let MIS = (W, I, Rt,∼1, . . . ,∼n, V) be an interpreted system model. Group Γ

is a subset of MIS. Epistemic relations based on the epistemic accessibility relations

20

and are defined as follows:

Definition 2.8. Epistemic Relations

The union of group Γ′s accessibility relations is defined as ∼E
Γ=

⋃
i∈Γ ∼i. ∼C

Γ is the

transitive closure of ∼E
Γ . The joint of Γ′s accessibility relations is ∼D

Γ=
⋂

i∈Γ ∼i.

Let s be a state, π be a path which is an infinite sequence of states related by

transitions, i.e., π = s0, s1, The (i+1)th state in π is denoted π(i), i.e., π(i) = si.

s |= φ denotes “s satisfies φ” or φ is true in s. Let Π(s) be a set of all the infinite

paths starting at s in MIS, φ and ψ be formulae of CTLK, the semantics of CTLK is

shown in Definition 2.9.

Definition 2.9. (Semantics of CTLK)

s |= p iff V (s, p) = true

s |= φ ∧ ψ iff s |= φ and s |= ψ

s |= ¬φ iff s � φ

s |= AXφ iff ∀π ∈ Π(s) π(1) |= φ

s |= AGφ iff ∀π ∈ Π(s) ∀i≥ 0 π(i) |= φ

s |= A(φUψ) iff ∀π ∈ Π(s) ∃i ≥ 0, π(i) |= ψ and ∀0 ≤ j < i π(j) |= φ

s |= Kiα iff ∀s′ ∈ W if s ∼i s
′ then s′ |= φ

s |= EΓφ iff ∀s′ ∈ W if s ∼E
Γ s′ then s′ |= φ

s |= CΓα iff ∀s′ ∈ W if s ∼C
Γ s′ then s′ |= φ

s |= DΓα iff ∀s′ ∈ W if s ∼D
Γ s′ then s′ |= φ

2.4 Probabilistic Temporal Logic

Hansson and Jonsson have put forward PCTL logic in [52]. PCTL language combines

CTL [32] logic with probabilistic modalities [6, 52]. A PCTL formula is capable of

21

formulating conditions on the state of a Markov chain. Besides the standard propo-

sitional logic operators, PCTL also includes a probabilistic operator Pr�b(ψ). In a

formula including a probabilistic operator, such as Pr�b(ψ), ψ is a path formula,

whereas b is an interval of [0,1] and �b indicates a lower bound or upper bound on

the probability (e.g < b, ≤ b, ≥ b, or > b). Unlike standard CTL, path quantifiers

∃ and ∀ are not valid in PCTL formulae; instead all path formulae are immediately

preceded by the probabilistic operator Pr�b. We refer to Baier et al.’s definition in

[6] as following in Definition 2.10:

Definition 2.10. (Syntax of PCTL)

Let φ be a state formula, ψ be a path formula, � ∈ {<,≤,≥, >}, b ∈ [0, 1], and n ∈ N

be an integer. We use p, p1, p2, . . . to range over the set of atomic propositions Φp.

The syntax of this language can be expressed as follows:

φ ::= true | p | φ ∧ φ | ¬φ | Pr�b(ψ)

ψ ::= ©φ | φ U≤n φ | φ U φ

n indicates the maximum steps to achieve a specific state. There are no uni-

versal (∀) and existential (∃) path quantifiers in PCTL. Instead, the linear temporal

operators © (next), U (until), and U≤n must follow the probabilistic operator Pr�b

immediately.

In order to express the fairness of concurrent probabilistic systems, Baier and

Kwiatkowska proposed a probabilistic branching time logic PBTL in [7]. The differ-

ence between PBTL and PCTL is that PBTL allows universal (∀) and existential (∃)

path quantifiers. Path quantifiers in PBTL formulae range over the adversaries and

yield Markov chains. Therefore, all PCTL formulae can be expressed using PBTL

formulae with a path ∃ quantifier. Referencing to [7], the syntax of PBTL can be

defined as follows:

22

Definition 2.11. (Syntax of PBTL)1

Let φ be a state formula, ψ be a path formula, � ∈ {<,≤,≥, >}, b ∈ [0, 1], and n ∈ N

be an integer. We use p, p1, p2, . . . to range over the set of atomic propositions Φp.

The syntax of this language can be expressed as follows:

φ ::= true | p | φ ∧ φ | ¬φ | Pr�b(ψ)

ψ ::= ∃© φ | ∀ © φ | φ ∃U≤nφ |φ ∀U≤nφ | φ ∃Uφ | φ ∀Uφ

PBTL formulae can be evaluated over a PBTL structure, which is a tuple

(P, I, AP, L) where P = (S, Steps) is a concurrent probabilistic systems and L :

S → 2AP is a labeling function which assigns to each state s ∈ S a set of atomic

propositions AP .

A path π is a nonempty (finite or infinite) sequence of states related by de-

terminate transitions: π = (s0, s1, . . .). The (i + 1)th state in a path π is denoted

π(i). An adversary converts a nondeterministic system into deterministic one. The

path quantifiers ∃ and ∀ involve quantification over adversaries. PathA(s) is used to

express the set of all path with the adversary A starting from state s. We use Adv

to stand for set of adversaries for the system. Prob{π ∈ PathA(s) : π |= ψ} is the

probability of the all path such that π |= ψ under the adversary A. Let a ∈ AP be

an atomic proposition, φ be a PBTL state formula, and ψ be a PBTL path formula,

s |=Adv φ denotes “s satisfies φ under the adversaries set Adv” or “φ is true in s under

the adversaries set Adv”. π |=Adv ψ denotes “π satisfies ψ under the adversaries set

Adv” or “ψ is true in π for the adversaries set Adv”. The satisfiability of a PBTL

formula at state s ∈ S of a given concurrent system is defined inductively as follows.

1We modified the syntax of some operators to be compatible with PCTL.

23

Definition 2.12. (Satisfiability of PBTL)

s |=Adv true iff ∀s ∈ S, s |=Adv true

s |=Adv p iff p ∈ L(s)

s |=Adv φ1 ∧ φ2 iff s |=Adv φ1 and s |=Adv φ2

s |=Adv ¬φ iff s �Adv φ

π |=Adv Pr�b(∃© φ) iff Prob{π ∈ PathA(s) : π |=Adv ©φ}�b

for some A ∈ Adv.

π |=Adv Pr�b(∀© φ) iff Prob{π ∈ PathA(s) : π |=Adv ©φ}�b

for all A ∈ Adv.

s |=Adv Pr�b(φ1∃U
≤nφ2)

iff Prob{π ∈ PathA(s) : π |=Adv φ1U
≤nφ2}�b

for some A ∈ Adv.

s |=Adv Pr�b(φ1∀U
≤nφ2)�b

iff Prob{π ∈ PathA(s) : π |=Adv φ1U
≤nφ2}�b

for all A ∈ Adv.

s |=Adv Pr�b(φ1∃Uφ2)�b

iff Prob{π ∈ PathA(s) : π |=Adv φ1Uφ2}�b

for some A ∈ Adv.

s |=Adv Pr�b(φ1∀Uφ2)

iff Prob{π ∈ PathA(s) : π |=Adv φ1Uφ2}�b

for all A ∈ Adv.

π |=Adv ©φ iff π(1) |=Adv φ

π |=Adv φ1 U≤nφ2 iff ∃0 ≤ k ≤ n, π(k) |=Adv φ2 and

∀0 ≤ i ≤ k, π(i) |=Adv φ1

π |=Adv φ1Uφ2 iff ∃k ≥ 0, π |=Adv φ1 U≤kφ2

24

For the probabilistic operator, s |=Adv Pr�b(ψ) means that “over the adversary

Adv from state s the probability that ψ is holds for an outgoing path satisfies is

in the range of �b”. The condition of adversaries can be either “there exists an

adversary” or “for all adversaries” depending on which quantifier is used. For example,

s |=Adv Pr<0.25(true∃ ∪≤5 φ) asserts that “there exists an adversary such that the

probability that the system reaches φ being true within 5 steps of outgoing paths

from state s is less than 0.25”. From Definition 2.12, we can easily convert the PBTL

formula Pr�bφ1∀Uφ2 to the identified PCTL formula Pr�bφ1Uφ2; while Pr>p(φ1∃Uφ2)

corresponds to ¬Pr≤p(φ1Uφ2). The reader can refer to [7] for more details.

2.5 Model Checking Algorithms in MAS

As mentioned earlier, model checking is a three-step process [32] (modeling, specifi-

cation, and verification) to determine if a system satisfies a specification given as a

temporal logic formula. Model languages are used to construct the system models.

Logic languages are used to formalize the properties of the systems. Verification is

the procedure of establishing if a given formula φ that is written in a particular logic

and expresses a given properties of the systems is satisfied in a given model M . There

are two input data: the formula φ and the model M . Two kinds of output result from

model checking: either a satisfiable result, or a violated result with counterexamples.

Some model checkers also provide simulations for locating the errors. Figure 2.2 from

[6] shows the model checking process.

In the 1990s, Halpern and Vardi put forward in [51] an application of model

checking within the context of the logic of knowledge. After that, several approaches

have been proposed for model checking MAS. In [105], Wooldridge et al. proposed

25

an imperative programming language, MABLE to specify MAS along with a Belief-

Desire-Intention (BDI) logic to express the properties. SPIN, an automata-based

model checker, has been used to verify if the specified MABLE model satisfies the

expressed properties. Another method based on the SPIN model checker has been

developed by Bordini et al. [17] using AgentSpeak(F) Language, a BDI logic-based

programming language [87]. SPIN generates C sources for a model checker in order

to save memory and improve performance. There are many different approaches for

executing model checking in MAS. Broadly speaking these different approaches can

be classified into the categories listed below:

1. Automata-based approaches

2. Symbolic model checking algorithms

3. SAT-based approaches

4. Probabilistic model checking algorithms

In the following, we will discuss these model checking techniques.

2.5.1 Automata-Based Approaches

The automata-based model checking approaches were originally put forward by Vardi

and Wolper in [96]. These approaches are used in checking Linear Temporal Logic

formulae that can be represented by a nondeterministic Büchi automata (NBA). By

finding a path π in the transition system TS with π |= ¬ψ, we can conclude that

an error trace exists and TS � ψ. Otherwise, TS |= ψ. An automaton is defined as

Definition 2.13.

Definition 2.13. A nondeterministic Büchi automata is a tuple A = (Q,Σ, δ, Q0, F),

where

26

• Q is a finite states,

• Σ is finite alphabet, of initial states,

• δ ⊆ Q× Σ×Q is a transition relation,

• Q0 ⊆ Q is a set of initial states,

• F ⊆ Q is a set of final (or accepting) states.

The basic automata-based model checking algorithm is shown in Table 2.2

Table 2.2: Algorithm for Automata-Based Model Checking
Input:Transition system TS and formula ψ
Output: “yes” or “no”

Construct an NBA A φ to represent the formula (¬ψ)
Construct the product transition system TS ⊗A
if there exists a path π in TS ⊗A satisfying the accepting condition of mathcalA
then

return “no” and and an expressive prefix of π
else

return “yes”
fi

Automata-based approaches can work with other techniques for model check-

ing more complex systems. In [10], authors used an automata-based approach with

tableau techniques to check communicating agent-based systems. Tableau techniques

for model checking use assertions and tableau rules which are proof rules to verify

whether the model M satisfies the formula φ. Assertions are typically of the form

s �M φ and mean that state s in model M satisfies the formula φ. A set of tableau

rules are used to prove the truth or falsity of assertions. Tableau-based algorithms

work in a top-down or goal-oriented fashion, which is different from traditional proof

systems that are usually bottom-up approaches. According to this approach, we start

from a goal, and we apply a proof rule and determine the subgoals to be proven.

Tableau rules are used in order to prove a certain formula by inferring when a state in

27

a Kripke structure satisfies such a formula. Therefore, a tableau-based algorithm saves

on both time and space required for model checking because the algorithm searches

only that part of the state space that needs to be explored to prove or disprove a cer-

tain formula. We now look closely at the tableau rules of the tableau-based algorithm

in [10] for CTL∗CA propositional and universal formulae, which are just one part of

CTL∗CA tableau rules. (CTL∗CA is an extended logic from CTL∗ for Communicative

agents. More details of this logic and entire model checking algorithm can be found

in [10].)

Table 2.3: Tableau Rules for CTL∗CA Propositional and Universal Formulae

Rule No. Labels Tableau Rules Rule No. Labels Tableau Rules

R1 ∧ ψ1∧ψ2

ψ1 ψ2

R2 ∨ ψ1∨ψ2

ψ1 ψ2

R3 ∨ E(ψ)
ψ

R4 ¬ ¬ψ
ψ

R5 ? ?ψ
ψ

R6 ¬ A(Φ)
E(¬Φ)

...
...

...
...

...
...

Table 2.3 gives tableau rules of CTL∗CA for propositional and universal formulae.

Tableau rules define a top-down proof system. Given a formula, we apply a tableau

rule and determine the sub-formulae to be proven. Tableau rules are applied to a

formula by proving all its sub-formulae. Labels of these rules are the labels of states

in the automata constructed from a given formula. For Rule R1 in Figure 2.3 labeled

by “∧” indicates that ψ1 and ψ2 are the two sub-formulae of ψ1∧ψ2 so that we have to

prove two children of the state satisfy ψ1 and ψ2 respectively. Rule R3 labeled by “∨”

indicates that ψ is the sub-formula to be proved in order to prove that a state satisfied

E(ψ). The syntactical operator“?” to express the tableau rule of the challenge action,

which means that a given agent does not know whether the formula is true or not.

According to Rule R5, the formula “?ψ” is satisfied in a state labeled by “?”, if this

state has a successor representing ψ.

28

2.5.2 Symbolic Model Checking

The traditional CTL model-checking procedure based on transition systems has an

explicit enumerative representation per state. The number of states in transition sys-

tems grows exponentially with the number of components. This situation is called “the

model checking state-explosion problem”. Therefore, it is impossible to verify very

large transition systems. There are several techniques to alleviate this problem, such

as symbolic model checking based on Ordered Binary Decision Diagrams (OBDDs)

and partial model checking algorithms. NuSMV [27], MCK [93], and MCMAS [76]

are examples of model checkers using a symbolic model checking technique. NuSMV

supports both Linear Temporal Logic (LTL) and computation tree logic (CTL). MCK

works on a particular input model of synchronous interpreted systems of knowledge.

The specification formulae in MCK can be either LTL or CTL augmented with knowl-

edge. In MCMAS, similar to MCK, models are described in a modular language called

Interpreted Systems Programming Language (ISPL). MCMAS supports a large set of

specification languages, such as CTL, epistemic logics, and Alternating Time Logic

(ATL). We usually use Ordered Binary Decision Diagrams (OBDDs) to symbolically

express the states and transitions.

An OBDD model is a rooted, directed acyclic graph G that can be associated

to a Boolean function f(x1, . . . , xn) by imposing a set of ordered, Boolean variables

x1 < . . . < xn and by reducing the graph [18]. Figure 2.3 is an example of a reducing

Boolean function f = x1 ∨ (x2 ∧ x3). Since 1990s, OBDD techniques applied to

model checking have been introduced in various papers [20, 80]. The model checking

using OBDD associates the set of states and the transition relation to two OBDDs

respectively. By comparing the two OBDDs it is possible to verify the formula. The

details of this techniques are presented in [32].

29

Requirements

satisfied

Location

error

System model

System

Property

Specification

Formalizing

Violated +

counterexample

Modeling

Simulation

Model

Checking

Figure 2.2: Schematic View of The Model-checking Approach from [6]

x1

x3x3x3x3

x2x2

0 1111100

x1

x2

x3

10

0 1

000

0

0

0

0

0

0

1

1

1 1 1 1

1 1

1

Figure 2.3: OBDD Example for f = x1 ∨ (x2 ∧ x3)

30

However, in probabilistic model checking, OBDDs are not sufficient to rep-

resent formulae and models because real-valued matrices and vectors are required.

Thus, MTBDDs (multi-terminal binary decision diagrams) [30] are useful supple-

ments. MTBDDs extend BDDs by allowing the representation of functions over

Boolean vectors that can take any value instead of only 0 or 1. Like BDDs, an

MTBDD is a directed acyclic graph. Figure 2.4 gives an example of an MTBDD over

four Boolean variables x1, x2, x3, and x4. In fact, if we take Boolean variables {x1, x2}

to range over row indices and {x3, x4} to range over column indices, the MTBDD in

Figure 2.4 represents the transition probability function P of the associated DTMC

is shown in Figure 2.1 (a)

2.5.3 SAT-Based Model Checking Algorithms

SAT-based model checking is a model checking technique that transform a model

checking problem into a problem of satisfiability for propositional Boolean formulae

(SAT). The SAT-based model checking algorithm first computes the satisfaction set

SAT (φ) of all stats satisfying φ recursively based on parse tree of φ: the nodes of

the formula φ parse tree represent the subformulae of φ. A state s |= φ if and only if

s ∈ SAT (φ). Table 2.4 shows the basic idea of this algorithm for CTL formula φ [5].

There are bounded model checking and unbounded model checking. Bounded

model checking is the first step in applying SAT procedures to symbolic model check-

ing. It is based on the concept of bounded semantics. For Linear Temporal Logic

(LTL) model M , given a formula ψ and a finite integer k, it can be proven that

M |= ψ if and only if there exists a finite integer k that formula ψ holds in M alone

with a path of length k. In [15], Biere et al. proved that bounded model checking

techniques can identify false formulae quicker than OBDD-based techniques if the

bound value k is small. For CTL, Penczek et al. presented a bounded semantics for

31

x1

x3x3x3x3

x2x2

0

0

0

1

x4 x4 x4 x4 x4 x4 x4 x4

0

0.1

0.9

0

0

0

1

0

1

0

0

0

0 1

0

0

0

0

0

0

0 0

0 0 0 0 0 0

1 1

1111

1 1 1 1 1 1 1 1

x1

x3x3

x2

1

x4 x4 x4

0.10.9 1

0

1
0

0

0 0

1

1

1 1

Figure 2.4: An MTBDD Example Figure 2.1 (a) DTMC model

Table 2.4: Algorithm for Basic Idea of CTL Model Checking
Input:Transition system TS and formula φ
Output: “yes” or “no”
******(Compute the sets SAT (φ) = {s ∈ S|s |= φ}) ******

for all i ≤ |φ| do
for all ψ ∈ Sub(φ) with |ψ| = i do

compute SAT (ψ) from SAT (ψ′)
******for maximal genuine ψ′ ∈ Sub(ψ) ******

od
od
if s ∈ SAT (φ)

return “yes”
else

return “no”
fi

32

CTL by introducing ACTL, which restricts negation to atomic formulae only, and

permits universally quantified temporal operators only. A detailed presentation of

this approach can be found in [86].

A problem for the bounded model checking technique occurs when the bound

value k is high or when formulae are true in a model. In these cases, the performance

of an SAT-based technique decreases significantly. In order to solve this problem,

McMillan present unbounded model checking in [81]. Unbounded model checking al-

gorithms are similar to symbolic model checking: instead of representing Boolean for-

mulae using OBDDs and comparing OBDDs, unbounded model checking algorithms

translate model checking formulae into a satisfiable set for boolean formulae.

2.5.4 Probabilistic Model Checking Algorithms

Model checking techniques that we mentioned above only focus on the qualitative

properties that guarantee systems absolutely, (i.e, that a certain bad event will never

happen). In practice, however, many properties are not only important in terms of

correctness but also of measurable performance; and systems are subject to unreliable

and unpredictable behaviors as well. Therefore verifying quantitative properties are

as important as verifying qualitative properties. Probability is widely used in the

description and analysis of uncertain systems. Probabilistic model checking algorithms

are designed for calculating the likelihood of the occurrence of certain events during

the execution of the systems and checking both qualitative properties and quantitative

properties.

Courcoubetis and Yannakakis have proposed a probabilistic model checking al-

gorithm in [35, 36]. The models in probabilistic model checking algorithms are proba-

bilistic. The simplest probabilistic models are discrete-time Markov chains (DTMCs),

33

which are introduced in 2.1. In DTMCs, models are specified the probability of mak-

ing a transition from state s to a target state s′, where the probabilities of reaching

the target state from a given state must sum up to 1. PCTL introduced in 2.4 al-

lows us to express both qualitative and quantitative properties. We now illustrate the

probabilistic model checking algorithm for PCTL over DTMC.

The basic probabilistic model checking procedure is to compute the satisfaction

set SAT (φ), which is done recursively using a bottom-up traversal of the parse tree

of the formula φ. Computing the satisfaction set for the non-probabilistic operators

is performed in exactly the same way as for propositional model checking algorithms.

It is necessary to calculate the probability Prop(s) that a path leaving each state

s in order to compute SAT set for probabilistic operator. The probabilistic model

checking algorithms are first presented in [35]. We use bounded until as an example

for computing the probabilistic SAT set in the following section.

To compute SAT (Pr�b[φ1 ∪
≤k φ2]), we first compute SAT (φ1) and SAT (φ2).

Then we can identify the states that are for sure in the satisfaction set Syes =

SAT (φ2), and for sure not in the satisfaction set Sno = S \ (SAT (φ1) ∪ Sat(φ2)).

We also need to classify the uncertain states, which may or may not be in the sat-

isfaction set, S? = S \ (Syes ∪ Sno). After we divide the states, we can compute the

probability solution with a recursive equation:

Prob(s, φ1 ∪
≤k φ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if s ∈ Syes

0, if s ∈ Sno

0, if s ∈ S? and k = 0

∑
s′∈W P (s, s′) · Prob(s, φ1 ∪

≤k φ2), if s ∈ S? and k > 0

For detail algorithms of probabilistic model checking can be found in [52, 84].

34

2.6 Model Checking Tools

The techniques presented in Section 2.5 have been implemented in a number of model

checkers. Many of them are distributed under the GNU Public License. This section

briefly summaries five free model checkering tools and their programming and speci-

fication languages. The following reviewed tools are chosen because each one of them

suits a different area that I focus on and I have used them during my research.

ISPL program

+

formula

Parse input

Build OBDD

parameters

Compute the set of

states in which the

formula holds

MCMAS

True

witness

False

counterexamples

Figure 2.5: MCMAS Overview

MCMAS [76], a model checker for MAS, was developed in University College

London. Its model checking algorithms are based on the Ordered Binary Decision

Diagrams symbolic model checking technique. Figure 2.5 shows the basic procedure

of MCMAS. The MCMAS program is based on a state-based formalism in which

the behavior is defined by Kripke structures. This model checker can run on Linux,

Max OS X, and Windows using Cygwin and be added as an Eclipse plug-in for user

35

graphical interface. MCMAS also is able to work interactive, step-by-step simulations.

It can verify the properties of CTL and CTLK.

In MCMAS, MAS models are described by the Interpreted Systems Program-

ming Language (ISPL), where the system can include two types of agents: an optional

environment agent, which is used to describe boundary conditions and infrastructures,

and standard agents. Each agent is composed of a set of local states, a set of actions,

rules that describe which action can be performed by an agent, and evolution func-

tions that describe how the local states of the agents evolve based on their current

local state and agents’ actions. ISPL can also be used to define atomic propositions,

action formulae and the specification of properties to be checked. The highlight of

MCMAS is that it is able to check epistemic properties, such as Ki, CG, EG, etc.

The first CTL model checker, EMC was announced by Clarke and Emerson in

[28]. Based on EMC, Clarke et al. [29] constituted the SMV (Symbolic Model Verifier),

which is an efficient CTL model checker based on a symbolic OBDD. NuSMV [27],

developed jointly by ITC-IRST and Carnegie Mellon University via re-implementing

and extending from SMV, is a software tool for the formal verification of finite state

systems and the most widely cited model checker. It is based on symbolic model

checking techniques for CTL and bounded model checking techniques for LTL.

NuSMV is a model checker in which the input language is designed to allow the

description of finite state systems that range from completely synchronous to com-

pletely asynchronous. System models are translated into “MODULE”. The system

behavior is described in the module “main”. A set of states and variables is defined

in the “VAR” section, and how these states and variables change is constructed in

“ASSIGN” section. Intended to describe finite state machines, the only data types

in the language are finite ones, i.e. boolean, scalar and fixed arrays of basic data

types. This is sufficient because NuSMV models basically are intended to describe

36

finite state machines. The verifying LTL and CTL specifications are also included in

the module. Besides batch mode, NuSMV also provides a textual interaction mode so

that users can activate various verifying steps. These steps can be invoked separately

and can track back.

PRISM [66], developed in the Computing Laboratory at the University of

Oxford, is a probabilistic symbolic model checker. It is a tool for formal model-

ing and analysis of systems which exhibit random or probabilistic behavior. Three

types of probabilistic models, discrete-time Markov chains (DTMCs), continuous-time

Markov chains (CTMCs) and Markov decision processes (MDPs) can be specified in

the PRISM modeling language, which is a simple, state-based language. This lan-

guage is based on the Reactive Modules formalism of Alur and Henzinger [3]. It offers

limited extensions of these models with costs and rewards. The property specification

language incorporates the temporal logics PCTL, CSL, LTL and PCTL∗. Figure 2.6

shows the PRISM model checker procedure.

PRISM provides a Graph User Interface, which is implemented in Java. The

core algorithms are mainly developed in C++. For state space representation, PRISM

offers a choice among MTBDDs, “sparse matrices” and“hybrid” data structures.

PRISM incorporates state-of-the art symbolic data structures and algorithms, based

on BDDs (Binary Decision Diagrams) and MTBDDs (Multi-Terminal Binary Deci-

sion Diagrams). It also features discrete-event simulation functionality for generating

approximate results for quantitative analysis.

MCK was developed at the School of Computer Science and Engineering at the

University of New South Wales for model checking the logic of knowledge. MCK sup-

ports various ways of defining knowledge based on observations made by the agents:

observation alone, observation and clock, synchronous and asynchronous perfect re-

call of all observations. Specifications can be described as either linear or branching

37

time temporal operators with epistemic and mu-calculus operators. The MCK model

checker uses a concrete syntax designed to facilitate encoding of examples.

In MCK, MAS are modeled as a situation where agents interact in the context of

an environment. Every agent has its local states and is capable of performing certain

actions in the environment. Agents performs actions based on their protocol that

describes the allowable choices of the next action at each point of time. System states

include all environment states and agents’ local states. Properties are expressed with

specification formulae.

CWBNC is an enhanced version of the Concurrency Workbench of the New

Century (CWB-NC) [33, 106]. It was developed by the Concurrency Workbench

project group. This model checker supports two different temporal logics, the modal

mu-calculus and GCTL∗. It allows modeling concurrent systems using the process

algebra Calculus of Communicating Systems (.ccs), Synchronous Calculus of Com-

municating Systems (.sccs), and CCS with prioritized actions (.pccs), with timed

actions (.tccs). xCCS language is a paradigmatic process algebras language, which

is a prototype specification language for reactive systems. For this reason, xCCS

language can be used not only to describe implementations of processes, but also

specifications of their expected behaviors.

In CWBNC, the specifications and formulas are first “compiled” into automata,

then transformed into a type of deterministic automata. Therefore, this model checker

only can check a finite state machine containing less than 60,000 reachable states.

In Table 2.6, we summarize these four model checkers.

38

System

Description

PCTL /CSL

Properties

PRISM Kernel
MTDBB
engine

Hybird

engine

Sparse matrix

engine

Modules

Parser

PCTL /CSL

Parser

Results

(states, probabilities)

Figure 2.6: PRISM Overview

Table 2.5: Comparison of Model Checkers
Model Model checking System model Properties platform
checker techniques language language

MCMAS OBDD ISPL CTL Window (Cygwin),
CTLK Linux, Mac OS.

NuSMV BDD − based .smv LTL Window
SAT − based CTL

PRISM BDD DTMC PCTL PCTL∗ Window (Cygwin),
MTBDD CTMD CSL, LTL Linux, Mac OS.

MDP

MCK OBDD .mck a combination of Linux
bounded CTL* with epistemic and

model checking mu-calculus operators

CWBNC Automaton- CCS mu− calculus Windows, Linux
based SCCS GCTL∗

PCCS CTL
TCCS

39

Chapter 3

Related Work

Our work mainly involves three areas of research: 1) a framework for representing

probabilistic-epistemic systems; 2) logics for expressing probabilistic-epistemic prop-

erties; and 3) approaches for model checking probabilistic-epistemic properties. In the

rest of this section, we will compare our work with other researchers’ work in these

relevant areas.

3.1 Models

One main framework for representing epistemic systems is with interpreted systems

formalism [45]. Reasoning about knowledge and time with interpreted system formal-

ism is thoroughly investigated and extensively used in specifying and verifying MAS

[34, 75, 85, 95]. With interpreted systems formalism, we can easily develop various

epistemic modalities based on different agents’ accessibility relations. For illustration,

with agent epistemic accessibility relations, a knowledge modality is introduced to

represent an individual agent’s knowledge; while with a group of agents’ epistemic

accessibility relations, we can define distributed knowledge in the group. Recently,

some researchers have enriched interpreted systems with probability in order to specify

40

uncertain agent systems [50, 56, 57, 102].

Most work on interpreted system frameworks only focus on epistemic systems

[9, 34, 77, 75, 85, 95], while uncertainty of knowledge is not considered. Belardineli and

Lomuscio first investigated extending interpreted systems into the first order logic in

[8]. They defined quantified interpreted systems (QIS) to enable the use of quantifiers

on epistemic models by endowing each structure with a domain of individuals within

a first-order temporal epistemic logic. However, in their proposal, the stochastic

behavior of agents and probabilistic properties are not considered. Also, the first order

logic is not very expressive; for example, there is no first-order sentence that defines

the finite structures, which are widely used in the model checking area. Another

drawback for the QIS is that the decidability has not been studied yet.

Researchers in [56, 57] have integrated interpreted systems with partial obser-

vation techniques to express stochastic epistemic systems. The Partially Observable

Markov Decision Processes (POMDPs) [23] provides another framework for reasoning

about knowledge and are mainly used to represent uncertain knowledge of agents.

POMDPs are a generalization of Markov Decision Processes (MDPs) and have been

used to model the incomplete/uncertain knowledge and behavior for stochastic agents

since the 1990s [23, 48, 61]. In the past decade, POMDPs have been extended into

self-learning and reaction areas, such as machine learning [4, 89], robotic applications

[63, 92], etc. In the POMDP-based framework, agents only partially observe the un-

derlying states and maintain a probability distribution over the set of belief states.

Belief states are computed based on a set of observations.

Both Huang and his colleagues [56, 57] and our work are based on interpreted

systems. Unlike our work that integrates interpreted systems into Markov chains,

Huang el al. proposed interpreted partially observed discrete-time Markov chains

(PO-DTMCs) in [56]. PO-DTMCs are generalized from POMDPs with deterministic

41

choice of actions. This approach is based on partial observations with assumption of

synchronous with perfect recall. In their method, the environment is a special agent

that includes the set of states. Other agents observe the environment and perform

actions based on their observations. Every agent, including the environment agent,

has its own probability transition function for each accessible state based on its ac-

cessibility relations (the environment agent’s transition function will be the system

probability transition function). Probabilistic knowledge is expressed by a rational

linear combination of every agents’ probabilities in the system. The main problem is

that the probabilities associated with accessible states are not part of the system, but

part of the agents’ programs and it is not clear how an agent obtains those probabil-

ities. Practically, an agent can see which state is equivalent to or indistinguishable

from the current state, but it is hard to see by how much the state is indistinguishable.

Nevertheless, probabilistic knowledge in our approach is captured in a simpler and

more practical way as a direct and inherent extension of non-probabilistic knowledge

where the probability only depends on the number of equivalent states, as all the

states are equally accessible.

These two frameworks both have advantages and disadvantages. Interpreted

systems are widely used in modeling epistemic systems without uncertainty because

interpreted systems provide a natural and elegant way of capturing the philosophical

foundations of knowledge using a possible and accessible world. The specification of

uncertain knowledge of MAS with interpreted systems is, however, still in an early

stage of research. On the other hand, POMDPs, based on Markov Decision Processes,

manipulate uncertainty intrinsically. POMDPs have been widely studied in artificial

intelligence to discover optimal strategies that can be taken by an agent. Nevertheless,

a POMDP models the relationship between an agent and its environment. POMDPs

have been used in single agent systems mainly to find the best solution or strategy for

42

the agent. The algorithm for solving POMDP runs in exponential time in the size of

the model’s actions and observations. Furthermore, the dimensionality of the belief

space grows with the number of states. In [102], we previously compared our work

based on interpreted systems modeling with Huang et al.’s work [56] based on PO-

DTMC modeling. The results show that our method performs better than Huang’s

in verifying the example protocol (see Chapter 4).

Besides those two main frameworks for representing and reasoning about epis-

temic systems, Delgado and Benevides in [39] specify each individual agent in MAS by

a homogeneous DTMC with synchronization actions. In their special DTMC model,

a state either has a synchronized action with probability 1 to represent agent behav-

ior or regular probabilistic transitions. Agents collaborate with these synchronization

actions. Then they formalize the composition of two DTMCs, a DTMC with regular

probabilistic transitions and a DTMC with agents’ synchronized actions, in a MDP

to represent the behavior of the overall MAS. The drawback of this method is that it

limits the agents’ behavior by unifying all agents actions into one DTMC structure. In

addition, only using global states for overall MAS constraints influences every agent’s

behavior.

3.2 Logics

Logics of probability and knowledge are highly related to our research. Both epis-

temic logic and probabilistic logic are multimodal logics that combine two types of

modalities. Computation Tree logic of Knowledge (CTLK), proposed by Penczek and

Lomuscio in [85], extends from CTL (introduced by Emerosn and Clarke in [44]) by

adding epistemic modalities and is used in many MAS to specify epistemic proper-

ties. CTLK formulae are associated with interpreted systems. The basic temporal

43

modalities are defined as usual, while epistemic modalities are based on epistemic

accessibility relations similar to our definitions. They also developed an OBDD-based

symbolic model checker MCMAS [78] that can verify agents’ knowledge in MAS. Mey-

den et al. in [95] define a language for reasoning knowledge and time in systems with

perfect recall. Their language is applicable to interpreted systems as well. Unlike

CTLK that extends the branching time logic CTL, their language is based on linear

time. MCK [47] is designed for verifying epistemic properties of MAS and supports

several different ways of defining agents’ knowledge, such as using observation alone

or observation and clock with either synchronous or asynchronous perfect recall of all

the observations. Both CTLK and language presented by Meyden et al., however,

do not consider probabilistic behaviors. Therefore, these languages cannot express

agents’ uncertain knowledge.

On the other hand, Probabilistic logics include probabilistic modalities and tem-

poral modalities. This kind of logic has been used with Markov chains (determinism)

or Markov Decision Processes (nondeterminism). Hansson and Jonsson in [52] have

put forward probabilistic computation tree logic (PCTL) which focuses only on non-

epistemic probabilistic properties. Path quantifiers ∃ and ∀ are not valid in PCTL

formulae. However, Baier and Kwiatkowska proposed a probabilistic branching time

logic PBTL which allows path quantifiers to verify probability with fairness constraints

in [7]. The quantifiers ∃ and ∀ in PBTL range over the adversaries; thus, these quan-

tifiers are only involved in deterministic choices. Another probabilistic logic exam-

ple comes from Jamroga in [59], Markov temporal logic MTLx, an extension of the

“Discounted CTL” (DCTL), which uses a discount factor to achieve the probabilis-

tic factor. He introduced MTL0 for Markov chains and MTL1 for Markov Decision

Processes. MTLx(x ∈ {0, 1}) allows agents to perform flexible reasoning about their

44

outcomes in stochastic environments. Unlike other probabilistic logic using probabilis-

tic transition functions to present probabilistic choices, Jamorga uses utility fluent to

present the truth values for Markov chains and MDPs. The probabilistic logics men-

tioned in this paragraph only focus on quantitative or probabilistic properties not on

the epistemic ones. Consequently, neither epistemic logics nor probabilistic logics are

suitable for uncertain knowledge of MAS.

Dealing with uncertainty or incompleteness within distributed knowledge bases

has been recently addressed by some researchers in [22, 39, 56, 57, 107]. Logics that

they proposed are more or less similar to our logic, but our logic is more expressive and

better suited to epistemic-probabilistic systems. Huang el al. put forward Alternating-

Time Temporal Logic (PATL*) in [56] to account for incomplete information in multi-

players synchronous games. The syntax of this logic is as follows:

φ ::= p| ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2 |〈〈A〉〉��dφ

where p is an atomic proposition, and A ⊆ Agt = {1, . . . , n} is a player, d is a rational

constant in [0, 1], and �� is a relation symbol in the set {≤, <,≥, >}. The only differ-

ence from regular temporal logic formula is 〈〈A〉〉��dφ, which expresses that players in

A can collaborate to enforce the fact φ with a probability in relation �� with constant

d. The semantics of this logic is associated with probabilistic interpreted systems and

uses partially observed probabilistic concurrent game structure where players have

perfect recall memory over observations. The logic offers the ability to reason about

strategies on incomplete information over games involving multiple players. The pa-

per proves that the model checking problem of PATL* is in general undecidable, which

precludes the use of this logic to verify scalable concrete applications.

Delgado and Benevides[39] modeled MAS using DTMC with synchronization

actions and defined K-PCTL logic to specify the properties. K-PCTL, an epistemic

extension of the probabilistic CTL temporal logic, allows epistemic and temporal

45

properties as well as likelihoods of events. The syntax of K-PCTL is as follows:

φ ::= true| a | ¬φ | φ ∧ φ | Prel p[ψ] | Kiφ | CGφ | EGφ

ψ ::= φ | φU≤kφ | φUφ

where a is an atomic proposition, rel ∈ {≤, <,≥, >}, p ∈ [0, 1], i is an agent in the

system, and k ∈ N. As shown in the syntax, K-PCTL can only express probabilities

over path formulae; therefore, K-PCTL is not able to specify the uncertainty of the

knowledge. Our PCTLK logic overcomes this limitation by allowing probabilities over

knowledge operators (for simplifications, we omit group knowledge operators which

include in the previous paper [102]). Thus, our logic is more expressive than K-

PCTL because our PCTLK logic not only expresses probabilities on path formulae,

but also includes probabilities of knowledge. The semantics of this logic is associated

with MDP models augmented with the accessibility relations so that probabilities

over paths can be defined and classic knowledge formula can be captured. However,

probabilities of knowing cannot be captured because accessibility transitions are not

probabilistic. Our approach surmounted this drawback by integrating probabilistic

interpreted systems into Markov chains. Accessibility transitions are quantified during

the integration so that they are probabilistic.

In contrast to K-PCTL, which focuses only on probability in path formulae,

Cao in [22] proposed a probabilistic epistemic temporal logic, called PETL, which

only includes probability of knowledge modalities but not of temporal modalities.

Besides regular temporal formulae, he introduced probabilistic epistemic formulae to

illustrate, Kp
aφ, E

p
Γφ, and Cp

Γφ (see [22] for syntax definition details). Kp
aφ means that

agent a knows the probability of φ is greater than or equal to p. Ep
Γφ and Cp

Γφ are

group epistemic formulae which express that every agent in Γ knows the probability

of φ is greater than or equal to p and “the probability of φ is greater than or equal

to p” is common knowledge by every agent in Γ. The main drawback for PETL is

46

that it cannot express properties like “in the future φ holds in p probability” and “the

probability that an agent knows φ is p”. In our PCTLK logic, probabilities can be

expressed over the whole formula, which allows us to state these properties. That

is, PCTLK can express both probability of paths (probability over the next, until,

and global operators) and the probability of knowing, which is on top of properties

about knowing the probability of formulae that PETL can express. Furthermore,

PETL is based on LTL, while our logic is an extension of CTL. LTL and CTL are

incomparable in terms of expressiveness, which means one cannot be a subset of the

other. The semantics of PETL is associated with a probabilistic epistemic temporal

model that includes the set of the global states, a total binary (successor) relation on

global states, epistemic accessibility relations, a probability function for every agent,

and a valuation function that assigns to each state a set of propositional variables that

are assumed to be true at the state. The semantics of probabilistic knowledge is then

defined using the probability function that is associated to each accessibility transition.

The main difficulty with this definition is the computation of those probabilities over

accessibility transitions, which are not part of the system being checked, but rather

part of the agent’s accessibility relations. It is not clear how to define or compute

these probabilities. In our semantics, however, we assume that all the accessible

states from a given state are equally accessible. Thus, accessibility transitions are not

probabilistic. Nevertheless, probabilistic knowledge is naturally defined by computing

the number of accessible states that satisfy the knowledge over the total number of

accessible states.

Zhao et al. extended this logic to consider probabilistic aspects of systems and

introduced the probabilistic temporal logic of knowledge called PTLK in [107]. PTLK

can expresses probability on both path formulae and epistemic formulae. To express

probability of path, PTLK modified PETL formulae “next” (©φ) and “until” (φUφ)

47

asX�pφ and φU�pφ respectively, where � ∈ {>,≥, <,≤,=}, p ∈ [0, 1] is a real number.

However, PTLK still cannot specify “the probability that an agent knows φ is p”. Also

the probabilistic Kripke structure (PK), which is associated with PTLK semantics,

is very similar to a probabilistic epistemic temporal model: they use the probability

function associated with each accessibility transition to define probabilistic knowledge,

as in PETL. Therefore, PTLK still has the same drawback as PETL.

There is a new trend that uses combinations of logics [64] to express many

aspects of MAS, such as knowledge and time, knowledge and probability, real-time and

knowledge, etc., to avoid repeating the implementation of many different verification

systems. The component logics refer to key aspects of MAS, including classic temporal

logics (CTL, LTL, etc.), belief/knowledge logics (model logics KD45, S5, etc.), logics

of goals (modal logics KD, etc.), probabilistic temporal logics (PCTL, etc.), and real-

time temporal logics (TCTL, etc.). The component logics can be combined in three

ways:

1. Temporalisation, which adds a temporal dimension to another logic system;

2. Fusion (independent join), which is obtained by the union of the respective sets

of connectives and the union of the formation rules of both logics [46]; and

3. Product (join), which produces higher-dimensional temporal logics by combining

lower-dimensional temporal logics.

With these three combination methods, the syntax of combinations of logics is possible

to cover all aspects of MAS. In their paper, Konur et al. provide a generic model

checking algorithm, which synthesizes a combined model checker from the model

checkers of simpler component logics. The authors do not clearly explain, however,

how the semantics of those combined logics are associated with models. This issue

affects the future implementation. Therefore, the realistic application of combinations

48

of logics still needs to be demonstrated. In short, combinations of logics still needs to

be explored further.

3.3 Model Checking Approaches

Many model checking techniques have been developed to overcome the state explosion

problem of model checking, such as symbolic techniques [19], reduction techniques

[31], bounded model checking [14], etc. In order to use the existing probability model

checker PRISM, we exploit reduction techniques to reduce model checking PCTLK

to model checking PCTL. The foundation for reduction techniques is that a formula

is true in the abstract system, if and only if (iff) it is true in the original system [31].

In addition to our method that transforms models and formulae into widely used

models and formulae, there are also other reduction techniques, such as probabilistic

abstraction techniques [107], approximate probabilistic techniques [54], and symmetry

reduction techniques [34].

Hérault et al. in [54] presented a randomized algorithm that allows the efficient

approximation of the satisfaction probability of monotone properties on probabilistic

systems. They developed an approximate probabilistic model checker APMC to im-

plement their method in [54]. The essentially positive fragment (EPF) of LTL was

defined to express only monotone properties, which means a formula φ holds in a

path σ if and only if the formula φ holds in any path σ+ of which σ is a prefix. Then

they denote Prob[ψ] as the measure of the set of paths in the probabilistic transition

system. They generate random paths in the probabilistic space underlying the DTMC

structure of depth k and compute a random variable which estimates Prob[ψ]. They

have used this approach to verify extremely large systems such as the Pnueli and

Zuch’s 500 dining philosophers. This approach however, can be used only on EPF of

49

LTL and does not work with epistemic properties.

Zhou et al. introduced the logic PTLK (probabilistic temporal logic of knowl-

edge) and proposed an abstraction procedure for model checking PTLK in [107]. Their

abstraction approach is based on partitioning the state space into several equivalence

classes which consist of the set of abstract states. After partition, the probability

distribution between these partitions is an interval. Every formula will correspond to

a probability function over the interval. However, no experiments were implemented

to show the reduction rate of their approach.

Cohen et al. used a symmetry reduction technique to verify temporal-epistemic

logic CTLK in [34]. Only agent symmetries were considered. By permuting agent

names along the epistemic accessibility relation, they reduced the interpreted systems

semantics into a counterpart semantics. The approach exploited agent symmetries to

reduce the initial states. Therefore, after reduction, there is a single representative for

a group of symmetric initial states. The experimental results with the muddy children

show significant reductions in verification time and states. However, uncertainty has

not been considered. In future work, we intend to explore the extension of this method

to the probabilistic model checking field.

There are model checking tools designed for the verification of epistemic and

temporal properties of MAS, for example MCK [47], and MCMAS [78]. MCK sup-

ports agents’ knowledge in both observation alone and observation with clock for

synchronous or asynchronous perfect recall of all the observations. It can be used to

verify either linear or branching time temporal logics. while MCMAS only supports

branching temporal logic and CTLK. There are also some model checkers developed

for verifting probabilistic specifications, like PRISM [69] and ProbVerus [53]. PRISM

is a probabilistic symbolic model checker that can verify PCTL, CSL, LTL and PCTL*

50

formulae, as well as extensions for quantitative specifications and costs/rewards for-

mulae. ProbVerus is an extension of Verus [21], which combines symbolic model

checking techniques and quantitative algorithms for computing minimum and maxi-

mum time delay between two events. ProbVerus can be used to verify PCTL formulae

on fully probabilistic systems. However, there are no model checking tools specifically

for epistemic-probabilistic properties. We used the reduction technique to convert

probabilistic-epistemic properties into quantitative properties so that we are able to

use the PRISM model checker to check these epistemic-probabilistic properties.

51

Chapter 4

Probabilistic Computation Tree

Logic of Knowledge

This chapter is mainly from the paper published in Knowledge-based systems [102].

In Section 4.1, which answers our first research question, we present the models and

introduce probabilistic interpreted systems. We define a new logic PCTLK in Section

4.2 to answer our research question 2 and state syntax and semantics of PCTLK.

Section 4.3 and Section 4.4 provide answers for research questions 3 and 4. In Section

4.3, we explain how model checking PCTLK can be reduced to model checking PCTL.

We implement our approach with PRISM [66] and apply it to a case study in Section

4.4.

4.1 Probabilistic Interpreted Systems

Let A = {1, . . . , n} be a set of n agents in the system. Every agent i ∈ A is associated

with its local state set Li, and possible actions set Acti. A set of global states Γ ⊆

L1 × . . . × Ln is the set of all possible tuples (l1, . . . , ln), and each tuple represents

a computational state for the whole system. If we assume that all actions have even

52

chance, we can map actions to the probabilistic transition function T for the system.

T is defined as T : Γ × Act × Γ → [0, 1], where Act ⊆ Act1 × . . . × Actn is the

set of actions that are executed by agents in the system for collaboration, such that

for every global state γ ∈ Γ,
∑

γ′∈Γ T (γ, α
γγ′

, γ′) = 1, where αγγ′
∈ Act is the action

labeling the transition from γ to γ′. Each agent is associated with a local probabilistic

transition function Ti : Li ×Acti × Li → [0, 1], such that for every local state li ∈ Li,∑
l′
i
∈Li

Ti(li, α
lil

′
i , l′i) = 1 for i ∈ A, where αlil

′
i ∈ Acti is the agent i’s action labeling

the transition from li to l′i. For li ∈ γ, l′i ∈ γ′, the probabilistic transition function T

for the system can be calculated by Equation 4.1 as follows:

T (γ, αγγ′

, γ′) = η
∏
i∈A∧
li∈γ∧
l′
i
∈γ′

Ti(li, α
lil

′
i , l′i) (4.1)

where η is a normalizing factor that forces transitions fit for probability distribution∑
γ′∈Γ t(γ, α

γγ′
, γ′) = 1 for every global state γ. A global initial distribution Iinit

expresses how the system starts and satisfies
∑

γ∈Γ Iinit(γ) = 1. Definition 4.1 defines

the formal models of PCTLK MPIS.

Definition 4.1. Models MPIS of PCTLK

Over a set of atomic propositions AP , a modelMPIS is a tuple: MPIS = (W,Pt, Iinit,∼1

, . . . ,∼n, V) where:

• W ⊆ Γ is the set of reachable states. A state w is reachable if and only if there

exists a sequence of transitions from an initial state to w such that all of the

transitions have probability greater than 0.

• Iinit : W → [0, 1] is the initial distribution of the model, such that:
∑

w∈W Iinit(w) =

1.

• Pt : W ×W → [0, 1] is the transition probability function defined by Pt(w,w
′) =

53

p (p ∈ [0, 1]) if and only if there exists a collaboration action (a1, . . . , an) ∈ Act

such that
∑

i∈A Ti(w, ai, w
′) > 0 and the value of Pt is equal to t(w, αww′

, w) in

probabilistic interpreted systems. For all w ∈ W we have:
∑

w′∈W Pt(w,w
′) = 1.

• ∼i⊆ W ×W is the epistemic accessibility relation for the agent i, such that for

two global states (l1, . . . , ln) and (l′1, . . . , l
′
n), we have: (l1, . . . , ln) ∼i (l

′
1, . . . , l

′
n)

iff li = l′i.

• V is a global state labeling function V : W → 2AP .

The initial distribution Iinit can be viewed as a column vector of |S| rows where

|S| is the cardinality of S (Iinit(s))s∈S, in which the value of every row represents the

probability that the corresponding state is an initial state.

The transition probability function Pt : W ×W → [0, 1] can be represented by

the matrix (Pt(s, t))s,t∈W . The probabilities of moving from state s to its successors

are shown on the rows Pt(s, .) of the matrix, while the probabilities of entering state

s from other states are shown on the columns Pt(., s) of the matrix.

s0

s2

0.4

0.4

p,q

~1

q

s1

s4

0.5
p

s3
q

~2

1

0.5

0.3

0.3

0.6

~1

~1

~2

~2

~1

~1

~1

~1

~2

~2

~2~2

1

Figure 4.1: Model MPIS

Let us consider the example illustrated in Fig 4.1 showing an MIPS model

where two agents are included. W = {s0, s1, s2, s3, s4} is the set of reachable states.

54

AP = {p, q}. The labeling function V is: V (s0) = {q}, V (s1) = {∅}, V (s2) = {p, q},

V (s3) = {q}, and V (s4) = {p}. For epistemic accessibility relations, we have:

{(s0, s0), (s0, s1), (s0, s2), (s1, s0), (s2, s0), (s1, s1), (s2, s2), (s3, s3), (s4, s4)} ⊆∼1 and

{(s0, s0), (s0, s2), (s0, s3), (s2, s0), (s3, s0), (s1, s1), (s2, s2), (s3, s3), (s4, s4)} ⊆∼2

The initial distribution Iinit and the transition probability function Pt viewed as a

5× 5 matrix are as follows:

Iinit =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4 0.3 0.3 0 0

0 1 0 0 0

0 0 0.4 0 0.6

0 1 0 0 0

0 0 0 0.5 0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.2 Epistemic-Probabilistic Logic

Specifications for interpreted DTMC modelsMPIS can be expressed in PCTLK (Prob-

abilistic Computation Tree Logic of Knowledge), which combines CTL logic [32], epis-

temic logic [45], and probabilistic logic [6, 52]. PCTLK can be used to reason about

probabilistic knowledge and specify properties of probabilistic-epistemic MAS.

A PCTLK formula is capable of formulating conditions on a state of an epis-

temic Markov chain. Besides the standard propositional logic operators, PCTLK also

includes the probabilistic operator Pr. Unlike standard CTL, path quantifiers ∃ and

∀ are not valid in PCTLK formulae, all path formulae are immediately preceded by

the probabilistic operator Pr.

55

4.2.1 Syntax of PCTLK

PCTLK is comprised of three types of formulae: state formulae φ, path formulae

ψ, and epistemic formulae κ. State and path formulae of CTL are state and path

formulae of PCTLK. Epistemic formulae are expressed using knowledge and group

knowledge operators. The syntax of PCTLK is defined as follows:

Definition 4.2. Syntax of PCTLK

Let p, p1, p2, . . . range over the set of atomic propositions Φp. Let A = {1, . . . , n} be

a set of agents and G ⊆ A be a group of agents, the PCTLK formulae are defined by

the following BNF grammar:

φ ::= true | p | φ ∧ φ | ¬φ | κ | Pr�b(ψ) | Pr�b(κ)

ψ ::= ©φ | φ U≤n φ | φ U φ

κ ::= Kiφ | EGφ | CGφ | DGφ

where 0 ≤ b ≤ 1 is a real number giving the rational boundary, � ∈ {<,≤,≥, >}

presents relationship boundary of the probability, and n ∈ N is the maximum steps to

achieve a specific state.

Formulae κ, called epistemic formulae, are special state formulae in PCTLK

that can describe epistemic properties. There are four epistemic modalities: Ki, EG,

CG, and DG that represent respectively “agent i knows”, “every agent in the group

G knows”, “common knowledge in the group G”, and “distributed knowledge in the

group G”. Pr�b(Kiφ) represents the probability that agent i knows φ, where φ is

a state formula. This probability is �b. KiPr�bψ states that agent i knows the

probability that the path formula ψ holds, which is �b. �b indicates a lower or upper

bound on the probability (e.g < b, ≤ b, ≥ b, or > b). The difference between these

two kinds of formulae is that Pr�b(Kiφ) expresses the degree of agent i knowing

something, while KiPr�bψ indicates that agent i knows some uncertain things. To

56

illustrate, Pr≥0.9(K1φ) indicates that agent 1 knows φ with at least 0.9 probability.

K1(Pr≥0.9φ) means agent 1 knows that with at least 0.9 probability, φ holds. ♦φ

and �φ are the usual abbreviations for eventually and globally: ♦φ ≡ true U φ and

�φ ≡ ¬♦¬φ.

There are no universal (∀) and existential (∃) path quantifiers in PCTLK. In-

stead, the linear temporal operators © (next), U (until), and U≤n (bounded until)

are required to follow the probabilistic operator Pr�b immediately. The propositional

temporal fragment of PCTLK has the same meaning as in CTL. For example, the

formula ©φ has the meaning of “in the next state φ holds”. φ1Uφ2 means “φ1 holds

until φ2”. A new step-bounded variant of until (φ1U
≤nφ2) is added, meaning that

“φ2 will hold within at most n steps while φ1 holds in all states before a φ2-state has

been reached”. The step-bounded until is necessary in probabilistic logic because the

probability of reaching a φ2-state after at most n steps is different from reaching this

state after at most (n+ 1) steps. In CTL, temporal operators © and U are required

to be immediately preceded by a path quantifier, while in PCTLK, they must follow

the operator Pr�b immediately.

The probabilistic operator on path formulae Pr�b(ψ) expresses that “ψ holds

with a probability �b”. For instance, Pr≥0.75(©message receive) asserts that “with

at least 0.75 probability, in the next state the message will be received”. The prob-

abilistic operator on epistemic formulae Pr�b(κ) states the degree of the knowledge:

how much the agent is confident about his knowledge. For example, the following

formula: Pr≤0.8(K1(agent 2 has resource A)) expresses that agent 1 knows with a

maximum probability of 0.8 that agent 2 has resource A. More specifically, this means

that out of X accessible states for agent 1, Y states satisfy the fact that agent 2 has

resource A, where Y/X ≤ 0.8.

57

4.2.2 PCTLK Semantics for DTMC

Before we give the formal semantics of PCTLK, we briefly review the notion of prob-

ability space [40] and then define group epistemic relations. A probability space is a

mathematical constructor in probability theory. It is expressed as a triple (Ω, E ,P)

that models a process consisting of events that occur randomly.

• Ω is a sample space. To fit our case, we assume that Ω is a set of states.

• E is a set of events. E is a subset of Ω. If E ⊆ Ω, then E = Ω− E ⊆ Ω;

• P : E → [0, 1] is a function, also called a probability measure that assigns

probabilities to events. The measure of the whole sample space P(Ω) = 1. If

E1 ⊆ Ω, E2 ⊆ Ω, and E1 ∩ E2 = ∅, then P(E1 ∪ E2) = P(E1) + P(E2).

The probabilistic operator Pr�b can be placed either in front of a path formula ψ

or in front of an epistemic formula κ. Formulae are evaluated on states or along paths

where a path is an infinite sequence of states. For the formula Pr�b(ψ), s |= Pr�b(ψ)

means that “the probability from state s that ψ holds for all outgoing paths is �b”.

For example, s |= Pr<0.25(true ∪
≤5 φ) asserts that “the probability that the system

model satisfies φ within 5 steps of all outgoing paths from the state s is less than

0.25”. We use the symbol Prob to stand for the probability measure. In order to

compute the probability measure of a path, we need to associate a probability space

with probabilities in the model MPIS. Let π̂ = s0 . . . sm be a finite fragment of the

path π, the cylinder set Cyl(π̂) [6] is the set of all infinite reachable paths emanating

from π̂ inMPIS. The probability measure of this cylinder set Cyl(π̂) can be calculated

by:

Prob(Cyl(π̂)) = Prob(Cyl(s0 . . . sm)) = Iinit(s0) ·Pt(s0 . . . sm) (4.2)

58

where:

Pt(s0 . . . sm) =
∏

0≤i<m

Pt(si, si+1) (4.3)

For model checking purposes, Equation 4.2 will be used when we are interested

in determining if the model satisfies a given formula. However, when the question is

about determining if a given state s satisfies a given formula, we assume that s is the

unique initial state, so that we use Is instead of Iinit to compute Prob(Cyl(π̂)). The

Is value is defined as follows:

Is(t) =

⎧⎪⎪⎨
⎪⎪⎩
1, if s = t

0, otherwise

(4.4)

LetG ⊆ A be a group of agents. To define the semantics of the epistemic operators EG,

CG, andDG, we define the group epistemic accessibility relations from the accessibility

relation ∼i as follows:

Definition 4.3. Group Epistemic Accessibility Relations

• ∼E
G is the union of group G′s accessibility relations: ∼E

G=
⋃

i∈G ∼i.

• ∼C
G is the transitive closure of ∼E

G.

• ∼D
G is the intersection of G′s accessibility relations: ∼D

G=
⋂

i∈G ∼i.

For the state formula Pr�b(κ), s |= Pr�b(κ) means that “on state s, the prob-

ability that the epistemic formula κ holds is �b ”. We denote the number of states

s′ such that for a given state s we have s ∼i s
′ for agent i (i ∈ A) by |s ∼i s

′|. The

sample space of agent i at state s is the set of possible worlds or equivalent states of

i at s and is equal to |s ∼i s
′|. Similarly, we denote the number of states s′ that are

accessible from a given state s through ∼E
G by |s ∼E

G s′|, through ∼C
G by |s ∼C

G s′|, and

59

through ∼D
G by |s ∼D

G s′|. We also define |s |= φ| as follows:

|s |= φ| =

⎧⎪⎪⎨
⎪⎪⎩
1, if s |= φ

0, otherwise

(4.5)

Let s ∈ W be a state, π = s0, s1, s2, . . . a path, i.e. an infinite sequence of states

related by transitions, a ∈ AP an atomic proposition, φ a PCTLK state formula

(i.e. evaluated over states), and ψ a PCTLK path formula (i.e. evaluated through

paths). The (i + 1)th state in π is denoted by π(i) (i.e., π(i) = si). σ(s) is the set

of all paths emanating from s. Given the model MPIS = (W,Pt, Iinit,∼1, . . . ,∼n, V),

(MPIS, s) |= φ stands for “state s satisfies φ in the system model MPIS” or “φ is true

at state s in the system model MPIS”. (MPIS, π) |= ψ is read as “the path π satisfies

ψ in the system model MPIS” or “ψ is true through the path π in the system model

MPIS”. If MPIS is clear from the context, we simply write s |= φ and π |= ψ. In the

following, we define the semantics of PCTLK.

• For a state s:

s |= a iff a ∈ V (s)

s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= ¬φ iff s � φ

The semantics of the state formulae Pr�b(ψ) and Pr�b(κ) will be given later.

• For a path π:

π |= ©φ iff π(1) |= φ

π |= φ1U
≤nφ2 iff ∃0 ≤ k ≤ n, π(k) |= φ2 and ∀0 ≤ i < k π(i) |= φ1

π |= φ1 Uφ2 iff ∃k ≥ 0, π(k) |= φ2 and ∀0 ≤ i < k π(i) |= φ1

60

• The semantics of epistemic formulae κ over a state s is based on the epistemic

accessibility relation and group epistemic accessibility relations as given in Def-

inition 4.3:

s |= Kiφ iff ∀s′ ∈ W if s ∼i s
′ then s′ |= φ

s |= EGφ iff ∀s′ ∈ W if s ∼E
G s′ then s′ |= φ

s |= CGφ iff ∀s′ ∈ W if s ∼C
G s′ then s′ |= φ

s |= DGφ iff ∀s′ ∈ W if s ∼D
G s′ then s′ |= φ

• In terms of probability space, the set of all reachable states from the initial

states is our sample space Ω and for each formula, the set of states satisfying

it is the set of events E . Based on this observation, we define the semantics of

the probabilistic operator Pr that works on path and epistemic formulae in the

following.

– For a probabilistic operator working on a path formula, where π̂ = s0 . . . sm:

s |= Pr�b(©φ) iff Prob(s, σ(s),©φ) �b, where:

Prob(s, σ(s),©φ) =
∑

π∈σ(s)s.t.
π(1)|=φ

Pt(s, π(1)) (4.6)

s |= Pr�b(φ1U
≤nφ2) iff Prob(s, σ(s), φ1U

≤nφ2) �b, where:

Prob(s, σ(s), φ1U
≤nφ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if s |= φ2∑
∀π∈σ(s)s.t.

π|=φ1U
≤nφ2

Prob(Cyl(π̂)), if sm|=φ2, 0<m≤n,
and ∀0≤i<m, si|=φ1

0, otherwise

(4.7)

s |= Pr�b(φ1Uφ2) iff Prob(s, σ(s), φ1Uφ2) �b, where:

61

Prob(s, σ(s), φ1Uφ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if s |= φ2

∑
∀π∈σ(s)s.t.
π|=φ1Uφ2

Prob(Cyl(π̂)), if sm|=φ2 and
∀0≤i<m, si|=φ1

0, otherwise

(4.8)

– For a probabilistic operator working on an epistemic formula:

s |= Pr�b(Kiφ) iff Prob(s |= Kiφ) �b, where:

Prob(s |= Kiφ) =

∑
s∼is′

|s′ |= φ|

|s ∼i s′|
(4.9)

s |= Pr�b(EGφ) iff Prob(s |= EGφ) �b, where:

Prob(s |= EGφ) =

∑
s∼E

G
s′ |s

′ |= φ|

|s ∼E
G s′|

(4.10)

s |= Pr�b(CGφ) iff Prob(s |= CGφ) �b, where:

Prob(s |= CGφ) =

∑
s∼C

G
s′ |s

′ |= φ|

|s ∼C
G s′|

(4.11)

s |= Pr�b(DGφ) iff Prob(s |= Dκφ) �b, where:

Prob(s |= DGφ) =

∑
s∼D

G
s′ |s

′ |= φ|

|s ∼D
G s′|

(4.12)

Example 4.1. In this example, we will illustrate how to check if a state satisfies a

probabilistic formula using Figure 4.2 that shows a simple MPIS model. The solid lines

with numbers are probabilistic transitions. The dash lines are epistemic accessibility

relations ∼1 for agent 1. To keep the example simple, only ∼1 from s0 are shown in

the figure. Pt and Iinit are as follows:

62

Pt =

⎡
⎢⎢⎢⎢⎣
1/2 1/2 0

0 1/4 3/4

0 0 1

⎤
⎥⎥⎥⎥⎦ , Iinit =

⎡
⎢⎢⎢⎢⎣
1

0

0

⎤
⎥⎥⎥⎥⎦

�� ��
���

���
���

�	

��

���

�

Figure 4.2: An Example of MPIS Model

We want to check if state s0 satisfies the formula Pr>0.9(♦p). To do so, we have

to compute the probability of all paths from s0 that satisfy ♦p ≡ true U p, and then

check if the summation of these probabilities is greater than 0.9 (see Equations 4.2,

4.3, and 4.8). We have:

Prob(s0, σ(s0), true U p) = Pt(s0, s1) +Pt(s0, s0)×Pt(s0, s1)

+Pt(s0, s0)×Pt(s0, s0)×Pt(s0, s1) + . . .

=
∝∑

n=1

(1/2)n = 1 > 0.9

Consequently, state s0 satisfies this formula.

Let us now check, for example, if s0 satisfies Pr>0.7(K1q). We use Equation 4.9

63

to compute the probability Prob(s0 |= K1q). Since the number of accessible states

from s0 using ∼1 is 3, out of which 2 satisfy q, we obtain:

Prob(s0 |= K1q) = 2/3 < 0.7

Thus, state s0 does not satisfy the formula.

��

���	

�
��

��

��

���

�

�

�

�

�

�

��� �����!

��� �����!

���"� #���������������!

�

�

Figure 4.3: Another Example of MPIS Model

Example 4.2. Let us consider another example mainly for probabilistic epistemic

operators using Figure 4.3 that illustrates another MPIS model where two agents are

considered. For the sake of simplicity, only the accessibility relations from state s0

are shown in the figure and one from s2 needed to show ∼C
G. Furthermore, the ones

that can be deduced from the properties of the accessibility relation (for instance tran-

sitivity and Euclideanity) are omitted. We also omit the probabilities of transitions.

Let G be the group of agents 1 and 2. So, for the union of ∼1 and ∼2 we have:

{(s0, s0), (s0, s1), (s0, s2), (s0, s3)} ⊆∼E
G; for the transitive closure of ∼E

G, we have:

{(s0, s0), (s0, s1), (s0, s2), (s0, s3), (s0, s4)} ⊆∼C
G; and for the intersection of ∼1 and

64

∼2 we have: {(s0, s0), (s0, s2)} ⊆∼D
G .

Now, we use semantics equations to calculate the probability of epistemic oper-

ators.

1. Prob(s0 |= K2q) =
|s0|=q|+|s2|=q|+|s3|=q|

3
= 1+1+0

3
= 2

3

2. Prob(s0 |= K1q) =
|s0|=q|+|s1|=q|+|s2|=q|

3
= 1+0+1

3
= 2

3

3. Prob(s0 |= EGq) =
|s0|=q|+|s1|=q|+|s2|=q|+|s3|=q|

4
= 1+0+1+0

4
= 2

4
= 1

2

4. Prob(s0 |= DGq) =
|s0|=q|+|s2|=q|

2
= 1+1

2
= 1

5. Prob(s0 |= CGq) =
|s0|=q|+|s1|=q|+|s2|=q|+|s3|=q|+|s4|=q|

5
= 1+0+1+0+1

5
= 3

5

Thus, for instance, we have s0 satisfies the formula Pr≥0.6(CGq), but does not satisfy

Pr≥0.7(CGq).

4.2.3 Properties of Probabilistic Knowledge

PCTLK inherits epistemic properties from CTLK [74] and probabilistic properties

of path formulae from PCTL [6]. We list a number of new properties that are not

included in conventional epistemic and probabilistic logics. For the conventional ones,

please refer to [6, 45].

There are a number of equivalences between a probabilistic epistemic formula

and the conventional knowledge formula. If the probability that an agent knows φ is

greater than or equal to 1 holds at state s, then the agent knows φ holds at the state

s. We can expand this validity to everyone’s knowledge EGφ, common knowledge

CGφ, and distributed knowledge DGφ.

Theorem 4.1. Probabilistic and Epistemic Equivalence

65

s |= Pr≥1(Kiφ) iff s |= Kiφ s |= Pr<1(Kiφ) iff s |= ¬Kiφ

s |= Pr≥1(EGφ) iff s |= EGφ s |= Pr<1(EG(φ)) iff s |= ¬EGφ

s |= Pr≥1(CGφ) iff s |= CGφ s |= Pr<1(CGφ) iff s |= ¬CGφ

s |= Pr≥1(DGφ) iff s |= DGφ s |= Pr<1(DGφ) iff s |= ¬DGφ

s |= Pr≤0(Kiφ) iff s |= Ki¬φ s |= Pr≤0(EGφ) iff s |= EG¬φ

s |= Pr≤0(CGφ) iff s |= CG¬φ s |= Pr≤0(DGφ) iff s |= DG¬φ

Proof.

We prove the first equivalence; the same method can be used to prove the others.

We first prove ⇒.

We have: s |= Pr≥1(Ki(φ)). According to the semantics, we get:

Prob(s |= Kiφ) =
∑

s∼is
′ |s′|=φ|

|s∼is′|
= 1.

Therefore,
∑

s∼is′
|s′ |= φ| = |s ∼i s

′|.

This means ∀s′ such that s ∼i s
′, s′ |= φ. Thus, s |= Kiφ.

Next we prove ⇐.

s |= Kiφ iff ∀s′ such that s ∼i s
′, we have s′ |= φ.

Consequently,
∑

s∼is′
|s′ |= φ| = |s ∼i s

′| Therefore, s |= Pr≥1(Ki(φ))

Theorem 4.2. Probabilistic and Non-Probabilistic Knowledge

Let b1 and b2 be two boundaries in [0, 1]. The following validity holds:

Pr>b1(Kiφ) ∧ Pr<b2(Kiφ) ⇒ ¬Kiφ ∧ ¬Ki¬φ

Proof. From the left side of the validity, we conclude that 0 ≤ b1 < b2 ≤ 1. Let

s be a state such that: s |= Pr>b1(Kiφ) ∧ Pr<b2(Kiφ). So we have: 0 < Prob(s |=

Kiφ) =
∑

s∼is
′ |s′|=φ|

|s∼is′|
< 1. Thus, 0 <

∑
s∼is′

|s′ |= φ| < |s ∼i s
′|. This means some

accessible states from s satisfy φ, but not all of them, and so some others satisfy ¬φ

but not all of them, so the result flows from the semantics of Kiφ.

66

Theorem 4.3. Probabilities of Subgroup

1. If s |= EGφ and G′ ⊆ G, then s |= EG′φ. The same result holds for CG but not

for DG.

2. If s |= Pr�b(EGφ) and G′ ⊂ G, then it is not case that s |= Pr�b(EG′φ). The

same result holds for CG and DG.

Proof.

• For 1, we prove the theorem for EG, the same idea can be used for CG. Let s

be a state such that s |= EGφ. By semantics: ∀s′ s.t. s ∼E
G s′, we have s′ |= φ.

Because ∼E
G=

⋃
i∈G ∼i, we obtain: ∀i ∈ G ∀s′ s.t. s ∼i s′ we have s′ |= φ,

which also holds for any subset G′ of G, so we are done. However, for DG as

the intersection of ∼i is considered, it is easy to imagine a scenario where a

subgroup G′ outside the whole intersection so that DG′ does not satisfy φ.

• For 2, we prove the theorem for EG; CG and DG can be proved similarly. The

proof is done by providing two examples with different conclusions. Assume that

(s |= Pr�b(EGφ)) and G′ ⊂ G. Suppose there are four agents in a group: G =

{Ag1, Ag2, Ag3, Ag4} and each agent has only two epistemic accessible states,

which, except the state itself, are all different. Three agents Ag1, Ag2, and Ag3

at state s know φ: s |= K1φ, s |= K2φ, and s |= K3φ . But s � K4φ. Therefore,

|s ∼E
G s′| = 5 and s |= Pr≥0.8(EGφ) because Prob(s |= EGφ) =

4
5
= 0.8. There

is a subgroup G1 = {Ag1, Ag2, Ag3} ⊂ G where s |= Pr≥0.8(EG1φ) because

|s ∼E
G1 s′| = 4, so Prob(s |= EG1′φ) =

4
4
= 1 ≥ 0.8, while for another subgroup

G2 = {Ag1, Ag2, Ag4} ⊂ G, s � Pr≥0.8(EG2φ) because |s ∼E
G2 s′| = 3 and

Prob(s |= EG2φ) =
3
4
= 0.75 < 0.8.

67

Theorem 4.4. Extended Properties

For all formulas φ and ψ, and all agents i = 1, . . . , n, the following extended properties

for probability hold:

1. Ki(Pr�bKiφ) ⇒ Ki(Ki(Pr�bKiφ))

2. Pr�bKiφ ∧Ki(φ ⇒ ϕ) ⇒ Pr�bKiϕ

3. Ki(Pr�bKiφ) ⇒ Pr�bKiφ

Proof.

• 1 follows directly from the transitivity of ∼i.

• For 2, if s |= Pr�bKiφ ∧ Ki(φ ⇒ ϕ), then for all states s′ such that (s ∼i s
′)

we have s′ |= (φ ⇒ ϕ) and
∑

s∼is
′ |s′|=φ|

|s∼is′|
�b. It follows, using modus ponens, that∑

s∼is′
|s′ |= ϕ| =

∑
s∼is′

|s′ |= φ|. Consequently
∑

s∼is
′ |s′|=ϕ|

|s∼is′|
�b, so the results.

• 3 follows directly from the reflexivity of ∼i.

4.3 Model Checking Technique

We propose a reduction-based approach to transform the problem of model checking

PCTLK into the problem of model checking PCTL so that the PCTL’s model checker,

PRISM, can be used to verify PCTLK formulae. Given a PCTLK model MPIS and

a PCTLK formula ϕ
PIS

, we can define a PCTL model M = F(MPIS) and a PCTL

formula ϕ = F(ϕ
PIS

) such that (MPIS, s0) |= ϕ
PIS

iff (F(MPIS), s0) |= F(ϕ
PIS

).

Thus, the reduction is implemented in two parts: (1) transforming the probabilistic

epistemic model; and (2) reducing PCTLK formulae.

68

The workflow for model checking PCTLK is summarized in Figure 4.4. The

transformation F translates the inputs: probabilistic interpreted system MPIS and

PCTLK formula ϕ
PIS

into a regular DTMC model F(MPIS) and PCTL formula

F(ϕ
PIS

). This transformation is done automatically by a tool we have implemented,

then we use the PRISM model checker to verify if the obtained model satisfies the

obtained formula. In the following, we split the explanation into two parts: models

transformation and formulae reduction to introduce the details of our model checking

approach.

Probabilistic

Interpreted

system MPIS

PCTLK

Formulae

PIS

Interpreted

MDP model

MP
IS

PCTL

Formulae

�(PIS)

DTMC model

�(MPIS)

PRISM

Model Checker

Results

(States, Probabilities)

Transformation �

Figure 4.4: Verification Workflow for PCTLK

4.3.1 Translation of MPIS Models

The translation from an MPIS model, which is an epistemic DTMC model, to an

F(MPIS) model is done in two steps. In the first step we translate the probabilis-

tic epistemic model MPIS into an equivalent interpreted MDP model MP
IS that will

be formally defined later (see Figure 4.4). In this step, the key operation is the

mapping of the epistemic relations (∼i,∼
E
G,∼

C
G,∼

D
G) used in MPIS to specific actions

(ACCi, ACCE
G , ACCC

G , ACCD
G) needed for MP

IS. Then, in the second step we trans-

form this equivalent MDP model MP
IS into a regular DTMC model M = F(MPIS) by

selecting the specific action for the formula. These two steps will be explained in this

69

section.

The motivation behind the first step is that an MPIS is a DTMC model, which

therefore cannot model the nondeterministic behavior of the concurrent processes in

an adequate manner because it only allows deterministic choices. However, Markov

Decision Processes (MDP) that can be viewed as a variant of Markov chains extend-

ing DTMC by allowing nondeterministic choices. Thus, both nondeterministic and

probabilistic choices coexist in MDP. The definition of MDP as given in [6] is as

follows.

Definition 4.4. MDP

Over a set of atomic propositions AP , an MDP can be expressed as a tuple

(S, Act, P , Iinit, L, AP), where:

• S is a nonempty and finite set of states.

• P : S×Act×S → [0, 1] is the transition probability function, such that for every

state s ∈ S and action α ∈ Act, we have
∑

s′∈S P(s, α, s′) ∈ {0, 1}.

• Act is a set of actions. At the state s ∈ S, the action α is enabled iff∑
s′∈S P(s, α, s′) = 1.

• Iinit : S → [0, 1] is the initial distribution such that for all states s ∈ S,∑
s∈S Iinit(s) = 1.

• L : S → 2AP is a state labeling function.

For any state s ∈ S, there is at least one enabled action α. The operational

behavior of an MDP starts with a state s0 such that Iinit(s0) > 0. At every state s,

the system first chooses an enabled action nondeterministically from the set Act(s)

of enabled actions at s. Then, it performs this action probabilistically according to

the transition probability function. Thus, a DTMC is a special MDP in which for

70

any state s, there is only one action in Act(s). Therefore, by adding actions into a

DTMC, we can create an MDP. Now we can define the MP
IS MDP model obtained

from our MPIS model (step 1).

Definition 4.5. MP
IS Model

Given an epistemic DTMC model MPIS = (W,Pt, Iinit,∼1, . . . ,∼n, V),

MP
IS = (S, ActP , PP

t , IPinit, V P) is an MDP model defined from MPIS as follows:

• S = W.

• ActP = {Run,Acc1, . . . , Accn, Acc
E
G, Acc

C
G, Acc

D
G} is a set of actions. The action

Run labels the transitions obtained from the MPIS transitions, while each ac-

tion Acci labels the transitions obtained from the epistemic accessibility relation

∼i. The actions AccEG, Acc
C
G, and AccDG label the transitions obtained from the

accessibility relations ∼E
G, ∼

C
G, and ∼D

G respectively.

• PP
t : S × ActP × S → [0, 1] is the transition probability function defined as

follows: for all s ∈ S,

PP
t (s, α, s

′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pt(s, s
′), if α = Run

1
|s∼is′|

, if α = Acci

1
|s∼E

G
s′|
, if α = AccEG

1
|s∼C

G
s′|
, if α = AccCG

1
|s∼D

G
s′|
, if α = AccDG

• IPinit = Iinit.

• V P = V .

71

According to this translation, the transitions of MP
IS are obtained (1) from the

transitions of MPIS with the same probabilities; and (2) from the epistemic relations

where the probabilities are equally distributed depending on the number of accessible

states from each given state. For example, if 3 states are accessible from a state s,

then each of the the three obtained transitions will have 1/3 as probability.

Because MP
IS, as an MDP, is not deterministic, a policy or strategy should be

used to resolve all the nondeterministic choices by picking an enabled transition for

a state, which induces a Markov chain. In the literature related to MDP, this policy

is called scheduler (or also adversary). A scheduler is a function from the state set S

to the action set ActP such that it chooses in any state s one of the enabled actions.

We define five particular schedulers λ, λi, λ
E
G, λ

C
G, and λD

G that are used to obtain a

DTMC from the obtained MDP model MP
IS (step 2).

From each state in MP
IS, the following actions are enabled: Run, Acci, Acc

E
G,

AccCG, and AccDG . We set the scheduler λ that always selects the transitions labeled

by Run (so the transitions obtained by the accessibility relations are ignored). The

scheduler λi always selects the action Acci from a state s and then selects the action

Run from all the following states (so first the accessibility relations ∼i are considered

and then the normal transitions). Similarly, the schedulers λE
G, λ

C
G, and λD

G always

select the actions AccEG, Acc
C
G, and AccDG respectively from a state s and then select

the action Run from all the following states. It is easy to see that the obtained models

are DTMC for PCTL, which means, the models M = F(MPIS) as explained above.

The following example illustrates this transformation procedure. Figure 4.5

(a) is the MDP model for a system with two agents (i ∈ {1, 2}). The two agents

have the same two local states: Li = {s1, s2}. Thus four combinations of those

local states are possible, making the number of possible global states equal to four:

{g1, g2, g3, g4}, where g1 = (s1, s1); g2 = (s1, s2); g3 = (s2, s1); and g4 = (s2, s2). For

72

p

g1

p,q

g2
Run: 0.24

Run:

0.54

Run: 0.36

p,q

g3

Run: 0.36

q

g4

Run: 0.36

Run: 0.81

Run:

0.54

Run: 0.24

Run:0.16

p

g1

p,q

g2

0.5

0.54

0.36

p.q

g3

q

g4

0.36

0.81
0.54

0.5

(a) (b)

ActionSet1

ActionSet1

AccC
G: 0.25

AccC
G: 0.25

AccC
G:

0.25

AccC
G:

0.25

ActionSet1

ActionSet1

ActionSet2

ActionSet3

ActionSet1:{(Acc1: 0.5), (Acc2: 0.5), (AccE
G: 1/3), (AccC

G: 0.25), (AccD
G: 1)}

ActionSet2:{(Acc1: 0.5),(AccE
G: 1/3),(AccC

G: 0.25)}

ActionSet3:{(Acc2: 0.5),(AccE
G: 1/3),(AccC

G: 0.25)}

Run:0.04

Run:0.04

Run:0.06

Run:0.09

Run:0.06

Run:0.09
Run:0.01

0.06

0.01

0.04

0.04

0.06

0.09

0.09

Figure 4.5: (a): MDP MP
IS Model. (b): Scheduler λ1 at State g1

simplicity, the two agents have the same probabilistic transition function Ti specified

as follows: Ti(s1, Run, s1) = 0.4; Ti(s1, Run, s2) = 0.6; Ti(s2, Run, s1) = 0.9; and

Ti(s2, Run, s2) = 0.1. p and q are atomic propositions and the probabilistic transi-

tions are shown in the figure as labeled transitions, where the labels have the form

(action−name : probability− value), for instance (Run : 0.24) and (Acc1 : 0.5). The

probabilities associated with the action Run are calculated based on the Ti function.

For instance, the probability of the transition (g1, Run, g2) is computed as follows:

Ti(s1, Run, s1)× Ti(s1, Run, s2) = 0.4× 0.6 = 0.24. The probabilities associated with

the action Acci are given and are used to compute those associated with the actions

AccEG, Acc
C
G, and AccDG . Figure 4.5 (b) is the same system with scheduler λ1 at the

global state g1. This means, at g1 the action Acc1 is chosen and then the action Run

is chosen from all the other three global states g2, g3, and g4.

73

4.3.2 Reducing PCTLK to PCTL

Having transformed the models, now we need to reduce PCTLK formulae into PCTL

formulae. PCTL has the same syntax as PCTLK, except that the epistemic formulae

κ are not included. This reduction process works in stages inductively. Each PCTLK

formula is divided into “maximal state subformulae” such that each maximal state

subformula φ: (1) includes the probabilistic or epistemic operators; (2) differs from

φ; and (3) is not contained in any other state subformula of φ. Each maximal state

subformula is a PCTLK formula, which can be divided into other maximal state

subformulae until no new maximal state subformula can be identified. Thus, in stage

k, formulae of level k are decomposed into maximal state subformulae of level k−1 or

lower. The lowest level, level 0, contains only atomic propositions and the highest level

is the whole formula. In stage k all maximal state subformulae of φ of level smaller

than k are processed and replaced by new atomic propositions, which are labels of

the subformulae. Before giving an example let us introduce the reduction rules. Let

φ, φ1, φ2 be PCTLK formulae and a be an atomic proposition, the transformation

rules are defined recursively as in Table 4.1:

Table 4.1: PCTLK to PCTL Transformation Rules
Rule Number Rules

1 F(a) = a;
2 F(¬φ) = ¬F(φ);
3 F(φ1 ∧ φ2) = F(φ1) ∧ F(φ2);
4 F(Pr�b © φ) = Pr�b ©F(φ);
5 F(Pr�b(φ1Uφ2)) = Pr�b(F(φ1)UF(φ2));
6 F(Pr�b(φ1U

≤nφ2)) = Pr�b(F(φ1)U
≤nF(φ2));

7 F(Kiφ) = Pr≥1(©F(φ));
8 F(EGφ) = Pr≥1(©F(φ));
9 F(CGφ) = Pr≥1(©F(φ));
10 F(DGφ) = Pr≥1(©F(φ));
11 F(Pr�bKiφ) = Pr�b(©F(φ));
12 F(Pr�bEGφ) = Pr�b(©F(φ));
13 F(Pr�bCGφ) = Pr�b(©F(φ));
14 F(Pr�bDGφ) = Pr�b(©F(φ)).

74

To complete the reduction process, a DTMC model M = (S,P, Iinit, L, AP)

associated with each PCTL formula should be defined. This is done by specifying

which scheduler is associated with which formula. In the following, (M, s) |=Sch

φ means the PCTL formula φ is satisfied in the model M obtained by applying

the scheduler Sch at state s. The following theorem is a direct consequence of the

definition of F and can be easily proved by induction on the structure of the formula.

Theorem 4.5. Satisfaction Equivalence

(MPIS, s) |= a iff (F(MPIS), s) |=λ a

(MPIS, s) |= ¬φ iff (F(MPIS), s) |=λ ¬F(φ)

(MPIS, s) |= φ1 ∧ φ2 iff (F(MPIS), s) |=λ F(φ1) ∧ F(φ2)

(MPIS, s) |= Pr�b © φ iff (F(MPIS), s) |=λ Pr�b ©F(φ)

(MPIS, s) |= Pr�b(φ1Uφ2) iff (F(MPIS), s) |=λ Pr�b(F(φ1)UF(φ2))

(MPIS, s) |= Pr�b(φ1U
≤nφ2) iff (F(MPIS), s) |=λ Pr�b(F(φ1)U

≤nF(φ2))

(MPIS, s) |= Kiφ iff (F(MPIS), s) |=λi
Pr≥1(©F(φ))

(MPIS, s) |= EGφ iff (F(MPIS), s) |=λE

G

Pr≥1(©F(φ))

(MPIS, s) |= CGφ iff (F(MPIS), s) |=λC

G

Pr≥1(©F(φ))

(MPIS, s) |= DGφ iff (F(MPIS), s) |=λD

G

Pr≥1(©F(φ))

(MPIS, s) |= Pr�b(Kiφ) iff (F(MPIS), s) |=λi
Pr�b(©F(φ))

(MPIS, s) |= Pr�b(EGφ) iff (F(MPIS), s) |=λE

G

Pr�b(©F(φ))

(MPIS, s) |= Pr�b(CGφ) iff (F(MPIS), s) |=λC

G

Pr�b(©F(φ))

(MPIS, s) |= Pr�b(DGφ) iff (F(MPIS), s) |=λD

G

Pr�b(©F(φ))

Simply put, this theorem states that if the PCTLK formula does not include

epistemic operators, then the corresponding PCTL formula is satisfied in the DTMC

obtained by only considering the normal transitions. However, if the formula has the

75

form of Kiφ, then the corresponding PCTL formula is satisfied in the DTMC ob-

tained by considering first the epistemic accessibility relation ∼i and then the normal

transitions, which shows why the K operator is translated to the next operator. The

same intuition holds for the the other epistemic formulae.

Theorem 4.6. Soundness and Completeness

Let MPIS a probabilistic interpreted system and φ be a PCTLK formula, and let

F(MPIS) and F(φ) be the corresponding PCTL model and PCTL formula. Then

MPIS |= φ if and only if F(MPIS) |=x F(φ), where x ∈ {λ, λi, λ
E
G, λ

C
G, λ

D
G} is a

scheduler.

Proof.

We prove this theorem by induction on the structure of the formula φ. The rules 1 to

6 are straightforward (see Table 5.1). We need to consider the rules 7 to 14.

• For rule 7: We know that (MPIS, s) |= Kiψ iff ∀s′ ∈ W , if s ∼i s′, then

(MPIS, s
′) |= ψ. Therefore, ∀s′ ∈ S, with the scheduler λi, it follows that every

infinite path π emanating from s satisfies that π(1) = s′ and (F(MPIS), s
′) |=λi

F(ψ). Also, the action for the scheduler λi is α = Acci and Pp
t (s, α, s

′) = 1
|s∼is′|

.

By the semantics of Pr≥1©, and
∑|s∼is

′|
1

1

|s∼is′|
= 1, we obtain (F(MPIS), s) |=λi

Pr≥1(©F(ψ)), and vice versa.

Then same method can be used to prove rules 8 to 10 using different scheduler

λE
G, λ

C
G, and λD

G .

• For rule 11: We have that (MPIS, s) |= Pr�bKiψ iff Prob(s |= Kiψ) � b, where

Prob(s |= Kiψ) =
∑

s∼is
′ |s′|=ψ|

|s∼is′|
. Recall that the probability transitions:

Pp
t (s, Acci, s

′) = 1
|s∼is′|

for scheduler λi at state s; therefore, Prob(π ∈ Pathλi(s) :

(F(MPIS, s
′) |=λi

F(ψ)) =
∑

π∈σ(s)s.t.
π(1)|=λi

F(ψ)
Pp

t (s, Acci, π(1)) =
∑

s∼is
′ |s′|=λi

F(ψ)|

|s∼is′|
,

where π(1) = s′. By the semantics of Pr�b©, we obtain (F(MPIS), s) |=λi

76

Pr�b(©F(ψ)), and vice versa.

Then same method can be used to prove rules 12 to 14 using different scheduler

λE
G, λ

C
G, and λD

G .

Therefore, the theorem.

We use the previous example shown in Figure 4.5 to illustrate how to convert

PCTLK formulae into PCTL by levels and identify the states that satisfy each max-

imal state subformula. The PCTLK formula K1(Pr≥0.50((Pr>0.70 © p)Uq)) asserts

that agent 1 knows that at least in 50% of the cases, there is more than 70% of chance

that in the next state p holds until q. The levels of the subformulae of this formula

and the new atomic propositions labeling each maximal state subformula are shown

in Table 4.2:

Table 4.2: Example of Reduction of The Formula K1(Pr≥0.50((Pr>0.70 © p)Uq))
Level Subformulae Transformed subformulae Labeled states set
Level 0 p φ0

1 = p {g1, g2, g3}
q φ0

2 = q {g2, g3, g4}
Level 1 Pr>0.7 © p φ1

1 = Pr>0.7 © φ0
1 {g1, g2, g3, g4}

Level 2 Pr≥0.5((Pr>0.7 © p)Uq) φ2
1 = Pr≥0.5(φ

1
1Uφ

0
2) {g1, g2, g3, g4}

Level 3 K1(Pr≥0.5((Pr>0.7 © p)Uq)) φ3
1 = Pr≥1 © φ2

1 {g1, g2, g3, g4}

4.4 Case Study

We implement our reduction-based model checking technique on top of PRISM as

a tool that takes as input PCTLK formulae and MPIS model and produces as out-

put PCTL formulae and DTMC model F(MPIS), which are the inputs of PRISM.

PRISM [66], a probabilistic symbolic model checker, is a tool for formal modeling and

analysis of systems which exhibit random or probabilistic behavior. It supports three

types of probabilistic models, discrete-time Markov chains (DTMCs), continuous-time

Markov chains (CTMCs) and Markov decision processes (MDPs). These models can

77

be specified in the PRISM modeling language with a simple, state-based language

that is based on the Reactive Modules formalism of Alur and Henzinger [3]. The

property specification language incorporates the temporal logics PCTL, CSL, LTL,

and PCTL∗.

We apply the approach using the modified protocol of Chaum’s dining cryptog-

raphers [25] as case study. The Dining Cryptographers protocol (DC) aims to get

information from anonymous broadcasting messages and has already been modeled

using agents by various authors [56, 60, 73, 94]. We add an uncertainty situation to

the original protocol and extend it into the Cheating Dining Cryptographers protocol

(CDC). The epistemic and probabilistic properties of the CDC protocol are automat-

ically transformed into PCTL and verified by the PRISM probabilistic model checker.

4.4.1 Protocol Description

Anonymity is an important issue in the field of modern cryptography. The original

Dining Cryptographers (DC) Protocol is introduced by the following scenario [25]:

Three cryptographers are sitting down to dinner at their favorite three-

star restaurant. Their waiter informs them that arrangements have been

made with the maitre d’hotel for the bill to be paid anonymously. One of

the cryptographers might be paying for dinner, or it might have been NSA

(U.S. National Security Agency). The three cryptographers respect each

others right to make an anonymous payment, but they wonder if NSA is

paying.

Based on the assumption that at most one cryptographer is paying, the following

rules can solve the dining cryptographers’ quandary [25]:

78

1. Each cryptographer flips an unbiased coin and only shows the outcome to the

cryptographer on his right.

2. Each cryptographer states whether the two coins he can see are on the same

side or on different sides.

3. The cryptographer who pays the dinner states the opposite of what he sees.

After running this protocol, all the cryptographers can determine whether it was the

NSA or one of the cryptographers who paid for dinner: an odd number of differences

indicates that a cryptographer is paying; an even number indicates that NSA is paying.

Also, if a cryptographer is paying, neither of the other two can figure out who is paying.

This protocol can also be applied to more than three cryptographers.

We assume that cryptographers may make mistakes or deliberately break the

protocol by certain probability (we use cheating index p to indicate it). We aim to

investigate how cheating index p affects the accuracy of cryptographers’ inference.

Kacprzak et al. in [60] also mentioned Cheating Dining Cryptographers (CDC) pro-

tocol but without indicating the degree of cheating. The DC protocol can be seen

as a special CDC protocol with cheating index p = 0 for all the cryptographers. We

discuss the encoding and verification of the CDC protocol in the following section.

4.4.2 Protocol Encoding

Our modeling techniques are completely compatible with PRISM implementation.

We translate every agent into a module in PRISM and the entire MAS is defined as

a system with agent modules which are all synchronized. This PRISM system can be

viewed as DTMC model scheduled using λ. To implement the epistemic schedulers

λi, λ
E
G, λ

C
G, and λC

G, we use labels to define the epistemic relations. To illustrate, label

A1s1 includes a set of states that are equivalent for agent A1 at s1 (λ1), while label

79

A1A2s0E or A1A2s0D contains the union or joint of group (agent 1 and agent 2)

accessibility relations at global state (s0) respectively.

label "A1s1" = (s1=0|s1=1|s1=2);

label "A1A2s0E"=(s1=0|s1=1|s1=2|s1=4|s1=5);

label "A1A2s0D" =(s1=0);

Therefore, A1s1 is considered as the set of states that comprises all the states related

to s1 by ∼1. Similarly, A1A2s0E and A1A2s0D are the state set related to s0 by ∼E
G

and ∼D
G .

We model the CDC protocol differently from that presented in [60]. We add

cheating index p to indicate the probability of a cryptographer being dishonest (or

making mistakes) since probabilistic interpreted systems allow probabilistic transi-

tions. For simplification but without loss of generality, we assume that all the cryp-

tographers have the same cheating index p and generalization to n indices is straight-

forward. When we set all the cryptographers’ cheating indices to 0, the CDC protocol

becomes DC protocol.

To formalize the protocol, we naturally assume that NSA and the three cryp-

tographers have an equal chance of paying the bill. We encode the scenario by using

a probabilistic interpreted system. Each cryptographer Ci is comprised of two vari-

ables: flipping the coin variable and stating results variable. The variable flipping the

coin uses 3 states: flipping coin, head, tail. The variable stating results has 9 states

with the meaning is intuitively explained by their labels: NotDecided, pay, notPay,

seeEqual/pay, seeDiff/pay, seeEqual/notPay, seeDiff/notPay, saidEqual, and saidDiff

(see Figure 4.6).

To model the CDC protocol in PRISM, we add a synchronizing flag for every

cryptographer agent to avoid deadlock. When a cryptographer has announced the

outcome, the synchronizing value is set to 1 and stays. After all the cryptographers’

80

seeEqual

/pay

seeDiff

/notPay

saidEqual

saidDiff

notPay

pay

Not Decided

0.75

0.25

0.5

0.5

0.5

0.5 1 - p

1 - p

p

1 - p

seeDiff

/pay

seeEqual

/notPay

p

p

p

1 - pFlipping

coins

tailhead

0.5 0.5

a. b.

Figure 4.6: Cheating Cryptographers Protocol (a. Flipping Coins, b. Stating Out-
comes)

synchronizing flags have been set, the system will count all saidDiff and to see if the

number of saidDiff is even or odd we use the integer modulo operation mod.

label "even" = fun(mod, (diff1+diff2+diff3),2)=0;

label "odd" = fun(mod, (diff1+diff2+diff3),2)=1;

4.4.3 Experimental Results

We analyze the verification results for the DC and CDC protocols. The presented

experimental results were performed on a DELL desktop computer with 1.86 GHz

Intel Core Duo T6300 processor and 3.25 GB memory under 32-bit Windows WinXP

professional version 2002 Service Pack3 Operating System.

Table 5.4 shows the size and run time for the models that we built for 3 to 10

cryptographers for the DC and CDC protocols. The number of states and transitions

are our model size. The construction time is the time for converting the PRISM model

into Multi-Terminal Binary Decision Diagram (MTBDD) symbolic model. We can see

as the number of cryptographers increases, the model size increases dramatically, but

PRISM can still handle the large number of states and transitions thanks to the

81

Table 4.3: Experimental Results with PRISM
Number Dining Cryptographer Cheating Dining Cryptographer
of Crypt. Number of Number of Construction Execution Number of Number of Construction Execution

(n) States Transitions Time (sec.) Time (sec.) States Transitions Time (sec.) Time (sec.)
3 261 452 < 0.01 < 0.01 503 1,036 0.016 0.017
4 1,286 2,725 0.015 0.015 3,146 8,063 0.016 0.021
5 6,151 15,750 0.031 0.046 18,753 57,882 0.032 0.040
6 28,680 86,919 0.047 0.062 109,378 399,273 0.034 0.049
7 131,081 460,808 0.063 0.078 625,003 2,643,480 0.078 0.109
8 589,834 2,363,913 0.110 0.157 3,515,628 16,936,299 0.094 0.126
9 2,621,451 11,806,730 0.125 0.172 19,531,253 105,670,630 0.141 0.177
10 11,534,348 57,694,219 0.157 0.220 107,421,878 645,191,965 0.188 0.266
11 5.03E+7 2.77E+8 0.128 0.327 5.86E+8 3.87E+9 0.265 0.374
12 2.18E+8 1.31E+9 0.203 0.281 3.26E+9 2.36E+10 0.204 0.297
13 9.40E+8 6.11E+9 0.328 0.515 1.71E+10 1.33E+11 0.453 0.625
14 4.03E+9 2.82E+10 0.469 0.734 9.16E+10 7.69E+11 0.562 0.843
15 1.72E+10 1.29E+11 0.515 0.812 4.88E+11 4.39E+12 0.563 0.860
16 7.30E+10 5.84E+11 0.703 1.047 2.59E+12 2.49E+13 0.765 1.156
17 3.09E+11 2.63E+12 0.813 1.251 1.37E+13 1.40E+14 0.86 1.313
18 1.31E+12 1.18E+13 1.063 1.782 7.25E+13 7.83E+14 1.172 1.797
19 5.50E+12 5.22E+13 1.250 2.047 3.81E+14 4.35E+15 1.515 2.452
20 2.31E+13 2.31E+14 1.546 2.577 2.00E+15 2.40E+16 1.703 2.719

symbolic approach and some internal optimization techniques that PRISM uses to

reduce the model size. For the same number of cryptographers, the CDC protocol

model requires more states and transitions than the DC protocol model because of

the increasing uncertainty. Generally speaking, the building model time for CDC is

also slightly more than the building model time for DC (see part a of Figure 4.7). The

execution time is the total time of constructing the model and computing iteratively

the set of states which are reachable from the initial states and the transition matrix.

As the number of cryptographers increases, the gap between construction time and

execution time increases as well. This means the more cryptographers, the longer

time is needed to compute reachability (see part b. of Figure 4.7).

We use Cipaid to stand for cryptographer i paid the bill and Npaid for NSA

paid the bill. p is the cheating index for cryptographers. We set 3 cryptographers in

the systems and assume that all the cryptographers have the same cheating index for

simplification reasons. p = 0 means that cryptographers do not cheat and follow the

rules completely. Some desired properties of the protocol are expressed in Table 4.4

and are self-explanatory.

82

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

	�
� �� �� �� ��
� ��� ��� ��� �	� �
� ��� ��� ��� ��� �
� ���

��
�

��
��

�	

�

�

�

�������
�������
���������

��� ��

������!���"���!���#���

�#�����!������!���"���!���#���

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

	�
� �� �� �� ��
� ��� ��� ��� �	� �
� ��� ��� ��� ��� �
� ���

��
�

��
��

�	

�

�

�

�������
�������
���������

$����� ���������%�����������������%���������������������

��� ���������%����& '�

����������%���& '�

Figure 4.7: Construction and Execution Time for The CD and CDC Protocols

83

Table 4.4: Examples of Verified Properties for The CDC Protocol with 3 Cryptogra-
phers

Time for Model
No. Formulae Results Checking (sec.)
1 (even ∧p = 0) ⇒

∧
i(Ki(!C1paid ∧ !C2paid ∧ !C3paid)) True 0.002

2 (odd ∧ !Cipaid ∧ p = 0) ⇒ (Ki(
∨

j
=iCjpaid)) True 0.002

3 (odd ∧ !Cipaid ∧ p = 0) ⇒ Ki(P≤0.5(Cjpaid)) j �= i True (8/16=0.5) 0.005
4 (odd ∧ !Cipaid ∧ p = 0) ⇒ Ki(Cjpaid)) j �= i False 0.002
5a. (P = ? Npaid) (for 0 < p < 1 step 0.1) Figure 4.8: NSA pays 0.004
5b. (P = ? !Npaid) (for 0 < p < 1 step 0.1) Figure 4.8: Crypt pays 0.003
6a. (P = ? even) (for 0 < p < 1 step 0.1) Figure 4.8: even difference 0.002
6b. (P = ? odd) (for 0 < p < 1 step 0.1) Figure 4.8: odd difference 0.002
7a. (P = ? (odd ∧!Npaid)) (for 0 < p < 1 step 0.1) Figure 4.8: odd and Crypt paid 0.003
7b. (P = ? (even ∧!Npaid)) (for 0 < p < 1 step 0.1) Figure 4.8: even and Crypt paid 0.001
8a. (P = ? (even ∧Npaid)) (for 0 < p < 1 step 0.1) Figure 4.8: even and NSA paid 0.001
8b. (P = ? (odd ∧Npaid)) (for 0 < p < 1 step 0.1) Figure 4.8: odd and NSA paid 0.003

The properties expressed in the first four formulae are checked for the classical

DC protocol since CDC and DC are equivalent when p = 0. The property encoded

in formula 1 expresses that if NSA pay for the dinner and all the cryptographers are

honest, an even number of differences is announced so that all the cryptographers

know that the bill is paid by NSA. The properties expressed in the formulae 2 to 4

express that if cryptographer i does not pay the bill and an odd number of differences

is stated, then i knows that the dinner is paid by one of his partners rather than NSA,

but he does not know exactly who paid.

In PRISM, if φ is a formula, operator P =?φ is used to calculate the probability

of φ. Formulae 5 to 8 show that the probability trends of certain properties vary as

the cheating index changes from 0 (0% cheating) to 1 (100% cheating). The results

of formulae 5a and 5b show respectively the probability that NSA and one of the

cryptographers is paying the bill. The value does not change with cheating index

because the probability of paying the bill is independent from this index. However,

the number of differences announced changes with the cheating index (formulae 6a and

6b). When the cheating index increases from 0 to 1 the results become unpredictable

because of the high uncertainty (Formulae 7a, 7b, 8a, and 8b).

84

Figure 4.8: Verification Results of Some Properties in The CDC Protocol for 3 Cryp-
tographers with Regard to The Cheating Index

4.4.4 Comparison with Existing Work

Although the DC protocol has already been modeled by many researchers [56, 60, 73,

94] in different ways to represent and reason about knowledge, most of them [60, 73, 94]

only focus on qualitative properties of knowledge, so quantitative properties cannot be

expressed in these approaches. Huang et al. in [56] present a symbolic model checking

algorithm for the verification of probabilistic knowledge. Huang et al.’s approach

works on a particular class of interpreted systems called partially observed discrete-

time Markov chains (PO-DTMC), which are synchronous with perfect recall. The

model checking algorithm has been implemented on top of the MCK model checker.

Here we will compare the performance of three model checkers: MCK, MCMAS, and

PRISM for verifying epistemic properties and probabilistic properties.

We verified two properties of the DC protocol, one epistemic and one prob-

abilistic, using Huang et al.’s method with extended MCK and our approach with

PRISM. MCK is a model checker for the logic of knowledge developed in the School

85

of Computer Science and Engineering at the University of New South Wales. It sup-

ports both linear and branching temporal logics with several different ways of defining

knowledge based on the observations made by the agents: observation alone, obser-

vation and clock, and perfect recall of all observations. MCMAS is a symbolic model

checker that is designed for MAS. We verify the epistemic property with MCMAS in

this case study because MCMAS cannot check probabilistic properties. The compar-

ison is under Fedora 16 with 3.1.0 Linux on the same computer for the experimental

results (1.86 GHz Intel Core Duo T6300 processor and 3.25 GB memory).

The first property is that if the first cryptographer did not pay for the dinner,

he knew that either NSA paid or one of the cryptographers paid, but he did not know

which particular cryptographer paid. This epistemic property for three cryptographers

can be expressed in MCK as follows:

spec spr xn = Xn(neg paid[0]) ⇒ ((Knows C1 ((neg paid[1]) ∧ (neg paid[2])))

∨((Knows C1 (paid[1]∨paid[2])∧neg Knows C1 paid[1])∧neg Knows C1 paid[2]))

(4.13)

where spec spr xn is a specification identifier indicating that agents’s knowledge is

based on synchronous perfect recall and the verification uses binary decision diagram

symbolic model checking algorithm. neg is a negation operator and Knows is a knowl-

edge operator. paid[i] is a Boolean variable that indicates if cryptographer i paid the

bill. n is an integer stating that in n steps the specification holds and X is the next

operator. The same property is expressed in PRISM (Formula (5.3)) and MCMAS

(formula (4.15)) respectively as follows:

86

filter(forall, !“C0paid” ⇒ (P >= 1 [X!“C1paid”]& P >= 1[X!“C2paid”])

|((P >= 1[X!“C1paid”]| P >= 1[X!“C2paid”])

& !P >= 1[X“C1paid”]& !P >= 1[X“C2paid”]), “done”& !“C0paid”) (4.14)

AG((odd and !c1paid) → (K(C1, c2paid or c3paid))

and !K(C1, c2paid) and !K(C1, c3paid)); (4.15)

Formula (5.3), where filter returns values for the identified set of states which

satisfy the filter command. In this case, the system will compute values for all states

where cryptographer C1 did not pay the bill.In formula (4.15), c1paid, c2paid, c3paid

are defined in Evaluation section to represent the fact that Cryptographer 1, 2, and

3 paid the bill.

The second property is probabilistic. It indicates that one cryptographer knows

that the other cryptographers have the equal probability to pay the bill. The proba-

bility is either 0 or 1/(n−1) for n cryptographers. In MCK, the probabilistic property

is expressed as follows:

spec spr xn = Xn(negpaid[0]) ⇒ ((Prob C1 paid[1] == Prob C2 paid[2])∧

((Prob C1 paid[1] == 0) ∨ (Prob C1 paid[1] == 0.5))) (4.16)

Although it is easy to calculate path probability in PRISM, it cannot compute

the probability of knowledge directly. However, when we verify a filter specification,

PRISM gives the number of states satisfying the filter (n1) and the total number of

87

filtered states (n2). Based on our definition of probabilistic knowledge, we are able to

calculate the knowledge probability by computing n1/n2. So, in PRISM, we use the

calculated result of the following expression to get the probability of knowledge:

filter(forall, P >= 1[X“C2paid”], “done”&!“C1paid”&“odd”) (4.17)

Table 4.5: Experimental Results with MCK, PRISM and MCMAS
Number Time for MCK MC Time for Extended PRISM MC Time for MCMAS
of Crypt. Epistemic Probabilistic Epistemic Probabilistic Epistemic

(n) property (sec) property (sec) property (sec) property (sec) property (sec)
3 0.071 1.405 0.003 0.006 0.011
4 0.382 136.6 0.004 0.018 0.014
5 6.181 - 0.005 0.053 0.055
6 - - 0.011 0.063 0.116
7 - - 0.019 0.138 0.21
8 - - 0.022 0.254 0.534
9 - - 0.033 0.48 0.943
10 - - 0.044 0.863 1.844
11 - - 0.059 1.445 2.219
12 - - 0.079 2.366 9.883
13 - - 0.109 3.741 -
14 - - 0.124 5.756 -
15 - - 0.216 8.476 -
16 - - 0.224 12.301 -
17 - - 0.287 17.695 -
18 - - 0.352 24.567 -
19 - - 0.403 33.546 -
20 - - 0.607 45.686 -

Table 4.5 reports the runtime for verifying the epistemic and probabilistic prop-

erties with extended MCK, PRISM and MCMAS. With MCK, we can only the get

runtime of verifying (1) the epistemic property for up to 5 cryptographers and (2)

the probabilistic property for up to 4 cryptographers. With MCMAS, the case can

be scaled up to 12 agents. However, with PRISM, we can get the verification results

for up to 20 cryptographers. The runtime for verifying the DC protocol including

20 cryptographers with PRISM is still relatively low, which shows that our approach

88

is time efficient and scalable. In fact, for all the numbers of cryptographers ranging

from 3 to 20, PRISM shows better performance for both epistemic and probabilis-

tic properties. The results indicate that for both model checkers, namely extended

MCK and PRISM, probabilistic properties need longer time to be verified, but our

reduction-based model checking technique outperforms Huang et al.’s approach (See

Figure 4.9). Also, as the size of the system increases, the execution time of all three

model checkers increases: with MCMAS and PRISM, the increase is polynomial with

a lower rate for PRISM, whereas with extended MCK increases is exponential.

����(����

����(����

����(����

����(�
��

����(���

����(����

����(����

����(
���

����(����

����������

����������

���������

����������

�����������

	����������

�
���������

������������

������������
	�
� �� �� �� ��
� ��� ��� ��� �	� �
� ��� ��� ��� ��� �
� ���

��
�

��
��

�	

�

��
��

��
��

�
��

�	
��

�

�

�������
������
���������

�#��)��!���� �������������"����*�+��

�#��)��!����$�$�� ������������"����*�+�

�#��)��!���� �������������"�����������������,-./*�

�#��)��!����$�$�� ������������"�����������������,-./*�

�#��)��!���� �������������"����*�*0/�

Figure 4.9: Runtime for Verifying The DC Protocol

The experimental results show that in verifying the DC protocol, PRISM has

the best performance. This is because in the DC protocol, properties are checked after

all the cryptographers have finished their actions. The verification only happens on

the static environment. In fact, PRISM is designed for quantitative verification, while

89

MCK and MCMAS are for knowledge verification. Our method reduces knowledge

verification into probabilistic computation tree logic verification, so it benefits from the

efficiency of PRISM in verifying such a logic. thanks to the Multi-terminal Binary

Decision Diagram (MTBDD) package used in this model checker,compared to the

limited Binary Decision Diagram (BDD) package used in MCK and MCMAS. However

for reactive dynamic systems that need to recall previous settings, PRISM does not

function well. In contrast, MCK is good at verifying such systems using observations

with perfect synchronous recall. MCK is designed for supporting several different

ways of defining knowledge, including synchronous and asynchronous perfect recall

for observations. MCMAS is tailored to the verification of MAS scalable systems. It

can be used to verify group knowledge and collaboration among agents.

90

Chapter 5

Model Checking Knowledge in

Concurrent Probabilistic Systems

This chapter is largely based on our manuscript submitted to Journal of Computers

and Mathematics with Applications [98]. Our research question 5 is answered in

this chapter. In Section 5.1, we review the definitions of related concepts, such as

concurrent probabilistic systems and adversaries. In Section 5.2, we explain how

model checking PCTLK can be reduced to model checking PBTL. This reduction

process includes two steps:

1. Model reduction: a PCTLK probabilistic interpreted system is reduced to PBTL

structure (Section 5.2.1), and

2. Formulae transformation: serial rules for converting a PCTLK formula to a

PBTL formula (Section 5.2.2).

The complexity of PCTLK model checking over concurrent probabilistic programs

is analyzed in Section 5.3. and space complexity (Section 5.3.2) are proved to be

polynomial functions in the size of the model and length of the formula. Section 5.4

91

discusses symbolic representation of probabilistic interpreted systems with MTBDDs

data structure. We implement our approach with PRISM [69] in Section 5.5 and

analyze the experimental results.

5.1 Concurrent Probabilistic Systems

Concurrency is a property of MAS and other complicated distributed systems in which

several computations are executed simultaneously and potentially interact with each

other. When we use model checking to verify practical systems, they are usually

composed of several explicit models in concurrent systems [12, 65] rather than only

one single explicit model. We consider concurrent probabilistic systems in this chapter,

in which several probabilistic systems work asynchronously and nondeterministically.

Concurrent probabilistic systems exhibit probabilistic and nondeterministic choices.

They can be generated by Markov decision processes [7, 97]. The probabilistic choices

are made by the system itself. Probabilistic systems can be formally expressed using

Markov chains, such as Discrete-Time Markov Chains (DTMCs) or Continuous-Time

Markov Chains (CTMCs). Because our logic is discrete time-based, we use DTMCs

to express the probabilistic choices.

The nondeterministic choices are caused by several components in the systems

working asynchronously. These kinds of choices are beyond the control of the process.

Concurrent probabilistic systems can be seen as combinations of several interactive

DTMC models. Such systems allow several probability distributions to be enabled in

a given state. Baier and Kwiatkowska defined concurrent probabilistic systems in [7]

as a pair P = (S, Steps).

Definition 5.1. (Concurrent Probabilistic Systems)

A concurrent probabilistic system can be expressed as P = (S, Steps), where

92

• S is a finite set of states.

• Steps is a function that assigns to each state s ∈ S a finite, non-empty set of

probability distributions μi; each μi is a vector of probabilities, μi = (v0, ..., vn),

such that
∑n

x=0 vx = 1.

We use the notation μi[x] to indicate the value of the distribution μi at the index

x. Steps represents the nondeterministic alternatives in each state. Every element in

Steps represents one probability distribution in the system. For example, for states

s, t ∈ S, one possible distribution μi from Steps(s) will be associated with a DTMC

model, such that μi[x] = P(s, t) for some index x in the vector μi. When the target

state t is known, we use the notation μi(t) instead of μi[x].

Let si ∈ S be a state, μi ∈ Steps(si−1) and μi(si) > 0, a path in a concurrent

probabilistic system is a sequence of states related by determinate transitions: π =

s0
μ1(s1)
−−−→ s1

μ2(s2)
−−−→ s2 The (i+1)th state in a path π is denoted π(i) i.e., π(i) = si.

If π is a finite path, we denote last(π) as the last state of π and |π| as the length of

the path. We also use σ to stand for a finite path. and σ(s) to stand for all finite

paths emanating from s.

The nondeterminism of a concurrent probabilistic system can be determined

with an adversary (alternatively called a scheduler). An adversary is a function from

state set to Steps set. By selecting the same distribution every time when a given

state is reached, an adversary converts the nondeterministic choices into probabilistic

choices. In [70], Kwiatkowska et al. defined an adversary as follows:

Definition 5.2. (Adversary of a Concurrent Probabilistic System)

An adversary (or scheduler) of a concurrent probabilistic system P = (S, Steps) is a

function A mapping every state s of S to a a distribution on S.

93

From this definition, we can see that an adversary A of the concurrent prob-

abilistic system P chooses the specific Steps to turn nondeterministic choices into

deterministic ones, which can be expressed as a DTMC model with a transition prob-

ability function P as shown in Equation (5.1). PathA(s) is used to express the set

of all path with the adversary A starting from state s. (we use PA to represent the

transition probability function of the restricted concurrent probabilistic system by the

adversary A , and μ instead of μi when there is no confusion):

PA (s, s′) =

⎧⎪⎪⎨
⎪⎪⎩
μ(s′) = P(s, s′), if A (s) = μ and s

μ(s′)
−−→ s′

0, otherwise

(5.1)

5.2 Model Checking PCTLK in Concurrent Sys-

tems

A model checking approach based on reduction for PCTLK specification has been

discussed in Chapter 4 and proposed in [102] which transforms the problem of model

checking PCTLK into the problem of model checking PCTL. In this chapter, we will

transform our model into a PBTL structure that includes a concurrent probabilistic

system and transform a PCTLK formula into a PBTL formula. Given a PCTLK

model MPIS and a PCTLK formula φPIS, we can define a concurrent probabilistic

system for PBTL structure M = F(MPIS) and a PBTL formula ϕ = F(ϕ
PIS

) such

that (MPIS, s0) |= ϕ
PIS

iff (F(MPIS), s0) |= F(ϕ
PIS

). A PCTLK model MPIS can be

considered as a system that incorporates or independently joins n PBTL models with

S5n [16, 58], where n is the number of agents in the system.

In the following, we split the explanation into two parts: models reduction and

formulae reduction to introduce the details of model checking concurrent probabilistic

94

systems against PCTLK specification.

5.2.1 Models Reduction

We first analyze the similarities and differences between a probabilistic interpreted

system MPIS = (W,Pt, Iinit,∼i, AP, V) (0 < i ≤ n) and a PBTL structure C =

(P, I, AP, L). Both models have the same atomic proposition set (AP), the same

labeling functions (V and L), and the same initial distribution Iinit and I. We can

set these values directly. The differences are:

1. There are a set of state W , probabilistic transition function Pt, and epistemic

accessibility relations ∼i in an MPIS model but not in a PBTL structure C.

2. A pair P is in C structure while it does not appear in MPIS.

However there are hidden links between these two differences. A pair P = (S, Steps)

in a PBTL structure includes a set of states S and a set of functions Steps whose ele-

ments are probabilistic transitions for every state. Moreover, if we consider epistemic

accessibility relations ∼i as agent i’s special optional transition Ag i on the concurrent

probabilistic system based on its epistemic accessibility states, we are able to convert

these relations into Steps functions. We can see that a concurrent probabilistic system

is obtained by the parallel composition of n agents’ behavior. A state in a concurrent

probabilistic system will be a tuple (s1, . . . , sn), where si (i ∈ {1, . . . , n}) is a state

in agent i’s system. Therefore, model MPIS is a special concurrent probabilistic sys-

tem where two states s = (s1, . . . , sn) and s′ = (s′1, . . . , s
′
n) are related for agent i’s

program if and only if si = s′i.

Based on our analysis, we know that the key to transform a probabilistic in-

terpreted model MPIS into a PBTL structure CIS is to find a method to map the

epistemic accessibility relations ∼i to a specific step Ag i. Epistemic accessibility

95

relations for agent ∼i define agent i’s possible world in global states. Agent i will

see the same changes/unchanges in its possible world. For example, if (s, t) ∈∼i and

(s, w) ∈∼i, agent i cannot tell the difference among s, t, w at state s. We can see these

relations as a special transition Ag i indicates that global states change but agent i

cannot be aware of these changes. The probability of these kind of transitions can be

decided by how many global states there are in the agents’ possible world.

Now we can define the PBTL structure CIS = (PIS, APIS, LIS, IIS) obtained

from our MPIS model.

Definition 5.3. Structure CIS

Given a probabilistic interpreted model MPIS = (W,Pt, Iinit,∼1, . . . ,∼n, AP, V), CIS =

(PIS, IIS, APIS, LIS) is a PBTL structure defined from MPIS as follows:

• PIS = (SIS, StepsIS) is a concurrent probabilistic system, where:

– SIS = W ; and

– StepsIS is a function which assigns to each state s ∈ SIS a finite, non-

empty set Steps(s) of distributions on SIS. For every s′ ∈ SIS, the proba-

bility distribution PIS
A (s, s′) is defined by Equation (5.2).

PIS
A (s, s′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ(s′) = Pt(s, s
′), if A (s) = μ and s

μ
−→ s′

1
|s∼is′|

, if A (s) = Agi and s
Agi−−→ s′

0, otherwise

(5.2)

• IIS = Iinit;

• APIS = AP ; and

• LIS = V .

96

According to this transformation, the PBTL CIS structure has the same initial

distribution and global state labeling function over the same given set of atomic

propositions as the MPIS model. The labels of the transition set of CIS include

{μ,Ag1, . . . , Agn}, where μ represents the label of the regular transitions of MPIS,

and Ag i represents the epistemic accessibility relation of agent i. After this mapping,

transitions and epistemic accessibility relations are associated with the Steps in a

concurrent probabilistic system. The probabilities on the regular transitions μ of

CIS are obtained from the transitions of MPIS with the same probabilities. For

simplicity, we assume that epistemic accessibility relations are uniformly distributed

among agents’ possible world states. Therefore, the probability of transitions on

adversary Ag i for a state can be obtained by the inverse of the total number of

accessible states. For example, if 3 states are accessible from a state s for agent i,

then each of the the three obtained transitions will have 1/3 probability for the label

Ag i.

Because CIS is a nondeterministic system, a policy or strategy should be used to

resolve all the nondeterministic choices. We use an adversary, which was introduced in

Definition 5.2 to make the concurrent probabilistic systems deterministic. We divide

adversaries into two types: one is a regular probabilistic transition adversary that we

represent as λ and another the transition converted from an agent epistemic acces-

sibility relation that we denote as λi. Here we show how two particular adversaries

λ and λi are used to obtain a deterministic system from a concurrent probabilistic

system for PBTL structure CIS.

From each state in CIS there are two kinds of enabled steps: regular transition

μ and epistemic relation Ag i. We set the adversary λ that always selects the transi-

tions labeled by regular transition μ (so the transitions obtained by the accessibility

relations are ignored). The adversary λi always selects the steps Ag i from a state

97

s and then selects the regular transiton μ from all the following states (so first the

accessibility relations ∼i are considered and then the normal transitions).

Next we will introduce the set of reduction rules for PCTLK formulae.

5.2.2 Formula Reduction

In this section, we will explain how to reduce PCTLK formulae into PBTL formulae.

Most PBTL and PCTLK formulae have the same operators and syntax except:

1. PBTL allows universal (∀) and existential (∃) path quantifiers while path quan-

tifiers are not eligible in a PCTLK formula; and

2. PCTLK includes the epistemic formulaKiφ and probability of epistemic formula

Pr�bKiφ but PBTL does not.

Based on the syntax of PCTLK, we can conclude that all PCTLK path formulae are

equivalent to PBTL path formulae with existential quantifiers. Therefore, if we add

the existential quantifier ∃ to a PCTLK path formula, the PCTLK path formula will

be a PBTL path formula. From the semantics of the epistemic formula Kiφ, we can

imagine that if formula φ is satisfied in all agent i’s epistemic accessibility states, then

Kiφ holds. Thus, we can transform the epistemic operator Ki to the next operator

based on the epistemic accessibility relation ∼i.

This reduction process, similar to the process presented in the previous chapter,

works in stages inductively. We first divide each PCTLK formula into “maximal

state subformulae” such that each maximal state subformula φ: (1) includes the

probabilistic Pr�b or epistemic operatorKi; (2) differs from φ; and (3) is not contained

in any other state subformula of φ. Each maximal state subformula is a PCTLK

formula, which can be divided into other maximal state subformulae until no new

maximal state subformula can be identified. Thus, in stage k, formulae of level k

98

are decomposed into maximal state subformulae of level k − 1 or lower. The state

subformulae of level k are defined inductively as follows:

• Level 0 contains atomic propositions;

• Level (k + 1) (k ≥ 0) contains all stage subformulae φ′ such that all state

subformulae of φ′ are of level k or less and φ′ is not contained in any lower level.

Therefore, the lowest level, level 0, contains only atomic propositions and the

highest level is the whole formula. In stage k all maximal state subformulae of φ of

level smaller than k are processed and replaced by new atomic propositions, which

are labels of the subformulae. Before giving an example, we introduce the reduction

rules. Let φ, φ1, φ2 be PCTLK formulae, a be an atomic proposition and F(φ) be

a PBTL formula that transforms from PCTLK; the transformation rules are defined

recursively as in Table 5.1.

Table 5.1: PCTLK to PBTL Transformation Rules
Rule Number PCTLK subformula converted subformula

1 a F(a)
2 ¬φ ¬F(φ)
3 φ1 ∧ φ2 F(φ1) ∧ F(φ2)
4 Pr�b © φ Pr�b∃©F(φ)
5 Pr�b(φ1Uφ2) Pr�b(F(φ1)∃UF(φ2))
6 Pr�b(φ1U

≤nφ2) Pr�b(F(φ1)∃U
≤nF(φ2))

7 Kiφ Pr≥1(∃©F(φ))
8 Pr�bKiφ Pr�b(∃©F(φ))

To complete the reduction process, a step for the reduced concurrent probabilis-

tic model F(MPIS) associated with each PBTL formula should be defined. This is

done by specifying which adversary is associated with which formula. In the follow-

ing, (F(MPIS), s) |=λ φ means the PBTL formula φ is satisfied in the model F(MPIS)

obtained by applying the adversary regular λ at state s, while (F(MPIS), s) |=λi
φ

is associated with agent i’s epistemic accessibility relation at state s. The following

99

theorem is a direct consequence of the definition of F and can be easily proved by

induction on the structure of the formula.

Theorem 5.1. Satisfaction Equivalence

(MPIS, s) |= a iff (F(MPIS), s) |=λ a

(MPIS, s) |= ¬φ iff (F(MPIS), s) |=λ ¬F(φ)

(MPIS, s) |= φ1 ∧ φ2 iff (F(MPIS), s) |=λ F(φ1) ∧ F(φ2)

(MPIS, s) |= Pr�b © φ iff (F(MPIS), s) |=λ Pr�b∃©F(φ)

(MPIS, s) |= Pr�b(φ1Uφ2) iff (F(MPIS), s) |=λ Pr�b(F(φ1)∃UF(φ2))

(MPIS, s) |= Pr�b(φ1U
≤nφ2) iff (F(MPIS), s) |=λ Pr�b(F(φ1)∃U

≤nF(φ2))

(MPIS, s) |= Kiφ iff (F(MPIS), s) |=λi
Pr≥1(∃©F(φ))

(MPIS, s) |= Pr�b(Kiφ) iff (F(MPIS), s) |=λi
Pr�b(∃©F(φ))

Simply put, this theorem states that if the PCTLK formula does not include

epistemic operator Ki, then the corresponding PBTL formula is satisfied a Steps

distribution in the concurrent probabilistic systems obtained by only considering the

normal transitions. However, if the formula has the form of Kiφ, then the corre-

sponding PBTL formula is satisfied in the Steps obtained by considering first the

transition associated with the epistemic accessibility relation ∼i and then the normal

transitions, which shows why the K operator is transferred to the next operator.

In fact, PCTLK language can be seen as a variant of CTLK [85] by replacing

the path quantifiers ∃ and ∀ by the probabilistic operator Pr. PCTLK provides

possibility b for path formulae to specify the likelihood of the path. The critical

values, 0 and 1, state two specific situations: Pr≥1(ψ) stands for the path formula

ψ happens all the time; while Pr≤0(ψ) represents the negation of the path formula

ψ. Therefore, when we constrain that the probabilistic relation can only be “≥ 1” or

“> 0”, PCTLK turns into CTLK: Pr≥1 is equivalent to ∀ and Pr>0 is equivalent to ∃.

100

PCTLK also is an extension of PCTL [6, 52] as it includes the epistemic operator Ki.

The properties expressed using PCTL can be checked by the PRISM model checker

[67]. Therefore, based on PCTLK syntax, a formula can be a CTL formula, a CTLK

but not PCTL formula, a PCTL but not CTLK formula, a conjunction of CTLK and

PCTL like Kiφ∧Pr>0.5(ψ), or a pure epistemic probabilistic formula under the form

Ki(Pr�b(ψ)). The structure of PCTLK is shown in Fig. 5.1.

Figure 5.1: Structure of PCTLK

Theorem 5.2. Soundness and Completeness

Let MPIS a probabilistic interpreted system and φ be a PCTLK formula , and let

F(MPIS) and F(φ) be the corresponding PBTL structure and PBTL formula. Then

MPIS |= φ if and only if F(MPIS) |=λ F(φ) or F(MPIS) |=λi
F(φ), based on the

formula being without or with the epistemic operator Ki.

Proof.

We prove this theorem by induction on the structure of the formula φ. The rules 1 to

3 are straightforward (see Table 5.1). We need to consider the rules 4 to 8.

• Rule 4 for formula φ = Pr�b © ψ. We have that (MPIS, s) |= Pr�b © ψ if and

only if Prob(s, σ(s),©ψ) �b, where Prob(s, σ(s),©ψ) =
∑

π∈σ(s)s.t.
π(1)|=ψ

Pt(s, π(1)).

For adversary A (s) = λ, we know that PIS
A (s, π(1)) = Pt(s, π(1)). Therefore,

Prob(s, σ(s),©ψ) = Prob(π ∈ Pathλ(s) : (F(MPIS, π) |=λ ©F(ψ)). Accord-

ing to Pr�b∃© semantics for PBTL, we obtain (F(MPIS), s) |=λ Pr�b∃©F(ψ).

101

On the other hand, for adversary λ, if (F(M)PIS, s) |=λ Pr�b ∃ © F(ψ), it is

straightforward that (MPIS, s) |= Pr�b © ψ. The same method can be used to

prove Rule 5 and Rule 6.

• Rule 7 for formula φ = Kiψ. We have that (MPIS, s) |= Kiψ iff ∀s′ ∈ W , if

s ∼i s
′, then (MPIS, s

′) |= ψ. Consequently, ∀s′ ∈ SIS, if A (s) = Agi, then it

follows that every infinite path π emanating from s satisfies that π(1) = s′ and

(F(MPIS), s
′) |=λi

F(ψ). By the semantics of Pr≥1∃©, and
∑|s∼is

′|
1

1

|s∼is′|
= 1, we

obtain (F(MPIS), s) |=λi
Pr≥1(∃©F(ψ)), and vice versa.

• Rule 8 for formula φ = Pr�bKiψ. We have that (MPIS, s) |= Pr�bKiψ iff

Prob(s |= Kiψ) � b, where Prob(s |= Kiψ) =
∑

s∼is
′ |s′|=ψ|

|s∼is′|
. Recall that the

probability transitions PIS
A = 1

|s∼is′|
for A (s) = Agi at state s; therefore,

for adversary A (s) = Agi, Prob(π ∈ Pathλi(s) : (F(MPIS, s
′) |=λi

F(ψ))

=
∑

π∈σ(s)s.t.
π(1)|=λi

F(ψ)
PIS

A (s, π(1)) =
∑

s∼is
′ |s′|=λi

F(ψ)|

|s∼is′|
, where π(1) = s′. By the se-

mantics of ∃©, we obtain (F(MPIS), s) |=λi
Pr�b(∃©F(ψ)), and vice versa.

Therefore, the theorem.

5.3 Complexity Analysis

Many researchers have already investigated the complexity of model checking con-

current systems against temporal logic [41, 65, 77]. The complexity of concurrent

probabilistic systems against probabilistic temporal logic like PCTL specifications are

also explored in [13, 24]. In [7], Baier and Kwiatkowska already proved that the time

complexity of model checking for PBTL over concurrent probabilistic systems is a

polynomial function of the size of the PBTL structure and a linear function of the

size of the PBTL formula. Furthermore, these model checking problems can be solved

102

on space of O(|φ| · n + n ·m), where n is the number of states and m is the number

of transitions in the PBTL structure and |φ| is the length of the formula.

In this section, we will analyze both the time complexity and space complexity

of model checking PCTLK with respect to the size of the system model and the length

of the formula.

5.3.1 Time Complexity

In this subsection, we will prove that the running time for model checking PCTLK

for Markov chains is polynomial in the size of the explicit model and the length of the

formula.

Theorem 5.3. The time complexity of the model checking problem for PCTLK for

Markov chains is polynomial in the size of the explicit model and the length of the

formula.

Proof. PCTLK extends PCTL and PCTL is a subset of PBTL [7]. Thus, PCTLK

extends PBTL as well. It is known from [7] that the model checking problem for

PBTL for Markov chains can be solved in time polynomial in the size of the explicit

PBTL structure and linear in the length of the formula. Thus, we need only to analyze

the time complexity of our model transformation and formula reduction.

To go from our model MPIS to PBTL structure CIS, atomic propositions APIS,

set of states SIS, initial distribution IIS, and labeling functions LIS can be obtained

directly from MPIS. Therefore, these parts of the transformation will run in a linear

time in the size of the model. We need two stages to generate Steps for PBTL struc-

ture CIS. First, we add the regular transition μ into Steps; the value of probabilistic

transitions PIS(s, s
′) can be copied from Pt(s, s

′) of our MPIS model directly. This

stage will run in O(k) time, where k is the number of transitions in the Markov chain.

103

Then, we convert each epistemic accessibility relation ∼i into a transition Ag i and

compute the value of this transition. To compute the probability of this transition,

we need to count the number of epistemic accessible states for agent i at state s.

This can run in O(m) time, where m is the number of states in the system. Thus, to

convert PIS we need O(n ·m) time, where n is the number of agents in the system. In

other words, the complexity of generating Steps for the PBTL structure is quadratic

in the size of the MPIS model (O(k+ n ·m)). Therefore, the complexity of the whole

transformation is quadratic in the size of the model structure.

To transform a PCTLK formula φ, the procedure will recursively apply the

transformation rules until a PBTL F(φ) subformula is encountered. Therefore, the

depth of the recursion is bounded by the length of the formula φ. Thus, the transfor-

mation is linear in the length |φ|.

Because model checking PBTL for Markov chains can be solved in polynomial

time in the size of the explicit model and linear in the length of the formula [7],

model transformation can be performed in quadratic time in the size of the model,

and formula reduction can be executed in linear time in the length of the formula,

we conclude that the complexity of model checking PCTLK for Markov chains is

polynomial in the size of the explicit Markov chain and the length of the formula.

Theorem 5.4. The model checking problem for PCTLK over Markov chains is P-

complete.

Proof. Membership: From Theorem 5.3, we get that the upper bound of the model

checking problem is polynomial in the size of the Markov chain and the size of the

formula.

Hardness: to prove the hardness, we need to prove that every problem A in the

class P is polynomial time reducible (we use ≤P to express polynomial time reduction)

to the problem of model checking PCTLK for Markov chains. We know from [29,

104

88] that model checking CTL for explicit models is P-complete. Therefore, A ≤P

MC(CTL) (we use MC(X) to represent model checking problem of language X and

L(X) to express the language of X). Also L(CTL) ≤P L((PCTL) ≤P L(PCTLK),

(because all CTL formulae can be expressed in PCTL, and PCTL is a subset of

PCTLK), and explicit systems can be seen as a subset of Markov chains with all

probability transitions are 1. Consequently, problem A can be polynomially reduced

to the model check problem of PCTLK for Markov chains (A ≤P MC(PCTLK))1.

So we can conclude that the model checking problem for PCTLK for Markov chains

is P-complete.

5.3.2 Space Complexity

In this subsection, we will prove that the complexity of PCTLK model checking for

concurrent probabilistic systems is PSPACE-complete.

Theorem 5.5. Let |φ| be the size of the state formula φ, n the number of agents in

the concurrent probabilistic system, m the number of states in the system, and k the

number of transitions in the system. The model checking problem for PCTLK on this

concurrent probabilistic system can be solved in space O(|φ| ·m+m · (k + n ·m)).

Proof. It is known from [7] that the space complexity for PBTL over a concurrent

probabilistic system is O(|φ′|·m+m·k), where |φ′| is the size of PBTL formula φ′, m is

the number of states, and k is the number of transitions in the system. In Section 5.2,

we have presented transformations of probabilistic epistemic modelsMPIS for PCTLK

to concurrent probabilistic systems CIS for PBTL and of a PCTLK formula φ to a

PBTL formula F(φ) so that MPIS |= φ if and only if CIS |= F(φ). We just need to

analyze if the space complexity of model transformation and formula transformation

1If a problem B is P-complete and B ≤P C, where C is in the class P, then C is P-complete.

105

is polynomial. Next we prove that a deterministic Turing machine TM computes the

model reduction in polynomial space in the size of the input PCTLK model.

TM reads in the input tape a model of PCTLK MPIS and generates the PBTL

structure CIS in the output tape, one by one, the same atomic propositions, states, the

initial distribution, and labeling functions as the input. Furthermore, TM writes μ(s′)

into StepsIS for state s when TM reads a probabilistic transition function Pt(s, s
′)

from the input model. TM reads epistemic relations s ∼i s
′ from the input model

one by one and for each one, it writes Ag i into StepsIS for state s in the output

tape. These two steps are executed in space O(k + n ·m), where k is the number of

transitions, m is the number of states, and n is the number of agents in the system.

In fact, the generated PBTL structure has m states and k +m · n transitions.

On the other hand, from Table 5.1, we can see that the length of the PBTL

formula F(φ) is linear in the length of the original formula φ.

Based on complexity of our reductions and the result from [7], we can conclude

that the model checking problem for PCTLK on a concurrent probabilistic system

can be solved in space O(|φ| · m + m · (k + n · m)), where |φ| is the length of the

PCTLK formula.

Theorem 5.6. The space complexity of PCTLK model checking for a concurrent

probabilistic program is PSPACE-complete.

Proof. Membership in PSPACE follows from Theorem 5.5.

To prove the hardness, we need to prove that every problem A in PSPACE can

be polynomially reduced to the problem of model checking PCTLK over concurrent

probabilistic systems. We know that model checking CTLK for concurrent systems

is PSPACE-complete [77]. Therefore, A ≤P MC(CTLK). Moreover, the CTLK

model checking problem over concurrent systems can be reduced polynomially to the

PCTLK model checking problem over concurrent probabilistic systems because all

106

CTLK formulae are PCTLK formulae as well (see Figure 5.1) and concurrent systems

can be seen as concurrent probabilistic systems with all probability transitions equal

to 1. Therefore, MC(CTLK) ≤P MC(PCTLK), so the result.

5.4 Symbolic Representation with MTBDDs

In this section, we will introduce how to represent probabilistic interpreted systems

with Multi-Terminal Binary Decision Diagrams (MTBDDs) and develop symbolic

model checking algorithms for PCTLK. We choose MTBDD representation to be able

to use the PRISM model checker [69] that provides an MTBDD engine. In fact, the

MTBDD representations of probabilistic interpreted systems and MDPs, which are

supported by PRISM, are exactly the same.

5.4.1 Introduction to MTBDDs

Binary Decision Diagrams (BDDs) were originally created by Lee[71] and enriched by

Akers [1]. MTBDDs are extended from BDDs; thus they have inherent BDD features.

An MTBDD M is a rooted directed acyclic graph associated with a set of ordered

Boolean variables x1 < · · · < xn. An MTBDD data structure can be considered as

a mapping function fM(x1, . . . , xn) : Bn → R. Nodes in MTBDDs are classed as

either non-terminal or terminal. Unlike BDDs where terminal nodes can only be 0

or 1, terminal nodes in MTBDDs are allowed to be real numbers other than 0 and

1. A terminal node m is labeled by a real number val(m). A non-terminal node

m is labeled by a variable var(m) ∈ (x1, . . . , xn) and has then(m) and else(m) two

children.

The order over the Boolean variables in MTBDDs is based on a position and

value of a node. For two non-terminal nodes m1 and m2, if var(m1) ≤ var(m2),

107

then m1 ≤ m2. A non-terminal node is less than a terminal node, for example, if

m1 is a non-terminal node and m2 is a terminal node, then m1 < m2. The order

for a non-terminal node m and its children then(m) and else(m) is m < then(m)

and m < else(m). In MTBDDs’ data structure, two terminal nodes m1 and m2

are equivalent if and only if val(m1) = val(m2). For non-terminal nodes, two nodes

are identical when conditions: 1) var(m1) = var(m2), 2) then(m1) = then(m2),

and 3) else(m1) = else(m2) are all satisfied. MTBDDs are efficient because they

can be compact without any redundancy. For example, if two children are equal,

then(m1) = else(m2), then these two nodes will be combined to one node and all

incoming edges are redirected to this unique child. MTBDDs have been used to

encode real-valued matrices in [30]. These MTBDDs can be considered as a square

2n × 2n matrix mapping function: Bn × Bn → R. Every element aij can be viewed

as the value of a function f : {0, . . . , 2n−1} × {0, . . . , 2n−1} → R. If we take Boolean

variables (x1, . . . , xn) to range over row indices and Boolean variables (y1, . . . , yn) to

range over column indices, this matrix can be seen as a probability transition matrix

of Markov chains; therefore an MTBDD can be used to represent the probabilistic

transition system. We use an MTBDD obtained from f : (x1, y1, . . . , xn, yn), which

means we require the variables from the rows and columns to alternate, so that a

recursive structure on the matrix is suited for efficient recursive algorithms for all

standard matrix operations [37].

5.4.2 MTBDDs Model Representation

Now let us encode a probabilistic interpreted model MPIS. Given an MPIS =

(W,Pt, Iinit,∼1, . . . ,∼n, AP, V), then the number of Boolean variables required to

encode states W is m = �log2|W |�, where |W | is the number of states in the system.

We use an m Boolean variable tuple x = (x1, . . . , xm) to represent each element

108

s ∈ W . Each tuple x = (x1, . . . , xm) is then identified with a Boolean formula,

represented by a conjunction of variables or their negation. Consequently, the set

of states is encoded by taking the disjunction of the Boolean formulae encoding the

states. We also introduce m more variables y = (y1, . . . , ym) to encode the destination

states. If we encode Boolean variables x and y to range over source and destination

states, we can encode the transition probability matrix Pt of MPIS model [84]. The

initial distribution Iinit can be represented by a vector using real numbers. Each

agent in the model can be encoded as a k Boolean variables z = (z1, , . . . , zk), where

k = �log2(n + 1)� (n + 1 is the number of agents in the system including the system

itself). Then, we use the same method used for Pt encoding to encode n epistemic

accessibility relations ∼i. If there is an epistemic accessibility relation between a

source state and a destination state for agent i, we set the matrix ∼i for elements

that represent this source state and destination state value as 1. (For purposes of

simplification, we omit the representations of the atomic propositions and labeling

functions).

s1

s0

s2
0.4

0.4

p,q

~1

p

s3

q

~2

1

0.3

0.3
0.6

~1

~1

~2

~2

~1

~1

~1

~2

~2

~2

1

Figure 5.2: An Example of Probabilistic Interpreted System Model

109

We use an example to illustrate the encoding process. The probabilistic in-

terpreted system is shown in Figure 5.2. There are two agents in the system. The

solid lines with numbers are probabilistic transitions. The dashed lines with ∼1 are

epistemic accessibility relations for agent 1, while lines with ∼2 represent relations

for agent 2. The probability transition function Pt, initial distribution and epistemic

accessibility relations are listed in the following matrices. We normalize epistemic

accessibility relations such that the probabilities from state s must sum to 1 and use

� to stand for normalization.

Pt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.4 0.3 0.3 0

0 1 0 0

0 0 0.4 0.6

0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Iinit =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∼1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0

1 1 0 0

1 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1/3 1/3 1/3 0

1/2 1/2 0 0

1/2 0 1/2 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∼2=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 0

1 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1/2 0 1/2 0

0 1 0 0

1/2 0 1/2 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

To convert this probabilistic interpreted system into MTBDD, we need 2 Boolean

variables for encoding agents z = (z1, z2) and 2 Boolean variables for encoding states

x = (x1, x2). z1 = 0 and z2 = 0 represents the system, z1 = 0 and z2 = 1 is agent 1,

and z1 = 1 and z2 = 0 stands for agent 2. Similarly for states: there are 4 states in

the system; therefore we can use (x1, x2) = (0, 0), (x1, x2) = (0, 1), (x1, x2) = (1, 0),

and (x1, x2) = (1, 1) to stand for s0, s1, s2, and s3.

110

0 1

0.4

0.3
1

1 0.4
0.6

1/3 1/3

1/2 1/2

1/3 1/2 1/2 1/1
1/2

1/1

1/2
1/2 1/2 1/1

z1

z2

x1

y1

x2

y2

M

0.3

System transitions Agent 1 epistemic

relations

Agent 2 epistemic

relations

Figure 5.3: An MTBDD Encoding Example

Figure 5.3 is the MTBDD M for the probabilistic interpreted system. Non-

terminal nodes are drawn as circles and terminal nodes as the numbers indicating

the value of nodes. For the purpose of clarification, we omit the zero terminal node

and any edges which lead directly to it . Non-terminal node then and else offsprings

are connected with solid and dashed lines respectively to their parent. We divide

this MTBDD into three parts: (z1, z2) = (0, 0), (z1, z2) = (0, 1) and (z1, z2) = (1, 0)

to represent probability transitions, epistemic relations for agent 1, and epistemic

relations for agent 2.

We can trace the appropriate path through the MTBDD to get the value of the

function fM . Tabel 5.2 generates from Figure 5.3 and shows the function fM which the

MTBDD M represents. For example, fM(z1, z2, x1, y1, x2, y2) = fM(0, 0, 1, 1, 0, 1) =

0.6. We denote (s, s′)0 to represent probability transition from state s to s′, (s, s′)i to

be epistemic accessibility relations for agent i. Based on our encoding rules, we know

111

Table 5.2: The Function that The MTBDD Represents
Agent Number z1 z2 x1 y1 x2 y2 fM(z1, z2, x1, y1, x2, y2) PIS

A

0 0 0 0 0 0 0.4 (s0, s0)
A0 = 0.4

0 0 0 0 0 1 0.3 (s0, s1)
A0 = 0.3

0 0 0 1 0 0 0.3 (s0, s2)
A0 = 0.3

System 0 0 0 0 1 1 1 (s1, s1)
A0 = 1

0 0 1 0 1 1 1 (s3, s1)
A0 = 1

0 0 1 1 0 0 0.4 (s2, s2)
A0 = 0.4

0 0 1 1 0 1 0.6 (s2, s3)
A0 = 0.6

0 1 0 0 0 0 1/3 (s0, s0)
A1 = 1/3

0 1 0 0 0 1 1/3 (s0, s1)
A1 = 1/3

0 1 0 1 0 0 1/3 (s0, s2)
A1 = 1/3

Agent 1 0 1 0 0 1 0 1/2 (s1, s0)
A1 = 1/2

0 1 0 0 1 1 1/2 (s1, s1)
A1 = 1/2

0 1 1 0 0 0 1/2 (s2, s0)
A1 = 1/2

0 1 1 1 0 0 1/2 (s2, s2)
A1 = 1/2

0 1 1 1 1 1 1 (s3, s3)
A1 = 1

1 0 0 0 0 0 1/2 (s0, s0)
A2 = 1/2

1 0 0 1 0 0 1/2 (s0, s2)
A2 = 1/2

1 0 0 0 1 1 1 (s1, s1)
A2 = 1

Agent 2 1 0 1 0 0 0 1/2 (s2, s0)
A2 = 1/2

1 0 1 1 0 0 1/2 (s2, s2)
A2 = 1/2

1 0 1 1 1 1 1 (s3, s3)
A2 = 1

112

that PIS(s2, s3)
0 = 0.6. In fact, we can abstract the transition probability matrix PIS

of a concurrent probabilistic system. We use superscript to indicate adversaries.

PIS =

s0;A0

s0;A1

s0;A2

−−−

s1;A0

s1;A1

s1;A2

−−−

s2;A0

s2;A1

s2;A2

−−−

s3;A0

s3;A1

s3;A2

⎛
⎜⎜⎝

0.4 0.3 0.3 0

1/3 1/3 1/3 0

1/2 0 1/2 0

−−−− −−− −−−− −−−

0 1 0 0

1/2 1/2 0 0

0 1 0 0

−−−− −−− −−−− −−−

0 0 0.4 0.6

1/2 0 1/2 0

1/2 0 1/2 0

−−−− −−− −−−− −−−

0 1 0 0

0 0 0 1

0 0 0 1

⎞
⎟⎟⎠

The modified NetBill protocol is implemented with PRISM in the next section

to verify probabilistic and epistemic properties to illustrate our approach.

5.5 Case Study

PRISM is a tool for the automatic verification of randomized or probabilistic behaviors

via probabilistic model checking. PRISM allows us to verify PCTL formulae over

Markov chains or Markov decision processes. In this section, we model the NetBill

113

protocol and verify its probabilistic and epistemic properties using this tool. Although

PRISM does not support PCTLK logic, with our approach introduced in Section 5.2,

we are able to convert PCTLK logic into PBTL logic with an existential quantifier.

Moreover, we know from Section 2.4 that all PBTL formulae with an existential

quantifier are the same as PCTL formulae. Therefore, with our model and formulae

reduction, we can use the PRISM model checker to verify probabilistic epistemic

properties.

5.5.1 Encoding

NetBill protocol is developed for online shopping encryption. The basic protocol

involves one customer agent Cus and one merchant agent Mer interacting to finish

an online shopping process. This protocol can also be applied to more than one

customer and one merchant. The size of the model can be easily scaled up by the

number of customers and merchants to benchmark the time and space complexity of

our approach. We modified this protocol with probability transitions.

A customer requests a quote from the merchant for an item to initialize the

protocol. Five percent (5%) of these requests will fail to be sent to the merchant

due to internet connection issues. The merchant replies to the successfully delivered

request by presenting a quote for the requested item. After a customer gets the

quote, thirty percent (30%) of customers reject the offer and end the protocol without

purchase. The other 70% of customers accept the offer and pay for the item. Ten

percent (10%) of payments will be nullified due to connection issues and card issues.

Thus, after the merchant provides the quote to the customer, there is 63% chance she

will receive the payment for the item. When the merchant receives the payment, then

she will deliver the items to the customer. Ninety-nine percent (99%) of deliveries

are successful. If the delivery fails, the merchant will refund the customer. Figure 5.4

114

MerInit(m0)

Delivery(m6)

NotDelivery(m5)

0.95

1.0

0.99

0.05

Refund(m7)

1.0

1.0

1.0

RecQuest(m1)

RecNPay(m4)

0.01

NotPay(c4)

0.37

0.63

CusInit(c0)

RecDelivery(c6)

0.95

0.1

0.05

RecRefund(c7)

1.0

1.0

1.0

Request(c1)

Reject(c2)

0.01

Accept(c3)

0.3
0.7

Pay(c5)

0.99

0.9

1.0

RecPay(m3)

(a) (b)

Quote(m2)
1.0

Figure 5.4: NetBill Protocol Probability Transition (a) Merchant, (b) Customer

depicts the merchant and customer probabilistic models.

We encode this protocol by using a module in PRISM for every agent and the

entire system is defined as a process in which these agent modules can interact with

each other. The local states of the merchant or the customer are defined as variables.

The global states of the system are obtained from the Cartesian product of the local

states of all modules. Therefore, the epistemic accessibility relations for agent i at

state s include all the global states with module i ’s local variable s. We use labels to

define the epistemic relations. To illustrate, label A1s1 includes a set of states that

are equivalent for agent A1 at s1 (λ1). In other words, label A1s1 includes all states

that show other agents’ next-step behaviors when agent A1 is in state s1.

label "A1s1" = (s1=0|s1=1);

Therefore, A1s1 is considered as the set of states that comprises all the states related

115

to s1 by ∼1.

The probability transitions of each module are described by a set of commands

that indicate the updated local variables and probabilities for a given local variable.

We uploaded the entire code for verifying the epistemic and probabilistic properties for

the NetBill protocol using the PRISM probabilistic model checker on the open-source

project website SourceForge.net2

Many properties, such as safety, liveness, and reachability, can be checked in the

NetBill protocol and are easy to express using PCTLK. Some examples of tested for-

mulae are listed in Table 5.3 (for a system including one merchant and one customer):

Table 5.3: Formula Examples
φ1 = ¬Pay → P≤0.02(KmerPay)
φ2 = ¬P≥0.98(F ((KcusDelivery) ∧ ¬Delivery))
φ3 = Delivery → P≥0.99(KcusDeliver)
φ4 = P≥0.55KcusDeliver

Formulae φ1 and φ2 express examples of the safety properties i.e., “unexpected

events will not occur in the system”. In conventional quality model checking, the

safety property is expressed by AG¬p, where p is an “unexpected” situation that

should be avoided. However, human beings make mistakes in the real world; thus,

when we design a system, we set a confidence interval such that we allow for inconsis-

tencies to occur within a buffer zone. In probability model checking, safety properties

can be expressed as “unexpected events” have a low probability of occurring or high

probability of not occurring. For example, “chances that a merchant thinks that a

customer has already paid but the customer has not actually paid is less than 2%”

(formula φ1), or “there is greater than 98% chance that it will not occur that the

customer receives the item and the merchant did not deliver it to her” (formula φ2).

2https://sourceforge.net/projects/mcepistemicprob/files/NetBill/?

116

After we define the epistemic relations as labels “CustomerNPay” and “Merchant-

KnowPay”, the same properties are expressed in PRISM as follows:

“CustomerNPay” ⇒ P <= 0.02 [F (P >= 1[X“MerchantKnowPay”])] (5.3)

P >= 0.98 [F (P >= 1[X“CustomerKnowDel”) ∧ (!“MerchantDel”)] (5.4)

In contrast to the safety property, a liveness property states “an expected event

will eventually happen”. Formula φ3 expresses the liveness property that after the

merchant delivers the item, the customer will be aware of it and will receive the item

eventually. The liveness property can be expressed in PRISM as follows:

“MerchantDel” ⇒ P >= 0.99 [F (P >= 1[X“CustomerKnowDel”)] (5.5)

Formula φ4 is an example of a reachability property, which means a particular

situation can be reached from the initial state. In probabilistic model checking, we

are able not only to state that a particular event will eventually occur, but also to

present the probability that this event happens. If formula φ4 is true, it means that

there is a 55% chance a customer will receive a delivered item after having sent a

request. The following expression in PRISM encodes this property.

P >= 0.55 [F (P >= 1[X“MerchantDel”)] (5.6)

We have encoded the NetBill protocol with PRISM using the method presented

in this section and we have verified this protocol experimentally with up to 15 agents.

Experimental results are reported in the next section.

117

5.5.2 Experimental Results

The experimental results of the example described in the previous section are pre-

sented in Table 5.4. These results were performed using PRISM 4.1 on a Toshiba

Portégé computer with 2.00 GHz Intel Core2 Duo T6400 processor and 3GB memory

under a 64-bit Windows Vista Operating system.

Table 5.4: Experimental Results for Netbill Protocol with PRISM
No. of Model MTBDD Construction Memory
Agents States Transitions Nodes Leaves Time(sec) (MB)

2 24 51 144 13 0.038 0.360
3 186 545 537 20 0.044 0.512
4 1,606 5,811 2,842 38 0.062 0.792
5 11,670 49,561 7,662 69 0.086 1.656
6 81,190 395,871 16,401 97 0.145 2.352
7 560,886 3,093,505 29,929 134 0.203 3.588
8 3,900,166 24,049,791 49,364 171 0.289 5.088
9 27,447,270 187,402,273 76,328 228 0.405 6.68
10 195,874,150 1,468,699,791 112,723 282 0.601 13.428
11 1,417,856,406 11,592,991,393 160,310 365 0.851 16.472
12 10,403,792,326 92,189,803,551 221,384 440 1.194 20.772
13 77,299,568,070 738,305,984,545 298,209 536 1.721 34.492
14 580,781,161,510 5,950,385,865,711 393,229 630 2.561 42.143
15 4,406,497,035,126 48,220,171,890,721 572,245 994 3.733 65.392

Table 5.4 reports the state space, MTBDD size, time and memory usage in

the construction of the example. We increase the number of agents by adding more

merchants or customers into the NetBill system. For reasons of simplicity, we have

increased customer agents and kept a maximum of two merchants in the system. The

second and third column report statistical data of the model (number of states and

number of transitions) that reflect the state space. Column four and five present

the number of nodes and leaves in MTBDD that represent the model. The last two

columns indicate the time for converting the PRISM model into an MTBDD symbolic

model and the memory usage for constructing the model. From Table 5.4, we notice

that the number of states surges dramatically as the number of agents increases,

but the growth is not exponential. Moreover, the size of the MTBDD data structure

118

(including nodes and leaves) grows much more slowly than the model size. This means

that the MTBDD data structure is more efficient as the model size increases. The

time and memory usage for constructing the model do not increase exponentially, but

only polynomially when augmenting the number of agents (See Figure 5.5). In order

to compare time and memory usage in the same figure, we modified this by dividing

memory usage by 10. These experimental results confirm the complexity presented in

Section 5.3.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

Number of Agents

Ti
m

e
(s

ec
) /

 M
em

or
y

(M
B/

10
)

Construction Time / Memory Usage

Time Usage
Memory Usage

Figure 5.5: Model Construction Time/Memory Usage

We verified the four formulae listed in the previous section. All those formulae

hold for a one-customer and one-merchant NetBill protocol. As all the formulae are

similar in terms of time and space complexity, in the following, we only focus on

the reachability property (formula φ4). Table 5.5 shows verification results of this

formula. Agents’ types are indicated in this table as C and M for customer and

merchant respectively. We also included the number of Boolean variables required to

encode the NetBill protocol in column “Bool vars”. We found that although PRISM

is able to construct models for NetBill protocol with 15 agents, it only can verify

119

a formula for a model with 13 agents (2 merchants and 11 customers). There are

39 Boolean variables that are required to encode NetBill protocol with 13 agents,

corresponding to a maximal state space of size 239 ≈ 1011. This result is consistent

with PRISM specification for the MTBDD engine 3.

Table 5.5: Verification Results for Formula φ4
Agents No. Results States Transitions Bool vars Time(sec) Memory (MB)

2 (1M1C) True 24 51 6 0.007 1.184
3 (2M1C) True 186 545 9 0.028 1.844
4 (2M2C) True 1,606 5,811 12 0.146 2.924
5 (2M3C) True 11,670 49,561 15 0.816 5.24
6 (2M4C) True 81,190 395,871 18 3.626 20.068
7 (2M5C) True 560,886 3,093,505 21 12.368 44.376
8 (2M6C) False 3,900,166 24,049,791 24 39.691 67.892
9 (2M7C) False 27,447,270 187,402,273 27 94.554 140.756
10 (2M8C) False 195,874,150 1,468,699,791 30 226.196 175.356
11 (2M9C) False 1,417,856,406 11,592,991,393 33 554.748 -
12 (2M10C) False 10,403,792,326 92,189,803,551 36 1067.6 -
13 (2M11C) False 77,299,568,070 738,305,984,545 39 2112.587

Table 5.5 indicates that model checking time rises as the model gets larger.

Memory usage follows the same trend as the verification time. Time and memory

usage both increase polynomially with the number of agents and model size (see

Figure 5.6). We also notice that the formula does not hold for 8 or more agents in

the protocol (2 merchants and 6 customers in the trail). The reason is that as the

number of agents in the system increases, interactive behavior among agents leads to

increasing uncertainty.

We evaluate the probability of this property with “P =?” operator in PRISM.

The result is listed in Table 5.6. The probability of the formula holding for two agents

in the system is 0.6646, while for 8 agents the probability drops to 0.545. Figure 5.7

shows that after having 4 agents in the system, the probability of a customer knowing

the item has been successfully delivered decreases linearly when the number of agents

increases.

3http://www.prismmodelchecker.org/manual/FrequentlyAskedQuestions/PRISMModelling
#max model size

120

0 1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

Number of Agents

Ti
m

e
(s

ec
) /

 M
em

or
y

(M
B)

Verification Time / Memory Usage

Time Usage
Memory Usage

Figure 5.6: Verification Result of Formula φ4

Table 5.6: Percentage of Successful Delivery
Agents No. 2 3 4 5 6 7
Probability 0.6646 0.6545 0.6518 0.629 0.6005 0.571

Agents No. 8 9 10 11 12 13
Probability 0.545 0.521 0.4996 0.4804 0.4633 0.4482

0 2 4 6 8 10 12 14
0.4

0.45

0.5

0.55

0.6

0.65

Probability of Successful Delivery

Number of Agents

Pr
ob

ab
ilit

y

Figure 5.7: The Probability for a Successful Delivery

121

Chapter 6

Conclusions and Future Work

In this chapter, we first list the main contributions of our research in Section 6.1. The

potential directions for future work are indicated in Section 6.2.

6.1 Contributions

The objective of this dissertation is to tackle the problem of epistemic-probabilistic

model checking in MAS. The theoretical contributions are shown in Figure 6.1. The

main contributions of our research may be summarized as follows:

• Theoretical contributions:

1. We defined probabilistic-epistemic logic PCTLK [100, 101] to specify quan-

tified knowledge properties in MAS. PCTLK not only allows probabilities

of paths (i.e. runs), but also represents quantified knowledge. We also

built the model MPIS of PCTLK, which integrated Discrete-Time Markov

Chains (DTMCs) with interpreted systems, to model MAS. The reason

behind choosing DTMCs as our basic models is that DTMCs are widely

used to model systems with probability information and are formal models

122

Phase II:

Model checking approach

(Chapter 4)

Phase I: define PCTLK logic

and its model MPIS

(Chapter 4)

Probabilistic Interpreted

system MPIS

PCTLK formula PIS

Reduction-based model checking

PBTL model

structure (MPIS)

PBTL formula

(PIS) PBTL

model

cheking

PCTLK model

checking complexity

analysis

MTBDD symbolic

model

representation

PRISM

model checker

Results

(states,

probabilities)

Confirm complexity analysis

Phase III: Complexity analysis

(Chapter 5)

Phase IV: Symbolic representation

(Chapter 5)
Reduction-based

model checking

PCTL model

structure

�(MPIS)

PCTL formula

�(PIS)

PRISM

model checker

Figure 6.1: Theoretical Contributions

of PCTL, the predecessor of PCTLK. On the other hand, the formalism of

interpreted systems has been proved to be an efficient formalism for mod-

eling key characteristics of agents’ knowledge to allow the inter-operability

between global (the system) and local (agents) models. Therefore, MPIS

can effectively express quantified knowledge of MAS.

2. A new reduction-based model checking approach is developed to convert

PCTLK model checking into PCTL model checking [102]. This reduction

is achieved by transforming the models of PCTLK into MDPs, which are

then transformed to DTMCs using the notion of scheduler. We proved the

soundness and completeness of this transformation stating that a PCTLK

formula is satisfied in a model of PCTLK if and only if a corresponding

PCTL formula is satisfied in a DTMC model of PCTL. Therefore, formulae

123

of PCTLK can be simply checked using the probabilistic model checker

PRISM.

3. The complexity of PCTLK model checking over concurrent probabilistic

programs has been analyzed. We investigated the effectiveness of our

approach along with analyzing the computational complexity of PCTLK

model checking problem. We proved that PCTLK model checking in con-

current probabilistic programs is PSPACE-complete and can be solved in

polynomial time in the size of the model and length of the formula for

Markov chains.

4. We explored the symbolic representation of probabilistic interpreted sys-

tems with Multi-Terminal Binary Decision Diagrams (MTBDDs) to use

the MTBDD engine of PRISM.

• Practical contributions: Two concrete case studies have been implemented with

various model checkers to show applicabilities of our proposed techniques along

with performance analysis and comparison with other approaches:

1. A modified dining cryptographers protocol which includes uncertainty knowl-

edge has been implemented with three different model checkers: the prob-

abilistic model checker PRISM, the multi-agent model checker MCMAS,

and the model checker for knowledge MCK. The results and comparisons

are presented in [102].

2. In [90] and [98], we verified probabilistic commitment properties and prob-

abilistic knowledge of a modified NetBill protocol with PRISM. This pro-

tocol has also been used in [2] and is implemented using extended NuSMV

and CWBNC to verify knowledge and commitment properties.

• Collaborations:

124

During my thesis research, I collaborated with colleagues in commitment and

knowledge representations and jointly published a book chapter [11], a journal

paper [90], two conference papers [43] and [42], and a journal paper is under

review [2].

6.2 Future Work

Our probabilistic knowledge model checking is an ongoing project. There are a number

of areas for future research in probabilistic and epistemic verification in MAS. In the

future, we will focus on the following aspects:

• Currently, our model checking algorithms are based on reduction techniques to

alleviate the state explosion problem of model checking. We plan to investigate

the use of other model checking techniques such as symbolic model checking,

unbounded model checking, predicate abstraction, etc. to find better solutions

for probabilistic and epistemic model checking.

• Another important issue is to integrate the trust component to our probabilistic

logic. An important application is to measure probability of agent’s knowledge

based on opinions of other agents in the systems and how much those agents

are trusted.

• Model checking epistemic and probabilistic logic can also be applied to the

knowledge revision area to check if by revision and addition of new knowledge,

the model still satisfies specification properties. We consider the applicability of

this model to a range of practical case studies in different areas such as services

computing and business applications.

• We also like to develop dedicated tools for converting our probabilistic epistemic

125

model into models that are supported by existing model checker such as PRISM,

MCK, MCMAS, and NuSMV.

• Developing a dedicated probabilistic model checker or embedding probabilistic

epistemic features into the PRISM model checker are interesting problems for

our future research. We are interested in collaborating with the PRISM team

at Oxford to add our algorithms to a new version of PRISM.

126

Bibliography

[1] S.B. Akers. Binary decision diagrams. Computers, IEEE Transactions on,

100(6):509–516, 1978.

[2] F. Al-Saqqar, J. Bentahar, K. Sultan, and W. Wan. Model checking temporal

knowledge and commitments in multi-agent systems using reduction. Simulation

Modelling Practice and Theory, pages 45–68, 2015.

[3] R. Alur and T.A. Henzinger. Reactive modules. pages 207 – 218, Los Alamitos,

CA, USA, 1996.

[4] I. Anciutti. A learning classifier system for emergent team behavior in real-time

pomdp. In 2009 IEEE International Conference on Intelligent Computing and

Intelligent Systems (ICIS 2009), volume vol.1, pages 733 – 738, Piscataway, NJ,

USA, 2009.

[5] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algo-

rithms for continuous-time markov chains. Software Engineering, IEEE Trans-

actions on, 29(6):524–541, 2003.

[6] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, Cambridge,

Mass., 2008.

127

[7] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching

time logic with fairness. Distributed Computing, 11(3):125–155, 1998.

[8] F. Belardinelli and A. Lomuscio. A complete first- order logics of knowledge

and time. AAAI Press, pages 705–714, 2008.

[9] J. Bentahar, M. El-Menshawy, H. Qu, and R. Dssouli. Model checking commu-

nicative agent-based systems. Knowledge-Based Systems, 2012.

[10] J. Bentahar, J.J. Meyer, and W. Wan. Model checking communicative agent-

based systems. Knowledge-Based Systems, 22(3):142–159, 2009.

[11] J. Bentahar, J.J. Meyer, and W. Wan. Model checking agent communication. In

Specification and Verification of Multi-agent Systems, pages 67–102. Springer,

2010.

[12] O. Bernholtz, M. Y Vardi, and P. Wolper. An automata-theoretic approach to

branching-time model checking. In Computer Aided Verification, pages 142–155.

Springer, 1994.

[13] A. Bianco and L. De Alfaro. Model checking of probabilistic and nondetermin-

istic systems. In Foundations of Software Technology and Theoretical Computer

Science, pages 499–513. Springer, 1995.

[14] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in computers, 58:117–148, 2003.

[15] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking

without BDDs. In Proc. of 5th TACAS, Lectures Notes in Computer Science,

pages 193–207. Springer, 1999.

128

[16] P. Blackburn, M. De Rijke, and Y. Venema. Modal logic. Cambridge Tracts in

Theoretical Computer Science, 53, 2001.

[17] R. H Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking

agentspeak. In Proceedings of the second international joint conference on Au-

tonomous agents and multiagent systems, pages 409–416. ACM, 2003.

[18] R. E. Bryant. Graph-based algorithms for boolean function manipulation. Com-

puters, IEEE Transactions on, 100(8):677–691, 1986.

[19] J. R. Burch, E. M. Clarke, and D. Long. Symbolic model checking with parti-

tioned transition relations. Computer Science Department, page 435, 1991.

[20] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang. Sym-

bolic model checking: 1020 states and beyond. Information and computation,

98(2):142–170, 1992.

[21] S. Campos, E. M. Clarke, and M. Minea. The verus tool: A quantitative

approach to the formal verification of real-time systems. In Computer Aided

Verification, pages 452–455. Springer, 1997.

[22] Z. Cao. Model checking for epistemic and temporal properties of uncertain

agents. Agent Computing and Multi-Agent Systems, pages 46–58, 2006.

[23] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in par-

tially observable stochastic domains. In Proceedings of the National Conference

on Artificial Intelligence, volume 2, pages 1023–1023, Cambridge, MA, USA,

31,07-4,08 1995.

129

[24] K. Chatterjee, K. Sen, and T. A. Henzinger. Model-checking ω-regular proper-

ties of interval markov chains. In Foundations of Software Science and Compu-

tational Structures, pages 302–317. Springer, 2008.

[25] D. Chaum. The dining cryptographers problem: unconditional sender and re-

cipient untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[26] F. Ciesinski, C. Baier, M. Größer, and D. Parker. Generating compact mtbdd-

representations from probmela specifications. InModel Checking Software, pages

60–76. Springer, 2008.

[27] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,

R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic

model checking. In Computer Aided Verification, pages 359–364. Springer, 2002.

[28] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization

skeletons using branching-time temporal logic. In Logic of Programs, Workshop,

pages 52–71. Springer-Verlag, 1981.

[29] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-

state concurrent systems using temporal logic specifications. ACM Transactions

on Programming Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[30] E. M. Clarke, M. Fujita, P. C. McGeer, K. L. McMillan, J. CY. Yang, and

X. Zhao. Multi-terminal binary decision diagrams: An efficient data structure

for matrix representation. 1993.

[31] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstrac-

tion. ACM Transactions on Programming Languages and Systems (TOPLAS),

16(5):1512–1542, 1994.

130

[32] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, Cam-

bridge, Mass., 1999.

[33] R. Cleaveland and S. T. Sims. Generic tools for verifying concurrent systems.

Science of Computer Programming, 42(1):39–47, 2002.

[34] M. Cohen, M. Dam, A. Lomuscio, and H. Qu. A symmetry reduction technique

for model checking temporal-epistemic logic. In IJCAI, volume 9, pages 721–

726, 2009.

[35] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-

state probabilistic programs. In Foundations of Computer Science, 1988., 29th

Annual Symposium on, pages 338–345. IEEE, 1988.

[36] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verifica-

tion. Journal of the ACM (JACM), 42(4):857–907, 1995.

[37] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic

model checking of probabilistic processes using mtbdds and the kronecker repre-

sentation. In Tools and Algorithms for the Construction and Analysis of System:

6th InternationalConference,TACAS 2000, volume 1785, page 395. Springer,

2000.

[38] M. I Dekhtyar, A. Dikovsky, and M. K. Valiev. Temporal verification of prob-

abilistic multi-agent systems. In Pillars of computer science, pages 256–265.

Springer, 2008.

[39] C. Delgado and M. Benevides. Verification of epistemic properties in proba-

bilistic multi-agent systems. In Proceeding of MATES 2009, volume 5774 LNAI,

pages 16–28, Hamburg, Germany, Sept. 9 - 11 2009. Springer Verlag.

131

[40] R. Durrett. Probability: theory and examples. Cambridge University Press,

Cambridge; New York, 4th edition, 2010.

[41] M. El-Menshawy, J. Bentahar, W. El Kholy, and R. Dssouli. Reducing model

checking commitments for agent communication to model checking arctl and

gctl*. Autonomous Agents and Multi-Agent Systems, 27(3):375–418, 2013.

[42] M. El-Menshawy, J. Bentahar, W. Wan, and R. Dssouli. Verifying conformance

of commitment protocols via symbolic model checking. Proceedings of the In-

ternational Workshop on Agent Communication, pages 53–72, 2010.

[43] M. El-Menshawy, W. Wan, J. Bentahar, and R. Dssouli. Symbolic model check-

ing for agent interactions. In Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems (AAMAS), pages 1555–1556, 2010.

[44] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthe-

size synchronization skeletons. Science of Computer programming, 2(3):241–266,

1982.

[45] R. Fagin, J. Y. Halpern, and M. Y. Vardi. Reasoning about knowledge. MIT

Press, Cambridge, 1995.

[46] M. Finger and D. M. Gabbay. Adding a temporal dimension to a logic system.

Journal of Logic, Language and Information, 1(3):203–233, 1992.

[47] P. Gammie and R. Van der Meyden. MCK: model checking the logic of knowl-

edge. In Proc. of the 16th International Conference on Computer Aided Verifi-

cation, pages 479–483, Berlin, Germany, 13-17 July 2004. Springer-Verlag.

132

[48] H. Geffner and J. Wainer. Modeling action, knowledge and control. In Proc.

of European Conf. on AI (ECAI-98), pages 532–6, Chichester, UK, 23-28 Aug

1998. Wiley.

[49] C. M. Grinstead and J. L. Snell. Introduction to probability. American Mathe-

matical Soc., 1998.

[50] J. Y. Halpern. Reasoning about uncertainty. MIT Press, Cambridge, Mass.,

2003.

[51] J. Y. Halpern and M. Y. Vardo. Model checking vs. theorem proving: A man-

ifestor. In 2nd International Conference on Principles of Knowledge Represen-

tation and Reasoning (KR’91), pages 325 – 334, San Mateo (CA), 1991.

[52] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.

Formal Aspects of Comcputing, 6(5):512–535, 1994.

[53] V. Hartonas-Garmhausen, S. Campos, and E. M. Clarke. Probverus: Probabilis-

tic symbolic model checking. In Formal Methods for Real-Time and Probabilistic

Systems, pages 96–110. Springer, 1999.

[54] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate prob-

abilistic model checking. In Verification, Model Checking, and Abstract Inter-

pretation, pages 73–84. Springer, 2004.

[55] G. J. Holzmann. The model checker spin. IEEE Transactions on software

engineering, 23(5):279–295, 1997.

[56] X. Huang, C. Luo, and R. Van Der Meyden. Symbolic model checking of prob-

abilistic knowledge. In 13th Conference on Theoretical Aspects of Rationality

133

and Knowledge, TARK 2011,, pages 177–186, Groningen, Netherlands, July 12

- 14 2011.

[57] X. Huang, K. Su, and C. Zhang. Probabilistic alternating-time temporal logic of

incomplete information and synchronous perfect recall. In Proceedings of AAAI,

2012.

[58] G. E. Hughes and M. J. Cresswell. A new introduction to modal logic. Routledge,

London; New York, 1996.

[59] W. Jamroga. A temporal logic for markov chains. In Proceeding of 7th Inter-

national Conference on AAMAS, pages 697–704, Padgham, Parkes, May 12-16

2008.

[60] M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek, F. Raimondi, and

M. Szreter. Comparing BDD and SAT based techniques for model checking

chaum’s dining cryptographers protocol. Fundamenta Informaticae (Nether-

lands), 72(1-3):215 – 34, 2006/07/.

[61] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Partially observable

markov decision processes for artificial intelligence. In Reasoning with Uncer-

tainty in Robotics, pages 146–62, Berlin, Germany, 4-6 Dec. 1995 1996. Springer-

Verlag.

[62] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in

partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134,

05 1998.

[63] R. Kaplow, A. Atrash, and J. Pineau. Variable resolution decomposition for

robotic navigation under a pomdp framework. In Proceedings - IEEE Interna-

tional Conference on Robotics and Automation, pages 369 – 376, 2010.

134

[64] S. Konur, M. Fisher, and S. Schewe. Combined model checking for temporal,

probabilistic, and real-time logics. Theoretical Computer Science, 503:61–88,

2013.

[65] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to

branching-time model checking. Journal of the ACM (JACM), 47(2):312–360,

2000.

[66] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: probabilistic symbolic

model checker. volume 2324 LNAI, pages 200 – 4, Berlin, Germany, 2002.

[67] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model

checking with prism a hybrid approach. International Journal on Software Tools

for Technology Transfer, 6(2):128–42, 08 2004.

[68] M. Kwiatkowska, G. Norman, and D. Parker. Advances and challenges of proba-

bilistic model checking. In Communication, Control, and Computing (Allerton),

2010 48th Annual Allerton Conference on, pages 1691–1698. IEEE, 2010.

[69] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-

bilistic real-time systems. In Proc. 23rd International Conference on Computer

Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer,

2011.

[70] M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model check-

ing of concurrent probabilistic systems using MTBDDs and Simplex. School of

computer science research reprots - University of Birmingham CSR, 1999.

[71] C.-Y. Lee. Representation of switching circuits by binary-decision programs.

Bell System Technical Journal, 38(4):985–999, 1959.

135

[72] A. Lomuscio, T. 	Lasica, and W. Penczek. Bounded model checking for inter-

preted systems: preliminary experimental results. In Formal Approaches to

Agent-Based Systems, pages 115–125. Springer, 2003.

[73] A. Lomuscio, C. Pecheur, and F. Raimondi. Automatic verification of knowledge

and time with nusmv. In Proc. of the 20th Int. Conf. on AI (IJCAI07), pages

1384–1389, 2007.

[74] A. Lomuscio and W. Penczek. Symbolic model checking for temporal-epistemic

logics. SIGACT News, 38(3):77–99, 2007.

[75] A. Lomuscio, H. Qu, and M. Solanki. Towards verifying contract regulated ser-

vice composition. In Web Services, 2008. ICWS’08. IEEE International Con-

ference on, pages 254–261. IEEE, 2008.

[76] A. Lomuscio, H. Y. Qu, and F. Raimondi. MCMAS: a model checker for multi-

agent systems http://www-lai.doc.ic.ac.uk/mcmas/.

[77] A. Lomuscio and F. Raimondi. The complexity of model checking concurrent

programs against ctlk specifications. In Declarative Agent Languages and Tech-

nologies IV, pages 29–42. Springer, 2006.

[78] A. Lomuscio and F. Raimondi. MCMAS: a model checker for multi-agent sys-

tems. In Proc. of the 12th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pages 450–454, Berlin, Germany,

25 March-2 April 2006 2006. Springer-Verlag.

[79] J. Ma, G. Zhang, and J. Lu. A state-based knowledge representation approach

for information logical inconsistency detection in warning systems. Knowledge-

Based Systems, 23(2):125–131, 2010.

136

[80] K. L. McMillan. Symbolic model checking. Springer, 1993.

[81] K. L. McMillan. Applying sat methods in unbounded symbolic model checking.

In Computer Aided Verification, pages 250–264. Springer, 2002.

[82] J. J. Meyer and W. van der Hoek. Epistemic logic for AI and computer science,

volume 41. Cambridge University Press, Cambridge, 1995.

[83] S. Paquet, L. Tobin, and B. Chaib-draa. Real-time decision making for large

POMDPs. volume 3501 LNAI, pages 450 – 455, Victoria, Canada, 2005.

[84] D. Parker. Implementation of Symbolic Model Checking for Probabilistic Sys-

tems. PhD thesis, University of Birmingham, 2002.

[85] W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent

systems via bounded model checking. Fundamenta Informaticae, 55(2):167–85,

05 2003.

[86] W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the

universal fragment of ctl. Fundamenta Informaticae, 51(1):135–156, 2002.

[87] A. S. Rao. Agentspeak(l): Bdi agents speak out in a logical computable lan-

guage. In Proceedings, Agents Breaking Away. 7th European Workshop on

Modelling Autonomous Agents in a Multi-Agent World, MAAMAW ’96, pages

42–55, Berlin, Germany, 22-25 Jan. 1996 1996. Australian AI Inst., Melbourne,

Vic., Australia, Springer-Verlag.

[88] P. Schnoebelen. The complexity of temporal logic model checking. Advances in

Modal Logic, 4:393–436, 2002.

[89] G. Shani, R.I. Brafman, and S.E. Shimony. Model-based online learning of

POMDPs. volume 3720 LNAI, pages 353 – 364, Berlin, Germany, 2005.

137

[90] K. Sultan, J. Bentahar, W. Wan, and F. Al-Saqqar. Modeling and verify-

ing probabilistic multi-agent systems using knowledge and social commitments.

Expert Systems with Applications, 41(14):6291–6304, 2014.

[91] Le T.-D., T. Komeda, and M. Takagi. Reinforcement learning for pomdp using

state classification. In 2007 International Conference on Machine Learning;

Models, Technologies & Applications (MLMTA 07), pages 45 – 51, Las Vegas,

NV, USA, 2007.

[92] T. Taha, J.V. Miro, and G. Dissanayake. A pomdp framework for modelling

human interaction with assistive robots. In IEEE International Conference on

Robotics and Automation, pages 544 – 549, Piscataway, NJ, USA, 2011.

[93] R. van der Meyden and P. Gammie. MCK: model checking knowledge,

http://www.cse.unsw.edu.au/m̃ck/.

[94] R. Van der Meyden and Kaile S. Symbolic model checking the knowledge of the

dining cryptographers. In Proceedings - 17th IEEE Computer Security Foun-

dations Workshop, CSFW 04, volume 17, pages 280–291, Pacific Grove, CA,

United states, 2004 2004.

[95] R. Van der Meyden and N. Shilov. Model checking knowledge and time in

systems with perfect recall. In Proceedings 19th Conference on the Founda-

tions of Software Technology and Theoretical Computer Science, pages 432–445.

Springer-Verlag, 13-15 Dec. 1999.

[96] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-

gram verification. In Proceedings of the First Symposium on Logic in Computer

Science. IEEE Computer Society, 1986.

138

[97] M. Y. Vardit. Automatic Verification of Probabilistic Concurrent Finite-State

Programs. In IEEE Symposium on Foundations of Computer Science, pages

327–338, 1985.

[98] W. Wan, J. Bentahar, and A. Ben Hamza. On the complexity of model checking

concurrent probabilistic programs against PCTLK specificiaiton. In Submitted

to Computers and Mathematics with Applications.

[99] W. Wan, J. Bentahar, and A. Ben Hamza. Modeling and verifying agent-based

communities of web services. In Trends in Applied Intelligent Systems, pages

418–427. Springer, 2010.

[100] W. Wan, J. Bentahar, and A. Ben Hamza. Model checking epistemic and prob-

abilistic properties of multi-agent systems. In Modern Approaches in Applied

Intelligence, volume 6704 LNAI, pages 68 – 78, Syracuse, NY, United states,

2011.

[101] W. Wan, J. Bentahar, and A. Ben Hamza. Quantitative model checking of

knowledge. In New Trends in Software Methodologies, Tools and Techniques:

Proceedings of the Eleventh SoMeT 12, pages 91–107, 2012.

[102] W. Wan, J. Bentahar, and A. Ben Hamza. Model checking epistemic-

probabilistic logic using probabilistic interpreted systems. Knowledge-Based

Systems 50, pages 279 – 295, 2013.

[103] F. Z. Wang and M. Kwiatkowska. An MTBDD-based implementation of forward

reachability for probabilistic timed automata. In Automated Technology for

Verification and Analysis, pages 385–399. Springer, 2005.

[104] M. Wooldridge. An introduction to multiagent systems. John Wiley & Sons,

Chichester, UK., 2 edition, 2009.

139

[105] M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons. Model checking multi-

agent systems with MABLE. In Proceedings of the first international joint

conference on Autonomous agents and multiagent systems: part 2, pages 952–

959. ACM, 2002.

[106] D. Z. Zhang, R. Cleaveland, and E. W. Stark. The integrated CWB-NC/PIOA

tool for functional verification and performance analysis of concurrent systems.

In Tools and Algorithms for the Construction and Analysis of Systems, pages

431–436. Springer, 2003.

[107] C. H. Zhou, B. Sun, and Z. F. Liu. Abstraction for model checking the proba-

bilistic temporal logic of knowledge. In Artificial Intelligence and Computational

Intelligence, pages 209–221. Springer, 2010.

140

