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ABSTRACT 

A GIS Based Modeling Approach to Assess Lake Eutrophication  

Linda El Farra 

 

 Large proportion of the world’s readily available water supply is at risk due to the rapidly 

increasing populations of certain types of harmful algae. During the photosynthesis, species like 

blue-green algae and cyanobacteria consume nutrients and produce toxins that have potential 

adverse effects to humans and animals. 

 This thesis focuses on developing a GIS-based statistical approach to explore the water 

quality parameters facilitating the algae bloom, and to geographically map the extent and spread 

of these parameters to enable tracking and prediction of potential algae outbreaks. 

 The relationship between Chlorophyll-a, which represents the concentration of algae 

biomass, and the water quality parameters such as depth, phosphorus, nitrogen, alkalinity, 

suspended solids, pH, temperature, electrical conductivity, dissolved oxygen and secchi depth is 

analyzed though correlation matrix then by utilizing modeling techniques including multiple 

linear, nonlinear regression, neural network and data mining prediction models are developed to 

quantify the contribution from essential water quality parameters to eutrophication. 

 The developed GIS and statistical analysis approaches have been applied to the Lake 

Champlain. The performance for the developed statistical, neural network and data mining 

chlorophyll-a models has been examined through the comparison with the observed field data 

and through statistical error analysis. Two new techniques have been examined in this thesis 

study. First, data mining has helped to reveal the nonlinear behavior of algae growth in some 

parts of the case study area. Second, the GIS spatial analysis is employed to visualize the spread 

and extent of the water quality parameters and the algae chlorophyll-a, which graphically present 
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the location-based impact of eutrophication on important lake water resources. For example, the 

analysis of the GIS-based impact maps suggests that the algae is affecting the Vermont section of 

Lake Champlain mainly the Northern and Southern section. The developed models suggest that 

algae production is affected by nutrients particularly phosphorus. When phosphorus is 

encountered at low to mild concentrations, the nutrient is linearly affecting algae production, 

however, at extreme concentrations of the nutrient the relationship between nutrient and algae 

production become nonlinear. The developed GIS model along with the statistical analysis 

applied on lake Champlain suggest that Extreme levels of Nitrogen in north and Chloride in the 

South caused deviations in the models prediction accuracy  
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INTRODUCTION 

 

 Water bodies respond differently to increased amounts of nutrients (Correll, 1998). Many 

factors contribute to eutrophication, including: hydrologic conditions, ecosystems, geology 

(Correll, 1998), sediment loading capacity (Froelich, 1988), and both urban and agricultural land 

use (Short et al., 1996). 

 

 

1.1 Background 

 

 The 2014 US Geological survey (USGS) report indicated that of the 1.386     of total 

water on earth, only 0.77% (10.7    ) is usable fresh water and 1.74% is unusable fresh water 

present in ice caps, frozen glaciers and permanent snow. Unfortunately, a large proportion (70%) 

of the world’s usable water supply is at risk due to contamination by environmentally harmful 

Cyanobacteria (also called blue-green algae). Cyanobacteria range in colour from green to red, 

and form large masses (called algal blooms) in warm shallow water that is slow moving or still. 

 During photosynthesis, cyanobacteria blooms consume nutrients essential for lake biome 

survival and produce toxins that are poisonous to the humans and wildlife living in the lake 

environment. These toxins include neurotoxins (affect the nervous system), and hepatotoxins 

(affect the liver), as well as those that irritate the skin and eyes. 

 The microcystins are a group of approximately 50 toxins produced by the 

cyanobacterium microcystis aeruginosa. These are important because they are chemically 

extremely stable in water of widely varying temperature and pH. Microcystin-LR is the most 

widely studied because it is found in fresh water supplies worldwide, and is undetectable by odor, 

taste or appearance. Symptoms of microcystin poisoning include diarrhea, abdominal pain, 

nausea, vomiting, headache, fever, irritated eyes and skin, and allergic reactions. Unfortunately, 

boiling microcystin-contaminated water does not remove the toxins or destroy their activity. 

 Chlorophyll-a (also called chlorophyll a) is a plant pigment that is a primary electron 

donor in the electron transport chain and essential for photosynthesis. Chlorophyll-a can be used 

as a biomarker for the presence of cyanobacteria, as there is a direct relationship between the 

mass of the cyanobacterial algal bloom and the concentration of chlorophyll-a in fresh water. 
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 These include the following physicochemical parameters of water: 1) temperature; 2) pH; 

3) electrical conductivity; 4)-6) concentration of phosphorus, nitrogen, and dissolved oxygen; 7) 

secchi depth (a measure of water clarity, inversely proportional to CAB growth). Secchi depth is 

measured using a circular secchi disk lowered into the water until it is not visible. Suspended 

solids, including CABs reduce water clarity. 

 Eutrophication is the oversupply of artificial or natural substances, mainly phosphates 

(e.g. pollution from fertilizers, sewage and detergents) to an aquatic system, which promotes the 

excessive growth and decay of plants and bacteria, including algal blooms. After these organisms 

die, oxygen depletion (hypoxia) occurs, which then inhibits the growth of fish and other 

organisms in the environment. Eutrophication decreases the value of lakes and rivers and impairs 

drinking water treatment. Eutrophication is one of most significant and widespread water quality 

concerns in the global environment. It causes premature ageing of lakes and other water bodies. 

The estimated damage cost of cultural eutrophication (from human activities) in the U.S alone 

exceeds $2.2 billion annually (Dodds et al., 2009). The ability of a lake to recover from 

eutrophication depends on the quantity of phosphorus in the lake sediment and in the volume of 

water in contact with the sediment. It may take decades before nutrients are naturally flushed out 

of lakes (Chambers et al., 2001; Hiscock et al., 2003). 

 Several studies have been published around lake Champlain, for example in 1989 a group 

of scientists from the Vermont Department of Environmental Conservation published a 

comprehensive study on lake Champlain, and concluded that it would be unrealistic to use daily 

data for lake Champlain to detect emerging lake eutrophication problems (Smeltzer et al., 1989), 

then in 1997 satellite images for the watershed was used to estimate the proportions of the 

baseline nonpoint source loads attributed (Millette, 1997), and in 2009 a Danish study suggested 

that eutrophication in lake Champlain is affected by the climate changes (Jeppesen ,2009). Many 

other studies around eutrophication are found and reviewed in section 2.2 and 2.3, and only a handful 

of these studies dealt with the GIS location characterization of water bodies (Aaby, 2005), and 

barely few studies exist that used data mining and computing power to reveal hidden pattern and 

information within the waterbodies data different timeframes (Petersen et al., 2001; Chen et al., 

2003 and Chau et al., 2007).    

 This study presents a new approach for exploding algae and eutrophication models 

 by searching for linear and nonlinear models using data mining, neural network and multiple 
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linear regression model throughout the different lake data timeframes, and by utilizing GIS 

location information to investigate the location impact on the lake eutrophication and algae 

spread. 

 

 

1.2 Thesis Objective  

 

 Few large-scale watershed eutrophication studies have been reported, and these have 

primarily focused on marine and coastal waters rather than on fresh water lakes, streams, rivers 

and reservoirs (Arheimer et al., 2000; Nixon et al., 2002).  Objectives of this thesis study 

include: 

A. To quantify the environmental variables associated with lake water quality such as: depth, 

phosphorus, nitrogen, alkalinity, suspended solids, pH, temperature, electrical 

conductivity, dissolved oxygen concentration and secchi depth contributions to algae 

bloom. 

B. To develop new statistical and generic algorithm based water quality models including 

data mining, nonlinear regression, and neural networks to assess and help to manage lake 

eutrophication 

C. To couple the developed lake eutrophication models with geographical information 

systems (GIS) to examine the location importance and impact on algae spread. 

D. To apply the developed methodology to the lake Champlain to further develop and 

validate field scale statistical linear and nonlinear chlorophyll-a models using data mining, 

neural network and multiple regression modeling techniques.  
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1.3 Organization of the Thesis 

 

This thesis is organized in the following seven chapters 

 Chapter 1 defines the scope of the thesis, and introduces eutrophication and its impact 

on cyanobacterial algal bloom (CABs).  Chapter 2 presents reviews of related literatures on 

eutrophication statistical studies, data mining and GIS-based studies on eutrophication.  Chapter 

3 summarizes the analyses used to create the chlorophyll-a models and the techniques used to 

evaluate the models.  Chapter 4 presents the Lake Champlain case study data and discusses the 

methods used to prepare the raw data for the analysis. In Chapter 5 data for the water quality 

parameters that contribute to CAB are analyzed using various techniques, the analyses are 

verified, and the results are compared to find the optimal set of prediction models.  Chapter 6 

shows how ArcGIS was incorporated to generate maps that illustrate the extent and spread of the 

CABs. Finally, Chapter 7 summarizes the results and provides suggestions and recommendations 

for future research. 
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2.1 Lake Eutrophication 

 

 Eutrophication is the process where a waterbody progresses from its current state to its 

extinction by gradual accumulation of nutrients and organic biomass (Das, 2003). Nutrients 

generally enter aquatic ecosystems sorbed to soil particles that are eroded into lakes, streams, and 

rivers (Sharpley et al., 1994). Human activities, excess use of fertilizers, mining phosphorus, 

animal feeds, agricultural crops, and other products, causing excess amount of nutrients to 

accumulate in soil thus altering the global phosphorus cycle (Schindler, 1977). The increasing 

nutrients levels in the soil elevate the potential amount that carried by runoff water to the aquatic 

ecosystems (Fluck et al., 1992).  

2.1.1 Phosphorus cycle  

 Usually external loading is the main factor determining the lake’s trophic status because 

of its large scale (Horne 1998); In 2005 a study published by the European Environmental 

Agency (EEA) suggested that: although phosphorus and nitrate concentrations in inland 

freshwater systems declined, eutrophication continued and haven’t stopped, the continuation of 

the eutrophication was due to internal loading, therefore nutrients released to the water column 

from the sediment is a factor to be considered in lake eutrophication (Bostrom et al., 1988) and  

(Elwood et al., 1983). 

 

 

 

Figure 2.1 Phosphorus cycle in lake Champlain. Source: http://prezi.com  

accessed on August 2014 
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 Internal and external loading of phosphorus into a lake body is referred to as phosphorus 

cycle, and this loading is the results of phosphorus being very biologically active elements. 

Figure 2.1 shows the phosphorus cycle in Lake Champlain, where phosphorus arrives into the 

lake though runoff water or sorbed through soil particles. The phosphorus compounds are then 

hydrolyzed either chemically or enzymatically to orthophosphate which is the only form of 

phosphorus that can be digested by algae or microbial (Smith et al., 2009). Excess and heavy 

particulates of phosphorus are deposited to the bottom and gradually form the sediment part of 

sediment phosphorus is released back into the water column as orthophosphate or it stays in the 

sediment and forms phosphate rock formation, which later on is dissolved by rain, snowmelt, 

irrigation or runoff water and is deposited back into the soil, rivers and lakes to eventually makes 

sediments rock formation (Goodwin, 2011). 

 

 

2.1.2 Nitrogen cycle   

 

 When 71% of the earth surface is water, and 80% of the atmosphere is Nitrogen gas 

N2 ,and when it takes millions of years for the rock sediment carrying phosphorus to raise up to 

the surface then moved by runoff water or sorbed through soil particle for the phosphorus to 

complete its cycle, while it may only takes days or even less for the nitrogen to complete its 

cycle, then it becomes clear why nitrogen concentration is 16 times higher phosphorus in open 

waters (Rydin and Rast, 1992). 

 Nitrogen exists in many forms, one of its form is ammonia NH3; Ammonia comes from 

plant, animal wastes, decomposition of organic nitrogen and is used extensively in fermentation 

(Luvalle et al., 1999) and as a cleaning agents; Ammonia has a deadly effect on fish and plant 

and it encourages algae growth. 
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Figure 2.2 Nitrogen cycle in lake Champlain; Source: http://image.frompo.com/w/peerless-travels 

accessed on August 2014 

 

 

2.2 Review of Lake Eutrophication Models  

 

 The German agricultural chemist Justus von Liebig conducted the first eutrophication 

study in 1950. Prior to this, Weber (1907) and Johnstone (1908) found a link between nutrients 

and aquatic productivity (reviewed in Smith et.al, 1999). In the years that followed several 

eutrophication studies were conducted; the majority of those studies focused on statistical 

analytical techniques.  

 Due to the widespread of the eutrophication problems in fresh water supplies, many 

studies were made in attempt to find the cause and solution, and in this section I presented the 

different unique approaches I found related to topic, however it is worth to mention that the 

sequence of studies is not necessary in a historical essay.  

 In 1973, Dieter Imboden developed a phosphorus model for Lake Lucerne eutrophication 

using oxygen consumption as a function of phosphorus loading. Dieter’s model calculates the 

mean Oxygen O2 consumption in water as a function of phosphorus loading and gives the critical 

P-loading values above which the lake turns eutrophic for changing mean depth of the Lake and 

hydraulic loading factor. The model produces a general rough behavior for lakes categorization 

by elements and was not able to explain the cause behind the CABs in the lake. Another different 

approach to instigate lake eutrophication was made by Lotter, who used the annual layer of 
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sediment in rocks (varve) to model the historical eutrophication of Lake Baldeggersee in 

(Switzerland), and although eutrophication is suggested to be highly correlated with sediment 

(Lijklema, 1980), however Lotter’s climate and trophic state models were only able to justify one 

third of the variance data. (Lotter et al., 1997).  

Many of the analytical eutrophication studies simplify the complexity between the lake 

variables and eutrophication, and use multiple linear regression MLR which is technique that 

attempts to find the relationship between several explanatory variables and a response variable 

by fitting a linear equation to the training data. (Cüneyt, 1999; Xia et al., 2011), while other 

eutrophication studies use more complex technique such as fuzzy logic to study eutrophication  

(Selçuk et al., 2004). 

 In recent years with the availability of computing power there was a growing tendency to 

use neural network to create eutrophication models (Recknagel et al., 1997). Some of those 

studies used artificial neural networks (Yabunaka et al., 1997; Scardi et al., 1999; Jeong et al., 

2001 and Xia et al., 2011), while other used fuzzy and neuro-fuzzy techniques (Maier et al., 

2001); and most recently with the advances in software development, DM techniques started to 

show in eutrophication studies (Petersen et al., 2001; Chen et al., 2003).  

Although many advances were made, the wide variation in water body scenarios (e.g. 

naturally occurring seasonal and annual variations in water quality parameters), and the 

complexity between nutrients and eutrophication in a dynamic ecosystem made it a challenge to 

develop a defined standard that defines water eutrophication (Correll, 1998). Different studies 

provided distinctive eutrophication model. 

In summary, the literature review showed: 

 1) There are many different analysis methods available to predict freshwater lake eutrophication 

and CABs mass growth. 

2) Several models are required to accurately deal with all lake scenarios (low vs. high nutrient 

concentrations). 

 3) The most important predictive parameters for lake eutrophication and CABs mass growth 

were total nitrogen (TN) and total phosphorus (TP) in the water. 

4) Most studies focused on solving the eutrophication problem using standard analysis 

techniques that do not address the nonlinearly problem of lake eutrophication at extreme 

concentrations. 
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 5) None of the studies utilized data mining techniques to model eutrophication problem in the 

lakes, and there is a lack of comprehensive research to formalize the relation between water 

variables and algae bloom. 

 

 

2.3 GIS- Based Lake Assessment and Management 

 

 In 1973, ESRI developed the first commercial GIS system, the Maryland Automated 

Geographic Information System (ESRI, 2006). They subsequently developed individual tools 

(e.g. ArcInfo workstation, ArcView GIS 3.x, MapObjects, ArcSDE), which were integrated as 

ArcGIS in 1999. Hiscock and coworkers utilized GIS to study phosphorus loading with land use, 

soil type and rainfall in the Florida basins (Hiscock et al., 2003). Their results indicated that the 

amount of developed land and the phosphorus loading have a strong correlation with lake 

eutrophication.  

In 2008, Dirk Craigie suggested using GIS as a resource to incorporate geographically 

linked data used in the Integrated Water Resource Management (IWRM) system (Dirk, 2008). 

Hameed’s group used GIS analysis to classify 50 inland lakes in Sweden according to their 

degree of eutrophication and acidity, based on water pH and/or alkalinity monitoring data 

(Hameed, 2010).  

In 2011 Gupta used GIS to evaluate nitrogen and phosphorus levels in the Rönneå River 

drainage basin in Sweden, and to estimate future discharge into the basin (Gupta et al., 2011). 

Akdeniz used the inverse distance weighted (IDW) method of ArcGIS to create trophic state 

index (TSI) maps for the shallow Uluabat Lake in Turkey (Akdeniz et al., 2011). Anoh used GIS 

to study eutrophication in the Taabo River (Ivory Coast) using multi criteria analysis of water 

quality parameters, which highlighted the areas in the watershed that required protection (Anoh 

et al., 2012). Lake Michigan was studied using satellite images from MODIS to predict 

chlorophyll-a concentration, the results showed the possibility of using satellite images 

effectively to track algae (Huang, Deng, 2013).  

 In conclusion, GIS provides a powerful method to analyze lake eutrophication and the 

growth of cyanobacteria algal blooms (CABs) spatially and to help effectively manage large-

scale lake eutrophication in countries worldwide.   



12 

 

 

 

 

 

 

 

 

CHAPTER 3 

METHODOLOGIES 

  



13 

3.1 Lake Nutrient Level Standards 

 

 There is currently no world standard for acceptable nutrient levels in lakes, because each 

presents a unique ecosystem, which is highly variable due to natural seasonal variations and also 

natural and man-made changes in the environment. For this reason, in order to study 

eutrophication in a particular lake, one needs to examine parameters that affect the entire 

geographical region (Nixon, 2009).  

 

 

3.2 Chlorophyll-a Lake Eutrophication Statistical Models that Use Multiple Linear 

Regression (MLR) 

 

 Some of the published chlorophyll-a models used the statistical method of multiple linear 

regression (MLR) to investigate multiple scalar dependent variables (Z = water quality 

parameters) that are hypothesized to be linearly related to the explanatory variable (Y= 

chlorophyll-a, a biomarker for the growth of cyanobacteria algal blooms (CABs) which cause 

eutrophication in lakes). This is described below in the general matrix format for the MLR 

equation (John et.al, 1996; see Introduction to Linear Regression Analysis by Douglas C. 

Montgomery - Statistics reference textbook for MLR method, 2012; Handan Çamdevyren et al., 

2005, a review of chlorophyll-a MLR models). 
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Eq. 3.2 

 Where, Y is an n-by-1 vector of responses, β is a m-by-1 vector of coefficients, Z is the 

n-by-r design matrix for the model, ε is an n-by-1 vector of errors, is the output or dependent 

variable, and           are the independent or input variables. The short version of the general 

MLR format is written as follows: 

                                                             Eq. 3.3 

 In this type of chlorophyll-a (MLR) model, chlorophyll- a (Chla) is the dependent 

variable.         representing: total phosphorus, total nitrogen, chloride, secchi depth, temperature, 

depth, alkalinity or the independent variables (water quality parameters), while        

represent the coefficients for the independent variables and ε is the error term. 

 The MLR equation is solved using the least squares method, by estimating the unknown 

vector of coefficients β of the linear equation, through minimizing the sum of squares of 

residuals (errors) between the observed data and the predicted data from the linear equation. The 

coefficients β that produce the best solution are found when the error between the linear equation 

model and observed data is zero (Kariya et al., 2004). By setting ε= 0 and rearranging the 

equation, we get β=S(β)/Z, which give the coefficients of matrix β, and the predicted values. By 

comparing the predicted values to the observed values we can judge the model’s accuracy. It is 

not possible to directly evaluate the coefficients of the matrix β equation since the vector S(β) has 

a different vector size than the matrix Z. Therefore, in appendix B, I wrote a Matlab code called 

MLR-LEF to work around this problem, and use this code in the Lake Champlain case study. 
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3.3 Chlorophyll-a Lake Eutrophication Models that Use Multiple Nonlinear Regression 

(MNR) 

 

Some of the chlorophyll-a models (Handan et al., 2005 and Xia et al., 2011) use multiple 

nonlinear regression (MNR) to investigate variables (water quality parameters) that are not 

linearly related to chlorophyll-a and CABs (Nonlinear Regression by G. A. F. SEBER -Statistics 

textbook ref for MNR; see refs above for chlorophyll-a MLR models). The multiple nonlinear 

regression model is derived by transforming the nonlinear model to a linear one, the general 

Nonlinear multivariate power function (Allison, 1999) is written as 

 

     
    

      
   Eq. 3.4 

 

By taking the natural logarithm for both sides, equation 3.4 is then transformed into a linear 

function (Allison, 2006) 

      ( )      (  )       (  )            (  ) Eq. 3.5 

Comparing Eq. 3.3 to Eq. 3.5 we get  

 

                (  )                        ( )    Eq.3.6  

 

Equations 3.5 and 3.6 can be used to derive the chlorophyll-a MNR model (Handanet al., 2005 

and Xia et al., 2011).     

 

 

3.4 Chlorophyll-a Models that Use Data Mining (DM) 

 

 Data mining (DM) is used to discover patterns within a data set (Weiss et al., 1999; 

Malek et al., 2011). A number of published chlorophyll-a models use DM to discover patterns in 

data sets of water quality parameters (independent variables) that are related to chlorophyll-a 

levels (dependent variable), a biomarker for CABs growth.  For example DM was used in a 

chlorophyll-a model to examine habitat utilization patterns of reef fish along the West coast of 

Hawaii (Kleiner et al., 2000; Bailey et al., 1994).  The software used in this study for data mining 
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is Eureqa 1.12.1 Beta from Nutonian. Eureqa software derives the equations by searching the 

space of mathematical expressions to find the model that best fits a given dataset, both in terms 

of accuracy and simplicity, this process is known as Symbolic Regression (SR), and unlike 

multiple nonlinear regression MNR where a specific equation is need to start with the analysis, in 

Symbolic Regression no particular model is needed to start with the analysis and the initial 

expressions are formed randomly by combining mathematical building blocks such as 

mathematical operators, analytic functions, constants, and state variables. Equations are then 

build by recombining previous equations, using genetic programming, by letting the patterns in 

the data reveal the suitable models, rather than imposing a model to avoid human bias, or 

unknown gaps in domain knowledge.  

 

 

3.5 Chlorophyll-a Model Evaluation Techniques 

 

 To find the best chlorophyll-a model for the Lake Champlain case study, I used three 

published methods to evaluate chlorophyll-a models, and these are described in detail below.  

 

3.5.1 Determination of coefficient    

 

 This method was used to evaluate most chlorophyll-a models used in lake eutrophication 

studies, (e.g. Handan et al., 2005; Xia et al., 2012). The Pearson R correlation coefficient 

measures the linear correlation between two variables (value between +1 and −1). R
2
 (the square 

of the Pearson R) indicates how close the regression model fits to the observed data (value 

between 0 and 1).  

   
∑ ( ̂   )̅̅ ̅  
   

∑ (   )̅̅ ̅  
   

 Eq. 3.7 

 

 Where,      the coefficient of determination, Ŷ is the predicted value,  ̅ is the observed 

value, Y is the average value, n = the size of the data. The closer the R
2 

value is to 1, the better 

the model fit. Fig. 3.1 shows two examples where this is not the case.  
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Figure 3.1 R
2
for unfit models (modified from http://academic.uprm.edu/accessed on May 2014) 

 

 The major problem in calculating R
2 

is that its value increases whenever a new variable is 

added to the model, thus a model with more variables may appear to be a better fit than a model 

with fewer variables. The adjusted R
2 

attempts to compensate for the inaccuracy of R
2 

because it 

increases only if the new variable is statistically significant. The adjusted R
2 

is always less than 

R
2
 (Draper et al., 1998). 

 ̅    (
(    )(   )

     
) Eq. 3.8 

 

 Where  ̅ is the adjusted coefficient of determination,    is the coefficient of 

determination, n is the total sample size, k is the number of predictors (variables). 

 

 

3.5.2 Standard error of the estimate 

 

 This method was used in the verification analysis of Lake Ontario (Thomann et al., 1979). 

The standard error of the estimate is an estimate of the average squared error and is calculated as 

follows (Kenney et al., 1963). 

           √                           √
                        

                    

  √
∑ (    ̂ )

  
   

  
 

Eq. 3.9 
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3.5.3 Confidence interval and critical value 

 

 A good model should have the smallest errors, and these should be distributed evenly 

above and below the regression line (Fig. 3.2).  

 

Figure 3.2 Error distributions (modified from http://academic.uprm.edu/ accessed on May 2014) 

 

 Confidence interval (CI) thresholds are used to maintain small and evenly distributed 

errors, and error values outside the threshold (also called limit) values are ignored. The lower the 

CI threshold value, the better the model. Critical values are the boundaries of the CI, found by 

using the z score table (the lower critical value =     ⁄ ; the upper critical value =     ⁄ ). The 

critical values in most data analysis software packages are a user-defined input that is set 

manually before data processing. 

 

Figure 3.3 Bell shape error distribution (modified from Kendall et al., 1968). 
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 An alternative method to find z score is to use MS excel command line to calculate the z 

value, which can be calculated using the following command 

 

=NORMSINV(x)  Where x is the value that we want to find its z score 

 

 

3.6 GIS Based Modeling and Assessment 

 

 The Geographical Information System (GIS) is combination of software, data and 

hardware that allow the user to query, visualize, and interpret spatial information to disclose 

relationships, trends, and patterns within a data set. ArcGIS, developed by Environmental 

Systems Research Institute (ESRI) is the most commonly used GIS package utilized by 

researchers community for business analysis, planning, environmental applications and 

geostatistical analysis. (See GIS Software - a description in 1000 words by Stefan Steiniger, 

2009). The components (objects) in ArcGIS represent water quality monitoring stations and 

other real world objects. The objects used in the Lake Champlain case study were the over 50 

water quality monitoring stations located throughout the lake. The objects are stored in the 

ArcGIS Geodatabase, which is the top-level element in the ArcGIS hierarchy, shown in figure 

3.4. The hierarchical data structure allows feature classes to inherit the attributes and behaviors 

of the object above while retaining its spatial properties (Zeiler, 1999). 
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Figure 3.4 GIS hierarchy (modified from http://webhelp.esri.com; accessed on Jan 2014). 

 

 Geostatistics analysis will produce the same modeling results as MLR if location has no 

impact on the lake dataset. The ordinary least square (OLS) regression method, which is the 

multi linear regression method used in ArcGIS, was used to test the significance of the location 

of the lake variables. If location is an important independent variable for the Lake Champlain 

study, then geographically weighted regression (GWR) tool from ArcGIS is used where location 

is considered as an independent input variable that affects the model. In the final stage of the 

analysis, the spread and distribution of the pollutant (chlorophyll-a) and of the variables (water 

quality parameters) was determined by creating maps using the Empirical Bayesian Kriging 

(EBK) method. 



21 

 

Figure 3.5 Lake Champlain eutrophication modeling using the GIS integrated analysis approach 
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CHAPTER 4 

CASE STUDY: LAKE CHAMPLAIN  
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4.1 An Overview of Lake Champlain 

 

 This lake is one of the largest glacially formed lakes in North America (see figure 4.1). It 

is situated partially in Vermont and NY states, USA, and partially in Quebec, Canada. Its 

approximate dimensions are: L=193 km, maximum width =30 km, watershed =21 km
2
, surface 

area =1100 km
2
, maximum depth =122 m (most is shallow =1.5 m), mean depth =19 m. The lake 

has 5 different environmental zones (http://www.lakechamplaincommittee.org/learn/natural-

history-lake-champlain, accessed on Dec 2014). The five major segments of the lake are:  

 The South Lake, which is long skinny and shallow. 

 The Main Lake, which is the deepest and widest section of the lake. 

 Malletts Bay circumscribed by historical railroad and road causeways. 

 The Inland Sea, which lies to the east of the Hero Islands. 

 The Missisquoi Bay and is a large and discrete bay rich with wildlife.  

 This geography was used in the case study to improve the results of the multiple linear 

regression and in data mining classification analysis.  

 

No. Variables Definition   

1 
Chlorophyll-a (Chla)  

(μg/L) 
Biomarker for Cyanobacteria algal blooms (CABs) 

L
ak

e 
C
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am
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ed
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an
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em

en
t 

2
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1
3
 

2 
Total Phosphorus (TP) 

(μg/L) 

Pollutant from agriculture and industry, a nutrient for 

CABs growth 

3 Chloride (Cl) (μg/L) 
A highly reactive gas, used as a disinfectant in water  

Treatment 

4 
Secchi Depth (Secchi) 

(m) 

Measure of water clarity/turbidity, a physical indicator  

of bacterial growth 

5 
Total Nitrogen (TN) 

(μg/L) 

Pollutant from wastewater from agriculture and industry,  

a nutrient for CABs growth. 

6 Temperature (T)(
o
C) Surface temperature 

7 
RegAlk 

The quantitative capacity of an aqueous solution to  

neutralize an acid 

8 Depth (m) Monitoring stations sampling depth 

Table 4.1 Names, abbreviations and definition of water quality monitoring parameters (variables) 

used in the LEF modeling studies, using Lake Champlain data. 
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Figure 4.1 Lake Champlain watershed (modified from Hegman et al., 1999). 
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4.2 Raw Data and Variables for the Lake Champlain Case Study 

 

 Environmental stress on Lake Champlain started in the early 1980s when phosphorous 

levels from agricultural runoff and municipal sewage treatment plants caused excessive 

cyanobacteria algal blooms (CABs), which resulted in drinking water contaminated by 

trihalomethanes (THMs) produced by the CABs, and the presence of nuisance plant species such 

as the genus Salvinia and a wide range of Cyanobacteria algae (Amsterdam et al., 2005). The 

water quality parameters (variables) used in my modeling studies are shown in Table 4.1 above, 

together with their abbreviations and definitions. The source of the data on water quality 

parameters (including chlorophyll-a concentrations) used in the present study was from the state 

of Vermont, which decided to share Lake Champlain’s environmental data with the public to 

help researchers conduct studies that could provide solutions for the lake’s problems (Vermont 

Agency of Natural Resources, 2011). This data included information on total maximum daily 

loads of pollutants, available to the public and researchers via the Lake Champlain watershed 

management web site (www.watershedmanagement.vt.gov), accessed for this thesis project on 

Dec 2012.  

 Section 303(d) of the Federal Clean Water Act 1972 obligated all states in USA to 

identify waters for which wastewater effluent did not attain water quality standards. In 1998, the 

US Environmental Protection Agency (USEPA) defined the total maximum daily loads 

(TMDLs) framework for determining acceptable levels of nutrients in fresh water lakes. 

According to the 2001 Clean Water Action Plan, Vermont had to determine the TMDLs for the 

pollutants causing water problems in Lake Champlain and present a study with proposed 

solutions (Lake Champlain Phosphorus TMDL, 2002).  

 

 

4.3 Lake Quality Criteria 

 

 Global drinking water guidelines are based on the world health organization (WHO). 

According to WHO, the provisional value for cyanobacteria concentration in drinking waters is 

1.0 μg/L. However, WHO does not provide any criteria for the acceptable levels of total 

phosphorus or nitrogen concentration within lakes, rivers or reservoirs.  
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 In the United States, there are no federal regulatory guidelines for cyanobacteria (algae) 

concentrations in water (EPA-810F11001, 2012). However, section 303(d) of the Federal Clean 

Water Act obliges each state to distinguish waters for which wastewater effluent limitations are 

not sufficient to attain the quality standards, and to suggest solutions based on studies and filed 

data analysis to obtain the required funding to solve the water problem. The water quality 

standards and criteria change from one lake to another, even within a single lake we may see 

different criteria, and a good example for that is lake Champlain, where there are various criteria 

within lake Champlain due the difference in the hydraulic retention time between the lake 

segments where the time varies from two months to three years, resulting in significant 

difference in the nutrient distribution within the lake basin. The standards and criteria set for 

Lake Champlain were derived from:  1) Trophic categorization schemes for lakes (e.g. Table 

4.2); 2) Lake user survey and analyses between predicted and recorded values for total 

phosphorus (TP) concentrations (Smeltzer, 1999); 3) The 1993 Water Quality Agreement, which 

establish TP targets for 13 segments of Lake Champlain. 

 

Selected Lake Champlain Water 

Quality Monitoring Stations 

Depth 

(m) 

Current Level 

(2011) 

Criteria Targets 

TP μg/L Chla μg/L TP μg/L Chla μg/L 

02 - South Lake B 5 52 10557 25 

N
o
 d

ef
in

ed
 c

ri
te

ri
a
 

04 - South Lake A 10 47 16677 25 

07 - Port henry Segment 50 21 6374 14 

09 - Otter Creek Segment 97 18 6177 14 

16 - Selburne Bay 25 16 5830 14 

19 - Main Lake 100 16 4836 10 

21 - Burlington Bay 15 16 4961 14 

25 - Malletts Bay 32 15 2928 10 

33 - Cumberland Bay 11 20 4568 14 

34 - Northeast Arm 50 23 4250 14 

36 - Isle LaMotte (off Grand Isle) 50 18 3043 14 

40 - St. Albans Bay 7 31 5770 17 

46 - Isle LaMotte (off Rouses Pt) 7 21 3941 14 

50 - Missisquoi Bay 4 50 10658 25 

51 - Missisquoi Bay Central 5 53 16196 25 

Table 4.2 Lake Champlain phosphorus criteria targets 2011 vs. observed values for the same year 

(updated and modified from Lake Champlain Phosphorus TMDL, 2002). 
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 The way criteria levels were decided for Lake Champlain segments was explained in the 

Vermont DEC (1990) as well as in Lake Champlain basin program (1996), and is summarized as 

follows:  

 Main Lake and Mallets Bay segments are large central broad areas with low nutrient 

level; therefore an oligotrophic standard of 0.010 mg/L phosphorus is desirable for these 

two segments.  

 In the remaining parts of the lake, the phosphorus concentrations are significantly higher 

than 0.010 mg/L, consequently the attainability for these segments to oligotrophic 

criterion is doubtful. Therefore, higher criteria level of 0.014 mg/l was chosen for the rest 

of the lake (except for St. Albans Bay, Missisquoi Bay, and the South Lake). The mean 

value of 0.014 mg/L represents a phosphorus level at which an algae nuisance condition 

would be present only 1% of the time during the summer. 

 St. Albans Bay, Missisquoi Bay, and the South part of the lake are highly eutrophic 

segments; therefore the target of 0.014 mg/l criteria would not be realistically attainable. 

There have been many attempts in St. Albans to reduce phosphorus levels including 

treatment plant upgrades and nonpoint source controls.  The water quality set by the 

Vermont department of environmental conservation (DEC) in the St. Albans Bay aim is 

to reduce the phosphorus in the center bay area to a concentration of about 0.003 mg/l 

above the level outside the bay in the Northeast arm. Thus, a phosphorus criterion of 

0.017 mg/l was selected for St. Albans Bay. 

 Missisquoi Bay and the South lake segments are shallow depth and have wetland like 

characteristics therefore, they are considered as naturally eutrophic (high nutrient) areas. 

The high eutrophic state in Missisquoi Bay area has beneficial values for productive 

warm-water fisheries and wildlife habitats. Therefore, a phosphorus criterion of 0.025 

mg/l reflecting a moderate level of eutrophication was selected for these segments. 

 

 Recent and historical phosphorus and cyanobacteria concentrations in lake Champlain 

have exceed the desired criteria levels.  In many cases the recorded values were more than 

double of the desired criteria. Figure 4.2 shows the phosphorus levels in Lake Champlain 

compared with water quality criteria.  
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Figure 4.2 Phosphorus levels in Lake Champlain and water quality criteria (Lake Champlain 

Phosphorus TMDL, 2002). 
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4.4 Data Collection and Quality Analysis 

 

 The process of data entry and acquisition is inherently prone to errors and the raw data 

from the Lake Champlain monitoring stations did not reveal much information. A thorough data 

preparation and cleansing was required before starting with modeling and statistical analysis. 

 

A -Data source, format and units 

 

 The process of Lake Champlain monitoring station data entry and acquisition is 

inherently prone to errors; lake Champlain’s data is available in its raw format through the lake 

Champlain long-term water quality program. After downloading the data, it is then sorted and 

transformed into one file of MS excel. To simplify the analysis all the concentrations for the 

different water quality parameters are unified and converted to μg/L.  

 

B -Data quality analysis 

 

 For Lake Champlain, data quality control is implemented through the Vermont 

department of environmental conservation (DEC), while for this research data quality control is 

implemented through filtration of outliers and working with averages. 

 

C -Monitoring frequency 

 

 Since 1992 volunteers helped collecting the data for Lake Champlain between 1992 and 

2011. The database contained 12,994 records for 33 variables. Table 4.4 lists the variables, their 

monitoring range and frequency while figure 4.3 shows the location of the monitoring stations. 
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Variables  Code Units Date Range Lab Sampling Frequency 

Total Phosphorus TP μg/L 1992 - 2011 
VT and 

NY 
10/year 

Dissolved Phosphorus DP μg/L 1992 - 2011 
VT and 

NY 
10/year 

Ortho-Phosphorus DOP μg/L 1992
- 1994 
VT and 

NY 
- 

Chloride Cl mg/L 1992 - 2011 
VT and 

NY 
10/year 

Dissolved Silica DSi mg/L 1992 - 2011 
VT and 

NY 
10/year on a 5 yr cycle 

Total Nitrogen TN mg/L 1992 - 2011 VT 10/year 

Total Kjeldahl Nitrogen TKN mg/L 1992 - 1996 NY - 

Total Nitrate-Nitrite TNOX mg/L 1992 - 1996 
VT and 

NY 
- 

Total Ammonia TNH3 mg/L 1992 - 1996 
VT and 

NY 
- 

Calcium TCa mg/L 1992 - 2011 
VT and 

NY 
3/year on a 5yr cycle 

Magnesium TMg mg/L 1992 - 2011 
VT and 

NY 
3/year on a 5yr cycle 

Sodium TNa mg/L 1992 - 2011 
VT and 

NY 
3/year on a 5yr cycle 

Potassium TK mg/L 1992 - 2011 
VT and 

NY 
3/year on a 5yr cycle 

Iron TFe μg/L 1992 - 2010 
VT and 

NY 
3/year on a 5yr cycle 

Lead TPb μg/L 1992 - 1998 NY - 

Total Organic Carbon TOC mg/L 1992 - 1999 NY - 

Dissolved Organic Carbon DOC g/L 1992 - 1999 NY - 

Dissolved Inorganic 

Carbon 
DIC mg/L 1992 - 1996 NY - 

Temperature TempC deg C 1992 - 2011 VT 10/year 

Dissolved Oxygen DO mg/L 1992 - 2011 VT 10/year 

Conductivity Cond μS/cm 1992 - 2005 VT 10/year 

pH pH - 1992 - 2005 VT 10/year 

Alkalinity RegAlk mg/L 1992 – 2011 VT 3/year 

Total Suspended Solids TSS mg/L 1992 – 2005 
VT and 

NY 
- 

Chlorophyll-a Chla μg/L 1992 – 2011 
VT and 

NY 
10/year 

Secchi Depth Secchi m 1992 – 2011 
VT and 

NY 
10/year 

Table 4.4 Lake Champlain variables and their monitoring range and frequency 

(Lake Champlain Phosphorus TMDL, 2002). 
 



32 

 

Figure 4.3 Lake Champlain monitoring stations (www.vtwaterquality.org; accessed on Jan 2014) 
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D -Gaps and range 

 

 Some of the reasons that contributed to problems within the lake data were: 

 Monitoring stations for Lake Champlain were introduced over different periods of time. 

 New variables are being introduced while others were dropped. 

 The collection of the variables was not made concurrently as would be desirable for the 

purpose of analyzing ecological interrelationships.   

 As a result, the monitoring periods vary between the lake variables and between one 

station and another, therefore the lake daily data is full of gaps and missing ranges. For example 

out of the 12,994 data records for lake Champlain, not a single row contained a complete set of 

concurrent reading for a set of variables. This was a major setback, since empty cells typicall are 

dropped or interpolated during analysis, another challenge is that : the gaps and missing ranges 

for several variables exceeded 20 months, thus making interpolation, or exploration a difficult 

task. Table 4.5.of  the yearly data for station 07 Port Henry of Lake Champlain, illustrate the 

extent of the gaps problem. 

Year Depth TP Cl TN TCa Minerals Toxic TOC TempC DO pH Secchi RegAlk Chla 

1992 50 13.58 11742 509.58  13847.44 22 4.3 16.54  7.98 4.33 53.91 5.63 

1993 50 18.25 11501 456.79  12804.96 15.75 3.95 23.5  7.67 3.63 54.3 5.25 

1994 50 15.78 11987 460.9  12608.9 22.72 8.84 22.16  7.21 3.68 53.55 5.27 

1995 50 10.33 13175 384.44  11718.8 5.2 15.3 15.75 10.18 7.54 5.23 53.02 3.05 

1996 50 13.88 12524 445.33  12156 5 4.75 16.48 9.96 7.91 4.06 51.1 4.44 

1997 50 13.23 12184 454.4  13140.5 5.13 3.33 24.02 10.53 7.8 4.27 53.9 4.78 

1998 50 13.75 12076 438.5  10367.67 5 4.86 17.12 10.28 7.77 3.96 54.6 4.72 

1999 50 13.39 12641 460.33  14121  3.56 19 10.39 7.82 4.92 50.41 6.83 

2000 50 15.31 12575 451.25  14322.13   25.86 10.32 7.72 4.22 51.62 5.98 

2001 50 12.93 13163 479.83  14695.25   23.18 10.54 7.74 4.47 53.23 3.49 

2002 50 10.59 13979 400.6  15113   17.84 10.15 7.78 5.03 51.63 1.82 

2003 50 12.92 15093 433.39  15717.7   25 10.42 7.84 4.95 51.23 5.46 

2004 50 16.44 14981 412.08  16243.6   23.68 10.2 7.91 4.4 51.95 5.45 

2005 50 16.36 15344 410.54  14793.88   12.18 10.41 7.84 3.1 52.6 10.34 

2006 50 17.13 14582 438.3     20.54 10.06  3.46 54.53 6.17 

2007 50 14.61 13843 438.02     18.43 10.34  4.05 51.91 4.92 

2008 50 18.69 14720 444.25     8.7 10.22  3.6 53.36 4.8 

2009 50 16.64 14583 407.57     22.9 10.8  3.47 55.5 4.9 

2010 50 16.5 14155 363.72  15286.75   13.1 10.29  3.55 57.13 4.87 

2011 50 22.12 12926 405.12  15466.67   21.98 10.21  2.66 55.32 6.25 

Table 4.5 Port Henry segment (07) of lake Champlain observed data. 
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 I presented table 4.5 with the yearly data since it was easier to show the extent of the 

problem, however, I started the analysis using the daily data, where the problem is greater. The 

biggest challenge is that for the Lake Champlain data, each water quality monitoring station 

exhibits a set of different problems with their variables, and due to the size of the gaps and long 

missing ranges within the data set, interpolation or extrapolation does not work. As an alternative, 

I decided to analyze the distribution of the data in order to reveal trends, to make estimating the 

gaps and missing ranges easier. Trends can be investigated either visually or using statistical 

tests like Mann–Kendall. Previous studies indicate that this approach is likely to see curves and 

nonlinear shapes of the data for water quality parameters, rather than straight lines. Figure 4.4 

shows the different types of nonlinear curves that we may expect to see in a data set. 

 

Figure 4.4 Nonlinear curve types (http://epa.gov/ncct/edr; accessed in June 2014) 

 

 A monotonic curve consistently stays in one direction (either always upwards or always 

downwards), while a nonmonotonic curve keeps changing its direction (G. Brewka, 1991). 

Figure 4.5 shows the yearly Calcium observed data for monitoring station 02 (South Lake B); 

again I used yearly data to show the extent of the problem. Within the data there is 36 months 

gap between 1992 and 1995, such gap can be clearly seen on the graph, at the same time the data 

seems to take a non-monotonic distribution throughout the recorded range. 
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Figure 4.5 Yearly calcium data for lake Champlain water quality monitoring station 02. 

 

4.5 Data Preparation 

 

 Visual inspection of the daily, monthly and yearly lake data distribution didn’t reveal any 

obvious trend, thus making it difficult to fill in the gaps within the lake data. Therefore, I used 

the following analysis approaches to fill in the gaps within the data. 

 

A -Linear and nonlinear interpolation 

 

 Mann–Kendall (MK) test, also known as the “Kendall’s tau” test, is a rank based non-

parametric test used to assess the significance or existence of a trend within a data series. The 

probability value P for the MK statistical test for a dataset is (Kendall MG. 1975): 

   {

                         
                                               
                                               

} Eq. 4.1 

 Due to the size of the Lake Champlain dataset, statistical analysis software package 

Systat 13 was used to run the MK test on the daily, monthly and yearly data. 

 The MK test for the variable minerals for the daily and monthly data did not provide any 

significant results; however, for the yearly data presented in table 4.5, the results indicated a 
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significant P value for both upward and downward trends, indicating a two-sided trend. The MK 

test also indicated that the upward trend better describes the general data distribution. 

 The Systat 13 software detected the gaps within the data using the MK test: the gap in the 

middle of the series from 2005 till 2010, and the missing values for the years of (2006, 2007, 

2008 and 2009). Systat 13 automatically interpolated these gaps, and the interpolation was 

completed using local quadratic smoothing as shown in figure 4.6. 

 

Figure 4.6 The Mann–Kendall test and the interpolation.  

 

 This interpolated gap approach is typical of many software packages; they either fill the 

gaps or completely ignore the missing range. The gap in the mineral variables yearly data was 

common across all the monitoring stations; hence it wasn’t possible to verify the results. I 

compared the minerals data distribution against other variables, which did have a complete data 

range. I scaled the TP and Cl variables data records up to fit within the same range as the 

minerals dataset, and the results are plotted in figure 4.7. I noticed that in the gap period, the 

datasets for both TP and Cl exhibited a non-monotonic behavior, while the interpolated data 

range for minerals, which was done using the MK test, was a straight line. Additionally, before 

and after the range, the datasets for all three variables had non-monotonic behavior. This 

provided enough evidence to raise doubts about the interpolated results and to stop the 

investigation using MK trend analysis as a tool to fill in the gaps and to predict the missing data 

ranges.  
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Figure 4.7 Yearly TP, Cl and minerals chart for lake Champlain Port Henry 

 

 Further investigation of the lake data shows that the lake variables have a non-monotonic 

data distribution therefore; linear interpolation or extrapolation was not an option. 

 An earlier study of Lake Champlain suggests that using mean values of water quality 

parameters produced a relatively high degree of statistical precision (Smeltzer, et al., 1989). By 

using the mean values we remove many of the unwanted gaps, therefore daily data for Lake 

Champlain was averaged to produce monthly data, however the monthly data also had several 

gaps and missing range, so the investigation and the data cleansing process continued on the 

monthly data. To avoid presenting redundant results, I skipped presenting the analysis for the 

daily and monthly data, although I have thoroughly investigated each set, and I directly used the 

yearly data throughout the rest of the thesis. However, even the yearly data still had gaps and 

missing ranges, so I used the approach described below to complete the ranges and fill in the 

gaps for the yearly data of Lake Champlain, in order to avoid dropping a variable from the 

analysis. 

 Assuming we manage to get the information about the equation that best describes the 

data distribution over a significant period, then it is possible to use the function to estimate the 

gaps and missing range within the data (Zhu et al., 2003). These authors proposed using discrete 

Fourier transform for time series data, while other studies (Xiang and Gray, 1999) suggested 
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using Fuzzy logic or recommend neural networks. FindGraph data mining software package is a 

tool that facilitates the search through 10s of different functions (e.g. Linear Regression, Fourier, 

Polynomial, Exponential, Logarithm, Power and Waveform) to produce models that fit the data 

under investigation. 

 Figure 4.8 is a screen shot of FindGraph software during the setup process; the screen 

shot reveals the different available time series functions that were used to estimate the Lake 

Champlain water quality monitoring data distribution. 

 

Figure 4.8 Data mining (FindGraph) analysis. 

 

 The variable minerals data from table 4.5 was used for the test run, but this time the data 

was split into two halves: the first half (years 1992 till 2001) was used to generate the time series 

model; while the second set (between 2002-2011) was used to verify the model. FindGraph 

software investigated more than 999,999,999 iterations in less than 2 minutes. Several models 

were generated and were sorted according to their best R
2
. The best curve fit model that 

represented the minerals data distribution between 1992 till 2001 was a Fourier function with 3 

harmonics. 
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Minerals(t)= 12603.92 +(804.73*cos(0.78*t) +76.33*sin(0.78*t) 

+(773.25*cos(1.57*t) +  26.41*sin(1.57*t)) +(74.06*cos(2.35*t) -

1044.27*sin(2.35*t) 

Eq. 4.2 

 

Figure 4.9 Data mining (FindGraph) results. 

 

 Figure 4.9 shows the Fourier function with 3 harmonics as found by FindGraph software 

and in figure 4.10 the actual recorded data for minerals from table 4.5 is plotted against the 

Fourier time function for comparison. 

 

 

Figure 4.10 Minerals Fourier predictions for station 02 
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 Although the Fourier function provided a good fit for the data between 1992-2001, the 

function failed to verify and predict the data between 2002-2011. Understanding the way Fourier 

function works helps to justify the reason for this. In 1807 Joseph Fourier declared that a 

periodic function can be represented as the sum of a Fourier series (Georgi P., 1976). 
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Eq. 4.3 

 Fourier as a function assumes a cyclic and periodic nature of the signal; meaning that if 

we split the data into two halves, the left side of a Fourier function will be a mirror image across 

the y-axes of the right side. Therefore, the Fourier function assumed that the data after 2002 

would be a mirror image of the previous years. Despite the failure of the Fourier function, I 

continued investigating several different nonlinear functions, but the results were the same. All 

linear and nonlinear (curve fit) functions generated then failed during the verification process, 

thus indicating that this approach was not applicable for filling in the gaps and the missing 

ranges for the Lake Champlain data.  

 

 

B -Extreme and outliers detection 

 

Similar to plants, algae are affected by their surroundings; therefore we cannot underestimate the 

importance of any monitored variable. However because of the gaps, missing ranges, different 

monitoring frequency, lack of concurrent data and difficulties to fix all these data problems, it 
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makes sense to shift the analysis to the yearly timeframe. Yearly data is obtained by averaging 

monthly data, and the monthly data was obtained by averaging the daily data. The daily data 

records for the lake water quality parameters were inconsistent, and some months had barely a 

single data entry, while other months had tens of data records. This problem presents a risk of 

having the results deviating by one or two extreme values. For example let us assume the 

following data records for a lake segment.  

Data for 

1997 
Total Phosphorus readings (μg/L) 

Number of Daily 

data records 

March 10 11 9 3 

April 14 15 13 9 4 

May 11 11 2 

June 12 14 10 17 8 5 

July 15 11 8 13 17 5 

August 12 12 10 16 11 17 6 

September 65 1 

October 10 14 2 

 

 To find total phosphorus typical value for each month, we average the data for that month, 

for example, on June the monthly average were  = (12+14+10+17+8)/5 = 14.8 μg/L. In the same 

way we find the average for the other months.   

March = 10  July  = 12.8 

April = 12.75  August  = 13 

May = 11  September = 65 

June = 12.2  October = 12 

 To obtain the yearly data we average the monthly data, the 1997 yearly data 

=(10+12.75+11+12.1+12.8+13+65+12)/7 = 18.59, the question is: was the extreme data record 

for the month of September a result of human error? Assuming it was an error and dropping it 

from the analysis will give the following yearly data =(10+12.75+11+12.1+12.8+13+12)/6= 

11.96, such a significant difference can be the deciding factor for a lake to meet the federal 

TMDL criteria or not. If in each year on the same month of September we had similar extreme 

value, then in this case such a value becomes seasonal high record and is not considered as an 

anomaly. To judge whether a data record is extreme or not, we must run seasonal tests or 

visually inspect the overall data distribution. Many methods are available for detecting outliers or 

extreme values, the simplest of these is to visually screen the data, and typically outliers are 

spotted at the border of data distribution. For example in figure 4.11 the majority of the daily 
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data records for the total phosphorus of station 02 are between 25 and 125 μg/L however, in 

8/17/2004 there was a data record of TP =235 μg/L, such a value is outside the normal data 

distribution and has not been recorded again for that particular station, therefore it is considered 

extreme and can be removed from the analysis 

 

Figure 4.11 Screening outlier daily data of TP for station 02 

 

 There are six different criteria set for Lake Champlain segments defined in table 4.2. So 

while TP =50 μg/L is a typical value in the South segment of the lake, the same value is 

considered extreme in the main lake segment therefore, it was necessary to investigate extreme 

values for each monitoring station independently, and for the 12,994 records of daily data 

between 1992 till 2011, only 125 recordings of outliers were found, those outliers were removed 

and a record of their value is kept in appendix A. However, it is worth mentioning that due to the 

huge amount of daily data records, if outliers were not removed their impact would have been 

reduced during the averaging process to obtain the yearly data. 
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C -Selecting data range and variables 

 

 Water quality monitoring of Lake Champlain at particularly stations (i.e. stations 2, 4, 7, 

19, 21, 25, 33, 34, 36, 40, 46, 50) started in 1992, while monitoring for stations 9 and 16 didn’t 

start till later in 2001, and station 51 was added in 2006. Typically, earlier data is used for 

training while recent data is used for testing. Applying this approach means that data from 

stations 9, 16 and 51) will not be included in the model creation.   

 Therefore throughout this study for Lake Champlain, data between 2003- 2011 will be 

used for model creation, while the data between 1992- 2002 will be used for verification. The R
2 

value increases whenever a new predictor is added, so a model with more variables will appear 

to be a better fit than a model with fewer variables. Thus, it is to our advantage to include as 

many variables as possible, although the gaps in the Lake Champlain data resulted in dropping 

few variables.  The variables selected for this thesis are listed in table 4.6. 

 

Variable name Code Units Date Range Lab Sampling Frequency 

Total Phosphorus TP μg/L 1992 – 2011 VT & NY 10/year 

Chloride Cl mg/L 1992 – 2011 VT & NY 10/year 

Total Nitrogen TN mg/L 1992 – 2011 VT 10/year 

Temperature TempC deg C 1992 – 2011 VT 10/year 

Alkalinity RegAlk mg/L 1992 – 2011 VT 3/year 

Chlorophyll-a Chla μg/L 1992 – 2011 VT & NY 10/year 

Secchi Depth Secchi m 1992 – 2011 VT & NY 10/year 

Time  Date Years 1992-2011   

Depth Depth m 1992-2011   

Table 4.6 Lake Champlain variables monitoring range (modified from lake Champlain 

phosphorus TMDL, 2002). 

 

 In section 2.1.1 Phosphorus Cycle I emphasized on the importance of internal loading in 

lake modeling analysis, however the lake Champlain data available through the long-term water 

quality program does not have the internal loading, so I started the analysis of lake Champlain 

assuming a negligible internal loading, which is a valid assumption for the majorly of the deep 

monitoring stations.   
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 Water quality parameters causing eutrophication and algae bloom depend on the same 

factors, including the amount of rain, run off water and human activities, all of which result in a 

strong correlation between the variables. To simplify the analysis, however, the water quality 

parameters used for the analysis are assumed to be independent for the purpose of this thesis 

project. 

 

 

4.6 Modeling Steps 

 

 The objective of this thesis project was to better understand the importance of factors that 

contribute to the growth of cyanobacteria algal blooms (CABs) in lake Champlain. I used the 

approach illustrated in figure 4.12, which is explained below. 

 Firstly, I used historical data from the State of Vermont monitoring stations on lake 

Champlain (www.watershedmanagement.vt.gov, accessed on Dec 2012), to investigate the links 

between the levels of the seven selected independent water quality parameters (variables) 

described in section 5.1, using a correlation matrix. This step determined the relative impact of 

each variable on the dependent variable chlorophyll a levels (a biomarker for CABs). Secondly, I 

investigated the compound impact of the water quality parameters on the CABs using modeling 

techniques, including multiple linear regression (MLR), neural network (NN) and data mining 

(DM). This step generated a number of chlorophyll a models. Thirdly, I verified each of the 

chlorophyll models using recent data (as detailed in chapter 5) in order to find the best-fit model.  
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Figure 4.12 Model flowchart verification.  
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4.6.1 Multiple linear regression  

 

 Multiple linear regression (MLR) is a modeling technique which attempts to find the 

relationship between several explanatory variables and a response variable, by fitting a linear 

equation to the observed training data set, assuming we want to find the MLR for station 19 of 

lake Champlain, we then use the yearly data presented in the following table. To avoid 

potentially biased results, the data is split in two, the first half is used to derive the model while 

the other half of the data is passed through the model equation and the output is compared with 

the observed data for verification. 

 
Station Year 

Depth 

(m) 
TP(μg/L) 

Cl 

 (μg/L) 
TN 
(μg/L) 

Secchi  

(m) 

Temp 

C 
RegAlk 

Chla 
(μg/L)) 

Data set 

1 

 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Y 

19  1993 100 13.89 11495.00 433.75 5.13 14.02 51.57 3.33 

19 1994 100 12.22 11594.44 466.33 5.33 12.68 49.50 4.33 

19 1995 100 8.97 12661.11 452.22 6.41 9.80 52.41 4.16 

19 1996 100 10.84 12461.70 447.08 4.88 8.90 50.38 4.04 

19 1997 100 11.37 11733.89 453.33 4.87 12.00 50.45 4.61 

19 1998 100 11.36 11879.17 396.25 5.20 12.53 50.37 3.86 

19 1999 100 10.64 12310.26 444.05 6.57 21.67 49.03 4.70 

19 2000 100 11.71 12622.00 427.17 6.04 16.78 49.14 3.66 

19 2001 100 10.51 13099.00 430.50 5.46 19.98 49.26 3.43 

19 2002 100 7.90 13633.33 403.67 6.50 22.24 48.20 1.52 

Data set 

2 
19 2003 100 8.57 14706.25 409.33 6.87 21.06 48.23 2.91 

19 2004 100 12.50 14775.28 398.50 6.11 16.53 49.31 3.62 

19 2005 100 12.57 15118.33 409.47 4.84 19.34 51.48 5.34 

19 2006 100 14.48 14686.31 435.12 4.42 19.60 49.83 4.34 

19 2007 100 12.87 13760.00 432.58 4.94 19.18 49.84 3.32 

19 2008 100 13.89 14448.33 436.00 5.40 18.20 49.42 3.34 

19 2009 100 12.75 14293.06 410.14 5.62 18.03 51.32 2.90 

19 2010 100 12.96 13975.71 370.29 4.60 13.00 53.72 3.10 

19 2011 100 16.12 12978.10 387.19 3.48 6.10 51.35 4.62 

Table 4.7 Lake Champlain yearly data for 1993-2011. 

 

 Solution: The concept of linear regression suggests the existence of a linear relationship 

between the dependent variable (chlorophyll-a) and the independent variables listed above. In a 

linear relationship the constant is the slope, so if we use part of the data to find the slope, then we 

can use the other part of the data to verify the results. First the data in table 4.7 is split in half, the 

first half will be used to derive the model (slope), and the second half will be used to verify the 

model. The general format for the multiple linear regression model is 

                                                  

The above equation can also be rewritten in a matrix format using the lake variable as follows 
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 Our target is to use half of the data set to find β and then use it to create the MLR 

equation, then the model accuracy is evaluated by applying the MLR equation to the second half 

of the data and comparing the model output with the observed data. The best MLR model is the 

one where the error =0. Arranging the input and output variables from table 4.7 to match the 

matrix equation results in: 

               [

    
    
 

    

] 

          [

                                        
                                        
        

                                       

]  

 

   Can be calculated from β=Y/Z when error=0, however, this computation is not directly 

possible since Y and Z are of a different dimensions, so I developed a Matlab code LEF-MLR 

(see appendix B) to obtain the following answers. 

 ̂      (   )      [

      
       

 
      

] 

 ̂                                                          

                                

 

 For verification of the above model equation, we then used the data from the verification 

data set 2; and the predicted values of Chla model are then compared to the observed monitoring 

station values. The model was found to have R
2
= 0.0065, this is a low value, and this means that 

our model isn’t of a good fit. Thus, the process is repeated again using a different set of input 

variables, and this continues till a model with a good fit is found. The process of finding the right 

input data set is a time consuming process, and we may not end up with the right set of variables, 

because the input variables are highly correlated as seen from the correlation matrix. 



48 

4.6.2 Neural network analysis 

 

 Unlike other modeling techniques, NN does not generate a model with coefficients but 

instead produces multilayer neural interconnected processing units that imitate human brain 

activity, where each neuron in a layer is connected to every neuron in the next layer. Figure 4.13 

shows a single neuron in a neural network. The output of the NN model is weights that are saved 

as an xml file; the file can be then used in forecasting and verification of a different data set. 

 

Figure 4.13 Neuron in a neural network (Bishop, 2006) 

 

 In NN, the input data goes through the NN model where it is multiplied by the weights 

(brain) in a forward direction, the information is then processed and the output is compared with 

the observed value. The resulting error from the comparison is back propagated and becomes an 

input for the next prediction while the model weight (brain) is adjusted to minimize the error, via 

several iterations. The data is plotted as a variable importance chart, which shows the impact of 

the variable to the model, and also as a synaptic weight chart which shows the influence of the 

neuron (Iyeret et al., 2013). 
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4.6.3 Data mining 

 

 Also known as BLACK BOX MODEL, because it is computer written sophisticated 

algorithms to reveal and extract hidden information from a data set (Maimon and Rokach, 2011, 

Data Mining and Knowledge Discovery Handbook). Data mining technique is employed in this 

study to: 

A. Estimate the equations for the independent input parameters that were discontinued 

from the monitoring program or newly introduced, in an attempt to fill the gaps 

within the data. 

B. Estimating the nonlinear regression equation of the combined chemical and biological  

parameters for Chlorophyll-a. 

 

 

4.6.4 Geostatistical analysis 

 

 ArcGIS version 10.1-geostatistical analysis package was used to investigate the impact of 

lake location on cyanobacterial algal bloom in lake Champlain. Two files were needed for the 

analysis are derived from: 

1) Lake Champlain LTM QAPP/Work Plan Document Revision 1.4 provided the geographical 

locations information for the monitoring stations.   

2) The ArcGIS map shape file for lake Champlain, was partially available in the United States 

USGS Water Resources web site (water.usgs.gov; accessed on Dec 2012). However, a big 

section of the lake polygon was missing. Figure 4.14 shows a summary of the steps used to 

create the lake polygon file, where firstly, the none relevant information was removed from the 

USGS file, then USGS map was edited using the US topology map as a background image to 

manually draw the missing parts for the northern and southern parts of the lake. Finally, the 

entire lake shape was combined into one polygon for GIS analysis. The longitude and latitude 

information was added to the lake data file and imported into ArcGIS.  
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Figure 4.14 Lake Champlain polygon creation. 

 

 Spatial analysis utilizes location information in the relationships, so if the data set under 

investigation changes with location, then spatial analysis will reveal this information when 

running the OLS regression test. The OLS tool is available through ArcToolbox menu from 

ArcMap, If the location was found to be important then by using geographically weighted 

regression (GWR) analysis, we can develop a linear regression model which will have the 

location as one of its input variables. The OLS test is only valid when we have found the best 

MLR model. OLS does not have the stepwise selection option which was available in SPSS, so 

the OLS test does not know which set of input variables will produce the best regression model.  

 The variance inflation factor (VIF) value from the OLS test can help to determine if a 

variable is important to the model or not, a VIF value > 7.5 indicates that the input variable is 

redundant and should be omitted from the model. Although the OLS test does not consider the 

location as an input, it automatically runs a test to determine the location importance for the 

linear regression modeling. The Koenker statistic test is the one to determine the locations 

importance: if the p-value <0.05, then the model equation is likely to change with the locations 

across the study area. In this case we should consider the location as an input variable and use 

GWR analysis instead.  

 Since stepwise selection is not available as in IBM SPSS, several iterations are need 

before reaching significant a model. Alternatively, time can be saved by directly using the input 

variables set obtained using the stepwise in IBM MLR  
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CHAPTER 5 

LAKE CHAMPLAIN CHLOROPHYLL- A 

STATISTICAL MODELING RESULTS  
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5.1 Correlation Matrix Analysis Results 

 The result of the cross correlation analysis are presented in table 5.1 and figure 5.1 for the 

first part of the study, which examined the relationship and impact of seven independent water 

quality parameters (variables; yearly data) on the dependent variable, chlorophyll-a (a biomarker 

for cyanobacteria algal blooms; CABs) in lake Champlain.  

 

VARIABLE YEAR DEPTH TP CL TN TEMPC SECCHI REGALK CHLa 

YEAR 1.000         

DEPTH -0.026 1.000        

TP 0.096 -0.484 1.000       

CL -0.243 0.125 -0.147 1.000      

TN -0.086 -0.229 0.703 -0.398 1.000     

TEMPC -0.064 -0.107 0.116 -0.085 -0.041 1.000    

SECCHI -0.274 0.402 -0.894 0.088 -0.562 -0.117 1.000   

REGALK 0.070 -0.130 0.432 0.731 -0.069 0.003 -0.460 1.000  

CHLa 0.057 -0.341 0.803 -0.328 0.734 0.093 -0.757 0.127 1.000 

Table 5.1 Pearson’s correlation matrix.  
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 As expected, the cross correlation analysis indicated:  

 

1) A significant strong positive linear relationship between the assumed independent variable 

total phosphorus (TP; r=0.803), a nutrient for CABs growth (Correll, 1998), and the dependent 

variable chlorophyll-a. 

2) A significant strong positive linear relationship between the assumed independent variable 

total nitrogen (TN; r=0.734), a nutrient for CABs growth (Correll, 1998), and the dependent 

variable chlorophyll-a. 

3) A significant strong negative linear relationship between the independent variable secchi 

depth (r=-0.757), a measure of water clarity (Prescott, 2006) which is reduced by the growth of 

CABs (George et al., 2010), and the dependent variable chlorophyll-a.  

 

 Also as expected, the analysis confirmed: 

 

4) A significant strong positive linear relationship between two of the independent variables, 

total phosphorus (TP) and total nitrogen (TN) (r=0.703), because they are both nutrients for 

CABs growth (John A. Downing et al., 1992).  

5) A significant strong negative linear relationship between the assumed independent variable 

secchi depth (water clarity) and the assumed independent variable total phosphorus (TP; r=-

0.894). 

6) A less significant trend towards a negative linear relationship between the assumed 

independent variable secchi depth (water clarity) and the assumed independent variable total 

nitrogen (TN; r=-0.562).  

 

 These results suggest that our modeling approach should be successful if we assume that 

the levels of total phosphate (TP) and total nitrogen (TN) are indeed positively linearly related to 

chlorophyll-a/CAB growth, and that conversely, secchi depth is negatively linearly related to 

chlorophyll-a/CAB growth. 

 

 

 



55 

5.2 Determination of Analysis Data Set 

 

 I used MS Excel and Matlab to analyze lake Champlain yearly data over two different 

time periods: 

1) Early years yearly dataset: 1992-2002. 

2) Later years yearly dataset: 2003 to 2011.  

 The early years and later years datasets were tested as either the training dataset or the 

verification dataset for my modeling study, and the later years dataset worked better as a training 

data set. This was because several new important monitoring stations were set up during the later 

years time period, and the additional data from these stations improved the accuracy of the 

models. Therefore, the later years yearly dataset was chosen for constructing the chlorophyll-a 

models, and the early years dataset was used to verify the models. 

 

 

5.3 Chlorophyll-a Modeling Using Multiple Linear Regression (MLR) 

 

5.3.1 SPSS statistical analysis:  

 

 It is statistical software package that was used to analyze the lake Champlain later year 

dataset as the model training dataset, with the critical value for the models = 95%, the error range 

= -1.96 to 1.96 (models with errors outside this range were rejected). The assumed independent 7 

variables used for modeling were those listed in table 4.1 The dependent variable was 

chlorophyll -a (a biomarker for cyanobacteria algal blooms; CABs). The Stepwise selection 

feature in IBM SPSS software was used to determine whether each input variable was significant 

for the model or not. The results of this modeling analysis are shown in table 5.2 and the 

chlorophyll-a (Chla) MLR coefficients of the lake Champlain MLR models are presented in table 

5.3. 
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5.3.2 ANOVA analysis of the variance of the MLR models  

 

 ANOVA provides a method to judge between the different models. Table 5.4 shows the 

results of the ANOVA and variance analysis, which indicated that although all six MLR models 

found were significant (p =0.00), the last two models (models #5 and #6) had the smallest error 

mean square, meaning that of the all models, these provided the more accurate predictions. 

 

 

5.3.3 Multiple linear regression (MLR) results 

 

 MLR model number #6 (table 5.2, yellow highlighted cells) was found to be the most 

accurate chlorophyll-a model, because it had the smallest ANOVA error mean square, highest 

Pearson product-moment correlation coefficient (R= 0.925), indicating the strength of the linear 

relationship between the variables; the highest coefficient of determination (R
2
value =0.857), 

indicating the goodness of fit of the linear model; the highest adjusted R
2
value=0.854, is also 

indicating goodness of fit of the linear model (but it avoided the biased errors that sometimes 

result from calculating R
2
); and the lowest standard error =1.80, indicating how good the 

estimation from the linear regression model is, as the error in the sample mean with respect to 

true mean was low. 

 MLR model #6 results were that 4 of the 7 tested (assumed) independent water quality 

variables were significant predictors of chlorophyll-a levels over the Later years time period 

(2003-2011), and thus of CABs growth. Two variables were positively correlated with 

chlorophyll-a levels (total phosphate (TP) and total nitrogen (TN), and a third variable was 

negatively correlated with chlorophyll-a levels (secchi depth; secchi; water clarity). These results 

supported the results of the correlation analysis (section 5.1), in agreement with the scientific 

literature (Brown et al., 2012). 

 MLR model #6 results revealed that Chloride (Cl) was a fourth new significant predictor 

of chlorophyll-a (Chla), which was negatively correlated with Chla. This result was not obtained 

with the correlation analysis (section 5.1) and is in agreement with the scientific literature 

(Shillito et al., 1992).  
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 MLR models #2 to #6 indicated that total phosphorus (TP) was the most significant 

predictor of chlorophyll-a levels and therefore CABs growth, which is supported by most of the 

scientific literature (Correll, 1998). 

 Time (date: over the range 2003-2011) was not found to be a predictor for any of the 

MLR models, suggesting that the above four variables (TP, TN, Secchi, Cl) were significant 

predictors of chlorophyll-a levels (and CABs growth) over the entire time period of 9 years, and 

potentially generally useful predictors which should be tested with historically earlier and later 

data. 

 Therefore, MLR model #6 was chosen for further studies (verification and validation) 

and its equation is shown below: 

 

                                                     Eq. 5.1 

 

MLR 

model # 
R R

2
 Adjusted R

2
 

Std. Error of the 

Estimate 
Predictors 

1 0.452 0.204 0.194 3.3741 Constant, Depth 

2 0.839 0.704 0.694 2.0740 Constant, Depth, TP 

3 0.838 0.702 0.690 2.0704 Constant, TP 

4 0.874 0.763 0.761 1.9435 Constant, TP, Cl 

5 0.910 0.828 0.825 1.8620 Constant, TP, Cl, TN 

6 0.925 0.857 0.854 1.8040 
Constant, TP, Cl, TN, 

Secchi 

Table 5.2 Lake Champlain MLR modeling results for (2003-2011). Abbreviations used: 

monitoring depth (Depth); total phosphorus (TP); chloride (Cl); total nitrogen (TN), secchi depth 

(Secchi). 
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MLR model # 

Unstandardized Coefficients 

t Sig. 

95.0% Confidence 

Interval for B  

B Std. Error 
Lower 

Bound 

Upper 

Bound 

1 
(Constant) 7.185092 0.427 16.808 0.000 6.339 8.031 

Depth -0.039765 0.010 -4.183 0.000 -0.059 -0.021 

2 

(Constant) 0.782799 0.518 1.510 0.134 -0.244 1.809 

Depth 0.007074 0.007 1.056 0.293 -0.006 0.020 

TP 0.205891 0.014 14.324 0.000 0.177 0.234 

3 
(Constant) 1.185673 0.351 3.373 0.001 0.490 1.881 

TP 0.198475 0.013 15.815 0.000 0.174 0.223 

4 

(Constant) 4.448068 0.830 5.360 0.000 2.805 6.091 

TP 0.187970 0.012 15.654 0.000 0.164 0.212 

Cl -0.000233 0.000 -4.283 0.000 0.000 0.000 

5 

(Constant) 0.341967 1.427 0.240 0.811 -2.482 3.166 

TP 0.145900 0.017 8.725 0.000 0.0113 0.179 

Cl -0.000145 0.000 -2.508 0.013 0.000 0.000 

TN 0.009236 0.003 3.466 0.001 0.004 0.015 

6 

(Constant) 4.131727 1.874 2.205 0.029 0.421 7.842 

TP 0.070080 0.030 2.331 0.021 0.011 0.130 

Cl -0.000149 0.000 -2.652 0.009 0.000 0.000 

TN 0.010803 0.003 4.101 0.000 0.006 0.016 

Secchi -0.701711 0.234 -2.994 0.003 -1.166 -0.238 

 

Table 5.3 Chlorophyll-a (Chla) MLR coefficients of the six lake Champlain MLR models. 

 

 The best model, MLR model #6, had four independent significant variables (all close to 

zero). The t- test was used to check the significance of each of the regression coefficients of the 

models. It was clearly noted that adding a significant variable to a regression model makes the 

model more effective, for example model #6 was more significant than model #5 because it had 

more significant variables. The confidence interval (CI) for the coefficients was the smallest for 

model #6, indicating that this was the best model, since the error limit boundary for accepting or 

rejecting a model was small for all the variables. 
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MLR model # Sum of Squares df 
Error Mean 

Square 
Sig F  

1 

Regression 199.220 1 199.220 

0.000 17.499 Constant, Depth Residual 1411.707 124 11.385 

Total 1610.926 125  

2 

Regression 1081.807 2 540.904 

0.000 125.739 
Constant, Depth, 

TP Residual 529.119 123 4.302 

Total 1610.926 125  

3 

Regression 1077.006 1 1077.006 

0.000 250.128 Constant, TP Residual 533.921 124 4.306 

Total 1610.926 125  

4 

Regression 1146.290 2 573.145 

0.000 151.725 Constant, TP, Cl Residual 464.636 123 3.778 

Total 1610.926 125  

5 

Regression 1187.946 3 395.982 

0.000 114.213 
Constant, TP, Cl, 

TN Residual 422.980 122 3.467 

Total 1610.926 125  

6 

Regression 1217.124 4 304.281 

0.000 93.494 
Constant, TP, Cl, 

TN, Secchi Residual 393.802 121 3.255 

Total 1610.926 125  

Table 5.4 ANOVA analysis of the six lake Champlain MLR models 

 

 

5.3.4 Discussion of MLR model # 6 

 

A. Elimination of data with non-random high errors 

 

 As explained in section 4.5.C the lake Champlain yearly water quality monitoring data 

for the period early years (1992-2002) was used for verification of MLR model #6. The 

verification data set produced an R
2
= 0.812, which is lower than the R

2
= 0.857 obtained from the 

MLR training dataset. Examination of the standard error distribution histogram in figure 5.2 

revealed that the model errors had a uniform distribution with few errors outside of the standard 

distribution range. Plotting the model #6 predicted Chla values against the model’s observed 

values (figure 5.3 and figure 5.4), revealed that most of the model #6 prediction errors were 

obtained from lake Champlain monitoring stations 02, 04, 50 and 51, and these errors were not 
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random, as shown in (figure 5.4). Omitting the data from stations 02, 04, 50 and 51 from the 

verification data set, improved the R
2 

to 0.829, which suggested further investigation of this data.  

 

 

Figure 5.2 MLR model #6 standard error distribution 
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B. Bootstrapping 

 

 According to IBM SPSS software documentation, bootstrapping is a process that can 

improve modeling results by making them more accurate, by revealing more information about 

the properties of estimators for “unknown” populations and ill-behaved parameters. 

Bootstrapping was used on the lake Champlain early years yearly data and generated the eight 

models shown in table 5.5.  

Model#  R R
2
 

Adjusted 

R
2
 

Std. Error of 

Estimate 
Sig Predictors 

1 0.303 0.090 0.070 3.589 0.315 Constant, Year 

2 0.601 0.360 0.216 3.375 0 Constant, Year, Depth 

3 0.905 0.820 0.764 2.081 0 Constant, Year, Depth, TP 

4 0.921 0.849 0.812 1.927 0 Constant, Year, Depth, TP, Cl 

5 0.926 0.859 0.828 1.873 0 Constant, Year, Depth, TP, Cl, TN 

6 0.927 0.86 0.826 1.879 0 
Constant, Year, Depth, TP, Cl, TN, 

TempC 

7 0.934 0.873 0.848 1.802 0 
Constant, Year, Depth, TP, Cl, TN, 

TempC, Secchi 

8 0.934 0.874 0.849 1.805 0 
Constant, Year, Depth, TP, Cl, TN, 

TempC, Secchi, RegAlk 

Table 5.5 Lake Champlain early years data, bootstrapping model results  

  

 Bootstrapping option is only available in IBM SPSS when stepwise modeling option is 

disabled; therefore, the predictors in table 5.5 appear in an increasing order. Also It can be seen 

that bootstrapping did not significantly improve R
2 

, slight increase is due to the increase number 

of variables in the model, more important the resulting models haven’t produced better 

predictions for stations 02, 04, 50 and 51. 

It appears that MLR models are not accurate at high water quality variable (nutrient) levels, 

further modeling analysis for stations 02 and 04 model using 2002-2011 yearly data, resulted in 

following MLR model equation with R
2
= 0.488: 

                            Eq. 5.2 

 R
2
= 0.488 is relatively low, however an interesting finding is that the water quality 

parameter Chloride (independent variable) which was negatively correlated with chlorophyll-a, 

was the only variable found to affect the chlorophyll-a model for the Southern section of lake 

Champlain. This suggested the presence of high levels of Chloride in the Southern sections. 

Further investigation confirmed this finding and revealed high chloride concentrations at Station 
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04 that were coming from the river mouth and from road runoff were affecting the accuracy of 

model #6.  

 Supplementary MLR model analysis was conducted using data for stations 50 and 51 

(2002-2011 yearly data), and the following model equation was found with R
2
= 0.329 

                       Eq. 5.3 

 R
2 
is relatively low, but another interesting finding is that the only variable influenced 

chlorophyll-a in the model was the total Nitrogen (TN) which positively correlated with 

chlorophyll-a concentrations, thus indicating high levels of nitrogen in the northern sections of 

lake Champlain. 

 This high lake water chloride concentrations in the south and the high lake water nitrogen 

concentrations in the north are a major factors for the reduced accuracy of MLR model #6 and 

possibly a main reason behind the errors in MLR model. 

 

 

5.4 Lake Champlain Chlorophyll-a Modeling Using Multiple Nonlinear Regression (MNR) 

 

 Analysis of the lake Champlain early years yearly data was not possible using this 

method because each of the lake monitoring stations has a different chlorophyll-a data 

distribution, so no common function could be defined to proceed with the analysis (see appendix 

C). 

 

 

5.5 Lake Champlain Chlorophyll-a Modeling Using Neural Networks (NN) 

 

 Several studies suggested using neural networks (NN) to provide effective chlorophyll-a 

prediction (Karul, et al., 1999). The IBM SPSS multilayer perceptron (MLP) NN tool was used 

to explore NN models using the lake Champlain monitoring station data. As described in 

methods section 4.6.2, the dataset was split and used as follows: 

1) Approx. 70% of the later years (2003-2011) yearly data was used to create the NN models, 

while the remaining 30% of the data was used to simultaneously verify each model as it was 
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created. After reviewing the literature, I found that most references suggest that for large 

amounts of data, the data should be split 50% for training the models and 50% for verification of 

the models. The literature also suggested that for handling smaller amounts of data, splitting it 

70% for training models and 30% for verification models was best (Oded et al., 2010) 

2) The results of the NN model analysis of the lake Champlain water quality monitoring data are 

shown in Figures 5.5 and 5.6. Coefficient of determination for NN model #8 is  R
2
= 0.851. 

3) Early years (1992-2002) yearly data was used to verify NN model #8.  

 

 NN importance chart (figure 5.5, top panel) is a measure of how much the network’s 

model-predicted value changes for different values of the independent variable; and this value is 

divided by the largest value present them as a percentage. The results of the analysis showed that 

the independent variable total phosphorus (TP) had the greatest effect on how the network 

classifies chlorophyll-a models, followed by the variables secchi depth (Secchi; relative 

importance (ri =40%), chloride (Cl; ri=20%) and total nitrogen (TN; ri=20%). Interestingly, the 

NN analysis suggested that RegAlk was also important (ri=30%). The remaining variables tested 

were considered relatively unimportant (ri <20% ). These results agree with the earlier MLR 

modeling study (section 5.3) and also agree with the correlation analysis (section 5.1). They also 

do agree with the published literature (Karul et al., 1999). 

 

 A plot of the observed Chla data verses NN model predicted Chla values are shown in 

figure 5.5 (bottom panel). It can be seen that the error in prediction using NN model #8 is low for 

low to moderate Chla levels (<10 μg/L) and the prediction becomes less accurate at higher Chla 

levels (>10 μg/L). This is in good agreement with the MLR modeling study results (MLR model 

#6, section 5.3) 
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Figure 5.5 NN analysis water quality variables importance chart (top panel) and Chla observed 

values vs. NN model #8 predicted values for Chla in μg/L (bottom panel). 
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Figure 5.6 NN synaptic weight chart for lake Champlain later years data (2003-2011) model #8 

 

Figure 5.6 displays the results of the NN synaptic weight chart which shows the feed forward 

NN chlorophyll-a model architecture as connections flowing forward from the input layer to the 

output layer without any feedback loops. 
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5.5.1 NN model #8 verification 

 

 To verify NN model #8 (R
2
=0.851), which was created using the lake Champlain 

monitoring station later years variable data (2003-2011)(see section 5.5), the model was tested 

with variable data from lake Champlain early years (1992-2002). NN model #8 results were 

compared with: 1) the actual observed results (Chla); and, 2) MLR model #6 results (section 5.3) 

as shown in figure 5.8 

. 

 Although the NN model #8 verification for the years between 1992-2002 resulted in 

(R
2
=0.795) which is lower than verification of the MLR model #6 (R

2
= 0.812) for the same 

period, however it produced a better fit since the average absolute error between the NN model 

#8 curve and the observed Chla data curve is less than 1.33, while for MLR model #6 the 

average absolute error between the MLR model #6 curve and the observed Chla data curve was 

2.19, this can also be noticed on prediction results of figure 5.8 

 

 It should be noted that running the same data set using NN model #8 will result in a 

different NN model and result for each run, and this is due to the fact that NN is a learning 

algorithm that works by minimizing the error successively from the previous equation. 

Improving the NN results is an iterative and time-consuming process. Previous studies suggested 

manipulating the number of layers and the ratio between the training and prediction data. I have 

already implemented many of the recommended techniques to improve the prediction of the NN 

model, but since NN does not produce any modeling equation, I decided to present only the best 

model (model #8) that I found from the NN analysis. 
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5.6 Lake Champlain Chlorophyll-a Modeling Using Data Mining (DM) 

 

 EUREQA DM software was used to analyze the lake Champlain total yearly dataset for 

all years (early years + late years: 1992-2011) and produced several models. The complete 

analysis is presented in appendix D. The best model found was arbitrarily named DM model #1 

(figure 5.9) with a high goodness of fit (R
2
= 0.815), and is detailed in table 5.6.  

 

 

5.6.1 DM modeling and water quality variables 

 

 Table 5.6  (left panel) shows the equation for DM model #1 which was produced after the 

Eureqa DM software screened the lake Champlain total yearly dataset (1992-2011), which 

included all the seven water quality variables listed in Table 4.1. It was found that the following 

variables were the most significant and relevant variables for modeling and that these were 

related in a complex manner: total phosphorus (TP), secchi depth (water clarity), and total 

nitrogen (TN). This is in agreement with MLR model #6 results (section 5.3) and NN model #8 

results (section 5.5).  

 

 DM model equation was nonlinear and the scatters plot for DM model #1 (table 5.6 

indicates a uniform and small error distribution, which indicates the high accuracy of this model).  

 

Chla =4.836 + 2.633*10
-7

* TP * Secchi *TN
2
 + 2.63347*10

-7
* 

TP *TN
2
*COS(0.0663525 + Year) - 0.75498* Secchi 

 

R
2
 Goodness of Fit = 0.815 

Correlation Coefficient =0.902  

Maximum Error=11.730 

Mean Squared Error=4.200364 

 

 
 

 

Table 5.6 Results of lake Champlain DM model #1 for  (1992-2011)  
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5.6.2 Lake Champlain DM model #1 verification and comparison with MLR model #6 and 

NN model #8 

 

 The DM modeling equations should be among the best to provide an accurate prediction 

of lake Champlain chlorophyll-a levels, because the verification process immediately starts after 

each model is created. To confirm this, all three lake Champlain chlorophyll-a models (MLR 

model #6, NN model #8, and DM model #1) were compared with each other and with the 

observed data (see figure 5.9). For this study, the following variables and input datasets were 

used for the models detailed below. 

1) Chlorophyll a MLR model #6 (R
2
 = 0.857) was generated using lake Champlain later years 

(2003-2011) yearly dataset, which consisted of 50% of the total data, with 7 input variables, 

while the verification of Chlorophyll a MLR model #6 for the early year (1992-2002) resulted in 

(R
2
= 0.812) 

2) Chlorophyll a NN model #8 (R
2
=0.851) was generated using lake Champlain later years 

(2003-2011) yearly dataset. This model was created using 70% of the data, while 30% of the data 

was used to verify the model, with 7 input variables, while the verification of Chlorophyll a NN 

model #8 for the early year (1992-2002) resulted in (R
2
= 0.795) 

3) Chlorophyll a DM model #1 (R
2
= 0.815) was generated using the lake Champlain total years 

early data set, which consisted of 50% randomly chosen values from the dataset (years 1992-

2011) and the other 50% of this dataset was used to verify the model results, with 7 input 

variables, however the verification of Chlorophyll a DM model #1 for the early year (1992-2002) 

resulted in (R
2
= 0.786) 

 The results of this comparison indicated that NN model #8 predictions were more 

accurate than both MLR model #6 and DM model #1 predictions, by 48% and 12.8%, 

respectively, this results was obtained by comparing the errors resulted from the each model 

prediction with the actual observed data between the years of 1992-2002, furthermore all the 

three models are plotted against each other and against the observed Chlorophyll a data for the 

entire study period between 1992-2011 in figure 5.9  
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5.6.3 Comparison of chlorophyll-a DM, NN, MLR models with actual observations 

 

 At the beginning of writing this thesis, the lake Champlain data was only available till 

2011, and recently in 2014 the data for the years of 2012 and 2013 were added, provided the 

ability to test and verify the different models that I developed for this lake using the 2012-2013 

data (see figure 5.10). 

 

 We notice from figures 5.10, 5.11 and 5.12 that NN model #8 predicted results for 

chlorophyll-a levels were closer to the observed data than those of the other models tested, 

including MLR model #6 and DM model #1 using recent data for years 2012-2013. Mean 

absolute errors for MLR, NN and DM models were respectively 0.075, 0.053 and 0.068. 
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5.7 Discussion of The Results 

 

5.7.1 Low to moderate water nutrient conditions 

 

 For most of lake Champlain, where low to moderate levels of nutrients (e.g. <10 μg/L) 

were recorded at the majority of water quality monitoring stations, a linear relationship was 

observed between the levels of water quality parameters and chlorophyll-a (a biomarker for 

cyanobacteria algal blooms; CABs). In some cases this relationship was positive linear (e.g for 

water nutrients such as total phosphorus (TP) and total nitrogen (TN) which are needed for 

CABs growth. In other cases a negative linear relationship was found (e.g. for secchi depth, a 

measure of water clarity, which is reduced by the growth of CABs). All of the modeling 

approaches tested (MLR, NN, DM) were able to give models with good fit R
2
values for these 

lake conditions. 

 

5.7.2 High water nutrient conditions 

 

 In areas of lake Champlain with high levels of water nutrients (10> μg/L), which are 

found at the southern water quality monitoring stations 02 and 04 (located at the mouth of a river 

that empties nutrients into the lake); and also at stations 50 and 51 (located near agricultural 

fertilizer runoff into the lake), a nonlinear relationship was observed between water quality 

parameters and chlorophyll-a. In high water nutrient conditions, the best approach to accurately 

predicting chlorophyll-a and thus CABs growth in lake Champlain was by using NN model does 

not provide a modeling equation, data mining was used to find the nonlinear model to accurately 

predict chlorophyll a levels, and therefore cyanobacteria algal blooms in lake Champlain.  

 

Model Variables  R
2
 Notes 

MLR model #6 TP, Cl, TN, 

Secchi 

0.857 Close prediction for most of lake Champlain, but poor 

predictions for water high level nutrient data obtained at 

stations 02,04 50 51 and 25 

NN model #8 

 

Year, Depth, 

TP, TN, Cl, 

Secchi, Temp 

0.851 Provided better R
2
 and more accurate results but no equation 

only xml file 

 

DM model #1 Years, TP, TN 

,Secchi 

0.815 Nonlinear model with high accuracy 

Table 5.7 Summary of chlorophyll-a models described in this thesis.  
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5.7.3 Causes of the model errors 

 

 Investigation of the models errors revealed that: 

 The errors in MLR model were due to: 

a. High correlation between the lake input variables (Diebold et al., 2007). 

b. Chla general distribution is nonlinear, which was proven in appendix C, and it 

was observed from the data mining that Chla model in general is not linear, so it 

is likely that linear regression was not able to fully address the nonlinear part of 

the lake data. 

c. The model most significant errors were for the northern as southern parts of the 

lake and were due to the extreme concentrations of Chloride (Cl) in the southern 

part of the lake, and extreme concentrations of nitrogen (TN) in the northern part 

of the lake. 

  NN model provided better accuracy than the MLR; the main cause of errors in the model 

was due to the extreme concentrations of Chloride (Cl) in the southern part of the lake, and 

extreme concentrations of nitrogen (TN) in the northern part of the lake. 

  DM model was more responsive to extreme changes as it used complicated algorithms to 

derive the DM model, and similar to NN model the DM model main cause of errors were due to 

the extreme concentrations of Chloride (Cl) in the southern part of the lake, and extreme 

concentrations of nitrogen (TN) in the northern part of the lake. 

 Further investigation of the data generated by the lake Champlain water quality 

monitoring stations that were causing problems in model prediction accuracy revealed that, the 

southern monitoring stations 02 and 04 are located in shallow water at the mouth of the Poultney 

river that contributes large amount of nutrients into the lake. Furthermore, farms and agricultural 

lands that likely contribute fertilizer into the lake surround the northern monitoring stations 50 

and 51. The results obtained in this thesis project have been confirmed by other studies in the 

literature, which showed that the MLR model approach is not accurate at high water nutrient 

concentrations (Li et al., 2013). 

 Results of model comparison indicated that NN model #8 predictions were more accurate 

than both MLR model #6 and DM model #1 predictions, by 48% and 12.8%, respectively.  
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CHLOROPHYLL-A GIS SPATIAL ANALYSIS  

RESULTS 
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 In the previous chapter using statistical analysis we revealed several chlorophyll-a 

models for lake Champlain.  The best model comprised a set of 3 different equations found 

through data mining. One model was for the southern part of the lake, another for the northern 

and a final set for the main lake body.  Such distribution suggests that location might be a factor 

in modeling algae in lake Champlain. In this chapter I’ll present geostatistical analysis to 

investigate the location importance to the algae bloom in Lake Champlain and show the spread 

of the different variables contributing to the algae model across the lake. 

 

6.1 GIS Based Modeling Results 

 

 In the previous chapter, the variables contributing to chlorophyll-a models for lake 

Champlain were identified through statistical analysis, and it was noted that the different models 

found were less accurate at the northern and southern parts of the lake, further investigation 

revealed that northern parts of the lake suffers from excess levels of nitrogen, while southern 

parts of the lake suffers from excess levels of chloride, such phenomena suggests that the 

location might be a factor in modeling algae in Lake Champlain, so in this section geostatistical 

analysis is used to investigate the location impact on algae bloom for lake Champlain, 

furthermore the geostatistical analysis will be used to mathematically interpolate the levels of  

variables throughout the volume of the lake.  

 

6.2 Determination of the Statistical Model Variables 

 

 The purpose of this test is to determine the location importance to the MLR chlorophyll-a 

model. ArcGIS is advanced geostatistical analysis software, however it lacks the stepwise 

selection option available in IBM SPSS, therefore in the MLR variables test, all of the variables 

for lake Champlain water quality parameters were used. The data for later years 2003-2011 was 

used to generate the model equation, while the early years data 1992-2002 was used to verify the 

model results. The processing extent and snap raster of the analysis were set to the lake 

Champlain boundary. Figure 6.1 shows the GIS ordinary least square (OLS) setup interface. 
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Figure 6.1 GIS -ordinary least squares interface. 

 

6.3 Model Results and Model Configuration  

 

6.3.1 Statistical model with all input variables 

 

Variable Coefficient StdError t-Statistic Probability Robust_SE Robust_t Robust_Pr VIF [c] 

Intercept 221.672 172.710 1.283 0.201 159.858 1.386 0.168 -------- 

YEAR -0.107 0.085 -1.255 0.211 0.079 -1.352 0.178 1.881 

DEPTH 0.003 0.006 0.604 0.546 0.003 1.142 0.255 1.495 

TP 0.086 0.043 2.020 0.045* 0.044 1.934 0.055 15.509 

CL -97x 10
-6

 141x10
-6

 -0.688 0.492 152x 10
-6

 -0.640 0.522 8.182 

TN 0.008 0.003 2.474 0.014* 0.003 2.122 0.035* 4.134 

TEMPC 95x 10
-5

 0.032 0.029 0.976 0.030 0.031 0.974 1.117 

SECCHI -0.868 0.261 -3.316 0.001* 0.263 -3.295 0.001* 6.699 

REGALK -0.032 0.040 -0.793 0.429 0.053 -0.604 0.546 10.078 
 

Joint F-Statistic 47.162 Dependent Variable: Chla 

Joint Wald Statistic 297.831 Number of Observations: 126 

Koenker (BP) Statistic 27.664 Multiple R-Squared 0.763 

Jarque-Bera Statistic 108.340 Adjusted R-Squared 0.747 

Table 6.1 GIS-based model #1 (OLS) results. 
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 From table 6.1, we notice that the Koenker test value is >0.05. This means that the 

geographical location of the water quality parameters (variables) may not have a significant 

impact on the GIS based model. However, the MLR model obtained in this step was not the 

optimal solution, since there were several variables with VIF >7.5, indicating that some variables 

might be redundant (dismissible).  

 

6.3.2 Statistical model with selected variables 

 

 Previously, we found through use of correlation analysis, that lake Champlain variables 

were strongly correlated, thus removing the variables with VIF>7.5 may not be the best approach 

(e.g. total phosphorus (TP) and total nitrogen (TN), particularly at high levels). Therefore several 

iterations are required to find the best set of input of variables that produce the optimal MLR 

model, or we can use the set of input variables obtained from the MLR model stepwise selection 

since we already know they produced the optimal MLR model. GIS based model (OLS) run 

results are presented in the following table. 

Variable Coefficient Std Error t-Statistic Probability  Robust_SE Robust_t Robust_Pr  VIF [c] 

Intercept 4.131 1.874 2.204 0.029* 2.297 1.798 0.074 -------- 

TP 0.070 0.030 2.331 0.0213 0.034 2.004 0.047* 6.591 

CL - 0.00015 0.000056 - 2.651 0.009* 0.00007 -2.123 0.035* 1.290 

TN 0.010 0.002 4.101 0.00008* 0.003 3.460 0.0007** 2.733 

SECCHI - 0.701 0.2343 -2.994 0.003* 0.232 -3.024 0.003* 5.369 
 

Joint F-Statistic 93.493 Dependent Variable: CHLa 

Joint Wald  Statistic 241.618 Number of Observations: 126 

Koenker (BP) Statistic 25.555 Multiple R-Squared 0.857 

Jarque-Bera Statistic 73.763 Adjusted R-Squared 0.854 

Table 6.2 GIS- based model# 2 (OLS) results 

 

 The set of input variables used for this run resulted in all of the variables having their VIF 

<7.5, thus confirming that we chose the right set of variables which were significant for this 

model. The Koenker test value was >0.05, indicating the insignificance of the geographical 

location impact on the algae model. Furthermore, the JarqueBera statistic of > 0.05 indicates the 
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residuals (errors) are normally distributed and the model is well distributed and not biased. The 

other outputs from the OLS test, (e.g. the robust probabilities, Robust_SE, Robust_t, Joint Wald 

Statistic and Joint F-Statistic), all became insignificant, as we only considered their value when 

the Koenker Statistic was< 0.05.The equation from OLS model with the selected input variables 

is: 

                                                        Eq. 6.1 

With R
2
= 0.857 

Recall equation 5.1 using IBM SPSS MLR stepwise selection. 

                                                        Eq. 5.1 

 The two equations are identical; this result was expected because when the location has 

no impact on the chlorophyll-a model, then ArcGIS produces similar results to those obtained by 

statistical analysis tools like IMB SPSS, or Systat 13. This finding suggests that high/low levels 

of chlorophyll-a and thus cyanobacteria algal blooms (CABs) could occur anywhere throughout 

lake Champlain, depending on the seasons and natural and man-made environmental conditions 

(e.g. presence of farm fertilizer runoff into the lake in some years but not in others and prevailing 

wind/currents in the lake that distribute the phosphorus and nitrogen throughout the lake).  

 

6.4 Spatial Trend Analysis 

 

 Spatial analysis is also required to show the spread, distribution and extent of the 

variables affecting the chlorophyll-a model for cyanobacterial algal bloom growth. ArcGIS uses 

the interpolation technique Empirical Bayesian Kriging to create a continuous surface, a method 

well suited to handle extreme and minor changes within data records. Using Kriging, the 

surrounding measured values are weighted to derive a predicted value for an unmeasured 

location. Weights are based on: the distance between the measured points, the prediction 

locations and the overall spatial arrangement among the measured points. The Empirical 

Bayesian Kriging (EBK) tool is available in ArcGIS to automate calculation of the interpolated 

surface for the various water quality input parameters, generating maps that represent the 

distribution of the variable over the entire lake volume and surface.  
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 In the EBK interface input menu, the water quality parameters (phosphorus, nitrogen, 

chloride, secchi depth, alkalinity and chlorophyll-a) that we wish to interpolate and have their 

values projected on a map throughout the lake are added one by one. The EBK surface output is 

stored in the Z value field from EBK interface menu. In the environment settings, the processing 

extent and the snap raster are set to be the lake Champlain boundary and in the layer properties 

the clip options are set to lake Champlain layer, the last step is necessary to limit the analysis to 

the lake boundary. 

 

 

Figure 6.2 GIS Kriging inputs. 

 

 Figure 6.3 shows a summary of the total phosphorus (TP) levels obtained from the water 

quality monitoring stations in lake Champlain from years 1992 to 2011, illustrated in an 

interpolated  (EBK) map. This figure shows the normal seasonal and yearly variations in the lake 

phosphorus levels, which are generally lower in the center of the lake (blue colour) and higher in 

the Northern and Southern sections of the lake (red colour), likely due to farm fertilizer runoff 

(in the North) and the rivers (in the South). The addition of a water quality monitoring station 51 

in 2005 confirmed the high phosphorus levels previously observed at monitoring station 50 in the 

Northern section of the lake (red colour).  
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 Figure 6.4 and 6.5 for the EBK map which clearly highlights the problem causing the 

deviated results in the models predictions, as we can see extreme concentrations of chloride (Cl) 

in the southern part of the lake, thus confirming the analysis in section 5.3 and the MLR model 

equation 5.2, similarly we can see extreme concentrations of total nitrogen (TN) in the northern 

part of the lake, thus confirming the analysis in section 5.3 and the MLR model equation 5.3. 

This is rendering the two sections (the northern and southern) parts of the lake as different 

extreme environment. 

 Figure 6.6 shows the results for secchi depth monitoring in lake Champlain between 

1992-2011, the EBK maps for the secchi depth confirm the correlation analysis in section 5.1 

and MLR model #6 and equation 5.1 as well as the data mining modeling equation 5.4, as we 

notice that secchi depth which is a measure of the water clarity is reduced by increasing levels of 

cyanobacterial algal bloom (CABs) growth 

  Figure 6.7 shows a different trend for alkalinity monitoring in lake Champlain between 

1992-2011. Alkalinity is the ability of a solution to neutralize acids. Alkalinity levels are subject 

to minor changes through the years thus it seems that the CABs growth in lake Champlain is not 

being affected by alkalinity, and this is supported by the analysis in chapter 5 as none of the 

modeling equations contain the alkalinity as a predictor.  
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Figure 6.3 GIS map showing a summary of lake Champlain total phosphorus (TP) levels 

monitored at various stations throughout the lake from 1992-2011.  
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Figure 6.4 GIS map showing a summary of lake Champlain total nitrogen (TN) levels monitored 

at various stations throughout the lake from 1992-2011. 
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Figure 6.5 GIS map showing a summary of lake Champlain chloride (Cl) levels monitored at 

various stations throughout the lake from 1992-2011. 
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Figure 6.6 GIS map showing a summary of lake Champlain secchi depths (a measure of water 

clarity) monitored at various stations throughout the lake from 1992-2011. 
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Figure 6.7 GIS map showing a summary of lake Champlain alkalinity levels (an inverse measure 

of water acidity) monitored at various stations throughout the lake from 1992-2011. 
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6.5 GIS Based Statistical Model Validation and GIS Results for TP and Chla 

 

 In section 6.4 the interpolated EBK maps of lake Champlain water quality monitoring 

data were used to show the trend for the variables appearing in the cyanobacterial algal bloom 

(CABs) model, and the EBK maps came to confirm the results of the different models, 

furthermore for better visualization for the results presented for the MLR in figure 6.8 we can 

use the EBK maps to present the cyanobacterial algal bloom spread side by side by the main 

factors contributing in the MRL cyanobacteria model thus helping to better understand and 

verify the model. 

 Figure 6.8 presents a pair of maps for the observed chlorophyll-a (Chla) side by side by 

the Total Phosphorus (TP) which was found to be the most dominant factor affecting 

cyanobacterial algal bloom (CAB) according to the multiple linear regression, neural network 

and data mining models, where we can clearly see the similarity between the TP and Chla spread 

of concentrations throughout the years of lake Champlain, thus verifying the results obtained by 

the multiple linear regression, neural network and data mining models 

 

 Figure 6.9 and 6.10 respectively present a pair of maps showing the prediction results 

from the GIS (OLS) model #2 output verses the observed recorded values. We can see that the 

chlorophyll-a GIS (OLS) model #2 results, were accurate and consistent in the main lake body 

and the accuracy tends to drop in the northern and southern parts of the lake for the reason 

discussed earlier in this chapters. 
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Figure 6.9 Lake Champlain water quality monitoring station observed chlorophyll-a levels (Chla 

a biomarker for CABs) compared to the GIS model #2 predicted levels. 
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CHAPTER 7 

CONCLUSION AND CONTRIBUTION   
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7.1 Conclusion 

 

 This study provided information, data and an overview of research on modeling of the 

factors affecting cyanobacterial algal bloom as well as my subjective opinions related to the 

factors affecting the water quality in lake Champlain.  

 A statistical analysis and simulation models including: (a) multiple linear regressions 

(MLR); (b) artificial neural network (ANN) based on back propagation algorithms; (c) data 

mining (DM) were developed using multiple water quality parameters such as the total 

phosphorus, total nitrogen, temperature, water monitoring depth, water clarity as an input while 

using the chlorophyll-a levels which is a biomarker for algal growth as an output to these models. 

A GIS modeling structure of lake eutrophication was developed to support the statistical analysis. 

The results of the statistical analysis indicate that neural network model had the most accurate 

predictions followed by data mining, then the multiple linear regression and that's due to the fact 

that Chla growth is nonlinear. The developed chlorophyll-a models showed various degrees of 

accuracy in predicting chlorophyll-a levels, the results of the MLR in particular are less accurate 

due to the high correlation between the input variables, and the nonlinear characteristics of 

Chlorophyll-a  at high levels of lake variables ,while in NN and data mining the errors were not 

random, they came from stations 02, 04, 50 and 51.The analysis indicates that excessive levels of 

Chloride at the southern section of lake Champlain and excessive levels of Nitrogen at the 

northern section of the lake were the two factors affecting the NN and data mining chlorophyll-a 

model accuracy.  

 The water quality parameter (variable) found to be most significantly correlated with 

chlorophyll-a levels was total phosphorus (TP). The phosphorus cycle in lake Champlain shows 

that there are many natural and human sources of phosphorus in the lake, including the mouth of 

a river bringing phosphorus-rich sediment into the southern section of the lake, and farms with 

fertilizer runoff located at the northern part of the lake. This suggests that the natural 

environment as well as human activity contribute perhaps equally to lake eutrophication and 

algae blooms. The natural and man made high levels of phosphorus and other nutrients such as 

nitrogen promoting algal growth and controlling these levels are the key issue related to 

minimizing the probability of algal blooms.  
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 The geostatistical analysis indicated that hi/low levels of chlorophyll-a and thus 

cyanobacterial algal blooms (CABs) could occur anywhere throughout lake Champlain, and it is 

independent of the location. 

 The investigation of the different lake Champlain timeframes, suggests that: smaller 

timeframes such as daily and weekly, doesn’t not support developing a significant model; and 

since the significant models came from the yearly timeframes, then it means that the developed 

model can’t be used as an early alert for increasing levels of algae or eutrophication but rather as 

a tool to help developed proper lake management programs. 

 

 

7.2 Contributions of the Research 

 

 As the regulations are being developed and enforced to protect and improve water quality 

in lakes, rivers and reservoirs, understanding algal blooms (using the biomarker chlorophyll-a) is 

becoming more and more important. In the present thesis study, several analytical techniques 

were used to uncover the water quality parameters that are correlated with algal bloom. Several 

models for chlorophyll-a were developed, and for these different models, the degree to which 

each environmental variable contributed to chlorophyll-a levels varied. Taken together, the set of 

different chlorophyll-a models that were developed using different approaches (e.g. multiple 

linear regression (MLR), neural network (NN), and data mining (DM), all indicated a strong 

linear relationship between the dissolved total phosphorus (TP) levels and chlorophyll-a levels in 

the lake water, most likely because phosphorus is an important nutrient for algal growth. This 

relationship was found to be linear at low to medium concentrations of TP. However, at high 

concentrations of total phosphorus (>10 μg/L), the relationship became nonlinear. 

 

The contributions of the present thesis can be summarized as follows: 

 

1) Analysis of lake Champlain data indicates that using the mean values of the data (yearly) have 

had refined to a relatively high degree of statistical precision and to create the models.  

The later years dataset worked better as a training data set. This was because several new 

important monitoring stations were set up during the later years time period. 
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2) Although MLR model had the highest    value, however the model produced the least 

accurate predictions. The deviation in the model accuracy was due to 1) high correlation between 

the environmental variables. 2) extreme levels of nitrogen in north and chloride in the south. 3) 

Chlorophyll-a  has  nonlinear characteristics at high levels of lake variables. 4) and in section 

4.5.C I ignored the impact of internal loading which in this case should be considered as those 

are shallow stations with lots of sediment interaction .The best predictions came through NN 

model, however NN model did not provide a model equation to help future researchers 

investigation, the alternative came through data mining, which provided a significant accurate 

model with an equation that can be used to further investigate the lake on future studies.   

3) Model verifications indicated less accurate results for the northern and southern parts of the 

lake, further investigation supported by Empirical Bayesian Kriging (EBK) maps highlighted the 

cause of the problem to be due to the extreme concentrations of chloride (Cl) in the southern part 

of the lake, and extreme concentrations of total nitrogen (TN) in the northern part of the lake. 

4) Modeling studies in this thesis for chlorophyll-a indicate that: the total dissolved phosphorus 

has the strongest impact on algae production and the main cause to water quality degradation due 

to its persistence in lake water at high levels. 

5) Earlier studies for lake Champlain haven’t produced a good prediction equation (Smeltzer et 

al., 2009); this study is one of the first to produce several modeling equations with high 

prediction accuracy to address the algal problem in lake Champlain. The developed chlorophyll-

a models showed various degrees of accuracy in predicting chlorophyll-a levels therefore, it is ill 

advised to assume that one model can account for all the variations in the chlorophyll-a equation. 

Furthermore, we cannot generalize the use of any of these models for other lakes because each 

lake will respond differently to its environment.  

In general, this study helped to identify the water quality factors that most significantly affect 

chlorophyll-a levels (correlated with cyanobacterial algal bloom growth) in lake Champlain. 

Although the models developed for the case study may not apply for a different lake, the factors 

affecting the algal blooms may be similar for all lakes. 
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7.3 Future Studies 

 This section highlights the scope of future work, which may be conducted on the basis of 

the work presented in this thesis. 

1. Lake recovery from eutrophication depends in part on the quantity of phosphorus that has 

accumulated over time in the lake bottom sediment and in the quantity of dissolved 

phosphorus in the water volume in contact with the sediment.  Reduction of external 

phosphorus loading may not necessarily produce swift improvement, since sediment 

release can compensate for this reduction, consequently, both internal and external 

loading data reduction should be considered in preparing a proper lake management 

program. 

 

2. It was not possible to utilize multiple nonlinear regression due to the inconsistency of the 

monitored data, however with the aid of new technology such as GIS analysis we were 

able to expose the hidden information patterns and the problems in the north and south 

parts of the lake. The scientific works published on GIS lake eutrophication models are 

still very limited. Further and deeper scientific research should be conducted in this area 

in the future. 

 

3. The comprehensive statistical analysis exposed that the northern and southern parts of the 

lake have complicated and uncertain patterns, and were ill defined using multiple linear 

regression, therefore for future studies fuzzy and/or stochastic modeling methods can be 

used to further address uncertainties.  

 

4. ArcGIS in comparison to other professional statistical analysis software like IBM SPSS 

or data mining has limited capabilities and has less accuracy. Future studies should try to 

import models developed outside GIS and import and implement those models into the 

GIS for enhanced and improved predictions.  

 

5. The goal of any monitoring plan is to be able to take action before the problem becomes 

uncontrollable. Huge efforts were made in collecting lake Champlain water quality 

monitoring data, however, the daily data for lake Champlain did not help much in 
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producing any of the chlorophyll-a models. lake Champlain data would also have been 

much more valuable if it was collected concurrently. 

6. During the modeling process, I assumed that all the lake variables are independent 

however, this is not the case in fact most of the variables are correlated with the climate 

conditions, so climate impact on lake water quality is a subject for further investigation. 

 

7. The developed models can be further used to find an effective methodology for lake 

Champlain management, and suggest programs/regulations, which can help improve the 

lake water quality. 
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Appendix A: Lake Champlain Outliers 

Station Date 
TP  μg/L Cl  μg/L TN  μg/L 

TempC  deg 

C 

RegAlk  

μg/L 
Secchi Cla 

02 - Sout Lake B 17/08/2004 235       
02 - Sout Lake B 17/06/1998   1190     

02 - Sout Lake B 22/08/2011   1720     

02 - Sout Lake B 12/06/2007       34.1 
02 - Sout Lake B 28/09/2011       36.5 

04 - Sout Lake A 27/10/1993  31800      
04 - Sout Lake A 11/08/1992   810     

04 - Sout Lake A 03/07/1998       44.35 

04 - Sout Lake A 12/08/2005       47.5 
04 - Sout Lake A 28/07/2011       52.6 

04 - Sout Lake A 11/08/2011       39.6 

07 - Port enry Segment 14/07/1993 41       

07 - Port enry Segment 28/08/2006       25.9 
07 - Port enry Segment 23/06/2005       22.4 

09 - Otter Creek Segment 28/05/1996 31       
09 - Otter Creek Segment 07/06/2006 38.4       

09 - Otter Creek Segment 05/08/2008 56.9       

09 - Otter Creek Segment 07/08/2008 42.5       
09 - Otter Creek Segment 14/08/2008 42.8       

09 - Otter Creek Segment 24/05/2010 66.4       

09 - Otter Creek Segment 28/07/2011  10000      
09 - Otter Creek Segment 12/09/2001   620     

09 - Otter Creek Segment 21/07/2005   570     
09 - Otter Creek Segment 01/05/2006   590     

16 - Selburne Bay 07/07/2011 30.1       
16 - Selburne Bay 12/07/2005   550     

16 - Selburne Bay 03/10/2005   620     

16 - Selburne Bay 18/08/2010   170     
16 - Selburne Bay 23/08/2011   160     

16 - Selburne Bay 19/08/2011   180     

16 - Selburne Bay 07/07/2011       15.3 

19 - Main Lake 16/06/1993 26       

19 - Main Lake 11/07/1995  15800      

19 - Main Lake 10/10/1995  8100      

19 - Main Lake 22/07/1992   650     
19 - Main Lake 03/09/1994   240     

19 - Main Lake 02/05/1995   690     

19 - Main Lake 16/08/1995   670     
19 - Main Lake 08/07/2009   690     

19 - Main Lake 18/08/2010   170     

19 - Main Lake 06/07/1998       15.25 

21 - Burlington Bay 20/05/1992 25       

21 - Burlington Bay 20/05/1993 30       
21 - Burlington Bay 18/08/1993 30       

21 - Burlington Bay 24/06/1998 33       

21 - Burlington Bay 09/07/2007 32.8       
21 - Burlington Bay 07/06/2011 38       

21 - Burlington Bay 10/10/1995  8800      
21 - Burlington Bay 08/06/1998  19500      

21 - Burlington Bay 25/07/2011  10000      

21 - Burlington Bay 05/06/2006   680     
21 - Burlington Bay 30/06/1999   650     

21 - Burlington Bay 01/06/2000       16.36 

21 - Burlington Bay 07/06/2011       15.4 
21 - Burlington Bay 28/09/1999       14.06 

21 - Burlington Bay 13/07/2009       14.1 

25 - Malletts Bay 22/07/1997 25       

25 - Malletts Bay 03/06/2011 30.9       

25 - Malletts Bay 12/06/2008 22.1       
25 - Malletts Bay 09/05/2011 24.3       

25 - Malletts Bay 01/09/2011 21.2       

25 - Malletts Bay 18/08/1997  6300      
25 - Malletts Bay 16/08/1995  13100      

25 - Malletts Bay 02/07/1997  12600      
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25 - Malletts Bay 27/07/2011  4900      

25 - Malletts Bay 10/08/1992   700     
25 - Malletts Bay 29/07/1994   650     

25 - Malletts Bay 09/09/1996   690     

25 - Malletts Bay 19/08/2010   110     
25 - Malletts Bay 23/08/2011   130     

25 - Malletts Bay 07/07/1998       26.2 

33 - Cumberland Bay 14/08/1995 34       

33 - Cumberland Bay 06/06/2011 37.9       
33 - Cumberland Bay 06/06/2011 29.3       

33 - Cumberland Bay 22/07/2011 29.8       

33 - Cumberland Bay 31/08/2011 29       
33 - Cumberland Bay 21/10/1999   1030     

33 - Cumberland Bay 30/06/2006   160     

33 - Cumberland Bay 18/08/2010   150     
33 - Cumberland Bay 06/06/2011       9.47 

34 - Norteast Arm 18/08/1997  12600      
34 - Norteast Arm 24/07/1997   830     

34 - Norteast Arm 27/07/1994   640     

34 - Norteast Arm 11/07/2008   760     
34 - Norteast Arm 02/05/2000       20.49 

34 - Norteast Arm 07/07/1998       17.6 

36 - Isle LaMotte (off Grand Isle) 18/10/1996 75       

36 - Isle LaMotte (off Grand Isle) 16/06/1999 50       
36 - Isle LaMotte (off Grand Isle) 10/10/1995  9500      

36 - Isle LaMotte (off Grand Isle) 06/06/2001  6200      

36 - Isle LaMotte (off Grand Isle) 21/07/1992   910     
36 - Isle LaMotte (off Grand Isle) 13/07/1998   660     

36 - Isle LaMotte (off Grand Isle) 13/07/1998   690     

36 - Isle LaMotte (off Grand Isle) 14/04/2006   660     
36 - Isle LaMotte (off Grand Isle) 09/06/2005       21.8 

36 - Isle LaMotte (off Grand Isle) 09/08/2007       19.9 

40 - St. Albans Bay 13/08/2003   990     

40 - St. Albans Bay 30/08/1999       77.57 
40 - St. Albans Bay 22/08/2000       53.82 

40 - St. Albans Bay 10/08/2000      1 52.73 

46 - Isle LaMotte (off Rouses Pt) 08/05/2001  5000      

46 - Isle LaMotte (off Rouses Pt) 31/08/2011  9800      

46 - Isle LaMotte (off Rouses Pt) 03/10/2000  9300      
46 - Isle LaMotte (off Rouses Pt) 25/08/2000  8900      

46 - Isle LaMotte (off Rouses Pt) 23/07/1997   800     

46 - Isle LaMotte (off Rouses Pt) 17/06/2002   760     
46 - Isle LaMotte (off Rouses Pt) 01/07/2002   710     

46 - Isle LaMotte (off Rouses Pt) 31/08/2011   880     

46 - Isle LaMotte (off Rouses Pt) 08/09/2004       32.2 
46 - Isle LaMotte (off Rouses Pt) 21/06/2005       25.5 

50 - Missisquoi Bay 25/06/2002   1710     

50 - Missisquoi Bay 01/07/2002   1610     

50 - Missisquoi Bay 26/07/1999       112.72 
50 - Missisquoi Bay 06/08/1999       116.36 

50 - Missisquoi Bay 20/08/1999       98.18 

50 - Missisquoi Bay 20/09/1996       79.02 
50 - Missisquoi Bay 04/10/1996       80 

50 - Missisquoi Bay 12/08/2008       72.6 

51 - Missisquoi Bay Central 04/10/2010 150       

51 - Missisquoi Bay Central 23/05/2006   1720     
51 - Missisquoi Bay Central 04/10/2010   1540     

51 - Missisquoi Bay Central 06/10/2006       112 

51 - Missisquoi Bay Central 08/09/2006       57.6 
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Appendix B: Multiple Linear Regression MLR-LEF  

Matlab code for the example in section 4.6.1 multiple linear regressions MLR 

%========================================================= 

%                                     MLR Matlab code for the example in Chapter 4 

% A line started with the % is only for comments, and will not be executed  

%========================================================= 

% The first two commands lines were to clear the memory and the screen  

clear 

clc 

% The Data from table 4.7 lake Champlain station 19 is used for the analysis  

%-------------------------------------| 

%        Step 1: data division       | 

%-------------------------------------| 

% The first step is to divide the data into two halves  

% The first half of the data is between 2003-2011 and is used to create the regression model ( 

% The second half of the data between 1993-2002 and is used for model verification  

%-------------------------------------| 

%        Step 2: data input            | 

%-------------------------------------| 

% We enter the first half of the data into the Matlab, according to MLR equation 

%              Y = bZ + e   

% Where :  

%            Y is the chlorophyll-a (Chla) and is the dependent variable  

%            Z is the water quality parameters and the independent variables  

%            e is the error  

% The complete data vector is Y  

Y=[3.33 

4.33 

4.16 

4.04 

4.61 

3.86 

4.70 

3.66 

3.43 

1.52 

2.91 

3.62 

5.34 

4.34 

3.32 

3.34 

2.90 

3.10 

4.62] 
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% The training data vector for the dependent variable 

Y_train= [3.33 

4.33 

4.16 

4.04 

4.61 

3.86 

4.70 

3.66 

3.43 

1.52] 

% The verification data vector for the dependent variable 

Y_verify= [2.91 

3.62 

5.34 

4.34 

3.32 

3.34 

2.90 

3.10 

4.62] 

The complete independent Z matrix  

z = [1993    100 13.89   11495.00    433.75  14.02   5.13    51.57   ; 

1994    100 12.22   11594.44    466.33  12.68   5.33    49.50   ; 

1995    100 8.97    12661.11    452.22  9.80    6.41    52.41   ; 

1996    100 10.84   12461.70    447.08  8.90    4.88    50.38   ; 

1997    100 11.37   11733.89    453.33  12.00   4.87    50.45   ; 

1998    100 11.36   11879.17    396.25  12.53   5.20    50.37   ; 

1999    100 10.64   12310.26    444.05  21.67   6.57    49.03   ; 

2000    100 11.71   12622.00    427.17  16.78   6.04    49.14   ; 

2001    100 10.51   13099.00    430.50  19.98   5.46    49.26   ; 

2002    100 7.90    13633.33    403.67  22.24   6.50    48.20   ; 

2003    100 8.57    14706.25    409.33  21.06   6.87    48.23   ; 

2004    100 12.50   14775.28    398.50  16.53   6.11    49.31   ; 

2005    100 12.57   15118.33    409.47  19.34   4.84    51.48   ; 

2006    100 14.48   14686.31    435.12  19.60   4.42    49.83   ; 

2007    100 12.87   13760.00    432.58  19.18   4.94    49.84   ; 

2008    100 13.89   14448.33    436.00  18.20   5.40    49.42   ; 

2009    100 12.75   14293.06    410.14  18.03   5.62    51.32   ; 

2010    100 12.96   13975.71    370.29  13.00   4.60    53.72   ; 

2011    100 16.12   12978.10    387.19  6.10    3.48    51.35   ] 

% Following is the section of Z matrix that will be used for training and model creation  

z_train = [1993    100 13.89   11495.00    433.75  14.02   5.13    51.57; 

1994    100 12.22   11594.44    466.33  12.68   5.33    49.50   ; 

1995    100 8.97    12661.11    452.22  9.80    6.41    52.41   ; 

1996    100 10.84   12461.70    447.08  8.90    4.88    50.38   ; 
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1997    100 11.37   11733.89    453.33  12.00   4.87    50.45   ; 

1998    100 11.36   11879.17    396.25  12.53   5.20    50.37   ; 

1999    100 10.64   12310.26    444.05  21.67   6.57    49.03   ; 

2000    100 11.71   12622.00    427.17  16.78   6.04    49.14   ; 

2001    100 10.51   13099.00    430.50  19.98   5.46    49.26   ; 

2002    100 7.90    13633.33    403.67  22.24   6.50    48.20   ] 

% The section of Z matrix which will be used for model verification   

z_verify = [2003    100 8.57    14706.25    409.33  21.06   6.87    48.23  ; 

2004    100 12.50   14775.28    398.50  16.53   6.11    49.31   ; 

2005    100 12.57   15118.33    409.47  19.34   4.84    51.48   ; 

2006    100 14.48   14686.31    435.12  19.60   4.42    49.83   ; 

2007    100 12.87   13760.00    432.58  19.18   4.94    49.84   ; 

2008    100 13.89   14448.33    436.00  18.20   5.40    49.42   ; 

2009    100 12.75   14293.06    410.14  18.03   5.62    51.32   ; 

2010    100 12.96   13975.71    370.29  13.00   4.60    53.72   ; 

2011    100 16.12   12978.10    387.19  6.10    3.48    51.35   ] 

%-------------------------------------| 

%     Step 3: calculation of Beta | 

%-------------------------------------| 

% The best linear model is found when the error=0, thus the linear regression model becomes 

%           Y = bZ + e  

% Using the training values we can find the coefficient matrix B, where Beta = b=Y/Z  

% Since we will use the training data set we will rewrite the above equation 

%         b_hat = Y_train/z_train  

% We can’t directly obtain the value of b_hat since z_train and Y_train 

% are of different dimensions.  

% To get around this problem we know that a matrix can be decomposed into 

% two orthogonal matrices, therefore we can decompose the Z matrix into Q and R  

% z_train matrix into Q and R  

%              Q is orthogonal matrix with n by p dimensions 

%               R is triangular p by p matrix  

% Thus b_hat = z_train/Y_train = R\(Q'* Y_train)  

% The last equation is the same as the least square equation 

% Using the info on the Z matrix, we can define n and p  

n=10;         % the number of observations. 

p=8;           % the number of independent variables. 

% The Matalb command to decompose z matrix into two orthogonal matrices is 

[Q,R] = qr(z_train,0); 

% Now to can calculate b_hat = Y_train/z_train = R\(Q'* Y_train) 

b_hat = R\(Q'* Y_train); 

%-------------------------------------| 

%        Step 3: Prediction             | 

%-------------------------------------| 

% Beta matrix can be used in the linear regression equation  

%       Y = bZ + e   

% To predict the values for the verification data set so  
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% % Yhat =  z_verify * b_hat = z_train*(R\(Q'*Y_trtain)); 

Y_hat= z_verify*b_hat; 

% where Yhat is n by 1 vector of fitted (or predicted) values of Y. 

%-------------------------------------| 

%        Step 4: Verification           | 

%-------------------------------------| 

% The predicted Yhat is compared to Y_verify using the error and  

% the R Pearson correlation coefficient and R^2 the coefficient of determination 

e = Y_verify -Y_hat; 

% The mean squared error is defined as 

mse = e'*e./(n-p); 

%Square the residuals and total them to obtain the residual sum of squares:% 

SSresid = sum (e. ^2); 

% Compute R Pearson correlation coefficient 

r=corr(Y_verify , Y_hat); 

% Compute R^2 coefficient of determination 

rsq =r^2; 

%-------------------------------------| 

%        Step 5 : Output                  | 

%-------------------------------------| 

% The results are plotted analysis 

Plot(Y_verify ,'r-', 'LineWidth', 2); 

% Label the curve for function f in red 

Text(7.5, 5.4, 'Y  Observed Chla', 'Color', 'r', 'LineWidth', 2);  

Hold all 

Plot(Y_hat,'b-', 'LineWidth', 2); 

Text(7.5, 5.2, 'Yhat  Predcited Chla', 'Color', 'b', 'LineWidth', 2); 

xlabel('x=Years 2003 to 2011','FontSize',12); 

ylabel('Chla concentration μg/L’,'FontSize',12); 

 

 

 

 

 

 

  



121 

Appendix C: Multiple Nonlinear Regressions  

 The concept in developing a nonlinear regression model is based on understanding the 

distribution shape of the data under investigation. First we search for a known nonlinear function 

that shares a similar shape for the data distribution in question, then by MNR model is obtained 

by adjusting the coefficients of the known nonlinear function to fit in the data distribution.  

Figure C.1 is a screen shot for the IBM SPSS multiple nonlinear regression setup menu, 

illustrating where a known nonlinear a function is required to commence with MNR modeling. 

 

Figure C.1 IBM SPSS, MNR setup menu 

 The first task is to start with the MNR modeling to find a nonlinear function that shares 

similar shape to chlorophyll-a observed data distribution for Lake Champlain, for this step the 

chlorophyll-a observed data distribution records for the 15 monitoring stations of lake Champlain 

are presented in table C.1 is plotted as a graph on figure C.2  

 

 From figure C.2 we notice that almost each station has its unique oscillating shape and 

that there isn’t a common or specific function that can be used to describe the distribution of all 

the stations; consequently, we can’t proceed with the multiple nonlinear analysis 
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Table C.1 Chla yearly data records for lake Champlain 

 

 

Figure C.2 Lake Champlain Chla yearly data  

Year 

Chla 

02 

Chla 

04 

Chla 

07 

Chla 

09 

Chla 

16 

Chla 

19 

Chla 

21 

Chla 

25 

Chla 

34 

Chla  

33 

Chla 

34 

Chla 

36 

Chla 

40 

Chla 

46 

Chla 

50 

Chla 

51 

1992 8.11 9.15 5.63   4.74 5.48 3.88 5.84 6.08 5.84 5.57  4.8 9.5  

1993 7.04 4.62 5.25   3.33 4.07 3.08 5.37 4.76 5.37   4.5 7.2  

1994 6.52 8.37 5.27   4.33 5.25 3.3 4.11 4.26 4.11 5.36  4.17 7.85  

1995 10.79 6.85 3.05   4.16 3.86 2.8 4.86 3.87 4.86 3.54 6.57 4.12   

1996 5.77 5.67 4.44   4.04 3.91 3.49 4.38 3.86 4.38 3.71 8.69 4.54 25.77  

1997 5.16 5.01 4.78   4.61 3.99 4.02 5.95 4.14 5.95 4.28 12.01 3.26 10.58  

1998 4.25 7.28 4.72   3.86 4.72 4.66 5.01 3.38 5.01 4.74 8.38 3.09 9.63  

1999 6.51 6.63 6.83   4.7 5.43 4.38 5.22 4 5.22 3.05 15 2.74 29.56  

2000 5.85 5.22 5.98   3.66 4.56 2.87 9.12 3.77 9.12 2.73 17.66 2.37 6.72  

2001 6.45 6.61 3.49 3.02 3.25 3.43 2.95 2.43 5.31 2.33 5.31   2.39 8.01  

2002 5.09 4.57 1.82 2.19 1.83 1.52 2.11 2.46 4.28 1.76 4.28 2.2 13.86 1.32 9.16  

2003 6.48 8.11 5.46 4.27 2.74 2.91 2.95 2.62 4.92 2.39 4.92 4.12 9.44 2.28 12.64  

2004 5.36 10.53 5.45 3.69 4 3.62 3.84 3.33 6.77 3.08 6.77 4.17 7.77 4.61   

2005 11.92 11.82 10.34 6.52 4.98 5.34 4.59 2.66 6.21 3.43 6.21 3.76 8.62 4.76 11.89  

2006 5.04 6.25 6.17 6.26 4.47 4.34 4.2 3.15 6.37 4.27 6.37  8.89 2.69 12.36 19.53 

2007 9.09 7.02 4.92 3.82 3.02 3.32 3.18 3.45 4.54 2.56 4.54 3.4  3.39 9.27 10.91 

2008 6.63 6.1 4.8 4.82 3.6 3.34 3.27 3.13 4.89 3.8 4.89  8.66 2.77 15.79 13.52 

2009 7.7 6.2 4.9 5.3 3.69 2.9 4.05 3.2 4.98 2.38 4.98 3.38 5.54 1.95 7.92 11.41 

2010 7.26 6.59 4.87 3.64 3.44 3.1 3.2 2.88  2.64  3.57  4.23 16.83 15.34 

2011 10.66 16.65 6.25 5.22 5.53 4.62 4.04 2.83 5.25 4.7 5.25  7.97 3.66 10.99 16.06 
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Appendix D:  

D.1 Data Mining Results for Entire Lake Data  

 

Chla = 4.83662 + 2.63347e-7*TP*Secchi*TN^2 + 2.63347e-

7*TP*TN^2*cos(0.0663525 + Year) - 0.75498*Secchi 

 

Chla = 4.8539 + 2.63347e-7*TP*Secchi*TN^2 + 2.63347e-

7*TP*TN^2*cos(Year) - 0.75498*Secchi 

 

Chla = 4.78993 + 2.63347e-7*TP*Secchi*TN^2 + 

2.55028*cos(Year)/(0.0752586 + Secchi) - 0.753823*Secchi 

 

Chla = 4.7918 + 2.4918*cos(Year)/Secchi + 2.63347e-

7*TP*Secchi*TN^2 - 0.753823*Secchi 
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D.2 Data Mining Results for Main Lake Data (Without Stations 02,04,50 and 51)   

  

Chla = 1.660 + (TP*RegAlk + 228.652*cos(-0.870*Year) + 

219.920*cos(2085.364*cos(-0.8577*Year)))/(44.149*Secchi + 

TempC*Secchi) 
 

 

Chla = 1.758 + (0.015*TP*RegAlk + 3.602*cos(-0.870*Year) + 

3.725*cos(2085.391*cos(-0.857*Year)))/Secchi 
 

 

Chla = 1.849 + (0.014*TP*RegAlk + 3.973*cos(2085.427*cos(-

0.857*Year)))/Secchi + cos(-0.889*Year) 
 

 

Chla = 1.730 + (TP*RegAlk + 236.708*cos(-0.851*Year) + 

175.643*cos(1.363*Year))/(46.559*Secchi + TempC*Secchi) 
 

 

 

 

 

D.3 Data Mining Results for North Lake Data Stations 50 and 51  
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Chla = 38.493*10
-5

*TP*TN + 3.122*sin(Year - Cl - 

cos(RegAlk)) 
 

 

Chla = 37.157*10
-5

*TP*TN + 2.178*sin(5.974 + Year - Cl) 
 

 

Chla = 5.940*Depth + 0.0422*TP*sin(7.1271*Year) - 13.99 
 

 

Chla = 5.908*Depth + 1.834*sin(7.123*Year) - 13.829 
 

 

 

 

 

 

 

 

 

D.4 Data Mining Results for South Lake Data Stations 02 and 04 
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Chla = 0.076*TP + 0.032*Year*Depth + 

1.480*exp(cos(Year)
 2

) - 3.711*Secchi - 65.1131*Depth 
 

 

Chla = 4.691+ 0.027*Year*Depth + exp(cos(Year)
2
) - 

3.586*Secchi - 53.827*Depth 
 

 

Chla = 49281.115 + 0.136*TempC + 0.098*TP + 

0.031*Year*Depth + 0.012*Year
2
 - 2.392*Secchi - 

49.199*Year - 61.672*Depth" 

 

Chla = 0.125*TempC + 0.087*TP + 0.030*Year*Depth - 

0.485 - 3.350*Secchi - 60.663*Depth 

 

 

 


