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ABSTRACT

Cooperative Control and Connectivity Assessment of Multi-Agent Systems subject

to Disturbance and Constrained Measurements

Mohammad Mehdi Asadi,

Concordia Unviersity, 2014

The problem of designing distributed control strategies and developing con-
nectivity metrics for multi-agent systems subject to constrained measurements and
external disturbances is studied in this work. The constraint on the field of view
(FOV) of the sensing devices used in multi-agent networks is ubiquitous in a wide
range of applications. Such constraints have a fundamental impact on the overall
performance of the network. The consensus and containment problems for a net-
work of single-integrator agents are investigated, where each agent is assumed to
have a sensor with a constrained angular FOV. The flocking problem for a network
of double integrators with constrained FOVs is then investigated, where each agent
is assumed to be equipped with relative distance and bearing angle sensors, with
conic-shaped sensing areas of limited visibility. The angular velocity of the FOV of
each agent along with the corresponding control inputs are designed such that the
flocking objectives are achieved in a certain neighborhood of the desired configu-
ration. A distributed consensus controller for a network of unicycle agents subject
to external disturbances in input channels is also developed for two different cases
of disturbances with known linear dynamics and unknown disturbances with known
upper bounds. Then, a multi-agent system composed of underwater acoustic sensors
is considered, where the network is modeled by a random graph. Different notions
for the connectivity assessment of the expected graph of a random network are in-
troduced, and efficient algorithms are developed to evaluate them. Simulations are

provided throughout the work to support the theoretical findings.
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Chapter 1

Introduction

Cooperative control of multi-agent systems has attracted significant attention in
the past decade due to its wide range of applications in various fields of science
and technology. Multi-agent networks are widely used in both civilian and military
applications, such as air traffic control, formation flight of UAVs, deep-space missions
and spacecraft formation, automated highway systems, and reconnaissance missions
[1, 2, 3, 4, 5, 6, 7|. In these types of systems, the local control laws are designed
for each particular agent such that a global objective is achieved over the entire
network with appropriate information exchange among the agents. Various tasks can
be considered as the global objective, including consensus, rendezvous, containment,
formation, and flocking |8, 9, 10, 11, 12, 13, 14, 15|. In the consensus and rendezvous
problems, it is desired that all the agents in the group reach a single point in the
state space |8, 9, 10, 11|, whereas the containment problem is concerned with the
coordination of a subset of the agents in such a way that they converge to the
convex hull formed by the rest of the agents [12|. In the formation problem, the
agents are aimed to form a desired configuration specified by their relative positions
[13], while the flocking objective is concerned with an agreement in terms of the

agents’ velocities and orientations |14, 15].



In cooperative control of multi-agent systems, each agent is required to measure
some variables of other agents such as relative positions, relative velocities, and
headings of the neighboring agents for example. One of the main assumptions in
the distributed control of multi-agent system is the connectivity of the information
flow graph of the network which plays a key role in achieving the global objectives
defined over a team of agents. The interaction topology between agents may change
over time in different applications due, for example, to unreliable data exchange,
constraint on the communication range, and limited data rate [16, 17, 18]. Also,
different connectivity conditions on the dynamic interaction graph of a network have
been proposed in the literature to perform the desired coordination tasks by a team of
agents [8, 19, 20|. The connectivity of the union interaction graph over a sufficiently
large time interval has been proposed as a necessary and sufficient condition to
achieve state agreement in |21| provided a certain sub-tangentiality condition is
satisfied by the vector fields describing the network dynamics. The “uniform joint
connectivity” of the switching information flow graph is obtained as a necessary
and /or sufficient condition to reach robust consensus in a network of single-integrator
agents in [22, 23|. A variant of uniform connectivity on a fixed or switching directed
interaction topology is proposed in |24| to solve the containment problem over a
network of single integrators. The connectivity condition for achieving consensus in
a network of high-order integrators with a switching directed topology is studied in
[25].

The flocking problem in multi-agent systems, in particular, has been inves-
tigated by researchers in biology, physics, robotics and control [14, 26, 27, 28, 29,
30, 31, 32]. A flocking model is proposed in [26] to mimic the collective behav-
ior of birds, which includes velocity matching, collision avoidance and cohesion, as
three basic flocking rules. Motivated by [26], a theoretical framework is provided

in [14] for the analysis and development of flocking algorithms with and without



obstacles. The flocking problem for a network of nonholonomic agents is investi-
gated in [27|, where the agents can only use the visual information received by their
onboard sensors. Tracking the trajectory of a virtual leader is addressed in 28|,
where the flocking problem is formulated in the framework of switching systems due
to the time-varying network topology. In [29], a set of coordination control laws
are introduced to achieve a desired stable flocking motion using a directed graph
for the exchange of the velocity information. An alignment/repulsion flocking algo-
rithm is developed in [30] to coordinate the agents toward a stable and uncrowded
flock, while the problem of flocking control over a group of agents with intermittent
nonlinear velocity measurements is studied in |31]. The authors of |32] address the
flocking control and connectivity preservation problems for a team of nonholonomic
agents with switching information flow graph.

The constraint on the field of view (FOV) of the sensing devices used in multi-
agent systems is ubiquitous in a wide range of applications. This can have a fun-
damental impact on the overall performance and controller design of the network.
Typically, the FOV limitation is characterized by a radial and/or angular constraint,
where the former has been addressed in the literature of the cooperative control
problem; e.g., see [15, 33|. In certain type of sensors such as vision-based cameras,
laser range finders, and sonar arrays, on the other hand, the FOV has angular lim-
itation (e.g., see [34, 35, 36]). The sensing area of this type of sensors is usually
a conic-shaped region centered at the sensor. The cooperative control problem in
multi-agent systems equipped with the sensing devices whose FOVs are constrained
has been investigated to some extent in the literature [15, 37, 38, 39, 40]. The col-
lective circular motion of a team of nonholonomic vehicles is studied in [37], where
the local perception of each vehicle is limited to a sector-shaped visibility region and
the connectivity of the sensing graph is presumed. Attitude consensus in a group

of nonholonomic robots using vision-based sensors with constrained angular FOVs



is addressed in [38|, where the undirected sensing graph of the network is assumed
to be fixed and connected at all time instants. Distributed topology control for a
multi-agent network is investigated in |39], where all sensors are assumed to have
limited FOVs which are not necessarily identical. Moreover, it is presumed in [39]
that a bidirectional communication link is established between a pair of agents if a
directed sensing link exists between them. The flocking problem for a network of
double integrators with switching topology is studied in [15], where the switching
happens as a result of the limited sensing range of the sensors, and the connectivity
of the underlying sensing graph of the network is assumed at all times. The prob-
lem of distributed motion coordination for a team of mobile robots is studied in
[40], where the controller of each robot requires local vision-based measurement of
its neighbors. However, it is assumed in the above work that the information flow
graph of the network remains fixed and connected, and that the cameras used by
the agents are omnidirectional. A rotating FOV is proposed in [34, 36, 41, 42] to
cope with the limitation in the FOV of sensing devices. In the pursuit-evasion prob-
lem for a team of mobile robots 34|, the notion of the ¢-searcher is introduced to
represent a mobile robot equipped with a visual sensor whose FOV can freely rotate
with a bounded angular velocity independent of the robot’s motion. A fly-inspired
visual rotating sensor with limited FOV is also presented in [41|, which is capable
of accurate measurements while maintaining the practical constraints required for
the operation of micro aerial vehicles (MAV). Moreover, a distributed algorithm for
the rotation of the FOV of a network of directional sensors is developed in 42| to
improve the overall sensing performance.

As discussed in the previous paragraph, the control laws developed in the liter-
ature for the cooperative control problem of multi-agent systems with limited FOVs
have a number of shortcomings, including (i) a priori assumption on the connectiv-

ity of the underlying network and presuming a fixed topology for the information



flow graph [15, 38, 40]; (ii) the need for communication links for information ex-
change in addition to the sensor measurements [39]; (iii) labeling the agents in such
a way that different agents are distinguishable |[40|, and (iv) assuming a completely
(or partially) undirected topology for the information flow graph of the network to
address the flocking problem [15, 29].

In Chapter 2, the consensus and containment problems for a network of single-
integrator agents are investigated, where each agent has a sensor with a constrained
angular FOV. The flow of information between agents is represented by a dynamic
sensing directed graph, with no assumption on its connectivity (it could be discon-
nected at any point in time). Moreover, it is assumed that the agents are identical
and indistinguishable; hence, no labeling of the agents is required. Also, no com-
munication link is needed between agents because each agent obtains the required
information from its sensor. Two steps are taken to tackle the problem. In the
first step, an impulsive switching control strategy is proposed for the case of half-
plane FOVs to drive a group of single-integrator agents toward a common location
(consensus), while preserving uniform quasi-strong connectivity of the network by
instantaneous rotation of the FOVs. The proposed controller is then generalized
to address the containment problem in such a way that the required connectivity
condition is satisfied over sufficiently large time intervals [43]. In the second step,
the consensus and containment problems are investigated for a network composed
of single integrators with limited heterogeneous angular FOVs. It is assumed that
the FOV of every agent rotates with a constant angular velocity (independent of
the agents’ motion) to cover a sufficiently wide area. Then, the velocity vectors are
designed and a lower bound on the angular velocity of the FOVs is obtained such
that the agents asymptotically converge to an arbitrarily small ball in the consen-
sus problem while the angular velocity of the FOVs remains below a certain value.

Moreover, a trade-off between the size of the convergence ball, the lower bound on



the magnitude of the angular velocity of the FOVs, and the upper bound on the
magnitude of the velocity vector of every agent is introduced. The control law is
modified subsequently to solve the containment problem as well [44, 45].

Chapter 3 investigates the flocking problem in a network of double integrators
with constrained radial and angular FOVs. The FOV limitation of the sensing de-
vices introduces new challenges in reaching the objectives of the flocking problem
and preserving the network connectivity. Vision-based sensors with conic-shaped
FOVs are assumed to be mounted on every agent. These sensors are capable of
measuring the relative position and bearing angle of an agent w.r.t. its neighbors.
Hence, unlike the existing literature on flocking, the problem is formulated using
a completely directed information flow graph. It is also assumed that the FOV of
every agent can rotate with a constant angular velocity in order to cover a larger
area. Thus, the corresponding information flow graph has a switching topology
with no connectivity assumption required. Moreover, each agent receives the re-
quired information from its sensors to generate the control signal and there is no
need to establish any communication link to exchange such information. The notion
of e-flocking is introduced to address a scenario where the flocking is achieved in
a certain neighborhood of the desired configuration. A potential function is then
provided which takes into account the information about the neighbor set of every
agent. This function varies smoothly after any switching in the network topology. A
common Lyapunov function is subsequently constructed which guarantees conver-
gence in e-flocking while the underlying sensing graph remains uniformly strongly
connected. The distributed control input for each agent is designed as a combination
of alignment and attractive/repulsive forces [46].

The work presented in Chapter 4 concentrates on the cooperative control of

a network of autonomous agents with unicycle dynamics. Different aspects of this



problem are thoroughly studied in the literature [47, 48, 49, 50, 51, 52, 53]. Neces-
sary and sufficient conditions for the feasibility of a class of formations are presented
in [47]. Yamaguchi |48| presents a different type of time-varying control strategy for
group formations. In [49], the formation control problem for a network of unicy-
cle agents is investigated, and a relationship between formation infeasibility and
flocking behavior of a nonholonomic multi-agent system is provided. In [50], the
connectivity preservation problem is investigated as a further design specification in
the distributed control of a network of unicycle agents. A connectivity preserving
containment control strategy for unicycles is presented in [51|. As another problem
of practical interest, the obstacle avoidance specification is investigated in |52| by
introducing a novel formation control law based on artificial potential functions for
a network of nonholonomic vehicles. The problem of controlling a team of mobile
robots navigating in a terrain with obstacles is investigated in |53|.

The disturbance rejection problem in distributed control of multi-agent sys-
tems has been investigated for agents with different types of dynamics. The authors
of |54] derive a static state feedback controller for an interconnected network of
linear agents, to reach consensus with optimal Hy performance in the presence of
external disturbances. In 55|, the robust decentralized servomechanism problem
is investigated for a multi-input multi-output (MIMO) linear time-invariant (LTI)
system subject to parameter uncertainty. Necessary and sufficient conditions are
derived to achieve disturbance rejection and reference tracking for the case where
disturbances and reference signals have linear dynamics. Consensus control of multi-
agent systems in the presence of external disturbances is also studied for agents with
single-integrator and double-integrator dynamics [56, 57, 58, 59, 60, 61, 62|. The
consensus control design for a directed network of single-integrator agents with ex-
ternal disturbances and model uncertainty is investigated in [56]. Conditions are

provided under which the agents reach consensus with the desired H,, performance.



The authors of [57] propose a so-called “lazy policy” for the e-consensus of a network
of single-integrator agents only perceiving a disturbed measure of the neighbors’
state. In [58], the authors consider the consensus and formation control problem for
a multi-agent system composed of single integrators subject to unknown and per-
sistent disturbances. The effect of disturbances is then compensated by introducing
an integral action embedded in the proposed control laws. The work presented in
[59] studies the consensus of double-integrator agents in the presence of linear dis-
turbances. It provides conditions in the form of linear matrix inequalities (LMI)
to guarantee convergence to consensus. In |60, a distributed finite-time consensus
control strategy for double-integrators is proposed. It is shown that in finite time the
agents reach consensus when there is no disturbances, and converge to a consensus
region in the presence of disturbances. The robust consensus control design for the
case of double-integrator agents as well as a class of high-order agents is studied in
[61, 62].

Distributed consensus control strategies for a network of unicycle agents sub-
ject to disturbances in all input channels corresponding to translational and angular
velocities are presented in Chapter 4. The controller design is first investigated for
the case of known linear disturbance dynamics with unknown initial conditions. The
proposed controller in this case is a combination of a controller for the disturbance-
free case and a term which compensates for the disturbances. The general case of
disturbances with bounded unknown dynamics is also investigated, where only up-
per bounds on the magnitude of the disturbances are assumed to be available. The
key idea is to design the control inputs in such a way that agents eventually move
within a Z-angular distance of a reference control vector which is typically used for
the consensus of disturbance-free single-integrator agents. This is achieved by us-
ing sufficiently large gains in the translational and angular velocities of the agents.

Lyapunov analysis is then used to show convergence to consensus. The proposed



controller may lead to chattering in the headings of the agents, in general. This
drawback is addressed by forcing the agents to stop as soon as all of them enter a
2D ball of pre-specified radius [63].

There has been a surge of interest in recent years on the implementation of
efficient sensor networks for various applications [64, 65, 66]. Examples of sensor
network applications include environmental monitoring, surveillance and healthcare
systems, to name only a few |67, 68, 69]. Several papers in different disciplines in
the literature have addressed different aspects of sensor networks. This includes
modeling, analysis and development of effective algorithms, in order to achieve a
prescribed global objective such as coverage and tracking |70, 71, 72|. Some of the
problems closely related to the design of efficient sensor networks include computa-
tional limitations, sensing power of sensors, and network connectivity |73, 74, 75]|.
As a particular application, an underwater acoustic sensor network (UASN) consists
of a number of fixed or mobile sensors deployed in the underwater environment,
which are capable of sending/receiving data using acoustic communication channels
|76, 77, 78]. A typical objective for such networks is to perform data aggregation for
a wide range of applications which include underwater exploration, ocean sampling,
climate reporting, and disaster prevention |79, 80, 81, 82, 83|. Unlike the commu-
nication channels used in terrestrial sensor networks, there are several sources of
uncertainty which influence the communication between underwater nodes such as
multi-path propagation, temperature and salinity fluctuations, scattering and re-
verberation, variation of sound speed profile and underwater currents |84, 85, 86|.
These sources of uncertainty vary over time and space, resulting in highly temporal
and spatially variable acoustic channels [84], and making random graphs a good
candidate to model the underwater acoustic sensor networks [87, 88, 89|. As a re-
sult, an underwater acoustic sensor network possesses a time-varying structure with

the possibility of edge addition/deletion. Also, the node deletion can occur as a



probable scenario for underwater applications due to limited sensor battery life [90].

It is shown in [91, 92, 93, 94] that various tasks such as consensus, distributed
estimation, target localization and data aggregation over a random sensor network
can be achieved cooperatively as long as the expected communication graph of the
network remains connected. Moreover, the performance and convergence rate of
the cooperative algorithms running over a random network depend heavily on the
connectivity degree of the expected graph of the network [95]. Vertex connectivity
is introduced in [96, 97| as a measure of connectivity to evaluate the robustness
of a sensor network to node failure. A fault-tolerant topology control procedure is
subsequently proposed in [96] to minimize the power consumption of the network
while maintaining a certain degree of connectivity over the entire network. In [97],
efficient algorithms are introduced to improve the vertex connectivity of a heteroge-
nous wireless sensor network using relay node placement. Various polynomial-time
algorithms have been provided in the literature to measure the vertex connectivity
degree of a graph |98, 99, 100|. The general idea behind these algorithms is that
the degree of vertex connectivity for any pair of nonadjacent nodes in a graph can
be formulated as a problem of finding multiple vertex-disjoint paths between those
nodes [101]. By establishing multiple disjoint paths between a source and a destina-
tion in an optimal manner, the network characteristics such as energy conservation,
load balancing, and robustness to failure can be improved. The multi-path routing
is proposed in [102] as a method to improve the quality-of-service (QoS) of commu-
nication networks. Different procedures are proposed in the literature to obtain a
set of disjoint paths between two nodes satisfying certain properties. An algorithm
is proposed in [103, 104| to find a pre-specified number of vertex-disjoint paths from
a source node to a destination node with minimum total weight in a directed graph.
In [105], the authors propose a procedure to find a number of parallel vertex-disjoint

paths which can be used to transmit data with maximum reliability.

10



Motivated by the recent applications of data aggregation over underwater
acoustic sensor networks, a novel metric of connectivity is developed in Chapter 5 to
evaluate the connectivity of the expected communication graph of a random sensor
network. The notion of weighted vertex connectivity is introduced as an extension
of the vertex connectivity notion reflecting the combined effects of the reliability
of the paths and the network robustness to node failure on the connectivity of the
expected communication graph. The problem of finding the weighted vertex connec-
tivity measure is then transformed into a sequence of modified iterative deepening
depth-first search and maximum weight clique problems. An approximation of the
weighted vertex connectivity measure is subsequently proposed which provides a
lower bound on the original metric and can be computed by applying a polynomial-
time shortest path algorithm sequentially [88]. A distributed adaptive estimation
scheme is also developed to estimate the underlying expected communication graph
of the network from the viewpoint of each sensor [89]. The proposed connectivity
measure and its approximation are computed in a simulation environment, and are
verified by experiments.

The results of this dissertation are published (or submitted for publication) in
a number of journals and conference proceedings (|43, 44, 45, 46, 63, 88, 89|). These

publications are listed below for different chapters.

e Chapter 2

1. M. M. Asadi, A. Ajorlou, and A. G. Aghdam, "Distributed control of a
network of single integrators with limited angular fields of view," Auto-

matica, 2015 (to appear).

2. M. M. Asadi, A. Ajorlou, and A. G. Aghdam, "Distributed control of
multi-agent systems with rotating field of view," in Proceedings of Amer-

scan Control Conference, 2013, pp. 2044-2049.
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3. M. M. Asadi, A. Ajorlou, and A. G. Aghdam, "Cooperative control of
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American Control Conference, 2012, pp. 2388-2393.
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4. M. M. Asadi, M. Khosravi, and A. G. Aghdam, "Flocking in multi-agent

networks with limited fields of view," Automatica, 2015 (submitted).

5. M. M. Asadi and A. G. Aghdam, "Potential-based flocking in multi-agent

systems with limited angular fields of view," in Proceedings of American

Control Conference, 2014, pp. 299-304.
e Chapter 4

6. A. Ajorlou, M. M. Asadi, A. G. Aghdam, and S. Blouin, "Distributed
consensus control of unicycle agents in the presence of external distur-

bances," Systems & Control Letters, 2013 (submitted).

7. A. Ajorlou, M. M. Asadi, A. G. Aghdam, and S. Blouin, "A consensus
control strategy for unicycles in the presence of disturbances," in Pro-

ceedings of American Control Conference, 2013, pp. 4039-4043.
e Chapter 5

8. M. M. Asadi, H. Mahboubi, J. Habibi, A. G. Aghdam, and S. Blouin,
"Distributed connectivity assessment of random directed graphs with ap-
plications to underwater sensor networks," IEEFE Transactions on Control

Systems Technology, 2015 (submitted).

9. M. M. Asadi, M. Khosravi, A. G. Aghdam, and S. Blouin, "Joint power
optimization and connectivity control problem over underwater random
sensor networks," in Proceedings of American Control Conference, 2015

(to appear).
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sensor networks," in Proceedings of the 28th IEEE Canadian Conference

on Electrical and Computer Engineering, 2015 (to appear).
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connectivity assessment via local data exchange for underwater acous-
tic sensor networks" in Proceedings of ACM Research in Adaptive and
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vant papers during the course of this study (|106, 107]).
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Chapter 2

Distributed Control of A Network of
Single Integrators with Limited

Angular Fields of View

The consensus and containment problems in a multi-agent system consisting of single
integrators with angular field of view (FOV) constraints in their sensing capabilities
are investigated in this chapter. First, it is assumed that all FOVs are half-planes
and an impulsive switching strategy is developed such that the underlying directed
graph of the network remains uniformly quasi-strongly connected (UQSC) through-
out the system evolution. The control schemes are designed in the framework of
switched interconnected systems in such a way that the objectives of consensus and
containment are achieved over the entire network. Then, the problem is extended
to address a network of single-integrator agents with limited heterogeneous angular
FOVs. The FOV of all sensing devices are assumed to rotate with sufficiently large
angular velocities, which are controlled independently along with the translational
motion of all agents. The velocity vector and the lower bound on angular velocity

magnitude of the FOVs are designed such that the agents converge to an arbitrarily
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small ball, and reach consensus. The convergence of the moving followers to the
convex hull of static leaders is addressed for the containment problem as well.

The remainder of this chapter is organized as follows. Some useful prelimi-
naries and definitions are presented in Section 2.1. The consensus and containment
problems for a network of single-integrator agents with half-plane FOVs are inves-
tigated in Section 2.2. Then, the results are extended to a team of single-integrator
agents with limited heterogeneous angular FOVs in Section 2.3. Simulations are

provided in Section 2.4 to verify the effectiveness of the proposed control strategies.

2.1 Preliminaries

Throughout this chapter, N, Z>(, and R>( denote the set of natural, nonnegative
integer, and nonnegative real numbers, respectively. The inner product of two arbi-
trary m-dimensional vectors v,w € R™ is represented by (v, w), and ||v| indicates
the Euclidean norm of v on R™. Moreover, the cardinality of a finite set ® is denoted
by card(®).

Some important background information along with useful definitions are pro-
vided in this section. An m-dimensional switched interconnected system composed

of n agents can be described as:

Q(t) = fow(a(?)), (2.1)

where ¢ € R™ denotes the state vector and o(t) : Rsg — ' is a piecewise constant
switching signal. Also, Z = {t; | tx < tx+1, k € Z>o} represents the set of switching
time instants, and the finite set I' contains the indices of the entire family of vector
fields f,’s, v € I', where f, = [fvl ff fﬁ]T Let Yguwen(7p) denote the class of
piecewise constant switching signals o(t) such that for any t, tpy1 € Z, k € Z>o,

the relation t;.; —t; > 7p holds for a positive constant 7p, which is called the dwell
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time [108]. The notion of 2D conic area which is used to describe the FOV of agents

is defined in the sequel.

Definition 2.1. A 2D conic area is defined as a nonempty set C C R? such that
Ag € C for any ¢ € C and A\ > 0. In other words, C is the union of a set of
half-lines that start at a common apex point O and extend to infinity. The apex
angle o € (0,27] is defined as the angle between the two half-lines which form the

boundaries of the conic area.

The FOV of the i-th agent is characterized by the apex angle «;, indicating the
angular limitation of the agent’s sensing device and the apex point ¢;, representing
the position of agent 7. Let é; be a unit vector which passes through ¢; and is
directed toward the interior of a conic area such that it bisects the angle ;. The
corresponding FOV, denoted by a 2D conic area €2;, can be formulated as:

<éi7 (q - QZ>>

2 Q;
.= > — . 2.2
& {QER o —al —COS<2)} (2.2)

For the special case of an agent with half-plane FOV, «; is equal to 7 and €2; can

be simplified as:

Q={geR| (&, (¢—a)) >0} (2.3)

Consider a directed graph (digraph) G = (V, E), where V is the set of vertices and
E is the set of edges. The vertex j is said to belong to the neighbor set of vertex
i, denoted by N;, if the directed edge (7,4) pointing from j to ¢ belongs to the edge
set of the graph, i.e. (j,i) € E. Moreover, the in-degree of the i-th vertex is defined

as di" = card(N;). The convex hull formed by a set of points is defined as follows.

Definition 2.2. Given a set of points Q = {q1,...,q,} in R™, the convex hull of Q
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1s defined as:

1=1

¢ € Q, A € Ry, Z&Zl}. (2.4)
i=1

Moreover, the diameter of the convez hull of Q), denoted by diam(conv(Q)), is given
by:

diam(con = ma i — qill. 2.9
(conv(Q) = _max_ g — g 25

Definitions 2.3-2.10 address some important concepts related to the underlying

information flow graph of the network and the associated connectivity notions.

Definition 2.3. The sensing digraph G = (V| E) associated with a network of n
agents with a limited angular FOV €; for agent i, i € V, is defined by the following

vertex and edge sets:

V={12,...,n}, (2.6a)

Fig. 2.1 depicts an example of sensing digraph G for a network of four agents

with limited angular FOVs as defined earlier.

q1

Q

q'zé

0

qa A
Q4 qs

Figure 2.1: An example of a sensing digraph G (left side) corresponding to a network
of four agents with limited angular FOVs (right side).




Definition 2.4. Given a digraph G, a vertex j is said to be reachable from a vertex
1, if there is a directed path from v to j. The set of all vertices from which a vertex

i is reachable in G is denoted by R;(G).

Definition 2.5. The complement of a digraph G = (V, E), denoted by G = (V, E°),
is a digraph whose vertex set is the same as G, and (i,j) € E° if and only if (i,j) ¢ E

for every pair of distinct vertices i,j € V.

Definition 2.6. The converse digraph of G = (V, E) is shown by G* = (V, E*),
where its verter set V' is the same as G, and (i,7) € E* if and only if (j,i) € E for

every pair of distinct vertices i,5 € V.

Definition 2.7. Given a digraph G = (V, E), the mirror of G is an undirected
graph, denoted by G = (V, E), whose vertices are the same as G, and whose edges

are given by the set E = EU E*.

Definition 2.8. Diameter of an undirected graph G = (V, E) is defined as diam(G) =
max; jev dg(i,5), where dg(i,j) denotes the number of edges in the shortest path

connecting two distinct vertices i,5 € V.

Definition 2.9. A digraph G = (V, E) is said to be quasi-strongly connected (QSC)
if for every two distinct vertices i and j of G, there is a vertex from which both i

and j are reachable.

Definition 2.10. A dynamic interaction digraph Gy is uniformly quasi-strongly
connected (UQSC) if there exists T > 0 such that the union digraph UTE[t’ 4T G(7)
is QSC for allt and o(t) € Zgweu(Tp)-

The following definition and lemma are borrowed from [21], and provide suffi-

cient conditions for the system (2.1) to reach consensus.
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Definition 2.11. Consider the vector fields ffy R™ - R™ eV, vel de
scribing the switched interconnected system (2.1). Then, f,’y satisfies the strict sub-
tangentiality condition if f1(q(t)) € ri(T(qi(t),conv(Q?))), where Q% = {q(t),
q;(t) | 7 € Ni(t), o(t) =}, ri(®) denotes the relative interior of the set ®, and

T (q,®) represents the tangent cone to the set ® at q.

Lemma 2.1. Consider the switched interconnected system (2.1) composed of n
agents in m-dimensional space which share a common space S C R™, where S
is closed and convex. For all agents v € V and all v € T, let the vector fields
f,’y : R™ — R™ be locally Lipschitz on 8™ and satisfy the strict sub-tangentiality
condition, while o(t) € Yaweu(Tp). Then, system (2.1) reaches asymptotic con-
sensus and agents converge to a common location in S if the dynamic interaction

digraph Go) is UQSC.

2.2 A Network of Single-Integrator Agents with Half-

Plane FOVs

Consider the planar motion of a multi-agent system composed of n single integrators

with half-plane FOVs, described by:

Gi(t) = wi(t), (2.7)

where ¢;,u; € R? represent the position and velocity vectors of the i-th agent,
respectively. Let 6; € (—m, 7| denote the direction of the bisector of the FOV of
agent ¢ w.r.t. a fixed inertial frame. Moreover, the interaction between the agents
is characterized by a prescribed sensing digraph . Assume that each agent is
equipped with a sensor, capable of measuring relative positions with a half-plane

FOV, which is fixed w.r.t. the body frame of the agent (locked to the agent). Also,
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the velocity vector of every agent and the bisector of its associated half-plane FOV
have the same direction for all £. It is straightforward to show that the neighbor set

of an arbitrary agent ¢ with half-plane FOV of €; is defined as:
. T
Nift) = {5 € Vi [ (0(t) = 6:(2)] < 5} (2.8)

where q;(t) = [x;(t) vi(0)]T, 0;;(t) = atan2(y;(t) — yi(t),x;(t) — z:(t)), 6;(t) =

atan2(u;, (1), wi, (1)), and:

v, v <m,

I(v) = (2.9)

v—2m, |v|>m.

Fig. 2.2 gives an example of agent ¢ and its half-plane FOV ; along with the
corresponding variables. The consensus and containment problems for a network of

single-integrator agents with half-plane FOVs are investigated in this section.

A

AN

Y=

Figure 2.2: An example of a single-integrator agent with a half-plane FOV.
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2.2.1 Consensus Problem

Network connectivity plays an essential role in the consensus problem. An important
lemma on network connectivity is presented next, which will be used to develop the

main results.

Lemma 2.2. A sufficient condition for a digraph G to be QSC is that the in-degree
of its vertices satisfies the relation mingey di* > cz, where d = ["T_l-‘, and n is the

total number of vertices in G.

Proof. Consider a digraph G = (V, E) which satisfies the condition miney di* > d,
i.e., the cardinality of the neighbor set of each vertex of G is not less than half of the
number of all other vertices of the digraph. To prove the lemma by contradiction,
assume that G is not QSC. By definition, there exists a pair of distinct vertices
u,v € V, such that there is no vertex from which both u and v are reachable.
Consider two vertices u,v € V such that d#,d" > d where d = [251]. The
following two cases are investigated:

(i) If (u,v) € E (or (v,u) € E), then u and v are reachable from all vertices
belonging to R, (G) (or R,(G)), which is in contradiction with the initial assump-
tion.

(ii) Assume that (u,v) ¢ E and (v,u) ¢ E. Since digraph G is not QSC and
on noting that N, C R,(G) and N,, C R,(G), thus:

N, NN, = 0. (2.10)

Furthermore, since the relations d" > d and dm > d hold for vertices u and v, one

can write:

[n—1] < d™ +d™, (2.11)
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On the other hand, it can be inferred from (2.10) that:
dm+d" <n-—2. (2.12)

But (2.11) and (2.12) are in contradiction since [n — 1] > n — 2. Therefore, R, (G)N
R,(G) # ) which means that there exists at least one vertex which has directed paths
to both u and v.

From the contradictions in the above two cases, one can conclude that the
digraph G is QSC if the number of neighbors of each vertex in G is greater than
or equal to half the number of all other vertices in G. In other words, G is QSC if

miney di* > d. O

Since all agents considered in this section are assumed to have half-plane FOVs,
it is guaranteed that the whole space can be covered by the FOV of each agent once
it rotates m radians. Therefore, the instantaneous turning of the FOVs can be
employed in the control strategy to use the sufficient condition of Lemma 2.2 in
addressing the network connectivity of a team of single integrators with half-plane

FOVs.

Theorem 2.1. Consider a multi-agent system consisting of n single-integrator agents
with half-plane FOVs described by (2.7). Apply the following impulsive switching

control law to the i-th agent:

u;(t) = (2.13)

where ri(t) = 3y — @), d= (224, pi(t) = max{7 | 7 < t, |6:(7) —6;(77)| =
7}, and § is a strictly positive finite constant. Then, all agents converge to a common

position asymptotically.
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Proof. Under the control law (2.13), the velocity vector of the i-th agent is given
by wu;(t) = r;(t) at time ¢ if either the number of neighbors in the FOV of this
agent is not less than ci, or the time passed since the last impulsive rotation of
Q; is less than §. In this case, the direction of the bisector of €2; is specified by
the angle 0;(t) = atan2(ry,(t), ri(t)), where 7y (t) = >y, (5 — ¥i) and 7, (1) =
> jeni(ty(®; — ;). It means that the bisector of €2; and the velocity vector w;(t)
have the same direction at time ¢ if either d(t) > d or t < p;(t) + 6, where p;(t)
represents the last time instant 7 < ¢, at which €2; rotated 7 radians instantly. Also,
u;(t) = —r;(t7) when the number of neighbors of agent i located inside €; is less
than d at time ¢ and the difference between t and p;(t) is not less than 6. According
to this control input, the direction of the velocity vector of agent 7 at time ¢ is in
the opposite direction of r; at time instant ¢~. This means that once di"(t) < d
and t > p;(t) + 9, §; rotates instantaneously, such that the FOV of agent i switches
to the other half-plane. Once the instantaneous rotation of §2; occurs at time ¢,
the relation |0;(t) — 6;(t7)| = = holds, which means the control input (2.13) is an
impulsive switching control scheme. Let i’; = {tix | i €V, k € Z>o} denote the set
of time instants that the impulsive rotation of the FOV of the i-th agent (driven by
consensus control input (2.13)) occurs. By definition, Zeno behavior is avoided if
the minimum time interval between any pair of successive time instants in the above
set is nonzero for all i € V' |23]. Moreover, it is implied from the control input (2.13)
that the minimum time interval between any pair of consecutive time instants at
which Q; rotates is not less than ¢ for all i € V. Thus, Z! has Lebesgue measure zero
for all i € V, and as a result Zeno behavior does not happen. It follows from (2.13)
that if an agent, say agent i, does not have at least d neighbors inside its FOV for all
time instants 7 € [t, t4¢], it can be ensured that €; rotates 7 radians instantaneously
at some point in the time interval [t,¢-+0]. In other words, there exists ;; € f; such

that t;;, € [t,t + 6] provided d(r) < d for all 7 € [t,t 4 6] and for some agent i at
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time t. Since the whole space S is covered by the half-plane 2; before and after its
rotation at f; ;, the inequality d?([t,t + ]) > d holds in the union sensing digraph
UTE[t’ 4] G(7) for all agents i € V at any time ¢. Hence, the sufficient condition
of Lemma 2.2 holds, and there exists a finite 7" > 0 such that the union sensing
digraph UTE[t’ 4] G(7) is QSC at any time t. Furthermore, the vector fields of the
network driven by (2.13) are locally Lipschitz and satisfy the strict sub-tangentiality
condition given in Definition 2.11. Therefore, the asymptotic convergence of agents

to a common location follows from Lemma 2.1, and this completes the proof. ]

2.2.2 Containment Problem

The control scheme developed in Subsection 2.2.1 will now be modified to address
the containment problem in a multi-agent system equipped with sensors having

half-plane FOVs. To this end, the following lemma is borrowed from [24].

Lemma 2.3. Consider a group of n autonomous agents with single-integrator dy-
namics given by (2.7). Let the vertex set of the corresponding dynamic interaction
digraph G,y be partitioned into two disjoint sets of static leaders Vi, and moving
followers Vi, where V=V, UVg, o(t) : Rsog = I', and o(t) € Sawen(mp). Apply the

following control law to all agents:

0, 1€ Vg,
u(t) = (2.14)

ZjeNi(t) aij(t)(qj — @), 1€ Vr,

where a;;(t) denote the (i,j)-th element of the adjacency matriz of the interaction
digraph G, = (V, E,) such that a;; > 0 if (j,i) € E, and a;; = 0 otherwise, for
o(t) =~ and any v € I'. Then, all followers will converge to the stationary convez
hull Vi, = conv({q; | j € Vi}) formed by the static leaders for arbitrary initial

conditions q;(0), i € Vg, if and only if there exists T > 0 such that for each follower
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1 € Vi there exists at least one leader j € Vi, that forms a directed path from j to i

in the union interaction digraph UTe[t 4T G(7) for any finite t.

The next lemma provides conditions to ensure the connectivity requirement of
the containment problem described in Lemma 2.3 for a network of single integrators

whose sensors have half-plane FOVs.

Lemma 2.4. Consider a digraph G = (V, E) composed of n vertices characteriz-
ing the information flow graph of a team of agents with half-plane FOVs. Let the
corresponding vertexr set V' be partitioned into two disjoint sets of static leaders V7,
and moving followers Vg, where V.=V, U Vg, np = card(Vy), and np = card(Vp).
Then, there is at least one leader j € Vi, for each follower i € Vg such that a directed
path from j to i exists in G if (i) np > np, and (i1) di" > d for all i € Vi, where

a=[1).

2

Proof. The proof is quite straightforward. In fact, if the two conditions n;, > ng
and d® > d hold for the i-th follower, then there is at least a leader j € V;, for

follower ¢ € Vi such that a directed edge from j to i exists in G. |

Lemma 2.4 provides sufficient conditions for the connectivity requirement of
Lemma 2.3. Therefore, under the assumptions of the Lemma 2.4, the impulsive
switching consensus controller (2.13) applied to all followers will result in contain-
ment as well. It should be noted that the condition ny > npg is restrictive but
necessary for the controller (2.13) proposed in Theorem 2.1 to address the contain-
ment problem. To see this, consider a leader-follower network with n; = 3, np = 4,
and d = 3. The network configuration is shown in Fig. 2.3, where the leaders
and followers are depicted by white and black circles, respectively. In this example
ng > nr, and none of the followers has a leader in its neighbor set, while the in-
equality d(t) > d holds for all followers at all time instants ¢ (note that d(¢) = 3

for all i € V). Hence, under the previously proposed controller (2.13), all followers
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will converge to a point outside the static convex hull of the leaders. This implies

Figure 2.3: A network of three leaders (white circles) and four followers (black
circles) with half-plane FOVs.

that the previous scheme for impulsive rotation of the FOVs based on the in-degree
of the followers needs to be modified in order to guarantee the connectivity require-
ment of the containment problem while relaxing the condition ny > np. To this
end, the FOV of every follower should perform additional impulsive rotations at a
series of time instants characterized by certain multiples of a given finite 7, > 0.

This is addressed in the next theorem.

Theorem 2.2. Consider a network of n single-integrator agents described by (2.7)
whose sensors have half-plane FOVs. Let the sensing digraph G represent the in-
formation flow structure of the network, where the vertex set V is decomposed into
two disjoint sets of static leaders Vi, and moving followers Vi. Apply the following

impulsive switching control law to every follower i € Vp:

ri(t), (d™(t)>d AN t&TL,) vV t<p(t)+9,
u;(t) = (2.15)

—r(t7), (dP(t) <d vV t €T At > pi(t)+6,

where Iy = {ty | t, = kTs, k € Zso}, and Ty is a given strictly positive finite
value. Moreover, r;(t) = ZjeNi(t) (4 — @), d= [nT_lL and  pi(t) = max {7' |7 <t,

10:(1) —0;(77)| = 7T} for a finite 6 > 0. Then, all followers asymptotically converge
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to the static convex hull ¥, = conv({g; | j € VL.}) of the leaders.

Proof. From Lemma 2.3, the followers driven by control input (2.15) converge to the
convex hull of the stationary leaders, denoted by W, . if and only if a finite T > 0
exists such that for each follower there is a directed path from at least one leader to
the follower in the union sensing digraph (J, ¢, ;.7 G(7) for all £. Under the control
law (2.15), the direction of the bisector of the FOV of every follower i at time ¢ is
the same as the direction of its velocity vector if either d(t) > d and ¢ ¢ Z,, or
the time interval since the last rotation of €2; is less than J. Also, p;(t) denotes the
last time instant 7 < ¢ at which €); rotated impulsively. Without loss of generality,
assume that Ts > 0. The FOV of the i-th follower rotates 7 radians instantaneously
at time ¢ when either di*(t) < d or t € Z,, and the time interval between ¢ and
pi(t) is not less than 6. Let Z! = {f; | i € Vi, k € Zso} represent the set of
time instants at which the FOV of follower ¢ under (2.15) rotates 7 radians. Zeno
behavior is prevented if the time interval between successive rotations of the FOV of
every follower is nonzero. However, under the proposed controller the minimum time
interval between any two consecutive rotations of €2; is not less than 0 for all i € V.
Thus, Z! has Lebesgue measure zero for all i € V- and Zeno behavior does not occur.
Consider an arbitrary follower ¢ which has no leader in its FOV at any 7 € [¢, ¢+ Tj].
The in-degree associated with follower i can then be written as d* = Ay, + di,
where di"; and d]" represent the number of neighbors of follower 7 which belong to
the sets V7, and Vg, respectively. From Lemma 2.4, the inequality di"(t) > d does
not guarantee that di"; (t) > 1 for the i-th follower. Since Z, C 7} for every follower
i, it is guaranteed that €; rotates 7 radians at some point in the interval [t, ¢ + T5].
In other words, there exists #;;, € Z! which belongs to the interval [t,t + T] given
that df’; is zero at any time in this interval. Since €; covers the entire space S before
and after its instantaneous rotation at f; , the inequality di; ([t,¢ + Ti]) > 1 holds

for every follower ¢ at any time ¢. Therefore, by applying the impulsive switching
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control input (2.15) to every follower, there exists a finite T > T such that at least
one of the leaders belongs to the neighbor set of each follower in the union sensing
digraph UTE[t’ 4T G(7) for all ¢, regardless of the cardinality of the vertex sets V7,
and Vp. Thus, the convergence of the followers to the convex hull ¥ yields from

Lemma 2.3, and this completes the proof. ]

2.3 A Network of Single-Integrator Agents with Lim-
ited Heterogeneous Angular FOVs

In this section, the previous results are extended to the case when the FOV apex
angle for each agent can be a value other than 7 radians. This means that the FOV
for each agent is a 2D conic area (whose apex angle is not the same for different
agents) instead of a half-plane. Consider a multi-agent system composed of n single
integrators moving in 2D plane, and assume that each agent can detect its neighbors
using a sensor with limited angular FOV. Let «; be the apex angle of the FOV for
the i-th agent, denoted by €);. According to the previous section, the instantaneous
rotation of the FOVs cannot be employed as a control strategy in the case of networks
with limited heterogeneous angular FOVs, since the entire space cannot be covered
by the impulsive flipping of €2; when «; is less than 7. To remedy this shortcoming,
it is assumed in this section that all FOVs rotate continuously, regardless of the
translational motion of the agents. In other words, the bisector of the FOV and
the velocity vector are not necessarily aligned for each agent. More specifically,
it is presumed that the FOVs of all agents rotate with constant angular velocities

during the planar motion of agents. Then, the following two equations describe the
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dynamics of the i-th agent:

4i(t) = w(t), (2.16a)

0:(t) = w;(t), (2.16b)

where ¢;,u; € R? denote the position and velocity vectors of agent 4 in the planar
motion. Also, 6; € (—m, 7] represents the direction of the bisector of the FOV of
agent ¢ w.r.t. a fixed inertial frame, while w; € R.( is the angular velocity of the
rotating FOV €2;. The neighbor set of the i-th agent equipped with FOV 2; at time

instant ¢ is defined as follows:
. (%)
Ni(t) = {j e Vim0 - it < T} (2.17)

where z; and y; represent the coordinates of agent i (i.e. ¢(t) = [z;(t) y:(¢)]T),
0;;(t) = atan2(y;(t) —y;(t), z;(t) —x;(t)), and 1I(-) is defined in (2.9). The i-th agent
along with its FOV are depicted in Fig. 2.4.

A

Figure 2.4: An example of a single-integrator agent with limited angular FOV €,
and apex angle q;.
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2.3.1 Consensus Problem

The objective is to design a velocity vector and find a lower bound on magnitude
of the angular velocity of the FOVs in such a way that all agents asymptotically
converge to an arbitrarily small ball. In order to address the consensus problem,

some important lemmas are mentioned first.

Lemma 2.5. Consider two arbitrary agents 1,5 € V with the dynamics described
by (2.16) at time instant t. Let agent ¢ be fized and assume that the j-th agent
moves with velocity u(t) whose magnitude ||u(t)|| is less than ug, for some positive
constant ug. If the angular velocity w; is lower-bounded by some constant wy and
llai(t) — q; ()| > 32:—10“) at time t, there exists t' € [t,t + T| such that q; € S(t') for
all T > i—’; In other words, the j-th agent can be detected by the FOV of agent i at
some point in the interval [t,t + T.

Proof. Consider two half-planes =;;(t) and Z;;(¢) defined based on the relative po-

sition of two distinct agents i, j € V' as follows:

Ei(t) = {g € R*| (g —a(t), ¢;(t) — q:(t)) > 0}, (2.18a)

i) = {q € R*| (g —ai(t), q;(t) — qi(t)) < 0}, (2.18b)

and note that R? = Z;;(¢) U E;;(t). Let agent i be fixed at point O and point A be
the position of agent j at time ¢, where A € =;;(¢). Define d as the distance between
agents ¢ and j at time ¢, i.e., dy = ||¢;(t) — ¢;(¢)||. Let also B denote the position of
the j-th agent at t + 7', where B is assumed to belong to Ej(t). An example of two
agents described above is illustrated in Fig. 2.5. In the triangle AO B, the inequality
AB > AO holds because the internal angle ZAOB is always obtuse on noting that
A € Z(t) and B € E5(t). Therefore, AO represents the shortest path that agent
j can take at time instant ¢ to leave the half-plane =;;(¢) during a time interval of

length T". Since |Ju(t)|] < up for all ¢, the minimum time required for A to leave the
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Figure 2.5: Partitioning the space R? into two half-planes =;;(¢) and Z;;(t) based
on the positions of two agents ¢ an_d 7 at time ¢, where the dash-dotted line depicts
the boundary between =;;(t) and Z;;(¢).

half-plane Z;;(¢) and arrive at an arbitrary point in Z;;(¢) (point B in the figure) is
Trin, = Z—g. Thus, it is guaranteed that ¢;(7) € Z;;(¢) for all 7 € [t,t + T},,]. On the
other hand, agent ¢ covers the entire half-plane =;;(¢) using its rotating FOV over
the time interval [t,¢ 4+ T if it rotates at least 37 radians, regardless of the apex
angle «; and the initial direction of the bisector of €2;. This means that it takes at
most 1hue = S’J—g for §2; to achieve this objective. It then follows that agent 7 is able
to detect agent j at a time instant t’ € [t,¢ + T if the inequality T, > Tnae holds
for all T > T,,4.. It is straightforward to conclude that by choosing dy > ?’Z% the
inequality T},in > Tinee holds provided T > i—’; Therefore, 32:% can be considered

as a lower bound on the distance between agents ¢ and j at time ¢ as follows:

o) — a0 > 7. (2.19)

Thus, if (2.19) holds for two agents ¢ and j at an arbitrary time instant ¢ while the
i-th agent is stationary and the magnitude of the velocity vector of the j-th agent

is less than wg for all ¢, it is guaranteed that there is a time instant t' € [t,t 4 T
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at which agent ¢ detects agent j using its limited FOV provided §2; rotates with an
angular velocity w; > wg. Also, the considered time interval has a length of at least

T = i—’; This completes the proof. ]

The following lemma provides a lower bound on the magnitude of the angular
velocity of all FOVs. It also gives the minimum required time interval 7" in terms of
a lower bound on the inter-agent distances and an upper bound on the magnitude

of the velocity vectors based on Lemma 2.5.

Lemma 2.6. Let i,j € V denote two arbitrary agents described by (2.16), and let
their velocity vectors satisfy the inequalities ||u;(t)|| < ug and ||u;(t)|| < wo for all t.
If |gi(t) — q;(t)|| > do at time t and the angular velocity of the FOV of each agent

__ brug

1s lower-bounded by wy = Qs iis guaranteed that there exist t',t" € [t,t +T| such

that q; € Q;(t') and ¢; € Q;(t") for all T > 2%00.

Proof. Consider a non-rotating frame centered at agent ¢, and denote the velocity

of agent j w.r.t. this frame by ujf(t) = u;(t) — u;(t); note that [Ju;'()|| < 2uq for

all . Let the distance ||g;(t) — g;(t)|| be greater than dy, where dy = %. It then

follows from Lemma 2.5 that for any w; > wy = 6’;2‘0, there is some t' € [t,t + T]

such that agent ¢ detects agent j at time t’ for all T' > 2‘1700. Therefore, the minimum

values of w; and T are determined in terms of the upper bound on the velocity

vector magnitude uy and the lower bound on the distance between agents ¢ and j at

t, denoted by dy. The same argument applies to the case when a non-rotating frame

is attached to the j-th agent. In other words, if ||¢;(t) — ¢;(¢)|| > do holds at time ¢
_ 6r

and the angular velocity of {2; satisfies the inequality w; > wy, wy = dé‘o, then there

exists t” € [t,t + T] such that the FOV of agent j covers agent i at time instant ¢”

for all T' > 2‘1—0. This completes the proof. O
uo

Corollary 2.1. Consider a network of n single integrators described by (2.16) with

the sensing digraph G = (V, E). Let the magnitude of the velocity vector of every
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agent be upper-bounded by uy and the angular velocity of the FOV of all agents
be lower-bounded by wy = wo(do,uo). Then, (i,5) € U,ep, 1y E(7) and (j,4) €
UTe[t 4] E(T) for every pair of distinct agents i,j € V, where T = T(dy, up),
provided the distance between © and j 1s greater than dy at time t. By forming
the contrapositive of the sufficient condition mentioned in Lemma 2.6, if (i,j) ¢

Urepp, irmy £(7) o1 (43:9) & U, s, o) E(7), it can be concluded that ||g;(t)—q;(t)|| < do

at time t.

Lemma 2.7. If a digraph G = (V, E) is not QSC, the mirror of the complement of

G, denoted by G = (V, E°), is connected and diam(G¢) = 2.

Proof. Assume that the digraph G = (V| F) is not QSC. Therefore, there exist two
distinct vertices u, v € V such that for every vertex w € V'\ {u, v} either w ¢ R, (G)
or w ¢ R,(G). Define V; = R, (G), Vo = Ry(G), and V3 =V \ {V; U V,}. Since G
is not QSC, V; and V5, represent two disjoint vertex sets. Moreover, (i,7) ¢ FE and
(j,i) ¢ E for any i € V; and j € V,. Also, (k,i) ¢ E and (k,j) ¢ E for any i € V,
j € Vo, and k € V3. Define the complement digraph G¢ = (V, E°), and note that
(i,7) € E° and (j,7) € E€ for any ¢ € V} and j € V5. Additionally, (k,7) € E° and
(k,j) € E°forany i € V}, j € Va5, and k € V3. Now, construct the undirected mirror
graph of the complement digraph G¢ and denote it by G¢, whose vertex set is V and

edge set is represented by E°. One can then conclude that:
(i,7), (4, k), (k,4) € E°, (2.20)
and
dec(1,7) = dge (4, k) = dge(k,i) =1, (2.21)

forall v € Vi, 7 € V5, and k € V3. Since for any arbitrary vertex ¢ € Vj, | €
{1,2, 3}, there exist undirected paths of length one to every vertex belonging to V,,,

m € {1,2,3}\ {l}, and undirected paths of length two to every vertex in V; \ {i},
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the undirected graph G¢ is connected. As a result, dée(i,j) < 2 for any distinct
i,j € V. Furthermore, it is straightforward to show that diam(G¢) = 2, and this

completes the proof. O

The next theorem addresses the consensus problem, as the main contribution

of this part.

Theorem 2.3. Consider a multi-agent system composed of n single integrators with
the limited heterogeneous angular FOVs described by (2.16). Apply the following

control law to every agent:

wt)= 3 aya)e; — ), (2.22)

JEN;(t)

where a;;(q) = T and k € Ryg is a finite constant. Assume the angular

K
43 5en; @ a5 —ai
velocity of the FOV of agent i satisfies the inequality w; > wqy for all © € V', where

Wy = G’TT’“. Then, all agents will asymptotically converge to a ball of radius €.

Proof. The proof is performed separately for the case where the sensing digraph is
UQSC, and the case where it is not:
(i) Assume that G is UQSC, i.e. for all time instants ¢ there exists 7' > 0 such

that the union sensing digraph [ J G(7) is QSC. By considering S = R?, it is

TE[t, t+T)
straightforward to show that the switched interconnected system driven by (2.22) is
locally Lipschitz and the strict sub-tangentiality condition is satisfied since a;;(¢(t))
is finite and positive for all ¢t and all i € V', j € N;(t). Therefore, Lemma 2.1 ensures
that the agents asymptotically reach consensus.

(ii) Assume that G is not UQSC. Thus, for every T' > 0 there exists a time

instant ¢ such that the union sensing digraph (J G(7) is not QSC. Under the

TEL, t+T

control law (2.22), it is straightforward to show that the magnitude of each velocity
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vector is upper-bounded by « for all £, i.e.:

ZjeNi(t) k(¢ — @)
L+ ZjeN,-(t) lg; — all

[us ()] = < K, (2.23)

(the above inequality follows from the definition of the state-dependent coefficients

<jenin 14 — @ll)- Let Ge([t.t +T))

represent the mirror of the complement of union sensing digraph U, ¢ 47 G(7)-

a;j(q), and the inequality HZ]EN,-(t)(Qj —q)

Then it follows from Lemma 2.7 that the undirected graph G¢([t,t + T]) is con-
nected and its diameter is equal to two. Using Corollary 2.1, it can be concluded
that every edge of G°([t,t + T]) connects two distinct vertices corresponding to a
pair of agents whose distance is less than or equal to dy at time instant ¢. Thus, the
following inequality holds at time ¢ for the maximum distance between the agents
which represent the vertices of G¢([t,t + T)):

max ||¢;(t) — g;(t)]| < 2dy. (2.24)
i,jeV

Based on Lemma 2.6, the inter-agent distance dj, the velocity vector upper bound
k, and the angular velocity lower bound wy are related by wy = %r—o", where T' > g—g.
Substituting dy = i’j—; in (2.24) yields:

127k

(1) — g ()] < . 2.25
max flai(t) — a0l < = (2.25)

A sufficient condition to guarantee that all agents are eventually confined to a ball

of radius ¢ is that:
127k

< 2e. 2.26
T <% (2:26)

This means that in order to confine the agents to a ball of radius € one can choose a

sufficiently large value for the lower bound on angular velocity of the FOV of every
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agent as follows:

o = 0T (2.27)
€

Therefore, for a network composed of n agents described by (2.16) and driven by
(2.22), if w; > G’TT"“ for all © € V, the sensing digraph G remains UQSC as the agents
converge to a ball of arbitrarily small radius e. It is worth mentioning that once
the agents are confined to a ball of radius €, there is no guarantee that the network
will still remain uniformly quasi-strongly connected. However, since the convex hull
of agents is enclosed within a ball of radius €, and since the strict sub-tangentiality

condition holds for the proposed control law, once the agents enter the ball they will

not leave it. This completes the proof of consensus. L

Remark 2.1. Let wyq, represent the mazrimum magnitude of the angular velocity
which can be applied to any FOV (the value of Wpa, depends on the practical limita-
tions of the sensors mounted on the agents). To ensure that the angular velocity w;,
1 €V, can be designed in such a way that the inequality wy < w; < Wynaee holds for

all i € V, the positive finite constant k in Theorem 2.3 should be chosen as follows:

ewma:c

K<
6

(2.28)

This ensures that the inequality wy < Wpaz holds, and w; can then be anything in
the interval (wo, Wmaz| for all i € V. Therefore, the upper bound and lower bound
constraints on the angular velocity of the FOV of every agent can be satisfied by
introducing a proper upper bound on k, which represents the maximum magnitude

of the velocity vector of each agent driven by (2.22).

Remark 2.2. Under the consensus control law proposed in Theorem 2.3, it is not
guaranteed that the underlying sensing digraph G remains UQSC for all time in-
stants. However, the lower bound on angular velocity of the FOVs and the upper

bound on velocity vector magnitude of the agents are designed in such a way that all
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agents are confined to an arbitrarily small ball for the cases that G is not UQSC.

2.3.2 Containment Problem

It is desired now to extend the results of the previous subsection to the containment
problem for a network of n; fixed leaders and nrp moving followers. Consider a
leader-follower network of single-integrator agents with limited heterogeneous angu-
lar FOVs. The following lemma is instrumental in proving the main result of this
subsection.

Lemma 2.8. Let the angular velocity of the FOV of all followers be lower-bounded
by wy = 3:—,”,, where € is the radius of the smallest circle enclosing all leaders. Let
also the magnitude of the velocity vector of all followers be upper-bounded by a finite
constant k' € Rsg. Then, there exists at least one leader j € Vi, for each follower
1 € Vg such that a directed path exists from j to v in the union sensing digraph
UTE[t’ 147 G(7) for every T > ;—l, and every time instant t.

Proof. In the first step of the proof, it is desired to show that there is at least
one leader for each follower, with a distance greater than ¢’ from each other. To
prove this by contradiction, assume that there exists a follower ¢ € Vi such that its
distance from all leaders is less than €, i.e., ||¢; — ¢;|| < € for all j € V. It means
that there exists a circle centered at ¢; which encompasses all leaders and its radius
is less than €. This is in contradiction with the definition of ¢’. Therefore, there
exists a leader j € V, for each follower ¢ € Vi such that ||¢; — ¢;|| > €. In the
second part of the proof, consider a fixed leader 7 and a moving follower 7 such that
llgi(t) — q;(t)|| > € at a time instant ¢, and ||u;(¢)|| < & for all £. If magnitude of

the angular velocity w; is lower-bounded by Wy = 3’:,"“/, it can be concluded from

Lemma 2.5 that there exists ¢ € [t,t + T such that ¢; € () for every T > <.
This implies that there exists a directed path of length one from j to 7 in the union

sensing digraph UTG[t’ 4T G(7), which completes the proof. ]
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Theorem 2.4. Consider a network of n single-integrator agents described by (2.16).
Assume the network is composed of ny, static leaders and ng moving followers with
limited heterogeneous angular FOVs. Let every follower © € Vg be driven by the

following velocity vector:

ui(t) = Z aij(qj — i), (2.29)
JEN(t)

K//

CrETy—=y 2 R is the largest distance between all pairs of agents in the

where a;; =
initial configuration of the network, and k' € R+q is a finite constant. Assume that
the angular velocity of the FOV of the i-th follower satisfies the inequality w; > wy

. _ / . .
for all © € Vg, where wy = 3’? and € denotes the radius of the smallest circle

enclosing all leaders. Then, all followers converge to the static convex hull W, =

conv({g; | j € VL.}) spanned by the leaders.

Proof. 1t is straightforward to conclude from (2.29) and definition of a;; that ||u;(¢)|| <

k' for all © € Vi and all £. Since the angular velocity of all followers is lower-bounded

by wy = 3:,“,, all conditions of Lemma 2.8 hold. Thus, there exists T > ;—l, such that
there is at least one leader for each follower with a directed path from that leader
to the follower in the union sensing digraph (J,, ,,71 G(7) for all ¢. Hence, all
conditions of Lemma 2.3 hold and one can conclude that all followers will converge
asymptotically to the stationary convex hull ¥, formed by the leaders. This com-

pletes the proof. O

Remark 2.3. Let W4, be the mazimum magnitude of the angular velocity which
can be applied to the FOV of any follower. To ensure that the angular velocity w;,
1 € Vi, can be designed in such a way that the inequality Wy < w; < Winae 1S Satisfied
for all followers, the positive finite constant k' in Theorem 2.4 is upper-bounded as
follows:

—
/ € Wmaz

R <
3T

(2.30)
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Remark 2.4. Since the strict sub-tangentiality condition is satisfied for all control
laws proposed in this chapter, the results obtained for the consensus and containment
problems hold true as long as the sensing range of every sensor is not less than the

largest distance between all pairs of agents in the initial configuration of the network.

2.4 Simulation Results

Two examples are shown in this section to demonstrate the effectiveness of the

proposed control strategies for a team of single-integrator agents with limited angular

FOVs.

Example 2.1. Consider a network of six single-integrator agents with half-plane
FOVs. The initial position of agents along with their FOVs are depicted in Fig. 2.6
for consensus problem. The motion of agents, driven by control law (2.13), is shown
in Fig. 2.7 where d =3. This figure demonstrates that the agents reach a common
position in plane, and hence the consensus objective is achieved.

In the second part of Example 2.1, the containment problem is considered for
a network of five static leaders and siz moving followers. The initial position of
leaders and followers are depicted by small circles and small squares, respectively,
in Fig. 2.8. Under the control input (2.15) and considering d=5and T, = 1 sec,

all followers converge to the convex hull of the leaders, as shown in Fig. 2.9.

Example 2.2. In first part of this example, the consensus problem for a multi-agent
system composed of siz single integrators with constrained heterogeneous angular

FOVs is considered. Let the apex angles of the FOVs be given by:

g = —. (2.31)
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X (m)

Figure 2.6: The initial configuration of agents with half-plane FOVs in the consensus
problem of Example 2.1.
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N
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x (m)

Figure 2.7: The trajectories of the single-integrator agents with half-plane FOVs in
the consensus problem of Example 2.1.
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x (m)

Figure 2.8: The initial configuration of the leaders (small circles) and followers (small
squares) in the containment problem of Example 2.1.

2 -1 0 1 2 3 4 5 6 7
x (m)

Figure 2.9: The trajectories of the single-integrator followers with half-plane FOVs
in the containment problem of Example 2.1.
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y (m)

x (m)

Figure 2.10: The initial configuration of agents with limited heterogeneous angular
FOVs in the consensus problem of Example 2.2.

Let also € = 0.25 m and assume that Wye, = 1 rad/sec. Using the result of Theo-
rem 2.3, a lower bound on the magnitude of the angular velocity of FOVs is con-
sidered as wy = 1 rad/sec, and k = 0.013. The initial configuration of the network
along with a snapshot of the rotating FOVs is shown in Fig. 2.10. The motion of
the agents driven by control law (2.22) is depicted in Fig. 2.11, which demonstrates
that the agents converge to a ball of radius € (the black circle).

In the second part of Example 2.2, a multi-agent network of five static leaders
and six moving followers is considered. The initial configuration of the agents is
depicted in Fig. 2.12, where small circles and small squares show the initial position
of leaders and followers, respectively. The control input (2.29) is then applied to the
network, with ¢ = 1.701 m, Wy = Wpae = 1 rad/sec, ¥ = 0.181, and R = 10 m.
Fig. 2.13 shows that the containment objective is achieved as all followers converge

into the convex hull of the leaders.
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2 -1 0 1 2 3 4 5 6 7
x (m)

Figure 2.11: The trajectories of the single-integrator agents with limited heteroge-
neous angular FOVs in the consensus problem of Example 2.2.

X (m)

Figure 2.12: The initial configuration of the leaders (small circles) and followers
(small squares) in the containment problem of Example 2.2.
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2 -1 0 1 2 3 4 5 6 7
x (m)

Figure 2.13: The trajectories of the single-integrator followers with limited hetero-
geneous angular FOVs in the containment problem of Example 2.2.
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Chapter 3

Flocking in Multi-Agent Networks

with Limited Fields of View

In this chapter, the flocking problem in a network of double-integrator agents is
investigated, where each agent is assumed to have a limited field of view (FOV).
The conic-shaped FOVs impose limitations on the sensing area of the agents in the
network. To increase the sensing capability of the agents and maintain the net-
work connectivity, the FOV of every agent rotates with a sufficiently fast angular
velocity. The problem is formulated in the framework of distributed switched non-
linear systems to address the switching topology of the network. Potential-based
control inputs are subsequently designed as a combination of alignment and attrac-
tive/repulsive forces, such that the velocity vector of each agent converges expo-
nentially to a certain neighborhood of a desired velocity vector and the inter-agent
collision is avoided. Furthermore, the geometric configuration of the agents is con-
tained in a ball with bounded radius and the strong connectivity of the network is
preserved over sufficiently large time intervals. The efficacy of the proposed control

strategy is confirmed by simulations.
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The remainder of this chapter is organized as follows. Some useful preliminar-
ies and definitions are given in Section 3.1. The network dynamics is then described
and the desired flocking problem is formulated in Section 3.2. Section 3.3 is devoted
to the main results of the chapter including the construction of an appropriate
common Lyapunov function and proposing two types of distributed control laws
(unbounded and bounded) to address the objectives of the flocking problem. More-
over, the network configuration under the proposed control laws and the existence
conditions of an assumption required for the validity of the results are addressed sub-
sequently. Finally, simulation results are presented in Section 3.4 to demonstrate

the effectiveness of the proposed controllers.

3.1 Preliminaries

Throughout the chapter, the set of positive and nonnegative real numbers are de-
noted by Ry and Rsg, respectively. Moreover, N,, := {1,2,...,n}. The inner
product of two arbitrary vectors v, w of the same dimension is represented by (v, w).
Furthermore, | - ||; and || - || denote the 1-norm and Euclidean norm of a vector,
respectively, and card(®) is the cardinality of a finite set ®. Also, I, is the n x n
identity matrix, and 1, is the all-ones column vector of length n.

Consider a digraph G = (V, E), where V and E denote the set of nodes and
edges, respectively. The node j is said to belong to the neighbor set of node ¢, if
the directed edge (j,7) pointing from j to 7 belongs to the edge set of the graph,
i.e., (7,4) € E. The neighbor set of node i is denoted by N;. A digraph G = (V, E)
is strongly connected if there exists a directed path between every pair of distinct
nodes 7,5 € V. Also, G is said to be uniformly strongly connected if there exists a
finite 7' > 0 such that the union digraph {J, ¢, ,, o1 G(7) is strongly connected for all

t. The next definition and lemma are borrowed from [21] to address the derivative
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of nonsmooth functions.

Definition 3.1. Consider the following nonautonomous system:

i = f(x,t), (3.1)

where f: D xR — R™, for a given domain D C R™. Let V(z,t) : D xR — R be
a continuous function, uniform w.r.t. t, which satisfies a local Lipschitz condition
on x. Then, DTV (x,t) is called the upper Dini derivative of V(x,t) along the

tragectories of (3.1) and is defined as:

D+V('T7 t) = limsup V(e +1f(z,t),t+7)—V(x, t).

T—=0F T

(3.2)

Lemma 3.1. Let Vi(z,t) : D x R — R be a function of class C* for each i €
N, over a given domain D C R™. Let also V(x,t) = max;en, Vi(x,t) and define
Z(t) ={i|ieN,, Vi(x(t),t) = V(x(t),t)} as a set of indices where the mazimum

is reached at time t. It then follows that:

DYV (x(t),t) = max V(z(t), t). (3.3)

i€Z(t)

In the remainder of this chapter, Definitions 2.1 and 2.2 from Chapter 2 will

be used as well.
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3.2 Problem Formulation

Consider a group of n double-integrator agents moving in a 2D plane. Let the motion

dynamics of the i-th agent, ©+ € N,,, be described by:

0 (t) = w(t), (3.4b)

where ¢;,v;,u; € R? are the position, velocity, and acceleration vectors of agent i,
respectively. Assume that agent ¢ can only detect agents within a prescribed region,
denoted by a 2D conic area €, with a finite radius r,. The apex point of this conic
area is located at ¢;, and its apex angle is denoted by «;. Furthermore, the direction
of the bisector of the apex angle w.r.t. a fixed inertial frame is given by 6;. Let ¢é; be
a unit vector passing through ¢; and pointing into €2; such that it bisects the angle

;. Then, Q, is defined as:

ﬁi:{qeRz

(€i, (¢ — @) <O‘i)
—— >cos|{— |, ||q_Qz‘|| ST, (3-5)
lg — all 2

where 7 is the sensing range (which is assumed to be the same for all agents). For
the sake of collision avoidance, it is assumed that each agent can detect all points
within a safety region defined as a circle of a prescribed radius 7. around it (with no
angular limitation) in addition to the points in its conic-shaped sensing area. The

safety region of agent i, denoted by (., is expressed as:
Q ={qeR?|[lg—al <7}, (3.6)

where all sensing devices are omnidirectional inside this region. The overall sensing

region of agent ¢ € N, is denoted by 2;, and is obtained by superimposing the two
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regions €2; and (2, i.e.:

Fig. 3.1 depicts an example of two agents ¢ and j along with their sensing regions.

Let €2; define the FOV of agent ¢ for all + € N,, and assume that the FOV of every

Figure 3.1: The sensing regions 2; and €2, of agents ¢ and j.

agent is able to rotate with a constant angular velocity independent of the agent’s

motion. The rotation of the FOV of the i-th agent is formulated as:

0:(t) = w;(t), (3.8)

where 0; € (—m, 7] denotes the direction of the bisector of §2; w.r.t. a fixed inertial
frame, and w; € R.q is the constant angular velocity of the rotating FOV of agent 7.

One can represent the dynamic equations of all agents in the following augmented
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form:

q(t) = v(t), (3.9a)
o(t) = u(t), (3.9D)
0(t) = w(t), (3.9¢)

where q,v,u € R*", § € (—m,7]", and w € RZ,. Throughout this chapter, it is
assumed that each agent is equipped with two types of sensors: (i) the position
sensor which is used to sense the relative distances between each agent and its
flockmates, and (ii) the bearing angle sensor which is used to measure the bearing
angle of each agent w.r.t. all its neighbors. These types of measurements have been
frequently used in the cooperative control of multi-vehicle networks with vision-
based sensing devices [40, 109]. Furthermore, all sensors of each agent are assumed

to have a common sensing region which determines the FOV of each agent.

Definition 3.2. Consider a network of n double integrators described by (3.9), and
let each agent be equipped with sensors whose common FOV is denoted by €);, 1 € N,,,
for the i-th agent. The information flow structure of the relative position and bearing

angle sensors is characterized by the sensing digraph G = (V, E), where:

V={1,2,...,n}, (3.10a)

E={(,i)eVxV|qge (3.10b)

The distance-based graph G is subsequently defined to represent the informa-
tion exchange of agents by comparing the distance between any pair of them with

the common sensing range 7.

Definition 3.3. The distance-based graph G = (V, E) characterizes the information

flow of the network based on the inter-agent distances. The node set of this graph is
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defined similar to (3.10a), and its edge set is expressed as:

E={@7)eVxVI]lg-gl<rd (3.11)

Note that since all agents are assumed to have the same sensing range, the

graph G is undirected. Two important assumptions are made next.

Assumption 3.1. Let the initial position of agents in the network satisfy the in-
equality ||gi(0) — ¢;(0)|| > r. for every pair of distinct nodes i, j € V. This assump-
tion is satisfied if there is no inter-agent collision in the initial configuration of the

network.

Assumption 3.2. Assume that the distance-based graph G contains a static and

connected spanning subgraph G** = (V, E**) for all t, where E* C K.

Due to the FOV limitation of the sensors, the velocity vectors of agents can-
not converge exactly to a common consensus value, in general. Thus, it is desirable
to design the distributed control laws such that all velocity vectors reach a certain
neighborhood of a prescribed navigation velocity vector v;. This problem will here-
after be called e-flocking (where € reflects the size of the neighborhood), with the

formal definition given below.

Definition 3.4. Consider the multi-agent system (3.9) composed of n double inte-
grators with limited FOVs. The network is said to achieve e-flocking if the following

four objectives are satisfied:

(i) the velocity vector of every agent converges exponentially to the e-neighborhood

of the navigation velocity vector v;
(i1) no inter-agent collision occurs;

(iii) the strong connectivity of the sensing digraph G is preserved uniformly over

sufficiently large time intervals, and
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Figure 3.2: Bearing angle (3;; corresponding to agents ¢ and j.

(iv) the geometric configuration of the network converges to a ball with bounded

radius.

Now the problem is to design the acceleration vector u; and the angular velocity
w; of each agent 7 € V' in a distributed manner such that all objectives of e-flocking

are achieved.

3.3 Main Results

3.3.1 Constructing A Common Lyapunov Function

Let §;; € (—m, x| denote the bearing angle of the bisector of ; w.r.t. agent j. In
other words, 3;; is the angle between the bisector of the FOV of agent ¢ and vector

¢ij = ¢; — @i, which points from ¢; to ¢; (this is illustrated in Fig. 3.2). Thus:
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for any pair of distinct agents ¢,j € V, where I';; denotes the direction of vector g;;

w.r.t. a fixed inertial frame, and is described by:
Iy = atan2 (y; — yi, 7 — i) - (3.13)

Using the notion of the bearing angle for agents with limited FOVs, the concept of

neighborhood in the sensing digraph G can be described as follows:
. =~ . a;
jeN, (jeﬁi A 18] §5>= (3.14)

for two non-colliding agents i, j € V, where N; and N, denote the neighbor sets of
agent 7 in sensing digraph G and distance-based graph G, respectively. It is clear
from (3.14) that the multi-agent network possesses a switching topology as a result
of the FOV limitations. In order to find a common Lyapunov function for the multi-
agent network, it is required to define a C'!' function of the bearing angle to provide
a smooth transition from 0 to 1 and vice versa over different ranges of bearing angle.
In other words, this function assigns a degree of neighborhood to any agent based
on the apex angle of its FOV and its bearing angle w.r.t. other agents, according
to (3.14). To this end, the function ¢;(x) : (—m, 7] — Rx¢ is introduced for every

agent ¢ € V as follows:

0, ol > 5,
i) = 4 L1+ cos(si(z))], % —6<|z| <%, (3.15)
. o] <% =4,
where ¢;(z) = 5o + msgn(x)(1 — 5£), and 0 is a sufficiently small positive constant

such that ¢ < min;ey 4. From the relationship between the bearing angles of an

agent and its neighbor sets as given in (3.14), the argument of function ; can be
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Figure 3.3: An example of functions ;(3;;) and &;(5;;).

any bearing angle 3;; for all j € V'\ {i}. Hence, for any j € N,, it can be concluded
that 1;(8;;) # 0 when j € N;, and ¥;(8;;) = 0 when j ¢ N;, while i and j represent
two non-colliding agents. It is straightforward to determine the derivative of i;(x),

denoted by k;(z) : (—m, 7] — R, as follows:

0, lz| > %,
Filr) =4 —grsin(a(e)), § -0 <|a| <, (3.16)
0, lz| < 5 —

In Fig. 3.3, the functions v¢;(3;;) and x;(8;;) are depicted for ;; € (—m, 7] with

j € N, assuming o; = % and § =

3 . Additionally, the following upper bounds can

—~ o3

be derived on the magnitudes of ¥;(x) and k;(z) for all z and all i € V

|'l/jl(x)| Swmax - 1) (317&)
1:(@)] <oz = 5. (3.17b)
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A distributed potential-based control law is then employed to address the objec-
tives of e-flocking over a network of double-integrator agents with limited FOV.
Let r4 be the desired inter-agent distance such that 0 < r. < ry < rs. Let also
w(x) : [re, +00) — Rsq denote a C' inter-agent potential function which satisfies

the following properties:
(1) d‘;—f) <0 for x € [re,1q),
dp(x)
(IT) =5 >0 for x € (rq,74),

(III) d‘;gvx) =0 for x > r, and x = 1y,

(IV) p(x) =0 for z > ry and p(r.) > 0.

The C! bump function p,(x) for an arbitrary h € (0,1) is defined as follows |14]:

L, z € [0,h),
pr(®) = L(1 4 cos(n2=h)), x € [h, 1], (3.18)
0, x> 1.

Moreover, define ¢(x) : [r.,+00) — R as a continuous function representing the

distance-based force, such that ¢(z) = d‘;g). To deal with the sensing range limita-

tion of the agents and ensure that ¢(z) is zero for © > rg, the distance-based force
function ¢(x) can be defined as multiplication of a continuous function ¢(z) and a

bump function py(;7) for some h € (74, 1) as follows:

Ts

(x) = $(x)pn( ), (3.19)

s

where ¢(r,) = =My, ¢(r4) = 0, and ¢(hr,) = M, for some positive constants M, and

M. A distance-based potential function u(x) satisfying all the required conditions
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Figure 3.4: Distance-based potential function p(x) and its derivative ¢(x).

(I)-(IV) can then be constructed as:

u(w) = [ 9O Syae+ 1, (3.20)
where M > 0 is given by:
M= [ domae (3:21)

Adding the positive constant M to p(z) ensures that p(z) = 0 for all > r,. An
example of the functions u(x) and ¢(z) are depicted in Fig. 3.4 by considering r. = 2,
rqg=4,rs =7, and h = 0.95. Also, the following upper bounds on the magnitudes

of p(z) and ¢(x) are imposed:

m@nstfzmwmmjwégwmgmo, (3.22a)
|¢('T)| §¢mam = maX(Mo, Ml) (322b)
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Now, the collective potential function of agent ¢ is introduced as follows:

Hi(q) =Y Hy(q.B;) + (n— 1 — |[N;|)H, (3.23)
JEN;
where
Hij(q, Bi3) = pllla — ¢ (By) + H, (3.24)

and H = |u(ry)| for every two distinct nodes ,7 € V. According to (3.23) and
(3.24), the contribution of agent j in the collective potential function H; varies
smoothly as the j-th agent enters or exits the FOV of agent 7. In fact, the effect
of the angular limitation in the FOV of agent ¢ is addressed by function 1); while
the radial limitation of €); is considered in definition of the distance-based potential
function pu. Adding H to the right side of (3.24) ensures that H;;(q, 3;;) > 0 for
every pair of distinct nodes ¢,7 € V. The collective potential function of the entire

network is then given by:
H(q)=Y Hi(q)=Y_> Hj(g.By)+(n—1-|N;)H. (3.25)

Define the navigation velocity vector v; as a constant vector which represents the
desired velocity of the network, and let v; = v; — v; for every agent ¢ € V. Then,
the kinetic energy of the network w.r.t. a frame moving with velocity vector v; is

expressed as:
1= - 1 —
K(v) = 2 Z o:]]* = 2 Z [[o; — w]?. (3.26)
i=1 i=1

The following common Lyapunov function is subsequently considered for the analysis

and design of the controller:

V(g,v) = K(v) + H(q). (3.27)
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To confine the trajectories of the multi-agent system (3.9) based on the value of the
Lyapunov function (3.27), the level-set W, associated with a nonnegative constant

(¢ is introduced as follows:

Ve ={(g,v) | V(g,v) <¢ (=0} (3.28)

3.3.2 Some Important Lemmas

A number of lemmas are proposed in this subsection that will subsequently be

employed in the process of controller design.

Lemma 3.2. Consider a network of n double integrators with limited FOVs, de-
fined earlier. If ||0|| < €, then the wvelocity vector of every agent has reached the

e-neighborhood of vy, i.e., ||0;|| < € for alli € V.

Proof. The proof is a straightforward consequence of the definition of Euclidean

norm. [l

In the next lemma, sufficient conditions are provided to guarantee collision

avoidance.

Lemma 3.3. Consider a network of n double integrators with limited FOVs de-
scribed earlier, and let Assumptions 3.1 and 3.2 hold. Assume also the system is
driven such that its initial configuration is limited to a positively invariant level-
set W for ¢ < 2(u(re.) — p(rq)). Then, no inter-agent collision occurs during the

evolution of the system for all t.

Proof. Given a pair of distinct agents m,n € V', the collective potential function
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H(q(t)) given by (3.25) can be expressed as:

n

H(q(t)) =Hun(q, Ban) + Hum(q: Bum) + Y _(n — 1 — [N;|)H

i=1
+ Z Hpj (4, Bmg) + Z H.,,5(q; Buj)
JENm\{n} JENn\{m}

iEV\{m,n} ]Eﬁl
for all ¢. Since K (v) is nonnegative and also the level-set W, is positively invariant,

it can be concluded that:

H(q(t)) < V(q(t),v(t)) < ¢ < 2(ulre) — u(ra)), (3.30)

for any ¢t. To prove the lemma by contradiction, assume agents m and n collide at
some time instant ', i.e. ||gn(t') — ¢, (t')|| = 7.. Due to the omnidirectional safety
region around all agents, one has ¢,, € ,(t') and ¢, € Q,,(t') at the time of collision.

It then follows from (3.29) that:

H(q(t')) > 2(p(re) — p(ra)), (3.31)

which is in contradiction with (3.30). This completes the proof. 0

The FOVs are assumed to rotate fast enough to increase the sensing capabilities
of the agents such that they form strongly connected union sensing digraphs over
sufficiently large time intervals. The following lemma provides the angular velocity

which is required to meet some specifications.

Lemma 3.4. Consider two arbitrary agents 1,7 € V with sensing regions §); and
Q0 in a network of double integrators with limited FOVs, and let Assumptions 5.1

and 3.2 hold. Assume that the initial configuration of the network is restricted to a
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positively invariant level-set V. for some ¢ < 2(p(re) — p(rq)), and also a positive
constant 1 exists which represents the minimum rate of decrease of the Lyapunov
function (3.27). Assume that Q; and Q; rotate with a constant angular velocity @

defined below:

R 27r+ 4
Ww=—
T  3nTr,

(€2 — (¢ —nT)2]. (3.32)

Then, there exist time instants t',t" € [t,t +T] such that g¢; € Q;(t') and ¢; € Q;(t")

for any t, where 0 <T < %

Proof. Define F; as a frame centered at agent ¢, which does not rotate w.r.t. a fixed
inertial frame. Then, the relative position and velocity error vectors of agent j w.r.t.

this frame, denoted by ¢;; and v;;, are described as follows:

Gij = 4 — G = Gj€i;, (3.33a)

~ o~ ~ _ ~r 7 ~0 0
Vij = Uj — U; = U;;€;; + Vii€ij> (333b)

where e}, and efj are unit vectors representing the radial and angular directions,

respectively, of the polar coordinate system of the frame F; w.r.t. agent j. Moreover,

959 0 __ ™ : : : .
€ = Ta—qy and €i; = Rot(3)ej;, where the rotation matrix Rot(y) is defined as:

cos(p) —sin(yp)
Rot(yp) = : (3.34)

sin(p)  cos(p)

Also, g;;, v;; and ﬁfj are some scalars denoting the components of vectors ¢;; and v;;
along the above unit vectors. The angular velocity of agent 7 w.r.t. the frame F; at

time instant ¢, denoted by w;;(t), is defined by:

(3.35)
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It then follows from Assumption 3.1 and the positive invariance of level-set W,
¢ < 2(u(re) — p(ra)), that gj;(t) > r. for all . Since the collective potential function

H(q) is nonnegative, it yields from (3.27) that:
1 n
K(v) =5 D lwel® < Vig,v). (3.36)
k=1
From the parallelogram equality for Euclidean space [110], one has:
193511% < 1155 = 0ll* + 1195 + &il1* = 2(/1Tll* + 13;11*). (3.37)
One can see from equations (3.36) and (3.37) that:
103511 < 4V (g, v). (3.38)
Since 1 > 0 represents the minimum rate of decrease of the Lyapunov function, thus:

V(g,v) < —n, (3.39)

for all £. By integrating (3.39) over time and on noting that the agents are initially

A

contained in the positively invariant level-set W, W (t) is obtained as an upper

bound on the Lyapunov function (3.27) at time instant ¢, i.e.:
Vig,v) SW(t) = ¢ —nt. (3.40)
It can then be concluded from (3.38) and (3.40) that:

19351 < 24/ W (). (3.41)

Since it is desired to find a constant upper bound on ||7;;|| in average over time
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based on (3.41), the time average of inequality (3.41) is taken over the time interval

[0, T], which leads to:

I 2 [T
T/o |0 (7)||dT < T/o V(¢ —nrdr. (3.42)

By simplifying (3.42) and on noting that of; < ||7;]| for all £, the maximum required
constant angular velocity w;; over time interval [0,77] is obtained from (3.35) as

follows:
4

wij = g lC = (=) (3.43)

To ensure that the j-th agent can be detected by the rotating FOV of agent 7 at
some point over the time intervals of length 7', the angular velocity w; should satisty
the inequality w; > w;; for all t. Furthermore, there exists ¢ € [t,t + 1] such that
q; € (t) for any t regardless of the initial direction of the bisector of €; and the
apex angle o if w; = @, where @ is given by (3.32). Since @ is a real finite number,
the following inequality holds:

0<T < § (3.44)

Ui
The same procedure can be applied to agent j by assuming w; = w, and defining F;
as a frame attached to agent j, which does not rotate w.r.t. a fixed inertial frame.
Then, agent j is able to detect agent ¢ using its rotating FOV over time intervals of
length T, where T is given by (3.44). In other words, there exits t” € [t,t + T such

that ¢; € Q;(¢") for any ¢. This completes the proof. ]
The uniform strong connectivity of the network is addressed in the next lemma.

Lemma 3.5. Consider a network of n double integrators with limited FOVs de-
scribed by (3.9), and assume that the initial configuration of the agents is restricted
to a positively invariant level-set V¢, ¢ < 2(u(re) — p(rq)). Let Assumptions 3.1

and 3.2 hold, and assume that a constant n > 0 exists representing the minimum
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rate of decrease of the Lyapunov function (3.27). Then, the union sensing digraph

UTe[t 4T G(7) is strongly connected over the time interval [t,t + T] for any t if the

angular velocity of every FOV is equal to & given by (3.32), where 0 < T < %

Proof. 1t follows from Assumption 3.2 that the undirected distance-based graph G
contains a static and connected spanning subgraph G* = (V, E*%) for all t. More-
over, the results of Lemma 3.4 hold for any pair of nodes i, j € V which an edge exists

between them in £°. Thus, it follows from Lemma 3.4 that £* C | E(7)

TEL 4T
for all ¢, which means that the union sensing digraph contains all edges of the
spanning subgraph G*° over any time interval of length 7', where 0 < T < % In
other words, there exists a directed path between any ordered pair of distinct nodes

in UTE[MJFT} G(7) for all t, which guarantees the strong connectivity of the union

sensing digraph. (]

In the sequel, two types of distributed control laws, unbounded and bounded,
are designed to achieve e-flocking in a network of double-integrator agents with

limited FOVs.

3.3.3 Unbounded Control Inputs

Theorem 3.1. Consider a multi-agent system composed of n double integrators with
limited FOVs described earlier. Let Assumptions 3.1 and 3.2 hold, and choose the
initial conditions such that the system trajectories are confined to the level-set W,

where ¢ < 2(pu(re) — p(rq)). Apply the following acceleration w; and angular velocity
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w; as control inputs to every agent 1 € V':

b=+ 3ol + =l g

en, g — ;]
V; — U
ol 2 #lla = 4Dk (3.45a)
i l jeN;
2m 4 o 3
TT T sNeTr, r 45h
“ =7 ¥ grary, <~ €AY (3.45b)

where(;>%\/ﬁ(n—1)5 A=b— Ly/nn-1)=Z, 2= ¢max+%,umam/<;mm, ef; = =&

lg;—a:ll?

and e}; = Rot(5)e;. Then, as long as the inequality |[0]] > € holds, it is guaranteed
that (i) the velocity vector of each agent converges exponentially to the e-neighborhood
of the desired velocity vector vy; (ii) no collision occurs between agents, and (iii) the

union of sensing digraph G becomes strongly connected over time intervals of length

T, where 0 < T < %

Proof. Consider V' (q,v) given by (3.27) as the common Lyapunov function. By
taking the time derivative of V' (¢, v) and noting that the navigation velocity vector

v; is constant, the following equation is obtained:

Vigo) =Y (v;—v)u ZZ (lg: — g;11) ks Big)wi

i=1 = 1J€Nz
+ 35 6l — B (o — )
i=1 ]GN
£ 3 = .10

where e}, = ||Zi:g§|| and e, = Rot(])e};. By substituting (3.45a) in (3.46) and on
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noting that ej; = —e’; and efj = —e?i, one obtains:

V(igv)=—19"Bo—) Z ol — g5l1)wi(Bij)vze];

p(llg — qjll (B )5
- E D Bij) i€, (3.47)
g — q;ll S

=1 jeN;

~

where B = 2®b, v =v—1,®v;, and ® denotes the Kronecker product. Without loss
of generality, assume v;(8;;) =1 for all i,j € V, i # j. Using the Cauchy-Schwarz
inequality and on noting that ||0||; < y/n||?||, the function W (||o||) is obtained below

as an upper bound on V(q, v):
V(g,v) < W(||3) :== =bl&[|* + A3, (3.48)

where A = y/n(n — 1)Z and Z = @00 + T—lcumaxnmax. According to Lemma 3.2, if
||| < € then it is guaranteed that ||7;|| < € for all i € V. Since it is assumed that
|o]] > € for all ¢ in this theorem, there might exist an agent whose velocity vector
has not entered the e-neighborhood of v;. To ensure the exponential convergence
of v to the e-neighborhood of 1,, ® v;, it suffices to show that there exist positive
constants ky, ky and k3 such that the following two conditions hold for Lyapunov

function V (¢, v) [111]:

ka[|o]* <V (g, v) < kall9]|?, (3.49a)

V(g,v) < —ks||o]|”. (3.49b)

The first condition (3.49a) holds for the chosen Lyapunov function (3.27) by con-

sidering k1 = § and ky = § (1+ i—g) Given that W (]|7]]) < 0 when ||7]] > %, let b
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satisfy the following inequality:
b>=— =Y = (3.50)
Define A = b — 2: then, the upper bound function W (||5]|) is given by:
W) = —(\+ )l + Al (3.51)

Since ||]| > €, one obtains:

w(llo]) < =Alla|, (3.52)

which vields k3 = \. Thus, if b satisfies the inequality (3.50), it is guaranteed
that the velocity vector of every agent in the multi-agent system with the initial
configuration limited to W¢, ¢ < 2(u(r.) — p(rq)), converges exponentially to the
e-neighborhood of v;. Moreover, V(g,v) < 0 for all t from (3.48) and (3.52), which
results in the positive invariance of the level-sets of V(gq,v). Therefore, no inter-
agent collision occurs according to Lemma 3.3. Let the angular velocity of agent @
be given by (3.45b), for all ¢ € V. From (3.52), the minimum rate of decrease of the
Lyapunov function, denoted by 7, is achieved when ||7]| = ¢, resulting in n = \e%. Tt
follows from Lemma 3.5 that by applying the angular velocity (3.45b) to every agent
i € V, the sensing digraph G is strongly connected over any time interval [t,t + T

for all ¢, where 0 < T' < % This completes the proof. ]

3.3.4 Bounded Control Inputs

A drawback of the control law (3.45) in Theorem 3.1 is that it may become un-
bounded as the velocity vector of each agent enters an arbitrarily small neighbor-

hood of v;. Also, it does not guarantee that e-flocking is achieved if the inequality
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||0]] > € is violated at some point in time. To remedy these shortcomings, the Lya-
punov function introduced earlier is modified in this subsection to design a bounded
control law which guarantees that e-flocking is achieved regardless of the value of
|o]]. The potential function H(q) described by (3.25) remains unchanged, and a

new kinetic energy function K (v) is proposed as follows:

K(v) =Y m(v), (3.53)

i=1
where

sIaill ol > e,

sloall, ol < e

Therefore, the new Lyapunov function is represented as follows:

V(g,v) = K(v)+ H(q), (3.55)

where its level-set EC, associated with a nonnegative constant (, is defined as:

Ve ={(g,v) | V(g,v) <¢, ¢ =0} (3.56)

The C° function 7(v;) is positive definite and piecewise-continuous for all ¢ € V,
which makes V(g,v) a nonsmooth locally Lipschitz continuous common Lyapunov

function. Moreover, the derivative of 7(v;), denoted by Vr(v;), is given as follows:

Vr(v;) = (3.57)

where |V7(v;)|| > § for all i € V. In this subsection, a new bounded control law

£
2

is proposed in which the term HUUT in the previous controller (3.45a) is replaced by
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%, which is upper-bounded by % for all ¢+ € V. Moreover, the conditions of

e-flocking are met irrespective of the value of ||7]|, as shown in the next theorem.

Theorem 3.2. Consider a multi-agent system composed of n double integrators with
limited FOVs, as described by (3.9). Let Assumptions 3.1 and 3.2 hold, and choose
the initial conditions such that the system trajectories are confined to the level-set
W, where ¢ < 2(u(r.) — pu(ra)). Apply the following bounded acceleration w; and

angular velocity w; as control inputs to every agent i € V:

i) + Y 6l — gl (B + 3 Pl

=l = la—ql
Vr(v;)
oz 2 Mlla — ajl))ki(Bi)wi, (3.58a)
[V (i) || Z ’ ’
JEN;
27 16 3
T 3\neTr (¢ )2, ( )
where b > S(n —1)E, A =b—%(n — 1), E = ¢pae + %umam/ﬁmam e = “Z;:Zi”;

= Rot(5)ef;, and Vr(v;) is given by (3.57). Then, (i) the velocity vector of each

agent converges exponentially to the e-neighborhood of the desired velocity vector v;;

(ii) no collision occurs between agents, and (iii) the union of sensing digraph G

becomes strongly connected over time intervals of length T, where 0 <T' < ;CZ.

Proof. Consider V (g, v) given by (3.55) as the common Lyapunov function. The

time derivative of V (¢, v) is

v) = ZVW(%)@ = ullla: — g5l (Biy)ws

=1 jGN'
+Z S éllla — a5 B) (@ — 5)e,
ENZ
+Z Z (lla: = g5l (8 (05 — T5) e (3.59)
i=1 ]GN
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Substituting u; from (3.58a) in (3.59) results in:

- Z b (Vr(v))?

- Z Z ¢(||q2 - qJ”)djz(ﬁz])(@Z - ij — Vﬂ-(vi))e;z

i=1 jeN;
wllla —g5ll) . 0
+ g E Bij (Vi — v; — Vm(v;))er;. 3.60
— GN ||qZ - QJH ( ])( J ( )) 7 ( )

It is desired to show the exponential convergence of all velocity vectors to the e-
neighborhood of the navigation velocity vector v; if the two sufficient conditions
(3.49a) and (3.49b) hold. The first sufficient condition holds by considering k; = £
and ky = 1 (14 i—g) as long as ||0]] > e. Also note that the velocity vector of every
agent is within the e-neighborhood of v; when ||7|| < €, according to Lemma 3.2.
Since the considered common Lyapunov function V (g, v) is not C!, the second suffi-
cient condition (3.49b) for the exponential convergence of v to the e-neighborhood of
1, ®u; is replaced by the following condition on the upper Dini derivative of V (g, v)
[112], i.e.:

D*V(g,v) < —k3|o|, (3.61)

where k3 is a positive constant. Note that V(g,v) is an absolutely continuous func-
tion because it is piecewise differentiable and continuous. Hence, it is differentiable
almost everywhere according to [113]. To proceed with the proof and without loss
of generality, assume that the velocity vectors of the agents whose indices belong
to node set V) have entered the e-neighborhood of v;, while the agents belonging to
node set Vo = V'\ V4 have not yet satisfied the condition of e-flocking on their velocity
vectors. In other words, the inequality ||0;|] < € holds for any agent i € V;, where V}
denotes a nonempty subset of the node set V. Let ny = card(V}) and ny = card(V5),

and note that n =ny; + ny. Without loss of generality, let V3 ={1,2,...,n;} and
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Vo ={n1+1,n1 +2,...,n}, and assume that ny > ny. Then, (3.60) can be rewrit-

ten as follows:

- 1 <2 Ti \2 "2
V(q,v)S—ZZb?(HMQ Ak
i=1 ' i=n1+1 (3.62)

* 2\/7”71(71 —DE|1,, @€ + /na(n — 1)= H[f’mﬂ e f’n]TH ’

N € Ui
Vi = 2Tl

where = = @00 + T—lcumax/fmax (note that the relation ’ ‘ < § which holds
for all © € V; is used to arrive at (3.62)). It is implied from (3.62) that the maximum

value of b for which V(q,v) is strictly negative occurs when all velocity vectors enter

the e-neighborhood of v, i.e., Vi = V. Now, define a new velocity error vector
v=[v; ... U,]7, where:
N [T
[o:ll = (3.63)
€, |0:]] <€,

foralli € V. Using Lemma 3.1 and from the concepts of nonsmooth analysis in |114],
the function W (|[v]|) is obtained as an upper bound on the upper Dini derivative of

V(gq,v) as follows:
D*V(g,0) < TIFl) = —HI51P + Al (3.64)
where A = %\/ﬁ(n — 1)Z. Let b satisfy the following inequality:
b> > =2 1)=E (3.65)
Define X = b — %; then, W (||7||) can be expressed as:

wW(lol) = - (A+ S = vz 1512 + Al (3.66)
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After simplification, one obtains:

w(|lol)

IN

1— -
~ MBI, (367)

which implies that one can choose k3 = IX in (3.61). Thus, with this choice of
parameters, it is guaranteed that the velocity vector of every agent in the multi-
agent system with the initial configuration limited to V¢, ¢ < 2(u(r.) — u(rq)),
converges exponentially to the e-neighborhood of v; as long as the condition ||0]| > €
holds. Note that (3.49a) does not hold when ||7|| < ¢, while condition (3.61) is
satisfied regardless of the value of ||0||. Thus, it can be concluded that the multi-
agent system is stable while ||7|| < e, which, according to Lemma 3.2, is a sufficient
condition for the velocity vectors of all agents to enter the e-neighborhood of v;.
Moreover, DV (g,v) < 0 for all ¢ from (3.64) and (3.67), which implies the positive
invariance of the level-sets of V(q,v). Therefore, no inter-agent collision occurs
according to Lemma 3.3. Let the angular velocity of agent i be given by (3.58b),
for all i € V. Since ||v||?> > ne? according to (3.63), the minimum rate of decrease
of the Lyapunov function (3.55), denoted by 7, is obtained from (3.67) as:

1—
n= Z)mez. (3.68)

By applying the angular velocity (3.58b) to every agent i € V' and using Lemma 3.5,

the union of sensing digraph G is strongly connected over any time interval [¢, ¢+ T

for all ¢, where 0 < T' < <25_. This completes the proof. O

Ane2’

Remark 3.1. Undesirable chattering can occur in a network driven by control law
(3.58) due to the non-ideal switchings when the magnitude of the velocity error vector

of each agent converges to zero. To overcome this problem, Vm(v;) is redefined using
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the boundary layer approach as follows:

r&ia ||®Z|| Z €,

Vr(v) = (3.69)

ssat(), (|l <6

where p denotes the thickness of the boundary layer around the switching surface

si = ||| — €, 1 €V, such that 0 < p < €. Moreover, sat(%) is defined as:

o <l <e,

0 ol

sat(L1) = (3.70)

)

3.3.5 Network Configuration

In order to evaluate the performance of the proposed controllers, define Br( as the
smallest ball of radius R(t) which encloses all agents at time ¢. The following result

describes the network configuration under the proposed control laws.

Proposition 3.1. Consider a network of n double-integrator agents with limited
FOVs described earlier. Assume that the initial configuration of the network is
limited to a level-set W, (or W¢) for some ¢ < 2(u(r.) — u(rq)), and apply the
control input (3.58) (or (3.45)) to every agent. Then all agents stay inside a moving
ball Bryy with time-varying radius R(t) € [Rupin, Rmaz] for all t, where Ry, =
%(n — 1)ry and Ry is the radius of the smallest ball that encloses the smallest 2D

mesh composed of n nodes with minimum edge length of r..

Proof. From the invariance of the initial level-set W, (or ¥,) and Assumption 3.2,
it can be concluded that r4 is the maximum possible distance between any agent
and its neighbors. Since the undirected distance-based graph G contains a static

and connected spanning subgraph G*° for all ¢, the maximum diameter of G is
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equal to (n — 1), which yields Ry, = 3(n — 1)r, as the maximum radius of the
ball Br(. Since the conditions of collision avoidance hold, the minimum possible
distance between any agent and its neighbors is equal to r.. Thus, R,,;, is the radius
of the smallest ball Bg(;) which encloses the smallest 2D mesh composed of n nodes

with edges of minimum length r.. This completes the proof. ]

Remark 3.2. As a result of the asymmetry in sensor measurements reflected in
the sensing digraph G, the network configuration may not converge to a unique
arrangement corresponding to the minimum of the collective potential function H(q).
Since the attractive and repulsive forces are applied to the agents periodically, the

inter-agent distances demonstrate an oscillatory behavior.

3.3.6 Existence Conditions for the Spanning Subgraph G**

According to Assumption 3.2, the undirected distance-based graph G should contain
a spanning subgraph G*° which is static and connected for all £. This assumption is
met by considering a sufficiently large sensing range r, for all agents. In the following
proposition, it is shown that a static and complete G for all t is guaranteed with a
proper choice of r,. This will also ensure that the conditions of Assumption 3.2 are

satisfied.

Proposition 3.2. Consider a network of n double-integrator agents with limited
FOVs described by (3.9), and assume that the initial configuration of the network is
limited to a level-set W (or W) for ¢ < 2(u(r.) — u(ra)). Apply the control input
(3.58) (or (3.45)) to every agent. Then, the undirected distance-based graph G is
static and complete for all t if ro = %Ql"f’, where n represents the minimum rate of

decrease of the Lyapunov function (3.55) (or (3.27)).

Proof. Let Y(t) denote the convex hull of all agents at time ¢, which is defined as:

T(t) = conv({gi(t) € R* | i € V}). (3.71)
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The objective is to determine the diameter of Y(¢) as a function of time when the
multi-agent network (3.9) is driven by (3.58) (or (3.45)). Without loss of generality,
let 7,7 € V denote two distinct agents whose distance represents the diameter of the

convex hull Y(t), i.e.:

diam(T(2)) = llg; (1) — a: ()| = llai; (B)]] (3.72)

It follows from (3.38) in proof of Lemma 3.4 that the magnitude of the relative

velocity error vector 0;; is upper-bounded as follows:

1935l = llvis || < 24/ V (g, v), (3.73)

where V(q,v) (or V(q,v)) is the common Lyapunov function. By considering 1 > 0
as the minimum rate of decrease of the Lyapunov function and on noting that the
system is initially limited to a positively invariant level-set W, (or W), it can be

concluded that:

loi (O] < 2v/C = nt. (3.74)

Then, the distance between agents ¢ and j at time instant £ can be upper-bounded

as follows:

mwmsABVomnh (3.75)

It follows immediately from the above relation that the diameter of the convex hull
Y(t) at time ¢ is given by:
diam(Y (1)) = o [¢2 = (¢ — ) ot (3.76)

This implies that %g”’ is an upper bound on the diameter of the convex hull of the

agents driven by (3.58) (or (3.45)). Thus, if the sensing range of every agent is at
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least ry = %gl-f’, it is guaranteed that the distance-based graph G remains static

and complete for all £ and Assumption 3.2 is satisfied. This completes the proof. [

Remark 3.3. It is implied from the obtained ry in Proposition 3.2 that ( represents
the effect of the initial configuration of the network while n reflects the influence of
the control parameters on the radius ry which keeps G static and complete for all
t. However, it is to be noted that the above sensing range ry is conservative, i.e.,
depending on the initial configuration of the network and the choice of parameters
in (3.58) (or (3.45)), G may contain a static and connected spanning subgraph G**

for values of ry less than %Cm.

3.4 Simulation Results

Consider a network of five double-integrator agents with limited FOVs. The initial
configuration of the network is chosen such that the condition of Assumption 3.1 is
satisfied with ¢ < 2(u(r.) — u(rq)), where ¢ = 32, u(r.) = 7.8, pu(ry) = —12, and
Omaz = 14.3. Moreover, the common sensing range rs of the agents is chosen such
that Assumption 3.2 holds as well. The angular limitation of the FOV of each agent

is specified by the following apex angles:
(3.77)

Fig. 3.5 depicts the inter-agent potential function associated with agent 4 as a func-
tion of the relative distance and bering angle used in this example by considering
re=2m,rg =4m, r;="7m, h =0.95 and § = 5. The result of Theorem 3.2
is used to achieve e-flocking. Considering X = 1, p = 0.4, ¢ = 0.75 m/sec and
T = 46 sec, the common angular velocity of all FOVs, denoted by w, is obtained
from (3.58b) as follows:

w = 3.9 rad/sec. (3.78)
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x (ﬁl)

Figure 3.5: Inter-agent potential function of agent 4 used in simulation.

Fig. 3.6 shows the initial positions of agents along with their limited FOVs depicted
as conic areas. Also, the black arrows emanated from each agent show the initial
velocity vectors of the agents. Evolution of the system’s trajectories under the
control law (3.58) is depicted in Fig. 3.7. In this figure, the initial and final positions
of the agents are marked by circles and squares, respectively, while the black arrows
represent the final velocity vectors of the agents.

The magnitude of the velocity error vector of every agent, denoted by ||o;]]
for the i-th agent, is depicted versus time in Fig. 3.8. This figure shows that the
magnitude of every velocity vector exponentially reaches the e-neighborhood of the
magnitude of v; = [0.2 0.2]7. The time evolution of all inter-agent distances is de-
picted in Fig. 3.9. The oscillatory movement of the agents can be observed from
this figure, which also shows all agents remain inside a ball whose radius is bounded.
Also, no collision occurs during the evolution of the network. Finally, the magnitude
of the required bounded acceleration for each agent to reach e-flocking is demon-

strated in Fig. 3.10.
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Figure 3.6: Initial configuration of the multi-agent system.
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Figure 3.7: Trajectories of the agents under the bounded control input (3.58).
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Chapter 4

Distributed Consensus Control of
Unicycle Agents in the Presence of

External Disturbances

In this chapter, distributed consensus control strategies for a team of unicycle agents
subject to external disturbances are presented. Disturbances on both the transla-
tional and angular velocities are considered. The controllers are developed for two
types of disturbances: one with linear and known dynamics, and another with un-
known dynamics but bounded magnitude. The norm and angle of a typical reference
vector for the consensus of disturbance-free single-integrator agents are used to de-
sign the proposed controllers. For the case of disturbances with linear dynamics,
the control input for each agent consists of two parts. One part leads to consen-
sus in the disturbance-free case, and the second part compensates for disturbances.
For the case of bounded disturbances with unknown dynamics, the controllers are
designed such that each agent eventually moves with an acute angle with respect
to its reference control vector. Convergence to consensus is proved using Lyapunov

theory. Simulation results confirm the efficacy of the proposed controllers.
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The remainder of the chapter is outlined as follows. In Section 4.1, the problem
is formulated mathematically and the main objective is presented subsequently. The
consensus control problem in the presence of disturbances is solved in Section 4.2, as
the main contribution of the present work. Finally, simulation results are provided

in Section 4.3 to validate the effectiveness of the proposed controllers.

4.1 Problem Formulation

Consider a set of n nonholonomic agents moving in a plane. Let ¢; = [x; y;]7 and 6;
denote the position and heading of agent i € N,, := {1,2,...,n}, respectively. The

dynamics of each agent is then given by:

t; = (v; + d;) cos b;, (4.1a)
Yi = (v; + d;) sin0;, (4.1b)
0; = w; + o, (4.1c)

where v; and w; are the translational and angular velocities of agent ¢, and d; and
o; represent disturbances on these two inputs. The information exchange structure
among the agents is represented by an undirected graph called information flow
graph, which is assumed to be connected and static. Let this graph be denoted by
G = (V,E), where V.= {1,...,n} is the set of vertices and E C V x V is the set
of edges. Two nodes are said to be neighbors if there is an edge between them in
the graph. Denote the set of neighbors of agent 7 in G by N;(G), and the degree
of agent 7 in G by d;(G). Moreover, each agent is capable of measuring the relative
positions and relative velocities of its neighbors in the information flow graph.

The main objective of this chapter is to design a set of distributed controllers so
that the agents converge to consensus in the presence of the disturbances described

above. The agents are said to converge to consensus, if ¢;(t) — ¢;(t) — 0 as t — oo,
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for all 7, 7 € V. Define the disagreement function ~ as follows:

1 2
1=5 3 e gl (42)
(i.4)€E
Convergence to consensus in this work means that v — 0 as t — oo. This problem is
first investigated for the case where the dynamics of the disturbances are linear and

known. The general case of bounded unknown disturbances is treated afterwards.

4.2 Controller Design

4.2.1 Disturbances with Known Dynamics

In this subsection, a linear dynamics for translational and angular disturbances is
considered. The dynamics of both disturbances are assumed to be known, while
their initial conditions are unknown. More precisely, the disturbance d; is assumed

to be of the form:
z = Az,
(4.3)
di = CZTZZ‘,
where 2;,¢; € Rl and A; € R%*4 ([; € N). The parameters ¢; and A; are assumed
to be known, while z;(0) is unknown. Similarly, the disturbance o; is assumed to be
modeled as:
i = Nipui,
(4.4)
0; = Cz'T:uia
where u;,¢; € R™ and A; € R™>™ (m; € N). The parameters ¢; and A; are
assumed to be known, while p;(0) is unknown. It is also assumed that the two

matrices c;cl A; and (;¢I'A; are negative semi-definite for any i € V.

Define r; as the negative sum of the relative positions of the neighbors of agent
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Ty = — Z (Qi - Qj>7 (4-5)

JEN(G)
and denote by 6F the angle of r;, i.e. 6f = atan2(ry,,7;,), where r; = [, 75, ]7. The
vector r; given by (4.5) is, in fact, used to construct a control law that leads to
consensus for a set of disturbance-free single-integrator agents [9]. Consider now a

controller of the following form:

vi = ||ril| cos(6; — 67) — di, (4.6a)

Each control input in (4.6) consists of two main parts described below: (i) the
term ||r;|| cos(6; — 67) in v; is the projection of the vector r; in the direction of the
heading of agent i; the term 0 — (6; — 6%) in w; orients the heading of agent i in the
direction of ;, and (ii) the terms d; and &, are disturbance estimates to be derived

to compensate for disturbances d; and o;. From (4.1) and (4.6), one can obtain that:

G = ||ri cos(8; — 07) [COS QZ} +(d; — dy) [COS QZ}

sin 6; sin 6;

1 cos(26; — 07) + cos 0} ~ . [cosb;
B 5”7’:” [sin(%i — 07) +sin 9;*] (di = ) [sin Qi]

~

= 5 (Rot(2(6: — 6)) + Lyri + (d: — ) [

], o

sin 92

where I5 is the 2 x 2 identity matrix, and Rot(-) is the rotation matrix defined as:

cosp —sing
sing  cosp

Let a; denote the deviation of the heading of agent i from 67, i.e. o; = 6; — 0}; it
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follows from (4.1) and (4.6) that &; = —a; + (0; — ;). Therefore, the dynamics of

¢; and «; under the controller given by (4.6) can be written as:

. 1 ~ | cos6;
4 = §(R0t(2ai) + Ip)ri + (d; — d;) [sin 9i] , (4.9a)

In order to design aAli, let the disturbance-free state estimate ¢; be introduced by the

following differential equation:

;1 .

Gi = i(Rot(Qai) + 1)1y, (4.10)
where 7; is the disturbance-free estimate of r; given by:

fo=— > (G- ) (4.11)

This leads to the following result.

Theorem 4.1. Consider a team of unicycles of the form (4.1) with disturbances
satisfying (4.3) and (4.4), where initial conditions z;(0) and 1;(0) are assumed to be
unknown, and c;cr A; and GCEA; are negative semi-definite matrices for any i € V,

as noted earlier. Let d; in the controller described by (4.6) be given by:

R . C; . cos 0;
o= e =0 [ 0]
! ! (4.12)
CZZ' = C,Z-T,%Z‘,
and also choose &; as:
. . Gi
fii = Nif; + Waiv
! (4.13)
&i - C;TAia
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with arbitrary initial conditions 2;(0) and 1;(0). Then the agents converge to con-
sensus, asymptotically.

A~

PTOOf. Define the error variables dz =(q; — qAZ‘, dz = dz — dz‘, 5’2 = 0; — &Z-, 22 = Z; — 22',

and fi; = p; — f1;. Using (4.9) and (4.10), one can obtain:

- di(G) _ = [cosb;
i (Rot(20) + F)i + ds | ] (4.14)
Also, it follows from (4.3) and (4.12) that:
X 0;
di = T Az — (G —7) [:fj 9-] . (4.15)
Similarly, it is concluded from (4.4) and (4.13) that:

On the other hand, it can be shown that the derivative of the disagreement function

7, defined in (4.2), is given by:

=2 S o)

=1 jeN;(G)
s (4.17)
i=1

Now, consider the following Lyapunov function:
1~ - .
Vq=7+§Z(||qz'||2+||di||2)- (4.18)
i=1

From the relation CZ, = CZZT = ZZTCZ- and on noting that cicgpAi is negative semi-definite,
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one obtains:

n

. 1 2 7 3 92
v :Z_ + cos( a)||7”z‘||2 T [cos }

— 2 sin 6;
d;(G)(1 + cos(2¢y;)) |, - ~ | cosb;
2 in 0;
. . 0,
sin 6;

n

1 + cos(2¢y; . - -
=50 O 4 @A) + e A
=1

<0.

Define also the Lyapunov function V,, as:

n

1 .
Vo = §Z(|lai|lz+ I5:[1%), (4.20)
i=1

for which it can be shown that:

Vo = Z —llaill® + 3:¢ Nifus

i=1

=" el + AT GCT A (4.21)
=1
<0

(analogous to (4.19), the relation 6; = 6! = [l(; and the fact that (;¢ITA; is
negative semi-definite are used to derive the above derivative). Therefore, the system
converges to the invariant set V, = V,, = 0. This, along with (4.19) and (4.21),

implies that on the positive limit set of the system, a; = 0, r;, = 0, and ¢; = 0.

Moreover:

Yo Mg —alP == alr (4.22)
i=1

(i,7)€EF

where 7; is given by (4.5). It follows from the above relation and r; = 0 that on
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the positive limit set of the system, ¢ = ¢o = --- = q,,. This proves convergence to

consensus for the agents under the proposed control strategy. ]

Remark 4.1. Using the fact that both g; and «; are equivalent to zero on the positive
limit set of the system, one can show the convergence of cf, and 6; to d; and oy,
respectively. More precisely, ¢; = 0 along with (4.14) yields d; = d; on the positive
limit set of the system. Similarly, (4.9) along with a; = 0 implies that o; = &; on

the positive limit set of the system.

4.2.2 Bounded Unknown Disturbances

Next, let the dynamics of the disturbances be unknown, but assume upper bounds on
the magnitudes of the disturbances are available. More precisely, it is assumed that
there exist positive scalars d}?, ..., d™ such that the magnitude of the translational

disturbance for agent 7 is upper bounded by df‘/[, ie.

[EAGIESAS (4.23)

for any © € V and all ¢ > 0. Similarly, the angular disturbances are assumed to

satisty:
los(t)]| < o}, (4.24)
for any i € V and all t > 0, where o}, ... o™ are known positive scalars. Consider
a controller of the form:
v = oM (4.252)
wi = 0F — ki (0; — 0, (4.25b)
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where v and k; are constant design parameters satisfying the following inequalities:

oM > gM

) i

™

(4.26a)

(4.26D)

for every ¢ € V. It is claimed that under these controllers the agents converge to

consensus.

Lemma 4.1. Under the controllers given by (4.25), there exists a finite time T > 0

after which the heading of every agent makes an acute angle with its reference control

vector ri. In other words, for anyi € V andt > T, the inequality ||a;(t)|| < 5 holds,

where a;(t) = 0;—0F(t) as defined before. Moreover, there exist real positive constants

B1, ..., Bn such that cosay(t) > B;, for anyi € V andt > T.

Proof. 1t follows from (4.1) and (4.25) that:
di = —RK;Q + 0;.
By solving the above differential equation one arrives at:
t
a;(t) = e "ita;(0) +/ e "o (T)dT.
0

Thus:

. (o)
< e " lag(0)] + =

ol

The assumption x; > 2o implies that

s
2 K
values of ¢, the inequality e™**{|o;(0)|| < 3
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(4.27)

(4.28)

(4.29)

7l
— > (. Hence, for sufficiently large

(2 — %) holds. This, along with (4.29),



yields [los ()] < 5 — 5(5 — UlM) < 7, for sufficiently large values of ¢. Moreover, for

2\2 Ki
these values of ¢, cos a;(t) > cos(3 — 2(3 — J}fj)) = sin(3(5 — J}fj)) > 0. The proof
of the lemma is completed by choosing §; = sin(3 (5 — U,;M )), for any 7 € V. O

It is deduced from the above lemma along with the fact that, for every i € V,
v; +d; = UZM + d; > 0, that after a finite time every agent will move with an acute
angle with respect to its reference control vector. This will be used in the next

theorem to prove the convergence of the agents to consensus.

Theorem 4.2. Consider a team of unicycles of the form (4.1) with bounded unknown
disturbances with the upper bounds given by (4.23) and (4.24). Then, under the

controller given by (4.25) the agents converge to consensus, asymptotically.

Proof. For the purpose of stability analysis, one can consider the system after time
T, where T is given by Lemma 4.1. As a result, one can assume that «; possesses the
properties stated in the lemma, for any ¢ € V and ¢ > T. Consider the disagreement
]T

function v as defined in (4.2). On noting that r; = [|r;||[cos 0} sin@}]" and ¢, =

(v; + d;)[cos 6; sin@;]T, one can show that:

i==>_rld
i=1

== " |lrill(v; + di) cos(6; — 6;)
- (4.30)
<= Irill(v} = ) cos ey

i=1

< =Y Il @M = dih)s.
i=1

It is to be noted that due to the uncertain and possibly time-varying nature of the dis-
turbances, the system will not be autonomous. In order to apply the LaSalle’s invari-

ance principle for non-autonomous systems from [111], define W(q) = >_7", [|r (v} —
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dM)B;, where ¢ = [¢f -+ ¢L]" (note that W(q) is a positive semi-definite func-
tion). Now the inequality ¥ < —W (gq) implies that the system converges to the set

W(q) =0, and as a result r; = 0, for every i € V. Moreover:

S olla—alP==> 4 (4.31)
i=1

(i,7)eF

where 7; is given by (4.5). It follows from the above relation and r; = 0 that on
the positive limit set of the system, ¢ = g2 = --- = q,,. This proves convergence to

consensus for the agents under the proposed control strategy. [

Remark 4.2. The behavior of controller (4.25) is similar to that of sliding mode
controllers [111]. Since the effective translational velocity of agent i (i.e. v; + d;)
is always positive and bounded from below by the positive constant v — dM (which
follows from (4.23), (4.25a) and (4.26a)), for every i € V', the agents will not stop
after they reach the consensus point. While deviating from the consensus point, each
agent has to rotate instantaneously to make an acute angle with the newly created
reference vector r;, in order to return to consensus. This will introduce chattering in
the heading of each agent, and will result in an impulsive component in the angular
velocities of the agents. As a remedy, the control law can be modified slightly to stop

the agents as soon as all of them enter a 2D ball of pre-specified radius €.

4.3 Simulation Results

The performance of the proposed controllers for both cases of a disturbance with
known linear dynamics and a disturbance with unknown dynamics but known upper

bound is evaluated by simulation.

Example 4.1. A class of disturbances that can be handled by the controller proposed

in Subsection 4.2.1 is the class of exponentially decaying or constant disturbances.
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Figure 4.1: The information flow graph G along with the initial positions and head-
ings of the agents in Examples 4.1 and 4.2.

This type of disturbances on the translational velocities can be modeled by a proper
choice of parameters A; = a; < 0 and ¢&' = 1 in (4.3), where the unknown initial
conditions z;(0), i € V, determine the magnitudes of the corresponding disturbances.
Similarly, exponentially decaying or constant disturbances on the angular velocities
can be modeled by a proper choice of parameters Ay = N\; < 0 and I =1 in (4.4).
For these values, cicZTAi = a; and QCZTA, = \;, which are negative semi-definite,
satisfying the condition of Theorem 4.1. The special case of constant disturbances is
considered in this example.

To verify the effectiveness of the proposed controller for this case, a network
of four unicycles with dynamics of the form (4.1) is considered. Assume the initial
configuration of agents and the undirected cyclic information flow graph G are as
depicted in Fig. 4.1. For simulation purposes, let the constant unknown disturbances
applied to every agent through the translational and angular velocity channels be equal
tod=[-25 1 2 —-15]Tando=[1 1.1 0.5 0.7 ], respectively (note that

this information is not used in the controller design).
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Figure 4.2: The agents’ planar motion without disturbance compensation in Exam-
ple 4.1.

Using the control law (4.6) with d;=6;=0 (i.e., a typical consensus control
law with no disturbance compensation terms) the trajectories shown in Fig. 4.2 are
obtained for agents. These trajectories demonstrate that consensus is not achieved
by neglecting the effect of disturbances in the control law. This can also be inferred
from the disagreement function v depicted in Fig. 4.4, as vy does not converge to zero
without disturbance compensation. Fig. 4.3 depicts the trajectories of the agents
under the controller (4.6) with the disturbance compensation terms introduced in
Theorem 4.1. It can be observed from this figure, and also from the disagreement
function v depicted in Fig. 4.4, that under the proposed controller the agents con-
verge to consensus in the presence of constant unknown disturbances. Figs. 4.5 and
4.6 show estimates of the constant translational and rotational disturbances, respec-
tively, using the proposed controller. It can be observed from these figures that the
disturbance estimates czl and &; converge to the exact values d; and o;, © € Ny, as also
noted in Remark 4.1. Finally, the translational and angular velocities of the agents

while they converge to consensus are depicted in Figs. 4.7 and 4.8, respectively.
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Figure 4.3: The agents’ planar motion with disturbance compensation in Exam-
ple 4.1.

140 ‘ ‘ ‘
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Figure 4.4: Comparison of the disagreement function v with and without disturbance
compensation in Example 4.1.
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Figure 4.5: Convergence of d; to the unknown constant translational disturbance d;
for every ¢ € N, in Example 4.1.
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Figure 4.6: Convergence of ; to the unknown constant angular disturbance o; for
every ¢ € Ny in Example 4.1.
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Example 4.1.
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Figure 4.8: The angular velocities wy, . ..,w,; with disturbance compensation in Ex-
ample 4.1.
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Example 4.2. To evaluate the performance of the proposed controller of Subsec-
tion 4.2.2 in the case of bounded unknown disturbances, a network of four unicycles
with dynamics of the form (4.1) is considered. The initial configuration and infor-
mation flow graph of the network are the same as Example 4.1 (shown in Fig. 4.1).
Let the sinusoidal unknown disturbance vectors

d=[0.12sin(t + 10°) 0.21sin(2t 4 20°) ...
(4.32)

0.15sin(3t 4+ 30°)  0.19sin(4t + 40°) |©

and

o= —046sin(t 4+ 10°) 0.14sin(2t 4 20°) ...
(4.33)

—0.22sin(3t +30°)  0.04sin(4¢ + 40°) |*

be applied to the translational and angular velocity channels, respectively. Given the

upper bound vectors d™ =10.12 021 0.15 0.19]" and o™ =[0.46 0.14 0.22

M

i =

0.04 17 on the element-wise magnitude of disturbance vectors d and o, consider v
0.31 and k; = 0.55 as design parameters in (4.25) for every i € Ny. These design
parameters satisfy the conditions given in (4.26). Also, assume that simulation stops
once all agents enter a 2D ball of radius € = 0.1 in order to avoid chattering, as
explained in Remark 4.2. The trajectories of the agents driven by controller (4.25)
are shown in Fig. 4.9. It can be seen from this figure that all agents reach consensus
in the presence of bounded unknown disturbances in their translational and angular
input channels. Fig. 4.10 depicts the angular velocities of the agents while converging

to consensus.
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Figure 4.9: The agents’ planar motion in the presence of bounded unknown distur-
bances in Example 4.2.
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Figure 4.10: The angular velocities wy, ...,w, in the presence of bounded unknown
disturbances in Example 4.2.
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Chapter 5

Distributed Connectivity Assessment
of Random Directed Graphs with
Applications to Underwater Sensor

Networks

In this chapter, the problem of connectivity assessment for a random sensor network
is investigated. The weighted vertex connectivity is introduced as a metric to eval-
uate the connectivity of the weighted expected graph of a random sensor network
where the elements of the weight matrix characterize the operational probability of
their corresponding communication links. The weighted vertex connectivity measure
extends the notion of vertex connectivity for random graphs by taking into account
the joint effects of the path reliability and the network robustness to node failure.
The problem of finding the weighted vertex connectivity measure is transformed into
a sequence of modified iterative deepening depth-first search and maximum weight

clique problems, and based on that, an algorithm is developed to find the proposed
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connectivity metric. The approximate weighted vertex connectivity measure is de-
fined subsequently as a lower bound on the introduced connectivity metric which
can be found by applying a series of a polynomial-time shortest path algorithm.
A distributed adaptive estimation procedure is then developed to estimate the ex-
pected communication graph of the network from the viewpoint of each sensor. The
performance of the proposed algorithms is validated using the simulation results and
an experimental underwater acoustic sensor network.

The outline of this chapter is as follows. In Section 5.1, some important back-
ground information on random graphs given and the problem is formulated. The
weighted vertex connectivity degree is proposed in Section 5.2 and a procedure is
developed to find this measure in Section 5.3. In Section 5.4, an approximation of
the weighted vertex connectivity metric and a time-efficient algorithm to obtain this
measure are presented. A distributed adaptive procedure is given in Section 5.5 to
estimate the expected graph of a random communication network. Finally, the sim-

ulation and experimental results are presented in Sections 5.6 and 5.7, respectively.

5.1 Preliminaries and Problem Formulation

Throughout this chapter, the set of positive and nonnegative real numbers are de-
noted by R- and Rs, respectively. Also, N,, :={1,2,...,n}, |®| is the cardinality
of a finite set ®, and ¢’ shows the i-th element of the set ®. Moreover, the power
set of a finite set ®, denoted by P(®), is the set of all subsets of ®.

Let G = (V, E) denote a random digraph composed of a set of nodes V' and
a set of edges E. Let also the probability matrix P = [p;;] represent the existence
probability of all directed edges in G, where p;; € [0, 1] is the probability of existence

of the edge (j,7) € E. Define A = [a;;] as the adjacency matrix of G, where a;; is a
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binary random variable such that:

1, with probability p;;,
a;; = (5.1)

0, with probability 1 — p;;,

and (j,7) € E if and only if a;; = 1. Consider G = (V, E) as the expected graph of
the random digraph G = (V, E), where the set of nodes and edges of G are denoted
by V and E, respectively. Furthermore, the weighted adjacency matrix of G is
represented by A= [a;;], where a;; = p;; for every pair of distinct nodes i,j € V.

Moreover, (j,i) € E if and only if pij # 0.

Definition 5.1. Let the communication graph of a network composed of n sensors
be specified by a random digraph G = (V, E) with the probability matriz P = [p;;],

where its node and edge sets are defined as:

V=A{12,...,n}, (5.2a)

E={(i,j) €V xV|a;=1}. (5.2b)

Let also G = (V,E) be the expected communication graph of the network, where

~

V =V and:

~

E={(i,j) € VXV |p; #0}. (5.3)

Due to the importance of the connectivity of the expected communication
graph in achieving desired cooperative objectives over a random sensor network, the
main objective of this chapter is to introduce appropriate global measures for the
connectivity of an expected communication graph, and develop efficient distributed

algorithms to evaluate them.
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5.2 Weighted Vertex Connectivity (WVC) Metric

Consider a group of sensors represented by the node set of a random digraph G =
(V, E), where every directed edge in E is characterized by a binary random variable.
Let also the binary random variables describing the probabilistic nature of all edges
be independent. The concept of vertex connectivity (VC) is introduced in [115] as
a measure of global connectivity of digraphs. The VC degree of GG is defined as the
minimum number of nodes that should be removed in order for G to lose strong
connectivity. Let G' = (V'  E’) represent a deterministic digraph with node set V"’
and edge set E’. Then the VC degree of G', denoted by x(G’), is given by:

k(G) = min £k ;(G), (5.4)

i,jeV!, i#j

where,
Nii(G), i (i,)) ¢ E,
ki (G') = (5.5)
V' =1, if (i,j) € F,
and N; ;(G') denotes the maximum number of vertex-disjoint directed paths connect-
ing i to 7 in G'. The general idea behind the algorithms provided in the literature
to compute the VC degree of a graph (e.g., in |98, 99, 100]) is that the minimum
number of nodes whose removal disconnects any pair of nonadjacent nodes is equal
to the maximum number of mutually vertex-disjoint directed paths between them
(see Menger’s Theorem [115]). However, this measure does not account for the prob-
ability matrix of random networks and merely demonstrates the robustness of the
network to node failure. This calls for a more accurate measure of connectivity to
capture the probabilistic nature of the communication links. The weighted vertex
connectivity (WVC) measure is introduced here to extend the notion of the VC

degree to the more general case of weighted digraphs, where the elements of the

101



weight matrix denote the operational probability of their corresponding communi-
cation links. This nonnegative measure is positive for a strongly connected digraph,
and a larger value of this measure represents “stronger” connectivity, taking into
account the combined effects of the operational probability of the paths and the
network robustness to node failure. To clarify this new concept, the multiplicative
weight of a path is subsequently defined, based on the mutual independence of the
binary random variables used for describing the probabilistic nature of the edges of

the network.

Definition 5.2. Let II; ; denote the set of all directed paths from node i to node j
whose lengths are greater than one in the expected communication graph G= (V, E)
with probability matriz P = [p;;]. Let also Wﬁj € I, ; represent the k-th element of
1L, ; defined as Wﬁfj = {vk,vF ... ,U,’;k_l, v]nibk}, which denotes a directed path of length

my > 1 from node i to node j such that vi = i, vfnk = j, and (v ,0F) € E for all

l € N,,,. Then, the multiplicative weight of path ¥ ., denoted by W(Wé‘fj), 15 defined

7’7]}

as follows:

M
W(ﬂ-f,j) = Hpvaffl’ (56)
=1

Definition 5.3. Consider 7} ; and ﬂfJ» as two distinct directed paths from node i to
node j in G which are described by the node sets 7 = {00, Vs U1, U, | and
t t

. . s t _ . S _ t _ .
Tae—1 U, 15 TESPECtively, with vy = vy =1 and v;, = v}, = j for

m = {vg, vt
s,t € Ny, ;|- Let also ms and my denote the lengths of two directed paths 7} ; and 7Tf7j,

respectively, such that ms > 1 and my > 1. Then, 7} ; and ij are vertex-disjoint

paths if (755 \ {vg, v5,. 1) N (7f; \ {vg, v, }) = 0.

Since each element of P represents the probability of the existence of its corre-
sponding edge in G and all edges are characterized by a set of mutually independent
binary random variables, the multiplicative weight can be interpreted as the opera-

tional probability of a given path. The notion of local WVC measure for any pair
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of distinct nodes 7,7 € V in the expected communication graph G = (V, E) is now
introduced. This measure, denoted by /%ZJ(G), is defined as the maximum of the
summation of the multiplicative weights of the vertex-disjoint paths from node ¢ to
node j in G. In other words, &;;(G) represents the maximum of the summation of
the operational probability of vertex-disjoint paths connecting node ¢ to node j in
G. Consider P(II; ;) as the power set of IT; ;, and let P(II; ;) C P(IL;;) contain all

nonempty subsets of II; ; which are composed of a set of mutually vertex-disjoint

paths from i to j in G. Then:

(|11, 51
> Wik, if (1,7) ¢ E,
I%ZJ(G) = < h=t |ﬂi,j| (57)
max ((|V] = Dpjipsi + Y _W(FE)), if (i,j) € E,
\ k=1
where
) ]
II; ; = argmax Z W (z*), (5.8)

NeP(I; ;) k=1
and IT = {7* | k € Nz} denotes a path set (composed of |II| elements). The WVC
metric of é’, denoted by /%(GAY), is defined below as the global connectivity measure

of the expected communication graph G:

R(G) = min Ay (G). (5.9)

iJEV i#]

N

Thus, the WVC measure #(G) can be considered as an extension of the VC degree

H(é), where the relationship between them is addressed by the next proposition.

Proposition 5.1. Let G represent the expected graph of a random digraph G whose

A N

weight matriz is given by a probability matriz P. It then follows that R(G) < k(G).

~ A

Proof. In order to prove that the inequality £(G) < k(G) holds, it suffices to show

that #;,;(G) < ki, (G) for any pair of distinct nodes i,j € V. To this end, two
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different cases are considered:

(i) In the first case, assume that no directed edge exists from i to j in G. Then,
the local WVC measure is determined by the path set fI” according to equation
(5.8), which includes a set of mutually vertex-disjoint paths connecting i to j in G
such that the summation of the multiplicative weights of its elements is maximum.
Since 0 < W (n};) <1 for all k € Ny, |, it can be concluded that:

‘HZJ‘

ZW ) < |IL,| < Nij (G, (5.10)

where N, ;(G) represents the maximum number of vertex-disjoint paths connecting
1 to j in G. Moreover, the equality occurs in equation (5.10) when p,, = 1 for
all (v,u) € E. In this case, all directed paths from ¢ to j have unity multiplicative
weights and the path set ﬁij contains the maximum number of vertex-disjoint paths
from i to j in G such that N; ;(G) = |II;|. It then follows from equation (5.10) that
#ii(G) < ki (@) for any two distinct nodes 4, j € V when (i, ;) ¢ E.

(ii) In the second case, let (i,7) € E. Then, based on equation (5.7) the WVC

i : :
| ”‘ (7rk ), whichever is larger.

measure i, ;(G) is either (|[V] — 1)pj; or pji + 3,
Given that there is at most |V| — 2 vertex-disjoint paths with length greater than
one between any pair of distinct nodes in G and on noting that 0 < p;; < 1 and

0 <W(nf,;) <1forall k€ Ny, , it can be deduced that:

i + ZW )< |V -1, (5.11)

for any (i,) € E. Then, it follows from equation (5.11) that:
Iﬁlﬂl

max ((|V| - )pﬂ?pﬂ + Z W(z ) < |V| -1 (5.12)

k=1
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for any pair of distinct nodes i, j € V such that (7, j) € E. Note that the equality
in equation (5.12) occurs when pj; = 1. It is then implied from equation (5.12) that

#i;(G) < ki (@) for the case that (i,7) € E. This completes the proof. O

Remark 5.1. The WVC metric #(G) is a nonnegative real value (2(G) € Rsg),

~

and is more sensitive to the changes in the network compared to the VC degree rk(G)

~

which is a nonnegative integer (k(G) € Zxo).

Remark 5.2. Note that for two different expected communication graphs Gy and Gy
with k(G1) > k(Gy), it is possible that (Gy) < &(Gy), depending on the probability
matrices P, and P,. Note also that since the random nature of the communication
links is captured by the WV C measure, it is more suitable to assess the connectivity

of sensor networks whose information exchange is described by random digraphs.

5.3 A Procedure to Find the WVC Metric

In this section, an algorithm is proposed to find the WVC measure of a strongly
connected weighted digraph. As the first step, a procedure is introduced to find the
set of all directed paths between any pair of distinct nodes in a digraph. Then, the
problem of finding the local WVC metric is formulated as a maximum weight clique

(MWC) problem, where the existing algorithms can be used to solve it [116, 117].

5.3.1 Modified Iterative Deepening Depth-First Search (ID-

DFS) Algorithm
A modified version of the IDDFS procedure given in [118] is introduced in Algo-
rithm 1 to find all directed paths from a source node s to a destination node ¢ in

digraph G = (V, E). The existing IDDFS algorithms terminate once the length of

the obtained paths exceeds a certain value [118]. However, the proposed modified
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IDDFS algorithm stops when none of its candidate paths with a certain length can
be extended. In this algorithm, ¥ and ¥ denote two matrices whose rows contain
the node set of candidate paths and extended candidate paths from node s to node
t in G, respectively. The number of columns of ¥ and W is represented by L, while
the number of rows of ¥ and U are denoted by A and ), respectively. Moreover,
the length of the paths emanating from the source node s is L — 1, which depends
on the number of edges in the paths, and cannot exceed |V| — 1. Furthermore,
N{f]{t L) denotes the set of out-neighbors for a node on the ¢-th candidate path whose
distance from the source node s is equal to L — 1. The matrix I, is the output
of the algorithm, whose rows include the set of nodes representing all paths from s
to t in G, while n is the total number of the obtained paths. The algorithm termi-
nates when no node other than ¢ results in an extended candidate path at a certain

distance from the source node s.

Algorithm 1 A modified IDDFS procedure for finding all directed paths from node
s to node t in digraph G.

1: \I/(l, 1) =

2 L=1;A=1;7n=0

3: while ) # 0 do

4. X =0

5. fori=1to A do

6: for j =1 to |N°“ )| do

7 if Ngiin()= t then

8: 77:77+1;H8,t(777') (17)’ (77>L+1)_t
9: else if W(i,:) N Ng{ ;) (j) = 0 then

10: A=A+150(N ) =9(,:); U\, L+1) = Ngtt ,(5)
11: end if

12: end for

13:  end for

14: V=T

15 L=L+1

16: end while
17: return Il
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5.3.2 Maximum Weight Clique (MWC) Problem

In the second step of developing an algorithm for the local WVC measure, the
problem of obtaining the path set ﬂ” for any pair of distinct nodes i, j € 1% given
in equation (5.8) is formulated as an MWC problem in the context of combinatorial

optimization. To this end, some definitions are provided in the sequel.

Definition 5.4. Consider a weighted undirected graph G = (V, E, H) with node
set V.= {1,2,...,n}, edge set E C V x V, and weight vector H € R, whose
i-th component H (i) is the weight assigned to node i € V. The weight of a node
set S C V, denoted by H(S), is defined as ), o H(i). A clique C in weighted
undirected graph G is a subset of the node set V' such that the subgraph induced by
C 1s complete. A maximum weight clique in G is then defined as a clique C' whose

corresponding weight H(C') is mazimum.

Definition 5.5. Let a node be assigned to every directed path from node i to node j
belonging to the path set 11, ; in the expected communication graph G. Also, assign
an undirected edge between distinct nodes s and t if their corresponding paths, repre-
P EPHP)

are vertex-disjoint. The resulting graph Gﬁj = (V;

s t
sented by w7 ; and i Ligr i 5

27.]}

i1s defined as the weighted undirected path graph associated with the paths belonging

to 11, ;, whose node and edge sets are described as follows:

Vig =112, [Tl (5.13a)
EY =A{(s,t) € VI x V' | w5 and Wf’j are vertez-disjoint}, (5.13b)
_ k
and H} ;(k) = W (r7;) for all k € V.

Remark 5.3. The weighted undirected path graph G ; can be constructed in O(|11, %)

time by evaluating the vertex-disjoint property for every pair of distinct paths in I1; ;.

Theorem 5.1. The problem of finding the optimal path set f[s,t over the expected
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communication graph G given by equation (5.8) is equivalent to applying a mazimum
weight clique (MWC) procedure on the weighted undirected path graph G‘Z,t for any

pair of distinct nodes s,t € V.

Proof. Consider the weighted undirected path graph G%, = (V}, EY

P
s,t) s,ths,t) asso-

ciated with the directed paths belonging to II;;. Let the solution to the MWC
problem defined over G, be denoted by S, ie.:

S|
S = argmaxZHgt(Si), (5.14)

SCVi =1
where the node set S = {S" | i € Nig} corresponds to a clique of size |S| in GY,.
According to equation (5.14), S reflects the indices of a set of directed paths from
node s to node ¢ in digraph G which are vertex-disjoint and the summation of their
weights (as the elements of the weight vector HY,), is maximum. Let fIZt denote a
path set which contains all the paths whose indices are specified by the elements of
S. Tt then follows from the definition of HY, that:
||
fl’;t = argmax Z W (r"), (5.15)
MeP(Is,t) j=1
where 75(H8,t) denotes a subset of the power set of II;; containing all nonempty
subsets of Il ; which are composed of a set of vertex-disjoint paths from s to ¢ in
G and correspond to all cliques in the path graph G%,. Tt follows directly from
equation (5.8) that ﬂs,t = ﬂ;t, which means that ﬂs,t can be obtained by solving a
MWC problem over the weighted undirected path graph G?t. This completes the

proof. (]

There are a number of different algorithms in the literature to tackle the MWC
problem. For instance, one can use the procedure given in [116|, which is utilized in

this chapter to find the path set ﬁ” for any pair of distinct nodes i, j € 1% according
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to equation (5.8). Then, the local and global WVC measures of G can be obtained
based on equations (5.7) and (5.9), respectively. A procedure to obtain %(@) is

presented in Algorithm 2.

Algorithm 2 A procedure to find the weighted vertex connectivity (WVC).
1: /(G) =V -1
2: for alli,j € V and i # j do R

Find II; ; using the modified IDDFS algorithm in G

Construct the weighted undirected path graph Gf,j

Find ﬂ” by solving the MWC problem over G‘Zj
if (i,7) ¢ E then
L I ; A
R (G) = Z‘kfflw(ﬁﬁj)
else if (i,7) € F then
A A ’ ﬁi" T
ﬁi,j(G) — max ((|V| — 1)pji,sz' + Zlkzlj‘W(Wlk,j))
10: en(j if R .
11: /(G) = min(i(G), ki ;(G))
12: end for .
13: return £(G)

5.4 Approximate Weighted Vertex Connectivity (AW VC)
Metric

The number of all possible paths between any pair of distinct nodes increases expo-
nentially with the network size. On the other hand, the MWC problem is NP-hard.
Thus, it is desired to find an approximation of the WVC metric which can be ob-
tained using a polynomial-time algorithm. To this end, the most reliable path in G

is defined next.

Definition 5.6. Given an expected communication graph G with probability matriz

P, let 11; ; denote the set of all directed paths from node i to node j with length

T

greater than one. The most reliable path directed from i to j in G’, denoted by m; ;,

is defined as a path in 11; ; with the largest multiplicative weight. The path i 1S,
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in fact, a path from i to j with the highest probability of existence whose length is

greater than one.

The notion of local approzimate weighted vertex connectivity (AWVC) measure

for any pair of distinct nodes 2,7 € V. denoted by Eivj(é), is defined as follows:

pLCASE if (4,5) ¢ E,

R (G) = { k=1 N (5.16)
max (([V| = Dpji,pji + Y _W(x)), if (i,5) € E,
k=1

where W(Wf]k) represents the multiplicative weight of the k-th most reliable path

from node i to node j after removing the internal nodes and their corresponding

r,l

i 1 € N1, from

adjacent edges of k — 1 previously found most reliable paths
G. Moreover, [;; is the maximum number of the vertex-disjoint most reliable paths
directed from i to 7 with length greater than one such that after deletion of their
internal nodes along with the corresponding adjacent edges no path will remain from

i to 7. Then R(G’) is defined as the global AWVC metric of digraph G, which is

related to the previous local AWVC measure as follows:

R(G)= min &(Q). (5.17)
i JEV i
The relation between the WVC metric #(G) and its approximation %(G) is described

in the next proposition.

Proposition 5.2. Let G represent the expected communication graph of a random
network with the weight matriz P. Then, the AWVC measure ()fGY provides a lower
bound on its WVC degree, i.e., ®(G) < &(G).

Proof. According to equation (5.7), the local WVC metric is obtained based on the

solution of the combinatorial optimization problem (5.8) to find the path set ﬁ”
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such that its elements represent a set of vertex-disjoint paths and the summation of
the multiplicative weight of its elements is maximum. Therefore, any other set of
vertex-disjoint paths such as the set of all vertex-disjoint most reliable paths from
node 7 to node j in G with length greater than one, denoted by W;’f for k € Ny,

provides a suboptimal solution to the maximization problem (5.8) and satisfies the

following inequality:

Li 1L,
W) < Y Wz, (5.18)
k=1 k=1

for the case that (i,j) ¢ E. The same result holds when there exists an edge from i
to 4, i.e., (i,7) € E. It then follows from equation (5.18) that 7, ;(G) < &, ;(G) for
every pair of i, j € V, i # 7, which means that the AWVC measure provides a lower

bound on the WVC degree. ]

The result of the next proposition will be used to obtain the set of most reliable

rk

paths from node ¢ to node j with maximum multiplicative weight, denoted by ,’;

for any k € N, ., using the standard shortest path algorithms.

Proposition 5.3. Consider a pair of distinct nodes u,v € V in the expected com-
munication graph G. The problem of finding the most reliable path from u to v in G
with the weight matriz P = [p;;| is equivalent to finding the shortest path connecting

u to v in G with the modified weight matriz P = [p

ijeV,i#j.

i, where p,; = —In(py;) for all

Proof. Let m, , be the desired most reliable path from v to v in G described by the

A

node set 77, = {vg, vf,..., v, 4,0y, }, where vy = u, v], = v, and (v]_j,v]) € F

for all [ € N,, . Then, the multiplicative weight of 7 , is given by:
Wirw) = b .- (5.19)

k=1

Map the elements of P to the new modified weight matrix P using the relation
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Pi;; = —1In(py;) for any pair of distinct nodes 4,j € V. By applying a standard
shortest path algorithm (e.g., the Bellman-Ford or Dijkstra algorithm) to G with

the modified weight matrix P, T, 18 Obtained as the shortest path from u to v in

v

G which is the solution to the following minimization problem:

m
s ) _ .
T, , = argmin g Popv,_, = argmin E —In(py, v, )- (5.20)
mwelly v k=1 mwelly v k=1

The path set II, , contains all directed paths from u to v with length greater than
one (m > 1) in G. Using the properties of the logarithm, equation (5.20) can be

simplified as:

ﬂ-’i,v = argmax ln(H pvkvk,1>- (521)
€Ly vy k1

Since In(+) is a concave function, it has no effect on the solution of the maximization

problem in equation (5.21). Thus, it can be concluded that:

m
S
w5, = argmax [ [ poo,. - (5.22)
mwelly v k=1

It follows from equation (5.22) and the definition of 7, , that 77, , = 7 . Therefore,
the most reliable path from u to v in G with the weight matrix P is the output of
a standard shortest path algorithm from u to v running over G with the modified

weight matrix P. This completes the proof. (]

It is desired now to develop a polynomial-time algorithm to obtain the global

~

AWVC measure ®(G) as a lower bound on the computationally-expensive WVC
metric #(G). To this end, Dijkstra’s algorithm is used for any pair of distinct nodes
1,] € V in a number of steps by considering the modified weight matrix P. Let
l;; represent the number of steps which should be taken to find the local measure

i, (G). Tn the k-th step (k € Ny, ), the most reliable path W;’f with length greater

than one is identified and its multiplicative weight W(’]T:]k) (obtained based on the

112



original weight matrix P) is added to Nlj(é), which is initially set to zero. Then,
all internal nodes of the k-th most reliable path 7r : along with the edges adjacent
to them are removed from Gij, and the next step starts by applying a new Dijksrta’s
algorithm to the modified graph éw In the last step (i.e., when k = [;;), only one
directed path exists from ¢ to 5 in the modified Gzy Then the local AWVC degree
F:;(G) is determined according to equation (5.16), and by comparing the computed
local AWVC degrees for all pairs of distinct nodes in G, the minimum value denoted

by %(G) is found. This procedure is elaborated in Algorithm 3.

Algorithm 3 A procedure to find the approximate weighted vertex connectivity
(AWVC)

1 ’(G ) \V\ —1 B

2: Construct the modified weight matrix P = [p,;]

3: for allz’jGVandz’;éjdo

4: NZ ](G) =0

5: V;]—V E,]—E G =G

6: fork=1 to l;; do

7: Find 7le using Dijkstra’s algorithm over G;; with modified weight matrix
P such that 7]} = = {ui" opk ,v:,;':’k_l, vfn]:k

8: Find W (m ”) based on the elements of P

9: Nij(G) = Nij(G) + W(m)h)

10: V;]_‘/Z]\{I’U2"">mrk 1

11: Update G;; as a graph induced by the modified node set V;;

12:  end for )
13:  if (4,j) ¢ F then

14: Fiy(G) = Niy(G)

15:  else if (i,j) € I then A
16: ki j(G) = max ((|V + 1)pji, pji + N”(G»
17.  end if

18 ®(G) = min(&(G), 7, (G))

19: end for

20: return %(G)

Theorem 5.2. The polynomial-time Algorithm 3 applied to the expected communi-
cation graph G has a time complezity of O(|E||V ] + |V |*log(|V])), where V and E

are, respectively, the node set and edge set ofCA?.
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Proof. Since the maximum possible number of the vertex-disjoint most reliable paths
between any two distinct nodes in G is |V\ — 1, it is required to apply Dijkstra’s
algorithm |V| — 1 times, at most, in order to find the set of most reliable paths W;’f,
k € N, for any pair of distinct nodes 4, j € V. Since the fastest implementation
of Dijkstra’s algorithm has a time complexity of O(|E| + |V|log(|V])), every local
AWVC metric can be obtained in O(|E||V| + |V[*log(|V])) time. To find the local
AWVC measures for all pairs of distinct nodes in G, the overall time complexity of

Algorithm 3 is O(|E||V > + |[V|*log(]V])). This concludes the proof. O

5.4.1 A Computational Example of the WVC and AWVC

Metrics

Example 5.1. An illustrative example is given here to demonstrate the required steps
for finding the proposed WVC and AWVC measures for a random network composed
of siz nodes. Let Fig. 5.1 depict the expected graph G of the network. Note that the
existence probability of each link appears as a weight on its corresponding edge in @,

which yields the following probability matriz P:

0 0 07 0 0 07
07 0 0 09 0 0
0 06 0 0 09 0
P= (5.23)
0 0 08 0 0 09
09 0 0 09 0 0
0 08 0 0 06 0

It can be observed from Fig. 5.1 that at least two vertex-disjoint paths exist between
any pair of distinct nonadjacent nodes in G’, which implies that KJ(CAT') = 2. For this

example, the minimum local WVC measure corresponds to the directed paths from
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Figure 5.1: The expected graph G of Example 5.1.

node 5 to node 2, i.e., i(G) = ks2(G). In order to compute kso(G), it is first
required to find the set Il5 o containing all distinct paths from node 5 to node 2 with
length greater than one in G, using the modified IDDFS of Algorithm 1. This results

in four different paths 7r§72, k € Ny, as follows:

71-%’2 - {5,3,1,2}, 7T§72 - {5, 3,4, 2}, ( )
0.24

71—?,2 = {5’ 67 1a 2}7 7T§72 = {57 6a 47 2}

By constructing the weighted undirected path graph G% , = (Vi'y, B 5, H ), it can be
observed that Vi, = {1,2,3,4}, Ef, = {(1,4),(2,3)}, and:

HE,=1[0441 0.648 0.294 0.513], (5.25)
where ng 1s shown in Fig. 5.2. Moreover, the path set 75(1_[5,2) s given by:
P(Ils2) = {Wém 7T52,,2a 7rg,2> 7T§,2> {Wéza W§,2}> {7T52,72, Wg,z}}a (5.26)

every element of which corresponds to a clique in G{;Q. By solving the MWC problem

for G§,, one arrives at I, = {744,755}, which results in fis.0(G) = W(ms,) +
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0.441 @ @ 0.513

0.648 @ @ 0.294

Figure 5.2: The weighted undirected path graph G%, of Example 5.1.

W (m5,) = 0.954 meaning that #(G) = 0.954. In order to find the AWVC metric,
note that for this example E(é) = E5,2(CA¥), i.e., the minimum local AWVC measure
s given by E572(CA¥). By applying Dijsktra’s algorithm to G with the modified weight
matriz P, the first most reliable path from node 5 to node 2 is obtained as Wgé = 7r§’2.
After removing the internal nodes of ﬁg; from G along with the edges adjacent to
them and applying Dijkstra’s algorithm for the second time, one obtains ng = 7T§’2.
Since no path exists from 5 to 2 in G after removing the internal nodes of wgﬁ, it

can be concluded that lsy = 2 and Fs o(G) = W (n2,) + W(n,) = 0.942. Therefore,

E(G) = 0.942, which confirms the inequality E(G) < f%(é) in this example.

5.5 Distributed Estimation of the Expected Com-
munication Graph

A distributed adaptive procedure is proposed in this section to estimate the expected
graph of a random communication network by each sensor. Typically, in a UASN,
only one sensor at any time instant is allowed to broadcast its data in order to
avoid data interference. A broadcast cycle of length T' (T € R+) is considered from
which a time slot is assigned to each sensor to broadcast its data. Note that the
drift of high-precision atomic clocks used in the UASN is negligible which results in

feasibility of the time-division broadcast scheme in a synchronized fashion even over
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a long period of time. Denote the k-th broadcast cycle by B(k) = [(k — 1)T, kT),
k € N. Let B'(k) = [(k—1)T + 6;,(k — 1)T + 6; + A) be the k-th broadcast interval
for the i-th sensor (i € V'), where A represents the length of each time slot, and
satisfies the inequality A < L. Also, 6; € [(i — 1)A, T — (n — i + 1)A) denotes the
beginning of broadcasting for sensor ¢ in the initial broadcast cycle B(1) = [0,T).
The acoustic propagation time from any node to its neighboring nodes is taken into
account by appropriately selecting A. The broadcast intervals B'(k), B*(k), ...
constitute a family of disjoint subsets of B(k) for every k € N. This implies that
|0; — d;]| > A for every pair of distinct nodes i,7 € V. Each node broadcasts
its estimate of the global expected communication graph G during its designated
broadcast interval. Then, the estimate of G is updated by each node accordingly
before its broadcasting starts, using its previous estimate and the information it
has received from the other nodes since its last broadcast. This time interval is
referred to as the k-th receive interval and is denoted by R(k) for node i. Note that
Ri(k) =[(k —2)T + 6; + A, (k — 1)T + §;) for all k > 2. The initial receive interval
for node i is defined as R(1) = [0,6;) for any i € V. A simple example is given
in Fig. 5.3 to illustrate the partitioning of the time axis for a network composed of

three nodes during two broadcast cycles.

B B(2) ;
0 8y 8, O3 T T+68 T+68, T+ 385 ZT
v : H : : : 4 >
——— f
RY(1) T B*(1):

&

TR YR TeV

OO
| R

e
LA

oY

R*(2) | T B2(2)

‘¢
G

B2 B ®

Figure 5.3: An example of the periodic broadcast in a network composed of three
nodes.
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Let G'(k) be the estimate of G perceived by node i before its k-th broadcast
interval starts, with Vi(k) and Ei(k) denoting its node set and edge set, respec-
tively. Let also N'(k) represent the set of nodes whose broadcast messages have
been received by node ¢ during the k-th receive interval R‘(k). Since the expected
communication graph G is completely characterized by the probability matrix P,
it is desired to develop an efficient procedure to estimate the probability matrix of
the network from the viewpoint of each node, as the first step to find él(k:), 1€V,
k € N.

Denote by X (k) a binary random variable with a Bernoulli distribution at
time instant k£ € N, i.e., X(k) € {0,1}. Assume that py(k) and p,(k) denote the
probabilities of two complementary events X = 0 and X = 1 at discrete time instant

k, respectively. Then, the binary random variable X (k) is described as:

1, with probability p;(k),
X(k) = (5.27)

0, with probability py(k),

where 0 < po(k),pi(k) < 1 and po(k) + py(k) = 1. Define X (k) as an estimate of
X (k) such that:

1, with probability p;(k),
X(k) = (5.28)

0, with probability po(k).

An estimation procedure is borrowed from [119] which guarantees that the expecta-
tion of po(k) and p;(k) converge asymptotically to the desired values of py(k) and

p1(k), respectively. In other words, E[p;(k)] — pi(k) as k — oo for ¢ € {0,1}. This
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update procedure is given by [119]:

(1—a)pi(k) +a, it X(k)=1,
pilk+1)= (5.29)

(1 —a)pi(k), it X(k) # 1,

for i € {0,1}, where o € (0,1) denotes the learning rate of the estimation method.
Let Vi(k) and E'(k) denote the accumulated node set and edge set perceived by

node 7 in the k-th broadcast cycle, respectively, which are defined as:

Vilk) = Vik —1)UVi(k — 1), (5.30a)
Ei(k) = E'(k — 1) UE;(k—1)U{(j,9)}, (5.30b)

for all j € N'(k). Moreover, Vi;(k — 1) and Ej;(k — 1) denote the node set and
edge set of the estimated expected communication graph Gi perceived by node j,
respectively, which are received by node i during its k-th receive interval R'(k). Note

that:

Vi(k—1), ifd; >,
Vij(k —1) =4 (5.31)

~

Vj(l{?), if (Sj < 05,

\

and,
(

A Ei(k—1), ifd; >4,
Eii(k—1) =4 (5.32)

Ei(k), if §; < ;.

Define Pi(k) = [pi (k)] as the estimate of the probability matrix P perceived by node
i in the k-th broadcast cycle, where pi, (k) represents the estimated existence proba-
bility of the edge (s,7) € E*(k). The update procedure for the elements of P*(k) on
the i-th row is performed based on the proposed estimation procedure (5.29) before

the k-th broadcast interval of the i-th node starts. It then remains to propose an
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update rule for the other elements of Pi(k) (other than the i-th row) ie. pi (k)
where r # i. Note that the most recent estimate of p,, is generated by node r based
on equation (5.29). Thus, it is desired that node i receive the estimated probability
of edge (s, r) from node r; however, this node may not be directly connected to node
1. Note also that even if there is an edge from node r to node 7, there is no guar-
antee that node ¢ will always receive the broadcast of node r in its receive interval.
Therefore, node ¢ will use the estimated probabilities perceived by its neighboring
nodes to update its estimate of the existence probability of edge (s,r) in the ex-
pected communication graph Gz(k) Since node 7 can receive different estimates of
prs from distinct neighbors during its receive intervals, it should determine which
neighbor has the most recent estimate. In order to ensure that every node updates
its estimate of P based on the most recent data available, the notion of the time
stamp matriz of a node is introduced. The time stamp matrix Q* = [¢’,] of node
i is a matrix whose (s,7)-th element represents the broadcast cycle in which the
current estimate of the existence probability of the edge (s,7) from the viewpoint of
node i (i.e., p’,) was generated by node r. By transmitting the time stamp matrix
Q' along with other data broadcast by each node, the most recent information can
be used to update the estimate of the probability matrix by node ¢. Algorithm 4 is
proposed based on this idea to update the estimated probability matrix P(k) and
the time stamp matrix Q' using the information received by the i-th node.
Algorithm 5 is then used by each node to update its estimate of the expected
communication graph based on the information it receives from its neighbors. In
Algorithm 5, v denotes a threshold on the existence probability of every possible edge
in G, and x'(k) represents the estimated global connectivity degree of G perceived by
node ¢ during the k-th broadcast cycle. Note also that K(-) represents a procedure
(e.g., Algorithm 2 or Algorithm 3) which computes an appropriate connectivity

measure of the estimated expected communication graph.
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Algorithm 4 Update procedure of the estimated probability matrix P*(k) and the

time stamp matrix Q' by the i-th node.

1: for all (s,r) € E'(k) do

2:  if r # ¢ then

3: U* = argmaxueNi(k)U{i}q;fs

4 g =a

5: p:*s(k) = p;f:

6: else if r =i then

7 a, =k

8: if s € N'(k) then

o P =(1—a)plk—1+a
10: else if s ¢ N'(k) then

11 prs(k) = (1 — a)p, (k= 1)
12: end if

13:  end if

14: end for

5.6 Simulation Results

Consider a network of six underwater acoustic sensors which broadcast their data

periodically as described in Section 5.5. Assume that the existence probability of the

communication links of the network is given by a time-varying probability matrix

P(k) as below:

0 pgg(k’) 0
P(k) =

0 0 0.8

0.9 0 0

0 0.8 0

0 0
0.9 0
0 0.9
0 0
0.9 0
0 pes(k)

(5.33)

where pig(k) = 0.7 + 0.25sin(0.01k), pa1 (k) = 0.7 + 0.2sin(0.005k), psz(k) = 0.6 +

0.1sin(0.01k), pes(k) = 0.6 + 0.1sin(0.005k), and k € N denotes the k-th broadcast

cycle. Let the length of each broadcast cycle be T" = 6 sec, and the length of each
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Algorithm 5 Update procedure for the estimated expected communication graph
G'(k) perceived by the i-th node.

Initialization:
1 Vi(0) = {i}
2: EZ(O) =0

Main:

1: for all j € N'(k) do

2. Vi(k) =Vi(k—1)UV;(k—1)

30 Ei(k)=FEi(k—1)UE;(k—1)U{(i)}

4: end for

5: Apply Algorithm 4 to obtain the estimated probability matrix P'(k)
6: for all s € Vi(k) \ {i} do

7. if pi (k) > or pi.(k) > for some r € Vi(k)\ {s} then

8 Vik) = Vi(k—1)U {s}

9

. else
10: V’(/f) = V’(/{: — 1)\ {s}
11:  end if
12: end for

13: for all (s,7) € E'(k) do
14:  if pi (k) > 7 then
15: Ei(k)=E'(k—1)U{(s,7)}

16: elsg X

17: E’(k‘) = El(kf - 1) \ {($>T)}
18: end if

19: epd for ) X

20: G'(k) = (V'(k), E'(k))

21: k'(k) = K(G"(k))
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broadcast interval be A = 1 sec. Let also the broadcast order of the i-th sensor
be specified by 0; = ¢ — 1 for i € Ng, and choose @ = 0.025 as the learning rate.
The entries of the probability matrix P(k) along with the topology of the expected
communication graph G are estimated in a distributed manner by each sensor based
on the network estimation Algorithms 4 and 5. Moreover, Figs. 5.4-5.7 demonstrate
the performance of Algorithms 4 and 5 in estimating pig, P32, pss, and pgo as four
different elements of the probability matrix. In Figs. 5.8-5.10, the proposed WVC
and AWVC measures of the expected communication graph G versus the number of
broadcast cycles are shown using Algorithms 2 and 3 from the viewpoint of sensors 1,
3, and 5, respectively. The topology of G along with the time-varying probability
matrix P(k) is first estimated by each sensor in a distributed fashion and then the
global WVC and AWVC metrics are obtained for the estimated probability matrix
P(k) in Figs. 5.8-5.10.

The bottleneck pair (i*,7*) is defined as an ordered pair of distinct nodes
i*,5* € V which has the smallest local connectivity degree i ;-(G) (or K j-(G))
among all pairs of distinct nodes in the expected communication graph G of a

random network. The index of the bottleneck pair (i*, j*) is defined as an integer

Z(i*, j*) € Njpj2_p such that:

(IV] = 1)@ — 1) + j, if j* < ¥,
I(i*,5*) = (5.34)

(V] = 1)@ = 1) +5* =1, if j* >~

The index of the bottleneck pair for the WVC and AWVC measures versus the
number of broadcast cycles is depicted in Figs. 5.11-5.13 from the viewpoint of
sensors 1, 3, and 5, respectively. It can be implied from Figs. 5.11-5.13 that (3,6)
with index Z(3,6) = 15 is the bottleneck pair of the network most of the time from

the beginning of the simulation up to ¢ = 1800 sec (first 300 broadcast cycles).
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Moreover, the most dominant bottleneck pair between ¢ = 1800 sec and ¢ = 3780
sec is (2,1) with index Z(2,1) = 6, while (5,2) with index Z(5,2) = 22 is the most

often bottleneck pair of the random UASN for ¢ > 3780 sec.

5.7 Experimental Results

The experimental results were obtained during a sea trail conducted in Bedford
Basin (N.S., Canada) in July and August of 2014 over a 20-day period. Four nodes
were deployed in the Bedford Basin at various locations shown in Fig. 5.14, where
the coordinates of the node locations along with the sea-floor depth at the mooring
location of the nodes is given in Table 5.1. Moreover, the approximate distance
separating each node from the others is shown in Table 5.2 which ranges from 640 m

to 1.64 km.

Table 5.1: Node locations and the basin depth at mooring locations.

[Latitude, Longitude| | Depth (m) | Location
Node 1 | [44.6905 -63.6489| 50 Southwest
Node 2 [44.6999 -63.6550] 52 Northwest
Node 3 | [44.7020 -63.6474] 52 Northeast
Node 4 | [44.6983 -63.6343| 57 Southeast

Table 5.2: Node-to-node direct separation distances.

Node 1 to 2 | Node 1 to 3 | Node 1 to 4

1.15 km 1.29 km 1.45 km

Node 2 to 3 | Node 2 to 4 | Node 3 to 4

0.64 km 1.64 km 1.11 km
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the viewpoint of sensor 3.
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Figure 5.14: Location of deployed nodes in Bedford Basin.

A view of a node employed in this experiment is demonstrated in Fig. 5.15.
Each node was equipped with a Global Positioning System, a battery pack, an
acoustic modem, two acoustic releases, a mooring, ropes and cables. It also had an
acoustic modem set at a depth of 5 m below surface to ensure they would reside in the
mixed layer, where acoustic communication is usually difficult to establish. During
the trial, various parameters of the acoustic modems including power level, bit rate,
and message length were altered to investigate their effects on the operational prob-
ability of the underwater acoustic communication channels. Four different power
levels offered by the commercial acoustic modems are labeled as P, P», P; and Py,
respectively, where P, < P, < P3 < P,. Three options considered for the bit rate
of the modems were by, by and b3, where b; < by < bs. Furthermore, two different
message lengths investigated in the experiments were [; and [y, where [} < ls.

All experiments were operated remotely and automatically from DRDC’s main
building through an antenna and a repeater installed on the platform located at

DRDC'’s calibration barge position. The probing signals were modulated messages
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Figure 5.15: View of a node used in the experiment.

communicated frequently. In-house control and routing procedures were changing
the modem settings and querying the other modems to retrieve received messages
and the modem internal data.

The existence probability of all underwater acoustic communication channels
for a particular combination of the power level, bit rate and message length for all
nodes was then obtained resulting in the expected communication graph G depicted
in Fig. 5.16. The threshold considered for establishing a link from node 7 to node j
for 4,7 € Ny, i # j, was pj; = 0.05 (i.e., at least 5% of the messages sent from node ¢
need to be received by node j). For the considered configuration of the underwater

nodes, the probability matrix P was obtained as:

0 036 035 047
026 0 058 0.11
pP= . (5.35)
031 085 0 0.1

0.08 0 0.09 0

Based on the proposed WVC measure, #(G) = 0.105 for this scenario, where (2,4)
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Figure 5.16: The expected graph G for the considered experiment.

represents the bottleneck pair in the network. Using the AWVC metric, on the
other hand, it can be shown that %(G) is also equal to 0.105, and (2, 4) is, again, the
bottleneck pair, which means that these two connectivity measures are the same in
this case. This shows that the network is not well-connected, and more experiments

with different configurations are planned in order to determine a configuration with

a sufficiently high connectivity.
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Chapter 6

Conclusions

6.1 Summary

The results developed in this dissertation can be summarized as follows.

In Chapter 2, a novel cooperative control strategy is proposed for a network
of single-integrator agents with limited angular fields of view (FOVs). Due to the
sensing limitations induced by the FOV constraint, the set of neighbors for each
agent varies with time while the agent moves and/or its FOV rotates. For the case
of half-plane FOVs, an impulsive switching policy is developed which guarantees the
uniform quasi-strong connectivity of the underlying sensing digraph. A consensus
strategy is subsequently developed to drive the agents to a common position in the
2D space asymptotically. The designed controllers are modified to address the con-
tainment problem for a leader-follower network such that the followers converge to
the stationary convex hull of the leaders. The results are then extended to a network
of single integrators with limited heterogeneous angular FOVs. A distributed con-
troller with state-dependent coefficients is provided such that if the angular velocity
of all FOVs is lower-bounded properly, then the agents converge to a ball of arbi-

trarily small radius. The results are modified accordingly to solve the containment
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problem in a multi-agent network of leaders and followers. Simulations confirm the
efficacy of the proposed control strategies for consensus and containment problems.

The flocking problem for a network of double integrators with limited FOVs
in a 2D plane is investigated in Chapter 3. Each agent is equipped with sensors
to measure the relative distance and bearing angle in a visibility region which is
a conic-shaped area centered at the agent, with a fixed radius. It is assumed that
all FOVs rotate with constant angular velocities to uniformly preserve the strong
connectivity of the network. An appropriate potential function is then employed
to construct two types of unbounded and bounded distributed control inputs in
such a way that the velocity vector of every agent converges exponentially to the e-
neighborhood of a constant desired navigation velocity vector, while the inter-agent
collision is avoided. Moreover, the network configuration is confined to a ball whose
radius varies between known lower and upper bounds as a result of the frequent
attractive and repulsive inter-agent forces imposed by the FOV limitation. The
effectiveness of the proposed control strategy is confirmed by simulation.

Chapter 4 presents distributed consensus control strategies for unicycles in the
presence of unknown disturbances on the translational and angular velocities of the
agents. Although the consensus control design in the presence of disturbances is
investigated in the literature for agents with single-integrator and double-integrator
dynamics, designing such controllers for unicycles is the novel and unprecedented
contribution of this chapter. Two cases of disturbances with known linear dynamics
and unknown disturbances with known upper bounds are considered. In the first
case, each local control law consists of a term that tends to track a reference vector for
each agent, and a term which compensates for the estimated effect of disturbances.
In the second case, the controller is designed in such a way that, after a finite
time, every agent will move with an acute angle with respect to the reference vector

mentioned above. This property is used along with the Lyapunov theory to prove the
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convergence of the agents to consensus. The special case of constant disturbances is
considered in the first part of the simulations. The results confirm the effectiveness
of the controllers for consensus in the presence of disturbances with known linear
dynamics. In the second part of simulations, the efficacy of the proposed consensus
control scheme is verified by considering sinusoidal disturbances with available upper
bounds but unknown dynamics.

Connectivity assessment in random sensor networks is investigated in Chap-
ter 5. The weighted vertex connectivity is defined as a novel measure to evaluate
the connectivity of a weighted digraph representing the expected communication
graph of the sensor network. The elements of the weight matrix denote the opera-
tional probability of their corresponding communication links in the network. This
measure is, in fact, an extension of the vertex connectivity metric introduced in
the literature. It describes the combined effects of the path reliability and network
robustness to node failure on connectivity of the expected communication graph,
reflecting the performance of the cooperative algorithms in random sensor network.
An algorithm is presented to find the value of this metric, which comprises a se-
quence of modified iterative deepening depth-first search algorithm and maximum
weight clique problem. A computationally efficient algorithm is subsequently pro-
posed as an approximation of the above metric, which provides a lower bound on
the weighted vertex connectivity. This approximation can be evaluated by applying
a series of polynomial-time shortest path procedures. A distributed adaptive esti-
mation procedure is then developed to estimate the expected communication graph
of the network from the viewpoint of each sensor. The results are applied to an
experimental underwater acoustic sensor network, which show the effectiveness of

the proposed measures and the corresponding algorithms in practice.
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6.2 Suggestions for Future Work

In what follows, some of the possible extensions of the results obtained in this

dissertation as well as some relevant problems for future study are presented.

e The consensus and containment problems over a network of single-integrator
agents with limited angular FOVs studied in Chapter 2 can be extended to
other cooperative tasks, and also to agents with more complex dynamics (e.g.,
unicycles). The problem can also be investigated for the case where the FOV

of each agent has both radial and angular limitations.

e It would be interesting to extend the results of Chapter 3 to the case where
the navigation velocity vector is time-varying. It would also be useful to find
tighter bounds on the sensing ranges to ensure the conditions of Assump-

tion 3.2 over the network.

e The consensus control strategies for a team of unicycle agents in the presence
of external disturbances proposed in Chapter 4 can be extended to scenarios
where the information flow graph of the network is directed and switching.
Moreover, investigating the effect of communication delay could also be an

important problem of interest.

e Developing a less-conservative approximate measure for the WVC measure

presented in Chapter 5 would be very important computationally.

e The connectivity measures presented in Chapter 5 can be controlled using
optimal assignment of the transmission power for the sensors. The overall
connectivity can also be improved by deploying one or more mobile sensors

and properly positioning them with respect to the other nodes.
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