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Abstract

Dynamic Load Balancing and Autoscaling in Distributed Stream Processing Systems

Xing Wu

In big data world, Hadoop and other batch-processing tools are widely used to analyze data and

get results in minutes. However, minutes of latency still cannot satisfy the proliferated needs for

real-time decision in many fields such as live stock and trading feeds in financial services, telecommu-

nications, sensor networks, online advertisement, etc. Distributed stream processing (DSP) systems

aim to process, analyze and make decisions on-the-fly based on immense quantities of data streams

being dynamically generated at high rates. As the rates of data streams may vary over time, DSP

systems require an architecture that is elastic to handle dynamic load. Although many dynamic

load balancing and autoscaling techniques for general pull-based distributed systems have been well

studied, these solutions cannot be directly applied to DSP systems because DSP systems are push-

based, they process data streams with different types of operators, each running on a cluster node.

One research problem is to allocate data processing operators on nodes of clusters and balance the

workload dynamically. Since the data volume and rate can be unpredictable, static mapping between

operators and cluster resources often results in unbalanced operator load distribution. Furthermore,

the problem of making DSP system scalable requires autoscaling at runtime. In this context, the

operators need to be relocated among newly provisioned nodes. The contribution of this thesis is

three folds. First, we proposes a software layer that is load-adaptive between a DSP engine and

clusters. The architecture allows dynamic transferring of an operator to different cluster nodes at

runtime and keeps the process transparent to developers. Second, an optimization method that

combines correlation of resource utilization of nodes and capacity of clusters is proposed to balance

load dynamically. Lastly, we design the autoscaling mechanism and algorithm to detect overload

and provision nodes at runtime. We implement our design on S4, an open-source DSP engine first

developed by Yahoo!. The implementation is evaluated by a top-N topic list application on Twitter

streams using clusters on Amazon Web Services. The results demonstrate a 75.79% improvement

on stream processing throughputs, and a 294.47% improvement on cluster resource utilization.
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Chapter 1

Introduction

High rate and large volume of online information sources enrich decision making and business values

for applications in many domains. Many companies realize the significance of data and begin to

utilize big data analytics. In [R+11], the authors conclude that the differences between big data

analytics and the traditional business intelligence are in three aspects: 1) Data size and structure.

The dataset is larger and contains more attributes. More and more semistructured or unstructured

data can be included to the dataset. 2) Analytics become automatic and programmatic. Automatic

analysis and decision making are used in many scenarios, such as stock trading, online advertising,

personalization and etc. 3) Data-driven analysis, which means that you do not have to define a

problem before working on the data. In big data analytics, you set your algorithms to work over

the data and discover patterns.

Besides its large volume, big data can be also described by its velocity or speed. The frequency

of data generation or data delivery is at a very high rate and it keeps increasing. For example,

approximately 25 billion messages pass through NASDAQ OMX’s U.S. equities and options systems

on an active day, which amounts to over 2 million transactions per second during volatile periods

[Cor13]. To analyze the existing transaction histories and newly generated feeds is challenging.

Hadoop is a well-known implementation of MapReduce programming model for batch-processing

large data intensive applications [DG08]. Recent researches are made on Hadoop to shorten the

processing time of incremental data otherwise newly updated data and the old data are both run

over that makes latency proportional to the size of entire data, rather than the size of an update

[BWR+11, PD10]. However, the ”store and then analyze” model still cannot satisfy the proliferated

needs for real-time decision in many fields such as live stock and trading feeds in financial services,

telecommunications, sensor networks , online advertisement, etc. Distributed stream processing

(DSP) systems aim to process, analyze and make decisions on-the-fly based on immense quantities
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of data streams being dynamically generated at high rates. Yahoo built an online experiment to

compute click-through rate (CTR) for a query and advertisement combination in a very low latency

with their DSP platform named S4, which improved CTR by 3% and with no loss in revenue

[NRNK10a].

Stream services often exhibit multi-modal and spike workloads. For example, Mickulicz et at

[MNG13] presents a cloud-based sports service, called YinzCam that has various modes of workload

(e.g., pre-game, in-game, post-game, game-day, non-gameday, in-season, off-season) and exhibits

that the traffic during the actual hours of a game is twenty-fold of that on non-game days. To

handle these multi-modal workloads, YinzCam applies and tunes Amazon Web Services autoscal-

ing configuration to automatically scale up and down the virtual machine instances on-demand.

However, such autoscaling considers a group of virtual machine instances as a whole, and does not

necessarily guarantee that the workload is balanced on all instances.

Most stream processing software frameworks such as Borealis [AAB+05], SPADE [GAW+08]

and S4 [NRNK10a] are operator-based, which means applications are organized as data flow graphs

consisting of operators at the nodes connected by directed edges representing the data streams.

The operators, which are also called PEs (Processing Elements) in some systems, are allocated to

physical nodes within networked clusters.

1.1 Problem Statement

Allocating a PE to a physical node has a direct effect on scalability. For a stream processing service

in where PEs are connected to each other, these dynamic changes of inputs may significantly impact

the loads of certain PEs due to the different selectivities (i.e., the ratio of the input and output data

rates) of PEs. Even a small raise of the input stream of a low-selectivity PE may lead to a dramatic

increase of its output rate. Thus the destination PEs, the PEs that takes its output as input, have

to handle a much higher input rate. As a result, the cluster nodes running destination PEs could be

overloaded while the other nodes are not fully utilized. The selectivity of a PE depends on not only

the business logic of the service, but also the data in the input stream. Normally, the selectivities

of PEs fluctuate as the input stream varies over time, which makes the change of load distribution

unpredictable. Therefore, the ability to balance the loads on different nodes at runtime is essential

for a scalable and reliable stream processing service. By changing the allocation of PEs we can adjust

the loads on nodes and optimize the utilization of computing resources. Meanwhile, an inefficient

allocation may result in unnecessary data transfers between operators through the network that can

cause extra latency.
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1.2 Objective

The goal of this thesis is to design and build a load adaptive stream processing system to achieve two

features, namely dynamic load balancing and autoscaling. To achieve this goal, we propose Dynamic

Operator Distribution Optimizer (DoDo), a software layer between a DSP platform and physical

clusters to enable load adaptive for a DSP platform by dynamic load balancing and autoscaling. On

top of DoDo, we propose an optimization method for the dynamic operator distribution of stream

processing services. We assign the PEs of the same type to a logical cluster that contains a set

of physical nodes. Then we can achieve dynamic operator distribution through changing the PE-

cluster mapping on-the-fly. An algorithm is designed to make the mapping decision based on the

system metrics we collect. In the end, we propose an autoscaling mechanism and algorithm to detect

overload and provision nodes at runtime.

1.3 Contribution

The contribution of this thesis is in three folds:

1. a software architecture to enable load adaptive for a DSP platform by dynamic load balancing

and autoscaling.

2. an optimization method that combines correlation of resource utilization of nodes and capacity

of clusters to balance load dynamically.

3. the autoscaling mechanism and algorithm at runtime.

We implement our design on S4, an open-source DSP engine first developed by Yahoo!. The

implementation is evaluated by a top-N topic list application on Twitter streams using clusters

on Amazon Web Services. The results demonstrate a 75.79% improvement on stream processing

throughputs, and a 294.47% improvement on cluster resource utilization.

1.4 Thesis Structure

This thesis is organized as follows.

• Chapter 2 gives an introduction about the concepts and preliminaries in this thesis.

• Chapter 3 provides related work in load balancing and autoscaling problems in distributed

systems and some DSP platforms.
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• Chapter 5 presents our motivation through a case study on a movie recommendation applica-

tion.

• Chapter 6 introduces the dynamic operator-node mapping problems in DSP systems, and pro-

poses an algorithm and the architecture of Dynamic Operator Distribution Optimizer (DoDo)

to solve them.

• Chapter 7 provides an autoscaling mechanism that works under the DoDo architecture and

evaluate our solutions through a case study. Chapter 8 concludes the thesis and outline the

future works.

1.5 Publications

The research work in this thesis have been published. The publications are listed as follows.

• The case study of the movie recommendation application in Chapter 5 is included in Big Data:

Algorithms, Analytics, and Applications (pp. 21-38) [WLG15a], a book edited by Kuan-Ching

Li, Hai Jiang, Laurence T. Yang, and Alfredo Cuzzocrea.

• We build a model using the experiments in Chapter 5 to predict the processing time of Hadoop

jobs. The work is presented in Proceedings of the 11th International ACM Sigsoft Conference

on the Quality of Software Architectures [WLG15b].

• The DoDo architecture and dynamic load balancing algorithm in Chapter 6 are associated

with our publications in IEEE International Conference on Cloud Engineering (IC2E) and

IEEE International Conference on Services Computing (SCC) [WL14a, WL14b].
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Chapter 2

Background

Distributed stream processing systems get more and more attention in big data industry nowadays.

Although some basic principles of distributed stream processing systems, such as parallel comput-

ing, MapReduce model, distributed system, and etc., have been well studied for a long time, the

combination of these technologies within a big data scenario brings us many new challenges on the

system performance aspects. This chapter introduces the preliminaries and discusses related works

in this field.

To deal with massive volume of input data on the fly, we rely on the concepts of parallel computing

to process data concurrently. MapReduce, a model widely used in big data industry, can help us

divide large problems into individual small problems. Distributed system is the platform to manage

physical resources and perform large-scale computations.

2.1 Parallel Computing

The human brain tends to process things in a time-based sequential manner, that is probably the

reason why the computers are first designed to execute commands one after another. Traditionally,

a computer program contains a series of instructions, which is processed sequentially by a single

processing unit. Obviously, we can fasten the processing time by assign the work to more processing

units and make them work simultaneously, which is called parallel computing [Gra03].

Parallel computing is widely used because of its advantages in concurrency. Parallel computing

makes it possible to solve large problems in a short time by using a bunch of processing units. In this

decade, most desktops have multiple processors to better support multiple-task operating systems.

And people build large clusters of computers to deal with big data problems.

Parallel computing needs to break down a problem into discrete tasks, so it can not be applied on

all the problems. Many problems are only partially dividable, and usually parallel computing needs
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some extra work on the overall tasks control and coordinations. Some kind of messaging interface or

memory share mechanism is needed when communication is mandatory between different processing

units [HX98].

2.2 Distributed System

Most of the real systems in industry are actually distributed systems, such as the back-end services of

websites, data storage systems, peer-to-peer systems, and etc. Distributed systems are a collection

of nodes (physical machines or virtual machines), which are connected through a network and

coordinated by a middleware to cooperate on user-defined tasks and share the resources of the

system. The internal coordination and nodes management are transparent to users so that users

can perceive the system as a single computing facility [Jos07].

Distributed systems have many advantages comparing to centralised systems. First of all, most of

distributed systems are scalable. They are designed to easily adding or removing resources. There-

fore, distributed systems can achieve higher performance by adding nodes because the performance

is almost linear to the number of nodes in most cases [H+07]. Second, distributed systems provide

higher reliability as the replication of processors and resources yields fault-tolerance [FLP85]. Third,

the price performance with distributed systems is better because a cluster of nodes with commodity-

class hardware are still cheaper than a mainframe that has equivalent performance[Gra08].

2.3 MapReduce Model

MapReduce is a programming model designed to process large volumes of data in parallel by dividing

the work into a set of independent tasks. The term MapReduce is first used by Jeffrey Dean and

Sanjay Ghemawat in Google, they got the ideas from the map and reduce primitives in Lisp and

many other functional languages, and published a research paper about this model and the associated

run-time systems [DG08]. Based on their paper, an open-source framework for MapReduce model,

named Hadoop [apa14], is implemented and has gained tremendous popularity.

In general, a MapReduce program processes data with three phases: Map, Shuffle, and Reduce.

The Map phase takes the input data and produces intermediate data tuples. Each tuple consists of

a key and a value. In the Shuffle phase, these data tuples are ordered and distributed to reducers by

their hashed keys. The Shuffle phase ensures that the same reducer can process all the data tuples

with the same key. Finally during the Reduce phase, the values of the data tuples with the same

key are merged together following the instructions of the reduce program.

Figure 2 demonstrate MapReduce model with a word count example. The objective is to count
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Figure 1: Word Count Input Text Files
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Figure 2: Word Count Example with MapReduce

the word occurrences in two text files, map.txt and reduce.txt. The content of the two files are shown

in Figure 1. In this example, the word occurrences of each file are counted in the Map phase. Then

in the Shuffle phase, these word occurrences are ordered and distributed to reducers by hashing the

words. In the Reduce phase, the occurences of the same word are aggregated.

Listing 2.1 is the pseudo-code of the word count example. The map function extract words from
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the document and associate the words with their occurrences ’1’. The reduce funtion sums together

all the counts for each word. Only function map() and reduce() are mandatory for a MapReduce job.

The user of the MapReduce model can focus on how to process the data, the MapReduce framework

will take care of the shuffling and partitioning.

Listing 2.1: Word Count

1 function map(String name, String document):

2 // name: document name

3 // document: document contents

4 for each word w in document:

5 emit (w, 1)

6

7 function reduce(String word, Iterator partialCounts):

8 // word: a word

9 // partialCounts: a list of aggregated partial counts

10 sum = 0

11 for each pc in partialCounts:

12 sum += ParseInt(pc)

13 emit (word, sum)

Many problems can be transformed into a single MapReduce job or a series of MapReduce

jobs. The authors of [CKL+07] implement almost all the common machine learning algorithms

using the MapReduce model, including Locally Weighted Linear Regression, Naive Bayes, Gaus-

sian Discriminative Analysis, k-means, Logistic Regression, Neural Network, Principal Components

Analysis, Independt Component Analysis, Expectation Maximization, and Support Vector Machine.

[UKOVH09] presents a scalable distributed solution for large-scale Semantic Web reasoning based

on MapReduce. The ability to parallel process large-scale data makes MapReduce popular in big

data scenarios.

2.3.1 Hadoop and S4

Apache Hadoop is an open-source implementation of the MapReduce model [apa14]. It implements a

scalable fault-tolerant distributed platform for MapReduce programs. With the Hadoop Distributed

File System (HDFS), which provides high-throughput access to application data, Hadoop is reliable

and efficient for big data analysis on large clusters.

To make the platform more flexible, Hadoop expands MapReduce model with combine functions

and partition functions. The combine function is similar to the reduce function. It is a local

aggregation between the map phase and shuffle phase. Take the word count program as an example,

8
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Figure 3: Data Flow Graph of Stream Processing System

after the map function, instead of sending out ’(w, 1)’ tuples, we can perform a local aggregation to

sum the occurrences on each node so that we can merge some local data and avoid unnecessary data

transportation. The source code of this combine function can reuse the code of the reduce function

in Listing 2.1. The partition function is responsible for assigning intermediate key-value pairs to

reducers. The partition functions are usually hash-based, they need to ensure a even distribution of

the keys. They are used in the shuffle phase to determine where to send those data tuples generated

by the mapper.

Hadoop is widely used because of three major advantages: 1) the ability to horizontally scale to

petabytes of data on thousands of commodiy servers; 2) easy-to-understand programming seman-

tics; 3) a high degree of fault tolerance. Hadoop allows developers with no specific knowledge of

distributed programming to run MapReduce functions across multiple nodes in the cluster, and also

gathers the files from multiple nodes to return a single result.

However, Hadoop also has some shortcomings: 1) Hadoop jobs have high startup costs, which

can be tens of seconds on a large cluster. This asserts that Hadoop can never be used for real-time

analytics; 2) Data skew can occur in the reduce phase, which will create stragglers in the cluster and

significantly drop the performance. 3) As MapReduce jobs are isolated from each other, sometimes

it is difficult or even impossible to implement algorithms in Hadoop. 4) The shuffle phase might

bring overhead in network transportation.

Besides Hadoop, MapReduce model is also adopted by many distributed stream processing sys-

tems. Processing elements (PE), also called operators, are the computation units in stream process-

ing systems as Figure 3 shows. PEs process input data tuples one by one and generate output data

tuples. The MapReduce programming model can be applied to process stream data.

Apache S4 (Simple Scalable Stream System) is an open-source distributed stream processing

platform that has applied the MapReduce model to its PEs(Processing Elements) [s4]. The data

tuples of streams are named events in Apache S4. Each event is a key-value pair. Events are

9
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Figure 4: Word Count Example in S4

dispatched to PE instances based on the hashed keys. As a result, the events with the same keys

are processed by the same PE instance, which is similar to the Reduce phase of the MapReduce

model. After processing the input event, PE generates a new event, which is also a key-value pair,

for the next stage of processing. The events generating scheme in PEs is akin to the Map phase of

the MapReduce model.

To implement applications, developers need to design custom PEs and link PEs by events. Figure

4 is the word count example implemented in S4. There are two types of PEs in this application,

namely WordExtractorPE and WordCounterPE. The WordExtractorPE reads the text input file

and generates key/value events such as <map, 1>. The WordCounterPE stores current occurrences

of words and updates the counts when new event comes.

The motivation of S4 is to provide a highly scalable software solution (akin to Hadoop for

batch data processing) to operate at high data rates and process massive amounts of data. The

design of S4 has already considered the limitation of previous work in stream processing projects

and commercial engines, which are either lack of integration with cloud programming models or

restricted to highly specialized applications[NRNK10b]. The S4 design shares many attributes with

IBM’s stream processing middleware. Both systems are designed for big data and capable of mining
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information from continuous data streams. The main difference is IBM’s design follows a model-

based approach with a streaming language and distributed runtime (InfoSphere Streams) supporting

this language [GA12]. S4’s design is a combination of MapReduce and the Actor model (a formalized

model of concurrency [Agh85]). Each actor has an independent thread of control and communicates

via asynchronous message passing. The limitation of S4 is the mapping between PEs and the nodes

are static. The current version of S4 does not support balancing the workload by dynamically

transmitting PEs from one node to another, which limits its ability to scale in and out computing

nodes on demands.

11



Chapter 3

Related Work

A variety of approaches have been proposed in the literature to improve the performance of dis-

tributed systems. We categorize distributed systems as pull-based distributed systems and push-

based distributed system and discuss them separately. In pull-based distributed systems, when a

client send a request to the system, the system distributes the request to relevant nodes, compose a

response and send it back to the client (e.g., distributed database systems [HY79], Hadoop). In con-

trast, clients in push-based distributed system push data into the server and do not expect responses.

Distributed stream processing systems are typical push-based distributed systems.

3.1 General Distributed Systems

Brewer’s CAP theorem [Bre12] states some features and their trade-offs in distributed systems. It

asserts that distributed systems can have only two of these three features: consistency, availability,

and paritition tolerance. Consistency means that the data is exactly the same on any nodes at any

time. Availability guarantees that every request receive its response. Paritition tolerance stands for

the tolerance of partial failure in the sytem (e.g., nodes crash, network failure). These features are

highly related to the performance of distributed sysytems [Bre00, SC11].

In most distributed database systems, many features are optional and can be switched on or off

through configurartion files. MySQL[MyS95], a traditional relational database widely used to create

horizontal-scaled database sytems, has over 200 different options including cache size, replication,

etc. Therefore, the first step for performance optimization in such systems is to study your usage

scenario and optimize those parameters [SZT12]. As for the state-of-the-art NoSQL databases such

as Cassandra [LM10] and MongoDB [mon15], many configurations are available to optimize the

performance [vdVvdWM12, LM13].

Performance optimization can occur during the processing procedure of individual requests as
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well. In SQL-based databases, a lot of query optimization techniques have been studied [Cha98,

JK84]. These approaches aim to analyze the given query and make an efficient query plan instead of

executing the query sentence literally. However, such optimization approaches are problematic for

Hadoop-based systems as the map and reduce functions can be written in arbitrary programming

languages instead of well-structured SQL. MANIMAL [JCR11] is an attempt to overcome these

difficulties through the analysis of compiled Hadoop programs to detect optimization opportunities.

The code analyzer in MANIMAL looks for functionality in the map() that is equivalent to an SQL

SELECT or PROJECT statement, and seeks data compression opportunities. It also generates an

indexing program that builds a B+ Tree based index over the program’s input data. The output from

the optimizer is an execution descriptor that informs the MANIMAL execution fabric, a modified

version of Hadoop, which applies optimizations and indexes during execution. Validation of the

approach yield 3x to 11x speedups on a sample set of benchmarks. This shows the potential of the

approach, but its ability to detect optimizations in arbitrary complex Hadoop programs has not

been explored.

Hadoop++ [DQRJ+10] extends Hadoop to perform index accesses whenever a MapReduce job

can exploit the use of indexes, and to co-partition data to enable maps to compute joins. The

overall Hadoop framework is left unaltered and benchmarks show impressive speedups. However,

programmer intervention is needed and hence the approach is not transparent to Hadoop developers.

HadoopDB [ABPA+09] also extends the basic framework to incorporate local relational databases,

creating a parallel database system that uses Hadoop at its core. HadoopDB pushes SQL statements

to the local databases and computes partial aggregates, which require a single reduce task for the

final aggregation. HadoopDB therefore enforces a hybrid programming for applications, and is

not useful for optimizing vanilla Hadoop codes. Simulation is a proven technique for performance

prediction and analyzing design trade-offs in a large number of software and hardware domains. It

is not surprising therefore to see a number of efforts that have focused on building simulations of the

Hadoop framework and applications. These include MRSim [HLL+10], HSim [LLAH13], Mumak

[Mur09], SimMR [VCC11] and MRPerf [WBPG09].

MRSim is based on a composition of the discrete event simulation package SimJava [HM98] and

GridSim [BM02], with the latter used to simulate network topology and traffic. The core abstractions

in the simulator are models of CPU, HDD and Network Interface, which are replicated to describe a

topology for cluster running Hadoop. Hadoop job descriptors specify the number of map and reduce

tasks, data layout, algorithm description, and the job configuration parameters. The data layout

describes the location of the data splits, including replicas, on the simulated nodes. Algorithm

information is coarsely specified by measures including the number of CPU instructions per record

and average record sizes of the data used in map and reduce tasks. Simple evaluations on a 4 node
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cluster for word count show promising results in terms of accuracy of predicting job characteristics,

including latency. However, no extensive evaluation has been described for large scale cluster and

complex analysis and data types.

HSim also aims to provide comprehensive Hadoop simulation capabilities. It is designed to

enable a deep exploration of the design space for Hadoop jobs by supporting the modeling of an

extensive number of parameters concerned with processing nodes, clusters, the Hadoop framework

itself, and simulator controls that can govern simulation speeds and the fidelity of results. Cluster

characteristics and Hadoop job behaviors are specified by populating a collection of parameters

that are read by the simulator. Evaluation is performed firstly against a number of published

industry benchmarks executed on clusters ranging from one to 100 nodes, and also against two

Hadoop applications, namely information retrieval and content based image annotation. These

two applications were implemented on a 4 node cluster, and comparisons against HSim predictions

showed strong congruence as the number of mappers increased.

Mumak and SimMR focus on simulating the Hadoop task scheduling algorithms. Both simulate

Hadoop workloads based on traces from Hadoop jobs. Mumak runs the actual Hadoop scheduler

in a simulated environment, whereas SimMR simulates both the scheduler and the Hadoop jobs

themselves. Due to their focus on scheduling tasks, there is no detailed simulation of the map and

reduce phases in these simulators, and hence their ability to accurately simulate resource contention

and the effects of various Hadoop configuration settings is limited. MRPerf [WBPG09], based on the

ns-2 discrete event simulator (http://en.wikipedia.org/wiki/Ns-2), also performs detailed simulations

of Hadoop jobs. MRPerf aims to provide fine-grained simulation of Hadoop framework behavior.

MRPerf requires detailed specifications of a cluster topology, application characteristics, and the

layout of the application input and output data, all provided in XML. A major limitation is that

it assumes simple map and reduce tasks, where the computing requirements are dependent on the

size of the data, and not the processing of its content. MRPerf has been validated in several studies

(TeraSort, Search and Index) using a 40 node cluster, and has been used to predict the effect of

topology changes on a simulated 72 node cluster. Others however have reported difficulties in using

MRPerf and have not been able to produce accurate performance predictions [HLL+10].

In general, the major problem with simulation as a technique for Hadoop performance predic-

tion is accurately modeling the complexity of the map and reduce phases. This is typically done

by specifying the amount of ’work’ per unit of input data, where work is represented by CPU in-

structions, or some unit of time depending on the precise nature of the simulator. This information

can only be coarsely estimated by an application designer in the absence of a running application.

Simulators are also sensitive to changes in the implementation of the Hadoop framework. These

changes can invalidate the simulations, necessitating changes to the core simulation approaches in
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order to accurately model framework behavior. This makes it difficult to keep simulators ’in sync’

with Hadoop, and hence makes their usage of questionable value.

High fidelity performance models can potentially facilitate the prediction of Hadoop application

performance, and provide faster solutions than simulation. For example, [Her11] takes a fine grained

data-flow approach that provides a mathematical model of every stage of an Hadoop job. The models

calculate the amount of data flowing through the different phases of a job, as well as the execution

time for all tasks and phases. The model requires a large number of input parameters specifying both

the job characteristics and cluster configuration. While [Her11] does not address how the parameters

are obtained or model validation, [HB11] builds on this model and uses application profiling from

a running application to populate the model. It then introduces a cost based optimizer that can

predict the application performance given different job configuration parameters. Validation of the

’what-if’ predictions is provided for a single application only, and this approach relies upon having

the application code available for profiling and model calibration.

[SMH+13] presents a Hadoop job analyzer and prediction model, and uses a locally weighted

regression method to train the prediction model based on historical traces. The analyzer measures

data input size and the number of input records of a collection of sample applications, and tries

to estimate the complexity of the map and reduce functions and the ratio of input values that are

passed from the map to reduce phase. This data is then used for model training. Predicting an

application’s performance requires the application code to be profiled so that jobs in the training set

with similar profiles can be used for prediction. A limited validation using word count shows that

the method works well only when a job profile closely matches those in the training set. The paper

does not describe in detail the experimental setup and conditions for prediction.

Another challenge that distributed systems need to face is the dynamic load. We usually config-

ure the number of nodes, sharding strategies, and etc. for an ideal scenario with a maximum requests

rate. However, the load could change unpredictably and we need to keep the system operate con-

tinuously and make sure no node is overloaded. Stateless distributed systems, such as non-session

web server cluster, can be easily scaled out by adding more server instances [SGR00]. As for those

stateful distributed systems (e.g., Cassandra, MongoDB), some states need to be transferred to the

new nodes when scaling out. Consistent hashing is used to evenly distribute the load and make it

convenient to scaling [KLL+97]. The load balancing and scalability in distributed systems have been

well studied [SKH95] [GB99] [GL12]. In [GL12, XCL14], the authors present methods to provision

service instances dynamically on a cloud and scale up automatically.

15



3.2 Distributed Stream Processing Systems

Unlike pull-based distributed systems, the performance optimization techniques in distributed stream

processing systems have been less addressed. Recent research related to load balancing and scala-

bility of DSP platforms has been dedicated to improving the throughputs and ability to handle high

volume input data.

The load distribution problem in DSP systems is complicated. A simple and widely used approach

for this problem is measuring the load of operators and then balancing the total load on different

nodes. In this context, the optimization problem becomes a k-way Number Partitioning Problem

[Kor09]. The authors of [BTO13] and [GJPPM+12] provide solutions to this problem based on the

Best Fit Decreasing algorithm. The approach focuses on balancing the total load on different nodes

follows the strategy used in traditional pull-based parallel and distributed systems, while push-

based stream processing systems often have input streams that can vary over time. An algorithm

presented in [XZH05] uses the correlations of load series over fixed-length time periods to determine

the locations of operators. Their research observes that if the correlation coefficient of the load time

series of two operators is small, then putting them together on the same node helps minimize the

load variance. Through maximizing the correlations between nodes, the load are more likely to keep

balanced when the input load changes.

COLA [KHP+09] is a optimization scheme of IBM’s stream processing system that considers

not only the load of PEs but also the cost of communication between nodes. [KK14] has discussed

the importance of balance the load between data centers. COLA analyzes the profiles of PEs and

combines PEs together in compiling. However, COLA is profile-based and can not solve the dynamic

operator distribution problem. In another paper [YCY+13], the authors use a genetic algorithm

that considers both computation and communication cost to decide the allocation of operators in

the context of mobile cloud computing.

Some stream processing engines, such as S4 [NRNK10a] and Stormy [LHKK12] are designed as

a SaaS so that the application developers can focus on their business logic and use the resources in

a cloud conveniently. The current version of S4 is lack of adaptability features to handle changing

load. Enabling auto-scaling needs to consider more issues including the events dispatching strategy

between operators when the number of nodes in the cluster has changed and the transmission problem

of PE states. Esc [SHLD11] is an elastic stream processing platform. It supports provisioning nodes

to adjust the capacities dynamically, but it has limitations on balancing the load on different nodes.

Dynamic load balancing is also addressed in [CC09] and [DRK06], however only stateless operators

are considered.

Similar to our work, StreamCloud [GJPPM+12] has a architecture that supports both load

balancing and auto-scaling, they divide the application into operator groups and put each group in
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a Subcluster. The allocation of operators has a limitation that each group has at most one stateful

operator. StreamCloud parallelizes standard data stream operators, which means users need to

implement a Load Balancer for each of their custom operators.
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Chapter 4

Overview of Research Method

This chapter provides an overview of our research method. We first give the problem statements we

aim to solve. Then we present a summary of the solutions and how we evaluate our solutions.

4.1 Problem Statements

To design a DSP system that is adaptive to dynamic loads, we aim to solve three problems in this

thesis as follows:

1. System architecture. There are many different types of operators to process data streams in a

DSP system. Each type of the operators may have a large number of instances. These operator

instances process the input stream and update the status, then output a new stream to other

operators. We need to design an architecture that allows very flexible bindings between the

operator instances and the physical nodes that the instances are running on, with which we

can easily assign a type of operator to a cluster of nodes and the operator instances can be

transeferred from one node to another.

2. Dynamic load balancing. Different types of operators demand different system workload.

When the input stream rate fluctuates, the load of each type of operators can vary over time.

We need an alorithm to arrange the allocations of the operators to physical nodes so that the

load are evenly distributed to all the nodes and the load on nodes can keep balanced when

input stream changes. Dynamic load balancing can utilize the cluster resourses and avoid

straggler nodes that may drag down the performance of the whole system.

3. Autoscaling. Design a mechanism to provision resources in DSP systems so that a part of the

operator instances can be smoothly transferred to the new node at runtime. And design a

algorithm that can make scaling decisions to keep system from overload.
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4.2 Research Method

4.2.1 Empirical Analysis

To understand the features of stream processing platforms and key elements involved in the work-

load distribution and optimization, we first conduct an empirical analysis by running experiments

and comparing the stream processing platform’s scalability with the Hadoop platform. Since both

platforms share the same computing model of MapReduce. We implement a movie recommendation

application on both platforms with the sample data sets from Netflix Prize [net].

4.2.2 System Architecture

We construct Dynamic Operator Distribution Optimizer (DoDo), a software layer between general

DSP engines and physical resources. The design principle of DoDo is to arrange a virtual cluster

to each type of operators and allow different type of operators assigned to the same virtual cluster.

Each virtual cluster contains a set of physical nodes and we can add or remove nodes in a virtual

cluster at runtime. With this design, we are able to move operators from one virtual cluster to

another and also ajust the number of nodes in a virtual cluster.

DoDo consists of six components: the Data Flow Graph (DFG) Optimizer, the Health Monitor,

the PE Transmission Controller, the Cluster Manager, the Health Client, and Events Dispatcher.

DoDo manages all the virtual clusters and takes care of the communication between operators. DSP

engines only needs to inform which operator is the destination of the current data stream, DoDo

can then route the data to the corresponding node. The communication details and route tables are

completely transparent to DSP engines.

When we change the mapping of operators and virtual clusters, or adjust the number of nodes in

virtual clusters, some of the operator instances need to be transferred as the number of partitions has

changed. DoDo provides a mechanism to serialize and send the operator instances and deserialize

and restore the operator instance at the destination node.

4.2.3 Dynamic load balancing

The goal of dynamic load balancing is to minimize the average load variance and maximize the

throughputs of stream processing services. We design an optimization method applied in the map-

ping process to assign PEs to cluster nodes. First, we discuss the static mapping problem. The

assumption is that the load on each PE is steady and the input stream rate does not change over

time. In this case, the optimization objective is to find a mapping plan so that the difference between

the average loads on different clusters is minimized. This is a k-way Number Partitioning Problem
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[Kor09]. A widely used algorithm is to sort the numbers in a decreasing order, and then assign each

number in turn to the subset with the smaller sum so far. In the problem of dynamic mapping

optimization, the load of each PE can vary over time as the input stream rate fluctuates. In this

case, we need to consider not only the current load, but also how to keep the loads balanced over

time. We propose an optimization method that combines correlation of resource utilization of nodes

and capacity of clusters to solve the dyanmic mapping problem.

4.2.4 Autoscaling

We aim to design an autoscaling mechanism and algorithm to detect overload and provision nodes

at runtime. There are two major problems: (1) how to synchronize the new node information to all

the existing PEs at runtime; and (2) stateful PE instances must be re-shuffled based on the event

partition algorithm and transferred to another node when the number of nodes in this cluster has

changed.

We solve the first problem by keeping tracking of the status of cluster nodes and synchronizing

the state to other related nodes by means of ZooKeeper. In our architecture, ZooKeeper works as a

coordinator and holds the information of all the clusters in a distributed stream processing system.

Once ZooKeeper loses the connection with a node, the Cluster Manager deletes this node in related

clusters and notifies the Events Dispatchers of all the clusters. Likewise, when a new instance is

provisioned, ZooKeeper notifies all the connected nodes with the information of the new instance.

As for the second problem, we optimize the relocation of PEs by moving as few PEs as possible by

using Consistent Hashing [KLL+97, KSB+99] as the event partition algorithm. Assume the events

have K different keys and the cluster contains N nodes. Approximately K/N keys are mapped to

each node. When a new node is added to the cluster, we can estimate K/(N + 1) keys need to be

relocated. Thus the Consistent Hashing help reduce the number of PE states we need to transfer

between work nodes when we add or remove nodes in a cluster.

4.3 Evaluation Method

The main objective is to evaluate the improvement and cluster resource utilization made by our

architecture. We implement our design and apply it to S4. We choose S4 because of its pluggable

architecture, with which we can easily make our software layer integrated. Moreover, S4 is suitable

for comparison experiments as itself support neither dynamic load balancing nor autoscaling.

For the workload, we use the application of Twitter’s Top-N Topic List. This application reads

tweets stream, extracts topics, counts occurrences of each topic and outputs the top-N topic list

periodically. The top-N recommendation application contains one event generator and three PEs in
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the pipeline, namely ExtractorPE, TopicCountAndReportPE and TopNTopicPE. Each event gener-

ator creates 50 tweets every second at the beginning, and increasingly generates 5 more tweets every

3 seconds. Thus each event generator is able to gradually increase the tweets generation speed to

4,050 tweets per second in 40 minutes. We run the application until the throughput stops increasing,

which means the system reaches its maximum throughput.

We compare the throughput and cluster resource utilization in three options, namely original

stream processing engine (SPE), DoDo with dynamic load balancing (DoDo+LB) and DoDo with

autoscaling (DoDo+AS).
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Chapter 5

Empirical Analysis of the

Scalability of Hadoop and Stream

Processing Platform

5.1 Motivating Applications: Movie Ratings from Netflix

Prize

Recommendation systems, which implement personalized information filtering technologies, are de-

signed to solve the problem of information overload on individuals [ASST05], which refers to the

difficulty a person can have understanding an issue and then making decisions by presence of too

much information. Many popular commercial Web services and social networking Web sites realize

recommendation systems to help users with enhanced information awareness. For example, movie

recommendation improves the user experience by providing a list of movies that most likely covers

the movies the user may like. Collaborative filtering (CF) is the most widely used algorithm for

recommendation systems. It contains two major forms, namely user-based and item-based CF. The

user-based CF aims to recommend a user movies that similar users like [BHK98][HKBR99][RIS+94],

while the item-based CF recommends a user movies similar to the user’s watched lists or high-rating

movies [DK04][LSY03][SKKR01].

As users keep rating and watching movies, both algorithms cannot avoid the problem of incre-

mental data processing, which means analyzing the new ratings and most recent watched histories

and updating the recommendation lists. As the numbers of users and movies grow, a single machine

22



cannot satisfy the immense needs of computation and memory usage. Take the item-based CF algo-

rithm in [SKKR01] as an example, assume there are M users and N movies, the time complexity to

compute the similarity between two movies is O(M). For the final recommendation result, we have

to compute the similarities for all the possible movie pairs, which has a complexity of O(M ∗N2).

With millions of users and tens of thousands of users, the complexity will be extremely large and

scalability becomes a serious problem. Implementing the CF algorithms with MapReduce model

and applying them in scalable platforms is a reasonable solution. Hence a movie recommendation

application on real-world data sets provides the motivating scenario to investigate the scaling needs

and techniques in a cloud environment.

We apply the sample data sets from Netflix Prize [net]. The size is approximately 2GB in total.

The data set contains 17,770 files. The MovieIDs range from 1 to 17,770 sequentially with one file

per movie. Each file contains three fileds, namely, UserID, Rating and Date. The UserID ranges

from 1 to 2649,429 with gaps. There are totally 480,189 users. Ratings are on a five star scale from

1 to 5. Dates have the format YYYY-MM-DD. We merge all the 17,770 files into one file, each line

with format as <UserID, MovieID, Rating, Date>, ordered by the ascending date. For the input of

the stream processing application, we implement a stream generator that read the date-ordered file

line by line. We choose the item-based CF algorithm, as the implementation is comparable between

Hadoop and S4 to observe the differences in scalability and cost.

In the item-based CF algorithm, we define a movie fan as a user who rates this movie higher

than three stars. Mutual fans of two movies are the users who have rated both of the two movies

higher than three stars. Then we measure the similarity between two movies by the number of their

mutual fans. As a result, we output a recommendation list that contains top-N most similar movies

to each movie.

5.2 Processing Netflix Movie Ratings Data in Hadoop

With the MapReduce model in Hadoop, the algorithm consists of three rounds of MapReduce

processing as follows:

1. Round 1. Map-and-Sort the user-movie pairs. Each pair implies the user is a fan of the

movie. Reducer is not needed in this round. Figure 5 shows an example of the input and

output.

2. Round 2. Calculate the number of mutual fans of each movie. Figure 6 demonstrates the

processing with an example. Assume Jack is a fan of movie 1, 2, and 3, then movie 1 and 2 has

one mutual fan as Jack. Likewise, movie 1 and 3, and movie 2 and 3 also have one mutual fan

as Jack. A mapper finds all the mutual fans of each movie and outputs a line for every mutual
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Figure 5: An Example of Round 1

fan. Then the reducer aggregates the result based on the movie pair that has one mutual fan

and counts the number of mutual fans.

3. Round 3. Extract the movie pairs in the result of Round 2 and find the top-N movies that

have the most mutual fans of each movie. The mapper extracts the movie IDs from the movie

pairs and the reducer aggregates the result from the mapper and orders the recommended

movies based on the numbers of their mutual fans. As Figure 7 demonstrates, movie pair 1-2

has mutual fan count as 2 and movie pair 1-3 has one mutual fan. Therefore the movie id 1

has mutual fans with movie id 2 and 3. The recommended movies for movie id 1 are movies

[2,3] in descending order of the count of mutual fans.

5.2.1 The Experiments

We design experiments to evaluate the scalability and resource usage cost of running this Hadoop

application and explore the insights of the empirical results using monitoring data at both the

system and the platform level. The source code of the MapReduce jobs is shown in Appendix A. Our
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Figure 6: An Example of Round 2

Figure 7: An Example of Round 3

evaluation is performed on Amazon Web Services (AWS), which provides the essential infrastructure

components for setting up the Hadoop platform. The infrastructure components are listed in Table

1. AWS allows flexible choices on virtual machine images, capacities of virtual machine instances,

and associated services (such as storage, monitoring and cost billing).

The deployment of the Hadoop architecture uses AWS Elastic MapReduce (EMR), which is a

Hadoop platform across a resizable cluster of Amazon Elastic Compute Cloud (EC2) instances. The

deployment architecture is shown in Figure 8. In the EMR configuration, we set up one master

instance and ten core instances to run the Hadoop implementation of the movie recommendation

application. The master instance manages the Hadoop cluster.It assigns tasks and distributes data

to core instances and task instances. Core instances run map/reduce tasks and stores data using

HDFS. All instances are in the type of m1.small, which has 1.7 GB of memory, 1 virtual core of EC2

Compute Unit, and 160 GB of local instance storage.

We use Amazon CloudWatch [Ama14] to monitor the status of Hadoop jobs and tasks and EC2

instances. For EC2 instances, CloudWatch provides a free service named Basic Monitoring, which
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Table 1: Infrastructure Componentsof Movie Recommendation App

Application Movie Recommendation

Platform Apache Hadoop

Amazon Web Service
Simple Storage Service (S3)

Elastic MapReduce (EMR)

Monitoring Tools Amazon CloudWatch
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Figure 8: Deployment Architectures on AWS

includes metrics for CPU utilization, data transfer, and disk usage at a five-minute frequency. For

the EMR service, CloudWatch has metrics about HDFS, S3, nodes, and map/reduce tasks. All these

built-in EC2 and EMR metrics are automatically collected and reported. AWS users can access these

metrics in real-time on the CloudWatch website or through the CloudWatch APIs.

The evaluation includes scenarios to emulate the incremental updates of data sets, in terms of

data sizes. We consider scalability as to what extend a platform can utilize computing resources to

handle increasing data sizes or data rates before a platform scales out on more computing resources.

We also observe the cost incurred as the data sizes and update rates grow. To this end, we collect

the following metrics to observe the performance of the Hadoop platform.

The system status metrics help to identify anybottleneck that limits performance. We explore
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Figure 9: Input Rating File

the metrics of the platform status to observe factors at the application level that link to a bottle-

neck and affect performance most. The MapReduce tasks status provided by CloudWatch includes

RemainingMapTasks, RemainingMapTasksPerSlot, RemainingReduceTasks, RunningMapTasks, and

RunningReduceTasks.

In the Hadoop implementation of the movie recommendation application, the rating data are

constantly increasing as users keep rating movies on the website. Therefore, Hadoop needs to process

the whole set of rating data available as the size increases over time. To evaluate the scalability

and cost of Hadoop processing incremental data, we create experiments that process different sized

rating files. First, we order the Netflix dataset by time. Assume 200 ratings made by users every

second, the dataset is of 200 ∗ 24(hours) ∗ 3600(seconds) ∗N records on the Nth day. We run our

movie recommendation jobs over the period of days as N = 1, 3, 6 as Figure 9 and compare the

results.

Understanding how minimal time interval or frequency of data processing varies according to

the data update sizes helps to make scaling decisions on the optimal resource provision settings.

Table 2 shows the elapsed time of Hadoop jobs with different sizes of input data. The elapsed time

implies given a certain data size, the minimal time required torun the Hadoop application that

updates the movie recommendation list. For example, the first entry in Table 2 means given the

current capacity, it is only possible to re-run the Hadoop movie recommendation application with a

frequency of once per hour for processing rating data updated in one day. For any shorter frequencies

or larger datasets, more EMR instances need to be provisioned.

Table 2: The Elapsed Time of Movie Recommendation Jobs

Scenario Data file size Records Elapsed time

1-day 428MB 17,280,000 56 minutes

3-day 1.2GB 51,840,000 177 minutes

6-day 2.4GB 103,680,000 407 minutes
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Figure 10: Number of Running MapReduce Tasks and Time Spent

From the platform status, Figure 10 shows the number of running tasks comparing the results

of the 1-day input and the 3-day input. The evaluation environment has 10 core instances. Each

instance has 2 mappers and 1 reducer. The running map and reduce tasks are at their maximum

most of the time. In addition, all the mappers and reducers finish their job approximately at the

same time, which implies that there is no data skew problem here.

Figure 11 shows the system status comparing 1-day data input and 3-days data input. As Figure

11(c) shows, in both experiments, there is no data written to HDFS and the data read from HDFS

is less than 5KB/s all the time. This is mainly due to the fact that EMR uses S3 for input and

output instead of HDFS. In the EMR services, the mappers read from S3 and hold intermediate

results in local disk of EC2 instances. Then in shuffling stage, these intermediate results are sent

through network to corresponding reducers that may sit on other instances. In the end, the reducers

write the final result to S3.

In Figure 11(a), the experiment with 3-day input has the CPU utilization at 100% most of the

time, except at three low points at 100 minutes, 125 minutes and 155 minutes, which is the time

when the shuffling or writing results of reduce tasks occur. The average network I/O measurement

in Figure 11(b) shows spikes at around the same time points, 100 minutes, 125 minutes and 155

minutes respectively while other times the average network I/O stays quite low. The highest network

I/O rate is still below the bandwidth of Amazon’s network in the same region, which is 1G bps to our

best knowledge. The experiment with 1-day input has the same pattern with different time frames.

From these observations we can infer that CPU utilization would be the bottleneck for processing

higher frequency of data .

Table 3 shows the cost of the EMR service under different terms of data sizes and updating

frequencies. For example, with a once-per-three hour updating frequency and 1.2G input files, we

28



Figure 11: System Status of Hadoop Cluster

need to run the Hadoop recommendation jobs 8 times a day. Each time, it takes 2 hours and 57

minutes. The EMR price on AWS is 0.08 USD per instance hour. For a sub-hours usage, the billing

system rounds it to an hour. As we have used 11 instances in total, it costs $0.08*11*3*8 = $21.12

per day. The NA (not applicable) in the table means that the processing time for data at this size

is longer than the updating interval so that more instances need to be provisioned.

Table 3: Daily Cost of AWS Services

Update Frequency Once per day Once every 3 hours Once per hour

Input Data Size 428M 1.2G 2.4G 428M 1.2G 2.4G 428M 1.2G 2.4G

Daily Cost $0.88 $2.64 $6.16 $7.04 $21.12 NA $21.12 NA NA
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5.3 Processing Netflix Movie Ratings Data in S4

S4 shares the same MapReduce concept with Hadoop. The difference is that S4 can save intermediate

result in its processing elements (PEs), which are the computation units of S4. Developers can

customize PEs by inheriting class ProcessingElement and implementing the functions with their

business logics. The core function for a PE is OnEvent, which processes new events and executes the

business logic implemented by the developer. Listing 5.1 shows an example of the OnEvent function.

Listing 5.1: OnEvent in HistoryPE

1 public void onEvent(Event event) {
2 String strMovieId = event.get(”mId”, String.class);

3 logger.trace(”userid [{}] movie id [{}]”, getId(), strMovieId);

4 List<Event> newEvents = new ArrayList<Event>();

5 boolean bExist = false;

6 for (String favMovie : favMovies) {
7 if (favMovie.equals(strMovieId)) {
8 logger.trace(”This is an existing movie id.”);

9 bExist = true;

10 } else {
11 newEvents.addAll(createEventsForMutualFan(strMovieId, favMovie));

12 }
13 }
14 if (bExist) {
15 return;

16 }
17 favMovies.add(strMovieId);

18 for (Event e : newEvents) {
19 downStream.put(e);

20 }
21 }

For this movie item-based recommendation algorithm, three processing elements are designed in

a pipeline, namely HistoryPE, SimilarMoviesPE and RecoOutputPE. Figure 12 shows the data flow

graph of the stream processing application with these PEs.

The input and output stream of each PE consist of a series of events. Each event is a key-value

tuple. For example, a MutualFans event (1, 3) indicates that movie 1 and movie 3 have a mutual

fan. The key in this event is 1 and the value is 3. An event in S4 is a Java object, and it is serialized

when transferred between PEs. The details of each PE are as follow:

30



HistoryPE filters the original input stream and stores the movies that a user watches or favors.

Figure 13 shows an example that an instance of the HistoryPE stores that Jack is a fan of movie 1

and 2. When the HistoryPE receives a new event (Jack, 3) that indicates Jack is a fan of movie 3,

the MovieID 3 is first stored in this instance, then the HistoryPE generates all new movie pairs (1,

3), (3,1), (2, 3) (3,2) that have a mutual fan as Jack. Since movie pair (1,2) and (2,1) are historic

that means they have been processed already. Therefore, S4 allows only processing incremental

and newly updated events, instead of processing the whole datasets every time a new event arrives.

These generated events are sent to the next PE, SimilarMoviesPE.

The SimilarMoviesPE accumulates the numbers of mutual fans of movies and stores the result

in its instances as the SimilarMovie list. Figure 14 shows an instance of SimilarMoviesPE. Movie

1 has two similar movies, which are movie 3 with 15 mutual fans and movie 5 with 10 mutual

fans. When the SimilarMoviesPE receives a new MutualFans event (1, 3) from the HistoryPE, the

SimilarMovie list is updated and re-ordered. Finally, the SimilarMoviesPE generates a TocRecos

event in the pair of (MovieID, SimilarMovie list) and send it to the RecoOutputPE.

The RecoOutputPE stores the top-N similar movie lists for all the movies and outputs the movie

recommendation list to a text file. The RecoOutputPE is the last PE so it does not generate any

events.

5.3.1 The Experiments

Our objective is to study to what extend a stream processing platform can utilize computing resources

to handle increasing data sizes or data rates before the platform scales out on more computing

resources. Therefore we design evaluation scenarios to emulate the incremental updates of data sets,

in terms of data sizes and stream rates.

We set up the the movie recommendation application on eleven Amazon EC2 instances, with

one master instance and ten worker instances. Figure 15 shows the master instance runs ZooKeeper

[HKJR10] and the stream generator. ZooKeeper is the coordinator of S4 cluster. It keeps track
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Figure 12: Data Flow Graph of Stream Processing Application
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Figure 13: An Example of HistoryPE
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Figure 14: An Example of SimilarMoviesPE

of the changes of the worker instances (such as adding or removing a worker instance) and notifies

master instance when changes occur. The stream generator reads rating records from the Netflix

dataset stored on the master instance, and sends rating events to worker instances. Each worker

instance has a S4 node running on it and each S4 node contains a set of PE instances. The master

and worker instances are with the type of m1.small.

Given the fix size of EC2 instances, we collect the metrics in Table 4 to observe the scalability of

the movie recommendation application as the stream rate increases . The status of EC2 instances

are automatically collected and reported to CloudWatch.These system level metrics helps to identify

any bottleneck that limits the performance. We then explore the metrics of the platform status to

observe factors at the application level that link to a bottleneck and affect performance most. For

the monitoring of Apache S4, we report the metrics from S4 to Graphite [gra], a real-time monitoring

tool installed on the master instance.
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Figure 15: The Deployment Architecture of Stream Processing Application

Without Scaling

The input streams are configured by tuning the interval of i ms between events generated to control

the stream rates. With i = 1, 5, 10, the generated stream has the input rate of approximately 850

events/s, 192 events/s, and 98 events/s respectively. With input rate of 850 events/s, the application

can process each day’s rating data approximately in size of 1.7GB ( 850 ratings per second * 24

(hours) * 3600 (seconds) = 73,440,000 records).

We measure the throughput of a PE as the number of events processed by the PE. Table 5 shows

Table 4: Collected Metrics

Platform Apache S4

System Status

CPU Utilization

Disk I/O

Network I/O

Platform Status
Number of PE instances

PE processing time
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the throughputs (rounded) are almost the same as the input stream rate in the first two experiments.

In the third experiment, when the events arriving at an intensive rate (i.e. 1ms interval between

events and 850 events/s), the throughput drops to 276 events/s. Ideally, a scalable stream processing

platform can produce the throughputs comparable to the increasing input rate. Once the runtime

platform encounters a bottleneck, the throughput plateaus and no longer catches up with the input

rates.

Table 5: Throughputs of the HisotryPE

Experiment Input Stream Rate Throughput

Number (events/s) (events/s)

1 98 98

2 192 192

3 850 276

Further exploring the system and platform metrics collected helps to identify the factors con-

tribute to this throughput degradation. Figure 16 shows the system status of movie recommendation

application comparing experiment 2 (of 192 events/s input rate) and experiment 3 (of 850 events/s

input rate).

In Figure 16(a), the CPU utilization of experiment 3 quickly rises to 100% in the first 20 minutes,

while the CPU utilization of experiment 2 increases from 0% to 82% in 160 minutes and becomes

steady around 80%. Figure 16(b) shows that the network I/O of experiment 3 climbs to approx-

imately 13 MB/s and then drops down drastically. This is because of that the CPU utilization

reaches 100% and many unprocessed events are stuck in the buffer. As Figure 16(c) shows, the disk

I/O is quite low because S4 holds the intermediate data in memory.

Figure 17 shows the number and processing time of HistoryPE and SimilarMoviesPE in the

movie recommendation application. From these platform status, we observe the following phenom-

ena.

Data characters : Figure 17(a) and Figure 17(c) indicate that HistoryPE has significantly more

instances than SimilarMoviesPE. This is due to the nature of the Netflix dataset, which

contains 480,189 users and only 17,770 movies. S4 creates a new HistoryPE instance every

time it receives a rating from a new user ID.

Number of PEs vs Input rate : As experiment 3 has a higher input stream rate, the number of

instances of both the HistoryPE and the SimilarMoviesPE increases much faster in experiment

3 than experiment 2 as Figure 17(a) and (c) show. This leads to the full-utilized CPU usage

in Figure 16(a).
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Figure 16: AWS EC2 System Status

Processing time vs Input rate : Figure 17(b) and Figure 17(d) show the average processing time

of the HistoryPE and the SimilarMoviesPE. The average processing time measures the time

taken for a PE to process a single event respectively. The processing time of the HistoryPE

in experiment 3 increases, but the growth is unstable compared to the SimilarMoviesPE. In

experiment 2, the processing time even begins to drop after 50 minutes. The fluctuation of

the average processing time here is caused by a few ’lagging’ instances. The ’lagging’ occurs

when some HistoryPE instances receive rating events from users who have rated thousands

of movies, in which case the HistoryPE instances have to generate thousands of MutualFans

events. The processing time of the HistoryPE on ’lagging’ instances is usually hundreds or

thousands of nanoseconds while the normal ones are only less than ten nanoseconds. The

processing time of the SimilarMoviesPE keeps growing because all of its instances do ordering

of ever increasing number of movies as data accumulates over time.
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Figure 17: The S4 Platform Status

Manual Scaling

The experiments above indicate that the movie recommendation application needs to scale out as

input stream rate increases. By configuring the AWS AutoScaling Group (ASG) and specifying

the rule-based threshold of CPU utilizations, EC2 instances can be automatically provisioned ( and

de-provisioned). However current S4 only supports static configuration of EC2 instances through

ZooKeeper as we presented in Figure 15 . When a new EC2 instance is available, S4 does not

automatically run a S4 node on the instance. In addition, since PEs are running on a S4 nodes,

scaling the S4 platform also requires transferring PEs and their associated states to a new S4 node

on a EC2 instance, otherwise, the intermediate data accumulated in PEs are lost.

We manually provision EC2 instances to the movie recommendation application and try to find

the minimum number of EC2 instances required to keep the throughput of the HistoryPE equal to

the input rate since the HistoryPE is the most demanding PEs in this application. Table 5 shows
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Figure 18: Average CPU Utilization of the S4 Cluster

that with input stream as 850 events/s, the 10-instance S4 cluster has a throughput of 276 events/s,

which is approximately 27.6 events/s per instance. Intuitively, we estimate the number of instances

needed is between the range of [10, 850/27.6 ≈ 30]. Then we use the bisection method to determine

the cluster size. First, we choose 20 EC2 instances, if the throughput matches the input rate and

the CPUs are not completely utilized, we cut down the number. Likewise we launch more instances

if the throughput drops. In the end, we find the minimum size of S4 cluster to handle input stream

rate of 850 events/s is 23 EC2 instances.

Figure 18 shows the average CPU utilization with 20, 23 and 25 nodes in the S4 cluster respec-

tively. With 20 instances, the CPU utilizations of some instances reach 100%, which leads to the

degradation of throughput. The average CPU utilization of S4 cluster with 25 instances is lower

than the 20-instance one, and not fully utilized. Since AWS charges instance hours, under utilized

instance incur unnecessary cost. In the end, we scale the S4 cluster to 23 instances, in which case

the throughput keeps steady at 850 events/s and the CPUs are nearly 100%. Figure

We summarize the daily cost of handing input streams at different rates in Table 6. The cost is

determined by the type and number of virtual machine instances and hours run by the application.

Table 6: Daily Cost of AWS Services

Input Stream Rate (events/s) 98 192 850

Daily Cost
Standard Linux $17.16 $17.16 $35.88

RHEL 6.4 $31.68 $31.68 $66.24

The experiment results show scaling techniques can help stream processing applications to meet

the workload demands and save the cost. For a stream processing platform such as S4 that doesn’t

support scaling on the fly, the obstacle of autoscaling is to transfer PEs and their states from one

instance to another. We further address this issue in Chapter 7.
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5.4 Comparison of S4 and Hadoop

Using AWS CloudWatch and billing service, we are able to observe the compare measurements for

both performance and cost metrics. We present how the measurements can be collected through

AWS. These metrics allow us to discuss and explore the difference of the two programming models

and platforms used to analyze the same datasets.

Programmability : Both Hadoop and S4 are open-source projects, and they provide a simple

programming interface for developers. Hadoop is a little more programmer-friendly since Java

is the only allowed programming language for S4 while Hadoop supports other programming

languages through the Hadoop Streaming interface.

Deployment complexity : Hadoop is more complicated to deploy than S4 because it includes

MapReduce module, HDFS, and many complex configuration files while S4 only needs the

ZooKeeper and the S4 nodes. However, Hadoop is a widely-used platform and has a mature

community so that it is easy to find documents or choose an integrated Hadoop service like

Amazon EMR.

Integration with other tools : Hadoop can output metrics to data files or real-time monitoring

tools, all you need to do is editing the configuration file. But for S4, you have to modify

the source code to output the metrics to other tools, such as Graphite that we used in the

experiments.

Autoscaling options : Amazon EMR allows users to increase or decrease the number of task

instances. For core instances that contain HDFS, users can increase them, but not decrease.

All these scaling operations can be made when the Hadoop cluster is running, which enables

the auto-scaling ability for EMR if you have set up some proper rules based on the Hadoop

metrics. In contrast, S4 does not support scaling up or down at runtime. So it remains future

work for S4 to take adavantage of the auto-scaling feature of Amzaon EC2 service.

Ability to process incremental data : As the experiments of movie recommendation app shows,

to maintain a frequent update on the movie recommendation, Hadoop costs much more as the

data accumulates. In the real-time big data analytics scenarios, stream processing systems

performs better and costs less.
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Chapter 6

Dynamic Load Balancing

6.1 Overview

Distributed stream processing systems aim to process, analyze and make decisions on-the-fly based

on immense quantities of data streams being dynamically generated at high rates. Stream services

often exhibit multi-modal and spike workloads. For example, Mickulicz et at [MNG13] presents

a cloud-based sports service, called YinzCam that has various modes of workload (e.g., pre-game,

in-game, post-game, game-day, non-gameday, in-season, off-season) and exhibits that the traffic

during the actual hours of a game is twenty-fold of that on non-game days. To handle these multi-

modal workloads, YinzCam applies and tunes Amazon Web Services autoscaling configuration to

automatically scale up and down the virtual machine instances on-demand. However, autoscaling

considers a group of virtual machine instances as a whole, and does not necessarily guarantee that

the workload is balanced on all instances.

Most stream processing software frameworks such as Borealis [AAB+05], SPADE [GAW+08]

and S4 [NRNK10a] are operator-based, which means applications are organized as data flow graphs

consisting of operators at the nodes connected by directed edges representing the data streams.

The operators, which are also called PEs (Processing Elements) in some systems, are allocated to

physical nodes within networked clusters.

Allocating a PE to a physical node has a direct effect on scalability. For a stream processing

service in where PEs are connected to each other, these dynamic changes of inputs may significantly

impact the loads of certain PEs due to the different selectivities (i.e., the ratio of the input and

output data rates) of PEs. Even a small raise of the input stream of a low-selectivity PE may lead

to a dramatic increase of its output rate. Thus the destination PEs, the PEs that takes its output as

input, have to handle a much higher input rate. As a result, the cluster nodes running destination
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PEs could be overloaded while the other nodes are not fully utilized. The selectivity of a PE depends

on not only the business logic of the service, but also the data in the input stream. Normally, the

selectivities of PEs fluctuate as the input stream varies over time, which makes the change of load

distribution unpredictable. Therefore, the ability to balance the loads on different nodes at runtime

is essential for a scalable and reliable stream processing service. By changing the allocation of PEs

we can adjust the loads on nodes and optimize the utilization of computing resources. Meanwhile,

an inefficient allocation may result in unnecessary data transfers between operators through the

network that can cause extra latency.

6.2 The Optimization Method
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Figure 19: DoDo assigns physical nodes for an application with 3 types of PEs (PEA, PEB , PEC).

Both PEA and PEB are allocated on Cluster1 that has 2 nodes. PEC is allocated on Cluster2 that

has 4 nodes.

The goal of optimization is to minimize the average load variance and maximize the throughputs

of stream processing services. We design an optimization method applied in the mapping process to

assign PEs to a cluster node as depicted in Figure 19. At the bottom layer, the physical nodes are

connected by a high bandwidth network in a cloud environment. At the top layers, as an example,

both operators PEA and PEB are allocated on Cluster1. Hence when Cluster1 is overloaded, moving

PEB or PEA to Cluster2 could potentially solve the problem. To make this moving decision load

adaptive, we consider the following aspects in the optimization method development:

1. We assume that CPU utilization data are collected on nodes to measure the load of PEs

periodically over fixed-length time series. The input stream for a PE consists of a series of

events. In each period, the load of a PE is defined as the CPU time needed by the event
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processing. If the average events rate in period i is λ and the average processing time of an

event is p, then the load of the PE sP is λp.

2. The optimization works on the level of clusters. It means that if a PE is assigned to a cluster,

then its instances are allocated equivalently on each node of the cluster.

3. The method optimizes the current PE’s allocation based on the current number of nodes in

clusters. It does not make decisions on adding or removing nodes.

Given the definition of the load of a PE as sP = λp, we further define the load of a cluster. Assume

a stream processing application running on k clusters (C1, C2, ..., Ck). The application contains n

PEs (P1, P2, ..., Pn) with loads (sP1
, sP2

, ..., sPn
). Let a cluster Ci have j PEs (P1, P2, ..., Pj) running

on it, (j ≤ n). Ni denotes the number of nodes in cluster Ci. We assume that the average load of a

cluster Ci can be expressed as sCi :

sCi
=

1

Ni

j∑
l=1

sPl
(1)

6.2.1 Static Mapping Optimization

First, we discuss the static mapping problem. The assumption is that the load on each PE is steady

and the input stream rate does not change over time. In this case, the optimization objective is

to find a mapping plan so that the difference between the average loads on different clusters is

minimized, i.e. sC1 ≈ sC2 ≈ ... ≈ sCk
.

If we further assume that each cluster has only one node, the problem becomes allocating the set

of PEs with loads (sP1
, sP2

, ..., sPn
) to k clusters with balance. This is a k-way Number Partitioning

Problem [Kor09], which is to divide a given set of numbers into a collection of subsets so the sum of

the numbers in each subset is as nearly equal as possible. This problem is NP-hard. Most existing

approaches focus on suboptimal solutions. Among them, a greedy heuristic algorithm is effective

and widely used. The principle of the algorithm is to sort the numbers in a decreasing order, and

then assign each number in turn to the subset with the smaller sum so far [ZMP11].

Now we consider a cluster has multiple nodes, and the number of nodes is different on clusters. We

apply a similar strategy as the greedy heuristic algorithm above to solve this partitioning problem.

Instead of having the subsets being ordered by the sum, we consider the sum should be divided by

the capacity of the cluster (i.e. the number of nodes in that cluster) to present the average load of

the cluster. For an instance, when a PE Pi is assigned to a cluster Cj , the additional cluster load is

sPi/Nj , where Nj is the number of nodes in cluster Cj .

The static mapping optimization above can only help to balance the load at a specific period of

time when the load is of each PE is steady and the variation of input stream rate is negligible.
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6.2.2 Dynamic Mapping Optimization

In the problem of dynamic mapping optimization, the load of each PE can vary over time as the

input stream rate fluctuates. In this case, we need to consider not only the current load, but also

how to keep the loads balanced over time. For an instance of two clusters C1 and C2, the average

load of C1 is sC1
and the average load of C2 is sC2

. Assume the input stream rate is increasing

over time and let ΔsC1 and ΔsC2 denote their incremental loads after time t. The PE and cluster

mapping plan should make sC1 ≈ sC2 and ΔsC1 ≈ ΔsC2 .

An algorithm presented in [XZH05] uses the correlation of load series of PEs over fixed-length

time periods to determine the allocation of PEs. In this algorithm, the authors define the load

variance of an operator/node as the variance of the load time series of an operator/node. Their

research observes [XZH05] that if the correlation coefficient of the load time series of two PEs is

small, putting them together on the same node helps minimize the load variance. In other words,

the smaller correlation coefficient indicates the bigger difference of loads of the two PEs in a given

period of time. So the algorithm allocates operators to the node that has the largest correlation

coefficient. Since this algorithm directly allocates PEs to physical nodes, further improvement on

this algorithm is necessary to consider allocating PEs to clusters of various size of physical nodes.

In our case, each PE is assigned to a cluster that contains a sets of nodes. Our calculation is on

the level of clusters and PEs. We assume that a load series S (such as a load series of a PE or a

load series of a cluster) contains the load array (s1, s2, ..., sk) of the most recent k periods. For the

load series of a PE, the load in the array is the load of the PE at a specific time period. For the load

series of a cluster, the load in the array is the average load of the cluster at a specific time period.

Then the mean and the variance of the load series S are defined as follows:

ES =
1

k

k∑
i=1

si (2)

varS =
1

k

k∑
i=1

s2i −
(
1

k

k∑
i=1

si

)2

(3)

Given two load series S1 = (s11, s12, ..., s1k) and S2 = (s21, s22, ..., s2k), their covariance cov(S1, S2)

and correlation coefficient ρ are defined as follows:

cov(S1, S2) =
1

k

k∑
i=1

s1is2i −
(
1

k

k∑
i=1

s1i

)(
1

k

k∑
i=1

s2i

)
(4)

ρ =
cov(S1, S2)√
varS1

√
varS2

(5)

Now we formalize the optimization problem as follows:

Assume a stream processing application running on k clusters (C1, C2, ..., Ck). The application

contains n PEs (P1, P2, ..., Pn) with loads (sP1
, sP2

, ..., sPn
). Let ρij denotes the correlation coefficient
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of Ci and Cj for 1 ≤ i, j ≤ n. The objective is to find a PE mapping plan with the following

properties:

1. sC1
≈ sC2

≈ ... ≈ sCk

2.
∑

1≤i≤j≤k ρij is maximized

Now we present a greedy algorithm in Algorithm 1 that maps PEs with a load series measured

to clusters of different size. The input of this algorithm is a list of paired clusters. First, clusters

are ordered by their average loads according to Eq. 1. The ith cluster in the ordered list is paired

with the (n− i+1)th cluster in the list, which means the cluster of the largest average load is paired

with the cluster of the smallest load.

In this algorithm, we do pairwise PE transmission between clusters so that each cluster will

do at most one PE transmission at a time. This limits the number of transmissions required. As

Algorithm 1 indicates, for each cluster pair, we first determine whether a PE transmission should

be made between the pair. Line 2 shows the conditions if a PE transmission is necessary: 1) the

load differences between the two clusters must be larger then a threshold; and 2) the correlation

coefficient of the two clusters must be less than a threshold. These two conditions make the PE

transmission only occurs between unbalanced clusters. Then the algorithm selects PEs from the

cluster with larger load, i.e. cluster C1 where sC1
> sC2

.

We then need to find the PE that is the most correlated to cluster C1 or the least correlated

to cluster C2 so that after the PE transmission, the correlation of C1 and C2 is the largest. Let

ρ(SP , S1) denotes the correlation coefficient between the load series of PE P and the load series of

all the other PEs in C1 except P . Then the PE selection from C1 should follow the decreasing order

of (ρ(SP , S1)− ρ(SP , S2))/2 as Line 3 indicates. Let N1 and N2 denote the capacities of cluster C1

and C2. If a PE is moved from C1 to C2, the load of C2 increases as the amount of ESPE ∗N1/N2.

To avoid a reverse transmission, a threshold for the load difference is as the total load of the selected

PEs must be less than (ESC1
− ESC2

)/2.

6.3 Architecture

Figure 20 shows the architecture overview of a distributed stream processing system (DSPS) with

DoDo, which is a software layer constructed on top of networked cluster nodes. DoDo is designed

to provide fundamentals to support a flexible combination between PEs and cluster nodes in a

DSPS. DoDo arranges a cluster for each of the PEs and allows different PEs using the same cluster.

Moreover, DoDo can move PEs to another cluster and adjust the number of nodes in a cluster. All
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Algorithm 1: The Mapping Algorithm

input : Paired clusters

output: PE transmission list

1 foreach cluster pair (C1, C2) in paired cluster list do

2 if ESC1
− ESC2

> ThresholdAverageLoad and ρ(SC1
, SC2

) < ThresholdCorrelation then

3 Order PEs by (ρ(SP , SC1)− ρ(SP , SC2))/2 desc;

4 // TotalLoad is the sum of the loads of PEs in the transmission list;

5 TotalLoad = 0;

6 foreach PE in Desc Ordered PE list do

7 if (ESPE + TotalLoad) ∗N1/N2 < (ESC1
− ESC2

)/2 then

8 add (PE,C1, C2) in transmission list;

9 TotalLoad+ = ESPE ;

of these operations can be made on-the-fly. When an application is deployed to a DSPS, (1) the

platform informs the Cluster Manager to provide a cluster for each type of the PEs; (2) the Cluster

Manager registers the combination of PEs and clusters as well as the communication information

of the physical nodes in each cluster synchronized by ZooKeeper; (3) then PEs are instantiated on

physical nodes and the DSP platform starts to process events; (4) new events generated from a PE

are sent to the cluster that contains the next PE through the Events Dispatcher.

DoDo consists of six components as shown in Figure 21:

1. The Data Flow Graph (DFG) Optimizer makes optimization decisions based on the information

collected by the Health Monitor from physical nodes.

2. The Health Monitor collects both system utilization data and PE health data such as input

event rates, processing time and the number of PE instances.

3. The PE Transmission Controller notifies the Events Dispatcher to transmit PE states by

creating PE transmission tasks in ZooKeeper.

4. The Cluster Manager registers the combination of PEs and clusters as well as the communi-

cation information of the physical nodes in each cluster synchronized by ZooKeeper.

5. The Health Client reports health data to the Health Monitor on the master node.

6. The Events Dispatcher is in charge of sending events of data stream to the destination node

and transmitting PE states whenever necessary. The Events Dispatcher is connected with

ZooKeeper so that it can send events to the destination node.
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Figure 20: Architecture Overview

The Health Client and the Events Dispatcher are running on the worker nodes along with PEs.

All the other four components of DoDo are running on a master node. The system is uncentralized

as the master node is only dedicated to the optimization. In other words, the stream processing

application can keep working even if the master node is down.

6.3.1 The Allocation Decision Making Process

The DFG Optimizer makes the mapping optimization decisions using Algorithm 1. We divide the

decision making process into three major steps.

First step : collecting information. The information contains 1) the event flow graph (EFG) of

the stream processing application, in which the vertices represent different types of PEs and the

edges represent data streams; 2) the PE-cluster mapping and the capacities of clusters; and 3) the

health data collected by the Health Monitor. 1) and 2) are written to the ZNodes on ZooKeeper by

the Cluster Manager when the application is deployed. For the health data, each node has a Health

Client running on it. The Health Client collects the data and sends to the master node, where the

data is stored and monitored.

Second step : making mapping decision. Based on the information gathered in the first step, the

DFG Optimizer decides whether a PE transmission should be made. The DFG Optimizer reads the

health data from the storage of the Health Monitor and the data from ZooKeeper for a given time
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Figure 21: Structure of DoDo

interval. Then it applies the optimization algorithm to get the result as a PE transmission list.

The last step : executing the PE transmission. If the result from the second step is an empty

PE transmission list, it implies that either the system is well balanced or it cannot find a PE-cluster

mapping plan to solve the unbalance problem. If the result from the second step is not empty,

the DFG Optimizer notifies the Cluster Manager to change the mapping on ZooKeeper so that the

Events Dispatcher can send the events to the new destination. Moreover, if some PEs in the list

are stateful, the PE Transmission Controller creates a PE transmission task on ZooKeeper. As the

Events Dispatcher has setup watches on the ZNodes of ZooKeeper, it is notified to execute the PE

transmission task. Then the Events Dispatcher creates some special events that contain the states,

and sends them to the new cluster. When the Events Dispatcher on the new cluster receives the

special type of events, it asks the DSPS to generate the corresponding PE instances and assign the

states to the PE instances.

6.3.2 Implementation

Our implementation is based on S4, which is a widely-used open-source stream processing framework

first developed by Yahoo!. Yahoo! has implemented an online parameter optimization (OPO)

system using S4 to automate the tuning of one or more parameters of a search advertising system

with live traffic. In a two-week experiment the optimal parameters generated by the OPO system

demonstrated reasonable improvements in the primary measures of system performance: revenue by
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0.25% and click yield by 1.4% [NRNK10a]. In another paper, researchers built a high-throughput

system on S4 for reasoning over RDF streams [HK11]. We choose S4 because of its pluggable

architecture, with which we can easily make DoDo work as the dynamic operator distribution layer.

Moreover, S4 is suitable for comparison experiments as itself support neither adding nodes to a

cluster nor PE transmission at runtime.

In our previous work, we implemented a prototype of DoDo [WL14a]. The prototype included

the components of DoDo except the DFG Optimizer. In this paper, we have implemented DFG

Optimizer along with two algorithms. One algorithm is Algorithm 1, the mapping optimization

algorithm proposed in Section 6.2. The other algorithm is only focused on maximizing the correlation

without considering the capacity of clusters.

6.4 Evaluation

The overall architecture is demonstrated by a real-time top-N recommendation application in social

streams. The main objective is to evaluate the efficiency of the PE allocation optimization method

under different scenarios to balance the load of PEs on clusters. We use Twitter’s stream data

and develop a stream processing service that reads tweets stream from the Twitter Sample Stream

API [MPLC13], extracts topics from the tweets, counts occurrence of each topic and outputs the

top-10 topic list every 10 seconds. The implementation in terms of PEs contains one adaptor (for

generating stream) and three PEs in the pipeline, namely ExtractorPE, TopicCountAndReportPE

and TopNTopicPE. The adaptor reads tweets from Twitter sample stream API by default.

As the sample stream from Twitter is only approximately 50 tweets per second and only a few

of them have topics, it can hardly make stress test to our clusters. So we modify the adaptor to

generate sampling tweets with topics that follow the Zipfian distribution (with 5000 elements and

the exponent as 0.5). Figure 22 shows the occurrences of the topics when we generate 100,000

sample tweets. We also tune the generating speed of tweets, making the speed start from 20 tweets

per second and increase 20 tweets every second. By this setting, we can simulate incremental input

streams and measure the platform’s throughput.

The testbed is a 11-node cluster provided by Utah’s Emulab [WLS+02]. Each node has a 3GHz

1-core Xeon processor, 2GB of RAM and 210,000 RPM 146GB SCSI disks. All nodes are intercon-

nected by a 100Mb Ethernet. The operating system uses 64bit Fedora 15 with Linux kernel version

2.6.40. We deploy ZooKeeper and DoDo components on a master node. We divide the rest 10 nodes

into 3 clusters: Cluster1 with 3 nodes, Cluster2 with 6 nodes, Cluster3 with only one node.

We test the system performance under two different deployments of the application. In the first

case, which is called extreme case as Table 7 implies, we deploy the stream generator on Cluster1,
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Figure 22: Topics follow Zipfian Distribution

and ExtractorPE on Cluster2. Other two PEs are deployed on Cluster3 at the beginning. Cluster3

is more likely to get overloaded because it contains only one node but has 2 PEs running on it. In

another case, which is called optimal case as Table 8 implies, the Cluster1 remains the same. We

put only the TopNTopicPE on Cluster3, and the other 2 PEs on Cluster2 that contains the most

nodes among all the clusters. For both cases, we make a comparison test between Algorithm 1 and

its variation that does not consider the capacities of clusters. The purpose is to observe under each

deployment to what extent the optimization method can help allocate loads of PEs. We run the

application until the rate of input stream stops increasing, which means the platform reaches its

maximum arriving requests, and thus the maximum throughput.

Table 7: Deployment of Extreme Case

Capacity Allocated PEs

Cluster1 3 Stream Generator

Cluster2 6 ExtractorPE

Cluster3 1 TopicCountAndReportPE, TopNTopicPE

Figure 23 shows the result of our evaluation. The legend entry Opt with capacity stands for the

optimization algorithm proposed in Algorithm 1. The legend entry Opt w/o capacity stands for a

similar algorithm without considering a cluster’s capacity in the correlation estimation. The legend

entry No-opt means the original S4 without any optimization algorithm.

In the extreme case shown in Figure 23 (a) and (b), the optimization algorithm with capacity
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Table 8: Deployment of Optimal Case

Capacity Allocated PEs

Cluster1 3 Stream Generator

Cluster2 6 ExtractorPE, TopicCountAndReportPE

Cluster3 1 TopNTopicPE

considered has the best performance. At the beginning, the throughput increases along the input

rate. Both algorithms of optimization perform well. As the input rate reaches 19K tweets/s, the

throughput of original S4 starts dropping and finally becomes steady at approximately 16K tweets/s.

This is caused by the unbalance between Cluster3 and Cluster2. Cluster3 has only one node and

runs two PEs and it becomes the bottleneck of the whole platform when the input rate reaches 19K

tweets/s, while Cluster2 is still relatively free. Our optimization algorithm (i.e.Opt with capacity)

recognizes the unbalance and moves TopicCountAndReportPE from Cluster3 to Cluster2. This

decision utilizes the cluster resource better and improves the throughput by 87.73% (as shown in

Figure 23 (a)). The other algorithm, Opt w/o capacity, has made the same decision as Opt with

capacity when Cluster3 is overloaded. However, as the input stream rate keeps growing, Cluster2

becomes overloaded, too. Opt w/o capacity decides to move ExtractorPE from Cluster2 to Cluster3

because it does not consider the capacity of Cluster3. Then the throughput drops dramatically from

30K tweets/s to 6K tweets/s, which is 62.5% less than the original S4 (as shown in Figure 23 (b)).

In the optimal case, both the original S4 and Opt with capacity do well as shown in Figure 23 (c).

Their throughputs are almost the same because the optimization algorithm does not need to change

the mapping of PEs to clusters. This also indicates the the overhead of our optimization algorithm

and the associated architecture is ignorable since it produces almost identical throughputs as the

original streaming service of S4.

In the contrary, Opt w/o capacity shown in Figure 23 (d) has made two mapping decisions

unnecessarily and thus degraded the performance. First the throughput drops to 16K tweets/s

when TopicCountAndReportPE is transmitted to Cluster3. Then after the second decision of PE

transmission, the throughput drops again, down to 7K tweets/s.

Through the experiments we can see the decision of PE allocation is significant to the overall

performance and scalability of a stream processing service. Without adding any new resources,

DoDo can improve the throughput by changing the PE allocation dynamically to utilize the cluster

resources. Figure 24 shows the average CPU utilization of the clusters in the extreme case with

the algorithm Opt with capacity. The figure clearly shows that the CPU utilization of Cluster3 goes

down dramatically at the minute of 12, meanwhile the CPU utilization of Cluster2 increases for
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Figure 23: Twitter Top-N Topic List Application

approximately 150%. This is caused by the PE transmission from Cluster3 to Cluster2. As a result,

for the ten nodes of the whole system, the DFG Optimizer has utilized them 3 times as before.

Although an experienced developer can tune the allocation of PEs at the beginning of the deploy-

ment to avoid the extreme case, however, such a static allocation still cannot handle incremental data

stream loads that may cause unbalance of operators at runtime. This evaluation demonstrates our

optimization method can help better utilize computing resources by means of dynamically balancing

the load of PEs on clusters, and thus improve service throughputs.
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Chapter 7

Autoscaling

Dynamic load balancing improves the utilization by balancing the workload of PEs on existing

clusters. In the case that a streaming service requires scaling out the clusters, dynamic load balancing

should be further expanded on clusters provisioned on demand. By nature, this is the process of

autoscaling. Autoscaling in distributed stream processing systems has two major problems: (1)

how to synchronize the new node information to all the existing PEs at runtime; and (2) stateful

PE instances must be re-shuffled based on the events dispatcher scheme and transferred to another

node when the number of nodes in this cluster has changed. With the architecture presented in

Chapter 6, the first problem can be solved by keeping tracking of the status of cluster nodes and

synchronizing the state to other related nodes by means of ZooKeeper. As for the second problem,

we should optimize the relocation of PEs by moving as few PEs as possible. The PE transmission

can be handled by the PE Transmission Controller in DoDo with techniques when we deal with

load balancing.

In this chapter, we present the essential algorithm of autoscaling and extension to the DoDo

architecture that further enables autoscaling PE workloads upon the provisioning of cluster nodes.

The contribution is three folds. First, we demonstrate the mechanism to add or remove nodes in a

cluster under the DoDo architecture. Second, we integrate the autoscaling algorithm into the DFG

Optimizer of DoDo so that the DoDo architecture supports both autoscaling and dynamic load

balancing. Third, the result of our evaluation shows that autoscaling can achieve higher throughput

and use less instance time of the cloud resources in some scenarios.

7.1 Mechanism

The workflow of autoscaling is devided into four phases shown in Figure 25, including Overload

Detection (step (1) (3)), Instance Provisioning (step (4)), Cluster Information Synchronization (step
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(5)(6)), PE Relocation (step (7) (9)).

The steps of the workflow are described as follows: (1) the Health Client on work nodes collects

both system utilization data and the PE health data. The Health Client sends these data to the

Health Monitor on the master nodes; (2) In the master node, the DFG Optimizer analyzes the data

from the clusters and detects if any of the clusters are overloaded; (3) if overloading occurs, the

Cluster Manager is notified; (4) In the case of overloading, or in the other words, all the nodes of

the cluster are currently saturated, the Cluster Manager launches a new node and assigns it to the

cluster until the number of nodes has reached the limitation of capacity; (5) the new node registers

itself to ZooKeeper and all other nodes connected to ZooKeeper are notified by ZooKeeper about the

registration of this new node; (6) As the number of nodes in the cluster has changed, the workload of

PE needs to be rebalanced (please refer to Chapter 6). Hence, some PE instances should be migrated

to other nodes. The PE Transmission Controller calculates the new location of PE instances using

a partitioning algorithm based on hashed keys (details are covered in section 7.1.3) and (7) arranges

the PE transmissions; (8) PE states are transferred from previous node the PE originally residents

to the new node. The transmission is accomplished by creating a special type of event and sending

them via the Events Dispatcher ; (9) when the Events Dispatcher on the new node receives these PE

transmission events that contain PE states in the body, it generates new PE instances and restores

the states from those events.

7.1.1 Overload Detection and Instance Provisioning

As we have collected both system utilization data and PE health data on each work node, the

overload detection can be achieved by analyzing these data. Much work has been done to dynamic

resource provisioning in a cloud [DADCB09, LBCP09, PSZ+07, USCG05, RDG11]. There are two

types of overload detection methods. One type is predicting workload by observing past workload

patterns, such as time-of-day or seasonal patterns. The other type is adjusting numbers of instances

based on short-term fluctuations.

Both methods must take the following characters into consideration: (1) Instance Provisioning

Time. It may take up to 10 minutes to launch an instance and start the services. If the overload

detection reacts too frequently to load changes, it may cause unnecessary scaling in and out when

facing workload spikes [MLH10]. (2) Number of instances to provision. A resource estimation based

on the current or predicted load is needed before perform the instance provisioning. (3) Economic

issues. The billing model of most commercial cloud infrastructure is usally based on instance hours,

and both 1-minute and 59-minute usage cost a whole hour’s fee. In addition, the price of using one

instance for an hour can fluctuate over time in some commercial cloud. As a result, the provision

plan should adopt to the specific cost model of the cloud infrastructure.
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Figure 25: Workflow of Autoscaling

In this chapter, a resource provision algorithm, Algorithm 2, is designed to add new nodes into

the cluster and automatically balance the workload of PEs to the new nodes. The average CPU time

that PEs occupies on an instance, denoted by ESC , is measured to detect the overloading. Once

ESC is larger than the threshold ThresholdMaxAverageLoad, the algorithm asserts that this cluster

needs to add more instances. We also set up a threshold ThresholdCapacity to limit the overall

numbers of instances in all clusters. After new instances are launched, the algorithm waits Tlaunch

minutes for the instances to fully booting up and starting to share the load. In the same way, when

ESC is smaller than the threshold ThresholdMinAverageLoad, the algorithm remove IL instances so

that the average load of each node in the cluster is approximately k ∗ ThresholdMaxAverageLoad,

where k is the ratio of the ideal load on a node to the ThresholdMaxAverageLoad.

7.1.2 Cluster State Synchronization

Cluster information consists of the number of nodes in the cluster, the IP addresses of each node,

the partition ID of each nodes. Before the Events Dispatchers send out an event, they need to

decide which node of the cluster is the destination of the event. A partitioning algorithm takes the
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Algorithm 2: Instance Provisioning Algorithm

input : metrics of clusters

output: void

1 // IL is the number of instances to add/remove

2 int IL = 0;

3 foreach cluster C in cluster list do

4 // IC is the current number of instances in cluster C

5 // Add instances

6 if ESC > ThresholdMaxAverageLoad and IC < ThresholdCapacity then

7 IL = IC * (ESC - ThresholdMaxAverageLoad)/ThresholdMaxAverageLoad;

8 // Remove instances

9 if ESC < ThresholdMinAverageLoad and IC > 2 then

10 // k is the ratio of the ideal load on a node to the ThresholdMaxAverageLoad

11 IL = IC * (ESC - ThresholdMaxAverageLoad)/(k ∗ ThresholdMaxAverageLoad)

12 // Tlaunch and Tshutdown are the launching and shutting down time for an instance

13 if IL > 0 then

14 add IL instance for cluster C;

15 sleep Tlaunch minutes;

16 if IL < 0 then

17 remove abs(IL) instance for cluster C;

18 sleep Tshutdown minutes;

cluster information and the key of the event as input parameters. The output is the destination

node associated with a unique ID that this event should be sent to. Then the Events Dispatchers

are able to retrieve the destination IP address of the event. When autoscaling occurs, the changes

of cluster information need to be synchronized to all clusters, otherwise events cannot be routed to

the new instances.

In our architecture, ZooKeeper works as a coordinator and holds the information of all the clusters

in a distributed stream processing system. Once ZooKeeper loses the connection with a node, the

Cluster Manager deletes this node in related clusters and notifies the Events Dispatchers of all the

clusters. Likewise, when a new instance is provisioned, ZooKeeper notifies all the connected nodes

with the information of the new instance. Therefore, the Events Dispatchers updates the cluster

information and sends events to the new instances based on the partitioning algorithm.

55



7.1.3 PE Relocation

In a distributed stream processing system, PE instances contain and aggregate the states of events.

Therefore, the events with the same event key are routed to the same work node. When the size of

a cluster changes, some events are routed to the new destination node without the previous states

of those events. To retain the previous states on the new node, a partitioning algorithm is designed

to map events to nodes of clusters based on their keys. The goal of this partition algorithm is

to evenly distribute events to all the nodes of a cluster so that the load is balanced among these

nodes. Assume the events have K different keys and the cluster contains N nodes with parition IDs

0, 1, 2, ..., N . One partitioning solution is to map an event with a key to a partition ID notated as

PID is as follows:

PID = hash(key) mod N (6)

This algorithm assumes that the events with the same key are distributed to the same node when

N is constant. In this case, each node stores approximately K/N PE states. However, when nodes

are added to or removed from a cluster, i.e. N is dynamic, a new partition ID can be generated to

almost every key, which causes relocating all the corresponding PE states to the nodes with the new

partition IDs. This may incur significant overhead of transferring PEs over the network and thus

degrade any performance gain of autoscaling.

The PE relocation problem in a distributed stream processing system shares characters with the

data migration problem in distributed storage systems whereby clusters are scaled out horizontally

[Cat11]. Consistent Hashing [KLL+97, KSB+99] is widely used in distributed storage systems

[LM10] for partitioning data evenly among storage nodes that are dynamically added to or removed

from the cluster.

The Consistent Hashing algorithm hashes both keys and nodes using the same hash function,

then marks the positions of their hashed values on a ring. The source code of class HashRing is

attached in Appendix B. Each point on the ring stands for a hashed value. If the hash function

returns an integer, the points on the ring will range from −231 to 231 − 1. For example, keys

A,B,C,D,E and nodes 1, 2, 3, 4 are mapped on a ring as Figure 26a shows. To map a key to a

node, the Consistent Hashing algorithm just locates the key on the ring as a starting point, then

find the first node point in clockwise. Consider key E in Figure 26a as an example, the first node

point is node 1, thus key E and A are mapped to node 1. Based on this logic, it can be inferred

that only adjacent node is affected when nodes are added to or removed from a cluster. In Figure

26b, when a new node 5 is added to the cluster, the next node point of key E is node 5. According

to the Consistent Hashing algorithm, PE relocation can be achieved by moving key E from node 1

to node 5. All other key-node mappings remain the same.
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Figure 26: An Example of Consistent Hashing

To assure the number of keys on every node is evenly distributed so that the load are balanced

in the cluster, the distance between the node points on the ring should be equal. An approximation

approach is to hash each node multiple times to generate a series of points on the ring. Next,

approximately K/N keys are mapped to each node. When a new node is added to the cluster, we

can estimate K/(N + 1) keys need to be relocated. Thus the Consistent Hashing help reduce the

number of PE states we need to transfer between work nodes when we add or remove nodes in a

cluster.

7.2 Experiment and Evaluation

7.2.1 Environment Setup

The real-time top-N recommendation application in social streams is applied to evaluate the perfor-

mance of stream processing architecture with autoscaling enabled. The objective is to compare the

throughput in three options, namely original stream processing engine (SPE), DoDo with dynamic

load balancing (DoDo+LB) and DoDo with autoscalingn (DoDo+AS).

The autoscaling mechanism in section 7.1 is implemented in DoDo. Algorithm 2 is integrated

in DFG Optimizer, it is called by the DoDo daemon periodically. The top-N recommendation

application contains one event generator and three PEs in the pipeline, namely ExtractorPE, Top-

icCountAndReportPE and TopNTopicPE.

Each event generator creates 50 tweets every second at the beginning, and increasingly generates

5 more tweets every 3 seconds. Thus each event generator is able to gradually increase the tweets
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generation speed to 4,050 tweets per second in 40 minutes. The hashtag topics of tweets are randomly

selected from a topic set, in which the occurrences of topics follow Zipfian distribution (with 5,000

elements and the exponent as 0.5) as Figure 22 shows.

The testbed is set up on Amazon Web Services (AWS) using EC2 instances with the type of

m1.small. Each instance has 1 virtual CPU, 1.7GB memory, and 160GB storage. The operating

system uses 64bit RHEL 6 with Linux kernel version 2.6.32.

The deployment of DoDo with autoscaling involves three types of nodes based on their usage,

namely

1. Master node. It has the DoDo Manager, Graphite (a real-time metrics aggregation and visu-

alization tool), and ZooKeeper installed;

2. Event generator node. It is used for generating tweets and send events to work nodes;

3. Worker node, where the PE instances are located.

We test the system performance under three deployments of the application, including SPE,

DoDo+LB and DoDo+AS. In each deployment, we have 4 clusters:

1. Cluster1: event generator nodes.

2. Cluster2: work nodes with ExtractorPE.

3. Cluster3: work nodes with TopicCountAndReportPE and TopNTopicPE.

4. Cluster4: master nodes.

The settings of the experiments are as Table 9 shows. In Experiment 1, we use the original

S4 platform, which has neither dynamic load balancing nor autoscaling. The testbed consists of

12 nodes in Cluster2 and 3 nodes in Cluster3.In Experiment 2, we use DoDo with dynamic load

balancing only. Autoscaling is disabled. The settings of clusters are the same as Experiment 1. In

Experiment 3, DoDo with autoscaling is enabled. The node setting contains 1 node in Cluster2 and

1 node in Cluster3 and the capacity is set to 15 for scaling out the clusters.

Table 9: Setting of Experiments

Cluster1 Cluster2 Cluster3 Cluster4 Dynamic Balancing Autoscaling

Experiment 1 (SPE) 5 nodes 12 nodes 3 nodes 1 node No No

Experiment 2 (DoDo+BL) 5 nodes 12 nodes 3 nodes 1 node Yes No

Experiment 3 (DoDo+AS) 5 nodes 1 node 1 node 1 node Yes Yes
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Figure 27: Experiment 1

7.3 Evaluation

Figure 27(a) shows the throughput of Experiment 1. S4 performs well at the beginning. As the

input rate reaches 15,315 events/s, the throughput of S4 starts decreasing and becomes steady at

approximately 9,500 events/s. Figure 27(b) further shows that the CPU utilization of Cluster3

reaches 100% at 30 minutes, when the input rate is at 12,313 events/s. This indicates that Cluster3

is not capable of processing events at such a rate. Arriving events accumulated at the queue of the

S4 stream processing engine. These events remain in the queue before they are processed, therefore

the throughput of the whole system decreases.

Experiment 2 has the same setting as Experiment 1 except that DoDo provides dynamic load

balancing, which enables transferring PE instances among clusters at runtime. As Figure 28(a)

shows, the throughput fluctuates slightly after the PE transferring and eventually becomes steady at

approximately 14,400 events/s. The throughput has been increased 51.58% comparing to Experiment

1.

Experiment 3 further enables the autoscaling feature. In Experiment 3, Cluster2 and Cluster3
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Figure 28: Experiment 2

are initiated with only one node. As Figure 29(b) shows, the CPU utilization increases to 100%

rapidly on both the clusters. Meanwhile, Figure 30 shows that the clusters keep scaling out until

they reach the capacity, which is set to 15. In the end, Cluster2 has 6 nodes and Cluster3 has 9 nodes.

The throughput, as Figure 29(a) indicates, keeps increasing and becomes steady at approximately

16,700 events/s. The throughput increases approximately 75.79% compared to the throughput of

Experiment 1. In addition, the load distribution among clusters is improved than other experiments

because the overall CPU utilization is the highest.

Note that the throughput between 24 minutes and 34 minutes is even higher than the input rate.

The reason is that each work node of S4 has an event queue and all received events are first put into

the queue. Another thread keeps popping and processing events from the queue. When the work

node is overloading, the speed of processing events can not catch up with the input stream rate so

that more and more events are stuck in the queue and block the stream. When the cluster scales

out, as some load are shed to the newly added nodes, the input rate on each work node drops. As

a result, the work nodes are able to process not only the leftover events in the queue, but also the

new generated events, thus achieves a throughput even higher than the input rate.
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Figure 30: Autoscaling in Experiment 3

To further differentiate the scalability of these three experiment, the throughput and CPU uti-

lization of the three experiments are plotted in In Figure 31. As Figure 31 shows, during 13 minutes

to 24 minutes, Experiment 3’s throughput is lower than the other two experiments. The main reason

is that it takes time to launching instances, and the speed of provisioning instances is behind the
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Figure 31: Comparison of 3 Experiments

speed of the input rate. At the end, Experiment 3 has the highest throughput as well as highest uti-

lization. The experiments demonstrate both dynamic load balancing and autoscaling architectures

significantly expand the ability of the stream processing platform to scale under increasing workload

and available computing resources.
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Chapter 8

Conclusion

In this paper we discuss the difference between distributed batch-processing systems and DSP sys-

tems, compare their performance and cost on cloud infrastrucutre through a case study of a movie

recommendation application implemented on Hadoop and S4. Our experiments demonstrates the

advantages of DSP systems in analyzing data that is frequently updated. The experiments also shows

that DSP systems require dynamic load balancing and autoscaling to deal with the unpredicted rate

of the input stream.

To solve the problem of fluctuating input stream, we propose DoDo, a software layer that is

load-adaptive between a DSP platform and physical cluster nodes managed by Zookeeper. It en-

ables dynamic operator distribution (dynamic load balancing) with software components that are

pluggable to existing DSP platforms. Dynamic load balancing is helpful to improve the throughput

of DSP systems and the utilization of cluster resources. In some cases DSP systems may face over-

loads that need to autoscale cluster nodes on demand. So we also present an autoscaling mechanism

under the DoDo architecture. We use ZooKeeper to synchronize the information of new nodes to

all the existing PEs at runtime. To optimize the relocation of PEs when performing autoscaling, we

use consistent hashing as the partitioning algorithm so that we can move as few PEs as possible.

With the DoDo architecture, we then design an optimization method for dynamic operator

distribution of stream processing services and an overload dectection algorithm for autoscaling.

The optimization algorithm takes both the correlations between the load series of clusters and the

capacities of clusters into consideration. Through a case study we articulate the benefits of the

optimization method on better utilizing available resources, which is an useful feature for cloud

computing services, as it helps to prevent unnecessary autoscaling to clusters that are overloaded

while other clusters still have capacities to handle streams. The overload detection algorithm can

detect overload using the average load on nodes of each cluster and calculate how many instances
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to provision. Our experiments demonstrates improved throughput and utilization of cloud resources

using S4 with DoDo.

Our future work lies on more evaluations in different scenarios comparing with other algorithms,

and further improve our algorithms when the data transferring overhead needs to be considered.
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Appendix A

MapReduce Source Code for

Movie Recommendation

The python source code of the mapper in Round 1.

#!/usr/bin/env python

import sys

# input comes from STDIN (standard input)

for line in sys.stdin:

# remove leading and trailing whitespace

line = line.strip()

# split the line into words

words = line.split()

# write the results to STDOUT (standard output);

if len(words) < 3:

continue

elif int(words[2]) > 3:

print ’%s\t%s’ % (words[0], words[1])
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The python source code of the reducer in Round 1.

#!/usr/bin/env python

import sys

# input comes from STDIN (standard input)

for line in sys.stdin:

print line.strip()

The python source code of the mapper in Round 2.

#!/usr/bin/env python

import sys

movie_ids = list()

user_id = 0

def print_id_pairs(id_list):

for i in range(0, len(id_list)-1):

for j in range(i+1, len(id_list)):

print ’%s-%s\t1’ % (id_list[i], id_list[j])

# input comes from STDIN (standard input)

for line in sys.stdin:

# remove leading and trailing whitespace

line = line.strip()

# split the line into words

words = line.split(’\t’)

# write the results to STDOUT (standard output);

if len(words) < 2:

continue

if user_id != words[0] and user_id != 0:

print_id_pairs(movie_ids)

del movie_ids[:]
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user_id = words[0]

movie_ids.append(words[1])

print_id_pairs(movie_ids)

The python source code of the reducer in Round 2.

#!/usr/bin/env python

import sys

movie_pair_cnt = 0

movie_pair = 0

# input comes from STDIN (standard input)

for line in sys.stdin:

# remove leading and trailing whitespace

line = line.strip()

# split the line into words

words = line.split(’\t’)

# write the results to STDOUT (standard output);

if len(words) < 2:

continue

if movie_pair != words[0] and movie_pair != 0:

print ’%s\t%d’ % (movie_pair, movie_pair_cnt)

movie_pair_cnt = 0

movie_pair = words[0]

movie_pair_cnt += int(words[1])

print ’%s\t%d’ % (movie_pair, movie_pair_cnt)

The python source code of the mapper in Round 3.

#!/usr/bin/env python
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import sys

# input comes from STDIN (standard input)

for line in sys.stdin:

# remove leading and trailing whitespace

line = line.strip()

# split the line into words

words = line.split()

# write the results to STDOUT (standard output);

if len(words) < 2:

continue

ids = words[0].split(’-’)

if len(ids) == 2:

print ’%s\t%s\t%s’ % (ids[0], ids[1], words[1])

print ’%s\t%s\t%s’ % (ids[1], ids[0], words[1])

The python source code of the reducer in Round 3.

#!/usr/bin/env python

import sys

top_lists = []

movie_id = 0

def print_top_lists(m_id, top_list):

out_str = ’%s\t’ % m_id

for i, data in enumerate(sorted(top_list, key=lambda m:m[1], reverse=True)[:10]):

if i != 0:

out_str += ’,’

out_str += ’%s-%d’ % (data[0], data[1])

print out_str
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# input comes from STDIN (standard input)

for line in sys.stdin:

# remove leading and trailing whitespace

line = line.strip()

# split the line into words

words = line.split(’\t’)

# write the results to STDOUT (standard output);

if len(words) < 3:

continue

if movie_id != words[0] and movie_id != 0:

print_top_lists(movie_id, top_lists)

del top_lists[:]

movie_id = words[0]

top_lists.append((words[1], int(words[2])))

print_top_lists(movie_id, top_lists)
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Appendix B

Consistent Hashing

The java source code of the class HashRing is as below. Please visit https://github.com/xing5/DynamicS4/

to access the source code of this research project.

/**

* A hash ring is used to map resources to a to a set of nodes.

* This hash ring implements

* <a href="http://www8.org/w8-papers/2a-webserver/caching/paper2.html#chash1">

* Consistent Hashing</a> and therefore adding a removing nodes minimally

* changes how resources are map to the nodes.

* <p/>

* This implementation also allows you to apply non-uniform node weighting. This

* feature is usefull when you want to allocate more resources to some nodes and

* fewer to others.

* <p/>

* The default weight of node is 200. The weight of a node determins how many

* points on the hash ring the node is alocated. Higher node weights increases

* the uniform distribution of resources.

* <p/>

* Note that the order that nodes are added to the ring impact how resources

* map to the nodes due to node hash collisions.

*

*/

public class HashRing<Node, Resource> {
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private static final Logger logger = LoggerFactory.getLogger(HashRing.class);

public static int DEFAULT_WEIGHT = 200;

private static class Wrapper<N> {

private N node;

private int weight;

public Wrapper(N node, int weight) {

this.node = node;

this.weight = weight;

}

@Override

public String toString() {

return "Wrapper{" + "node=" + node + ", weight=" + weight + ’}’;

}

}

public long hash(String hashKey) {

byte[] digest = null;

try {

MessageDigest md = MessageDigest.getInstance("SHA-256");

md.update(hashKey.getBytes("UTF-8"));

digest = md.digest();

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

int b = 378551;

int a = 63689;

long hash = 0;

for (int i = 0; i < digest.length; i++) {
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hash = hash * a + (int)digest[i];

a = a * b;

}

return Math.abs(hash);

}

//@Inject

//private Hasher hasher;

private final TreeMap<Integer, Wrapper<Node>> ring = new TreeMap<Integer, Wrapper<Node>>();

private final LinkedHashMap<Node, Wrapper<Node>> nodes = new LinkedHashMap<Node, Wrapper<Node

/**

* Constructs a <tt>HashRing</tt> which uses the OBJECT_HASHER to hash the nodes and values.

*

*/

public HashRing() {

}

/**

* Adds all the specified nodes to the <tt>HashRing</tt> using the default

* weight of 200 for each node.

*

* @param nodes the nodes to add

*/

public void addAll(Iterable<Node> nodes) {

for (Node node : nodes) {

add(node);

}

}

/**

* Adds all the specified nodes to the <tt>HashRing</tt> using the default
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* weight of 200 for each node.

*

* @param nodes the nodes to add

*/

public void add(Node... nodes) {

addAll(Arrays.asList(nodes));

}

/**

* Adds a node to the <tt>HashRing</tt> using the default

* weight of 200 for the node.

*

* @param node the node to add

*/

public void add(Node node) {

add(node, DEFAULT_WEIGHT);

}

/**

* Adds a node to the <tt>HashRing</tt> using the specified weight.

*

* @param node the node to add

* @param weight the number of hash replicas to create the node in the <tt>HashRing</tt>

* @throws IllegalArgumentException if the weight is less than 1

*/

public void add(Node node, int weight) {

if( weight < 1 ) {

throw new IllegalArgumentException("weight must be 1 or greater");

}

Wrapper<Node> wrapper = new Wrapper<Node>(node, weight);

logger.error("HashRing add node: " + node.toString());

nodes.put(node, wrapper);

for (int i = 0; i < wrapper.weight; i++) {

int index = (int) hash(node.toString() + i);
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//logger.debug("lvl[" + i +"] index["+index+"] + str(" + node.toString() +")");

ring.put((int)hash(node.toString() + i), wrapper);

}

}

/**

* Removes a previously added node from the <tt>HashRing</tt>

*

* @param node the node to remove

* @return true if the node was previously added

*/

public boolean remove(Node node) {

Wrapper<Node> wrapper = nodes.remove(node);

if( wrapper == null ) {

return false;

}

// We HAVE to re-hash the ring to keep it consistent since

// nodes hashes may collide and last node added takes over the

// the previously added node. Order matters.

ring.clear();

for (Wrapper<Node> w : nodes.values()) {

for (int i = 0; i < w.weight; i++) {

ring.put((int)hash(w.node.toString() + i), w);

}

}

return true;

}

/**

* Removes all previously added nodes.

*/

public void clear() {

ring.clear();

nodes.clear();
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}

/**

* @return all the previously added nodes.

*/

public List<Node> getNodes() {

return new ArrayList(nodes.keySet());

}

/**

* Maps a resource value to a node.

*

* @param resource the resource to map

* @return the Node that the resource maps to or null if the <tt>HashRing</tt> is empty.

*/

public Node get(Resource resource) {

Map.Entry<Integer, Wrapper<Node>> entry = getFirstEntry(resource);

if (entry==null) {

return null;

}

return entry.getValue().node;

}

/**

* Maps a resource value to an interator to the nodes in the <tt>HashRing</tt>

* starting at the Node which resource maps to.

*

* Note that duplicate node objects may be returned. This is because

*

*

*

* @param resource the resource to map

* @return a Iterator

*/

public Iterator<Node> iterator(Resource resource) {
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final Map.Entry<Integer, Wrapper<Node>> first = getFirstEntry(resource);

return new Iterator<Node>() {

Map.Entry<Integer, Wrapper<Node>> removealCandidate;

Map.Entry<Integer, Wrapper<Node>> last;

Map.Entry<Integer, Wrapper<Node>> next = first;

public boolean hasNext() {

// We might allready know the next entry..

if( next != null )

return true;

// Since we use last to figure out the next..

if( last==null )

return false;

// Figure out the enxt entry...

Map.Entry<Integer, Wrapper<Node>> next = ring.higherEntry(last.getKey());

if( next == null ) {

next = ring.firstEntry();

}

// We don’t need last anymore..

last = null;

// But the next entry might circle back to the first...

if( next.getKey()==first.getKey() ) {

next = null;

}

return next!=null;

}

public Node next() {

if( !hasNext() ) {

throw new NoSuchElementException();
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}

removealCandidate = last = next;

next = null;

return last.getValue().node;

}

public void remove() {

if( removealCandidate ==null ) {

throw new IllegalStateException();

}

HashRing.this.remove(last.getValue().node);

removealCandidate =null;

}

};

}

private Map.Entry<Integer, Wrapper<Node>> getFirstEntry(Resource resource) {

if (ring.isEmpty()) {

return null;

}

int hash = (int) hash(resource.toString());

logger.debug(String.format("Key[%s] hash[%d]", resource.toString(), hash));

Map.Entry<Integer, Wrapper<Node>> entry = ring.ceilingEntry(hash);

if( entry == null ) {

entry = ring.firstEntry();

}

return entry;

}

}
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