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ABSTRACT

Analysis of Leaky Wave Antennas Using the Matrix Pencil Method

Amardeep Singh

The leaky-wave antenna (LWA) is a traveling wave antenna that uses a fast wave

as the main radiating mechanism, where the fast wave is radiating continuously along

the structure. Depending on the length of the antenna, some part of the fast wave

gets reflected from the end and causes another beam in the opposite direction. The

effects of the reflected fast wave on the radiation pattern can be analyzed if the

reflection coefficient at the end of the antenna is known, which can be obtained from

the complex amplitude and propagation constants associated with the fast waves.

Even the radiation pattern of a LWA can be obtained using the reflection coefficient

and propagation constants.

Closed top guiding structures, a dielectric slab waveguide, 2-D LWAs and 3-D

LWAs are modeled in a commercial full wave MoM solver, FEKO. The near-field

samples are calculated along the structure. For these types of structures, the total

near field can be expressed as a sum of complex exponentials. The matrix pencil

method (MPM) is a most accurate and efficient linear technique to approximate a

function by a sum of complex exponentials. The exponential components from the

total near field use the complex propagation constants inside the structure, which are

calculated using the MPM. The MPM extracted amplitude and phase components

are used to calculate the reflection coefficients of the structures and radiation patterns

of the LWAs.

The accuracy of this approach is verified using various open and closed guiding

structures in 2-D and 3-D, and by comparing the results with available numerical and

experimental results.
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Chapter 1

Introduction

The leaky-wave antenna (LWA) is a type of antenna which has been of interest for

many years. A leaky wave antenna uses a traveling wave with a complex propagation

constant as main radiating mechanism on a guiding structure and it operates differ-

ently from a slow wave or surface type of antenna, where the radiation mainly takes

place at the end of the antenna [1]. The LWAs are capable of producing pencil beams

or very narrow beams where the beamwidth is limited by the size of the antenna. Al-

most all the leaky wave antennas have a property that their beam scans as we change

the frequency [2]. This could be a great property for the scanning applications, on the

other hand it is a disadvantage for point-to-point communications, since the pattern

bandwidth would be decreased along with the beamwidth. The pattern bandwidth

is usually narrow, typically about 1% to 10% [3]. There is an advantage of simplicity

in these type of antennas, since there is no need of any complicated feed network [4].

That is the reason behind their attraction for higher frequencies, like microwave and

millimeter-wave.

Leaky-wave antennas can be divided into different categories, depending on their

geometry and the principle of operation [2]. The first distinction that can be made is

between a one-dimensional (1-D) leaky-wave antenna, a two-dimensional (2-D) LWA

1



CHAPTER 1. INTRODUCTION 2

and a 3-D LWA. Another classification is whether the structure is uniform/quasi-

uniform or periodic. Furthermore, the distinction is if it is unidirectional or bidirec-

tional. An antenna design is totally dependent on the application for which it is to

be used. The various types of the LWAs are briefly summarized below.

A. Uniform/Quasi-Uniform Unidirectional LWA

The antenna is fed at one end and usually it is matched from the other end with

an absorber or matched load to prevent reflected power. The aperture field has

the form

H(x) = Ae−γx

where γ = α + jβ. The antenna radiates at an angle θ from the z-axis, where

β = k0 sin θb. Usually, the wave is a forward wave with a positive phase velocity

(β > 0), which means the beam will be in the forward direction as shown in

Fig. 1.1 (i.e., 0 < θ < 90◦). On the other hand if β < 0, the beam will be

in backward direction (i.e., −90◦ < θ < 0◦). The efficiency of this antenna is

around 90% [2].

x

source absorber

guiding structure

z

θ◦

β > 0

Figure 1.1: Unidirectional leaky-wave antenna with an absorber at the end, radiating
in forward direction.
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B. Uniform/Quasi-Uniform Bidirectional LWA

In this case, the structure is fed in the middle and absorbers or matched loads

are placed at the both ends. The feed will excite the aperture field symmetrically

in the form of

H(x) = Ae−γ|x|.

The structure radiates two beams, in this case at angles +θ and −θ as shown

in Fig. 1.2. The two conical beams will merge into a single beam at broadside

(i.e., θ = 0◦) when β < α [2].

x

source

absorberabsorber

z

Figure 1.2: Bidirectional leaky-wave antenna with absorbers at each end, radiating
in two directions.

C. Periodic Unidirectional LWA

This type of antenna is also fed at one end, with a load at the other end. The

fundamental mode is a slow wave, but the n = −1 space harmonic will be the

only one radiating. It may radiate in the forward (for β−1 > 0) or backward

direction (β−1 < 0). Hence, this LWA can be used to create a beam pointing in

either direction.

The beam angle of this LWA scans by increasing or decreasing the frequency.

To make a scanable beam from backward endfire to forward endfire, so that
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only the n = −1 harmonic radiates, the effective permittivity of the structure

must be chosen so that ǫeff > 9 [3].

D. Periodic Bidirectional LWA

This structure is fed in the middle, the same as in case B, and creates a bidirec-

tional leaky wave. If the frequency of the operation is chosen exactly at the stop

band so that β−1 = 0, the antenna will behave like a standing-wave antenna and

will radiate at broadside, but it is not a traveling-wave structure anymore. The

structure can radiate at broadside as a LWA by operating frequency slightly

away from the broadside frequency (so that β−1 > 0 or β−1 < 0). The combi-

nation of two beams from each half of the antenna will produce a symmetrical

broadside beam [3].

1.1 Literature review

The area of LWAs did not see a lot of development initially, but in the 1950s many

different types of leaky-wave antennas were introduced, and some methods were devel-

oped for their analysis. To understand the research history of the LWAs and method

of analysis, a brief literature review has been done in the following sections.

1.1.1 Development of leaky wave antennas

Initially, leaky-wave antennas were based on closed structures, mostly the waveguides,

where long uniform slits were introduced into the waveguides to obtain the leakage

and to allow them to radiate. The first known leaky-wave antenna was introduced by

W. W. Hansen in 1940, which was a slitted rectangular waveguide [2] [5]. But, a strong

perturbation on the fields was produced, because these slits cut across the current

lines in the closed waveguides, which made it difficult to produce leaky waveguides

with low leakage per unit length, and therefore narrow beams.
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To overcome this difficulty, one method was proposed by Hines and Upson (men-

tioned in [2]); they replaced the long slit by a series of closely spaced holes, thereby

avoiding cutting the current lines. This structure was known as a “holey waveguide,”

and it permitted the antenna to radiate much narrower beams.

A uniform 2D leaky-wave antenna was investigated by Alexopoulos and Jackson

in the 1980s [6], consisting of a dielectric superstrate layer over a substrate layer. The

analysis of this type of structure as a leaky-wave antenna was also done by Jackson

and Oliner in the late 1980s and early 1990s [6] [7]. They showed the term “leaky

wave” can be used to describe the resonance gain effect.

Later, two dimensional leaky-wave antennas using periodic partially reflecting

screens were examined in more detail by Feresidis and Vardaxoglou using quasi-

uniform partially reflective screens consisting of various elements including metal

dipoles and rectangular patches [8]. Two dimensional uniform LWAs were designed

and analyzed using the metal patches and slots on the top of the antenna by Zhao

and Yang during 2003 to 2005 [9].

In most recent years the developments have been towards planar LWAs. These

are low profile antennas which are easy to manufacture. The reason behind these

developments is partly due to the interest in metamaterials. Some recently developed

LWA types (as discussed in [3]) are:

A. Endfire Substrate Integrated Waveguide LWA.

B. Quarter-Wave Transformer LWA.

C. Composite Right/Left-Handed LWA.

D. Phase-Reversal LWA.

E. Ferrite LWA.

F. Conformal LWA.
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1.1.2 Development of the matrix pencil analysis

The problem of approximations of a function by a sum of complex exponentials is at

least two centuries old [10]. In more recent times, applications of these approxima-

tions have been found in other areas of electromagnetics: for example, the efficient

evaluation of the Sommerfeld integrals and in antenna-pattern synthesis [10]. The

term “pencil” originated with Gantmacher in 1960 [11]. There are two popular linear

methods, “polynomial method” (also known as Prony’s method) and “matrix pen-

cil method” (also known as generalized pencil-of-function GPOF). The polynomial

method is a two step process and the matrix pencil method is a one step process.

The MPM solves a generalized eigenvalue problem to find the unknown complex

propagation constants γm for a given signal that is expressed as

S(x) =
∑

Cme−γmx.

Sarkar in [10] confirmed that of all linear techniques to approximate a function by

a sum of complex exponentials, the matrix pencil method (MPM) provides a smaller

variance of the parameters in the presence of noise. MPM is more efficient than the

old pencil-of-function (POF) method, even though both start with same philosophy.

Hua in [12] presented that when the number of samples more than 50, the MPM is

computationally more efficient than other linear methods.

Sarkar et al. in [13] used the MPM to determine the propagation characteristics of

printed circuits. The microstrip structures were solved by using the MoM and then the

MPM was used to decompose the currents along the feed into forward and backward

traveling waves. They used this approach to predict the input parameters of LWAs

and the scattering parameters of printed circuits. Menzel’s leaky-wave antenna [13]

was analyzed by them using the MPM. They were able to decompose the current

along the microstrip into various modes with an overall good agreement with theory,
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and an error of less than 2.5%.

In general, the MPM can be used effectively to estimate the one dimensional

spectral frequencies. Altman et al. in [14] used the MPM or GPOF to represent

the decomposition of the induced currents on large scatterers into different current

components. Nallo, Mesa and Jackson in [15] used the GPOF to study the correlation

between the leaky-mode current and the total current. They decomposed the total

current on the strip into the exponential waves. The amplitude and propagation

constant of the these waves were compared with the constants of leaky mode with

a good agreement. Chen et al. in [16] applied the MPM to the surface current

and extracted the space harmonics of the modes propagating in the periodic guiding

structure and combined the MPM analysis with another method (Brillouin diagram)

to discover the unknown modes in the structure.

Ozturk in [17] used the MPM to extract the parameters as a sum of complex ex-

ponentials for vertex diffraction. The current density was decomposed into different

current components those were diffracted from the different edges and corners of a

scatterer. In [18], Ozturk and Paknys used the MPM to calculate the complex prop-

agation constant between rows of conducting cylinders. They verified the accuracy

of this approach by using numerical and experimental results.

These studies clearly described the efficiency of the MPM in the approximation of a

function by a sum of complex exponentials, as well as the validity of the decomposition

of the MoM currents into various modes.

1.2 Objective

This thesis is concerned with the analysis of the characteristics of some leaky-wave

antennas. The main focus of this analysis is to calculate the reflection coefficient (Γ)

from the propagation constants and amplitude coefficients extracted by using the ma-
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trix pencil method (MPM) and the least-squares method respectively. It is expected

that the extracted components can be used to calculate the reflection coefficient at

the end of the structure, which then can be used to obtain the radiation pattern of the

antenna. It is desired that the MPM extracted propagation constants and amplitude

coefficients should be enough to analyze LWAs and waveguides.

1.3 Basic assumptions and considerations

In this work, a commercial EM software FEKO is used to design and solve for the

field on all of the structures. It uses the method of moments (MoM) to solve for

currents and to calculate the near-fields [19]. The MoM near-field samples are con-

sidered as the sum of complex exponentials. In this thesis, the complex exponentials

are calculated using the MPM and the complex amplitude coefficients are extracted

using the least-squares method, but the term “MPM extractions” is used for both

extractions together. In this thesis, the periodic boundary conditions (PBC) are used

when needed to make a 2-D geometry infinite in the required axis. Plane wave excita-

tion is used for the two dimensional structure because this the only option in FEKO

for 2-D structures, so just receiving antennas can be analyzed. In 3-D problems, an

array of magnetic dipoles is used near the origin inside the structure to approximate

a uniform line source of finite length. There are many other sources available for 3-D

problems in FEKO, which means transmitting antennas can be analyzed.

1.4 Thesis outline

This thesis is organized as follows: Chapter 2 explains the brief theory behind the

matrix pencil method (MPM) approach. The steps of calculation are explained with

the brief description of the requirements to make a computer program that uses

the MPM and least-squares method. A test problem is solved using the computer
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program to verify its accuracy. Chapter 3 presents the use of the MPM to extract the

field components for closed-top guided structures. The structures are modeled and

solved in a MoM solver (FEKO) to obtain the field samples, then those field samples

are used to extract the propagation constant of the structure. The MPM extracted

components are then used to calculate the reflection coefficient (Γ) at the end of

the structures and the results are compared with the theoretical results. Chapter 4

starts with the design principles of a 2-D unidirectional periodic LWA, which is then

modeled and solved with the MoM to obtain the field samples. Then using the MPM

the behavior of the leaky waves are analyzed. The idea of using extracted components

to plot the radiation pattern starts with the modification of the free-space radiation

integral and the results are compared with known theoretical results. The effects

of edge diffractions are also discussed. The procedure of calculating the reflection

coefficient from the MPM extracted fast-wave components is then explained and used.

Chapter 5 investigates the 3-D unidirectional periodic LWAs using the MPM. The

space harmonics are extracted by using the MPM and the MoM field samples. The

results are compared with the theoretical Floquet harmonics. The radiation pattern

is plotted and the effects of the space-waves are also discussed. Then, the extracted

components are used to calculate the reflection coefficient of the LWAs. The effects

of strip length on the radiation behavior of the 3-D LWA are presented. Finally,

Chapter 6 presents the conclusions and some suggestions for the future work.



Chapter 2

Matrix Pencil Method

2.1 Introduction

The matrix pencil method (MPM) or generalized pencil-of-function (GPOF) method

is a very useful linear technique for the approximation of a function by a sum of

complex exponentials. The polynomial method (also known as Prony’s method) is

another popular linear technique to solve this type of problem, but it has been found

that the MPM is more efficient in the presence of noise. Also, the polynomial method

is a two-step process to find the poles, where the first step solves the matrix equation

and the second step involves approximating the root of the polynomial, on the other

hand the MPM is a one-step process and it approximates the poles by solving a

generalized eigenvalue problem. In more recent times, the utility MPM has been

found in many areas of electromagnetics.

In this chapter, the utilization of the MPM is explained. In Section 2.2, the

methodology behind this method is explained with a brief description of the im-

plementation of the MPM using a computer program. In Section 2.2.1, the MPM

program is tested by solving a test problem, where we already know the exact values

of all the components.

10
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2.2 Component extraction methodology

If we assume a very general short circuited waveguide structure as shown in Fig. 2.1,

the total field sampled at constant intervals ∆x inside the structure can be expressed

as the sum of the complex exponentials

Ez(n∆x) =
M

∑

m=1

Cme−γmn∆x, n = 1, 2, · · · , N (2.1)

where N represents the number of samples, M is the number of components and Cm

and γm are the complex amplitude and phase factors for mth components. From (2.1),

0 x

source

z

ǫ0

Figure 2.1: Parallel plate waveguide in x-z plane with a perfect conducting short
circuit at the end.

the total field at the nth sampling point can be written as

Ez(xn) =
M

∑

m=1

Cmzn
m, n = 1, 2, · · · , N (2.2)

where zm = e−γm∆x and xn = xo + n∆x. Following the procedure for the MPM

extractions as described in [18], [20] and elsewhere, two matrices of field samples can

be defined as

G1 = (ȳ1 ȳ2 ȳ3 · · · ȳP ) (2.3)

G2 = (ȳ2 ȳ3 ȳ4 · · · ȳP+1) (2.4)
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with

ȳi = (Ei Ei+1 Ei+2 · · · E(N−P )+i−1)
T (2.5)

where G1 and G2 are (N − P ) × P matrices and P is the pencil parameter used to

obtain column vectors by windowing the field samples with the window length N−P .

P is chosen such that M ≤ P ≤ N − P . Hua and Sarkar in [21] explained that for a

pencil parameter P = M this method is same as Prony’s method and when P = N/2

the MPM or GPOF is most efficient in the presence of noise.

By using (2.3) and (2.4), it can be shown that the poles zm are the eigenvalues of

the generalized eigenvalue problem

G2ēm = zmG1ēm (2.6)

where ēm are the generalized eigenvectors of the pencil (G2 − zmG1). Now, using

singular value decomposition [22] for G1, it can be expressed as

G1 = UDVH (2.7)

where U and VH are unitary matrices associated with left and right singular vectors

respectively. Here, H denotes the conjugate transpose and D is a diagonal matrix

with singular values of G1 on the diagonal in descending order. U,D and VH are

(N−P )×(N−P ), (N−P )×P and P×P respectively. The largest M singular values

and the associated left and right singular vectors are chosen in (2.7). By multiplying

left side of (2.6) by VVH and substituting in (2.7) it reduces to a square matrix

D−1
(M×M)U

H

(M×N−P )G2(N−P×P )V(P×M)V
Hēm = zmVHēm. (2.8)

Therefore, zm are simply the eigenvalues of the M ×M matrix in (2.8). Once zm are
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calculated, the complex propagation factors can be calculated by using

γm = − ln zm

∆x
, m = 1, 2, · · · ,M. (2.9)

The complex amplitude components Cm can be obtained by using zm in (2.2) and

solving an overdetermined linear system of equations by using a least-squares fit. Once

the unknown complex amplitude and phase factors are obtained, the original near-field

behavior can be reconstructed. It should be noted that the MPM is only required to

approximate the propagation constants, if we already know the propagation constants

γm then the Cm can be approximated using the least-squares method and the MPM

is not required.

FORTRAN subroutines: To solve the exponential poles using the matrix pencil

approach, a FORTRAN program is developed and used. The program uses various

subroutine packages that are provided by Dongarra in [23]. Each primary subroutine

is used for its dedicated purpose. To calculate the singular value decomposition (SVD)

in (2.7), primary subroutine “CGESVD” is used. Then to find eigenvalues in (2.8),

subroutine “CGEEVX” is used. The propagation constants γm are calculated using

(2.9). Eventually, subroutine “CGELS” is used to solve the overdetermined system of

linear equations by using a least-squares fit to approximate the associated amplitude

components Cm. There are many other secondary subroutines required to support

the primary subroutines. So, all the primary and secondary subroutines are required

to develop a program that does the MPM extractions as explained above.

2.2.1 Verification of the computer program

It is desired that the computer program should work as expected from the theory

of the MPM. In order to verify the correctness of the program a test problem is

introduced, where we already know the components. Those are used to generate the
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field samples by using (2.1). Considering the sampling interval ∆x = 0.001 (which

in EM problems will be selected w.r.t. the wavelength), the field samples N = 300

are generated by using the input components from Table 2.1. By using resultant

Ez(n∆x) as an input to the MPM program, the components are extracted from the

field samples by using N = 150, M = 4 and ∆x = 0.001.

Exponential Input components Output components
components (γm) (MPM extracted)

γ1 1.500 + j20.00 1.502 + j20.00
γ2 −1.500 − j20.00 −1.502 − j19.99
γ3 2.400 − j40.00 2.398 − j40.00
γ4 −2.400 + j40.00 −2.400 + j40.00

Amplitude Input components Output components
components (Cm) (MPM extracted)

C1 2.200 + j3.400 2.200 + j3.400
C2 1.500 − j2.500 1.499 − j2.500
C3 4.200 + j3.500 4.199 + j3.499
C4 3.200 − j2.600 3.199 − j2.599

Table 2.1: Input and output components for the test problem to verify the accuracy
of the computer program.

It can be seen in Table 2.1 that the MPM extracted components are in excellent

agreement with the input components. For the matrix pencil extractions the number

of samples N = 150 was used. It can be chosen as larger or smaller, depending on

the complexity of the problem. So, this program is used throughout this research to

calculate the unknown amplitudes Cm and exponential components γm.

In electromagnetic problems, the field samples from the MoM can be used as

input samples for MPM computer program. It should be noted that the sampling

region and interval for the MoM field should be large enough, so that all the wave

characteristics can be captured. The sampling interval ∆x will be chosen between

λg/40 to λg/20, where λg is the wavelength along the guiding structure.
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2.3 Summary

In this chapter, the theory of the matrix pencil method (MPM) was explained. The

procedure of utilizing the MPM to extract the unknown components from a set of

field samples was described. Various subroutines were described. They are required

to make a computer program that calculates the unknown amplitudes Cm and expo-

nential components γm by using the least-squares method and the MPM respectively.

Finally, the computer program was tested using some known components. It was

found that the program successfully extracts the exact components from the samples.



Chapter 3

Guiding Structures Analysis

3.1 Introduction

The guiding structures guide the electromagnetic waves in a particular direction.

There are different types of the guiding structures, the mode of the wave traveling

inside depends upon the structure and the frequency of operation. Usually the waves

inside can be described as “zig-zags” between the walls of the waveguide. Actually,

the propagation inside the structure depends on the propagation constant. If we know

the propagation constant of a guiding structure, we can analyze the field behavior

and the wave propagation inside the structure.

The outline of this chapter is as follows. In Section 3.2, the propagation constants

of various closed-top guiding structures and a dielectric slab waveguide are analyzed.

Firstly, the MoM is used to calculate the near-field samples inside the structures.

The matrix pencil method (MPM) is used to extract the propagation constants from

those MoM samples. Then the extracted components are successfully used to recon-

struct the original field. Finally, the extracted propagation constants and amplitude

coefficients are used to calculate the reflection coefficient at the end of the structure.

16
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3.2 Propagation constants analysis

The complex propagation constant γ, is a measure of the change undergone by an

electromagnetic wave as it propagates in the given structure in the guiding direction.

The propagation constant is a complex quantity which has a real as well as an imag-

inary part (i.e., γ = α + jβ). Where α is the attenuation constant and β is the phase

constant. The attenuation constant α represents the rate of decay along the path

traveled by the wave and is measured in Nepers per meter. The phase constant β

represents the change in the phase along the path traveled by the wave and is mea-

sured in radians per meter. If we assume that, inside the guiding structure a wave

with a magnetic field Hy travels along the x-axis and has an incident as well as a

reflected part, it can be written as

Hy(x) = C1e
−γx + C2e

+γx. (3.1)

The +x traveling wave is represented by the propagation factor of form e−γx and

the −x traveling wave is represented by the propagation factor e+γx. C1 and C2 are

amplitude coefficients associated with the right and left traveling waves respectively.

The positive traveling phase factor can be written as

e−γx = e−αxe−jβx, (3.2)

where the α > 0 means the wave is decaying as it travels along +x. This equation

can be represented in the time domain as,

e−αxe−jβx ↔ e−αx cos(ωt − βx). (3.3)

This represents a wave traveling in the +x direction with a phase velocity vp = ω/β

and a wavelength λ = 2π/β with an exponential damping factor. If we remove the
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loss from the structure, we will have γ = jkd, which means α = 0, β = kd. There

is no attenuation constant for the lossless waveguide and the phase constant β is the

same as the wavenumber kd for that medium.

In order to extract the complex propagation constant, we will first calculate the

Hy-field inside of the structure; this can be accomplished by using the MoM. Then

by using these MoM samples as data for the MPM, the complex amplitude and phase

factors associated with this field will be extracted using the MPM.

3.2.1 Air filled, short circuited parallel plate waveguide

In order to verify the accuracy of the MPM, it is required to first use this method to

extract the propagation constants for the structures for which we already know the

γm. A very easy and common structure where we know the exact answers is this, an

“air filled, short circuited parallel plate wave guide.” It is infinite in the y direction as

shown in Fig. 3.1, which means this is a 2D problem. A vertically polarized incident

plane wave at θ = −90◦ is used to excite the structure . In this problem f = 27 GHz,

ℓ = 47.5 mm and h = 2.5 mm.

0

E

H

ℓ

h

x

z

ǫ0

θ

Figure 3.1: Air filled parallel plate waveguide with a short circuit at the end.

According to the theory, for a structure like this where there are no losses we have

exact results, i.e., this is a TEM wave with the attenuation constant α = 0 and phase
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constant β = kd; here kd = k0 and can be calculated as follows

ko =
2π

λo

, λo =
c0

f

where c0 = 2.998 × 108 ms−1 and f = 27 GHz, so λo = 1.111 cm. Therefore,

ko =
2π

λo

= 565.5 rad/m. (3.4)

MPM extractions: The structure is accurately modeled with the MoM. Field

samples were taken for 2λ0 ≤ x ≤ ℓ and z = h/10. The number of samples N = 300,

enough samples are taken to capture all the details for the MoM field solution.

The MPM was used to extract the propagation constants from the MoM field

samples. MPM results are γ1 = 0.005+j565.9 (1/m) and γ2 = −0.004−j565.9 (1/m)

with associated amplitude coefficients C1 = −0.0022 + j0.0012 (A/m) and C2 =

0.0016− j0.0019 (A/m) respectively. It can be seen that β extracted by the MPM is

almost the same as expected from the theory in (3.4). Even though the α 6= 0, it is

very small, so it can be neglected.

Reconstruction: The MoM fields can be reconstructed by using the MPM ex-

tracted Cm and γm. By putting these extracted value in (3.1) for 2λd ≤ x ≤ ℓ

over the length of the structure, the original near-field can be reconstructed. For the

waveguide the original field was reconstructed and compared with the original MoM

field, which is in the form of standing waves as shown in Fig. 3.2. It can be seen that

the MPM is in excellent agreement with the MoM in reconstructing the original field.

It should be noted that the MoM sampling region starts from x ≥ 2λd, because

some unwanted evanescent wave behavior may exist near the left end due to the edge

diffractions from the edges of the structure, but those will vanish after some distance,

as h < λ0/2 and only the TEM mode can be transmitted inside the waveguide.
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Figure 3.2: Original MoM near-field and reconstructed field using MPM extracted
components.

3.2.2 Dielectric filled, short circuited parallel plate

waveguide

Further verification of the accuracy of the MPM was done by increasing the complexity

of the structure. The structure used in the previous section is now filled with a

dielectric with ǫr = 3.5. All the other parameters such as f, ℓ, h are kept same as

before as shown in Fig. 3.3, but the wavelength λd and the wavenumber kd inside the

structure are not same any more. These can be calculated as

0
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ℓ

h

x

z

ǫr

θ

Figure 3.3: Dielectric filled parallel plate waveguide with short circuit.
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λd = λ0/
√

ǫr =
1.111√

3.5
= 0.594 cm,

so,

kd = k0

√
ǫr = 565.5 ×

√
3.5 = 1058 rad/m. (3.5)

MPM Extraction: As before, the structure is modeled with the MoM and the

field samples are taken inside the structure. The same sampling region criterion is

used used in the previous problem, i.e., z = h/10 and 2λd ≤ x ≤ ℓ. Now, MPM

extraction is done to find both the amplitude αm as well as phase coefficients βm for

the structure. The complex propagation constants are found to be γ1 = −0.11 −

j1058.9 (1/m) and γ2 = 0.11 + j1058.9 (1/m) with associated amplitude factors

C1 = −0.002− j0.0006(A/m) and C2 = −0.002− j0.0008 (A/m) respectively. It can

be seen that the β from the MPM are almost the same as those calculated above in

(3.5) (i.e., β ≈ kd = 1058 rad/m). A number of verifications have been done to see

that the α, β do not vary provided that x ≥ 2λd.
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Figure 3.4: Original MoM near-field and reconstructed field using MPM extracted
components.
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Problem Theory MPM extracted
α (Np/m) β (rad/m) α (Np/m) β (rad/m)

Air filled, short circuited 0 565.5 0.005 565.9
Dielectric filled, short circuited 0 1058 0.11 1058.9

Table 3.1: Propagation constants of air filled and dielectric filled waveguides, theo-
retical vs calculated.

Reconstruction: It can be seen in Fig. 3.4, even though the structure is more

complex, still the original field can be recovered by using the γm and Cm extracted

by the MPM in (3.1). So far, the MPM αm and βm are in excellent agreement with

theoretical results of the propagation constants, and the reconstructed original fields

are in excellent agreement with MoM results. The comparisons are in Table 3.1.

3.2.3 Dielectric slab waveguide on a ground plane

Another structure was analyzed using the MPM, a two dimensional “dielectric slab

waveguide with ground plane” as shown in Fig. 3.5. The structure is modeled with

the MoM (ℓ = 47.5 mm, h = 2.5 mm, ǫr = 3.5 and f = 27 GHz), the plane wave is

incident horizontally (i.e., θ = −90◦). The near-field samples are obtained by using

the MoM inside the structure at z = h/10 and 2λd ≤ x ≤ ℓ−2λd (avoiding the ends).

0
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z

ǫr

θ

Figure 3.5: Dielectric slab waveguide on a ground plane.



CHAPTER 3. GUIDING STRUCTURES ANALYSIS 23

MPM Extraction and Reconstruction: By using the MoM samples as the sum

of complex exponentials in the MPM extractions, we obtained the propagation con-

stants γ1 = 0.1 + j909.14 (1/m), γ2 = 19.02 + j552.42 (1/m), γ3 = −53.15 −

j580.43 (1/m) and γ4 = −0.36 − j908.48 (1/m), their respective amplitude co-

efficients C1 = −0.0075 − j0.0019 (A/m), C2 = 0.0024 + j0.0003 (A/m), C3 =

7.12× 10−5 − j1.45× 10−6 (A/m) and C4 = 0.0013 + j0.0049 (A/m). Here γ1 and γ4

represent the incident and the reflected slow wave propagation constants respectively.
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Figure 3.6: Reconstructed original field for the dielectric slab waveguide.

As in the last problem, these extracted components can be used to reconstruct the

original field. By using (3.1), it can be seen in Fig. 3.6 that the MPM is in excellent

agreement with the original MoM field.

3.3 Reflection coefficient

The reflection coefficient describes the amount of an electromagnetic wave that is

reflected due to an impedance discontinuity in the transmission medium of that wave.
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At any particular boundary, it can also be described as the ratio of the amplitude

of the reflected wave to the amplitude of the incident wave at that boundary. It is

denoted with Γ. It can be written as

Γ =
E−

E+

∣

∣

∣

∣

x=0−
= −H−

H+

∣

∣

∣

∣

x=0−
. (3.6)
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Figure 3.7: Incident wave behavior at an air-dielectric boundary.

If a plane wave with the electric field along the z-axis is incident from the free

space and is propagating in +x direction towards the medium as shown in Fig. 3.7,

some part of the wave will get reflected as well as some part will be transmitted in

the medium. In this case, the electric field reflection coefficient can be obtained by

using the following expression

Γe =
η1 − η0

η1 + η0

, (3.7)

where η0 is the free space impedance and η1 is the impedance of the dielectric, η0 =
√

µ0/ǫ0. If we assume µ1 = µ0 and ǫ1 = ǫ0ǫr

Γe =

√

µ0/ǫ0ǫr −
√

µ0/ǫ0
√

µ0/ǫ0ǫr +
√

µ0/ǫ0

,
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Γe =
1 −√

ǫr

1 +
√

ǫr

. (3.8)

The parameters extracted by the MPM can be used to find Γ. As we know

Hy(x) = C1e
−γ1x + C2e

−γ2x. (3.9)

If we assume γ1 = α + jβ and γ2 = −α − jβ, here C1 represents the amplitude

coefficient of the incident wave, and C2 represents the amplitude coefficient of the

reflected wave. So, the reflection coefficient can be calculated at any x when the

values of γm and Cm are known. To find the magnetic field reflection coefficient at

the end of the structure where x = ℓ

Γh =
C2e

−γ2ℓ

C1e−γ1ℓ
. (3.10)

In the next sections, the reflection coefficient of various guiding structures will be

calculated. It is expected that the MPM extracted components can be successfully

used to calculate the reflection coefficient at the end of the structure that exhibits

the field behavior as shown in (3.9).

3.3.1 Dielectric filled, short circuited parallel plate

waveguide

A number of problems could be considered in the later sections and chapters to find

the reflection coefficient of various structures. Generally, it is always good to analyze

a less complex problem with some known results before moving to more complex or

actual problems. For that case, a simpler two dimensional problem is analyzed as

shown in Fig. 3.8. By keeping the same frequency f = 27 GHz, length ℓ = 47.5 mm

and height h = 2.5 mm with a dielectric constant inside ǫr = 3.5, the structure is

modeled in FEKO to calculate the MoM field samples inside the structure. By using
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Figure 3.8: Dielectric filled, short circuited parallel plate waveguide.

the PBC it is assumed that the structure is two dimensional and there is no change

in the y direction. A plane wave is incident horizontally (θ = −90◦), and excites the

structure with Ez and Hy fields.

From a theoretical point of view for a short circuited structure like this with a

perfect electric conductor (PEC) at the end, the results of Γ at the end for E field

as well as H field are already known. For PEC at the load, it is known from the

boundary conditions that the tangential component of the E field at x = ℓ, Etan = 0.

On the other hand Htan 6= 0. So the magnetic field reflection coefficient is

Γh = +1. (3.11)

The MPM has been used for the same structure to extract Cm and γm in Sec-

tion 3.2. For this problem γ1 = −0.11− j1058.9 (1/m) and γ2 = 0.11+ j1058.9 (1/m)

with associated amplitude coefficients C1 = −0.002 − j0.0006 (A/m) and C2 =

−0.002 − j0.0008 (A/m) respectively. The incident and the reflected waves can be

easily recognized from these results. Here, γ2 and C2 are associated with the right

traveling wave because α > 0, while the wave associated with γ1 and C1 is the reflected

wave with α < 0. The reflection coefficient at the load (x = ℓ) can be calculated using
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the components. Using Cm and γm in (3.10) at ℓ = 47.5 mm,

Γh =
C2e

−γ2×0.0475

C1e−γ1×0.0475
= 0.979 0.02◦. (3.12)

Γh = 0.98

It can be seen that the calculated Γh is in a very good agreement with the theoretical

results.

3.3.2 Dielectric filled, open-ended parallel plate waveguide

The approach of calculating the reflection coefficient using MPM extractions agreed

very well with theoretical results for the short circuited structure. It is expected that

it would work the same way for an open ended structure shown in Fig. 3.9. For this

analysis, the end of the structure has been left open.
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Figure 3.9: Dielectric filled, open ended parallel plate waveguide.

This problem is more complicated than we thought initially, because an incident

plane wave is illuminating the structure, there are some edge diffractions going on at

all the four corners of the structure. The diffractions at the end corners of the struc-

ture are causing error in the calculations of the reflection coefficient by contaminating

the strength of the reflected wave. So, in order to calculate the reflection coefficient
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using this approach it is required to eliminate the edge diffractions.

There are various methods to deal with the problem of the edge diffractions that

arose here, but the best and the easiest way is by making the structure closed at the

end. A Salisbury screen with an impedance Zm = 377 Ω as shown in Fig. 3.10 can

be used to absorb the transmitted wave from the end.

Zm

Z0 Z01

Γ = 0

λd/4

Figure 3.10: Salisbury screen.

Equivalent structure

To make the structure in a way that we can get the exact reflection coefficient at

the end of the dielectric, an absorber termination with a Salisbury screen is used as

shown in Fig. 3.11.
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Figure 3.11: Equivalent structure to calculate reflection coefficient by using Salisbury
absorbing termination to avoid the edge diffractions at the end of the structure.

In this structure, the dielectric is followed by free space, then an impedance sheet,

then free space and then a short circuit (PEC). The impedance sheet is used in the
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free space λ0/4 away from the end in order to absorb the wave transmitted from the

dielectric to air, and the whole structure is enclosed in a PEC except the left end

(i.e., x = 0). Now, at x = ℓ we should have the exact Γ as expected for the Fig. 3.9

without any contamination due to edge diffractions. Now assuming this is a general

lossless structure from (3.7)

Γe =
η0 − η1

η0 + η1

=

√
ǫr − 1√
ǫr + 1

.

In this case ǫr = 3.5, so

Γe =

√
3.5 − 1√
3.5 + 1

= 0.3,

which means

Γh = − 0.3. (3.13)

The above result is the magnetic field reflection coefficient.

The equivalent structure shown in Fig. 3.11 is modeled in FEKO and near-field

samples are obtained inside using the MoM. Then, the MPM is used to extract the

complex amplitude and the exponential coefficients inside the structure. The complex

propagation factors for the H-field are found to be γ1 = 0.22 + j1058.94 (1/m) and

γ2 = −0.62 − j1057.97 (1/m) with C1 = −3.76 × 10−3 + j7.91 × 10−5 (A/m) and

C2 = 1.06 × 10−3 − j7.60 × 10−5 (A/m). It can be seen that, γ1 and C1 represents

the incident wave at x = ℓ, whereas γ2 and C2 represents the reflected wave at x = ℓ.

So, using these components in (3.10) for ℓ = 47.5 mm,

Γh =
C2e

−γ2×0.0475

C1e−γ1×0.0475
= 0.32 177◦ ≈ −0.32. (3.14)

Γh = −0.32

It can be seen that the reflection coefficient calculated using the MPM extracted
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Problem Theory (Γh) MPM (Γh
ℓ )

Dielectric filled, short circuited +1 +0.98
Dielectric filled, open circuited −0.3 −0.32

Table 3.2: Reflection coefficient at the load of short circuited and open ended waveg-
uides, theoretical vs calculated.

components is in good agreement with the theoretical results.

3.4 Summary

In this chapter, various guiding structures were analyzed using the MPM, to calculate

the propagation constants and reflection coefficients. A commercial EM software

FEKO, which is based on the method of moments (MoM) was used to model and

solve the structures for magnetic field samples inside. Then the matrix pencil method

(MPM) was used to extract the propagation constants from these samples. Those

components were then used to reconstruct the original field as well as to calculate the

reflection coefficient. The results were validated by comparing them with the results

from the EM theory of similar structures. It can been seen in Table 3.1 and Table 3.2

that the MPM is very suitable for the analysis of the guiding structures and guiding

waves.



Chapter 4

2-D Leaky-Wave Antennas

4.1 Introduction

A periodic leaky-wave antenna (LWA) supports a fast space harmonic from the infinite

space harmonics on the guiding structure. This fast harmonic is a fast wave that

radiates or leaks the power continuously as it propagates along the guiding structure.

The fast wave is also known as a leaky wave, for which the phase constant β is less than

the free space wavenumber k0 (β < k0) and the attenuation constant α 6= 0 [2]. For

a LWA, α relates to represents the direction of wave travel as well as the beamwidth

of the antenna, on the other hand β is associated with the direction of the beam.

In FEKO, only plane wave excitation is available for 2-D structures. So, a plane

wave will be used to excite the 2-D LWAs, and then the MoM field samples will be

obtained. It is expected that the radiating space harmonics can be extracted using

the MPM from the MoM data, and can be used to obtain the radiation pattern and

reflection coefficient.

In this chapter, a two dimensional periodic LWA is being analyzed by using the

matrix pencil method (MPM). In Section 4.2, the methodology behind the design

of a periodic LWA is explained. The effect of the design on the radiation pattern

31
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is explained. In Section 4.3, the MPM analysis of that periodic LWA is done by

solving the structure with the MoM. In Section 4.4, the effects of edge diffraction are

explained and a method to avoid those effects is presented including a novel LWA

structure. In Section 4.5, the MPM extracted components are used to calculate the

reflection coefficient at the end of the LWAs. In Section 4.6, the validity of this

approach with infinitely long LWAs is discussed briefly. Finally, Section 4.7 is the

summary of the work done in this chapter.

4.2 Leaky-wave antenna design

The matrix pencil method (MPM) has been used successfully so far for two dimen-

sional closed top guiding structures and a dielectric slab waveguide. The performance

of this method was validated by doing comparisons with other theories and results.

In this section, the same approach will be used to analyze a finite length 2-D periodic

leaky-wave antenna. The design of this antenna is inspired from a two dimensional

LWA that was used by Encinar [24]. The metal patches are used on the top of the

dielectric to make it a periodic structure.

The LWA is shown in Fig. 4.1, length ℓ = 10.2 cm, height h = 2.5 mm, strip width

w = 2 mm, period p = 5 mm, strip length b = ∞ and relative permittivity ǫr = 3.5

is used at an operational frequency f = 27 GHz. This model is modeled in FEKO

and periodic boundary conditions (PBC) are used make it infinite in y. The design

principles related to this structure are discussed below.

4.2.1 Excitation mechanism

Plane wave excitation is used here to excite this structure at an angle of incidence

θi = −90◦. It has been observed that the angle of incidence is not crucial in this

finite case, because only compatible modes will be excited in the structure. So, the
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Figure 4.1: Periodic leaky-wave antenna with open dielectric end.

expected space harmonics of the LWA can be excited and hence extracted for the

antenna excited from any θi. However, it is recommended to use θi = −90◦ in order

to minimize the effect of edge diffractions at x = ℓ. An equivalent structure to avoid

the diffractions will be presented in later sections.

4.2.2 Patch dimensions and periodicity

The attenuation constant (α) of the leaky mode is responsible for the pattern beamwidth,

which is dependent upon the dimensions of the patches. By keeping the period (p)

constant, if we increase the strip-width (w), α decreases and so does the beamwidth.

For the purpose of avoiding the grating lobes for any scan angle, there should be

a limiting value for the periodicity p. This limiting value can be determined from

the Floquet harmonics [9]. The periodic structure supports a guided wave with an

infinite number of Floquet space harmonics. The nth harmonic has wavenumber

βn = β0 +
2nπ

p
. (4.1)

The Floquet n = −1 harmonic should be at backward endfire and the Floquet n = 0

mode should be at forward endfire direction. From these two conditions, the limiting

periodicity to avoid grating lobes is calculated (i.e. p/λ0 = 0.5). Hence the condition
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to avoid the grating lobes is

p

λ0

≤ 0.5. (4.2)

This is the very well known limitation encountered in antenna array design. In our

structure, patch width w = 2 mm at a period of p = 5 mm is used as shown in

Fig. 4.2, the strip length b = ∞.

0

=b ∞

ℓ

p

w

x

y

Figure 4.2: Top-view of the 2-D LWA with infinitely long metal patches.

4.2.3 Length of the antenna

The length of the antenna is responsible for the beamwidth. Also, a long antenna will

reduce the reflected part of the fast wave from the end of the antenna. If the antenna

is designed long enough, so that the wave traveling inside eventually vanishes when

reaches at the end due to decay caused by α, the reflected wave will not exist and

then the side lobe will disappear. In this study it was chosen that the amplitude of

the wave should drop by −3 dB when it reaches at the end (−3 dBV= 0.707 V). The

required length can be calculated from the following equation, choosing α ≈ 3.3 Np/m



CHAPTER 4. 2-D LEAKY-WAVE ANTENNAS 35

(this choice is justified in Section 4.3)

e−αℓ = 0.707

−αℓ ln e = ln 0.707 = −0.3454

ℓ =
0.3454

3.3
≈ 10.2 cm. (4.3)

So, the antenna should be at least 10.2 cm long in order to get −3 dB decay in the

wave traveling from x = 0 to ℓ. For the analysis, the antenna length ℓ = 10.2 cm

along x is used with antenna height h = 2.5 mm in z and the antenna width or

strip length b = ∞ in y as shown in Fig. 4.1 and Fig. 4.2. Our objective is to just

analyze the antenna characteristics using the MPM, therefore an antenna with length

ℓ = 10.2 cm is used.

4.3 Leaky wave space harmonics analysis

The same procedure as used in the previous chapter will be followed here to extract

the space harmonics. This is a periodic LWA, so it is expected that there will be a

fast space harmonic associated with the leaky wave. This antenna is designed in a

way that just β−1 space harmonic will be fast and radiating harmonic.

4.3.1 MPM extractions

The structure is solved using the MoM and the field samples are taken for a region

2λd ≤ x ≤ ℓ0 at z = h/10, where ℓ0 = ℓ − 2λd. The idea behind this sampling region

has been explained previously, i.e., there could be the effect of diffractions near the

ends that can contaminate the actual results, so this sampling region avoids the ends.

The field samples are then used as data for the matrix pencil extractions, which gives

the components shown in Table 4.1, where γ̄ = γ/k0, ᾱ = α/k0 and β̄ = β/k0. It
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Prop. n m γ̄m = ᾱm + jβ̄m Cm (A/m)

+x 0 1 0.007604 + j1.685 −4.680 × 10−3 + j8.708 × 10−5

+x −1 2 0.007657 − j0.5367 5.160 × 10−4 − j7.900 × 10−4

+x − 3 0.007692 + j0.9996 1.010 × 10−3 − j6.530 × 10−4

−x −1 4 −0.007498 + j0.5369 −2.840 × 10−4 − j9.510 × 10−5

−x 0 5 −0.007604 − j1.685 5.500 × 10−4 − j1.400 × 10−3

−x − 6 −0.09717 − j0.9862 9.740 × 10−4 − j3.004 × 10−4

Table 4.1: Matrix pencil extracted components of a 2-D finite periodic leaky-wave
antenna.

can be seen that, there are three right-traveling and three left-traveling waves. The

m = 1 and m = 5 are slow waves (with β̄ > 1) traveling in +x and −x direction

respectively. The m = 2 and m = 4 components are fast waves (with β̄ < 1) traveling

in +x and −x direction respectively. The m = 3 and m = 6 components seem like the

space or surface waves traveling in +x and −x direction respectively because β̄ ≈ 1.

This structure is designed so that the main Floquet harmonic n = 0 is a slow

wave (corresponds to the m = 1 component in Table 4.1) and the n = −1 harmonic

is a radiating fast wave (corresponds to the m = 2 component in Table 4.1), i.e.,

−1 < β̄2 < +1. As there is an infinite number of space harmonics, the MPM can

be used to extract as many as we need, also (4.1) can be used to calculate the other

harmonics. It has been considered that the components that follow the Floquet theory

(4.1) are the only good components and those that do not follow (4.1) are not good,

so the bad components are not considered in the further analysis of the 2-D LWA.

2-D strip grating: The space harmonics for a 2-D metal strip grating (which is

infinite in x and y) with same strip width w = 2 mm, ǫr = 3.5, h = 2.5 mm and

frequency f = 27 GHz were calculated by Jackson and are shown in Table 4.2. These

α and β were obtained from solving a spectral-domain periodic MoM (SDMoM)

formulation (see [25] Appendix B). It should be noted that the SDMoM just gives

the α and β. It does not give Cm and Γ because it is infinite in x.
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p (mm) β0/k0 β−1/k0 α0/k0

4.0 1.68145 −1.09441 0.00000
4.2 1.68357 −0.96010 0.01500
4.5 1.66930 −0.79812 0.01080
5.0 1.66389 −0.55680 0.00566
5.5 1.66116 −0.35764 0.00396
6.0 1.66038 −0.19019 0.00332
6.5 1.67416 −0.03406 0.00651
7.0 1.63281 0.04661 0.00087
7.5 1.64272 0.16227 0.00148
8.0 1.64383 0.25591 0.00167

Table 4.2: Some values α and β of an infinite 2D metal strip grating as function of
period p calculated using SDMoM. Courtesy of D. R. Jackson, University of Houston.

In Table 4.2 for period p = 5, the ᾱ = 0.00566 and β̄−1 = −0.55680. So, the MPM

extracted γ̄m in Table 4.1 are in good agreement with the theoretical γ̄ computed for

a 2-D strip grating using SDMoM.

4.3.2 Radiation pattern using space harmonics

The matrix pencil extracted space harmonics are in good agreement with the theoret-

ical Floquet harmonics. Now, it is expected that these harmonics can be used to get

the radiation pattern for this antenna. The radiation integral is used to construct the

radiation pattern using the MPM extracted components. To use the radiation integral

for this problem, the structure will be simplified using “Love’s Surface Equivalent”

and “Image Theory.” The radiation integral is

Hy = ejπ/4

√

k

8π

e−jkρ

√
ρ

∫

C0

ŷ · (ℓ̂′ × ρ̂) ejkρ̂·ρ̂′

Jℓ(ρ̂
′) dℓ′. (4.4)

In our case, we have Hy = H0e
−γx (where H0 is some constant) and Ez = E0e

−γx,

then by using Love’s equivalent as shown in Fig. 4.3(a) and (b), the surface current
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Figure 4.3: (a) Original problem with LWA. (b)Equivalent problem in free space
having same fields outside the new surface. (c) Free space equivalent with a flat
and infinitely long PMC inside. (d) Currents with their images due to infinite PMC
surface.

Js is given by

Js = ẑ × ŷ H0e
−γx = −x̂H0e

−γx.

If we put an infinite flat perfect magnetic conductor (PMC) inside as shown in

Fig. 4.3(c) and (d), it will double the electric current Js, on the other hand the

magnetic current Ms will be canceled, so

Js = −x̂2H0e
−γx.

From (4.4), using k = ko, ρ̂ = x̂ sin θ + ẑ cos θ, ρ′ = x̂x′ and ℓ̂′ = x̂

Hy =
n

∑

N=0

ejπ/4

√

k

8π
H0 cos θ

e−jkρ

√
ρ

∫ ℓ

0

2e−(γ−jk0 sin θ)x′

dx′. (4.5)

So, the aperture integration of the Hy gives the far field pattern in the E plane,

φ = 0◦,

Hy = H0 cos θ
e−jkρ

√
ρ

1 − e−(γ−jk0 sin θ)ℓ

γ − jk0 sin θ
. (4.6)
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It can also be written as

Hy = f(γ, θ).

In our case, there are two contributions to the radiation pattern, i.e, from the +x

traveling fast wave and −x traveling fast wave. So, the total H field can be written

as

Hy = C+f(+γ, θ) + C−f(−γ, θ). (4.7)

So, by using MPM extracted γ2 and γ4 in (4.7), the radiation pattern shown in Fig. 4.4

is obtained. Also, the SDMoM γm from Table 4.2 is used along with the MPM Cm in

(4.7) to obtain the radiation pattern. Reciprocity is used to obtain the MoM radiation

pattern.
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Figure 4.4: Far-field radiation pattern for the 2-D LWA obtained from reciprocity
(MoM) and aperture integration, with γ from MPM and SDMoM.

It can be seen that, the radiation pattern obtained from the aperture integration

of MPM extracted γm is in good agreement with the aperture integration of γm from

SDMoM, as the beam angle is different by just 1◦ and the beamwidth is almost
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same in both results. The main beam of the MPM radiation pattern is in very close

agreement with the MoM and SDMoM patterns but the side lobes are not that close.

It should be noted that, only the fast harmonics are considered to plot the radiation

patterns.

4.4 Edge diffractions in LWA

Even though in Table 4.1, the γm are good, but there is a possibility of contamination

of the amplitude coefficients (Cm). The reason behind this contamination is same that

was addressed in the last chapter (i.e., edge diffraction). In Fig. 4.5(a), it can be seen

that the plane wave might get diffracted at the right end of the antenna, which can

cause the excitation of that end. Hence, a strong left-traveling wave could be excited

(a)

(b)
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Figure 4.5: (a) Contamination of Γ in open ended LWA. (b) Closed LWA with an
absorbing load to absorb the transmitted wave T .
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from the right end of the antenna. In Chapter 3, a method to avoid this contamination

was used by closing the end of the structure and putting a Salisbury screen at the

termination. In this problem the same approach will be used, but with a different

type of absorber.

4.4.1 Novel design to avoid edge diffractions

In a LWA, the contamination of the fast waves is crucial because the fast waves

are radiating waves. From the right end of the antenna some part of the fast wave

will be reflected back and some part will be transmitted depending on the reflection

coefficient. So, if we close the structure, it is necessary to use absorb the transmitted

waves (represented by T in Fig. 4.5(b)), otherwise these waves will hit the end with

arbitrary angles of incidence and get reflected back. There is an artificial absorber

termination available that is very effective to absorb the waves coming from a wide

range of angles. It is known as “Dallenbach layer” [26]. It was used to terminate

finite element mesh in [27]. The reflection coefficient of this absorber is Γ = 0.
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Figure 4.6: 2-D LWA with an artificial absorber termination, used to absorb the
transmitted fast wave and to make Cm free from the effect of the diffractions.

The design parameters of this metal-backed absorber are kept same here, i.e.,

thickness t = 0.15λ0 and relative permittivity and permeability ǫr2 = µr2 = 1 − j2.7.

The new structure is modeled as shown in Fig. 4.6, with this extra part added at the
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end of the previous antenna. There is a free space gap between two dielectrics, ǫr1 and

ǫr2, which could be arbitrary but here it has been chosen λ0/8 (which is not critical).

The thickness of the absorber is t = 0.15λ0 with a PEC at the end. By using this

structure, it is possible to calculate the required reflection coefficient at x = ℓ.

The near field samples are calculated using the MoM and the space harmonics γm

and amplitude coefficients Cm are extracted using the MPM. The fast wave γm and

Cm are found to be

γ̄1 = 0.008384 − j0.5353, C1 = 6.641 × 10−4 − j8.221 × 10−4 (A/m) (4.8)

γ̄2 = −0.007926 + j0.5358, C2 = 1.652 × 10−5 − j1.330 × 10−4 (A/m). (4.9)

The extracted γm and Cm can be used to obtain the radiation pattern of the antenna.

By using (4.8) and (4.9) in (4.7), the radiation pattern of this new antenna is obtained

and is shown in Fig. 4.7.

It can be seen that the main lobe is exactly same in both cases, on the other hand

the side lobe is decreased and around −13dB. It shows that the edge diffractions from

the right end were affecting the forward-pointing beam, which is associated with the

reflected part of the fast wave. Hence, a more accurate reflection coefficient could be

obtained from the new antenna structure with an absorber termination.

4.5 Reflection coefficient of the LWA

In Section 3.3, the MPM was successfully used to calculate the reflection coefficient

at the end of the guided structures. It is expected that we can also calculate the

reflection coefficient for the LWAs. Let us suppose that the +x wave is in the form

H+ = C+e−γx. (4.10)
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Figure 4.7: Far-field radiation patterns obtained using MPM and aperture integration
for LWAs (a) with an open end and (b) with Dallenbach absorber.

Similarly, the −x wave can be written as

H− = C−e+γx. (4.11)

Then the reflection coefficient at the load Γℓ will be

Γℓ =
H−

y

H+
y

∣

∣

∣

∣

x=ℓ

=
C−e+γℓ

C+e−γℓ
. (4.12)

Two LWAs has been analyzed using the MPM in this chapter. The above equation

can be used to calculate the reflection coefficient from MPM extracted components

of those antennas.
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2-D LWA open ended

By using γm and Cm for the fast waves from Table 4.1 in (4.12),

Γℓ =
C4e

−γ4ℓ

C2e−γ2ℓ

where C2 and C4 represent C+ and C− respectively. So,

Γℓ = 0.76 −53◦. (4.13)

|Γℓ| = 0.76

2-D LWA with an absorber termination

By using (4.11) and (4.12) in (4.15)

Γℓ =
C2e

−γ2ℓ

C1e−γ1ℓ
,

Γℓ = 0.33 28◦. (4.14)

|Γℓ| = 0.33

It can be seen that the reflection coefficient has changed after using the absorber

termination. There might be many factors that can affect the reflection coefficient in

these cases. It was expected that by closing the right end of the antenna the edge

diffractions can be avoided, and it has been proved here that the edge diffractions

were affecting the field, which are eliminated by using the Dallenbach layer.
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4.6 Infinite leaky-wave antenna analysis

The finite two dimensional antenna used in the previous analysis is now changed to

an infinite structure, which is infinite in both x and y directions as shown in Fig. 4.8.

The same idea of putting PBCs is used here to make it infinite while keeping the
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Figure 4.8: 2-D infinite periodic LWA with plane wave incident from θ = −45◦.

same period p = 5 mm, height h = 2.5 mm and strip width w = 2 mm at a frequency

of f = 27 GHz. The plane wave excitation is chosen at an angle θi = −45◦, though

any arbitrary angle can be chosen as it is not critical.

4.6.1 Space harmonic extractions

The antenna structure was solved with the MoM solver and field samples were taken

inside the structure at z = h/10. These MoM samples were used in the matrix pencil

method (MPM) to extract the space harmonics. It is found that the extracted space

harmonics are dependent on the angle of incident plane wave. The value of β changes

with changing the θi. So, this analysis can not be done with MPM for an infinitely

long two dimensional LWA because it is not possible to find β using this approach.
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4.7 Summary

In this chapter, a two dimensional leaky wave antenna with periodic metal strips on

the top was analyzed. The antenna structure was modeled in FEKO and MoM based

solutions were taken and used for the MPM extractions. The propagation constants

and the attenuation constants were extracted and then compared with the Floquet

space harmonics for the same period. The Floquet harmonics provided βn that agree

with the MPM results. The extracted attenuation constants αm were also verified by

comparing with the SDMoM α for 2-D strip grating.

The extracted harmonics were then used in the radiation integral to plot the

radiation pattern, which was then compared with the radiation pattern from the

known α and β. The calculated pattern was in agreement with only 1◦ beam-direction

difference from the theory results of the metal strip grating.

The effects of edge diffractions were introduced, and a termination with a Dallen-

bach layer was used to eliminate those effects. The LWA structure was then analyzed

using the MPM to obtain the radiation pattern. The method to calculate the reflec-

tion coefficient from the MPM extracted components was explained. By using that

method, it was found that the reflection coefficient of 2-D LWA was improved. An

infinite antenna was also analyzed with the same approach but it was found that this

approach was not suitable for an infinite antenna.



Chapter 5

3-D Leaky-Wave Antennas

5.1 Introduction

For the 2-D leaky-wave antennas, it was seen that the leaky waves are fast waves

with wavenumber −ko ≤ β ≤ k0 and can be extracted using the MPM. From a

practical point of view, analysis of 3-D LWAs is more desirable. It is expected that

the same approach could be used in 3-D LWAs. The main focus of this chapter is

on the calculation of a reflection coefficient and radiation pattern from the MPM

extracted components. In FEKO, we have magnetic dipoles for the excitation of

3-D structures. So, the structure is excited using an array of magnetic dipoles to

approximate a uniform line source. Also, the MoM radiation pattern is available

directly for 3-D LWA. So, it would be interesting to obtain the radiation pattern from

the aperture integration of the extracted components and compare with the MoM

radiation pattern.

This chapter starts with modifications of the previously used leaky-wave antenna

to make it a 3-D LWA. In Section 5.3, the MPM analysis of the 3-D antenna is done to

extract the space harmonics. In Section 5.3.3, the radiation integral is used to get the

radiation pattern which then compared with the FEKO pattern. The existence and

47
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the effects of other space harmonics are also described in Section 5.3.4. The MPM

extracted components are then used to calculate the reflection coefficients for the LWA

in Section 5.4. The required comparisons with the SDMoM results have been done

in Section 5.3. In Section 5.5, the behaviors of 2-D and 3-D LWAs are compared, the

effects of strip length on the antenna behavior are explained and analyzed. Finally,

the chapter is summarized in Section 5.6.

5.2 Antenna design

The characteristics of a 3-D periodic unidirectional LWA shown in Fig. 5.1 will be

analyzed using the MoM and MPM. The design of the antenna is similar to the one
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Figure 5.1: 3-D finite periodic unidirectional LWA with metal patches on the top.

used in the last chapter, except this is now a three dimensional structure, which means

it is finite in y. The strip length b = 5 mm is used here in y as shown in Fig. 5.2.

The other parameters are kept same (i.e., ℓ = 10.2 cm, h = 2.5 mm, p = 5 mm,

w = 2 mm, ǫr = 3.5 and f = 27 GHz).

The excitation mechanism is different in this antenna from the 2-D LWAs. We

are assuming the TMx polarization (H̄ = ŷHy) so an array of three magnetic dipoles

is used near the origin inside the structure to approximate a uniform line source of

finite length b. The strength of each dipole is b/3 = 1.67 × 10−3 V-m [28], which is

equivalent to a uniform line source of length b. The left end is replaced by a PEC to
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Figure 5.2: Top view of the 3-D periodic LWA.

make it a unidirectional LWA. The right end of the antenna is kept open.

5.3 Leaky-wave analysis

The propagation constant γ plays a major role in determining the overall antenna

characteristics. As discussed previously, the antenna beamwidth depends upon the

attenuation constant α, on the other hand the beam angle is dependent upon the

phase constant β. The fundamental harmonic of a LWA is a slow (non-radiating)

wave along the length of the structure, with a phase constant β > k0. In the periodic

structure the slow wave radiates from the discontinuities at the end of the structure [2].

The periodic discontinuities create a guided wave with an infinite number of space

harmonics (Floquet space harmonics). The nth Floquet wave has a wavenumber as

follows,

βn = β0 +
2nπ

p
(5.1)

where p is the period. This structure is designed so that the main harmonic n = 0

is a slow wave and n = −1 harmonic is a radiating fast wave (i.e., −k0 < β−1 < k0).

These space harmonics can be extracted for 3-D LWAs by using the same approach

that was used in previous chapter.
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5.3.1 MPM extraction of space harmonics

The structure was modeled and the MoM solution for the magnetic field Hy was

calculated just above the aperture. For the MoM, samples are taken along x above

the top of the antenna at z = h + 0.01 mm for 2λd ≤ x ≤ ℓ0, where ℓ0 = ℓ − 2λd.

Then these samples were used as an input to the MPM. By using the MPM, the

most dominant space harmonics were extracted and are shown in Table 5.1, where

γ̄ = γ/k0, ᾱ = α/k0 and β̄ = β/k0. 500 field samples were used here, because

otherwise we can not get a good α.

n Prop. m γ̄m = ᾱm + jβ̄m Cm (A/m)

0 +x 1 0.02047 + j1.539 −0.3074 + j0.04773
-1 +x 2 0.01956 − j0.6807 −0.2313 − j0.1667
-1 −x 3 −0.02448 + j0.6832 0.01375 + j0.006406
0 −x 4 −0.01947 − j1.536 −0.01953 − j0.005820
− +x 5 0.07821 + j0.9843 0.02475 + j0.05080
−2 +x 6 0.02044 − j2.902 −0.04550 − j0.01169
+1 +x 7 0.01731 + j3.765 0.008167 + j0.02898
− −x 8 −0.1147 − j0.9572 0.01322 + j0.006017

Table 5.1: Matrix pencil extracted propagation constants and amplitude coefficients
of 3D periodic leaky-wave antenna.

It can be seen in Table 5.1, the m = 1 and m = 2 components are the most

dominant waves with the largest amplitude coefficients C1 and C2 respectively. The

direction of the waves can be recognized very easily from the sign of α. The compo-

nents with ᾱ > 0 are associated with the waves traveling in the +x direction, on the

other hand the components with the ᾱ < 0 are associated with the waves traveling

in the −x direction.

This structure is designed so that the main harmonic n = 0 is a slow wave (corre-

sponds to the m = 1 component in Table 5.1) and the n = −1 harmonic is a radiating

fast wave (corresponds to the m = 2 component in Table 5.1), i.e., −1 < β̄2 < +1. It

also has been observed that the other components extracted using the MPM closely
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follow the behavior prescribed by (5.1). These MPM γm for 3-D LWA are not that

close to the MPM γm of 2-D LWA (Table 4.1) and SDMoM γm (Table 4.2).

5.3.2 Components behavior verifications

The behavior of the space harmonics can be analyzed further to see the behavior

of slow harmonics. It is expected that the slow harmonic is evanescent in z. It

decays exponentially in the +z direction. So, the MoM samples were taken at several

different values of z (i.e., z = h + d), where d is the distance of the sampling region

from the top of the antenna and the γm and Cm were extracted for each d.

d (mm) γ̄m = ᾱm + jβ̄n Cm (A/m)

0.01 0.002047 + j1.539 −0.3074 + j0.04773
0.01956 − j0.6807 −0.2313 − j0.1667

1 0.02056 + j1.541 −0.1404 + j0.01338
0.01966 − j0.6813 −0.2263 − j0.09303

5 0.02056 + j1.541 −0.007617 − j0.001517
0.01980 − j0.6813 −0.07633 + j0.1188

Table 5.2: Matrix pencil extracted propagation constants and associated amplitude
coefficients at different heights from the top of the LWA.

In Table 5.2, it can be seen that as we go further away from the antenna, the slow

wave harmonic is getting weaker and weaker. At a distance of d = 0.01 mm, the slow

wave was stronger than the fast wave. As we increased the distance to d = 1 mm, the

strength of the fast wave was dropped to less than 50% of the strength at d = 0.01 mm.

As the distance was increased further to d = 5 mm, the strength of the slow wave

was further dropped by almost 18 times, on the other hand the fast wave strength

is still around 50% of what it was at d = 0.01 mm. It has been observed that if we

increase the distance even more, eventually the slow wave disappears. So, the matrix

pencil components are behaving exactly as it was expected from the theory of the

leaky waves and guided waves.
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5.3.3 Radiation pattern of the LWA

The radiation pattern of the 3-D LWA can be calculated easily using the MoM. It is

expected that to plot the radiation pattern, the MPM extracted components can be

used in the radiation integral. In the previous chapter the same approach was used

to obtain the radiation pattern of the 2-D LWA. This antenna is a 3-D version of the

antenna used in the previous chapter, so the aperture integration of Hy from (4.7)

gives the far field pattern in E plane, φ = 0◦,

Hy = H0 cos θ
e−jkr

r

1 − e−(γ−jk0 sin θ)ℓ

γ − jk0 sin θ
, (5.2)

where H0 is some constant. It can also be written as

Hy = f(γ, θ).

In our case, there are two contributions to the radiation pattern, i.e, from the +x

traveling fast wave and −x traveling fast wave. So, the total H field can be written

as

Hy = C+f(+γ, θ) + C−f(−γ, θ). (5.3)

The radiation pattern is obtained for −90◦ ≤ θ ≤ +90◦ by using MPM extracted fast

wave components from Table 5.1 in (5.3), and shown in Fig. 5.3. It is also compared

with the MoM results. Both the MoM pattern and MPM reconstruction are in good

agreement with one another.

It can be seen that a good agreement has been made with the MoM results in

terms of the main beams, but the side lobes are little bit different from the MoM

result. There are number of possible reasons that could affect the side lobes in this

problem. The MoM result is for a three dimensional problem, whereas the radiation

integral is solved by assuming that the aperture is just two dimensional. Also, there
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Figure 5.3: Far-field pattern comparison of the MPM and the MoM.

could be some contribution due to the space wave that is coming directly from the

source, it can affect the radiation pattern.

5.3.4 Other components

From Fig. 5.3, it can be seen that there is possibility of the presence of more than

two components in the radiation pattern. It is possible that there is a wave which

is coming directly from the source and affecting the radiation pattern as shown in

Fig. 5.4. In the MPM extracted γ̄5 = 0.07821 + j0.9843 and γ̄8 = −0.1147 − j0.9572

look like space waves, as β̄ ≈ 1, but the space waves can not be defined as the sum of

the complex exponentials, so these other MPM extracted components are not purely

space waves.

Using m = 2, 3, 5 and 8 components from Table 5.1, the radiation pattern is

obtained using (5.3) and plotted in Fig. 5.5. It can be seen that the side lobe around

θ = 42◦ is little bit improved, it is expected that the side lobes can be tuned by tuning
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Figure 5.4: Behavior of forward and backward fast-waves and effect of space-wave
coming directly from the source.

the space waves. But the radiation pattern obtained from the aperture integration

of the fast wave components is in good agreement with the MoM radiation pattern.

In the radiation pattern of the antenna, there might be a space wave term e−jkr/r,

and the MPM extractions are not suitable for the reconstruction of this term. It
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Figure 5.5: Radiation patterns of 3-D LWA: from FEKO and aperture integration
(using just fast waves and fast waves plus other components).

seems like the MPM tried to extract this term but failed and gave us the components
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those are not following the Floquet theory. Therefore, these components were ignored

during the analysis of LWAs in this thesis.

5.4 Reflection coefficient of the LWA

In Section 4.5, the MPM was used to calculate the reflection coefficient at the end

of the 2-D LWA. In the 3-D LWA, the mechanism of radiation is the same, so, +x

traveling and −x traveling waves can be written as

H+ = C+e−γx, (5.4)

H− = C−e+γx. (5.5).

So, the reflection coefficient Γℓ at the load is

Γℓ =
H−

y

H+
y

∣

∣

∣

∣

x=ℓ

=
C−e+γℓ

C+e−γℓ
. (5.6)

In our case, it is expected that two methods can be used to calculate the Γ, as follows:

A. Using MPM extracted components

In order to calculate the reflection coefficient at the load, the MPM extracted

components can be used from Table 5.1 in (5.6),

Γℓ =
C3e

−γ3ℓ

C2e−γ2ℓ
= 0.67 −22◦. (5.7)

|Γℓ| = 0.67

B. Using the radiation pattern

The far-field pattern shown in Fig. 5.3 can be used to find an approximate

reflection coefficient at the load. In this LWA, the main beam is associated with
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the +x traveling fast wave, on the other hand the forward beam is associated

with the −x traveling fast wave. So, the strength of the main beam will be

maximum when the strength of the +x fast wave is maximum, likewise the side

beam strength is maximum when the −x fast wave strength is maximum. From

the pattern shown on Fig. 5.3, we can see that the forward beam is around

−12 dB weaker than the main beam (i.e., −12 dB = 0.25).

The radiation pattern’s forward beam can be related to the reflection coefficient

in terms of the ratio of the forward beam to the main beam. In other words

the reflection coefficient can be used to predict the ratio of forward to backward

pointing beams,

|Hy(θ = +43◦)|
|Hy(θ = −43◦)| = |Γℓ|e−α2ℓ = 0.22.

This ratio (0.22 ≈ −13 dB) is in good agreement with the pattern in Fig. 5.3. So

by using this idea, the reflection coefficient can be calculated from the pattern

if we know the fast wave propagation constants as follows,

Γℓ =
|Hy(θ = +43◦)|
|Hy(θ = −43◦)|e

+α2ℓ. (5.8)

5.5 2-D and 3-D LWAs pattern comparisons

The 2-D and 3-D models of LWAs have been analyzed, and it has been observed that

even the design parameters of both antennas are same but the radiation pattern of

3-D LWA is different from that of 2-D antenna. The beam angle of 2-D LWA used

in previous chapter was θ2D
b ≈ −32.4◦, and the beam angle of the infinite 2-D metal

strip grating using the SDMoM β−1 from Table 4.2 is θSDMoM
b ≈ −34◦, but the beam

angle of 3-D LWA with strip length b = 5 mm is θ3D
b ≈ −43◦. Even though 2-D

and 3-D models produce different radiation patterns, it is possible make them in a

reasonable agreement with one another.
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5.5.1 Effect of strip length on radiation pattern

Various 3-D LWAs with different strip lengths were tested for this analysis. An

antenna with the strip length b = 20 mm is used keeping p = 5 mm, w = 2 mm, h =

2.5 mm and f = 27 GHz is analyzed as shown in Fig. 5.6. The excitation mechanism

is same but 12 magnetic dipoles array is used here to approximate a uniform source

To analyze this antenna with longer strips, the MoM near field samples were taken

0

=20b
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mm

p

w

x

y

Figure 5.6: Top view of new LWA with increased strip length.

and used in the MPM extractions. The MPM extracted fast wave components of the

new 3-D LWA are

γ̄1 = 0.008987 − j0.5625, C1 = −0.2943 − j0.1073 A/m (5.9)

γ̄2 = −0.0009252 + j0.5671, C2 = 0.07048 − j0.04580 A/m. (5.10)

The radiation pattern was obtained from the MoM. The radiation pattern of the

2-D LWA with b = ∞ (aperture integration of the MPM components), and 3-D LWAs

with b = 5 mm and b = 20 mm are compared in Fig. 5.7. It can be seen that by

changing the strip length, the angle of the main beam and side beam changes. The
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main beam angle changes from θb ≈ −43◦ to θb ≈ −34◦, which is just 2◦ away from

the main beam of 2-D LWA pattern obtained using the MPM extracted components

in the previous chapter.

It should be noted that by changing the strip length, the forward beam becomes

stronger, as shown in Fig. 5.7, which means there could be a change in the attenuation

constant α or the reflection coefficient Γ of the antenna. It can be seen that α and
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Figure 5.7: Radiation patterns of 3-D LWAs from FEKO and 2-D LWA from MPM
extracted components.

β are changed by increasing the strip length. The MPM components are close to the

SDMoM components from Table 4.2, i.e., γ̄ = 0.00566−j0.5568. So, the antenna with

the longer strips is in a good agreement with 2-D MPM results as well as SDMoM

results for an 2-D strip grating.
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5.5.2 Reflection coefficient

The propagation constants are changed by changing the strip length, which means it

will also affect the reflection coefficient of the antenna. So, by using (5.9) and (5.10)

in (5.6)

Γℓ =
C2e

−γ2ℓ

C1e−γ1ℓ

Γℓ = 0.47 −6◦. (5.11)

|Γℓ| = 0.47

Using (5.8)

|Hy(θ = +34.5◦)|
|Hy(θ = −34.2◦)| = |Γℓ|e−α1ℓ = 0.28.

This ratio (0.28 = −11 dB) is in a good agreement with Fig. 5.7.

5.6 Summary

In this chapter, a three-dimensional leaky wave antenna with periodic metal patches

on the top was analyzed. The antenna structure was modeled in FEKO and solved

with the MoM. The MoM field samples were used in the MPM extractions. The prop-

agation constants and the attenuation constants were extracted and then compared

with the Floquet space harmonics. The evanescent mode behavior was expected from

the theory of LWAs, so the field samples were taken at different heights from the

top of the antenna and the MPM was used to extract the complex components at

those heights. It has been verified that the fast-wave component is getting more and

more dominant as we increase the height of the sampling region above the aperture,

because the slow harmonic is getting weaker and weaker.

The radiation pattern of the antenna was obtained using the MPM components

in the aperture integration. The effects of two other components in the radiation

pattern were also considered. It was found that some components with β̄ ≈ 0 were
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slightly affecting the side lobes in the radiation pattern, but the pattern from the

aperture integration of just fast wave components was in good agreement with the

MoM radiation pattern.

The reflection coefficient of the LWA was also calculated. The reflection coefficient

calculated from the MPM extracted fast harmonics was in excellent agreement with

the reflection coefficient calculated from the MoM radiation pattern.

The effects of the strip length were also analyzed. It was observed that by in-

creasing the strip length of the 3-D LWA, the antenna radiation behavior became

very close to the 2-D LWA. It was also found that the MPM extracted fast γ̄m are

in good agreement with the SDMoM results of the 2-D strip grating. The reflection

coefficient of the new design with longer strips was also calculated using the MPM

extracted components.
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Conclusions

In this thesis, the utilization of the matrix pencil method to analyze the closed top

guiding structures and leaky-wave antennas has been investigated. The MPM can be

be used to extract the complex propagation constants γm from the MoM field samples.

Once the γm are calculated, the least-squares method can be used to extract the

amplitude coefficient Cm. Then the radiation pattern of the LWAs can be obtained

by using the γm and Cm associated with the radiating or leaky mode in the aperture

integration. The reflection coefficient for any specific mode can be calculated at any

given point by obtaining the incident and reflected field using the γm and Cm of that

mode. For this research work, a computer program was developed in the FORTRAN

90 to apply the MPM and least-squares fit to the MoM field samples.

In Chapter 3, the MPM was used to analyze various 2-D guiding structures. The

structures were solved using the MoM and the MoM data was then used in the MPM.

The MPM β was in excellent agreement with the theoretical wavenumber. It has been

proved that the MPM along with the least-squares method can extract the γm and

Cm from the MoM near-field data, and the extracted components can be used to

reconstruct the original MoM near field. It also has been confirmed that as long as

the sampling region is not too close to the open ends of the structures this approach

61
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is reliable.

The reflection coefficient was calculated using the MPM γm and least squares

Cm. For closed-end structures, it has been proved that this approach is perfect

by comparing the calculated results with the theoretical results (obtained from the

boundary conditions of PEC). For open-ended structures, it was found that the plane

wave excitation is not good because it causes the contamination of the field inside

due to the edge diffractions from the open ends. Thus to be able to avoid this

contamination the load was needed to be closed from the effecting open end. The

approach of using a Salisbury screen was found useful to close the load. The objective

of the Salisbury screen was to absorb the incoming waves and hence to prevent the

reflection from the closed end. We have confirmed that the absorber termination

with Salisbury screen provides a remarkable improvement in the calculation of the

reflection coefficient when the mode traveling in the structure is TEM.

In Chapter 4, a periodic 2-D LWA with plane wave excitation was solved by using

the MoM. The field samples were taken by avoiding the open ends with a distance

of 2λg. The MPM extracted fast wave γm were in good agreement when compared

with the SDMoM γm of 2-D strip grating. The MPM βm were also in good agreement

with the Floquet theory βn. It has been demonstrated that the extracted γm and Cm

associated with the fast waves can be used in the aperture integration to obtain the

radiation pattern. The accuracy of this approach has been validated by comparisons

with the aperture integration of the SDMoM γm and the radiation pattern from the

reciprocity (MoM).

For practical situations, we can not just close the LWAs from the right end by

putting a metal sheet, because then a strong beam will be present in the opposite

direction, which is dependent on the reflected fast wave. But by leaving the end

open, the edge diffractions from the incident plane wave cause the contamination of

the field inside. A Salisbury screen was used to close the structures in the Chapter
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3, which is suitable for TEM waves. More generally, if we close the structure, TM

waves will hit the end with oblique angles of incidence, so a promising approach is to

use an artificial absorber termination with Dallenbach layer, which absorbs the waves

coming from a wide range of angles. It has been demonstrated that the Dallenbach

absorber remarkably improves the reflection coefficient and the radiation pattern (by

suppressing the forward beam).

Another periodic 2-D LWA (which is infinite in x and y) was considered for the

MPM analysis. It was observed that the infinite and finite structures behave differ-

ently from one another when the plane wave excitation is used. The β changes by

changing the plane wave angle of incidence. Therefore, further analysis of infinite

structure was not done using this approach in this thesis.

In Chapter 5, a periodic 3-D LWA was analyzed using the MPM. The antenna was

excited using an array of three magnetic dipoles near the origin inside the antenna.

The objective of using an array was to approximate a uniform line source (TMx polar-

ization was assumed). The accuracy of the MPM extracted γm have been validated by

comparisons with the Floquet theory βn. It has also been verified that the extracted

fast-wave component was getting more and more dominant as the height of the sam-

pling region above the aperture was increasing, because the slow-wave component

was getting weaker and weaker.

In the radiation pattern synthesis, the extracted fast wave γm and Cm were used

in the aperture integration. A good agreement with the MoM radiation pattern was

obtained by using just fast components. Some MPM extracted components with

β ≈ k0, do not follow the Floquet theory. When they were used along with the

fast wave components in the aperture integration, the radiation pattern was slightly

changed. But the radiation pattern obtained from the fast-wave components was

good enough to give a good agreement with the MoM radiation pattern. Therefore,

these MPM extracted components (with β ≈ k0) were neglected for further analysis.
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The reflection coefficient was calculated successfully using the extracted γm and

Cm. This structure was excited by using a line source, which means the edge diffrac-

tions can not contaminate the field from open right end, and closed right end is not

required. Therefore, the reflection coefficient Γ for 3-D LWA can be calculated with-

out closing the structure. It has also been proved that finding the Γ for the radiating

harmonics is a very useful tool for predicting the forward lobe of the LWA.

The effect of strip length on the behavior of 3-D LWA was also investigated. It

was shown that by increasing the strip length of the LWA from b = 5 to 20 mm,

the radiation pattern was changed. The new radiation pattern was very close to the

2-D LWA pattern. The MPM γm of the 3-D LWA with longer strips were in good

agreement with the SDMoM γm of a 2-D strip grating. Eventually, it was demon-

strated how the strip length affected the propagation constants, radiation pattern

and reflection coefficient of LWA.

So far, the reflection coefficient was calculated using the fast wave components,

but it was found challenging to make sense out of the reflection coefficient for the

other components. In the near future, this problem would be solved. In 2-D analysis,

more sources should be available to obtain the radiation pattern using the MoM. The

plane wave excitation is not ideal, as it causes edge diffractions and also the radiation

pattern can not be obtained for a transmitting antenna. In this thesis reciprocity was

used to obtain the radiation pattern for a receiving antenna, which is an extremely

slow procedure.

An infinitely long LWA could not be analyzed in detail because of the β depen-

dency on the incident plane wave angle. It would be interesting if it is possible to

analyze an infinite 2-D LWA using the MPM in order to obtain the correct space

harmonics. It is hoped that this thesis might help other researchers in the future.
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