

A DMAIC Framework for Improving Software Quality in

Organizations: Case Study at RK Company

Racha Karout

A Thesis

In

The Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Quality Systems Engineering) at

Concordia University

Montreal, Quebec, Canada

February, 2015

 Racha Karout, 2015

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Racha Karout

Entitled: A DMAIC Framework for Improving Software Quality in Organizations: Case

Study at RK Company

and submitted in partial fulfillment of the requirements for the degree of

 Master of Applied Science (Quality Systems Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final Examining Committee:

Dr. A. Youssef Chair

 Dr. A. Awasthi Supervisor

 Dr. A. Ben Hamza CIISE Examiner

 Dr. A. Bulgak External Examiner (MIE)

Approved by:

 Chair of Department or Graduate Program Director

 2015

 Dean of Faculty

iii

ABSTRACT

A DMAIC Framework for Improving Software Quality in

Organizations: Case Study at RK Company

Racha Karout

 Managing quality is a vital aspect in software development world, especially in the current

business competition for fast delivery of feature rich products with high quality. For an

organization to meet its intended level of excellence in order to ensure its success, a culture of

quality should be built where every individual is responsible of quality and not just the software

testing team. However, delivering software products with very few bugs is a challenging constraint

that is usually sacrificed in order for a company to meet other management constraints such as

cost, scope and scheduling.

The purpose of this thesis is to apply six sigma DMAIC framework on 'RK’ company

(name anonymized) in order to help software organizations focus on improving the quality of their

software products. Different phases of DMAIC methodology are applied to one of the largest

software applications for ‘RK’ company where critical to quality aspects were identified,

production bugs were classified and measured, the causes of the large number of production bugs

were specified leading to different improvement suggestions. Several metrics were proposed to

help ‘RK’ company control its software development process to ensure the success of the project

under study.

iv

ACKNOWLEGEMENT

I would like to thank my supervisor Dr. Anjali Awasthi for her guidance, help and

encouragement throughout my work on this thesis.

I am also very thankful to my Manager J. D. for facilitating the interviews and collection

of information. Without his help, encouragement and support, this thesis wouldn’t be

completed.

I am very grateful to my family and beloved ones especially my Mom for her endless

support, patience, inspiration and for always pushing me to move forward.

I would also like to use this opportunity to thank my friends and colleagues for their

spiritual support and encouragement.

v

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION .. 3

1 Background .. 3

2 Problem Definition .. 3

3 Research Objectives .. 4

4 Thesis Organization .. 5

CHAPTER 2: LITERATURE REVIEW .. 6

1 Introduction ... 6

2 What is Quality? .. 6

3 Six Sigma ... 8

3.1 Six Sigma Key Concepts ... 9

4 The DMAIC Methodology ... 9

5 Quality Principles and Six Sigma... 11

5.1 Customer Focus .. 11

5.2 Participation and Teamwork .. 12

5.3 Process Focus and Improvement ... 12

6 Software Development Processes .. 13

7 Waterfall Model .. 15

7.1 Advantages and Disadvantages of Waterfall Model .. 19

8 Software Quality Factors .. 20

9 Common Software Quality Problems .. 24

10 Agile Methodology.. 26

10.1 Important Values of Agile... 27

10.2 Critical Success Factors in Agile Software Projects ... 29

vi

10.3 Decision-Making Challenges and Team Collaboration .. 33

10.4 How Can Agile Techniques Enhance Software Quality ... 38

11 Agile Software Development Maturity .. 42

12 Popular Agile Methods ... 44

12.1 Extreme Programming (XP) ... 45

12.2 Scrum Method.. 45

13 What is Kanban System? .. 47

13.1 Benefits of Kanban .. 49

14 Test Automation .. 51

14.1 Benefits of Test Automation ... 52

14.2 Principles of Test Automation .. 53

15 Improving Software Quality through Continuous Improvement 55

16 Impact of CMM on Certain Software Critical Factors.. 57

17 Metrics and Management Reporting .. 62

18 Research Gaps ... 67

19 Summary and Conclusion ... 68

CHAPTER 3: SOLUTION APPROACH ... 69

1 Introduction ... 69

2 DMAIC Tools .. 69

3 Define Phase .. 70

3.1 Critical To Quality (CTQs) ... 70

3.2 Process Definition - SIPOC Diagrams ... 71

4 Measure Phase ... 71

4.1 Pareto Chart ... 71

5 Analysis Phase ... 72

vii

5.1 5-Why Technique .. 72

5.2 Cause and Effect Diagram .. 73

5.3 Interrelationship Diagram ... 74

6 Improvement Phase ... 74

6.1 Quality Function Deployment .. 75

7 Control Phase... 77

7.1 Control System Components .. 77

CHAPTER 4: CASE STUDY AT RK COMPANY .. 78

1 Introduction ... 79

2 ‘RK’ Company and DMAIC .. 79

3 Define Phase .. 80

3.1 Critical To Quality (CTQs) ... 80

3.2 Process Definition - SIPOC Diagrams ... 81

4 Measure Phase ... 84

4.1 Pareto Chart Based on the Type of Errors ... 85

4.2 Pareto Chart Based on the Seasonality ... 86

4.3 Pareto Chart Based on the Severity of the Bugs .. 87

4.4 Pareto Chart Based on the Type of Errors and Severity ... 88

4.5 Pareto Chart Based on the Severity and Seasonality ... 90

4.6 Pareto Chart Based on the Type of Errors per Season .. 92

5 Analysis Phase ... 93

5.1 Analysis Results... 94

5.2 5-Why Technique .. 95

5.3 Cause and Effect Diagram .. 96

5.4 Interrelationship Diagram ... 97

viii

5.5 Analysis Conclusion .. 98

6 Improvement Phase ... 99

6.1 Improvement Suggestions ... 100

6.2 How Can ‘RK’ Company Implement Scrum Method ... 101

6.3 How Can ‘RK’ Company Implement Kanban ... 103

6.4 How Can ‘RK’ Company Coordinate with Kanban Systems 106

6.5 How can ‘RK’ Company Start Automating ... 110

6.6 How Can the Automation Team Create Good Quality Test 113

6.7 How can ‘RK’ Company Implement Quality Function Deployment......................... 115

7 Control Phase... 119

CHAPTER 5: CONCLUSIONS AND FUTURE WORKS ... 121

1 SWOT Analysis ... 121

2 Future Works ... 123

REFERENCES ... 124

APPENDIX ... 134

1

LIST OF FIGURES

Figure 1: Waterfall model .. 17

Figure 2: Framework of software quality from client's perspective (Issac et al., 2010) 22

Figure 3: The research model (Chow & Cao, 2008) .. 30

Figure 4: Scrum phases (Schwaber, 1995) .. 46

Figure 5: Cumulative flow diagram from a Kanban system .. 63

Figure 6: Average Lead Time .. 64

Figure 7: Throughput bar chart (Anderson, 2010).. 65

Figure 8: Defects per feature (Anderson, 2010) ... 66

Figure 9: Project SIPOC Diagram ... 83

Figure 10: Pareto Chart based on type of errors ... 86

Figure 11: Pareto chart based on seasonality .. 87

Figure 12: Pareto chart based on severity ... 88

Figure 13: Pareto chart based on type of errors and severity ... 90

Figure 14: Pareto chart based on severity and seasonality ... 91

Figure 15: Pareto chart based on type of errors per season.. 93

Figure 16: Cause and effect diagram ... 97

Figure 17: Interrelationship diagram ... 98

Figure 18: Kanban work flow (Anderson 2010) ... 104

Figure 19: Quality Function Deployment ... 116

2

LIST OF TABLES

Table 1: DMAIC Framework... 8

Table 2: Software Development Processes ... 15

Table 3: Software Quality Factors (Hossain et al., 2013) .. 21

Table 4: Common Software Quality Problems ... 26

Table 5: Success attributes ... 31

Table 6: Summary of results for first CSFs study .. 32

Table 7: Identified success factors ... 33

Table 8: Agile techniques and affected quality factors .. 42

Table 9: Capability maturity model levels (Sabramanian et al., 2007) ... 58

Table 10: Summary of Used DMAIC Tools ... 69

Table 11: Bugs per type.. 85

Table 12: Bugs per seasonality .. 86

Table 13: Bugs per severity.. 87

Table 14: Bugs per type and severity .. 89

Table 15: Bugs per severity and seasonality ... 91

Table 16: Bugs per type and seasonality ... 92

Table 17: SWOT analysis of DMAIC ... 122

3

CHAPTER 1:

INTRODUCTION

1 Background

To compete in today’s world, every business needs to improve. However, improving business

performance requires a structured approach, disciplined thinking, and the engagement of everyone

in the organization. These elements have been the foundation for many approaches to productivity

and quality improvement over the years (Evans & Lindsay, 2005).

The software industry is no exception as our world runs on software. In recent years, software has

increasingly become a critical component in products in the consumer and capital goods industries.

More and more products contain multiple software components (embedded systems), and depend

on it for many of their functions. In addition, software has come to play an important role in many

service industries such as telecoms, banking and insurance industries (Issac et al., 2010). As a

result, software quality is crucial and poor quality is not acceptable. However, despite the efforts

to employ software engineering methodologies, software development has not been consistently

successful, often resulting in delayed, failed, abandoned, rejected software project. Even those

software projects already implemented may need expensive on-going maintenance and corrective

releases or service packs (Chow & Cao, 2008).

2 Problem Definition

IEEE (1991), defined software quality as the degree to which a system, component, or process

meets specified requirements, in other words the degree to which a system, component, or process

4

meets customer or user needs or expectations (as cited in Galin, 2004). The software should have

few defects, since it is impossible to achieve zero defects. Chang et al. (2006) mentioned that the

major software quality attributes are mainly functionality, reliability, usability and maintainability

and in this case, the software should not have bugs that reduce the identified quality attributes.

There should not be issues that affect its ability to maintain or re-establish its level of performance.

The software should be easy to use and properly structured that would make it easy to maintain.

However, with today’s market competition and the need for rapid delivery, software quality is

often sacrificed, thus leading to failure of the software projects. Also, the use of traditional

methodology such as waterfall with the current market pace, continuously changing customer

requirements, rapidly evolving technology in the current software industry plays a major role in

reduced software test coverage, and as a consequence poor software quality. Moreover, people

jump to solutions without fully understanding the problem or finding the root cause of poor quality.

3 Research Objectives

Based on the problems stated above, the main objectives of this research are defined as follows:

1. Improve software quality in organizations.

2. Identify the root cause(s) of the problems that result in poor quality in software

organization, by identifying the boundaries of their processes, analyzing the processes that

are currently followed and identifying what is critical to customer.

3. Identify improvement opportunities based on the root cause(s) of poor quality.

4. Show how companies can control their processes to ensure that the improvements applied

are directing the software project towards providing the customers what they need at high

level of quality.

5

4 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 Literature Review. This chapter describes six sigma with focus on DMAIC framework.

It also explains different software development processes with detailed description of agile

methodology and its importance as well as other improvement tools.

Chapter 3 Solution approach. This chapter describes the proposed DMAIC framework and the

benefits of DMAIC tools.

Chapter 4 Case study at RK Company. This chapter focuses on the implementation of the proposed

solution on RK Company.

Chapter 5 Conclusions and Future Works. This chapter includes a SWOT analysis for six sigma

DMAIC approach as well as the suggested future works.

The end of the paper contains the references and appendix containing the interview questions.

6

CHAPTER 2:

LITERATURE REVIEW

1 Introduction

This chapter presents the literature review on six sigma and DMAIC (define, measure, analyze,

improve and control) framework. It also explains the software quality factors and identifies the

common software quality problems. Different software development processes are compared and

a detailed description of the agile methodology is presented with explanation of how it is used to

overcome most of the identified common software quality problems. An emphasis is applied on

this part since agile is considered as one of the improvement suggestions in the six sigma DMAIC

framework of this paper. This is followed by a literature review of Kanban tool that is also used as

an improvement suggestion and a thorough explanation of test automation is provided. Moreover,

a description on how continuous improvement can improve software quality is discussed, as well

as the impact of capability maturity model on certain software critical factors. Finally, a description

of different management reporting metrics is presented as it has a relevance to the current paper

and is used in the control phase of DMAIC methodology.

2 What is Quality?

The quest for improved quality of products, processes, and indeed, all aspects of business

performance, is the driving force behind six sigma. However, people view quality in relation to

differing criteria based on their individual roles in the production-marketing value chain. In

7

addition, the meaning of quality continues to evolve as the quality profession grows and matures

(Evans & Lindsay, 2005).

 Quality from the manufacturing perspective:

Garvin (1984) mentioned that manufacturing-based definition focus on the supply side of the

equation, and are primarily concerned with engineering and manufacturing practice. Virtually all

manufacturing based definitions identify quality as “conformance to requirements”. Once a design

or a specification has been established, any deviation implies a reduction in quality. Excellence is

equated with meeting specifications and with “making it right the first time”.

 Quality from the design perspective:

One way of defining quality is a function of specific, measurable variable and that differences in

quality reflect differences in quantity of some product attribute. This assessment implies that

higher levels or amount of product characteristics are equivalent to higher quality. As a result,

quality is often mistakenly assumed to be related to price: the higher the price, the higher the

quality, although most consumers know that this is not always true (Evans & Lindsay, 2005).

 Quality from the customer perspective:

Another definition of quality is based on the presumption that what a consumer wants determines

quality. Individuals have different wants and needs and, hence, different quality standards, which

leads to a user-based definition: quality is defined as fitness for intended use, or how well the

product performs its intended function (Evans & Lindsay, 2005).

8

 Customer-Driven quality:

The most powerful customer-driven definition of quality that remains popular today: Quality is

meeting or exceeding customer expectations (Evans & Lindsay, 2005).

3 Six Sigma

Six sigma can be best described as a business process improvement approach that seeks to find

and eliminate causes of defects and errors, reduce cycle times and cost of operations, improve

productivity, better meet customer expectations, and achieve a higher asset utilization and returns

on investment in manufacturing and service processes (Evans & Lindsay, 2005). The objective of

six sigma is to increase the profit margin, improve financial condition through minimizing the

defects rate of product. It increases the customer satisfaction, retention and produces the best class

product from the best process performance (Kabir et al., 2013). It is based on a simple problem

solving methodology – DMAIC (table 1), which stands for Define, Measure, Analyze, Improve,

and Control.

Sixsigma is focused on improving the basic four metrics: quality, productivity, cost and

profitability (Evans & Lindsay, 2005).

D Define

M Measure

A Analyze

I Improve

C Control

Table 1: DMAIC Framework

9

3.1 Six Sigma Key Concepts

The core philosophy of six sigma is based on some key concepts:

1. Think in terms of key business processes and customer requirements with a clear focus on

overall strategic objectives.

2. Focus on corporate sponsors responsible for championing projects, support team activities,

help to overcome resistance to change, and obtain resources.

3. Emphasize quantifiable measures that can be applied to all parts of an organization.

4. Ensure that appropriate metrics are identified early in the process and that they focus on

business results, thereby providing incentives and accountability.

5. Provide extensive training followed by project team deployment to improve profitability,

reduce non-value-added activities, and achieve cycle time reductions.

6. Create highly qualified process improvement experts who can apply improvement tools and

lead teams.

7. Set stretch objectives for improvement.

These concepts provide a logical and disciplined approach to improving business performance,

engaging the workforce, and meeting the goals and objectives of top management (Evans &

Lindsay, 2005).

4 The DMAIC Methodology

The DMAIC is a process improvement cycle of six sigma program as well as an effective problem

solving methodology (Hung & Sung, 2011). The five steps involved in the DMAIC methodology

are described as follows:

10

1. Define

After a six sigma project is selected, the first step is to clearly define the problem. One must

describe the problem in very specific operational terms that facilitate further analysis. A good

problem statement should also identify customers and the critical to quality (CTQs) that have the

most impact on product or service performance.

2. Measure

This phase of the DMAIC process focuses on how to measure the internal processes that impact

CTQs. It requires understanding the causal relationship between process performance and

customer value. Also, procedures for gathering facts, collecting good data, observations and

careful listening must be defined and implemented.

3. Analyze

A major flaw in many problem-solving approaches is a lack of emphasis on rigorous analysis. Too

often, we want to jump to a solution without fully understanding the nature of the problem and

identifying the source, or “root cause”, of the problem. The Analyze phase of DMAIC focuses on

why defects, errors, or excessive variation occur.

4. Improve

Once the root cause of a problem is understood, the analyst or team needs to generate ideas for

removing or resolving the problem and thereby improve the CTQs. This idea-gathering phase is a

highly creative activity, because many solutions are not obvious.

11

This process includes confirming that the proposed solution will positively impact the key process

variables and the CTQs, and identify the maximum acceptable ranges of these variables. Problem

solutions often entail technical or organizational changes.

5. Control

The control phase focuses on how to maintain the improvements, and includes putting tools in

place to ensure that the key variables remain within the maximum acceptable ranges under the

modified process (Evans & Lindsay, 2005).

5 Quality Principles and Six Sigma

Modern quality management is based on three fundamental principles:

1. A focus on customers.

2. Participation and teamwork by everyone in the organization.

3. A process focus supported by continuous improvement and learning (Evans & Lindsay,

2005).

5.1 Customer Focus

The customer is the principal judge of quality. Perceptions of value and satisfaction are influenced

by many factors throughout the customer’s overall purchase, ownership, and service experiences.

To accomplish this task, a company’s efforts need to extend well beyond merely meeting

specifications, reducing defects and errors, or resolving complaints. They must include both

designing new products that truly delight the customer and responding rapidly to changing

consumer and market demands. A company close to its customer knows what the customer wants,

12

how the customer uses its products, and anticipates needs that the customer may not even be able

to express. To meet or exceed customer expectations, organizations must fully understand all

product and service attributes that contribute to customer value and lead to satisfaction and loyalty

(Evans & Lindsay, 2005).

5.2 Participation and Teamwork

In any organization, the person who best understands his or her job and how to improve both the

product and the process is the one performing it. When managers give employees the tools to make

good decisions and the freedom and encouragement to make contributions, they virtually guarantee

that better quality products and production processes will result. Employees who are allowed to

participate in decisions that affect their jobs and the customer can make substantial contributions

to quality and business performance (Evans & Lindsay, 2005).

The use of self-managed teams that combine teamwork and empowerment is a powerful method

of employee involvement.

Six sigma relies on the participation and teamwork of employees at all levels, to understand

business problems, uncover their sources, generate solutions for improvement, and implement

them (Evans & Lindsay, 2005).

5.3 Process Focus and Improvement

Processes are fundamental to six sigma because, a process is how work creates value for customers

(Evans & Lindsay, 2005).

13

Improving value added processes is the principal activity of six sigma. These improvements may

take any one of several forms.

1. Enhancing value to the customer through new and improved products and services.

2. Reducing errors, defects, waste, and their related costs.

3. Increasing productivity and effectiveness in the use of all resources.

Improving responsiveness and cycle time performance for such processes as resolving

customer complaints or new product introduction.

A process focus supports continuous improvement efforts by helping to understand these synergies

and to recognize the true sources of problems. Major improvements in response time may require

significant simplification of work processes and often drive simultaneous improvements in quality

and productivity (Evans & Lindsay, 2005).

6 Software Development Processes

Many software development methodologies have evolved overtime. Each process has its

advantages and disadvantages that make it suitable for specific type of projects. Table 2 describes

the most popular models.

14

Process Definition Advantages Disadvantages

Waterfall

model

It consists of several

non-overlapping

stages. It emphasizes

planning in early

stages and focuses on

intensive

documentation

 Easy to

implement

 Widely used

 Identifies

deliverables and

milestones

 Document driven

 Work well on

mature products

and weak tams

 Idealized, does

not match reality

 Does not reflect

iterative nature of

exploratory

development

 Unrealistic to

expect accurate

requirements so

early in project

 Delayed

discovery of

serious errors

 Difficult to

integrate risk

management

 Difficult and

expensive to make

changes(Munassar

& Govardhan,

2010)

Prototyping

Model

It is the development

approach of activities

during software

development process,

the development of

prototypes, i.e.,

incomplete versions of

the software program

being developed

 Gives an idea of

what the final

system looks like.

 Enables a higher

output for user

 Cost effective

 Assists to identify

any problems

with the earlier

design,

requirements

analysis and

coding activities.

 Lack of flexibility

 Not suitable for

large applications

 Project

management

difficulties

(Maheshwari &

Jain, 2012)

15

Table 2: Software Development Processes

7 Waterfall Model

Since the current methodology for the project under study is waterfall, it will be described in more

details here.

Royce (1987) mentioned that the waterfall model is a sequential software development process in

which progress is regarded as flowing increasingly downwards (similar to a waterfall) through a

Spiral Model It is a model that

focuses on risk

assessment and on

minimizing project

risk by breaking a

project into smaller

segments. Each cycle

involves four steps:

determining

objectives, evaluating

alternatives,

developing and

verifying deliverables

and planning next

iteration (Maheshwari

& Jain, 2012).

 High amount of

risk analysis

 Software is

produced early in

the software life

cycle.

 Costly to use.

 Risk analysis

requires highly

specific expertise

 Project success is

highly dependent

on the risk

analysis phase

(Munassar &

Govardhan, 2010)

Agile

Development

Boehm and Turner

(2003) described agile

process as an iterative

approach in which

customer satisfaction

is at highest priority as

the customer has direct

involvement in

evaluating the software

(as cited in Sharma et

al., 2012)

 Adaptive to

changing

environment

 Ensures customer

satisfaction

 Least

documentation

 Reduces risk of

development

 Hard to estimate

effort in large

deliveries

 Lack of emphasis

on design

documentation.

16

list of phases that must be executed in order to successfully build a computer software. Originally,

the waterfall model was proposed by Winston W. Royce in 1970 to describe a possible software

engineering practice (as cited in Bassil, 2012). The waterfall model defines several consecutive

phases that must be completed one after the other and moving to the next phase only when its

preceding phase is completely done. For this reason, the waterfall model is recursive in that each

phase can be endlessly repeated until it is perfected (Bassil, 2012). Figure 1 describes the different

phases of waterfall.

17

Requirement Analysis

Implementation

System Design

Testing

Maintenance

Figure 1: Waterfall model

1. Requirement Analysis Phase: often known as Software Requirements Specification (SRS)

is a complete and comprehensive description of the behavior of the software to be developed.

It implicates system and business analyst to define both functional and non-functional

requirements. Usually, functional requirements are defined by means of use cases which

describe the users’ interactions with the software. They include such requirements as

purpose, scope, perspective, functions, software attributes, user characteristics,

functionalities specifications, interface requirements, and database requirements. In contrast,

the non-functional requirements refer to the various criteria constraints, limitations, and

requirements imposed on the design and operation of the software rather than on particular

18

behaviors. It includes such properties as reliability, scalability, testability, availability,

maintainability, performance and quality standards.

2. System Design Phase: It is the process of planning and problem solving for a software

solution. It implicates software developers and designers to define the plan for a solution

which includes algorithm design, software architecture design, database conceptual schema

and logical diagram design and graphical user interface design.

3. Implementation: It refers to the realization of business requirements and design

specifications into a concrete executable program, database, website, or software component

through programming and deployment. This phase is where the real code is written and

compiled into an operational application and where the database and text files are created.

In other words, it is the process of converting the whole requirements and blueprints into

production environment (Bassil, 2012).

4. Testing Phase: It is also known as verification and validation which is a process for checking

that a software solution meets the original requirements and specifications and that it

accomplishes its intended purpose (Bassil, 2012). In IEEE-STD-610 (1991) was mentioned

that verification is the process of evaluating software to determine whether the products of a

given deployment phase satisfy the conditions imposed at the start of that phase, while,

validation is the process of evaluating software during or at the end of the development

process to determine whether it satisfies specified requirements (as cited in Bassil, 2012).

Moreover, the testing phase is the outlet to perform debugging in which bugs and system

glitches are found, corrected, and refined accordingly.

5. Maintenance Phase: It is the process of modifying a software solution after delivery and

deployment to refine output, correct errors, and improve performance and quality. Stellman

19

and Green (2005) mentioned that additional maintenance activities can be performed in this

phase including adapting software to its environment, accommodating new user

requirements, and increasing software reliability (as cited in Bassil, 2012).

7.1 Advantages and Disadvantages of Waterfall Model

Waterfall is easy to understand and implement. It reinforces good habits such as define-before-

design, design-before-code. It identifies deliverables and milestones (Munassar & Govardhan,

2010). Also, it allows to control the project by scheduling and setting deadlines for each phase of

the software development life cycle. As a result, the project is more manageable since each stage

has specific deliverables at specified schedule. Also, these phases are completed one at a time.

Waterfall model is good for small projects where requirements are clearly defined and detailed at

the first stage. However, waterfall model is not suitable for moderate to large projects.

The level of uncertainty and risk is very high. It is idealized and doesn’t match reality well. Also,

the software is delivered late in project (Munassar & Govardhan, 2010), and as a result the bugs

and errors are not found until the end of the software life cycle which leads to an increased cost to

fix those faults.

Moreover, waterfall is not a good model for complex and object oriented projects. Another

disadvantage of waterfall model is that it is not suitable for projects where requirements change

all the time which leads to a high risk.

20

8 Software Quality Factors

Quality can be defined as high levels of user satisfaction and low defect levels, often associated

with low complexity. The quality of software is assessed by a number of variables. These variables

can be divided into external and internal quality criteria. External quality is what a user experiences

when running the software in its operational mode. Internal quality refers to aspects that are code-

dependent, and that are not visible to the end-user. External quality is critical to the user; while

internal quality is meaningful to the developer only (as cited in Hossain et al., 2013). Schulmeyer,

(1998) demonstrated in the table below (table 3) a version of the software quality model (as cited

in Hossain et al., 2013). This model categorized 14 quality factors in three steps of the development

cycle: Quality of design, Quality of performance, Quality of adaptation. This model provides a

superior structure of reference to recognize software quality (Hossain et al., 2013).

Quality of Design

 Description

Correctness Extent to which the software conforms to its

specifications and conforms to its declared

objectives

Maintainability Ease of effort for locating and fixing a software

failure within a specified time period

Verifiability Ease of effort to verify software features and

performance based on its stated objectives

Quality of

Performance

Efficiency Extent to which the software is able to do more

with less system (hardware, operating system,

communications, etc.) resources

Integrity Extent to which the software is able to withstand

intrusion by unauthorized users or software

within a specified time period

Reliability Extent to which the software will perform

(according to its stated objectives) within a

specified time period

Usability Relative ease of learning and the operation of the

software

Testability Ease of testing the program to verify that it

performs a specified function

21

Quality of

Adaptation

Expandability Relative effort required to expand software

capabilities and / or performance by enhancing

current functions or by adding new functionality

Flexibility Ease of effort for changing the software’s

mission, functions or data to meet changing needs

and requirements

Portability Ease of effort to transport software to another

environment and / or platform

Reusability Ease of effort to use the software (or its

components) in another software systems and

applications

Interoperability Relative effort needed to couple the software on

one platform to another software and / or another

platform

Intra-operability Effort required for communications between

components in the same software system.

Table 3: Software Quality Factors (Hossain et al., 2013)

However, Ambrose and Eynon (1998) mentioned that no attempt has been made to study the

software quality and customer satisfaction from the client’s point of view (as cited in Issac et al.,

2010). Therefore, Issac et al. (2010) made an attempt to identify the critical factors of softwar

quality from the perceptions of the clients / customers. They proposed a conceptual framework as

shown in figure 2 for quality management as an instrument to measure the critical dimensions of

software quality as perceived by the clients.

22

Software QualityClient Focus Process Quality

Infrastructure and Facilities

Product Quality Characteristics

Employee Competence

Operational Effectiveness

Figure 2: Framework of software quality from client's perspective (Issac et al., 2010)

The various characteristics classified in figure 1 are presented as follows:

Product quality characteristics

In measuring software quality, specific characteristics of a system are typically addressed. (Ben-

Menachem & Marliss, 1997; Humphrey, 1989; Cho, 1998) these characteristics include flexibility,

reusability, maintainability, integration, consistence reliability, functionality, efficiency and

portability (as cited in Issac et al., 2010). These characteristics tend to focus on the engineering

aspects of software-development which ultimately affect the user (customer or client) satisfaction

(Issac et al., 2010).

Process quality management

23

An important issue in achieving quality is whether quality improvement and effort reduction can

be simultaneously achieved. An organization’s competitiveness depends on its ability to apply

appropriate engineering methods and techniques to its development process, which is a key factor

in software development (Issac et al., 2010). (Bunse et al., 1998; Humphrey, 1989; Li et al., 2000)

Hence, to improve the product quality, the process quality needs to be improved continuously (as

cited in Issac et al., 2010). Jalote (2000) mentioned that process improvement enables the same

amount of software to be built in less time, with less effort and fewer defects (as cited in Issac et

al., 2010).

Client Focus

The philosophy of quality management is based on customer satisfaction (Issac et al., 2010).

(Ahmed, 2001; Raju & Balasubramanian, 2002) mentioned that the essence of total quality

management, a management philosophy that has attracted the attention of the management

fraternity in the changing global business conditions of the modern era, was to achieve customer

satisfaction through continuous improvement (as cited in Issac et al., 2010). Adam et al. (2001)

concluded that ‘customer focus’ leads to improved quality irrespective of the countries and their

culture (as cited in Issac et al., 2010).

Employee competence

Boehm (1981, 1994) observed that the competence and the level of talents of personnel in the

software industry were the strongest predictors of its results. The author also stated that personnel

incompetence is one of the strongest project risks (as cited in Issac et al., 2010). Curtis et al. (1988)

identified that the basic skill of developing software is related to managing the intellectual

complexity. The authors advocated that individuals who have superior application knowledge,

24

communication skills, high levels of motivation, team spirit and dependability are ‘essential’ for

the success of a project (as cited in Issac et al., 2010).

Infrastructure and facilities

Jones (1998) identified that the improvement of ‘support facilities’ (infrastructure) was one of the

essential elements of successful business performance strategies in total quality management

organizations (as cited in Issac et al., 2010). Li et al. (2000) mentioned that quality (of products /

service) also relies on good tools, good materials, good methods and management techniques, and

latest technological developments (as cited in Issac et al., 2010). Infrastructure becomes very

critical in the case of software industries, where the technological advancement is at a very rapid

pace and the adaptation of technological advancement is compulsory for the survival of software

organizations (Issac et al., 2010).

Operational effectiveness

The indicators of quality are related to the ‘Operational effectiveness’ (performance measures) of

software projects (Issac et al., 2010). Harter et al., 2000 mentioned that to survive, Information

Technology (IT) firms must develop high quality products ‘on-time’ and at low cost, i.e. ‘within

budget’ (as cited in Issac et al., 2010). Thus it can be seen that these aspects (delivery on-time and

delivery within budget) are very important measures of effectiveness and they are highly

significant in achieving customer satisfaction (Issac et al., 2010).

9 Common Software Quality Problems

Some of the common software quality problems are:

25

1. Williams and Cockburn (2003) explained that during the project implementation, both

technology and the business environment change (as cited in Stankovic et al., 2013). This leads

to products that do not meet the needs of customers.

2. Customers are only involved during requirement collecting in traditional software development

(Hossain et al., 2013). However, with today’s market demand, customer requirements

continuously change, and the lack of customer involvement and communication throughout the

project, also leads to the development of projects that do not provide the required customer

solutions.

3. In the traditional plan-driven software development process, work is coordinated by managers

and there is a clear separation of roles (Moe et al., 2010). Thus giving the software development

team less control and lose the ability of close collaboration (Stankovic et al., 2013). This will

affect the performance of the team and as a result reduces the overall quality of software.

4. Software developers and testers have different mindset and goals. The developer’s primary goal

is to complete coding as quickly as possible, the testers’ primary goal is to ensure that the

software is of high quality (Yu & Petter, 2014). When these groups do not develop a shared

mental model by understanding the different goals across groups, these groups will not work

together to address the issues in the project and thus leads to negative impact on the project

quality.

5. In the traditional software models (waterfall), the bugs and errors are not found until the end of

the software life cycle, this late discovery of bugs (Monassar & Govardhan, 2010) leads to an

increased cost to fix the faults. As a consequence, organizations may ignore to fix these issues

as the cost is high.

26

The common software quality problems are summarized in table 4.

Problem Author

Change of technology and business

environment

Williams and Cockburn (2003)

Lack of customer involvement though out the

project

Hussain et al. (2013)

Lack control and collaboration of software

development team

Stankovic et al. (2013)

Lack of development of shared mental model

between developers and testers

Yu and Petter (2014)

Late discovery of errors Monassar and Govardhan (2010)

Table 4: Common Software Quality Problems

10 Agile Methodology

Agile methodology is one of the improvement suggestions provided in the improvement phase of

the DMAIC framework for the project under study, and as a result, it will be described in more

details.

Eriksson et al. (2005) define agility as follows:

Agility means to strip away as much of the heaviness, commonly associated with the traditional

software-development methodologies, as possible to promote quick response to changing

environments, changes in user requirements, accelerated deadline and the like (as cited in Dyba &

Dingsoyr, 2008).

Williams and Cockburn (2003) state that agile development is about feedback and change, that

agile methodologies are developed to embrace, rather than reject, higher rates of change (as cited

in Byba & Dingsoyr, 2008).

27

In 2001, the “agile manifesto” was written by the practitioners who proposed many of the agile

development methods. The manifesto states that agile development should focus on four core

values:

1. Individuals and interactions over processes and tools.

2. Working software over comprehensive documentation.

3. Customer collaboration over contract negotiation.

4. Responding to change over following a plan (Dyba & Dingsoyr, 2008).

10.1 Important Values of Agile

Abrahamsson et al. (2002) explained the important values of agile which are:

1. First, the agile movement emphasizes the relationship and communality of software

developers and the human role reflected in contracts, as opposed to institutionalized

processes and development tools. In the existing agile practices, this manifests itself in close

team relationships, close working environment arrangements, and other procedures boosting

team spirit.

2. Second, the vital objective of the software team is to continuously turn out tested working

software. New releases are produced at frequent intervals. The developers are urged to keep

the code simple, straight forward and technically as advanced as possible, thus lessening the

documentation burden to an appropriate level.

3. Third, the relationship and cooperation between the developers and the client is given the

preference over strict contracts. From a business point of view, agile development is focused

on delivering business value immediately as the project starts, thus reducing the risks of non-

fulfillment regarding the contract.

28

4. Fourth, the development group, comprising both software developers and customer

representatives, should be well-informed, competent and authorized to consider possible

adjustment needs emerging during the development process life-cycle. This means that the

participants are prepared to make changes and that also the existing contracts are formed

with tools that support and allow these enhancements to be made.

According to Highsmith and Cockburn (2001), what is new about agile methods is not the practices

they use, but their recognition of people as the primary drivers of project success, coupled with an

intense focus on effectiveness and maneuverability. This yields a new combination of values and

principles that define an agile world view (as cited in Abrahamsson et al., 2002).

Miller (2001) identified agile software processes characteristics that enable shortening the life

cycle of projects:

1. Modularity on development process level.

2. Iterative with short cycles enabling fast verifications and corrections.

3. Time – bound with iteration cycles from one to six weeks.

4. Parsimony in development process removes all unnecessary activities.

5. Adaptive with possible emergent new risks.

6. Incremental process approach that allows functioning application building in small steps.

7. Convergent (and incremental) approach minimizes the risks.

8. People – oriented, i.e. agile processes favor people over processes and technology.

9. Collaborative and communicative working style (as cited in Abrahamsson et al. 2002)

29

10.2 Critical Success Factors in Agile Software Projects

Critical success factor is defined by Bullen and Rockhart (1981) as the limited number of areas in

which satisfactory results will ensure successful competitive performance for the individual,

department, or organization. Critical success factors are the few key areas where “things must go

right” for the business to flourish and for the managers goal to be attained (as cited in Chow &

Cao, 2008).

Chow and Cao (2008) conducted a survey study that seeks to identify and provide insight into the

critical success factors (CSFs) that help software development projects using agile methods to

succeed. The study compiled the success factors reported in the agile literature, performed

reliability analysis and factor analysis on those factors and consolidated them into a final 12

possible success factors for agile projects in five different categories: Organizational, People,

Process, Technical and Project. This is shown in figure 3.

30

ORGANIZATIONAL FACTORS

 Management Commitment

 Organizational Environment

 Team Enviroment

PEOPLE FACTORS

 Team Capability

 Customer Involvement

PROCESS FACTORS

 Project Management Process

 Project Definition Process

TECHNICAL FACTORS

 Agile Software Techniques

 Delivery Strategy

PROJECT FACTORS

 Project Nature

 Project Type

 Project Schedule

PERCEIVED SUCCESS OF THE

AGILE SOFTWARE

DEVELOPMENT PROJECT

 Quality

 Scope

 Time

 Cost

Figure 3: The research model (Chow & Cao, 2008)

In terms of attributes of success, which depict the overall perception of success of a particular

project, Cohn and Ford (2003) and Lindvall et al. (2004) suggest Quality (i.e. delivering a good

working product), Scope (meeting all requirements by the customer), Timeliness (delivering on

time), and Cost (within estimated cost and effort) (as cited in Chow & Cao, 2008) as shown in

table 5.

31

Dimension Attribute

Overall perceived level of

success

1. Quality (delivering good product or project outcome)

2. Scope (meeting all requirements and objectives)

3. Time (delivering on time)

4. Cost (delivering within estimated cost and effort

Table 5: Success attributes

Chow and Cao (2008) translated the 12 factors into 12 main hypothesis, each linking its existence

as a critical success factor to the success of the agile software development project in terms of four

success dimension: Quality, Scope, Time and Cost.

A web-based survey was conducted to gather feedback from 109 agile software projects from 25

countries around the world, and the collected data were analyzed using the multiple regression

method. The analysis addressed the following questions:

a) Are these 12 factors truly the critical success factors of agile software development projects?

b) If so, what is the relative importance of each factor when compared to other factors?

c) Is there a difference among those five categories in terms of their impact on the success of an

agile software development project? (Chow & Cao, 2008)

The identified critical success factors are summarized in table 6.

32

Critical success factors Quality Scope Timeliness Cost

1. Management commitment

2. Organizational environment

3. Team environment √

4. Team capability √ √

5. Customer involvement √

6. Project management process √

7. Project definition process

8. Agile software engineering techniques √ √

9. Delivery strategy √ √ √

10. Project nature

11. Project type

12. Project schedule

Table 6: Summary of results for first CSFs study

Chow and Cao (2008) concluded that the only factors that could be called critical success factors

are found to be:

a) A correct delivery strategy

b) A proper practice of agile software engineering techniques

c) High-caliber team.

The other factors that could be critical to certain success dimensions are found to be:

a) A good agile project management process

b) An agile-friendly team environment

c) A strong customer environment

The identified success factors are summarized in table 7.

33

Critical success factors 1. Correct delivery strategy

2. Proper practice of agile techniques

3. High-caliber team

Critical factors to certain

dimensions

1. Good agile project management process

2. Agile-friendly team environment

3. Strong customer environment

Table 7: Identified success factors

10.3 Decision-Making Challenges and Team Collaboration

Anthony (1965) described that there are three general levels of decision-making in organizations

depending on the purpose of the management activity: strategic decisions, tactical decisions, and

operational decisions (as cited in Moe et al., 2012). The boundaries between these levels are not

always distinct. However, they differ from one another in terms of information requirements.

Strategic decisions are related to organizational goals and objectives. The information concerning

such decisions is usually incomplete and the decision-making process may extend over a

considerable period of time. Tactical decisions are related to identification and use of resources,

while operational decisions deal with ensuring effectiveness of day-to-day operations within the

organization (Moe et al., 2012).

Agile software development changes the nature of collaboration, coordination and communication

in software projects (Moe et al., 2012). Moe et al. (2009) mentioned that when adopting agile

methods in an organization based on traditional, plan-driven development model, the focus of

decision-making moves from the project manager to the software development team, and the

decision-making process changes from individual and centralized to shared and decentralized.

Thus, leadership is shared and important decisions on what to do and how to do it are made through

34

an interactive process involving many people who influence each other, not just a single person

(as cited in Moe et al., 2012).

Nerur et al. (2005) described that such collaborative decision-making, which involves stakeholders

with diverse backgrounds and goals, is more complicated than traditional approaches, where the

project manager is responsible for most of the decisions (as cited in Moe et al., 2012). Therefore,

to implement agile software development successfully, it is important to explore and understand

the challenges of shared decision-making.

The challenges of shared decision-making were described by designing a multiple case study

consisting of four projects in two software product companies that recently adopted agile methods

and more specifically scrum.

Data was collected from four projects by conducting 45 semi-structured interviews with

developers, scrum masters and product owners. Also, observations of daily meetings, planning

meetings, and review meetings were done. Discussions on status, progress, and how issues were

perceived by team participations were done as well. All the collected information was imported

into a software tool for analyzing qualitative data (NVivo).

By analyzing the data, they identified challenges of shared decision-making in agile. For example,

there was often a conflict between the need for short-term progress and the need for long-term

product quality at the end of sprints in three of four projects, which in turn made it difficult to align

decisions on the operational level, and between the operational, tactical, and strategic levels. They

also found that self-management was affected by the ability to implement a shared decision-

making process. When the teams were missing a clear direction (e.g. unrealistic plans and plans

without a clear priority), individual goals often become more important than team goals, and

alignment among all levels seemed to fail. Introducing shared leadership and shared decision-

35

making does not mean that everyone needs to be involved in all decisions, however, all important

decisions must be communicated to the whole team, and the team needs to identify which decisions

need to be taken together. Also, agile development is designed for managing project development,

not for resolving company internal or cultural problems, e.g. expertise as the basis of authority

(technocracy) and problems related to losing resources.

Changing the way of working is difficult, and when it involves a transition from specialized skills

to redundancy of functions and rational to naturalistic decision-making, it requires a reorientation

not only by the developers but also by management. This change takes time and resources, and it

must be implemented to be able to succeed with agile software development. While introducing

the agile approach to a software project is a top-level strategic management decision it is also

important that this approach is accepted and supported by the whole organization and all

stakeholders at the management and the operational levels (Moe et al., 2012).

On the other hand, Yu and Petter (2014) mentioned that agile methodology enables software

development teams to adapt to customer’s changing requirements through high levels of

interaction and collaboration, which can lead to better project outcomes. The study focuses on

answering the question: “How can theory be applied to agile software practices to explain how

agile practices enable higher levels of collaboration during software development?” For this, a

theory from cognitive psychology known as shared mental models was applied.

Cannon-Bowers and Salas (1993) defined shared mental model as the knowledge structures held

by members of a team that enable them to form accurate explanations and expectations for the

task, and, in turn, to coordinate their actions and adapt their behavior to demands of the task and

other team members (as cited in Yu and Petter, 2014). Shared mental models provide the team

with an internal knowledge base that allows team members to decide what actions to take when

36

novel events happened (Yu & Petter, 2014). Since the purpose of this research is to explain how

theory can be used to explain how agile practices create value in software development effort, they

chose to examine three agile practices in depth.

1. System metaphor

Beck (1999) explained that the system metaphor is an agile software development practice in the

Xtreme Programming (XP) method that is employed at the beginning of the project to develop a

story that everyone –customers, programmers, and managers – can tell about how the system

works. The system metaphor practice enables agile software development teams to create a

“cheap” architecture design which consists of the main components of the software and their

interactions (as cited in Yu & Petter, 2014). Stout et al. (1999) explained that from the lens of

shared mental models theory, when an agile development team uses the system metaphor practice,

they are developing a shared mental model by naturally employing the shared mental models

practice of planning (as cited in Yu & Petter, 2014). The planning practice to develop shared

mental models encourages teams to discuss on team goals, team roles, and how the team can react

to unexpected events. The system metaphor practice is consistent with the shared mental models

planning practice. The system metaphor practice encourages agile teams to create an open

environment and use metaphors or stories to develop shared understandings regarding system

goals, key concepts, major system functionalities, and roles and expertise of the agile team

members (Yu & Petter, 2014).

2. Stand-up meeting

37

Paasivaara et al. (2008) explained that the stand-up meeting is one of the most basic and most

frequently used scrum practices. Stand-up meetings are conducted daily and are short meetings. In

this meeting, the entire team discuss the completed work, identify current bottlenecks or

dependencies, and talk about next steps (as cited in Yu & Petter, 2014). Dinakar (2009) mentioned

that the stand-up meeting can aid in the creation of a shared mental model within the team. Using

shared mental models theory as a lens, the stand-up meeting agile practice provides opportunity to

increate teams’ shared understanding about task work through daily monitoring and control of the

project’s progress(as cited in Yu & Petter, 2014). Also, the daily stand-up meeting incorporates

the shared mental models practices of leader briefings and reflexivity (Yu & Petter, 2014).

Marks et al. (2000) explained that leader briefings are a form of leader communication within

teams. Leader briefings should include: (1) statement of the goals for the task, (2) identification of

significant risks and how to address them, (3) specification of opportunities, and (4) prioritization

of actions. Effective leader briefings conducted prior to the execution of a task enhance the

similarity and accuracy on the members’ mental models an increase the team’s ability to adapt to

changing task demands (as cited in Yu & Petter, 2014).

As for reflexivity, West (1996) defined it as the extent to which group members overtly reflect

upon the group’s objectives, strategies, and processes and adapt them to current or anticipated

endogenous or environmental circumstances (as cited in Yu & Petter, 2014). Gurtner (2007)

mentioned that using the reflexivity shared mental models practice enhances the similarity of

teams’ interaction models through developing a shared understanding with regard to the role of

the leader in coordinating the team (as cited in Yu & Petter, 2014).

3. On-site customer

38

Beck (1999) explained that the on-site customer agile practice states that a customer should be

present with the development team on a full time basis (as cited in Yu & Petter, 2014). Martin et

al. (2010) stated that this practice requires both the developers and customers to interact daily (as

cited in Yu & Petter, 2014). Koskela and Abrahamsson (2004) mentioned that the on-site

customers should spend most of their time participating in planning game sessions, acceptance

testing, and retrospective sessions. In addition, the on-site customer may participate in the daily

stand-up meeting (as cited in Yu & Petter, 2014). The on-site customer agile practice improves the

development of shared mental models, specifically, the task work mental model. The on-site

customer agile practice offers developers a greater opportunity to learn the needs of the customers.

The on-site customer agile practice enhances agile teams’ understanding and executing stages.

Through quality, frequent, and various types of communication with the customers, developers

have more occasions to identify if the system’s functionality meets the customers’ needs and to

ask questions about the system being developed. Thus, the agile team developers acquire a shared

and accurate understanding of the task which enables the team to execute tasks efficiently (Yu &

Petter, 2014).

10.4 How Can Agile Techniques Enhance Software Quality

Hossain et al. (2013) identified the agile techniques that enhance software quality based on the

identified software quality factors that were mentioned in the software quality factors section:

1. System Metaphor

39

The system metaphor is a story that everyone: customers, programmers, and managers, can tell

about how the system works. The idea of using a system metaphor to facilitate communication

works toward revealing the reality of the team towards its task. System metaphor is helpful for

communication between customer and developer. It helps the agile development team in

architectural evaluation by increasing communication between team members and users. So

enhance maintainability, efficiency, reliability and flexibility (Hossain et al., 2013)

2. Architectural Spike

An architectural spike is technical risk reduction techniques popularized by Extreme Programming

(XP) where write just enough code to explore the use of technology or technique that you’re

unfamiliar with. Agile projects are designed for iteration at a time. It is a thin slice of the entire

application built for the purpose of determining and testing a potential architecture (Hossain et al.,

2013).

3. Onsite Customer Feedbacks

Onsite customer is one of the most practices in most agile projects that help the developers refine

and correct requirements throughout the project communicating. Agile is intended to improve the

software quality and responsiveness to changing customer requirements. As a type of agile

software development it advocates frequent releases in short development cycles, which is

intended to improve productivity and introduce checkpoints where new customer requirements can

be adopted (Hossain et al., 2013).

4. Refactoring

40

Refactoring is a disciplined technique for restructuring an existing body of code, altering its

internal structure without changing its external behavior. Each transformation (called a

‘refactoring’) does little, but a sequence of transformations can produce a significant restructuring.

Since each refactoring is small, it’s less likely to go wrong. The system is also kept fully

operational after each small refactoring. Practically refactoring means making code clearer and

cleaner and simpler and well-designed. So refactoring reduces the probability of generating errors

for the period of developments, hence improve software quality factors such as efficiency,

reliability, intra-operability and interoperability, testability (Hossain et al., 2013).

5. Pair Programming

Pair programming is a technique in which two programmers or engineers work together at one

workstation. One writes code while the other, the observer, reviews each line of code as it is typed

in. The two programmers switch roles frequently (Hossain et al., 2013). Cockburn and Williams

(2001) mentioned that while reviewing, the observer also considers the strategic direction of the

work, coming up with ideas for improvements and likely future problems to address. This

procedure increases software quality without impacting time to deliver. Pair programming can

improve design quality factors such as correctness, verifiability, and testability and reduce defects

(as cited in Hossain et al., 2013).

6. Stand-up-Meeting

Stand-up-meeting increases the communication between team members and developers. This

meeting is used to communicate problems, solutions, and promote team focus. Stand-up-meeting

improve software quality factors such as reliability and flexibility (Hossain et al., 2013).

7. Continuous Integration (CI)

41

Fowler (2013) explained that continuous integration (CI) is a fashionable practice among agile

methods where members of a team integrate their work frequently. Each integration is verified by

an automated build (including test) to detect integration errors as quickly as possible. Many teams

find that this approach leads to significantly reduced integration problems and allows a team to

develop cohesive software more rapidly (as cited in Hossain et al., 2013). This continuous

application of quality control aims to improve the quality of software such as integrity, usability,

testability and reduce the time taken to deliver it, by replacing the traditional practice of applying

quality control after completing all development (Hossain et al., 2013).

8. Acceptance Testing

Acceptance testing refers to the functional testing of a user story by the software development

team during the implementation phase. The customer specifies scenarios to test when a user story

has been correctly implemented. A user story is not considered compete until it has passed its

acceptance tests. This means that new acceptance tests must be created for each iteration or the

development team will report zero progress. A principal purpose of acceptance testing is that, once

completed successfully, and provided certain additional (contractually agreed) acceptance criteria

are met. Acceptance testing occurs much earlier and more frequently in an agile methods with

respect to traditional approach (Hossain et al., 2013).

Table 8 shows the quality factors that are affected by each technique.

Technique Affected quality factor

42

System Metaphor  Efficiency

 Reliability

 Flexibility

 Interoperability

Architectural Spike  Correctness

Onsite Customer Feedbacks  Correctness

 Expandability

Refactoring  Reliability

 Testability

 Reusability

 Interoperability

Pair Programming  Efficiency

 Testability

 Portability

Stand-up-Meeting  Flexibility

Continuous Integration  Maintainability

 Verifiability

 Integrity

 Usability

 Expandability

 Reusability

 Intra-operability

Acceptance Testing  Testability

 Portability

Table 8: Agile techniques and affected quality factors

11 Agile Software Development Maturity

Fontana et al. (2014) mentioned that maturity in software development is currently defined by

models such as CMMI-DEV and ISO/IEC 15504 which emphasize the need to manage, establish,

measure and optimize processes. Teams that develop software using these models are guided by

defined, detailed processes. However, an increasing number of teams have been implementing

agile software development methods that focus on people rather than processes. As a result, they

43

conducted a study based on the research question: “How do agile software development

practitioners define maturity?” where the main objective was to identify how agile practices and

the objectives of CMMI-DEV process areas are related to agile software development maturity.

They collected data by forwarding the questionnaire to Brazilian agile software development

practitioners. The respondents represented thirty-three different Brazilian companies and four

multinational companies that developed software primarily for their own use.

In the first part of the questionnaire, the respondents had to evaluate and classify 85 agile practices

on a 5-point scale ranging from 1 (No Maturity), through 2 (Somewhat Mature), 3 (Mature), and

4 (Very Mature), to 5 (Very High Maturity). In the second part of the questionnaire, in which

respondents had to answer an open-ended question, they asked: “Based on your experience, what

is maturity in agile software development?” They decided to use cluster analysis as a means of

grouping practices according to the maturity classifications they received. They also performed a

triangulation using two analysis methods: the quantitative approach for the analysis of responses

of classifying agile practices and quantitative analysis of the open-ended question in the

questionnaire.

Results

The highest-maturity clusters of practices and the concepts that emerged from the practitioners’

definitions enabled them to propose the following definition of agile software development

maturity:

Maturity in agile software development means having an experienced team that:

 Collaborates on projects by communicating and being committed

 Cares about customers and software quality

44

 Allows requirements to change

 Shares knowledge

 Manages source code and tests using tools, methods and metrics supported by

infrastructure appropriate for agility

 Self-organizes at a sustainable pace

 Standardizes and continuously improves agile practices

 Generates perceived outcomes for customers and management.

The quantitative analysis of the classification of the 85 practices showed that higher-maturity

practices are those that support sustainable self-organization, test-driven development, caring

about the solution, management of code and tests, emerging requirements and especially

collaboration. These results are supported by the qualitative analysis of the answers to the open-

ended question. The practitioners’ concepts of maturity revealed that this is perceived mainly in

the outcomes generated by the team for both management and customers. To generate those

outcomes, Team and Processes play an equally important role: the process is defined and

standardized by a team that collaborates and self-organizes (Fontana et al., 2014).

12 Popular Agile Methods

Some of the popular agile methods are Extreme Programming (XP) and Scrum. However, my

focus will be on scrum as it is the suggested agile method for the project under study and will be

explained in details.

45

12.1 Extreme Programming (XP)

The focus of this approach is on customer satisfaction so it empowers developers to be able to

respond to changing customer requirements and to deliver high-quality software quickly and

continuously. Extreme programming improves software projects by embracing communication,

simplicity, feedback, respect, and courage. The original extreme programming recipe contains 12

rules: planning games, small releases, customer acceptance tests, simple design, pair

programming, test-driven development, refactoring, continuous integration, collective code

ownership, coding standard, metaphor and sustainability (Stankovic et al., 2013)

12.2 Scrum Method

Schwaber (1995) mentioned that the main idea of scrum is that systems development involves

several environmental and technical variables (e.g. requirements, time frame, resources, and

technology) that are likely to change during the process. This makes the development process

unpredictable and complex requiring flexibility of the systems development process for it to be

able to respond to the changes. As a result of the development process, a system is produced which

is useful when delivered.

According to Schwaber (1995) scrum process has three phases: pre-game, development and post

– game as described in figure 4.

46

Figure 4: Scrum phases (Schwaber, 1995)

The pre-game phase: contains the planning and architecture design sub-phases. In the planning

sub-phase, the list of product requirements are created in the product backlog. The items in the list

are prioritized and constantly updated by adding, removing or updating the items as well as re-

ordering the priorities. Information related to the resources, tools and risk assessment are also

identified in the planning sub-phase. As for the architecture sub-phase, it consists of designing

how the backlog items will be implements.

The Development phase: According to Schwaber (1995), this phase is an iterative cycle of

development work. The management determines that time competition, quality, or functionality

are met, iterations are completed and the closure phase occurs. Development consists of the

following macro processes:

47

 Meeting with teams to review release plans.

 Distribution, review and adjustment of the standards with which the product

will conform.

 Iterative sprints, until the product is deemed ready for distribution.

The sprint is an iterative cycle of development work where the scrum team organized itself to

produce a new executable product increments in a sprint. Every sprint begins with the sprint

planning meeting in which the product owner and the team discuss which stories will be moved

from the product backlog into the sprint backlog. It is the responsibility of the product owner to

determine what work the team will do and the team needs to decide how the items need to be

implemented.

A sprint is a set of development activities conducted over a pre-defined period. The interval is

based on product complexity, risk assessment, and degree of oversight desired.

As for the post-game or closure, according to Schwaber (1995), when the management team feels

that the variables of time, competition, requirements, costs, and quality concur for a new release

to occur, they declare the release “closed” and enter this phase. This phase prepares the

development product for general release. Integration, system test, user documentation, training

material preparations and marketing material preparation are among closure tasks.

13 What is Kanban System?

Yasuhiro (1981) explained Kanban, meaning card or marker in Japanese, is the more widely

known and recognized type of pull system. A Kanban pull system is sometimes referred to as the

48

Toyota Production System (as cited in Marek et al., 2001). This tool is also suggested in the

improvement phase of DMAIC for the project under study as it can be mixed with agile

methodology.

Anderson (2010) described Kanban system as a number of cards equivalent to the (agreed) capacity

of a system are placed in circulation. One card attaches to one piece of work. Each card acts as a

signaling mechanism. A new piece of work can be started only when a card is suitable. This free

card is attached to a piece of work and follows it as it follows through the system. When there are

no more free cards, no additional work can be started. Any new work must wait in a queue until a

card becomes available. When some work is completed, its card is detached and recycled. With a

card now free, a new piece of work in the queuing can be started.

This mechanism is known as a pull system because new work is pulled into the system when there

is capacity to handle it, rather than being pushed into the system based on demand. A pull system

cannot be overloaded if the capacity, as determined by the number of signal card in circulation has

been set appropriately.

Kanban quickly flushes out issues that impair performance, and it challenges a team to focus on

resolving those issues in order to maintain a steady flow of work. By providing visibility onto

quality and process problem, it makes obvious the impact of defects, bottlenecks, variability and

economic costs on flow and throughput. The simple act of limiting work-in-progress with Kanban

encourages higher quality and greater performance. The combination of improved flow and better

quality helps to shorten lead times and improve predictability and due-date performance. By

establishing a regular release cadence and delivering against it consistently, Kanban helps to build

trust with customers and trust along the value stream with other departments, suppliers and

dependent downstream partners.

49

The core properties that Kanban uses are:

1. Visualize workflow

2. Limit work-in-progress.

3. Measure and manage flow.

4. Make process policies explicit.

5. Use models to recognize improvement opportunities (Anderson, 2010).

13.1 Benefits of Kanban

Kanban has several benefits. It encourages the focus on quality as it has a big impact on the

productivity and throughput of teams with high defect rates.

Anderson in his book (2010) suggests that collaborative analysis and design helps improve quality.

When teams are asked to work together to analyze problems and design solutions, the quality is

higher. He also suggests the use of design patterns to improve quality. Design patterns capture

known solutions to known problems. Design patterns ensure that more information is available

earlier in the lifecycle and that design defects are eliminated.

Another benefit of Kanban usage is by reducing the work-in-progress, a team can deliver more

often. Anderson (2010) mentioned that reducing work-in-progress (WIP) shortens lead time.

Shorter lead times mean that it is possible to release a working code more often.

Delivering small, high-quality releases builds more trust with partner teams than putting out large

release less often. Small releases show that the software development team can deliver and is

committed to providing value. They build trust with the marketing team or business sponsors. High

50

quality in the released code builds trust with downstream partners such as operations, technical

support, and field engineering and sales.

Another benefit of Kanban is balancing demand against throughput implies that the team can set

the rate at which they accept new requirements into their software development pipe to correspond

with the rate at which they can deliver working code. When they do this, they are effectively fixing

their work-in-progress to a given size. As work is delivered, they will pull new work (or

requirements) from the people creating demand. So any discussion about prioritization and

commitment to new work can happen only in the context of delivering some existing work.

In the software development world, the Software Engineering Institute (SEI) of Carnegie Mellon

University has defined the highest level of their capability Maturity Model Integration (CMMI) as

optimizing. Optimizing implies that the quality and performance of the organization is

continuously being refined. A work place culture where the entire work force is focused on

continually improving quality, productivity and customer satisfaction is known as “Kaizen

Culture”.

In Kaizen culture, the work force is empowered. Individuals feel free to take action, free to do the

right thing. They spontaneously swarm on problems, discuss options, and implement fixes and

improvements. In a Kaizen culture, the workforce is without fear. The underlying norm is for

management to be tolerant of failure if the experimentation and innovation was in the name of

process and performance improvement. In a Kaizen culture, individuals are free (within some

limits) to self-organize around the work they do and how they do it. Visual controls and signals

are evident, and work tasks are generally volunteered for rather than assigned by a superior.

A Kaizen culture involves a high level of collaboration and a collegial atmosphere where everyone

looks out for the performance of the team and the business above themselves. A Kaizen culture

51

focuses on systems-level thinking while making local improvements that enhance overall

performance. A Kaizen culture has a high level of social capital. It is a highly trusting culture

where individuals, regardless of their position in the decision-making hierarchy of the business,

respect each other and each person’s contribution. High-trust cultures tend to have flatter structures

than lower-trust cultures. It is the degree of empowerment that enables a flatter structure to work

effectively. Hence, achieving a Kaizen culture may enable elimination of wasteful layers of

management and reduce coordination costs as a result.

Kanban provides transparency into the work, but also into the process. It provides visibility into

how the work is passed from one group to another. Kanban enables every stakeholder to see the

effects of his or her actions or inactions. If an item is blocked and someone is capable of unblocking

it, Kanban shows it. In addition to the visibility into process flow, work-in-progress limits also

forces challenging interactions to happen sooner and more often. It isn’t easy to ignore a blocked

item and simply work on something else. This “stop the line” aspect of Kanban seems to encourage

swarming behavior across the value stream. When people from different functional areas and with

different job title swarm on a problem and collaborate to find a solution, thus maintaining the flow

of work and improving system level performance, the level of social capital and team trust

increases. With higher levels of trust engendered through improved collaboration, fear is

eliminated from the organization (Anderson, 2010)

14 Test Automation

Another improvement suggestion that is considered in the improvement phase of DMAIC for the

project under study is to automate test cases.

52

Test automation is the process of writing a computer program to do testing that would otherwise

need to be done manually. Once tests have been automated, they can be run quickly and repeatedly.

This is often the most cost effective method for software products that have a long maintenance

life, because even minor patches over the life time of the application can cause features to break

which were working at an earlier point in time (Hooda, 2012).

14.1 Benefits of Test Automation

Automating test cases has a lot of benefits in agile environment:

 Defects can be found and tracked at an early stage, providing a better insight

into the root cause of defects.

 It can discover defects that manual testing cannot find.

 Provides the ability to build a test suite that covers every feature in the software.

 It helps to increase management confidence in the software.

 Automated test executes significantly faster than human users, thus allowing

the execution of many test cases that covers most of the application features (if

not all) during regression testing.

 The automated test cases can be reused to test different versions of the

application and with different configurations or different platforms.

 It reduces the cost as the number of resources for regression test is reduced.

 With increased regression testing coverage, more bugs are prevented from

escaping to production which in turn reduces cost radically.

 It can be considered as a safety net for developers especially in cases of

necessary code refactoring.

53

 It can help monitor information that are not visible to a person.

14.2 Principles of Test Automation

With the stated benefits, it is important to keep these principles that were identified by Bach (5) in

mind:

1. Test automation cannot duplicate human testers. Human testers, even ones who

have no special skills or training, are capable of doing and noticing things that

no conceivable test automation can do or notice. It’s true that, even with its

limitations, automation can have substantial value. But it’s usually more

productive to think of automation as extending the reach of human testing,

rather than replacing it. Effective automation efforts therefore begin with

effective thinking about testing.

2. Test automation is more than test execution. There is a lot more to test

automation than just a computer running tests, such as:

o Test generation: tools might create specialized data such as randomized

email messages, or populate databases, or generate combinations of

parameters that we would like to cover with our tests.

o System configurations: Tools might preserve or reproduce system

parameters, or set systems to a particular state.

o Simulators: Tools might simulate sub-systems or environmental

conditions that are not available for testing.

54

o Test execution: Tools might operate the software itself, either

simulating a user or working through the GUI, or bypassing the GUI

and using an alternative testable interface.

o Probes: Tools might make visible what would otherwise be invisible to

humans. They might statically analyze a product, parse a log file, or

monitor system parameters.

o Test management: Tools might communicate test results, organize test

ideas, or present metrics.

3. Test automation is vulnerable to instant obsolescence. Software projects

revolve around production code. Test code is not production code. So the

priorities of a typical software project allow production code to change even

when that breaks test code. This is normal, and generally speaking it’s a

reasonable, economically justified behavior.

4. Test tools are many and varied. Most people, especially managers, think of test

tools as those tools on market that are sold as “test tools”. They tend to be quite

expensive. But, in fact, almost anything can be a test tool, and many utilities

sold for other purposes are especially useful for testing. Some tools are free,

some are provided in repositories for developers.

5. Test automation can distract you from good testing. Sometimes the

technological focus of test automation can lead to a situation where test

automation team can become cut off from the mission of software testing and

produce a lot of tools and scripts that might look good, but have a little value in

terms of a coherent test strategy that makes sense for the business.

55

15 Improving Software Quality through Continuous

Improvement

Applying continuous improvement to better the quality and productivity of the process is difficult,

but it is also paramount to the ongoing success of a mission critical project (Dawson, 1994).

Dawson (1994) mentioned that, a continuous improvement process was applied to software project

at Motorola called ‘Paperless Integrate Manufactured System’ (PIMS). The project started by

contracting with a third party after the system needs were defined. However, because the full

requirements of the project were not well understood by the users or the developers, the early

process life cycle was spiral mode-the goal being to get some capability out onto the manufacturing

floor, exercise it, find the problems and determine the real requirements, and then reiterate to build

each release.

Once the need for higher software development quality was acknowledged internally,

improvements to the process were made in several areas.

 Better project management: Specific release planning was continuously

performed for PIMS and a balance was made between enhancements that help

current and future users and features that affected ongoing product support. As

the process grew more formal, a new life cycle model which is the waterfall

model was adopted.

 Configuration management: The complexity of the project and the product

also demanded much more formal program configuration management that was

necessary when only a few people were working on a few thousand lines of

code. Therefore, the team created both a process and an integrated tool to

support configuration management and change tracking.

56

 Structured requirements analysis and design: Design options were iterated

and reviewed in early project phases, and complete documentation was

maintained. Data flow diagrams, data structure diagrams, and program structure

charts were used to capture and communicate analysis and design ideas.

 Development tools: To increase the quality and productivity of the process,

unique and custom tools had to be developed.

 Testing and acceptance criteria: All programming work went through a

three-tier testing process. First, a software QA test of each new or modified

program unit was performed by a developer other than the author. These tests

were based on unit test plans. When all enhancements for a given release were

completed, system integration testing is performed to exercise interfaces

between all programs. Finally, user testing based on predefined functional test

plans was completed to ensure functional and regression integrity.

 Metrics: After the process had evolved to a fairly stable level, metrics were

needed to better understand the process itself and the improvements being

attempted. For example:

o Released software quality: the total released number of defects per 1000

assembly equivalent lines of code.

o Customer-found defects: the total number of customer-found defects per

1000 assembly lines of code.

o Post-release problem report activity: the number of newly opened and

total open problems by month.

57

o Post-release problem report aging. The mean age of open problems and

the mean age of closed problems per month.

o Cost-to-fix post release problems. The total billed cost spent fixing

previously released problems each month (Dawson, 1994).

The benefits drawn from the project:

 Systematic improvements required dedicated support from developers

and managers.

 It is harder to change culture-people’s thoughts and habits-than it is to

change technology.

 A formal development process pays for itself in improved quality and

efficiency.

 Metrics are key measuring, understanding, and controlling the

development process.

 Any project can benefit from formal management of the basic

development process (Dawson, 1994).

16 Impact of CMM on Certain Software Critical Factors

A research was done to examine the impact of the capability maturity model (CMM) on certain

critical factors in information systems implementation strategy, software quality and software

project performance.

58

Subramanian et al. (2007) mentioned that in the capability maturity model (CMM), there are five

levels. These levels are summarized in table 9.

Process Maturity Level Description

Level 1: Initial Ad Hoc and occasionally chaotic

Level 2: Repeatable Basic project management;

Process discipline to repeat earlier success

Level 3: Defined Includes level 2;

software processes standardized and integrated;

Projects use these approved processes

Level 4: Managed Includes level 3;

Detailed metrics of software product and process are

collected;

Software process and product controlled using these

metrics

Level 5: Optimized Includes level 4;

Continuous process improvements enabled by quantitative

feedback;

Innovative ideas and technologies developed based on

feedback

Table 9: Capability maturity model levels (Sabramanian et al., 2007)

Subramanian et al. (2007) explained four conceptual strategies for information system

implementation that were first proposed by Alter (1979).

1. Keep it simple (simplicity): Pressman (2004) mentioned that, functional

simplicity (minimum necessary to meet requirements), structural simplicity

(modular architecture), and code simplicity (following a coding standard) are

key components of simplicity in software. Rajagopal and Frank (2002)

explained that complicated, integrated software systems require careful

planning before implementation (as cited in Subramanian et al., 2007).

59

Complex systems inherently present unique risks due to tightly linked

interdependencies of business processes, relational databases, and process re-

engineering (Subramanian et al., 2007).

2. Executive (or top management) participation and commitment: employee

empowerment and executive commitment are two key factors used in Parzinger

and Nath, 2000. Powell (1995) mentioned that open organizations, employee

empowerment and executive commitment are more critical to the success of

total quality management (as cited in Subramanian et al., 2007).

3. Training: Training is a crucial component in continuous improvement. Harel

and Tzafrir (1999) mentioned that training also helps to improve employee

participation and involvement in quality programs through propagation of

priorities and missions of the organization (as cited in Subramanian et al.,

2007).

4. Prototyping / evolutionary development: prototyping is recommended for

clarity in understanding system requirements and in planning systems

architecture (Boehm and Papaccio, 1988) and thus can help in improving

software quality (Subramanian et al., 2007).

Information systems (IS) project outcomes

1. Software quality: The quality of software is estimated by many of its attributes such

as reliability, integrity, maintainability, enhanceability (extensibility), usability,

portability, and reusability (Subramanian et al., 2007). Yang (2001) also pointed

60

out that the functionality of the software and the appearance of the user interface

could affect software quality (as cited in Subramanian et al., 2007).

2. Project performance: In time and within budget are common yardsticks for project

performance (Subramanian et al., 2007). Specifically, reducing cycle times and

development effort (main factor in software cost and budget) are project

performance yardsticks in Harter et al., 2000 (as cited in Subramanian et al., 2007).

In Subramanian et al. (2007) research, they argue that capability maturity model levels influence

the choice of IS implementation factors such as training, executive commitment, simplicity, and

prototyping which in turn impacts software quality and project performance. They proposed the

following hypothesis:

H1: Organizations in different levels of capability maturity model adopt different IS

implementation strategies (keep it simple, executive commitment, training, and prototyping) for

IS project implementation

H2: IS implementation strategies (keep it simple, executive commitment, training, and

prototyping) have a significant impact on IS project outcomes as measured by software quality

and project performance.

H3: Organizations in different levels of capability maturity model exhibit different levels of

ISproject outcomes as measured by software quality and project performance.

The questionnaires were mailed to 1000 randomly selected IEEE computer society members with

an expressed interest in software engineering and a total of 212 responses were received. The

questionnaire addressed key practices grouped by:

61

1) Commitment to perform.

2) Ability to perform

3) Activities performed

4) Measurement and analysis

5) Verifying implementation.

Results

The first hypothesis stated that different capability maturity model levels lead to different IS

implementation strategies. The expectation is that higher levels of capability maturity model or

process maturity would be associated with different IS implementation strategies. Subramanian et

al. (2007) results confirmed the hypothesis.

The second hypothesis studied the effect of IS implementation strategies on IS project outcomes.

Here, they had mixed result. While executive commitment and prototyping strategies have

significant impact on both software quality and project performance, training had a significant

effect only on software quality while “keep it simple” has a significant effect only on project

performance. Executive commitment is shown to be a critical factor impacting software quality

and project performance (Parzinger and Nath, 2000; Isaac et al., 2004) and is also confirmed by

Subramanian et al. (2007) study. Prototyping strategy is expected to impact software quality and

project performance based on work by (Boehm, 1988; Boehm and Papaccio, 1988) and

Subramanian et al. (2007) study provided empirical confirmation. They also argued that training

should not have a significant effect on project completion time, schedule, etc. as training can be

easily scheduled in parallel and should not hinder project performance. Training is known to

influence software quality (Parzinger and Nath, 2000) and is confirmed to have an effect on quality

by Subramanian et al. (2007) study. Keep it simple is a conscious systems design and project

62

management decision that they expected to have a significant effect on project performance and

the study confirmed it. Finally, in hypothesis 3, they proposed that different levels of capability

maturity model are associated with different IS project outcomes. The expectation was that higher

levels of capability maturity model or process maturity would be associated with better software

quality and project performance. The result confirmed the hypothesis (Subramanian et al., 2007).

17 Metrics and Management Reporting

The field of software metrics has sufficiently matured so as to allow project managers and software

engineers to use metrics to tune software process (Jayanthi & Florence, 2013).

With the use of agile methodology and Kanban tool, Anderson (2010) explained that Kanban’s

continuous flow system means that we are less interested in reporting on whether a project is “on-

time” or whether a specific plan is being followed. What is important is to show: that the Kanban

system is predictable and is operating as designed, that the organization exhibits business agility,

that there is a focus on flow, and that there is clear development of continuous improvement. We

want to track the trend overtime, so we can see the spread of variation. If we are to demonstrate

continuous improvement, we want the mean trend to improve over time. If we are to demonstrate

improved predictability, we want the spread of variation to decrease and the due-date performance

to increase.

Anderson (2010) described some of the metrics that can be used such as:

 Tracking work-in-progress (WIP)

63

The most fundamental metric should show that the Kanban system is operating properly. To do

this, we need a cumulative flow diagram that shows quantities of work-in-progress at each stage

in the system. If the Kanban system is flowing correctly, the bands on the chart should be smooth

and their height should be stable. An example of cumulative flow diagram is shown in figure 5.

Figure 5: Cumulative flow diagram from a Kanban system

 Lead Time

Lead time can indicate how predictably the organization delivers. If an item was expedited, how

quickly did it get from the order into production? If it was of standard class, was it delivered within

the target time? Figure 6 shows an example of average lead time.

64

Figure 6: Average Lead Time

 Throughput

Throughput should be reported as the number of items or some indication of their value that were

delivered in a given time period, such as one month. Throughput should be reported as a trend over

time as shown in figure 7.

0

5

10

15

20

25

30

35

40

45

50

Jan Feb March April Mai June July August Sept

Avg Lead time WIP

65

Figure 7: Throughput bar chart (Anderson, 2010)

 Issues and Blocked Worked Items

This chart gives an indication of how well the organization is at identifying, reporting and

managing blocking issues and their impact. If due date performance is poor, there should be

corresponding evidence in this chart demonstrating that a lot of impediments were discovered and

were not resolved quickly enough. This chart can be used on a day to day basis to alert senior

management of impediments and their impact. It also can be used as a long term report card to

indicate how capable the organization is at resolving impediments and keeping things flowing. It’s

a measure of capability in issue management and resolution.

 Initial Quality

Defects represent opportunity cost and affect the lead time and throughput of the Kanban system.

It makes sense to report the number of escaped defects as a percentage against the total work-in-

66

progress and throughput. Overtime, we want to see the defect rate fall to close to zero. An example

is shown in figure 8.

Figure 8: Defects per feature (Anderson, 2010)

Another important measurement tool is the defect removal efficiency.

 Defect removal efficiency (DRE)

Defect removal efficiency provides benefits at both the project and process levels. It is a measure

of filtering ability of quality assurance activities as they are applied throughout all process

framework activities. It indicates the percentage of software errors found before software release.

It is defined as DRE=E / (E+D)

E is the number of errors found before delivery of the software to the end user.

D is the number of defects found after delivery.

67

As D increases, DRE decreases (i.e. becomes a smaller and smaller fraction) (Jayanthi & Florence,

2013).

18 Research Gaps

The literature review described a study conducted by Subramanian et al. (2007) that examines the

effect of software process maturity (CMM) in the selection of critical information system

implementation (IS) strategies and how CMM and the IS implementation strategies impact

software quality and project performance. They also mentioned that Card (2004) argued the need

for more academic research in software process improvement methods.

Moreover, they mentioned a limitation in their study that it focused primarily on CMM as the

software improvement process methodology, and mentioned that other methods such as Total

Quality Management, International Standards Organization (ISO) Quality Certification and Six

Sigma could also be considered in empirical research.

However, this thesis focuses on using six sigma DMAIC framework as a software improvement

methodology that leads to an improvement of the software quality and as a consequence, ensures

the success of the software project. The DMAIC framework will be used to identify the root

cause(s) of the poor quality for the project under study and helps identify development

opportunities that would allow the software organization reach its intended level of excellence

through high quality software.

68

19 Summary and Conclusion

In this chapter a detailed description of six sigma and the importance of the DMAIC framework

were provided. Also, software quality factors were identified and the common software quality

problems were explained. Most of these challenges come from the traditional software

methodology (waterfall) with its failure to cope with the continuous changes required in the current

market demand. As a result, agile practices emerged to help overcome those challenges. In this

chapter, agile methodology was explained with the focus on its principal values, critical success

factors, decision-making challenges and team collaboration. Also, it was mentioned how agile

methods can help enhance software quality. The common issues mentioned were also identified in

the analysis phase of DMAIC framework in the case study in this paper. As a result, agile

methodology was selected as one of the improvement suggestions in the improvement phase of

DMAIC based on the enhancements that it provides for the software quality which is the main

focus of this study. Other tools such as Kanban and test automation were explained in details as

they are used as well in the DMAIC improvement phase for the project under study.

69

CHAPTER 3:

SOLUTION APPROACH

1 Introduction

In this chapter, we propose a six sigma DMAIC based solution framework to improve software

quality in organizations.

2 DMAIC Tools

The DMAIC tools that will be used in the case study are summarized in the table 10.

Phase Tools Used Justification of Usage

Define  Critical to quality

(CTQs)

 SIPOC

 To determine the metrics that are most

important to customers

 To establish the boundaries of the

business process.

Measure  Pareto charts  To prioritize the problem-solving work

Analyze  5-Why technique

 Cause and effect

diagram

 Interrelationship

diagram

 To isolate the causes from the symptoms

 Identify the root cause of the problem

 Identify the relationship between

different causes

Improve  Quality function

deployment

 To help improve the design phase

 To gain client satisfaction

Control  Measurement

metrics

 To help identify whether the

improvements applied are going in the

right direction

 To help identify areas that needs

additional focus

Table 10: Summary of Used DMAIC Tools

70

3 Define Phase

The first phase in the DMAIC process is the define step. The purpose of this phase is to set the

project goals bases on the knowledge of the organization, customer critical to quality (CTQ) and

the process that needs to be improved.

3.1 Critical To Quality (CTQs)

CTQs are the key measurable indicators of a product or service whose performance standards or

specification limits must be met in order to satisfy the customer. CTQs are what the customers

expect of a product or service (Chakrabarty & Chuan Tan, 2007).

Defining quality can be a challenge, and it is easy to overlook factors that customers care about.

This is when critical to quality (CTQ) are useful. They help to identify and understand quality from

customer’s point of view, so companies can deliver the service that the customer need and aim for.

CTQs align improvement or design efforts with customer requirements (Chakrabarty & Chuan

Tan, 2007).

Benefits of CTQs

1. It helps to determine the metrics that are most important to customers.

2. It helps to know what the customer exactly needs and based on that, it will help the

organization to focus on those needs as it moves through the process of measuring

them and addressing the issues that arise along the way.

3. CTQs help determine the characteristics of the service or product.

71

3.2 Process Definition - SIPOC Diagrams

SIPOC diagrams are usually used across the DMAIC roadmap for problem solving especially

during the define phase. They are a power mapping tool, whose name corresponds to the following

five elements: supplier, input, process, output, customer (Marques & Requeijo, 2009).

Moreover, in order to improve the process, it is important to get a high – level understanding of

the scope of the current process first. As a result, “SIPOC” is used to identify the boundaries by

identifying the process being investigated, its inputs, and outputs, and its suppliers and customers

(Evans & Lindsay, 2005).

Benefits of SIPOC

1. It establishes the boundaries of a particular business process.

2. The SIPOC models provide a process-driven approach to divide the entire scope of

the six sigma project into manageable partition.

4 Measure Phase

Measure phase is the second step in the DMAIC process. It focuses on measuring the process in

order to understand the current performance and as a result manage and systematically improve it.

4.1 Pareto Chart

Pareto analysis refers to the tendency for the bulk of the problems to be due to a few of the possible

causes. Hence, by isolating and correcting the major problem areas, obtain the greatest increase in

efficiency and effectiveness. The pareto chart is a graphic display that emphasizes the pareto

72

principle using a bar graph in which the bars are arranged in a decreasing magnitude (Koripadu &

Subbaiah, 2014).

Benefits of Pareto Chart

1. It is a simple technique for prioritizing problem-solving work.

2. It doesn’t only show the most important problem to solve, it also gives a score

showing how severe a problem is.

5 Analysis Phase

Analysis is the third phase in DMAIC, it refers to an examination of processes, facts, and data to

gain an understanding of why problems occur and where opportunities for improvement exists

(Evans & Lindsay, 2005).

Too often we want to jump to a solution without fully understanding the nature of the problem and

identify the source or root cause of the problem. Eliminating symptoms of problems usually

provides only temporary relief, eliminating root causes provides long term relief (Evans &

Lindsay, 2005).

Several approaches can be used to identify the root cause such as the “5 Why” technique, cause

and effect diagram and interrelationship diagram.

5.1 5-Why Technique

It is a method of questioning that leads to the identification of the root cause(s) of a problem

(Koripadu & Subbaiah, 2014). By asking the question “Why” ideally 5 times, it will allow the

73

analyst to isolate the root cause(s) of the problem from the symptoms. Separating the main issue

from the symptoms is crucial as the root cause(s) of a problem get disguised by the symptoms.

Benefits of 5-why technique

1. It is an easy and simple tool to use.

2. It helps to isolate the causes from the symptoms and as a result helps to quickly

identify the root cause of a problem.

3. It also helps in defining the relationships between different causes of the problem.

5.2 Cause and Effect Diagram

Cause and effect diagram is a common tool in improvement projects. It is also known as Ishikawa

diagram after its originator or as a fishbone diagram. This tool is used to come up with new ideas

like in a brainstorming session but in a more balanced way (Kabir et al., 2013). Fishbone diagram

was created with the goal of identifying and grouping the causes which generate a quality problem

(Ilie & Ciocoiu, 2010).

Benefits of cause and effect diagram

1. (Basic Tools for Process Improvement, 2009) provides a systematic way of looking

at effects and the causes that create or contribute to those effects.

2. It helps determine the root causes of a problem or quality characteristics using a

structured approach.

3. Encourages group participation.

4. Utilizes group knowledge of the process.

5. Identifies areas where data should be collected for further study (as cited in Ilie &

Ciocoiu, 2010).

74

5.3 Interrelationship Diagram

It is a tool for examining the causes and effect relationship between different factors. It is used to

determine which factors have the most impact on other factors. This helps to identify where the

effort can be focused to gain greatest benefit. The interrelationship diagram is a special network

visualization that consists of a set of nodes connected by arrows. Arrows show directional

relationships between “source” (sender) nodes into “target” (receiver) nodes. This representation

turns the interrelationship diagram into a form of social network analysis, where connections and

interactions between items, objects and systems are made.

Benefits of interrelationship diagram

1. This tool helps gain insights into potential complex relationships of root causes that

may underlie recurring problems despite efforts to resolve them.

2. It is useful in prioritizing choices when decision makers find it difficult to reach

consensus.

3. It helps in sorting out issues involved in project planning especially when credible

data may not exist.

4. It provides a means of evaluating ways in which disparate ideas influence one

another.

5. Makes it easy to spot leading factors that affect other factors (Alexander, 2013).

6 Improvement Phase

The goal of six sigma is to accelerate improvements and achieve unprecedented performance levels

by focusing on characteristics that are critical to customers and identifying and eliminating causes

of errors or defects in processes.

75

Improve phase is the fourth step in DMAIC and the one that is more difficult to accomplish because

it is more of an art than science. While improvement is a highly creative effort, it must be

accomplished within the six sigma project management structure (Evans & Lindsay, 2005).

Several improvement suggestions were provided in the case study and one of them is the quality

function deployment DMAIC tool.

6.1 Quality Function Deployment

Quality function deployment is a basic product development tool, including design, planning, and

communication routines, which provide a methodology directly to relate the customer’s needs with

engineering characteristics (Thackeray & Van Treeck, 2007). It is a system with the aim of

translating and planning the “voice of the customer” into the quality characteristics of products,

processes, and services in order to reach customer satisfaction (Bernal et al., 2009).

Benefits of Quality Function Deployment

 Preventive design:

The biggest advantage of QFD is that it promotes the development of services

in a proactive way. When applying QFD, more than 90% of changes on service

design are performed before market entry takes place. These changes are much

less expensive since they are done at an early stage of the development cycle.

This makes it possible to prevent the problems instead of reacting to them

(Bernal et al., 2009).

 Reduction of development time:

76

Having a good design of a software feature that satisfies and exceeds customer

requirements, allows a smooth development phase, and thus a reduction of

development time as a consequence.

It helps assure that testing verifies conformance to the customer’s requirements

by providing testable items in the functional specification. This means less

reworking of the design and implementation to meet customer requirements.

Less reworking means shorter development schedule and reduced development

costs. Testing conformance to customer requirements allows test suite to be

designed and implemented in parallel with the product design and

implementation (Thackeray & Van Treeck, 2007).

 Client satisfaction:

QFD’s is oriented to the “voice of the customer” and not to the “thoughts of the developer”. With

the focus on the consumer, all decisions made during the service design are targeted at the customer

(Bernal et al., 2009).

 Take politics out of decisions:

QFD helps take the politics out of decisions. QFD’s triangular matrices show the impact of one

requirement on other requirements, or one function on other functions, or one design element on

other elements, etc. It helps the user and all members of development team to understand better

inconsistencies and tradeoffs and also to achieve consensus, which is very important to the success

of large projects (Thackeray & Van Treeck, 2007).

77

7 Control Phase

Control phase is the last step of the six sigma DMAIC process, and is the activity of ensuring that

project improvements will be sustained by tracking key performance measurements and CTQs.

This requires monitoring the process and results, and taking corrective action when necessary to

correct problems and bring the process back to stable performance. Control is important for two

reasons. First, it is the basis for effective daily management of work at all levels of an organization.

Second, long – term improvements cannot be made to a process unless the process is first brought

under control (Evans & Lindsay, 2005).

7.1 Control System Components

Evans and Lindsay (2005) argued that any control system has three components:

1. A standard or goal.

2. A means of measuring accomplishments.

3. Comparison of actual results with the standard, along with feedback to form the

basis for corrective action.

Goals and standards establish what is supposed to be accomplished. These goals and standards are

reflected by measurable quality characteristics, such as number of defects or customer complaints.

Measurements supply the information concerning what has actually been accomplished. Workers,

supervisors, or managers then assess whether the actual results meet the goals and standards.

Short-term corrective action generally should be taken by those who own the process and are

responsible for doing the work. While long-term remedial action is the responsibility of

78

management. Process owners must have the means of knowing what is expected (the standard or

goal) through clear instructions and specifications, they must have the means of determining their

actual performance, typically through inspection and measurement, and they must have a means

of making corrections if they discover a variance between what is expected of them and their actual

performance (Evans & Lindsay, 2005).

Several metrics and reports that were described in the literature review can help to make the

necessary measurement in order to take the required corrective actions.

CHAPTER 4:

CASE STUDY AT RK COMPANY

79

1 Introduction

A case study was done at ‘RK’ company by applying DMAIC methodology to one of its largest

projects.

2 ‘RK’ Company and DMAIC

‘RK’ Company is one of the fast growing companies in Canada. ‘RK’ Company is a medium size

company whose main focus is building software applications using the latest technologies.

DMAIC framework is applied to one of the biggest and core projects for ‘RK’ company. This

project has been in development for the past few years and the current followed methodology is

waterfall. The development team is actually divided into six sub-teams, where each team is

specialized in developing a specific area in the application. In total the project has 35-40

developers. There is also a system test team (or quality assurance team) that consist of 12-14

system test engineers that test the product manually. There is also another team which is the

software developer engineers in test team that should create automated test cases for the project.

This team was recently added and their current focus is to create test tools for the project.

The emphasis is on applying DMAIC framework on the described project in order to identify the

root causes for the large number of bugs found in production and provide improvement suggestions

for ‘RK’ Company and help the company to control its process to ensure the success of the project.

For the purpose of this study, interviews were carried out with the software development manager

and the quality assurance manager in order to collect information about the process followed and

the issues the team has. Also, Production bugs were collected from the company reporting system

80

and were classified by type, severity and seasonality. The collected information will be used

throughout the DMAIC phases.

3 Define Phase

In this phase the CTQs of the project under study are identified and the boundaries of the current

process were defined through the use of the SIPOC diagram.

3.1 Critical To Quality (CTQs)

Based on the benefits of CTQs identified in the solution approach, CTQs are used for the project

under study in order to determine the quality that is expected by the customers of the project.

The most important quality attributes that contribute to customer perceptions for the project under

study are the following:

 Security: Security relates to the ability of software to prevent prohibited access and

withstand deliberate attacks intended to gain unauthorized access to confidential

information, or to make unauthorized access (Chang et al., 2006).

Since the project under study is based on security concept, this attribute is the main key for

customers, thus the security of the software must be assured in order to guarantee the

business continuity of the product. The design and implementation of the software should

protect the data and resources contained and controlled by that project.

 Reliability: Quyoum et al. (2010) explained that software reliability is an important facet

of software quality. Software reliability is the probability of the failure free operation of a

computer program for a specified period of time in a specified environment. Unreliability

81

of any product comes due to the failures or presence of faults in the system. Thus, the

unreliability of software is primarily due to bugs or design faults in the software.

 Assurance: This is related to the knowledge and courtesy of employees, and their ability

to convey trust and confidence (Evans & Lindsay, 2005). For example, the ability of the

project support team to answer questions, have the capabilities to do the necessary work to

fix customer issues in a timely manner and be polite and pleasant during this time.

 Efficiency: Chang et al. (2006) explains that it relates to how the software optimally uses

system resources. It includes the time behavior as the ability of software to provide

appropriate responses, processing time and throughput rate when performing its function

under stated conditions. It also includes resource behavior which is the ability of software

to use appropriate resources in time when the software implements its function under stated

conditions.

 Maintainability: Which refers to the ease with which a software can be understood,

modified and retested. The easier the software can be maintained, the easier it is to isolate

defects or their causes, correct defects or their causes, maximize the software useful life,

maximize its efficiency, reliability and safety as well as meet new requirements and cope

with a changed environment. This key attribute is not properly applied to the project under

study. The code of the software was not designed to be testable. Also, the complexity of

the code does not help in isolating defects or correct them.

3.2 Process Definition - SIPOC Diagrams

The below “SIPOC” (figure 9) identifies the software testing process that is currently

implemented for the project under study.

82

83

Supplier Input Process Output Customer

Organization

QA team

QA manager

Development

team

Development

manager

Project manager

Test Manager Tool

High level

requirements

document (HLR)

System requirements

document

Project stable build

Testing Tools

Testing environment

Test plan

Regression test suite

Legacy system

knowledge

Create manual test cases for new planned

features

Execute test cases for each fully

implemented new feature

Report bugs for new features

Verify bug fixes for new features

Retest all new features when all new

planned features are fully implemented.

Perform regression testing

Report bugs found in regression

Verify bug fixes for regression testing

Perform manual test case maintenance

(clean up)

New feature test suite

New feature test results

List of identified bugs for new feature

Modified build after bug fixes

Regression test results

Updated test cases

Updated regression test suite to include

priority one test cases of newly

implemented features

Project manager

Development

manager

QA manager

Organization

Figure 9: Project SIPOC Diagram

84

4 Measure Phase

The goal is to reduce the number of bugs found in production as low as possible and to be able to

find them as early as possible in the iteration cycle. As a result the cost will be radically reduced.

In order to generate a useful process performance measure for the project under study, the

following points were taken into consideration:

1. Customer requirements and expectations that were identified in the critical to

quality (CTQs) in the define phase.

2. Work process definition that provides the service which was also identified in

the define phase.

3. Develop specific performance measures or indicators which are based on the

stated goal.

Concentrating on the stated goal, the data collection focused on the number of bugs found in

production for the past releases in 2012, 2013 and 2014 and was identified by severity and the type

of issues found. It focused on the population in order to achieve more accurate results. Several

Pareto charts were created to summarize and display the relative importance of the differences

between groups of data such as the seasonality of releases, severity of bugs found and the type of

errors identified in production. The Pareto charts help to identify which situations are more

significant and as a result will help to know where to direct the improvement efforts.

85

The following sections shows different Pareto charts for the project under study.

4.1 Pareto Chart Based on the Type of Errors

The issues found in production were classified by type such as functional, backend services, help

information, graphical user interface, run time error, translation, scalability and configuration.

This below chart was based on the type of errors.

Types Of Errors

Identified

Number of

bugs

cumulative number of

bugs

Cumulative

Percentage

Functional 477 477 44%

Backend Services 357 834 76%

Help Information 105 939 86%

Graphical User

Interface

95 1034 94%

Runtime error 27 1061 97%

Translation 15 1076 98%

Scalability 10 1086 99%

Configuration 9 1095 100%

Table 11: Bugs per type

86

Figure 10: Pareto Chart based on type of errors

From this chart we can conclude that ‘RK’ company needs to focus on improving the functional

and backend services.

4.2 Pareto Chart Based on the Seasonality

The faults found in production were also classified by year and as a result the below chart identifies

the errors found per year.

Year Number of Bugs Cumulative Number of

Bugs

Cumulative Percentage

2013 640 640 58%

2014 250 890 81%

2012 205 1095 100%

Table 12: Bugs per seasonality

0%

20%

40%

60%

80%

100%

120%

0

100

200

300

400

500

600

Functional Backend
Services

Help
Information

Graphical
User

Interface

Runtime
error

Translation Scalability Configuration

Pareto Chart

Number of bugs Cumulative Percentage 80% Marker

87

Figure 11: Pareto chart based on seasonality

The above Pareto chart shows that ‘RK’ company needs to concentrate their testing and bug fixes

on the features that got released and the affected functionalities in these two years.

4.3 Pareto Chart Based on the Severity of the Bugs

The bugs found in production were also classified by severity and as a result the below chart

focuses on this classification.

Severity Number of

Bugs

Cumulative Number of

Bugs

Cumulative Percentage

Medium 631 631 58%

Major 272 903 82%

Minor 170 1073 98%

Critical 22 1095 100%

Table 13: Bugs per severity

0%

20%

40%

60%

80%

100%

120%

0

100

200

300

400

500

600

700

2013 2014 2012

Pareto Chart

Number of Bugs Cumulative Percentage 80% Marker

88

Figure 12: Pareto chart based on severity

Looking into the above Pareto chart based on the severity of the bugs, we notice that medium and

major bugs have the highest ratio.

4.4 Pareto Chart Based on the Type of Errors and Severity

The below chart was prepared based on the type of bugs and their severity.

Type of errors and

severity

Number of

Bugs

Cumulative Number of

Bugs

Cumulative

Percentage

Functional Medium 281 281 26%

Backend Medium 199 480 44%

Backend Major 121 601 55%

Functional Major 113 714 65%

Help Information

Medium

74 788 72%

0%

20%

40%

60%

80%

100%

120%

0

100

200

300

400

500

600

700

Medium Major Minor Critical

Pareto Chart

Number of Bugs Cumulative Percentage 80% Marker

89

Functional Minor 65 853 78%

GUI Medium 45 898 82%

GUI Minor 41 939 86%

Backend Minor 33 972 89%

Help Information

Minor

21 993 91%

Functional Critical 18 1011 92%

Runtime Medium 15 1026 94%

Help Information

Major

10 1036 95%

Runtime Major 10 1046 96%

GUI Major 9 1055 96%

Translation Medium 8 1063 97%

Translation Minor 6 1069 98%

Scalability Major 6 1075 98%

Configuration Medium 5 1080 99%

Backend Critical 4 1084 99%

Scalability Medium 4 1088 99%

Runtime Minor 2 1090 100%

Configuration Major 2 1092 100%

Configuration Minor 2 1094 100%

Translation Major 1 1095 100%

Table 14: Bugs per type and severity

90

Figure 13: Pareto chart based on type of errors and severity

The above Pareto chart shows that major and medium functional and backend services bugs should

have the main focus.

4.5 Pareto Chart Based on the Severity and Seasonality

The below chart was prepared based on the severity of the bugs and the year they were identified.

0%

20%

40%

60%

80%

100%

120%

0

50

100

150

200

250

300

Pareto Chart

Number of Bugs Cumulative Percentage 80% Marker

91

Severity and

Seasonality

Number of

Bugs

Cumulative Number of

Bugs

Cumulative Percentage

Medium 2013 360 360 33%

Major 2013 169 529 48%

Medium 2014 149 678 62%

Medium 2012 122 800 73%

Minor 2013 94 894 82%

Major 2014 53 947 86%

Major 2012 50 997 91%

Minor 2014 44 1041 95%

Minor 2012 32 1073 98%

Critical 2013 17 1090 100%

Critical 2014 4 1094 100%

Critical 2012 1 1095 100%

Table 15: Bugs per severity and seasonality

Figure 14: Pareto chart based on severity and seasonality

0%

20%

40%

60%

80%

100%

120%

0

50

100

150

200

250

300

350

400

Pareto Chart

Number of Bugs Cumulative Percentage 80% Marker

92

This Pareto chart expresses that ‘RK’ company should focus on medium and major 2013 bugs as

well as medium bugs for 2014 and 2012.

4.6 Pareto Chart Based on the Type of Errors per Season

The below chart was prepared based on the severity of the bugs and the year they were identified.

Type of errors per year Number of Bugs Cumulative Number of Bugs Cumulative Percentage

Functional 2013 270 270 25%

Backend 2013 211 481 44%

Functional 2014 112 593 54%

Functional 2012 95 688 63%

Backend 2014 75 763 70%

Backend 2012 71 834 76%

Help Information 2013 66 900 82%

GUI 2013 57 957 87%

Help Information 2014 30 987 90%

GUI 2014 20 1007 92%

Runtime Error 2013 19 1026 94%

GUI 2012 18 1044 95%

Help Information 2012 9 1053 96%

Translation 2013 7 1060 97%

Translation 2012 6 1066 97%

Scalability 2013 6 1072 98%

Runtime Error 2014 5 1077 98%

Configuration 2013 4 1081 99%

Scalability 2014 4 1085 99%

Configuration 2012 3 1088 99%

Runtime Error 2012 3 1091 100%

Configuration 2014 2 1093 100%

Translation 2014 2 1095 100%

Table 16: Bugs per type and seasonality

93

Figure 15: Pareto chart based on type of errors per season

Applying the 80:20 rule based on the type of errors per season displays that ‘RK’ company should

focus on functional 2013, 2014 and 2012 bugs as well as the backend bugs in 2012, 2013 and 2014.

5 Analysis Phase

In this phase we analyzed the results obtained from the measurement phase. Also, several

techniques were used to identify the root cause of the large number of bugs found in production

such as the 5-Why technique, cause and effect diagram and interrelationship diagram.

0%

20%

40%

60%

80%

100%

120%

0

50

100

150

200

250

300

Pareto Chart

Number of Bugs Cumulative Percentage 80% Marker

94

5.1 Analysis Results

In the measure phase, we applied the 80:20 rule. The Pareto principle (or 80:20 rule) states that

most effort (approximately 80%) is due to a limited number of key actions (approximately 20%)

(Gentleman et al., 2012). This principle is also called “vital few and trivial many”.

Analyzing the collected data in the measure phase and applying the Pareto chart helps to identify

the “vital few” from trivial many in order to identify direction for selecting the areas that need

more intensive focus to improve the quality of software.

 In the Pareto chart based on the type of errors (Figure: 10) and by applying the

80:20 rule we notice that ‘RK’ company needs to focus on fixing the functional and

backend services issues.

 In the Pareto chart that is based on seasonality (Figure: 11), we notice that the year

2013 had the highest number of bugs followed by 2014. This shows that ‘RK’

company needs to concentrate their testing and bug fixes on the features that got

released and the affected functionalities in these two years.

 Looking into the Pareto chart based on the severity of the bugs (Figure: 12), we

notice that medium and major bugs have the highest ratio. However, this result does

not imply that the focus should not be on critical issues as well since this type of

severity should not even be found in production and could be showstoppers. Critical

bugs do not have work around and should be addressed immediately.

 Analyzing the collected data and the Pareto chart (Figure: 13) based on the type of

errors and severity also shows that major and medium functional and backend

services bugs should have the main focus.

95

 As for the Pareto chart based on the severity and seasonality (Figure: 14) illustrates

that company ‘RK’ should centralize their attention on medium and major 2013

bugs as well as medium bugs for 2014 and 2012.

 Applying the 80:20 rule based on the type of errors per season (Figure: 15) shows

that functional 2013, 2014 and 2012 bugs should have company ‘RK’ attention as

well as the backend bugs in 2012, 2013 and 2014.

As a result, we can conclude that functional and backend services need more intensive testing in

order to improve the quality of the project. However, we should look more into finding the causes

that led to this number of bugs found in production.

5.2 5-Why Technique

5-why approach forces one to redefine a problem, statement as a chain of causes and effects to

identify the sources of the symptoms and as a result it is applied to the project under study:

1) Why there is too many bugs found in production in each release?

This is because it wasn’t tested properly.

2) Why it wasn’t tested properly?

This is due to the fact that many regression and performance tests were cut in many

cases.

3) Why test cases were cut?

Because the test schedule is not adequate for the number of tests that should be

performed.

4) Why there wasn’t enough time to execute all necessary tests?

96

Because developers never deliver on time and there is a large regression on legacy

features that need to be executed.

5) Why developers never deliver on time?

Because of the many features that are added at each release and in some cases client

requirements or new features are added or UI changes are done in the middle of

implementation leading to a change in the scope and the current methodology does

not properly adapt to the requirements change.

5.3 Cause and Effect Diagram

Based on the stated benefits in the solution approach, the cause and effect diagram is applied to

the project under study to group together the issues identified from the interviews conducted with

the QA manager and the development manager for the project under study. It allowed us to identify

the root cause of the problem.

97

Methodology Flow

Communication

Test schedule

Tools

Requirements

Poor quality

Documentation

Not followed

No single owner

Scope creeps

Long sprints

Manual

Many legacy regression

Many new features

Late delivery

Not detailed

No frequent update

Obsolete

No explanation

Friction

Training

Investigation

No Fix

limited

No Updates

Continuous change
Change adaptation

Figure 16: Cause and effect diagram

5.4 Interrelationship Diagram

The interrelationship diagram is applied for the project under study as shown in figure 17 in order

to identify the potential causal relationships that might lie behind a problem that continues to recur

despite attempts to resolve it.

98

Large number of bugs found in production / Poor Quality

Requirements Testing ScheduleMethodology Flow

Documentation Communication Tools

Figure 17: Interrelationship diagram

From the interrelationship diagram we can conclude that the currently methodology followed is

the root cause of poor software quality for the project under study.

5.5 Analysis Conclusion

The analysis phase of the project under study revealed that the areas that need intensive testing are

the functional and the backend services as they have the largest number of bugs found in

production in the analyzed years. However, test coverage is not adequate due to insufficient testing

schedule.

Several analysis tools such as the “5 why” technique, cause and effect diagram and the

interrelationship diagram are used to separate the symptoms from the causes and to identify the

root cause of the problem. We noticed that there are several symptoms that helped to uncover the

99

main cause. Developers rarely deliver to the system test team with a stable build to work with as

scheduled. The sprint is too long and there are too many features that get planned to be released at

a time. Also, when system test team start reporting bugs, developers have already started new

implementations and have forgotten what and how they implemented the features under test. As a

result, it takes them a lot of delay time to debug and figure out the problem. In consequence, it

takes a long time to have a functioning feature.

Also, some client requirements or new features are added or user interface changes are made in

the middle of implementation where the current used methodology fails to cope with. The

description of the waterfall model flow and its disadvantages described in the literature review

chapter explain the above mentioned issues. Thus leading to the discovery that the current waterfall

methodology used is the main cause of the large number of bugs in production.

Also, from the advantages and disadvantages of waterfall methodology, it was mentioned that

waterfall model is not suitable for moderate to large projects which is the case of the project under

study. Also, waterfall is not a good model for complex and object oriented projects which is also

the case of the project under study. ‘RK’ Company project includes different modules developed

by several separate teams that get integrated together.

Another mentioned disadvantage of waterfall model is that it is not suitable for projects where

requirements change all the time which leads to a high risk.

6 Improvement Phase

In this phase, several improvement suggestions were provided for the project under study in order

to achieve high quality product.

100

6.1 Improvement Suggestions

Six sigma project selection focuses on improvement opportunities that have a verifiable financial

return. Such opportunities include the obvious reductions in production defects (Evans & Lindsay,

2005). This will be my focus and the goal of the coming improvement suggestions.

The project under study needs to improve the project flexibility, reduce the cycle time and make

the process flow continuously.

 Flexibility: The suggested flexibility refers to the ability to adapt quickly and

effectively to changing requirements (Evans & Lindsay, 2005), which is one of

the reasons identified in the analysis phase of the project under study. It refers

to the ability to respond rapidly to changing demands and the ability to produce

a wide range of customized services.

To be able to succeed in globally competitive markets, requires a capacity for

rapid change and flexibility (Evans & Lindsay, 2005).

 Cycle time: Refers to the time it takes to accomplish one cycle of a process.

Reductions in cycle time serve two purposes. First, they speed up work

processes so that customer response is improved. Second, reductions in cycle

time can only be accomplished by streamlining and simplifying processes to

eliminate non-value added steps. This approach forces improvements in quality

by reducing the potentials for mistakes and errors. By reducing non-value added

steps, costs are reduced as well. Thus, cycle time reductions often drive

simultaneous improvements in organization, quality, cost and productivity

(Evans & Lindsay, 2005).

101

Flexibility and cycle time are the pillars for agility which is crucial to such customer – focused

strategies as mass customization, which requires rapid response and flexibility to changing

customer demand.

Thus, this leads to the main suggestion for ‘RK’ company to move from waterfall process to “Agile

Methodology” to improve the required quality that ensures the success of the project.

However, there are several popular agile methods such as Extreme Programming and Scrum. The

suggested method to be used by ‘RK’ company for the project under study is “Scrum” based on

its ability to split a large team into smaller sub-teams which is already the case of the project under

study.

6.2 How Can ‘RK’ Company Implement Scrum Method

Schwaber and Beedle (2002) suggested that the team should consist of five to nine members and

if more people are available, several sub-teams can be formed (as cited in Abrahamsson et al.

2002). This is already the case of the project under study. The project team is already formed of

six sub-teams, which facilitates the switch from waterfall methodology to agile methodology using

scrum method and reduces resistance to change.

Following Schwaber and Beedle (2002) suggestion that was mentioned in (Abrahamsson et al.

2002), ‘RK’ Company will be adopting scrum for an existing project where the development

environment and technology to be used exists, but the project team has problems related to

complex technology and changing requirements that were identified in the analysis phase. In this

situation, scrum should be started with daily standup meetings. The objective of the first sprint

should be to demonstrate any piece of user functionality on the selected technology. The team

should work on solving the impediments of the project that will enable the team to progress.

102

Focusing on the description of scrum practices given by Schwaber and Beedle (2002), ‘RK’

company needs to define everything that is needed in the final product based on current knowledge

in the product Backlog. The Backlog list should be constantly updated with the list of requirements.

It can also include features, functions, bug fixes, defects, enhancements or technology updates.

This list should be controlled by adding updating and removing work items. The product owner is

responsible for keeping the product backlog up to date (as cited in Abrahamsson et al., 2002).

The team should apply sprint procedure in order to adapt to changing environmental variables.

Every sprint should begin with the sprint planning meeting in which the product owner and the

team discuss which stories will be moved from the product backlog into the sprint backlog.

During the sprint, the team should have a daily scrum meeting for fifteen minutes during which

the team discuss solutions to challenges and report progress to the product owner. At the end of

the sprint, a review meeting should be held to present the work done to the product owner in order

to determine if the work done has met its acceptance criteria.

Also, the team should have a retrospective meeting to discuss what went good and what needs to

be improved and provide improvement suggestions.

After stabilizing the change of moving from waterfall to agile using scrum method, ‘RK’ company

can work on optimizing the process by looking into other tools for directly improving service

delivery and catalyzing continuous improvement. This tool is called “Kanban”. Using Kanban will

help the project under study to maintain a constant pace indefinitely.

103

6.3 How Can ‘RK’ Company Implement Kanban

‘RK’ Company can benefit from Kanban system in addition to the suggested agile scrum method

to limit the team’s work in progress to set capacity and to balance the demand on the team against

the throughput of their delivered work. By doing this they can achieve sustainable pace.

Since each software team has different situation, the team of the project under study need to

experiment or in another way evolve their process to best suit their needs. Since the team members

are capable of understanding the basic principles of scrum and Kanban, they are therefore capable

of inspecting, tailoring and adapting to the process that fit their context and optimize it to their

domain.

Following the steps that Anderson (2010) defined in his book:

1. First ‘RK’ company needs to define the start and end point for control. It is necessary to

decide where to start and end process visualization, and in doing so, define the interface

points with upstream and downstream partners. The team for the project under study can

adopt workflow visualization with cards and limit work-in-progress within their own

political sphere of control and negotiate a new way of interacting with immediate upstream

and downstream partners. For example, the development manager and test manager who

have control over the analysis, design, testing and coding, can map this value stream and

negotiate new styles of interaction with the business partners upstream who provide

requirements, prioritization and portfolio management and those downstream with system

operations.

2. The next step is to identify the types of work that arrive at that point and any others that exit

within the workflow that will need to be limited. For example, bugs are likely a type of work

that exists within the workflow. The team can also identify other types such as code

104

refactoring, system maintenance and upgrades. For incoming work, the team can have types

like user stories.

3. The third step is to draw cards wall to show the activities that happen to the work rather than

specific functions or job descriptions. Before drawing a card wall to visualize workflow, it

would be a good idea to sketch it or model it. Once the workflow is properly understood by

sketching or modeling it, defining a card wall can be started by drawing columns on the

board that represent the activities performed, in the order they are performed. During the

first few weeks the team may make changes to the board until it stabilizes to fit their needs

and criteria. It is also necessary for the activity steps to model both the in-progress and

completed work, by convention this is done by splitting the column. Then the team can add

the input queue and any downstream delivery steps that they wish to visualize. Also, they

need to add buffers or queues that believe are necessary as demonstrated in figure 18.

Input

Queue
Test

Build

Ready
DevelopmentDev ReadyAnalysis

Release

Ready
Production

In progress Done In progress Done

Flow

Figure 18: Kanban work flow (Anderson 2010)

105

4. The next step is to demand analysis. For each type of work identified, the team for the project

under study should make a study of the demand based on historical data to make a

quantitative study. Then the Kanban system can be designed and resourced appropriately to

cope with this demand.

5. Once the team have an understanding of the demand, they can decide how to allocate

capacity within the Kanban system to cope with that demand.

6. Each visual card representing a discrete piece of customer-valued work has several pieces of

information on it. The design of the card is important. The information on the cards must

facilitate the pull system and empower individuals to make their own pull decisions. For

example, the card can have an electronic tracking number used to uniquely identify the item

and to link it to the electronic version of the tracking system, the title of the item and the date

the ticket entered the system. The date will serve a double purpose, it facilitate first-in, first-

out queuing and it allows the team members to see how many days the card has been flowing.

Also, the card can have the required delivery date. Some other information can be shown

off-ticket, such as the name of the assigned person. As a general rule, the design of the ticket

used to represent an individual piece of work that should have sufficient information to

facilitate project-management decisions, such as the item to pull next, without the

intervention or direction of a manager. The idea is to empower the team members with

transparency of process, project goals and objectives, and risk information. Equally, Kanban,

by empowering team members to make their own scheduling and prioritization decisions,

shows respect for individuals and a trust in the system. A well designed work item card is a

key enabler of a high-trust culture and a lean organization.

106

7. The team needs to align the design of the Kanban system and card wall with the decision

made earlier to limit the boundary of work-in-progress control. Moreover, one common

occurrence when designing a card wall for a Kanban system is a process in which two or

more activities can happen concurrently. According to Anderson (2010), there are two basic

patterns for coping with this situation. One is not to model it at all, just leave a single column

where both activities can occur together. The other option is to split the board vertically into

two sections. This situation can occur for the project under study when development ad test

work in parallel as it will be discussed in the next improvement suggestion.

8. Another situation that Anderson (2010) mentioned and the team need to take into

consideration is that there may be several activities that need to happen with a piece of

customer-valued work, but those activities do not need to happen in any particular order. In

these circumstances, it is important to realize that Kanban should not force the team to

complete the activities in a given order. It is important that the Kanban system must reflect

the way the real work is done. There are couple of strategies to the multiple unordered-

activities problem. The first is similar to coping with concurrency: simply have a single

column as a bucket for the activities and do not explicitly track on the board which of them

is complete. The second, and potentially more powerful choice, is to model the activities in

a similar fashion to the concurrent activities.

9. The team should also have a proper coordination with Kanban system.

6.4 How Can ‘RK’ Company Coordinate with Kanban Systems

Anderson (2010) identified several forms of coordination with Kanban system.

107

 The most popular form of coordination is the visual control and pull system. The work-in-

progress limits are drawn on the board at the top of each column. Pull is signaled if the

number of cards in a column is less than the indicated limit. When the team decides to pull

an item, they can choose which item to pull based on available information. If something is

blocked, the team can attach a pink ticket to the blocked item as an indication. The goal is to

visually communicate enough information to make the system self-organizing and self-

expediting at the team level. As a visual control mechanism, the Kanban board should enable

team members to pull work without direction from their manager.

 Daily stand up meetings is another form of coordination. These meetings are a common

element of agile process as discussed previously. However, the team can evolve the meetings

and focus on the flow of work instead of who is working on what as it should be self-

explanatory by the card wall. The facilitator will “walk the board” from right to left (in the

direction of pull) through the tickets on the board. The facilitator might solicit a status update

on a ticket or simply ask if there is any additional information that is not in the board and

may not be known to the team. Particular emphasis will be placed on items that are blocked.

Also about items that appear to be stuck and have not moved for a few days.

 Another form of coordination is the after meeting that consists of huddles of small groups of

2 or 3 people. This emerged as spontaneous behavior because team members wanted to

discuss something on their minds: perhaps a blocking issue, a technical design or architecture

issue or a process related issue. After meetings generate improvement ideas and result in

process tailoring and innovation.

108

 Queue replenishment meetings serve the purpose of prioritization in Kanban. Queue

replenishment meetings are held with product owners to fill the Kanban system’s input queue

for a single value stream.

 Release planning meetings happen specifically to plan downstream delivery. The person

responsible for coordinating the delivery, usually a project manager, typically leads release

planning meetings. Specialists are present for their technical knowledge and risk-assessment

capabilities and managers are present so that decisions can be made. The outcome should be

a completed template representing a release plan.

 Triage is used to classify bugs that will be fixed and their priority, versus bugs that will not

be fixed and will be allowed to escape into production when the product is released. A typical

defect triage involves a test lead, a test supervisor or manager, a development lead, a

development supervisor or manager and a product owner. With Kanban it still makes sense

to triage defects. However, the most useful application of triage is to the backlog of items

waiting to enter the system. The purpose of a backlog triage is to go through each item on

the backlog and decide whether it should remain in the backlog or be deleted. The reason for

that is to reduce its size to facilitate easier prioritization discussions.

 When work items in the Kanban system is impeded, they will be marked as such and an issue

work item will be created. The issue will remain open until the impediment is removed and

the original work item can progress through the system. Reviewing open issues, therefore,

becomes vital to improve flow through the system. While issues that are not progressing and

are in themselves blocked or stale should be escalated to more senior management.

109

However, changing and optimizing the process is not sufficient for the project under study to

achieve the required level of quality. The project has a lot of legacy features and complicated

functionalities that makes it impossible to cover in regression with the current method of testing.

Not to forget that the software system will continue to grow in advancements and complexity as

new features and enhancements are presented with each iteration. This introduces many challenges

on the quality assurance system test team.

Verifying the added features are functioning as required, ensuring that those changes didn’t break

any of the previous functionalities and validating bug fixes is nearly impossible to test manually.

This is the current case of the project under study that causes the test team to change their goals

on test pass or coverage in order to meet schedule making it difficult to reach acceptable levels of

quality in the end.

Watts Humphrey stated that, “If you want to get a high quality product out of test, you have to put

a high quality product into test”.

‘RK’ Company can meet its intended level of quality by automating test cases where test execution

time is much faster than manual test run, thus leading to maximizing test coverage.

When ‘RK’ company moves from waterfall to agile methodology with the regular change and ever

evolving features, automation testing becomes a necessity as agile delivery without automation is

not possible. Automation testing is the only way to ensure a very good coverage of both legacy

features and new functionalities, performance and security testing.

110

6.5 How can ‘RK’ Company Start Automating

With the stated benefits that test automation provides, its principles, and its necessity in agile

development, the automation team for the project under study needs to have a good understanding

and a good start in order for the company to have bugs escaping to production close to zero and

for the company to have a good return on investment.

It is crucial for the automation test team to have a very good understanding of the product they

need to automate test cases for. They need to have a very good knowledge of the functionalities

and features of the product and the technologies used to implement it.

Based on this knowledge, several decisions can be made:

1. The first decision to be made is to determine what test cases to automate and those that need

to be tested manually. It is impossible to automate every possible scenario.

 Some types of bugs can be found only while someone is carefully watching the screen and

running the application. These are the types of bugs that humans are vastly better at detecting

than computers are (Page, Johnston, Rollison, 2009). Also test cases that are performed once

or very few times might not be worth the cost and effort for automating. However, test cases

that will be repeated many times or subject to human error are very good candidates for

automation. Test cases that need to be run with different configurations or on different

platforms can be executed faster if automated. Other possible candidates to consider for

automation are the cases that require a lot of effort and time when done manually, or are

impossible for manual testing. Moreover, functionality which is critical to the business can

be automated as well. Nonfunctional tests such as load testing, stress testing and

performance are good automation testing candidates.

111

2. Establishing the test automation criteria at the beginning will help the team to make

consistent and better decisions about automation. The automation team for the project under

study needs to carefully plan and design work by starting out to create an automation plan

by defining their goal and by identifying the type of test cases to be automated.

3. To benefit from automation as much as possible, it is better for the automation team to be

involved as early as possible in the software development life cycle and run the test more

often. Being involved from the beginning allows the automation team to find bugs as early

as possible, thus reducing the cost of fixing bugs radically.

However, since the project under study has a lot of legacy features, it is impossible to

automate all those features and still catch up with the development team as they will be

adding new features at the same time. In this case, the automation team need to consider

automating new features in order to catch those bugs for the new functionalities as early as

possible and focus on automating core functionalities of legacy features. Also, they need to

focus on the areas where most production bugs are found. Based on the results of the measure

phase, the automation team will need to concentrate on the critical cases of the backend and

functional areas while automating new features at the same time.

4. The next step for the automation team is to select the suitable tool or tools to use in

automating test cases. Selecting the right tool is a crucial decision in automation. There are

many tools in the market and it is important to choose the one(s) that best fit the project

requirements.

The automation team for the project under study needs to consider several key points that

will help to make the right decision.

112

 The tool should support the platforms and technology that is used for the project

implementation.

 The team might also consider to use the tool that uses the same programming language

that the development team uses.

 The test tool should be stable enough as the automation team need to avoid false

positive results as much as possible. This is the case when the test fails even though

the targeted functionality is working correctly. Unstable tool can be one of the reasons

for those false positives and as the number of test cases increase, the test team will not

have sufficient time to investigate those failures.

 The richness of the tool features and at the same time the ease of use of the tool is

another key point that the automation team needs to consider as it will affect the effort

and time needed to learn how to use it.

 The tool should also have most of the features if not all that supports the verification

of the functionalities for the project under test.

 Another key point to consider is the flexibility of the tool to be able to reuse, maintain

and centralize the test code as much as possible as well as the ability of the tool to

support any change in the user interface in order to avoid another type of false positive

of the test result.

5. Another consideration is that the automation team lead should know the level of experience

and skills for each team member in order to properly distribute the automation testing effort

across the team members as the complexity of the test cases will have different levels.

113

6.6 How Can the Automation Team Create Good Quality Test

After the automation team for the project under test identifies the goal and test strategy as well as

selecting the right tool for testing the project, it is important to have a good test design and quality.

 It is important to have each automated test case with a single objective and not have the same

test verifying several expectations as bugs tend to hide each other. Once the first bug is fixed,

the automated test will need to be run again and reveal the second bug, while if each test is

designed to verify a single expectation, multiple bugs can be found by running several tests

at the same time.

 Also, it is better to keep the test small. Large and complex automated tests are difficult to

maintain and debug. Also, having a small test case will allow the team to share reusable test

code and test data.

 Another key point to consider is to keep test cases independent from each other in order to

avoid unnecessary test failures. If one of the test cases fail, the rest of the dependent test

cases will fail as a consequence and will be blocked from verifying other functionalities until

that specific failure is fixed.

 It is also important to group and organize the test in a specific logic to be able to identify

easily. As the number of automated test increases, it becomes difficult to find a specific test.

For example, test cases can be organized by the application features.

 Automation test team need to avoid redundant test cases. Test cases with different input

values that will be validating the same code path should not be added. For example, in the

case of testing a field that takes a specific range of numbers, it is better to verify the boundary

values of that field and not to test every single possible input.

114

 Automation test team need to centralize reusable test code as much as possible. If a single

functionality changes between builds, many test cases will be affected and will be broken. It

will be more efficient and less time consuming to fix the change in one place and not in each

and every single affected test case.

 It is important to avoid fragile user interface automation test tools that depend on the location

or coordinates to locate an element in the application. The reason is that, if the developer

decided to change the location of a specific control, the automated test cases will no longer

be able to find the object and as a consequence will fail. Other tools that are able to identify

the control by its Id (which is a unique value) are more stable. The Id of the element is rare

to change which will make the automated tests more resistant to user interface changes and

thus reduces the maintenance required for the test.

 Automation test team needs to reduce test code maintenance as much as possible in order to

invest time in adding test cases and increase code coverage rather than spend the time to fix

broken automated test cases.

 Other key point that the automation team of the project under study needs to consider, is to

automate the test cases in parallel as the development team is implementing the specific

feature. The automated test cases can be executed after implementation is done. This will

help the team to reduce the lead time and reduce the release cycle time.

 It is also important to enhance the test execution time. As the number of test cases increase

with time, the execution time will increase as well. In this case the test engineers need to

improve the performance by looking into parallelizing the test run, which means that they

will need to run multiple test cases concurrently. This will reduce the test time significantly,

test the application more efficiently and will be able to execute those tests more frequently.

115

By designing the test cases to be independent from each other will be the key point for having

those tests run in parallel and not sequentially.

Another improvement suggestion that ‘RK’ company can apply or any software organization, is

to improve the software quality and CTQ performance at design phase. This can be done by using

a quality tool “Quality Function Deployment” (QFD) that can be considered as a preventive action

that results in a reduction in the cost.

6.7 How can ‘RK’ Company Implement Quality Function Deployment

QFD is focused on preventive actions. It prevents or minimizes the causes of design problems or

defects instead of reacting to them at a later stage in the software development cycle. This leads to

a radically reduced cost, reduced cycle time and improved customer experience as early design

changes for a software feature are much less expensive to make than after the release to production

(Bernal et al., 2009).

A set of matrixes is used to relate the voice of the customer to the product’s technical requirements

and component requirements. This matrix is called the “House of Quality”.

116

Design requirements

(How?)

Relations matrix

Priorities of technical

requirements

Priorities of

customer

requirements

Competitive

evaluation

Voice of

customer

(What?)

Correlation matrix

Figure 19: Quality Function Deployment

As shown in the figure 19, ‘RK’ company needs to follow the below steps to build the house of

quality:

1. Identify customer requirements

QFD starts with establishment of objectives, which represent the answer to “What?” what is

desired in order to reach the new service’s development? These objectives derive from client’s

requirements and are called the “voice of the customer” (Bernal et al., 2009).

Sometimes the client requirements are general, vague and difficult to implement directly, a more

detailed description is needed. These are three kind of service characteristics that must be

differentiated. The requirements mentioned directly by the clients will be called “performance

requirements”; other wants are difficult for clients to verbalize. These “wants” are essential parts

117

of the service and perform basic functions that the user expects and consider as given. These basic

functions are known as “basic requirements”. The third kind of service feature is an “emotional

requirement”, it reflects a need that the client has not appreciated before.

2. Identify technical requirements

Technical requirements are design characteristics that describe the customer requirements as

expressed in the language of the designer or engineer. Essentially, they are the “How” by which

the company will respond to the “What” – customer requirements. These are measurable features

that can be evaluated at the end of development process (Evans & Lindsay, 2005).

3. Develop a relationship matrix

A relationship matrix should be developed between customer requirements and the technical

requirements.

Relations between the client and design requirements are not always 1:1, there are complex

relationships and varying levels of strength. A single design requirement may have an influence

on several of the client’s requirements (Bernal et al., 2009).

However, the lack of a strong relationship between a customer requirement and any technical

requirement shows that the customer needs are either not addressed or that the final design will

have difficulty in meeting them. Similarly, if a technical requirement does not affect any customer

requirement, it may be redundant or the designers may have missed some important customer need.

4. Add key competitor evaluation and key selling points

This step identifies importance ratings for each customer requirement and evaluates competitor’s

existing products or services for each of them. Customer importance ratings represent the areas of

118

greatest interest and highest expectations as expressed by the customer. Competitive evaluation

highlights the absolute strengths and weaknesses in competing products. By using this step,

designers can discover opportunities for improvement. It also links QFD to a company’s strategic

vision and indicates priorities for the design process

5. Evaluate technical requirements of competitive products and services and develop targets

This step is usually accomplished through intelligence gathering or product testing and then

translated into measureable terms. These evaluations are compared with the competitive evaluation

of customer requirements and technical requirements. If a competing product is found to best

satisfy a customer requirement but the evaluation of the related technical requirements indicates

otherwise, then either the measures used are faulty or else the product has an image difference,

which affects customer perceptions. On the basis of customer importance ratings and existing

product strengths and weaknesses, targets for each technical requirement are set.

6. Selecting requirements to be deployed in the remainder of the process

The technical requirements that have a strong relationship to customer needs, have poor competitive

performance, or are strong selling points are identified during this step. These characteristics have

the highest priority and need to be “deployed” throughout the remainder of the design and

development process to maintain a responsiveness to the voice customer. Those characteristics not

identified as critical do not need such rigorous attention (Evans & Lindsay, 2005).

119

7 Control Phase

‘RK’ Company main goal to ensure the success of the project under study is to improve its quality

by reducing the number of bugs found in production to nearly zero. Several improvement

suggestions were provided in the improvement phase.

The next step for ‘RK’ company is to start implementing those changes and measure the

improvement performance in order to take the necessary actions that will ensure that the process

is under control.

Several metrics and reports were explained in details in the literature review chapter.

 Tracking the Work-in-progress

By measuring the number of work items in progress at each stage in the system after every release,

can help to take the corrective actions where needed. The expected result is to see the system

flowing smoothly and the height of the bands on the chart are stable.

 Lead Time

Another identified metric is the lead time. By measuring the average time of how long items take

until they reach production from the time they get approved, can help measure how predictably

‘RK’ company delivers. It is expected that the average lead time is similar in each cycle.

 Throughput

Throughput is another mean of measurement and it helps to indicate the number of items that got

delivered in a given period of time.

 Number of bugs

In addition, measuring the number of bugs that escaped to production helps identify if ‘RK’

company is meeting the identified goal. This number is expected to fall to close to zero.

120

‘RK’ Company should not only focus on process measurements but it should also measure testing

quality. For this, ‘RK’ company can use the defect removal efficiency that was also explained in

the literature review chapter.

 Defect removal efficiency

Ideally ‘RK’ company wants the defect removal efficiency to be 1, which means that there are

no defects found after delivery. However, achieving zero defects after delivery is nearly

impossible. For this, it is necessary for the test team to find as many bugs as possible before

delivery and not to drop the measure of defect removal efficiency below 0.95.

It is important for ‘RK’ company to monitor the applied improvements, use the suggested

measurements and metrics and take the necessary actions when needed to ensure that it reaches

the specified goals that will lead to the success of the project under study.

121

CHAPTER 5:

CONCLUSIONS AND FUTURE WORKS

1 SWOT Analysis

In this thesis we addressed the problem of software quality management and proposed a DMAIC

based approach. The SWOT analysis of the proposed approach is as follows:

Strengths

This study demonstrated the importance of six sigma as a business strategy that focus on

eliminating inefficiency through the use of a systematic approach. It also revealed its ability to

pursue to find and eliminate the causes of errors. This allows organizations to identify and

implement improvements that leads to an increased confidence in the quality of the product

produced at all levels: team, management, marketing and most importantly the customer especially

in the current competitive market that demands short cycle time, fast software releases with feature

rich and high quality software products.

Weaknesses

Despite the defined strengths, six sigma has its weaknesses as well. It requires the total cooperation

of the organization at all levels. It also relies on good data for understanding process performance,

thus, it requires a considerable effort to be made to collect accurate data which makes it time

consuming and costly.

122

Opportunities

One of the key reasons to pursue six sigma DMAIC methodology is to be a head and distinct in

the competitive market. It helps to put a great emphasis on speed, quality and productivity. Also,

it provides a customer-driven excellence by focusing on the customer requirements through high

quality software products and as a result, it improves the organizational return on investment.

Moreover, it improves the overall performance of an organization by providing a working

methodology that allows the organization to fulfill its plan in order to achieve its goals.

Threats

There are threats that can weaken the success of six sigma DMAIC methodology such as a

dysfunctional organizational culture whose shared values and behavior are at odds with its long

term health. Also, lack of creativity and cooperation of the workforce can also be considered as a

threat as the workforce is a principal source of innovative ideas that is a necessity in the

improvement phase of DMAIC.

Strengths:

1. Focus on eliminating inefficiency

2. Assist in identifying the root causes of

defects

3. Assist in executing quality

improvement efforts

Weaknesses:

1. Requires total cooperation of the

company

2. Requires significant amount of data

collection and analysis

Opportunities:

1. Distinction in competitive market

2. Provides customer-Driven excellence

3. Improves return on investment

4. Improves overall performance of the

organization

Threats:

1. Dysfunctional organizational culture

2. Lack of creativity and cooperation of

the workforce.

Table 17: SWOT analysis of DMAIC

123

2 Future Works

In the software development industry, there is always need for improvement. Recent studies show

that Agile and Lean strategies are more effective than traditional strategies on average. However,

the success rate for software projects is still low compared to other industries. There is still work

needed on finding ways to reduce cycle times especially when implementing large features that

would increase the time needed for development and testing, thus leading to a reduced

predictability for project release dates. Also, software companies still face problems to find the

proper tools and methods that would help facilitate the design phase especially for features with

complicated implementation logic and the necessity to keep the software product easy to use at the

same time. This causes the development team to go back to design phase in the middle of

implementation and as a consequence, it leads to increased cycle time and reduced predictability.

Moreover, Agile and lean strategies, require team members to be experienced enough to be able

to make decisions with the least cost of failure, which is not the case in most software teams where

team members expertise vary. Another possible area that requires improvement is the ability to

find reliable and easy to use automation test tools that will not cause false positive test results that

would require a lot of investigation and maintenance from the test automation team that will also

lead to an increased cycle time.

124

REFERENCES

[1] Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software Development

Methods Review and Analysis. Retrieved February 17, 2015, from:

http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf

[2] Alexander, M. (2013). When Little Objective Data are Available, Find Root Causes and

Effects with Interrelationship Digraphs and JMP. Proceedings of the SouthEast SAS Users

Group (SESUG) Conference.

[3] Anderson, D. J. (2004). Agile Management for Software Engineering. Prentice Hall, Upper

Saddle River, New Jersey.

[4] Anderson, D. (2010). Kanban Successful Evolutionary Change for Your Technology

Business. Blue Hole Press, Sequim, Washington.

[5] Bach, J. Agile Test Automation. Retrieved February 17, 2015, from:

http://www.satisfice.com/articles/agileauto-paper.pdf

[6] Bassil, Y. (2012). A Simulation Model for the Waterfall Software Development Life Cycle.

International Journal of Engineering & Technology 2(5), 742-749.

[7] Bernal, L., Dornberger, U., Suvelza, A., & Byrnes, T. (2009). Quality Function

Deployment (QFD) For Services. Retrieved February 17, 2015, from:

http://www.vgu.edu.vn/fileadmin/pictures/studies/MBA/Handbook_QFD_Services.pdf

[8] Blakeslee, Jr. J. A. (1999). Implementing the Six Sigma solution. Quality Progress 32 (7),

77-85.

[9] Beck, K. (1999). Embracing Change with Extreme Programming. IEEE Computer 32(10),

70-77.

http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://www.satisfice.com/articles/agileauto-paper.pdf
http://www.vgu.edu.vn/fileadmin/pictures/studies/MBA/Handbook_QFD_Services.pdf

125

[10] Boehm, B., & Turner, R. (2005). Management Challenges to Implement Agile Processes in

Traditional Development Organization. IEEE Software 22(5), 30-39.

[11] Boehm, B. (2002). Get Ready for The Agile Methods, With Care. Computer 35(1), 64-69.

[12] Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2009). A Framework for Adapting Agile

Development Methodologies. European Journal of Information Systems 18(4), 332-343.

[13] Chow, T., & Cao, D. B (2008). A Survey Study of Critical Success Factors in Agile Software

Projects. The Journal of Systems and Software 81(6), 961-971.

[14] Chang, C. W., Wu, C. R., & Lin, H. L. (2006). A Simplified Measurement Scheme for

Software Quality. Journal of Information and Optimization Science 27(3), 723-732.

[15] Chakrabarty, A., & Chuan Tan, K. (2007). The Current State of Six Sigma Application on

Services. Managing Service Quality 17(2), 194-208.

[16] Chan, F.K.Y., & Thong, J.Y.L. (2009). Acceptance of Agile Methodologies: A Critical

Review and Conceptual Framework. Decision Support Systems 46(4), 803-814.

[17] Conboy, K. (2009). Agility from First Principles: Reconstructing the Concept of Agility in

Information Systems Development. Information Systems Research 20 (3), 329-354.

[18] Dawson, S. P. (1994). Continuous Improvement in Action Applying Quality Principles to

Software. Information Systems Management 11(1), 31-39.

[19] Davison, A. L., & Al-shaghana, K. (2007).The Link between Six Sigma and Quality Culture

an Empirical Study. Total Quality Management 18(3), 249-265.

[20] Daneva, M., Veen, E. V. D., Amrit, C., Ghaisas, S., Sikkel, K., Kumar, R., Ajmeri, N.,

Ramteerthkar, U., & Wieringa, R. (2013). Agile Requirements Prioritization in Large-Scale

Outsourced System Projects: An Empirical Study. The Journal of Systems and Software

86(5), 1333-1353.

126

[21] Desai, T. N., & Shrivastava, R. L. (2008). Six Sigma – A New Direction to Quality and

Productivity Management, Proceedings of the World Congress on Engineering and

Computer Science 2008 WCECS 2008, October 22 - 24, 2008, San Francisco, USA.

[22] Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A Decade of Agile

Methodologies: Towards Explaining Agile Software Development. Journal of Systems and

Software 85(6), 1213-1221.

[23] Dustin, E., Garett, T., & Gauf, B. (2009). Implementing Automated Software Testing: How

to Save Time and Lower Costs While Raising Quality. Addison-Wesley, Boston.

[24] Drury, M., Conboy, K., & Power, K. (2012). Obstacles to Decision Making in Agile

Software Development Teams. The Journal of Systems and Software 85(6), 1239-1254.

[25] Dyba, T., & Dingsoyr, T. (2008). Empirical Studies of Agile Software Development: A

Systematic Review. Information and Software Technology 50(9-10), 833-859.

[26] Evans, J. R., & Lindsay, W. M. (2005). An Introduction to Six Sigma & Process

Improvement. Thomson South-Western, Mason, OH.

[27] Evans A., J.P., & Lindsay, W.M. (2008). Managing for Quality and Performance Excellence,

seventh ed. Thomson South-Western, Mason, OH.

[28] Edison, H., Bin Ali, N., & Torkar, R. (2013). Towards Innovation Measurement in the

Software Industry. The Journal of Systems and Software 86(5), 1390-1407.

[29] Fewster, M., & Dorothy, G. (1999). Software Test Automation, Effective use of test

execution tools. Addison-Wesley, Boston.

[30] Fontana, R. N., Fontana, I. M., Garbuio, P. A. D. R., Reinehr, S., & Malucelli, A. (2014).

Processes versus People: How Should Agile Software Development Maturity be Defined?

The Journal of Systems and Software 97, 140-155.

127

[31] Galin, D. (2004). Software Quality Assurance from Theory to Implementation. Pearson

Addison-Wesley, New York.

[32] Garvin, D. (1984). What Does Product Quality Really Mean? Sloan Management Review,

25-43.

[33] Goh, T., & Xie, M. (2004). Improving on the Six Sigma Paradigm. The TQM Magazine

16(4), 235-240.

[34] Glass, R. L. (2001). Agile Versus Traditional: Make Love, Not War! Cutter IT Journal

14(12), 12-18.

[35] Gentleman, R., Hornik, K., & Parmigiani, G. (2012). Six Sigma with R Statistical

Engineering for Process Improvement. Springer, New York.

[36] Grenning, J. (2001). Launching XP at a Process-Intensive Company. IEEE Software 18(6),

3-9.

[37] Highsmith, J. (2002). Agile Software Development ecosystems. Pearson Edition, Boston,

MA.

[38] Hossain, A., Kashem, M., & Sultana, S. (2013). Enhancing Software Quality Using Agile

Techniques. IOSR Journal of Computer Engineering 10(2), 87-93.

[39] Hooda, R. V. (2012). An Automation of Software Testing: A Foundation for the Future.

International Journal of Latest Research in Science and Technology 1(2), 152-154.

[40] Hung, H. C., & Sung, M. H. (2011). Applying Six Sigma to Manufacturing Process in the

Food Industry to Reduce Quality Cost. Scientific Research and Essays 6(3), 580-591.

[41] Ilie, G., & Ciocoiu, C. N. (2010). Application of Fishbone Diagram to Determine the Risk

of an Event with Multiple Causes. Management Research and Practice 2(1), 1-20.

128

[42] Issac, G., Rajendran, C., & Anantharaman, R. N. (2010). Determinants of Software Quality:

Customer’s Perspective. Total Quality Management & Business Excellence 14(9), 1053-

1070.

[43] Issac, G., Rajendran, C., & Anantharaman, R. N. (2004). A Conceptual Framework for Total

Quality Management in Software Organizations. Total Quality Management & Business

Excellence 15(3), 307-344.

[44] Jayanthi, R., & Florence, M. L. (2013). A study on Software Metrics and Phase Based Defect

Removal Pattern Technique for Project Management. International Journal of Soft

Computing and Engineering 3(4), 151-155.

[45] Johannsen, F., Leist, S., & Zellner, G. (2011). Six Sigma as a Business Process Management

Method in Services: Analysis of the Key Application Problems. Information Systems and e-

Business Management, 9(3), 307-332.

[46] Jones, C. (2008). Measuring Defect Potentials and Defect Removal Efficiency. The Journal

of Defence Software Engineering 21(6), 11-13.

[47] Kabir, E., Boby, M. I., & Lutfi, M. (2013). Productivity Improvement by Using Six Sigma.

Engineering and Technology 3(12), 1056-1084.

[48] Koripadu, M., & Subbaiah, K. V. (2014). Problem Solving Management Using Six Sigma

Tools & Techniques. International Journal of Scientific and Technology Research 3(2), 91-

93.

[49] Korkala, M., & Maurer, F. (2014). Waste Identification as the Means for Improving

Communication in Globally Distributed Agile Software Development. The Journal of

Systems and Software 9, 122-140.

129

[50] Kwak, Y. H., & Anbari, F. T. (2006). Benefits, Obstacles, and Future of Six Sigma

Approach. Technovation, 26(5-6), 708-715.

[51] Larman, C. (2004). Agile & Iterative Development: A Manager’s Guide. Addison-Wesley,

Boston.

[52] Lehtinen, T. O. A., Mantyla, M. V., Vanhanen, J., Itkonen, J., & Lassenius, C. (2014).

Perceived Causes of Software Project Failures – An Analysis of Their Relationships.

Information and Software Technology 56(6), 623-643.

[53] Lehtinen, T. O. A., Mantyla, M. V., & Vanhanen, J. (2011). Development and Evaluation of

a Lightweight Root Cause Analysis Method (ARCA method) – Field Studies at Four

Software Companies. Information and Software Technology 53(10), 1045-1061.

[54] Lyu, J. J., & Liang, C. C. (2014). Effective Approach to Quality Control for Small-Medium

Software Companies. Total Quality Management & Business Excellence 25(3-4), 296-308.

[55] Lyytinen, K., & Rose, G.M. (2006). Information System Development Agility as

Organizational Learning. European Journal of Information Systems 15(2), 183-199.

[56] Marek, R. P., Elkins, D. A., & Smith, D. R. (2001). Understanding the Fundamentals of

Kanban and Conwip Pull System Using Simulations. In B. A. Peters, J. S. Smith, D. J.

Medeiros, & M. W. Rohrer, (Eds.) Proceedings of the 2001 Winter Simulation Conference

(pp. 921-929). Texas, USA: A&M University.

[57] Maheshwari, S., & Jain, D. C. (2012). A Comparative Analysis of Different Types of Models

in Software Development Life Cycle. International Journal of Advanced Research in

Computer Science and Software Engineering 2(5), 285-290.

130

[58] Mast, J. D., & Lokkerbol, J. (2012). An Analysis of the Six Sigma DMAIC Method from the

Perspective of Problem Solving. International Journal of Production Economics, 139(2),

134-154.

[59] Marques, P. A., & Requeijo, J. G. (2009). SIPOC: A Six Sigma Tool Helping on ISO 9000

Quality Management Systems. 3rd International Conference on Industrial Engineering and

Industrial Management (pp. 1229-1238).

[60] Mafakheri, F., Nasiri, F., & Mousavi, M. (2008). Project Agility Assessment: An Integrated

Decision Analysis Approach. Production Planning & Control 19(6), 567-576.

[61] Meso, P., & Jain, R. (2006). Agile Software Development: Adaptive Systems Principles and

Best Practices. Information Systems Management 23(3), 19-30.

[62] Middleton, P. (2001). Lean Software Development: Two Case Studies. Software Quality

Journal 9(4), 241-252.

[63] Moe, N. B., Aurum, A., & Dybå, T. (2012). Challenges of Shared Decision-Making: A

multiple Case Study of Agile Software Development. Information and Software Technology

54(8), 853–865.

[64] Moe, N. B., Dingsøyr, T., & Dybå, T. (2009). Overcoming Barriers to Self-Management in

Software teams. IEEE Software 26 (6), 20–26.

[65] Moe, N. B., Dingsøyr, T., & Dybå, T. (2010). A Teamwork Model for Understanding an

Agile Team: A Case Study of a Scrum Project. Information and Software Technology 52(5),

480-491.

[66] Munassar, N. M. A., & Govardhan, A. (2010). A Comparison between Five Models of

Software Engineering. International Journal of Computer Science 7(5), 94-101.

131

[67] Miller, D., & Lee, J. (2001). The People Make the Process: Commitment to Employees,

Decision Making, and Performance. Journal of Management 27, 163-189.

[68] Misra, S. C., Kumar, V., & Kumar, U. (2009). Identifying Some Important Success Factors

in Adopting Agile Software Development Practices. The Journal of Systems and Software

82(11), 1869-1890.

[69] Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of Migrating to Agile

Methodologies. Communications of the ACM 48 (5), 73-78.

[70] O’Neill, D. M., & Duvall, C. (2003). A Six Sigma Quality Approach to Workplace

Evaluation. Journal of Facilities Management, 3(3), 240-253.

[71] Pressman, R. S. (2001), Software Engineering: A Practitioner’s Approach, 5th edition,

McGraw Hill.

[72] Page, A., Johnston, K., & Rollison B. (2009). How We Test Software at Microsoft. Microsoft

Press, California.

[73] Pai, W. C. (2002). A Quality-Enhancing Software Function Deployment Model. Information

Systems Management 19(3), 20-24.

[74] Phan, D. D. (2001). Software Quality and Management: How the World’s Most Powerful

Software Makers Do It. Information Systems Management 18(1), 56-67.

[75] Quyoum, A., Din Dar, M. U., & Quadri, S. M. K. (2010). Improving Software Reliability

Using Software Engineering Approach – A Review. International Journal of Computer

Applications 10(5), 41-47.

[76] Reel, J. S. (1999). Critical Success Factors in Software Projects. IEEE Software 16(3), 18 -

23.

132

[77] Rising, L., & Janoff, N. S. (2000). The Scrum Software Development Process for Small

Teams. IEEE Software 17(4), 26-32.

[78] Reiffer, D.J. (2002). How Good are Agile Methods? IEEE Software 19(4), 14–17.

[79] Rainer, A., & Hall, T. (2002). Key Success Factors for Implementing Software Process

Improvement: A Maturity-Based Analysis. Journal of Systems and Software 62 (2), 71–84.

[80] Schwaber, K. (1995). Scrum Development Process. OOPSLA 95 workshop on Business

Object Design and Implementation. Verlag.

[81] Scarpa, M., & Puliafito, A. (2009). Developing High Quality Software. International Journal

of Parallel, Emergent and Distributed Systems 24(2), 171-187.

[82] Sharma, S., Sarkar, D., & Gupta, D. (2012). Agile Processes and Methodologies: A

conceptual Study. International Journal on Computer Science and Engineering 4(5), 892-

898.

[83] Stankovic, D., Nikolic, V., Djordjevic, M., & Cao, D.B. (2013). A Survey Study of Critical

Success Factors in Agile Software Projects in Former Yugoslavia IT Companies. The

Journal of Systems and Software 86(6), 1663-1678.

[84] Strode, D. E., Huff, S. L., Hope, B., & Link, S. (2012). Coordination in Co-Located Agile

Software Development Projects. The Journal of Systems and Software 85(6), 1222-1238.

[85] Snee, R. (2004). Six Sigma: the Evolution of 100 Years of Business Improvement

Methodology. International Journal of Six Sigma and Competitive Advantage 1(1), 4-20.

[86] Sridhar, V. (2003). Implementing Automated Testing. Idea Group Inc., Hershey, PA, USA.

[87] Subramanian, G. H., Jiang, J. J., & Klein, G. (2007). Software Quality and IS Project

Performance Improvements from Software Development Process Maturity and IS

Implementation Strategies. The Journal of Systems and Software 80(4), 616-627.

133

[88] Tarhan, A., & Yilmaz, S. G. (2014). Systematic Analyses and Comparison of Development

Performance and Product Quality of Incremental Process and Agile Process. Information

and Software Technology 56(5), 477-494.

[89] Thackeray, R., & Van Treeck, G. (2007). Applying Quality Function Deployment for

Software Product Development. Journal of Engineering Design 1(4), 389-410.

[90] Wougang, I., Akinladejo, F. O., White, D. W., Obaidat, M. S., Fellow of IEEE, & Fellow of

CS. Coding-Error Based Defects in Enterprise Resource Planning Software: Prevention,

Discovery, Elimination and Mitigation. The Journal of Systems and Software 85(7), 1682-

1698.

[91] Yu, X., & Petter, S. (2014). Understanding Agile Software Development Practices Using

Shared Mental model Theory. Information and Software Technology 56(8), 911-921.

[92] Zimmerman, J.P., & Weiss, J. (2005). Six Sigma’s Seven Deadly Sins. Quality 44, 62-66.

[93] Zu, X., Fredendall, L. D., & Douglas, T. J. (2008). The Evolving Theory of Quality

Management: The Role of Six Sigma, Journal of Operations Management, 26(5), 630-650.

134

APPENDIX

The below is a set of questions that were asked to the Development and QA managers for the

project under study at ‘RK’ company in order to get their feedback on the issues that their teams

are facing.

1. What is the current methodology used for the project?

2. How does the testing process works? At what stage testing starts?

3. What is the percentage of manual test vs. automated test?

4. Has the project faced situations where major / critical bugs reached to production that

should have been caught by testers?

5. How long regression takes?

6. How regression test cases are defined / selected?

7. What are the problems that cause the release date to be postponed?

8. Does the dev. Team create unit test?

9. Is there any available documentation that the test team rely on?

10. Do you believe that these documents are clear enough and complete?

11. How often these documents are updated / maintained?

12. How does the QA team communicate with the Dev team?

13. What kind of tests are performed?

14. Do you believe that management is supplying adequate test resources?

15. Do you believe that the test schedule is adequate for the amount of testing that should be

done?

16. How much time is spent on test maintenance?

135

17. In your opinion what are the main issues that exist in the current Test / Development

process?

