
DEEP HEURISTIC: A HEURISTIC FOR MESSAGE

BROADCASTING IN ARBITRARY NETWORKS

Rakshit Majithiya

A thesis

in

The Department

of

Computer Science And Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

January 2015

c© Rakshit Majithiya, 2015

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Rakshit Majithiya

Entitled: Deep Heuristic: A Heuristic for Message Broadcasting in Arbitrary Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair

Dr. T. Eavis

Examiner

Dr. J. W. Atwood

Examiner

Dr. G. Butler

Supervisor

Dr. H. A. Harutyunyan

Approved

Chair of Department or Graduate Program Director

20

Amir Asif, Ph.D., Dean

Faculty of Engineering and Computer Science

Abstract

Deep Heuristic: A Heuristic for Message Broadcasting in Arbitrary Networks

Rakshit Majithiya

With the increasing popularity of interconnection networks, efficient information dissemination has

become a popular research area. Broadcasting is one of the information dissemination primitives.

Finding the optimal broadcasting scheme for any originator in an arbitrary network has been proved

to be an NP-Hard problem. In this thesis, a new heuristic that generates broadcast schemes in

arbitrary networks is presented, which has O(|E|+ |V | log |V |) time complexity. Based on computer

simulations of this heuristic in some commonly used topologies and network models, and comparing

the results with the best existing heuristics, we conclude that the new heuristic show comparable

performances while having lower complexity.

iii

Acknowledgments

I would like to express my sincere gratitude to my supervisor Dr. H. Harutyunyan for the continu-

ous support of masters study and research, for his patience, motivation, enthusiasm, and immense

knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not

have imagined having a better advisor and mentor.

I would like to dedicate this thesis to my wife for her constant influence and encouragement. I

would also like to thank my parents and my family for their endless love and support.

iv

Contents

Abstract iii

Acknowledgments iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Problem Statement . 1

1.2 NP-Completeness . 5

2 Broadcasting 9

2.1 Commonly Used Topologies . 10

2.2 Previously-Known Heuristics . 18

2.2.1 Round Heuristic . 19

2.2.2 Tree Based Algorithm . 22

2.2.3 The Minimum-Weight Cover Problem . 22

3 A New, Improvised Heuristic - Deep Heuristic 25

3.1 Proposed Heuristic . 25

3.1.1 Definitions . 25

v

3.1.2 Scope of Improvement in Existing Heuristics 28

3.1.3 Algorithm of Proposed Heuristic - Deep Heuristic 30

3.2 Time Complexity . 31

4 Practical Results Using Simulation 33

4.1 Commonly Used Topologies . 34

4.1.1 Hypercube (Hd) . 35

4.1.2 Cube Connected Cycles (CCCd) . 37

4.1.3 Shuffle-Exchange (SEd) . 39

4.1.4 DeBruijn (DBd) . 41

4.1.5 Butterfly (BFd) . 43

4.2 Simulation Results and Comparisons in NS-2 Models 45

4.2.1 GT-ITM Random Model . 53

4.2.2 GT-ITM Transit-Stub Model . 57

4.2.3 Tiers Model . 61

4.2.4 BRITE Top-down Hierarchical Model . 67

4.3 Conclusion based on practical simulation . 76

5 Conclusion and Future Work 78

Bibliography 80

vi

List of Figures

1 The Graph G Corresponding to the problem 3DM 6

2 The Graph H . 7

3 The Path graph for n = 6 . 10

4 The Cycle graph for n = 4 and n = 6. 11

5 The Complete graph for n = 4 and n = 6. 11

6 The Hypercube graphs . 12

7 The CCC3 . 13

8 Shuffle Exchange Graph SE3 . 13

9 deBruijn Graph DB3 . 14

10 2- Grid graph G[4× 5] . 15

11 2-Torus graph T [4× 3] . 15

12 Recursive Circulant graphs G(8, 4) and G(16, 4) . 16

13 The dispersion region DR(p, t) for some message p. 20

14 (a) A bipartite graph G. (b) Its corresponding flow graph G3. 24

15 Definitions of Graph Parts . 26

16 Example Graph G with two subgraphs from vertex a. 28

17 Chart of simulation results for Hypercube Hd . 36

18 Chart of simulation results for Cube Connected Cycles (CCCd) 38

19 Chart of simulation results for Shuffle-Exchange (SEd) 40

vii

20 Chart of simulation results for DeBruijn (DBd) . 42

21 Chart of simulation results for Butterfly (BFd) graph 44

22 Example of Internet Domain Structure . 47

23 A typical Tiers internetwork . 49

24 A large Tiers internetwork . 50

25 A large Tiers internetwork . 52

26 Chart of simulation results for GT-ITM Random model with 200 vertices 54

27 Chart of simulation results for GT-ITM Random model with 500 vertices 56

28 Chart of simulation results for GT-ITM Transit-Stub model with 600 vertices 58

29 Chart of simulation results for GT-ITM Transit-Stub model with 1056 vertices . . . 60

30 Chart of simulation results for Tiers model with 355 vertices 64

31 Chart of simulation results for Tiers model with 1105 vertices 66

32 Chart of simulation results for BRITE Top-down Waxman model with 400 vertices . 69

33 Chart of simulation results for BRITE Top-down BA model with 400 vertices 71

34 Chart of simulation results for BRITE Top-down Waxman model with 1000 vertices 73

35 Chart of simulation results for BRITE Top-down BA model with 1000 vertices . . . 75

viii

List of Tables

1 Properties of the commonly used topologies . 17

2 Theoretical complexities for Hypercube Hd . 24

3 Practical results for Hypercube Hd . 35

4 Practical results for Cube Connected Cycles (CCCd) 37

5 Practical results for Shuffle-Exchange (SEd) . 39

6 Practical results for DeBruijn (DBd) . 41

7 Practical results for Butterfly (BFd) graph . 43

8 Practical results for GT-ITM Random model with 200 vertices 54

9 Practical results for GT-ITM Random model with 500 vertices 55

10 Practical results for GT-ITM Transit-Stub model with 600 vertices 58

11 Practical results for GT-ITM Transit-Stub model with 1056 vertices 59

12 Parameters for Tiers model with 355 vertices . 61

13 Parameters for Tiers model with 1105 vertices . 62

14 Practical results for Tiers model with 355 vertices 63

15 Practical results for Tiers model with 1105 vertices 65

16 Practical results for BRITE Top-down Waxman model with 400 vertices 68

17 Practical results for BRITE Top-down BA model with 400 vertices 70

18 Practical results for BRITE Top-down Waxman model with 1000 vertices 72

19 Practical results for BRITE Top-down BA model with 1000 vertices 74

ix

Chapter 1

Introduction

In order to find the best communication structure for parallel and distributed computing, a lot

of work has been done in the study of the properties of interconnection networks. The ability to

effectively disseminate the information among the processors is an important feature for an intercon-

nection network. There are four main problems regarding information dissemination: broadcasting,

accumulating, multicasting and gossiping. The main focus of this thesis is broadcasting and gossip-

ing.

1.1 Problem Statement

Communication efficiency becomes particular important when the network supports a distributed

file or database system. There are two approaches to reduce the delay of information dissemination:

one is to reduce the amount of data being transferred, while the other is to minimize the delay of

information spreading [47].

In addition, broadcasting is a vital communication problem in multiprocessor computer systems.

There are many problems that could not be solved by a single processor in an acceptable amount of

time. One solution is to divide the problem into subproblems that can be performed in parallel. A

1

single processor handles one of these subproblems. The result of certain subproblems must be trans-

ferred among these processors for further computing [38]. The performance of the communication

often determines the efficiency of the interconnected network. Therefore, quick broadcasting is an

important goal in parallel systems.

An interconnected network can be modeled as graph G = (V,E), where V is the set of processors,

which are referred as vertices (or nodes) and E is the set of communication links referred to as edges.

Two nodes u ∈ V and v ∈ V are adjacent if there is an edge e ∈ E, such that e = (u, v). The degree

of a node is the number of neighbors of this node. The degree of graph G is the maximum degree

among al nodes in this graph. Δ stands for the degree of a graph. A path p in a graph G = (V,E) is

a sequence of nodes of the form p = v1, v2, . . . , vn, (n ≥ 2), in which each node vi is adjacent to the

next node. Obviously, the path p is also a sequence of edges. The length of a path is the number of

edges in the path. The length of the shortest path between two nodes is the distance between them.

The diameter of a graph is the maximum of the distances between all pair of vertices in the graph.

A graph G = (V,E) is said to be connected if there is a path between any two vertices on G. It is

natural to assume that the network is represented by a graph.

The study of information dissemination problem occurs when the following problem is raised:

“There are n ladies, and each one of them knows an item of scandal that is not known to any of

the others. They communicate by telephone, and whenever two ladies make a call, they pass on to

each other, as much scandal as they know at the time. How many calls are needed before all ladies

know all the scandal?”[?]. This problem, which has become known as the Gossip Problem, or the

Telephone Problem, has in turn been the source of several research papers that have been concerned

with the spread of information among a set of people, whether it be by telephone calls, conference

calls, letters or even computer networks.

Broadcasting in a network is the process in which a node in the network sends a message to all

other nodes. The main difference between broadcasting and gossiping is that, in gossiping, each

2

node has a different message that will be sent to all others during the process, while only one node

has one message to send to all other nodes in broadcasting.

Communication networks can be classified into three types, depending on where the communi-

cation bottleneck occurs [12].

1. If, during communication, a processor can only use one of its links, we call this situation

processor-bound because processors can not quickly relay messages and will hamper the effi-

ciency of the network. This pattern is also called 1-port or whispering.

2. On the contrary, when a processor can use all of its links at the same time, communications are

said to be link-bound, because it is now the number of links that limits the communications.

This pattern is also called n-ports or shouting.

3. Between these two extreme possibilities, we have the case where a processor can only use k

links at the same time.

In order to formalize the gossip problem, let us assume that each node in a graph has a token

that needs to communicate to all of the other nodes in the graph. The tokens can be combined

so that all communications involve constant time. The time needed for combining is irrelevant and

treated as zero. Thus a formal definition can be stated as follows:

Initialization: Let G = (V,E) be a graph (interconnection network). Each node, v, is associated

to an initial singleton set S(v), which is the initial data. These initial singleton sets are disjoint.

Allowable Steps: Each node can send its set to a neighbor or neighbors / or receive a set from

a neighbor or neighbors depending on the model of communication used. After receiving some sets,

a node unites its existing set with all sets received at that step thus forming a new set for the next

step.

Final state: All nodes must have the same set locally, containing all elements in the initial

singleton set [7].

The action of exchanging tokens between two nodes is referred to as a call. Then, for gossiping,

we have the following constraints in the model considered in this thesis:

3

• A node can only call one adjacent node per unit of time.

• A node can participate in only one call per unit of time.

• Two-way mode is used, that is, a node sends its set and receives a set from its neighbor at the

same time.

• Each call requires one unit of time.

• Many calls can be performed in parallel.

In order to measure the gossip time, we employ the term round. In gossiping, a round is a set of

parallel calls in the same time unit. A solution to a gossip problem is a sequence of feasible rounds

that finish the communication.

In broadcasting we assume that a source node in a graph has a token that needs to be sent to

all the other nodes in the graphs. The formal definition for broadcasting is simply stated:

Initialization: Let G = (V,E) be a graph (interconnection network). A source node v is

associated with an initial unique token (the initial data). None of other nodes has a token.

Allowable Steps: Depending on the model of communication used, the nodes that have received

this token can send it to a neighbor or neighbors who have not yet received this token.

Final state: All nodes must have this token locally.

For broadcasting, we have the following constraints in the model considered in this thesis:

• A node can only call one adjacent node per unit of time.

• A node can participate in only one call per unit of time.

• Each call requires one unit of time.

• Many calls can be performed in parallel.

For broadcasting, a round is a set of parallel calls in the same time unit. The number of rounds

is used to measure the broadcast time. Since one round spends one unit of time, the number of

4

rounds is equal to the total time-steps needed for broadcasting. Given a graph G, the broadcast

time b(G, u), or simply b(u), is the minimum broadcast time of graph G originated at node u.

1.2 NP-Completeness

A problem is in class NP if a given solution to this problem can be verified in polynomial time.

A problem is said to be NP-Complete if it is NP and it is as difficult as any other NP-complete

problem.

At first glance, since the definition of broadcasting is straightforward, broadcasting problems do

not seem very hard. However, as many other apparently simple problems, broadcasting problems

were proved to be intractable. To prove that a problem is NP-complete, one must first show that

it is NP, and second to show that some known NP-complete problem is reducible to it. In [41], it

is presented that the problem of determining b(u) for an arbitrary vertex u in an arbitrary graph

G is NP-complete. The problem used as a known NP-complete problem is the three-dimensional

matching problem (3DM), which was shown to be NP-complete in [15]. The 3DM problem is reduced

to the broadcast problem in polynomial time. Below we present the proof given in [41].

The proof shows that the 3DM problem is reducible in polynomial time to a more general Broadcast

Time problem in which at round 0 a set of vertices already has the message and wants to broadcast

it to the rest of the graph. The particular case when the set of originator vertices contains only one

originator vertex represents our broadcast problem of determining b(u) for an arbitrary vertex u in

an arbitrary graph G.

The general broadcast time problem is formally defined as follows. Given a graph G = (V,E) with

a specified set of vertices V0 ⊆ V and a positive integer k, is there a sequence V0, E1, V1, E2, V2, . . . , Ek, Vk

where Vi ⊆ V , Ei ⊆ E(1 ≤ i ≤ k), Ei = {u, v}, u ∈ Vi−1, v /∈ Vi−1, Vi = Vi−1 ∪ {v} and Vk = V .

Here k is the total broadcast time, Vi is the set of informed vertices at round i, and Ei is the set of

5

edges used at round i. It is obvious that when | V0 |= 1 then this problem becomes our broadcast

problem of determining b(u) for an arbitrary vertex u in an arbitrary graph G.

The 3DM problem is defined as follows: Given sets X = {x1, x2, . . . , xm}, Y = {y1, y2, . . . , ym},

Z = {z1, z2, . . . , zm} and M ⊆ X × Y × Z, there exists a subset N ⊆ M and | N | = m such that

every two elements in N disagree in all three coordinates [41].

Starting from the sets X,Y and Z in the 3DM problem, a graph G is constructed in polynomial

time m as shown in Figure 1, adapted from [41]. First, each vertex (xi, yj , zk) ∈ M is connected to

vertices xi of X, yi of Y and zk of Z. For example, vertex (x1, y2, z3) is connected to x1, y2 and z3.

Second, create a set of vertices V0 containing a vertex for each vertex in M and construct a complete

bipartite subgraph from the independent set V0 and M. Finally, construct remaining vertices and

edges exactly as shown in Figure 1. The proof below shows that the 3DM problem is reducible to

a broadcast time problem with k = 4 in the graph G.

Figure 1: The Graph G Corresponding to the problem 3DM

6

Given a solution for the broadcast time problem in G, we will show that this is a solution to the

broadcast time problem if and only if it is a solution of the 3DM problem. We start by observing

that the right side subset of |M |−m vertices of V0 must start informing the top right vertices in the

first round, so that after 4 rounds all vertices on the top right side are informed. Similarly, the left

side subset of m vertices must start informing the top left vertices no later than the second round,

meaning they are only free for the first round. In order to inform all the vertices on the bottom

line in round 4, the left side m vertices in V0 must inform an m-subset of vertices at round 1 and

the vertices in V0 must be able to inform distinct elements of X, Y and Z at rounds 2, 3 and 4

respectively. This is possible if and only if V0 is a solution of the 3DM problem.

The next step is to show that 3DM is reducible to determining the broadcast time for an arbitrary

graph G with an arbitrary originator u. First construct the graph H shown in Figure 2, as follows.

Starting from graph G, add a vertex u, an independent vertex set U = {u1, u2, . . . , um}, and the

edges {(u, ui), 1 ≤ i ≤ m =| V0 |}. Every vertex ui joins m − i paths of lengths 6, 7, . . . ,m + 5 − i.

Finally, create a matching between U and V0 by adding m edges.

Figure 2: The Graph H

Given the problem to determine whether b(u) = m+5 in graphH, consider the following solution.

Vertex u will inform each vertex ui at round i. In turn, each ui will broadcast the message to the

paths connected to it in decreasing path length order. In the end, at time unit m+1, ui informs its

7

matched vertex in V0, so that every vertex in V0 will be informed at round m+1. Thus determining

if b(u) = m + 5 in graph H becomes equivalent to determining if the broadcasting in graph G can

be done in 4 rounds, which is the broadcast time problem with k = 4 in graph G.

In such cases where a general problem is NP-Complete, the research community narrows its fo-

cus on more specific instances of the problem. However, the broadcast time problem was proved

to also be NP-Complete for specific topologies, such as planar graphs, and bounded degree graphs.

In addition, researchers usually also approach the problem with approximation algorithms. Schin-

delhauer provides results on the inapproximability of the broadcast time problem. In the end, the

problem is approached with heuristic algorithms whose results cannot be approximated, but give

good simulation results in practice.

8

Chapter 2

Broadcasting

Literature Review

This chapter reviews some commonly used topologies and the results on broadcasting in these

topologies are introduced. Several previously known heuristics for broadcasting are briefly introduced

in the second section of this chapter.

It is well known that, for any graph on n nodes, �log(n)	 ≤ b(G) ≤ n− 1. Because any informed

node can send a message to only one of its adjacent vertex in one time unit, the number of informed

nodes can at most be doubled in each round. Thus, at least �log n	 rounds are needed for broad-

casting. On the other hand, at least one node must be informed in each round. A situation in which

no new node is informed means that the broadcasting has been finished. Therefore, broadcasting

takes at most n− 1 rounds.

For any graph of maximum degree Δ and diameter D, where D ≤ b(G) ≤ δD, because it is

possible to broadcast in any shortest path spanning tree of G of height D and maximum degree Δ

in at most ΔD rounds. In [12], the following lemma is proven. This will be used when discussing

broadcast time in several topologies.

Lemma 2.0.1 In any graph of diameter D, if three different nodes u, v1, and v2, with both v1 and

9

v2 at a distance D from u exists, then b(G) ≥ D + 1.

2.1 Commonly Used Topologies

Many commonly used topologies and their broadcast times are presented in the three surveys:

[12], [23] and [25] This section reviews the commonly used topologies on basis of three important

communication parameters: (i) the degree, (ii) the diameter, and (iii) the broadcast time.

The path Pn is a tree with two end nodes of vertex degree 1, and the remaining n − 2 nodes

of vertex degree 2, thus the maximum degree of Pn is 2. The D(Pn) = b(Pn) = n − 1. A path is

therefore a graph that can be drawn so that all of its vertices and edges lie on a single straight line.

Figure 3 shows a path with six vertices, where D(P6) = b(P6) = 5.

Figure 3: The Path graph for n = 6

The Cycle Cn

Cycle Cn, n ≥ 3, is a simple graph with vertices v1, . . . , vn and edges {v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}.

In other words cycle Cn is a path such that the start vertex and end vertex are also connected by

an edge. Cn has n vertices and the maximum degree is 2. The D(Cn) =
n
2 � and the b(Cn) = �n

2 	.

Figure 4 demonstrates C4 and C6, where the diameter and broadcast time of C4 is 2 and that of C6

is 3.

The Complete graph Kn

A complete graph Kn is a simple graph with exactly one edge between any pair of distinct vertices.

Kn has n vertices and degree n − 1. The diameter of Kn is 1. Kn is a broadcast graph because

during each time unit the number of informed vertices is doubled, thus b(Kn) = �log2 n	. Figure 5

10

Figure 4: The Cycle graph for n = 4 and n = 6.

demonstrates K4 and K6, where the broadcast time of K4 is 2 and that of K6 is 3.

Figure 5: The Complete graph for n = 4 and n = 6.

The Hypercube Hn

The hypercube of dimension n, denoted by Hn, is a simple graph with vertices representing 2n bit

strings of length n, n ≥ 1 such that adjacent vertices have bit strings differing in exactly one bit

position. Hn has 2n vertices and n · 2n − 1 edges. The diameter of Hn is n and each vertex has

exactly degree n. A (n + 1)-dimensional hypercube can be constructed from two n−dimensional

hypercubes by connecting each pair of the corresponding vertices. Hn is the minimum broadcast

graph. The b(Hn) = �log2 2n	 = n. Figure 6 illustrates three hypercubes of dimensions 1, 2 and 3.

11

Figure 6: The Hypercube graphs

The Cube-Connected Cycles CCCn

CCCn is a modification of the hypercube Hn by replacing each vertex of the hypercube with a cycle

of n vertices. The ith dimensional edge incident to a node of the hyper-node is then connected to

the ith node of corresponding cycle of the CCCn. Thus, CCCn has n · 2n nodes and the maximum

degree is 3. The D(CCCn) = 2n+ �n
2 	 − 2. The b(CCCn) = � 5n

2 	 − 1, first every informed vertex

sends the message to the hypercube neighbor, then to the right neighbor on the ring, and finally to

the left one. Figure 7 shows a 3-dimensional cube connected cycle.

The Shuffle-Exchange SEn

SEn is the graph whose vertices can be represented by binary strings of length n. Each edge of

SEn connects vertex βa, where β is a binary string of length n − 1 and a is in {0, 1}, with vertex

βc and vertex βa, where c is the binary complement of a. SEn has 2n vertices and the maximum

12

Figure 7: The CCC3

degree is 3. The D(SEn)=2n − 1 and it is provided that b(SEn) ≤ 2n − 1. Figure 8 represents a

Shuffle-Exchange graph SE3.

Figure 8: Shuffle Exchange Graph SE3

The deBruijn DBn

DBn is the graph, whose nodes can be represented by binary strings of length n and whose edges

connect each string βa, where β is a binary string of length n1 and a is in {0, 1}, with the strings

βb, where b is a symbol in {0, 1}. DBn has 2n vertices with the maximum degree 4 and the

diameter is n. [43] provides the lower bound b(DBn) ≥ 1.3171n, and [4] proves the upper bound,

13

b(DBn) ≤ 1.5n+ 1.5. Figure 9 illustrates a deBruijn graph of dimension 3.

6

Figure 9: deBruijn Graph DB3

The d-Grid G[a1 × a2 × · · · × ad]

The d-dimensional grid (or mesh) is the graph whose nodes are all d-tuples of positive integers

(z1, z2, . . . , zd), where 0 ≤ zi < ai for all i(1 ≤ i ≤ d), and whose edges connect d -tuples, which

differ in exactly by one coordinate. For example, in G[3, 3], vertex (1, 1) is connected to vertices

(0, 1), (2, 1), (1, 0) and (1, 2). G[a1 × a2 × · · · × ad] has a1 × a2 × · · · × ad vertices with the maximum

degree 2d, if each ai is at least 3. The diameter of d-Grid G[a1 × a2 × · · · × ad] is (a1 − 1) + (a2−

1) + · · ·+ (ad − 1) and [23] provides the b(G[a1 × a2])=a1 + a2 − 2. Figure 10 shows a 2-Grid graph

G[4× 5].

The d-Torus T

A d-Torus graph is a d-grid graph with both ends of rows and columns connected. T [a1×a2×· · ·×ad]

denotes the d-Torus graph. The diameter of k × k X-Torus is given in [11], that is
k
2 � + 1 if k is

odd, and
k
2 � if k is even. It is proven in [11] that the optimal broadcast time of 2-Torus graph is

�a1

2 	 + �a2

2 	, when a1 or a2 is even; and it is �a1

2 	 + �a2

2 	 − 1 when both a1 and a2 are odd. The

14

Figure 10: 2- Grid graph G[4× 5]

bounds on the broadcast time of Torus are D ≤ b(T [a1 × a2 × · · · × ad]) ≤ D + max(0,m − 1),

where D =
∑d

i=1 ai−d, and m is the number of odd ai. Figure 11 shows a 2−Torus graph T [4×3].

Figure 11: 2-Torus graph T [4× 3]

15

Recursive Circulant graph G(n, d)

The recursive circulant graph G(N, d) was introduced by Park and Chwa. The recursive circulant

graph is defined as G(N, d) = (V,E) with d ≥ 2, to be a graph where, V = 0, 1, . . . , n− 1, and the

edge set E = {uv|∃i, 0 ≤ i ≤ �log(n)	 − 1, such that u + di ≡ v(mod n)}. G(N, d) has recursive

structure when N = cdm, 1 ≤ c < d. The diameter of this graoh is as follows: if d is odd,

D(G(cdm, d)) =
d
2�m +
 c

2�. When d is even and c is odd, the diameter is �d−1
2 	m +
 c

2� Finally,

when both d and c are even, the diameter is
d−1
2 �m+
 c

2�. G(2m, 4), whose degree is m, compares

favorably to the hypercube Hm. G(2m, 4) has the maximum possible connectivity, and its diameter

is � 3m−1
4 	. The broadcast time of G(2m, 4) is m. Figure 12 shows the two recursive circulant graphs,

G(8, 4) and G(16, 4).

Figure 12: Recursive Circulant graphs G(8, 4) and G(16, 4)

16

Graph Vertices Edges Diameter Degree b(G)

Pn(n ≥ 3) n n− 1 n 2 n− 1

Cn(n ≥ 3) n n
n
2 � 2 �n

2 	

Kn n n(n−1)
2 1 n− 1 �log2 n	

Hd 2d d · 2d−1 d d d

T (n1, . . . , nd)
∏d

i=1 ni d
∏d

i=1 ni

∑d
i=1
ni

2 � 2d
∑d

i=1
ni

2 � ≤ D ≤ ∑d
i=1
ni

2 � +

max{0,∑d
i=1 ni mod 2 -1 } [12]

G(n1, . . . , nd)
∏d

i=1 ni

∏d
i=1(ni − 1)

∑d
i=1 ni − d 2d

∑d
i=1 ni − d [11]

CCCn n · 2n 3n · 2n−1
 5n
2 � − 2 3
 5n

2 � − 2 [34]

DBn 2n 2n+1 n 4 1.3171n ≤ D(DBn) ≤ 3
2 (n+ 1)

SEn 2n 3 · 2n−1 2n− 1 3 2n− 1

RC(2m, 4) 2m m · 2m−1 � 3m−1
4 	 m m

Table 1: Properties of the commonly used topologies

17

2.2 Previously-Known Heuristics

The first algorithm that attempts to solve the minimum broadcast time problem was presented

in [46] in 1981, and then another exact algorithm, based on dynamic programming, was designed

by Scheuermann and Wu [47] in 1984. A backtracking algorithm for bounded degree networks is

described in [19].

Since finding the minimum broadcast time of any originator in an arbitrary graph is NP- com-

plete, many approximation algorithms and heuristics have been presented to determine the broadcast

scheme with minimum time cost.

Given a graph G = (V,E) and the originator u, the heuristic in [29] returns a broadcast scheme

whose performance is at most b(u,G) +Diam(u) + 3
√|V | rounds, where Diam(u) is the diameter

of u, and b(u,G) is the optimal broadcast time. Another well-known algorithm, presented in [44],

is based on calculating the poise of a graph. The poise of a tree T is defined as the sum of the

maximum degree of any vertex in the tree and the diameter of the tree. The poise of a graph G,

denoted by P (G), is defined as the minimum poise of any of its spanning trees. Computing the poise

of an undirected graph is NP-hard. However, [44] present an O(nm log n)-complexity heuristic to

compute a spanning tree of a graph on n vertices andm edges, such that the poise of the tree is within

O(log n) · P (G) + O(log2 n). [44] also proves that b(G) = O(P (G) logn
log logn). The time complexity

of the algorithm is O(nm log2 n), and the upper bound of the broadcast time is O(log2 n
log lognb(G)).

Theoretically, the best upper bound is obtained by the algorithm presented in [11], which generates

a broadcast scheme with O(log |V |
log log |V |b(G)) rounds.

Aside from the algorithms that provide good bounds, some algorithms take advantage of other

methods to solve the minimum broadcast time problem. A genetic algorithm is presented in [22],

which utilizes a global precedence vector to generate a heuristic of complexity O(mn3). [2] introduced

an integer programming formulation that derives a O(log n) approximation algorithm. [3] provided

a general approach for structured communications, which can be applied to solve the minimum

broadcast time problem.

18

In the following sections, two heuristics of value in practice are introduced in detail. The Round

Heuristic [3] and the Tree Based Algorithm [21] are both outstanding heuristics, which have almost

the same performance in most of commonly used topologies, and generate better performance in

three network models from ns-2 simulator [1, 2, 9, 44]. In many variant topologies, their performances

are very close to the optimal value or to the lower bound. Thus, they will be used to scale the new

heuristics in this thesis. In the next two subsections, these two heuristics will be introduced.

2.2.1 Round Heuristic

The Round Heuristic is described in [3], which also presents the simulation results in several com-

monly used graphs. From its simulation results, we can say that its performance is quite close or

equal to the optimal value. The Round Heuristic is designed for both broadcasting and gossiping

problems, and its broadcasting performance will be considered in this thesis.

During each round of broadcasting, every edge in the network will be assigned a weight. Then,

a maximum weighted matching will be performed in the network, in order to activate the matched

edges. The activated edges will be selected to pass the message during that round. This procedure

will continue until the whole network is informed. This procedure will be performed in every round,

and that is why this heuristic is called Round Heuristic.

Setting the weights rationally and effectively are the most significant steps. In [3], two different

approaches are introduced to set the weight. One is called the PotentialApproach, and the other is

the Breadth-First-Search(BFS) approach. The potential approach assigns each edge (v, w) a weight

equal to its poential, defined as the number of messages known by either v or w, but not by both of

them. In broadcasting, the weight could only be 0 or 1.

Obviously, the potential approach is simple and requires little storage and runs very fast. How-

ever, as a pure local greedy algorithm, it lacks a global view. The BFS approach works much better

in this aspect, although its cost is far more expensive. Before going to the details of BFS approach,

several definitions should be presented. In a connected graph, the dispersion region DR(p, t) of a

19

message p is the set of vertices that know p at the beginning of round t. For any vertex v, distv(p, t)

denotes the shortest distance in the graph from v to a vertex w ∈ DR(p, t). The set of border-crossing

edges, denoted by bce(p, t), is defined as bce(p, t) = {(v, w) ∈ E|v ∈ DR(p, t) and w /∈ DR(p, t)}.

For any vertex v /∈ DR(p, t), bcev(p, t) consists of all edges in bce(p, t) that lie on the shortest path

from DR(p, t) to v. Figure 13 illustrates the dispersion region DR(p, t) for a message p. The

border-crossing edges, bce(p, t), are drawn in bold. distv(p, t) = 3 and bcev(p, t) = {e1, e2}.

Figure 13: The dispersion region DR(p, t) for some message p.

The weight of an edge is regarded as the sum of the contributions by each message p. Only

border-crossing edges can disseminate p further in that round and will be assigned weight. Given an

edge e ∈ bce(p, t), how useful is e for the rapid dissemination of p? Message p should preferably be

routed on shortest paths from DR(p, t) to all other vertices: if, for a vertex v, an edge e ∈ bcev(p, t)

is chosen to be active in round t, then distv(p, t+1) = distv(p, t)1. If e lies on many of these shortest

paths, it is more useful. The larger distv(p, t) is, the more priority should be given to forwarding p

towards v. Considering all these criteria, the weight, attributed by all vertices v /∈ DR(p, t) to every

edge e ∈ bcev(p, t), is calculated as follows:

weight(v, p, t) = distv(p,t)
Dist Exp

|bcev(p,t)|Num Exp ,

where distv(p, t) and bcev(p, t) are calculated for every vertex v, at round t, and Dist Exp and

Num Exp are two parameters. [3] applies a modified breadth first search algorithm, such that

20

vertices are considered in order of increasing distv(p, t). For vertex v with distv(p, t) = 1, bcev(p, t)

consists of all incident edges that connect v to a vertex in DR(p, t). For larger distv(p, t) the algo-

rithm computes the union of the sets bcewi
(p, t), for all vertices wi adjacent to v with distwi

(p, t) =

distv(p, t)− 1. The calculation of the bcev(p, t) can easily be incorporated into the BFS search.

For any vertex v, bcev(p, t) is the union of at most |V | sets with at most |E| elements each. This

computation takesO(|V |·|E|) time. The bcev(p, t) are calculated for every vertex v. Thus, calculating

the weights takes O(|V |2|E|) in total. Without considering the matching step, the running time of

Round Heuristic is O(R · |V |2|E|), where R is the number of rounds of broadcasting.

The value of the weight depends heavily on the choice of the parameters,Dist Exp andNum Exp.

Thus, the impact of the parameters plays a significant role in the performance of the Round Heuris-

tic. Particularly, Dist Exp is of great significance, which determines the influence of the distance

between nodes and dispersion regions. Usually, values ranging from 0.25 to 60 are used. The pre-

cise choice for two topologies are mentioned in [3]: for the mesh graphs, Dist Exp = 4, while for

the butterfly graphs, Dist Exp = 2. In [3], simulation results of the heuristic in commonly used

topologies are presented, including the Cube Connected Cycles, the Shuffle Exchange graphs, the

Butterfly graphs as well as the deBruijn graphs. Many of these values are close or equal to the

optimal broadcast time, some of which will be presented in Chapter 4.

21

2.2.2 Tree Based Algorithm

The Tree Based Algorithm (TBA) is presented in [21], whose general idea derives from the Round

Heuristic. Same as the Round Heuristic, TBA applies maximum weighted matching to determine the

message-passing edges between the bright region and the dark region. In each round, TBA performs

a Breadth-First-Search(BFS) from bb(t) towards all the uninformed vertices, and the parent-child

relationship is determined by labeling each uninformed vertex v withD(v, t). Then every uninformed

vertex u will be assigned a weight, which is based on the strategy of the optimal broadcasting in

trees. Let w(u, t) stand for the weight of vertex u at round t. If u has no children, then w(u, t) = 0.

Otherwise, w(u, t) = max{w(Cu
i , t)+i}, where Cu

i is the ith child of u, and without loss of generality,

all the children of u are in decreasing order of their weights. After all the vertices in the dark region

are assigned weights, TBA finds a maximum weighted matching between bb(t) and their uninformed

neighbors. A matching algorithm with time complexity O(|E|) is applied by the heuristic. The

matched edges are used to pass the message in that round. The broadcast time is the round

number during which all the vertices in the network are informed. Since each round takes time

O(|V | + |E|) = O(|E|), the total complexity is O(R · |E|). [21] also provides simulation results for

commonly used topologies as well as some network models, which show that in most cases TBA even

has better results than the Round Heuristic. TBA has a refined version, which inherits the idea of

choosing parameters from the Round Heuristic, to obtain better broadcast time in some topologies.

As a result, the weights are allowed to be decimal in the refinement.

2.2.3 The Minimum-Weight Cover Problem

Another problem that we need to describe is called the Minimum-Weight Cover problem (MWC),

which is presented in [29].

Let G(V1, V2, A, w) be a bipartite graph with bipartition (V1, V2), edge set A, and a weight

function w : A → Z+ on the edges, and no isolated vertices. Each vertex v1 ∈ V1 is called a server,

and each vertex v2 ∈ V2 is called a customer. If a control function F : V2 → V1, where F (v2) = v1

22

implies (v1, v2) ∈ A, and we say that v1 controls v2. For every server v ∈ V1, the clients dominated

by v are denoted by D1(v), . . . , Dk(v), and the edges connecting v with its clients are denoted by

evi = (v,Di(v)). Without loss of generality, all the clients dominated by v are in the order such that

w(evi) ≥ w(evi+1) for 1 ≤ i ≤ k.

The MWC problem. Given a bipartite graph G(V1, V2, A, w), determine a control function

F :V2 → V1 whose weight W (F) = max{max{i + w(evi)}} is minimal. The function F is called

the minimum control function for G.

A pseudopolynomial algorithm is given to solve the MWC problem. The basic idea is to check

whether there exists a positive integer j, where mine{w(e)} + 1 ≤ j ≤ mine{w(e)} + |V 2|, and a

control function F , such that W (F) ≤ j. The algorithm constructs a flow graph Gj based on G and

j, with the property that G has a control function F with weight W (F) ≤ j iff it is possible to push

|V 2| units of flow from the source to the sink on Gj . The details of algorithm are as follows.

Algorithm 1 MWC

1: Set j1 = mine{w(e)}+ 1 and j2 = maxe{w(e)}+ |V2|.

2: Let j = � j1+j2
2 	.

3: Construct the flow graph Gj .

4: Calculate the maximum flow on Gj from source to sink.

5: If the maximum flow is equal to |V2|, then set j2 = j, else set j1 = j.

6: If j equals to j2 and j2 ≤ j1 + 1, then goto next step, else back to step 2.

7: Return the minimum control function F that corresponds to the maximum flow computed on

Gj1 .

end

The complexity of the MWC algorithm mainly depends on which maximum flow algorithm is

employed. Table 2 shows the different maximum flow algorithms and their time complexities. The

Dinic’s algorithm runs in O(|E|√|V |) time in networks with unit capacities.

23

Methods Time Complexity

Ford-Fulkerson algorithm O(|f ||E|)

Edmonds-Karp algorithm O(|V ||E|2)

Dinic’s algorithm O(|E|√|V |)

General push-relabel algorithm O(|V |2|E|)

Table 2: Theoretical complexities for Hypercube Hd

Another crucial part of this algorithm is the construction of the flow graph Gj . Create a source

vertex s and a sink vertex t. Assume that wv is the maximal weight that is less than or equal to

j1 of an edge incident to v ∈ V1. Duplicate v into wv + 1 different copies and arrange the copies

in an arbitrary order v1, . . . , vwv
+ 1. For v1, the first copy of v, create a directed edge (s, v1) with

capacity jwv and a directed edge (v1, u) with capacity 1, from v1 to every customer u ∈ V2 such that

(v, u) ∈ A. For vi the i
th copy of v, i ≥ 2, create a directed edge (s, vi) with capacity 1 and a directed

edge (vi, u) with capacity 1 to all the customers u such that (v, u) ∈ A and w(v, u) ≤ wvi+1. Finally

for each customer u ∈ V 2 create a directed edge (u, t) with capacity 1. Figure 16 demonstrates an

example of G3.

Figure 14: (a) A bipartite graph G. (b) Its corresponding flow graph G3.

24

Chapter 3

A New, Improvised Heuristic -

Deep Heuristic

3.1 Proposed Heuristic

In this section, the new heuristic is proposed, which has a goal to improve the existing heuristics

mentioned previously. Before going in further detail about this proposed heuristic, it would be

important to throw some light on different terminologies and concepts used in this heuristic. In the

following section, different important definitions are described.

3.1.1 Definitions

Definition 1 For a given graph G at round t, there are two kinds of regions according to the

situation of the message distribution, the Dark Region and the Bright Region. The Dark Region,

denoted by DR(t), is a subset of nodes in G that is composed of all uninformed nodes at the beginning

of round t. Those nodes in DR(t) that have informed neighbors, compose the dark border, denoted by

db(t). The bright border bb(t) is composed of those informed nodes that have uninformed neighbors.

The Edges that cross between the Dark Region and the Bright Region are called cross board edges,

25

which are denoted by cbe(t).

Figure 15: Definitions of Graph Parts

Figure 15 illustrates how these concepts are defined. The dark region DR(t) is represented by

the shadowed area. The nodes in DR(t) with the black backgrounds belong to db(t), for example

k, i, j, h,m and l. and the nodes not in DR(t) with shadowed backgrounds belong to bb(t). The

edges (f, k), (f, i), (f, j), (d, b) and (g,m) belong to cbe(t).

Definition 2 For a graph and an uninformed node v at round t, there is a shortest distance from

node v to a node in bb(t). The shortest distance is denoted as D(v, t).

The shortest distance can be used to define the child as follows:

Definition 3 child, parent and descendants: Given an uninformed vertex u and its uninformed

neighbor v, if D(u, t) = D(v, t) + 1, one can say u is a child of v, and v is the parent of u · u, its

children and its children’s children are all called v’s descendants.

Based on the definition of decedents, one can define the descendent graph as mentioned in the

next definition:

Definition 4 For a graph and an uninformed node v at round t, one can find a descendant graph

for v. This descendant graph consists of node v and all its descendants. This is named as the

descendant graph of v, which is denoted by DG(V,E, v), or rather DG(v).

26

Definition 5 Estimated time: in order to estimate the broadcast time of DG(v) in round t, we use

EB(v, t). EB(v, t) is defined recursively as follows:

1. EB(v, t) = 0, if node v has no children.

2. If v has k children, c1, c2, . . . , ck, and all these k children are listed in order of EB(ci, t) ≥

EB(ci+1, t), then EB(v, t) = max{EB(ci, t) + i}, for 1 ≤ i ≤ k.

Based on the definition of estimated time, one can construct an algorithm to calculate EB(v, t),

given EB of all children of node v.

Algorithm 2 Algorithm for Calculating EB(v, t).

1: procedure CALCULATE EB(v, t)

2: Find maxEB(ci, t), and denote it by MAX.

3: Create k buckets, and number them from 0 to k − 1.

4: Consider any child c, if MAX − i ≥ EB(c, t) ≥ MAX − i − 1, put c into the ith bucket.

Here, only the minimum value and the number of elements are recorded. SUM(i) denotes the

number of elements in the first ith buckets and MIN(i) denotes the minimum value in the

ith bucket.

5: Get EB(v, t) = max{EB(ci, t) + i}.

6: end procedure

end

The following lemma is derived based on step 5 of Algorithm 2.

Lemma 3.1.1 EB(v, t) = max{SUM(i) +MIN(i)}, for 0 ≤ i < k.

Proof If a node v has k children, c1, c2, . . . , ck and these children of v are ordered such that

EB(ci, t) ≥ EB(ci+1, t), then according to definition 5, we have EB(v, t) = max{EB(ci, t) + i},

for 1 ≤ i ≤ k. EB(ci, t) + i is order-weight of ci. Because MAX − i ≥ EB(c, t) ≥ MAX − i − 1

27

for any child c in the ith bucket, the maximum difference among EB of the children in this bucket

is less than 1. Therefore, in the ith bucket, the child with the minimum EB has the maximum

order-weight, which is equal to SUM(i) +MIN(i). Thus, max{SUM(i) +MIN(i)}, for 0 ≤ i < k

is the maximum order-weight of all the children, which is EB(v, t).

3.1.2 Scope of Improvement in Existing Heuristics

Before going further in the algorithm description, it would be easier to understand the need for this

heuristic as well as to understand how it improves existing heuristics by going through the situation

where improvement can be made in an arbitrary graph if one goes through the broadcast scheme

for that graph using the Tree Based Algorithm.

Consider an arbitrary graph G, a vertex o ∈ G be the originator. We would compute the

broadcast scheme of this Graph G using Tree Based Algorithm (TBA) [21].

Figure 16: Example Graph G with two subgraphs from vertex a.

28

If one would perform broadcasting using TBA, as seen in Figure 16 there occurs a situation at

round t where the subgraphs originated from vertex d and subgraph s holds different properties in

terms of density. The subgraph from vertex d would be dense and the subgraph from vertex s would

be sparse. In this round, if EB(d) ≥ EB(e), then the information will be sent to vertex d in current

time unit t.

If a graph has more density, i.e., if a graph is a dense graph, the broadcast time would be less

because on every level there will be more nodes in graph to send information to a specific node in the

next level because of its connectivity. At one specific time unit, it is possible that multiple edges are

available to convey information from the nodes in the same parent level to the descendant children.

With that being said, it is also possible that at one time unit, there will be more number of informed

nodes staying idle because other nodes on the same level could be conveying the information to the

descendant children on the next level.

So, based on that understanding, in round t describe above, if we prevent the situation where the

information is sent to a dense subgraph before the sparse subgraph, one may potentially improve the

broadcast time of sparse graph by one time unit. One can certainly say that the information would

be delivered to sparse subgraph (originated from vertex s) before the dense subgraph (originated

from vertex d), if and only if EB(s) > EB(d). Hence, to make this improvement, one needs to

decrease the resulting EB of the dense graph.

In a dense graph, there may be some edges that would remain idle during a broadcast process at

one time unit. If we find a way to eliminate those edges during calculation of the broadcast scheme,

we can potentially decrease EB of the graph. To find such edges, we can examine the descendants of

bb(t) and eliminate the edges that would contribute to increase EB but there might be other edges

to the same descendent which can help one vertex in bb(t) to send the information. In the following

section a formal algorithm is described, which considers the optimization to potentially decrease the

EB of a dense graph.

29

3.1.3 Algorithm of Proposed Heuristic - Deep Heuristic

Following is the algorithm of the proposed heuristic based on the discussion above.

Algorithm 3 Deep Heuristic

1: Initialize bb(t) so that bb(o) has only one node: the originator.

2: Put EB(v, t) as the weight to any node v in DR(t).

3: Sort all vertices in bb(t) by their weight.

4: Let c = first child of db(t)

5: Let P = ParentsWithSameDescendant(bb(t), c)

6: while size(P) �= 1 do

7: if size(P) = 2 and w(p0) == w(p1) and deg(p0) �= deg(p1) then

8: Discard edge e(p0, c)

9: else

10: Discard edge e(pk, c) where k = min(P)

11: end if

12: end while

13: Find the mnw(t) between bb(t) and db(t), and during the process, mark all matched nodes as

informed.

14: Compute bb(t+ 1).

15: If bb(t+ 1) is empty, the process is complete, and t would be the broadcast time. Otherwise,

go to 2.

function ParentsWithSameDescendant(G, c) � G: A set of vertices, c : A vertex /∈ G

Let R be a set of vertices.

for each vertex v in G do

if ∃ e(v, c) then

R = R ∪ {v}

end if

30

end for

return R

end function

end

3.2 Time Complexity

In this section, we will calculate the time complexity of Algorithm 3.

In step 2 of algorithm 3, the process of assignment of weights to individual nodes is divided in

two phases. In the first phase, the heuristic performs a Breadth First Search (BFS) of DR(t) from

the bb(t) and labels each node by D(v, t). At the same time, following sets are created:

• A set of nodes which do not have any children. This set is denoted by rb(t), which means

remote border.

• Amapping between the set of nodes that are parents of same descendants and their dependents.

This can be calculated in a straightforward manner using the ParentsWithSameDescendant

function.

Let E denote the number of edges in the graph G, then this phase can be calculated in O(E)

time. In the second phase, a recursive process is used to compute the weight of each node in DR(t).

This process starts from rb(t) towards db(t). In the worst case, one has to calculate EB(v, t) for

every single node of the graph G. The degree of the ith node of graph G is denoted by di. By using

the deep heuristic to calculate EB(v, t), the time needed for a node with degree d is O(d). Then,

the time needed to calculate all the nodes in
∑n

i=1 O(di). Since
∑n

i=1 O(di) = 2|E|, the complexity

of this phase is O(E). Hence, the total complexity of the weight assignment process in step 2 of

algorithm 3 is O(E).

In the 3, we sort all the nodes in bb(t) based on their weight. A node cannot re-appear in bright

border at different time units. So, in the worst case, the maximum number of vertices to sort in

31

step 3 would be the total number of vertices in the graph. Hence, the complexity of step 3 would

be |V | log |V |.

Step 5 of the algorithm would be a simple constant time lookup from the mapping of descendent

nodes with same parents. We saved this mapping earlier while performing step 2. Hence, it will be a

constant time operation. The loop from step 6 to 12 would run for the number of nodes returned in

set P . If the graph contains n vertices, then in the worst case, the number of nodes in the set P would

be n − 1 hence, the complexity of this step would be |V |. When using sort-matching algorithm in

step 13 for matching procedure, the time complexity in one round would be O(V 2)+O(E) = O(V 2).

However, when using the lists-matching algorithm in the step 13, the time complexity in one round

would be O(E) + O(E) = O(E). During the process of matching in round t, whenever a node is

marked as informed, it is added to bb(t). If the number of uninformed neighbors of a node in bb(t+1)

is 0, then this node will be removed from bb(t+ 1). Hence, every single node is present once in the

dark border and after getting informed, once in the bright border, making the total time complexity

of this operation to be 2 ·O(|E|) = O(|E|) in the worst case. So, combining all the time complexities

of different stages, we get total time complexity of algorithm 3 to be O(|E|+ |V | log |V |).

32

Chapter 4

Practical Results Using Simulation

This chapter focuses on the evaluation of the Deep Heuristic in practice, presenting its results when

run on commonly used network topologies, and on other network topologies, the GT-ITM topology,

the Tiers topology, and the BRITE topology from the NS-2 simulator, the most popular network

simulator in the network research community.

The results we obtained are compared with the results of all the heuristics presented in the

previous chapters.

• The result of Round Heuristic from [3] (RH)

• The Tree Based Algorithm obtained from [21] (TBA)

• The Random algorithm from [51] (P-R)

• The Semi-Random algorithm from [51] (S-R)

• The Minimum-Weight Cover heuristic from [51] (MWC)

• The Minimum-Weight Cover Modified heuristic [51] (MWC-M)

The results are presented in table format with each algorithm on its individual column. In

addition to the heuristic abbreviations above, the following abbreviations are also used:

33

• OPT: The optimal broadcast time in the respective topology

• LOW: The best known theoretical lower bound on the broadcast time in the respective topology

• UP: The best known theoretical upper bound on the broadcast time in the respective topology

• D: The dimension of the topology

In statistics, a confidence interval (CI) is a kind of interval used to indicate the reliability of

an estimate of a population parameter. Instead of estimating the parameter by a single value, an

interval likely to include the parameter is given. How likely the interval is to contain the parameter

is determined by the confidence level or confidence coefficient. Increasing the desired confidence

level will widen the confidence interval. A confidence interval is always qualified by a particular

confidence level, usually expressed as a percentage; thus one speaks of a “95% confidence interval”.

The end points of the confidence interval are referred to as confidence limits.

The simulation of the Deep Heuristic is performed 20 times for each graph. Since all samples

were of the same value, there was no need to compute the confidence intervals, which is the first

advantage of the Deep Heuristic over the existing Random and Semi-Random algorithms.

4.1 Commonly Used Topologies

The commonly used topologies studied in this section are Hypercube (Hd), Cube Connected Cycles

(CCCd), Shuffle-Exchange (SEd), deBruijn (DBd) and Butterfly (BFd). We have already explored

the details about these graphs in chapter 2. The results described in following subsections are derived

from respective practical implementations of the different heuristics.

34

4.1.1 Hypercube (Hd)

We have already seen previously in chapter 2 that the broadcast time of the Hypercube of dimension

D is exactly equal to D.The optimal broadcast times of the Hypercube from [24] together with the

simulation results of the previous mentioned heuristics and Deep Heuristic are presented in Table 3.

D OPT TBA MWC MWC-M P-R S-R DH

3 3 3 4 3 3 3 3

4 4 4 5 5 4 4 4

5 5 5 6 6 6 5 5

6 6 6 8 9 8 7 6

7 7 7 10 10 10 9 7

8 8 9 12 11 12 11 9

9 9 10 15 13 14 14 10

10 10 11 16 16 17 15 11

11 11 12 18 17 19 18 12

12 12 13 20 20 22 20 13

13 13 14 - - 24 22 14

14 14 15 - - 27 25 15

15 15 16 - - 30 27 16

16 16 17 - - 32 30 17

17 17 18 - - 35 32 18

18 18 19 - - 38 34 19

19 19 20 - - 41 37 20

20 20 21 - - 43 39 21

Table 3: Practical results for Hypercube Hd

Figure 17 shows a chart of the simulation results in Hypercubes and we can immediately observe

35

Figure 17: Chart of simulation results for Hypercube Hd

that Deep Heuristic provides optimal broadcast time for all dimensions where simulations were run.

It clearly performs much better than all the other previous heuristics. Hence, we can surely say that

Deep Heuristic is very suitable for Hypercubes.

36

4.1.2 Cube Connected Cycles (CCCd)

The theoretical lower and upper bound in Cube Connected Cycles are presented in [25]. The

simulation results of Deep Heuristic are always lower than the theoretical upper bound, usually 1

round less than the upper bound. Compared to the Round Heuristic and the Tree Based Algorithm,

which are the previous best heuristics in practice, the Deep Heuristic has similar results. For higher

dimensions the results are mostly the same as the best heuristics.

D LOW UP RH TBA MWC MWC-M P-R S-R DH

3 6 7 6 6 7 6 6 6 7

4 9 9 9 9 10 10 9 9 9

5 11 12 11 11 12 12 11 11 12

6 13 14 13 13 14 14 14 14 14

7 16 17 16 16 17 16 16 16 17

8 18 19 18 18 20 19 19 19 18

9 21 22 21 21 22 22 21 21 21

10 23 24 23 23 24 24 24 24 23

11 26 27 26 26 - - 27 27 26

12 28 29 28 28 - - 29 29 28

13 31 32 31 31 - - 32 32 31

14 33 34 33 33 - - 35 34 33

15 36 37 - 36 - - 37 37 36

16 38 39 - 39 - - 40 40 38

Table 4: Practical results for Cube Connected Cycles (CCCd)

37

Figure 18: Chart of simulation results for Cube Connected Cycles (CCCd)

As we can see in the Figure 18, Deep Heuristic starts performing better as the dimension increases.

This gives affirmation that for Cube Connected Cycles, Deep Heuristic is very well suitable.

38

4.1.3 Shuffle-Exchange (SEd)

The optimal broadcast times in Shuffle-Exchange graphs are presented in [25]. Compared with the

previous algorithms with the best performance, the Round Heuristic and the Tree Based Algorithm.

When the dimension is less than or equal to 8, the resulting broadcast times are optimal. From

dimension 9 and up, the broadcast times are always 1 round more than the optimal , for Deep

Heuristic, as well as for the previous best algorithms, the Round Heuristic and the Tree Based

Algorithm. Table 5 shows the simulation results in Shuffle-Exchange graphs.

D OPT RH TBA MWC MWC-M P-R S-R DH

3 5 5 5 5 5 5 5 5

4 7 7 7 7 7 7 7 7

5 9 9 9 10 9 9 9 9

6 11 11 11 12 12 11 11 11

7 13 13 13 14 14 13 13 13

8 15 15 15 16 16 15 15 15

9 17 17 17 18 18 18 18 18

10 19 19 19 20 20 20 20 20

11 21 21 21 22 22 22 22 22

12 23 24 24 24 24 24 24 24

13 25 26 26 - - 26 26 26

14 27 28 28 - - 28 28 28

15 29 - 30 - - 30 30 30

16 31 - 32 - - 33 32 32

17 33 - 34 - - 35 34 34

18 35 - 36 - - 37 36 36

19 37 - 38 - - 39 38 38

20 39 - 40 - - 41 40 40

Table 5: Practical results for Shuffle-Exchange (SEd)

39

Figure 19: Chart of simulation results for Shuffle-Exchange (SEd)

40

4.1.4 DeBruijn (DBd)

Table 6 shows the simulation results of different heuristics in DeBruijn graphs as well as the lower

and upper bounds of DeBruijn graphs. The lower bounds were calculated using the formulas in [43],

and they only hold asymptotically. For this reason, Table 6 shows for dimensions 4 and 5 some

broadcast times that are less than the given lower bounds.

D LOW UP RH TBA MWC MWC-M P-R S-R DH

3 4 6 4 4 4 4 4 4 4

4 6 8 5 5 5 5 5 5 5

5 7 9 7 6 7 7 7 7 7

6 8 11 8 8 8 8 8 8 8

7 10 12 9 9 10 10 10 10 10

8 11 14 11 11 12 12 12 12 11

9 12 15 12 12 14 14 14 13 12

10 14 17 14 14 15 15 15 15 14

11 15 18 15 15 17 17 17 17 15

12 16 20 17 17 19 19 19 19 16

13 18 21 18 18 - - 21 20 18

14 19 23 20 20 - - 22 22 19

15 20 24 - 21 - - 24 24 20

16 22 26 - 23 - - 26 26 22

17 23 27 - 25 - - 28 28 24

18 24 29 - 26 - - 30 30 25

19 26 30 - 28 - - 32 32 27

20 27 32 - 29 - - 34 33 28

Table 6: Practical results for DeBruijn (DBd)

41

The simulation results of Deep Heuristic seems quite similar to the results of TBA. For dimensions

less than 13, they are same as TBA, but for dimensions 14 and up, the optimal broadcast time of

Deep Heuristic discovered to be less than TBA, so it can be observed that as the dimension increases,

Deep Heuristic starts becoming more efficient than other algorithms. Plotting the data represented

in Table 6, we can see in Figure 20 how performance of Deep Heuristic changes based on dimension

of DeBrujin graph.

Figure 20: Chart of simulation results for DeBruijn (DBd)

42

4.1.5 Butterfly (BFd)

Table 7 shows the simulation results of the different algorithms in Butterfly graphs. The lower

and upper bounds are the ones presented in [25]. The Deep Heuristic performs similar to the Tree

Based Algorithm for lower dimension, up to 11. As the dimension increases, the Deep Heuristic is

consistently 1 time unit faster than the Tree Based Algorithm. Hence, in this example as well, Deep

Heuristic adds value to the algorithm

D LOW UP RH TBA MWC MWC-M P-R S-R DH

3 5 5 5 5 6 6 5 5 5

4 7 7 7 7 9 8 8 8 7

5 8 9 9 9 11 10 10 10 9

6 10 11 10 10 12 12 12 12 10

7 11 13 12 12 14 14 14 14 12

8 13 15 14 14 16 16 16 16 14

9 15 17 16 16 18 18 18 18 16

10 16 19 17 18 20 20 20 20 18

11 18 21 19 19 - - 22 22 19

12 19 23 22 21 - - 24 24 21

13 21 25 23 23 - - 26 26 22

14 23 27 24 25 - - 29 28 23

15 24 29 - 27 - - 31 30 26

16 26 31 - 29 - - 33 32 28

Table 7: Practical results for Butterfly (BFd) graph

43

Figure 21: Chart of simulation results for Butterfly (BFd) graph

44

4.2 Simulation Results and Comparisons in NS-2 Models

This section discusses the broadcasting problem in different network models that are popular in the

research in interconnection networks community. The simulation results of the Deep Heuristic are

presented and comparisons are made with the existing algorithms we previously discussed, Round

Heuristic, the Tree Based Heuristic, the MWC and MWC-M heuristics, and the Random and Semi-

Random heuristic.

In this thesis we focus on four different network models, GT-ITM Random [9], GT-ITM Transit-

Stub [9], Tiers [8], and BRITE Top-down Hierarchical models [37]. These network models have

been developed by different research groups and they can all be integrated with the NS-2 simulator.

The NS-2 is a simulator used for research in networks and one of its many features is its ability to

generate topologies based on different network models.

GT-ITM stands for Georgia Tech Internetwork Topology Models and contains the two models

GT-ITM Random and GT-ITM Transit-Stub.

GT-ITM Random model

The GT-ITM Random model uses a pure random generator, which randomly places vertices on a

plane and connects each pair of vertices based on a probability . It is obvious that this network

model is driven by the probability. Although this random model does not correspond to any real

network, it is still presented and discussed in the network research community.

GT-ITM Transit-Stub Model

The GT-ITM Transit-Stub models the Internet. Small networks, such as private company or cam-

pus networks called LANs (Local Area Networks) are formed. These are then typically connected

together into Metropolitan Area Networks (MANs), which can connect multiple LANs in a larger

area, such as city, or Wide Area Networks (WANs), which can be extended to LANs from an entire

country or the whole world. The Transit- Stub model regards each independent network as a routing

45

domain. All the vertices from one independent network are part of the same routing domain and

share the same routing information. Routing domains are classified in two types, stub domains and

transit domains. Stub domains are local and are concerned with local domain traffic, corresponding

to the LANs in the Internet model. Transit domains are global, their goal is to interconnect stub

domains and correspond to the MANs or WANs in the Internet model.

Stub domains are usually not connected directly to each other, although it can happen; but

typically stub domains are first connected directly to one or multiple transit domains and from

thereon indirectly to other stub domains. Depending on whether a stub domain is connected to one

or multiple transit domains, the stub domain is called single-homed or respectively multi-homed.

A gateway node in the stub domain is connected to a node in the transit domain, which in turn

can connect to another node in the same transit domain or in another transit domain or to other

gateway nodes from other stub domains. The transit domain nodes are also called backbone nodes.

A method to produce transit-stub graphs by interconnecting transit and stub domains is pre-

sented in [54]. This method first generates a connected random graph; each node in that graph

represents an entire transit domain. Each node in that graph is then replaced by another connected

random graph, representing the backbone topology of one transit domain. Next, for each node in

each transit domain, this method generates a number of connected random graphs representing the

stub domains attached to that node. Each of these stub domains has an edge to its transit node.

Finally, it adds some extra connectivity, in the form of edges between pairs of nodes, one from a

transit domain and one from a stub or one from each of two different stub domains. Method pa-

rameters control the number of extra edges of each type. Figure 22, adapted from [54], shows an

example of such a structure.

The size of the graph (number of nodes) and the distribution of nodes between transit and stub

domains in this method are controlled by the following parameters:

• The number of transit domains.

• The average number of nodes per transit domain.

46

Figure 22: Example of Internet Domain Structure

• The average number of stub domains per transit node.

• The number of average nodes per stub domain.

The following parameters control the total number of edges in the GT-ITM Transit-Stub model:

• The number of transit-stub and stub-stub edges.

• The probability of an edge between each pair of nodes in the transit domains and stub domains.

The Tiers model is one of the most realistic models for generating random networks. Similar to

the GT-ITM Transit-Stub, it has the hierarchical domain structure that is present in the Internet.

The three levels of hierarchy, the WAN, MAN and LAN levels, are modeled, corresponding to transit

domains, stub domains, and LANs attached to stub nodes. The three levels are also called tiers,

hence the name Tiers model. The model only supports one WAN.

The Tiers model creates the three hierarchy levels one by one, WAN first, then MANs and

finally LANs. The various types of networks are then interconnected according to a given set of

parameters. WANs and MANs are created by placing nodes at random in a grid and connecting

47

them in sub-graphs by joining all the nodes in a single WAN or MAN domain using a minimum

spanning tree. Since minimum spanning trees are sometimes used in reality as the basis for laying

out large networks, the use of a minimum spanning tree makes the Tiers model more realistic. LANs

such as Ethernet and Token Rings are modeled as star topologies. This significantly reduces the

number of edges in the graph and reflects the lack of physical redundancy in most LANs. The LAN

networks are created by choosing one node in each LAN as the center of the star and connecting

every other node to it with a single edge.

The set of parameters below is used to generate a Tiers model network:

• NW , the number of WANs and SW , the number of nodes in a WAN. NW is taken as 1 for

simplicity.

• NM , the number of corporate / institutional networks (MANs) and SM , the number of nodes

per MAN.

• NL, the number of LANs per MAN and SL, the number of nodes per LAN.

For NW = 1, the total number of nodes in the graph, N , is given by N = SW +NM ·SM +NM ·

NL · SL

The other parameters of the model are:

• The degree of intra-network redundancy in the WAN (RW), MAN (RM) and LAN (RL). This

is expressed simply as the degree (number of directed edges) from a node to another node of

the same type. So RL is usually 1, RM might be 2 and RW could be 3.

• The degree of internetwork redundancy between networks. This is the number of connections

between a MAN and a WAN (RMW) or a LAN and a MAN (RLM).

Figure 23 and Figure 24, adapted from [5], show a typical full internetwork, and respectively

a larger internetwork as generated by Tiers. The first one has one WAN with eight nodes, three

MANs with three nodes each and two LANs per MAN with three nodes per LAN. The second one

48

is larger and the endpoints of the links to MAN and LAN nodes have been omitted for clarity, so

only the WAN nodes are seen clearly.

Figure 23: A typical Tiers internetwork

GT-ITM Transit-Stub and Tiers implementations generate networks whose topology resembles

typical internetwork. Both implementations are based on the explicitly hierarchical modeling ap-

proach described in [5]. Tiers introduces a different method for connecting the nodes in a network,

by using a minimum spanning tree, which guarantees connectivity, and produces more realistic net-

works at the WAN scale. The Transit-Stub implementation uses a smaller set of parameters to

control the different aspects of the network, hence takes a more probabilistic approach than that

49

Figure 24: A large Tiers internetwork

of Tiers. In both implementations, most of the parameters can be expected to remain constant

between runs of generated networks.

BRITE models

Finally, we briefly present BRITE, theBoston universityRepresentative InternetTopology gEnerator,

which is a topology generation tool that provides a researcher with a wide variety of generation mod-

els, as well as the ability to easily extend such a set by combining existing models or adding new

ones [37]. BRITE has the capability to work with many different generation models. Some of them

are very similar and share implementation code, and others are completely different and share no

50

functionality. Some can be imported models, such as GT-ITM or Tiers, others can be generated by

BRITE, e.g., Flat Router-level Models, Flat AS-level Models, and Top-down Hierarchical Models.

Flat topology models are the early models where the nodes are randomly placed on a Euclidean

plane irrespective of any hierarchy order among them as opposed to later hierarchical topology

models such as the Tiers and the Transit-Stub. BRITE generates Flat Router-level models in two

major steps. First, the nodes are placed on a Euclidean plane randomly or in a heavy-tailed way.

When node placement is random, each node is placed in a randomly selected location of the plane.

When the placement is heavy-tailed, BRITE divides the plane into squares. Each of these squares

is assigned a number of nodes drawn from a heavy-tailed distribution. Once that value is assigned,

then that many nodes are placed randomly in the square. Second, edges are added to the graph in

one of two ways:

1. Using one of the most commonly used models for generating graphs, Waxman’s probability

model [52], which considers all possible pairs (u, v) of nodes and uses the probability function

Pe, where Pe(u, v) = αe−d/(βL) to create an edge, where d is the Euclidean distance between

the nodes u and v, L is the maximum possible distance between the two nodes α and β are

parameters in the range 0 < α, β ≤ 1.

2. Using the Barabasi-Albert (BA) [?] model, which connects the nodes according to an incre-

mental growth approach. Incremental growth refers to growing networks that are formed by

the continual addition of new nodes, and thus the gradual increase in the size of the network.

When a node is added to the network, the probability that it connects to a node already in

the network is given by: P (i, j) =
dj∑

k∈V dk
where dj is the degree of the target node, V is the

set of nodes already in the network and
∑

k∈V dk is the sum of the degrees of all nodes that

are already in the network.

Flat AS-level Models represent AS-level topologies. An Autonomous System (AS)-level network

is a network under a single administration domain. The AS-level models currently provided by

BRITE are very similar to the models provided for generating router-level topologies. The main

51

difference between these router-level and AS-level models is the fact that AS models place AS nodes

in the plane and these can contain associated topologies.

Finally, BRITE also supports generation of hierarchical topologies, currently only of two- level

hierarchical topologies. However, two-level hierarchical topologies are in concordance to the two

level routing hierarchy that has persisted in the Internet since ARPANET evolved into a network of

networks interconnecting multiple autonomous systems.

Figure 25: A large Tiers internetwork

BRITE uses a top-down approach to generate hierarchical topologies. Figure 25 adapted from

[37], shows a top-down hierarchical model. BRITE first generates an AS-level topology (1) using one

of the available flat AS-level models (e.g., Waxman, BA, etc.). Next, for each node in the AS-level

topology BRITE will generate a router-level topology (2) using a generation model from the available

52

flat models that can be used at the router-level. The router-level topologies are interconnected using

one of four edge connection mechanisms, borrowed from the popular GT-ITM topology generator.

The main goal is to gradually increase the set of edge connection methods with models that reflect

what actually happens in Internet topologies.

4.2.1 GT-ITM Random Model

The results of our simulations in the GT-ITM Random model are presented in this chapter. Our

results in the GT-ITM graph with 200 vertices are shown in Table 8 and Figure 26, which also

show the data collected by the previous algorithms we already discussed. The parameter P is an

input parameter to the GT-ITM topology generator and represents the probability of having an edge

between each pair of vertices. Obviously, a higher probability leads to more edges in the graph.

We can observe that for graphs with small number of edges (small P), the Deep heuristic performs

slightly worse than previous heuristics because of some precalculations in the earlier stages, but as

the number of edges increases, the Deep Heuristic tends to perform better than all other heuristics.

At one point, Deep heuristic turns out to be the best performing algorithm out of all the other ones

and increasing the number of edges further, it can be observed that Deep heuristic performs the

same as TBA.

53

P Edges RH TBA MWC MWC-M P-R S-R DH

0.015 316 10 10 11 11 10 10 11

0.016 346 10 10 11 11 10 10 11

0.017 373 10 10 11 11 10 10 11

0.018 388 9 9 11 11 10 10 10

0.019 391 11 11 10 10 10 10 10

0.02 411 9 9 10 10 10 10 9

0.022 423 9 9 10 10 10 10 9

0.024 475 8 8 10 11 10 10 7

0.025 494 9 8 11 11 10 10 8

0.026 507 8 8 11 10 10 10 8

Table 8: Practical results for GT-ITM Random model with 200 vertices

Figure 26: Chart of simulation results for GT-ITM Random model with 200 vertices

54

The simulation results in the GT-ITM Random model with 500 vertices are shown in Table 9

and Figure 27. In this case the Tree Based Algorithm has the best results for all range of nodes, with

Deep Heuristic and the Round Heuristic following closely, whereas the results of all other previous

algorithms climb up slowly as the number of edges increases. The performance of the Deep Heuristic

gets better with the increase in number of edges and when the number of edges is 2074, while the

Semi-Random algorithms results are almost twice those of the Round Heuristic and the Tree Based

Algorithm, the performance of the Deep Heuristic gets closer to the best performing algorithm.

Compared to the Round Heuristic, the Deep Heuristic has the advantage of a much lower time

complexity; therefore the only previous algorithm with similar time complexity that beats the Deep

heuristic for all number of edges, is TBA.

P Edges RH TBA MWC MWC-M P-R S-R DH

0.008 1003 10 10 13 13 12 12 12

0.009 1198 11 10 13 13 12 12 12

0.01 1238 10 10 13 13 12 12 10

0.011 1413 11 10 13 13 13 13 10

0.012 1481 10 10 13 13 13 13 10

0.014 1725 10 10 13 14 13 13 10

0.015 1830 10 9 14 14 14 14 9

0.016 2074 9 9 15 16 15 15 9

Table 9: Practical results for GT-ITM Random model with 500 vertices

55

Figure 27: Chart of simulation results for GT-ITM Random model with 500 vertices

56

4.2.2 GT-ITM Transit-Stub Model

In this section, results of GT-ITM Transit-Stub Model are represented and analyzed. For the

simulation, two types of GT-ITM Transit-Stub graphs are considered, one with 600 vertices and the

second with 1056 vertices.

The first kind of GT-ITM Transit-Stub models that we studied are generated by the following

parameters. Each graph had 3 stub domains per transit node, with no extra transit-stub or stub-

stub edges. There were 3 transit domains, each of which had 8 nodes, and an edge between each

pair of nodes with probability 0.5. Meanwhile, each stub domain had (on average) 8 nodes, and

edge probability was also 0.5. The number of vertices is given by 3× 8× (1 + 3× 8) = 600.

The simulation results in graphs with increasing number of edges are presented below in Table

10 and Figure 28. The results fluctuate a lot between all the algorithms, but they remain in a small

range between 13 and 16 rounds for all number of edges. For this model, the best results are given

by the Random and Semi-Random algorithms for all the cases. The Deep Heuristic also matches

the best results in some cases when the number of edges is greater. In most of the other cases, the

Deep Heuristic performs just one round worse than the best one. However, compared to the Semi-

Random algorithm, the Deep Heuristic has the advantage that it is more reliable, producing the

same results for repeated runs, whereas the results of the Semi-Random algorithm can vary between

runs. Compared to the TBA algorithm, the Deep Heuristic has the advantage that approximately

one half of the vertices are informed via a shortest path from the broadcast originator, while the

rest of the vertices receive the message via a path at most three hops longer.

57

Edges RH TBA MWC MWC-M P-R S-R DH

1169 14 13 14 13 13 13 14

1190 14 14 14 14 13 13 13

1200 16 15 14 14 13 13 15

1206 14 14 14 14 14 14 15

1219 15 14 14 14 13 13 14

1222 15 14 15 15 14 14 14

1231 14 13 14 14 13 13 14

1232 14 13 14 14 13 13 13

1247 13 14 14 14 14 14 13

1280 14 13 14 14 13 14 13

Table 10: Practical results for GT-ITM Transit-Stub model with 600 vertices

Figure 28: Chart of simulation results for GT-ITM Transit-Stub model with 600 vertices

58

Table 11 and Figure 29 show the simulation results in another kind of GT-ITM Transit-Stub

model, starting with initial seed 47. Each graph has 4 stub domains per transit node, with no extra

transit-stub or stub-stub edges. There are 4 transit domains, each of which has 8 nodes, and an edge

between each pair of nodes with probability 0.5. Meanwhile, each stub domain has (on average) 8

nodes, and edge probability is also 0.5. Thus, the graphs have 4× 8× (1 + 4× 8) = 1056 vertices.

Edges RH TBA MWC MWC-M P-R S-R DH

2115 17 16 16 17 16 16 16

2121 17 17 16 15 15 15 16

2142 16 15 16 15 15 15 16

2151 15 15 16 15 15 15 17

2169 17 17 16 16 15 15 15

2177 18 17 16 16 16 16 16

2185 16 16 15 15 15 15 16

2219 17 16 15 16 15 15 16

2220 15 15 15 15 14 14 15

2230 16 15 16 16 15 15 15

Table 11: Practical results for GT-ITM Transit-Stub model with 1056 vertices

59

Figure 29: Chart of simulation results for GT-ITM Transit-Stub model with 1056 vertices

The results are similar to the GT-ITM Transit-Stub model with 600 vertices in the sense that

the results fluctuate a lot between all the algorithms. Again, for this model, the best results are

given by the Random and Semi-Random algorithms. The Deep Heuristic matches the best results

in some cases and in most other cases performs just one round worse than the best one. However,

compared to the Semi-Random algorithm, the Deep Heuristic has the advantage that it is more

reliable, producing the same results for repeated runs, whereas the results of the Semi-Random

algorithm can vary between runs. Compared to the TBA algorithm, the Deep Heuristic has the

advantage that approximately one half of the vertices are informed via a shortest path from the

broadcast originator, while the rest of the vertices receive the message via a path at most three hops

longer.

60

4.2.3 Tiers Model

All the heuristics are simulated in two Tiers models, one of which has 355 vertices, while the other

has 1105 vertices. The graphs of 355 vertices consist of one WAN, ten MANs and five LANs, while

graphs of 1105 vertices are constituted by one WAN, ten MANs and ten LANs. All parameters used

to generate these two kinds of graphs are listed in Table 12 and Table 13.

Edge NW NM NL SW SM SL RW RM RL RMW RLM

354 1 10 5 5 10 5 1 1 1 1 1

414 1 10 5 5 10 5 1 1 1 2 2

474 1 10 5 5 10 5 1 1 1 3 3

357 1 10 5 5 10 5 2 1 1 1 1

477 1 10 5 5 10 5 2 1 1 3 3

535 1 10 5 5 10 5 2 1 1 4 4

422 1 10 5 5 10 5 3 2 1 2 2

482 1 10 5 5 10 5 3 2 1 3 3

541 1 10 5 5 10 5 3 2 1 4 4

Table 12: Parameters for Tiers model with 355 vertices

61

Edge NW NM NL SW SM SL RW RM RL RMW RLM

1214 1 10 10 5 10 10 1 1 1 2 2

1324 1 10 10 5 10 10 1 1 1 3 3

1447 1 10 10 5 10 10 1 2 1 4 4

1106 1 10 10 5 10 10 2 2 1 1 1

1216 1 10 10 5 10 10 2 2 1 2 2

1326 1 10 10 5 10 10 2 2 1 3 3

1110 1 10 10 5 10 10 3 2 1 1 1

1220 1 10 10 5 10 10 3 2 1 2 2

1331 1 10 10 5 10 10 3 2 1 3 3

1449 1 10 10 5 10 10 2 2 1 4 4

Table 13: Parameters for Tiers model with 1105 vertices

62

In Table 14 and Figure 30, we present the simulation results in Tiers graphs with 355 vertices and

increasing number of edges from 354 to 541. We can observe that the results of all the algorithms

fluctuate a lot, and it is hard to point out which one works the best. The Deep Heuristic has

poor performance for low number of edges, but as the number of edges increases, its performance

gets similar to the previous algorithms. Also, compared to the Semi-Random algorithm, the Deep

Heuristic has the advantage that it is deterministic, producing the same results for repeated runs,

whereas the results of the Semi-Random algorithm can vary between runs.

Edges RH TBA MWC MWC-M P-R S-R DH

354 17 17 16 16 16 16 17

414 15 14 14 14 14 14 14

474 14 13 14 14 14 14 14

357 17 17 16 16 16 16 16

477 15 14 14 14 14 14 14

535 16 15 13 13 13 13 15

422 15 14 14 14 14 14 13

482 14 13 14 14 14 14 13

541 14 14 14 13 13 13 13

Table 14: Practical results for Tiers model with 355 vertices

63

Figure 30: Chart of simulation results for Tiers model with 355 vertices

64

In Table 15 and Figure 31, we present the simulation results in Tiers graphs with 1105 vertices

and different number of edges between 1106 and 1449. Once again, we can observe that the results

of all the algorithms fluctuate a lot. The Random and Semi- Random algorithms give best results in

seven of the ten graphs, and the Deep Heuristic gives the best results in three graphs, the ones with

1447, 1216, and 1220 edges. However, compared to the Semi-Random algorithm, the Deep Heuristic

has the advantage that it is deterministic, producing the same results for repeated runs, whereas the

results of the Semi-Random algorithm can vary between runs. Compared to the TBA algorithm,

the Deep Heuristic has the advantage that approximately one half of the vertices are informed via

a shortest path from the broadcast originator, while the rest of the vertices receive the message via

a path at most three hops longer.

Edges RH TBA MWC MWC-M P-R S-R DH

1214 22 21 21 21 21 21 21

1324 23 21 21 20 20 20 21

1447 22 21 22 22 22 22 21

1106 24 24 21 21 21 21 22

1216 22 21 21 21 21 21 22

1326 23 21 20 21 20 20 21

1110 24 23 21 21 21 21 21

1220 22 21 21 21 21 21 20

1331 20 20 20 20 20 20 20

1449 21 20 22 22 22 22 20

Table 15: Practical results for Tiers model with 1105 vertices

65

Figure 31: Chart of simulation results for Tiers model with 1105 vertices

66

4.2.4 BRITE Top-down Hierarchical Model

In this section, simulation results of four heuristics (P-R, S-R, MWC and MWC-Modified) will be

presented, since there is not any result for the other two. We simulate the heuristics in graphs with

400 and 1000 vertices, and each has Waxman and Barabasi-Albert models. The configurations of the

graphs are as follows. For the graphs with 400 vertices, vertex numbers of AS-level and Route-level

are both 20, the number of links added per new node ranges from 1 to 9, and the edge connection

model is set to Smallest Degree. In the Waxman model, α = 0.15, and β = 0.2. For the graphs

with 1000 vertices, the vertex number of AS-level is 20, the vertex number of Route-level is 50, the

number of links added per new node ranges from 1 to 9, and the edge connection model is set to

Smallest Degree. In the Waxman model, α = 0.15, and β = 0.2.

In Table 16 and Figure 32 we present the simulation results in the BRITE Top-down Waxman

model with 400 vertices. With the number of edges increasing, the results of the previous four

heuristics decline first, and then ascend slowly. In contrast, we can clearly observe that the Deep

Heuristic not only performs better as the number of edges increases, but the difference of 6 rounds

better in the graph with 2755 edges is quite significant compared to the Semi-Random algorithm for

example.

67

Edges MWC MWC-M P-R S-R DH

420 22 22 22 22 28

840 15 15 15 14 14

1260 13 13 13 12 14

1680 14 14 13 13 12

2092 15 14 13 13 12

2440 16 16 14 14 12

2671 17 17 16 16 14

2733 18 18 16 15 13

2755 19 18 18 18 14

Table 16: Practical results for BRITE Top-down Waxman model with 400 vertices

68

Figure 32: Chart of simulation results for BRITE Top-down Waxman model with 400 vertices

69

In Table 17 and Figure 33 we present the simulation results in the BRITE Top-down Barabasi-

Albert model with 400 vertices. The results are similar to the previous model, the Waxman with

400 vertices. The Deep Heuristic provides the best results as the number of edges increases, whereas

the performance of the previous four algorithms slowly gets worse with higher number of edges.

Once again, for the graph with the most edges, 2835, the difference of 4 rounds by which the Deep

Heuristic is better than the next one in performance, is quite significant.

Edges MWC MWC-M P-R S-R DH

399 22 22 22 22 28

777 17 17 17 16 16

1134 15 14 14 13 13

1470 14 13 13 13 12

1785 14 14 13 13 12

2079 14 14 13 13 12

2352 14 14 14 14 12

2604 16 16 14 14 12

2835 16 16 16 15 11

Table 17: Practical results for BRITE Top-down BA model with 400 vertices

70

Figure 33: Chart of simulation results for BRITE Top-down BA model with 400 vertices

71

In the BRITE Top-down models with 1000 vertices the number of vertices at AS-level is 20,

and at Route-level is 50, the number of links added per new node ranges from 1 to 9, and the edge

connection model is set to Smallest Degree. The parameters of the Waxman model are α = 0.15,

and β = 0.2.

In Table 18 and Figure 34 we present the simulation results in the BRITE Top-down Waxman

model with 1000 vertices. The behavior of the algorithms studied is similar to the behavior in the

models with 400 vertices. The previous algorithms exhibit decreasing performance with the increase

in number of edges. In contrast the performance of the Deep Heuristic improves and for the graphs

with high number of edges it gets 2 or 3 rounds better than the next best results.

Edges MWC MWC-M P-R S-R DH

1020 29 29 29 29 30

2040 19 19 18 18 17

3060 19 19 18 17 17

4080 17 18 17 16 16

5100 18 18 16 16 16

6108 18 18 17 16 14

7116 19 18 17 17 14

8117 19 19 17 18 15

9122 19 19 17 19 14

Table 18: Practical results for BRITE Top-down Waxman model with 1000 vertices

72

Figure 34: Chart of simulation results for BRITE Top-down Waxman model with 1000 vertices

73

In Table 19 and Figure 35 we present the simulation results in the BRITE Top-down Barabasi-

Albert model with 1000 vertices. The trend we observed in the previous BRITE models appears

also in this model. With the exception of the graph with 999 edges, the Deep Heuristic beats the

next best results of the previous algorithms by at least 2 rounds, and in a couple of graphs by 4

rounds.

Edges MWC MWC-M P-R S-R DH

999 35 35 35 35 36

1977 23 23 22 22 20

2934 24 25 23 21 17

3870 22 22 21 18 17

4785 20 20 19 17 16

5679 19 19 18 17 15

6552 19 18 18 17 16

7404 20 19 17 17 16

8235 19 19 17 18 15

Table 19: Practical results for BRITE Top-down BA model with 1000 vertices

74

Figure 35: Chart of simulation results for BRITE Top-down BA model with 1000 vertices

75

4.3 Conclusion based on practical simulation

Based on the practical simulation of the Deep Heuristic in various network models as well as network

topologies, we can understand where the use Deep Heuristic would be most appropriate and where

it lags behind other known algorithms.

Commonly Used Topologies

We first examined the commonly used topologies like Hypercube (Hd), Cube Connected Cycles

(CCCd), Shuffle-Exchange (SEd), deBruijn (DBd) and Butterfly (BFd). The results of Deep Heuris-

tics were compared with known results of other algorithms.

• In Hypercube (Hd), we saw that the Deep Heuristic performed exactly same as TBA, resulting

it to be the best performing algorithm in all dimensions.

• In Cube Connected Cycles (CCCd), we saw that on average, the Deep Heuristic took 1 time

unit less than other algorithm except TBA, which was performing same as Deep Heuristic.

Although, for dimension 20, Deep Heuristic found to be taking even one less time unit than

TBA.

• In Shuffle-Exchange (SEd), Deep Heuristic performed same as TBA up to 8 dimensions, it

performed same as P-R up to dimension 15, where it started to be performing same as TBA,

making them best performing algorithms.

• In deBruijn (DBd), the Deep Heuristic found to be performing same as TBA up to dimension

13, and after 13 dimensions, DH found to be taking 1 round less than TBA because it was

choosing an optimal sub-tree while performing the broadcast operation.

• In Butterfly (BFd), we saw that the Deep Heuristic was performing same as TBA up to

dimension 11 and after that, it found to be performing taking one round less than TBA,

making it best performing algorithm amongst all.

76

So, in the Commonly Used Topologies, DH found to be performing best in most of the cases as

the dimension of the graph was increasing.

NS-2 Models

We examined other network models like GT-ITM Random model, GT-ITM Transit-Stub Model,

Tiers Model and BRITE Top-down Hierarchical Model.

• In GT-ITM Random model, with small number of edges (small P), the Deep heuristic performs

slightly worse than previous heuristics because of some precalculations in the earlier stages,

but as the number of edges increases, the Deep Heuristic tends to perform better than all other

heuristics.

• In GT-ITM Transit-Stub Model, when the number of edges are around 1247 to 1280 with 600

vertices, DH seemed to be performing best, but as the number of vertices increased to 1056,

it was no longer performing best in all the cases.

• In Tiers model, DH found to be performing not so good for less number of edges, but as the

number of edges grew, the number of rounds started to decrease.

• In all variants of BRITE Top-down Hierarchical model, DH found to be performing best

amongst all other heuristics.

77

Chapter 5

Conclusion and Future Work

In the modern world where every industry sector depends on connectivity with the rest of the

world, it is very important to have faster ways to transmit information with minimum latency

possible. Broadcasting in graphs is one of the elementary communication primitives, which means

that having a sophisticated and efficient broadcast scheme is very helpful to achieve the goal of

higher performance in parallel systems and as a result, in network connectivity.

The primary focus of this thesis has been to design and optimize algorithms that can generate

efficient broadcast time for any given arbitrary graph. However, it is a proven fact the determination

of broadcast time for an arbitrary vertex u in an arbitrary graph G is NP-complete. Hence, we

surveyed existing approximation and heuristic algorithms and analyzed their behavior in commonly

used topologies and other topologies used to study networking algorithms.

We designed an efficient heuristic, which improves behavior of some existing heuristics in certain

key situations. As a result, for some cases, our new heuristic makes the calculation even faster than

best-known heuristics like TBA, Round Heuristic, etc. The new heuristic analyzes the graph on

each level before deciding where to send the information and that leads us towards improvement

in broadcast time. It was found that one of the important properties, which determines strength

of a subgraph to participate in broadcasting was, the density of the subgraph. The new heuristic

78

focuses on that property and generates the broadcast tree for the subgraphs and makes the selection

of subgraph, that would result in a better broadcast scheme. To do so, the new heuristic examines

the sub-graphs deeply to eliminate the edges that are not going to be helpful for broadcasting, which

would result into a lower estimated broadcast time and hence, which would result in a more efficient

way of generating the broadcasting scheme. That is why the new heuristic is named Deep Heuristic.

By observing their performance in the commonly used topologies and network models, we see

that the new heuristic is very well suitable for graphs where most of the vertices have high degree and

higher density. Based on our extensive simulations, we conclude that the Deep Heuristics perform

exceptionally well in some of the models representing real networks. In BRITE Top-down hierarchical

model topologies the results are much better than previous heuristics. The Deep Heuristic not only

gives the best results, but it consistently beats the best previous heuristics by two or more rounds.

In GT-ITM models it is similar to previous heuristics.

Time complexity is another essential benchmark to evaluate the performance of an algorithm.

The Deep heuristic has a time complexity of O(|E|+ |V | log |V |), which is lower than that of many

other heuristics mentioned in this thesis. The low time complexity helps to generate broadcast

schemes for large graphs, and to obtain new upper bounds on the broadcast time.

The research in this thesis can be continued in several directions. For the heuristics, the matching

strategy could be improved so that better results might be achieved. Furthermore, the implemen-

tation of the heuristics could be optimized, and ultimately construct a Breadth First Search tree

that generates the minimum broadcast time. On the other hand, another direction is mainly based

on the layer graph. First, instead of a heuristic, an approximation algorithm could be designed for

the broadcast time problem with constant number of layers, or even in the graph of variable layers.

Second, the lower and upper bounds on the broadcast time obtained from the layer graph could be

another interesting research direction.

79

Bibliography

[1] A. Bar-Noy, J. Bruck and C. T. Ho and S. Kipnis and B. Schieber. Computing global combine

operations in the multi-port postal model. IEEE Trans. Par. Distr. Syst., 6:896–900, 1995.

[2] A.M. Farley, S. Hedetniemi, S. Mitchell, and A. Proskurowski. Minimum broadcast graphs.

Discrete Mathematics, 25:189–193, 1979.

[3] R. Beier and J F. Sibeyn. A powerful heuristic for telephone gossiping. In Proceedings of

the 7th International Colloquium on Structural Information and Communication Complexity

(SIROCCO-00), pages 17–36, L’Aquila, Italy, 2000.

[4] Jean-Claude Bermond and C Peyrat. Broadcasting in de Bruijn networks. In Proc. 19th SE

Conference on Combinatorics, Congressus Numerantium, volume 66, pages 283–292, 1988.

[5] Calvert, Kenneth L and Doar, Matthew B and Zegura, Ellen W. Modeling internet topology.

Communications Magazine, IEEE, 35(6):160–163, 1997.

[6] L. Changhong and Z. Kemin. The broadcast function value b(23) is 33 or 34. Acta Mathematicae

Applicatae Sinica (English Series), 16(3):329–331, 2000.

[7] D. W. Krumme, George Cybenko, K. N. Venkataraman. Gossiping in minimal time. SIAM J.

Computing, 21(1):111–139, 1992.

[8] M.B. Doar. A better model for generating test networks. Global Telecommunications Confer-

ence, IEEE:86–93, 1996.

80

[9] E.W. Zegura, K.L. Calvert and S. Bhattacharjee. How to model an internetwork, in INFO-

COM’96. Fifteenth Annual Joint Conference of the IEEE Computer Societies. Networking the

Next Generation. Proceedings IEEE, pages 594–602, 1996.

[10] A. M. Farley. Minimal broadcast networks. Networks, 9(4):313–332, 1979.

[11] A.M. Farley and S.T. Hedetniemi. Broadcasting in grid graphs. In In Proceedings of the 9th

Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages 275–288,

1978.

[12] P. Fraigniaud and E. Lazard. Methods and problems of communication in usual networks.

Descrete Appl. Math., 53:79–133, 1994.

[13] P. Fraigniaud and E. Lazard. methods and problems of communication in usual networks.

Discrete Appl. Math, 53:79–133, 1994.

[14] G. Barsky, H. Grigoryan, and H.A. Harutyunyan. Lower bounds on broadcast function for n =

24 and 25. Discrete Applied Mathematics, 175:109–114, 2014.

[15] M.R. Gary and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

completeness. WH Freeman and Company, New York, 1979.

[16] M. Grigni and D. Peleg. Tight bounds on minimum broadcast networks. SIAM j. Discr. Math.,

4:207–222, 1991.

[17] H. A. Harutyunyan and A. L. Liestman. Improved upper and lower bounds for k-broadcasting.

Networks, 37:94–101, 2001.

[18] H. A. Harutyunyan and B. Shao. A heuristic for k-broadcasting in arbitrary networks. In IEEE

Conference on Applications of Graph Theory IV03, pages 287–292. London, England, 2003.

[19] H. A. Harutyunyan and B. Shao. Optimal k-broadcast in trees. Congressus Numerantium, 64,

2003.

81

[20] H.A. Harutyunyan. An efficient vertex addition method for broadcast networks. Internet

Mathematics, 5(3):211–225, 2008.

[21] H.A. Harutyunyan and B. Shao. An efficient heuristic for broadcasting in networks. Parallel

and Distributed Computing, 66(1):68–76, 1981.

[22] Hovhannes A Harutyunyan and Arthur L Liestman. k-broadcasting in trees. Networks,

38(3):163–168, 2001.

[23] S.M Hedetniemi, S.T Hedetniemi, and A.L Liestman. A surway of gossiping and broadcasting

in comminication networks. Networks, 18:319–349, 1996.

[24] Hromkovič, Juraj and Klasing, Ralf and Monien, Burkhard and Peine, Regine. Dissemination of

information in interconnection networks (broadcasting & gossiping). In Combinatorial network

theory, pages 125–212. Springer, 1996.

[25] J. Hromkovic, R. Klasing and B. Monien and R. Peine. Combinatorial Network Theory. Kluwer

Academic Publishers, 1996.

[26] J.C. Bermond, P. Hell, A.L. Liestman, and J.G. Peters. Sparse broadcast graphs. Discrete

Applied Mathematics, 36(2):97–130, 1992.

[27] L.H. Khachatrian and O.S. Harutounian. Construction of new classes of minimal broadcast

networks. Conference on Coding Theory, pages 69–77, 1990.

[28] W. Knödel. New gossips and telephones. Discrete Mathematics, 13(1):95, 1975.

[29] J.-C. König and E.Lazard. Minimum k-broadcast graphs. Discr. Appl. Math., 53:199–209, 1994.

[30] R. Labahn. A minimum broadcast graph on 63 vertices. Discrete Applied Mathematics, 53(1-

3):247–250, 1994.

[31] E. Lazard. Broadcasting in dma-bound bounded degree graphs. Discr. Appl. Math., 37/38,

1992.

82

[32] S. Lee. Information dissemination theory in communication networks: Design of c Broadcast

Networks. PhD thesis, Pennsylvania State University, 1999.

[33] S. Lee and J.A. Ventura. An algorithm for constructing minimal c-broadcast networks. Net-

works, 38(1):6–21, 2001.

[34] A.L. Liestman and J.G. Peters. Broadcast networks of bounded degree. SIAM Journal on

Discrete Mathematics, 1(4):531–540, 1988.

[35] M. Dinneen, M. Fellows and V. Faber. Algebraic constructions of efficient broadcast networks.

Applied Algebra, Algebraic Algorithms and Error- Correcting Codes, 539:152–158, 1991.

[36] M. Maheo and J.F. Sacle. Some minimum broadcast graphs. Discrete Applied Mathematics,

53(1-3):285, 1994.

[37] Medina Alberto, Lakhina Anukool, Matta Ibrahim, Byers John. Brite: An approach to universal

topology generation. InModeling, Analysis and Simulation of Computer and Telecommunication

Systems, 2001. Proceedings. Ninth International Symposium on, pages 346–353. IEEE, 2001.

[38] V.E. Mendia and D. Sarakar. optima broadcasting on the star graph. IEEE Trans. Parallel

Distrib. System, 3:389–396, 1992.

[39] S. Mitchell and S. Hedetniemi. A census of minimum broadcast graphs. Journal of Combina-

torics, Information and System Sciences, 5:141–151, 1980.

[40] J.H. Park and K.Y. Chwa. Recursive circulant: a new topology for multicomputer networks

(extended abstract). In International Symposium on Parallel Architectures, Algorithms and

Networks (ISPAN 1994), pages 73–80, Kanazawa, 1994.

[41] P.J. Slater, E.J. Cockayne and S.T. Hedetniemi. Information dissemination in trees. SIAM

Journal on Computing, 10(4):692–701, 1981.

[42] Diestel. R. Graph Theory. Springer-Verlag, 3rd edition, 2005.

83

[43] R. Klasing, B. Monien, R. Peine, and E.A. Stohr. Broadcasting in butterfly and debruijn

networks. Discrete Applied Mathematics, 53:183–197, 1994.

[44] R. Ravi. Rapid rumor ramification: approximating the minimum broadcast time. Pro- ceedings

of 35th Annual Symposium on Foundation of Computer Sciencet, pages 202–213, 1994.

[45] J.F. Sacle. Lower bounds for the size in four families of minimum broadcast graphs. Discrete

Mathematics, 150(1):359–369, 1996.

[46] P. Scheuermann and M. Edelberg. Optimal broadcasting in point-to-point computer networks.

Technical Report, 1981.

[47] P. Scheuermann and G. Wu. Heuristic algorithms for broadcasting in point-to-point computer

network. IEEE Transactions on Computers, C33(9), 1984.

[48] B. Shao. On k-broadcasting in graphs. PhD thesis, Concordia University, Montreal, P.Q.,

Canada, 2006.

[49] A. Shastri and S. Gaur. Multi-broadcasting in communication networks. In Proc. Int. Symp.

on Communications (ISCOM97), pages 167–170. 1997.

[50] F. Chung W. Aiello and L. Lu. Random evolution in massive graphs. In Proceedings of the

42nd Annual IEEE Symposium on Foundations of Computer Science, pages 510–519, 2001.

[51] Wang, Wei. Heuristics for Message Broadcasting in Arbitrary Networks. PhD thesis, Concordia

University, 2010.

[52] Waxman, Bernard M. Routing of multipoint connections. Selected Areas in Communications,

IEEE Journal on, 6(9):1617–1622, 1988.

[53] J. Xiao and X. Wang. A research on minimum broadcast graphs. Chinese Journal of Computers,

11:99–105, 1988.

84

[54] Zegura, Ellen W and Calvert, Kenneth L and Donahoo, Michael J. A quantitative comparison

of graph-based models for internet topology. IEEE/ACM Transactions on Networking (TON),

5(6):770–783, 1997.

[55] J. Zhou and K. Zhang. A minimum broadcast graph on 26 vertices. Applied Mathematics

Letters, 14(8):1023–1026, 2001.

85

