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ABSTRACT

Image Based Visual Servoing Using Trajectory Planning and Augmented Visual

Servoing Controller

Mohammad Keshmiri,

Concordia University, 2014

Robots and automation manufacturing machineries have become an insepara-

ble part of industry, nowadays. However, robotic systems are generally limited to

operate in highly structured environments. Although, sensors such as laser tracker,

indoor GPS, 3D metrology and tracking systems are used for positioning and track-

ing in manufacturing and assembly tasks, these devices are highly limited to the

working environment and the speed of operation and they are generally very expen-

sive. Thus, integration of vision sensors with robotic systems and generally visual

servoing system allows the robots to work in unstructured spaces, by producing non-

contact measurements of the working area. However, projecting a 3D space into a

2D space, which happens in the camera, causes the loss of one dimension data. This

initiates the challenges in vision based control. Moreover, the nonlinearities and

complex structure of a manipulator robot make the problem more challenging. This

project aims to develop new reliable visual servoing methods that allow its use in

real robotic tasks.

The main contributions of this project are in two parts; the visual servoing

controller and trajectory planning algorithm. In the first part of the project, a new

image based visual servoing controller called Augmented Image Based Visual Ser-

voing (AIBVS) is presented. A proportional derivative (PD) controller is developed

to generate acceleration as the controlling command of the robot. The stability

analysis of the controller is conducted using Lyapanov theory. The developed con-

troller has been tested on a 6 DOF Denso robot. The experimental results on point

features and image moment features demonstrate the performance of the proposed

iii



AIBVS. Experimental results show that a damped response could be achieved using

a PD controller with acceleration output. Moreover, smoother feature and robot

trajectories are observed compared to those in conventional IBVS controllers. Later

on, this controller is used on a moving object catching process.

Visual servoing controllers have shown difficulty in stabilizing the system in

global space. Hence, in the second part of the project, a trajectory planning al-

gorithm is developed. The trajectory planning algorithm can take the robot to its

desired position froma any initial position using visual data. The trajectory plan-

ning is carried out by parameterizing the camera’s velocity screw. The camera’s

velocity screw is parameterized using time-based profiles. The parameters of the

velocity profile are then determined such that the velocity profile guides the robot

to its desired position. This is done by minimizing the error between the initial and

desired features. This method provides a reliable path for the robot considering all

robotic constraints. The developed algorithm is tested on a Denso robot. The re-

sults show that the trajectory planning algorithm is able to perform visual servoing

tasks which are unstable when performed using visual servoing controllers.

iv



To my beloved wife,

Mohaddeseh Assari
and my lovely parents,

Mehdi Keshmiri

and

Zahra Mirza Jaffar

v



ACKNOWLEDGEMENTS

I would like to take the opportunity to greatly thank my supervisor, Dr. Wen-

Fang Xie for her nonstop supports, suggestions, and direction. I will always count

on her to provide direction and support whenever I feel lost or stressed. I would like

to thank her for all her contributions, guidance and encouragements.

Hearty thanks also go to my colleagues and friends who accompanied me along

these years: Mr. Abolfazl Mohebbi, Mr. Ali Fellah Jahromi, Mr. Amir Hajiloo, Mr.

Yimin Zhao. I am also grateful to all those people who have given me support and

I didn’t have the chance to thank them.

I ultimately would like to thank my lovely parents Zahra Mirza Jafar and Dr.

Mehdi Keshmiri for their support, kindness and being always there, regardless of my

choices, and for having allowed me, with their efforts, to get to where I am now. I

also would like to thank my lovely parents in law, Fatemeh Eshraghi and Dr. Abass

Assari for all their kindness and support.

My deepest heartfelt gratitude goes out to my wife, Mohaddeseh. She sup-

ported and encouraged me from the very beginning step of my PhD study to the

end. I am really grateful for having her in my life.

I would like to acknowledge the financial support from the Natural Sciences

and Engineering Research Council of Canada (NSERC) throughout the course of

this study and also Quanser Company for providing us with the experimental setup

which brought a great value to this research.

vi



TABLE OF CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction 1

1.1 Visual Servoing Applications . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Visual Servoing Strategy . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Visual Servoing Controller . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Image Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.4 Camera Configuration . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 Number of Cameras . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.6 Stationary and Moving Object . . . . . . . . . . . . . . . . . . 14

1.2.7 Trajectory Planning in Visual Servoing . . . . . . . . . . . . . 15

1.3 Image Based Visual Servoing Basics . . . . . . . . . . . . . . . . . . . 18

1.4 Research Objectives and Scope . . . . . . . . . . . . . . . . . . . . . 20

1.5 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Image Based Visual Servoing Controller 26

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Augmented Image Based Visual Servoing . . . . . . . . . . . . . . . . 28

2.3 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Visual Servoing Controller . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Robot Controller . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



2.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.1 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.2 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.3 Quarc Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . 44

2.6.1 Case Study of a Denso VS-6556G . . . . . . . . . . . . . . . . 45

2.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 AIBVS for Image Moment Features 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Interaction Matrix Derivation . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Three Basic Image Moments . . . . . . . . . . . . . . . . . . . 61

3.3 Interaction Matrix of Central Moments . . . . . . . . . . . . . . . . . 63

3.4 Moment Features for Visual Servoing . . . . . . . . . . . . . . . . . . 65

3.5 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Catching Moving Objects Using AIBVS Controller and Navigation

Guidance Technique 76

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Navigation Guidance Planning . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Visual Servoing Using Trajectory Planning 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

viii



5.2 Trajectory Planning for a 4 DOFs Robot . . . . . . . . . . . . . . . . 91

5.2.1 Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Parameterizing the Velocity Profile . . . . . . . . . . . . . . . 96

5.2.3 Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.4 Features Motion Using Sinusoidal Profile . . . . . . . . . . . . 99

5.2.5 Convexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.6 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Visual Servoing Controller . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Trajectory Planning for a 6 DOFs Robot . . . . . . . . . . . . . . . . 111

5.5.1 Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.2 Decoupling Orientation Planning from Position Planning . . . 117

5.5.3 Optimization and Convexity Analysis . . . . . . . . . . . . . . 118

5.5.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Conclusion and Future Works 134

6.1 Summary of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Bibliography 138

Appendix 154

A Denso VS-6556G 154

B Image Moment Velocity Interaction Matrix 157

ix



List of Figures

1.1 Robots using visual feedbacks to perform various tasks [1] . . . . . . 3

1.2 Vision based robotic used in medical applications [1] . . . . . . . . . 3

1.3 Visual servoing systems used in UGVs and UAVs [1] . . . . . . . . . . 4

1.4 Google driver-less car [2] . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 A space robotic system in a mission of on-orbit servicing [3] . . . . . 5

1.6 Position based visual servoing block diagram [4] . . . . . . . . . . . . 7

1.7 Image based visual servoing block diagram[4] . . . . . . . . . . . . . . 8

1.8 2 1/2 D visual servoing block diagram [5] . . . . . . . . . . . . . . . . 9

1.9 Eye-in-Hand(a) and Eye-to-Hand(b) Configurations . . . . . . . . . . 12

1.10 General structure of a IBVS block diagram . . . . . . . . . . . . . . . 19

1.11 Features and robot in desired positions . . . . . . . . . . . . . . . . . 20

2.1 Robot frames and camera model . . . . . . . . . . . . . . . . . . . . . 29

2.2 AIBVS controller block diagram . . . . . . . . . . . . . . . . . . . . . 34

2.3 Experimental setup components . . . . . . . . . . . . . . . . . . . . . 41

2.4 Calibrating the camera using a chessboard pattern . . . . . . . . . . . 43

2.5 Simulink diagram for an experimental IBVS test . . . . . . . . . . . . 45

2.6 AIBVS simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 AIBVS simulation results for FOV test . . . . . . . . . . . . . . . . . 48

2.8 Test 1: AIBVS performance test . . . . . . . . . . . . . . . . . . . . . 50

2.9 Test 2: AIBVS performance test . . . . . . . . . . . . . . . . . . . . . 51

2.10 Test 3: Comparison of IBVS and AIBVS . . . . . . . . . . . . . . . . 52

2.11 Test 4: Features leaving the FOV test. Trajectories start from � symbol 53

2.12 Test 5: Results for AIBVS controller test with 0% camera calibration

error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

x



2.13 Test 5: Results for AIBVS controller test with 50% camera calibration

error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Initial and desired images for Test 1 . . . . . . . . . . . . . . . . . . . 69

3.2 Test 1 results with Chaummete feature moments for asymmetrical

images [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Initial and desired images for Test 2 . . . . . . . . . . . . . . . . . . . 71

3.4 Test 2, Comparing moment feature with point features when they

start beyond the field of view . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Initial and desired images for Test 3 . . . . . . . . . . . . . . . . . . . 73

3.6 Test 3, with Chaummete feature moments for symmetrical images [6] 73

3.7 Test 4, with Liu’s feature moments [7] . . . . . . . . . . . . . . . . . 74

4.1 A schematic diagram of a interception geometry . . . . . . . . . . . . 79

4.2 Applying acceleration commands to the interceptor . . . . . . . . . . 80

4.3 Interception plan in the image plane . . . . . . . . . . . . . . . . . . 82

4.4 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Results for catching an object with constant velocity . . . . . . . . . 84

4.6 Results for catching an object with sinusoidal motion . . . . . . . . . 85

4.7 Results for catching an object with parabolic motion . . . . . . . . . 87

5.1 Denso robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Velocity field of the features subject to camera velocities . . . . . . . 94

5.3 Calculating the angle feature from features points in an image . . . . 97

5.4 Stereo camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Objective function variations . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Results for Test 1, performing a basic visual servoing task . . . . . . 106

5.7 Results for Test 2, reaching distant desired feature . . . . . . . . . . . 108

5.8 Results for Test 2 using IBVS controller . . . . . . . . . . . . . . . . 109

xi



5.9 Results for Test 3, performing a visual servoing task with 180o about

the camer zc axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.10 Results for Test 3 using IBVS controller . . . . . . . . . . . . . . . . 111

5.11 Results for Test 4, performing a visual servoing task with desired

features are located at the null space of the interaction matrix . . . . 112

5.12 Velocity field of the features subject to camera velocities . . . . . . . 114

5.13 Calculating the three last features form the point features . . . . . . 116

5.14 Convexity of the objective function . . . . . . . . . . . . . . . . . . . 120

5.15 Results for Test 1, performing a basic visual servoing task . . . . . . 124

5.16 Results for Test 2, performing a complicated visual servoing task

including big orientation changes . . . . . . . . . . . . . . . . . . . . 126

5.17 Results for Test 2 using IBVS controller . . . . . . . . . . . . . . . . 127

5.18 Results for Test 3, perforimg visual servoing task including 180o ro-

tation about camera’s zc axis . . . . . . . . . . . . . . . . . . . . . . 129

5.19 Results for Test 2 using IBVS controller . . . . . . . . . . . . . . . . 130

5.20 Results for Test 4, performing a visual servoing task with desired

features are located at the null space of the interaction matrix . . . . 132

5.21 Results for Test 4 using IBVS controller . . . . . . . . . . . . . . . . 133

A.1 Denso robot joint frames and links length . . . . . . . . . . . . . . . . 155

A.2 Denso robot workspace . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xii



List of Tables

2.1 Camera Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Initial(I) and desired(D) location of the feature points

in pixel for AIBVS controller tests in pixels . . . . . . . . 49

5.1 Initial(I) and desired(D) location of the feature points

in pixel for 4DOFs trajectory planning tests . . . . . . . . 107

5.2 Initial(I) and desired(D) location of the feature points

in pixel for 6DOFs trajectory planning tests . . . . . . . . 125

A.1 Denso Robot Specifications . . . . . . . . . . . . . . . . . . . . 155

xiii



Nomenclature
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Chapter 1

Introduction

Robots and automation machineries are an inseparable part of the industry,

nowadays. However, robotic systems are generally limited to operate in highly struc-

tured environments. Conventionally, robotic systems use an open loop algorithms

to calculate the position of the end effector, with respect to a work piece. The

work piece must be also placed in a known position with respect to the robot base

coordinate frame. Any uncertainty in the robotic system, would cause the task to

fail. Visual servoing solves this problem by providing non contact and real-time

measurements of the environment and the work piece with respect to the robot and

hence does not rely on open loop kinematic calculations.

"Visual Servoing" is an approach for controlling the motion of a robot using

visual feedback signals [8, 9]. In other words, in visual servoing, the robot uses the

vision captured by a camera to acquire the accurate position of the target objects

and/or the end-effector and uses it as a feedback for controlling the system. Visual

servoing is the fusion of many active research areas including high speed image

processing, kinematics, dynamics, control theory and real-time computation [10].

Vision based control or visual servoing has been used as a solution in robotic

industry to increase the dexterity and intelligence of robotic systems [11]. Visual
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servoing becomes more interesting in situations where robot needs to work in an un-

structured environment. In such situations, ordinary sensors cannot gather enough

information for robots operation. On the other hand, vision systems provide a wide

range of information of its environment such as structure, color, motion and more.

Furthermore, the use of vision system allows to develop human intelligence in robotic

system by imitating human vision system and the great talent of fast and accurate

pattern recognition. Visual servoing is used in a wide variety of applications such as

lane tracking for cars, navigation for mobile platforms, teleoperation, missile track-

ing, fruit picking and specially manipulation of objects for grasping, assembly or

welding applications.

Implementing visual servoing in real robotic system is very challenging. Vision

systems projects 3D space into 2D space, causing one dimension loss of data from

the environment. The lost dimension is the depth of the objects. This property

of vision system and also the nonlinearity involved in the projection, introduce the

difficulties in integrating machine and vision. Visual servoing was presented as a

solution to such problems [8, 11, 12].

1.1 Visual Servoing Applications

Visual servoing is mainly used in industrial robotics. In such applications the

goal is to control the end-effector pose (position and orientation) with respect to

the pose of objects or obstacles which could be fixed or moving in the workspace

of the robot. Positioning or moving objects, assembling and disassembling mechan-

ical parts, paintings, welding, etc. are some examples of the tasks which could be

performed using robotic systems (Figure 1.1) [13–17].

Besides industrial applications, visual servoing tends to be used in medical and

surgical applications to position instruments or perform the medical operations.
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(a) (b)

Figure 1.1: Robots using visual feedbacks to perform various tasks [1]

Figure 1.2: Vision based robotic used in medical applications [1]

For instance in laparoscopic surgery, which needs only several small incisions in

the abdominal wall to introduce instruments such as scalpels, scissors, etc., and a

laparoscopic camera, such that the surgeon can operate by just looking at the camera

images. To avoid the need for another assistant and to free the surgeon from the

control task, an independent system that automatically guides the laparoscope is

highly desirable. Several researchers have tried to use visual servoing techniques to

guide the instrument during the operation (Figure 1.2) [18–20].

Control and guidance of unmanned vehicle systems such as unmanned ground

vehicles (UGV) and unmanned aerial vehicles (UAV) is other examples of using
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(a) (b)

Figure 1.3: Visual servoing systems used in UGVs and UAVs [1]

Figure 1.4: Google driver-less car [2]

visual servoing technique for the exploration or reconnaissance operations [21, ?]

(Figure 1.3). A good example of UGV application of visual servoing is the Google

driver-less car [2] (Figure 1.4).

In another application of visual servoing systems, space robots are used to

perform autonomous on-orbit servicing which includes approaching and docking to

a target satellite and grasping some complex parts for the purpose of refueling and

servicing [3] (Figure 1.5).
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Figure 1.5: A space robotic system in a mission of on-orbit servicing [3]

1.2 Literature Review

Researchers have been working on the topic of visual servoing for more than

30 years [22]. However, recent developments in high speed processors and cameras

has made it possible for real-time implementation and industrial applications. Vi-

sual servoing techniques have been investigated in literature since 1970 [8]. The

phrase "Visual Servoing" was first used by Hill and Park in 1979 [23]. Further on,

researchers have made considerable progress in this field. To better review the visual

servoing in literature, different categories and classes of visual servoing are presented

and discussed separately. Due to various types of implementation and configuration,

visual servoing could be mainly classified as follows.

1. Visual Servoing Strategy

(a) Position Based Visual Servoing (PBVS)

(b) Image Based Visual Servoing (IBVS)

(c) Hybrid Visual Servoing

2. Visual Servoing Controller

(a) Proportional Controller

(b) Adaptive Controller

(c) Model Predictive Controller
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3. Image Feature

(a) Point Features

(b) Line Features

(c) Image Moment Features

4. Camera Configuration

(a) Eye-to-Hand

(b) Eye-in-Hand

5. Number of Cameras

(a) Mono Vision

(b) Stereo Vision

(c) Multiple Cameras

6. Target Situation

(a) Static Object

(b) Moving Object

7. Trajectory Planning in Visual Servoing

The following literature review is prepared based on the categories introduced

above.

1.2.1 Visual Servoing Strategy

Based on the ways in which the visual feedback is used to control the robot,

visual servoing is classified into three different classes, Image Based Visual Servoing

(IBVS), Position Based Visual Servoing (PBVS) and Hybrid Visual Servoing (HVS)

[5, 24–26]. Each of these strategies is discussed separately in the following sections.
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Position Based Visual Servoing

In a position based visual servoing (PBVS) controller, position and orientation

of the object are extracted from the image captured by the camera. Comparing

the object position and orientation with the desired ones, the errors of position

and orientation are computed as the input to the controller. The PBVS controller

generates a controlling signal to reduce the relative position and orientation errors.

Finally, a joint level servo controller tracks the controlling command produced by

the Cartesian controller [27]. The block diagram of a PBVS controller is shown in

Figure (1.6).

Obviously, the robot control problem is prevalent and well established. Thus,

the main challenge is the robustness, accuracy and speed of computing the object

position and orientation [8]. This method is also known as 3D visual servoing [5]. In

order to reconstruct 3D information from 2D image information, accurate camera

calibration is required. Besides, in order to be able to calculate the object pose, a

complete geometric model of the object is needed. Furthermore, using PBVS, no

control is available on the image trajectory and the object may leave the camera’s

field of view (FOV). This normally causes the visual servoing task to fail [28].

Figure 1.6: Position based visual servoing block diagram [4]
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Image Based Visual Servoing

In image based visual servoing (IBVS), the control commands are computed

based on the image features data directly. The difference between the current fea-

tures and the desired ones creates the visual servoing error and the controller moves

the robot to reduce this error until it becomes zero. Figure 1.7, shows the structure

of an IBVS controller. Image based visual servoing are also called feature based

visual servoing. Image features usually used in this approach could be position of

points, size of a region, center of a region, length of a line, segment and rotation an-

gle of line and etc. Since there are no image interpolation and 3D reconstruction in

IBVS, computation cost is noticeably less than that in PBVS method. In addition,

IBVS is more robust to camera and robot calibration errors. The IBVS controller

eliminates the effect of calibration errors. Furthermore, as opposed to PBVS, object

model is not required in this method [8, 11, 29–31].

Although IBVS controls the image feature trajectory in an almost straight line,

the uncontrolled Cartesian trajectory may violate the robot’s joint limit, especially

when large rotational and translational displacements are required to reach the tar-

get. Furthermore, potential image singularities and occurrence of local minima are

the other drawbacks of this method [28].

Figure 1.7: Image based visual servoing block diagram[4]

8



Hybrid Visual Servoing

Considering the drawbacks mentioned for PBVS and IBVS, Hybrid Visual Ser-

voing (HVS) method is introduced combining the previous two strategies. The most

well-known hybrid method is 21
2
D method [9]. This method controls the robot by

decoupling the end-effector rotational motion from the translational motion control.

The 2-1/2D visual servoing system block diagram is shown in Figure 1.8.

The advantages of this method are that the trajectories of end effector in

both Cartesian and image spaces are simultaneously straight lines. In addition, this

method is known as a target model free method.

Nevertheless, there are some shortcomings for hybrid system. First, it is nec-

essary to find at least 4 and 8 different feature points for a planar and non-coplanar

target object respectively to be able to extract the orientation of the object. Second,

it also requires partial pose estimation.

Figure 1.8: 2 1/2 D visual servoing block diagram [5]

A switching method was proposed to partially solve the uncontrolled Cartesian

trajectory of IBVS and the uncontrolled image trajectories of PBVS. The controller

is switched from IBVS control to PBVS control to avoid robot joint limits when the

distance from the end-effector to the target object is too large, and it is switched

back to the image based control if the image trajectories come close to the image
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boundary [32]. However, this method requires even greater amount of computation,

compared to IBVS and PBVS, which is not desirable.

Reviewing the main visual servoing strategies, one can conclude that the over-

all benefits of IBVS strategy is greater than those of the other two methods. This is

due to the less computation that it requires and higher robustness that it provides.

In this thesis, all of the research work and developments are based on the IBVS

strategy.

1.2.2 Visual Servoing Controller

In addition to the various types of feedback used to control a visual servoing

system, various controlling algorithms have been used to guide the features and

the robot to their desired position. The most basic controller used in all three

strategies is a proportional controller [11, 12]. This controller aims to reduce the

features errors exponentially. Later on, more advanced controllers were used to

overcome the shortcomings of this controllers. Adaptive control was introduced

to estimate the unknown or uncertain parameters of the system such as camera

calibration parameters or the object depth [33]. Robust visual servoing was proposed

in order to perform more reliable visual servoing tasks in presence of big camera or

robot calibration errors which provides more stability to the system [34, 35]. Model

predictive controllers have also been developed for visual servoing systems in order to

consider the system constraints such as image boundaries and robot’s joint limitation

during the motion of the robot [36]. Furthermore, other non-linear controllers have

been practiced on visual servoing systems such as sliding mode control to increase

the robustness of the task in feature trajectory tracking [37].
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1.2.3 Image Feature

Image feature is a piece of information defined in the image. Image features

are used in visual servoing to define the system error by comparing it to the desired

values. The desired features information is gathered from an image taken at the place

where the camera is in its desired position relative to the target object. Initially,

geometric features such as points, segments or straight lines are usually used as image

features in visual servoing [9]. Although these features are very easy to be detected

for various kinds of objects, they are also prone to getting lost by being occluded by

another object or a human hand, during operation. This leads to a visual servoing

failure. Recently, in order to apply the visual servoing technology to track the

complicated objects and enhance the robustness, several novel features were adopted

such as laser points [38] and image moments[6]. In [38], laser point is also used as an

instrument to estimate the object’s depth. Image moments have widely been used in

computer vision for a very long time in applications such as pattern recognition[6].

Recently, utilizing image moments in visual servoing have been widely taken into

consideration. Image moment is discussed in details in chapter 3.

1.2.4 Camera Configuration

Based on the camera setup configuration, visual servoing is categorized into

eye-in-hand and eye-to-hand visual servoing. In situations where the camera is

mounted on the robot’s end-effector, it is called an eye-in-hand configuration (Figure

1.9a). If the camera is statically installed looking toward the robot and its workspace,

the configuration is called eye-to-hand (Figure 1.9b). Another configuration has been

considered where the camera is installed on another robot or on a pan/tilt head in

order to be able to reposition the camera to observe the robot from the best position

and angle.

The majority of the visual servoing operations are carried out using eye-in-hand
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(a) (b)

Figure 1.9: Eye-in-Hand(a) and Eye-to-Hand(b) Configurations

configuration. The eye-in-hand configuration could be focused on the object, while

the eye-to-hand configuration provides a picture including irrelevant information.

Using an eye-to-hand configuration, the image of target object also may be occluded

during the motion by the manipulator itself or other obstacles. However, an eye-to-

hand configuration or stationary camera gives a wider field of view and it is mostly

used in applications which includes moving objects.

Regardless of camera configuration, camera calibration must be performed in

order to obtain the camera intrinsic parameters such as focal length, resolution and

the principle point [11]. Some camera calibration methods can be found in [39] and

[40].

Chesi and Hashimoto have investigated the stability problem of each configu-

ration in [41]. Due to indispensable benefits of each configuration, visual servoing

can take advantage of both configurations, simultaneously. A cooperation of eye-in-

hand/eye-to-hand configuration is introduced in [42] and [43].

Calibrating the camera and the robot is both time and money consuming. In

order to overcome such problem, some uncalibrated visual servoing methods have

been introduced. Malis proposed a visual servoing method invariant to camera pa-

rameters [44]. He proved the stability of the controller in presence of large calibration

errors. Other uncalibrated and automatic calibration visual servoing techniques are

introduced in [45, 46]. It is shown that position based visual servoing does not have
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good precision using uncalibrated camera and manipulators. Since this project aims

at investigating visual servoing of robotic manufacturing systems, the eye-in-hand

configuration is adopted in this thesis, which allows the camera to focus on the

workpiece in the work space.

1.2.5 Number of Cameras

Visual servoing can be performed using different number of cameras; single

camera (Monocular), two cameras (Stereo Vision or Binocular) and multiple cam-

eras. In each of these categories, the camera(s) could be installed in an eye-in-hand

or eye-to-hand configuration. Kragic and Christensen [47] reported a comprehensive

survey on each category. Among all categories, single camera needs less processing

time to extract the visual information. Due to the fact that, every point in the 2D

image plane corresponds to a line[11] in 3D space, a single camera can not provide

a good estimation of the distance between the camera and the object. The solution

to obtain more precise position and depth of the object is to use a stereo camera

vision system. Depth computation is done by comparing the small differences be-

tween multiple views of the same scene. The existing constraint between images

that allows the computation of the depth is called Epipolar Geometry. It is shown

that the depth of a 3D point with respect to the camera is inversely proportional to

the position difference of their projection on the left and right image plane. Depth

estimation is discussed in detail in chapter 5. Stereo vision could be easily imple-

mented, but the stereo matching problem or finding the correct match is one of the

most active research areas in computer vision[48]. Some related works are presented

in [49, 50].

Stereo vision system is rarely used in an eye-in-hand configuration. Stereo

vision systems usually have smaller field of view than mono vision. This is because

stereo vision systems only work with the shared part of the field of view of each
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camera. This also limits the camera baseline distance, which affects the accuracy

of depth estimation. In contrast, stand-alone stereo vision configuration has fewer

limitations and hence is very common in visual servoing systems. Kragic addressed

some eye-in-hand and stand-alone stereo vision configuration applications in [47].

The third and rarest case is the multiple camera system. Although, such

systems provide more information and may seem worthy for accurately detecting

the objects and its depth, the image processing and features matching is more time

consuming compared to the other types of configurations. However, in cases where

the target object is very large, using multiple camera is inevitable. Recently, Zhao

et al.[51] proposed a configuration of four camera for a visual servoing system to

deal with large work pieces, where one or two cameras is not enough to observe the

whole work piece. Some related works is presented in [47]. A single camera system

is used in this thesis in order to be able to process the system fast.

1.2.6 Stationary and Moving Object

One of the fundamental capabilities of vision system is the ability to track and

catch moving objects. This can be very useful in production lines, where pausing

the process for catching the objects may be inefficient. Thus the visual servoing

methods for moving object can be utilized to increase the production efficiency.

Catching a moving object with a robot becomes a challenging problem in

visual servoing which needs a well-designed trajectory planning. Various methods

and strategies have been developed for this matter. All these strategies can also

be classified under two main classes of visual servoing, Position Based and Imaged

Based, which are listed as follows:

1. Position Based Methods

(a) Trajectory regeneration methods[52–55]
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(b) Potential field methods[56]

(c) Navigation Guidance methods[57]

2. Imaged Based Methods

(a) Potential Field methods [58]

In a catching task, the visual servoing is responsible for keeping the object in

the field of view and reducing the error between the actual position and the desired

position [59]. In such applications, motion prediction algorithms can help in tracking

and catching the objects precisely [53]. An adaptive visual servoing method was

also introduced in [60], in cases of unknown object movements. In [61], an example

of catching moving object is presented, where the robot uses an on-line trajectory

planning algorithm to follow and grasp the object. The on-line trajectory planning is

based on the adaptive prediction, planning and execution. This algorithm generates

and modifies the trajectory repeatedly throughout the procedure.

1.2.7 Trajectory Planning in Visual Servoing

Visual servoing controllers were initially developed to perform a complete vi-

sual servoing task. However, the developed controller cannot deal with all the chal-

lenges. During the evolution of visual servoing, researchers have made a great effort

on solving image based visual servoing problems. Most probable problems of an

IBVS are presented in [28] such as interaction matrix singularity, local minima and

etc. Furthermore, IBVS suffers from a number of deficiencies which can be classified

as follow.

1. Instability of system in long distance tasks

2. Interaction matrix singularity

3. Local minima
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4. Instability of the system in tasks with rotation of 180o about camera’s center

5. Having no control on the speed of the robot during the visual servoing task

6. Unknown path of the robot prior to the tasks

7. Features leaving the field of view

All these drawbacks causes IBVS not to guarantee a successful and complete

visual servoing task. Combining visual servoing with trajectory planning techniques

is a possible solution to overcome the above mentioned problems. In addition, the

robot trajectory could be planned to keep system within its constraints limits during

visual servoing execution. Both image and physical constraints can be considered.

Some of the image constraints are the field of view boundaries, local minima spots

and singularities in interaction matrix. Some of the physical constraints are the joint

limits, robots Jacobian singularities, actuator limitations, and collision with obstacle

and self-collisions. Although image constraints are specific to visual servoing tasks,

physical constraints of the robot is a known challenge in robotic researches area and

a great deal of investigation has been devoted to it [62, 63].

Generally speaking, in approaches where trajectory planning is combined with

visual servoing algorithms, a trajectory is planned using the information from the

image features and the desired ones, to take the robot to or close to its desired

position. This path is produced by the trajectory planner block considering the

constraints of the robot. After the trajectory was executed on the robot, a visual

servoing controller eliminates any remaining error in the system. The overall process

increases the stability of the system and creates a more reliable visual servoing

method.

Knowing that more than just one trajectory could fulfill the task, optimal

trajectory planning arises aiming to find the path which minimizes a cost function

such as distance from the image boundary, distance to a straight line from initial to

desired features position in image space, length of the path traversed by the robot,
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energy consumption, etc. [64–66].

The challenging problem in trajectory planning is that the planned image

trajectory may not match to any feasible trajectory of the robot in Cartesian space

and joint space. The most basic method developed for solving this problem is using

stereo vision and the epipolar geometry constraint between two camera images [67].

Utilizing the privilege of epipolar geometry, an image trajectory is generated on

both images in a way that corresponds to a feasible or even straight line trajectory

in Cartesian space [68, 69].

Moreover, other methodologies are presented to partially determine the eu-

clidean displacement of the camera using projective homography matrix. Projective

homography introduces a relationship between the images taken of one scene from

different views. Knowing the camera calibration, the euclidean homography matrix

can be computed up to a scale. The euclidean homography matrix could be decom-

posed to the rotation matrix relating the initial and desired camera configuration

and their translation vector.

Mezouar et al. [58] used this method to generate an image based trajectory

considering physical and image constraints. The trajectory is based on a potential

field techniques. Utilizing the homography decomposition, the Cartesian space and

joint space trajectory could be predicted and forced to obey the constraints. Later

on, in [64] they parametrized the trajectory in order to plan an optimized trajectory.

Similarly an optimal and constrained path planning for visual servoing is presented

in [66].

By parameterizing the trajectory from the initial to the desired configuration,

Chesi [65] presented a new framework for path planning based on the use of homog-

raphy decomposition. He introduced the constraints in the linear matrix inequalities

format to ensure the global minima of the optimization problem.
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Homography decomposition techniques considerably address the image based

trajectory planning corresponding to feasible 3D paths. However, one should note

its shortcomings listed as follows. The homography matrix can only be found up

to a scale which could affect the translation vector decomposition. Furthermore, its

high dependency on camera calibration is not desirable as image based technique.

Apart from all other path planning challenges, generating the path requires a

parameterizing technique which defines the trajectory between the initial and the

desired points. Different parameterizing techniques could be named such as poly-

nomial functions [61, 66], summation of weighed monomial [65], etc. The number

of parameters should be at least the number of initial and final conditions. Defin-

ing more parameters could make more degrees of freedom in planning specially in

planning an optimal path.

A whole different method of trajectory planning is potential field based plan-

ning. The potential field produces an attraction force to guide the camera to the

desired location. Meanwhile, a repulsive force is produced to keep the features from

nearing the image boundary in order to lower the risk of features leaving the field of

view. In addition, other repulsive forces can be produced in order to make the robot

respect other physical and image constraints. A possible problem of this method is

that it could get stuck in a local minima which is created by equal attractive and

repulsive forces [58].

1.3 Image Based Visual Servoing Basics

The basic idea of a visual servoing system is illustrated in a block diagram

format as shown in Figure 1.10. As it can be seen, the whole system consists of two

main parts; the visual servoing block and the robotic block.

The camera is attached to the robot’s end-effector and captures the image of

18



Figure 1.10: General structure of a IBVS block diagram

the object. The features are extracted in the feature extraction block and sent to the

visual servoing controller or trajectory planner. The visual servoing block generates

a velocity or acceleration command for the robot according to system error. The

system error is defined as the difference between the features in the image and the

desired image. The command could be generated by a visual servoing controller or

a visual servoing trajectory planner. The robot is required to follow the generated

command in order to reduce the system error. This is done by the controller in the

robotic block. The robotic controller matches the robots end-effectors velocity or

acceleration with the command received from the visual servoing block. Either a

single joint controller or a computer torque controller could be used to control the

robot. In this thesis, a single joint controller is used. More explanation of the robot

controller is presented in chapter 2. The focus of this dissertation is on designing

the visual servoing block. The use of visual servoing controller and visual servoing

trajectory planning is considered in this thesis.

In an image based visual servoing, the extracted features are compared with the

desired ones which defines the visual servoing error vector. The desired features are

the features, extracted from the image where the robot end-effector or the camera

(which are attached to each other,) is in a known position and orientation with
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(a) Robot positioned in a known relative
situation with respect to the object

(b) Image features and desired features

Figure 1.11: Features and robot in desired positions

respect to target object. Having the desired image features, if the camera is taken

to a position and orientation which the image features match the desired features,

the camera (end-effector) is in the known position and orientation with respect to

the object. At this position and orientation, the end-effector could catch the object

with a previously known motion such as moving in vertical direction. The desired

features are usually captured when the end-effector is parallel to the object with a

vertical distance to it, shown in Figure 1.11a. Based on this explanation, a visual

servoing task is complete when the features match the desired ones. Figure 1.11b,

shows how this could happen. In this picture the circles with plus sign in the middle

are the image features and the plus signs are the desired ones.

1.4 Research Objectives and Scope

As mentioned in section 1.2.7, a visual servoing task performed using conven-

tional methods tends to fail due to their drawbacks and limitation. Conventional

visual servoing only assure local stability. Thus, industries cannot rely on such
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systems. The main goal of this research is to develop a complete visual servoing

algorithm in order to fulfill a complete visual servoing task. In other words, the

proposed theory should guarantee the stability of the system in all tasks. This

is fulfilled by developing a new visual servoing controller and trajectory planning

algorithm. The research work in this Ph.D. thesis is carried out in different stages.

First, a controller is designed to resolve some of the existing problems with

IBVS controller. This controller is designed following all the image based visual

servoing assumptions and it is called Augmented Image Based Visual Servoing

(AIBVS). The main idea of this controller is that it produces acceleration as the

controlling command. In contrast to IBVS, a proportional derivative (PD) controller

is developed to provide the robot with the controlling command. This controller can

achieve smoother and more linear feature trajectory in the image space and decrease

the risk that the features leave the field of view. The developed control method also

enhances the camera trajectory in 3D space. The stability of the proposed method

is fully investigated by using Lyapunov and perturbed systems theory. Experimen-

tal tests are performed on a 6 DOFs robotic system to validate the effectiveness

of the controller. The performance of the controller is compared with that of a

conventional Image Based Visual Servoing (IBVS) [70, 71].

This controller is developed for point features. In some cases where it is hard to

extract point features from the image, image moment is used as the visual servoing

features. In the next step, the controller is adapted to be used with image moment

features. A general formulation for the visual servoing interaction matrix is derived.

Three different sets of image moments features from the literature are used in the

AIBVS and the corresponding controllers have been fully tested. Experimental tests

show the validity of this controllers [72].

As discussed in the literature review, visual servoing controllers could stabilize

the visual servoing task only in a local region around the desired position. This
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means that if the initial locations of the features are far from the desired features,

the visual servoing most probably fails. Moreover, visual servoing controller is not

aware of the robot’s configuration during the task. In the situation where reaching

the desired features requires a complicated motion in the joint space of the robot,

the visual servoing could cause the robot to collide itself or reach it’s joint limits.

In addition, there are some special tasks that visual servoing controllers could not

handle, such as tasks which include 180 degree rotation of the camera about its

center. Due to these reasons, researchers have started to use trajectory planning

algorithms in visual servoing, recently. Various approaches have been developed

for this matter. However, their shortcoming such as their sensitivity to camera

calibration errors or being dependent on 3D reconstruction algorithms, trajectory

planning in visual servoing requires more study.

In the last stage of this project, a new approach is presented in planning a

trajectory for an image based visual servoing system. In this method, the camera’s

velocity screw is parameterized using time-based profiles. The parameters of the

velocity profile are then determined such that the velocity profile takes the robot

to its desired position. This is done by minimizing the error between the initial

and desired features. A depth estimation technique is proposed to provide the

trajectory planning algorithm with an accurate initial depth. This algorithm is

tested and validated via experiment on a 6 DOFs Denso robot in an eye-in-hand

configuration. This method extends the stability range of the system compared to

traditional IBVS controllers. The merit of the proposed method is that it respects

the system constraints such as robotic and image constraints. Experimental results

demonstrate that the proposed method provides a reliable visual servoing algorithm

by overcoming the IBVS drawbacks such as surpassing the system limits and causing

instability of the system in fulfilling the tasks which requires a 180o rotation of the

camera about its center.
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1.5 Thesis Contribution

The presented research work is published (or submitted for publication) in a

number of journals and conference proceedings ([70–80]). Following is the list of

author’s contributions followed by the related publications;

1. Augmented image based visual servoing controller

(a) M. Keshmiri, W. F. Xie, and A. Mohebbi, "Augmented Image Based Vi-

sual Servoing of a Manipulator Using Acceleration Command," Industrial

Electronics, IEEE Transactions on, vol. 61, no. 10, pp. 5444-5452, Oct.

2014.

(b) M. Keshmiri and W. F. Xie, "Augmented Imaged Based Visual Servoing

Controller for a 6 DOF Manipulator Using Acceleration Command," in

Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, pp.

556-561, Maui, HI, Dec. 2012.

2. AIBVS controller for visual servoing with image moment features

(a) M. Keshmiri and W. F. Xie, "Augmented Image Based Visual Servo-

ing Using Image Moment Features," Accepted at the ASME 2014 In-

ternational Mechanical Engineering Congress & Exposition, Montreal,

Canada, Nov. 2014.

3. Visual servoing using trajectory planning algorithm

(a) M. Keshmiri and W. F. Xie, "Visual Servoing of a Robotic Manipulator

Using an Optimized Trajectory Planning Technique," in Electrical and

Computer Engineering (CCECE), 2014, 27th Annual IEEE Canadian

Conference on, Toronto, Canada, May 2014.
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(b) M. Keshmiri and W. F. Xie, "Visual Servoing Using an Optimized Trajec-

tory Planning Technique for a 4 DOFs Robotic Manipulator," Submitted

to Journal of Intelligent & Robotic Systems, 2014.

(c) M. Keshmiri and W. F. Xie, "Visual Servoing Using a Trajectory Opti-

mization Technique," Submitted to Mechatronics, IEEE/ASME Trans-

actions on, 2014.

4. Real time model predictive controllers for visual servoing

(a) A. Hajiloo, M. Keshmiri, and W. F. Xie, "Real-Time Model Predictive

Visual Servoing Controller," To be submitted to Industrial Electronics,

IEEE Transactions on, 2014.

5. Catching moving object using the AIBVS controller and navigation guidance

technique

(a) M. Keshmiri and W. F. Xie, "Catching Moving Objects Using a Naviga-

tion Guidance Technique in an Robotic Visual Servoing System," Amer-

ican Control Conference (ACC), pp. 6302-6307, Washington, DC, Jun.

2013.

(b) A. Mohebbi, M. Keshmiri, and W. F. Xie, "Eye-in-Hand Image Based

Stereo Visual Servoing for Tracking and Grasping Moving Objects," Pro-

cessing of 33rd Chinese Control Conference (CCC), Nanjing, China, Jul.

2014.

(c) A. Mohebbi, M. Keshmiri, and W. F. Xie, "An Acceleration Command

Approach to Stereo Image Based Robot Visual Servoing," in Proceedings

of the 19th IFAC World Congress, Cape Town, South Africa, Aug. 2014.

Besides the above publications, the results of a course work project was pub-
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1.6 Thesis Outline

An introduction along with a literature review on visual servoing, the objec-

tives and research scope of this thesis are presented in Chapter 1. In Chapter 2, the

new AIBVS controller is presented. In Chapter 3, the image moment is introduced

and used with the AIBVS controller. In Chapter 4, the AIBVS controller is used in

an algorithm to catch a moving object using image based visual servoing techniques.

In Chapter 5, the trajectory planning algorithm is introduced. The conclusion of

this thesis and the proposed future works are presented in Chapter 6. The references

cited in this thesis are sorted in the bibliography section.

In this thesis, bold capital letters such as B are used for matrix definitions

with the following exception, where A, Ac, V and Vc are used for acceleration,

acceleration command, velocity and velocity command screw vectors, receptively.

Bold lower-case letters such as x are used for vectors and unbold letters such as ν

are used for scalar and constant values.
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Chapter 2

Image Based Visual Servoing

Controller

2.1 Introduction

In this chapter, a new visual servoing controller is developed. Various IBVS

controllers have been developed such as: proportional controller[12], adaptive visual

servoing[83, 84], sliding mode control[85], model predictive control[36], etc. The

common idea behind these strategies is that the visual servoing controller generates

a velocity screw as the controlling command for the robotic systems, i.e., visual

servoing produces a velocity profile which guides the end-effector towards its target.

However, the velocity command may not be satisfactory as the command signal of

the robot due to the following reasons.

First, visual servoing which generates a velocity command can only allow for

a proportional controller to be designed to ensure the error convergence. Although,

some literature have reported using PD controller in visual servoing controller de-

sign[33], the controller still produces a velocity command. Hence, the control per-

formance deteriorates in terms of its overshoot and its smoothness of trajectory.
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Second, image noises from the vision system and the motion vibration of the

robot may cause sudden changes to the velocity command. Since the robot controller

is tuned to follow these velocity commands exactly, small shakiness and sudden

changes in the direction of the robot can occur as the robot moves towards the

target.

On the other hand, generating acceleration as the controlling command for

the robot controller could overcome these drawbacks. First, in order to generate

an acceleration profile, the visual servoing could be designed using a PD or PID

controller that could be properly tuned to achieve smoother response and thus better

performance.

Second, acceleration generated controllers could solve the implementation prob-

lem and eliminate the shakiness and sudden changes in the direction of the robot.

This is due to the fact that the states of the robot are related to the integral of the

controlling command, which filters out the noise of the system.

In [86], an acceleration controller is presented for a position based visual ser-

voing system. Thus, the modeling and controller design are carried out in Cartesian

space. It is well known that PBVS is more sensitive to calibration errors compared

with IBVS. Hence, an acceleration controller designed in image space is needed to

augment the visual servoing performance.

In addition, the availability of the acceleration profile opens up the possibility

to use a single joint control or a computed torque control[87, 88] on the robot con-

troller. Knowing the robot model sufficiently enough, the computed torque method

could deliver a high speed and accurate trajectory tracking. Moreover, this type of

controller can drive the robot to follow the trajectories by producing the required

robots torques. This will be useful for designing industrial robots that deal with

heavy payloads where it is necessary to keep the joint loads in actuator torque

range.
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In this chapter, a new visual servoing controller is developed that produces

an acceleration screw instead of a velocity screw for the robot controller, in order

to achieve smoother and more reliable feature tracking responses [71]. Due to the

improvements that the controller makes to a visual servoing task this controller is

named Augmented Image Based Visual Servoing (AIBVS). The kinematic equations

of the new visual servoing model is derived and a PD controller is used to achieve

the exponential convergence of the system, instead of the common proportional (P)

controller in conventional IBVS methods. The proper gains of PD controller have

been chosen to get an over damped response. For the robot controller, a single

joint controller is designed to follow the acceleration profile. In the proposed visual

servoing controller where the acceleration is generated, highly nonlinear terms will

appear in the visual servoing model. Considering these nonlinearities, the stability

of the visual servoing system is proven in this chapter. To validate the proposed

controllers, simulation and experimental tests are performed.

2.2 Augmented Image Based Visual Servoing

The robotic system consists of a 6 DOFs manipulator with a camera installed

on its end-effector. The target object is assumed to be stationary with respect to

robot’s reference frame. In this section, point features are used as image features.

However, the developed controller in this chapter is also tested with image moment

features in the next chapter. The number of point features required in a visual

servoing task depends on number of degrees of freedom (DOFs) of the robot. To

complete a visual servoing task with a 6 DOFs robot, at least four feature points

are required [89].

Let Fb be the robot base frame, Fe be the end-effector frame and Fc be the
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camera frame (Figure 2.1a). The object is stationary in the workspace and is char-

acterized by 4 feature points on its four corners. A distinguished merit of IBVS is

that it does not require the object frame. A pinhole CCD camera is mounted on

the robots end-effector. The image of the 3D points of the object is projected on

the image plane of the camera, shown in Figure 2.1b, where cx and cy are the point

coordinates in image plane in meter represented in camera frame. The cx and cy

coordinates can be calculated from equation (2.1) [78].

(a) Robot and Camera Frames (b) Pinhole camera model

Figure 2.1: Robot frames and camera model

⎡
⎣cx

cy

⎤
⎦ =

1
cZ

⎡
⎣cX

cY

⎤
⎦ , (2.1)

where P = (cX,c Y,c Z) is the object coordinate in 3D space presented in camera

frame, p = (cx,c y) is the coordinate of P in image space presented in Fc. Throughout

this thesis, x and y are used instead of cx and cy. The camera usually provides the

pixel information of the image. Considering m = (u, v) as the pixel coordinate of

p, the p = (cx,c y) coordinate can be calculated using
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⎡
⎢⎢⎢⎢⎣
u

v

1

⎤
⎥⎥⎥⎥⎦ = B

⎡
⎢⎢⎢⎢⎣
cx

cy

1

⎤
⎥⎥⎥⎥⎦ , (2.2)

where

B =

⎡
⎢⎢⎢⎢⎣
αu 0 u0

0 αv v0

0 0 1

⎤
⎥⎥⎥⎥⎦ , (2.3)

is the intrinsic parameters matrix of the camera, u0 and v0 are the pixel coordinates

of the image plane principal points and αu and αv are the scaling factor along x and

y coordinates of the image plane in pixel/meter.

Suppose that the features and the desired features are defined in the image

plane. In order to find the motion that takes the camera to its desired position,

where the features match its desired ones, it is required to find the relationship

between the motion of the camera and the motion of the features in the image

plane. In other words, it is required to know how the features move in the image as

the camera makes a specific motion. This relationship could be found by taking the

time derivative of the equation (2.1), given as

⎡
⎣ẋ
ẏ

⎤
⎦ =

⎡
⎢⎣

Ẋ
Z
− XŻ

Z2

Ẏ
Z
− Y Ż

Z2

⎤
⎥⎦ , (2.4)

where Ṗ = (Ẋ, Ẏ , Ż) is the velocity of the 3D point in space with respect to camera

frame, and ṗ = (ẋ, ẏ) is the velocity of the image of P in the image space. Further-

more, the relationship between the acceleration of the camera and the acceleration

of image feature in the image is required. Taking the second time derivative of the

features from equation (2.1), the features acceleration could be written as

⎡
⎣ẍ
ÿ

⎤
⎦ =

⎡
⎢⎣

Ẍ
Z
− Z̈X

Z2 − 2 ŻẊ
Z2 + 2 Ż2X

Z3

Ÿ
Z
− Z̈Y

Z2 − 2 ŻẎ
Z2 + 2 Ż2Y

Z3

⎤
⎥⎦ , (2.5)
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where P̈ = (Ẍ, Ÿ , Z̈) is the acceleration of the 3D point in space with respect to

camera frame, and p̈ = (ẍ, ÿ) is the acceleration of the image of P in the image

space. The kinematic relationship between the camera motion and the 3D point in

space is given by ([90])

Ṗ = −vc − ωc ×P, (2.6)

P̈ = −ac −αc ×P+ 2ωc × vc + ωc × (ωc ×P), (2.7)

where vc and ac are the camera’s linear velocity and acceleration vectors, which

are written as vc = [vcx, vcy, vcz]
T and ac = [acx, acy, acz]

T, respectively. ωc and

αc are the camera’s angular velocity and acceleration vectors, which are written as

ωc = [ωcx, ωcy, ωcz]
T and αc = [αcx, αcy, αcz]

T, respectively. Substituting equations

(2.6) and (2.7) in (2.5) gives

p̈ = LaA+ Lv, (2.8)

where, A is the camera acceleration screw, which is written as

A = [acx acy acz αcx αcy αcz]
T, (2.9)

and La is the interaction matrix written as

La =

⎡
⎣− 1

Z
0 x

Z
xy −(1 + x2) y

0 − 1
Z

y
Z

1 + y2 −(xy) x

⎤
⎦ . (2.10)

Lv is obtained from substituting the two last terms of equation (2.7) in equation

(2.5) and can be written as

Lv =

⎡
⎢⎣V

TΩxV

VTΩyV

⎤
⎥⎦ , (2.11)

where, V is the camera acceleration screw, which is written as

V = [vcx vcy vcz ωcx ωcy ωcz]
T, (2.12)

ans Ωx and Ωy can be calculated from

31



Ωx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
Z2 − y

Z
3x
2Z

0

0 0 0 − x
2Z

0 − 1
2Z

1
Z2 0 2x

Z2
2xy
Z

− 1
2Z

− 2x2

Z
y
Z

− y
Z

− x
2Z

2xy
Z

x+ 2xy2 −y
2
− 2x2y 1

2
− x2

2
+ y2

3x
2Z

0 − 1
2Z

− 2x2

Z
−y

2
− 2x2y 2x+ 2x3 −3xy

2

0 − 1
2Z

y
Z

1
2
− x2

2
+ y2 −3xy

2
−x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.13)

and

Ωy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 2y
Z

1
2Z

0 0 1
Z2 − 3y

2Z
x
Z

0

0 1
Z2

2y
Z2

1
2Z

+ y2

Z
−xy

Z
− x

Z

0 − 3y
2Z

− 1
2Z

+ y2

Z
2y + 2y3 −x

2
− 2xy2 −3xy

2

1
2Z

x
y

−xy
Z

−x
2
− 2xy2 y + 2x2y 1

2
+ x2 − y2

2

1
2Z

0 − x
Z

3xy
2

1
2
+ x2 − y2

2
−y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.14)

As mentioned before, four feature points are used to complete the visual ser-

voing task. The coordinate position of the features vector are stacked to form a

feature vector of ξ given as

ξ =
[
x1 y1 · · · x4 y4

]T
, (2.15)

where x1, y1, · · · , x4, y4 are the coordinates of the feature points. Thus, the equation

(2.8) for four feature point is written as

ξ̈ = La4A+ Lv4, (2.16)

where

La4 =

⎡
⎢⎢⎢⎢⎣
La|p=p1

...

La|p=p4

⎤
⎥⎥⎥⎥⎦ , (2.17)
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Lv4 =

⎡
⎢⎢⎢⎢⎣
Lv|p=p1

...

Lv|p=p4

⎤
⎥⎥⎥⎥⎦ . (2.18)

The term Lv4, is a nonlinear term that improves the visual servoing task significantly

as considered in the controller design. On the other hand, as it is shown in the

following sections, this term also forces some limitations on the controlling gains,

i.e., the gains should not be less than a specific number to keep the system stable.

2.3 Controller Design

In this section, the visual servoing controller and the controller used to control

the robot are presented.

2.3.1 Visual Servoing Controller

The augmented controller is designed based on the visual servoing model

(2.16). The visual servoing system error is defined as

ε = ξ − ξd (2.19)

where ξd is the desired feature vector. As indicated above, a PD controller is de-

signed in such a way that the system error decreases subject to the following second

order system;

ε̈+ κvε̇+ κpε = 0, (2.20)

where κv and κp are positive scalars. The following control law could be designed

by letting ε̈ = ξ̈ and Ac = A. Thus,

Ac = L+
a4(−κvε̇− κpε− Lv4), (2.21)

where Ac is the control signal representing the camera acceleration command, L+
a4

is the pseudo inverse of the interaction matrix. Due to some inaccurate estimation
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Figure 2.2: AIBVS controller block diagram

of depth (Z) and the presence of camera calibration errors, equation (2.21) should

be written as

Ac = L̂+
a4(−κvε̇− κpε− Lv4), (2.22)

where L̂+
a4 is the interaction matrix with the uncertainty presented above. Consid-

ering (2.22) and (2.16) and knowing that ε̈ = ξ̈, the error equation could be written

as

ε̈ = La4L̂
+
a4(−κvε̇− κpε− Lv4) + Lv4. (2.23)

The block diagram of the visual servoing system using the proposed controller

is shown in Figure 2.2. It is necessary to mention that getting the features velocity

requires taking the time derivative of the feature position which may produce big

noise in the velocity signal. To solve this problem, the kinematic relation between

the features velocity and the camera velocity is used given as

ξ̇ = LaV = La(J
−1q̇). (2.24)

to calculate the features velocity. However, the time derivatives of the robot’s joints

(q̇) are required, which can be acquired directly using tachometers without introduc-

ing additional noise. Furthermore, since the target object is stationary and ξ̇d = 0,

equation (2.24) can be used to calculate ε̇.
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2.3.2 Robot Controller

To control the robot either a computed torque controller or a single joint

control could be used [87, 91]. A single joint controller is referred to a controller

in which each joint of the robot has an independent PID controller. This PID

controller provides the required voltage for the joint motor to move the joint to its

desired position. Usually, the dynamics of the robot is not taken into consideration

in such controllers. The PID control law for ith joint of the robot is given by

Vmi
= σpeqi + σdėqi + σi

∫
eqidt, (2.25)

where Vmi
is ith joint required voltage, σp, σd and σi are the proportional, derivative

and integral gain of the PID controller respectively and eqi is the ith joint angle

error given as

eqi = qdi − qi, (2.26)

and qdi is ith joint desired angle.

On the other hand, a computed torque control uses the dynamic equation of

the robot to calculate the required torque for each joint to take the robot to its

desired location. The robot dynamics equations can be written as follows

τ = M(q)q̈+C(q̇,q)q̇+G(q), (2.27)

where q, q̇ and q̈ are the robot joints position, velocity and acceleration vector,

respectively, M(q) is inertia matrix, C(q̇,q) is the centripetal and coriolis matrix,

and G(q) is the gravitational term. The control law is calculated as

τ = M(q)(q̈d +Kd(q̇d − q̇) +Kp(qd − q))

+C(q̇,q)q̇+G(q),

(2.28)

where qd, q̇d and q̈d are the robot’s desired joints position, velocity and acceleration

vector, respectively. Kp and Kd are the proportional and derivative gain matrices,
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respectively. The visual servoing produces the end-effector acceleration. The joint

acceleration could be calculated using the robot’s Jacobian matrix and its calculation

is shown as follows

q̈d = J−1(Ac − J̇q̇), (2.29)

where J is the robot’s Jacobian matrix and J−1 and J̇ are its inverse and its deriva-

tive, respectively. Ac is the acceleration command which is produced by the visual

servoing block.

2.4 Stability Analysis

Stability analysis of a visual servoing system is highly challenging but essential,

especially in the presence of system uncertainties such as camera calibration errors

and lack of object depth in an IBVS using monocular camera system. The stability of

different visual servoing approaches has been investigated in the literature [5, 12, 28].

In [31], the stability of the IBVS is analyzed in the presence of camera calibration

errors. The IBVS interaction matrix has a complex structure because of a large

number of variables and their nonlinear formation in this matrix. Thus, no analytical

solution is yet available for the pseudo inverse of the interaction matrix. This causes

the stability analysis problem to be more challenging. Researchers use the properties

of the pseudo inverse matrix to prove the stability of the IBVS and PBVS [29].

In this section, the stability of the proposed controller is analyzed to ensure

the effectiveness of the controller. Furthermore, the tuning rules for the PD gains

are given to achieve the best response. Some preliminary assumptions are taken

into consideration. Since La4L̂
+
a4 has the maximum rank of 6, La4L̂

+
a4 has two null

vectors that satisfy
{
La4L̂

+
a4ε̇ = 0, ε̇ ∈ R

8, ε̇ �= 0

}
. Assuming that x does not fall in

the null space of La4L̂
+
a4 [12],

La4L̂
+
a4 > 0. (2.30)
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To deal with this problem, first the system equation (2.23) is rewritten in the

following format.

ε̈ = La4L̂
+
a4(−κvε̇)︸ ︷︷ ︸
f(x,t)

+ La4L̂
+
a4(−κpε) + (I− La4L̂

+
a4)Lv4︸ ︷︷ ︸

g(x,t)

, (2.31)

where x=

[
ε

ε̇

]
. We consider f(x, t) as the nominal system and name it

ε̈n = f(x, t). (2.32)

Considering the function g(x, t) as the perturbation function, equation (2.31)

can be considered as a perturbed system. Choosing

ν =
1

2
ε̇Tn ε̇n, (2.33)

as the Lyapunov function candidate, the time derivative of the Lyapunov function

is

ν̇ = ε̈Tn ε̇n = −κvLa4L̂
+
a4ε̇

T
n ε̇n. (2.34)

It can be concluded that, as long as the calibration errors and the depth assumption

are not too coarse and

La4L̂
+
a4 > 0, (2.35)

the system given in equation (2.32) is exponentially stable.

Knowing that the system in equation (2.32) is exponentially stable for all

La4L̂
+
a4 > 0, and also g(0, t) = 0, using the stability lemma for perturbed sys-

tems with vanishing perturbation[92], the stability of system (2.31) can be proven.

Assume that the nominal system (2.32) has an equilibrium point of ε = 0 with ex-

ponential stability and ν(t,x) is a Lyapunov function candidate for the nominal

system that satisfies the following three conditions,

c1‖x‖2 ≤ ν(t,x) ≤ c2‖x‖2, (2.36)
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∂ν

∂t
+

∂ν

∂x
f(t,x) ≤ −c3‖x‖2, (2.37)

‖∂ν
∂x

‖ ≤ c4‖x‖, (2.38)

for
{∀(t,x)∈ [0,∞)×D,D≡R

2n
}
, where n is the number of features, c1, c2, c3 and

c4 in the above mentioned conditions are positive constants. If the perturbation

function satisfies (2.39)

‖g(t,x)‖ ≤ γ‖x‖, ∀t ≥ 0, ∀x ∈ D, (2.39)

where

γ <
c3
c4
, (2.40)

then, the perturbed system is exponentially stable with an equilibrium point at

origin, ε = 0.

Applying ν(t,x) and ν̇(t,x) from equation (2.33) and (2.34) to conditions

(2.36) to (2.38) gives,

0‖x‖2 ≤ 1

2
ε̇Tε̇ ≤ ‖x‖2, (2.41)

−κvε̇
TLa4L̂

+
a4ε̇ ≤ −κv‖x‖2, (2.42)

‖ε̇‖ ≤ ‖x‖. (2.43)

Thus, c1, c2, c3 and c4 can be found as c1 = 0, c2 = 1, c3 = κv and c4 = 1. Further-

more, a value for γ in (2.39) is required to complete the stability proof. Calculating

the norm of g(t,x) gives,

‖g(t,x)‖ = ‖La4L̂
+
a4(−κpε) + (I− La4L̂

+
a4)Lv4‖

≤ ‖La4L̂
+
a4‖(κp‖ε‖+ ‖La4‖) + ‖Lv4‖.

(2.44)

To be able to find a boundary for g(t,x) in the format of equation (2.39), it

is required to find ‖La4‖ as a function of ‖x‖. From (2.24), V can be computed as

V = L̂+
a4ξ̇, (2.45)

38



by substituting (2.45) in (2.11) gives,

Lv =

⎡
⎢⎣V

TΩxV

VTΩyV

⎤
⎥⎦ =

⎡
⎢⎣ξ̇

T
Φxξ̇

ξ̇
T
Φyξ̇

⎤
⎥⎦ , (2.46)

where Φx and Φy are

Φx = L+T
a4 ΩxL

+
a4,

Φy = L+T
a4 ΩyL

+
a4.

(2.47)

Thus, for four feature points it becomes as,

Lv4 =
[
ξ̇
T
Φx1 ξ̇ ξ̇

T
Φy1 ξ̇ . . . ξ̇

T
Φx4 ξ̇ ξ̇

T
Φy4 ξ̇

]T
. (2.48)

Each element of Lv4 is in a quadratic form. Since Φxi
and Φyi i =1,2,. . . ,4 are

symmetric matrices, one can write

ξ̇
T
Φx1 ξ̇ ≤ max(eig(Φx1))‖ξ̇‖2,

...

ξ̇
T
Φy4 ξ̇ ≤ max(eig(Φy4))‖ξ̇‖2.

(2.49)

Without the loss of generality, the problem is solved for second order norms,

and the problem can similarly be solved for other norm orders. Thus one has

‖Lv4‖ ≤
√
(max(eig(Φx1)))

2 + · · ·+ (max(eig(Φy4)))
2‖ξ̇‖2, (2.50)

where ‖Lv4‖ should be written as a first order function of the states. So the above

inequality is written as

‖Lv4‖ ≤ a‖ξ̇‖, (2.51)

where a is a constant, and is defined as

a = max(‖ξ̇‖)
√

max(eig(Φx1))
2 +. . .+ max(eig(Φy4))

2. (2.52)

Equation (2.50) is obtained only if the norm of feature variations satisfy the following

inequality

‖ξ̇‖ <
a√

(max(eig(Φx1)))
2 + · · ·+ (max(eig(Φy4)))

2
. (2.53)
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This condition means that the norm of the feature variation vector must be

less than a specific value which depends on the configuration of the features.

A numerical investigation has been made for a case of a Denso robot in section

2.6.1, to find the number of parameter a. Consequently, ‖g(t,x)‖ can be written as

‖g(t,x)‖ ≤ ‖La4L̂
+
a4‖(κp‖ε‖+ a‖ε̇‖) + a‖ε̇‖, (2.54)

thus,

‖g(t,x)‖ ≤ (κp + a)‖La4L̂
+
a4‖‖x‖+ a‖x‖. (2.55)

Comparing (2.55) with (2.39), it can be concluded that

γ = (κp + a)‖La4L̂
+
a4‖+ a. (2.56)

In order to satisfy the system stability relation, inequality (2.40) should be

satisfied. By substituting (2.56) in (2.40), a relationship between the system gains

is established as

(κp + a+
a

‖La4L̂
+
a4‖

) < κv. (2.57)

Thus, if La4L̂
+
a4>0 and inequality (2.57) is satisfied, the system (2.31) will be

locally exponentially stable.

Remark: The stability of the robot using either a computed torque controller

or a single joint controller is fully proven[87]. Thus, combining the AIBVS with a

computed torque control or a single joint controller in a cascade format, it could be

concluded that the whole system is stable.

2.5 Experimental Setup

In order to validate the developed algorithms in this research the algorithms

are tested on a experimental setup. In this section, the experimental setup is pre-

sented. Figure 2.3 shows the experiment setup components and connections. The
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Figure 2.3: Experimental setup components

system shown in this figure consists of a 6-DOF DENSO VP-6242G robot, a Quanser

open architecture control module, a Logitech C270 digital camera with 1280 by 720

pixels resolution and two PCs, one for controlling the robot and the other for image

acquisition.

Denso VP-6242G is a high precision manipulator robot with 6 rotating joints

which are powered by AC servo motors. The detailed specification and description

of the robot is given in Appendix A. The position feedback is provided by absolute

encoders mounted on each joints. The Denso robot end-effector has the ability

to host various devices for different applications. The Denso robot, is supplied

with Quanser open-architecture control module. The Quanser module includes six

independent amplifiers and built-in feed-forward with PID controllers. The feed-

forward lets user to apply current signals to the amplifier in addition to the velocity

signal. The controller communicates with PC-1 at a rate of 1kHz. The vision system

consists of a Logitech C270 digital cameras with 1280 by 720 pixels resolution,

mounted on the end-effector using a bracket.
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PC-1 reads the position of the robot from the Quanser controller and gener-

ates the controlling command and sends it to the Quanser controller. The image

processing and feature extraction algorithms require a considerably high load of com-

putation. This will cause the whole implementation process to slow down and affect

the system’s real-time performance. For this matter, the vision system is connected

to another PC (PC-2) and the image processing and feature extraction algorithms

are processed on this PC. The extracted features data is transmitted to PC-1 con-

nected to the robot using a User Datagram Protocol (UDP) network connection

protocol. The visual servoing algorithm running on PC-1 uses the transferred image

processing data to guide the robot.

2.5.1 Camera Calibration

Camera calibration is the process of determining the camera’s intrinsic pa-

rameters and the extrinsic parameters with respect to the world coordinate system.

Calibrations techniques rely on sets of world points whose relative coordinates are

known and whose corresponding image-plane coordinates are also known [93–95].

The Camera Calibration Toolbox for MATLAB implements the calibration

method to find the camera’s intrinsic and extrinsic parameters. The inputs of this

toolbox are several images of a model chessboard plane containing the calibration

points. The corners on the calibration plane are used as calibration points. Figure

2.4 illustrates this procedure. The camera intrinsic parameters extracted from this

method are given in Table 2.1.

2.5.2 Image Processing

In order to simplify the image processing task, a white environment is created

around the object. A rectangular object with four different colors on each corner
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Figure 2.4: Calibrating the camera using a chessboard pattern

Table 2.1: Camera Parameters
Parameters Values
Focal length 0.004 (m)

X axis scaling factor 110000 (pixel/m)
Y axis scaling factor 110000 (pixel/m)

Image plane offset of X axis 120 (pixel)
Image plane offset of Y axis 187 (pixel)

is placed in the workspace. The centers of the colored spots are used as the fea-

ture points. The Red Green Blue (RGB) image model acquired by the camera is

transferred to the computer as a three-dimensional matrix. The colored spots are

distinguished and located through a search algorithm. The centers of the spots are

calculated by averaging each colored area’s x and y pixel value. The main image

processing algorithm can be briefly explained in the following three steps.

• Step 1. Convert the RGB model image to Hue Saturation Value (HSV) model

image to reduce the effect of changes in the light and brightness of the envi-

ronment;

• Step 2. Extract the HSV values of the colored spots and detect the spots based

on their colors;
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• Step 3. Calculate the center of each color spot using the following equations

Xcenter =
1
N

∑N
n=0 xn,

Ycenter =
1
N

∑N
n=0 yn,

(2.58)

where N is the number of pixels belonging to the color spot, xn and yn are the

x and y coordinates of the colored spot pixels, Xcenter and Ycenter are the x and y

coordinates of the colored spot center. The speed of the image acquisition is 30

frames per second. The image processing is carried out for each frame acquired

from the camera. In order not to reduce the speed of the manipulator controller,

the image processing is performed on the second computer(PC-2) and the results

are sent via UDP to the manipulator controller.

2.5.3 Quarc Interface

QUARC is a multi-functional software suite that connects with Mathworks

Simulink for rapid controls programming and hardware based experiments. QUARC

provides Windows-based procedures to make Simulink designed controllers to be

converted into real-time Microsoft Visual Studio based code that can run on many

target processor and operating systems combinations. Figure 2.5 shows the imple-

mented Simulink models for an experimental IBVS test.

2.6 Simulation and Experimental Results

In this section, the proposed controller is tested on a 6 DOFs Denso robot and

the results are compared with those of conventional IBVS controller in [12]. Both

simulation and experimental results are presented in this section. An explanation

is given on finding the controlling gains for the Denso manipulator to ensure the

stability of the visual servoing system.
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Figure 2.5: Simulink diagram for an experimental IBVS test

2.6.1 Case Study of a Denso VS-6556G

As discussed before, in order to have equation (2.51), condition (2.53) must

be satisfied. However, an analytical calculation for Φxi
and Φyi ,i=1,2,. . . ,4 is not

available. In this section, a numerical investigation is carried out to show that

condition (2.53) could be met in a robotic system. Initially, the investigated system

is defined as such; Denso VS-6556G is used as the manipulator [87, 96] and the

intrinsic parameters of the camera are given in Table 2.1.

By manually adjusting the robot in a configuration such that the object could

be captured by the camera, the distance between each two points will be at most

300 pixels.

Thus,

a√
(max(eig(Φx1)))

2 + · · ·+ (max(eig(Φy4)))
2
≈ 3.02× 10−6a. (2.59)

According to the limits set for the tests, the robot will move with the maximum

linear velocity of 0.5 (m/s).

By calculating La for this situation ‖ξ̇‖ will be approximately less than 8.5×
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10−3(m/s) . Thus, a should be chosen as 2.808× 103.

To find a numerical value for the stability criteria, a numerical value is required

for ‖La4L̂
+
a4‖. Investigating the image screen, it can be seen that as the distance

between the image features grows, the norm ‖La4L̂
+
a4‖ decreases and vice versa.

Considering the above mentioned conditions, for the maximum distance between

the feature points, the norm ‖La4L̂
+
a4‖ will be around 250. Thus, the final stability

condition can be derived as

(κp + 2812) < κv. (2.60)

The validity of this condition has been proven in simulation and experiments.

2.6.2 Simulation Results

Simulation results are presented in this section. The experimental setup is

modeled in the simulation as close as possible to achieve the best possible results.

The robotic toolbox for Matlab [97] is used to model the robot and the computer

vision toolbox for Matlab [98] is used to model the camera. The camera intrinsic

parameters are given in Table 2.1. The specification of the Denso robot is presented

in Appendix A. A comparison with the conventional IBVS has been made in terms of

feature error and smoothness of the trajectory. The simulation results are illustrated

in Figures 2.6a to 2.6b.

The results shown in Figures 2.6a to 2.6b, demonstrate that the feature error

is reduced without any overshoot in the AIBVS method. This causes the features

to move in a straighter line than the features using the IBVS method. This merit

reduces the probability of features running out of the image plane.

Another simulation test has been done to show how the proposed method

reduces the risk of features leaving the field of view. Results show how AIBVS

improves the feature trajectory and keep them from leaving the field of view. Figures

2.7a and Figure 2.7b show that for the same task, IBVS has left the field of view
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(a) Feature error for AIBVS (b) Feature error for IBVS

(c) Features Trajectory for AIBVS (d) Features Trajectory for IBVS

(e) Camera Trajectory for AIBVS (f) Camera Trajectory for IBVS

Figure 2.6: AIBVS simulation results
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(a) Features trajectory IBVS (b) Features trajectory for AIBVS

Figure 2.7: AIBVS simulation results for FOV test

while AIBVS kept the features inside the camera frame.

This advantage is attributed to the fact that the proposed controller creates

acceleration and allows the use of a PD controller. Consequently, with the properly

tuned PD gains to get an over damped response, the proposed controller generates

the linear motions for the feature points without leaving field of view.

2.6.3 Experimental Results

Experimental results are presented in this section. The results of five different

tests are presented here. The initial and desired configurations of the image features

for each test are given in Table 2.2. As mentioned before, a constant depth value is

chosen as the depth of the object with respect to the camera. In the experiments

performed in this thesis, the average working distance of the robot in zc direction is

chosen as the depth of the object.

Test 1

In the first test, the convergence of each image feature point is examined when

the desired location is far away from the initial one. Figure 2.8 shows the results of
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Table 2.2: Initial(I) and desired(D) location of the feature points in
pixel for AIBVS controller tests in pixels

Point1 Point2 Point3 Point4
(x y) (x y) (x y) (x y)

Test 1 I 113 82 115 107 89 109 88 83
D 252 100 256 128 230 133 225 105

Test 2 I 200 79 196 153 126 148 129 79
D 197 154 123 147 128 78 200 80

Test 3 I 118 167 26 163 32 91 123 93
D 183 147 99 122 126 59 200 87

Test 4 I 107 210 16 206 26 133 114 137
D 291 212 203 229 187 154 276 136

Test 5 I 123 149 123 189 83 188 83 148
D 104 212 77 202 121 161 112 69

these tests.

Figure 2.8a shows the feature errors which converge to zero very smoothly

without any overshoots. Figure 2.8b shows the trajectory of the features in the

image space. In this figure, the image features start on the left and end on the right.

It is noticed that the features are moving along an exact straight line. Figure 2.8c

shows the trajectory of the camera in 3D Cartesian space.

Test 2

For the second test, a pure rotation of features about the image’s zc axis by 90

degrees is performed. The initial and desired features are shown in Table 2.2. The

test results are shown in Figure 2.9.

The test was successfully performed with the proposed AIBVS controller. The

figure sequences are similar to those of Test 1.

Test 3

For the third test, a comparison between the proposed AIBVS and the conven-

tional IBVS method is performed. The initial and desired locations of the feature
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(a) Feature error variation in time (b) Features trajectory from � to ◦

(c) 3D trajectory of the camera from � to ◦

Figure 2.8: Test 1: AIBVS performance test
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(a) Feature error variation in time (b) Features trajectory from � to ◦

(c) 3D trajectory of the camera from � to ◦

Figure 2.9: Test 2: AIBVS performance test
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points are given in Table 2.2. All the IBVS test conditions are the same as AIBVS

ones. The results of the mentioned test are given in Figure 2.10.

(a) Feature error variation in time for AIBVS (b) Feature error variation in time for IBVS

(c) Features trajectory in image space for AIBVS
from � to ◦

(d) Features trajectory in image space for IBVS
from � to ◦

Figure 2.10: Test 3: Comparison of IBVS and AIBVS

The results demonstrate that the feature error is reduced and the trajectories

are smoother than those in the conventional method. The smoothness of the tra-

jectories can be seen in the image plane trajectories. The IBVS results consist of

shakes and disturbances due to the use of velocity as the controlling command.

Another benefit of using acceleration command is that two controlling param-

eters can be adjusted to give more flexibility for tuning the system performance. As

shown in the results, the gains are adjusted to have the least overshoot when using
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AIBVS. On the other hand, no specific adjustment can be made on an IBVS system

and changing the gains only results in a slower or a faster response.

Test 4

This test shows that the proposed method keeps the image features trajectory

on a straighter line and has a lower risk of leaving the FOV, compared with conven-

tional IBVS. The initial and desired feature points are given in Table 2.2. Figure

2.11 illustrates the results of this test.

(a) Features for AIBVS stay inside the FOV (b) Features for IBVS leave the FOV

Figure 2.11: Test 4: Features leaving the FOV test. Trajectories start from � symbol

The results validate the expected behavior of the AIBVS controller and show

that, for a situation where the conventional IBVS fails to perform the visual servoing,

AIBVS succeeds to complete the task.

Test 5

For the last test, the robustness of the system with calibration errors is ex-

amined. The initial and desired positions of the image feature for this test are

given in Table 2.2. The percentages of calibration error (CE%) affects the intrinsic
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parameters matrix of the camera, B, through the following equation

B = B0(1 + CE%), (2.61)

where B0 is the real intrinsic parameter matrix. This test was performed for different

percentage of camera calibration errors. The results of the test with 50% of camera

calibration error are illustrated in Figures 2.12 and 2.13 and are compared with the

results of a task without any camera calibration errors.

(a) Features error (b) Features trajectory from � to ◦

(c) Camera trajectory, from � to ◦

Figure 2.12: Test 5: Results for AIBVS controller test with 0% camera calibration
error

The results demonstrate the robustness of the controller against camera cal-

ibration errors up to 50%. It can also be seen that camera calibration errors have
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(a) Features error (b) Features trajectory from � to ◦

(c) Camera trajectory, from � to ◦

Figure 2.13: Test 5: Results for AIBVS controller test with 50% camera calibration
error
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affected the performance of the controller in terms of smoothness of trajectory and

the time of convergence.

2.7 Summary

In this Chapter, an augmented version of image based visual servoing for a 6

DOFs robot is presented. A PD controller is used to create an acceleration profile for

the robot controller. The stability of the visual servoing controller is proven using

the Lyapanov theory for perturbed systems. Simulation and experimental tests are

performed to validate the method. Results validate the efficiency of the controller

and show the advantages of the proposed AIBVS over the classic IBVS in terms of

smoother motion in the image space and 3D space. In the next chapter, the image

moment features are adopted to the AIBVS visual servoing.
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Chapter 3

AIBVS for Image Moment Features

3.1 Introduction

The controller presented in the previous chapter depicts significant improve-

ments compared to conventional visual servoing in terms of conquering the IBVS

drawbacks. However, the methodology presented, is only applied to point features.

The use of point feature shows several drawbacks in practice. In some cases it is

hard to define four feature points. In addition, the use of four feature points neces-

sitates the use of an eight by six interaction matrix and creates the risk of getting

stuck in local minima for the visual servoing system. In order to fully take the

advantages of the AIBVS method, it should be adapted to image moment features.

In this chapter, a detailed investigation on using image moment features on AIBVS

controller is conducted.

Image moments are the general image features including point, line and seg-

ment form of features. Image moments were introduced to visual servoing in [6] and

the general formulation of image moments interaction matrix was developed. How-

ever, the image moments were intuitively used to generate camera velocity screw in

the previous researches [10, 99, 100].
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In this section, the new AIBVS controller is modified to adapt to image mo-

ment features, in order to have the benefit of smooth and more reliable feature

tracking responses. The kinematic equation of the new AIBVS model is derived

and a PD controller is used to achieve the exponential convergence of the system.

The general interaction matrix is developed for relating the image moments features

to camera acceleration. Simulation results validates the performance of the AIBVS

controller on image moment features.

3.2 Interaction Matrix Derivation

In this section, the analytical presentation of the interaction matrix is intro-

duced for any order of image moment. The general definition of geometric image

moment is given as follows

mij =

∫ ∫
R(t)

I(x, y)f(x, y)dxdy, (3.1)

where I(x, y) is the intensity of the image pixels, f(x, y) = xiyj, where (i + j) is

the image moments order, R(t) is the area in the image where the object projects.

This thesis only focuses on black and white images and thus the intensity within the

segments is equal to one (I(x, y) = 1). In order to implement the AIBVS controller,

it is required to find the relation between the second order time variation m̈ and

the acceleration screw A = [a,α], where a=[ax ay az] is the acceleration vector and

α=[αx αy αz] is the angular acceleration vector.

Using Green’s theorem, Chaumette [6] developed the relation between ṁ and

the velocity screw V = [v,ω]. The same approach is used to construct the desired

relation between the time variation of image moments with the acceleration screw.

Thus, according to [6], one has

ṁij =

∫ ∫
R(t)

div[f(x, y)ṗ]dxdy, (3.2)
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where ṗ is the velocity of the image point p = [x, y]. Now considering

fn(x, y) = div[f(x, y)ṗ], (3.3)

the second time derivative of mij could be calculated as follows

m̈ij =

∫ ∫
R(t)

div[fn(x, y)p̈]dxdy. (3.4)

In this equation, fn(x, y) is written as

fn(x, y) =
∂f

∂x
ẋ+

∂f

∂y
ẏ + f(x, y)(

∂ẋ

∂x
+

∂ẏ

∂y
) (3.5)

Substituting equation (3.5) into equation (3.4) and taking the divergence, the vari-

ation of image moment velocity in time is

m̈ij =

∫ ∫
R(t)

M̈dxdy, (3.6)

where M̈ is

M̈ = ∂2f
∂x2 ẋẍ+ ∂f

∂x
∂ẋ
∂x
ẍ+ ∂f

∂x
ẋ∂ẍ
∂x

+ ∂2f
∂y∂x

ẏÿ + ∂f
∂y

∂ẏ
∂x
ÿ + ∂f

∂y
ẏ ∂ÿ
∂x

+ ∂f
∂x
ẍ(∂ẋ

∂x
+ ∂ẏ

∂y
)

+f ∂ẍ
∂x
(∂ẋ
∂x

+ ∂ẏ
∂y
) + fẍ(∂

2ẋ
∂x2 +

∂2ẏ
∂y∂x

) + ∂2f
∂x∂y

ẋÿ + ∂f
∂x

∂ẋ
∂y
ÿ + ∂f

∂x
ẋ∂ÿ
∂y

+ ∂2f
∂y2

ẏÿ

+∂f
∂y

∂ẏ
∂y
ÿ + ∂f

∂y
ẏ ∂ÿ
∂y

+ ∂f
∂y
ÿ(∂ẋ

∂x
+ ∂ẏ

∂y
) + f ∂ÿ

∂y
(∂ẋ
∂x

+ ∂ẏ
∂y
) + fÿ( ∂2ẋ

∂x∂y
+ ∂2ẏ

∂y2
)

(3.7)

In equation (3.7), ẋ, ẍ, ẏ and ÿ can be expressed in terms of camera’s velocity

and acceleration using the following kinematic equations [71].

ṗ = LaV, (3.8)

p̈ = LaA+ Lv, (3.9)

where

La =

⎡
⎣− 1

Z
0 x

Z
xy −(1 + x2) y

0 − 1
Z

y
Z

1 + y2 −xy x

⎤
⎦ (3.10)
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and Lv is obtained from equation (3.11)

Lv =

⎡
⎢⎣V

TΩxV

VTΩyV

⎤
⎥⎦ , (3.11)

where Ωx and Ωy can be calculated from

Ωx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
Z2 − y

Z
3x
2Z

0

0 0 0 − x
2Z

0 − 1
2Z

1
Z2 0 2x

Z2
2xy
Z

− 1
2Z

− 2x2

Z
y
Z

− y
Z

− x
2Z

2xy
Z

x+ 2xy2 −y
2
− 2x2y 1

2
− x2

2
+ y2

3x
2Z

0 − 1
2Z

− 2x2

Z
−y

2
− 2x2y 2x+ 2x3 −3xy

2

0 − 1
2Z

y
Z

1
2
− x2

2
+ y2 −3xy

2
−x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.12)

and

Ωy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 2y
Z

1
2Z

0 0 1
Z2 − 3y

2Z
x
Z

0

0 1
Z2

2y
Z2

1
2Z

+ y2

Z
−xy

Z
− x

Z

0 − 3y
2Z

− 1
2Z

+ y2

Z
2y + 2y3 −x

2
− 2xy2 −3xy

2

1
2Z

x
y

−xy
Z

−x
2
− 2xy2 y + 2x2y 1

2
+ x2 − y2

2

1
2Z

0 − x
Z

3xy
2

1
2
+ x2 − y2

2
−y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.13)

The unknown depth Z which appears in La and Lv, is dealt with the same

way as in [6]. It is assumed that the object surface is continuous and the depth of

each pixel can be written as a function of image coordinate of the point as

1

Z
=

∑
p≥0,q≥0

Apqx
pyq, (3.14)

where Apq is a constant and p+ q is the surface equation order. In case of a planar

object, this equation could be written as zeroth and first order function of image

coordinates such as
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1

Z
= Ax+By + C (3.15)

Furthermore, constants A and B are equal to zero if the object surface is parallel to

camera image plane and Z = 1
C

. In this thesis, the focus is only on planar objects.

However, the interaction matrix could be derived for any continuous object surface,

similarly.

Considering f(x, y) = xiyj and substituting (3.8), (3.9) and (3.7) in (3.6), the

relationship is developed between m̈ij and the camera acceleration A as follows.

m̈ij = LmaijA+ Lmvij (3.16)

where

Lmaij =
[
max may maz mαx mαy mαz

]
(3.17)

and
max = −i(Amij +Bmi−1,j+1 + Cmi−1,j)− Amij

may = −j(Ami+1,j−1 +Bmij + Cmi,j−1)− Bmij

maz = (i+ j + 3)(Ami+1,j +Bmi,j+1 + Cmij)− Cmij

mαx = (i+ j + 3)mi,j+1 + jmi,j−1

mαy = −(i+ j + 3)mi+1,j − imi−1,j

mαz = imi−1,j+1 − jmi+1,j−1.

(3.18)

In equation (3.16), Lmvij is called the velocity interaction term and it could be

written in the form of

Lmvij = VTOmij
V (3.19)

where the elements of Omij
is given in the Appendix B.

3.2.1 Three Basic Image Moments

In this section, the interaction matrix of three basic image moments, the zeroth

and first order moments, are introduced. These moments will be used to define
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centroid and normal moments. Selecting i = 0 and j = 0, the zeroth order moment

which is the area of the image could be calculated.

a = m00 (3.20)

Selecting i = 1 and j = 0 or i = 0 and j = 1 the first order moment could be

calculated which gives the centroid of the image if it is divided by the image area.

xg =
m10

m00

yg =
m01

m00

(3.21)

Using the general form of interaction matrix Lmaij and Lmvij introduced in (3.18)

and (3.19) the interaction matrix and Lmvij of these basic moments could be found

as follows.

Lma00 =
[
−aA −aB a( 3

Zg
− C) 3syg −3axg 0]

]
Lmaxg =

[
− 1

Zg
0 xgaz xgαz xgαz yg

]
Lmayg =

[
0 − 1

Zg
ygaz ygαz ygαz −xg

] (3.22)

where 1
Zg

= Axg +Byg + C and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xgaz = xg/Zg + 4(An20 +Bn11)

ygaz = yg/Zg + 4(An11 +Bn02)

xgαx = −ygαy = xgyg + 4n11

xgαy = −(1 + x2
g + 4n20)

ygαx = 1 + y2g + 4n20

(3.23)

where nij is the normalized moments of order 2, which is defined as nij = μij/m00,

μij is called centered moments and the definition is given in equation (3.24). Ac-

cordingly, equation (3.19) becomes

Lmv00 = VTOm00V (??)
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The first order moments xg and yg are used to control the x and y motion

of the robot camera which is mounted on the end-effector [10]. The zeroth order

moment a is used to control the z motion of the camera [10].

3.3 Interaction Matrix of Central Moments

Centered moments are introduced to possess the property of invariance to x

and y translation. Centered moments are also called central geometric moments

[101] and are defined as;

μij =

∫ ∫
R(t)

f
′
(x, y)dxdy, (3.24)

where f
′
(x, y) = (x− xg)

i(y − yg)
j.

The interaction matrix and the velocity interaction term for the central mo-

ments are derived similarly. Starting by taking the second time derivative of μij in

equation (3.24) results in

μ̈ij =

∫ ∫
R(t)

M̈ ′dxdy (3.25)

where M̈ ′ can be derived as M̈ in (3.6). After performing the same mathematical

manipulation, the relation between μ̈ and camera acceleration is given as follow;

μ̈ij = LμaijA+ Lμvij (3.26)

where

Lμaij =
[
μax μay μaz μαx μαy μαz

]
(3.27)
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and
μax = −(i+ 1)Aμij − iBμi−1,j+1

μay = −jAμi+1,j−1 − (j + 1)Bμij

μaz = −Aμαy +Bμαx + (i+ j + 2)Cμij

μαx = (i+ j + 3)μi,j+1 + ixgμi−1,j+1

+(i+ j + 3)ygμi, j − 4in11μi−1,j − 4n02μi,j−1

μαy = −(i+ j + 3)μi+1,j − (2i+ j + 3)xgμij

−jygμi+1,j−1 + 4in20μi−1,j + 4jn11μi,j−1

μαz = iμi−1,j+1 − jμi+1,j−1.

(3.28)

The velocity interaction term, Lmvij , could be written in the form of

Lμvij = VTOμij
V (3.29)

where

Oμij
=

∫ ∫
R(t)

Oμij
dxdy (3.30)

where Oμij
is given in the Appendix B. One of the important image features used

in visual servoing and computer vision is the picture orientation which is given by

θz =
1

2
arctan(

2μ11

μ20 − μ02

) (3.31)

It consists of three second-order centered image moments. According to (3.27) and

(3.28), the interaction matrix of each moment and the overall interaction matrix

could be calculated as

Lμaij =
[
θvx θvy θvz θαx θαy −1

]
(3.32)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θvx = amA+ bmB

θvy = −cmA− amB

θvz = −Aθαy +Bθαx

θαx = −bmxg + amyg + dm

θαy = amxg − cmyg + em

(3.33)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

am = μ11(μ20 + μ02)/Dm

bm = (2μ2
11 + μ02(μ02 − μ20))/Dm

cm = (2μ2
11 + μ20(μ20 − μ02))/Dm

dm = 5(μ12(μ20 − μ02) + μ11(μ03 − μ21))/Dm

em = 5(μ21(μ02 − μ20) + μ11(μ30 − μ12))/Dm

Dm = (μ20 − μ02)
2 + 4μ2

11

(3.34)

3.4 Moment Features for Visual Servoing

Six different image moments are required to control the six DOFs of the camera.

Four basic moments were introduced in [10] to control the camera’s translation

along X, Y , Z and rotation about Z. These moments are x and y image centroids,

image area and image angle which are calculated as xg = m10/m00, yg = m01/m00,

ma = m00 and θ = 1
2
arctan( 2μ11

μ20−μ02
). Finding the two image moment features

relating to the other two DOFs which are the rotations about X and Y is the

most challenging part of the moment feature selection. Hu’s invariant moments[102]

were used to develop the new moments for the fourth and fifth DOFs. Chaumette

presented a set of moments consisting of the four basic moments and two moments

combinations for these two DOFs [6]. These two moments are
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⎧⎪⎪⎨
⎪⎪⎩
Px = I1/I

3
3

Py = aI2/I
3
3

(3.35)

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I1 = c21 + s21

I2 = c22 + S2
2

I3 = μ20 + μ02

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = μ20 − μ02

c2 = μ03 − 3μ21

s1 = 2μ11

s2 = μ30 − 3μ12

(3.36)

However, since the interaction matrix of Px and Py is zero for a centered symmetrical

object, Chaumette presented another invariant to overcome this problem [6].

⎧⎪⎪⎨
⎪⎪⎩
Sx = (c2c3 + s2s3)/K

Sy = (s2c3 − c2s3)/K

(3.37)

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K = I1I
(3/2)
3

c3 = c21 − s21

s3 = 2s1c1

(3.38)

Later on, Liu[7] introduced two improved image moments for these two DOFs

as follows

⎧⎪⎪⎨
⎪⎪⎩
Mx = 0.1− (c1c2 + s1s2)/I

9
4
7

My = (s1c2 − c1s2)/I
9
4
7

(3.39)

where for small objects I7 = I3 and for large object I7 = c1.
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3.5 Controller Design

In order to control all six DOFs of the camera, six moments from [99] will be

adopted in AIBVS controller. Stacking the selected moments in a vector format, ξm

is defined as the vector of image moments and the general system error is defined

as follows.

εm = ξmd
− ξm (3.40)

where ξmd
is the desired image moments vector. Recalling equation (3.16) and

(3.26), the general equation of motion for the six selected image moments could be

written similarly.

ξ̈ = Lma6A+ Lmv6 (3.41)

where Lma6 is the interaction matrix created by stacking each moment in interaction

matrix and Lmv6 is the velocity interaction vector generated by stacking the velocity

interactions corresponding to each moment. An augmented visual servoing controller

[71] is designed to control the system. A PD compensator is used to decrease the

error according to the following second order exponential decrease;

ε̈+ κmv ε̇+ κmpε = 0, (3.42)

where κmp and κmv are positive constants used as the proportional and derivative

gains of the controller. Thus, the proposed controlling law is

Ac = L−1ma6
(−λvε̇− λpε− Lmv6), (3.43)

where Ac is the acceleration screw command. The interaction matrix Lma6 is a

function of objects depth Z. Due to the lack of depth information in monocular vi-

sual servoing, different approaches could be used to calculate the interaction matrix.

One popular approach is to use the interaction matrix for the desired moments for

the whole visual servoing process. Thus

A∗
c = L∗−1ma6

(−λvε̇− λpε− Lmv6), (3.44)
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where L∗−1ma6
is the interaction matrix of the desired position. The other approach is

to use an estimation of the object depth and assume the object remains parallel to

the camera in the whole process. For this method it could be written

Âc = L̂−1a6
(−λvε̇− λpε− Lv6), (3.45)

where L̂a6 is the interaction matrix calculated with the estimation of object depth.

In Equations (3.44) and (3.45), it is assumed that the object is parallel to the camera

frame at all times and thus in the interaction matrix A = 0 and B = 0. In this

thesis, the later approach is utilized which also showed a better performance in the

simulation results.

3.6 Experimental Results

Four tests are carried out to validate the performance of the controller.

Test1:

In the first test, AIBVS controller is tested on a symmetrical image. The

moment features used for this purpose are the four basic moment features given in

section 3.4 and the Chaumette moments for a centered symmetrical shape given in

(3.37) are used to control the rotations about X and Y axes. The image features

are four circular points. The initial and desired images are given in Figures 3.1a

and 3.1b. The initial displacement of the camera with respect to the desired pose

is T = [−9(cm), 9(cm), 0(cm), 45(deg), 20(deg), 20(deg))]. The interaction matrix is

updated at each iteration using the following equation.

L̂a6 =
1

2
(L||a6 + L∗a6) (3.46)

where L||6a is the interaction matrix at each instant assuming the camera is parallel

to the object, L∗a6 is the interaction matrix for the image when the camera is in its
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(a) Initial image (b) Velocity field of vy motion

Figure 3.1: Initial and desired images for Test 1

desired position. The interaction matrix for the desired image in this test is given

as follows.

L∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 −1.18 0

0 −1 0 1.1 0 0

0 0 4.67 0.01 −0.01 0

0 0 0 −0.5564 −0.01 0

0 0 0 0.002 0.97 0

0 0 0 0.001 −0.0052 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.47)

It can be seen that this matrix is almost diagonal. This makes the matrix invertible

and far from singularity. However using the instant interaction matrix (L||a6) in each

iteration could possibly make the resulting interaction matrix singular. However,

singularity have not been experienced during this research. Furthermore, matrix

Lv6 is also calculated for each instant. This matrix is a function of camera velocity

and it is zero at the desired position.

One important point in tuning the controller gains is that, since the units of

moments are different from each other, using a scalar value as the gains in equation

(3.45) does not lead to the good performance. Therefore, a diagonal matrix is used
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(a) Feature error (b) Point error

(c) 2D image trajectory of the points from

Figure 3.2: Test 1 results with Chaummete feature moments for asymmetrical images
[6]

as the controller gain with different positive values on the diagonal elements. The

diagonal element values are adjusted manually by a trial and error method to get

the best possible results. The optimum gains could be found using optimization

techniques. The results of this test are presented in Figures 3.2a to 3.2c. These

figures show the stability of the system and the smooth elimination of the errors.

Test2:

In the second test, the ability of this algorithm is tested in stabilizing the

system when some of the features are out of the field of view. The same test using
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(a) Initial image (b) Desired image

Figure 3.3: Initial and desired images for Test 2

the point features is performed to show the advantage of moment features over point

features. The system is started in a situation where three of the feature points are

out of the field of view. The initial position of the features are shown in Figure 3.3a.

The desired position of the features is the same as that in the first test (Fig. 3.3b).

The comparison results are shown in Figure 3.4.

The results show that, using point features the visual servoing fails when some

features are out of field of view. However, using image moment as image feature

can solve the problem. When only one point feature is visible, the moment of this

point feature can still be calculated. Thus no lack of data occurs. As the other

points appear in the field of view, a sudden change happens in the image moment

calculation. This explains the sudden jump of the moments error in Figure 3.4b.

Test 3:

In the third test, the AIBVS controller is tested with an object with asymmet-

rical shape. The moment features used for this test consist of the four basic moments

along with the Chuamette moments for asymmetrical object given in equation (3.35).

The initial and desired image for this test are shown in Figures 3.5a and 3.5b. The
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(a) Feature trajectory using image moment fea-
tures from � to ◦

(b) Point errors

(c) Failed feature trajectory using point features
from � to ◦

(d) Point errors

Figure 3.4: Test 2, Comparing moment feature with point features when they start
beyond the field of view

interaction matrix for the desired point is calculated as follows.

L∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 −1.01 0

0 −1 0 1 0 0

0 0 2.77 −0.02 0.03 0

0 0 0 0.018 0.054 0

0 0 0 −0.013 −0.039 0

0 0 0 0.02 −0.005 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.48)
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(a) Initial image (b) Desired image

Figure 3.5: Initial and desired images for Test 3

(a) Feature error (b) Acceleration command

Figure 3.6: Test 3, with Chaummete feature moments for symmetrical images [6]

The initial displacement of the camera with respect to the desired feature is T =

[17(cm), 7(cm), 0(cm), 30(deg), 30(deg), 30(deg))]. The results of this test are shown

in Figures 3.6a and 3.6b.

Test 4:

In Test four, the same four basic moments are used along with the Liu’s mo-

ments as the fourth and fifth moments, which are given in equation (3.39). The

same initial and desired conditions as those in the third test are used for this test.
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(a) Feature error (b) Acceleration command

Figure 3.7: Test 4, with Liu’s feature moments [7]

Using Liu’s moments the interaction matrix is calculated as follows.

L∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 −1.18 0

0 −1 0 1.1 0 0

0 0 4.67 0.01 −0.01 0

0 0 0 0.007 0.028 0

0 0 0 −0.001 −0.0189 0

0 0 0 0.017 −0.017 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.49)

The results of Test 4 are shown in Figures 3.7a and 3.7b. The results show the

ability of the AIBVS controller using different sets of moments in fulfilling the visual

servoing task.

3.7 Summary

In this chapter, a new AIBVS controller is proposed using image moment

features in visual servoing tasks. The visual servoing kinematic model is developed

and the interaction matrix relating the image moment features to the acceleration

screw is derived. A PD control law is developed based on the system equation. The

controller is tested on three different sets of moment features. The results show the
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improved performance of the AIBVS controller by using moment features compared

to the AIBVS controller by using point features.
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Chapter 4

Catching Moving Objects Using

AIBVS Controller and Navigation

Guidance Technique

4.1 Introduction

One of the demands of visual servoing in robotic systems arises in the appli-

cation with unpredicted environments, especially while dealing with non-stationary

target objects [103]. A good example of such environments can be a production line

with products moving on a conveyor, where the robot can manipulate the unsorted

objects. Furthermore, it gives the robot the ability to catch the items moving on a

conveyor. Other examples of such situations worth mentioning is catching moving

object in space using space robots where lack of gravity can not guarantee that the

object stays still.

Catching a moving object with a robot becomes a challenging problem in

visual servoing which needs a well-designed trajectory planning algorithm. Various

methods and strategies have been developed for this matter. These strategies can
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also be classified under two main classes of visual servoing, Position Based and

Imaged Based, which are listed as follows,

1. Position Based Methods

(a) Trajectory regeneration methods[52–55]

(b) Potential field methods[56]

(c) Navigation guidance methods[57]

2. Imaged Based Methods

(a) Potential Field methods

Trajectory regeneration methods are the most basic methods used for catching

moving objects. The basic strategy of this approach is to plan an initial trajectory

from the current position of the robot’s end-effector to the potential catching position

of the object and revising the trajectory as the object moves and changes its position

and velocity [61]. Since the position of the object is changing, an object trajectory

estimation is used to predict future position and velocity of the object.

Researchers have also taken advantage of trajectory planning methods in im-

age space for guiding the robot to a stationary desired position[104]. Park et al.

in [69] presents a trajectory planning algorithm in image space using stereo vision

visual servoing without performing the 3D reconstruction. An imaged based tra-

jectory planning is presented in [68] aiming at avoiding the obstacles without 3D

reconstruction of environment. However, the research on the use of image based

trajectory regeneration methods for catching moving objects is rarely reported in

literature due to their low speed and high processing demand.

Potential field methods have been also used as a powerful trajectory planning

tool in visual servoing. Potential field is utilized both in position based strategies[56]

and image based strategies [58]. In [26] potential field along with a hybrid switch-

ing control strategy is used to avoid image singularities and local minima and to
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guide the robot toward the target while keeping it away form obstacles and other

constraints in real time. However, the summation of attracting and repulsive forces

in potential field algorithm could bring the system to local minima[58].

Furthermore, high speed demand of catching moving objects needs for naviga-

tion guidance techniques. Navigation guidance is a basic technique for interception of

free flying objects with fast maneuvering. The primary application of these methods

is to guide the missiles to intercept targets. In these methods, interception happens

by reducing the distance between interceptor and object and guiding the interceptor

to a collision with the target by applying an acceleration vector to the intercep-

tor, disregarding the interception condition[57]. Four various navigation guidance

strategies has been reported; Proportional Navigation Guidance(PNG), Augmented

Proportional Navigation Guidance(AIPNG), Ideal Proportional Navigation Guid-

ance(IPNG) and Augmented Ideal Proportional Navigation Guidance (AIPNG)[61].

These navigation guidance methods were designed for target interception and not

for smoothly catching objects. However, due to their high speed, researchers started

to improve these methods and apply to such applications. Mehrandezh et al. used

an ideal proportional navigation guidance method for a robotic interception task

[105]. Later on Dongkyoung et al. proposed a modified technique for IPNG for

smoothly catching fast maneuvering objects considering robotic torque and velocity

constraints[106]. In [107], this method is expanded to 3D space by using a 5 DOFs

robotic manipulator.

In this chapter, as an application to the developed AIBVS controller, this

controller is tested on a visual servoing task for catching an object. A combination of

navigation guidance technique with image based visual servoing system is practiced.

The navigation guidance speed is used to track and catch a fast maneuvering moving

object smoothly in visual servoing. The path created by the navigation guidance will

be followed by a previously developed AIBVS controller, which can achieve smooth
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Figure 4.1: A schematic diagram of a interception geometry

and linear feature trajectory in image space and owns the robustness with respect to

camera and robots calibration errors. Finally, the simulation results are presented

to validate the effectiveness of the proposed controller.

4.2 Navigation Guidance Planning

Navigation guidance law produces an acceleration command according to in-

terceptor and target velocity vectors. Figure 4.1 shows a schematic diagram of an

interceptor following the target. In this figure, VI and AI are the interceptor veloc-

ity and acceleration vectors respectively. VT and AT are the target’s velocity and

acceleration vector respectively. θI and θT are the angle of interceptor and targets

velocity. Line of Sight (LOS) is the line connecting the interceptor and the target,

and θLOS is the angle of LOS and R is the length of LOS.

In order to perform a smooth catching, the acceleration command is divided

into two commands including tangential and normal commands. The following
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Figure 4.2: Applying acceleration commands to the interceptor

guidance laws will be used for this purpose [106].

AIt = kdṘ + kpR, (4.1)

AIn = k1(θ̇Los − θ̇t) + k2 sin(θLos − θt), (4.2)

where R is the distance between the object features and the target features and Ṙ is

its derivative, kd and kp are the derivative and proportional gains for the tangential

acceleration command, k1 and k2 are the gains used in the normal acceleration

command. Thus, the desired motion of the features can be calculated as

ξ̈2d = A2
It + A2

In. (4.3)

Equation (4.1) works as a PD controller to reduce the distance between the

interceptor and the target. Equation (4.2) reduces the deviation of the interceptor

velocity with respect to the target. These equations will be applied to the interceptor

as shown in Figure 4.2. It is important to distinct between the target feature points

and the desired feature points. The target points are the points when the catching

happens if it matches the current points, but the desired points are the mid way

points that the trajectory planner produces in each sequence to navigate the current
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points toward the target points. There are four feature points in the image plane

and thus a guidance law is written for each point.

The guidance law should be planned in the image space. The target features

are stationary in the image space with respect to the camera frame. Thus, from

an observer attached to the camera frame, the planned guidance law will affect

the motion of interceptor. This is like fixing the interceptor and applying a negative

acceleration to the target with the same amount of AI . Consequently, we can assume

that a negative acceleration command is applied to the image feature instead of the

desired image feature. We use this vector to calculate the required acceleration and

apply the negative amount of this to the camera to perform the navigation motion.

Figure 4.3 shows a diagram of this assumption.

Integrating the acceleration command twice, gives the desired position of the

features for the next sequences .

ṡd4 =
∫ t

0
s̈d4 dt+ ṡ4i,

sd4 =
∫ t

0
ṡd4 dt+ s4i,

(4.4)

where s4i and ṡ4i are the initial position and velocity of the object features.

Using these desired positions and their derivative, as the desired features in

the AIBVS control law, the required end-effector acceleration command required to

catch the object can be calculated.

The system block diagram is shown in Figure 4.4. The camera is mounted

on the robot end-effector (eye-in-hand) and provides the current location of the

object’s features. The trajectory planner produces midpoint desired points along

the desired trajectories. These mid-point desired features are used to produce the

required end-effector’s acceleration screw. The AIBVS controller is used for this

purpose. Finally this acceleration is converted to joint acceleration and speeds using

the inverse Jacobian matrix of the manipulator.
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Figure 4.3: Interception plan in the image plane

Figure 4.4: System Block Diagram

4.3 Simulation Results

To validate the effectiveness of the proposed algorithms, three different catch-

ing simulations have been carried out in this section, catching an object with con-

stant velocity, catching an object moving in a sinusoidal path and catching an object

thrown in the air. The experimental setup presented in the introduction is modeled

in the simulation. The object is assumed to be a cube with a length of 10(cm) on

each side. Each corner of the cube face makes a feature point.
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Test 1: Object with Constant Velocity

For this test we assume the target object is moving with a constant velocity

on y direction. Figures 4.5a and 4.5 show the results of this simulation.

Figure 4.5a shows the 3D trajectory of the end-effector and the 3D trajectory

of the target object. It is noticed that catching has happened smoothly. The feature

error defined as the difference between the desired features and the current features,

is decreasing gradually as shown in Figure 4.5b. The features trajectories in image

plane are shown in figure 4.5c. Figures 4.5d and 4.5e show the tangential and normal

acceleration command used to perform this action.

Test 2: Object with Sinusoidal Motion

In this test, the catching algorithm is tested with an object with a sinusoidal

motion. This test could better show the performance of the catching algorithm

for following and smoothly catching the object with unstable motion (Figure 4.6a).

However this test can reveal the deficiencies of this algorithm in catching object

because of unnecessarily pursuing the object. As it can be seen in Figure 4.2, the

robot’s end-effector makes an unnecessary motion in order to follow the object as

it goes up and down. This problem could be solved by estimating the objects path

and choosing an interception point and velocity in the estimated path. The robot

then should be guided to that point and velocity to perform the interception. This

can be proposed as the future work in this area. Simulation results for this test is

given in Figure 4.6.

Test 3: Thrown Object (Parabolic Motion)

One of the most interesting goals in catching algorithms is to perform a catch-

ing for a thrown objects. This task requires a high speed data acquisition and high

speed respond. A position based high speed catching have been reported in [108].
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(a) 3D end-effector and object trajectory

(b) Feature errors (c) Feature Trajectory

(d) Tangential Accelerations (e) Normal Accelerations

Figure 4.5: Results for catching an object with constant velocity
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(a) 3D end-effector and object trajectory

(b) 3D end-effector and object trajectory (c) Feature Trajectory

(d) Tangential Accelerations (e) Normal Accelerations

Figure 4.6: Results for catching an object with sinusoidal motion
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Besides, the robot needs to be actuated fast enough to be able to follow the planned

trajectory. A test has been done to catch a thrown ball and the result is shown in

Figures 4.7. The unnecessary following of the object is again observed in this test,

which causes a delays in catching and consumes a lot of energy. This also causes the

robot to catch the object in the final reachable area in the robot’s working space.

The results show that the proposed methodology succeeded in catching the

object smoothly. However, the performance for more complicated motions of the

object, such as sinusoidal motion, is not as good as that for simple motions. Yet,

the methodology is fast enough to catch a thrown ball.

4.4 Summary

In this chapter, a navigation guidance algorithm is modified and applied to a

robot to follow and catch a moving target using vision feedback information. The

navigation guidance algorithm is combined with an AIBVS strategy to perform

catching of a moving object with different motions. Simulation results exhibit the

effectiveness of this method. However, it still needs some improvement in order to

overcome some drawbacks such as unnecessary following of the moving objects which

appears mostly in fast maneuvering targets. In future works, artificial intelligent

algorithm will be used to estimate the trajectory of the object, to solve the problem

of extra motion of the robot.
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(a) 3D end-effector and object trajectory

(b) Feature Errors (c) Feature Trajectory

(d) Tangential Accelerations � to ◦ (e) Normal Accelerations � to ◦

Figure 4.7: Results for catching an object with parabolic motion
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Chapter 5

Visual Servoing Using Trajectory

Planning

5.1 Introduction

In the previous chapters, a visual servoing controller is developed to perform

visual servoing tasks. However, as mentioned in the stability analysis, the developed

controllers could only guarantee the stability of the system in a local region around

the desired location. Moreover, despite a great amount of development in visual

servoing technologies, in the last two decades, visual servoing still suffers from a

number of problems which prevent it from wide industrial use. In [28], some po-

tential problems of implementing visual servoing are presented. Overall, the most

prominent deficiencies of visual servoing, preventing it from practical employment,

are listed as follows,

1. Instability of system in long distance tasks

2. Interaction matrix singularity

3. Local minima

4. Instability of the system in tasks with rotation of 180o about camera’s center

88



5. Having no control on the speed of the robot during the visual servoing task

6. Unknown path of the robot prior to the tasks

7. Features leaving the Field of View (FOV).

Various methodologies have been presented in literature to overcome the defi-

ciencies. Image moment features were introduced to deal with the interaction matrix

singularity and local minima problem [6, 10, 72, 109]. Model predictive visual ser-

voing controller was introduced to deal with the constraints of the system and to

prevent the features from leaving the FOV [36]. AIBVS was developed to make the

visual servoing smoother and reduce the risk of features leaving the field of view

[70]. Although, lots of researches have been devoted to solve one or two of the above

mentioned problems, a reliable and general solution to all of these problems can not

be found in literature.

Combining visual servoing with trajectory planning techniques is a possible

solution to overcome the above mentioned problems. Chesi et al. [65] proposed

a trajectory planning method for position based visual servoing. Homogeneous

forms were used to parametrize the path and an LMI optimization is carried out

to calculate the parameters. Moreover other techniques were used in PBVS path

planning[66]. An adaptive trajectory regeneration method was proposed in [110] for

visual servoing in an unstructured environment. Later on navigation guidance tech-

niques were integrated with visual servoing to achieve fast visual servoing [78, 107].

Potential field methods were used to perform on-line trajectory planing in robotic

systems[56, 111]. Potential filed techniques were useful for trajectory planning in

the presence of obstacles and when the system is subjected to constraints.

Although the reported trajectory planning techniques demonstrate good per-

formance in executing visual servoing tasks, they were designed for position based

visual servoing. Thus, they suffer from PBVS drawbacks such as sensitivity to model

and camera calibration errors. This gap motivated the researchers[26, 58] to develop
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a trajectory planning technique in an IBVS system.

Usually, in an IBVS trajectory planning, a reference path is produced by the

trajectory planner considering the goals and constraints of the image and the robot.

A small controlling error will be defined for each small segment of the trajectory to

be followed by the IBVS controller. In such algorithms, the main challenge is to

find a path in image space which corresponds to a feasible path in task space. The

most basic method developed for solving this problem is using stereo vision and the

epipolar geometry constraint between two camera images. Utilizing the privilege of

epipolar geometry, an image trajectory is generated on both images in a way that

corresponds to a feasible or even straight line trajectory in Cartesian space [68, 69].

High load of processing and decreased field of view is the problems of such solution.

In this chapter, a new image based trajectory planning algorithm is proposed to

overcome the visual servoing deficiencies and develop a reliable algorithm to perform

visual servoing tasks. In this method, the camera’s velocity screw is separated

into elements. Each velocity element is parameterized using a time based function

which is refereed to as the velocity profiles. The velocity profile parameters are

determined through an optimization process which minimizes the features errors.

In order to facilitate and speed up the optimization technique, some new image

features are introduced. A convexity analysis is performed to show the convexity of

the optimization problem. Similar to other IBVS systems, depth estimation plays

an important role in the performance of the proposed trajectory planning algorithm.

A depth estimation technique is introduced. Having the initial depth, the object

depth could be integrated during the visual servoing task. By integrating all these

techniques, the proposed IBVS based trajectory planning can overcome the above

mentioned deficiencies to a great extent.

The trajectory planning is developed in two stages. First a trajectory planning

algorithm is developed for a 4 DOFs robot. This algorithm is then extended to a 6
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DOFs robot. Due to the highly coupled behavior of the features in a 6 DOFs robot,

the algorithm used for a 4 DOFs robot turns into a non-convex problem for a 6

DOFs robot. By decoupling the orientation planning from positioning problem, the

optimization problem becomes a convex problem again.

Due to some uncertainties in the system or calibration errors, it is probable

that the generated trajectory does not exactly take the robot to its desired location.

However, it is observed that with such incomplete trajectories the robot is taken to

a position which is close enough to the desired location. The desired location will

then be reached using an AIBVS controller. In other words, the trajectory plan-

ning algorithm is switched to a controller at the end of its path to compensate for

any inaccuracy of the system performance. In summary, the whole visual servoing

procedure consist of 3 stages. The first stage is the depth estimation stage. The

second stage is the trajectory planning stage. Finally, in the third stage the tra-

jectory planning block switches to a visual servoing controller block. Each stage is

elaborated in the following sections.

Simulation and experimental tests are performed to validate the proposed

method. The results show that in the situations where the visual servoing task

fails using traditional methods, the proposed method successfully perform it.

5.2 Trajectory Planning for a 4 DOFs Robot

In this section, the goal is to develop a trajectory planning algorithm for an

imaged based visual servoing task. A 4 DOFs robot manipulator is used to perform

such task. The robot end-effector has 3 linear motion in xe, ye and ze axes and

a rotation about ze axis. The picture of the robot manipulator is illustrated in

Figure 5.1. A pinhole CCD camera is attached to the end-effector of the robot to

form an eye-in-hand configuration. The object is stationary in the workspace and
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Figure 5.1: Denso robot

is characterized by 4 feature points on its four corners. A picture is taken from

the object when the camera is located in a known relative position with respect to

the object. The features coordinates in this picture are used as the target image

features. The visual servoing task is complete when the image features match the

target features.

The generated trajectory profile will be designed using the initial and target

features positions and the velocity relation between the features and the camera.

Thus, the velocity relation between the camera and the image features is required.

For a 4 DOFs robot with a camera attached at its end effector, the velocity screw

of the camera is in the following form.

Vc4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vx

vy

vz

ωz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5.1)

where, vx, vy, vz and ωz are linear velocities in xc, yc, zc direction and angular
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velocity about zc, respectively. The features velocity relation to camera velocity

screw for a 4 DOFs robot is given as follows [71].

ṗ = LsVc, (5.2)

where

Ls =

⎡
⎣− 1

Z
0 x

Z
y

0 − 1
Z

y
Z

−x

⎤
⎦ (5.3)

is the interaction matrix and Z is the depth of the object with respect to the camera.

5.2.1 Path Planning

The robot’s end-effector needs to have a movement in each DOFs to reach its

desired destination. Each of these motions moves the image features on a specific

path in image space. Knowing the relation between the velocity screw and features

velocity, the features path could be calculated by integrating equation (5.2). Figure

5.2 shows the velocity field of a feature point created using each of the velocity screw

elements.

The first two elements of the velocity screw create linear motions in the same

direction for all features (Figures 5.2 (a) and (b)). These two camera motions are

used for displacing the features in x and y direction of the image plane. A camera

motion in zc direction creates an outward motion for the features which are in the

direction of the line connecting the center of the image to the image feature. A

negative motion in zc direction will create an inward motion for the features. This

motion could compensate the distances between the features. Subsequently, the

fourth element of the velocity screw, which is rotation about camera’s zc axis, will

cause the features to rotate about the center of image. The features velocity vector

has a greater magnitude in the features further from the center of image with the

same velocity of the camera. This motion is used to correct the angle of the features

with respect to the image plane coordinates.
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(a) Velocity field for vx motion (b) Velocity field of vy motion

(c) Velocity field of vz motion (d) Velocity field of ωz motion

Figure 5.2: Velocity field of the features subject to camera velocities
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The concept behind the trajectory planning is that any target features could be

reached by using a combination of shown feature motions. Four predefined velocity

profiles are associated to each of the camera’s velocity screw elements. The effect of

the generated velocity screw can be calculated using equation (5.2). In other words,

by superposing the velocity fields caused by each element of the velocity screw, the

final position of the features could be calculated. The parameters of the camera

velocity are then determined by minimizing the error between the image features

and the target ones.

Having the velocity screw in equation (5.1), the features velocity in image

space is given by

ẋi =
−1
Z
vx +

xi

Z
vz + yiωz,

ẏi =
−1
Z
vy +

yi
Z
vz − xiωz,

(5.4)

where ẋi and ẏi are the velocities of the ith image feature in x and y direction,

respectively. Consequently, the image feature position could be calculated as

xit =
∫ t

t0
( −1
Z(t)

vx(t) +
xi(t)
Z(t)

vz(t) + yi(t)ωz(t))dt+ xi0,

yit =
∫ t

t0
( −1
Z(t)

vy(t) +
yi(t)
Z(t)

vz(t)− xi(t)ωz(t))dt+ yi0,

(5.5)

where xi0 and yi0 are the initial coordinates of the image features and xit and yit

are the locations of the image features at time t. Knowing the position of the image

feature, the cost function (i.e. objective function) is defined as the square of error

between the image features at final time tf and the target image features.

OF = (ξ(tf )− ξd)
T(ξ(tf )− ξd) (5.6)

where OF is the objective function, and ξ(tf ) and ξd are the feature vector at the

end of trajectory and desired feature vector, respectively. Point features positions

could be an acceptable feature set to solve this problem as given in equations 5.7

and 5.8.

ξ(t) =
[
x1(t) y1(t) . . . xi(t) yi(t)

]T
, (5.7)
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and

ξd =
[
x1d y1d . . . xid yid

]T
. (5.8)

However, a better set of feature is introduced here to facilitate the optimization

process. The new set of feature is given as follows,

ξn(t) =
[
xc(t) yc(t) pz(t) θz(t)

]T
, (5.9)

where xc(t) and yc(t) are the centers of the feature points, pz(t) is the perimeter

of the lines connecting each consecutive feature point and θz(t) is the angle of the

whole object picture relative to x coordinate of image. Considering Figure 5.3 as an

image taken from the object, the selected new features can be calculated as follows;

xc(t) =
∑4

i=1 xi(t)

4

yc(t) =
∑4

i=1 yi(t)

4

pz(t) =
∑4

i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2

θz(t) =
θ1+θ2

2

(5.10)

where xi and yi are the feature point coordinates in the image plane and θ1 and

θ2 are shown in Figure 5.3. These features are referred to the selected features

throughout this thesis. The new objective function is written as

OFn = (ξn(tf )− ξnd)
T(ξn(tf )− ξnd) (5.11)

5.2.2 Parameterizing the Velocity Profile

A general predefined velocity profile is selected named Vtp(t). In a visual

servoing task which deals with a stationary object, the robot starts from stationary

situation and ends in a stationary situation. Thus, the selected profile needs to

satisfy the following conditions.

Vtp(0) = 0

Vtp(tf ) = 0
(5.12)
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Figure 5.3: Calculating the angle feature from features points in an image

where tf is the time which we planned to have the robot at the target position. Some

examples of these functions could be a trapezoid function, a polynomial function

or half cycle of a sinusoidal wave. However, more complicated trajectories with

more parameters could be used such as higher order polynomial especially for the

cases where other objective functions such as energy or path length are used for

optimization.

For the 4 DOFs trajectory planning, half cycle of a sinusoidal profile is used

to parameterize the velocity profile. Thus the general velocity profile can be shown

as follows

Vtp(t) = vm sin(πt
tf
) 0 ≤ t ≤ tf (5.13)

where vm is the vector of maximum speed that the camera reaches within the profile

and is given as follows;

vm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vmx

vmy

vmz

vmωz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.14)

where vmx, vmy, vmz and vmωz are the maximum velocity of each velocity screw

elements, respectively. The final time, tf , is selected by the user depending on the
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Figure 5.4: Stereo camera model

desired speed of the task. Thus, each profile have only one parameter to be designed

and the overall number of design parameters of the system is four.

5.2.3 Depth Estimation

The estimation of the object depth is necessary for the trajectory planing due

to its presence in equation (5.5). The motion of the camera in zc direction is known

from vz element of the velocity screw which is given as a parameterized equation of

time. Thus the depth Z can be calculated at any time t from

Z(t) =

∫ t

t0

fz(t)dt+ Z0 (5.15)

where, Z0 is the initial depth of the object with respect to the camera coordinates.

If the initial depth of the object is estimated, accurately, the depth in the rest of

the times could be calculated. Let us recall that using a stereo camera the depth

of the object could be calculated [112–114]. This is done by applying the epipolar

geometry constraint that exist between the features in images planes of each camera.

In a simple case where the two cameras are mounted parallel to each other (Figure

5.4), the depth of the object with respect to the cameras can be calculated using

the disparity of the images from equation (5.16).
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Zc =
b

xl − xr

(5.16)

where Zc is the depth of the object in the camera coordinates, xr and xl are the

features x coordinates in left and right cameras, respectively and b is the distance

between the cameras. We can conclude that by having two images of an object from

a camera from which the second image is taken at a location with a displacement of

b along Xc from the first location of the camera, the same equation could be used

to calculated the object depth. Thus, by moving the camera along Xc by a small

displacement b and using the initial and the final image feature positions and the

depth of the object could be calculated from equation (5.16), This procedure takes

about 1 second to complete which is feasible in experiment.

5.2.4 Features Motion Using Sinusoidal Profile

Letting Vc = Vtp(t) and substituting Vtp from equation (5.13) into equation

(5.4) the feature motion equation could be derived as follows;

ẋi = − 1
Zc
vmxS + 1

Zc
xivmzS + yiωmzS

ẏi = − 1
Zc
vmyS + 1

Zc
yivmzS − xiωmzS,

(5.17)

where S = sin(πt
tf
) and Zc is the depth of the object with respect to the camera.

The depth could be calculated by substituting equation vz = vmz sin(
πt
tf
) into (5.15)

which gives

Zc = Z0 − vmztf

π
+

vmztf cos(
πt
tf
)

π
(5.18)

Finding a closed form solution for xi(t) and yi(t) from equation (5.17) is nearly

impossible due to the nonlinearity and the coupled nature of the differential equa-

tions. Therefore, numerical integration methods are used to integrate equation

(5.17).
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5.2.5 Convexity Analysis

An important point that needs to be considered, is that the trajectory planning

procedure must be completed in a reasonable time. Otherwise, the method would

be useless for real word applications because of the delay that is imposed to the

system. One important factor that leads to fast convergence of the optimization

problem is the convexity of the problem. In this section the convexity of the problem

is investigated. To start with, let us review the following main theorems regarding

convexity of a problem.

Theorem 1: If f(x∗) is a local minimum for a convex function f(x) defined on

a convex feasible set S, it is also a global minimum [115].

Theorem 2: A function of n variable f(x1, x2, ..., xn) is defined on a convex set

S is convex if and only if the Hessian matrix of the function is positive semidefinite

or positive definite at all points in the set S [115].

Proving the convexity of the objective function given in equation (5.11) re-

quires the Hessian matrix of OF . Chinneck [116] introduced a method to discover

the convexity of a program using numerical method. Accordingly, a code is gener-

ated to numerically calculate the Hessian matrix ([117]) of the objective function

for a desired span of the desired parameters. The design parameter range depends

on the physical limitations of the robot. In this case, the design parameters are the

maximum velocity of the end-effector in the associated DOF. Knowing the speed

limits of the robotic system, this could be identified. In our test the following ranges

have been used.
−0.1 ≤ vmx ≤ 0.1 (m/sec)

−0.1 ≤ vmy ≤ 0.1 (m/sec)

−0.1 ≤ vmz ≤ 0.1 (m/sec)

−0.3 ≤ vmωz ≤ 0.3 (rad/sec)

(5.19)
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To demonstrate the results of this investigation, without the loss of generality,

we chose the initial and desired locations such that the robot needs all the 4 DOFs

motions to reach the desired position. The final time tf is selected as 10 (sec). The

changes to the objective function for different values of the design parameters are

shown in Figure 5.5. To be able to show these variations in 3D plot format, the

variation of the objective function is shown due the to changes in two parameters at

each figure. All available combinations are presented. The variation of the objective

function due to changes in vmx and vmy are shown in Figure 5.5a. The variation of

the objective function due to the changes in vmx − vmz, vmx − ωmz and vmz − ωmz

are shown in Figures 5.5b, 5.5c and 5.5d, respectively. Because of the similarity

in behavior of the system due to change in vmx and vmy, all the diagrams related

to changes in vmy are omitted here and one can refer to the figures showing the

variations due to the changes in vmx. The convexity of the objective function is

clearly demonstrated in the Figures 5.5.

5.2.6 Constraints

One of the main issues in conventional visual servoing is that it does not limit

the robot within the system constraints. By just limiting the system within the

constraints, the convergence of the system to the target point can not be guaranteed.

The highly coupled nature of visual servoing system could cause the controlling law

to take the robot toward and beyond its boundaries while IBVS is attempting to

fix the camera’s orientation. This can be easily observed in a visual servoing task

using a conventional controller. Thus, limiting the system motion like a model

predictive controller would do, is not sufficient to stabilize the system [36]. On

the other hand, in a trajectory planning algorithm, the generated trajectory could

be examined beforehand to guarantee that reaches the target while respecting the

constraints. Two main constraints are considered in this paper. The first constraint
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(a) vmx verses vmy (b) vmx verses vmz

(c) vmx verses ωmz (d) vmz verses ωmz

Figure 5.5: Objective function variations
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is associated with the robots working space. The second constraint is the robot joint

limits. These constraints are discussed in details in the following sections.

It is good to note that, limiting the system to keep the features inside the field

of view of the camera is vital to the success of the task in an IBVS conventional visual

servoing. The proposed method integrates the equation of motion and predicts the

features position at different time moments. Thus, it only requires the initial and

the final positions of the features. Consequently, limiting the features inside the

field of view is not necessary in this method.

Working Space Constraint

The planned trajectory is feasible only if it is inside the robot working space

at all times. Every robot has its own working space. The typical working space of

a serial manipulator is a part of sphere with the radius equal to the length of the

arms when they are aligned in the same direction. This could be formulated in a

polar system as follows,

Xc = Rc cos(θc) cos(αc) 0 < Rc ≤ Rcmax

Yc = Rc cos(θc) sin(αc) and θcmin
< θc ≤ θcmax

Zc = Rc sin(θc) αcmin
< αc ≤ αcmax

(5.20)

where, Pc = [Xc, Yc, Zc]
T and Ppc = [Rc, θc, αc]

T are the cameras coordinates in

Cartesian and polar systems, Rcmax is the maximum possible length of the robot’s

arm, θcmin
and θcmax are the minimum and maximum angles of the robot’s arm

about its base X axis, αcmin
and αcmax are the minimum and maximum angles of

the robot’s arm about its base Z axis.

Joints Space Constraint

Keeping the robot inside the working space is not enough to accomplish a visual

servoing task. In addition to work space constraint, it is necessary to make sure the
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robot respects its joint limits and does not collide with itself. These constraints can

be formulated as follows.

qmin ≤ q ≤ qmax (5.21)

where q is the robot joint vector and qmin and qmax are defined as the robot’s joint

limits. The end-effector position is known at all time during the servoing. A function

is required to transform the robot’s end-effector coordinates to robot joints’ value.

This function is the inverse kinematic of the robot. The constraint could be written

as

qmin ≤ I(Pc) ≤ qmax (5.22)

where I(Pc) is the inverse kinematic function of the robot.

5.3 Visual Servoing Controller

In the cases where there are some uncertainties in the system model, the

generated trajectory locates the features with a small error with respect to the target

position. To compensate for such errors, a visual servoing controller is required. For

this matter, the AIBVS controller developed in section 2.3.1 and given in equation

2.21 will be used.

5.4 Experimental Results

In this section, the results of the experimental test of the proposed algorithm

are presented. The experimental setup is described in section 2.5. Since the al-

gorithm is developed for a 4 DOFs robot, the robot joints 4 and 5 are set to zero

and 90o − q2 + q3 to keep the camera looking down in the whole process. Thus,

end-effector can move in X, Y , Z directions and it can rotate about the end-effector

axis which we refer to as θz. The camera characteristics are given in Table 2.2.
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First, the depth estimation algorithm moves the end-effector in Xc direction by

10 cm to take the stereoscopic image and estimates the depth of the object. Second,

using the current image features, desired image features and the initial depth of the

object, the trajectory planning algorithm generates the appropriate velocity screw

through an optimization process to take the robot to the desired position. Due to

the nonlinearity of the selected objective function and constraints, an interior point

algorithm [118] is used to solve the optimization problem. The generated velocity

is applied to the robot. As the robot finishes moving according to the generated

velocity, the third stage of the algorithm starts. At the third stage, an AIBVS [70]

controller is executed to compensate for any difference between the image features

and the desired image features caused by the uncertainties in system model. As

it is shown in the results, most of the tests may not require the last stage, since

the trajectory planning exactly matches the features with the desired ones. Four

different tests with different strategies have been performed to ensure the algorithms

validity.

Test 1:

In the first test, our aim is to show the system performing a relativity simple

visual servoing task. The initial and desired locations of the features are given in

the Table 5.1.

The trajectory planning algorithm generates the velocity profiles shown in

Figure 5.6e. Applying the velocities to the robot, the robot is taken to the desired

position. The features trajectory in image space and the camera trajectory in 3D

space are shown in Figures 5.6c and 5.6d. The quarter of the sphere in this figure

shows the workspace of the robot. The robot joint angles during the robot motion

are shown in Figure 5.6f. Since, the system model is sufficiently accurate, the desired

position is reached using the velocity profiles and the third stage of the algorithm
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

(e) Generated velocity profile (f) Robot joint angles

Figure 5.6: Results for Test 1, performing a basic visual servoing task
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Table 5.1: Initial(I) and desired(D) location of the feature points in
pixel for 4DOFs trajectory planning tests

Point1 Point2 Point3 Point4
(x y) (x y) (x y) (x y)

Test 1 I 80 195 40 212 23 175 65 160
D 182 141 136 141 136 98 183 98

Test 2 I 200 79 196 153 126 148 129 79
D 197 154 123 147 128 78 200 80

Test 3 I 178 226 132 226 132 183 177 184
D 151 143 191 142 192 180 151 181

Test 4 I 107 210 16 206 26 133 114 137
D 291 212 203 229 187 154 276 136

Test 5 I 123 149 123 189 83 188 83 148
D 104 212 77 202 121 161 112 69

is not required for this test. In the first stage of the algorithm, the robot moves the

camera by 10 cm in xc direction and the estimated depth is 0.49 m. The optimization

process in this test takes less than a second to complete using a Intel Xeon E31220

3.10GHz CPU.

In the Tests 2, 3 and 4, it is intended to check and compare the performance of

the proposed algorithm for the cases where the conventional image based controllers

[12] cannot stabilize the system.

Test 2:

Test 2 is done on a case where the initial and target features are distant. The

initial and desired locations of the features are shown in Table 5.1. The result of

second test is presented in Figures 5.7. The results show that using the generated

velocity profiles, the visual servoing task can be accomplished. Figure 5.7d shows the

trajectory of the robot’s end-effector within the robot’s workspace. The same test

has been done with a visual servoing controller. The results are shown in Figures

5.8.
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

(e) Generated velocity profile (f) Robot joint angles

Figure 5.7: Results for Test 2, reaching distant desired feature
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(a) Features position error (b) Selected features error

Figure 5.8: Results for Test 2 using IBVS controller

Test 3:

For the third test, another common problem of IBVS is investigated using

the proposed method. The visual servoing fails when a 180 degrees rotation of the

camera is required to reach its desired position [28]. A test is prepared including a

180 degrees rotation in the end effector motion. The initial and desired locations of

the feature points are given in Table 5.1. The result of this test is shown in Figures

5.9.

The same test is conducted using IBVS controllers. The results are shown in

Figures 5.10. The results show that, similar to the previous test, the IBVS controller

tries to match the features through the shortest path available which results in a

motion of camera in the Zc direction. This continues until the end-effector reaches

its physical limits and the robot stops, as shown in Figure 5.10b.

Test 4:

Another challenges in conventional visual servoing is the local minima problem.

In an IBVS controller, the interaction matrix is an eight by six matrix. The inverse of

this matrix, which is used to produce the controlling law, is an eight by six matrix
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

(e) Generated velocity profile (f) Robot joint angles

Figure 5.9: Results for Test 3, performing a visual servoing task with 180o about
the camer zc axis
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(a) Features position error (b) Selected features error

Figure 5.10: Results for Test 3 using IBVS controller

and has two vector of null space. If the features error vector is a factor of these

null space vectors, the controller generates a zero velocity vector as the controlling

command. This causes the system to get stuck in that spot. In the trajectory

planning algorithm, the inverse of the interaction matrix is not used. consequently,

the local minima problem is solved. The next test demonstrates this ability in the

proposed algorithm. The initial and desired locations of the feature points are given

in Table 5.1. The desired features are chosen so that the vector of feature position

error is in the null space of the interaction matrix. The results are shown in Figures

5.11. We can see that the proposed algorithm produces a velocity profile to take

the robot to the desired position while the IBVS controller produces a zero velocity

vector.

5.5 Trajectory Planning for a 6 DOFs Robot

In this section, the developed trajectory planning algorithm for a 4 DOFs robot

is modified to work on a 6 DOFs robot. A 6 DOFs robot manipulator is used to

perform such task. In this case the robot end-effector has 3 linear motion in xc, yc

and zc axes and three rotation about xc, yc and zc axis. The relation between the

111



(a) Features position error (b) Features trajectory in image space

(c) Features position error for IBVS (d) Features trajectory in image space for IBVS

Figure 5.11: Results for Test 4, performing a visual servoing task with desired
features are located at the null space of the interaction matrix
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motion of the camera and features motion in the image is given by

ṗ = LaV, (5.23)

where

La =

⎡
⎣− 1

Z
0 x

Z
xy −(1 + x2) y

0 − 1
Z

y
Z

1 + y2 −xy −x

⎤
⎦ (5.24)

is the interaction matrix, Z is the depth of the object with respect to the camera

and V = [vx vy vz ωx ωy ωz]
T is the camera’s velocity screw represented in camera

frame.

5.5.1 Path Planning

The robot could perform 6 degrees of motion to reach any desired pos (in-

cluding position and orientation). The effect of each motion could be calculated

using equation (5.24). Figure 5.12 shows how each motion affects the feature point

position.

The first two elements of the velocity screw create linear motions in the same

direction for all features (Figures 5.12a and 5.12b). These two camera motions are

used for displacing the features in x and y direction of the image plane. A camera

motion in zc direction creates an outward motion for the features which is in the

direction of line connecting the center of the image to the image feature (Figure

5.12c). It has to be noted that a negative motion in zc direction will create an

inward motion for the features. Thus, this motion could compensate the distances

between the features. The fourth and fifth element of the velocity screw create a

complicated motion in the features. It creates an inward motion for features in one

side of the image and an outward motion for the features on the other side of the

image (Figures 5.12d and 5.12e). The last element of the velocity screw rotates the

features about the center of image (Figure 5.12f).
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(a) Velocity field for vx motion (b) Velocity field of vy motion

(c) Velocity field of vz motion (d) Velocity field of ωz motion

(e) Velocity field of vz motion (f) Velocity field of ωz motion

Figure 5.12: Velocity field of the features subject to camera velocities
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The concept behind the trajectory planning is that any target features could

be reached by using a combination of shown feature motions. Six basic velocity

profiles are generated for each of the camera’s velocity screw elements. The effect of

the generated velocity screw can be calculated using equation (5.24). In other words,

by superposing the velocity fields caused by each element of the velocity screw, the

final position of the features could be calculated. The parameters of the camera

velocity are then determined by minimizing the error between the image features

and the target ones.

The features velocity in image space could be written as a function of velocity

screw elements, given by

ẋi =
−1
Z
vx +

xi

Z
vz + xiyiωx − (1 + x2

i )ωy + yiωz

ẏi =
−1
Z
vy +

yi
Z
vz + (1 + yi)

2ωx − xiyiωy − xiωz,

(5.25)

where ẋi and ẏi are the velocities of the ith image feature in x and y direction,

respectively. Consequently, the image feature position could be calculated as

xit =
∫ t

t0
(ẋi(t))dt+ xi0

yit =
∫ t

t0
(ẏi(t))dt+ yi0,

(5.26)

where xi0 and yi0 are the initial coordinates of the image features and xi and

yi are the locations of the image features at time t. Thus, by knowing the initial

position of the features and the velocity of the camera the position of the features

can be calculated at each time.

Image Features

The interaction matrix achieved for point features (equation (5.24)) is highly

nonlinear and coupled. In order to facilitate the optimization process some new

features are presented in this thesis. The new set of image features is shown as

sn =
[
xc yc pz θx θy θz

]T
(5.27)

115



(a) Velocity field for vx motion (b) Velocity field of vy motion (c) Velocity field of vz motion

Figure 5.13: Calculating the three last features form the point features

where xc(t) and yc(t) are the centers of the feature points and pz(t) is the perimeter

of the lines connecting each consecutive feature point which are given as

xc(t) =
∑4

i=1 xi(t)

4

yc(t) =
∑4

i=1 yi(t)

4

pz(t) =
∑4

i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2

(5.28)

where θx(t), θy(t) and θy(t) are defined based on the deformation that is made in

the features by rotating the camera about xc, yc and zc. These features are given by

θx(t) =
θ11+θ12

2

θy(t) =
θ21+θ22

2

θz(t) =
θ31+θ32

2

(5.29)

where θ11, θ12, θ21, θ22, θ31, θ32 are shown in the Figure 5.13.

Parameterizing the Velocity Profile

A general predefined velocity profile named Vtp(t) is selected. In a visual

servoing task dealing with a stationary object, the robot starts from stationary

situation and ends in a stationary situation. Thus, the selected profile needs to
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satisfy the following conditions.

Vtp(0) = 0

Vtp(tf ) = 0
(5.30)

where tf is the final time which we planned to have the robot at the target position.

In this thesis, half cycle of a sinusoidal profile is used to parameterize the

velocity profile. The general velocity profile can be shown as follows

Vtp(t) = vm sin(πt
tf
) 0 ≤ t ≤ tf (5.31)

where vm is the maximum speed that the camera reaches within the profile and is

given as follows;

vm =
[
vmx vmy vmz vmωx vmωy vmωz

]T
(5.32)

where vmx, vmy, vmz, vmωx , vmωy and vmωz are the maximum velocity of each velocity

screw elements, respectively. The final time, tf , is selected by the user depending

on the desired speed of the task. Thus, each profile have only one parameter to be

designed and the overall number of design parameters of the system is six.

5.5.2 Decoupling Orientation Planning from Position Plan-

ning

Testing the trajectory planning as explained above shows that the system is

highly nonlinear and the optimization process is not convex. In some cases the

process does not converges and in other cases there is no guarantee to converge in

a reasonable time. Due to the important role that the convergence time plays in

feasibility of the algorithm, it is proposed to decouple the orientation planing from

position planning. Decoupled visual servoing was previously presented in [38]. In

this thesis, decoupled trajectory planning is proposed.

The decoupling procedure is explained in follows. First the last three velocity

screw elements are planned in the optimization process so that they take the last
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three feature set elements to their desired values. Second, the first three elements of

the velocity screw is planned to eliminate the error existing in the first three elements

of the feature set. The last three joints of the robot is responsible for the fixing the

orientation and the first three joints of the robot is responsible for positioning. As

it is investigated in the next section, using the selected features and decoupling the

planning process leads to a convex optimization process.

5.5.3 Optimization and Convexity Analysis

Let us define the objective function as the quadratic form of the selected

features error, given by

OF = (ξn(tf )− ξnd)
TQ(ξ(tf )− ξd), (5.33)

where Q is a orthogonal matrix introducing the desired weight of each error in the

optimization process. An important point that needs to be considered, is that the

trajectory planning procedure must be completed in a reasonable time. Otherwise,

the method would be useless for real word applications because of the delay that is

imposed to the system. One important factor that leads to fast convergence of the

optimization problem is the convexity of the problem. In this section the convexity

of the problem is investigate. To start, let us review the following main theorems

regarding convexity of a problem.

Theorem 1: If f(x∗) is a local minimum for a convex function f(x) defined on

a convex feasible set S, it is also a global minimum [115].

Theorem 2: A function of n variable f(x1, x2, ..., xn) is defined on a convex set

S is convex if and only if the Hessian matrix of the function is positive semidefinite

or positive definite at all points in the set S [115].

Proving the convexity of the objective function given in equation (5.33) re-

quires the Hessian matrix of OF . Chinneck [116] introduced a method to discover
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the convexity of a program using numerical method. Accordingly, a code is gener-

ated to numerically calculate the Hessian matrix [117] of the objective function for

a desired span of the desired parameters. The design parameter range depends on

the physical limitations of the robot. In this case, the design parameters are the

maximum velocity of the end-effector in the associated DOF. Knowing the speed

limits of the robotic system, this could be identified. In our test, the following ranges

have been used.
−0.1 ≤ vmx ≤ 0.1 (m/sec)

−0.1 ≤ vmy ≤ 0.1 (m/sec)

−0.1 ≤ vmz ≤ 0.1 (m/sec)

−0.1 ≤ vmωx ≤ 0.1 (rad/sec)

−0.1 ≤ vmωy ≤ 0.1 (rad/sec)

−0.3 ≤ vmωz ≤ 0.3 (rad/sec)

(5.34)

To demonstrate the results of this investigation, without the loss of generality,

we chose the initial and desired locations such that the robot needs a motion in all

the 6 DOFs to reach the desired position. The final time tf is selected as 10 (sec).

The changes to the objective function for different values of the design parameters

are shown in Figure 5.14. To be able to show these variations in 3D plot format, the

variation of the objective function is shown due to the changes in two parameters at

each figure. All available combinations are presented. The variations of the objective

function due to changes in vmx − vmy are shown in Figure 5.14a. The variation of

the objective function due to the changes in vmx − vmz is shown in Figure 5.14b.

Because of the similarity in behavior of the system due to change in vmx − vmy all

the diagrams related to changes in vmy are omitted here and one can refer to the

figures showing the variations due to the changes in vmx. Moreover, due to the fact

that the trajectory planning is decoupled, the orientation never interfere with the
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positioning. Thus, it is not required to check the convexity of the system due to a

combined linear and angular motion. To check for the convexity of the system due

to the angular motions the changes in the objective function is introduced due to

the changes in ωmx−ωmy and ωmx−ωmz. These changes are shown in Figures 5.14c

and 5.14c. The convexity of the objective function is clearly demonstrated in the

Figures 5.14.

(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

Figure 5.14: Convexity of the objective function
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5.5.4 Constraints

One of the main issues in conventional visual servoing is that it does not limit

the robot within the system constraints. In addition, by just limiting the system

within the constraints the convergence of the system to the target point can not be

guaranteed. The highly coupled nature of visual servoing system could cause the

controlling law to take the robot toward and beyond its boundaries while IBVS is

attempting to fix the camera’s orientation. This can be easily observed in a visual

servoing task using a conventional controller. Thus, limiting the system motion like

a model predictive controller would do, is not sufficient to stabilize the system [36].

On the other hand, in a trajectory planning algorithm, the generated trajectory

could be examined beforehand to guarantee that the target can be reached while

respecting the constraints. Two main constraints are considered in this thesis. The

first constraint is associated with the robot’s working space. The second constraint

is the robot joint limits. These constraints are discussed in details in the following

sections.

It is good to note that, limiting the system to keep the features inside the field

of view of the camera is vital to the success of the task in an IBVS conventional visual

servoing. The proposed method integrates the equation of motion and predicts the

features position at different time moments. Thus, it only requires the initial and

the final positions of the features. Consequently, limiting the features inside the

field of view is not necessary in this method.

Working Space Constraint

The planned trajectory is feasible only if it is inside the robot working space

at all times. Every robot has its own working space. The typical working space of

a serial manipulator is a part of sphere with the radius equal to the length of the

arms when they are aligned in the same direction. This could be formulated in a
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polar system as follows,

Xc = Rc cos(θc) cos(αc) 0 < Rc ≤ Rcmax

Yc = Rc cos(θc) sin(αc) and θcmin
< θc ≤ θcmax

Zc = Rc sin(θc) αcmin
< αc ≤ αcmax

(5.35)

where, Pc = [Xc, Yc, Zc]
T and Ppc = [Rc, θc, αc]

T are the cameras coordinates in

Cartesian and polar systems, Rcmax is the maximum possible length of the robot’s

arm, θcmin
and θcmax are the minimum and maximum angles of the robot’s arm

about its base X axis, αcmin
and αcmax are the minimum and maximum angles of

the robot’s arm about its base Z axis.

Joints Space Constraint

Keeping the robot inside the working space is not enough to accomplish a visual

servoing task. In addition to work space constraint, it is necessary to make sure the

robot respects its joint limits and does not collide with itself. These constraints can

be formulated as follows.

qmin ≤ q ≤ qmax (5.36)

where q is the robot joint vector and qmin and qmax are defined as the robot’s joint

limits. The end-effector position is known at all time during the servoing. A function

is required to transform the robot’s end-effector coordinates to robot joints’ value.

This function is the inverse kinematic of the robot. The constraint could be written

as

qmin ≤ I(Pc) ≤ qmax (5.37)

where I(Pc) is the inverse kinematic function of the robot.
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5.6 Experimental Results

In this section, the results of the experimental tests of the proposed algorithm

are presented. Each complete test consists of four stages. First, the depth estimation

algorithm moves the end-effector in Xc direction by 10 cm to take the stereoscopic

image and estimates the depth of the object. Second, using the current image

features, desired image features and the initial depth of the object, the trajectory

planning algorithm generates the appropriate angular velocity though optimization

to reorient the camera to a parallel plane as the object plane. This is done by match-

ing the three last selected features. In the third stage, the positioning trajectory is

generated by matching the first three selected features. Due to the nonlinearity of

the selected objective function, an interior point algorithm [118] is used to solve the

optimization problem. The generated velocity is applied to the robot. As the robot

finishes moving according to the generated velocity, the fourth stage of the algorithm

starts. At the fourth stage, an AIBVS [70] controller is executed to compensate for

any difference between the image features and the desired image features caused by

the uncertainties in system model. As it is shown in the results, most of the tests

may not require the last stage, since the trajectory planning exactly matches the

features with the desired ones. Four different tests with different strategies have

been performed to ensure the algorithms validity.

Test 1:

In the first test, our aim is to show the performance of the system on performing

a relativity simple visual servoing task. The initial and desired locations of the

features are given in the Table 5.2. The trajectory planning algorithm generates

the velocity profiles shown in Figure 5.15e. Applying the velocities to the robot, the

robot is taken to the desired position. The first sin cycle is related to the orientation

planning and the second part is related to the positioning. The features trajectory in
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

(e) Generated velocity profile (f) Robot joint angles

Figure 5.15: Results for Test 1, performing a basic visual servoing task
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Table 5.2: Initial(I) and desired(D) location of the feature points in
pixel for 6DOFs trajectory planning tests

Point1 Point2 Point3 Point4
(x y) (x y) (x y) (x y)

Test 1 I 248 163 283 185 262 219 227 195
D 138 99 179 99 179 136 138 137

Test 2 I 32 106 75 12 242 83 155 181
D 139 100 179 98 180 135 139 136

Test 3 I 137 99 178 99 179 136 138 137
D 190 154 129 154 128 98 190 98

Test 4 I 107 210 16 206 26 133 114 137
D 291 212 203 229 187 154 276 136

Test 5 I 123 149 123 189 83 188 83 148
D 104 212 77 202 121 161 112 69

image space and the camera trajectory in 3D space are shown in Figures 5.15c and

5.15d. The half sphere in this figure shows the workspace of the robot. The robot

joint angles during the robot motion are shown in Figure 5.15f. Since, the system

model is sufficiently accurate, the desired position is reached using the velocity

profiles and the fourth stage of the algorithm is not required for this test. In the

first stage of the algorithm, the robot moves the camera by 10 cm in Xc direction

and the depth estimation is 0.4 m. The optimization process in this test takes less

than two second to complete using a Intel Xeon E31220 3.10GHz CPU.

Test 2:

In the second test some of prominence of the proposed method to IBVS con-

troller are shown. A relatively complicated task is chosen for this matter. The initial

and final position of the robot is given in Table 5.2. The results of this test are given

in Figures 5.16

The optimization process creates the velocity profile given in Figure 5.16e.

The first part of the velocity profile is to orient the camera to be parallel to the

object’s feature plane. These velocity profiles only moves the three last joints. This
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

(e) Generated velocity profile (f) Robot joint angles

Figure 5.16: Results for Test 2, performing a complicated visual servoing task in-
cluding big orientation changes
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cause the features to move out of the FOV. However since this algorithm is an off

line planning it only depends on the initial and desired location of the features.

Within the algorithm it is assumed that the camera FOV is unlimited. The features

eventually return to the real FOV of the camera as the robot completes the created

path. The constant lines in the feature error and selected features error in Figures

5.16a and 5.15b are for the time when the features are out of FOV. It is shown that

the task is completed keeping the robot in its workspace. The joint angles are also

shown in Figure 5.16f. The same task is done using an IBVS controller. The results

are given in Figures 5.17

(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

Figure 5.17: Results for Test 2 using IBVS controller

As shown in Figure 5.17c, the rotation required for this task takes the features
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out of the field of view. The IBVS controller depends on the features position at

each instant. As soon as the features run out of the field of view the controller have

false data from the features position and it causes the task to fail.

Test 3:

For the third test, another common problems of IBVS is investigated using

the proposed method. The visual servoing fails when a 180 degrees rotation of the

camera is required to reach its desired position [28]. A test is prepared including a

180 degrees rotation in the end effector motion. The initial and desired locations of

the feature points are given in Table 5.2. The result of this test is shown in Figures

5.18.

The same test is conducted using IBVS controllers. The results are shown in

Figures 5.19. The results show that, similar to the previous test, the IBVS controller

tries to match the features through the shortest path available which results in a

motion of camera in the zc direction. This continues until the end-effector reaches

its physical limits and the robot stops, as shown in Figure 5.19d.

Test 4:

Another challenges in conventional visual servoing is the local minima problem.

In an IBVS controller, the interaction matrix is an eight by six matrix. The inverse of

this matrix, which is used to produce the controlling law, is an eight by six matrix

and has two vector of null space. If the features error vector is a factor of these

null space vectors, the controller generates a zero velocity vector as the controlling

command. This causes the system to get stuck in that spot. In the trajectory

planning algorithm, the inverse of the interaction matrix is not used. consequently,

the local minima problem is solved. The next test demonstrates this ability in the

proposed algorithm. The initial and desired locations of the feature points are given
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

(e) Generated velocity profile (f) Robot joint angles

Figure 5.18: Results for Test 3, perforimg visual servoing task including 180o rotation
about camera’s zc axis
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

Figure 5.19: Results for Test 2 using IBVS controller
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in Table 5.2. The desired features are chosen so that the vector of feature position

error is in the null space of the interaction matrix. The results are shown in Figures

5.20. We can see that the proposed algorithm produces a velocity profile to take

the robot to the desired position while the IBVS controller produces a zero velocity

vector.

5.7 Summary

In this Chapter, a novel visual servoing technique is proposed. This technique

is performed by planning a trajectory from the initial robot’s position to a position

where the image features match the desired ones. The trajectory is based on op-

timizing a predefined path which satisfies the system’s initial and final conditions.

The trajectory parameters are identified through an optimization procedure by min-

imizing the error between the image features and the desired ones. In order to speed

up the optimization process, new features are introduced. This method successfully

worked on a 4 DOFs robot. Due to the complexity of planning for a 6 DOFs robot,

the planning procedure is decoupled to two stages of orientation planning and po-

sition planning. This is necessary to have a convex problem. A depth estimation

method is proposed to provide the object depth to the trajectory planning algo-

rithm. After performing the velocity profile generated from the trajectory planning

algorithm, AIBVS controller is used to compensate for any probable errors appeared

in matching the features with the desired ones. Experimental tests validate the pro-

posed method and exhibit its advantages over IBVS controllers. The results show

that in cases where the IBVS controller is unable to complete the visual servoing

task, the proposed algorithm is successful.
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(a) Features position error (b) Selected features error

(c) Feature trajectory in image plane (d) Camera 3D trajectory

(e) Generated velocity profile (f) Robot joint angles

Figure 5.20: Results for Test 4, performing a visual servoing task with desired
features are located at the null space of the interaction matrix
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(a) Features position error (b) Selected features error

Figure 5.21: Results for Test 4 using IBVS controller
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Chapter 6

Conclusion and Future Works

6.1 Summary of the thesis

Vision system is a relatively new technology that has improved the intelligence

of automatic machines and robots. Vision system could be used in different appli-

cations such as surveillance, quality control, tracking, etc. In this thesis, the focus

is on the use of vision system in a robotic system and guiding the robot based on

the visual feedback. This is also called visual servoing. Researchers have introduced

various methods to perform visual servoing tasks. In this thesis, existing problems

and gaps of this field of research are discovered and some methodologies are pro-

posed to solve them. This thesis aims in solving the existing problems by proposing

new controlling and trajectory planning algorithms.

1. Augmented image based visual servoing (AIBVS)

First, an augmented image based visual servoing controller for a 6 DOFs robot

is developed. Point features are used in this visual servoing system. In order to

control all 6 DOFs, four feature points are chosen. A PD controller is used to create

an acceleration profile for the robot controller. The visual servoing controller is

designed so that the system error is reduced exponentially. The stability of the
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visual servoing controller is proven using stability theorem of a perturb system. The

visual servoing system is divided to two part naming the nominal system and the

perturbed system. A Lyapanov function is introduced for the nominal part. The

gain condition is extracted to have a stable system. The robot is controlled using a

single joint control system. A PID controller is designed for each joint. Extensive

experimental results validate the efficiency of the controller and show the advantages

of the proposed AIBVS over the classic IBVS in terms of smoother motion in the

image space and 3D space. The AIBVS controller moves the features in a more

linear path than the IBVS controller. This improves the controller by reducing the

risk of features leaving the field of view. This controller was also tested on a object

catching application[78].

2. Augmented image based visual servoing for image moment features

The AIBVS controller was developed for point features. However, in some

cases point features are hard to extract from the image. Moreover, using point

features could cause the system to get stuck in local minima. This controller is im-

proved to work with image moment features. Image moments are the general image

features that include points, lines and segments form of features. The visual servo-

ing kinematic models are developed and the interaction matrix relating the image

moment features to the acceleration screw is derived. The interaction matrix for the

six chosen features are extracted. The first three features used in the controller are

the x and y component of the image center and the area of the image. These three

features control the X, Y and Z motion of the camera. To control the rotation of

the camera three moment were chosen which are a combination of the second and

third order moments. A PD control law is developed based on the system equation.

The controller is validated in experiment.

3. Catching moving object using visual servoing and navigation guid-

ance techniques
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One of the fundamental capabilities of vision system is the ability to track and

catch moving objects. Several applications could be named such as sorting objects

moving on a conveyor. Therefore, a catching technique is developed in this thesis by

utilizing the combination of AIBVS controller and navigation guidance technique.

The navigation guidance algorithm generates the desired feature position for the vi-

sual servoing controller. The AIBVS controller follows the generated path to reduce

its distance from the object and finally catch it. The navigation guidance technique

is modified to create a smooth catching process. Simulation results validate the

proposed algorithm. Three tests have been performed for catching an object with

different types of motion such as linear motion, sinusoidal motion and a thrown

object motion.

4. Visual servoing using trajectory planning techniques

A big drawback of visual servoing controller is that it can not guarantee global

stability of the system. A lot of examples could be found that the system could not

reach its desired position. The best solution to this problem is trajectory planning.

In this thesis, a new trajectory planning algorithm is presented to overcome the

mentioned problems. This technique is performed by planning a trajectory from

the initial robot’s position to a position where the image features match the desired

ones. The trajectory is based on a predefined path which satisfies the system’s initial

and final conditions. In this project half cycle of sine wave is used as the prede-

fined trajectory. The trajectory parameters are identified through an optimization

procedure by minimizing the error between the image features and the desired ones.

First, the planning algorithm is developed for a 4 DOFs robot. In order to speed

up the optimization process, four new features are introduced. The first three fea-

ture corresponds to the xc, yc and zc motion of the camera. The forth feature

corresponds to the rotation of the camera about its zc axis. Using these features the

optimization problem becomes a convex problem. Applying the same algorithm to a
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6 DOFs robot does not create a convex optimization problem. A decoupled planning

algorithm was introduced to overcome the problem. The positioning problem was

decoupled from the orientation planning. Six new features were presented to make

possible the decoupling. Since the trajectory planning algorithm is highly dependent

to the initial depth of the object, a depth estimation method is proposed to provide

the object depth to the trajectory planning algorithm. The depth estimation algo-

rithm is based on the constraint that exist between the location of the projection of

a 3D point in two different images. After the trajectory is applied to the system a

visual servoing controller is used to compensate for any probable errors appeared in

matching the features with the desired ones. The AIBVS controller designed in this

thesis is used for this matter. Experimental tests validate the proposed method and

exhibit its advantages over IBVS controllers. Experimental tests show that in cases

where visual servoing controller could not complete the visual servoing the trajec-

tory planning algorithm completes the task. The most important task among all is

the visual servoing tasks which include a rotation of 180 degrees about its center.

This task was successfully performed using the trajectory planning algorithm.

6.2 Future Works

This thesis focuses on developing an AIBVS controller and a trajectory plan-

ning algorithm to stabilize the visual servoing system. The general visual task

considered in the tests could be applied to pick and place applications. Future

works include applying the developed visual servoing controller to the other robotic

manufacturing tasks and solving the problems arising from these application. These

applications could be named as welding, quality checking and vehicle navigation.

Applications such as welding and quality control requires specific type of features.

These new features lead to new structure of interaction matrix and thus introduces
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new stability analysis problems.

In this project, the AIBVS controller has been developed for point features

and image moment feature. However, while testing the proposed moments features

proposed in the literature, some problems showed up. One of the problems is that

the reverse contribution of the first and fourth moments and also the second and fifth

moments on the acceleration command cause the system to stop without reaching

the desired location. As a solution to this problem, other image moments could be

explored and be used in AIBVS.

The trajectory planning algorithm presented in this thesis works with feature

positions. A proposition for further work on this topic is adapting the trajectory

planning algorithm to image moments features and other type of image features.
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Appendix A

Denso VS-6556G

This appendix is devoted to presenting some general specifications of the

DENSO VS-6556G robot.

The Denso VS-6556G is a 6 DOF robotic arm. The Denso arm consists of six

joints and corresponding six encoders that measure the angular position of the six

motors. The encoders and motors specifications are summarized in Table A.1 The

encoders resolution, motors gear ratios, motors torque constants, and joints hard

stop limits are listed in this Table.

Figure A.1b, demonstrate the robot joint coordinate systems including the

world frame 0 and the joint frames which are used to define the forward kinematics,

inverse kinematics and the Jacobian matrix. Link lengths are also illustrated in

Figure A.1, where the robot is in a completely straightened up situation. In this

configuration, all the joints encoder values are zero and the axes in frames 1, 3, 4,

5, and 6 are parallel to their counter part axes in global frame. The joints 2, 3, and

5 are zero when the robot is completely straightened up as depicted in Figure A.1.

Figure A.2 demonstrates the Denso robot workspace from right and top view.

154



Table A.1: Denso Robot Specifications

(a) Denso robots joint frames (b) Denso robot’s arm
lengths

Figure A.1: Denso robot joint frames and links length
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Figure A.2: Denso robot workspace
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Appendix B

Image Moment Velocity Interaction

Matrix

The elements of Omij
matrix introduced in equation (3.19) is given by the

followings om11 = om12 = 0

om13 = −(i+1)2ACmij−(2+i)A2mi+1,j−iC2mi−1,j−(i+1)2ABmi,j+1−iB2mi−1,j+2−
2iBCmi−1,j+1

om14 = −Amij+1 − iAmi,j+1 − iBmi−1j+2 − iCmi−1,j+1

om15 = (3 + 2i+ j)Cmij + (5 + 2i+ j)Ami+1,j + (4 + 2i+ j)Bmi,j+1

om16 = (1 + j)Bmij + jCmi,j−1 + jAmi+1,j−1

om21 = om22 = 0

om23 = −(i + j)2BCmij − (2 + j)B2mi,j+1 − jC2mi,j−1 − (1 + j)2ABmi+1,j −
jA2mi+2,j−1 − 2jACmi+1,j−1

om24 = −(3 + i+ 2j)Cmij − (4 + i+ 2j)Ami+1,j − (5 + i+ 2j)Bmi,j+1

om25 = (1 + j)Bmi+1,j + jAmi+2,j−1 + jCmi+1,j−1

om26 = −(1 + i)Amij − iCmi−1,j − iBmi−1,j+1

om33 = −4C2mij+(8+2i+2j)(A2mi+2,j+B2mi,j+2+C2mi,j)+(12+4i+4j)(ACmi+1,j+
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BCmi,j+1 + ABmi+1,j+1) + 4ABmi+1,j+1

om34 = (8 + 2i+ 2j)(Cmi, j + 1 + Bmi,j+2 + Ami+1,j+1)− 2Cmi,j+1

om35 = −(8 + 2i+ 2j)(Cmi+ 1, j +Bmi+1,j+1 + Ami+2,j) + 2Cmi+1,j

om36 = (1 + i)Ami,j+1 − (1 + j)Bmi+1,j − j(Ami+2,j−1 + Cmi+1,j−1)

om44 = (3 + i+ 2j)mij + (8 + 2i+ 2j)mi,j+2

om45 = −(8 + 2i+ 2j)mi+1,j+1 − 0.5imi−1,j+1 − 0.5jmi+1,j−1

om46 = 0.5imi−1,j − (2.5 + 0.5i+ 1.5j)mi+1,j + imi−1,j+2

om55 = (3 + 2i+ j)mij + (8 + 2i+ 2j)mi+2,j

om56 = 0.5jmi,j−1 − (2.5 + 1.5i+ 0.5j)mi,j+1 + jmi+2,j−1

om66 = −(2 + i+ j)mij. and

ompq = omqp (1)

which indicated that the matrix Omij
is a symmetric matrix.

The elements of Oμij
matrix introduced in equation (3.30) is given by the fol-

lowings Oμij11
= 2Ai(x− xg)i−1(y − yg)j/Zgm00

Oμij12
= (x− xg)i−1(y − yg)j−1(Ajx− Ajxg +Biy − Biyg))/Zgm00

Oμij13
= −2A(x− xg)i(y − yg)j(C +Ax+By)− (i(x− xg)i−1(y − yg)j(A2m3

00x
2 −

3m20A
2m2

00 + 2A2m00m
2
10 + 10m20A

2m00 − 6A2m2
10 + 2ABm3

00xy − 4m11ABm2
00 +

2m01ABm00m10+13m11ABm00−6m01ABm10+2ACm3
00x−2ACm2

00m10+6ACm00m10+

B2m3
00y

2 − m20B
2m2

00 + 3m20B
2m00 + 2BCm3

00y − 2m01BCm2
00 + 5m01BCm00 +

2C2m2
00))/m

3
00−(Aj(x−xg)i(y−yg)j−1(7Am00m11−6Bm2

01−6Am01m10+7Bm00m20+

Cm00m01 − 2Am2
00m11 + 2Bm00m

2
01 − 2Bm2

00m20 + 2Am00m01m10))/m
3
00

Oμij14
= (i(x− xg)i−1(y− yg)j((2m01(6Am10 − 3Cm00 +Cm2

00 −Am00m10))/m
3
00 −

2y(C +Ax+By) + (4Am11(m00 − 5))/m2
00 + (2Bm20(m00 − 3))/m2

00))/2−Ay(x−
xg)i(y−yg)j−(Aj(x−xg)i(y−yg)j−1(7m00m20+m00m

2
01−m2

00m20+m2
00−6m2

01))/m
3
00

Oμij15
= ((x−xg)i(y−yg)j(6C+10Ax+8By))/2+(j(x−xg)i(y−yg)j−1(Bm3

00y
2+
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7Am00m11−6Am01m10−6Am2
00m11+4Bm00m

2
01−5Bm2

00m20−Cm2
00m01+Cm3

00y+

Am3
00xy+5Am00m01m10))/m

3
00+(i(x−xg)i−1(y−yg)j(Am2

00−6Am2
10+2Am3

00x
2+

10Am00m20 + 3Bm00m11 + 3Cm00m10 + 5Am00m
2
10 − 7Am2

00m20 − 6Bm2
00m11 −

2Cm2
00m10 + 2Cm3

00x+ 2Bm3
00xy + 4Bm00m01m10))/m

3
00

Oμij16
= B(x−xg)i(y−yg)j+(j(x−xg)i(y−yg)j−1(Am10−Am00m10−Bm00m01+

Am2
00x+Bm2

00y))/m
2
00 − (Aim01(x− xg)i−1(y − yg)j)/m2

00

Oμij22
= (2Bj(x− xg)i(y − yg)j−1)/Zgm

2
00

Oμij23
= −2B(x− xg)i(y− yg)j(C +Ax+By)− (j(x− xg)i(y− yg)j−1(A2m3

00x
2 −

m20A
2m2

00+3m20A
2m00+2ABm3

00xy−4m11ABm2
00+2m10ABm00m01+13m11ABm00−

6m10ABm01 + 2ACm3
00x− 2m10ACm2

00 + 5m10ACm00 + B2m3
00y

2 − 3m20B
2m2

00 +

2B2m00m
2
01 + 10m20B

2m00 − 6B2m2
01 + 2BCm3

00y − 2BCm2
00m01 + 6BCm00m01 +

2C2m2
00))/m

3
00−(Bi(x−xg)i−1(y−yg)j(7Am00m20−6Am2

10+7Bm00m11−6Bm01m10+

Cm00m10 + 2Am00m
2
10 − 2Am2

00m20 − 2Bm2
00m11 + 2Bm00m01m10))/m

3
00

Oμij24
= −((x−xg)i(y−yg)j(6C+8Ax+10By))/2−(i(x−xg)i−1(y−yg)j(Am3

00x
2+

7Bm00m11−6Bm01m10+4Am00m
2
10−5Am2

00m20−6Bm2
00m11−Cm2

00m10+Cm3
00x+

Bm3
00xy+5Bm00m01m10))/m

3
00−(j(x−xg)i(y−yg)j−1(Bm2

00−6Bm2
01+2Bm3

00y
2+

3Am00m11 + 10Bm00m20 + 3Cm00m01 − 6Am2
00m11 + 5Bm00m

2
01 − 7Bm2

00m20 −
2Cm2

00m01 + 2Cm3
00y + 2Am3

00xy + 4Am00m01m10))/m
3
00

Oμij25
= Bx(x − xg)i(y − yg)j − (j(x − xg)i(y − yg)j−1((2m10(6Bm01 − 3Cm00 +

Cm2
00−Bm00m01))/m

3
00−2x(C+Ax+By)+(2Am20(m00−3))/m2

00+(4Bm11(m00−
5))/m2

00))/2+(Bi(x−xg)i−1(y−yg)j(7m00m20+m00m
2
10−m2

00m20+m2
00−6m2

10))/m
3
00

Oμij26
= (Bjm10(x − xg)i(y − yg)j−1)/m2

00 − (i(x − xg)(i − 1)(y − yg)j(Bm01 −
Am00m10 − Bm00m01 + Am2

00x+Bm2
00y))/m

2
00 − A(x− xg)i(y − yg)j
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