
Cost based Rescheduling Approach to Handle Disruptions

in Flexible Manufacturing Systems

Ehsanallah Naseri

A Thesis

in

The Department

of

Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Industrial Engineering) at

Concordia University

Montreal, Quebec, Canada

August 2010

© Ehsanallah Naseri, 2010

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre r&ference
ISBN: 978-0-494-80151-2
Our file Notre reference
ISBN: 978-0-494-80151-2

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

Abstract

Cost based Rescheduling Approach to Handle Disruptions

in Flexible Manufacturing Systems

Ehsanallah Naseri

Rescheduling is an essential operating task to efficiently tackle uncertainties and

unexpected events frequently encountered in today's complex and flexible manufacturing

systems. The main purpose of this thesis is to develop a real time reactive scheduling

methodology in order to respond to such disturbances and uncertainties in a cost efficient

manner. In order to assess the impact of schedule changes, a compound rescheduling cost

function is developed based on machine, job, and material related rescheduling activities.

A Total Rescheduling (TR) approach based on the Filtered-Beam-Search-heuristic

algorithm (FBS) is proposed to generate a prespecified number of cost efficient

suboptimal schedules by using the proposed cost function in case of each disruption.

Thereafter, the current schedule is replaced by the alternative schedule which causes the

minimum rescheduling cost.

Responding to each single disruption with TR may cause system nervousness and

increase the operational cost. Hence, a partial rescheduling approach is developed by a

Modified Filtered-Beam-Search-heuristic algorithm (MFBSR) in order to generate a

prespecified number of sub optimal cost-efficient schedules with a lower rescheduling

cost and fewer deviations than TR.

iii

In order to validate the performance of the proposed methodologies, TR and

MFBSR, different case studies and experimental designs have been performed

considering various disruption scenarios. The performance of the suggested methods in

terms of rescheduling cost, makespan efficiency and stability have been compared with

similar rescheduling and repair methods in the literature. The results reveal that the

proposed methodologies could be considered as competitive methods in responding to

disruptions in flexible manufacturing systems.

IV

"I do not know what I may appear to the worCd;

Tiut to myself I seem to have Been onCy Cike a hoy

jpCaying on the seashore, and diverting myself in now

and then finding a smoother pehbCe or a prettier shed

than ordinary, whiCst the great ocean of truth Cay aCC

undiscovered before me."

Isaac Newton

V

AKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation to my supervisor,

Professor Onur Kuzgunkaya, who has supported me throughout my thesis with his

patience and knowledge whilst allowing me the room to work in my own way. This thesis

would not have been possible unless his guidance and encouragement. His deep

understanding of seemingly every aspect of manufacturing system and scheduling has

never ceased to amaze me. He led me into the rescheduling field and cost analysis, and

taught me how to think of ideas, prove concepts and write a scientific report. I have learnt

a lot about the methodology of research and life from him. One simply could not wish for

a better or friendlier supervisor.

I would like to thank my family; my father, who taught me to be eager in learning,

asking questions and breaking complex problems into simpler parts, and who

demonstrates the work ethic to me that I can only hope to approximate. My dear mom,

who always pushed me to do the best and be the one. My sister and brother, for their

love, enthusiasm and warm support. None of this would have been possible without their

encouragement. They spared no sacrifice to support me in pursuing my dreams.

I am also thankful to my friends who helped me and encouraged me a lot during

my research, Mr. Alireza Rahimi vahed, Mr. Mohsen Eftekhari hesari, and Mr. Ehsan

Rezabeigi for sharing thoughts and advices. I would like to thank all my friends with

whom I have been lucky enough to explore the plethora of opportunities for activities

outside of the university and I hope our friendship will be long lasting after the school.

Finally, I want to express my gratitude to all the committee members for their

time and willingness to read and critique my thesis.

vi

TABLE OF CONTENTS

LIST OF FIGURES XI

LIST OF TABLES XII

LIST OF ABBREVIATIONS XIII

LIST OF NOTATIONS XV

CHAPTER 1 1

1. INTRODUCTION 1

1.1 Flexible Manufacturing Systems 2

1.2 Uncertainty and Disruptions in FMS 3

1.3 Problem Statement and Motivation 5

1.4 Literature Review 5

1.4.1 Rescheduling 6

1.4.1.1 Total Rescheduling (TR) 8

1.4.1.2 Right Shift Rescheduling (RSR) 12

1.4.1.3 Partial Rescheduling (repair) 12

1.4.2 Performance Measures 15

1.4.2.1 Measure of schedule efficiency 15

1.4.2.2 Measure of schedule stability 16

1.4.2.3 Robustness 17

1.4.2.4 Cost 18

1.5 Contribution of this Study 21

vii

1.6 Objectives and Approach 22

1. 7 Thesis Outline 23

CHAPTER 2 25

2. COST BASED RESCHEDULING IN FMS USING FBS 25

2.1 Problem Statement 26

2.2 Rescheduling Cost 2 7

2.2.1 Machine related Cost —27

2.2.2 Job related Cost 28

2.2.3 Material related Cost 29

2.3 Cost based Rescheduling using FBS 31

2.3.1 Filtered Beam Search 31

2.3.2 FBS based Methodology -32

2.3.3 The Proposed Rescheduling Algorithm 34

2.3.4 The Complexity Analysis 37

2.4 Illustrative Examples 37

2.4.1 Initial Schedule Generation 38

2.4.2 Rescheduling Examples 39

2.4.2.1 Machine Breakdowns —40

2.4.2.2 Job Cancellation 41

2.4.2.3 New Order Arrival 41

2.5 Experimental Design 42

2.5.1 Experimental Factors 42

2.5.2 Dimensions of Experiments 43

viii

2.5.3 Performance Measures 45

2.5.3.1 Efficiency 45

2.5.3.2 Stability 45

2.5.3.3 Cost of Rescheduling 46

2.6 Experimental Results 46

2.6.1 Machine Breakdown 46

2.6.2 Job Cancellation 49

2.6.3 New Order Arrival 49

2.7 Sensitivity Analysis 53

2.1.1 Machine Breakdown 53

2.7.2 Job Cancellation 56

2.7.3 Order Arrival 58

2.8 Conclusions 60

CHAPTER 3 62

3. COST BASED SCHEDULING REPAIR IN FMS USING FBS 62

3.1 Problem Statement 63

3.2 Cost based Repair Methodology Using FBS 64

3.2.1 Heuristic based Repair Action 65

3.2.2 Proposed MFBSR algorithm 66

3.2.2.1 Machine Breakdown 69

3.2.2.2 New Order Arrival 69

3.2.2.3 Job Cancellation 69

3.3 Experimental Design 69

ix

3.3.1 Experimental Factors 70

3.3.2 Dimensions of the experiments 70

3.3.3 Performance measures 72

3.3.3.1 Efficiency 72

3.3.3.2 Rescheduling Cost 72

3.4 Experiment Results 72

3.4.1 Machine Breakdown 73

3.4.2 Job Cancellation 76

3.4.3 New order arrival 78

3.5 Conclusions 80

CHAPTER 4 82

4. CONCLUSIONS AND FUTURE WORK DIRECTION 82

4.1 Conclusions 84

4.2 Future research directions 86

BIBLIOGRAPHY 87

APPENDICES 97

APPENDIX A: JAVA MODEL FOR TR IN CASE OF DISRUPTIONS (MB- JC-OA) 97

APPENDIX B: JAVA MODEL F O R M F B S R IN CASE OF DISRUPTIONS (MB-JC-OA) 114

x

LIST OF FIGURES

Figure 1.1 : FMS implemented at Vought Aircraft [2] 3

Figure 2.1: Filtered beam search tree representation [39] 33

Figure 2.2: The static schedule result for the FMS problem with b=4,f=3 39

Figure 2.3: Gantt chart obtained after rescheduling, in case of machine 4 failure at t=4. 40

Figure 2.4: Gantt chart obtained after rescheduling, in case of job 3 failure at t=6 41

Figure 2.5 : Gantt chart obtained after rescheduling, in case of a job 2 arrives at ^=5 42

Figure 2.6: Machine breakdown: (a) rescheduling cost; (b) efficiency; (c) deviation 48

Figure 2.7: Job cancellation: (a) rescheduling cost; (b) efficiency; (c) deviation 51

Figure 2.8 : Order arrival: (a) rescheduling cost; (b) efficiency; (c) deviation 52

Figure 2.9: Cost of rescheduling changes due to changing the coefficients in case of

machine breakdown 55

Figure 2.10: Cost of rescheduling changes due to changing the coefficients in case of job

cancellation 57

Figure 2.11: Cost of rescheduling changes due to changing the coefficients in case of new

order arrival 59

Figure 3.1: Machine breakdown: (a) cost of rescheduling; (b) efficiency 75

Figure 3.2 : Job cancellation: (a) cost of rescheduling; (b) efficiency 77

Figure 3.3: Order arrival: (a) cost of rescheduling; (b) efficiency 79

XI

LIST OF TABLES

Table 1.1: Summary of the literature review 20

Table 2.1: Process time table 38

Table 2.2: F value for different/and b 39

Table 2.3: Cost coefficients 40

Table 2.4: Disruption scenario 44

Table 2.5: Experiments levels 44

Table 2.6: Initial schedule parameters 44

Table 2.7 : Rescheduling cost of disruption scenarios 47

Table 2.8 : Efficiency of disruption scenarios 47

Table 2.9 : Normalized deviation of disruption scenarios 47

Table 2.10: Sensitivity analysis of coefficient for machine breakdown 55

Table 2.11 : Sensitivity analysis of coefficients for job cancellation 57

Table 2.12: Sensitivity analysis of coefficients for new order arrival 59

Table 3.1: Levels of experiment 71

Table 3.2 : Experimental combinations 71

Table 3.3: Rescheduling cost performance of disruption scenarios 74

xn

LIST OF ABBREVIATIONS

AGA

AGV

AI

AOR

B&B

BS

C_B

Dev

DR

FBS

FLX

FMS

GA

HFBS

M_SPT

MAG

mAOR

MFBSR

MKs

MTD

OBJ

Q_Trd

RSR

Adaptive Genetic Algorithm

Automated Guided Vehicle

Artificial Intelligence

Affected Operation Rescheduling

Branch and Bound

Beam Search

Cost Based rescheduling

Deviation

Dispatching Rule

Filtered Beam Search

Flexibility level

Flexible Manufacturing System

Genetic Algorithm

Heuristic based Filtered Beam Search

Modified Shortest Processing Time

Magnitude of disruptions

modified Affected Operation Rescheduling

Modified Filtered Beam Search Rescheduling

Makespan

Method of rescheduling

Objective function

Quadratic function of Tardiness

Right Shift Rescheduling

xiii

SA Simulated Annealing

Stb Stability

TIM Timing of di sruptions

TOD Time Of Disruption

TR Total Rescheduling

TS Tabu Search

W_Mks Weighted sum of Makespan

WIP Work In Process

xiv

LIST OF NOTATIONS

CostRsch

Cost(Machine

Cost(Job_R)

Cost(Mat_R)

Pijk

Cjjk

Dj

rtnew

R)

Rescheduling Cost

Machine Related Cost

Job Related Cost

Material Related Cost

Process time of operation / of job 7 on machine k

Completion time of operation i of job 7 on machii
k

Due date of job 7

Starting time of the operation / of job/ on machii

Yijkk-

b

f

PSi

N

nk

tj

0J

k after schedule update

Original starting time of the operation i of job/ on

machine k

Binary variable indicating whether the operation i
of job 7 on machine k is switched to machine k or
not

Beamwidth

Filterwidth

Partial schedule containing / scheduled operations

Total number of nodes generated at each level

Cost coefficient of idle time machine of k

Cost coefficient of unit time lateness for job/

Cost coefficient of saving on due dates for job/

Cost coefficient of expediting cost of material for
the operation / of job /

xv

COijkk'

MkSlmtiai

MksNew

EFF

DevSt

Sty

St,

p
initial

otemp

s,n

Cost coefficient of holding cost of material for the
operation i of job j

Cost coefficient of reallocating the material between
machines after rescheduling process

Cost coefficient of extra machining time needed
after rescheduling

Makespan of the initial schedules

Makespan of the updated schedules

Efficiency of the updated schedule

Normalized deviation of updated schedule

Starting times of operation / of job 7 of the updated
schedule

Starting times of operation i of joby" of the original
schedule

Total number of jobs

Total number of operations

List of all scheduled operations in the initial
schedule sorted based on their starting times

Set of schedulable operations at level /

Subset of S\emp consisting of operations with
minimum starting time according to the initial
schedule

Earliest possible starting time of operation in the

y>j

M avh

Ou

Minimum processing time of operation i ofjoby
over the capable machines

Updated available time for machine k

Operation i of job j

xvi

Sijk"ew Updated starting time of operation after

rescheduling

ISi Initial schedule at level /

RLi Remaining list at level /

xvn

Chapter 1

Introduction

In order to survive and be globally successful in today's competitive manufacturing

environment, companies have to respond to changes in the market quickly and satisfy the

needs related to mass customization through flexibility and adaptability.

Flexible manufacturing systems (FMS) possess the capability of handling these

changes and disruptions thanks to the machine and process planning flexibilities;

however, these capabilities should be efficiently exploited through scheduling rules in

order to get the full benefit at minimal operational costs. In a dynamic environment, the

task of managing and controlling manufacturing systems becomes more difficult as a

result of internal disturbances such as machine failures, and external disturbances such as

rush orders and supplier problems. Scheduling is an essential task in achieving timely and

cost effective production. The omission of the dynamic nature and stochastic events in

scheduling literature creates a gap between scheduling theory and practice. Once an

initial schedule is disrupted, it should be updated through rescheduling activities to

1

satisfy the new requirements. Machine failure, new order arrival, job cancellation, due

dates changes, job priority changes, rework or quality problems, and operator

absenteeism are some of the disruptions that may occur widely during the production

schedules.

Rescheduling refers to finding a new schedule when a disruption occurs in the

operations of an on-going initial schedule. Two important factors that need to be

considered in rescheduling problems are when and how to efficiently react to such

disruptions. There are three types of policies in order to find the proper time to respond to

disruptions: event driven rescheduling, periodic rescheduling and hybrid rescheduling. As

well, three methodologies are used to efficiently react to disruptions: Right Shift

Rescheduling (RSR), partial rescheduling (repair) and total rescheduling (TR) [1].

Finding an appropriate method and policy in responding to disruptions could prevent

system nervousness and decrease operational cost as a result.

1.1 Flexible Manufacturing Systems

A flexible manufacturing system (FMS) is an integrated system of machine modules

(usually CNC machines), equipped by an automated material handling and storage

system under computer control for the automatic random processing of palletized parts

[2]. An FMS is a form of job shop system in which machines are capable of performing

various operations based on their tool assignment. Figure 1.1 shows an FMS

implemented at Vought Aerospace Co. Workstations in the system are interconnected by

an automated material handling system by using the Automated Guided Vehicle (AGV)

[2]; hence, jobs have various routes in the system and can be carried out in any sequence.

2

The processing time of each operation may vary from one machine to the other based on

the toolset and machine's specification.

Flexibility is the term used for the characteristic which allows a manufacturing

system to cope with variation of production style without an interruption in the

production process for any changeovers between models. Exploiting this attribute into the

system provides high machine utilization and throughput rates, and decreases lead-time

and work in-process inventory by reducing parts movement and tool changing time [3].

Automata Uiip iemm.il JWern

Figure 1.1: FMS implemented at Vought Aircraft [2]

1.2 Uncertainty and Disruptions in FMS

Manufacturing operations are inevitably faced with wide range of uncertainties and

variations in production process. Companies need to handle them in advance or react

after their occurrence. Uncertainty and unexpected events may change the system status

3

http://iemm.il

and affect the performance. The production schedule employed as a crucial tool in

manufacturing systems in order to increase productivity and decrease the operating cost,

is subject to be upset widely by disruptions during the execution schedules. If these

disruptions cause significant deterioration in performance, the system needs to react and

update the existing schedule in order to lessen the impact [1]. Machines may be stopped

during their operations for major failures such as breakdown, toolset wearing, or tool

reassignments. New jobs may enter to the system or the existing jobs may be cancelled

due to changes in customers' orders. All of these events which are called rescheduling

factors [4], will affect the performance of the existing schedule and require a quick

response. 19 types of rescheduling factors found in literature which occur in the FMS can

be categorized as follows:

1. Machine breakdown: [5-14]

2. New order arrival: [11,14-17].

3. Rush (urgent) order arrival: [5,9,10,13,14,18].

4. Order cancelation: [10,13,19-21].

5. Maintenance of machine: [5].

6. Operator absenteeism: [11,22].

7. Tool Breakdown: [11].

8. Tool Wearing: [11].

9. Delay in material handling process: [23].

10. Due date changes: [14,23].

11. Process time variation: [11,13,14,24].

12. Performance variation in machines: [11].

13. Set-up time variation: [11].

4

14. Change in job priority: [10,11].

15. Rework or quality problem: [11,22].

16. Rejection: [11,14].

17. Unavailability of raw material: [11].

18. Outsourcing: [11].

19. Ready-time changes [14].

1.3 Problem Statement and Motivation

Due to the dynamic nature of flexible manufacturing systems and the wide range of

unexpected changes and disruptions, the production schedule as a crucial tool in

manufacturing process needs to be monitored and updated. Analyzing how to efficiently

handle the disruptions and uncertainties in FMS scheduling is the main purpose of this

work. Rescheduling process identifies when and how to react to such disruptions in FMS,

mentioned in Section 1.2, in order to make the schedules work efficiently. Towards this

end, a comprehensive review of literature is performed in Section 1.4, and the

contribution of this study is presented in Section 1.5, in order to find the gap between the

methodologies and contributions in the literature, and finally the objective of the thesis is

presented in Section 1.6.

1.4 Literature Review

The literature on rescheduling topic can be broadly classified into two main areas:

rescheduling methods and strategies in FMS environments, and selection of performance

criteria to generate and evaluate the updated schedules. The review of literature on

rescheduling methods and policies are presented in Section 1.4.1, and the performance

5

measures used in rescheduling of relevant works are discussed in Section 1.4.2. Finally,

Table 1.1 represents the summary of rescheduling literature and the corresponding

features of each work, in terms of rescheduling methods and performance criteria.

1.4.1 Rescheduling

Rescheduling is the process of updating the existing schedule in response to the

disruptions and changes that take place on the FMS in order to keep the system running at

high performance [1]. During the execution of a schedule, two essential factors need to be

considered. First, the timing for a rescheduling decision needs to be made, which is called

when-to-schedule. Once the decision on timing of updating the schedule is made, the

second decision is how to perform the rescheduling action called how-to-schedule [1,24-

26].

Regarding the timing decision, previous studies implement a periodic, event-

driven, or a hybrid rescheduling policy in order to determine an appropriate time to react

to disruptions and changes. Periodic scheduling generates the schedules based on a

constant or variable length time by time. According to this policy, the system is

monitored periodically and the rescheduling action is run at the beginning of each time

period in order to recover the system from negative impact of disruptions

[24].Sabuncuoglu and Karabuk [27] propose another method called adaptive scheduling,

which triggers the rescheduling action after a predetermined amount of deviation from

the existing schedule. The authors also show that frequently updating the schedule

performs actually worse than myopic dispatching rules. Event-driven scheduling updates

the existing schedule at each disruption occurrence point. Subramaniam et al. [18]

propose a reactive scheduling repair methodology in order to handle multiple disruptions

6

occurred during scheduling horizon. The authors expressed that rescheduling the system

at the time of each disruption is a convenient solution for job shop systems. The hybrid

rescheduling policy refers to the method of updating the existing schedules not only at the

end of each fixed time, but also in response to each disruption occurrence [22,28].

How-to-schedule term relates to the methods in which the updated schedules are

generated. The schedule can be generated online or offline. Sabuncuoglu and Goren [14]

define this aspect as the schedule scheme and Vieira et al [1] name it as the rescheduling

strategy. Offline scheduling or predictive-reactive has two major steps: First, all

operations of available jobs are scheduled before executing the schedule for the entire

horizon, and in second step, schedules are updated in response to disruptions. In online

scheduling, however, there is no scheduling generation and the decision is made once at a

time during the schedule execution. The online scheduling requires the knowledge of

state of the system at the moment of time. This knowledge is combined with decision rule

to determine the next operation to be scheduled. Dispatching rules or control theory are

such examples of online scheduling [27,29,30]. Sabuncuoglu and Karabuk [27] show that

in static and dynamic environments, offline scheduling outperforms online scheduling as

the online scheduling fails to consider the global perspective given by offline scheduling.

However, in a dynamic and stochastic environment, further study is needed to compare

different performance measures in online and offline scheduling.

Another issue in how-to-schedule refers to the methodology to regenerate the

schedules. Existing studies use one of the three main rescheduling methods according to a

performance criterion: (i) Total Rescheduling (TR), (ii) Right-Shift Rescheduling (RSR),

and (iii) Partial rescheduling (Repair). The TR approach regenerates the whole schedule

from scratch for the remaining operations, using different types of objective functions,

7

methods and algorithms [31]. On another extreme, the RSR simply updates the schedule

by right shifting all the remaining operations in time to recover the negative effects of

change and disruptions [32]. Between these two extremes, the repair is introduced to

partially reschedule the remaining operations [5,11,13]. More details about rescheduling

methods and literature are explained in Section 1.4.1.1-3.

A variety of performance metrics are utilized in rescheduling studies. These

metrics can be categorized into four groups: schedule efficiency, schedule stability,

robustness, and cost [7,10,26,33]. Efficiency metrics usually refer to the time related

measures such as makespan, tardiness, mean flow time, and lateness [1]. Measure of

stability relates to the impact of the new schedule deviations from the original one, while

robustness is concerned with the differences in terms of performance measure such as

objective function values [26]. Considering cost as a performance measure could reflect

the economic performance of a manufacturing system. More details about performance

metrics and literature are explained in Section 1.4.2.

1.4.1.1 Total Rescheduling (TR)

Total Rescheduling (TR) which is widely called in literature as rescheduling refers to the

task of regenerating the schedules from the scratch for the remaining operations in the

schedule, with a predetermined objective function [13]. Rescheduling in FMS has been

broadly studied during past decades, and it continues to attract the interest of researchers

both in academia and industry. The main purpose of these researches is to find out how to

efficiently and quickly generate the new schedule in case of disruptions. Most of research

contributions could be categorized in three main aspects: solving the rescheduling

8

problem by optimization methods for exact solutions, dispatching rules, and artificial

intelligence (Al)-based heuristic approach [20].

Mathematical programming is the major part in optimization methods used in

FMS rescheduling [35]. Several mathematical programming models have been developed

and used for solving scheduling problem in FMS. Han et al. [36] propose a nonlinear

integer programming model for real-time scheduling problem in FMS. Hutchison et al.

[37] have developed a mixed-integer programming formulation for a random FMS

scheduling problem. Caumond et al. [38] propose an MILP model for scheduling

problem in FMS. The authors have found the optimal solution for small and medium size

scheduling problems. Although these methods ensure achieving the best solution for the

small and medium sized problems, they require huge computational efforts due to the

complexity of FMS scheduling problem for large scale problems [35]. Wang et al. [39]

mention that the FMS scheduling problem is NP-hard. Therefore, it is not always possible

to find an optimal solution quickly. Hence, the exact optimization methods are usually

applied as a tool for analyzing and validating the problems and as a basis in developing

the heuristic algorithms.

Dispatching rule (DR), also called scheduling rules or priority rules, is one of the

most common approaches for scheduling in dynamic environments [40]. Balckstone et al.

[41] defined a DR to select the next job to be processed from a job waiting list. The

authors compare several DRs in the literature, and conclude that identifying a single DR

as the best for all circumstances is impossible. Stecke and Solberg [42] have

comprehensively studied the performance of DRs in FMS environments. Ishii and

Talavage [43] have presented a real-time scheduling algorithm in FMS, which

dynamically collects the DRs for the short period ahead responding the changes in the

9

system. The authors conclude that changing DRs over a short-term period based on

current state of the system could perform better than using single DR for a long time.

Kim and Kim [9] propose a scheduling method where DRs are dynamically varied and

based on certain criteria the best one is selected at each step. Chan et al. [44] show that

dynamically changing the DRs at a proper frequency during the dynamic scheduling

could improve the performance of the system. Numerous DRs were introduced in

literature, and although they can obtain the schedules quickly, their efficiency highly

depends on the performance criteria and operating conditions. Accordingly, they can

achieve a good result on a given performance criterion, but may cause poor results on

another criterion [45].

Al-based meta-heuristics algorithm (GA, SA, TS, BS etc.) has become more

popular among researchers in recent years for solving the scheduling/rescheduling

problems, as they can generate near optimal solutions in real-time complex system

rapidly [46]. Brandimarte et al. [47] have proposed a tabu search (TS) algorithm for FMS

scheduling in order to minimize the weighted sum of tardiness and makespan. Dauzere-

Peres and Paulli [48] have presented an integrated approach in FMS scheduling by

applying TS based on a new neighborhood structure for the problem. Honghong and

Zhiming [19] have introduced an adaptive genetic algorithm (AGA) to find the new

suboptimal schedule of a large and complicated FMS quickly, as a response to

disruptions. The proposed AGA is an improved approach of GA which can prevent the

premature convergence. Jain and Elmaraghy [10] suggest a steady state GA for solving

multiple routing scheduling problems (FMS). The authors use this method in generating

the initial and updated schedule. Najib et al. [49] have introduced a modified simulated

annealing (SA) method for scheduling problem in FMS, and Xia and Wu [50] have

10

implemented a hybrid optimization approach for FMS scheduling problem using swarm

optimization and SA.

Filtered-beam-search heuristic algorithm as one the most competitive Al-based

search methods is widely utilized for efficiently searching in decision tree especially with

the enormous solution space [51]. Ow and Morton [51] firstly introduced the FBS as an

extension and improvement of BS. The high performance and quick searching speed of

FBS-based algorithms are two key elements expressed in the literature. De and Lee [52]

propose a problem-solving strategy based on FBS algorithm in FMS. The authors use a

frame-based knowledge representation scheme to improve the quality of generated

schedules. Sabucuoglu and Karabuk [6] have introduced a heuristic based FBS for FMS

scheduling problem. The authors consider finite buffer capacity, routing and sequence

flexibilities, and generate the schedules for machines and automated guided vehicle

(AGV) for a given period. Wang et al. [39] have developed a heuristic filtered beam

search algorithm (HFBS) to find suboptimal schedules with a reasonable computational

time in FMS. The authors have incorporated several DRs and intelligently explored the

search space in order to avoid useless paths, to improve the speed and maintain the

solution quality. Wang et al. [20] have introduced a filtered beam search algorithm to

solve the dynamic rescheduling problem in a large and complex FMS environment

responding to realistic disruptions. The authors have performed a comparison with the

testing results of Honghong and Zhiming [19] and concluded that the results from the

proposed FBS based algorithm in FMS rescheduling outperformed the results generated

by AGA in both speed and accuracy aspects.

11

1.4.1.2 Right Shift Rescheduling (RSR)

Right shift Rescheduling (RSR) refers to the action of simply delaying the whole

schedule for the duration of disruptions; or in other words, shifting the remaining

operations to the right on the Gantt chart [5]. The RSR process, also referred to Do

Nothing method, is quite simple and easy to be modeled and implemented [14]. The

authors have considered 8 types of disruptions and expressed the required response

actions for RSR. They conclude that RSR is suitable with Periodic scheduling.

Abumaizar and Svestka [5] have compared three rescheduling methods (TR, RSR, and

repair), and concluded that the performance of RSR is worse than the two others in terms

of stability and efficiency and the updated schedules by RSR will have high deviations

from the initial schedule. They suggest that RSR may be applicable just when the

disruptions overlap with the scheduled processing time in the initial schedule.

Subramaniam and Raheja [11] have compared the performance of RSR with mAOR and

showed that for various types of disruptions mAOR outperforms RSR in both stability

and efficiency measures. According to their results, the RSR itself cannot not be a

competitive method in responding to the disruptions; it needs to be revised and combined

with other methods in order to generate reasonable results.

1.4.1.3 Partial Rescheduling (repair)

Partial rescheduling, also called schedule repair in the literature, refers to rescheduling

the operations that have been directly or indirectly affected by the disruptions [1,5,18,53-

56]. This method intends to revise the schedule by keeping the existing schedule stability

and avoiding unnecessary changes. Most of the heuristics methods developed in repair

12

approach are based on affected operations rescheduling (AOR) [5,10,11,54]. Match-up

scheduling introduced by Bean et al. [57] is another type of scheduling repair methods.

Bean et al. [57] have proposed a repair methodology for production schedules

responding to disruptions based on match-up procedure. In this process, the part of the

original schedule is rescheduled in order to accommodate the disruptions to fit with the

original schedule at some time in future. The authors have applied a heuristic of ordering

rules in order to resequence all operations before a match-up point. Increasing lateness

cost results in increasing the match-up point. If the match-up point becomes too large, the

proposed method solves integer programming or DRs to reallocate operation to different

machines. They conclude that match-up scheduling brings optimal results for the low

frequent disruptions, which can allow the system to return to the original schedule before

the next disruption occurrence. Akturk and Gorgulu [58] have proposed another repair

algorithm based on the match-up method which can partially reschedule a modified flow-

shop system responding to machine breakdown. Sabuncuoglu and Goren [14] suggest an

extensive repair methodology for 8 types of disruptions which can update the disrupted

schedule by minor modifications. They use match-up scheduling in order to response to

machine breakdown.

Li et al. [54] have developed a heuristic algorithm based on binary tree and net

change concept to update the schedule by rescheduling only the operations that needed to

be revised. Abumaizar and Svestka [5] have applied the binary branching algorithm to

present an algorithm for job shop rescheduling called affected operations rescheduling

(AOR) in order to minimize the increase in makespan and deviations from initial

schedule and overcome the deficiency of RSR. The authors have implemented AOR for

machine breakdown and compared the performance of it with TR and RSR for various

13

disruption scenarios. They conclude that, compared to TR, AOR reduces deviations and

computational time significantly, but in terms of makespan, TR performs slightly better.

AOR is modified by Mason et al. [59] for fixed sequence rescheduling in order to

consider batch-processing machines in FMS. The authors have compared the

performance of schedules generated by RSR, modified AOR (fixed sequence

rescheduling), and TR for machine breakdown in an FMS environment. Subramaniam

and Raheja [11] have employed AOR and extended it for 17 different types of

disruptions. The performance of mAOR is compared with RSR for four types of

disruptions; machine breakdown, rush order arrival, process time variations and urgency

of the existing jobs. They show that mAOR outperforms RSR in terms of efficiency and

stability. Subramaniam et al. [18] have introduced a reactive repair methodology based

on mAOR [11] for handling multiple disruptions that occur during the schedule horizon.

The authors consider five types of disruptions: Machine breakdown, absenteeism, process

time variations, unexpected order arrival, and job cancellation. They have performed an

experiment based on different levels of magnitude, density, and dispersion of the

mentioned disruptions for efficiency and stability in job shop environment, and compared

the performance metrics by RSR. Their results also show that mAOR outperforms RSR

in case of multiple disruptions, but the efficiency of mAOR deteriorates after multiple

repair actions, and applying the repair approach in response to disruptions is not always

recommended. The authors advise to find a proper point for TR some time during the

schedule horizon to offset the poor efficiency of mAOR.

14

1.4.2 Performance Measures

In Section 1.1.3, four types of performance measures utilized in the rescheduling

literature were introduced: measures of schedule efficiency, stability, robustness, and

cost. These measures could be used as a tool or a function applied in generating the

schedules or can be used as a metric for performance comparison. In this Section these

measures are explored and the relevant works from literature are presented.

1.4.2.1 Measure of schedule efficiency

Efficiency measures are often used for generating a production schedule. They are

generally time based measures [7]. The majority of rescheduling models optimize a time

related objective function, the same one used for generating initial schedule, such as

tardiness or makespan [14,20,39]. The main reason for the popularity of the makespan

[11,13,23,27,28,33,39,60] or mean tardiness functions [9,10,19,20,27] is due to the fact

that their primary objective is to satisfy customer needs, but none of them reflects the

negative effects of changes to the manufacturing environment.

Hoitomt et al. [61] have proposed a weighted quadratic function of Tardiness as a

metric to generate schedules. This objective function comprises the importance of due

dates, values of each job, and the fact that a job becomes more critical after passing its

due date. By considering a weighted quadratic function rather than weighted sum, the

function reflects the incremental penalty of increasing the lateness. Honghong and

Zhiming [19] and Wang et al. [20] have applied the weighted quadratic function into

generating the initial and updated schedules. They express that this objective function is

quite more useful than makespan in an actual manufacturing environment.

15

Xia and Wu [50], and Wang et al. [39] propose a weighted sum function of

makespan, total workload and critical machine workload in order to generate the schedule

in FMS. The authors express that since investment and installation of modern fabrication

tools in FMS are highly capital intensive, there is a great need to take workload and

utilization factors into account and include them in generating the schedules.

Abumaizar and Svestka [5], Subramaniam and Rehja [11], Subramaniam et al.

[18], and Fahmy et al. [13] employ the percentage changes in makespan of updated

schedule in defining efficiency metric for evaluating their updated schedules. As a result,

the more efficient rescheduling process is the one which has lower increase in makespan.

1.4.2.2 Measure of schedule stability

A schedule which deviates minimally from the original schedule is called stable. Stability

is measured to demonstrate the impact of schedule changes and can be defined in two

ways: the starting time deviations between the updated and the original schedule, and as a

measure of sequence difference between the two schedules [1].

Abumaizar and Svestka [5] propose the measure called starting time deviation

(DevSt) in order to evaluate the stability of the updated schedules. Subramaniam and

Rehja [11], Subramaniam et al. [18], and Fahmy et al. [13] define a metrics based on

normalized deviations of starting times of operations from the original schedule.

Sabuncuoglu and Goren [26] present six different stability based measures in order to

evaluate different aspects of schedule changes impacts. The authors incorporate

completion time of operations into the presented measures.

Sotskov et al. [62] copes with stability aspect from another perspective. The

authors use a posteriori analysis to handle disruptions in a job shop environment. They

16

try to determine the maximum variation in the process time of operations to keep the

existing schedule optimal in case of disruptions. They call this maximum variation "the

stability radius" which can be obtained by sensitivity analysis.

1.4.2.3 Robustness

Robustness can be described as the insensitivity of scheduling performance to the

disruptions. It can be defined as the difference in terms of objective function values

between the updated schedule and the original one [26]. Robust schedule is the term used

for the schedules whose performance does not significantly deteriorate in face of

disruptions.

Leon et al. [63] use average system slack as a surrogate measure to estimate the

expected performance degradation. They show that the average system slack as a

robustness measure performs well under processing time variation. Daniels and Kouvelis

[64] have generated a robust schedule for a single machine system in face of process time

variation in order to minimize the performance measure under the worst possible

scenario. They show that the schedule generated by robustness metrics performs better

than former DRs. Goren and Sabuncuoglu [65] have developed two new surrogate

measures for robustness and stability to generate the robust and stable schedules in single

machine environments by considering three different measures: makespan, total tardiness

or total flow time. Gan and Wirth [66] use an empirical approach and an entropy measure

in order to justify the time that is needed to switch between the deterministic, robust and

online scheduling.

Sabuncuoglu and Goren [14] categorize robustness measures into two groups. The

measures in the first group are based on the actual performance of an updated schedule

17

and the other group is based on regrets. The authors propose seven measures for the first

category and four measures for the second one in order to minimize the deviations

between the new schedules and the initial schedule in terms of performance values.

1.4.2.4 Cost

For managers, issues such as job profitability and total cost minimization are often more

important than any time based or stability based measures [7,8]. The former measures fail

to reflect the economic impact of disruptions on the manufacturing systems; hence,

several studies have been done to find a cost based performance measure to offset this

deficiency. The authors propose the total cost function in terms of job due dates,

completion time, number of jobs, number of operations, processing time, raw material

cost, processing cost of operations, job revenue, processing start time job release time,

job tardiness, holding cost, and lateness cost. This cost function has been used in

evaluating the different scheduling rules in job shop environments.

Vieira et al. [1] categorize rescheduling cost into three groups: computational

costs, setup costs, and transportation costs. Computational cost may refer to the cost of

loading and running the scheduling system on the computers [22,27], the cost of

investment in information systems (hardware and software), and the cost of

administration, maintenance and upgrading of the system. Setup cost refers to changing

and reallocating the toolset and pallets according to the changes in the existing schedules

[56]. Transportation cost, also called material handling cost, refers to handling the

materials earlier than the required time, or additional material handling work required due

to changes in the existing schedules [56]. The mentioned cost measures in the literature

are not quite applicable in FMS environments. In the FMS configuration mentioned in

18

Section 1.1.1, the system consists of flexible machines like CNC machines, which are

capable of simply changing toolsets during the production, hence the setup cost is not

useful any more. Furthermore, as FMS is equipped by automated material handling

system (such as AGV), transportation cost also would not be applicable. In addition, An

FMS has its own computer based infrastructure which controls and manages the whole

system and does not need any more devices and tools for its scheduling; thus, the

computational cost would also be useless. In view of these reasons, there is a great need

in finding a proper cost measure in rescheduling applicable to an FMS environment.

Kapanos et al. [67] have introduced a rescheduling cost function and applied it

into the optimization process of generating schedules to make the updated schedules

more stable in real chemical industry scenarios. Their proposed rescheduling cost

function consists of three main sources: total starting time deviation, unit reallocation

cost, and order resequencing cost. The authors conclude that considering the rescheduling

cost in generating the schedule results in smoothing the gap between theory and practice

in scheduling problems.

19

Table 1.1: Summary of the literature review

tofi
o
o

-a
o

•B u

2

u
= 5

as

s
o
a

•—

Litrature

TR

Repair

RSR

Makespan

Tardiness

Stability

Robustness

Cost

Other

[5]

V

V

V

V

[7]

V

V

V

[8]

V

V

V

[10]

V

V

utilization
flow time

[11]

V

V

V

V

V

[13]

V

V

V

V

V

[14]

V

V

V

V

V

[18]

V

V

V

V

V

[19]

V

V

[20]

V

V

[24]

V

V

flow

time

[27]

V

V

V

[28]

V

V

[32]

V

V

V

V

[57]

V

V

utilization

[58]

V

V

V

[59]

V

V

V

[67]

V

V

V

[68]

V

V

V

V

V

[69]

V

V

V

V

V

V

1.5 Contribution of this Study

In this thesis, a cost-based rescheduling methodology using an FBS algorithm in an FMS

environment is studied.

The offline and event-driven rescheduling as an appropriate strategy in FMS

environments [18,27] is considered in this study. At the time of disruptions (TOD), the

existing schedule needs to be updated quickly in order to cope with the disruption. Two

rescheduling methodologies are studied in this work: Total rescheduling (TR) and

scheduling repair methodologies. Responding to each disruption in FMS by TR causes

high operational cost and creates system nervousness. Repairing the schedules for every

disruption in every circumstance also causes low efficiency [18]; therefore, finding a

point for total rescheduling the system after performing some repairs action could be an

effective way in order to minimize the total cost of rescheduling actions and increase the

efficiency of the updated schedule.

Even though the existing repair algorithms in the literature can generate solutions

with lower deviations at a faster speed than TR, the efficiency of the repair methods is

usually lower than TR since the repair methods try to adhere to the original schedule.

Hence, developing a repair method that can generate a schedule based on the

performance metrics would cover this deficiency. Filtered beam search heuristic

algorithm (FBS) is applied in this study in order to repair the disrupted schedules at TOD.

This algorithm is also used in generating the initial schedule and the updated schedule by

TR. The high quality of solutions and performance, high searching speed, and ability to

exploit flexibilities in FMS are some valuable benefits of FBS mentioned in the literature

[20,39], which make it a reasonable tool for rescheduling in FMS environments.

21

Timed based measures and stability are competing objectives: minimizing the

makespan in order to satisfy the customers' needs can create the high deviations in the

updated schedule and cause high operational costs as a result. On the other hand, any

deviation from the original schedule increases system nervousness. Wu et al. [33] show

that, since efficiency and stability are conflicting objectives, the choice of objective

depends on the circumstances. A good way of overcoming the competing effects of the

measures is to define a cost based measure that can inherently identify the trade-off

between schedule efficiency and stability.

1.6 Objectives and Approach

The purpose of this thesis is:

To show that the cost based rescheduling methodology using FBS is an

appropriate way of handling disruptions in FMS environments, which can result in

generating the cost efficient updated schedules allowing the trade-off between the time

based and stability based criteria.

In order to prove this purpose, first, a rescheduling cost function is proposed in

order to assess the negative impact of changes due to rescheduling in FMS. The

rescheduling cost function is used as an objective function in order to generate schedules,

and can also be employed as a performance measure to compare the impact of various

methodologies.

22

Second, an FBS-based heuristic algorithm is applied in order to totally reschedule

the system at the time of disruption and generate the cost efficient updated schedules by

the proposed rescheduling cost function.

Third, a schedule repair methodology is developed based on FBS algorithm, in

order to generate the cost efficient updated schedules at TOD.

A case study is presented for each case to demonstrate the benefit of using the

proposed methodologies. For three types of disruptions, i.e., machine breakdown, new

order arrival, and job cancellation, various scenarios are identified and the results are

compared with the similar rescheduling methods in the literature in terms of cost based,

time based and stability based measures.

1.7 Thesis Outline

This thesis composed of four chapters as follows:

• Chapter one includes introductions, review of relevant literature, contribution of the

study, objectives and approach.

• Chapter two discusses about the cost based total rescheduling (TR) approach in

FMS. Towards this end, a compound cost function is developed as a measure to

be employed as an objective function in FBS in generating the updated schedules.

The performance of the cost based schedules is compared with the performance of

schedules generated by time based and stability based measures in terms of

rescheduling cost, stability and efficiency.

23

• Chapter three presents the proposed repair methodology in FMS scheduling. For

this purpose, a two-phased methodology is suggested. The rescheduling cost

function is inserted in a modified version of filtered beam search (MFBSR) in

order to generate several repaired schedules. The performance of the updated

schedules by this method is compared with mAOR and TR in terms of

rescheduling cost, efficiency and stability for various disruption scenarios and

different flexibility levels of the FMS environment.

• Chapter four gives the conclusions of the thesis work, and suggests the future

directions for the research.

• Appendices include sample TR and MFBSR models in Java Eclipse

(www.eclipse.org).

24

http://www.eclipse.org

Chapter 2

Cost based rescheduling in
FMS using FBS

Changes and unexpected events may occur inevitably during the production process as a

result of dynamic and uncertain nature of manufacturing environments. The system needs

to be updated and adapted to changes rapidly in a cost efficient way in order to be alive

and competitive in today's market. Rescheduling is an essential operational task required

to be carried out in order to respond to disruptions and unexpected events in

manufacturing systems.

In this Chapter, a methodology for cost based rescheduling is proposed in FMS

environment, in order to generate the new schedules having minimum rescheduling cost

while obtaining acceptable efficiency and stability levels. A rescheduling cost measure is

defined in a form of a compound function to assess the negative impact of changes in the

schedule due to disruptions. This function consists of three main rescheduling cost

sources; job related, machine related, and material related cost. The method selected for

generating the schedules, both the initial and the updated ones, is based on the filtered

25

beam search heuristic algorithm (HFBS) [39] because of its speed and quality of

solutions. Three types of disruptions are considered in this study: machine breakdown,

new order arrival, and job cancellation. Finally, In order to validate the performance of

the proposed rescheduling methodology, in terms of solution quality, rescheduling cost,

efficiency, and stability, various test problems are simulated by different methods in the

literature for different disruptions scenarios.

2.1 Problem Statement

A flexible manufacturing system (FMS) with partial flexibility is considered in this work.

There are a certain number of jobs to be scheduled each having a different number of

operations with alternative machines capable of performing the same operation albeit

with different processing times. The initial schedule is generated by a time based

objective function (weighted sum of makespan, maximum machine workload, and total

workload) [39]. During the execution of the schedule, the following types of disruptions

are considered: machine breakdown, job cancellation, and new order arrival. At the time

of each disruption (TOD), a new schedule will be generated based on the availability of

the machines and remaining available operations while minimizing the rescheduling costs

of switching from the existing schedule. Following are the assumptions considered in this

study:

• The jobs are non-preemptive.

• An operation cannot be performed on more than one machine at the same time.

• Each machine cannot perform more than one operation at the same time.

• The machines are independent of each other and all are available at t=0.

26

• Machines' set-up times and material handling time are not considered.

• The jobs are independent of each other and can be done at any time separately.

• Processing time is deterministic and fixed during the horizon based on the process

plan.

The initial and the updated schedule are generated by using the filtered beam

search heuristic method (HFBS) according to an objective function. In the next Sections,

the proposed rescheduling cost function is described as a performance metric which is

used in generating the updated schedules. The suggested rescheduling methodology is

demonstrated with an illustrative example, where the schedules generated by the

proposed cost measure are compared with the schedules updated by using time based and

stability based measures under different disruption scenarios.

2.2 Rescheduling Cost

A compound cost function is introduced in order to assess the negative impacts of

schedule updates while considering both aspects of timing and deviations [68].

Three main rescheduling cost sources can be categorized as machine related, job

related, and material related cost:

Cost , = Cost (Mach _R) + Cost (Job _R) + Cost (Mat _R) (2-1)

2.2.1 Machine related Cost

Due to a schedule update, an extra machining cost can result from switching an operation

to an alternative machine which has longer processing time. Similarly a change in the

sequence or reallocation of jobs due to a disruption can cause an increased idle time over

27

the updated makespan. Then, the machine related rescheduling cost is the total cost of

increased idle time of all machines (Cj) and total cost of extra processing time (C2) after

rescheduling, which are given by the following equations:

C, = y^Max
^ r

' J J V

^ (O - y y c - ^(c^-ZE^r'
• J

,0 x rjk (2-2)

C2 = T^ Max zzc-zz^ Initial

V v < j '

XT (2-3)

Where k is the machine index and the coefficient tjk corresponds to the rate of idle

time machine L Puic represents the processing time of operation i of job j assigned to

machine k. CtJk represents the completion time of operation / of job j on machine k . The

coefficient r represents the penalty cost of extra machining time needed after

rescheduling. The first term in Equation (2-2) corresponds to total idle time of machines

in the updated schedule and second term corresponds to total idle time of machines in the

initial schedule. In Equation (2-3), terms identify total machining time in the updated and

the initial schedule respectively.

2.2.2 Job related Cost

Jobs could be shifted as a result of rescheduling and finished earlier or later than the

initial schedule. Cj is defined as the cost of the added lateness of jobs after rescheduling

which can be expressed by the following equation:

C3 = ^Max Imllal -(Max(C™) -£> ,) - (Max(C!;"""')-£>,) ,0 xS. (2-4)

28

The coefficient Sj represents the penalty cost of unit time lateness for each job j

and Dj is the job due date. The first term in Equation (2-4), is the tardiness of each job in

the updated schedule while the second term corresponds to the tardiness of jobs in initial

schedule.

Jobs can also be finished earlier than their completion time in the initial schedule

after rescheduling, hence, this creates saving on due dates. This can be considered as

benefit (Q) or negative cost in job related cost function which is expressed by the

following equation:

C4 = ^Max
J

Where the coefficient 9 represents saving on due dates of unit time for each job

which considered to be negative in the cost function.

2.2.3 Material related Cost

The material related cost consists of three types of cost sources such as:

• Holding cost of WIP and raw material.

• Cost of expediting the material to an earlier time.

• Cost of reallocating the material to another machine.

The starting time of operations is subject to change in the updated schedule. It is

assumed that the required raw material for each operation is to be supplied just before the

starting time of operation, according to the initial schedule. Thus, changing the starting

time or machine assignment of an operation may incur a cost. If the repaired operation

New\
(MaxiC^^-D^-iMaxiC^-D,) ,0 x0. (2-5)

29

starts later, holding cost (C5) occurs as a result. Similarly, if the operation has to start

earlier than the original schedule, expediting cost (Q) occurs. Operations may also be

assigned to different machines after rescheduling, and this change causes the cost of

reallocation (C7) such as changing toolsets, and extra material handling. The

corresponding cost functions are given as follows:

v,; s;r>s;r Q = i i f e r - c ') x ^ (2-6)
' J

\/t, s;r'>s- c 6 = x x f e r ' - 7) x ^ (2-7)

Vi,j,k C^YLIM'^M (2-8)
' i

The coefficient hy and /uy represent the holding and expediting cost of material for

the operation / of job j in unit of time. S'^'is the starting time of the operation / of job j

on machine k after schedule update, and S"j"'al is the original starting time of that

operation. (Oykw represents the penalty cost of reallocating material between machines

after rescheduling process. Y yw is the binary variable indicating whether the operation i

of job 7 on machine k is switched to machine k or not.

30

2.3 Cost based Rescheduling using FBS

It is not always possible to find an optimal solution as an initial or updated schedule

quickly in FMS environments, due to NP-hardness of scheduling/rescheduling problems.

Therefore, Al-based meta-heuristics approaches are widely utilized recently in order to

generate near-optimal solutions in a reasonable time. Through this study, filtered beam

search heuristic (FBS) is employed in generating the initial and updated schedules. The

proposed cost function, explained in Section 2.2, is used to generate cost efficient

updated schedules in FBS. In the next Section, firstly the FBS method is shortly

explained, and after that, the complete FBS-based rescheduling algorithm is presented.

2.3.1 Filtered Beam Search

Filtered Beam Search (FBS) is an extension of Beam search (BS) which is the adaptation

algorithm of branch and bound (B&B) used in solving optimization problems. This

algorithm uses heuristics to estimate certain number of the best paths and eliminate

permanently the rest. FBS works much faster than B&B as the large parts of search tree

are pruned accumulatively. The BS-based algorithms are like breadth-first algorithms as

they progress level by level without backtracking [27]. However unlike the breadth-first

search, BS doesn't search through all possible nodes and only moves down from the best

promising nodes at each level. An evaluation function used to identify the promising

nodes in each level, which introduces the problem of finding proper trade-off between

quick but poor, and computationally demanding but better solutions [70]. Filtered beam

search is introduced in order to find a good tradeoff between speed and accuracy [51]. By

two phase evaluations which are called as local and global evaluation, filtering phase and

31

beam selection (known as rough and accurate), nodes are pruned in each level and the

best node is identified. Two key parameters in FBS algorithm are called as filterwidth and

beamwidth which identify the number of the filtered nodes if), and the number of final

solutions (b) respectively, b numbers of nodes are selected by a global evaluation

procedure at the first level. For each of the following level, / numbers of nodes are

filtered by a local evaluation procedure firstly, and in next step, by performing a global

evaluation procedure on the remaining nodes (/), the best promising node for each b node

is selected. The selected nodes in each level added to the partial schedules, and the b

numbers of schedule will be generated at end.

As shown in Figure 2.1, after determining the beam nodes in the first level by a

global evaluation, the filtered beam search is employed independently to generate a

partial schedule from each of them (in this example, as b is set to 2, two independent tree

is generated would result in two schedules). Once the best node in each level for each

beam is identified, nodes are generated for the next level by using the branching method.

The generated nodes first locally evaluated and/numbers of nodes remain for the global

evaluation. The procedure continues until all the machine-job pairs are allocated and b

numbers of schedules are generated.

2.3.2 FBS based Methodology

The procedure of generating schedules by FBS method consists of two phases:

Generating the search space called branching methodology, and evaluating the nodes by

using the global and local evaluation functions called bounding methodology. In order to

generate a search tree in FBS, two procedures called Active and Nondelay for job shop

scheduling are discussed [71]. In this study the modified form of Nondelay called

32

MNONDELAY [39] is used as a branching method. After a level is formed by

M_NONDELAY algorithm, it is ready to be bounded and is followed by a search

method. The key point in utilizing the FBS is choosing the proper evaluation function.

Searching process among the available nodes is performed by the evaluation functions,

and the partial schedules are generated at each level of the search tree. In this study, the

Modified Shortest Processing Time (MSPT) [39] is employed as a dispatching rule in

local and global evaluation procedure.

Beamwidth = 2

Filterwidth= 2

Root

Beam nodes

Nodes keep for global

evaluation but pruned by

global evaluation

Nodes pruned by local

evaluation

Level 1

Level 2

Level 3

Figure 2.1: Filtered beam search tree representation [39].

Finding an appropriate value for filterwidth and beamwidth is a tradeoff between

accuracy and speed through the algorithm. The number of beamwidth determines the

number of schedule to be generated for each problem, whereas the filterwidth determines

the number of operation-machine allocation choices at each level. Their values are

problem specific and can be determined by analyzing the tradeoff between the

33

performance level of the generated schedules and their computational times. In this study,

for each specific problem, a range of values for/and b are tested. The smaller pair of/

and b which results in the best objective values is selected as filterwidth and beamwidth

to be used in FBS procedure.

2.3.3 The Proposed Rescheduling Algorithm

In case of a disruption at TOD, the schedule can be updated by rescheduling all the

remaining operations in the system. In order to generate the updated schedule, the

remaining operations and availability of each machine need to be determined. We define

the remaining operations the ones that have not begun by TOD. This implies that the

operations which are in-progress at TOD should be first completed in order to identify the

earliest availability of each machine. The following steps define how the total

rescheduling method (TR) is performed in case of each type of disruption:

Step 1: Initialization

Input the initial schedule generated by FBS (operations, assignment, starting time), input

the value of filterwidth (f) and beamwidth (b).

Step 2: Disruption Occurrence - (Re-Initialization)

At TOD, the system needs to be rescheduled in order to respond to disruptions.

Depending on the type of disruptions, different scenarios may stand out;

Case 1: Machine Breakdown

In this study, a predetermined repair time is considered for each machine. It is also

assumed that the failed machines would be available after the repair time.

34

In case of a machine breakdown at TOD, the operations which are in-progress on

the un-failed machines should be completed first to identify the machines' availabilities.

If the failed machine has an operation in-progress, the remaining part of that operation

should be served by that machine after the repair time. Starting time of operations and

machine availabilities are updated and the system becomes ready to be scheduled for the

remaining operations.

Case 2: Job Cancellation

When a job is cancelled at TOD, all its remaining operations should be cancelled even if

one is in-progress. Then, the initial partial schedule is formed by all the operations that

have been finished by TOD, and are in-progress in TOD, and not-cancelled. The starting

times and machine availabilities are updated and the partial schedule is ready to be

completed by allocating the remaining operations.

Case 3: New Order arrival

If a new order arrives to the system at TOD, the in-progress operations should be

completed first. The new order is scheduled as a regular order among the remaining

operations. Hence, the updated list of the remaining operations, start times and machine

availabilities will be used to generate a new schedule by TR procedure.

Step 3: Node generation

(i) MNONDELAY scheme is used to generate nodes from the updated existing partial

schedule resulted from Step 2. Check the total number of nodes generated, N; update the

level, and update the partial schedule PSt by generating nodes.

35

(ii) If N< b, then go down to the next level, generate new nodes by MNONDELAY and

PSi, update the level and PSi by generating nodes. If N< b, then go to Step 3. (ii); else go

to Step3.(iii).

(iii) Find the global evaluation function values for all the nodes and select the best b

numbers of nodes (defining the initial beam nodes). Determine the candidate sets of each

beamPS1(\),PS,(2),...,PSl(b)

Step 4: Determining the beam nodes

Check the level and the number of remaining operations. If any operation remains, go to

step 4.(i); else go to Step 5.

(i) Generate N new nodes from each beam node according to MNONDELAY with PSi

as the partial schedule represented by the beam node. If N<£> go to Step 4.(i); else go to

Step 4.(ii).

(ii) Filtering process- Choose the best / number of nodes according to the local

evaluation function procedure.

(iii) Global evaluation process- Computing the objective function values for each filtered

nodes.

(iv) Beam nodes selection- Select the nodes with the best objective function, add it to the

partial schedule, and update the partial schedule and level.

Step 5: Select the solution schedule

Among the b numbers of generated schedules, select the schedule set or schedule sets

with the best objective function values.

36

2.3.4 The Complexity Analysis

The time complexity of the proposed algorithm in worst case is 0(n) , where n is the total

number of operations to be scheduled in the FMS problem. In worst case, the algorithm

in step 3 generates at most n possible nodes, and then b numbers of best nodes are

selected from n nodes by a global evaluation function (bn). For finding the value of the

global evaluation function, the algorithm should generate a complete search tree of depth

n since there are n operations. Then the total complexity in step 3 is O (bn +n). In step 4,

two loop exists, the outer loop which needs computational time roughly to bn as it forms

b complete beams, each has depth n, and the inner loop which are firstly selected/nodes

by a local evaluation among the remaining ones (at most n) and expand further to n level,

which makes the total computational time roughly to /«2.Thus, the total complexity of

step 4 would bebnxfn2. So the time complexity of step 4 is 0(bfn). Therefore the

overall complexity of the proposed algorithm is 0(Max (bn +n, bfn3)). As b and / are

small in comparison to n, the total complexity of the algorithm is 0(n) .

2.4 Illustrative Examples

In order to demonstrate the efficiency and performance of the proposed rescheduling

algorithm in FMS environments, a numerical study is developed, tested and evaluated.

The algorithm is run on a personal computer with an Intel Core 2 Duo CPU, 2 GB RAM

on Microsoft Windows XP Professional. The codes are written in the Java, Eclipse

(Galileo 3.5.1 platform). The corresponding Java codes are presented in Appendix A.

The initial test problem considered in this study is a small FMS system with 4

partially flexible machines, with 4 jobs each having 3 operations. Table 2.1 represents the

37

processing times of operations on each alternative machine. The processing times are

represented as random numbers uniformly distributed between 2 and 5.

Table 2.1: Process time table

Job

1

2

3

4

Operation

1

2

3

1

2

3

1

2

3

1

2

3

Machine 1

2

4

3

5

2

4

3

2

Process time

Machine 2 Machine 3 Machine 4

5

3

2

5

5

5

3

2

3

2

2

5

3

4

5

5

4

3

4

2

3

2.4.1 Initial Schedule Generation

The initial schedule is generated by the traditional FBS method [39]. M_SPT dispatching

rule [39] is used as local and global evaluation functions and the objective function is the

weighted sum of makespan, maximum machine workload, and total processing time.

Finding the proper value of filterwidth and beamwidth is a crucial task in FBS in

order to balance the computational time and solution quality. In this case study the

appropriate values of these parameters are obtained via experimental trials, b and / are

set to be between 2 and 8. The total value of objective function (F-value), the weighted

sum of makespan, machine workload and total processing time, is represented by

changing the/and b value in Table 2.2. According to the table, settingy==3 and b=4 could

be the best choice which could results in the lowest value of F=\ 8.

38

Table 2.2: F value for different/"and b

6=2
6=3
6=4
6=5
6=6
6=7
6=8

7=1
20.8

20.8

18.3

18.3

18.3

18.3

18.3

7=2
20.4

20.4

18.1

18.1

18.1

18
18

7=3
20.1

20.1

18
18
18
18
18

7=4
20.1

20.1

18
18
18
18
18

7=5
20.1

20.1

18
18
18
18
18

7=6
20.1

20.1

18
18
18
18
18

7=7
20.1

20.1

18
18
18
18
18

7=8
20.1

20.1

18
18
18
18
18

As a result, the initial schedule generated by this method and the mentioned parameters is

obtained as depicted in Figure 2.2.

1-1

1 1

2-2

4-1 1-3

3-2

24 1-2

4-2

2-3

3-3 4-3

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.2: The static schedule result for the FMS problem with b=4,f=3.

The generated schedule which is shown in Figure 2.2 has a makespan of 12 as Fl,

maximum machine load of 10 as F2 and total processing time of 34 as F3. The weights of

these functions are considered 0.4, 0.3 and 0.3 respectively. Thus, the F value would can

be calculated by ^=0 .4x12+ 0.3x10+ 0.3x34= 18.

2.4.2 Rescheduling Examples

Three types of disruptions i.e., machine breakdown, new order arrival and job

cancellation, are considered in this study. The cost based rescheduling (TR) approach is

performed at TOD, and the new schedule with the least rescheduling cost is generated

39

and replaced with the initial one. The cost coefficients shown in Table 2.3 are used to

calculate the corresponding rescheduling cost for each updated schedule.

Table 2.3: Cost coefficients

Cost function coefficient

Coefficient of Lateness

Coefficient of Due date saving

Coefficient of Expediting

Coefficient of Holding

Coefficient of Reallocation

Coefficient of Extra idle time

Coefficient of Extra processing time

value

s,
0j

My

hv

<*> ijkk'

nk
T

12

-12

10

1

4

6

6

2.4.2.1 Machine Breakdowns

The machines which are failed to perform their operations are selected randomly through

the program. In the Figure 2.3, machine 4 is failed at time t=A for AT=3 as a repair time.

Rescheduling cost of this schedule is derived by the following function;

Rescheduling cost= cost of extra lateness +cost of expediting + cost of holding

+cost of reallocation +cost of extra machine idle time+ cost of extra machining- saving

on due dates = 12x2+ 10x2+1x2 + 4x3+6x0+6x0- 12x1=46.

M 4

M 3

M 2

M l

/ - /

l - l

4 - 2

2-2

3-2 ' ***T

2-1 1-2

2-3

1-3

r.V -bi; 2 4 - 3

10 11

Figure 2.3: Gantt chart obtained after rescheduling, in case of machine 4 failure at t=4.

40

2.4.2.2 Job Cancellation

The job to be cancelled is selected randomly. In Figure 2.4, job 1 is cancelled at the time

£=5. The rescheduling cost of this schedule can be calculated by observing the differences

of the initial and the updated schedules represented in Figure 2.4 and Figure 2.2 as

follows;

Rescheduling cost= cost of extra lateness +cost of expediting + cost of holding

+cost of reallocation +cost of extra machine idle time+ cost of extra machining- saving

on due dates = 12x0+ 10x0+1x0 + 4x0+6x3+5x0-12x0=18.

1-1

?-\ 4-1

2-2

-i-2

2_| i-:

4-2

2-3

. 1 - . * 4-3

1 2 3 4 S 6 7 8 9 10 11 12

Figure 2.4: Gantt chart obtained after rescheduling, in case of job 3 failure at t=6.

2.4.2.3 New Order Arrival

The new order is selected randomly among the existing jobs to enter to the

system. It is assumed that the new order is treated as a remaining job in the system and

needs to be scheduled as a regular job. In Figure 2.5 the job 2 is arrived to the system at

t=5. The rescheduling cost of the updated schedules in Figure 2.5 can be calculated as

follows;

Rescheduling cost= cost of extra lateness +cost of expediting + cost of holding

+cost of reallocation +cost of extra machine idle time+ cost of extra machining= 12x14

+ 10x0+1x3 + 4x1 +6x2+6x10- 12x0=247.

41

1-1

1A

2-2

1 1 /-?

5 _ }

2-1 1-2 1

4-2

2-3

2-l(N)

4-3

2-2(N)

. •

2-3(N)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2.5 : Gantt chart obtained after rescheduling, in case of a job 2 arrives at t=5.

2.5 Experimental Design

A factorial experiment is performed in order to evaluate performance of the proposed

cost based rescheduling algorithm, with time based and stability based performance

measures. The effects of various disruption scenarios are studied on different

rescheduling methods.

2.5.1 Experimental Factors

Three experimental factors are considered: objective function, magnitude of disruption,

and timing of disruptions.

• Objective Function (OBJ): the effects of different objective functions are studied.

These methods can be categorized in time based methods i.e., weighted sum of

makespan, machine load and total processing time [39], Equation(2-9); weighted

quadratic function of tardiness [20] , Equation(2-10); and stability based methods

[14], Equation(2-ll); which generate the schedules based on the corresponding

objective functions.

42

OBJ{Mks) = wmFx + WtwF2 + wmwF3 (2-9)

OBJ(Trd) = YJWiTi
2 (2-10)

OBJ(Stb) = YL
J I

st„-stg
(2-11)

• Magnitude of the disruption (MAG): The magnitude of disruptions is considered

as the number of disruptions that occurs at the time of disruption.

• Time of the disruption (TIM): This factor refers to the time of occurrence of the

disruptions relative to the makespan. This timing can be early or late during the

horizon.

2.5.2 Dimensions of Experiments

OBJ has four levels reflecting the proposed cost based methodology (C_B), W_Mks

represents the weighted sum function makespan, QTrd corresponds to the weighted

quadratic function of tardiness of jobs, and Stb which represents the deviation from the

initial schedule. Two levels of treatment, low and high, are considered for magnitude and

timing of disruptions. As a result, four combinations of disruption scenarios are

represented in Table 2.4 for each type of disruption and method. The designed

experiments shown in Table 2.5 are performed in ten replications.

The values of the initial schedule parameters are shown in Table 2.6. The selected

coefficients of the proposed rescheduling cost functions are given in Table 2.3.

43

Table 2.4: Disruption scenario

Expt. No.

1

2

3

4

MAG

High

High

Low

Low

TIM

Early

Late

Early

Late

Table 2.5: Experiments levels

Experimental fector Level 1 (Low) Level 2 (High)

Time of disruption (TIM)

Magnitude of disruption (MAG)

Machine
breakdown

New order
arrival

60-90% of makespan 5-40% of makespan
Late Early

1 machine breakdown 3 machine breakdown

Repair Time: Uniformly Distributed [5,10]

1 order arrival 3 order arrival

Order
cancellation

1 job cancellation 3 job cancellation

Table 2.6: Initial schedule parameters

Parameter Values

Number of jobs 20

5
Number of operations per each job
Number of machines 7
Process time of operation Uniformly distributed [3,8]

44

2.5.3 Performance Measures

Three performance metrics are considered in this study: the efficiency and stability of the

updated schedules, and the proposed rescheduling cost which are explained as follows;

2.5.3.1 Efficiency

Efficiency of the updated schedule is defined as percentage of changes in its makespan

compared to the initial schedule makespan, which is as follows:

EFF = \\-MksK™ Mks'"^' 1x100% , (2-12)
I MksImtiol J

Where Mks^en- and Mksinitiai are the makespan of the updated and initial schedule

respectively. Since in some cases especially in job cancellation, the makespan of the

updated schedule becomes lower than the makespan of the initial schedule, the efficiency

metric might get a value higher than 100%.

2.5.3.2 Stability

Stability is defined as a measure of deviation in starting time of operations in the updated

schedules compared to the initial schedule. In this study, the normalized sum of these

deviations is applied as a performance metric [11].

DevSt = ^ ^ , (2-13)
kx p

Where DevSt is the normalized deviation, St-,j and Sty are the starting times of

operations in the updated and initial schedules respectively, k is the total number of jobs

and p is the total number of operations. The lower value of deviation leads to the more

stable schedule.

45

2.5.3.3 Cost of Rescheduling

The rescheduling cost corresponding of each OBJ is calculated and compared to others in

order to assess the negative impact of changes due to rescheduling. In order to make

better comparison among rescheduling costs, the rescheduling costs of C_B is considered

as a base level. Then, the corresponding rescheduling cost resulting from W_Mks, QTrd,

and Stb are expressed in percentage relative to this base level.

2.6 Experimental Results

The results of the designed experiment in Table 2.4 are discussed through this section.

The average changes in performance measures resulting by different disruption scenarios

are presented for each OBJ.

2.6.1 Machine Breakdown

The results of machine breakdown show that the rescheduling cost of the updated

schedules generated by C_B is dominant to the ones generated by other OBJs as shown in

Figure 2.6(a). The differences are significant for early disruptions (Table 2.7). Figure

2.6(b) shows that the efficiency of the updated schedules generated by the time based

measures, W_Mks and QJTrd is slightly higher than C_B for early disruptions (Table

2.8), while for the late disruption scenarios they all perform quite similar. The time based

measures generate schedule in order to minimize the makespan and lateness criteria,

regardless of the initial schedule structure and corresponding changes due to

rescheduling, hence, the schedules generated by these measures have higher cost of

rescheduling than C_B. Stability based measure generates the schedule based on

minimizing the changes in starting time from the initial schedule, as a result the updated

46

schedules have less deviation from the initial schedule, but it causes degradation in

efficiency and rescheduling cost (Table 2.9).

Table 2.7 : Rescheduling cost of disruption scenarios

Disruption

Experiment

Machine breakdown Job cancellation Order arrival

C B W Mks 0 Trd Stb C B W Mks O Trd Stb C B W Mks 0 Trd

Table 2.8 : Efficiency of disruption scenarios

Stb

1
2
3
4

3702 3
693 9

3341 2
355

4033 1
818 1

3756 6
361 1

4331
7415

4009 6
4156

4276 3
7196

4029 7
352 3

1268 5
100 1

1377 8
1123

2724
190 4

31615
197 8

2598 7
196 7

3167 5
266 5

2486 2
232 1
3055 2
207 8

5568 9
1521 5
2965 5
740 6

5521 1
15186
3907 3
770 1

5958 9
1509

4227 6
737 2

5864
2167 5
4162

1039 9

Disruption
Machine breakdown Job cancellation Older arrival

Experiment C_B WMks Q_Trd Stb C_B W_Mks QJTrd Stb C_B WMks Q_Trd Stb

1 83 36 87 35 83 19 82 03
2 9118 92 01 93 34 90 68
3 85 69 91 85 85 86 86 02
4 96 17 97 34 97 5 95 51

103 33 107 15 104 33 98
103 66 104 33 105 49 99 83

99 101 98 84 95 17
100 5 10133 101 16 97 67

79 37 8103 75 04 68 05
77 54 78 37 77 37 47 09
90 85 92 35 87 35 83 53
89 35 87 52 85 86 73 54

Table 2.9 : Normalized deviations of disruption scenarios

Experiment

1
2
3
4

C_B

6 36
05
5 37
0 3

Machine bi eakdown

WMks

7 32
0 73
6 37
0 37

QJTrd

8 03
07
6 77
0 47

Stb

6 23
051
5 85
0 25

CJB

1 53
0 17
1 98
0 19

Disruption
Job cancellation

W_Mks

4 35
0 34
5 32
0 3

Q_T,d

441
0 37
5 39
0 47

Stb

3 04
0 11
4 34
0 18

C_B

7 85
0 61
4 27
021

Oi der arrival

WMks

7 91
0 65
6 13
0 42

QJTrd

8 72
0 54
651
0 34

Stb

6 91
0 33
5 16
0 15

47

Machine breakdown (Cost)

IC_B

W_Mks

Q_Trd

Stb

Machine breakdown (Efficiency)

c
0)

*o

UJ

«3^

70 I -

8

7

c 6

•S 5
ra
> 4 <u
Q 3

2
1
0

2 3

Experiment No.

(b)

Machine breakdown (DevSt)

2 3

Experiment No.

(C)

IC_B

W_Mks

Q_Trd

i Stb

• C_B

W_Mks

E Q_Trd

• Stb

Figure 2.6: Machine breakdown: (a) rescheduling cost; (b) efficiency; (c) deviation.

48

2.6.2 Job Cancellation

The results of job cancellation in Figure 2.7 reveal that CB significantly outperforms

other OBJs in terms of cost of rescheduling. Table 2.7 also reports the huge differences in

the rescheduling cost between CB and other OBJs, which are higher for early disruption

scenarios. According to Figure 2.7(b), the efficiency of the updated schedules by the time

based measures is slightly better than CB for early disruptions while for the late ones,

the three OBJs, CB, W_Mks, and QTrd perform quite similar. It is shown in Figure

2.7(c) that the updated schedules by CB have lower deviations and as a result better

stability than others, especially for early disruption scenarios. The high amount of

deviation in the time based measures results in the high value of rescheduling cost.

2.6.3 New Order Arrival

The results of new order arrival are represented in Figure 2.8. It is shown in Table 2.7

that C B performs better than other OBJs in terms of rescheduling cost especially in early

disruptions. In late disruptions time based and cost based measures perform quite similar.

In case of late disruptions, as fewer numbers of operations remained to be

scheduled, adding new orders might not result in high deviation between the updated

schedules generated by time based and CB, while the schedules generated based on Stb

has much higher cost and less efficiency. This is because Stb tends to keep the schedule

the same in order to minimize the changes, hence by adding the new orders towards the

end of schedules, it minimizes the deviation, but the makespan and rescheduling cost are

degraded.

49

In case of early and high magnitude disruptions, Experiment 1, as the number of

operations added to the schedules is high; all OBJs generate the updated schedules in a

high cost and with similar levels (Table 2.7) while still CJB performs slightly better as it

generates higher efficiency and lower deviations than others. For the low magnitude

disruptions, Experiment 2, C_B shows its advantage and generates schedule with

significantly lower rescheduling cost while having higher efficiency and lower deviations

than other OBJs.

50

Job cancellation (Cost)

160

110

105
&
C
HI

rv

s?
95

90

6 i
I

5 _
c 4 -
o

1 3 *-

Q 2 t

1 <

0

2 3

Experiment No.

Job cancellation (Efficiency)

I
^—kJsfei^wi— I

2 3

Experiment No.

(b)

Job cancellation (DevSt)

2 3
Experiment No.

(C)

IC_B

W_Mks

: Q_Trd

IStb

IC_B

W_Mks

\ Q_Trd

IStb

I C_B

W_Mks

Q_Trd

Stb

Figure 2.7: Job cancellation: (a) rescheduling cost; (b) efficiency; (c) deviation.

51

Order arrival (Cost)

50 —

40

M 30

% 20

"§ 10

a? o

10

• C_B

W_Mks

• Q_Trd

• Stb

100

90

g" 80
c
01
S 70

UJ

SS 60

50

40

Experiment No.

(a)

Order arrival (Efficiency)

2 3

Experiment No.

I C_B

W_Mks

Q_Trd

Stb

10

Order arrival (DevSt)

>
<u
Q L

2 3
Experiment No

IC_B

W_Mks

!Q Trd

Stb

Figure 2 8 Order arrival (a) rescheduling cost, (b) efficiency, (c) deviation

52

2.7 Sensitivity Analysis

The coefficient values used in the cost function can change depending on the companies'

priorities. For example, in this study as shown in Table 2.3, in order to satisfy the

customer demands as a main objective, lateness penalty is considered to be the highest

value among all the coefficients. In order to investigate the effect of each coefficient on

the optimal solution, it is necessary to perform the sensitivity analysis [72]. The main

purpose of sensitivity analysis in this study is to identify sensitive parameters, that

changing in their values could result in significant changes in the optimal solution.

Through this study, five levels are considered for each coefficient: 0.1, 1, 10, 50,

and 100. The remaining parameters are fixed at 1. The initial schedule is generated using

data set defined in Table 2.6. The makespan (Mks), deviation (Dev) from the initial

schedule, the unit of changes in decision variable (U/C), and the cost of rescheduling are

calculated for all the levels of each disruption type. For each change in the cost

coefficient, the total rescheduling cost is normalized by the corresponding decision

variable value of the cost component (Cost/UC).

2.7.1 Machine Breakdown

The results of sensitivity analysis for cost function coefficients (Section 2.2) in case of

machine breakdown are shown in Table 2.8.

By increasing the cost of expediting the material, ju, operations tend to start later

than their initial schedule position, hence, the Mks increases and the time unit number of

expedited operations (U/C) decreases. Figure 2.9 reveals that that expediting cost

parameter is robust between 0.1 and 1, and then becomes dominant for greater values.

53

The due date saving parameter, 6, could also be considered as a sensitive

parameter as the changing in its value results in the following changes in the optimal

solution criteria: By increasing this value, jobs tend to finish earlier than previous

schedule. Since all jobs cannot be finished earlier in case of machine breakdown, some of

them may be finished earlier and exploit the saving and the rest may be postponed which

causes lateness, and as a result the makespan of schedule increases. Consequently, the

number of time unit of saving on due dates for jobs (U/C) also decreases. As the

coefficient value increases, the total cost of rescheduling decreases significantly due to

negative impact of 9. Figure 2.9 shows that the changes in Cost/UC values due to the

changes in 9 are more significant than the corresponding changes for co, S, and h.

Figure 2.9 reveals that, the proposed rescheduling algorithm performs similar

reactions in changing the values of coefficients of extra lateness, S, reallocating, co, and

holding, h. These parameters are robust between 0.1 and 10 and have lower normalized

costs (cost/UC) compared to ju and 9.

Table 2.8 shows that, by changing the value of extra idle time coefficient, rj, in

case of machine breakdown, the algorithm may not create good enough results, as the

normalized cost highly increases by increasing the r\. The corresponding MKs firstly

decreases between 0.1 and 50, but it increases significantly between 50 and 100.

Changing in the the coefficient of extra processing time, T, may not have any

significant effect in the optimal solution in case of machine breakdown. As shown in

Table 2.8, the corresponding variable of extra processing time has either the value of 1 or

0, and the changes in the total cost are not consistent with the changes in the parameter

value.

54

Table 2.10: Sensitivity analysis of coefficient for machine breakdown

Machine breakdown

d

m

h

e

0.1
1

10

50
100
0.1

1

10

50
100

0.1
1

10
50
100

0 1
1

10
50
100

Mks

61
60
61

65
63
58
60

67

76
74

63
60
60

59
59
62
64
65
66
66

Dev
324
335

325

398
432

323
335
602

740
852

379
335
317
344
344

320
335
886

2517
4621

U/C
54
53
59

43
47

128
123

20
14
11

323
212

210
224
224

3
4
11
16

21

Cost
362.4
396
949

3460
5175
260 5

396
1103

1845
2383

236
396

2282

11380
22580

436
396
274
-436
-1374

Cost /UC
6.71
7.47

16.08
80 47
110.11
2 04

3.22

55.15
131.79
216.64

0 73
1 87

10 87

50.8
100.8

145.33

99
24 91
-27.25
-65.43

0.1
1

w 10

50
100
0 1

1

n 10

50
100

0.1
1

* 10

50
100

Mks

60
60
61

63
65

62

60
60
59

67

60
60
60

58
58

Dev
335
335

375
312
552

363
335
371

403

779
335
335

288
330
292

U/C
30
30
21
17

16
18
11

0
0

Cost

369
396

607
1246
2232

408 8
396

471
536

1113
395 1
396

358
377
321

Cos t /UC
12.3
13.2

28.9
73.29
139.5
22.71

36
471

536
1113

395.1
396

358

«.
oo

250

Sensitivity Analysis(MB)

200 f-

150

100

50 a

-50 -

-100

0.1 10

ParameterValue

50 100

Figure 2.9: Cost of rescheduling changes due to changing the coefficients in case of
machine breakdown.

55

2.7.2 Job Cancellation

The results of sensitivity analysis for job cancellation are represented in Table 2.9 and

Figure 2.10. It is shown that u, as the coefficient of expediting and 6, the coefficient of

saving on due dates can be considered as sensitive parameters in case of job cancellation.

Increasing the cost of expediting the material causes degradation of makespan in

the updated schedules according to Equation 2.7, as shown in Table 2.9. The results also

reveal that the rescheduling cost corresponding to changes in value of \i is consistent with

the changes in U/C and Mks. Figure 2.10 shows the significant impact of changing \i in

Cost/UC compared to the other parameters.

The makespan of the updated schedules increases by increasing the saving on due

dates of jobs. Table 2.9 reveals that the time unit number of saving on job's due dates

increases as a result of increasing the 6. Consequently, the rescheduling cost resulting

from these changes is consistent with the corresponding changes in U/C and Mks. Figure

2.10 shows that the impact of # compared with other parameters such as co ,S, and h is

higher and can be considered as an important parameter in case of job cancellation.

The Figure 2.10 shows that the three coefficients of extra lateness, S, holding, h,

and reallocating, co have quite similar trend in terms of CostAJC. This reflects the similar

performance of the algorithm in responding to these changes. These three parameters are

quite robust between 0.1 and 10, and cause lower level in CostAJC compared to \i and 6.

The coefficient of extra idle time, r\, may not have a significant impact in optimal

solution as changing in its value results in different trends in the corresponding variable

and the total cost, as shown in Table 2.9. In case of job cancellation, as there is no extra

56

processing time due to rescheduling process, hence, the coefficient of extra processing

time, T, have not any effect in the optimal solution.

Table 2.11 : Sensitivity analysis of coefficients for job cancellation

Mks Dev VIC Cost

Job cancellation
Cost/UC Mks Dev U/C Cost Cost/UC

<5

m

h

0

0.1
1
10
50
100
0.1
1
10
50
100
01
1
10
50
100
0.1

1

10

50

100

59
58
59
59
59
56
58
61
62
64
59
58
57
57
57
60

59

60

67

67

144
158
161
183
183
178
158
219
297
411
152
158
147
147
147
331

335

415

556

617

10
8
9
8
8
113
73
10
3
0
99
85
66
66
66
4

5

23

63

63

163
178
279
594
994
92 3

178
412
575
604
83 8

178
743
3383

6683

393 6

396

66

-2633

-5670

16.3

22.25

31
74.25

124.25

0 82

2.44

41.2

191.67

604
0.85

2.09

11.26

51.26

101 26

98 4

79 2

2.87

-41 79

-90

0.1
1

W 10
50
100
01
1

1 10
50
100
0.1
1

* 10
50
100

57
58
58
63
67
57
58
60
61
61
58
58
58
58
58

170
158
156
236
368
151
158
250
229
229
158
158
158
158
158

30
31
24
17
15
7
10
1
5
5
0
0
0
0
0

178
178
410
1183

2023

1577

178
355
594
844
178
178
178
178
178

5.93

5.74

17.08

69.59

134.87

22 53

17.8

355
1188

168 8
00

CO

CO

OO

OO

300

Sensitivity Analysis(JC)

250 T

200

150

.E 100

50

-50 -

-100

0.1 10

Parameter Value

50 100

•5

m

-h

Figure 2.10: Cost of rescheduling changes due to changing the coefficients in case of job
cancellation.

57

2.7.3 Order Arrival

The results of sensitivity analysis for the new order arrival are represented in Table 2.10

and Figure 2.11. The results reveal that, \i, as the coefficient of expediting, 9, as the

coefficient of saving on due dates, and r\, as the coefficients of extra idle time could be

considered as sensitive parameters in case of a new order arrival.

High impact of changes in Cost/UC due to changes in the values of 9 is observed

from Figure 2.11. These results reveal that this parameter could be highly sensitive to

changes in the objective function. The MKs as a result of increasing the 9 increases and

the corresponding cost decreases as a result.

Increasing the value of \i results in degrading the makespan and decreasing the

U/C. the changes in Mks, Dev, and cost are more significant for higher values of \i as

shown in Table 2.10. Figure 2.11 also represents that increasing the p, results in

significant increase in the Cost/UC value.

Figure 2.11 shows that the results of Cost/UC may change significantly by

changing the r\. By increasing the cost of extra idle time, machines tend to be loaded for

longer time during the horizon; accordingly operations may change their positions to

another machine with longer process time, hence the makespan of schedule increases as a

result.

According to the Figure 2.11, the coefficients of extra lateness, 5 , holding, h, and

reallocating, co, and extra processing time, r, have quite similar trends in terms of

Cost/UC. They have lower impact of changes in Cost/UC than u, rj and 9 and they are

robust between 0.1 and 10.

58

Table 2.12: Sensitivity analysis of coefficients for new order arrival

Order arrival
Mks Dev U/C Cost Cost/UC Mks Dev VIC Cost Cost/UC

01
1

.5 10

50
100

0 1
1

m 10
50
100

01
1

h 10

50
100

0.1
1

e 10

50
100

62 316 78 400.2 5.13
63 537 87 544 6 25
63 334 69 1392 20.17
64 353 68 5282 77.68
64 353 68 10132 149

64 323 31 482 1 15.55
63 357 15 544 36 27

64 375 5 655 131
67 502 0 743 743
67 502 0 743 743

63 320 306 226 0 74
63 357 342 544 1.59
62 305 276 2965 10.74
62 305 276 14005 50.74
62 305 276 27805 100 74

62 338 1 5169 5169
63 357 3 544 18133
65 369 17 400 23.53

68 458 25 -485 -19.4
69 493 29 -2109 -72 72

0.1
1

w 10
50

100
0.1

1

n io
50
100
0 1

1

t 10
50
100

63 357 26 520 6 20.02
63 357 26 544 20 92
64 327 25 744 29.76
68 509 16 1578 98 63
70 508 13 2100 161.54

61 309 9 471.9 52.43
63 357 8 544 68

66 462 3 767 255 67
67 509 3 826 275.33
67 450 3 1051 350.33

63 357 34 513.4 15 1
63 357 34 544 16
62 282 22 616 28
61 229 12 924 77
61 263 8 1184 148

Sensitivity Analysis(OA)

0.1 1 10 50 100

Parameter Value

Figure 2.11: Cost of rescheduling changes due to changing the coefficients in case of new
order arrival.

59

2.8 Conclusions

This chapter has attempted to address a new practical method in rescheduling problems in

flexible manufacturing systems. For this purpose, a comprehensive cost measure is

developed in order to assess the negative impact of changes due to rescheduling actions.

A filtered beam search algorithm is applied in order to generate schedules in a cost-

efficient manner. An illustrative example is represented in order to compare the

performance of the proposed methodology with the traditional methods in the literature.

A sensitivity analysis is performed to evaluate the impact of each cost function parameter

on the optimal solution level. The conclusions can be outlined in the following points:

• Cost based rescheduling approach outperforms the traditional methods in terms of

rescheduling cost, while the updated schedules have competing efficiency and

acceptable stability compared with the updated schedules generated by other

methods.

• The difference in rescheduling cost between the cost based approach and other

methods are more significant for early disruptions.

• The efficiency of the updated schedules generated by the time based measures is

slightly better than the ones generated by the cost based measure, but as the time-

based measures fail to consider the effect of actual changes into the system, the

corresponding cost due to rescheduling by these criteria are higher than the cost-

based measure, which makes them impractical for implementation.

60

• Employing the cost based measure through the procedure of rescheduling may

ensure to generate schedules having the acceptable efficiency and stability, as the

cost function inherently includes of time based and stability based criteria. Hence,

the rescheduling cost can be used as a surrogate measure which incorporates the

both aspects of the time based and stability based measures.

• The results of sensitivity analysis reveals that the cost of expediting the material

and the coefficient of saving on due dates are key parameters in the proposed cost

function and changing them results in significant changes in the optimal solution.

61

Chapter 3

Cost based scheduling repair
in FMS using FBS

Responding to disruptions with total rescheduling (TR), explained in Chapter 2, may lead

to a new optimized schedule, but it creates system nervousness and causes high

operational cost due to substantial changes from the original schedule. For example,

performing TR in case of a job cancellation may cause significant changes in machine

allocation and starting times of operations. These changes create extra cost due to

expediting, holding and reallocating the material. In these cases, only modifying the

affected operations is preferable to total rescheduling where we optimize a time related

objective function.

Partial rescheduling or repair methods revise the disrupted schedule and generate

the updated schedule with minor deviations from the original one. This may help

generating the updated schedules with a lower rescheduling cost and fewer deviations

more rapidly than TR.

62

In this chapter, a real time scheduling repair methodology is developed in order to

respond to disruptions in a cost efficient manner in FMS environments. A modified

Filtered-Beam-Search-heuristic repair algorithm (MFBSR) is proposed to generate a pre-

specified number of cost efficient suboptimal repair schedules. For this purpose, the cost

measure developed in Chapter 2 is applied in generating the schedules with MFBSR. The

performance of the proposed repair methodology is compared with Total Rescheduling

(TR) and modified Affected Operations Rescheduling (mAOR) in terms of rescheduling

cost and makespan efficiency. A factorial experiment is performed to illustrate the effect

of different rescheduling methods on the performance levels for various types and

magnitude of disruptions at different flexibility levels of a manufacturing system. The

results reveal that the proposed repair methodology could be considered as a competitive

method to repair schedules in flexible manufacturing systems and to identify the decision

point to implement a total rescheduling approach.

3.1 Problem Statement

In this study, a flexible manufacturing system with partial flexibility is considered. There

are a number of jobs to be scheduled, each having a number of operations with alternative

machines capable of performing the same operation albeit with different processing

times. During the execution of the schedule, the following types of disruptions are

considered: machine breakdown, job cancellation, and new order arrival. At the time of

disruption (TOD), a repaired schedule will be generated based on the availability of the

machines and remaining available jobs while minimizing the rescheduling costs of

switching from the initial schedule. The initial schedule is generated using filtered beam

search method (FBS) according to a makespan based objective function [39] . The

63

updated schedule is generated by applying modified version of FBS, in order to minimize

the cost of rescheduling. Following are the assumptions considered in this study:

• The jobs are non-preemptive.

• An operation cannot be performed on more than one machine at the same time.

• Each machine cannot perform more than one operation at the same time.

• The machines are independent of each other and all are available at t=0.

• Machines' set-up times and material handling time are not considered.

• The jobs are independent of each other and can be done at any time separately.

• Processing time is deterministic and fixed during the horizon based on the process

plan.

The following section will describe the proposed FBS based methodology to

generate updated schedules. An illustrative example will follow where the proposed

methodology is compared with TR and mAOR under different disturbance scenarios,

system configuration levels, and performance metrics.

3.2 Cost based Repair Methodology Using FBS

FBS, which is explained in section 2.4.1, is an Al-based heuristic search method widely

used in scheduling/rescheduling problem in FMS environments due to its high quality of

solutions and calculation speed. An FBS-based total rescheduling (TR) methodology was

presented in Chapter 2 in order to generate the cost efficient updated schedules upon the

occurrence of disruptions. In this section, the FBS is employed in developing the partial

rescheduling methodology in order to repair the schedules cost-efficiently. Towards this

end, a filtered beam search heuristic based method called MFBSR is developed.

64

3.2.1 Heuristic based Repair Action

MFBSR is a modified version of FBS introduced by Wang et al. [39] which is applied to

generate several cost efficient repaired schedules. This method can be described as

follows:

In order to generate the updated schedule by MFBSR, the remaining operations

and availability of each machine need to be determined. We define the remaining

operations that have not begun by the time of disruption (TOD). This implies that the

operations which are in-progress at TOD should be completed first, and each machine's

available time is obtained as a result. For each disruption at TOD, the schedule has to be

repaired for the remaining operations.

Two main significant considerations have been made in branching procedure

(MNONDELAY) of FBS [39] to make the repaired schedule close to the initial one.

These modifications are as follows:

• It is considered that the sequence of selecting the schedulable operations is the

same as the sequence of their starting times in the initial schedule. This leads to

creating schedules with the lower deviation in the starting time of operations

compared to the initial one.

• It is assumed that operations are allocated to the same machine as the initial

schedule allocation. Keeping the same allocation of machines results in less

deviations and corresponding changes in the manufacturing system.

In this study, the proposed branching scheme named PMNondelay is explained

as follows:

65

Let PSi be a partial schedule containing / scheduled operations, simttal be a list of

all scheduled operations in the initial schedule sorted based on their starting times, slJ""'ia .

Let S/emp be the set of schedulable operations at level /, and S"ew be a subset of Si'emp

consisting of operations with minimum starting time according to the initial schedule. Let

sy
new be the earliest possible starting time of operation in the S"en, and sneH (i+i)j=snew

u+yu

in which y,y=mink (pyk). Mljk is the machine assigned to each operation in the initial

schedule, and M_avlk is the updated available time for machine k at TOD. The

PMNondelay procedure is explained as follows:

Step 1: Determiner* = mino ^lemp {s™to, }, and add the operations OtJ with s,jmt'al=T*in the

, ci new

set Si .

Step 2: Select an operation OtJ e S"ew, assign the Ml]k to it, and generate a new node

corresponding to partial schedule, in which 0,j is added to PSi. Update starting times as

s,jk"ew= Max (s,"ew, M_avlk) indicating that Ol} is allocated to machine k with a starting

time of sljk
new.

3.2.2 Proposed MFBSR algorithm

The procedural form of the MFBSR is given as follows:

Step 1: Initialization:

Let bn=0, 1=0; input beamwidth b, filterwidth f; input number of machines,

operations, and jobs; let the partial schedule PS/, initial schedule ISi, and remaining list

RLi be empty.

66

Step 2: Re-initialization:

(i) Let all machines availability be at the time of disruptions, M_avlk = TOD and go

to step 2 (ii).

(ii) Get the original schedule and put it into ISi and go to step 2 (iii).

(iii)For operations in ISi, if STyk< TOD, then add them to PSi and go to step 2 (iv);

else add them to RLi and go to step 2 (v).

(iv)Update machine availability (M_avlk) of the operations in PSi based on the type of

disruption and go to step 2 (vi).

(v) Update the RLi at TOD based on the type of disruptions.

(a) For order arrival, add the operations of new order to RLt.

(b) For job cancellation, remove the operations of cancelled job from RLi.

(vi)Let / be the number of operations in the PSi.

Step 3: Determining the beam nodes:

(i) Generate nodes from the root nodes by PMNondelay from RLf. Check the total

number of nodes generated N. Let 1=1+J, updated PSt and RLt with the generated

nodes.

(ii) If N< b, then go to the next level and generate nodes using PM_Nondelay with

PSi as a partial schedule, update PS/, update N. If N< b go to step 3(h); else go to

step 3(iii).

67

(iii)Compute the global evaluation function for each node and select the best b ones

(initial beam nodes). Determine the potential sets oiPSi(l), PSi(2),... PSi(b).

Step 4: bn=bn+l; if bn>b, then go to step 5; else go to step 4(i).

(i) For each initial beam node generated, form beam nodes of level / as follows:

(a) 1=1+1, if l>n, then go to step 4 (ii); else move on.

(b) Generate new nodes from the beam node according to PMNondelay with

PSi(n) as partial schedule.

(c) Compute the local evaluation function values for all nodes generated and

select/numbers of nodes with the best values for future evaluation

(d) Compute the global evaluation function values for /number of nodes, select

the nodes with the best value and add the node into the partial schedule

PSi(bn). Go to (a).

(ii) Formulate the bnXh. complete schedule PS (bn).

Step 5: Select the schedule with the best objective function value among the final b

schedules set; Stop.

The proposed methodology is described in details for three types of disruptions,

i.e., machine breakdown, order arrival, and job cancellation as follows:

68

3.2.2.1 Machine Breakdown

In case of machine breakdown at TOD, the pre-identified repair time is inserted into the

schedule for the failed machine and earliest available time of each machine is updated.

Having the remaining operations' starting time and machine availability, the system is

ready to be repaired for remaining operations. This action is carried out by MFBSR in

order to repair the existing schedule.

3.2.2.2 New Order Arrival

In case of a new order arrival to the system at TOD, all operations of the new job are

considered as regular remaining operations to be repaired by MFBSR. The new

operations are put in the set of schedulable operations and are scheduled to minimize the

rescheduling cost.

3.2.2.3 Job Cancellation

When a job is cancelled at TOD, all the remaining operations of the cancelled jobs are

removed. If an operation of the cancelled job is in-progress, it is stopped at TOD and the

remaining part is removed. Lastly, all the remaining operations are repaired by MFBSR.

3.3 Experimental Design

A factorial experimental analysis is carried out on the three mentioned types of

disruptions to evaluate the performance of the proposed repair methodology. The quality

of the methodology is compared with mAOR and total rescheduling (TR) with respect to

rescheduling cost and efficiency measures. Moreover, the effects of various disruption

scenarios and system flexibility levels on the performance metrics are studied.

69

3.3.1 Experimental Factors

After a careful study of the relevant literature and problem characteristics, four

experimental factors are selected: rescheduling method, timing of disruption, magnitude

of disruption, and flexibility of the system.

• Reactive scheduling Method (MTD): This factor is used to identify the effects of

different rescheduling methods on the performance levels of updated schedules.

• Time of the disruption (TIM): This factor refers to the time of occurrence of the

disruptions relative to the makespan. This timing can be early or late during the

horizon.

• Magnitude of the disruption (MAG): The magnitude of disruptions is considered

as the number of disruptions that occurs at the time of disruption.

• Flexibility of the system (FLX): Flexibility of the system is defined as the average

number of capable machines for each operation.

3.3.2 Dimensions of the experiments

MTD has three treatment levels reflecting the proposed methodology, TR and mAOR.

For the remaining factors, two levels of treatment, low and high, are specified as shown

in Table 3.1. This results in 23=8 experimental combinations for each type of disruption

and method. The designed experiments shown in Table 3.2 are performed in ten

replications. The assumptions regarding the occurrence of each type of disruption are as

follows:

• Machine breakdown: A machine is selected to fail randomly.

70

• New order arrival: It is supposed that a new order is randomly selected from the

existing set of jobs.

• Order cancellation: A job is randomly selected to be cancelled.

The values of initial schedule parameters are the same as the ones used in Chapter

2 as shown in Table 2.6. The selected coefficients of the proposed rescheduling cost

functions are given in Table 2.3.

Table 3.1: Levels of experiment

Experimental factor Level 1 (Low) Level 2 (High)

Time of disruption (TIM) 60-90% of makespan 5-40% of makespan
Late Early

Magnitude of disruption (MAG)

Machine , , • , , , „ , ,
, , 1 machine breakdown 3 machine breakdown

breakdown

Repair Time: Uniformly Distributed [5,10]

New order . , . ,
. , 1 order arrival 3 order arrival

arrival
,, . 1 job cancellation 3 job cancellation

cancellation

Felxibility of system (FLX)

30-40% system flexibility 80-100% system flexibility
2.1 - 2.8 mach/operation 5.6 - 7 mach/operation

Table 3.2 : Experimental combinations

Expt. No.

1
2
3
4
5
6
7
8

FLX

Low
Low
Low
Low
High
High
High
High

MAG

High
High
Low
Low
High
High
Low
Low

TIM

Early
Late
Early
Late
Early
Late
Early
Late

71

3.3.3 Performance measures

3.3.3.1 Efficiency

Efficiency of the updated schedule is defined as a percentage change in its makespan with

respect to the initial schedule [13,18] as shown in Equation (2-12).

3.3.3.2 Rescheduling Cost

The cost function developed in Section 2.3 is used as a performance measure to compare

the rescheduling cost of different methods in various circumstances. It should be noted

that, during the experiments, rescheduling cost is used as an objective function in

generating the schedules by TR and MFBSR. In order to compare the rescheduling cost

among methods, the amount resulting from TR is considered as a base level. Then, the

performance levels of mAOR and MFBSR are expressed as a percentage relative to this

base level. Considering the rescheduling cost as a performance measure allows

incorporating the characteristics of stability measure through Equations (2-6, 2-7 and 2-8)

as well as schedule efficiency measures, i.e., due dates and makespan through Equations

(2-4 and 2-5). Therefore, the rescheduling cost and efficiency are considered in this study

to evaluate the performance of the updated schedules.

3.4 Experiment Results

This section outlines the results of experiments outlined in Table 3.2. The average change

in performance metrics as a result of changing the level of each factor are represented for

each type of disruption. The main effect of changing the flexibility levels of the system

(FLX) at different factors' levels is studied. All the algorithms are coded in JAVA,

72

Eclipse V.3.5.1. Figures 3.1-3(a,b) show the effects of different methods (MTD) on

efficiency and rescheduling cost, for each disruption type.

3.4.1 Machine Breakdown

The results for machine breakdown show that, the efficiency of MFBSR is always

dominant to mAOR as shown in Figure 3.1(b). This is because the MFBSR algorithm

performs local and global search for each of the remaining operation in order to generate

a cost efficient updated schedule. In addition, as shown in Figure 3.1(a), MFBSR

performs better than mAOR in terms of rescheduling cost for late disruptions

(Experiments 2, 4, 6, and 8). In early disruptions, MFBSR results in a higher

rescheduling cost than mAOR. This is due to the fact that in the early stages of a schedule

there is higher number of operations to be reallocated.

Comparing the efficiency of TR and MFBSR, Figure 3.1(b) shows that in

Experiments 6 and 8, TR performs better and creates schedules with lower makespan

than MFBSR while also resulting in low cost as indicated in Table 3.3. These cases refer

to the late disruptions in a high flexible system. In those cases, TR may create schedules

with lower makespan and also lower cost by exploiting flexibility of the manufacturing

system. For early disruptions, the TR reallocates operations to alternative machines

which require longer processing time, due to the fact that the initial schedule was

generated based on SPT.

The results also reveal that, by increasing the flexibility level of the system, the

efficiency of the updated schedules by TR is increased. Figure 3.1(b) represents that the

efficiencies of Experiments 5, 6, 7, and 8 when generated by TR are higher than

Experiments 1, 2, 3, and 4. Fahmy et al. [13] also mention that introducing flexibility into

73

the system results in increasing efficiencies of updated schedules. In a low flexible

system, since there is not enough alternative for operations to switch, the makespan and

cost of TR are higher than MFBSR.

The results also show that flexibility level has direct impact on the rescheduling

cost. Table 3.5 shows that the cost of rescheduling in a highly flexible system is less than

rescheduling cost in a low flexible system regardless of the rescheduling method.

Table 3.3: Rescheduling cost performance of disruption scenarios

Disruption
Machine breakdown Job cancellation Order arrival

:riment
1
2
3
4
5
6
7
8

TR
4112.9
1415.8
3402.6
960.4

2920.4
800.3

2604.7
369.2

mAOR
1705.6
1482.7
1388.9
628.2

2270.2
1056.1
1582.3
431.8

MFBSR
2472.3
1244.4
1954.9
516.5

2283.2
881.1
1857.3
333.2

TR
1352.5
482.1
1957.6
432.5
1019.2
117.4

1239.5
108.9

mAOR
1644.8
286.4
619.6
71.8

1244.2
59.2

524.4
31.8

MFBSR
2035.9
291.1
1401.4
129.2

1541.6
55.8

995.7
36.7

TR
7295

3915.2
3343.3
1708.1
5826.2
2077.9
2812.2
932.6

mAOR
4238.4
2882.4
1699.8
1333.2
2779.2
1689.6
1233
934.8

MPBSR
5220.9
3377.5
2440.1
1187.1
4337.4
1862.9
1973.8
854.1

74

40

20

60
c
"5
01

o
(J

-20

-40

-60

-80

100

95

>•
c
<u
u
i t
LU

qo -

85 •

80 t -

75

Machine Breakdown (Cost)

.a
n

u

4 5 6

Experiment No.

(a)

Machine Breakdown (Efficiency)

f\^

4 5

Experiment No.

(b)

a % Cost(TR)

m % Cost(mAOR)

• %Cost(MFBSR)

-• —
s

s

-I

i ;

. Eff(TR)

D , Eff(mAOR)

, Eff(MFBSR)

Figure 3.1: Machine breakdown: (a) cost of rescheduling; (b) efficiency.

75

3.4.2 Job Cancellation

The results for job cancellation show that MFBSR outperforms mAOR in terms of

efficiency as shown in Figure 3.2(b). For late disruptions, Figure 3.2(a) shows that

MFBSR generates similar cost levels compared to mAOR while dominating in

efficiency regardless of the magnitude. Therefore, MFBSR should be preferred in

responding late job cancellations.

For early and high magnitude disruptions, TR is capable of generating low

rescheduling costs while keeping the efficiency levels close to the original makespan.

This means that if there is early and significant job cancellations a TR approach should

be preferred. For early and low magnitude disruptions, repair methods tend to work well

in terms of efficiency and cost.

It can be seen from Figure 3.2(b) that, by increasing the flexibility level of the

system, the efficiency of TR is significantly improved. Hence, the gap between the

efficiency of TR and others is decreased as a result. Similarly, the rescheduling cost of

updated schedules decreases by enhancing flexibility level of the system regardless of

rescheduling method.

76

M
C
"5
•a <u
sz
u
in
0)

DC

60

40

20

*_ 20

O
U 40

60

80

Id

Job Cancellation(Cost)

I"

• i

% Cost(TR)

D%Cost(mAOR)

• % Cost(MFBSR)

100

108

106 -

104

>- 102 u
0)
c

It
UJ

100

98

96 f-

94

92 -'-

y

3 4 5

Experiment No.

(a)

Job Cancellation (Efficiency)

1

£•.

;>J

tt
Kf

3 4 5

Experiment No.

(b)

% Eff(TR)

D%Eff(mAOR)

• % Eff(MFBSR)

Figure 3.2 : Job cancellation: (a) cost of rescheduling; (b) efficiency

77

3.4.3 New order arrival

The results of the new order arrival in Figure 3.3(b) show that, the efficiency of updated

schedules by MFBSR is significantly higher than the ones generated by mAOR. As

shown in Figure 3.3(a), adding the new orders to the end by mAOR may create lower

rescheduling cost; however, the differences between the efficiencies of the updated

schedules are significant. In case of a new regular order arrival, mAOR checks the

available slots in the original schedule against the processing time of new jobs'

operations. If there is an available slot, the operation is allocated; otherwise, it is

allocated at the end of original schedule [11]. In other words, mAOR keeps the initial

schedule the same and update it by adding the new operations in a suitable position.

Hence, the schedules generated by this method have minimal deviations from the original

one, at the expense of makespan.

It can be seen from Figure 3.3(b) that the efficiency of updated schedules by

MFBSR is slightly better than the ones updated by TR in early disruptions. In late

disruptions, the efficiency of TR is slightly better than MFBSR, due to exploiting the

flexibility in rescheduling process. But in terms of rescheduling cost, Table 3.3 shows

that TR is always much worse than MFBSR. As a result, MFBSR is an effective method

in dealing with order arrivals compared to TR approach.

78

Order Arrival (Cost)

cuo
c
3

TJ
01

-C
u (/» 01

CC

**-o

o
u
s?

0 -

10

20 -

30 -

40

50 4

,

60

4 5 6 7

Experiment No.

(a)

% Cost(TR)

D % Cost(mAOR)

• % Cost(MFBSR)

95

90

Order Arrival (Efficiency)

85

01
£
3 80

3=

5?

75

70

65

4 5

Experiment No.

(b)

I *

f t % Eff(TR)

• % Eff(mAOR)

if » % Eff(MFBSR)

Figure 3.3: Order arrival- (a) cost of rescheduling, (b) efficiency

79

3.5 Conclusions

This chapter introduced a cost based reactive methodology for repairing the schedules on

FMS environments using a modified FBS algorithm. The FBS is also employed in

generating the initial schedules and the updated schedules by total rescheduling (TR). A

compound cost measure is developed to incorporate the competing effects of efficiency

and stability and assessing the negative impact of changes due to rescheduling. This

measure could be used as an objective function in generating cost-efficient schedules. An

extensive comparative study is done in order to evaluate performance of the proposed

repair method with other rescheduling methods from literature. The conclusions can be

outlined in the following points:

• MFBSR noticeably outperforms the mAOR method in terms of efficiency of the

updated schedules. The difference is more significant in early disruptions.

• Regardless of the approach used, increasing the flexibility level of the system

results in a lower rescheduling cost.

• For early disruptions, while mAOR creates the updated schedules with lower

rescheduling cost, MFBSR performs significantly better in terms of efficiency

while its rescheduling cost is better than TR.

• For late disruptions, the gap between rescheduling cost of mAOR and MFBSR

decreases, while MFBSR keeps the efficiency of updated schedules higher.

• In a highly flexible system, TR performs better in terms of efficiency for late

disruptions while the rescheduling cost associated with these schedules are higher

than the ones generated by repair methods.

80

• The efficiency of the updated schedules generated by the repair methods

decreases by increasing the flexibility level of the system. The initial schedules

generated in a low flexible system have lower machine utilization and result in a

higher makespan compared to a system with increased flexibility. This is due to

the slack times in the initial schedules resulting from low flexibility. Hence, if the

robustness is the primary concern, introducing slack times into the schedule

generates better results than introducing flexibility.

81

Chapter 4

Conclusions and Future work
direction

Updating the production schedule in order to respond to uncertainties and disturbances is

a crucial task in flexible manufacturing systems. Traditional rescheduling methods are

designed based on either time based criterion in order to satisfy customers' needs and

production rate, or stability based criterion to minimize the changes due to rescheduling.

These two criteria are contradictory objectives, which mean that improving one may lead

to degrading the performance of the other one. Hence, the first objective of this thesis is

to develop a proficient measure, called the rescheduling cost, in order to comprise all

aspects of the former measures whilst considering the corresponding cost of rescheduling

action. Second, a cost based rescheduling methodology has been developed to totally

reschedule the system at the time of each disruption. Third, a cost-based scheduling

repair methodology has been introduced to generate the updated schedules with fewer

82

changes, less cost and in faster speed than TR. Unlike the traditional repair

methodologies, the proposed scheduling repair approach generates the updated schedule

based on an optimization procedure, which minimizes the rescheduling cost to enhance

the quality of the updated schedules. In order to achieve these objectives, the following

issues have been explored within this work:

• First, a new cost function has been developed representing the cost of

rescheduling action in FMS environments. The cost function incorporates the

aspects of time based and stability based measures and can be used as an objective

function in generating the updated schedules.

• Second, a cost based total rescheduling methodology has been presented by using

the proposed cost function into a filtered beam search heuristic algorithm process

in order to generate cost efficient updated schedules.

• Third, a cost based scheduling repair methodology has been developed by using

the proposed cost function into a modified filtered beam search algorithm process

in order to generate cost-efficient updated schedules.

• The case studies and experimental design have been performed in order to

validate and compare the results of each objective with other methods in the

literature.

The outcome of these methods is a cost-efficient updated schedule responds to

various types of disruptions and circumstances in FMS environments.

83

4.1 Conclusions

A factorial design of experiment has been presented for each objective of this thesis in

order to demonstrate the use of the developed approaches and compare their performance

with similar approaches in the literature. The following results can be pointed out from

this research:

1. The results of the cost based rescheduling approach show the advantage of using

the rescheduling cost as a performance measure in generating the updated cost-

efficient schedules in FMS environments. The updated schedules generated by TR

and MFBSR in cost based approach outperform other approaches in the literature.

2. Using the rescheduling cost as a performance measure results in generating the

updated schedules that have an acceptable level of efficiency and stability, as the

rescheduling cost function inherently consists of time based and stability based

criteria.

3. The efficiency of the updated schedules generated by the time based measures are

slightly better than the efficiency of the ones generated by the cost based

approach. However, due to increased level of changes in rescheduling process, the

corresponding rescheduling cost are much higher than cost based approach

schedules, which makes them impractical to implement in FMS environments.

4. The efficiency of the updated schedules by the proposed repair approach

(MFBSR) is noticeably higher than the ones generated by traditional repair

approach (mAOR). It has been shown that for early disruptions, this deference is

more significant.

84

5. The rescheduling cost of updating the schedules by mAOR is lower than MFBSR

and TR, especially for early disruptions. As the method only shifts the affected

operations when responding to disruptions, the corresponding changes and

rescheduling cost would be lower than TR and MFBSR as a result. Hence, mAOR

would fail in satisfying the efficiency criteria.

6. Increasing the flexibility level of the system results in decreasing the cost of

rescheduling action regardless of methods and approaches.

7. By comparing the results of TR and MFBSR for each disruption scenario, the

cost-efficient methodology for handling disruptions in FMS has been presented.

This thesis shows that if a disruption occurs late in a highly flexible system, TR

performs better in terms of efficiency of the updated schedules while their

corresponding rescheduling cost is higher than the ones generated by MFBSR.

For other cases of disruption scenarios, MFBSR could be the choice as it

generates schedules with higher efficiency than mAOR whilst the corresponding

rescheduling cost is comparable.

8. Introducing the slack time into the initial schedule generation procedure to make

the schedule robust, results in better efficiency of the updated schedules than

introducing flexibility into the system.

85

4.2 Future research directions

The following topics can be further explored for extension of the present research work:

1. Using the cost based approach in order to develop a reactive scheduling tool in

responding to multiple disruptions in FMS environments. This can be performed

by assigning the more values to the cost function parameters for the short term

period after a disruption, in order to reduce the effects of immediate changes in

the schedule.

2. Comparing the cost of introducing slack time in schedule generation with the cost

of investing in system flexibility in order to reduce rescheduling costs.

3. Additional types of disruption can be studied using the cost based approach in

order to investigate the performance of the updated schedules.

86

Bibliography

[1] Vieira GE, Herrmann JW, Lin E. Rescheduling manufacturing systems: a framework

of strategies, policies, and methods. Journal of Scheduling. 2003;6(l):39-62.

[2] Groover MP. Automation, production systems, and computer-integrated

manufacturing. Upper Saddle River, N.J.: Prentice Hall, 2008.

[3] Hassanzadeh P, Maier-Speredelozzi V. Dynamic flexibility metrics for capability and

capacity. International Journal of Flexible Manufacturing Systems. 2007; 19(3): 195-

216.

[4] Dutta A. Reacting to scheduling exceptions in FMS environments. HE Transactions

(Institute of Industrial Engineers). 1990;22(4):300-314.

[5] Abumaizar RJ, Svestka JA. Rescheduling job shops under random disruptions.

International Journal of Production Research. 1997;35(7):2065-2082.

87

[6] Sabuncuoglu I, Karabuk S. A beam search-based algorithm and evaluation of

scheduling approaches for flexible manufacturing systems. HE Transactions.

1998;30(2): 179-91.

[7] Shafaei R, Brunn P. Workshop scheduling using practical (inaccurate) data - Part 1:

The performance of heuristic scheduling rules in a dynamic job shop environment

using a rolling time horizon approach. International Journal of Production Research.

1999;37(17):3913-3925.

[8] Shafaei R, Brunn P. Workshop scheduling using practical (inaccurate) data Part 2: An

investigation of the robustness of scheduling rules in a dynamic and stochastic

environment. InternationalJournal of Production Research. 1999;37(18):4105-4117.

[9] Min HK, Yeong-Dae Kim. Simulation-based real-time scheduling in a flexible

manufacturing system. Journal of Manufacturing Systems. 1994;13(2):85-93.

[10] Jain AK, Elmaraghy HA. Production scheduling/rescheduling in flexible

manufacturing. International Journal of Production Research. 1997;35(l):281-309.

[11] Subramaniam V, Raheja AS. mAOR: A heuristic-based reactive repair mechanism

for job shop schedules. International Journal of Advanced Manufacturing

Technology. 2003;22(9):669-680.

[12] Suwa H, Sandoh H. Capability of cumulative delay based reactive scheduling for job

shops with machine breakdowns. Computers & Industrial Engineering.

2007;53(l):63-78.

88

[13] Fahmy SA, Balakrishnan S, Elmekkawy TY. A generic deadlock-free reactive

scheduling approach. International Journal of Production Research.

2009;47(20):5657-5676.

[14] Sabuncuoglu I, Goren S. Hedging production schedules against uncertainty in

manufacturing environment with a review of robustness and stability research.

International Journal of Computer Integrated Manufacturing. 2009;22(2): 138-157.

[15] Te-Wei Chiang, Hai-Yen Hau. Cycle detection in repair-based railway scheduling

system. In: Proceedings of IEEE International Conference on Robotics and

Automation, vol. 3. New York, NY, USA: IEEE, 1996. 2517-22.

[16] Hall NG, Potts CN. Rescheduling for new orders. Operations research.

2004;52(3):440-453.

[17] Li L, Jiang Z. Self-adaptive dynamic scheduling of virtual production systems.

International Journal of Production Research. 2007;45(9): 1937-1951.

[18] Subramaniam V, Raheja AS, Rama BR. Reactive repair tool for job shop schedules.

International Journal of Production Research. 2005;43(1): 1 -23.

[19] Honghong Y, Zhiming W. The application of adaptive genetic algorithms in FMS

dynamic rescheduling. International Journal of Computer Integrated Manufacturing.

2003;16(6):382-97.

89

[20] Wang Shi-jin, Xi Li-feng, Zhou Bing-hai. Filtered-beam-search-based algorithm for

dynamic rescheduling in FMS. Robotics and Computer-Integrated Manufacturing.

2007;23(4):457-68.

[21] Sabuncuoglu I, Erel E, Gocgun Y. Analysis of serial production lines:

Characterisation study and a new heuristic procedure for optimal buffer allocation.

InternationalJournal of Production Research. 2006;44(13):2499-2523.

[22] Church LK, Uzsoy R. Analysis of periodic and event-driven rescheduling policies in

dynamic shops. International Journal of Computer Integrated Manufacturing.

1992;5(3):153-63.

[23] Fang J, Xi Y. Rolling horizon job shop rescheduling strategy in the dynamic

environment. International Journal of Advanced Manufacturing Technology.

1997;13(3):227-232.

[24] Sabuncuoglu I, Kizilisik OB. Reactive scheduling in a dynamic and stochastic FMS

environment. International Journal of Production Research. 2003;41 (17):4211 -4231.

[25] Aytug H, Lawley MA, McKay K, Mohan S, Uzsoy R. Executing production

schedules in the face of uncertainties: A review and some future directions. European

Journal of Operational Research. 2005;161(1):86-110.

[26] Sabuncuoglu I, Goren S. Hedging production schedules against uncertainty in

manufacturing environment with a review of robustness and stability research.

International Journal of Computer Integrated Manufacturing. 2009;22(2): 138-157.

90

[27] Sabuncuoglu I, Karabuk S. Rescheduling frequency in an FMS with uncertain

processing times and unreliable machines. Journal of Manufacturing Systems.

1999;18(4):268-83.

[28] Yamamoto M, Nof SY. Scheduling/rescheduling in the manufacturing operating

system environment. International Journal of Production Research. 1985;23(4):705-

722.

[29] Wu SD, Eui-Seok Byeon, Storer RH. A graph-theoretic decomposition of the job

shop scheduling problem to achieve scheduling robustness. Operations research.

1999;47(1):113-24.

[30] Wu SD, Erkoc M, Karabuk S. Managing Capacity in the High-Tech Industry: A

Review of Literature. The Engineering Economist: A Journal Devoted to the

Problems of Capital Investment. 2005;50(2):125.

[31] Raheja AS, Subramaniam V. Reactive recovery of job shop schedules - A review.

International Journal of Advanced Manufacturing Technology. 2002; 19(10):756-763.

[32] Jensen MT. Generating robust and flexible job shop schedules using genetic

algorithms. Evolutionary Computation, IEEE Transactions on. 2003;7(3):275-288.

[33] Wu SD, Storer RH, Pei-Chann Chang. One-machine rescheduling heuristics with

efficiency and stability as criteria. Computers & Operations Research. 1993;20(1):1-

14.

91

[34] WANG K. A resource portfolio model for equipment investment and allocation of

semiconductor testing industry. European Journal of Operational Research.

2007;179(2):390.

[35] Low C, Yip Y, Wu T. Modelling and heuristics of FMS scheduling with multiple

objectives. Computers and Operations Research. 2006;33(3):674-694.

[36] Min-Hong Han, Yoon KN, Hogg GL. Real-time tool control and job dispatching in

flexible manufacturing systems. International Journal of Production Research.

1989;27(8):1257-67.

[37] Hutchison J, Leong K, Snyder D, Ward P. Scheduling approaches for random job

shop flexible manufacturing systems. International Journal of Production Research.

1991;29(5):1053-67.

[38] Caumond A, Lacomme P, Moukrim A, Tchernev N. An MILP for scheduling

problems in an FMS with one vehicle. European Journal of Operational Research.

2009;199(3):706-22.

[39] Wang S, Zhou B, Xi L. A filtered-beam-search-based heuristic algorithm for flexible

job-shop scheduling problem. International Journal of Production Research.

2008;46(ll):3027-3058.

[40] Pierreval H, Mebarki N. Dynamic selection of dispatching rules for manufacturing

system scheduling. International Journal of Production Research. 1997;35(6): 1575-

1591.

92

[41] Blackstone Jr. JH, Phillips DT, Hogg GL. A state-of-the-art survey of dispatching

rules for manufacturing job shop operations. International Journal of Production

Research. 1982;20(1):27.

[42] Stecke KE, Solberg JJ. Loading and control policies for a flexible manufacturing

system. International Journal of Production Research. 1981; 19(5):481 -90.

[43] Ishii N, Talavage JJ. A transient-based real-time scheduling algorithm in FMS.

International Journal of Production Research. 1991 ;29(12):2501 -20.

[44] Chan FTS, Chan HK, Lau HCW, Ip RWL. Analysis of dynamic dispatching rules for

a flexible manufacturing system. In: 9th International Manufacturing Conference,

vol. 138. Switzerland: Elsevier, 2003. 325-31.

[45] Pierreval H, Mebarki N. Dynamic selection of dispatching rules for manufacturing

system scheduling. International Journal of Production Research. 1997;35(6):1575-

91.

[46] Balogun OO, Popplewell K. Towards the integration of flexible manufacturing

system scheduling. International Journal of Production Research. 1999;37(15):3399-

428.

[47] Brandimarte P. Routing and scheduling in a flexible job shop by tabu search. Annals

of Operations Research. 1993;41(l-4): 157-83.

93

[48] Dauzere-Peres S, Paulli J. An integrated approach for modeling and solving the

general multiprocessor job-shop scheduling problem using tabu search. Annals of

Operations Research. 1997;70:281-306.

[49] Najid NM, Dauzere-Peres S, Zaidat A. A modified simulated annealing method for

flexible job shop scheduling problem. In: 2002 IEEE International Conference on

Systems, Man and Cybernetics, October 6, 2002 - October 9, vol. 5. Yasmine

Hammamet, Tunisia: Institute of Electrical and Electronics Engineers Inc, 2002. 89-

94.

[50] Xia W, Wu Z. An effective hybrid optimization approach for multi-objective flexible

job-shop scheduling problems. Computers & Industrial Engineering. 2005;48(2):409-

25.

[51] Ow PS, Morton TE. Filtered beam search in scheduling. International Journal of

Production Research. 1988;26(l):35-62.

[52] De S, Lee A. Flexible manufacturing system (FMS) scheduling using filtered beam

search. Journal of Intelligent Manufacturing. 1990; 1(3): 165-83.

[53] Liu J, MacCarthy BL. Classification of FMS scheduling problems. International

Journal of Production Research. 1996;34(3):647-656.

[54] Li R, Shyu Y, Adiga S. Heuristic rescheduling algorithm for computer-based

production scheduling systems. International Journal of Production Research.

1993;31(8):1815-1826.

94

[55] Wu H-, Li R-. New rescheduling method for computer based scheduling systems.

International Journal of Production Research. 1995;33(8):2097-2110.

[56] Olumolade MO, Norrie DH. Reactive scheduling system for cellular manufacturing

with failure-prone machines. International Journal of Computer Integrated

Manufacturing. 1996;9(2): 131 -44.

[57] Bean JC, Birge JR, Mittenthal J, Noon CE. Matchup scheduling with multiple

resources, release dates and disruptions. Operations research. 1991;39(3):470-470.

[58] Akturk MS, Gorgulu E. Match-up scheduling under a machine breakdown.

European Journal of Operational Research. 1999;112(l):81-97.

[59] Mason SJ, Jin S, Wessels CM. Rescheduling strategies for minimizing total

weighted tardiness in complex job shops. International Journal of Production

Research. 2004;42(3):613-628.

[60] Mehta SV, Uzsoy RM. Predictable scheduling of a job shop subject to breakdowns.

IEEE Transactions on Robotics and Automation. 1998;14(3):365-78.

[61] Hoitomt DJ, Luh PB, Pattipati KR. Practical approach to job-shop scheduling

problems. IEEE Transactions on Robotics and Automation. 1993;9(1):1-13.

[62] Sotskov Y, Sotskova N, Werner F. Stability of an optimal schedule in a job shop.

Omega. 1997;25(4):397-414.

[63] Leon VJ, Wu SD, Storer RH. Robustness measures and robust scheduling for job

shops. HE Transactions. 1994;26(5):32-43.

95

[64] Daniels RL, Kouvelis P. Robust scheduling to hedge against processing time

uncertainty in single-stage production. Management Science. 1995;41(2):363-76.

[65] Goren S, Sabuncuoglu I. Robustness and stability measures for scheduling: single-

machine environment. HE Transactions. 2008;40(l):66-83.

[66] Gan H-, Wirth A. Comparing deterministic, robust and online scheduling using

entropy. InternationalJournal of Production Research. 2005;43(10):2113.

[67] Kopanos GM, Capon-Garcia E, Espuna A, Puigjaner L. Costs for rescheduling

actions: A critical issue for reducing the gap between scheduling theory and practice.

Industrial and Engineering Chemistry Research. 2008;47(22):8785-8795.

[68] Naseri E, Kuzgunkaya O. Cost-based Rescheduling in a Flexible Manufacturing

System Using Filtered-Beam Search. In: Proceedings of the IERC 2010: HE, 2010.

[69] Naseri E, Kuzgunkaya O. Cost Effective Handling of Disruptions in Production

Management. In: Proceedings of 21st POMS Annual Conference, 2010. 015-855.

[70] Sabuncuoglu I, Bayiz M. Job shop scheduling with beam search. European Journal

of Operational Research. 1999;118(2):390-412.

[71] Baker KR. Introduction to sequencing and scheduling. Chichester, Sussex, UK:

Wiley, 1974.

[72] Hillier FS, Lieberman GJ. Introduction to operations research. Boston: McGraw-Hill

Higher Education, 2005.

96

Appendices

Appendix A: JAVA model for TR in case of
Disruptions (MB- JC-OA)

97

import java.10.BufferedWriter;
import java.10.File;
import 3ava.10.FileNotFoundException;
import 3ava.10.FileWriter;
import java.10.IOException;
import java.util.Iterator;
import]ava.util.LinkedList;
import 3ava.util.Locale;
import 3ava.util.Scanner;

import 3xl. Sheet;
import 3x1.Workbook;
import 3x1.WorkbookSettmgs;
import 3x1.read.biff.BiffException;

public class mamclass {
static final int MaxStartTime=200000;
static final int MaxProcessTime=200000;
static final int MNum=l;
static final int JNum=20;
static final int 0Num=5;
static final int BearnWidth=15 ;
static final int FilterWidth=25 ;
static int[][] ProcessTime;
static final double[] ai={0.1, ,0.1};
static final int tnow=10; //time of disruptions
static final int [] broken_mdex-{ 4 } ;
static final int[] repair_time={4] ;
static final int [] broken_j_mdex= {15 } ;
static final int amval_job_size=l;
static node mitial_node;
static final double[] delta={12, ,12}; //penalty cost of lateness
static final double[]save={12, ,12}; //saving on due dates
static final double [] jnio={10, ,10}; //Cost of expediting
static final double[] h={l, ,1}; //Cost of holding
static final int omega=4; //Cost of reallocating
static final double[] eta={6, ,6}; //Cost of idle time
static final double tilda=6; //cost of extra PT

public static void mam (String [] args) throws
CloneNotSupportedException, BiffException, IOException{

imtialise_process__time_table ("C: \\Documents and
Settmgs\\Administrator\\Desktop\\Test_problems\\initial-input.xls");

mi tial__node = initialise start nodes ("C: WDocuments and
Settings\\Administrator\\Desktop\\Test_problems\\mitial-output. xls") ;

node s= (node) imtial_node. clone () ;
s.level=0;
for (int i=0; i<MNum;i++)s.available_time[l]=tnow;
for(mt i=0;i<JAfuin;i + +) {

for(int j=0;j<ONum;j++){
i n t mmdex = s . 0 [i] []] [!] , •
i f (mmdex ' =MNum) {

i f (s . O [i] [3] [0]>=tnow) {
s . O [i] [3] [0] = - l ;
s . O [i] [3] [1] = - 1 ;

s . C o m p l e t i o n T i m e [1] []] = - ! ;

98

file:////Documents
file:///Admini

f o r (i n t k = 0 ; k<broken_j_mdex. l e n g t h ; k++) {
i f (i==broken_j_mdex [k]) {

s . O [i] [j] [0] = 0 ;

s . O [i] [3] [l]=MNum;

s.level++;
}

}
} e l s e {
b o o l e a n b r o k e = f a l s e ;
f o r (i n t k = 0 ; k < b r o A - e n _ j _ i r ! d e x . l e n g t h ; k++) {

i f {x==broken_j__mdex [k]) {
b r o k e = t r u e ;
}

}
d o u b l e e n d _ t i m e = s . C o m p l e t i o n T i m e [1] [j] ;

i f { ' b r o k e) {
i f (s . a v a i l a b l e _ t i m e [m m d e x] < e n d t i m e) s . a v a i l a b l e s t l m e [m m d e x] = e n d t i m e ;
} e l s e {
i f (s . a v a i l a b l e ^ t i m e [m m d e x] < e n d t i m e) {
s . a v a i l a b l e _ t i m e [m m d e x] = M a t h . mm { e n d _ t i m e , tnow) ;

}
}
s . l e v e l + +;

}
}

}
}
/ / s e t a v a i l a b l e t i m e f o r b r o k e n m a c h i n e s
f o r f i n t i = 0 ; ±<broken_mdex. l e n g t h ; 1++) {

i n t m i n d e x = broken__mdex [1] ;
d o u b l e r t i m e = repair_time[x] ;
i f (s . a v a i l a b l e _ t i m e [m m d e x] >tnow) {

s . a v a i l a b l e _ t i m e [m m d e x] + = r t i m e ;
} e l s e {
s . a v a i l a b l e _ t i m e [m m d e x] = t z i o w + r t i m e ;

}
}
f o r (i n t i=JNum;i<JNum+arrival_job_size;1 + +) {

f o r (i n t j=0;j<ONum;j++){
s - 0 [i] [3] [0] = - l ;
s - 0 [i] [D] [1] = - 1 ;
s . C o m p l e t i o n T i m e [1] [3] = - ! ;

}
}

L m k e d L i s t < n o d e > n e w l i s t = mitialize_list (s) ;
F i l e m t o u t = n e w F i l e ("C : W D o c u m e n t s a n d

S e t t m g s \ \ A d m i n i s t r a t o r \ \ D e s k t o p \ \ T e s t _ p r o b l e m s \ \ i n t o u t i n i t i a l 2 . t x t ") ;
B u f f e r e d W r i t e r o u t = n e w B u f f e r e d W r i t e r (n e w F i l e W r i t e r (m t o u t)) ;
I t e r a t o r < n o d e > temp = n e w l i s t . i t e r a t o r () ;

i n t lmin=0Num* (JNum+arrival_job_size) ;
w h i l e (t e m p . h a s N e x t ()) {

m t l e v e l = t e m p . n e x t () . l e v e l ;
i f (l e v e l < l m m) l m m = l e v e l ;

}
f o r (i n t l e v e l = l m m + l ; level<=OWu2?)* (JNum+arr i val_job__size) ; l e v e l + +) {

o u t . w r i t e (" D o b \ t o p e r \ t m \ t s t \ t f \ t w l \ t w 2 \ t w 3 \ t l e v e l \ n ") ;
S y s t e m . o u t . p r i n t ("] o b \ t o p e r \ t m \ t s t \ t f \ t w l \ t w 2 \ t w 3 \ t l e v e l \ n ") ;

99

file:///tm/t
file:///twl/tw2/tw3/tlevel/n
file:///tm/tst
file:///tw3/t

System.out.printIn(level);
newlist = branch_bound(newlist) ;
temp = newlist.iterator();
while (temp.hasNext()){

out.write("\t\t\t\t\t\t\t\t" + level + "\n") ;
System.out.print("\t\t\t\t\t\t\t\t" + level+"\n") ;

out.write(temp.next().toString()+"\n");
out.write (" \n") ;
System, out. print (" \n") ;

}
out.write("===\n");

System.out.print("==\n");
}
out.close();
f o r (i n t w=0;w<BeamWidth;w++){

node p = (n o d e) n e w l i s t . g e t (w) ;
node t = (n o d e) i n ± t i a l _ n o d e ;
d o u b l e makespan=0;
d o u b l e [] [] c o m p l e t i o n t ime_new = new
double [JNum+arrival__job_size] [ONum] ;
d o u b l e [] [] complet ion_t ime__old=new
doubletJNum][ONum];
d o u b l e sum__compl=0;
d o u b l e sum_comp2=0;
d o u b l e sum com=0;
f o r (i n t j = 0 ; j< JNum+arriva l_job__size; j++) {

f o r (i n t k=0;k<ONum;k++){
b o o l e a n M b r o k e = f a l s e ;
d o u b l e r t = 0 ;
i f (p . O [j] [k] [1] i=MNum){

f o r (i n t m=0;m<bro^fen_index. l eng th ;m++) {
i f ((broicen__index[m]==p.O[j] [k] [1]) & (p .0 [j] [k] [0]<tnow) &

{ProcessTime[j*ONum+k] [p . 0 [j] [k] [1]] + p . O [j] [k] [0]>tnow)) {
M b r o k e = t r u e ;
r t = repair_time[m];

}
i f (M b r o k e) {

complet ion_time__new [j] [k] = p . O [j] [k] [0] +
ProcessTime[j*0Num+k] [p . 0 [j] [k] [1]] + r t ;

} e l s e{
c o m p l e t i o n _ t i m e _ n e w [j] [k] = p . O [j] [k] [0] +
ProcessTime[j*0Num+k] t p . 0 [j] [k] [1]] ;

}
}

b o o l e a n j b r o k e = f a l s e ;
f o r (i n t h = 0 ; h < b r o k e n _ j _ i n d e x . l e n g t h ; h + +) {

i f ((b r o k e n _ j _ i n d e x [h] = = j) & (p . 0 [j] [k] [l] < M N u m)) {
i f ((p . 0 [j] [k] [0] < t n o w) &
(ProcessTime[j*ONum+k] [p . O [j] [k] [1]] + p . 0 [j] [k] [0]>tnow)) {

}
j b r o k e = t r u e ;

}
}

i f (! j b r o k e) {
c o m p l e t i o n _ t i m e _ n e w [j] [k] = p . O [j] [k] [0] + P r o c e s s T i m e [j * O N u m + k] [p .O[

j] [k] [1]] ;
}

100

file:///t/t/t/t/t/t/t/t
file:///t/t/t
file:///t/t/t/t/t

i f (j b r o k e) {
c o m p l e t i o n _ t i m e _ n e w [3] [k] = t n o w ;

}
i f (comple t i on_ t ime_new[3] [k]>makespan)

m a k e s p a n = c o m p l e t i o n _ t i m e _ n e w []] [k] ;
}

}
}
f o r (m t j=0;j<JNum;j++) {

f o r (m t k=0; k<ONum; k++) {
i f (t . 0 [:] [k] [1] >=MNum){

c o m p l e t i o n t i m e o l d [3] [k] =
t . O [; j] [k] [0]+ProcessTime[j*ONum+k] [t . 0 []] [k] [1]] ;

i f (c o m p l e t i o n _ t i m e _ n e w []] [k] > c o m p l e t i o n _ t i m e _ o l d [3] [k]) {
sum_compl+=(complet ion__t ime_new[]] [k] - c o m p l e t i o n _ t i m e _ o l d [3] [k]) ;
}
i f (c o m p l e t i o n _ t i m e _ n e w []] [k] < c o m p l e t i o n _ t i m e _ o l d [3] [k]) {
sum_comp2+= (comple t ion__t ime_old [3] [k] - c o m p l e t i o n _ t i m e _ n e w [3] [k]) ;

}
}

}
}
s um_c om= s um_c omp1 + sum_comp 2;
S y s t e m . o u t . p r i n t I n (" m a k e s p a n "+makespan) ;
Sys tem, out . p r m t l n (" S t a b i l i t y - > " + sum_com) ;
f o r (i n t i = 0 ; i< JNum+amval_job_size; 1 + +) {

f o r (i n t j=0;j<ONum;j++) {
b o o l e a n Mbroke=fa l se ;
d o u b l e r t = 0 ;
i f (p . O [i] []] [1] ' = M N u m) {

f o r (i n t m=0;m<jbroicen_mdex. length,-m++) {
i f ((broken_mdex [m]==p.0[i] [3] [1]) & (p . O [i] [3] [0]<tnow)Sc
(ProcessTime[i*ONum+j] [p . 0 [i] [3] [l]] + p . O [i] [3] [0]>tnow)) {

Mbroke= t rue ;
r t = repair_time[m] ;

}
i f ((p . O [i] [3] [0]>=tnow) I I (p . O [i] [3] [l]== J bro^en_ index[m])) {

i f (M b r o k e) {
p . C o m p l e t i o n T i m e [1] [3] = (i n t)

(p . 0 [i] [3] [0]+ProcessTime[i*ONum+j] [p . 0 [i] [3] [1]] + r t) ;
} e l s e {
p . C o m p l e t i o n T i m e f i] [3] = p . O [i] [3] [0] +
Process Time[i*0Num+j] [p . 0 [i] [3] [1]] ;

}
}

}
b o o l e a n J b r o k e = f a l s e ;
f o r (i n t m = 0 ; m < b r o k e n ^ j _ i n d e x . l e n g t h ; m + +) {
i f ((broken_j_mdex [m]==i) & (p . O [i] [3] [l]<MNum)) {

i f ((p . 0 [i] [3] [0]<tnow) &
(ProcessTime[i*ONum+j] [p . O [i] [3] [1]] + p . 0 [i] [3] [0}>tnow)) {

}
J b r o k e = t r u e ;

}
i f ((p . 0 [i] [3] [0]>=tnow) I I {broken_j_ index [m]==1)) {

i f (' J b r o k e) {

101

p . C o m p l e t i o n T i m e [I] []] = p . O [i] [j] [0] +
Process Time[i*ONum+j] [p . O [i] [j] [1]] ;

}
i f (Jb roke) {

i f (p . 0 [i] [j] [0] + P r o c e s s T i m e [i * O N u m + j] [p . 0 [i] [j] [1]}<tnow)
p . C o m p l e t i o n T i m e [I] []] = p . O [i] [j] [0]+ ProcessTime[i*ONum+j] [p . O [i] [3] [1]]

e l s e f
p.CompletionTime[1][j]=tnow;

}
}

}
}

}
}

}
}

mtout=new File ("C: WDocuments and
Set tings \\Administrator\\Desktop\\Test_problems\\imtial -output. xls") ;

out= new BufferedWriter(new FileWriter(mtout));
out. write ("job\toper\tm\tst\tf\twl\tw2\tw3\n") ;
temp = newlist.iterator();
while (temp.hasNext()){

out .write (temp, next () . toStrmgfmal () +"\n") ;
out.write ("\n");

}
out.write("\n\n");
out.close{);

}

static LmkedList<node> imtialize_list (node s) throws
CloneNotSupportedException{

LmkedList<node> levell = new LmkedList<node> () ;
//generate first level
LmkedList<opcand> candidates = new LmkedList<opcand> () ;
//check the precedence of the candidates
for (mt 1=0 ; i<JNum+arrival_job_size; 1++) {

for (int j=0;j<ONum;j++){
if({precedence_ok(s, 1, j)&
(initial_precedence (i m t i a l _ n o d e , s, 1, 1)))) {

opcand c = new opcand();
c. j obmdex=i ;
c. opmdex=] ;
c.start time=0;
candidates.add(c) ;

}
}

}
Iterator<opcand> opiterator = candidates.iterator() ;
while (opiterator.hasNext()){

opcand c = opiterator.next();
int row = (c . jobmdex) *ONum+c . opmdex;
for (mt i=0; KMNum; 1 + +) {

if(ProcessTime[row][i]>0){
node temp = (node) s . clone () ;
temp.level=s.level+1•
if (c . opmdex>0) {

102

file:///tm/tst/tf/twl/tw2/tw3/n

boolean prev_broken=false;
int prev_mindex = temp.0[c.jobindex][c.opindex-1][1];
int broke_index = 0;
for(int b=0;b<broken_index.length;b++){

if (prev mindex==jbroA:en__index [b]) {
prev_broken=true;
broke_index=b;
}

}
if(prev_broken){

double rtime= repair_time[broke_index];
if((temp.0[c. jobindex] [c.opindex-1] [0] <tnow)&&
(temp.CompletionTime[c.jobindex] [c.opindex-1]>tnow)) {

temp.0[c.jobindex][c.opindex][0]=
(int)Math.max(temp.available_time[i],
temp.CompletionTime[c.jobindex][c.opindex-1]+rtime);
}else{
temp.0[c.jobindex] [c.opindex] [0] =
(int)Math.max(temp.available_time[i],
temp.CompletionTime[c.jobindex][c.opindex-1]);
}

}else{
temp.0[c.jobindex][c.opindex][0]=
(int)Math.max(temp.available_time[i] ,
temp.CompletionTime[c.j obindex] [c.opindex-1]) ;

}else(
temp.0[c.jobindex][c.opindex][0]=(int)temp.available_time[i];
}
t e m p . 0 [c . j o b i n d e x] [c . o p i n d e x] [l] = i ;
t e m p . a v a i l a b l e ^ t i m e [i] = t e m p . O [c . j o b i n d e x] [c . o p i n d e x] [0] +
ProcessTime[c.jobindex*ONum+c.opindex][i];

l e v e l 1 . a d d (t e m p) ;
}

}
/ / f i r s t l e v e l n o d e s have b e e n g e n e r a t e d (a l l p o s s i b l e mach ines fo r e a c h
o p e r a t i o n)

double [] g l o b a l _ c o s t = new d o u b l e [l e v e l l . s i z e ()] ;
f o r (i n t i = 0 ; i < l e v e l l . s i z e () ; i + +) {

g lobal__cos t [i] = e v a l u a t e (l e v e l l . g e t (i)) ;
}

/ / s e l e c t t h e beamwidth b e s t nodes i n d e x t h a t has minimum c o s t s
i n t [] b e s t n o d e s i ndex = new int[BeamWidth] ;
/ / i n i t i l i z e t o 0 and 1 . . . (beamwidth-1)
i n t max__index = 0 ;
for (i n t i=0; i<BeamWidth;i++) {

b e s t _ n o d e s _ i n d e x [i] = i ;
i f (g l o b a l _ c o s t [i] > g l o b a l _ c o s t [max_index]) m a x _ m d e x = i ;

)
f o r (i n t ±=BeamWidth; i < l e v e l l . s i z e () ; i + +) {

i f (g l o b a l ^ c o s t [i] < g l o b a l _ c o s t [max__index]) {
bes t_nodes__index [raax_index] = i ;
/ / u p d a t e t h e max_index
max i ndex = 0;

103

f o r (i n t j=l;j<BeamWidth;j++){
i f (g l o b a l _ c o s t [j] > g l o b a l _ c o s t [max_mdex]) m a x _ m d e x =] ;

}
}

}
//add the best be_amwJLdth nodes to a new list and return it
LmkedList<node> bounded_levell = new LmkedList<node> () ;
for (int i=0;i<BeamWidth;i++){

bounded_levell.add(levell. get(best nodes mdex[i]));
}
return bounded levell;

}

p r i v a t e s t a t i c node m i t i a l i s e _ s t a r t n o d e s (S t r i n g f i l e name) throws
F i l e N o t F o u n d E x c e p t i o n {

L m k e d L i s t < n o d e > l i s t = new L m k e d L i s t < n o d e > () ;
S c a n n e r s= new Scanner (new F i l e (f i l e n a m e)) ;
/ / r e a d a t i t l e row
s . n e x t L i n e () ;
i n t c o u n t = 0 ;
double m m _ f v a l = MaxProcessTime;
i n t b e s t n o d e _ i n d e x = - l ;
f o r (i n t i = 0 ; KBeamWidth; i++) {

coun t++;
node temp = new n o d e () ;
f o r (i n t j=0;j<JNum;j++){

f o r (i n t k=0;k<ONum;k++) {
S t r i n g 1 = s . n e x t L i n e () ;
S t r i n g l m e [] = 1. s p l i t (" \ t ") ;

t e m p . 0 [j] [k] [0] = I n t e g e r .parselnt(line[3]) ;
t e m p . 0 [j] [k] [1] = I n t e g e r . p a r s e l n t (l i n e [2]) ;
t emp.Comple t ionTime[j] [k] = I n t e g e r . p a r s e l n t (l i n e [4]) ;
i f (t e m p . O f :] [k] [1] *=MNum){

t e m p . a v a i l a b l e _ t i m e [t e m p . 0 [j] [k] [1]] =
M a t h . m a x (t e m p . a v a i l a b l e _ t i m e [t e m p . O [j] [k] [1]] ,

t emp.Comple t ionTime[j] [k]) ;
}

}
}
temp.level=ONum*JNum;
temp.branch=i;
list.add(temp);
//read extra lines (garbage)
String line[]=s.nextLine () .split("\t");
double fval = Double .parseDouble(line[4]) ;
if(fval<min_fval){
mm__fval = fval;
b e s t n o d e _ m d e x = I ;
}
if(count'=BeamWidth){

s.nextLine ();
s.nextLine ();

}
}
s.close ();
return list. get (best^node^mdex) ;

104

}

private static void initialise_process_time_table(String filename)

throws BiffException, IOException {

ProcessTime = new int[{JNum+arrival_job_size)* ON urn] [MNum];
WorkbookSettings ws = new WorkbookSettings();
ws.setLocale(new Locale ("en", "EN"));
Workbook workbook = Workbook.getWorkbook(new
File(filename),ws);
Sheet s = workbook.getSheet(0);

for (int i=Q;i<MNum;i++){
for (int j=0;j<(J N u m + a r r i v a l _ j o b _ s i z e) *ONum;j++){

ProcessTime[j][i] =
Integer .pa rselnt(s.getCell(i + l,j + l) .getContents());

}
}
workbook, closed ;

private static double evaluate(node n) throws

CloneNotSupportedException {

node copy = (node) n.clone();

//Generate new schedules from this node
int 1 = copy.level;
for (int i=0;i<(J N u m + a r r i v a l _ j o b _ s i z e) * O N u m - l;i++){

best_jorn (copy) ;

}
/ / e v a l u a t e t h e copy node
d o u b l e [] ws = new d o u b l e [JNum+arrival__job_size] ;
double sum=0;
double new_makespan=0;
double i n i t i a l _ m a k e s p a n = 0 ;
f o r (i n t i = 0 ; i < J N u m + a r r i v a l _ j o b _ s i z e ; i + +) {

b o o l e a n M br oke= f a l s e ;
double r t = 0 ;
i f (copy .0[i][ONum-1] [1] l=MNum){

f o r (i n t m=0;m<broken_index.length;m++){
i f ((b r o k e n _ i n d e x [m] = = c o p y . O [i] [O N u m - 1] [1])&
(copy .0[i][ONum-1] [0]<tnow] &
(ProcessTime [(i+1)*ONum-1] [copy .0[i][ONum-1] [1]]+
c o p y . 0 [i] [ONum-1] [0]>tnow)) {

M b r o k e = t r u e ;
r t = repair_time [m] ;
}
i f (M b r o k e) {

w s [i] = c o p y . 0 [i] [O N u m - 1] [0]+
ProcessTime[ONum* (i + 1) - 1] [c o p y . O f i] [O N u m - 1] [l]] + r t ;

} e l s e {
w s [i] = c o p y . 0 [i] [O N u m - 1] [0]+
ProcessTime[ONum* (i + 1) - 1] [c o p y . 0 [i] [ONum-1] [1]] ;

}
b o o l e a n J b r o k e = f a l s e ;

f o r (i n t h=0;h<broken_j_index.length;h++){

105

i f ((broken_j__mdex[h]==i) && (c o p y . O [i] [ONum-1] [l]<MNum)) {
i f ((c o p y . O [i] [ONum-1] [0]<tJiow) &&
(ProcessTime[ONum* (i + l) - 1] [c o p y . O f i] [O N u m - 1] [1]]+
c o p y . O [i] [ONum-1] [0]>tnow)) {

J b r o k e = t r u e ;
}
}

}
i f (' J b r o k e) {

ws[i]=copy .O[i] [ONum-1] [0]+
ProcessTime[ONum* (i + l) - 1] [c o p y . 0 [i] [ONum-1] [1]] ;

}
i f (J b r o k e) {
w s [l] = t n o w ;
}
if(ws[I]>new_makespan)new_makespan=ws[I];

T
}

}

node eqnode = mitial_node;
double [] wss=new d o u b l e [J N u m + a r r i v a l ^ j o b _ s i z e] ;
f o r (m t 3=0; j<JNum; J++) {

i f (e q n o d e . Of}] [ONum-1] [1] i=MNum) {
wss [j] =
eqnode . 0 [j] [ONum-1] [0] +
ProcessTime[ONum* (j + 1) - 1] [e q n o d e . 0 []] [O N u m - 1] [1]] ;

i f (wss [j] > i m t i a l _ r a a k e s p a n) i n i t i a l _ m a k e s p a n = w s s [j] ;
}

}
d o u b l e F1=0;
d o u b l e F11=0;
f o r f m t i = 0 ; K J N u 7 n ; i + +) {

i f (ws [l] >wss [l]) {
i f (c o p y . O f i] [ONum-1] [1] ^MNum) {

F l + = (w s [I] - w s s f i]) * delta[i];
}

}
F l l = (ws [JNum] - w s s [JNum]) * delta [JNum] ;

}
d o u b l e F _ s a v e _ d u e d a t e s = 0 ;
f o r f m t i = 0 ; K JNum; i + +) {

i f (w s [l] < w s s [l]) {
i f (c o p y . O f i] [ONum-1] [1] ' =MNum) {

F s a v e d u e d a t e s + = (w s s [I] - w s [l]) * s a v e [i] ;
}

}
}
d o u b l e F2=0;
d o u b l e F3=0;
f o r (m t i = 0 ; K JNum; i++) {

f o r f m t j=0;j<ONum;j++) {
i f (c o p y . O f i] f:][1] '=MNum){

i f (c o p y . O f i] [j] [0] < e q n o d e . O [i] [3] [0]) {
F2+=(eqnode .Of i] [j] [0] - c o p y . 0 [1] [3] [0]) * m i o [i] ;

} e l s e {
F 3 + = (c o p y . O f i] [3] [0] - e q n o d e . O f i] [3] [0]) * h [1] ;

106

}

}

d o u b l e F4=0
i n t c o u n t = 0
f o r (m t i = 0 ; i < J r W u : n ; i + +) {

f o r (i n t j=0;j<ONum;j++){
i f ((c o p y . O f i] [3] [1] *=MNum)&(eqnode.O[i][3][1]'=MNum)){

i f (c o p y . O f i] [3] [1] ' = e q n o d e . O [i] [3] [1]) {
c o u n t + + ;

}
}

F4 = (c o u n t * o m e g a) ;
}

}
d o u b l e F 5 = 0 ;
d o u b l e n e w _ s u m = 0 ;
d o u b l e Fa6=0;
d o u b l e Fb6=0 ;
d o u b l e F6=0 ;
d o u b l e [] WL= { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
d o u b l e [] IWL = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
m t p = - l ;
m t q = - l ;
d o u b l e t] n e w _ i d l e _ t i r a e = n e w double[MNum] ;
d o u b l e [] i n i t i a l _ i d l e _ t i m e = n e w double[MNum];
f o r (i n t D = 0 ;] < J N u m + a r r i v a l _ j o b _ s i z e ; 3 + +) {

f o r (i n t k = 0 ; k < O N u m ; k + +) {
i n t . r ow = (3) * 0Num+ k ;
p = c o p y . 0 [3] [k] [1] ;
i f (p <=MNum) {

W L [p] + = P r o c e s s T i m e [r o w] [p] ;
F a 6 + = P r o c e s s T i m e [r o w] [c o p y . O [3] [k] [1]] ;

}
}

}
f o r (i n t b=0;b<broken_mdex.lenqth;b++){

i n t m=broken_mdex [b] ;
WL [m] +=repair_time [b] ;

}
f o r f i n t h=0;h<MNum;h++) {

n e w _ i d l e _ t i m e [h] = n e w _ m a k e s p a n - W L [h] ;
}
f o r (m t -]=0;j<JNum;j++) {

f o r (i n t k=0 ;k<GWum;k++){
i n t row = (3)*ONum+k;
q = e q n o d e . 0 [3] [k] [1] ;
i f (q 1 =MNum) {

IWL[q]+ = ProcessTime[row] [q] ;
F b 6 + = P r o c e s s T i m e [r o w] [e q n o d e . O f]] [k] [1]

}
}

}
f o r (i n t h=0;h<MA?um;h++) {

m i t i a l _ _ i d l e _ t i m e [h] = i m t i a l _ m a k e s p a n - I W L [h] ;
}
f o r (m t h=0;h<MNum;h++) {

107

i f (n e w _ i d l e _ t i m e [h] > i n i t i a l _ i d l e _ t i m e [h]) {
F5+= (n e w _ i d l e _ t i m e [h] - i m t i a l _ i d l e _ t i m e [h]) *eta [h] ;
}

}
i f (F a 6 > F b 6) F 6 = t i l d a * (F a 6 - F b 6) ;

s u m = F l + F 2 + F 3 + F 4 + F 5 + F 6 + F l l ;
n e w _ s u m = s u m - F _ s a v e _ d u e d a t e s ;
S y s t e m . o u t . p r i n t l n (" F l - > " + F l + " , F l ' - > " + F l l + " , F 2 - > " + F 2 + " , F 3 - > " + F 3 + "
, F 4 - > " + F 4 + " , F 5 - > " + F 5 + " , F 6 - V + F 6) ;
S y s t e m . o u t . p r i n t l n (" s a v e d u e d a t e s - >" + F _ s a v e _ d u e d a t e s + " u p d a t e d
C o s t - > " + n e w _ s u m) ;

r e t u r n sum;

}

p r i v a t e s t a t i c v o i d b e s t j o m (n o d e n) {
i n t] i n d e x = - l ;
m t o m d e x = - l ;
i n t m m d e x = - l ;
i n t min_spt=MaxProcessTime;
f o r (i n t j=0;j<JNum+arrival_job_size;j++){

f o r (i n t k=0;k<ONum;k++) {
i f (precedence_ok (n , j , k)

f o r (i n t m=0;m<MNum;m++){
i f ([P r o c e s s T i m e l j * O N u m + k] [m] > 0) & & (P r o c e s s T i m e [j * O N u m + k] [m] < m i n _ s p t)) {

m m d e x = m ;
] i n d e x = j ;
o m d e x = k ;

m i n _ s p t = P r o c e s s r i i 7 i e [] * 0 N u i r ! + k] [m] ;

}
e l s e

i f ((ProcessTimelj* ONum+k] [m] >0) && {ProcessTimelj* ONum+k] [m] = = m m _ s p t)) {
m t l o a d l = 0 ;
i n t l o a d 2 = 0 ;

f o r (m t p = 0 ; p < J N u r n + a m v a l _ j o b _ s i z e ; p + +) {
f o r (i n t 1=0 ; KONum; 1 + +) {
i n t row = (p) * ONum+1;
i f (n . O [p] [1] [l] = = m m d e x) {
l o a d l + = P r o c e s s T i 7 n e [r o w] [m m d e x] ;
}
e l s e i f (n . O [p] [1] [l] = = m) {
l o a d 2 + = P r o c e s s T i 2 7 ? e [r o w] [m] ;

}
}

}
i f (l o a d l < l o a d 2) {

m m d e x = m ;
jindex=3 ;
o m d e x = k ;

min_spt=ProcessTimeIj*ONum+k] [m] ;
}

}

}

}

}

}

108

i f (omdex>0) {
b o o l e a n p r e v b r o k e n = f a l s e ;
i n t p r ev_mmdex = n . O [] i n d e x] [o m d e x - 1] [1] ;
m t b r o k e index = 0;
f o r j i n t i = 0 ; i<broken_mdex. l e n g t h ; i + +) {

i f (prev_mindex==bro/cei3_index[i]) {
p rev__broken=t rue ;
broke__index=i ;

}
}
i f (prev__broken) {

d o u b l e r t i m e = r e p a i r _ t i m e [b r o k e _ m d e x] ;
i f ((n . O [] i n d e x] [o m d e x - 1] [0]<tnow) &&
(n .Comple t ionTime [jindex] [o m d e x - 1] >tnow)) {
n . 0 [} i n d e x] [o m d e x] [0] = (m t) Math.max (n. a v a i l a b l e _ t i m e [mindex] ,
n .Comple t i onT ime [j i n d e x] [o m d e x - 1] + r t i m e) ;

} e l s e {
n . 0 [jindex] [o m d e x] [0] = (i n t) Math.max (n . a v a i l a b l e _ t i m e [mindex] ,
n . Complet ionTime [j i n d e x] [o m d e x - 1]) ;

}
} e l s e {

n . O [j i n d e x] [o m d e x] [0] = (i n t) Math, max (n. a v a i l a b l e _ t i m e [mindex] ,
(n . C o m p l e t i o n T i m e [j i n d e x] [o i n d e x - 1])) ;

}
} e l s e i f (omdex==0) {

n . O [] i n d e x] [o m d e x] [0] = (m t) n . a v a i l a b l e _ t i m e [mindex] ;
}

n . O [] i n d e x] [o m d e x] [l] = m m d e x ;
n . ava i l ab l e__ t ime [mindex] =
n . 0 [] m d e x] [o m d e x] [0] +ProcessTime [j index* ONum+omdex] [m i n d e x] ;

n . l e v e l + + ;
}

s t a t i c b o o l e a n p r e c e d e n c e _ o k (node c u r r e n t , m t l , m t j) {
i f (c u r r e n t . 0 [l] [3] [0] > = 0) r e t u r n f a l s e ;
i f (] = = 0) r e t u r n t r u e ;
i f (c u r r e n t . 0 [l] [] - l] [0] > = 0) r e t u r n t r u e ;
r e t u r n f a l s e ;

}

s t a t i c L m k e d L i s t < n o d e > b r a n c h bound (L m k e d L i s t < n o d e > c u r r e n t l i s t)
t h rows C l o n e N o t S u p p o r t e d E x c e p t i o n {

L m k e d L i s t < n o d e > c h i l d r e n =new L m k e d L i s t < n o d e > () ;
I t e r a t o r < n o d e > i t e r a t o r = c u r r e n t l i s t . i t e r a t o r () ;

w h i l e (i t e r a t o r . hasNex t ()) {
node c u r r e n t = i t e r a t o r . n e x t () ;

i f (c u r r e n t . l e v e l > = (J N u m + a r r i v a l _ j o b _ s i z e) *0Num){
c h i l d r e n , a d d (c u r r e n t) ;

} e l s e{
c h i l d r e n , a d d (branci i_jbou.nd(current)) ;

}

}
return children;

109

}

p r i v a t e s t a t i c node b r a n c h _ b o u n d (n o d e c u r r e n t) t h r o w s
C l o n e N o t S u p p o r t e d E x c e p t i o n {

L i n k e d L i s t < n o d e > n e x t _ l e v e l = new L i n k e d L i s t < n o d e > () ;
/ / g e n e r a t e n e x t l e v e l
L i n k e d L i s t < o p c a n d > c a n d i d a t e s = new L m k e d L i s t < o p c a n d > () ;
/ / c h e c k t h e p r e c e d e n c e of t h e c a n d i d a t e s
d o u b l e min_s ta r t__ t ime=MaxSta r tTime;
f o r (i n t i = 0 ; i<JNum+arrival_job__size; i + +) {

f o r (i n t j=0;j<ONum;j++){
i f (p r e c e d e n c e _ o k (c u r r e n t , 1, j) &
(initial_precedence (initial_node, current, 1,]))) {

opcand c = new o p c a n d () ;
c .] o b i n d e x = i ;
c . o p m d e x = j ;

i f (D > 0) {
b o o l e a n p r e v b r o k e n = f a l s e ;
i n t p r e v _ m m d e x = c u r r e n t . 0 [i] [3 - I] [1] ;
i n t b r o k e _ m d e x = 0;
f o r (i n t b=0; h<broken_mdex. l e n g t h ; b + +) {
i f (prev_mmdex==broken_index[b]) {

p r e v b r o k e n = t r u e ;
broke__index=b;

}
}

i f (p r e v b r o k e n) {
d o u b l e r t i m e = r e p a i r _ t i f l i e [b r o k e _ m d e x] ;

i f ((c u r r e n t - 0 [i] [j-1] [0]<tnow) &&
(c u r r e n t . 0 [1] [j - 1] [0]+ProcessTime [r* ONum+j-1] [p r ev_mmdex] > tnow)) {
c . s t a r t _ t i m e = (i n t) (c u r r e n t . 0 [1] [] - l] [0] +
ProcessTime[i~*ONum+j-1] [prev_mindex] + r t ime) ;

} e l s e {

c . s t a r t _ t i m e = (i n t) c u r r e n t . 0 [1] [3 - I] [0] +
ProcessTime [i*0Num+j-l] [prev__mindex] ;

}
}e l se{

c . s t a r t _ t i m e = c u r r e n t . 0 [i] [] - l] [0] +
ProcessTime[i*ONum+j-l] [c u r r e n t . 0 [1] [3 - I] [1]] ;

}
}e l se{
c.start time=0;

}~
if(c.start_time<min_start_time)min_start_time=c.start_time;

candidates.add(c);
}

}
}

LmkedList<opcand> candidates_with_mm_st = new
LmkedList<opcand> () ;

Iterator<opcand> opiterator = candidates.iterator();
while(opiterator.hasNext()){

opcand c = opiterator.next() ;
if (c.start_time==min_start_time){

c a n d i d a t e s _ w i t h _ m i n _ s t . a d d (c) ;
}

110

}

//candidates with minimum starting time are in the list
LmkedList<opcand> can_list_machme_assigned = new
LmkedList<opcand> () ;

opiterator = candidates with_mm_st. iterator () ;
while(opiterator.hasNext()){

opcand c = opiterator.next();
m t row = (c.]obindex)*ONuffl+c.opmdex;
for (mt i=0;KMWum;i++) {

i f (P r o c e s s T i m e [r o w] [i] > 0) {
opcand c2 = new o p c a n d () ;
c 2 .] o b m d e x = c .] o b m d e x ;
c 2 . o p m d e x = c . o p i n d e x ;
c2 . s t a r t _ _ t i m e = c . s t a r t _ _ t i m e ;
c 2 . m a c h i n e = 1;
can l i s t mach ine a s s i g n e d . a d d (c 2) ;
}

}
}

c a n d i d a t e s w i t h _ m m _ s t = n u l l ;
/ / f i l t e r i n g
d o u b l e [] p t = new double [c a n _ l i s t _ m a c h m e _ a s s i g n e d . s i z e ()]

f o r (i n t i = 0 ; i < c a n _ _ l i s t _ m a c h m e _ a s s i g n e d . s i z e () ; i + +) {
opcand c = c a n _ l i s t _ m a c h m e _ a s s i g n e d . g e t (1) ;
/ / c . m a c h i n e [0] i s g r e a t e r than - 1 always

p t [i] = ProcessTime [c . j obmdex* ONum+c. o p m d e x] [c .mach ine] ;
}

f o r (i n t i = 0 ; i < c a n _ l i s t _ m a c h m e _ a s s i g n e d , s i z e () -FilterWidth; i++) {
int mdex=0;
for (int]=l;3<pt.length;3++){

if (pt [1] >pt [index]) mdex=i;
}
pt [index]=-1;

}
LmkedList<opcand> filtered_list = new
LmkedList<opcand> () ;
for (mt i=0; i<can__list_machme_assigned. size () ; 1 + +) {

if (pt[i]>0) {
opcand c = can_list_machme_assigned. get (1) ;
f litered__list. add (c) ;

}
}
//end filtering
//create child nodes
opiterator = filtered_list.iterator();
while(opiterator.hasNext()){

opcand c = opiterator.next();
int row = (c. 3obmdex) *ONum+c. opmdex;
//generate the children and add it to levell list
node temp = (node) current.clone();
temp.level++;

temp . 0 [c . j obmdex] [c.opindex] [0] =Math.siax (c . start__time,
(int)current.available_time[c.machine]);//set start time
temp .0 [c . j obmdex] [c.opindex] [1] =c .machine ;//set machine

//update availability time of machines

111

temp.available_time[c.machine]=
temp.O [c. jobindex] [c.opindex] [0] +ProcessTirne [row] [c.machine] ;

next_level.add(temp);
}
//next level is ready to bound
double [] global_cost = new double[next_level.size()];
for (int i=0;i<next_level.size();i++){

global_cost[i] = evaluate(next_level.get(i)) ;
}

//select the beamwidth best nodes index that has minimum costs
int best_index = 0;
for (int i=l;i<next_level.size();i++){

if (global__cost [i] <global_cost [best_index]) {
best_index = i;

}
}
return next_level.get(best_index);

static class opcand {
int jobindex, opindex;
int start_time;
int machine;

static class node implements Cloneable {
int[] [] CompletionTime=new

int[JNum+arrival_job_size] [ONum] ;
int level;
int branch=-l;
double[] available_time = new double [P4Num] ;
public Object clone() throws CloneNotSupportedException {

node copy = new node();
for (int i =0; i< JNum+arrival_job__size; i + +) {

for (int j=0;j<ONum;j++){
copy.0[i][j][0]=this.O[i][j][0];

//start time of this operation
copy.0[i][j][l]=this.O[i][j][1];

//machine assigned to this operation

copy.CompletionTime[i][j]=this.CompletionTime[i][j];
}

}
for (int i=0; i<MNum;i++){

copy.available_time[i]=this.available_time[i];
}
copy.level = this.level;
copy.branch=this.branch;
return copy;

}
p u b l i c S t r i n g t o S t r i n g () {
S t r i n g s = new S t r i n g (" ") ;
f o r (i n t i =0 ; i< JNum+arrival__ job_size; i + +) {

f o r (i n t j = 0 ; j<ONum; j++) {
s =

s . c o n c a t (" " + i + " \ t " + j + " \ t " + t h i s . O [i] [j] [1] + " \ t " + t h i s . O [i] [j] [0] + " \ n ") ;
}

112

}

try {
s = s.concat("\t\t\t\t"+evaluate(this)+"\n");

} catch (CloneNotSupportedException e) {
e.printStackTrace();

}
return s;

}
p u b l i c S t r i n g t o S t r i n g f i n a l () {
S t r i n g s = new S t r i n g (" ") ;
f o r (i n t i = 0 ; i < J N u m + a r r i v a l _ j o b _ s i z e ; i + +) {

f o r (i n t j=0; j<ONum; j++){
s =

s . c o n c a t (" " + i + " \ t " + j + " \ t " + t h i s . 0 [i] [j] [1] + " \ t " + t h i s . 0 [i] [j] [0] + " \ t " + C o m
p l e t i o n T i m e [i] [j] + " \ n ") ;

}
}
try {

s = s.concat{"\t\t\t\t"+evaluate(this)+"\n");
} catch (CloneNotSupportedException e) {

e.printStackTrace();
}

return s;
}

i n t [] [] [] 0 = new i n t [JNum+arrival_job_size] [ONum] [2] ;
}

}

113

Appendix B: JAVA model for MFBSR in case
of Disruptions (MB-JC-OA)

114

import]ava.10.BufferedWriter;

public class mamclass {

/Input Data /

public static void main(String[]args) throws

CloneNotSupportedException, BiffException, IOException{

}

s t a t i c L m k e d L i s t < n o d e > i n i t i a l i z e _ l i s t (node s) throws

C l o n e N o t S u p p o r t e d E x c e p t i o n {

}

private static node initialise_start__nodes(String file_name) throws

FileNotFoundException {

}

private static void initialise process time table(String filename)

throws BiffException, IOException {

}

private static double evaluate(node n) throws

CloneNotSupportedException {

}

private static void best jom(node n) {
int]index=-l;

115

i n t o m d e x = - l ;
i n t m i n d e x = - l ;
i n t m±n_spt=MaxProcessTime;
f o r (i n t j=0; j<JNum+arrival_job__size; j++) {

f o r (i n t k=0; k<ONum;k++) {
i f { p r e c e d e n c e _ o k (n , 3, k)&
{imtial_precedence {initial__node, n, j , k))) {

f o r (i n t m=0;m<MNum;m++){
i f ((P r o c e s s Time [j *ONum+k] [m] >0) && (ProcessTime[j *ONum+k] [m] < m m _ s p t)) {

mindex=m;
3 i n d e x = j ;
o index=k ;

m±n_sp-t=ProcessTime[j *ONum+k] [m] ;
}
e l s e

if({ProcessTime[j*ONum+k] [m]>0)&&(ProcessTime[j*ONum+k] [m]==min_sp t)){
i n t l o a d l = 0 ;
i n t l o a d 2 = 0 ;

f o r (i n t p=Q;p<JNurn+arrival_job_size;p++) {
f o r (m t 1=0 ; KONum; 1++) {
i n t row = (p)*ONum+l;
i f (n . O [p] [1] [l]==mmdex) {
loadl+=ProcessTime [row] [mmdex] ;
}
e l s e i f (n . O [p] [1] [l] = = m) {
load2+=ProcessTime[row][m];

}
}

}
i f (l o a d l < l o a d 2) {

mindex=m;
2index=];
o m d e x = k ;

min_spt=ProcessTime[-j*ONum+k] [m] ;
}

}

}
}

}
}
i f (o i n d e x > 0) {

boo lean p r e v b r o k e n = f a l s e ;
i n t p r ev_mindex = n . O [] i n d e x] [o m d e x - 1] [1] ;
i n t b r o k e i n d e x = 0;
f o r (m t i = 0 ; i<broken__mdex. l e n g t h ; 1++) {

i f (prev_mindex==i)roA:en_iiidex [1]) {
p r e v b r o k e n = t r u e ;
b r o k e _ m d e x = i ;

}
}
i f (p r e v b r o k e n) {

double r t i m e = repair^time[broke i n d e x] ;
i f ((n . O [] i n d e x] [o m d e x - 1] [0]<tnow)SS
(n . Comple t ionTime [] i ndex] [o m d e x - 1] >tnow)) {
n.O [3 i n d e x] [o m d e x] [0] = (i n t) Math . max (n . a v a i l a b l e ^ t ime [mmdex] ,

116

n . Complet ionTime [j i ndex] [o m d e x - 1] + r t ime) ;
} e l s e {

n . 0 [jindex] [o m d e x] [0] = (m t) Math.max (n. a v a i l a b l e _ t i m e [mmdex] ,
n . Complet ionTime [j i n d e x] [o m d e x - 1]) ;

}
} e l s e {

n . 0 [i i n d e x] [o m d e x] [0] = (m t) Math, max (n. a v a i l a b l e _ t i m e [mmdex] ,
(n . Complet ionTime [j i n d e x] [o m d e x - 1])) ;

}
} e l s e i f (omdex==0) {

n . 0 [] i n d e x] [o m d e x] [0] = (i n t) n . a v a i l a b l e _ t i m e [m i n d e x] ;
}

n . O [] i n d e x] [o m d e x] [l] = m m d e x ;
n . a v a i l a b l e t ime [mmdex] =
n . O [] i n d e x] [o m d e x] [0] + ProcessTime [j index* ONum+OLndex] [m m d e x] ;

n . l e v e l + + ;
}

static boolean precedence_ok(node current, int I, int j){

static boolean mitial_precedence (node initial, node current, int l,
int :) {

for (int p=0;p<JNujn;p++) {
f o r (i n t q=0;q<ONum;q++){

i f ((i n i t i a l . 0[p] [q] [0] < i m t i a l . O [i] [j] [0]) & (c u r r e n t . O [p] [q] [1]==-1)) {
r e t u r n f a l s e ;

}
}

}
re turn t r u e ;

}

s t a t i c L m k e d L i s t < n o d e > b r a n c h _ b o u n d (L inkedLi s t<node> c u r r e n t l i s t)

throws C l o n e N o t S u p p o r t e d E x c e p t i o n {

p r i v a t e s t a t i c node branch__bound (node c u r r e n t) throws
C l o n e N o t S u p p o r t e d E x c e p t i o n {

L m k e d L i s t < n o d e > n e x t l e v e l = new L m k e d L i s t < n o d e > () ;
/ / g e n e r a t e n e x t l e v e l
L m k e d L i s t < o p c a n d > c a n d i d a t e s = new L m k e d L i s t < o p c a n d > () ;
/ / c h e c k t h e p r e c e d e n c e of t h e c a n d i d a t e s
double mm s t a r t t i m e = M a x S t a r t T i m e ;
for (i n t i = 0 ; i < J N u m + a r r i v a l _ j o b _ s i z e ; i + +) {

f o r (i n t j=Q;j<ONum;j++){
i f ((precedence_ok(current, I , j)&

imtial_precedence (imtial_node, c u r r e n t , I , j))){
opcand c = new o p c a n d () ;

117

c . j o b i n d e x = i ;
c . o p i n d e x = j ;

i f (j>0) {
c . s t a r t _ t i m e = c u r r e n t . 0 [i] [j - 1] [0] +

ProcessTime[i*ONum+j-l] [c u r r e n t . 0 [i] [j - 1] [1]] ;
} e l s e {

c . s t a r t _ t i m e = 0 ;
}

i f (c . s t a r t t i m e < m i n _ s t a r t _ t i m e) m i n s t a r t _ t i m e = c . s t a r t _ t i m e ;
c a n d i d a t e s . a d d (c) ;

}

}

}

L i n k e d L i s t < o p c a n d > cand ida te s_wi th_min__s t = new L i n k e d L i s t < o p c a n d > () ;
I t e r a t o r < o p c a n d > o p i t e r a t o r = c a n d i d a t e s . i t e r a t o r () ;
w h i l e (o p i t e r a t o r . h a s N e x t ()) {

opcand c = o p i t e r a t o r . n e x t () ;
i f (c . s t a r t _ t i m e = = m i n _ _ s t a r t _ t i m e) {

c a n d i d a t e s _ w i t h _ m i n _ s t . a d d (c) ;

}
}
/ / c a n d i d a t e s w i t h minimum s t a r t i n g t i m e a r e i n t h e l i s t
L i n k e d L i s t < o p c a n d > c a n _ l i s t _ m a c h i n e _ a s s i g n e d = new

L i n k e d L i s t < o p c a n d > () ;
o p i t e r a t o r = c a n d i d a t e s w i t h _ m i n _ s t . i t e r a t o r () ;
w h i l e (o p i t e r a t o r . h a s N e x t ()) {

opcand c = o p i t e r a t o r . n e x t () ;

i n t y = c . j o b i n d e x ;
i n t i = - l ;
int row = (c.jobindex)*0Num+c.opindex;

±f{y<JNum) {
i = c u r r e n t . O [c . j o b i n d e x] [c . o p i n d e x] [1] ;

}
±f{y>=JNum){

i n t min_sp t=10000 ;
f o r (i n t h=0;h<MAJui7?;h++) {

i f { P r o c e s s T i m e [r o w] [h] > 0) {
i f { P r o c e s s T i m e [r o w] [h] < m i n _ s p t) {

min s p t = P r o c e s s T i m e [r o w] [h] ;
i=h7

}
}

}

}
opcand c2 = new o p c a n d () ;
c 2 . j o b i n d e x = c . j o b i n d e x ;
c 2 . o p i n d e x = c . o p i n d e x ;
c 2 . s t a r t t ime = c . s t a r t t i m e ;
c 2 . m a c h i n e = i ;
can l i s t m a c h i n e ^ a s s i g n e d . a d d (c 2) ;

118

}

candidates_with_min_st = null;

//filtering Process
{

// end of filtering
opiterator = can_list_machine_assigned.iterator();

while(opiterator.hasNext()){
opcand c = opiterator.next();
int row = (c . jobindex) *ONurn+c . opindex;
//generate the children and add it to levell list
node temp = (node) current.clone();
temp.level++;

temp.0[c.jobindex][c.opindex][0]=Math.max(c.start_time,
(int)current.available_time [c.machine]);//set start time

temp.O[c.jobindex] [c.opindex] [1]=c.machine; //set
machine

//update availability time of machines
temp.available_time[c.machine] =
temp.O[c.jobindex][c.opindex][0]+ProcessTime[row][c.machine];
next__level. add (temp) ;

//System.out.printIn(temp.temptoString()) ;

}
/ / n e x t l e v e l i s r e a d y t o bound

double [] g l o b a l _ c o s t = new d o u b l e [n e x t _ l e v e l . s i z e ()] ;
f o r (i n t i=0 ; i < n e x t _ _ l e v e l . s i z e () ; i++) {
g l o b a l _ c o s t [i] = evaluate(next_level.get(i)) ;

/ / S y s t e m . o u t . p r i n t I n (g l o b a l _ c o s t [i]) ;
}
/ / s e l e c t t h e beamwidth b e s t n o d e s i n d e x t h a t has minimum

c o s t s
i n t b e s t _ i n d e x = 0;
f o r (i n t i = l ; i < n e x t _ l e v e l . s i z e () ; i++) {

i f (g l o b a l _ c o s t [i] < g l o b a l _ c o s t [b e s t _ i n d e x]) {
b e s t _ i n d e x = i ;

}
}

return next_level.get(best_index);

}

static class opcand {

}

static class node implements Cloneable

}

119

