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Abstract 

Cost based Rescheduling Approach to Handle Disruptions 

in Flexible Manufacturing Systems 

Ehsanallah Naseri 

Rescheduling is an essential operating task to efficiently tackle uncertainties and 

unexpected events frequently encountered in today's complex and flexible manufacturing 

systems. The main purpose of this thesis is to develop a real time reactive scheduling 

methodology in order to respond to such disturbances and uncertainties in a cost efficient 

manner. In order to assess the impact of schedule changes, a compound rescheduling cost 

function is developed based on machine, job, and material related rescheduling activities. 

A Total Rescheduling (TR) approach based on the Filtered-Beam-Search-heuristic 

algorithm (FBS) is proposed to generate a prespecified number of cost efficient 

suboptimal schedules by using the proposed cost function in case of each disruption. 

Thereafter, the current schedule is replaced by the alternative schedule which causes the 

minimum rescheduling cost. 

Responding to each single disruption with TR may cause system nervousness and 

increase the operational cost. Hence, a partial rescheduling approach is developed by a 

Modified Filtered-Beam-Search-heuristic algorithm (MFBSR) in order to generate a 

prespecified number of sub optimal cost-efficient schedules with a lower rescheduling 

cost and fewer deviations than TR. 
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In order to validate the performance of the proposed methodologies, TR and 

MFBSR, different case studies and experimental designs have been performed 

considering various disruption scenarios. The performance of the suggested methods in 

terms of rescheduling cost, makespan efficiency and stability have been compared with 

similar rescheduling and repair methods in the literature. The results reveal that the 

proposed methodologies could be considered as competitive methods in responding to 

disruptions in flexible manufacturing systems. 
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"I do not know what I may appear to the worCd; 

Tiut to myself I seem to have Been onCy Cike a hoy 

jpCaying on the seashore, and diverting myself in now 

and then finding a smoother pehbCe or a prettier shed 

than ordinary, whiCst the great ocean of truth Cay aCC 

undiscovered before me." 

Isaac Newton 
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Chapter 1 

Introduction 

In order to survive and be globally successful in today's competitive manufacturing 

environment, companies have to respond to changes in the market quickly and satisfy the 

needs related to mass customization through flexibility and adaptability. 

Flexible manufacturing systems (FMS) possess the capability of handling these 

changes and disruptions thanks to the machine and process planning flexibilities; 

however, these capabilities should be efficiently exploited through scheduling rules in 

order to get the full benefit at minimal operational costs. In a dynamic environment, the 

task of managing and controlling manufacturing systems becomes more difficult as a 

result of internal disturbances such as machine failures, and external disturbances such as 

rush orders and supplier problems. Scheduling is an essential task in achieving timely and 

cost effective production. The omission of the dynamic nature and stochastic events in 

scheduling literature creates a gap between scheduling theory and practice. Once an 

initial schedule is disrupted, it should be updated through rescheduling activities to 
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satisfy the new requirements. Machine failure, new order arrival, job cancellation, due 

dates changes, job priority changes, rework or quality problems, and operator 

absenteeism are some of the disruptions that may occur widely during the production 

schedules. 

Rescheduling refers to finding a new schedule when a disruption occurs in the 

operations of an on-going initial schedule. Two important factors that need to be 

considered in rescheduling problems are when and how to efficiently react to such 

disruptions. There are three types of policies in order to find the proper time to respond to 

disruptions: event driven rescheduling, periodic rescheduling and hybrid rescheduling. As 

well, three methodologies are used to efficiently react to disruptions: Right Shift 

Rescheduling (RSR), partial rescheduling (repair) and total rescheduling (TR) [1]. 

Finding an appropriate method and policy in responding to disruptions could prevent 

system nervousness and decrease operational cost as a result. 

1.1 Flexible Manufacturing Systems 

A flexible manufacturing system (FMS) is an integrated system of machine modules 

(usually CNC machines), equipped by an automated material handling and storage 

system under computer control for the automatic random processing of palletized parts 

[2]. An FMS is a form of job shop system in which machines are capable of performing 

various operations based on their tool assignment. Figure 1.1 shows an FMS 

implemented at Vought Aerospace Co. Workstations in the system are interconnected by 

an automated material handling system by using the Automated Guided Vehicle (AGV) 

[2]; hence, jobs have various routes in the system and can be carried out in any sequence. 
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The processing time of each operation may vary from one machine to the other based on 

the toolset and machine's specification. 

Flexibility is the term used for the characteristic which allows a manufacturing 

system to cope with variation of production style without an interruption in the 

production process for any changeovers between models. Exploiting this attribute into the 

system provides high machine utilization and throughput rates, and decreases lead-time 

and work in-process inventory by reducing parts movement and tool changing time [3]. 

Automata Uiip iemm.il JWern 

Figure 1.1: FMS implemented at Vought Aircraft [2] 

1.2 Uncertainty and Disruptions in FMS 

Manufacturing operations are inevitably faced with wide range of uncertainties and 

variations in production process. Companies need to handle them in advance or react 

after their occurrence. Uncertainty and unexpected events may change the system status 
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and affect the performance. The production schedule employed as a crucial tool in 

manufacturing systems in order to increase productivity and decrease the operating cost, 

is subject to be upset widely by disruptions during the execution schedules. If these 

disruptions cause significant deterioration in performance, the system needs to react and 

update the existing schedule in order to lessen the impact [1]. Machines may be stopped 

during their operations for major failures such as breakdown, toolset wearing, or tool 

reassignments. New jobs may enter to the system or the existing jobs may be cancelled 

due to changes in customers' orders. All of these events which are called rescheduling 

factors [4], will affect the performance of the existing schedule and require a quick 

response. 19 types of rescheduling factors found in literature which occur in the FMS can 

be categorized as follows: 

1. Machine breakdown: [5-14] 

2. New order arrival: [11,14-17]. 

3. Rush (urgent) order arrival: [5,9,10,13,14,18]. 

4. Order cancelation: [10,13,19-21]. 

5. Maintenance of machine: [5]. 

6. Operator absenteeism: [11,22]. 

7. Tool Breakdown: [11]. 

8. Tool Wearing: [11]. 

9. Delay in material handling process: [23]. 

10. Due date changes: [14,23]. 

11. Process time variation: [11,13,14,24]. 

12. Performance variation in machines: [11]. 

13. Set-up time variation: [11]. 
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14. Change in job priority: [10,11]. 

15. Rework or quality problem: [ 11,22]. 

16. Rejection: [11,14]. 

17. Unavailability of raw material: [11]. 

18. Outsourcing: [11]. 

19. Ready-time changes [14]. 

1.3 Problem Statement and Motivation 

Due to the dynamic nature of flexible manufacturing systems and the wide range of 

unexpected changes and disruptions, the production schedule as a crucial tool in 

manufacturing process needs to be monitored and updated. Analyzing how to efficiently 

handle the disruptions and uncertainties in FMS scheduling is the main purpose of this 

work. Rescheduling process identifies when and how to react to such disruptions in FMS, 

mentioned in Section 1.2, in order to make the schedules work efficiently. Towards this 

end, a comprehensive review of literature is performed in Section 1.4, and the 

contribution of this study is presented in Section 1.5, in order to find the gap between the 

methodologies and contributions in the literature, and finally the objective of the thesis is 

presented in Section 1.6. 

1.4 Literature Review 

The literature on rescheduling topic can be broadly classified into two main areas: 

rescheduling methods and strategies in FMS environments, and selection of performance 

criteria to generate and evaluate the updated schedules. The review of literature on 

rescheduling methods and policies are presented in Section 1.4.1, and the performance 
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measures used in rescheduling of relevant works are discussed in Section 1.4.2. Finally, 

Table 1.1 represents the summary of rescheduling literature and the corresponding 

features of each work, in terms of rescheduling methods and performance criteria. 

1.4.1 Rescheduling 

Rescheduling is the process of updating the existing schedule in response to the 

disruptions and changes that take place on the FMS in order to keep the system running at 

high performance [1]. During the execution of a schedule, two essential factors need to be 

considered. First, the timing for a rescheduling decision needs to be made, which is called 

when-to-schedule. Once the decision on timing of updating the schedule is made, the 

second decision is how to perform the rescheduling action called how-to-schedule [1,24-

26]. 

Regarding the timing decision, previous studies implement a periodic, event-

driven, or a hybrid rescheduling policy in order to determine an appropriate time to react 

to disruptions and changes. Periodic scheduling generates the schedules based on a 

constant or variable length time by time. According to this policy, the system is 

monitored periodically and the rescheduling action is run at the beginning of each time 

period in order to recover the system from negative impact of disruptions 

[24].Sabuncuoglu and Karabuk [27] propose another method called adaptive scheduling, 

which triggers the rescheduling action after a predetermined amount of deviation from 

the existing schedule. The authors also show that frequently updating the schedule 

performs actually worse than myopic dispatching rules. Event-driven scheduling updates 

the existing schedule at each disruption occurrence point. Subramaniam et al. [18] 

propose a reactive scheduling repair methodology in order to handle multiple disruptions 
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occurred during scheduling horizon. The authors expressed that rescheduling the system 

at the time of each disruption is a convenient solution for job shop systems. The hybrid 

rescheduling policy refers to the method of updating the existing schedules not only at the 

end of each fixed time, but also in response to each disruption occurrence [22,28]. 

How-to-schedule term relates to the methods in which the updated schedules are 

generated. The schedule can be generated online or offline. Sabuncuoglu and Goren [14] 

define this aspect as the schedule scheme and Vieira et al [1] name it as the rescheduling 

strategy. Offline scheduling or predictive-reactive has two major steps: First, all 

operations of available jobs are scheduled before executing the schedule for the entire 

horizon, and in second step, schedules are updated in response to disruptions. In online 

scheduling, however, there is no scheduling generation and the decision is made once at a 

time during the schedule execution. The online scheduling requires the knowledge of 

state of the system at the moment of time. This knowledge is combined with decision rule 

to determine the next operation to be scheduled. Dispatching rules or control theory are 

such examples of online scheduling [27,29,30]. Sabuncuoglu and Karabuk [27] show that 

in static and dynamic environments, offline scheduling outperforms online scheduling as 

the online scheduling fails to consider the global perspective given by offline scheduling. 

However, in a dynamic and stochastic environment, further study is needed to compare 

different performance measures in online and offline scheduling. 

Another issue in how-to-schedule refers to the methodology to regenerate the 

schedules. Existing studies use one of the three main rescheduling methods according to a 

performance criterion: (i) Total Rescheduling (TR), (ii) Right-Shift Rescheduling (RSR), 

and (iii) Partial rescheduling (Repair). The TR approach regenerates the whole schedule 

from scratch for the remaining operations, using different types of objective functions, 
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methods and algorithms [31]. On another extreme, the RSR simply updates the schedule 

by right shifting all the remaining operations in time to recover the negative effects of 

change and disruptions [32]. Between these two extremes, the repair is introduced to 

partially reschedule the remaining operations [5,11,13]. More details about rescheduling 

methods and literature are explained in Section 1.4.1.1-3. 

A variety of performance metrics are utilized in rescheduling studies. These 

metrics can be categorized into four groups: schedule efficiency, schedule stability, 

robustness, and cost [7,10,26,33]. Efficiency metrics usually refer to the time related 

measures such as makespan, tardiness, mean flow time, and lateness [1]. Measure of 

stability relates to the impact of the new schedule deviations from the original one, while 

robustness is concerned with the differences in terms of performance measure such as 

objective function values [26]. Considering cost as a performance measure could reflect 

the economic performance of a manufacturing system. More details about performance 

metrics and literature are explained in Section 1.4.2. 

1.4.1.1 Total Rescheduling (TR) 

Total Rescheduling (TR) which is widely called in literature as rescheduling refers to the 

task of regenerating the schedules from the scratch for the remaining operations in the 

schedule, with a predetermined objective function [13]. Rescheduling in FMS has been 

broadly studied during past decades, and it continues to attract the interest of researchers 

both in academia and industry. The main purpose of these researches is to find out how to 

efficiently and quickly generate the new schedule in case of disruptions. Most of research 

contributions could be categorized in three main aspects: solving the rescheduling 
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problem by optimization methods for exact solutions, dispatching rules, and artificial 

intelligence (Al)-based heuristic approach [20]. 

Mathematical programming is the major part in optimization methods used in 

FMS rescheduling [35]. Several mathematical programming models have been developed 

and used for solving scheduling problem in FMS. Han et al. [36] propose a nonlinear 

integer programming model for real-time scheduling problem in FMS. Hutchison et al. 

[37] have developed a mixed-integer programming formulation for a random FMS 

scheduling problem. Caumond et al. [38] propose an MILP model for scheduling 

problem in FMS. The authors have found the optimal solution for small and medium size 

scheduling problems. Although these methods ensure achieving the best solution for the 

small and medium sized problems, they require huge computational efforts due to the 

complexity of FMS scheduling problem for large scale problems [35]. Wang et al. [39] 

mention that the FMS scheduling problem is NP-hard. Therefore, it is not always possible 

to find an optimal solution quickly. Hence, the exact optimization methods are usually 

applied as a tool for analyzing and validating the problems and as a basis in developing 

the heuristic algorithms. 

Dispatching rule (DR), also called scheduling rules or priority rules, is one of the 

most common approaches for scheduling in dynamic environments [40]. Balckstone et al. 

[41] defined a DR to select the next job to be processed from a job waiting list. The 

authors compare several DRs in the literature, and conclude that identifying a single DR 

as the best for all circumstances is impossible. Stecke and Solberg [42] have 

comprehensively studied the performance of DRs in FMS environments. Ishii and 

Talavage [43] have presented a real-time scheduling algorithm in FMS, which 

dynamically collects the DRs for the short period ahead responding the changes in the 
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system. The authors conclude that changing DRs over a short-term period based on 

current state of the system could perform better than using single DR for a long time. 

Kim and Kim [9] propose a scheduling method where DRs are dynamically varied and 

based on certain criteria the best one is selected at each step. Chan et al. [44] show that 

dynamically changing the DRs at a proper frequency during the dynamic scheduling 

could improve the performance of the system. Numerous DRs were introduced in 

literature, and although they can obtain the schedules quickly, their efficiency highly 

depends on the performance criteria and operating conditions. Accordingly, they can 

achieve a good result on a given performance criterion, but may cause poor results on 

another criterion [45]. 

Al-based meta-heuristics algorithm (GA, SA, TS, BS etc.) has become more 

popular among researchers in recent years for solving the scheduling/rescheduling 

problems, as they can generate near optimal solutions in real-time complex system 

rapidly [46]. Brandimarte et al. [47] have proposed a tabu search (TS) algorithm for FMS 

scheduling in order to minimize the weighted sum of tardiness and makespan. Dauzere-

Peres and Paulli [48] have presented an integrated approach in FMS scheduling by 

applying TS based on a new neighborhood structure for the problem. Honghong and 

Zhiming [19] have introduced an adaptive genetic algorithm (AGA) to find the new 

suboptimal schedule of a large and complicated FMS quickly, as a response to 

disruptions. The proposed AGA is an improved approach of GA which can prevent the 

premature convergence. Jain and Elmaraghy [10] suggest a steady state GA for solving 

multiple routing scheduling problems (FMS). The authors use this method in generating 

the initial and updated schedule. Najib et al. [49] have introduced a modified simulated 

annealing (SA) method for scheduling problem in FMS, and Xia and Wu [50] have 
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implemented a hybrid optimization approach for FMS scheduling problem using swarm 

optimization and SA. 

Filtered-beam-search heuristic algorithm as one the most competitive Al-based 

search methods is widely utilized for efficiently searching in decision tree especially with 

the enormous solution space [51]. Ow and Morton [51] firstly introduced the FBS as an 

extension and improvement of BS. The high performance and quick searching speed of 

FBS-based algorithms are two key elements expressed in the literature. De and Lee [52] 

propose a problem-solving strategy based on FBS algorithm in FMS. The authors use a 

frame-based knowledge representation scheme to improve the quality of generated 

schedules. Sabucuoglu and Karabuk [6] have introduced a heuristic based FBS for FMS 

scheduling problem. The authors consider finite buffer capacity, routing and sequence 

flexibilities, and generate the schedules for machines and automated guided vehicle 

(AGV) for a given period. Wang et al. [39] have developed a heuristic filtered beam 

search algorithm (HFBS) to find suboptimal schedules with a reasonable computational 

time in FMS. The authors have incorporated several DRs and intelligently explored the 

search space in order to avoid useless paths, to improve the speed and maintain the 

solution quality. Wang et al. [20] have introduced a filtered beam search algorithm to 

solve the dynamic rescheduling problem in a large and complex FMS environment 

responding to realistic disruptions. The authors have performed a comparison with the 

testing results of Honghong and Zhiming [ 19] and concluded that the results from the 

proposed FBS based algorithm in FMS rescheduling outperformed the results generated 

by AGA in both speed and accuracy aspects. 
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1.4.1.2 Right Shift Rescheduling (RSR) 

Right shift Rescheduling (RSR) refers to the action of simply delaying the whole 

schedule for the duration of disruptions; or in other words, shifting the remaining 

operations to the right on the Gantt chart [5]. The RSR process, also referred to Do 

Nothing method, is quite simple and easy to be modeled and implemented [14]. The 

authors have considered 8 types of disruptions and expressed the required response 

actions for RSR. They conclude that RSR is suitable with Periodic scheduling. 

Abumaizar and Svestka [5] have compared three rescheduling methods (TR, RSR, and 

repair), and concluded that the performance of RSR is worse than the two others in terms 

of stability and efficiency and the updated schedules by RSR will have high deviations 

from the initial schedule. They suggest that RSR may be applicable just when the 

disruptions overlap with the scheduled processing time in the initial schedule. 

Subramaniam and Raheja [11] have compared the performance of RSR with mAOR and 

showed that for various types of disruptions mAOR outperforms RSR in both stability 

and efficiency measures. According to their results, the RSR itself cannot not be a 

competitive method in responding to the disruptions; it needs to be revised and combined 

with other methods in order to generate reasonable results. 

1.4.1.3 Partial Rescheduling (repair) 

Partial rescheduling, also called schedule repair in the literature, refers to rescheduling 

the operations that have been directly or indirectly affected by the disruptions [1,5,18,53-

56]. This method intends to revise the schedule by keeping the existing schedule stability 

and avoiding unnecessary changes. Most of the heuristics methods developed in repair 
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approach are based on affected operations rescheduling (AOR) [5,10,11,54]. Match-up 

scheduling introduced by Bean et al. [57] is another type of scheduling repair methods. 

Bean et al. [57] have proposed a repair methodology for production schedules 

responding to disruptions based on match-up procedure. In this process, the part of the 

original schedule is rescheduled in order to accommodate the disruptions to fit with the 

original schedule at some time in future. The authors have applied a heuristic of ordering 

rules in order to resequence all operations before a match-up point. Increasing lateness 

cost results in increasing the match-up point. If the match-up point becomes too large, the 

proposed method solves integer programming or DRs to reallocate operation to different 

machines. They conclude that match-up scheduling brings optimal results for the low 

frequent disruptions, which can allow the system to return to the original schedule before 

the next disruption occurrence. Akturk and Gorgulu [58] have proposed another repair 

algorithm based on the match-up method which can partially reschedule a modified flow-

shop system responding to machine breakdown. Sabuncuoglu and Goren [14] suggest an 

extensive repair methodology for 8 types of disruptions which can update the disrupted 

schedule by minor modifications. They use match-up scheduling in order to response to 

machine breakdown. 

Li et al. [54] have developed a heuristic algorithm based on binary tree and net 

change concept to update the schedule by rescheduling only the operations that needed to 

be revised. Abumaizar and Svestka [5] have applied the binary branching algorithm to 

present an algorithm for job shop rescheduling called affected operations rescheduling 

(AOR) in order to minimize the increase in makespan and deviations from initial 

schedule and overcome the deficiency of RSR. The authors have implemented AOR for 

machine breakdown and compared the performance of it with TR and RSR for various 
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disruption scenarios. They conclude that, compared to TR, AOR reduces deviations and 

computational time significantly, but in terms of makespan, TR performs slightly better. 

AOR is modified by Mason et al. [59] for fixed sequence rescheduling in order to 

consider batch-processing machines in FMS. The authors have compared the 

performance of schedules generated by RSR, modified AOR (fixed sequence 

rescheduling), and TR for machine breakdown in an FMS environment. Subramaniam 

and Raheja [11] have employed AOR and extended it for 17 different types of 

disruptions. The performance of mAOR is compared with RSR for four types of 

disruptions; machine breakdown, rush order arrival, process time variations and urgency 

of the existing jobs. They show that mAOR outperforms RSR in terms of efficiency and 

stability. Subramaniam et al. [18] have introduced a reactive repair methodology based 

on mAOR [11] for handling multiple disruptions that occur during the schedule horizon. 

The authors consider five types of disruptions: Machine breakdown, absenteeism, process 

time variations, unexpected order arrival, and job cancellation. They have performed an 

experiment based on different levels of magnitude, density, and dispersion of the 

mentioned disruptions for efficiency and stability in job shop environment, and compared 

the performance metrics by RSR. Their results also show that mAOR outperforms RSR 

in case of multiple disruptions, but the efficiency of mAOR deteriorates after multiple 

repair actions, and applying the repair approach in response to disruptions is not always 

recommended. The authors advise to find a proper point for TR some time during the 

schedule horizon to offset the poor efficiency of mAOR. 
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1.4.2 Performance Measures 

In Section 1.1.3, four types of performance measures utilized in the rescheduling 

literature were introduced: measures of schedule efficiency, stability, robustness, and 

cost. These measures could be used as a tool or a function applied in generating the 

schedules or can be used as a metric for performance comparison. In this Section these 

measures are explored and the relevant works from literature are presented. 

1.4.2.1 Measure of schedule efficiency 

Efficiency measures are often used for generating a production schedule. They are 

generally time based measures [7]. The majority of rescheduling models optimize a time 

related objective function, the same one used for generating initial schedule, such as 

tardiness or makespan [14,20,39]. The main reason for the popularity of the makespan 

[11,13,23,27,28,33,39,60] or mean tardiness functions [9,10,19,20,27] is due to the fact 

that their primary objective is to satisfy customer needs, but none of them reflects the 

negative effects of changes to the manufacturing environment. 

Hoitomt et al. [61] have proposed a weighted quadratic function of Tardiness as a 

metric to generate schedules. This objective function comprises the importance of due 

dates, values of each job, and the fact that a job becomes more critical after passing its 

due date. By considering a weighted quadratic function rather than weighted sum, the 

function reflects the incremental penalty of increasing the lateness. Honghong and 

Zhiming [19] and Wang et al. [20] have applied the weighted quadratic function into 

generating the initial and updated schedules. They express that this objective function is 

quite more useful than makespan in an actual manufacturing environment. 
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Xia and Wu [50], and Wang et al. [39] propose a weighted sum function of 

makespan, total workload and critical machine workload in order to generate the schedule 

in FMS. The authors express that since investment and installation of modern fabrication 

tools in FMS are highly capital intensive, there is a great need to take workload and 

utilization factors into account and include them in generating the schedules. 

Abumaizar and Svestka [5], Subramaniam and Rehja [11], Subramaniam et al. 

[18], and Fahmy et al. [13] employ the percentage changes in makespan of updated 

schedule in defining efficiency metric for evaluating their updated schedules. As a result, 

the more efficient rescheduling process is the one which has lower increase in makespan. 

1.4.2.2 Measure of schedule stability 

A schedule which deviates minimally from the original schedule is called stable. Stability 

is measured to demonstrate the impact of schedule changes and can be defined in two 

ways: the starting time deviations between the updated and the original schedule, and as a 

measure of sequence difference between the two schedules [1]. 

Abumaizar and Svestka [5] propose the measure called starting time deviation 

(DevSt) in order to evaluate the stability of the updated schedules. Subramaniam and 

Rehja [11], Subramaniam et al. [18], and Fahmy et al. [13] define a metrics based on 

normalized deviations of starting times of operations from the original schedule. 

Sabuncuoglu and Goren [26] present six different stability based measures in order to 

evaluate different aspects of schedule changes impacts. The authors incorporate 

completion time of operations into the presented measures. 

Sotskov et al. [62] copes with stability aspect from another perspective. The 

authors use a posteriori analysis to handle disruptions in a job shop environment. They 
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try to determine the maximum variation in the process time of operations to keep the 

existing schedule optimal in case of disruptions. They call this maximum variation "the 

stability radius" which can be obtained by sensitivity analysis. 

1.4.2.3 Robustness 

Robustness can be described as the insensitivity of scheduling performance to the 

disruptions. It can be defined as the difference in terms of objective function values 

between the updated schedule and the original one [26]. Robust schedule is the term used 

for the schedules whose performance does not significantly deteriorate in face of 

disruptions. 

Leon et al. [63] use average system slack as a surrogate measure to estimate the 

expected performance degradation. They show that the average system slack as a 

robustness measure performs well under processing time variation. Daniels and Kouvelis 

[64] have generated a robust schedule for a single machine system in face of process time 

variation in order to minimize the performance measure under the worst possible 

scenario. They show that the schedule generated by robustness metrics performs better 

than former DRs. Goren and Sabuncuoglu [65] have developed two new surrogate 

measures for robustness and stability to generate the robust and stable schedules in single 

machine environments by considering three different measures: makespan, total tardiness 

or total flow time. Gan and Wirth [66] use an empirical approach and an entropy measure 

in order to justify the time that is needed to switch between the deterministic, robust and 

online scheduling. 

Sabuncuoglu and Goren [14] categorize robustness measures into two groups. The 

measures in the first group are based on the actual performance of an updated schedule 
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and the other group is based on regrets. The authors propose seven measures for the first 

category and four measures for the second one in order to minimize the deviations 

between the new schedules and the initial schedule in terms of performance values. 

1.4.2.4 Cost 

For managers, issues such as job profitability and total cost minimization are often more 

important than any time based or stability based measures [7,8]. The former measures fail 

to reflect the economic impact of disruptions on the manufacturing systems; hence, 

several studies have been done to find a cost based performance measure to offset this 

deficiency. The authors propose the total cost function in terms of job due dates, 

completion time, number of jobs, number of operations, processing time, raw material 

cost, processing cost of operations, job revenue, processing start time job release time, 

job tardiness, holding cost, and lateness cost. This cost function has been used in 

evaluating the different scheduling rules in job shop environments. 

Vieira et al. [1] categorize rescheduling cost into three groups: computational 

costs, setup costs, and transportation costs. Computational cost may refer to the cost of 

loading and running the scheduling system on the computers [22,27], the cost of 

investment in information systems (hardware and software), and the cost of 

administration, maintenance and upgrading of the system. Setup cost refers to changing 

and reallocating the toolset and pallets according to the changes in the existing schedules 

[56]. Transportation cost, also called material handling cost, refers to handling the 

materials earlier than the required time, or additional material handling work required due 

to changes in the existing schedules [56]. The mentioned cost measures in the literature 

are not quite applicable in FMS environments. In the FMS configuration mentioned in 

18 



Section 1.1.1, the system consists of flexible machines like CNC machines, which are 

capable of simply changing toolsets during the production, hence the setup cost is not 

useful any more. Furthermore, as FMS is equipped by automated material handling 

system (such as AGV), transportation cost also would not be applicable. In addition, An 

FMS has its own computer based infrastructure which controls and manages the whole 

system and does not need any more devices and tools for its scheduling; thus, the 

computational cost would also be useless. In view of these reasons, there is a great need 

in finding a proper cost measure in rescheduling applicable to an FMS environment. 

Kapanos et al. [67] have introduced a rescheduling cost function and applied it 

into the optimization process of generating schedules to make the updated schedules 

more stable in real chemical industry scenarios. Their proposed rescheduling cost 

function consists of three main sources: total starting time deviation, unit reallocation 

cost, and order resequencing cost. The authors conclude that considering the rescheduling 

cost in generating the schedule results in smoothing the gap between theory and practice 

in scheduling problems. 
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1.5 Contribution of this Study 

In this thesis, a cost-based rescheduling methodology using an FBS algorithm in an FMS 

environment is studied. 

The offline and event-driven rescheduling as an appropriate strategy in FMS 

environments [18,27] is considered in this study. At the time of disruptions (TOD), the 

existing schedule needs to be updated quickly in order to cope with the disruption. Two 

rescheduling methodologies are studied in this work: Total rescheduling (TR) and 

scheduling repair methodologies. Responding to each disruption in FMS by TR causes 

high operational cost and creates system nervousness. Repairing the schedules for every 

disruption in every circumstance also causes low efficiency [18]; therefore, finding a 

point for total rescheduling the system after performing some repairs action could be an 

effective way in order to minimize the total cost of rescheduling actions and increase the 

efficiency of the updated schedule. 

Even though the existing repair algorithms in the literature can generate solutions 

with lower deviations at a faster speed than TR, the efficiency of the repair methods is 

usually lower than TR since the repair methods try to adhere to the original schedule. 

Hence, developing a repair method that can generate a schedule based on the 

performance metrics would cover this deficiency. Filtered beam search heuristic 

algorithm (FBS) is applied in this study in order to repair the disrupted schedules at TOD. 

This algorithm is also used in generating the initial schedule and the updated schedule by 

TR. The high quality of solutions and performance, high searching speed, and ability to 

exploit flexibilities in FMS are some valuable benefits of FBS mentioned in the literature 

[20,39], which make it a reasonable tool for rescheduling in FMS environments. 
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Timed based measures and stability are competing objectives: minimizing the 

makespan in order to satisfy the customers' needs can create the high deviations in the 

updated schedule and cause high operational costs as a result. On the other hand, any 

deviation from the original schedule increases system nervousness. Wu et al. [33] show 

that, since efficiency and stability are conflicting objectives, the choice of objective 

depends on the circumstances. A good way of overcoming the competing effects of the 

measures is to define a cost based measure that can inherently identify the trade-off 

between schedule efficiency and stability. 

1.6 Objectives and Approach 

The purpose of this thesis is: 

To show that the cost based rescheduling methodology using FBS is an 

appropriate way of handling disruptions in FMS environments, which can result in 

generating the cost efficient updated schedules allowing the trade-off between the time 

based and stability based criteria. 

In order to prove this purpose, first, a rescheduling cost function is proposed in 

order to assess the negative impact of changes due to rescheduling in FMS. The 

rescheduling cost function is used as an objective function in order to generate schedules, 

and can also be employed as a performance measure to compare the impact of various 

methodologies. 
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Second, an FBS-based heuristic algorithm is applied in order to totally reschedule 

the system at the time of disruption and generate the cost efficient updated schedules by 

the proposed rescheduling cost function. 

Third, a schedule repair methodology is developed based on FBS algorithm, in 

order to generate the cost efficient updated schedules at TOD. 

A case study is presented for each case to demonstrate the benefit of using the 

proposed methodologies. For three types of disruptions, i.e., machine breakdown, new 

order arrival, and job cancellation, various scenarios are identified and the results are 

compared with the similar rescheduling methods in the literature in terms of cost based, 

time based and stability based measures. 

1.7 Thesis Outline 

This thesis composed of four chapters as follows: 

• Chapter one includes introductions, review of relevant literature, contribution of the 

study, objectives and approach. 

• Chapter two discusses about the cost based total rescheduling (TR) approach in 

FMS. Towards this end, a compound cost function is developed as a measure to 

be employed as an objective function in FBS in generating the updated schedules. 

The performance of the cost based schedules is compared with the performance of 

schedules generated by time based and stability based measures in terms of 

rescheduling cost, stability and efficiency. 
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• Chapter three presents the proposed repair methodology in FMS scheduling. For 

this purpose, a two-phased methodology is suggested. The rescheduling cost 

function is inserted in a modified version of filtered beam search (MFBSR) in 

order to generate several repaired schedules. The performance of the updated 

schedules by this method is compared with mAOR and TR in terms of 

rescheduling cost, efficiency and stability for various disruption scenarios and 

different flexibility levels of the FMS environment. 

• Chapter four gives the conclusions of the thesis work, and suggests the future 

directions for the research. 

• Appendices include sample TR and MFBSR models in Java Eclipse 

(www.eclipse.org). 
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Chapter 2 

Cost based rescheduling in 
FMS using FBS 

Changes and unexpected events may occur inevitably during the production process as a 

result of dynamic and uncertain nature of manufacturing environments. The system needs 

to be updated and adapted to changes rapidly in a cost efficient way in order to be alive 

and competitive in today's market. Rescheduling is an essential operational task required 

to be carried out in order to respond to disruptions and unexpected events in 

manufacturing systems. 

In this Chapter, a methodology for cost based rescheduling is proposed in FMS 

environment, in order to generate the new schedules having minimum rescheduling cost 

while obtaining acceptable efficiency and stability levels. A rescheduling cost measure is 

defined in a form of a compound function to assess the negative impact of changes in the 

schedule due to disruptions. This function consists of three main rescheduling cost 

sources; job related, machine related, and material related cost. The method selected for 

generating the schedules, both the initial and the updated ones, is based on the filtered 
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beam search heuristic algorithm (HFBS) [39] because of its speed and quality of 

solutions. Three types of disruptions are considered in this study: machine breakdown, 

new order arrival, and job cancellation. Finally, In order to validate the performance of 

the proposed rescheduling methodology, in terms of solution quality, rescheduling cost, 

efficiency, and stability, various test problems are simulated by different methods in the 

literature for different disruptions scenarios. 

2.1 Problem Statement 

A flexible manufacturing system (FMS) with partial flexibility is considered in this work. 

There are a certain number of jobs to be scheduled each having a different number of 

operations with alternative machines capable of performing the same operation albeit 

with different processing times. The initial schedule is generated by a time based 

objective function (weighted sum of makespan, maximum machine workload, and total 

workload) [39]. During the execution of the schedule, the following types of disruptions 

are considered: machine breakdown, job cancellation, and new order arrival. At the time 

of each disruption (TOD), a new schedule will be generated based on the availability of 

the machines and remaining available operations while minimizing the rescheduling costs 

of switching from the existing schedule. Following are the assumptions considered in this 

study: 

• The jobs are non-preemptive. 

• An operation cannot be performed on more than one machine at the same time. 

• Each machine cannot perform more than one operation at the same time. 

• The machines are independent of each other and all are available at t=0. 
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• Machines' set-up times and material handling time are not considered. 

• The jobs are independent of each other and can be done at any time separately. 

• Processing time is deterministic and fixed during the horizon based on the process 

plan. 

The initial and the updated schedule are generated by using the filtered beam 

search heuristic method (HFBS) according to an objective function. In the next Sections, 

the proposed rescheduling cost function is described as a performance metric which is 

used in generating the updated schedules. The suggested rescheduling methodology is 

demonstrated with an illustrative example, where the schedules generated by the 

proposed cost measure are compared with the schedules updated by using time based and 

stability based measures under different disruption scenarios. 

2.2 Rescheduling Cost 

A compound cost function is introduced in order to assess the negative impacts of 

schedule updates while considering both aspects of timing and deviations [68]. 

Three main rescheduling cost sources can be categorized as machine related, job 

related, and material related cost: 

Cost , = Cost (Mach _R) + Cost (Job _R) + Cost (Mat _R) (2-1) 

2.2.1 Machine related Cost 

Due to a schedule update, an extra machining cost can result from switching an operation 

to an alternative machine which has longer processing time. Similarly a change in the 

sequence or reallocation of jobs due to a disruption can cause an increased idle time over 
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the updated makespan. Then, the machine related rescheduling cost is the total cost of 

increased idle time of all machines (Cj) and total cost of extra processing time (C2) after 

rescheduling, which are given by the following equations: 

C, = y^Max 
^ r 

' J J V 

^ ( O - y y c - ^(c^-ZE^r' 
• J 

,0 x rjk (2-2) 

C2 = T^ Max zzc-zz^ Initial 

V v < j ' 

XT (2-3) 

Where k is the machine index and the coefficient tjk corresponds to the rate of idle 

time machine L Puic represents the processing time of operation i of job j assigned to 

machine k. CtJk represents the completion time of operation / of job j on machine k . The 

coefficient r represents the penalty cost of extra machining time needed after 

rescheduling. The first term in Equation (2-2) corresponds to total idle time of machines 

in the updated schedule and second term corresponds to total idle time of machines in the 

initial schedule. In Equation (2-3), terms identify total machining time in the updated and 

the initial schedule respectively. 

2.2.2 Job related Cost 

Jobs could be shifted as a result of rescheduling and finished earlier or later than the 

initial schedule. Cj is defined as the cost of the added lateness of jobs after rescheduling 

which can be expressed by the following equation: 

C3 = ^Max Imllal -(Max(C™ ) -£> , ) - (Max(C!;"""' )-£>,) ,0 xS. (2-4) 
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The coefficient Sj represents the penalty cost of unit time lateness for each job j 

and Dj is the job due date. The first term in Equation (2-4), is the tardiness of each job in 

the updated schedule while the second term corresponds to the tardiness of jobs in initial 

schedule. 

Jobs can also be finished earlier than their completion time in the initial schedule 

after rescheduling, hence, this creates saving on due dates. This can be considered as 

benefit (Q) or negative cost in job related cost function which is expressed by the 

following equation: 

C4 = ^Max 
J 

Where the coefficient 9 represents saving on due dates of unit time for each job 

which considered to be negative in the cost function. 

2.2.3 Material related Cost 

The material related cost consists of three types of cost sources such as: 

• Holding cost of WIP and raw material. 

• Cost of expediting the material to an earlier time. 

• Cost of reallocating the material to another machine. 

The starting time of operations is subject to change in the updated schedule. It is 

assumed that the required raw material for each operation is to be supplied just before the 

starting time of operation, according to the initial schedule. Thus, changing the starting 

time or machine assignment of an operation may incur a cost. If the repaired operation 

New\ 
(MaxiC^^-D^-iMaxiC^-D,) ,0 x0. (2-5) 
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starts later, holding cost (C5) occurs as a result. Similarly, if the operation has to start 

earlier than the original schedule, expediting cost (Q) occurs. Operations may also be 

assigned to different machines after rescheduling, and this change causes the cost of 

reallocation (C7) such as changing toolsets, and extra material handling. The 

corresponding cost functions are given as follows: 

v,; s;r>s;r Q = i i f e r - c ' ) x ^ (2-6) 
' J 

\/t, s;r'>s- c 6 = x x f e r ' - 7 ) x ^ (2-7) 

Vi,j,k C^YLIM'^M (2-8) 
' i 

The coefficient hy and /uy represent the holding and expediting cost of material for 

the operation / of job j in unit of time. S'^'is the starting time of the operation / of job j 

on machine k after schedule update, and S"j"'al is the original starting time of that 

operation. (Oykw represents the penalty cost of reallocating material between machines 

after rescheduling process. Y yw is the binary variable indicating whether the operation i 

of job 7 on machine k is switched to machine k or not. 
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2.3 Cost based Rescheduling using FBS 

It is not always possible to find an optimal solution as an initial or updated schedule 

quickly in FMS environments, due to NP-hardness of scheduling/rescheduling problems. 

Therefore, Al-based meta-heuristics approaches are widely utilized recently in order to 

generate near-optimal solutions in a reasonable time. Through this study, filtered beam 

search heuristic (FBS) is employed in generating the initial and updated schedules. The 

proposed cost function, explained in Section 2.2, is used to generate cost efficient 

updated schedules in FBS. In the next Section, firstly the FBS method is shortly 

explained, and after that, the complete FBS-based rescheduling algorithm is presented. 

2.3.1 Filtered Beam Search 

Filtered Beam Search (FBS) is an extension of Beam search (BS) which is the adaptation 

algorithm of branch and bound (B&B) used in solving optimization problems. This 

algorithm uses heuristics to estimate certain number of the best paths and eliminate 

permanently the rest. FBS works much faster than B&B as the large parts of search tree 

are pruned accumulatively. The BS-based algorithms are like breadth-first algorithms as 

they progress level by level without backtracking [27]. However unlike the breadth-first 

search, BS doesn't search through all possible nodes and only moves down from the best 

promising nodes at each level. An evaluation function used to identify the promising 

nodes in each level, which introduces the problem of finding proper trade-off between 

quick but poor, and computationally demanding but better solutions [70]. Filtered beam 

search is introduced in order to find a good tradeoff between speed and accuracy [51]. By 

two phase evaluations which are called as local and global evaluation, filtering phase and 
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beam selection (known as rough and accurate), nodes are pruned in each level and the 

best node is identified. Two key parameters in FBS algorithm are called as filterwidth and 

beamwidth which identify the number of the filtered nodes if), and the number of final 

solutions (b) respectively, b numbers of nodes are selected by a global evaluation 

procedure at the first level. For each of the following level, / numbers of nodes are 

filtered by a local evaluation procedure firstly, and in next step, by performing a global 

evaluation procedure on the remaining nodes (/), the best promising node for each b node 

is selected. The selected nodes in each level added to the partial schedules, and the b 

numbers of schedule will be generated at end. 

As shown in Figure 2.1, after determining the beam nodes in the first level by a 

global evaluation, the filtered beam search is employed independently to generate a 

partial schedule from each of them (in this example, as b is set to 2, two independent tree 

is generated would result in two schedules). Once the best node in each level for each 

beam is identified, nodes are generated for the next level by using the branching method. 

The generated nodes first locally evaluated and/numbers of nodes remain for the global 

evaluation. The procedure continues until all the machine-job pairs are allocated and b 

numbers of schedules are generated. 

2.3.2 FBS based Methodology 

The procedure of generating schedules by FBS method consists of two phases: 

Generating the search space called branching methodology, and evaluating the nodes by 

using the global and local evaluation functions called bounding methodology. In order to 

generate a search tree in FBS, two procedures called Active and Nondelay for job shop 

scheduling are discussed [71]. In this study the modified form of Nondelay called 
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MNONDELAY [39] is used as a branching method. After a level is formed by 

M_NONDELAY algorithm, it is ready to be bounded and is followed by a search 

method. The key point in utilizing the FBS is choosing the proper evaluation function. 

Searching process among the available nodes is performed by the evaluation functions, 

and the partial schedules are generated at each level of the search tree. In this study, the 

Modified Shortest Processing Time (MSPT) [39] is employed as a dispatching rule in 

local and global evaluation procedure. 

Beamwidth = 2 

Filterwidth= 2 

Root 

Beam nodes 

Nodes keep for global 

evaluation but pruned by 

global evaluation 

Nodes pruned by local 

evaluation 

Level 1 

Level 2 

Level 3 

Figure 2.1: Filtered beam search tree representation [39]. 

Finding an appropriate value for filterwidth and beamwidth is a tradeoff between 

accuracy and speed through the algorithm. The number of beamwidth determines the 

number of schedule to be generated for each problem, whereas the filterwidth determines 

the number of operation-machine allocation choices at each level. Their values are 

problem specific and can be determined by analyzing the tradeoff between the 
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performance level of the generated schedules and their computational times. In this study, 

for each specific problem, a range of values for/and b are tested. The smaller pair of/ 

and b which results in the best objective values is selected as filterwidth and beamwidth 

to be used in FBS procedure. 

2.3.3 The Proposed Rescheduling Algorithm 

In case of a disruption at TOD, the schedule can be updated by rescheduling all the 

remaining operations in the system. In order to generate the updated schedule, the 

remaining operations and availability of each machine need to be determined. We define 

the remaining operations the ones that have not begun by TOD. This implies that the 

operations which are in-progress at TOD should be first completed in order to identify the 

earliest availability of each machine. The following steps define how the total 

rescheduling method (TR) is performed in case of each type of disruption: 

Step 1: Initialization 

Input the initial schedule generated by FBS (operations, assignment, starting time), input 

the value of filterwidth (f) and beamwidth (b). 

Step 2: Disruption Occurrence - (Re-Initialization) 

At TOD, the system needs to be rescheduled in order to respond to disruptions. 

Depending on the type of disruptions, different scenarios may stand out; 

Case 1: Machine Breakdown 

In this study, a predetermined repair time is considered for each machine. It is also 

assumed that the failed machines would be available after the repair time. 
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In case of a machine breakdown at TOD, the operations which are in-progress on 

the un-failed machines should be completed first to identify the machines' availabilities. 

If the failed machine has an operation in-progress, the remaining part of that operation 

should be served by that machine after the repair time. Starting time of operations and 

machine availabilities are updated and the system becomes ready to be scheduled for the 

remaining operations. 

Case 2: Job Cancellation 

When a job is cancelled at TOD, all its remaining operations should be cancelled even if 

one is in-progress. Then, the initial partial schedule is formed by all the operations that 

have been finished by TOD, and are in-progress in TOD, and not-cancelled. The starting 

times and machine availabilities are updated and the partial schedule is ready to be 

completed by allocating the remaining operations. 

Case 3: New Order arrival 

If a new order arrives to the system at TOD, the in-progress operations should be 

completed first. The new order is scheduled as a regular order among the remaining 

operations. Hence, the updated list of the remaining operations, start times and machine 

availabilities will be used to generate a new schedule by TR procedure. 

Step 3: Node generation 

(i) MNONDELAY scheme is used to generate nodes from the updated existing partial 

schedule resulted from Step 2. Check the total number of nodes generated, N; update the 

level, and update the partial schedule PSt by generating nodes. 
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(ii) If N< b, then go down to the next level, generate new nodes by MNONDELAY and 

PSi, update the level and PSi by generating nodes. If N< b, then go to Step 3. (ii); else go 

to Step3.(iii). 

(iii) Find the global evaluation function values for all the nodes and select the best b 

numbers of nodes (defining the initial beam nodes). Determine the candidate sets of each 

beamPS1(\),PS,(2),...,PSl(b) 

Step 4: Determining the beam nodes 

Check the level and the number of remaining operations. If any operation remains, go to 

step 4.(i); else go to Step 5. 

(i) Generate N new nodes from each beam node according to MNONDELAY with PSi 

as the partial schedule represented by the beam node. If N<£> go to Step 4.(i); else go to 

Step 4.(ii). 

(ii) Filtering process- Choose the best / number of nodes according to the local 

evaluation function procedure. 

(iii) Global evaluation process- Computing the objective function values for each filtered 

nodes. 

(iv) Beam nodes selection- Select the nodes with the best objective function, add it to the 

partial schedule, and update the partial schedule and level. 

Step 5: Select the solution schedule 

Among the b numbers of generated schedules, select the schedule set or schedule sets 

with the best objective function values. 
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2.3.4 The Complexity Analysis 

The time complexity of the proposed algorithm in worst case is 0(n ) , where n is the total 

number of operations to be scheduled in the FMS problem. In worst case, the algorithm 

in step 3 generates at most n possible nodes, and then b numbers of best nodes are 

selected from n nodes by a global evaluation function (bn). For finding the value of the 

global evaluation function, the algorithm should generate a complete search tree of depth 

n since there are n operations. Then the total complexity in step 3 is O (bn +n). In step 4, 

two loop exists, the outer loop which needs computational time roughly to bn as it forms 

b complete beams, each has depth n, and the inner loop which are firstly selected/nodes 

by a local evaluation among the remaining ones (at most n) and expand further to n level, 

which makes the total computational time roughly to /«2.Thus, the total complexity of 

step 4 would bebnxfn2. So the time complexity of step 4 is 0(bfn). Therefore the 

overall complexity of the proposed algorithm is 0(Max (bn +n, bfn3)). As b and / are 

small in comparison to n, the total complexity of the algorithm is 0(n ) . 

2.4 Illustrative Examples 

In order to demonstrate the efficiency and performance of the proposed rescheduling 

algorithm in FMS environments, a numerical study is developed, tested and evaluated. 

The algorithm is run on a personal computer with an Intel Core 2 Duo CPU, 2 GB RAM 

on Microsoft Windows XP Professional. The codes are written in the Java, Eclipse 

(Galileo 3.5.1 platform). The corresponding Java codes are presented in Appendix A. 

The initial test problem considered in this study is a small FMS system with 4 

partially flexible machines, with 4 jobs each having 3 operations. Table 2.1 represents the 
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processing times of operations on each alternative machine. The processing times are 

represented as random numbers uniformly distributed between 2 and 5. 

Table 2.1: Process time table 

Job 

1 

2 

3 

4 

Operation 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

Machine 1 

2 

4 

3 

5 

2 

4 

3 

2 

Process time 

Machine 2 Machine 3 Machine 4 

5 

3 

2 

5 

5 

5 

3 

2 

3 

2 

2 

5 

3 

4 

5 

5 

4 

3 

4 

2 

3 

2.4.1 Initial Schedule Generation 

The initial schedule is generated by the traditional FBS method [39]. M_SPT dispatching 

rule [39] is used as local and global evaluation functions and the objective function is the 

weighted sum of makespan, maximum machine workload, and total processing time. 

Finding the proper value of filterwidth and beamwidth is a crucial task in FBS in 

order to balance the computational time and solution quality. In this case study the 

appropriate values of these parameters are obtained via experimental trials, b and / are 

set to be between 2 and 8. The total value of objective function (F-value), the weighted 

sum of makespan, machine workload and total processing time, is represented by 

changing the/and b value in Table 2.2. According to the table, settingy==3 and b=4 could 

be the best choice which could results in the lowest value of F=\ 8. 
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Table 2.2: F value for different/"and b 

6=2 
6=3 
6=4 
6=5 
6=6 
6=7 
6=8 

7=1 
20.8 

20.8 

18.3 

18.3 

18.3 

18.3 

18.3 

7=2 
20.4 

20.4 

18.1 

18.1 

18.1 

18 
18 

7=3 
20.1 

20.1 

18 
18 
18 
18 
18 

7=4 
20.1 

20.1 

18 
18 
18 
18 
18 

7=5 
20.1 

20.1 

18 
18 
18 
18 
18 

7=6 
20.1 

20.1 

18 
18 
18 
18 
18 

7=7 
20.1 

20.1 

18 
18 
18 
18 
18 

7=8 
20.1 

20.1 

18 
18 
18 
18 
18 

As a result, the initial schedule generated by this method and the mentioned parameters is 

obtained as depicted in Figure 2.2. 

1-1 

1 1 

2-2 

4-1 1-3 

3-2 

24 1-2 

4-2 

2-3 

3-3 4-3 

1 2 3 4 5 6 7 8 9 10 11 12 

Figure 2.2: The static schedule result for the FMS problem with b=4,f=3. 

The generated schedule which is shown in Figure 2.2 has a makespan of 12 as Fl, 

maximum machine load of 10 as F2 and total processing time of 34 as F3. The weights of 

these functions are considered 0.4, 0.3 and 0.3 respectively. Thus, the F value would can 

be calculated by ^=0 .4x12+ 0.3x10+ 0.3x34= 18. 

2.4.2 Rescheduling Examples 

Three types of disruptions i.e., machine breakdown, new order arrival and job 

cancellation, are considered in this study. The cost based rescheduling (TR) approach is 

performed at TOD, and the new schedule with the least rescheduling cost is generated 
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and replaced with the initial one. The cost coefficients shown in Table 2.3 are used to 

calculate the corresponding rescheduling cost for each updated schedule. 

Table 2.3: Cost coefficients 

Cost function coefficient 

Coefficient of Lateness 

Coefficient of Due date saving 

Coefficient of Expediting 

Coefficient of Holding 

Coefficient of Reallocation 

Coefficient of Extra idle time 

Coefficient of Extra processing time 

value 

s, 
0j 

My 

hv 

<*> ijkk' 

nk 
T 

12 

-12 

10 

1 

4 

6 

6 

2.4.2.1 Machine Breakdowns 

The machines which are failed to perform their operations are selected randomly through 

the program. In the Figure 2.3, machine 4 is failed at time t=A for AT=3 as a repair time. 

Rescheduling cost of this schedule is derived by the following function; 

Rescheduling cost= cost of extra lateness +cost of expediting + cost of holding 

+cost of reallocation +cost of extra machine idle time+ cost of extra machining- saving 

on due dates = 12x2+ 10x2+1x2 + 4x3+6x0+6x0- 12x1=46. 

M 4 

M 3 

M 2 

M l 

/ - / 

l - l 

4 - 2 

2-2 

3-2 ' ***T 

2-1 1-2 

2-3 

1-3 

r.V -bi; 2 4 - 3 

10 11 

Figure 2.3: Gantt chart obtained after rescheduling, in case of machine 4 failure at t=4. 
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2.4.2.2 Job Cancellation 

The job to be cancelled is selected randomly. In Figure 2.4, job 1 is cancelled at the time 

£=5. The rescheduling cost of this schedule can be calculated by observing the differences 

of the initial and the updated schedules represented in Figure 2.4 and Figure 2.2 as 

follows; 

Rescheduling cost= cost of extra lateness +cost of expediting + cost of holding 

+cost of reallocation +cost of extra machine idle time+ cost of extra machining- saving 

on due dates = 12x0+ 10x0+1x0 + 4x0+6x3+5x0-12x0=18. 

1-1 

?-\ 4-1 

2-2 

-i-2 

2_| i-: 

4-2 

2-3 

. 1 - . * 4-3 

1 2 3 4 S 6 7 8 9 10 11 12 

Figure 2.4: Gantt chart obtained after rescheduling, in case of job 3 failure at t=6. 

2.4.2.3 New Order Arrival 

The new order is selected randomly among the existing jobs to enter to the 

system. It is assumed that the new order is treated as a remaining job in the system and 

needs to be scheduled as a regular job. In Figure 2.5 the job 2 is arrived to the system at 

t=5. The rescheduling cost of the updated schedules in Figure 2.5 can be calculated as 

follows; 

Rescheduling cost= cost of extra lateness +cost of expediting + cost of holding 

+cost of reallocation +cost of extra machine idle time+ cost of extra machining= 12x14 

+ 10x0+1x3 + 4x1 +6x2+6x10- 12x0=247. 
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2-3 
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4-3 

2-2(N) 
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Figure 2.5 : Gantt chart obtained after rescheduling, in case of a job 2 arrives at t=5. 

2.5 Experimental Design 

A factorial experiment is performed in order to evaluate performance of the proposed 

cost based rescheduling algorithm, with time based and stability based performance 

measures. The effects of various disruption scenarios are studied on different 

rescheduling methods. 

2.5.1 Experimental Factors 

Three experimental factors are considered: objective function, magnitude of disruption, 

and timing of disruptions. 

• Objective Function (OBJ): the effects of different objective functions are studied. 

These methods can be categorized in time based methods i.e., weighted sum of 

makespan, machine load and total processing time [39], Equation(2-9); weighted 

quadratic function of tardiness [20] , Equation(2-10); and stability based methods 

[14], Equation(2-ll); which generate the schedules based on the corresponding 

objective functions. 
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OBJ{Mks) = wmFx + WtwF2 + wmwF3 (2-9) 

OBJ(Trd) = YJWiTi
2 (2-10) 

OBJ(Stb) = YL 
J I 

st„-stg 
(2-11) 

• Magnitude of the disruption (MAG): The magnitude of disruptions is considered 

as the number of disruptions that occurs at the time of disruption. 

• Time of the disruption (TIM): This factor refers to the time of occurrence of the 

disruptions relative to the makespan. This timing can be early or late during the 

horizon. 

2.5.2 Dimensions of Experiments 

OBJ has four levels reflecting the proposed cost based methodology (C_B), W_Mks 

represents the weighted sum function makespan, QTrd corresponds to the weighted 

quadratic function of tardiness of jobs, and Stb which represents the deviation from the 

initial schedule. Two levels of treatment, low and high, are considered for magnitude and 

timing of disruptions. As a result, four combinations of disruption scenarios are 

represented in Table 2.4 for each type of disruption and method. The designed 

experiments shown in Table 2.5 are performed in ten replications. 

The values of the initial schedule parameters are shown in Table 2.6. The selected 

coefficients of the proposed rescheduling cost functions are given in Table 2.3. 
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Table 2.4: Disruption scenario 

Expt. No. 

1 

2 

3 

4 

MAG 

High 

High 

Low 

Low 

TIM 

Early 

Late 

Early 

Late 

Table 2.5: Experiments levels 

Experimental fector Level 1 (Low) Level 2 (High) 

Time of disruption (TIM) 

Magnitude of disruption (MAG) 

Machine 
breakdown 

New order 
arrival 

60-90% of makespan 5-40% of makespan 
Late Early 

1 machine breakdown 3 machine breakdown 

Repair Time: Uniformly Distributed [5,10] 

1 order arrival 3 order arrival 

Order 
cancellation 

1 job cancellation 3 job cancellation 

Table 2.6: Initial schedule parameters 

Parameter Values 

Number of jobs 20 

5 
Number of operations per each job 
Number of machines 7 
Process time of operation Uniformly distributed [3,8] 
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2.5.3 Performance Measures 

Three performance metrics are considered in this study: the efficiency and stability of the 

updated schedules, and the proposed rescheduling cost which are explained as follows; 

2.5.3.1 Efficiency 

Efficiency of the updated schedule is defined as percentage of changes in its makespan 

compared to the initial schedule makespan, which is as follows: 

EFF = \\-MksK™ Mks'"^' 1x100% , (2-12) 
I MksImtiol J 

Where Mks^en- and Mksinitiai are the makespan of the updated and initial schedule 

respectively. Since in some cases especially in job cancellation, the makespan of the 

updated schedule becomes lower than the makespan of the initial schedule, the efficiency 

metric might get a value higher than 100%. 

2.5.3.2 Stability 

Stability is defined as a measure of deviation in starting time of operations in the updated 

schedules compared to the initial schedule. In this study, the normalized sum of these 

deviations is applied as a performance metric [11]. 

DevSt = ^ ^ , (2-13) 
kx p 

Where DevSt is the normalized deviation, St-,j and Sty are the starting times of 

operations in the updated and initial schedules respectively, k is the total number of jobs 

and p is the total number of operations. The lower value of deviation leads to the more 

stable schedule. 
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2.5.3.3 Cost of Rescheduling 

The rescheduling cost corresponding of each OBJ is calculated and compared to others in 

order to assess the negative impact of changes due to rescheduling. In order to make 

better comparison among rescheduling costs, the rescheduling costs of C_B is considered 

as a base level. Then, the corresponding rescheduling cost resulting from W_Mks, QTrd, 

and Stb are expressed in percentage relative to this base level. 

2.6 Experimental Results 

The results of the designed experiment in Table 2.4 are discussed through this section. 

The average changes in performance measures resulting by different disruption scenarios 

are presented for each OBJ. 

2.6.1 Machine Breakdown 

The results of machine breakdown show that the rescheduling cost of the updated 

schedules generated by C_B is dominant to the ones generated by other OBJs as shown in 

Figure 2.6(a). The differences are significant for early disruptions (Table 2.7). Figure 

2.6(b) shows that the efficiency of the updated schedules generated by the time based 

measures, W_Mks and QJTrd is slightly higher than C_B for early disruptions (Table 

2.8), while for the late disruption scenarios they all perform quite similar. The time based 

measures generate schedule in order to minimize the makespan and lateness criteria, 

regardless of the initial schedule structure and corresponding changes due to 

rescheduling, hence, the schedules generated by these measures have higher cost of 

rescheduling than C_B. Stability based measure generates the schedule based on 

minimizing the changes in starting time from the initial schedule, as a result the updated 
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schedules have less deviation from the initial schedule, but it causes degradation in 

efficiency and rescheduling cost (Table 2.9). 

Table 2.7 : Rescheduling cost of disruption scenarios 

Disruption 

Experiment 

Machine breakdown Job cancellation Order arrival 

C B W Mks 0 Trd Stb C B W Mks O Trd Stb C B W Mks 0 Trd 

Table 2.8 : Efficiency of disruption scenarios 

Stb 

1 
2 
3 
4 

3702 3 
693 9 

3341 2 
355 

4033 1 
818 1 

3756 6 
361 1 

4331 
7415 

4009 6 
4156 

4276 3 
7196 

4029 7 
352 3 

1268 5 
100 1 

1377 8 
1123 

2724 
190 4 

31615 
197 8 

2598 7 
196 7 

3167 5 
266 5 

2486 2 
232 1 
3055 2 
207 8 

5568 9 
1521 5 
2965 5 
740 6 

5521 1 
15186 
3907 3 
770 1 

5958 9 
1509 

4227 6 
737 2 

5864 
2167 5 
4162 

1039 9 

Disruption 
Machine breakdown Job cancellation Older arrival 

Experiment C_B WMks Q_Trd Stb C_B W_Mks QJTrd Stb C_B WMks Q_Trd Stb 

1 83 36 87 35 83 19 82 03 
2 9118 92 01 93 34 90 68 
3 85 69 91 85 85 86 86 02 
4 96 17 97 34 97 5 95 51 

103 33 107 15 104 33 98 
103 66 104 33 105 49 99 83 

99 101 98 84 95 17 
100 5 10133 101 16 97 67 

79 37 8103 75 04 68 05 
77 54 78 37 77 37 47 09 
90 85 92 35 87 35 83 53 
89 35 87 52 85 86 73 54 

Table 2.9 : Normalized deviations of disruption scenarios 

Experiment 

1 
2 
3 
4 

C_B 

6 36 
05 
5 37 
0 3 

Machine bi eakdown 

WMks 

7 32 
0 73 
6 37 
0 37 

QJTrd 

8 03 
07 
6 77 
0 47 

Stb 

6 23 
051 
5 85 
0 25 

CJB 

1 53 
0 17 
1 98 
0 19 

Disruption 
Job cancellation 

W_Mks 

4 35 
0 34 
5 32 
0 3 

Q_T,d 

441 
0 37 
5 39 
0 47 

Stb 

3 04 
0 11 
4 34 
0 18 

C_B 

7 85 
0 61 
4 27 
021 

Oi der arrival 

WMks 

7 91 
0 65 
6 13 
0 42 

QJTrd 

8 72 
0 54 
651 
0 34 

Stb 

6 91 
0 33 
5 16 
0 15 
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Figure 2.6: Machine breakdown: (a) rescheduling cost; (b) efficiency; (c) deviation. 
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2.6.2 Job Cancellation 

The results of job cancellation in Figure 2.7 reveal that CB significantly outperforms 

other OBJs in terms of cost of rescheduling. Table 2.7 also reports the huge differences in 

the rescheduling cost between CB and other OBJs, which are higher for early disruption 

scenarios. According to Figure 2.7(b), the efficiency of the updated schedules by the time 

based measures is slightly better than CB for early disruptions while for the late ones, 

the three OBJs, CB, W_Mks, and QTrd perform quite similar. It is shown in Figure 

2.7(c) that the updated schedules by CB have lower deviations and as a result better 

stability than others, especially for early disruption scenarios. The high amount of 

deviation in the time based measures results in the high value of rescheduling cost. 

2.6.3 New Order Arrival 

The results of new order arrival are represented in Figure 2.8. It is shown in Table 2.7 

that C B performs better than other OBJs in terms of rescheduling cost especially in early 

disruptions. In late disruptions time based and cost based measures perform quite similar. 

In case of late disruptions, as fewer numbers of operations remained to be 

scheduled, adding new orders might not result in high deviation between the updated 

schedules generated by time based and CB, while the schedules generated based on Stb 

has much higher cost and less efficiency. This is because Stb tends to keep the schedule 

the same in order to minimize the changes, hence by adding the new orders towards the 

end of schedules, it minimizes the deviation, but the makespan and rescheduling cost are 

degraded. 
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In case of early and high magnitude disruptions, Experiment 1, as the number of 

operations added to the schedules is high; all OBJs generate the updated schedules in a 

high cost and with similar levels (Table 2.7) while still CJB performs slightly better as it 

generates higher efficiency and lower deviations than others. For the low magnitude 

disruptions, Experiment 2, C_B shows its advantage and generates schedule with 

significantly lower rescheduling cost while having higher efficiency and lower deviations 

than other OBJs. 
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Figure 2.7: Job cancellation: (a) rescheduling cost; (b) efficiency; (c) deviation. 
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Figure 2 8 Order arrival (a) rescheduling cost, (b) efficiency, (c) deviation 
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2.7 Sensitivity Analysis 

The coefficient values used in the cost function can change depending on the companies' 

priorities. For example, in this study as shown in Table 2.3, in order to satisfy the 

customer demands as a main objective, lateness penalty is considered to be the highest 

value among all the coefficients. In order to investigate the effect of each coefficient on 

the optimal solution, it is necessary to perform the sensitivity analysis [72]. The main 

purpose of sensitivity analysis in this study is to identify sensitive parameters, that 

changing in their values could result in significant changes in the optimal solution. 

Through this study, five levels are considered for each coefficient: 0.1, 1, 10, 50, 

and 100. The remaining parameters are fixed at 1. The initial schedule is generated using 

data set defined in Table 2.6. The makespan (Mks), deviation (Dev) from the initial 

schedule, the unit of changes in decision variable (U/C), and the cost of rescheduling are 

calculated for all the levels of each disruption type. For each change in the cost 

coefficient, the total rescheduling cost is normalized by the corresponding decision 

variable value of the cost component (Cost/UC). 

2.7.1 Machine Breakdown 

The results of sensitivity analysis for cost function coefficients (Section 2.2) in case of 

machine breakdown are shown in Table 2.8. 

By increasing the cost of expediting the material, ju, operations tend to start later 

than their initial schedule position, hence, the Mks increases and the time unit number of 

expedited operations (U/C) decreases. Figure 2.9 reveals that that expediting cost 

parameter is robust between 0.1 and 1, and then becomes dominant for greater values. 
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The due date saving parameter, 6, could also be considered as a sensitive 

parameter as the changing in its value results in the following changes in the optimal 

solution criteria: By increasing this value, jobs tend to finish earlier than previous 

schedule. Since all jobs cannot be finished earlier in case of machine breakdown, some of 

them may be finished earlier and exploit the saving and the rest may be postponed which 

causes lateness, and as a result the makespan of schedule increases. Consequently, the 

number of time unit of saving on due dates for jobs (U/C) also decreases. As the 

coefficient value increases, the total cost of rescheduling decreases significantly due to 

negative impact of 9. Figure 2.9 shows that the changes in Cost/UC values due to the 

changes in 9 are more significant than the corresponding changes for co, S, and h. 

Figure 2.9 reveals that, the proposed rescheduling algorithm performs similar 

reactions in changing the values of coefficients of extra lateness, S, reallocating, co, and 

holding, h. These parameters are robust between 0.1 and 10 and have lower normalized 

costs (cost/UC) compared to ju and 9. 

Table 2.8 shows that, by changing the value of extra idle time coefficient, rj, in 

case of machine breakdown, the algorithm may not create good enough results, as the 

normalized cost highly increases by increasing the r\. The corresponding MKs firstly 

decreases between 0.1 and 50, but it increases significantly between 50 and 100. 

Changing in the the coefficient of extra processing time, T, may not have any 

significant effect in the optimal solution in case of machine breakdown. As shown in 

Table 2.8, the corresponding variable of extra processing time has either the value of 1 or 

0, and the changes in the total cost are not consistent with the changes in the parameter 

value. 
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Table 2.10: Sensitivity analysis of coefficient for machine breakdown 

Machine breakdown 

d 

m 

h 

e 

0.1 
1 

10 

50 
100 
0.1 

1 

10 

50 
100 

0.1 
1 

10 
50 
100 

0 1 
1 

10 
50 
100 

Mks 

61 
60 
61 

65 
63 
58 
60 

67 

76 
74 

63 
60 
60 

59 
59 
62 
64 
65 
66 
66 

Dev 
324 
335 

325 

398 
432 

323 
335 
602 

740 
852 

379 
335 
317 
344 
344 

320 
335 
886 

2517 
4621 

U/C 
54 
53 
59 

43 
47 

128 
123 

20 
14 
11 

323 
212 

210 
224 
224 

3 
4 
11 
16 

21 

Cost 
362.4 
396 
949 

3460 
5175 
260 5 

396 
1103 

1845 
2383 

236 
396 

2282 

11380 
22580 

436 
396 
274 
-436 
-1374 

Cost /UC 
6.71 
7.47 

16.08 
80 47 
110.11 
2 04 

3.22 

55.15 
131.79 
216.64 

0 73 
1 87 

10 87 

50.8 
100.8 

145.33 

99 
24 91 
-27.25 
-65.43 

0.1 
1 

w 10 

50 
100 
0 1 

1 

n 10 

50 
100 

0.1 
1 

* 10 

50 
100 

Mks 

60 
60 
61 

63 
65 

62 

60 
60 
59 

67 

60 
60 
60 

58 
58 

Dev 
335 
335 

375 
312 
552 

363 
335 
371 

403 

779 
335 
335 

288 
330 
292 

U/C 
30 
30 
21 
17 

16 
18 
11 

0 
0 

Cost 

369 
396 

607 
1246 
2232 

408 8 
396 

471 
536 

1113 
395 1 
396 

358 
377 
321 

Cos t /UC 
12.3 
13.2 

28.9 
73.29 
139.5 
22.71 

36 
471 

536 
1113 

395.1 
396 

358 

«. 
oo 

250 

Sensitivity Analysis(MB) 

200 f-

150 

100 

50 a 

-50 -

-100 

0.1 10 

ParameterValue 

50 100 

Figure 2.9: Cost of rescheduling changes due to changing the coefficients in case of 
machine breakdown. 
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2.7.2 Job Cancellation 

The results of sensitivity analysis for job cancellation are represented in Table 2.9 and 

Figure 2.10. It is shown that u, as the coefficient of expediting and 6, the coefficient of 

saving on due dates can be considered as sensitive parameters in case of job cancellation. 

Increasing the cost of expediting the material causes degradation of makespan in 

the updated schedules according to Equation 2.7, as shown in Table 2.9. The results also 

reveal that the rescheduling cost corresponding to changes in value of \i is consistent with 

the changes in U/C and Mks. Figure 2.10 shows the significant impact of changing \i in 

Cost/UC compared to the other parameters. 

The makespan of the updated schedules increases by increasing the saving on due 

dates of jobs. Table 2.9 reveals that the time unit number of saving on job's due dates 

increases as a result of increasing the 6. Consequently, the rescheduling cost resulting 

from these changes is consistent with the corresponding changes in U/C and Mks. Figure 

2.10 shows that the impact of # compared with other parameters such as co ,S, and h is 

higher and can be considered as an important parameter in case of job cancellation. 

The Figure 2.10 shows that the three coefficients of extra lateness, S, holding, h, 

and reallocating, co have quite similar trend in terms of CostAJC. This reflects the similar 

performance of the algorithm in responding to these changes. These three parameters are 

quite robust between 0.1 and 10, and cause lower level in CostAJC compared to \i and 6. 

The coefficient of extra idle time, r\, may not have a significant impact in optimal 

solution as changing in its value results in different trends in the corresponding variable 

and the total cost, as shown in Table 2.9. In case of job cancellation, as there is no extra 
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processing time due to rescheduling process, hence, the coefficient of extra processing 

time, T, have not any effect in the optimal solution. 

Table 2.11 : Sensitivity analysis of coefficients for job cancellation 

Mks Dev VIC Cost 
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Figure 2.10: Cost of rescheduling changes due to changing the coefficients in case of job 
cancellation. 
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2.7.3 Order Arrival 

The results of sensitivity analysis for the new order arrival are represented in Table 2.10 

and Figure 2.11. The results reveal that, \i, as the coefficient of expediting, 9, as the 

coefficient of saving on due dates, and r\, as the coefficients of extra idle time could be 

considered as sensitive parameters in case of a new order arrival. 

High impact of changes in Cost/UC due to changes in the values of 9 is observed 

from Figure 2.11. These results reveal that this parameter could be highly sensitive to 

changes in the objective function. The MKs as a result of increasing the 9 increases and 

the corresponding cost decreases as a result. 

Increasing the value of \i results in degrading the makespan and decreasing the 

U/C. the changes in Mks, Dev, and cost are more significant for higher values of \i as 

shown in Table 2.10. Figure 2.11 also represents that increasing the p, results in 

significant increase in the Cost/UC value. 

Figure 2.11 shows that the results of Cost/UC may change significantly by 

changing the r\. By increasing the cost of extra idle time, machines tend to be loaded for 

longer time during the horizon; accordingly operations may change their positions to 

another machine with longer process time, hence the makespan of schedule increases as a 

result. 

According to the Figure 2.11, the coefficients of extra lateness, 5 , holding, h, and 

reallocating, co, and extra processing time, r, have quite similar trends in terms of 

Cost/UC. They have lower impact of changes in Cost/UC than u, rj and 9 and they are 

robust between 0.1 and 10. 
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Table 2.12: Sensitivity analysis of coefficients for new order arrival 

Order arrival 
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Figure 2.11: Cost of rescheduling changes due to changing the coefficients in case of new 
order arrival. 
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2.8 Conclusions 

This chapter has attempted to address a new practical method in rescheduling problems in 

flexible manufacturing systems. For this purpose, a comprehensive cost measure is 

developed in order to assess the negative impact of changes due to rescheduling actions. 

A filtered beam search algorithm is applied in order to generate schedules in a cost-

efficient manner. An illustrative example is represented in order to compare the 

performance of the proposed methodology with the traditional methods in the literature. 

A sensitivity analysis is performed to evaluate the impact of each cost function parameter 

on the optimal solution level. The conclusions can be outlined in the following points: 

• Cost based rescheduling approach outperforms the traditional methods in terms of 

rescheduling cost, while the updated schedules have competing efficiency and 

acceptable stability compared with the updated schedules generated by other 

methods. 

• The difference in rescheduling cost between the cost based approach and other 

methods are more significant for early disruptions. 

• The efficiency of the updated schedules generated by the time based measures is 

slightly better than the ones generated by the cost based measure, but as the time-

based measures fail to consider the effect of actual changes into the system, the 

corresponding cost due to rescheduling by these criteria are higher than the cost-

based measure, which makes them impractical for implementation. 
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• Employing the cost based measure through the procedure of rescheduling may 

ensure to generate schedules having the acceptable efficiency and stability, as the 

cost function inherently includes of time based and stability based criteria. Hence, 

the rescheduling cost can be used as a surrogate measure which incorporates the 

both aspects of the time based and stability based measures. 

• The results of sensitivity analysis reveals that the cost of expediting the material 

and the coefficient of saving on due dates are key parameters in the proposed cost 

function and changing them results in significant changes in the optimal solution. 
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Chapter 3 

Cost based scheduling repair 
in FMS using FBS 

Responding to disruptions with total rescheduling (TR), explained in Chapter 2, may lead 

to a new optimized schedule, but it creates system nervousness and causes high 

operational cost due to substantial changes from the original schedule. For example, 

performing TR in case of a job cancellation may cause significant changes in machine 

allocation and starting times of operations. These changes create extra cost due to 

expediting, holding and reallocating the material. In these cases, only modifying the 

affected operations is preferable to total rescheduling where we optimize a time related 

objective function. 

Partial rescheduling or repair methods revise the disrupted schedule and generate 

the updated schedule with minor deviations from the original one. This may help 

generating the updated schedules with a lower rescheduling cost and fewer deviations 

more rapidly than TR. 
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In this chapter, a real time scheduling repair methodology is developed in order to 

respond to disruptions in a cost efficient manner in FMS environments. A modified 

Filtered-Beam-Search-heuristic repair algorithm (MFBSR) is proposed to generate a pre-

specified number of cost efficient suboptimal repair schedules. For this purpose, the cost 

measure developed in Chapter 2 is applied in generating the schedules with MFBSR. The 

performance of the proposed repair methodology is compared with Total Rescheduling 

(TR) and modified Affected Operations Rescheduling (mAOR) in terms of rescheduling 

cost and makespan efficiency. A factorial experiment is performed to illustrate the effect 

of different rescheduling methods on the performance levels for various types and 

magnitude of disruptions at different flexibility levels of a manufacturing system. The 

results reveal that the proposed repair methodology could be considered as a competitive 

method to repair schedules in flexible manufacturing systems and to identify the decision 

point to implement a total rescheduling approach. 

3.1 Problem Statement 

In this study, a flexible manufacturing system with partial flexibility is considered. There 

are a number of jobs to be scheduled, each having a number of operations with alternative 

machines capable of performing the same operation albeit with different processing 

times. During the execution of the schedule, the following types of disruptions are 

considered: machine breakdown, job cancellation, and new order arrival. At the time of 

disruption (TOD), a repaired schedule will be generated based on the availability of the 

machines and remaining available jobs while minimizing the rescheduling costs of 

switching from the initial schedule. The initial schedule is generated using filtered beam 

search method (FBS) according to a makespan based objective function [39] . The 
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updated schedule is generated by applying modified version of FBS, in order to minimize 

the cost of rescheduling. Following are the assumptions considered in this study: 

• The jobs are non-preemptive. 

• An operation cannot be performed on more than one machine at the same time. 

• Each machine cannot perform more than one operation at the same time. 

• The machines are independent of each other and all are available at t=0. 

• Machines' set-up times and material handling time are not considered. 

• The jobs are independent of each other and can be done at any time separately. 

• Processing time is deterministic and fixed during the horizon based on the process 

plan. 

The following section will describe the proposed FBS based methodology to 

generate updated schedules. An illustrative example will follow where the proposed 

methodology is compared with TR and mAOR under different disturbance scenarios, 

system configuration levels, and performance metrics. 

3.2 Cost based Repair Methodology Using FBS 

FBS, which is explained in section 2.4.1, is an Al-based heuristic search method widely 

used in scheduling/rescheduling problem in FMS environments due to its high quality of 

solutions and calculation speed. An FBS-based total rescheduling (TR) methodology was 

presented in Chapter 2 in order to generate the cost efficient updated schedules upon the 

occurrence of disruptions. In this section, the FBS is employed in developing the partial 

rescheduling methodology in order to repair the schedules cost-efficiently. Towards this 

end, a filtered beam search heuristic based method called MFBSR is developed. 
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3.2.1 Heuristic based Repair Action 

MFBSR is a modified version of FBS introduced by Wang et al. [39] which is applied to 

generate several cost efficient repaired schedules. This method can be described as 

follows: 

In order to generate the updated schedule by MFBSR, the remaining operations 

and availability of each machine need to be determined. We define the remaining 

operations that have not begun by the time of disruption (TOD). This implies that the 

operations which are in-progress at TOD should be completed first, and each machine's 

available time is obtained as a result. For each disruption at TOD, the schedule has to be 

repaired for the remaining operations. 

Two main significant considerations have been made in branching procedure 

(MNONDELAY) of FBS [39] to make the repaired schedule close to the initial one. 

These modifications are as follows: 

• It is considered that the sequence of selecting the schedulable operations is the 

same as the sequence of their starting times in the initial schedule. This leads to 

creating schedules with the lower deviation in the starting time of operations 

compared to the initial one. 

• It is assumed that operations are allocated to the same machine as the initial 

schedule allocation. Keeping the same allocation of machines results in less 

deviations and corresponding changes in the manufacturing system. 

In this study, the proposed branching scheme named PMNondelay is explained 

as follows: 
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Let PSi be a partial schedule containing / scheduled operations, simttal be a list of 

all scheduled operations in the initial schedule sorted based on their starting times, slJ""'ia . 

Let S/emp be the set of schedulable operations at level /, and S"ew be a subset of Si'emp 

consisting of operations with minimum starting time according to the initial schedule. Let 

sy
new be the earliest possible starting time of operation in the S"en, and sneH (i+i)j=snew

u+yu 

in which y,y=mink (pyk). Mljk is the machine assigned to each operation in the initial 

schedule, and M_avlk is the updated available time for machine k at TOD. The 

PMNondelay procedure is explained as follows: 

Step 1: Determiner* = mino ^lemp {s™to, }, and add the operations OtJ with s,jmt'al=T*in the 

, ci new 

set Si . 

Step 2: Select an operation OtJ e S"ew, assign the Ml]k to it, and generate a new node 

corresponding to partial schedule, in which 0,j is added to PSi. Update starting times as 

s,jk"ew= Max (s,"ew, M_avlk) indicating that Ol} is allocated to machine k with a starting 

time of sljk
new. 

3.2.2 Proposed MFBSR algorithm 

The procedural form of the MFBSR is given as follows: 

Step 1: Initialization: 

Let bn=0, 1=0; input beamwidth b, filterwidth f; input number of machines, 

operations, and jobs; let the partial schedule PS/, initial schedule ISi, and remaining list 

RLi be empty. 
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Step 2: Re-initialization: 

(i) Let all machines availability be at the time of disruptions, M_avlk = TOD and go 

to step 2 (ii). 

(ii) Get the original schedule and put it into ISi and go to step 2 (iii). 

(iii)For operations in ISi, if STyk< TOD, then add them to PSi and go to step 2 (iv); 

else add them to RLi and go to step 2 (v). 

(iv)Update machine availability (M_avlk) of the operations in PSi based on the type of 

disruption and go to step 2 (vi). 

(v) Update the RLi at TOD based on the type of disruptions. 

(a) For order arrival, add the operations of new order to RLt. 

(b) For job cancellation, remove the operations of cancelled job from RLi. 

(vi)Let / be the number of operations in the PSi. 

Step 3: Determining the beam nodes: 

(i) Generate nodes from the root nodes by PMNondelay from RLf. Check the total 

number of nodes generated N. Let 1=1+J, updated PSt and RLt with the generated 

nodes. 

(ii) If N< b, then go to the next level and generate nodes using PM_Nondelay with 

PSi as a partial schedule, update PS/, update N. If N< b go to step 3(h); else go to 

step 3(iii). 
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(iii)Compute the global evaluation function for each node and select the best b ones 

(initial beam nodes). Determine the potential sets oiPSi(l), PSi(2),... PSi(b). 

Step 4: bn=bn+l; if bn>b, then go to step 5; else go to step 4(i). 

(i) For each initial beam node generated, form beam nodes of level / as follows: 

(a) 1=1+1, if l>n, then go to step 4 (ii); else move on. 

(b) Generate new nodes from the beam node according to PMNondelay with 

PSi(n) as partial schedule. 

(c) Compute the local evaluation function values for all nodes generated and 

select/numbers of nodes with the best values for future evaluation 

(d) Compute the global evaluation function values for /number of nodes, select 

the nodes with the best value and add the node into the partial schedule 

PSi(bn). Go to (a). 

(ii) Formulate the bnXh. complete schedule PS (bn). 

Step 5: Select the schedule with the best objective function value among the final b 

schedules set; Stop. 

The proposed methodology is described in details for three types of disruptions, 

i.e., machine breakdown, order arrival, and job cancellation as follows: 
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3.2.2.1 Machine Breakdown 

In case of machine breakdown at TOD, the pre-identified repair time is inserted into the 

schedule for the failed machine and earliest available time of each machine is updated. 

Having the remaining operations' starting time and machine availability, the system is 

ready to be repaired for remaining operations. This action is carried out by MFBSR in 

order to repair the existing schedule. 

3.2.2.2 New Order Arrival 

In case of a new order arrival to the system at TOD, all operations of the new job are 

considered as regular remaining operations to be repaired by MFBSR. The new 

operations are put in the set of schedulable operations and are scheduled to minimize the 

rescheduling cost. 

3.2.2.3 Job Cancellation 

When a job is cancelled at TOD, all the remaining operations of the cancelled jobs are 

removed. If an operation of the cancelled job is in-progress, it is stopped at TOD and the 

remaining part is removed. Lastly, all the remaining operations are repaired by MFBSR. 

3.3 Experimental Design 

A factorial experimental analysis is carried out on the three mentioned types of 

disruptions to evaluate the performance of the proposed repair methodology. The quality 

of the methodology is compared with mAOR and total rescheduling (TR) with respect to 

rescheduling cost and efficiency measures. Moreover, the effects of various disruption 

scenarios and system flexibility levels on the performance metrics are studied. 
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3.3.1 Experimental Factors 

After a careful study of the relevant literature and problem characteristics, four 

experimental factors are selected: rescheduling method, timing of disruption, magnitude 

of disruption, and flexibility of the system. 

• Reactive scheduling Method (MTD): This factor is used to identify the effects of 

different rescheduling methods on the performance levels of updated schedules. 

• Time of the disruption (TIM): This factor refers to the time of occurrence of the 

disruptions relative to the makespan. This timing can be early or late during the 

horizon. 

• Magnitude of the disruption (MAG): The magnitude of disruptions is considered 

as the number of disruptions that occurs at the time of disruption. 

• Flexibility of the system (FLX): Flexibility of the system is defined as the average 

number of capable machines for each operation. 

3.3.2 Dimensions of the experiments 

MTD has three treatment levels reflecting the proposed methodology, TR and mAOR. 

For the remaining factors, two levels of treatment, low and high, are specified as shown 

in Table 3.1. This results in 23=8 experimental combinations for each type of disruption 

and method. The designed experiments shown in Table 3.2 are performed in ten 

replications. The assumptions regarding the occurrence of each type of disruption are as 

follows: 

• Machine breakdown: A machine is selected to fail randomly. 
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• New order arrival: It is supposed that a new order is randomly selected from the 

existing set of jobs. 

• Order cancellation: A job is randomly selected to be cancelled. 

The values of initial schedule parameters are the same as the ones used in Chapter 

2 as shown in Table 2.6. The selected coefficients of the proposed rescheduling cost 

functions are given in Table 2.3. 

Table 3.1: Levels of experiment 

Experimental factor Level 1 (Low) Level 2 (High) 

Time of disruption (TIM) 60-90% of makespan 5-40% of makespan 
Late Early 

Magnitude of disruption (MAG) 

Machine , , • , , , „ , , 
, , 1 machine breakdown 3 machine breakdown 

breakdown 

Repair Time: Uniformly Distributed [5,10] 

New order . , . , 
. , 1 order arrival 3 order arrival 

arrival 
,, . 1 job cancellation 3 job cancellation 

cancellation 

Felxibility of system (FLX) 

30-40% system flexibility 80-100% system flexibility 
2.1 - 2.8 mach/operation 5.6 - 7 mach/operation 

Table 3.2 : Experimental combinations 

Expt. No. 

1 
2 
3 
4 
5 
6 
7 
8 

FLX 

Low 
Low 
Low 
Low 
High 
High 
High 
High 

MAG 

High 
High 
Low 
Low 
High 
High 
Low 
Low 

TIM 

Early 
Late 
Early 
Late 
Early 
Late 
Early 
Late 

71 



3.3.3 Performance measures 

3.3.3.1 Efficiency 

Efficiency of the updated schedule is defined as a percentage change in its makespan with 

respect to the initial schedule [13,18] as shown in Equation (2-12). 

3.3.3.2 Rescheduling Cost 

The cost function developed in Section 2.3 is used as a performance measure to compare 

the rescheduling cost of different methods in various circumstances. It should be noted 

that, during the experiments, rescheduling cost is used as an objective function in 

generating the schedules by TR and MFBSR. In order to compare the rescheduling cost 

among methods, the amount resulting from TR is considered as a base level. Then, the 

performance levels of mAOR and MFBSR are expressed as a percentage relative to this 

base level. Considering the rescheduling cost as a performance measure allows 

incorporating the characteristics of stability measure through Equations (2-6, 2-7 and 2-8) 

as well as schedule efficiency measures, i.e., due dates and makespan through Equations 

(2-4 and 2-5). Therefore, the rescheduling cost and efficiency are considered in this study 

to evaluate the performance of the updated schedules. 

3.4 Experiment Results 

This section outlines the results of experiments outlined in Table 3.2. The average change 

in performance metrics as a result of changing the level of each factor are represented for 

each type of disruption. The main effect of changing the flexibility levels of the system 

(FLX) at different factors' levels is studied. All the algorithms are coded in JAVA, 
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Eclipse V.3.5.1. Figures 3.1-3(a,b) show the effects of different methods (MTD) on 

efficiency and rescheduling cost, for each disruption type. 

3.4.1 Machine Breakdown 

The results for machine breakdown show that, the efficiency of MFBSR is always 

dominant to mAOR as shown in Figure 3.1(b). This is because the MFBSR algorithm 

performs local and global search for each of the remaining operation in order to generate 

a cost efficient updated schedule. In addition, as shown in Figure 3.1(a), MFBSR 

performs better than mAOR in terms of rescheduling cost for late disruptions 

(Experiments 2, 4, 6, and 8). In early disruptions, MFBSR results in a higher 

rescheduling cost than mAOR. This is due to the fact that in the early stages of a schedule 

there is higher number of operations to be reallocated. 

Comparing the efficiency of TR and MFBSR, Figure 3.1(b) shows that in 

Experiments 6 and 8, TR performs better and creates schedules with lower makespan 

than MFBSR while also resulting in low cost as indicated in Table 3.3. These cases refer 

to the late disruptions in a high flexible system. In those cases, TR may create schedules 

with lower makespan and also lower cost by exploiting flexibility of the manufacturing 

system. For early disruptions, the TR reallocates operations to alternative machines 

which require longer processing time, due to the fact that the initial schedule was 

generated based on SPT. 

The results also reveal that, by increasing the flexibility level of the system, the 

efficiency of the updated schedules by TR is increased. Figure 3.1(b) represents that the 

efficiencies of Experiments 5, 6, 7, and 8 when generated by TR are higher than 

Experiments 1, 2, 3, and 4. Fahmy et al. [13] also mention that introducing flexibility into 
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the system results in increasing efficiencies of updated schedules. In a low flexible 

system, since there is not enough alternative for operations to switch, the makespan and 

cost of TR are higher than MFBSR. 

The results also show that flexibility level has direct impact on the rescheduling 

cost. Table 3.5 shows that the cost of rescheduling in a highly flexible system is less than 

rescheduling cost in a low flexible system regardless of the rescheduling method. 

Table 3.3: Rescheduling cost performance of disruption scenarios 

Disruption 
Machine breakdown Job cancellation Order arrival 

:riment 
1 
2 
3 
4 
5 
6 
7 
8 

TR 
4112.9 
1415.8 
3402.6 
960.4 

2920.4 
800.3 

2604.7 
369.2 

mAOR 
1705.6 
1482.7 
1388.9 
628.2 

2270.2 
1056.1 
1582.3 
431.8 

MFBSR 
2472.3 
1244.4 
1954.9 
516.5 

2283.2 
881.1 
1857.3 
333.2 

TR 
1352.5 
482.1 
1957.6 
432.5 
1019.2 
117.4 

1239.5 
108.9 

mAOR 
1644.8 
286.4 
619.6 
71.8 

1244.2 
59.2 

524.4 
31.8 

MFBSR 
2035.9 
291.1 
1401.4 
129.2 

1541.6 
55.8 

995.7 
36.7 

TR 
7295 

3915.2 
3343.3 
1708.1 
5826.2 
2077.9 
2812.2 
932.6 

mAOR 
4238.4 
2882.4 
1699.8 
1333.2 
2779.2 
1689.6 
1233 
934.8 

MPBSR 
5220.9 
3377.5 
2440.1 
1187.1 
4337.4 
1862.9 
1973.8 
854.1 
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3.4.2 Job Cancellation 

The results for job cancellation show that MFBSR outperforms mAOR in terms of 

efficiency as shown in Figure 3.2(b). For late disruptions, Figure 3.2(a) shows that 

MFBSR generates similar cost levels compared to mAOR while dominating in 

efficiency regardless of the magnitude. Therefore, MFBSR should be preferred in 

responding late job cancellations. 

For early and high magnitude disruptions, TR is capable of generating low 

rescheduling costs while keeping the efficiency levels close to the original makespan. 

This means that if there is early and significant job cancellations a TR approach should 

be preferred. For early and low magnitude disruptions, repair methods tend to work well 

in terms of efficiency and cost. 

It can be seen from Figure 3.2(b) that, by increasing the flexibility level of the 

system, the efficiency of TR is significantly improved. Hence, the gap between the 

efficiency of TR and others is decreased as a result. Similarly, the rescheduling cost of 

updated schedules decreases by enhancing flexibility level of the system regardless of 

rescheduling method. 
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3.4.3 New order arrival 

The results of the new order arrival in Figure 3.3(b) show that, the efficiency of updated 

schedules by MFBSR is significantly higher than the ones generated by mAOR. As 

shown in Figure 3.3(a), adding the new orders to the end by mAOR may create lower 

rescheduling cost; however, the differences between the efficiencies of the updated 

schedules are significant. In case of a new regular order arrival, mAOR checks the 

available slots in the original schedule against the processing time of new jobs' 

operations. If there is an available slot, the operation is allocated; otherwise, it is 

allocated at the end of original schedule [11]. In other words, mAOR keeps the initial 

schedule the same and update it by adding the new operations in a suitable position. 

Hence, the schedules generated by this method have minimal deviations from the original 

one, at the expense of makespan. 

It can be seen from Figure 3.3(b) that the efficiency of updated schedules by 

MFBSR is slightly better than the ones updated by TR in early disruptions. In late 

disruptions, the efficiency of TR is slightly better than MFBSR, due to exploiting the 

flexibility in rescheduling process. But in terms of rescheduling cost, Table 3.3 shows 

that TR is always much worse than MFBSR. As a result, MFBSR is an effective method 

in dealing with order arrivals compared to TR approach. 
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3.5 Conclusions 

This chapter introduced a cost based reactive methodology for repairing the schedules on 

FMS environments using a modified FBS algorithm. The FBS is also employed in 

generating the initial schedules and the updated schedules by total rescheduling (TR). A 

compound cost measure is developed to incorporate the competing effects of efficiency 

and stability and assessing the negative impact of changes due to rescheduling. This 

measure could be used as an objective function in generating cost-efficient schedules. An 

extensive comparative study is done in order to evaluate performance of the proposed 

repair method with other rescheduling methods from literature. The conclusions can be 

outlined in the following points: 

• MFBSR noticeably outperforms the mAOR method in terms of efficiency of the 

updated schedules. The difference is more significant in early disruptions. 

• Regardless of the approach used, increasing the flexibility level of the system 

results in a lower rescheduling cost. 

• For early disruptions, while mAOR creates the updated schedules with lower 

rescheduling cost, MFBSR performs significantly better in terms of efficiency 

while its rescheduling cost is better than TR. 

• For late disruptions, the gap between rescheduling cost of mAOR and MFBSR 

decreases, while MFBSR keeps the efficiency of updated schedules higher. 

• In a highly flexible system, TR performs better in terms of efficiency for late 

disruptions while the rescheduling cost associated with these schedules are higher 

than the ones generated by repair methods. 
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• The efficiency of the updated schedules generated by the repair methods 

decreases by increasing the flexibility level of the system. The initial schedules 

generated in a low flexible system have lower machine utilization and result in a 

higher makespan compared to a system with increased flexibility. This is due to 

the slack times in the initial schedules resulting from low flexibility. Hence, if the 

robustness is the primary concern, introducing slack times into the schedule 

generates better results than introducing flexibility. 
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Chapter 4 

Conclusions and Future work 
direction 

Updating the production schedule in order to respond to uncertainties and disturbances is 

a crucial task in flexible manufacturing systems. Traditional rescheduling methods are 

designed based on either time based criterion in order to satisfy customers' needs and 

production rate, or stability based criterion to minimize the changes due to rescheduling. 

These two criteria are contradictory objectives, which mean that improving one may lead 

to degrading the performance of the other one. Hence, the first objective of this thesis is 

to develop a proficient measure, called the rescheduling cost, in order to comprise all 

aspects of the former measures whilst considering the corresponding cost of rescheduling 

action. Second, a cost based rescheduling methodology has been developed to totally 

reschedule the system at the time of each disruption. Third, a cost-based scheduling 

repair methodology has been introduced to generate the updated schedules with fewer 
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changes, less cost and in faster speed than TR. Unlike the traditional repair 

methodologies, the proposed scheduling repair approach generates the updated schedule 

based on an optimization procedure, which minimizes the rescheduling cost to enhance 

the quality of the updated schedules. In order to achieve these objectives, the following 

issues have been explored within this work: 

• First, a new cost function has been developed representing the cost of 

rescheduling action in FMS environments. The cost function incorporates the 

aspects of time based and stability based measures and can be used as an objective 

function in generating the updated schedules. 

• Second, a cost based total rescheduling methodology has been presented by using 

the proposed cost function into a filtered beam search heuristic algorithm process 

in order to generate cost efficient updated schedules. 

• Third, a cost based scheduling repair methodology has been developed by using 

the proposed cost function into a modified filtered beam search algorithm process 

in order to generate cost-efficient updated schedules. 

• The case studies and experimental design have been performed in order to 

validate and compare the results of each objective with other methods in the 

literature. 

The outcome of these methods is a cost-efficient updated schedule responds to 

various types of disruptions and circumstances in FMS environments. 
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4.1 Conclusions 

A factorial design of experiment has been presented for each objective of this thesis in 

order to demonstrate the use of the developed approaches and compare their performance 

with similar approaches in the literature. The following results can be pointed out from 

this research: 

1. The results of the cost based rescheduling approach show the advantage of using 

the rescheduling cost as a performance measure in generating the updated cost-

efficient schedules in FMS environments. The updated schedules generated by TR 

and MFBSR in cost based approach outperform other approaches in the literature. 

2. Using the rescheduling cost as a performance measure results in generating the 

updated schedules that have an acceptable level of efficiency and stability, as the 

rescheduling cost function inherently consists of time based and stability based 

criteria. 

3. The efficiency of the updated schedules generated by the time based measures are 

slightly better than the efficiency of the ones generated by the cost based 

approach. However, due to increased level of changes in rescheduling process, the 

corresponding rescheduling cost are much higher than cost based approach 

schedules, which makes them impractical to implement in FMS environments. 

4. The efficiency of the updated schedules by the proposed repair approach 

(MFBSR) is noticeably higher than the ones generated by traditional repair 

approach (mAOR). It has been shown that for early disruptions, this deference is 

more significant. 
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5. The rescheduling cost of updating the schedules by mAOR is lower than MFBSR 

and TR, especially for early disruptions. As the method only shifts the affected 

operations when responding to disruptions, the corresponding changes and 

rescheduling cost would be lower than TR and MFBSR as a result. Hence, mAOR 

would fail in satisfying the efficiency criteria. 

6. Increasing the flexibility level of the system results in decreasing the cost of 

rescheduling action regardless of methods and approaches. 

7. By comparing the results of TR and MFBSR for each disruption scenario, the 

cost-efficient methodology for handling disruptions in FMS has been presented. 

This thesis shows that if a disruption occurs late in a highly flexible system, TR 

performs better in terms of efficiency of the updated schedules while their 

corresponding rescheduling cost is higher than the ones generated by MFBSR. 

For other cases of disruption scenarios, MFBSR could be the choice as it 

generates schedules with higher efficiency than mAOR whilst the corresponding 

rescheduling cost is comparable. 

8. Introducing the slack time into the initial schedule generation procedure to make 

the schedule robust, results in better efficiency of the updated schedules than 

introducing flexibility into the system. 
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4.2 Future research directions 

The following topics can be further explored for extension of the present research work: 

1. Using the cost based approach in order to develop a reactive scheduling tool in 

responding to multiple disruptions in FMS environments. This can be performed 

by assigning the more values to the cost function parameters for the short term 

period after a disruption, in order to reduce the effects of immediate changes in 

the schedule. 

2. Comparing the cost of introducing slack time in schedule generation with the cost 

of investing in system flexibility in order to reduce rescheduling costs. 

3. Additional types of disruption can be studied using the cost based approach in 

order to investigate the performance of the updated schedules. 
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Appendices 

Appendix A: JAVA model for TR in case of 
Disruptions (MB- JC-OA) 
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import java.10.BufferedWriter; 
import java.10.File; 
import 3ava.10.FileNotFoundException; 
import 3ava.10.FileWriter; 
import java.10.IOException; 
import java.util.Iterator; 
import ]ava.util.LinkedList; 
import 3ava.util.Locale; 
import 3ava.util.Scanner; 

import 3xl. Sheet; 
import 3x1.Workbook; 
import 3x1.WorkbookSettmgs; 
import 3x1.read.biff.BiffException; 

public class mamclass { 
static final int MaxStartTime=200000; 
static final int MaxProcessTime=200000; 
static final int MNum=l; 
static final int JNum=20; 
static final int 0Num=5; 
static final int BearnWidth=15 ; 
static final int FilterWidth=25 ; 
static int[][] ProcessTime; 
static final double[] ai={0.1, ,0.1}; 
static final int tnow=10; //time of disruptions 
static final int [ ] broken_mdex-{ 4 } ; 
static final int[] repair_time={4] ; 
static final int [ ] broken_j_mdex= {15 } ; 
static final int amval_job_size=l; 
static node mitial_node; 
static final double[] delta={12, ,12}; //penalty cost of lateness 
static final double[]save={12, ,12}; //saving on due dates 
static final double [ ] jnio={10, ,10}; //Cost of expediting 
static final double[] h={l, ,1}; //Cost of holding 
static final int omega=4; //Cost of reallocating 
static final double[] eta={6, ,6}; //Cost of idle time 
static final double tilda=6; //cost of extra PT 

public static void mam (String [] args) throws 
CloneNotSupportedException, BiffException, IOException{ 

imtialise_process__time_table ( "C: \\Documents and 
Settmgs\\Administrator\\Desktop\\Test_problems\\initial-input.xls"); 

mi tial__node = initialise start nodes ( "C: WDocuments and 
Settings\\Administrator\\Desktop\\Test_problems\\mitial-output. xls" ) ; 

node s= (node) imtial_node. clone () ; 
s.level=0; 
for (int i=0; i<MNum;i++)s.available_time[l]=tnow; 
for(mt i=0;i<JAfuin;i + +) { 

for(int j=0;j<ONum;j++){ 
i n t mmdex = s . 0 [ i ] [ ] ] [ ! ] , • 
i f (mmdex ' =MNum) { 

i f ( s . O [ i ] [3] [0]>=tnow) { 
s . O [ i ] [ 3 ] [ 0 ] = - l ; 
s . O [ i ] [ 3 ] [ 1 ] = - 1 ; 

s . C o m p l e t i o n T i m e [ 1 ] [ ] ] = - ! ; 
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f o r ( i n t k = 0 ; k<broken_j_mdex. l e n g t h ; k++) { 
i f (i==broken_j_mdex [ k ] ) { 

s . O [ i ] [j] [ 0 ] = 0 ; 

s . O [ i ] [3] [l]=MNum; 

s.level++; 
} 

} 
} e l s e { 
b o o l e a n b r o k e = f a l s e ; 
f o r ( i n t k = 0 ; k < b r o A - e n _ j _ i r ! d e x . l e n g t h ; k++) { 

i f {x==broken_j__mdex [k] ) { 
b r o k e = t r u e ; 
} 

} 
d o u b l e e n d _ t i m e = s . C o m p l e t i o n T i m e [ 1 ] [ j ] ; 

i f { ' b r o k e ) { 
i f (s . a v a i l a b l e _ t i m e [ m m d e x ] < e n d t i m e ) s . a v a i l a b l e s t l m e [ m m d e x ] = e n d t i m e ; 
} e l s e { 
i f (s . a v a i l a b l e ^ t i m e [ m m d e x ] < e n d t i m e ) { 
s . a v a i l a b l e _ t i m e [ m m d e x ] = M a t h . mm { e n d _ t i m e , tnow) ; 

} 
} 
s . l e v e l + +; 

} 
} 

} 
} 
/ / s e t a v a i l a b l e t i m e f o r b r o k e n m a c h i n e s 
f o r f i n t i = 0 ; ±<broken_mdex. l e n g t h ; 1++) { 

i n t m i n d e x = broken__mdex [ 1] ; 
d o u b l e r t i m e = repair_time[x] ; 
i f (s . a v a i l a b l e _ t i m e [ m m d e x ] >tnow) { 

s . a v a i l a b l e _ t i m e [ m m d e x ] + = r t i m e ; 
} e l s e { 
s . a v a i l a b l e _ t i m e [ m m d e x ] = t z i o w + r t i m e ; 

} 
} 
f o r ( i n t i=JNum;i<JNum+arrival_job_size;1 + +) { 

f o r ( i n t j=0;j<ONum;j++){ 
s - 0 [ i ] [3] [ 0 ] = - l ; 
s - 0 [ i ] [D] [ 1 ] = - 1 ; 
s . C o m p l e t i o n T i m e [ 1 ] [ 3 ] = - ! ; 

} 
} 

L m k e d L i s t < n o d e > n e w l i s t = mitialize_list ( s ) ; 
F i l e m t o u t = n e w F i l e ( "C : W D o c u m e n t s a n d 

S e t t m g s \ \ A d m i n i s t r a t o r \ \ D e s k t o p \ \ T e s t _ p r o b l e m s \ \ i n t o u t i n i t i a l 2 . t x t " ) ; 
B u f f e r e d W r i t e r o u t = n e w B u f f e r e d W r i t e r ( n e w F i l e W r i t e r ( m t o u t ) ) ; 
I t e r a t o r < n o d e > temp = n e w l i s t . i t e r a t o r ( ) ; 

i n t lmin=0Num* (JNum+arrival_job_size) ; 
w h i l e ( t e m p . h a s N e x t ( ) ) { 

m t l e v e l = t e m p . n e x t ( ) . l e v e l ; 
i f ( l e v e l < l m m ) l m m = l e v e l ; 

} 
f o r ( i n t l e v e l = l m m + l ; level<=OWu2?)* (JNum+arr i val_job__size) ; l e v e l + + ) { 

o u t . w r i t e ( " D o b \ t o p e r \ t m \ t s t \ t f \ t w l \ t w 2 \ t w 3 \ t l e v e l \ n " ) ; 
S y s t e m . o u t . p r i n t ( " ] o b \ t o p e r \ t m \ t s t \ t f \ t w l \ t w 2 \ t w 3 \ t l e v e l \ n " ) ; 
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System.out.printIn(level); 
newlist = branch_bound(newlist) ; 
temp = newlist.iterator(); 
while (temp.hasNext()){ 

out.write("\t\t\t\t\t\t\t\t" + level + "\n") ; 
System.out.print("\t\t\t\t\t\t\t\t" + level+"\n") ; 

out.write(temp.next().toString()+"\n"); 
out.write (" \n") ; 
System, out. print ( " \n") ; 

} 
out.write("=========================================\n"); 

System.out.print("==========================================\n"); 
} 
out.close(); 
f o r ( i n t w=0;w<BeamWidth;w++){ 

node p = ( n o d e ) n e w l i s t . g e t ( w ) ; 
node t = ( n o d e ) i n ± t i a l _ n o d e ; 
d o u b l e makespan=0; 
d o u b l e [ ] [ ] c o m p l e t i o n t ime_new = new 
double [JNum+arrival__job_size] [ONum] ; 
d o u b l e [] [ ] complet ion_t ime__old=new 
doubletJNum][ONum]; 
d o u b l e sum__compl=0; 
d o u b l e sum_comp2=0; 
d o u b l e sum com=0; 
f o r ( i n t j = 0 ; j< JNum+arriva l_job__size; j++) { 

f o r ( i n t k=0;k<ONum;k++){ 
b o o l e a n M b r o k e = f a l s e ; 
d o u b l e r t = 0 ; 
i f ( p . O [ j ] [ k ] [ 1 ] i=MNum){ 

f o r ( i n t m=0;m<bro^fen_index. l eng th ;m++) { 
i f ( (broicen__index[m]==p.O[j] [k] [1] ) & (p .0 [ j ] [k] [0]<tnow) & 

{ProcessTime[j*ONum+k] [ p . 0 [ j ] [k] [1] ] + p . O [ j ] [k] [0]>tnow) ) { 
M b r o k e = t r u e ; 
r t = repair_time[m]; 

} 
i f ( M b r o k e ) { 

complet ion_time__new [ j ] [ k ] = p . O [ j ] [k] [0] + 
ProcessTime[j*0Num+k] [ p . 0 [ j ] [ k ] [ 1 ] ] + r t ; 

} e l s e{ 
c o m p l e t i o n _ t i m e _ n e w [ j ] [ k ] = p . O [ j ] [ k ] [ 0 ] + 
ProcessTime[j*0Num+k] t p . 0 [ j ] [ k ] [ 1 ] ] ; 

} 
} 

b o o l e a n j b r o k e = f a l s e ; 
f o r ( i n t h = 0 ; h < b r o k e n _ j _ i n d e x . l e n g t h ; h + + ) { 

i f ( ( b r o k e n _ j _ i n d e x [ h ] = = j ) & ( p . 0 [ j ] [ k ] [ l ] < M N u m ) ) { 
i f ( ( p . 0 [ j ] [ k ] [ 0 ] < t n o w ) & 
(ProcessTime[j*ONum+k] [ p . O [ j ] [ k] [ 1 ] ] + p . 0 [ j ] [k] [0]>tnow) ) { 

} 
j b r o k e = t r u e ; 

} 
} 

i f ( ! j b r o k e ) { 
c o m p l e t i o n _ t i m e _ n e w [ j ] [ k ] = p . O [ j ] [ k ] [ 0 ] + P r o c e s s T i m e [ j * O N u m + k ] [p .O[ 

j ] [k] [ 1 ] ] ; 
} 
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i f ( j b r o k e ) { 
c o m p l e t i o n _ t i m e _ n e w [ 3 ] [ k ] = t n o w ; 

} 
i f ( comple t i on_ t ime_new[3 ] [k]>makespan) 

m a k e s p a n = c o m p l e t i o n _ t i m e _ n e w [ ] ] [ k ] ; 
} 

} 
} 
f o r ( m t j=0;j<JNum;j++) { 

f o r ( m t k=0; k<ONum; k++) { 
i f ( t . 0 [ : ] [ k ] [ 1 ] >=MNum){ 

c o m p l e t i o n t i m e o l d [ 3 ] [ k ] = 
t . O [ ; j ] [k] [0]+ProcessTime[j*ONum+k] [ t . 0 [ ] ] [k] [1] ] ; 

i f ( c o m p l e t i o n _ t i m e _ n e w [ ] ] [ k ] > c o m p l e t i o n _ t i m e _ o l d [ 3 ] [ k ] ) { 
sum_compl+=(complet ion__t ime_new[]] [ k] - c o m p l e t i o n _ t i m e _ o l d [3 ] [k] ) ; 
} 
i f ( c o m p l e t i o n _ t i m e _ n e w [ ] ] [ k ] < c o m p l e t i o n _ t i m e _ o l d [ 3 ] [ k ] ) { 
sum_comp2+= (comple t ion__t ime_old [3 ] [k] - c o m p l e t i o n _ t i m e _ n e w [3 ] [ k] ) ; 

} 
} 

} 
} 
s um_c om= s um_c omp1 + sum_comp 2; 
S y s t e m . o u t . p r i n t I n ( " m a k e s p a n "+makespan) ; 
Sys tem, out . p r m t l n ( " S t a b i l i t y - > " + sum_com) ; 
f o r ( i n t i = 0 ; i< JNum+amval_job_size; 1 + + ) { 

f o r ( i n t j=0;j<ONum;j++) { 
b o o l e a n Mbroke=fa l se ; 
d o u b l e r t = 0 ; 
i f ( p . O [ i ] [ ] ] [ 1 ] ' = M N u m ) { 

f o r ( i n t m=0;m<jbroicen_mdex. length,-m++) { 
i f ( (broken_mdex [m]==p.0[i] [3] [1] ) & ( p . O [ i ] [3] [0]<tnow)Sc 
(ProcessTime[i*ONum+j] [ p . 0 [ i ] [3] [ l ] ] + p . O [ i ] [3] [0]>tnow)) { 

Mbroke= t rue ; 
r t = repair_time[m] ; 

} 
i f ( ( p . O [ i ] [3] [0]>=tnow) I I ( p . O [ i ] [3] [ l ]== J bro^en_ index[m] ) ) { 

i f ( M b r o k e ) { 
p . C o m p l e t i o n T i m e [ 1 ] [ 3 ] = ( i n t ) 

( p . 0 [ i ] [3] [0]+ProcessTime[i*ONum+j] [ p . 0 [ i ] [3] [ 1 ] ] + r t ) ; 
} e l s e { 
p . C o m p l e t i o n T i m e f i ] [ 3 ] = p . O [ i ] [3] [0] + 
Process Time[i*0Num+j] [ p . 0 [ i ] [3] [1]] ; 

} 
} 

} 
b o o l e a n J b r o k e = f a l s e ; 
f o r ( i n t m = 0 ; m < b r o k e n ^ j _ i n d e x . l e n g t h ; m + + ) { 
i f ( (broken_j_mdex [m]==i) & ( p . O [ i ] [3] [l]<MNum) ) { 

i f ( ( p . 0 [ i ] [3] [0]<tnow) & 
(ProcessTime[i*ONum+j] [ p . O [ i ] [3] [ 1 ] ] + p . 0 [ i ] [3] [0}>tnow)) { 

} 
J b r o k e = t r u e ; 

} 
i f ( ( p . 0 [ i ] [3] [0]>=tnow) I I {broken_j_ index [m]==1)) { 

i f ( ' J b r o k e ) { 
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p . C o m p l e t i o n T i m e [ I ] [ ] ] = p . O [ i ] [j] [0] + 
Process Time[i*ONum+j] [ p . O [ i ] [j] [ 1 ] ] ; 

} 
i f ( Jb roke) { 

i f ( p . 0 [ i ] [ j ] [ 0 ] + P r o c e s s T i m e [ i * O N u m + j ] [ p . 0 [ i ] [ j ] [1]}<tnow) 
p . C o m p l e t i o n T i m e [ I ] [ ] ] = p . O [ i ] [ j ] [0]+ ProcessTime[i*ONum+j] [ p . O [ i ] [3] [ 1 ] ] 

e l s e f 
p.CompletionTime[1][j]=tnow; 

} 
} 

} 
} 

} 
} 

} 
} 

mtout=new File ( "C: WDocuments and 
Set tings \\Administrator\\Desktop\\Test_problems\\imtial -output. xls" ) ; 

out= new BufferedWriter(new FileWriter(mtout)); 
out. write ( "job\toper\tm\tst\tf\twl\tw2\tw3\n" ) ; 
temp = newlist.iterator(); 
while (temp.hasNext()){ 

out .write (temp, next () . toStrmgfmal () +"\n" ) ; 
out.write ("\n"); 

} 
out.write("\n\n"); 
out.close{); 

} 

static LmkedList<node> imtialize_list (node s) throws 
CloneNotSupportedException{ 

LmkedList<node> levell = new LmkedList<node> ( ) ; 
//generate first level 
LmkedList<opcand> candidates = new LmkedList<opcand> ( ) ; 
//check the precedence of the candidates 
for (mt 1=0 ; i<JNum+arrival_job_size; 1++) { 

for (int j=0;j<ONum;j++){ 
if({precedence_ok(s, 1, j)& 
(initial_precedence ( i m t i a l _ n o d e , s, 1, 1) ) ) ) { 

opcand c = new opcand(); 
c. j obmdex=i ; 
c. opmdex=] ; 
c.start time=0; 
candidates.add(c) ; 

} 
} 

} 
Iterator<opcand> opiterator = candidates.iterator() ; 
while (opiterator.hasNext()){ 

opcand c = opiterator.next(); 
int row = (c . jobmdex) *ONum+c . opmdex; 
for (mt i=0; KMNum; 1 + + ) { 

if(ProcessTime[row][i]>0){ 
node temp = (node) s . clone () ; 
temp.level=s.level+1• 
if ( c . opmdex>0 ) { 
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boolean prev_broken=false; 
int prev_mindex = temp.0[c.jobindex][c.opindex-1][1]; 
int broke_index = 0; 
for(int b=0;b<broken_index.length;b++){ 

if (prev mindex==jbroA:en__index [b] ) { 
prev_broken=true; 
broke_index=b; 
} 

} 
if(prev_broken){ 

double rtime= repair_time[broke_index]; 
if((temp.0[c. jobindex] [c.opindex-1] [0] <tnow)&& 
(temp.CompletionTime[c.jobindex] [c.opindex-1]>tnow) ) { 

temp.0[c.jobindex][c.opindex][0]= 
(int)Math.max(temp.available_time[i], 
temp.CompletionTime[c.jobindex][c.opindex-1]+rtime); 
}else{ 
temp.0[c.jobindex] [c.opindex] [0] = 
(int)Math.max(temp.available_time[i], 
temp.CompletionTime[c.jobindex][c.opindex-1]); 
} 

}else{ 
temp.0[c.jobindex][c.opindex][0]= 
(int)Math.max(temp.available_time[i] , 
temp.CompletionTime[c.j obindex] [c.opindex-1] ) ; 

}else( 
temp.0[c.jobindex][c.opindex][0]=(int)temp.available_time[i]; 
} 
t e m p . 0 [ c . j o b i n d e x ] [ c . o p i n d e x ] [ l ] = i ; 
t e m p . a v a i l a b l e ^ t i m e [ i ] = t e m p . O [ c . j o b i n d e x ] [ c . o p i n d e x ] [ 0 ] + 
ProcessTime[c.jobindex*ONum+c.opindex][i]; 

l e v e l 1 . a d d ( t e m p ) ; 
} 

} 
/ / f i r s t l e v e l n o d e s have b e e n g e n e r a t e d ( a l l p o s s i b l e mach ines fo r e a c h 
o p e r a t i o n ) 

double [] g l o b a l _ c o s t = new d o u b l e [ l e v e l l . s i z e ( ) ] ; 
f o r ( i n t i = 0 ; i < l e v e l l . s i z e ( ) ; i + + ) { 

g lobal__cos t [ i ] = e v a l u a t e ( l e v e l l . g e t ( i) ) ; 
} 

/ / s e l e c t t h e beamwidth b e s t nodes i n d e x t h a t has minimum c o s t s 
i n t [] b e s t n o d e s i ndex = new int[BeamWidth] ; 
/ / i n i t i l i z e t o 0 and 1 . . . (beamwidth-1) 
i n t max__index = 0 ; 
for ( i n t i=0; i<BeamWidth;i++) { 

b e s t _ n o d e s _ i n d e x [ i ] = i ; 
i f ( g l o b a l _ c o s t [ i ] > g l o b a l _ c o s t [max_index] ) m a x _ m d e x = i ; 

) 
f o r ( i n t ±=BeamWidth; i < l e v e l l . s i z e ( ) ; i + +) { 

i f ( g l o b a l ^ c o s t [ i ] < g l o b a l _ c o s t [max__index] ) { 
bes t_nodes__index [raax_index] = i ; 
/ / u p d a t e t h e max_index 
max i ndex = 0; 
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f o r ( i n t j=l;j<BeamWidth;j++){ 
i f ( g l o b a l _ c o s t [j ] > g l o b a l _ c o s t [max_mdex] ) m a x _ m d e x = ] ; 

} 
} 

} 
//add the best be_amwJLdth nodes to a new list and return it 
LmkedList<node> bounded_levell = new LmkedList<node> () ; 
for (int i=0;i<BeamWidth;i++){ 

bounded_levell.add(levell. get(best nodes mdex[i])); 
} 
return bounded levell; 

} 

p r i v a t e s t a t i c node m i t i a l i s e _ s t a r t n o d e s ( S t r i n g f i l e name) throws 
F i l e N o t F o u n d E x c e p t i o n { 

L m k e d L i s t < n o d e > l i s t = new L m k e d L i s t < n o d e > () ; 
S c a n n e r s= new Scanner (new F i l e ( f i l e n a m e ) ) ; 
/ / r e a d a t i t l e row 
s . n e x t L i n e ( ) ; 
i n t c o u n t = 0 ; 
double m m _ f v a l = MaxProcessTime; 
i n t b e s t n o d e _ i n d e x = - l ; 
f o r ( i n t i = 0 ; KBeamWidth; i++ ) { 

coun t++; 
node temp = new n o d e ( ) ; 
f o r ( i n t j=0;j<JNum;j++){ 

f o r ( i n t k=0;k<ONum;k++) { 
S t r i n g 1 = s . n e x t L i n e ( ) ; 
S t r i n g l m e [ ] = 1. s p l i t ( " \ t ") ; 

t e m p . 0 [ j ] [k] [ 0 ] = I n t e g e r .parselnt(line[3]) ; 
t e m p . 0 [ j ] [k] [1] = I n t e g e r . p a r s e l n t ( l i n e [2] ) ; 
t emp.Comple t ionTime[ j ] [ k ] = I n t e g e r . p a r s e l n t ( l i n e [ 4 ] ) ; 
i f ( t e m p . O f : ] [ k ] [ 1 ] *=MNum){ 

t e m p . a v a i l a b l e _ t i m e [ t e m p . 0 [ j ] [ k ] [ 1 ] ] = 
M a t h . m a x ( t e m p . a v a i l a b l e _ t i m e [ t e m p . O [ j ] [ k ] [ 1 ] ] , 

t emp.Comple t ionTime[ j ] [ k ] ) ; 
} 

} 
} 
temp.level=ONum*JNum; 
temp.branch=i; 
list.add(temp); 
//read extra lines (garbage) 
String line[]=s.nextLine () .split("\t"); 
double fval = Double .parseDouble(line[4]) ; 
if(fval<min_fval){ 
mm__fval = fval; 
b e s t n o d e _ m d e x = I ; 
} 
if(count'=BeamWidth){ 

s.nextLine (); 
s.nextLine (); 

} 
} 
s.close (); 
return list. get (best^node^mdex ) ; 
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} 

private static void initialise_process_time_table(String filename) 

throws BiffException, IOException { 

ProcessTime = new int[ {JNum+arrival_job_size)* ON urn] [MNum]; 
WorkbookSettings ws = new WorkbookSettings(); 
ws.setLocale(new Locale ("en", "EN")); 
Workbook workbook = Workbook.getWorkbook(new 
File(filename),ws); 
Sheet s = workbook.getSheet(0); 

for (int i=Q;i<MNum;i++){ 
for (int j=0;j<( J N u m + a r r i v a l _ j o b _ s i z e ) *ONum;j++){ 

ProcessTime[j][i] = 
Integer .pa rselnt(s.getCell(i + l,j + l) .getContents()); 

} 
} 
workbook, closed ; 

private static double evaluate(node n) throws 

CloneNotSupportedException { 

node copy = (node) n.clone(); 

//Generate new schedules from this node 
int 1 = copy.level; 
for (int i=0;i<( J N u m + a r r i v a l _ j o b _ s i z e ) * O N u m - l;i++){ 

best_jorn (copy) ; 

} 
/ / e v a l u a t e t h e copy node 
d o u b l e [ ] ws = new d o u b l e [JNum+arrival__job_size] ; 
double sum=0; 
double new_makespan=0; 
double i n i t i a l _ m a k e s p a n = 0 ; 
f o r ( i n t i = 0 ; i < J N u m + a r r i v a l _ j o b _ s i z e ; i + +) { 

b o o l e a n M br oke= f a l s e ; 
double r t = 0 ; 
i f (copy .0[ i ][ONum-1] [1 ] l=MNum){ 

f o r ( i n t m=0;m<broken_index.length;m++){ 
i f ( ( b r o k e n _ i n d e x [ m ] = = c o p y . O [ i ] [ O N u m - 1 ] [1])& 
(copy .0[ i ][ONum-1] [0]<tnow] & 
(ProcessTime [ ( i+1)*ONum-1] [ copy .0[ i ][ONum-1] [1]]+ 
c o p y . 0 [ i ] [ONum-1] [0]>tnow) ) { 

M b r o k e = t r u e ; 
r t = repair_time [m] ; 
} 
i f ( M b r o k e ) { 

w s [ i ] = c o p y . 0 [ i ] [ O N u m - 1 ] [0]+ 
ProcessTime[ONum* ( i + 1 ) - 1 ] [ c o p y . O f i ] [ O N u m - 1 ] [ l ] ] + r t ; 

} e l s e { 
w s [ i ] = c o p y . 0 [ i ] [ O N u m - 1 ] [0]+ 
ProcessTime[ONum* ( i + 1 ) - 1 ] [ c o p y . 0 [ i ] [ONum-1] [ 1 ] ] ; 

} 
b o o l e a n J b r o k e = f a l s e ; 

f o r ( i n t h=0;h<broken_j_index.length;h++){ 

105 



i f ( (broken_j__mdex[h]==i) && ( c o p y . O [ i ] [ONum-1] [l]<MNum) ) { 
i f ( ( c o p y . O [ i ] [ONum-1] [0]<tJiow) && 
(ProcessTime[ONum* ( i + l ) - 1 ] [ c o p y . O f i ] [ O N u m - 1 ] [1 ] ]+ 
c o p y . O [ i ] [ONum-1] [0]>tnow) ) { 

J b r o k e = t r u e ; 
} 
} 

} 
i f ( ' J b r o k e ) { 

ws[ i ]=copy .O[ i ] [ONum-1] [0 ]+ 
ProcessTime[ONum* ( i + l ) - 1 ] [ c o p y . 0 [ i ] [ONum-1] [ 1 ] ] ; 

} 
i f ( J b r o k e ) { 
w s [ l ] = t n o w ; 
} 
if(ws[I]>new_makespan)new_makespan=ws[I]; 

T 
} 

} 

node eqnode = mitial_node; 
double [] wss=new d o u b l e [ J N u m + a r r i v a l ^ j o b _ s i z e ] ; 
f o r ( m t 3=0; j<JNum; J++) { 

i f ( e q n o d e . Of}] [ONum-1] [1] i=MNum) { 
wss [ j] = 
eqnode . 0 [ j ] [ONum-1] [ 0] + 
ProcessTime[ONum* ( j + 1 ) - 1 ] [ e q n o d e . 0 [ ] ] [ O N u m - 1 ] [ 1 ] ] ; 

i f (wss [ j ] > i m t i a l _ r a a k e s p a n ) i n i t i a l _ m a k e s p a n = w s s [ j ] ; 
} 

} 
d o u b l e F1=0; 
d o u b l e F11=0; 
f o r f m t i = 0 ; K J N u 7 n ; i + +) { 

i f (ws [ l ] >wss [ l ] ) { 
i f ( c o p y . O f i ] [ONum-1] [1] ^MNum) { 

F l + = ( w s [ I ] - w s s f i ] ) * delta[i]; 
} 

} 
F l l = (ws [JNum] - w s s [JNum] ) * delta [JNum] ; 

} 
d o u b l e F _ s a v e _ d u e d a t e s = 0 ; 
f o r f m t i = 0 ; K JNum; i + + ) { 

i f ( w s [ l ] < w s s [ l ] ) { 
i f ( c o p y . O f i ] [ONum-1] [1] ' =MNum) { 

F s a v e d u e d a t e s + = ( w s s [ I ] - w s [ l ] ) * s a v e [ i ] ; 
} 

} 
} 
d o u b l e F2=0; 
d o u b l e F3=0; 
f o r ( m t i = 0 ; K JNum; i++) { 

f o r f m t j=0;j<ONum;j++) { 
i f ( c o p y . O f i ] f:][1] '=MNum){ 

i f ( c o p y . O f i ] [ j ] [ 0 ] < e q n o d e . O [ i ] [ 3 ] [ 0 ] ) { 
F2+=(eqnode .Of i ] [ j ] [ 0 ] - c o p y . 0 [ 1 ] [ 3 ] [ 0 ] ) * m i o [ i ] ; 

} e l s e { 
F 3 + = ( c o p y . O f i ] [ 3 ] [ 0 ] - e q n o d e . O f i ] [ 3 ] [ 0 ] ) * h [ 1 ] ; 
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} 

} 

d o u b l e F4=0 
i n t c o u n t = 0 
f o r ( m t i = 0 ; i < J r W u : n ; i + + ) { 

f o r ( i n t j=0;j<ONum;j++){ 
i f ( ( c o p y . O f i ] [ 3 ] [1 ] *=MNum)&(eqnode.O[i][3][1]'=MNum)){ 

i f ( c o p y . O f i ] [ 3 ] [ 1 ] ' = e q n o d e . O [ i ] [ 3 ] [ 1 ] ) { 
c o u n t + + ; 

} 
} 

F4 = ( c o u n t * o m e g a ) ; 
} 

} 
d o u b l e F 5 = 0 ; 
d o u b l e n e w _ s u m = 0 ; 
d o u b l e Fa6=0; 
d o u b l e Fb6=0 ; 
d o u b l e F6=0 ; 
d o u b l e [ ] WL= { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ; 
d o u b l e [ ] IWL = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ; 
m t p = - l ; 
m t q = - l ; 
d o u b l e t ] n e w _ i d l e _ t i r a e = n e w double[MNum] ; 
d o u b l e [ ] i n i t i a l _ i d l e _ t i m e = n e w double[MNum]; 
f o r ( i n t D = 0 ; ] < J N u m + a r r i v a l _ j o b _ s i z e ; 3 + + ) { 

f o r ( i n t k = 0 ; k < O N u m ; k + + ) { 
i n t . r ow = ( 3 ) * 0Num+ k ; 
p = c o p y . 0 [ 3 ] [ k ] [1] ; 
i f ( p <=MNum) { 

W L [ p ] + = P r o c e s s T i m e [ r o w ] [ p ] ; 
F a 6 + = P r o c e s s T i m e [ r o w ] [ c o p y . O [ 3 ] [ k ] [ 1 ] ] ; 

} 
} 

} 
f o r ( i n t b=0;b<broken_mdex.lenqth;b++){ 

i n t m=broken_mdex [b ] ; 
WL [m] +=repair_time [b] ; 

} 
f o r f i n t h=0;h<MNum;h++) { 

n e w _ i d l e _ t i m e [ h ] = n e w _ m a k e s p a n - W L [ h ] ; 
} 
f o r ( m t -]=0;j<JNum;j++) { 

f o r ( i n t k=0 ;k<GWum;k++){ 
i n t row = (3)*ONum+k; 
q = e q n o d e . 0 [ 3 ] [ k ] [ 1 ] ; 
i f ( q 1 =MNum) { 

IWL[q]+ = ProcessTime[row] [q] ; 
F b 6 + = P r o c e s s T i m e [ r o w ] [ e q n o d e . O f ] ] [ k ] [ 1 ] 

} 
} 

} 
f o r ( i n t h=0;h<MA?um;h++) { 

m i t i a l _ _ i d l e _ t i m e [h ] = i m t i a l _ m a k e s p a n - I W L [h ] ; 
} 
f o r ( m t h=0;h<MNum;h++) { 
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i f ( n e w _ i d l e _ t i m e [ h ] > i n i t i a l _ i d l e _ t i m e [ h ] ) { 
F5+= ( n e w _ i d l e _ t i m e [h] - i m t i a l _ i d l e _ t i m e [h] ) *eta [ h ] ; 
} 

} 
i f ( F a 6 > F b 6 ) F 6 = t i l d a * ( F a 6 - F b 6 ) ; 

s u m = F l + F 2 + F 3 + F 4 + F 5 + F 6 + F l l ; 
n e w _ s u m = s u m - F _ s a v e _ d u e d a t e s ; 
S y s t e m . o u t . p r i n t l n ( " F l - > " + F l + " , F l ' - > " + F l l + " , F 2 - > " + F 2 + " , F 3 - > " + F 3 + " 
, F 4 - > " + F 4 + " , F 5 - > " + F 5 + " , F 6 - V + F 6 ) ; 
S y s t e m . o u t . p r i n t l n ( " s a v e d u e d a t e s - >" + F _ s a v e _ d u e d a t e s + " u p d a t e d 
C o s t - > " + n e w _ s u m ) ; 

r e t u r n sum; 

} 

p r i v a t e s t a t i c v o i d b e s t j o m ( n o d e n) { 
i n t ] i n d e x = - l ; 
m t o m d e x = - l ; 
i n t m m d e x = - l ; 
i n t min_spt=MaxProcessTime; 
f o r ( i n t j=0;j<JNum+arrival_job_size;j++){ 

f o r ( i n t k=0;k<ONum;k++) { 
i f (precedence_ok ( n , j , k) 

f o r ( i n t m=0;m<MNum;m++){ 
i f ( [ P r o c e s s T i m e l j * O N u m + k ] [ m ] > 0 ) & & ( P r o c e s s T i m e [ j * O N u m + k ] [ m ] < m i n _ s p t ) ) { 

m m d e x = m ; 
] i n d e x = j ; 
o m d e x = k ; 

m i n _ s p t = P r o c e s s r i i 7 i e [ ] * 0 N u i r ! + k ] [m] ; 

} 
e l s e 

i f ( (ProcessTimelj* ONum+k] [m] >0) && {ProcessTimelj* ONum+k] [m] = = m m _ s p t ) ) { 
m t l o a d l = 0 ; 
i n t l o a d 2 = 0 ; 

f o r ( m t p = 0 ; p < J N u r n + a m v a l _ j o b _ s i z e ; p + + ) { 
f o r ( i n t 1=0 ; KONum; 1 + +) { 
i n t row = ( p ) * ONum+1; 
i f ( n . O [ p ] [ 1 ] [ l ] = = m m d e x ) { 
l o a d l + = P r o c e s s T i 7 n e [ r o w ] [ m m d e x ] ; 
} 
e l s e i f ( n . O [ p ] [ 1 ] [ l ] = = m ) { 
l o a d 2 + = P r o c e s s T i 2 7 ? e [ r o w ] [m] ; 

} 
} 

} 
i f ( l o a d l < l o a d 2 ) { 

m m d e x = m ; 
jindex=3 ; 
o m d e x = k ; 

min_spt=ProcessTimeIj*ONum+k] [ m ] ; 
} 

} 

} 

} 

} 

} 
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i f (omdex>0) { 
b o o l e a n p r e v b r o k e n = f a l s e ; 
i n t p r ev_mmdex = n . O [ ] i n d e x ] [ o m d e x - 1 ] [1] ; 
m t b r o k e index = 0; 
f o r j i n t i = 0 ; i<broken_mdex. l e n g t h ; i + +) { 

i f (prev_mindex==bro/cei3_index[ i ] ) { 
p rev__broken=t rue ; 
broke__index=i ; 

} 
} 
i f (prev__broken) { 

d o u b l e r t i m e = r e p a i r _ t i m e [ b r o k e _ m d e x ] ; 
i f ( ( n . O [ ] i n d e x ] [ o m d e x - 1 ] [0]<tnow) && 
(n .Comple t ionTime [jindex] [ o m d e x - 1 ] >tnow) ) { 
n . 0 [ } i n d e x ] [ o m d e x ] [0] = ( m t ) Math.max (n. a v a i l a b l e _ t i m e [mindex] , 
n .Comple t i onT ime [j i n d e x ] [ o m d e x - 1 ] + r t i m e ) ; 

} e l s e { 
n . 0 [ jindex] [ o m d e x ] [0] = ( i n t ) Math.max ( n . a v a i l a b l e _ t i m e [mindex] , 
n . Complet ionTime [j i n d e x ] [ o m d e x - 1 ] ) ; 

} 
} e l s e { 

n . O [ j i n d e x ] [ o m d e x ] [0] = ( i n t ) Math, max (n. a v a i l a b l e _ t i m e [mindex] , 
( n . C o m p l e t i o n T i m e [ j i n d e x ] [ o i n d e x - 1 ] ) ) ; 

} 
} e l s e i f (omdex==0) { 

n . O [ ] i n d e x ] [ o m d e x ] [0] = ( m t ) n . a v a i l a b l e _ t i m e [mindex] ; 
} 

n . O [ ] i n d e x ] [ o m d e x ] [ l ] = m m d e x ; 
n . ava i l ab l e__ t ime [mindex] = 
n . 0 [ ] m d e x ] [ o m d e x ] [ 0] +ProcessTime [ j index* ONum+omdex] [ m i n d e x ] ; 

n . l e v e l + + ; 
} 

s t a t i c b o o l e a n p r e c e d e n c e _ o k (node c u r r e n t , m t l , m t j) { 
i f ( c u r r e n t . 0 [ l ] [3] [ 0 ] > = 0 ) r e t u r n f a l s e ; 
i f ( ] = = 0 ) r e t u r n t r u e ; 
i f ( c u r r e n t . 0 [ l ] [ ] - l ] [ 0 ] > = 0 ) r e t u r n t r u e ; 
r e t u r n f a l s e ; 

} 

s t a t i c L m k e d L i s t < n o d e > b r a n c h bound ( L m k e d L i s t < n o d e > c u r r e n t l i s t ) 
t h rows C l o n e N o t S u p p o r t e d E x c e p t i o n { 

L m k e d L i s t < n o d e > c h i l d r e n =new L m k e d L i s t < n o d e > () ; 
I t e r a t o r < n o d e > i t e r a t o r = c u r r e n t l i s t . i t e r a t o r ( ) ; 

w h i l e ( i t e r a t o r . hasNex t () ) { 
node c u r r e n t = i t e r a t o r . n e x t ( ) ; 

i f ( c u r r e n t . l e v e l > = ( J N u m + a r r i v a l _ j o b _ s i z e ) *0Num){ 
c h i l d r e n , a d d ( c u r r e n t ) ; 

} e l s e{ 
c h i l d r e n , a d d (branci i_jbou.nd(current) ) ; 

} 

} 
return children; 
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} 

p r i v a t e s t a t i c node b r a n c h _ b o u n d ( n o d e c u r r e n t ) t h r o w s 
C l o n e N o t S u p p o r t e d E x c e p t i o n { 

L i n k e d L i s t < n o d e > n e x t _ l e v e l = new L i n k e d L i s t < n o d e > ( ) ; 
/ / g e n e r a t e n e x t l e v e l 
L i n k e d L i s t < o p c a n d > c a n d i d a t e s = new L m k e d L i s t < o p c a n d > () ; 
/ / c h e c k t h e p r e c e d e n c e of t h e c a n d i d a t e s 
d o u b l e min_s ta r t__ t ime=MaxSta r tTime; 
f o r ( i n t i = 0 ; i<JNum+arrival_job__size; i + +) { 

f o r ( i n t j=0;j<ONum;j++){ 
i f ( p r e c e d e n c e _ o k ( c u r r e n t , 1, j ) & 
(initial_precedence (initial_node, current, 1, ] ) ) ) { 

opcand c = new o p c a n d ( ) ; 
c . ] o b i n d e x = i ; 
c . o p m d e x = j ; 

i f ( D > 0 ) { 
b o o l e a n p r e v b r o k e n = f a l s e ; 
i n t p r e v _ m m d e x = c u r r e n t . 0 [ i ] [ 3 - I ] [1] ; 
i n t b r o k e _ m d e x = 0; 
f o r ( i n t b=0; h<broken_mdex. l e n g t h ; b + + ) { 
i f (prev_mmdex==broken_index[b] ) { 

p r e v b r o k e n = t r u e ; 
broke__index=b; 

} 
} 

i f ( p r e v b r o k e n ) { 
d o u b l e r t i m e = r e p a i r _ t i f l i e [ b r o k e _ m d e x ] ; 

i f ( ( c u r r e n t - 0 [ i ] [j-1] [0]<tnow) && 
( c u r r e n t . 0 [1] [ j - 1 ] [0]+ProcessTime [r* ONum+j-1] [ p r ev_mmdex] > tnow) ) { 
c . s t a r t _ t i m e = ( i n t ) ( c u r r e n t . 0 [ 1 ] [ ] - l ] [ 0 ] + 
ProcessTime[i~*ONum+j-1] [prev_mindex] + r t ime) ; 

} e l s e { 

c . s t a r t _ t i m e = ( i n t ) c u r r e n t . 0 [ 1 ] [ 3 - I ] [0] + 
ProcessTime [i*0Num+j-l] [prev__mindex] ; 

} 
}e l se{ 

c . s t a r t _ t i m e = c u r r e n t . 0 [ i ] [ ] - l ] [ 0 ] + 
ProcessTime[i*ONum+j-l] [ c u r r e n t . 0 [ 1 ] [ 3 - I ] [ 1 ] ] ; 

} 
}e l se{ 
c.start time=0; 

}~ 
if(c.start_time<min_start_time)min_start_time=c.start_time; 

candidates.add(c); 
} 

} 
} 

LmkedList<opcand> candidates_with_mm_st = new 
LmkedList<opcand> ( ) ; 

Iterator<opcand> opiterator = candidates.iterator(); 
while(opiterator.hasNext()){ 

opcand c = opiterator.next() ; 
if (c.start_time==min_start_time){ 

c a n d i d a t e s _ w i t h _ m i n _ s t . a d d ( c ) ; 
} 
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} 

//candidates with minimum starting time are in the list 
LmkedList<opcand> can_list_machme_assigned = new 
LmkedList<opcand> () ; 

opiterator = candidates with_mm_st. iterator () ; 
while(opiterator.hasNext()){ 

opcand c = opiterator.next(); 
m t row = (c.]obindex)*ONuffl+c.opmdex; 
for (mt i=0;KMWum;i++) { 

i f ( P r o c e s s T i m e [ r o w ] [ i ] > 0 ) { 
opcand c2 = new o p c a n d ( ) ; 
c 2 . ] o b m d e x = c . ] o b m d e x ; 
c 2 . o p m d e x = c . o p i n d e x ; 
c2 . s t a r t _ _ t i m e = c . s t a r t _ _ t i m e ; 
c 2 . m a c h i n e = 1; 
can l i s t mach ine a s s i g n e d . a d d ( c 2 ) ; 
} 

} 
} 

c a n d i d a t e s w i t h _ m m _ s t = n u l l ; 
/ / f i l t e r i n g 
d o u b l e [ ] p t = new double [ c a n _ l i s t _ m a c h m e _ a s s i g n e d . s i z e () ] 

f o r ( i n t i = 0 ; i < c a n _ _ l i s t _ m a c h m e _ a s s i g n e d . s i z e ( ) ; i + +) { 
opcand c = c a n _ l i s t _ m a c h m e _ a s s i g n e d . g e t (1) ; 
/ / c . m a c h i n e [ 0 ] i s g r e a t e r than - 1 always 

p t [ i ] = ProcessTime [ c . j obmdex* ONum+c. o p m d e x ] [c .mach ine ] ; 
} 

f o r ( i n t i = 0 ; i < c a n _ l i s t _ m a c h m e _ a s s i g n e d , s i z e () -FilterWidth; i++) { 
int mdex=0; 
for (int ]=l;3<pt.length;3++){ 

if (pt [1] >pt [index] ) mdex=i; 
} 
pt [index]=-1; 

} 
LmkedList<opcand> filtered_list = new 
LmkedList<opcand> () ; 
for (mt i=0; i<can__list_machme_assigned. size () ; 1 + +) { 

if (pt[i]>0) { 
opcand c = can_list_machme_assigned. get (1) ; 
f litered__list. add (c) ; 

} 
} 
//end filtering 
//create child nodes 
opiterator = filtered_list.iterator(); 
while(opiterator.hasNext()){ 

opcand c = opiterator.next(); 
int row = (c. 3obmdex) *ONum+c. opmdex; 
//generate the children and add it to levell list 
node temp = (node) current.clone(); 
temp.level++; 

temp . 0 [ c . j obmdex] [c.opindex] [0] =Math.siax ( c . start__time, 
(int)current.available_time[c.machine]);//set start time 
temp .0 [c . j obmdex] [c.opindex] [1 ] =c .machine ;//set machine 

//update availability time of machines 
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temp.available_time[c.machine]= 
temp.O [c. jobindex] [c.opindex] [0] +ProcessTirne [row] [c.machine] ; 

next_level.add(temp); 
} 
//next level is ready to bound 
double [] global_cost = new double[next_level.size()]; 
for (int i=0;i<next_level.size();i++){ 

global_cost[i] = evaluate(next_level.get(i)) ; 
} 

//select the beamwidth best nodes index that has minimum costs 
int best_index = 0; 
for (int i=l;i<next_level.size();i++){ 

if (global__cost [i] <global_cost [best_index] ) { 
best_index = i; 

} 
} 
return next_level.get(best_index); 

static class opcand { 
int jobindex, opindex; 
int start_time; 
int machine; 

static class node implements Cloneable { 
int[] [] CompletionTime=new 

int[JNum+arrival_job_size] [ONum] ; 
int level; 
int branch=-l; 
double[] available_time = new double [P4Num] ; 
public Object clone() throws CloneNotSupportedException { 

node copy = new node(); 
for (int i =0; i< JNum+arrival_job__size; i + + ) { 

for (int j=0;j<ONum;j++){ 
copy.0[i][j][0]=this.O[i][j][0]; 

//start time of this operation 
copy.0[i][j][l]=this.O[i][j][1]; 

//machine assigned to this operation 

copy.CompletionTime[i][j]=this.CompletionTime[i][j]; 
} 

} 
for (int i=0; i<MNum;i++){ 

copy.available_time[i]=this.available_time[i]; 
} 
copy.level = this.level; 
copy.branch=this.branch; 
return copy; 

} 
p u b l i c S t r i n g t o S t r i n g ( ) { 
S t r i n g s = new S t r i n g ( " " ) ; 
f o r ( i n t i =0 ; i< JNum+arrival__ job_size; i + + ) { 

f o r ( i n t j = 0 ; j<ONum; j++) { 
s = 

s . c o n c a t ( " " + i + " \ t " + j + " \ t " + t h i s . O [ i ] [ j ] [ 1 ] + " \ t " + t h i s . O [ i ] [ j ] [ 0 ] + " \ n " ) ; 
} 
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} 

try { 
s = s.concat("\t\t\t\t"+evaluate(this)+"\n"); 

} catch (CloneNotSupportedException e) { 
e.printStackTrace(); 

} 
return s; 

} 
p u b l i c S t r i n g t o S t r i n g f i n a l ( ) { 
S t r i n g s = new S t r i n g ( " " ) ; 
f o r ( i n t i = 0 ; i < J N u m + a r r i v a l _ j o b _ s i z e ; i + +) { 

f o r ( i n t j=0; j<ONum; j++){ 
s = 

s . c o n c a t ( " " + i + " \ t " + j + " \ t " + t h i s . 0 [ i ] [ j ] [ 1 ] + " \ t " + t h i s . 0 [ i ] [ j ] [ 0 ] + " \ t " + C o m 
p l e t i o n T i m e [ i ] [ j ] + " \ n " ) ; 

} 
} 
try { 

s = s.concat{"\t\t\t\t"+evaluate(this)+"\n"); 
} catch (CloneNotSupportedException e) { 

e.printStackTrace(); 
} 

return s; 
} 

i n t [] [] [] 0 = new i n t [JNum+arrival_job_size] [ONum] [ 2 ] ; 
} 

} 
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Appendix B: JAVA model for MFBSR in case 
of Disruptions (MB-JC-OA) 
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import ]ava.10.BufferedWriter; 

public class mamclass { 

/Input Data / 

public static void main(String[]args) throws 

CloneNotSupportedException, BiffException, IOException{ 

} 

s t a t i c L m k e d L i s t < n o d e > i n i t i a l i z e _ l i s t (node s) throws 

C l o n e N o t S u p p o r t e d E x c e p t i o n { 

} 

private static node initialise_start__nodes(String file_name) throws 

FileNotFoundException { 

} 

private static void initialise process time table(String filename) 

throws BiffException, IOException { 

} 

private static double evaluate(node n) throws 

CloneNotSupportedException { 

} 

private static void best jom(node n) { 
int ]index=-l; 
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i n t o m d e x = - l ; 
i n t m i n d e x = - l ; 
i n t m±n_spt=MaxProcessTime; 
f o r ( i n t j=0; j<JNum+arrival_job__size; j++) { 

f o r ( i n t k=0; k<ONum;k++) { 
i f { p r e c e d e n c e _ o k ( n , 3, k)& 
{imtial_precedence {initial__node, n, j , k) ) ) { 

f o r ( i n t m=0;m<MNum;m++){ 
i f ( ( P r o c e s s Time [j *ONum+k] [m] >0) && (ProcessTime[j *ONum+k] [m] < m m _ s p t ) ) { 

mindex=m; 
3 i n d e x = j ; 
o index=k ; 

m±n_sp-t=ProcessTime[j *ONum+k] [m] ; 
} 
e l s e 

if({ProcessTime[j*ONum+k] [m]>0)&&(ProcessTime[j*ONum+k] [m]==min_sp t ) ){ 
i n t l o a d l = 0 ; 
i n t l o a d 2 = 0 ; 

f o r ( i n t p=Q;p<JNurn+arrival_job_size;p++) { 
f o r ( m t 1=0 ; KONum; 1++) { 
i n t row = (p)*ONum+l; 
i f ( n . O [ p ] [1] [ l ]==mmdex) { 
loadl+=ProcessTime [row] [mmdex] ; 
} 
e l s e i f ( n . O [ p ] [ 1 ] [ l ] = = m ) { 
load2+=ProcessTime[row][m]; 

} 
} 

} 
i f ( l o a d l < l o a d 2 ) { 

mindex=m; 
2index=]; 
o m d e x = k ; 

min_spt=ProcessTime[-j*ONum+k] [m] ; 
} 

} 

} 
} 

} 
} 
i f ( o i n d e x > 0 ) { 

boo lean p r e v b r o k e n = f a l s e ; 
i n t p r ev_mindex = n . O [ ] i n d e x ] [ o m d e x - 1 ] [ 1 ] ; 
i n t b r o k e i n d e x = 0; 
f o r ( m t i = 0 ; i<broken__mdex. l e n g t h ; 1++) { 

i f (prev_mindex==i)roA:en_iiidex [1] ) { 
p r e v b r o k e n = t r u e ; 
b r o k e _ m d e x = i ; 

} 
} 
i f ( p r e v b r o k e n ) { 

double r t i m e = repair^time[broke i n d e x ] ; 
i f ( ( n . O [ ] i n d e x ] [ o m d e x - 1 ] [0]<tnow)SS 
(n . Comple t ionTime [ ] i ndex] [ o m d e x - 1 ] >tnow) ) { 
n.O [3 i n d e x ] [ o m d e x ] [0] = ( i n t ) Math . max (n . a v a i l a b l e ^ t ime [mmdex] , 
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n . Complet ionTime [j i ndex ] [ o m d e x - 1 ] + r t ime) ; 
} e l s e { 

n . 0 [jindex] [ o m d e x ] [0] = ( m t ) Math.max (n. a v a i l a b l e _ t i m e [mmdex] , 
n . Complet ionTime [j i n d e x ] [ o m d e x - 1 ] ) ; 

} 
} e l s e { 

n . 0 [i i n d e x ] [ o m d e x ] [0] = ( m t ) Math, max (n. a v a i l a b l e _ t i m e [mmdex] , 
(n . Complet ionTime [j i n d e x ] [ o m d e x - 1 ] ) ) ; 

} 
} e l s e i f (omdex==0) { 

n . 0 [ ] i n d e x ] [ o m d e x ] [0] = ( i n t ) n . a v a i l a b l e _ t i m e [ m i n d e x ] ; 
} 

n . O [ ] i n d e x ] [ o m d e x ] [ l ] = m m d e x ; 
n . a v a i l a b l e t ime [mmdex] = 
n . O [ ] i n d e x ] [ o m d e x ] [0] + ProcessTime [j index* ONum+OLndex] [ m m d e x ] ; 

n . l e v e l + + ; 
} 

static boolean precedence_ok(node current, int I, int j){ 

static boolean mitial_precedence (node initial, node current, int l, 
int : ) { 

for (int p=0;p<JNujn;p++) { 
f o r ( i n t q=0;q<ONum;q++){ 

i f ( ( i n i t i a l . 0[p] [q] [ 0] < i m t i a l . O [ i ] [j] [0] ) & ( c u r r e n t . O [p] [q] [1]==-1) ) { 
r e t u r n f a l s e ; 

} 
} 

} 
re turn t r u e ; 

} 

s t a t i c L m k e d L i s t < n o d e > b r a n c h _ b o u n d (L inkedLi s t<node> c u r r e n t l i s t ) 

throws C l o n e N o t S u p p o r t e d E x c e p t i o n { 

p r i v a t e s t a t i c node branch__bound (node c u r r e n t ) throws 
C l o n e N o t S u p p o r t e d E x c e p t i o n { 

L m k e d L i s t < n o d e > n e x t l e v e l = new L m k e d L i s t < n o d e > () ; 
/ / g e n e r a t e n e x t l e v e l 
L m k e d L i s t < o p c a n d > c a n d i d a t e s = new L m k e d L i s t < o p c a n d > ( ) ; 
/ / c h e c k t h e p r e c e d e n c e of t h e c a n d i d a t e s 
double mm s t a r t t i m e = M a x S t a r t T i m e ; 
for ( i n t i = 0 ; i < J N u m + a r r i v a l _ j o b _ s i z e ; i + + ) { 

f o r ( i n t j=Q;j<ONum;j++){ 
i f ( (precedence_ok(current, I , j)& 

imtial_precedence (imtial_node, c u r r e n t , I , j))){ 
opcand c = new o p c a n d ( ) ; 
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c . j o b i n d e x = i ; 
c . o p i n d e x = j ; 

i f ( j>0) { 
c . s t a r t _ t i m e = c u r r e n t . 0 [ i ] [ j - 1 ] [ 0 ] + 

ProcessTime[i*ONum+j-l] [ c u r r e n t . 0 [ i ] [ j - 1 ] [ 1 ] ] ; 
} e l s e { 

c . s t a r t _ t i m e = 0 ; 
} 

i f ( c . s t a r t t i m e < m i n _ s t a r t _ t i m e ) m i n s t a r t _ t i m e = c . s t a r t _ t i m e ; 
c a n d i d a t e s . a d d ( c ) ; 

} 

} 

} 

L i n k e d L i s t < o p c a n d > cand ida te s_wi th_min__s t = new L i n k e d L i s t < o p c a n d > ( ) ; 
I t e r a t o r < o p c a n d > o p i t e r a t o r = c a n d i d a t e s . i t e r a t o r ( ) ; 
w h i l e ( o p i t e r a t o r . h a s N e x t ( ) ) { 

opcand c = o p i t e r a t o r . n e x t ( ) ; 
i f (c . s t a r t _ t i m e = = m i n _ _ s t a r t _ t i m e ) { 

c a n d i d a t e s _ w i t h _ m i n _ s t . a d d ( c ) ; 

} 
} 
/ / c a n d i d a t e s w i t h minimum s t a r t i n g t i m e a r e i n t h e l i s t 
L i n k e d L i s t < o p c a n d > c a n _ l i s t _ m a c h i n e _ a s s i g n e d = new 

L i n k e d L i s t < o p c a n d > ( ) ; 
o p i t e r a t o r = c a n d i d a t e s w i t h _ m i n _ s t . i t e r a t o r ( ) ; 
w h i l e ( o p i t e r a t o r . h a s N e x t ( ) ) { 

opcand c = o p i t e r a t o r . n e x t ( ) ; 

i n t y = c . j o b i n d e x ; 
i n t i = - l ; 
int row = (c.jobindex)*0Num+c.opindex; 

±f{y<JNum) { 
i = c u r r e n t . O [ c . j o b i n d e x ] [ c . o p i n d e x ] [ 1 ] ; 

} 
±f{y>=JNum){ 

i n t min_sp t=10000 ; 
f o r ( i n t h=0;h<MAJui7?;h++) { 

i f { P r o c e s s T i m e [ r o w ] [ h ] > 0 ) { 
i f { P r o c e s s T i m e [ r o w ] [ h ] < m i n _ s p t ) { 

min s p t = P r o c e s s T i m e [ r o w ] [ h ] ; 
i=h7 

} 
} 

} 

} 
opcand c2 = new o p c a n d ( ) ; 
c 2 . j o b i n d e x = c . j o b i n d e x ; 
c 2 . o p i n d e x = c . o p i n d e x ; 
c 2 . s t a r t t ime = c . s t a r t t i m e ; 
c 2 . m a c h i n e = i ; 
can l i s t m a c h i n e ^ a s s i g n e d . a d d ( c 2 ) ; 
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} 

candidates_with_min_st = null; 

//filtering Process 
{ 

// end of filtering 
opiterator = can_list_machine_assigned.iterator(); 

while(opiterator.hasNext()){ 
opcand c = opiterator.next(); 
int row = (c . jobindex) *ONurn+c . opindex; 
//generate the children and add it to levell list 
node temp = (node) current.clone(); 
temp.level++; 

temp.0[c.jobindex][c.opindex][0]=Math.max(c.start_time, 
(int)current.available_time [c.machine]);//set start time 

temp.O[c.jobindex] [c.opindex] [1]=c.machine; //set 
machine 

//update availability time of machines 
temp.available_time[c.machine] = 
temp.O[c.jobindex][c.opindex][0]+ProcessTime[row][c.machine]; 
next__level. add (temp) ; 

//System.out.printIn(temp.temptoString() ) ; 

} 
/ / n e x t l e v e l i s r e a d y t o bound 

double [] g l o b a l _ c o s t = new d o u b l e [ n e x t _ l e v e l . s i z e ( ) ] ; 
f o r ( i n t i=0 ; i < n e x t _ _ l e v e l . s i z e ( ) ; i++) { 
g l o b a l _ c o s t [ i ] = evaluate(next_level.get(i)) ; 

/ / S y s t e m . o u t . p r i n t I n ( g l o b a l _ c o s t [ i ] ) ; 
} 
/ / s e l e c t t h e beamwidth b e s t n o d e s i n d e x t h a t has minimum 

c o s t s 
i n t b e s t _ i n d e x = 0; 
f o r ( i n t i = l ; i < n e x t _ l e v e l . s i z e ( ) ; i++) { 

i f ( g l o b a l _ c o s t [ i ] < g l o b a l _ c o s t [ b e s t _ i n d e x ] ) { 
b e s t _ i n d e x = i ; 

} 
} 

return next_level.get(best_index); 

} 

static class opcand { 

} 

static class node implements Cloneable 

} 
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