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ABSTRACT 

Energetic Swarm Control with Application to Multiple Vehicle Systems 

Sivaram Wijenddra 

Control and coordination of multiple vehicle systems has been a very active area 

of research in recent years. Recent advancements in computation, communication, and 

mechatronics have allowed the development of large groups of vehicles, often referred to 

as swarms, in order to accomplish complex missions over large areas with redundant fault 

tolerant capabilities. Existing swarm control work has addressed swarm aggregation, 

foraging swarms, swarm formation, and swarms that track and enclose targets. Energetic 

swarm control is another significant recent contribution to the swarm control literature. It 

allows the control of the internal kinetic energy and potential kinetic energy of the swarm 

system in order to achieve tasks such as sweeping an area, patrolling, and area coverage. 

This thesis involves the application of energetic swarm control to wheeled mobile robots. 

A lower level control layer for wheeled mobile robots, based on feedback linearization, is 

developed and combined with a higher level particle based energetic swarm controller. 

Furthermore, input saturation constraints are addressed using a suitable control allocation 

approach. An experimentally verified model of a wheeled mobile robot is developed and 

used to demonstrate the capabilities of the new energetic swarm control approach for 

wheeled mobile robots. 
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1. Introduction 

In recent years many results have been published on co-ordination and 

cooperative control of multi agent systems. Earlier, researchers focused their attention on 

single mobile robot control for example, trajectory tracking of Wheel Mobile Robots 

(WMR) or analyzing the nonholonomic properties of WMRs. Coordination and control of 

the multi agent system have recently become possible due to the advancement of 

technology, computational power, less cost per unit. One important area, such as 

formation control, has evoked the interest of researchers in swarm applications [1]. 

Formation control helps to increase robustness and redundancy of the system, reduce the 

system cost and increase flexibility and efficiency [2]. Many applications need a 

formation control such as military missions, rescue in hazardous environments, sweeping 

an area, increase throughput of highway systems, and satellite clustering [2]. 

Inspired by the results of formation control, the control community has been 

working on importing biological principals to build the biologically inspired system very 

recently. Biological systems have successfully evolved and adapted to the highly 

complex and competitive nature tuned by evolutionary process over a million of years 

[3]. Their operational principles can be useful in complex engineering applications. It is 

found in nature that many living beings behave in groups such as flocks of birds, schools 

offish and herds of animals [1]. 

Swarm like behavior gives many advantages to the group rather than individual 

behavior. For example, swarm behavior helps to find food easily and avoid predators, 

thus enabling the chance of survival [4]. Swarm members perform complex tasks that can 

not be achieved by a single member individually [5]. Further the swarm gets more 
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environmental information which can not be obtained by a single individual since it has 

limited sensing abilities [6]. Also, in military applications swarm members resist the 

outer aggression of an enemy more easily and improve their defiance ability [6]. 

Though the swarm behavior has advantages over an individual behavior, it has to 

deal with the computational burden since, the more the members the higher the numerical 

calculations. However, advanced powerful computers help to overcome this problem to a 

certain extent. Further, since there are many members, they should not collide with each 

other at any given time. Also, any of the members should not disperse from the swarm. 

Other than these issues, proper communication between members should be maintained. 

They have to update their states, which are position and velocity, to other members in 

order to maintain their cohesion. There will be time delays in transferring these data over 

the communication line. 

1.1. Literature Review 

This section presents the literature review on swarm control. Firstly, the swarm 

control on aggregation, formation, foraging, and target tracking along with various other 

applications will be discussed. Finally research done so far on energetic swarm control 

will be discussed. 

1.1.1. Swarm Control 

Swarming is found among single bacteria to large mammals in nature. Generally, 

there is no group leader and each individual behaves according to the interaction among 

themselves and certain environmental conditions. Their operation principle can be 

applied to coordinating unmanned air vehicles, formation control of mobile vehicles, 
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sweeping an area, control of unmanned under water sea vehicles, formation control of 

satellites, encircling a moving target or capturing it and military applications [4] ,[1]. 

The main issue of swarm control is how to coordinate and model large groups of 

mobile robots. The general idea to model the swarm behavior is to have a long range 

attraction and short range repulsion between individuals [1]. Artificial potential functions 

have been widely used for modeling the attraction and repulsion between members. In 

recent years artificial potential functions have been used for many applications such as 

mobile robot coordination towards the goal, robot navigation, obstacle avoidance, 

formation control and swarm control of autonomous vehicles. For example, they have 

been used for trajectory tracking of WMRs [7], [8], tracking multi agent systems [9], 

robot navigation [10], collision or obstacle avoidance [11]-[12], [13], [14], formation 

control of multi agent systems [12], [15] or space craft swarm navigation [16]. In [17] the 

authors considered the flocking of mobile agents where artificial potential functions are 

used for cohesion and collision avoidance. It is shown that all the agents travel at the 

same heading velocity and direction keeping the cohesion between them. Lyapunov and 

graph theories are used to analyze the stability of the mobile agents. 

Artificial potential functions do suffer from many research related problems. One 

main issue is the local minima. When the artificial potential functions are used for 

formation control, the mobile robots may get trapped in local minima of the artificial 

potential functions if they are not close enough to the global minimum. Another example 

is, when artificial potential functions are used for obstacle avoidance, it is likely that if 

the goal is closer to the obstacle, then the mobile robots may not reach the goal. 
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In [18] the authors address the problem where artificial potential functions are 

used for robot formation, migration and obstacle avoidance. Authors address the 

problems for cases such as when a goal potential is overwhelmed by an obstacle 

potential, an obstacle potential is overwhelmed by a goal potential and an obstacle 

potential is overwhelmed in a swarm. The structure of the total potential is changed to 

multiplicative and additive for the above purpose. In [19] a virtual obstacle is used to 

avoid problems related to local minima. 

Research done on swarm control so far can be basically categorized as swarm 

aggregation, swarm formation, foraging swarm and finally target tracking and enclosing 

swarm. In one of the early works [20], the authors studied the stability analysis of a one 

dimensional swarm. Swarm cohesion is analyzed in discrete time for one dimensional 

case with asynchronism to time delays. 

A. Aggregation of Swarm 

Aggregation is a fundamental swarming behavior seen in living beings. In order 

to form a swarm some kind of aggregation is expected. Recent research papers focus 

more on swarm aggregation. First order swarm aggregation is given in [1] . The authors 

used artificial attractive/repulsive functions for modeling the swarm. It was proved that 

the swarm agents move towards the swarm centre and form a hyper ball around it in a 

finite time. The swarm centre is stationary all the time. Also, a conservative explicit 

bound for the swarm size is derived. Lyapunov based proofs are provided for the stability 

of the swarm. When the swarm moves towards the centre, as the time progresses all the 

members become stationary and aggregate around the swarm centre. 
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Different classes of attraction and repulsion functions that can be used for swam 

modeling and aggregation is discussed in detail in [21]. Three different types of functions 

namely, linear attraction bounded repulsion, almost constant attraction and unbounded 

repulsion, and almost constant attraction and unbounded repulsion are discussed. Also for 

each type of attraction and repulsion functions swarm stability is analyzed and the bound 

for swarm size is calculated. Unbounded repulsion functions are very practical since they 

avoid the collision of agents. Also, these functions can be modified such that the agent 

dimensions can be taken into consideration. 

Swarm aggregation in a pre defined shape in 2D space is given in [22]. The 

members from initial positions enter inside the shape, spread over the contour and 

become stabilized. Artificial force fields are used to force the members towards the shape 

and keep the swarm cohesive. Further, it is shown that when the shape is changed then 

the agents can re arrange them selves into the new shape and if some agents are removed 

or added, then they will again re arrange in side the shape. Also obstacle avoiding of 

agents towards the shape is also discussed. 

In [4] the authors have considered a double integrator model for the swarm 

aggregation opposed to the model used in [1]. Swarm cohesion and the size are analyzed 

for various classes of attraction and repulsion functions given in [21]. For the double 

integrator model it is shown that the swarm aggregate around the swarm centre. The 

swarm centre is not stationary here and it travels with a constant velocity. Also, when the 

time moves on each individual converges to the velocity of the swarm center. 

In [23] the authors considered swarm aggregation in a 2D space. Three artificial 

forces are considered for attraction, repulsion and friction forces. Friction force makes the 
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agent come to a complete stop when they are stabilized around the point considered. The 

whole swarm can be modeled as a second order ordinary dynamic equation and its 

stability and cohesion is analyzed. 

Swarm aggregation and formation based on the school fish model is considered 

using motor schema method in [6]. Each member has three reaction regions: attraction, 

parallel area and reaction area. Further, according to the relative angle between two 

agents, each agent has five regions of division for the smooth turning of swarm. Five 

motor schemas basically move to goal, avoid obstacles, swirl obstacles, school vector and 

noise vector are used here. These motor schemas are used to aggregate, avoid obstacle 

and reach the goal. 

B. Formation of Swarm 

Formation control is considered as making mobile robots to form in a specific 

geometric shape by a suitable control algorithm [6], [24]. A good review on formation 

control is given in [2] where formation control strategies such as a behavior based 

approach, a leader follower approach and virtual structure methods are discussed. 

In the leader follower approach, the leader is assigned the task and the followers 

have to stay with a corresponding position to the leader. Generally, in these approaches, 

the controller is centralized and any failure by the leader makes the whole system a 

failure. In [25] and [26], leader follower based formation control for nonholonomic 

mobile robots is considered with obstacle avoidance where robots can change their 

formation in order to avoid an obstacle. The behavior based approach [27], [28] is 

normally decentralized but stability proofs are generally difficult. Basic behaviors such as 
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moving to a goal, obstacle avoidance and formation keeping will be specified and the 

control action is weighted with these behaviors regarding to the situation [12]. 

In [29], the authors worked on controlling large number of robots to make 

formations on 2D shapes specified by implicit functions that are weighted sum of radial 

basis functions generated by interpolating from a set of constraint points. Gradient decent 

technique is used so that robots converge and spread along the 2D curve of the implicit 

functions. Repulsive terms are added to the controller to avoid collision between 

members. Also, when the shapes are dynamically split and changed the robots converge 

to the desired locations. 

In [24] the authors used bivariate normal functions to control vector fields that 

swarm travel on to create formations. Limiting functions are used for tight control over 

vector fields from the center. Swarm geometry, individual member spacing and obstacle 

avoiding are addressed and simulation results are given to validate the results. Swarm can 

track line trajectories or sinusoidal trajectories while keeping the desired formation such 

as an ellipse. 

The authors in [5] considered the vehicle dynamics for the swarm modeling in 

contrast to [1], where a first order model was used. A sliding mode control method is 

used to find a controller which makes the swarm agents follow the dynamics of [1] when 

they reach the sliding manifold in finite time. Further, when the swarm aggregates, 

making a formation by choosing different pairs of artificial potential is also discussed. 

7 



C. Target Tracking and Enclosing Swarm 

Tracking a target or encircling the target is considered with the swarm control 

since recent years military applications require autonomous vehicle protection or 

capturing an enemy. In [30] the authors control the swarm in a formation around an 

object such as military convoy protection. The swarm will enclose the convoy in a 

circular or ellipse formation. Artificial potential fields are generated to create vector 

surfaces around the objects using normal and sigmoid functions. Swarm formation band 

is chosen from the centre of convoy such that the vector field outside the band from both 

sides pulls the swarm into the band to encircle the convoy. Limiting functions are used to 

control the vector fields inside and out side the band where the swarm needs formation. 

The authors in [3] developed algorithm based on artificial potential functions to 

capture or intercept dynamically moving targets. Firstly, they worked with a kinematic 

model for both the target and pursuer, and derived controller to capture the target based 

on negative gradient of the potential function. Later, vehicle dynamics was used for the 

pursuer and the sliding mode method was used to enforce the system dynamics such that 

when it reaches the sliding surface the pursuer recovers the kinematic model developed 

earlier. 

The authors in [31] extended their results of [3] with multi agents tracking a target 

and making a formation. Two objectives were achieved. One was tracking and enclosing 

a target and the other one was when the agents were enclosing the target they were 

possibly making a certain formation. The potential function contains two terms. One is 

for the formation control and the other part is for the agent-target tracking. A carefully 

chosen potential function which has global minimum when agents reach the necessary 
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inter individual distance between target and themselves, makes the formation control and 

tracking control. Further, vehicle dynamics is used for the agents and sliding mode 

control is used to achieve the objectives. In [32] the authors consider agents with 

nonholonomic dynamics for target tracking. 

D. Foraging Swarm 

The authors in [33] modeled foraging swarm that searches for food or rich 

nutrients in an environment avoiding obstacles. In [1], [21], [5] the swarm centre is 

stationary but the individuals try to aggregate around the swarm centre. However, in [33] 

the swarm centre is moving towards the favorable regions as well as keeping the 

cohesion. The authors consider quadratic, Gaussian and multimodal Gaussian 

attractant/repellant profiles to model the foraging swarms. Further, bounds on swarm size 

and cohesion analysis are given in detail. 

Same authors in [34] further extend their results in [33] for the quadratic, 

Gaussian and multi modal Gaussian profiles and they consider a plane profile as well. 

Also for each profile numerous simulation results are provided to validate the theory and 

understand the foraging swarm behavior. 

E. Other Applications of Swarm 

In [35] , the authors show how the swarm and a human move together and the 

swarm follows the human. Here each robot has a local sensing ability. In [1], [5], [21], 

[33]-[34] and [36]-[38], each member has attraction and repulsion from all of the 

members. In [35] and [39] attraction and repulsion from other members will be due to the 

neighbor of the swarm. This will be highly helpful in making the swarm decentralized 
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and limit their sensing abilities. Simulation results show that the swarm can follow a 

human through a narrow corridor while avoiding obstacles. 

Controlling a swarm in three dimensions based on an abstraction that reduces the 

planning problem from a higher dimensional space to a lower dimensional abstract space 

is considered in [40]. The abstraction is a product structure of the group and shape which 

is nine dimensional consisting of six dimensional group for the position and orientation 

of the swarm and three dimensional shape for the general shape of the swarm. Simulation 

results show a swarm move through a three dimensional corridor and changing their 

shape when the corridor changes its shape and the size. 

The authors in [41] extended their results in [1], [5], [33], [34] be applicable for 

non-holonomic vehicle dynamics. Basically two sliding mode surfaces were defined for 

the translational speed and one corresponding to the orientation. Actual inputs are made 

to track the velocity reference and angle reference. Swarm aggregation, formation and 

foraging are considered with nonholonomic dynamics and simulations are given to 

validate the results. The sliding mode control is the widely used control method here. In 

mobile robot applications, due to its handling of robustness, the sliding mode control is 

one of the mostly used control methods. 

1.1.2. Energetic Swarm Control 

The energetic swarm control basically studies the internal energy associated 

within the system similar to that of molecular dynamics. For example, a glass of water 

kept on a stationary table doesn't have any kinetic energy on a macroscopic level, but if 

we look at it on a microscopic level, the water molecules travel at a very high speed and 

it has internal kinetic and potential energy associated with it [42]. 
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In [37], the authors have defined different types of energy terms that are similar to 

the molecular dynamics theory. The total energy of the system is considered to be the 

combination of total kinetic energy and total potential energy. The total kinetic energy 

consists of two terms. One is the internal kinetic energy and the other one is the bulk 

kinetic energy. Total kinetic energy is the sum of the kinetic energy of the individual 

members during the translational motion. Bulk kinetic energy is the kinetic energy of the 

swarm center where the swarm centre is the average position of the individual members, 

similar to that of the centre of gravity in a rigid body. 

Similarly, the total potential energy is the sum of the internal potential energy and 

the bulk potential energy. For the time being, the bulk potential energy is considered to 

be zero but when we consider a swarm moving in a 3D space under a gravitational force, 

we can consider the effects of the bulk potential energy. Internal potential energy is due 

to the attraction and repulsive forces acting on members by the other members. 

Swarm internal energy is defined as the sum of the internal kinetic energy and the 

internal potential energy which is similar to the internal energy of the molecules in 

molecular physics theory. As discussed above, the internal kinetic energy is the 

difference between total kinetic energy and bulk kinetic energy. Since we consider bulk 

potential energy to be zero, the swarm internal energy is the difference between the total 

energy and bulk kinetic energy. 

The swarm temperature is the most important term which manipulates the internal 

energy associated within the system. In [37] , the temperature is defined as the average of 

swarm internal energy. When the temperature is increased the agents are more aggressive 

and energetic. That means they travel faster and try to cover more area. If we plot the 
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velocity distribution, we would find that higher numbers of vehicles attain a higher 

velocity when we increase the temperature. This is similar to the Maxwell-Boltzmann 

velocity distribution where, when the temperature is increased, the ideal gas molecules 

get more energy and the density of molecules with higher velocity increases [43]. 

In [37] , two control objectives are achieved. Temperature is regulated at various 

desired temperatures and the swarm centre trajectory is tracked simultaneously. A PD 

controller is used for swarm centre trajectory tracking and feedback linearization is used 

for temperature regulation. In [34] the swarm centre is stationary all the time. But in an 

energetic swarm this is not necessarily the case. The swarm centre may be stationary if 

desired. Also in [34] when the agents aggregate the individual agents become stationary. 

The energetic swarm aggregation is the opposite of this aggregation. In an energetic 

swarm, the swarm centre can be stationary but the individual agents will be in motion all 

the time. 

The temperature definition was changed in [38] from [37]. Here the swarm 

temperature is defined as the average of swarm internal kinetic energy. This is closer to 

the statistical mechanics since the temperature only relates to the velocity distribution. 

For the first time, to an energetic swarm, the swarm cohesion is analyzed. Simulation 

results are given to understand energetic swarm and velocity distribution. 

Energetic swarm theory is applied for a group of WMRs in [44]. The lower level 

controller makes the tip of the robot follow the desired trajectory which is generated from 

a high level controller of the swarm. Repulsion function is modified such that each 

agent's private area is considered with dimension. In [36], a potential energy controller is 

developed further. The high level controller has three objectives. It has to track the swarm 
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centre trajectory and regulate temperature and potential energies. The potential energy 

controller basically controls the swarm size by which the swarm is made cohesive all the 

time. 

In [36]-[38] and [44], feedback linearization method is used to achieve the 

objectives such as tracking the desired swarm centre, desired temperature and desired 

potential. However, the stability of the system depends primarily on the initial conditions 

of the swarm members since the feedback linearization method is used. Also, the 

controller can not handle any disturbance applied to the system. In [48], energetic swarm 

control theory is developed with the sliding mode control method. The initial condition 

problem is eliminated and since the slide mode control method is a robust one, it handles 

any disturbance applied to the system. Further, the control allocation is introduced and it 

better solves the over actuated problem. The control allocation process distributes the 

control inputs among the actuators. 
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1.2. Thesis Objectives and Contributions 

In this thesis, the energetic swarm control approach from [36]-[38] is explained 

and the proposed controllers in [48] are verified through numerous simulations of the 

high level swarm control system. It is found that the pseudo inverse method is not 

adequate enough to handle the control allocation process. SNOPT [49], an optimization 

solver, is used for the control allocation process. SNOPT efficiently solves the control 

allocation approach and handles saturation constraints on inputs. However, the saturation 

constraints cannot be lowered than a certain threshold value and the factors determines 

this minimum allowable value is studied. Allowable limits of the saturation constraints 

are found for a particular operating region of the potential and temperature values for the 

steady state case. 

The main contribution of this thesis is the application of energetic swarm control 

to WMRs using dynamic feedback linearization as a low level controller. A lower level 

controller is necessary in order to apply energetic swarm on WMRs. This low level 

controller improves the trajectory tracking of WMRs. Further, the high-level and low 

level layers are combined together for the experimental implementation. Finally, the 

parameter identification of servo motors is done which improves experimental 

implementation of the energetic swarm. 

The remaining chapters are organized as follows. Chapter 2 gives the background 

material on swarm control, tracking control of vehicles and the control allocation 

approach. Chapter 3 discusses the energetic swarm control and control allocation with 

and without saturation. Chapter 4 studies in detail the parametric identification of WMRs. 

Chapter 5 explains the procedure of low level control and practical implementation of 

14 



energetic swarm control with WMRs. Finally, in chapter 6 conclusions and future works 

are given. 
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2. Background Material 

This section presents the necessary background material to understand the swarm 

control on swarm aggregation, swarm formation and foraging swarm. Further, the theory 

of control allocation which finds the actual control inputs for the energetic swarm will be 

discussed. Finally, tracking control of vehicles will be presented along with the tools to 

analyze nonholonomic properties of vehicles. 

2.1. Swarm Control 

The mathematical modeling and results of swarm aggregation will be presented as 

in [1]. Further, different class of attraction and repulsion functions will be discussed as in 

[21]. Swarm formation with vehicle dynamics is given as in [5] and finally, foraging 

swarm in an environment will be discussed as in [33] and [34]. These essentially help the 

reader to understand the swarm control before proceeding into energetic swarm control. 

A. Swarm Aggregation 

Consider a swarm system moving in an n-dimensional space and having M 

members with the following assumptions. Each member is considered as a point mass 

and its dimension is ignored. The motion is synchronous. The swarm motion that models 

the aggregation is described by the following first order equation 

M 

where for each member /, / = 1,2,..., M, the position is expressed as x(-e R" , g(x,.-x.) 

is a function to create the attraction and repulsion between each members. g(x; - x . ) is 

given by 
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g(x, - Xj) = -(x, - x . ){a - b exp 
C\\ II2 ^ 

\\x — x 
c 

v y 

) (2) 

where the norm is the Euclidean norm and a,b,c e R+ . g(xi - x y ) consists of attraction 

and repulsion terms. When the distance between two agents is larger than a certain 

distance 8, the agents try to attract each other since the attraction function is more 

dominant than the repulsion. But when they become lesser than the 8, the repulsion 

function will be more dominant and the agents will try to repulse each other. Between 

any two members, the resulting effort of attractive and repulsive forces will act along the 

line that connects them. The 8 will be given by 

8 = Jc\n 
'b^ 

(3) 

The resulting motion of each member is then the vector summation of attraction 

and repulsion effects by the other members. The swarm centre xeR" is given by 

M 

- S X / (4) 
x = — — 

M 

The swarm centre in (4) with attraction repulsion functions given by (2) is stationary for 

all the time due to symmetry of g(-) in (2). 

A free agent in a swarm is said to be if x,- - x • > 8,\/j e {l,...,M},j ^ i. The 

forces acting on the free agent are due to the attraction forces by other members since its 

distance is greater than the 8 . 
A free agent in a swarm given by (1) with attraction/repulsion function g(-) given 

by (2) moves towards its swarm centre at time t. A Lyapunov function based proof 

shows that the free agent, which has only attraction from all its members, starts to move 
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towards the centre of the swarm. Therefore the members of the swarm start to form a 

cluster around the swarm center and aggregate around it. 

It can be shown that the swarm members in aggregation will converge to a hyper 

ball given by 

Bp(x) = {xi:\\xi-x\\<F} (5) 

where r , the radius, which depends on parameters of (2) is given by 

F = ~ A ^ e x p ( ~ o ) (6 ) 

a V 2 2 
The convergence of swarm towards the swarm centre will occur in a finite time given by 

( •> M 

t - max<! In 
fes 2a 

r2 

x.(0)-xf 
V I I " ' 

(7) 

where S e {1,...,M} . 

These results show that the agents from any initial condition will be in motion towards 

the centre of the swarm, aggregate and form a cluster in a finite time. The bound r is a 

conservative one and the real swarm size will be much smaller than the f . 

Further, once the swarm aggregate around the swarm centre and when the time 

t -> oo, motion of each member is given by x(/) —> Qe 

where x = [x,r. . xr
M ] is the state vector and the set Qe is given by 

Q e ={x:x = 0} (8) 

This result shows that once the swarm agents are in cohesion around the swarm centre, 

the agents become stationary as the time progresses. 
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B. A Class of Attraction and Repulsion Functions 

Attraction and repulsion function plays a vital role in swarm modeling. It keeps 

the swarm cohesive and repulses the members when they are too close. Two different 

classes of attraction and repulsion functions will be discussed with their bound on swarm 

size. An interested reader can find one more class of attraction and repulsion function in 

[21]. 

A general case of attraction and repulsion function can be written as 

g(||y||) = -y[ga(||y||)-^(||y||)] (9) 

where ga '• R+ —> R+ is the magnitude of the attraction for the swarm cohesion and the 

term gr:R
+-+ R+ is the magnitude of the repulsion for the collision avoidance between 

the agents. The ga is more effective in longer range and the gr is more dominant in 

shorter range. The norm is the Euclidean norm. 

The following two assumptions are made for the g(-). It is assumed that at a 

certain distance 8, the attraction and repulsion balance each other such that 

ga (S) = gr (S). When |y| > 5 , the attraction is higher than the repulsion such as 

g-a(||y||)>g-r(|y|) and when |y||<<5, g"a(|y|) <g r(|y|) • Another assumption is that we 

choose ga(-) and g,.(-) such that we find functions Ja : R+ -> R+ and Jr:R
+-^R+, 

corresponding terms in the artificial potential function, to satisfy Vv./tt(||y||) = yga(||y||) 

and Vy</r(||y||) = y£r(|y|) 

The artificial potential function J : RnM -> R is given by 
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A/-1 M 

^)=II[^(| |y| |)-^(|y| |)] 
;=1 j=i+l 

= II-MIMD 

where x = [x[. . x^] is the state vector. Then the equation (1) can be rewritten in 

terms of ./(•) as 

x ;.=-VXiJ(x) (11) 

This can be interpreted as each agent is moving towards the negative gradient of the total 

potential J(x) of the swarm. Each agent is trying to minimize its energy and so does the 

swarm when they aggregate around the swarm centre. 

Now consider the first case of attractive/repulsive functions. The first case is the 

linear attraction and bounded repulsion function. Then the ga(-) will be given for this 

case is 

sfl(|y|) = « (12) 

where a > 0 is a positive constant. Then the error is defined as 

(13) 

It can be shown that when t —> oo the error is bounded by 

1 M lw ii \ ii 

If the gr() is bounded by some positive constant &>0,fhatis g Mix,.-xJ J x,.-x J <6 

then the bound on error is given by 

e/ - '-<- = £ (15) 
aM a 
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This gives the bound on the swarm size. Further this condition will be achieved in a finite 

time given by 

t =max<! In 
( s2 ^ 

where S e {1,...,M} and Vi is the Lyapunov function given by 

(16) 

Vt=\^i (17) 

The second case considered is the linearly bounded from below attraction and 

unbounded repulsion function. This function is very useful in practical applications since 

we have unbounded repulsion and the agents won't collide with each other. The ga(-) 

will be given for this case is 

sa ( |y| )^ (is) 

where a > 0 is a positive constant and unbounded repulsion function gr (•) is given by 

.11 llw b 

S r W - j j jjr (19) 

h-x,.|| 
where b > 0 is a positive constant. It can be shown for this case that the error is bounded 

as 

2aM£|e,-|| <bNf(M-\) (20) 
i=\ 

This implies 

1 M 2 h 

-INI ^ (2D M-l tT 2a ;=1 
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1 M 2 

Then, taking the root mean square value of the error and defining erms = A—^||e,-|| , we 

can have 

V 2a 

This gives the bound on the swarm size. Further, the unbounded repulsion can be 

modified to cope with the dimension of the vehicle if we modify the repulsion function 

such as lim g I x , - x , ) x , - x ; —> co where c, is the radius of the private area 
|x<-*/ |^ c l 

concerned. 

It is obvious that one has to select carefully attraction/repulsion functions for the 

swarm modeling. Attraction/repulsion functions are key factors for the swarm cohesion 

and bound on the swarm size. 

C. Formation and Aggregation 

In previous sections the dynamics considered is the first order point mass 

dynamics. In this subsection the swarm formation and aggregation will be discussed for 

swarm members with vehicle dynamics and the sliding mode control method is used to 

find the controller. 

Consider a swarm system with M members where each member is moving in an 

n- dimensional space. The dynamics of the motion of each member is given by 

M/(x,.)x,.+fj.(x/,x,.) = u,. (23) 

where M;(-)<= Rnxn is the mass or inertia matrix, for each member /, i = l,2,...,M , the 

position is expressed as x (€7?", f/(-,-)e/?" contains the centripetal, Corriolis, 
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gravitational and disturbances effects and finally, u; e R" is the control input for the each 

member. 

The term f ;(v) can be given in two parts as in (24) with if (•,•) represents the 

known part and f" (•,•) contains the unknown part. That is 

f /(x |.,i /) = fi*(x|.,i/) + f/'(xI,i|.) (24) 

Further, let us assume the following bound on unknown part f" (•,•) given as 

|f; '(x / ,x /)|<./;.,i</<M (25) 

Similarly, the upper and lower bounds for M((-)is given by (26) and it is assumed that it 

is non-singular. 

ML||y|2<y7'MI.(xI.)y<M/|y||2 (26) 

where y e Rn is an arbitrary vector and M_i > 0 and Mi are known. 

Sliding mode control method is used to calculate the controller which forces the 

velocity of members along the negative gradient of potential function when the system 

reaches the sliding manifold. 

Let us define the sliding manifold s; = [.s, . . sn]
T as 

s / =x, .+V x / (x) (27) 

where x = [xf . . xT
M ] is the state vector and, when s(- = 0, we have 

* , - = - V x / 0 0 (28) 

which is the original equation used for the swarm aggregation in (11) 

The time derivative of s • is given as 
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s,=x,+|(vxJ(x)) (29) 

i J n 

In order to satisfy the sliding condition s, s , - ^ -YVkl , where /7 (>0, the 

2 dt UA 

controller is developed as 

u^-diagik^sgn^ + f* (30) 

where k,- = [A:, . . &„]rand sgn(-) is the signum function. kj V/ = 1,2,...,« is chosen as 

AT. 

The potential function has to be chosen such that 

kj>—{Mifi+J + T1) (31) 

|Mo) < J where / is known. 

All the agents reach the sliding manifold in a finite time given by 

where Vi is given by 

^maxM (32) 

Vi=\*Ti*i (33) 

Formation is achieved by introducing formation constraints such as 

| | x ; - x ; | = ̂ . , l < / , 7 < M (34) 

where dt is the desired inter agent distance. When the agents are in formation their 

relative distance is pair dependent. Let S- denotes the distance between the two agents. 

Then, for each pair of agents i,j different artificial potential functions are considered 

such that S~ = di . One can choose pair dependent artificial potential functions J'J (x) 

such that unique minimum occurs at di •. If the artificial potential functions are chosen 
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M-\ M 

such that J(x) = V V J'-* (x) has unique minimum at the desired formation, then the 

result is global, otherwise only local stability is found. 

D. Foraging Swarm 

In the previous three sections, the swarm centre is stationary all the time but the 

individuals are on the move towards the swarm centre to aggregate around it or make a 

formation. But here the swarm centre is moving and foraging in an environment such as 

to search for food, to find the target or to avoid unwanted obstacles. Swarm members, 

seeking swarm centre, move towards the food or target location since the swarm centre is 

moving towards a favorable region and the swarm members aggregate around the swarm 

centre. Foraging swarms can be modeled with plane, quadratic or Gaussian type profiles. 

The equation that models the foraging swarm is given by 

M 

i /= - V x ,^ (x , )+ £g (x , -x 7 . ) (35) 
j=hj*i 

where a :Rn —> R is the attraction or repellent profile. For example, it can represent a 

profile of nutrients. It is assumed that if er < 0 the nutrient is rich, <x > 0 means a noxious 

environment and a = 0 represents a neutral one. The g(-) considered here is as in (2). 

The swarm centre velocity is given by 

i M 

i = - T 7 2 X ^ ( X / ) (36) 

This shows that the swarm centre is now moving along the average of negative gradient 

of individual profiles. 

Now, let us consider the motion along the plane attraction/repellent profile given 

as 
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a(y) = aT
ay + ba (37) 

where aa e R", ba e R and from (36), the swarm centre velocity is given by x = -aa. 

That is the swarm centre moves towards the rich nutrients where the minimum occurs 

with constant velocity. Also, it can be proved for this profile that the swarm stays in 

cohesion. 

The next type of profile is the quadratic attraction/repellent profile given as 

(38) 

where Aa e R , ca e Rn and ba e R .This profile has either a maximum or minimum 

A 2 

^(y) = —lly-c J +b„ 

globally on ca depending on the sign of Aa . The error between swarm centre and c^ is 

defined as 

(39) 

It can be proven that when t -> co, if Aa > 0, x -> cCT and if Aa < 0 and x(0) ^ ca , then 

x —> co . The results show that the swarm centre is in search of rich nutrients along this 

profile. Further, for a finite time and for any small A > 0, the swarm aggregate around x 

given by x;. —> Br] (x) where the hyper ball Brl (x) = {x(. : llx, - xll < r,} and r, is given by 

b(M-\) c 
r\ =—77—. ~^7exP 

( \_\ 

V 2 , 
(40) 

aM + Aa-A V2 

Finally, let us consider a multimodal Gaussian attraction/repellent profile given as 

^(y) = -2]^fexP 

/ 

V 

y-'* 

I'o 

2\ 

) 

+ b„ (41) 

where A'a e R , ba e R, c'a e R" and Va e R . When A'a takes positive or negative values 

then the profile consists of hills or valleys. Here, there are chances that if the attraction 
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force is not large enough depending on the initial conditions of swarm agents, some 

agents can be trapped inside the local minima. This can cause small groups of individuals 

at various locations in the profile. Similar proofs for swarm size and cohesion analysis is 

given in [34] and an interested reader can refer [34] for more detail. 

2.2. Control Allocation 

The control allocation is used to find control inputs when the system is over 

actuated. In an under actuated system, the numbers of control inputs or actuators are less 

than the degree of freedom. On the other hand, in an over actuated system we have more 

numbers of actuators than the degree of freedom in order to achieve a desired solution. 

An over actuated system has two main advantages. One is that it can be utilized for fault 

tolerant since it can have many solutions for a desired control when the actuators are not 

saturated. Another advantage is that it has the ability to deal with the saturation. Since 

every actuator has a physical limit, if one actuator saturates then the other actuator can 

provide the required control input to achieve the desired solution [47]. For more details of 

different kinds of control allocation approaches please refer to [53]. A linear control 

allocation problem will be discussed as in [53]. 

A linear control allocation problem is defined as 

Bu = udes (42) 

where B e Rmxn is the matrix of effectiveness of actuator, udes e Rm is the required 

control input and u e Rn is the control effort provided by each actuators. When m<n the 

system is over actuated and u will be found by the control allocation approach. 
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For example, given that B=[l 2] , udes = 5 the u = [u, u2]
T can be [0 2.5] r , 

[1.0 2.0]T or [5.0 0.0]rto satisfy the desired control input needed. Further, if there are 

saturation limits for the actuators for example, if - 6 < ux < +6, - 2 < u2 ^ +2, then the 

u = [ulu2]
T can have many answers. But if the saturation limits are 

- 2 < Wj < +2 and - 1 < «2 < +1.5, then one solution exists for u = [w, u2 ]T . Further, if the 

saturation limits are - 1 < u, < +1 and -\<u2 < +1, then no solution exists. 

When there are multiple solutions we need to figure out a way to select control 

inputs. One way is to find the controllers such that they minimize a performance index 

which relates to the control energy. A pseudo inverse method can be used to solve the 

control allocation problem. 

Let us define the performance index J e R as 

m i n J = - u r W u (43) 
u 2 

where W e Rnx" is the weighting matrix. 

The Hamiltonian H e R is defined as 

/ / = l(urWu)+UBu-urfJ (44) 

where X0 e R]/m being the Lagrangian multiplier. 

The partial derivative of H w.r.t u is given by 

dH 
(Wu)+Mf (45) 

Similarly, the partial derivative of H w.r.t X0 is given by 
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— = (Bu-u r f eJ (46) 

Setting (45), (46) to zero gives us 

( W u ) = - B V (47) 

and 

Bu = udes => BW-'Wu = udes (48) 

Substituting (47) into (48) gives us 

B W - ' ( - B V ) = « * , (49) 

Then k0 is given by 

From (47) and (50) the u is given by 

u = W"1B r(BW- ]B r)"1u^ (51) 

The answer for the u enables to distribute the control effort among the actuators to match 

the udes. 

2.3. Tracking Control of Vehicles 

For the energetic swarm application, WMRs are considered to form the swarm 

members. One reason is that many WMRs can be built quickly in a short period of time 

to be considered as a swarm in an academic environment. This section discusses the 

control properties of a WMR and how the trajectory controllers can be developed. The 

WMR trajectory tracking is a popular research topic over the last decade since it is 

nonholonomic. 
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Let q = [x y 0]T be the generalized coordinates of WMR. The nonholonomic 

constraint of the WMR is given by 

[sin0 -cos<9 0] 
J ' (52) 

Aq = 0 

That is the lateral motion of the WMR is zero. Then the allowable motion can be 

expressed by the following driftless form 

q = G(q)w (53) 

where w e Rm is the control input. G(q) e Rmm is the matrix of column vectors contains 

the allowable motion of the WMR. Firstly, important mathematical tools such as Lie 

derivative, Lie bracket and Frobenius theorem which are greatly used to analyze 

nonholonomic systems will be introduced as in [52]. 

A. Lie Derivative 

Let f:Rn -» R" be a smooth vector field on R" and h:Rn -> R be a smooth 

scalar function. The Lie derivative of h with respect to f , defined as Lfh = VM , is the 

directional derivative of the function h along the direction of the vector f and it is a 

scalar function. 

The Lie derivative can be taken recursively and defined as 

Lf°h = h 
(54) 

Lf'h = L{(Lfh) = V(L{'~
lh)f fori = 1,2, 

Also, the following holds for a vector field g0 

LuLfh = V(Lfh)g0 (55) 
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B. Lie Bracket 

The Lie bracket of vector fields f and g0 is defined as 

[f,g0] = vg 0 f -v fg 0 

The Lie bracket [f,g0] is generally written as fl(/fg0 

Similarly, as Lie derivative, repeated Lie brackets are defined as 

adho = go 

«^fg0 =[f>a^r'go] fori = 1,2, 

(56) 

(57) 

C. Frobenius Theorem 

A set of linearly independent vector fields fl5f2, ,fm is completely integrable 

if and only if it is involutive. The linearly independent vector fields fl5f2, ,fm is said 

to be involutive if the Lie bracket of any pair of vector fields belongs to the distribution 

A = span {fltf2, ,f„,}. 

Now, the kinematic equation of WMR, that is the allowable motion (53), can be 

expressed by 

(58) 

where v is the heading velocity of the WMR and co is the angular velocity. It can be 

rewritten as 

X 

V 

9 

= 

"cos# 0" 

sin 9 0 

0 1 

V 

CO 

X 

y 
9 

= 

cos 9 

sin 9 

0 

v + 

"o" 
0 

1 

CO 
(59) 

gi(q)v+g2(q)ft> 
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The distribution of g, and g2 is given by A = span{gl,g2} . The Lie bracket of gj 

and g2 along with g, , g2 is given by 

[gl g2 [gl»g2]] = 

cos 0 0 sin 6 

sin 9 0 - cos 6 

0 1 0 

(60) 

The rank of the Lie bracket of g, and g2 is three and the Lie bracket of g, and 

g2 cannot be written as linear dependant of g, and g2 hence, the system is not integrable 

and it is nonholonomic. 

It is proved that the feedback stabilization at a given posture is not possible by a 

smooth time invariant control for the above kinematic equation. Three mainly used 

different kinds of controllers are discussed namely converting the kinematics into a 

chained form, the input out linearization and the dynamic feedback linearization. 

2.3.1. Chained Form 

The kinematic equation (58) can be converted into a very popular chained form 

by static state feedback as in [50]. A system with two inputs u = [U] i/2]rand n 

generalized coordinates can be converted into the following (61) chained form by a 

suitable coordinate transformation z = [z, • • z j r = T(q) and a static state feedback. 

Z, = W, 

z 3 - z2Wj 

Zn = Zn~\U\ 

(61) 
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In order to change the kinematic equation (58) into the chained form (61), apply 

the following change of coordinates 

zx=6 

z2=xcos0 + ysin0 (62) 

z3 = x sin 0 - y cos 6 

and the static state feedback 

v = u2 + z3ux 

CO = U] 
(63) 

Then the kinematic equation (58) is converted into the following chained form 

z, =K, 

z2 = u2 (64) 

z3 = z2w, 

One can search for controllers for the above system. 

2.3.2. Input-Output Linearization 

The kinematic equation (58) can be input-output linearized as in [51]. Consider 

the system of the following form 

x = f(x) + g(x)u 

y=h(x) 

where the state vector is given by x e R" ,f(-) and h(-) are smooth vector fields, g(-) is 

the nxm matrix contains smooth column vector fields g(-) = [g, • • gOT ] , control 

input vector is given by u = [w, • • um]r and finally, the output vector is represented 

by y e Rp with p> m. This is a multi input multi output system (MIMO). 
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The system is input-output linearized when the output function in (65) is 

repeatedly differentiated until the input appears. The first differentiation of the output 

function is given by (66) for / = 1, ,p 

yt 
= —^ x = —j^- {f(x) + g(x)u} 

dx dx 

H ^ f W + - ^ g ( x ) u 
ox ox 

m 

Lfhi(x) + Y,Lihi(x)uj 
7=1 

(66) 

If L~ hj(x) = 0\/j = l,....,m, then the control inputs don't appear in the output 

equation hence, it needs repeated differentiation until one of the inputs appears in the 

output equation. If it takes r differentiations, then the general form of differential 

equation for i' output is given by 

y{ = ^f hj(x) + Y,Lg LTX}li(x)"y (67) 
7=1 

Then the whole output vector is given by 

~y?' 

= 

~ m,{x)~ 

Lr{hp(x) 

+ 

7=1 

.7=1 

(68) 
mx\ 

pxm 

y ( , )=P(x) + E(x)u 

where E(x), the pxm matrix, is the decoupling matrix which is nonsquare. Then apply 

the input transformation as follows 

u = {(ETE)-1ET}(v-P(x)) 

where v is the new input. Then the equation (68) becomes 

(69) 
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y ( r ) = v (70) 

Let the tracking error be defined as 

e = y r - y 

where yr is the reference trajectory. If the new input v is chosen as 

(71) 

v = y\r) + K,e ( r_ , ) + + Kr_,e + K re (72) 

where Kj V? = 1,...., r is a positive constant matrix and the closed loop system becomes 

e(r) + K,e ( r" , ) + + Kr_,e + K r e = 0 (73) 

In order to apply the above input-output linearization to the equation (58), select 

the output vector as y = [x + Dcosd y + Dsm0 0]T where D is the distance between the 

centre of axle and tip of the robot. The output is differentiated once to get 

(74) 

cos <9 

sin# 

0 

Eu 

-£>sin0 

DcosO 

1 

V 

CO 

Applying the control law as 

u = {(ETE)-1ETj(v) 

with the new input v chosen as 

(75) 

v = y r + K i e (76) 

Then the kinematic equation (58) is input-output linearized to track the desired trajectory. 

2.3.3. Dynamic Feedback Linearization 

In this section, the dynamic feedback linearization will be discussed as in [45]. 

Dynamic feedback linearization problem is to find a controller of the following form for a 

driftless nonlinear system given in (53) 
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^ = a(q,^) + b(q,^)u 

w = c(q,£) + d(q,^)u 
(77) 

where % e Rvis a state vector, u e Rm is the new input, a(-) e Rv and c(-) € Rm are vector 

fields and matrices b(-) e Rmm and d(-) e R'"x'" contain column vector fields. The closed 

loop system of (53) and (77) will be linear under a state transformation z =T(q,^). 

Define the output vector of (58) as 

Tl (78) 

First differentiation of the output gives 

n 
cos<9 0 

sin (9 0 
(79) 

Since the fj is not affected by the co, it is necessary to differentiate until both the inputs 

appear in anon-singular way. In order to avoid differentiation of the original inputs, since 

£ e Rl, a new state t is necessary such that it becomes the integrator for the original 

input. Define £ as 

v = <? 

i = a 

Differentiating (80) gives 

1 = 
cos 6 

sind? 

^cos^ 

£sin# 

-<?sin<9 

S. cos 6 

(80) 

(81) 

Define [a a>] assuming that it is non-singular when c ^ 0, as follows: 

cos (9 - ^ s i n ^ 

sin# c:cos# 

- i r 

(82) 
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where u = [w, u2\ is the new control input. Then the system (81) becomes 

x\ = 

The dynamic compensator is given by 

£, = u, cos 6 + u2 sin 0 

v = «f 

a> = 
u2 cos<9-w, sin<9 

4 

Now, define the state transformation z = T(q,^) as follows: 

?1 

h 
23 

- F 4 _ 

X 

J 
<i;cos# 

_#sin<9_ 

r^i 
Z 2 

? 3 

L ^ . 

+ 

"o" 
0 

1 
1 

w, 

u2 

(83) 

(84) 

(85) 

(86) 

Then the system in the new coordinates becomes 

0 0 1 0 

0 0 0 1 

0 0 0 0 

0 0 0 0 

This is a fully linearized system. In other words (86) can be rewritten as 

(87) 

The controller (84) is singular if the velocity of the WMR is zero. This situation should 

be avoided. 
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3. Energetic Swarm Control 

This section introduces the energetic swarm control. Sliding mode control is 

primarily used to calculate virtual controllers and the control allocation is used to find 

actual control inputs. Firstly, the control allocation approach will be discussed without 

saturation constraints but later, saturation constraints are brought with the control 

allocation. Simulation results are provided to study the energetic swarm behavior. 

3.1. Problem Statement 

This section presents the theory of energetic swarm control developed as in [48]. 

Consider a swarm system with M members. The following second order model represents 

the energetic swarm motion: 

m-vi=hini-biyi+&i{t) 
xi=yi 

where for each member / , i = l,2,...,M, mass is given by mt, x, e Rn represents the 

position, v • e Rn represents the velocity, h; is the control coefficient associated with the 

control input given by u ; e i?", bi is the coefficient of the viscous damping ^v, and 

finally, d;(/) e R" is the disturbance. The following assumptions are considered. 

Assumption 1 

The following energetic swarm control theory will be developed for an n 

dimensional case. Later, in section 3.4, the simulations will be carried out to validate the 

theorem for a 2-dimensional case. Also, in chapter 5, the high level swarm layer (88) 
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considered is for a 2-D case since here the energetic swarm control theory will be applied 

for a WMRs system (165). 

Assumption 2 

In this chapter, we consider particle dynamics (88) to develop the energetic 

swarm control theory. However, later in chapter 5 it is shown that the energetic swarm 

can be applied for vehicles with nonholonomic dynamics with a combination of a low 

level layer (165)-(174). Future research will focus on rigid body dynamics. 

Assumption 3 

The mass m,-, the coefficient of the viscous damping b- and the control 

coefficient ht are known for each agent. 

Assumption 4 

There will be no communication delay among the members in updating their 

states and their motion is synchronous. That is no time delay is assumed in transferring 

the states of one member to the other members. This system is a centralized one when 

considering the experimental implementation. It means that, though there is no leader 

follower approach here, each agent has to transfer its state to every other member. Future 

research will focus on each member transferring its states to the neighbors only. 

Assumption 5 

The system is controllable. That is hf * 0 Vz = 1,....,M. Further, we assume full 

state measurement of the system. 

Assumption 6 

It is assumed that the disturbance is bounded by a positive coefficient /?; , V/ > 0 . 
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||d,(0||<Av' = l> ,M (89) 

To validate the theory, for simulations, sinusoidal inputs will be considered as the 

disturbance wherever necessary. 

The control input u, is the sum of external and internal inputs given as: 

u / = u f + u r (90) 

where ufv/ e Rn is the external input which makes the swarm to achieve multiple control 

objectives such as following desired trajectory and tracking the temperature and potential 

while u'" e R", the internal input used for the cohesion and collision avoidance between 

the members of the swarm, is of the following form given as in [37] 

M 

< = - !>(*,•-*,•) (91) 

where g: R" -> R" is the artificial function to create attraction and repulsion forces 

between members given by 

g(X/ -Xj) = -(X / -Xj)[gl(|x. -Xj||)-g'j(||X/ -xj[)] (92) 

where ga :R" —> R+ is the magnitude of attraction force for the cohesion between each 

members and gr :/?"-» R+ is the magnitude of the repulsion force for the collision 

avoidance between each members. Further, it is assumed that the ga has a long range 

attraction and gr has a short range repulsion. For example, one choice for the g(-) is to 

have a constant attraction and unbounded repulsion between the members i and j given 

by the following terms 

sa(||y|) = inj (93) 
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^ ( | y | ) = jj-T2- (94) 

where A,B <= R+ . In this particular g(-), the repulsion forces become dominant than the 

attraction forces if the agents are closer to each other and the attraction forces are 

dominant if the members are too far with respect to each other. This g(-) is of 

conservative type; that is no energy is added or removed to or from the system since if we 

consider the whole system the net effect of g(-) is zero. 

Next, the macroscopic quantities such as swarm centre, swarm temperature and 

swarm potential are defined as following in order to control the overall behavior of the 

swarm members. It is important to note that the collective behavior of the swarm 

members is considered rather than an individual member behavior. The swarm centre 

x € Rn defined in (95) is the weighted position of each swarm member and the swarm 

centre velocity v e 5H" is given by (96). 

M IM 

*=Ymixt iL®i (95) 

M IM 

v=yLmiyiiLwi (%) 

where Wi is a positive coefficient. Here, one of the objectives of uf is to make the 

swarm centre to track a given desired trajectory. 

Swarm temperature, another control objective of uf, is what makes the swarm 

an energetic system. The swarm temperature, defined as the average of swarm internal 

kinetic energy in [38] , is given by the following expression 

nv) = ±-{Ek(y)-Eb&j) (97) 
M 
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where Ek in (98) is the weighted kinetic energy of the swarm and Eb in (99) is the 

weighted bulk kinetic energy of the swarm. at is a positive coefficient. 

M 

^(v)=-E^hlr (98) 
2f=, 

Eb<y) = \ 
f M \ 

V 1=1 ) 

|vf (99) 

If the swarm centre is on a translation, the swarm possesses bulk kinetic energy. 

However, even if the bulk kinetic energy is zero, swarm has kinetic energy since it is due 

to the individual swarm members' back and forth motion relative to the swarm centre. 

For a homogeneous case, the swarm temperature is directly proportional to the velocity 

difference between the members [38]. 

The final control objective of the uf is to track a potential like function J e R+ 

by which the swarm is kept in cohesion. That is it keeps the swarm size bounded. The 

swarm size p e SR+ is defined as 

A particular choice of the potential function J is given by 

1 M 

• /=^Zflr/IK--1l (101) 
*• / = i 

where ai is the connection weight. This potential function can be considered as the 

swarm members are connected with the swarm centre by linear attraction or repulsion 

potential functions depending on the choice of a-t. 
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3.2. Sliding Control Design 

The virtual control inputs for the swarm centre trajectory tracking, temperature 

and potential tracking will be calculated using the sliding mode control as proposed in 

[48]. The actual inputs will be calculated using the control allocation approach which be 

discussed in the next section. 

A. Tracking Control 

Let us define the tracking error x and the sliding surface s as 

x = x - x des 

= x + diag(k)x 

(102) 

(103) 

where xdes is the desired swarm centre and X = [\ . . An]
T is a vector with strictly 

positive constant gain terms. The first differentiation of s is given by 

M — M .-7 

s = q + diagCk)x-xdes + ;=i mi 
• + 

/=i mi 
M M (104) 

/=i i=\ 

where <; is given by 

M 7T M — 
CO; z^<-i^*y 

?= 
/ = i m , ,-=i mi 

M z 
/•=] 

CO: 

The virtual input vc e R" for the swarm centre tracking is chosen as 

(105) 
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M — I M 
0): 

The virtual controller vc is then selected as 

vc =-(<; +diag(l)x-xdes)-diag(kc)sgn(s) (107) 

where kc is a vector of positive constant gain terms given by 

K=lK k2c -. *„J (108) 

The time derivative of s then becomes by using (104), (107) as follows 

mi 
~M s = £ l T diag(kc) sgn(s) (109) 

In order to satisfy the following (110) sliding condition 

\^-tiH (no) 

kc will be chosen as following with T]C strictly a positive constant. 

M — I M 
kic^SL — PirLWi^c farj = \,2, ,n (111) 

i=\ Mi I i=\ 

Finally, in order to avoid the chattering the virtual controller is modified with the 

boundary layer as follows 

vc = -(<; + diag(k)x - ldes)- diag(kc)sat(diag(ec )s) (112) 

1 1 
£\ £n 

where sat(-) is the saturation function and EC = 

boundary layer, is a vector with positive constant gain terms. 

the thickness of the 
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B. Swarm Temperature Tracking 

Next, the virtual controller for the swarm temperature will be discussed. The 

sliding surface sT for the swarm temperature tracking is defined as 

sT=T(v)-Tdes (113) 

where Tdes is the desired swarm temperature. The first derivative of sT is given by 

a + y + i// 1 ^ /?,. ,„ v i 
ST = + — j 2 . V°iyi - m(°iS) Ue 

where m is a coefficient given by 

and the terms er, y,y/ are given by 

ext ( des (114) 

M I M 

;=1 / ;=1 

(115) 

( M 

V »=i OT/ 

y/ = \ m 

(v,) r^d,(0 

ft),. 

CTV 

GTV Z^d,« 
;=i "J,-

(116) 

The virtual input vT e /? for the swarm temperature tracking is then chosen as 

°T = TT j Z — (5iv/ ~ m(°iyT< (117) 

The virtual controller vT for the swarm temperature tracking is selected as 

vT=- ^—f- - kT sgn(sr ) + tdes 
M 

(118) 

where kT is a positive constant gain term. 

Time derivative of sT then becomes by using (114), (118) as follows 
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v 
sT=-~-krsgn(sT) 

M 

The upper bound of Y is calculated using (89) as 

(119) 

/ < 
V A'"'/ II II II—IIV Pi^i 
Z_^ „, II ' II II \\/—i 

\i=\ mi ,-=i "» , • y 

(120) 

Then using (120), kT is chosen as (121) with rjr a positive constant in order to satisfy 

sliding condition sTsT < —r/T \sT 

kT(x) = 
~M 

( M a ~ M n-rz\ 
^p picoi |, I, n-iiv1 Pi(0i 
> !1J—- V; + 67 V > ' ' 

Z-u „„ II 'II II IIZ-J W=l m/ / = i "»,• J 

+ UT (121) 

Finally, in order to avoid the chattering the virtual controller is modified with the 

boundary layer as follows (122) and sT is the thickness of the boundary layer. 

(7 + 1// . 
vT kT sat 

M 

(„ \ 

+ L 
\£T J 

des (122) 

C. Swarm Potential tracking 

Finally, the virtual controller design for the swarm potential tracking will be 

discussed. The sliding surface Sj for the swarm potential tracking is defined as 

Sj=J + Aj(J-Jdes) (123) 

where Jdes is the desired swarm potential and Xj is a positive constant. The first 

derivative of Sj is given by 

~ M ( h m \ M ( 

sJ=4+2 «-Hx,-x)-~Hz <" + £ 
,=iV m, m> J -=i 

+Xjj 

i / ^ <y,- 1 , , N 
a,— ( x . - x ) - _ i . x d,.(0 

m, m, I (124) 

where if is given by (125) 
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| ' = £ a , ( v , - v ) r ( v , - v ) + £ 

M 

-s 
7 = 1 

and the term x is defined as 

M ( U TV ^ 

M M 

5C = Z « ; ( X 7 - X ) / Z &>• 
7=1 / 7=1 

The virtual input Vj for the swarm potential tracking is then chosen as 

M h — \T 

CO; 

; - i I Ttl; 111: 
•I J 

The virtual controller for the swarm potential tracking is selected as 

Vj = -(£ + AJj)-kJsgn(sJ) 

where kj is a positive constant gain term. 

The time derivative of Sj then becomes by using (124), (128) as follows 

= 1 a,. —(x, . -x) ' % 
m 

d^O-kjSgnisj) 
• J 

(125) 

(126) 

(127) 

(128) 

(129) 

In order to satisfy the sliding condition SJSJ < —7]j\Sj\ choose kj as (130) where rjj is 

a positive constant 

M ( 

v
 mi mi y=i 

- r A/ / M 
CO; 

|Xy -X j | / Z-7 
/ 7=i ; 

^ (130) 

Finally, in order to avoid the chattering the virtual controller is modified with the 

boundary layer as follows (131) and s3 is the thickness of the boundary layer. 

Vj = -[£ +Ajj)-kj sat 
s 

(131) 
\ b j J 
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3.3. Control Allocation without Saturation 

Actual inputs that match the virtual input requirements will be found using the 

control allocation as in [48]. The energetic swarm system is an over actuated system. 

Since the system (88) is an n-dimensional case the number of output n0 is n0 = n + 2 . 

That is tracking the desired swarm centre, and the desired swarm temperature and 

potential values. If the number of swarm members are given byM, then the number of 

inputs r\ will be ni = M x n. The swarm is over actuated when the number of inputs 

exceeds the number of outputs. That means the solution is not unique. There exists more 

than one solution for an over actuated system. 

In order to find the actual inputs we need to use the control allocation as discussed 

in section 2.2 . The actual control input vector u e RnM is given by 

u («rf (uff - (<f (132) 

Now, the virtual input vector vc (106) can be re-written as 

B u = i) 

where Bc is given by (134) with I e Rnxn is an identity matrix 

(133) 

B c M 

I>,L 
h^-i h ^ \ h ^ - i 

m. m. m M 
(134) 

Similarly, the virtual input for the swarm temperature (117) can be re-written as 

B r u = vT (135) 

where B r is given by 
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O-p — 

M 
{col\x - tjya>xv) - ^ - (<y2v2 — mco2\) 

lM v.\T 

m. m*, m 
^MyM-^(0M^) 

M 

(136) 

Finally, the virtual input for the swarm potential (127) can be re-written as 

BjU = Vj 

where B J is given by 

(137) 

B 

m. m. 
h2 i -^ a2 i 

m0 m 

aM^-(xM-x)—^hMl 
m M m M 

(138) 

The equations (133), (135), (137) can be combined together as the following relation 

(139) 

That is the virtual inputs of the swarm centre, swarm temperature and swarm potential are 

related to the actual control input u by the following equation 

Bc 

Oj 

V 
U = 

V 
vT 

.VJ. 

Bu = v (140) 

where B e j ^ n + 2 ^ y n M j s the control effectiveness matrix given by 

B = 

B c 

B 7 

B , 

(141) 

>«+2 and v e R" is the virtual input vector consists of virtual inputs of the swarm centre, 

swarm temperature and swarm potential given by 

V = [VC VT Vj] (142) 
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The actual control input will be calculated by formulating the following objective 

function: 

1 T min-u Wu, subject to Bu = v (143) 
" 2 

where W e ${"Mx"M j s a weighting matrix given by 

wnK» w,2I„xlJ ••• wMlnxn 

w21I„x„ w22I„x„ ••• w2Mlllxi! W = 

^A/l1 , ,*,; ^ A ^ H X , , ••• WA/A/I«x„ 

(144) 

nMxiiM 

and each w« is a weighting coefficient. The pseudo inverse which minimizes the 

objective function given in (143) is used to solve this control allocation problem. The 

feasible solution for the u is given by 

u = (wHB r (BW- ,B r ) - | )» (145) 

The above solution solves the over actuated problem and finds the actual control input. 

3.4. Simulation Results of Energetic Swarm 

In this section, simulation is done to study the behavior of the energetic swarm 

and to show the validity of the proposed [48] sliding controller design and the control 

allocation approach given in the above section. The desired swarm centre trajectory, for 

all the simulations, is selected as xdes = [5.0cos(/) 5.0sin(/)]r. The disturbance in 

equation (88) is chosen as dj(t) = [2.0sin(t) 2.0sin(/)]r- The attraction term in (93) is 

1 0.2 , , , . . /nA. . . , 0 . 2 
given by y—- and the repulsion tern in (94) is given by » n IMI2 

The desired temperature is set at Tdes = 5.0 and the desired potential is selected as 

Jdes = 5.0. The number of agents is six for all the experiments. Three sets of results are 
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shown here. The first set of experiment is to validate all three controllers given by the 

following figures. In Fig.l, trajectories followed by each individual are shown while 

Fig.2 shows the swarm size for the selected Tdes = 5.0 and Jdes =5.0. From Fig.l it is 

obvious that the trajectories followed by each individual are highly chaotic. Energetic 

swarm control focuses on controlling the collective behavior of the swarm rather than 

controlling the individual's behavior or its trajectory following. Fig.l shows how the 

individuals behave for a particular temperature and potential values but, collectively they 

track the desired swarm centre. By changing the primary parameters temperature and 

potential, one can change the entire swarm behavior. 

1 0 — — ----- - - - - - - - - - - — - . . _ • • — - . . ; _ — - : „ _ . 

Membeii 

8: //' I — Member2 

, - / ' Member3 j 

X(m) 
Fig.l. Trajectory followed by the swarm members 

51 



7 

u 
'3) 4 ; 

C/3 

10 15 20 25 30 

Time(s) 

Fig.2. Swarm size 
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Fig.3 shows the trajectory tracking of the swarm centre while Fig.4 illustrates that 

the swarm temperature is regulated at Tdes = 5.0 
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Fig.3. Trajectory tracking of the swarm centre 
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Fig.4. Swarm temperature regulation 

Fig.5 shows the potential regulation at Jdes = 5.0 
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Fig.5. Swarm potential regulation 
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In the second set of experiment, the potential is kept at Jdes = 5.0 but Tdes is 

increased to Tdes=\0.Q, Tdes=20.0 and Tdes = 40.0 respectively. The objective is to 

study the swarm's foraging behavior when the swarm temperature is increased. Fig.6, 

Fig.7, and Fig.8 show the individual swarm member's trajectories for the Tdes =10.0, 

Tdes = 20.0 and Tdes - 40.0 respectively. When the swarm temperature is increased, the 

swarm gets more internal kinetic energy and the swarm is more energetic. This is similar 

to water molecules kept on a stationary table, move faster and aggressively when we add 

some heat energy. Each individual travels at higher speed and they sweep more area 

keeping the maximum swarm size constant with respect to the fixed potential Jdes =5.0. 

These figures explain that more foraging behavior can be observed when the swarm 

temperature is increased. 

1 0 r - , — - ; -r -_L • Z Z - • - - -

M e m b e r l 
8'y ^-- l \ • Member2 H 

, ~„ /' , Member3 

X(m) 
Fig.6. Swarm members trajectories at Tdes = 10.0 
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Fig.7. Swarm members trajectories at Ties = 20.0 
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Fig.8. Swarm members trajectories at rdB =40.0 

55 



In the third set of experiment the swarm temperature is kept at a constant value 

Tdes=5.0 but the swarm potential is increased from Jdes =10.0, Jdes = 20.0 and 

Jdes = 40.0 respectively. The objective is to understand the relationship between swarm 

size and the swarm potential. From Fig.9, Fig. 10, and Fig.l 1, it can be seen that when the 

swarm potential is increased the swarm size increases. Increasing the swarm potential 

lessens the cohesiveness of the individual members. When the swarm size increases the 

attractive forces are more dominant than the repulsive forces since the swarm gets more 

room to travel in the area. 
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Fig.9. Swarm members trajectories at Jdes =10.0 
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The above experiments illustrate that by changing the control variables swarm 

temperature and potential, the swarm can be made to forage and sweep an area with 

different kinds of behaviors. Swarm temperature controls the aggressiveness of the 

members and the foraging behavior of them and the radius of coverage can be controlled 

by the swarm potential. 

3.5. Control Allocation with Saturation 

The pseudo inverse approach that was used to minimize the objective function in 

section 3.3 fails when the solution is not feasible. Further, there is no saturation bound on 

u, which is not suitable for the practical implementation of the swarm. In real 

applications the actuators have physical limits. These two problems can be overcome by 

using the SNOPT [49] optimization solver, a general purpose program for large scale 

nonlinear programming, minimizes linear or nonlinear functions that have constraints or 

bounds on variables. 

The constraints on the actual control input vector u are brought with the control 

allocation algorithm in order to account for the saturation on the inputs. The objective 

function (143) will be modified as follows [56]: 

1 T mm —u Wu, 
u 2 

subject to (146) 
Bu = t) 

where ufx'min and u"'max correspond to the lower and upper saturation limits of the input 

nf respectively. For example, in a servo motor ufT'max can correspond to the maximum 
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positive voltage that can be applied to make the motor rotate in clockwise and u^'min can 

be that of in the opposite direction. 

However, uj exl- , nf' av can not be lowered than a threshold value, otherwise the 

control allocation problem (146) is not feasible. That is the SNOPT cannot find feasible 

solution for the actual control input that satisfies the virtual input requirements. That 

mean we have to find and set the allowable nf . ,ufr' values such that they are 
i mm' i max J 

above the minimum allowable values so that allocation problem would be feasible and, 

also below the maximum allowable values which depend on the physical limits of the 

actuators. 

Fig. 12 shows that for one of the members in the swarm, ufxt , u f are set to 
° ' i mm' / max 

+ / - 5 . These limits are well below the minimum allowable values. 
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Fig. 12. Control input with saturation limits 
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Fig. 13 shows the corresponding error plot between the required virtual inputs and 

the SNOPT solutions for the desired virtual inputs. It is obvious that the SNOPT cannot 

satisfy the virtual input demand if we set the uf . ,uf below the threshold value. 
J r i mm' i max 
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Fig. 13. Difference between the desired virtual input and the SNOPT solution 

The minimum allowable values of ufr . ,ufY depends on various factors such 
' mm' ' max " 

as the desired temperature and potential values Tdes and Jdes, the desired swarm centre 

trajectory \des and the initial condition of the swarm members. 

It is found that the minimum allowable values can be varied for transient and 

steady state cases. As such, the minimum allowable values of u f . ,uf*' can further 
•> ' / min' / max 

be set to two different values. In order to get a feasible solution for the allocation problem 

throughout the run time, one set of values may be used for the transient case and another 

set for the steady state case. For instance, during the transient phase if the minimum 
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allowable values are higher than the steady state case values, we can set the threshold to 

some higher values and then once the system stabilizes we can lower the minimum 

allowable ufxt . ,uf' values. By doing so, the SNOPT satisfies the virtual input 
' mm7 ' max J ° ' * 

constraints with feasible solution throughout the run time of the swarm. 
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Fig. 14. Control input with two sets of saturation limits 

Fig. 14 shows for one of the members of the swarm, two allowable limits are set 

for uf'min, ufT'max ; one for the transient case and the another one for the steady state case. 

During the transient phase the value is + / - 25 but in the steady state case the value is 

+ / -36 . The SNOPT matches the virtual input requirement for both the cases. 

In the steady state case, the primary factors that influence the minimum allowable 

values of ufx/
mjn,u"'max are the desired temperature and potential values. The steady 
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state minimum allowable values for u f ^ . u f * ' ^ are found experimentally at different 

operating conditions over the domain 

5.0<7 ,<20 (147) 

5 . 0 < J < 2 0 (148) 

varying only the temperature and potential but keeping other conditions fixed. The 

surface plot in Fig. 15 shows how the minimum allowable value varies with respect to the 

temperature and potential values given for the range (147), (148). 

Temperature Energy (J) 5 5 Potent ia l Energy (J) 

Fig. 15. Minimum allowable values of the control input 

The result shows that when we increase the temperature the minimum allowable 

value increases. This is expected since, when we increase the temperature swarm gets 

more energy and its velocity increases. The swarm is more energetic and it sweeps more 

area. When the temperature increases while the potential is kept unchanged, the swarm 

needs more control effort in order to restrict the swarm size. The virtual controller of the 

temperature (122) primarily depends on <j,y/ during the steady state. In a viscous 
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environment y/ is more dominant since when the velocity increases the viscous term gets 

a higher value and the virtual controller for the temperature increases [55]. The swarm 

needs more control effect to cope with that. If the swarm moves in a non viscous 

environment <r is more dominant since y/ is zero. Also when the temperature increases 

a gets a higher value. This makes more control effort from the controller. The minimum 

allowable values increase when the desired temperature is increased. 

On the other hand, if the potential increases while keeping the swarm temperature 

fixed, the minimum allowable value decreases for ufxt . ,ufxr . When the potential 
' ' m m ' ' max * 

increases the swarm size increases and it gives the swarm members more room to travel. 

That is the attraction of the swarm members is more dominant than the repulsion between 

the members. When the swarm members are confined to a lesser swarm size, the 

repulsion term in (92) gets more dominant and the swarm controller needs more control 

effort to keep the members in side the swarm size [55]. As a consequence, the minimum 

allowable value is higher when potential is small and gets lower when the potential 

increases. 

Let us consider the minimum allowable value of nf and denote it by u,nt . . 
i max J sat mm 

Then the feasible operating region Usat of the saturation limits is bounded by [55] 

«satmm{T>j)^Usal<Usattosx (149) 

where usat is the physical saturation limit of the actuator. That is the feasible operating 

region should be above the minimum allowable value in order for the SNOPT to satisfy 

the virtual input constraints and lesser than the physical saturation limit of the actuator. 
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When in steady state, the desired temperature Tdes and potential Jdes values 

dominates the upper bound of usatmin. That is if the Tdes and Jdes are not varying with 

time, which is the most common case in this thesis, then the following lower bound on 

the operating region will be considered [55] 

"salm^c»+^T + c2J<Uml (150) 

where c0,c}, c2 are determined over the domain (147), (148). The coefficients will be 

c0 = 12.0, c, = 1.45, c2 = -0.20 and they satisfy the condition (150) inside the operating 

region (147), (148). Also, the values should satisfy the condition in (149). That is they 

should hold 

cn+c.T + c-,J<U <u , (151) 
0 1 2 sat satmax V / 

The upper bound of usatmin in steady state case for a general case, where we need 

to track time varying Tdes and Jdes, will be a nonlinear function and will depend upon on 

the following parameters [56] 

UMVJF'T'JJJ) (152) 

However, an approximate lower bound on the operating region can be proposed for a 

more general case of the swarm as following [56] 

M^min ^c0+ClT + c2J + c{T + c4J + c$J (153) 

The coefficients c0,cl,c2,c3,c4,c5 need to be determined depending on the desired 

temperature and potential values. One can expect the same discussion (149)-(153) for the 

minimum allowable value of uf"min. In general, these two limits are equal but their sign 

or direction is different. 

64 



4. Modeling and Identification of Wheeled Vehicles 

In order to implement the swarm system experimentally, WMRs are chosen as the 

primary application since it is much easier to make a swarm with WMRs in an academic 

environment. As WMRs are actuated by Radio Controlled (RC) servo motors, it is 

important to model and identify the parameters of the RC servo motor and its dynamic 

behavior when it is attached with the WMRs. This chapter focuses on the modeling and 

parameter identification of the WMRs as in [54]. 

4.1. Kinematic Model of the Wheeled Vehicle 

o x 

Fig. 16. The WMR configuration w.r.t a fixed frame 

Fig. 16 shows the schematic top view of the WMR. Let us assume that the wheels 

do not slip. Then the kinematic equation (58) of the WMR is modified as following with 

v and co are expressed in terms of angular velocities of the right and left wheels. 
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y = -(a>RRR+a}LRL)sme (154) 

d = -l(<°RRR-a>LRL) 

where x,y are the coordinates of the body attached frame in the fixed frame OXY , 9 is 

the angle between the heading velocity and the fixed frame, RR and RL are the radius of 

the right and left wheel respectively, coR and coL are the angular velocities of the right and 

left servo motors and finally, / is the axle distance between both the wheels. Fig. 17 and 

Fig. 18 show one of the WMRs built in the Control and Information System (CIS) lab for 

the model verification and experimental implementation of the swarm system. 

4.2. Dynamic Model of the Vehicle Actuators 

Each WMR is attached with two RC servo motors that are modified for the 

continuous rotation. Since it is modified, the pulse width is proportional to the angular 

velocity of the motor in the operating range. The input to the motor is the voltage across 
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data acquisition card (MultiQ) and it is transmitted wirelessly and converted into pulse 

width. The modeling equation, governing the dynamics of the motor, given in [54] is 

Jwm<m = K\wmU
Wm -^m^m ~ ^ym^wm ~t*wmS&faym) ( 1 5 5 ) 

where Jwm denotes the moment of inertia, cbwm represents the angular acceleration, K]wm 

and r]wm are constant parameters associated with the motor, the voltage applied to the 

motor via the MultiQ is given by Uwm, cowm is the angular velocity of the motor, the 

linear friction coefficient of the motor is given by Kbwm and finally, juwm is the Coulomb 

friction coefficient. 

4.2.1. State Equations of the Wheeled Vehicles 

The state equation of the wheel vehicle is the combination of kinematic equation 

of the WMR and the dynamic equation of the actuators given by (156) . The equation 

(155) is considered for both the left and right wheels of WMR with subscripts L and R 

denoting those respectively and the term wm is removed for the ease of representation. 

X--(G>RRR + O>LRL)COS0 

6 = -{coRRR-G)LRL) (1 5 6 ) 

®L = ~T(KUPL -nL°>L - Kbx®L ~ML sg n («i ) ) 
J L 

6)R = 
1_ 

FR 
j iKLRUR ~ VR®R - KbRCOR - HR Sgn(ft>„ ) ) 
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4.3. Apparatus 

The swarm experiment was done in the CIS lab. The WMRs were built with two 

front drive wheels and one rear castor wheel. The wheels were driven by the HS-422 

servo motors which had been modified to allow continuous rotation. Since it is modified, 

then the pulse width is proportional to the angular velocity of the wheel in the linear 

operating region considered. The block diagram of the experimental setup is shown in 

Fig.20. 

Vision feedback is used to get WMR's position and the orientation. Arrays of 

overhead webcams are setup as in Fig. 19. There are nine webcams connected 

individually with nine vision processing computers in order to reduce the processing 

power and computational time of central host computer. These vision processing 

computers process the image captured and send the data of the WMR's position and 

orientation over a network interface to the central server host computer. The test bed 

roughly covers an area of 5 x 5m. The maximum reachable frequency of the webcams 

is25Hz. 

The host computer, based on data received from the vision processing computers, 

calculates the inputs to the WMRs. Then the corresponding input values are written on 

the MultiQ board to which a RC transmitter is attached. Typically 2.5V was taken as the 

neutral position for the MultiQ interface. The signal is changed into D/A by multiQ and 

send to the wireless transmitter. The RC wireless receiver, attached with the WMRs, 

receives the corresponding data and converts back into A/D. To the motors, the signal is 

sent in as the pulse width. C++ is used as the programming language for the vision 

processing task and all other control related tasks. 
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4.4. Parameter Identification 

Vision sensing is used for the position feedback and the central finite difference is 

used to find the first and second derivatives wherever necessary in the following 

subsections. 

4.4.1. Parameter Identifications of the Actuators 

Two different color objects, equally spaced from the axle of the motor, are 

attached in a cross bar as shown in Fig.21 . The vision library in the CIS lab captures the 

image and processes it in order to find the centroid of the color targets. The angle is 

found from the centroidal information. Angular velocity and angular acceleration of the 

motor are found using the central finite difference method. 

Fig.21. RC servo motor with two color objects 

The equation (155) is re arranged since we can minimize the number of 

parameters to be identified as follows: 

d) = alU -a2a>-a3sgn(a>) (157) 

where a},a2,a3 are given by 
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a, = 

J 

J 
(158) 

a 3 = -
J 

The subscript wm is removed for the ease. The least square curve fitting method is used 

to find out the parameters in (158) . Let t<z.\tx,tf] be the run time of the experiment. The 

equation in (157) is then re arranged for the \/t e[t{,tf~\ as 

£/(*,) -a{tx) -sgn(«(Oy 

U(tf) -co{tf) -sgn(fi>(ff) 
v ^ Vf f>) 

r«i 
a2 

[a3_ 
= 

~<b(txy 

6){tf)_ 

(159) 

The over determined system (159) can be solved for the parameters at,a2,a3 using the 

pseudo inverse method. 

Let A,Y,X be given by 

U(tx) -w{tx) -sgn(fl>(f,))' 

A = 

\U{tf) -a>(tf) -sgp.(a>(tf)j 

(0(h) 

6){tf) 

(160) 
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Then using the pseudo inverse approach the parameters of the RC motor are given by 

X ^ A ^ V Y (161) 

Two sets of initial conditions (IC) are used to find the parameters of the right and 

left wheel motors as shown in Table 1. 

Time(s) 

^<5 

t>5 

IC#1 

U(t) = 0.0F 

U(t) = 0.5F 

IC#2 

U(t) = 0.0F 

U(t) =-0.5V 

Table 1. Initial conditions for the parameter identification 

Table 2 summarizes the identified parameters ax, a2, a3 for the right wheel motor. 

The values of a],a2,a3 are the average values of a number of data samples taken. Same 

initial conditions are considered for all the different sets of data samples. Also the 

deviation column gives the maximum and minimum variation of parameters aua2,a3 

from the average values. 

Parameters of the i 
motor 

a i 

a2 

a3 

right wheel IC#1 

243.3405 

9.028315 

-0.7417085 

Max/Min 
Deviation 
±14.7115 

±0.740805 

±1.2905115 

IC#2 

415.223 

15.1073 

-2.585695 

Max/Min 
Deviation 
±11.749 

±0.299 

±1.420975 

Table 2. Parameters of the right wheel motor 

Fig.22 and Fig.23 show the angular acceleration and angular velocity of the right 

wheel motor for the IC#1 respectively. Experimental data set versus the simulation data 

set, using the estimated parameters in the Table 2, is shown in those figures. 
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Fig.24 and Fig.25 show the angular acceleration and angular velocity of the right 

wheel motor for the IC#2 respectively. Experimental data set versus the simulation data 

set, using the estimated parameter in the Table 2, is shown in those figures. 
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Similarly, Table 3 summarizes the parameters a,,a2,fl3 for the left wheel motor. 

Similar plots for the left the wheel motor can be obtained for the verification but those are 

omitted here. 

Parameters for the left wheel 
motor 

a i 

a2 

a3 

IC#1 

124.65 

4.51495 

-6.50073 

Max/Min 
Deviation 
±37.357 

±4.41181 

±2.07883 

IC#2 

354.603 

11.5469 

-2.52157 

Max/Min 
Deviation 

±15.25 

±3.515975 

±1.98958 

Table 3. Parameters of the left wheel motor 

4.4.2. Model Verification of the Actuators 

Now, the average values of the parameters aua2,a3 are taken for the right and 

left wheel motors from the IC#1 and IC#2. Table 4 summarizes the updated values of the 

parameters a,, a2, a3 for the right and left wheel motors. 

Parameters 

a, 
a2 

a3 

Right wheel motor 
329.2818 

12.0678 

-1.6637 

Left wheel motor 
239.6265 

8.0310 

-4.51115 

Table 4. Parameters of right and left wheel motors 

This time a sinusoidal input is applied for both the actuators as shown in Table 5. 

The sinusoidal input is shown such that it does not go beyond the saturation limit of the 

motors. 

Time(s) 

t<5 

t>5 

IC#3 

Right wheel motor 

UR = 0.0F 

UR=0.5sm(t) 

Left wheel motor 

UL = 0.0F 

UL =0.5sin(?) 
Table 5. Initial conditions for the model verification of the motors 
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Fig.26 and Fig.27 show the validation of motor parameters for the right and left 

wheel motors respectively. 
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4.4.3. Parameter Identification of the Wheeled Vehicles 

The values for the parameters ax,a2,a^ found in previous section need to be 

checked and fine tuned when they are attached with the WMRs since, when they are 

attached with WMRs, the rotational friction changes considerably due to the weight of 

the WMRs. That means when ever the motors are attached with a WMR with different 

mass and structural configuration, it is necessary to re evaluate the parameters 

for that particular configuration. For a swarm system, one can assume without loss of 

generality, that all the members will be homogeneous ones w.r.t mass and structure. It 

means that, if we could find the parameters for one WMR, we can assume same values 

for the parameters a},a2,a3 for all the members. 

The equations (156) and (157) are rearranged as in (162) in order to find the 

angular velocities of the motors and parameters are again re identified for both the left 

and right wheel motors. 

1 
ro„ = — R 2 

* 2 

0), = — 
L 2 

eoL=-

2x 19 

KRRcos9 RR\ 2 

2y 
• + • 

19 n 

v RR sin 9 RR j 

2 i 19 

RL cos 9 RL 

iff9±nn\fn= 0,1,2... 

iff0*™Vn = lX. 

2y 19 

KRLsin0 RLJ 

iff 0*nn\ln = 0,1,2... 

0>R = aX.RUR ~a2.R(DR "«3 ,« S g n ( « J 

cbL =a] LUL-a2 L(ol - a} L sgn^ft̂  ) 

(162) 
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This time the translational motion and the rotational motion of the WMR are 

considered for the parameter identification process. Table 6 summarizes the ICs for the 

translational motion of the WMR. 

Time(s) 

t<5 

t>5 

IC#4 

x = 0.511 y = 0.3747 0 = OJl84rad 
Right Wheel 

UR = 0.0F 

UR = 0.5F 

Left Wheel 

UL = 0.0F 

^ = 0 . 5 ^ 
Table 6. Initial conditions for the translational motion of the WMR 

Two color objects are attached with the WMR this time for the vision feedback 

and x,y,6 are obtained. As mentioned earlier the central difference method is used to 

calculate the x,y,6. caR,coL and the parameters aj,a2,a3 for the left and right wheel 

motors are calculated as in (162). 

Fig.28 and Fig.29 show the experimental vs. simulation data of the velocity 

components in the X and Y directions of the WMR for the IC#4 respectively. 
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Fig.30 and Fig.31 show the angular velocity of the WMR and the angle 

the IC#4 respectively. 
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Finally, Fig.32 and Fig.33 show the position of the WMR and path traveled 

during the run time for the IC#4 respectively. 
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Similarly, Table 7 summarizes the ICs used for the rotational motion of the 

WMR. 

Time(s) 

t<5 

t>5 

IC#5 

x = 1.3545j;= 0.7871 0 = -OA444rad 
Right Wheel 

UR = 0.0K 

UR = 0.5F 

Left Wheel 

UL = 0.0F 

UL = -0.5F 
Table 7. Initial conditions for the rotational motion of the WMR 

Fig.34 and Fig.35 show the experimental vs. simulation data of the velocity 

components in the X and Y directions of the WMR for the IC#5 respectively. It is pure 

rotational motion. 
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Fig.36 and Fig.37 show the angular velocity of the WMR and the angle turned for 

the IC#5 respectively. 
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Fig.36. Angular velocity of the WMR for the IC#5 
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Finally, Fig.38 shows the position of the WMR for the IC#5. 
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Fig.38. Position of the WMR for the IC#5 

Table 8 summarizes the updated values for the parameters of with 

subscript L and R denoting the left and right wheel respectively. 

Parameters 

a\.R 

a2.R 

aXR 

a\.L 

a2.L 

aXL 

IC#4 

24.89375 

0.730149 

0.9006 

38.2014 

1.18651 

-0.4206 

Max/Min 
Deviation 
±16.2381 

±1.226 

±9.28434 

±2.8059 

±0.2794 

±3.7983 

IC#5 

20.5380 

0.7231 

-1.7613 

18.7796 

0.50305 

2.6065 

Max/Min 
Deviation 
±2.1410 

±0.0311 

±0.5548 

±1.9764 

±0.1486 

±2.7233 

Table 8. Parameters of the right and left wheel motors when attached with the WMR 
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4.5. Model Verification of the WMR 

Now, similar to the model verification of the actuators earlier, the average values 

of the parameters a},a2,a3 is taken for the right and left wheel motors from IC#4 and 

IC#5. Table 9 summarizes the updated values of the parameters a^a^a^ for the right 

and left wheel motors. 

Parameters 
a ! 

a2 

a3 

Right wheel motor 
23.15147 

0.72736 

-0.1642 

Left wheel motor 
30.4327 

0.9131 

-0.79022 

Table 9. Parameters of the right and left wheel 

A new set of inputs is applied this time for the WMR as shown in Table 10. The 

inputs are chosen such that they do not go beyond the saturation limits of the motors. 

Time(s) 

t<5 

t>5 

IC#6 

Right motor 

UR = 0.0F 

UR = 0.3 

Left motor 

UL = 0.0F 

1^=0.5 
Table 10. Initial conditions for the model verification of the motors 

Fig.39 and Fig.40 show the experimental vs. simulation data of the velocity 

components in the X and Y directions of the WMR for the IC#6 respectively. It is noted 

that the simulation and experiment results match each other initially but there is a notable 

deviation after some time period. This is primarily due to the noise in the vision sensor 

feedback. Better results could be obtained had angular velocity and translational velocity 

values been measured by suitable sensors rather than using central finite difference 

method to calculate those values from position and orientation values. 

85 



1.5 

Experiment 
Simulation 

I °-5' .M 
.'f \ 

jiit 

| -0.5 

2 

0 'J!,A.../, ,.•. Atiw'j/ J 

A;/'i'> w %1 .' 
..Mir" w: 

-1.5 
5 10 15 20 25 

Time(s ) 

Fig.39. Velocity of the WMR in the X direction for the IC#6 

30 

1.5 

1 -

1 
- t - ; 

G U 
c 1 
8 
>-
i> 

lo
ci

 

tu > 

0.5 

° ^ 

-0.5 

-1 

j 

if 

lliltt 

Experiment 
Simulation 

,#*r:V 
J,.», 'W 

?«li: ' J 

-1.5 

-2 
5 10 15 20 25 

Time(s ) 

Fig.40. Velocity of the WMR in the Y direction for the IC#6 

30 

Fig.41 and Fig.42 show the angular velocity of the WMR and the angle turned for 

the IC#6 respectively. 
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Fig.43 and Fig.44 show the position and path traveled by the WMR for the IC#6 

respectively. 
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The results show that the calculated values of parameters can be used for the 

actuator dynamics in the following swarm experiments in chapter 5. 



5. Application of Energetic Swarm Control to Wheeled 

Vehicles 

When recent results have been developed on swarm control, most often a point 

mass dynamics is considered in the literature. But making a swarm of real vehicles and 

controlling it have not been widely implemented due to a number of challenges such as 

nonholonomic behavior of vehicles, saturation constraints and uncertainties. There are 

only few results applicable to the real vehicle applications. On the contrary, a single 

WMR or hovercraft has been made to follow trajectories or be controlled experimentally 

but, even controlling a single WMR experimentally needs much attention and rigorous 

work due to the presence of nonholonomic constraints, saturation constraints of actuators, 

unmodeled dynamics of vehicles, and disturbances. 

This chapter discusses the application of the energetic swarm control with WMRs. 

Since energetic swarm control is developed for a point mass system, it can not be applied 

directly to the WMRs. A low level controller is developed with dynamic feedback 

linearization. As explained previously, many numbers of WMRs can be built in a quick 

time period to be considered as a swarm. Also, they can be efficiently manipulated over a 

limited space. Hovercrafts may be replaced with WMRs but they are hard to control over 

a limited space when they are many vehicles. However, WMRs can be controlled with 

much ease rather than hovercrafts because of their modeling equations governing the 

dynamics of the system. 
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5.1. Low Level Controller Design 

In order to implement the energetic swarm with a group of wheeled vehicles 

experimentally and to get a better tracking performance, inputs from a low level 

controller are preferred. Here, the high level control input is considered as the u, in (88) 

and high level dynamics is given by (88). Further, low level controllers are successfully 

applied experimentally to get better tracking performance in [45]-[46] where trajectory 

tracking of WMRs is considered. When high-level controller inputs are applied directly 

to a WMR, the trajectory tracking is largely poor and a low level controller is preferred 

for a better tracking performance. 

In the high level layer of energetic swarm dynamics, the point mass is considered. 

But a WMR consists of vehicle dynamics along with kinematic equations and it is 

nonholonomic as well. High level control inputs, generated from the control allocation 

approach, cannot be directly applied to the WMRs. The kinematic equation of WMRs is 

considered to be the lower level dynamics. As in [45] the dynamic feedback linearization 

is chosen as the low level controller since this enables the centroid of WMRs to track the 

desired trajectory. Input output linearization can be done as in section 2.3.2 for the low 

level dynamics but the proposed low level controller can be used to track the tip of the 

WMRs which is not desirable. Tracking the centroidal of WMR is preferred and the 

dynamic feedback linearization closely relates to the form of a PID controller which is 

used to track trajectories successfully. 

Let us consider an /'* member of the swarm. Its high level dynamics is given by 

(88). Let the output of the high level dynamics be 
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Xout -
Xr,i 

(163) 

The lower level dynamics is given by the kinematic equation of the WMR as in (58). The 

desired reference trajectory [xd . yd ,.]r that the WMR should track is the output from the 

high level swarm dynamics. That is 

• V ; 

yrj 
(164) 

The lower level dynamics can be converted into the linear system as in (87) by dynamic 

feedback linearization. 

Let the lower level dynamics of i'h member be 

(165) 

x,. 

y< 

A 
= 

"cos ft, 0" 

sin ft. 0 

i 

o
 

V,-

(a. 
_ I _ 

Define the output vector tj. of the lower level dynamics as 

n, X. 
(166) 

The first differentiation of the output vector x\t gives 

1,-
cos#,. 0 

sin ft 0 <0: 
(167) 

Since the TI,. is not affected by the coj, it is necessary to differentiate the output vector 

until both the inputs appear. In order to avoid differentiation of the original inputs, a new 

state c, is necessary such that it becomes the integrator for the original input. Define £(. as 

=> £: = a, 
(168) 

Differentiating (167) gives 
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1, 
cos 0i - £. sin 6>. 

sin 0j <f(. cos 0j CO, 
(169) 

Define [aj coj as follows and it is non-singular when <;. ̂  0 

a,. 
CO. 

cos 6j - <f(. sin 6>. 

sin 6*( £. cos 9i 
(170) 

where u, = [u1J u21 f is the new control input. Then the system (169) becomes 

\ = 
2>'\ 

(171) 

Then for the system (171) choose the control law as 

%dj + k
Pu(xdj ~xi) + kdu(xd.i - xi) 

ydJ + k
P2,i (yd,- - y'i)+kdu (yd,i - >,•). 

where kpU > 0,kdXi > 0,kp2l > 0,kd2i > 0 fori = 1,2, M 

Finally, the dynamic compensator is given by 

<f,. = u,,. cos 6i + u2. sin dt 

(172) 

co, = 
u2i cos^. -uu sin 6̂ . 

(173) 

£ 

In terms of control inputs, the angular velocities of the wheels of the WMR are given by 

(2v;. + »./) 

(174) 

<» /?. ; 
2tfD 

» i , / = 
(2v(.-»,./) 

2R, 
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Fig.45 shows the complete block diagram of the high level swarm layer and how 

it is combined with the low level layer. The high level layer is the lower part of the Fig.45 

and it consists of swarm dynamics, virtual controller and control allocation process. The 

low level layer is the upper part of the Fig.45 and it consists of WMR dynamics and the 

low level controller. For the high level swarm controller the inputs are the desired swarm 

centre trajectory, and the desired temperature and potential values. Based on those 

desired inputs, the virtual controller that tracks the desired swarm center and regulates 

desired temperature and potential values will be calculated using the sliding mode control 

method. Since the system is over actuated, using the control allocation approach, actual 

inputs that match the necessary virtual inputs will be calculated with saturation 

constraints. 

The output of the swarm dynamics is the trajectories of each individual member. 

The output of the swarm dynamics will be the desired reference trajectories for the 

WMRs. The low level controller tracks the desired trajectories of the high level swarm 

layer and these trajectories are generated online. Further, they are of chaotic type. Here, 

the dynamic feedback linearization will be used calculate the low level controller since 

the system (165) is an under actuated one and the inputs to the system (165) are generated 

online by the high level layer. There is no prior knowledge of these trajectory patterns 

and the dynamic feedback linearization is preferred than the sliding mode control 

method. However, in the high level layer, virtual controllers are calculated using the 

sliding mode control method since, once the virtual controllers are introduced in (104), 

(114) and (124), the system is neither under actuated nor over actuated. The sliding mode 
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controllers successfully track the desired swarm centre, desired swarm temperature and 

desired swarm potential with the presence of disturbance. 

5.2. Simulations 

In this section, the high level swarm dynamics and the low level dynamics are 

simulated together. Swarm consists of six members. The desired swarm centre trajectory 

and the temperature and potential values are chosen as 

(175) 

xd = 

Td = 

Jd = 

5.0cos(0 

5.0sin(0 

5.0 

5.0 

Table 11 shows the ICs of the swarm members in the high level layer and all other 

coefficients and positive constants defined in chapter 3. Here, the coefficients are selected 

such that the members will be homogenous however, different values can be selected if 

that case is necessary. 
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ICs 

xo 

vo 

mi 

h, 

b, 

d, 

Pt 

gat) 

gr(') 

wt 

s, 

<*i 

Member 1 

"o.o" 
0.0 

"2.0" 

2.0 

1.0 

1.0 

1.0 

"l.0sin(0" 

1.0sin(7)_ 

2.0 

2.0 

y 

2.0 
2 

y 

1.0 

1.0 

1.0 

Member 2 

~5.0-

_5.0_ 

"1.0" 

_1.0_ 

1.0 

1.0 

1.0 

~1.0sin(0" 

1.0sin(0_ 

2.0 

2.0 

y 

2.0 
2 

y 

1.0 

1.0 

1.0 

Member 3 

"l.O" 

1.0 

' 3.0 " 

-3 .0 

1.0 

1.0 

1.0 

"l.0sin<7)~ 

1.0sin(0 

2.0 

2.0 

y 

2.0 
2 

y 

1.0 

1.0 

1.0 

Member 4 

" 3.0" 

-3.0 

"-2.0" 

0.0 _ 

1.0 

1.0 

1.0 

"l.0sin(/)" 

1.0sin(0 

2.0 

2.0 

y 

2.0 
2 

y 

1.0 

1.0 

1.0 

Member 5 

"-2.0" 

_-2.0_ 

"-5.0" 

5.0 

1.0 

1.0 

1.0 

"l.0sin(0" 

1.0sin(0 

2.0 

2.0 

y 

2.0 
2 

y 

1.0 

1.0 

1.0 

Member 6 

"4.0" 

2.0 

"8.0" 

8.0_ 

1.0 

1.0 

1.0 

~1.0sin(0~ 
1.0sin(0 

2.0 

2.0 

y 

2.0 
2 

y 

1.0 

1.0 

1.0 

Table 11. Initial conditions of the high level swarm layer 

Table 12 summarizes the sliding mode parameters defined in section 3.2. Here the 

parameters "k, Aj are chosen such that the swarm achieves the steady state in a reasonable 

time. The parameters rjc ,TJT ,rjj are chosen such that the disturbance effect is completely 

removed from the system. The values of the boundary layers are chosen such as the 

chattering effects are completely eliminated from the system. One can note that the 

boundary layers sT and Sj are higher than the ec. This is because stabilizing the 
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temperature w.r.t the corresponding potential value needs more room and a control effort. 

Also these temperature and potential functions are highly nonlinear functions. 

Parameters 

I 

Vc 
£c 

VT 

Cr rp 

h 
Vj 
SJ 

Value 

"2.0" 

2.0_ 

2.0 

"l.O" 

1.0 

3.0 

0.5 

2.0 

3.0 

0.5 

Table 12. Sliding mode parameters 

Table 13 shows the saturation constraints used in the control allocation process in 

the upper level swarm layer. These constraints are chosen such that these limits are above 

the minimum allowable values. Again, homogenous bounds are chosen but one can 

choose different values of saturation constraints based on the required temperature and 

potential values. 

Saturation Constraint Value 

' mm 

i max 

"-25.0 

-25 .0 

"25.0" 

25.0_ 

Table 13. Saturation constraint values 
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Fig.46 shows the trajectory tracking of a WMR by the lower level control inputs. 

The reference trajectory is generated from the high level swarm dynamics. The initial 

conditions of the WMR are 

(176) 

The gains of the lower level controller (172) is selected as 

V 
* p 2 

* < / l 

. < / 2 _ 

"4.0" 

4.0 

4.0 

4.0 

These gains are chosen such that the error between the desired trajectory and the WMR 

trajectory is as small as possible and achieves steady state at a reasonable time. The 

possible potential singularities of the lower level controller are eliminated by resetting c, 

in (168) as follows, if <;, approaches zero. 

zy|£||<o.oi 
£ =0.01 # £ >0 (178) 

£=-0.01#<f,<0 

x. 

yt 

o, 
= 

2.0" 

3.0 

0.52 
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Fig.46. Trajectory tracked by the WMR generated by the high level swarm layer 

Fig.47 and Fig.48 show the corresponding lower level control inputs which are 

[v,. ^ f in (173) 
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Fig.48. Low level control input 
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Fig.49 shows the error between the desired trajectory and the trajectory followed 

by the WMR. The lower level controller achieves the desired objective. 
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Fig.50. Trajectory tracked by another WMR generated by the high level swarm layer 
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Fig.50 shows the trajectory followed by another WMR and Fig.51 shows the 

corresponding error plot. 
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5.3. Low Level Controller for Experimental Setup 

Although in simulations the lower level controller achieves good tracking 

performance of the online trajectories generated by the high level layer, in reality, the 

high level controller and the lower level controller should be synchronized for a practical 

setup due to disturbances or any other mismatches. In order to get a better tracking 

performance in a practical implementation, the two loops should be combined together. 

First, the actual inputs to the high level swarm layer will be found. Next, the high level 

swarm is allowed to generate the desired trajectories for a certain time period and the 

outputs of the swarm will be applied to the low level controller. The actual positions and 

velocities of each WMRs are then computed for the same time period. Finally, the high 

level swarm states will be updated according to the actual WMRs position and velocities. 

The following procedure summarizes the high level and low lever layer 

synchronization [56]. 

1) Firstly, the high level swarm is allowed to generate desired trajectories between 

t = [ti,ti + Tswarm] where ti is the initial time and Tswai7n is the synchronization time 

between the high level swarm dynamics and the low level dynamics. 

2) The desired trajectories for the lower level dynamics are the trajectories generated 

from the high level dynamics between time t = [/,,/, + Tswarm\. The outputs from the high 

level dynamics are applied as the inputs to the lower level controller for the time 

t = j7;.,;, + Tswarm] and the actual positions and velocities of the WMRs are found. 
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3) In reality there are differences between the trajectory tracked by the WMR and the 

trajectory generated from the high level swarm dynamics. In order to eliminate the error 

as much as possible, the states of WMRs are fed back to the high level dynamics. That is, 

the states of the swarm members in the high level swarm model will be re-initialized with 

the WMRs positions and velocities found in Step (2). 

4) Once the states are fed back, step (1) to step (3) are repeated until the end of the run 

time. 

The above procedure combines the higher and lower level layers at each time 

interval Tswarm . Furthermore, Tswarm is the key parameter which determines the tracking 

performance of WMRs and the stability of high level layer. In an inner loop and outer 

loop cascaded system, careful adjustment of the gains of both inner loop and outer loop is 

required. In general, the combined inner and outer loop system shows good tracking 

performance when the inner loop is significantly faster than the outer loop. 

Fig.52 shows the complete block diagram of the high level swarm layer and the 

low level layer. As explained earlier, two loops will be combined together at every time 

interval Tswarm where the WMRs actual states will be updated at that time. If Tswarm is 

higher than a particular value then the WMR will deviate from the desired trajectory by a 

certain amount due to the presence of disturbance, but if it is too small then there will not 

be enough time for the high level layer to adjust the disturbance caused by the state 

feedback. It may make the high level layer unstable. It is very difficult to regulate the 

desired temperature in this case due to its nonlinear behavior. Here in the following 

simulations in section 5.4 it will be found by trial and error. 
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5.4. Simulation Verification 

In this section, simulations are done to verify the synchronization of the high level 

layer with the low lever layer. As explained previously, the states of the high level layer 

will be updated with the states of WMRs at a time interval Tswarm . The two loops will be 

closed together. Again the swarm has six members. 

The desired swarm centre and the desired temperature and potential values for this 

case is 

|~5.0cos(0 
Xrf ~ 5.0sin(0 

J (179) 
rrf=io.o 

J r f=10.0 

The initial positions and velocities of the swarm members in the high level layer will be 

same as that of in the Table 11. Also, any other coefficients and parameters will be kept 

the same as that of in the Table 11. However, the sliding mode control parameters will be 

updated as in Table 14. Since the states are fed back, more control effort is necessary and 

the parameters will be chosen such that the tracking errors are as small as possible in the 

high level and low level layers. 

Here the parameters ^,A/ are chosen such that the swarm achieves the steady 

state in a reasonable time when it gets external disturbance by the state feedback from the 

low level layer. The parameters rjc ,rjT ,rjj are chosen such that the disturbance effect is 

completely removed from the system. The boundary layer values will be selected such 

that the chattering effects are completely eliminated from the system. However, the price 

of large boundary layer is the tracking or regulation error at the steady state of the 

system. 
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Parameters Value 

X 

Vc 

£ c 

VT 

CI
 rr 

*J 

Vj 

£ j 

[3.0 3.0f 
5.0 

[0.1 o.if 
5.0 

0.6 

5.0 

5.0 

0.6 

Table 14. Sliding mode parameters 

Further, the saturation constraints will also be relaxed as shown in Table 15. 

Saturation Constraint 

uex' . 
1 mm 

' max 

Value 

"-50.0" 

-50.0 
"50.0" 

50.0 

Table 15. Saturation constraint values 

The Tswarm will be selected as 1.0. The value is a good choice as shown in Fig.59 

and Fig. 63. If the Tswarm is beyond this value then the errors will be high due to the 

disturbance applied to the WMRs. The disturbance will be selected as 

[1.0sin(2f) 1.0sin(2/)]r. However, if the Tswarm is reduced further, the high level layer 

does not have enough time to adjust the disturbance and needs more control effort to 

track the temperature and potential values and to stabilize the system. 

Fig.53 shows the trajectories of each swarm member in the high level layer. 

Fig.54 shows the swarm centre and the desired swarm centre. Since the WMRs' positions 

are updated after a certain period of time, the tracking is not smooth but it recovers each 

time. The swarm centre deviates from the desired one, but it quickly recovers 
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Fig.55 shows the temperature regulation at the desired value. Since the WMRs' 

positions are updated, in this graph too, the effects of that are visible. 
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Likewise Fig.56 shows the potential regulation and Fig.57 shows the 

corresponding swarm size. 
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Fig.58 shows the one of the swarm members' high level control input. As 

mentioned, the saturation limits are set to + /-50 during the steady state condition. 

so;--
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In Fig.59 the trajectory followed by a WMR is shown and the corresponding 

tracking error of the trajectory is shown in Fig.60. 
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In Fig.61 and Fig.62 the corresponding low level control inputs are shown. Even 

though there are no saturation constraints directly set for the low level controller, it is 

obvious from the simulations that the bound on high level swarm controller generates 

bounded low level control inputs. 
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Fig.63 shows the trajectory tracking of another WMR. 
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Fig. 64 shows the corresponding error plot of the tracking. 
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Finally, Fig.65 shows the trajectory followed by another WMR in the swarm. The 

error between the desired trajectories and the trajectories followed by any WMR is 

reasonable one considering the kind of trajectories generated by the high level layer. 

These are online trajectories of highly chaotic type. There is no prior knowledge of these 

trajectories. The low level controller successfully follows the trajectories and enables the 

energetic swarm to be successfully applied to the WMRs. 
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6. Conclusion and Future Works 

In this thesis, the energetic swarm control approach from [36]-[38] is explained 

and the proposed controllers in [48] are verified through numerous simulations of the 

high level swarm control system. The main contribution of this thesis is the application of 

energetic swarm control to WMRs using dynamic feedback linearization as a low level 

controller. Since the high level energetic swarm layer is a point mass dynamics, the high 

level inputs cannot be applied directly to the nonholonomic WMRs. Further, the 

implementation algorithm of the lower level layer enables better trajectory tracking 

performance while coping with disturbances and keeps the high level controller tracks the 

desired temperature and potential values. 

Also, the saturation constraints on the high level controller are studied 

numerically for the steady state case. It is found that the pseudo inverse is not adequate 

enough to handle the control allocation to generate feasible high level control inputs 

through out the run time. The pseudo inverse is replaced with the SNOPT optimization 

solver and the actual high level swarm inputs are generated using SNOPT for the control 

allocation approach. Although SNOPT generates satisfactory high level inputs, there is a 

minimum allowable limit and below that SNOPT fails to match the virtual inputs. The 

minimum allowable limits are numerically calculated for the steady state case for a 

certain operating region. Generally, the minimum allowable limit is a nonlinear function 

which depends mainly on the temperature and potential values, and their derivatives w.r.t 

time. 

Finally, the modeling parameters of the servo RC motor are identified using 

various simulations and experiments. RC servo motors are used on WMRs and it is 
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important to study the modeling parameters of the real actuators in order for the 

experimental implementation of the energetic swarm. 

Future research focuses on modeling the high level swarm dynamics with 2D and 

3D rigid body dynamics. It is important to get a mathematical equation that correlates the 

minimum allowable limits exactly for the steady state case and transient state case. Future 

research will also investigate the saturation effects on the lower level controller as well. 

Furthermore, the lower level controller will be expanded such that it is robust to noise 

and disturbances. Finally, the energetic swarm controller will be applied and tested on 

various types of vehicles such as hovercrafts, helicopters and robotic fish systems. 
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