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ABSTRACT

Energetic Swarm Control with Application to Multiple Vehicle Systems

Sivaram Wijenddra

Control and coordination of multiple vehicle systems has been a very active area
of research in recent years. Recent advancements in computation, communication, and
mechatronics have allowed the development of large groups of vehicles, often referred to
as swarms, in order to accomplish complex missions over large areas with redundant fault
tolerant capabilities. Existing swarm control work has addressed swarm aggregation,
foraging swarms, swarm formation, and swarms that track and enclose targets. Energetic
swarm control is another significant recent contribution to the swarm control literature. It
allows the control of the internal kinetic energy and potential kinetic energy of the swarm
system in order to achieve tasks such as sweeping an area, patrolling, and area coverage.
This thesis involves the application of energetic swarm control to wheeled mobile robots.
A lower level control layer for wheeled mobile robots, based on feedback linearization, is
developed and combined with a higher level particle based energetic swarm controller.
Furthermore, input saturation constraints are addressed using a suitable control allocation
approach. An experimentally verified model of a wheeled mobile robot is developed and
used to demonstrate the capabilities of the new energetic swarm control approach for

wheeled mobile robots.
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1. Introduction

In recent years many results have been published on co-ordination and
cooperative control of multi agent systems. Earlier, researchers focused their attention on
single mobile robot control for example, trajectory tracking of Wheel Mobile Robots
(WMR) or analyzing the nonholonomic properties of WMRs. Coordination and control of
the multi agent system have recently become possible due to the advancement of
technology, computational power, less cost per unit. One important area, such as
formation control, has evoked the interest of researchers in swarm applications [1].
Formation control helps to increase robustness and redundancy of the system, reduce the
system cost and increase flexibility and efficiency [2]. Many applications need a
formation control such as military missions, rescue in hazardous environments, sweeping
an area, increase throughput of highway systems, and satellite clustering [2].

Inspired by the results of formation control, the control community has been
working on importing biological principals to build the biologically inspired system very
recently. Biological systems have successfully evolved and adapted to the highly
complex and competitive nature tuned by evolutionary process over a million of years
[3]. Their operational principles can be useful in complex engineering applications. It is
found in nature that many living beings behave in groups such as flocks of birds, schools
of fish and herds of animals [1].

Swarm like behavior gives many advantages to the group rather than individual
behavior. For example, swarm behavior helps to find food easily and avoid predators,
thus enabling the chance of survival [4]. Swarm members perform complex tasks that can

not be achieved by a single member individually [5]. Further the swarm gets more

1



environmental information which can not be obtained by a single individual since it has
limited sensing abilities [6]. Also, in military applications swarm members resist the
outer aggression of an enemy more easily and improve their defiance ability [6].

Though the swarm behavior has advantages over an individual behavior, it has to
deal with the computational burden since, the more the members the higher the numerical
calculations. However, advanced powerful computers help to overcome this problem to a
certain extent. Further, since there are many members, they should not collide with each
other at any given time. Also, any of the members should not disperse from the swarm.
Other than these issues, proper communication between members should be maintained.
They have to update their states, which are position and velocity, to other members in
order to maintain their cohesion. There will be time delays in transferring these data over

the communication line.

1.1. Literature Review

This section presents the literature review on swarm control. Firstly, the swarm
control on aggregation, formation, foraging, and target tracking along with various other
applications will be discussed. Finally research done so far on energetic swarm control

will be discussed.

1.1.1. Swarm Control

Swarming is found among single bacteria to large mammals in nature. Generally,
there 1s no group leader and each individual behaves according to the interaction among
themselves and certain environmental conditions. Their operation principle can be

applied to coordinating unmanned air vehicles, formation control of mobile vehicles,



sweeping an area, control of unmanned under water sea vehicles, formation control of
satellites, encircling a moving target or capturing it and military applications [4] ,[1].

The main issue of swarm control is how to coordinate and model large groups of
mobile robots. The general idea to model the swarm behavior is to have a long range
attraction and short range repulsion between individuals [1]. Artificial potential functions
have been widely used for modeling the attraction and repulsion between members. In
recent years artificial potential functions have been used for many applications such as
mobile robot coordination towards the goal, robot navigation, obstacle avoidance,
formation control and swarm control of autonomous vehicles. For example, they have
been used for trajectory tracking of WMRs [7], [8], tracking multi agent systems [9],
robot navigation [10], collision or obstacle avoidance [11]-[12], [13], [14], formation
control of multi agent systems [12], [15] or space craft swarm navigation [16]. In [17] the
authors considered the flocking of mobile agents where artificial potential functions are
used for cohesion and collision avoidance. It is shown that all the agents travel at the
same heading velocity and direction keeping the cohesion between them. Lyapunov and
graph theories are used to analyze the stability of the mobile agents.

Artificial potential functions do suffer from many research related problems. One
main issue is the local minima. When the artificial potential functions are used for
formation control, the mobile robots may get trapped in local minima of the artificial
potential functions if they are not close enough to the global minimum. Another example
is, when artificial potential functions are used for obstacle avoidance, it is likely that if

the goal 1s closer to the obstacle, then the mobile robots may not reach the goal.



In [18] the authors address the problem where artificial potential functions are
used for robot formation, migration and obstacle avoidance. Authors address the
problems for cases such as when a goal potential is overwhelmed by an obstacle
potential, an obstacle potential is overwhelmed by a goal potential and an obstacle
potential is overwhelmed in a swarm. The structure of the total potential is changed to
multiplicative and additive for the above purpose. In [19] a virtual obstacle is used to
avoid problems related to local minima.

Research done on swarm control so far can be basically categorized as swarm
aggregation, swarm formation, foraging swarm and finally target tracking and enclosing
swarm. In one of the early works [20], the authors studied the stability analysis of a one
dimensional swarm. Swarm cohesion is analyzed in discrete time for one dimensional
case with asynchronism to time delays.

A. Aggregation of Swarm

Aggregation i1s a fundamental swarming behavior seen in living beings. In order
to form a swarm some kind of aggregation is expected. Recent research papers focus
more on swarm aggregation. First order swarm aggregation is given in [1] . The authors
used artificial attractive/repulsive functions for modeling the swarm. It was proved that
the swarm agents move towards the swarm centre and form a hyper ball around it in a
finite time. The swarm centre is stationary all the time. Also, a conservative explicit
bound for the swarm size is derived. Lyapunov based proofs are provided for the stability
of the swarm. When the swarm moves towards the centre, as the time progresses all the

members become stationary and aggregate around the swarm centre.



Different classes of attraction and repulsion functions that can be used for swam
modeling and aggregation is discussed in detail in [21]. Three different types of functions
namely, linear attraction bounded repulsion, almost constant attraction and unbounded
repulsion, and almost constant attraction and unbounded repulsion are discussed. Also for
each type of attraction and repulsion functions swarm stability is analyzed and the bound
for swarm size is calculated. Unbounded repulsion functions are very practical since they
avoid the collision of agents. Also, these functions can be modified such that the agent
dimensions can be taken into consideration.

Swarm aggregation in a pre defined shape in 2D space is given in [22]. The
members from initial positions enter inside the shape, spread over the contour and
become stabilized. Artificial force fields are used to force the members towards the shape
and keep the swarm cohesive. Further, it is shown that when the shape is changed then
the agents can re arrange them selves into the new shape and if some agents are removed
or added, then they will again re arrange in side the shape. Also obstacle avoiding of
agents towards the shape is also discussed.

In [4] the authors have considered a double integrator model for the swarm
aggregation opposed to the model used in [1]. Swarm cohesion and the size are analyzed
for various classes of attraction and repulsion functions given in [21]. For the double
integrator model it is shown that the swarm aggregate around the swarm centre. The
swarm centre is not stationary here and it travels with a constant velocity. Also, when the
time moves on each individual converges to the velocity of the swarm center.

In [23] the authors considered swarm aggregation in a 2D space. Three artificial

forces are considered for attraction, repulsion and friction forces. Friction force makes the



agent come to a complete stop when they are stabilized around the point considered. The
whole swarm can be modeled as a second order ordinary dynamic equation and its
stability and cohesion is analyzed.

Swarm aggregation and formation based on the school fish model is considered
using motor schema method in [6]. Each member has three reaction regions: attraction,
parallel area and reaction area. Further, according to the relative angle between two
agents, each agent has five regions of division for the smooth turning of swarim. Five
motor schemas basically move to goal, avoid obstacles, swirl obstacles, school vector and
noise vector are used here. These motor schemas are used to aggregate, avoid obstacle
and reach the goal.

B. Formation of Swarm

Formation control is considered as making mobile robots to form in a specific
geometric shape by a suitable control algorithm [6], [24]. A good review on formation
control is given in [2] where formation control strategies such as a behavior based
approach, a leader follower approach and virtual structure methods are discussed.

In the leader follower approach, the leader is assigned the task and the followers
have to stay with a corresponding position to the leader. Generally, in these approaches,
the controller is centralized and any failure by the leader makes the whole system a
failure. In [25] and [26], leader follower based formation control for nonholonomic
mobile robots is considered with obstacle avoidance where robots can change their
formation in order to avoid an obstacle. The behavior based approach [27], [28] is

normally decentralized but stability proofs are generally difficult. Basic behaviors such as



moving to a goal, obstacle avoidance and formation keeping will be specified and the
control action is weighted with these behaviors regarding to the situation [12].

In [29], the authors worked on controlling large number of robots to make
formations on 2D shapes specified by implicit functions that are weighted sum of radial
basis functions generated by interpolating from a set of constraint points. Gradient decent
technique is used so that robots converge and spread along the 2D curve of the implicit
functions. Repulsive terms are added to the controller to avoid collision between
members. Also, when the shapes are dynamically split and changed the robots converge
to the desired locations.

In [24] the authors used bivariate normal functions to control vector fields that
swarm travel on to create formations. Limiting functions are used for tight control over
vector fields from the center. Swarm geometry, individual member spacing and obstacle
avoiding are addressed and simulation results are given to validate the results. Swarm can
track line trajectories or sinusoidal trajectories while keeping the desired formation such
as an ellipse.

The authors in [5] considered the vehicle dynamics for the swarm modeling in
contrast to [1], where a first order model was used. A sliding mode control method is
used to find a controller which makes the swarm agents follow the dynamics of [1] when
they reach the sliding manifold in finite time. Further, when the swarm aggregates,

making a formation by choosing different pairs of artificial potential is also discussed.



C. Target Tracking and Enclosing Swarm

Tracking a target or encircling the target is considered with the swarm control
since recent years military applications require autonomous vehicle protection or
capturing an enemy. In [30] the authors control the swarm in a formation around an
object such as military convoy protection. The swarm will enclose the convoy in a
circular or ellipse formation. Artificial potential fields are generated to create vector
surfaces around the objects using normal and sigmoid functions. Swarm formation band
is chosen from the centre of convoy such that the vector field outside the band from both
sides pulls the swarm into the band to encircle the convoy. Limiting functions are used to
control the vector fields inside and out side the band where the swarm needs formation.

The authors in [3] developed algorithm based on artificial potential functions to
capture or intercept dynamically moving targets. Firstly, they worked with a kinematic
model for both the target and pursuer, and derived controller to capture the target based
on negative gradient of the potential function. Later, vehicle dynamics was used for the
pursuer and the sliding mode method was used to enforce the system dynamics such that
when it reaches the sliding surface the pursuer recovers the kinematic model developed
earlier.

The authors in [31] extended their results of [3] with multi agents tracking a target
and making a formation. Two objectives were achieved. One was tracking and enclosing
a target and the other one was when the agents were enclosing the target they were
possibly making a certain formation. The potential function contains two terms. One is
for the formation control and the other part is for the agent-target tracking. A carefully

chosen potential function which has global minimum when agents reach the necessary



inter individual distance between target and themselves, makes the formation control and
tracking control. Further, vehicle dynamics is used for the agents and sliding mode
control is used to achieve the objectives. In [32] the authors consider agents with
nonholonomic dynamics for target tracking.

D. Foraging Swarm

The authors in [33] modeled foraging swarm that searches for food or rich
nutrients in an environment avoiding obstacles. In [1], [21], [5] the swarm centre is
stationary but the individuals try to aggregate around the swarm centre. However, in [33]
the swarm centre is moving towards the favorable regions as well as keeping the
cohesion. The authors consider quadratic, Gaussian and multimodal Gaussian
attractant/repellant profiles to model the foraging swarms. Further, bounds on swarm size
and cohesion analysis are given in detail.

Same authors in [34] further extend their results in [33] for the quadratic,
Gaussian and multi modal Gaussian profiles and they consider a plane profile as well.
Also for each profile numerous simulation results are provided to validate the theory and

understand the foraging swarm behavior.

E. Other Applications of Swarm

In [35] , the authors show how the swarm and a human move together and the
swarm follows the human. Here each robot has a local sensing ability. In [1], [5], [21],
[33]-[34] and [36]-[38], each member has attraction and repulsion from all of the
members. In [35] and [39] attraction and repulsion from other members will be due to the

neighbor of the swarm. This will be highly helpful in making the swarm decentralized



and limit their sensing abilities. Simulation results show that the swarm can follow a
human through a narrow corridor while avoiding obstacles.

Controlling a swarm in three dimensions based on an abstraction that reduces the
planning problem from a higher dimensional space to a lower dimensional abstract space
is considered in [40]. The abstraction is a product structure of the group and shape which
is nine dimensional consisting of six dimensional group for the position and orientation
of the swarm and three dimensional shape for the general shape of the swarm. Simulation
results show a swarm move through a three dimensional corridor and changing their
shape when the corridor changes its shape and the size.

The authors in [41] extended their results in [1], [5], [33], [34] be applicable for
non-holonomic vehicle dynamics. Basically two sliding mode surfaces were defined for
the translational speed and one corresponding to the orientation. Actual inputs are made
to track the velocity reference and angle reference. Swarm aggregation, formation and
foraging are considered with nonholonomic dynamics and simulations are given to
validate the results. The sliding mode control is the widely used control method here. In
mobile robot applications, due to its handling of robustness, the sliding mode control is

one of the mostly used control methods.

1.1.2. Energetic Swarm Control

The energetic swarm control basically studies the internal energy associated
within the system similar to that of molecular dynamics. For example, a glass of water
kept on a stationary table doesn’t have any kinetic energy on a macroscopic level, but if
we look at it on a microscopic level, the water molecules travel at a very high speed and

it has internal kinetic and potential energy associated with it [42].
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In [37], the authors have defined different types of energy terms that are similar to
the molecular dynamics theory. The total energy of the system is considered to be the
combination of total kinetic energy and total potential energy. The total kinetic energy
consists of two terms. One is the internal kinetic energy and the other one is the bulk
kinetic energy. Total kinetic energy is the sum of the kinetic energy of the individual
members during the translational motion. Bulk kinetic energy is the kinetic energy of the
swarm center where the swarm centre is the average position of the individual members,
similar to that of the centre of gravity in a rigid body.

Similarly, the total potential energy is the sum of the internal potential energy and
the bulk potential energy. For the time being, the bulk potential energy is considered to
be zero but when we consider a swarm moving in a 3D space under a gravitational force,
we can consider the effects of the bulk potential energy. Internal potential energy is due
to the attraction and repulsive forces acting on members by the other members.

Swarm internal energy is defined as the sum of the internal kinetic energy and the
internal potential energy which is similar to the internal energy of the molecules in
molecular physics theory. As discussed above, the internal kinetic energy is the
difference between total kinetic energy and bulk kinetic energy. Since we consider bulk
potential energy to be zero, the swarm internal energy is the difference between the total
energy and bulk kinetic energy.

The swarm temperature is the most important term which manipulates the internal
energy associated within the system. In [37] , the temperature is defined as the average of
swarm internal energy. When the temperature is increased the agents are more aggressive

and energetic. That means they travel faster and try to cover more area. If we plot the
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velocity distribution, we would find that higher numbers of vehicles attain a higher
velocity when we increase the temperature. This is similar to the Maxwell-Boltzmann
velbcity distribution where, when the temperature is increased, the ideal gas molecules
get more energy and the density of molecules with higher velocity increases [43].

In [37], two control objectives are achieved. Temperature is regulated at various
desired temperatures and the swarm centre trajectory is tracked simultaneously. A PD
controller is used for swarm centre trajectory tracking and feedback linearization 1s used
for temperature regulation. In [34] the swarm centre is stationary all the time. But in an
energetic swarm this is not necessarily the case. The swarm centre may be stationary if
desired. Also in [34] when the agents aggregate the individual agents become stationary.
The energetic swarm aggregation is the opposite of this aggregation. In an energetic
swarm, the swarm centre can be stationary but the individual agents will be in motion all
the time.

The temperature definition was changed in [38] from [37]. Here the swarm
temperature is defined as the average of swarm internal kinetic energy. This is closer to
the statistical mechanics since the temperature only relates to the velocity distribution.
For the first time, to an energetic swarm, the swarm cohesion is analyzed. Simulation
results are given to understand energetic swarm and velocity distribution.

Energetic swarm theory is applied for a group of WMRs in [44]. The lower level
controller makes the tip of the robot follow the desired trajectory which is generated from
a high level controller of the swarm. Repulsion function is modified such that each
agent’s private area is considered with dimension. In {36}, a potential energy controller is

developed further. The high level controller has three objectives. It has to track the swarm
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centre trajectory and regulate temperature and potential energies. The potential energy
controller basically controls the swarm size by which the swarm is made cohesive all the
time.

In [36]-[38] and [44], feedback linearization method is used to achieve the
objectives such as tracking the desired swarm centre, desired temperature and desired
potential. However, the stability of the system depends primarily on the initial conditions
of the swarm members since the feedback linearization method is used. Also, the
controller can not handle any disturbance applied to the system. In [48], energetic swarm
control theory is developed with the sliding mode control method. The initial condition
problem is eliminated and since the slide mode control method is a robust one, it handles
any disturbance applied to the system. Further, the control allocation is introduced and it
better solves the over actuated problem. The control allocation process distributes the

control inputs among the actuators.
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1.2. Thesis Objectives and Contributions

In this thesis, the energetic swarm control approach from [36]-[38] is explained
and the proposed controllers in [48] are verified through numerous simulations of the
high level swarm control system. It is found that the pseudo inverse method is not
adequate enough to handle the control allocation process. SNOPT [49], an optimization
solver, is used for the control allocation process. SNOPT efficiently solves the control
allocation approach and handles saturation constraints on inputs. However, the saturation
constraints cannot be lowered than a certain threshold value and the factors determines
this minimum allowable value is studied. Allowable limits of the saturation constraints
are found for a particular operating region of the potential and temperature values for the
steady state case.

The main contribution of this thesis is the application of energetic swarm control
to WMRs using dynamic feedback linearization as a low level controller. A lower level
controller is necessary in order to apply energetic swarm on WMRs. This low level
controller improves the trajectory tracking of WMRs. Further, the high-level and low
level layers are combined together for the experimental implementation. Finally, the
parameter identification of servo motors is done which improves experimental
implementation of the energetic swarm.

The remaining chapters are organized as follows. Chapter 2 gives the background
material on swarm control, tracking control of vehicles and the control allocation
approach. Chapter 3 discusses the energetic swarm control and control allocation with
and without saturation. Chapter 4 studies in detail the parametric identification of WMRs.

Chapter 5 explains the procedure of low level control and practical implementation of
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energetic swarm control with WMRs. Finally, in chapter 6 conclusions and future works

are given.
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2. Background Material

This section presents the necessary background material to understand the swarm
control on swarm aggregation, swarm formation and foraging swarm. Further, the theory
of control allocation which finds the actual control inputs for the energetic swarm will be
discussed. Finally, tracking control of vehicles will be presented along with the tools to

analyze nonholonomic properties of vehicles.

2.1. Swarm Control

The mathematical modeling and results of swarm aggregation will be presented as
in [1]. Further, different class of attraction and repulsion functions will be discussed as in
[21]. Swarm formation with vehicle dynamics is given as in [5] and finally, foraging
swarm in an environment will be discussed as in [33] and [34]. These essentially help the
reader to understand the swarm control before proceeding into energetic swarm control.

A. Swarm Aggregation

Consider a swarm system moving in an n-dimensional space and having M
members with the following assumptions. Each member is considered as a point mass
and its dimension is ignored. The motion is synchronous. The swarm motion that models

the aggregation is described by the following first order equation

X, = Y g(x,-x,) (1)

J=1j#i

where for each member i, i=1,2,...,M , the position is expressed as x; € R", g(x, —-X;)
is a function to create the attraction and repulsion between each members. g(x, —X) is

given by
16
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where the norm is the Euclidean norm and a,b,ce R*. g(x, —x ;) consists of attraction

and repulsion terms. When the distance between two agents is larger than a certain
distance &, the agents try to attract each other since the attraction function is more
dominant than the repulsion. But when they become lesser than the &, the repulsion
function will be more dominant and the agents will try to repulse each other. Between
any two members, the resulting effort of attractive and repulsive forces will act along the

line that connects them. The & will be given by

5= /ch{é) (3)
a

The resulting motion of each member is then the vector summation of attraction

and repulsion effects by the other members. The swarm centre X € R” is given by

e

4

i=]

>
i

The swarm centre in (4) with attraction repulsion functions given by (2) is stationary for

all the time due to symmetry of g(-)in (2).

A free agent in a swarm is said to be if “xi —xj”>5,‘v’je {1,...M},j#i. The
forces acting on the free agent are due to the attraction forces by other members since its
distance is greater than the o .

A free agent in a swarm given by (1) with attraction/repulsion function g(-) given

by (2) moves towards its swarm centre at time 7. A Lyapunov function based proof

shows that the free agent, which has only attraction from all its members, starts to move
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towards the centre of the swarm. Therefore the members of the swarm start to form a
cluster around the swarm center and aggregate around it.
It can be shown that the swarm members in aggregation will converge to a hyper
ball given by
B.(x)={x, :”X:‘ —i” <r} (5)

where 7, the radius, which depends on parameters of (2) is given by

f{\gexp(—%) ©)

The convergence of swarm towards the swarm centre will occur in a finite time given by
_ 1
{ =max{-—In| ————— 7

where Se{l,..,M} .
These results show that the agents from any initial condition will be in motion towards
the centre of the swarm, aggregate and form a cluster in a finite time. The bound 7 is a
conservative one and the real swarm size will be much smaller than the 7 .

Further, once the swarm aggregate around the swarm centre and when the time

t = oo, motion of each member is given by x(z) - Q,

T. . .
where x =[x] . . x,] is the state vector and the set Q, is given by

Qez{x:)'{:O} (8)
This result shows that once the swarm agents are in cohesion around the swarm centre,

the agents become stationary as the time progresses.
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B. A Class of Attraction and Repulsion Functions

Attraction and repulsion function plays a vital role in swarm modeling. It keeps
the swarm cohesive and repulses the members when they are too close. Two different
classes of attraction and repulsion functions will be discussed with their bound on swarm
size. An interested reader can find one more class of attraction and repulsion function in
[21].

A general case of attraction and repulsion function can be written as

y yiD—g.(v]1 )

B

g(|vl) = —ylg.(

where g,:R"— R" is the magnitude of the attraction for the swarm cohesion and the
term g, :R" — R is the magnitude of the repulsion for the collision avoidance between
the agents. The g, is more effective in longer range and the g, is more dominant in

shorter range. The norm is the Euclidean norm.

The following two assumptions are made for the g(-). It is assumed that at a
certain distance o, the attraction and repulsion balance each other such that

g,(6)=g,(6). When ”y||>5 , the attraction is higher than the repulsion such as
2.y > g,(y]) and when |y||<&, g,(y]) <g,(|¥]). Another assumption is that we
choose g,(-) and g,(-) such that we find functions J,:R" —>R"and J :R" > R",

corresponding terms in the artificial potential function, to satisty V_J (

vl = ve.(y)

and V. J, (

) =ve, (v

The artificial potential function J : R"™ — Ris given by
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M- M
J(x) = Z Z Talyh =7 (v
M-1 M (10)
=2 2D

i=l j=i+
where x=[x/. . x.,] is the state vector. Then the equation (1) can be rewritten in
terms of J(-) as

:—VXiJ(x) 7 (11)

This can be interpreted as each agent is moving towards the negative gradient of the total
potential J(x) of the swarm. Each agent is trying to minimize its energy and so does the
swarm when they aggregate around the swarm centre.

Now consider the first case of attractive/repulsive functions. The first case is the

linear attraction and bounded repulsion function. Then the g,(-) will be given for this
case 1s

ga(lyp=a (12)
where a >0 1s a positive constant . Then the error is defined as

e =X;,—X (13)

It can be shown that when ¢ — « the error is bounded by

(14)

o< S, -x|)

j]_/#l

If the g,(-) is bounded by some positive constant b > 0, that is g,([‘xi - xj“ )”xi —xj“ <b

then the bound on error is given by

e <ZM =D b

Y (15)
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This gives the bound on the swarm size. Further this condition will be achieved in a finite

f =max —Lln &’ 16
Cies | 2a | 2V,(0) (16)

where S € {l,..,M} and V; is the Lyapunov function given by

time given by

1
Vi==eje; (17)

The second case considered is the linearly bounded from below attraction and
unbounded repulsion function. This function is very useful in practical applications since

we have unbounded repulsion and the agents won’t collide with each other. The g (-)
will be given for this case is

ga(lyp=a (18)

where a >0 is a positive constant and unbounded repulsion function g, () is given by

(19)

where b > 0 is a positive constant. It can be shown for this case that the error is bounded

as
M 2
2aMy |le;|| <bM(ar-1) (20)

i=1

This implies

1 &, 0 b
——M_lgllei)l <5 1)
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M 2
Then, taking the root mean square value of the error and defining ¢, = "—A%Z)]e,n , we
i=1

can have

e < /5”5 22)

This gives the bound on the swarm size. Further, the unbounded repulsion can be

modified to cope with the dimension of the vehicle if we modify the repulsion function

such as  lim gr( X, —X JH )Hx,—x j“—mo where ¢, is the radius of the private area

+
i-x,|»a

concerned.
It is obvious that one has to select carefully attraction/repulsion functions for the
swarm modeling. Attraction/repulsion functions are key factors for the swarm cohesion

and bound on the swarm size.

C. Formation and Aggregation

In previous sections the dynamics considered is the first order point mass
dynamics. In this subsection the swarm formation and aggregation will be discussed for
swarm members with vehicle dynamics and the sliding mode control method is used to
find the controller.

Consider a swarm system with M members where each member is moving in an
n- dimensional space. The dynamics of the motion of each member is given by

M, (x)X, +f.(x,,x,) =, (23)

where M, (-)e R™" is the mass or inertia matrix, for each member i, i=12,...,M , the

position is expressed as x;e€R", f(,)eR" contains the centripetal, Corriolis,
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gravitational and disturbances effects and finally, u, € R” is the control input for the each
member.

The term f,(-,;) can be given in two parts as in (24) with () represents the
known part and f(-;) contains the unknown part. That is

f.(x,,x,)=f (x,x,)+f"(x,,%,) (24)

127

Further, let us assume the following bound on unknown part f;'(-,-) given as
6 (%) < il <i<M (25)
Similarly, the upper and lower bounds for M, (-) is given by (26) and it is assumed that it
is non-singular.
MIyI <y, (x)y <y (26)
where y € R” is an arbitrary vector and M, >0 and M; are known.

Sliding mode control method is used to calculate the controller which forces the
velocity of members along the negative gradient of potential function when the system

reaches the sliding manifold.

Let us define the sliding manifold s, =[s, . . s,]" as
s; =X; +V, J(x) (27)
where x = [xlT .o xL ]T is the state vector and, when s; =0, we have
X; ==V, J(x) (28)

which is the original equation used for the swarm aggregation in (11)

The time derivative of s;is given as

23



§; =X; +—§;(in~’ (X)) (29)

In order to satisfy the sliding condition ——s s —an|s , where 7, >0, the

controller is developed as

u, = —diag(k,)sgn(s;) + fik (30)
where k, =[k, . . k,} and sgn(-) is the signum function. k. Vj=L12,..,n is chosen as
k> (M. 7+T+n,)
f'>ﬁ if, ¥ g+, (31)

1

The potential function has to be chosen such that <J where J is known.

0
é;(vxiﬂx))

All the agents reach the sliding manifold in a finite time given by

- v,
t = max {M} (32)
i=l,..M 771'
where Vis given by
1 7
Vi=—s;s; 33
5 (33)

Formation is achieved by introducing formation constraints such as

[xi—x;|=dy1<i,j<m (34)

where d; ; is the desired inter agent distance. When the agents are in formation their
relative distance is pair dependent. Let &; denotes the distance between the two agents.
Then, for each pair of agents /,j different artificial potential functions are considered

such that J; =d; ;. One can choose pair dependent artificial potential functions J Y(x)

such that unique minimum occurs at d; ;. If the artificial potential functions are chosen
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M-1 M
such that J(x)= Z ZJ Y(x) has unique minimum at the desired formation, then the
i=] j=i+}

result is global, otherwise only local stability is found.

D. Foraging Swarm

In the previous three sections, the swarm centre is stationary all the time but the
individuals are on the move towards the swarm centre to aggregate around it or make a
formation. But here the swarm centre is moving and foraging in an environment such as
to search for food, to find the target or to avoid unwanted obstacles. Swarm members,
seeking swarm centre, move towards the food or target location since the swarm centre is
moving towards a favorable region and the swarm members aggregate around the swarm
centre. Foraging swarms can be modeled with plane, quadratic or Gaussian type profiles.

The equation that models the foraging swarm is given by

x, ==V, 5(x)+ ) g(x,—X,) (35)

j=Ytj=#i
where & :R" — R is the attraction or repellent profile. For example, it can represent a
profile of nutrients. It is assumed that if & < 0 the nutrient is rich, & > 0 means a noxious

environment and & =0 represents a neutral one. The g(-) considered here is as in (2).

The swarm centre velocity is given by

- 1 &
x=—ﬁgvx,o(x» (36)

This shows that the swarm centre is now moving along the average of negative gradient
of individual profiles.
Now, let us consider the motion along the plane attraction/repellent profile given

as
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F(y)=a,y+b, (37)
where a, € R", b, € R and from (36), the swarm centre velocity is given by X =-a_.
That is the swarm centre moves towards the rich nutrients where the minimum occurs
with constant velocity. Also, it can be proved for this profile that the swarm stays in

cohesion.

The next type of profile is the quadratic attraction/repellent profile given as

_ A, 2
O N 69)
where 4, €R, ¢, €R" and b, € R.This profile has either a maximum or minimum

globally on ¢, depending on the sign of A, . The error between swarm centre and ¢, is
defined as

e, =X—¢, (39)
It can be proven that when t > o0, if 4, >0, X—>¢_ andif 4, <0 and X(0)#c, , then

X — . The results show that the swarm centre is in search of rich nutrients along this

profile. Further, for a finite time and for any small 4 > 0, the swarm aggregate around X

given by x, — B, (X) where the hyper ball B ,(X) = {x,: Hxi - i” <r} and # is given by

5 (40)

n=

b(M-1) e (1)
=————_ [—€Xp
aM + A, -1\ 2

Finally, let us consider a multimodal Gaussian attraction/repellent profile given as

M i

T == A exp

= 2 I

; 2
y—-¢,

+b, (41)

where 4. € R, b, € R, ¢, €R" and I/ € R. When A’ takes positive or negative values

then the profile consists of hills or valleys. Here, there are chances that if the attraction
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force is not large enough depending on the initial conditions of swarm agents, some
agents can be trapped inside the local minima. This can cause small groups of individuals
at various locations in the profile. Similar proofs for swarm size and cohesion analysis is

given in [34] and an interested reader can refer [34] for more detail.

2.2. Control Allocation

The control allocation is used to find control inputs when the system is over
actuated. In an under actuated system, the numbers of control inputs or actuators are less
than the degree of freedom. On the other hand, in an over actuated system we have more
numbers of actuators than the degree of freedom in order to achieve a desired solution.
An over actuated system has two main advantages. One is that it can be utilized for fault
tolerant since it can have many solutions for a desired control when the actuators are not
saturated. Another advantage is that it has the ability to deal with the saturation. Since
every actuator has a physical limit, if one actuator saturates then the other actuator can
provide the required control input to achieve the desired solution [47]. For more details of
different kinds of control allocation approaches please refer to [53]. A linear control
allocation problem will be discussed as in [53].

A linear control allocation problem is defined as

Bu=u,, (42)

where Be R™" is the matrix of effectiveness of actuator, u,, € R™ is the required

control input and u € R" is the control effort provided by each actuators. When m < n the

system is over actuated and u will be found by the control allocation approach.
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For example, given that B=[1 2], u,, =5 the u=[u, u,]' can be [0 2.5]",
[1.0 2.0]" or [5.0 0.0] to satisfy the desired control input needed. Further, if there are
saturation limits for the actuators for example, if —6 <u; <+6, -2<uy, <+2, then the
u=[u, #,]' can have many answers. But if the saturation limits are
~2<u <+2 and —1<u, <+1.5, then one solution exists for u=[u, u,]" . Further, if the

saturation limits are —1 <u, <+1 and —1 <y, <+1, then no solution exists.

When there are multiple solutions we need to figure out a way to select control
inputs. One way is to find the controllers such that they minimize a performance index
which relates to the control energy. A pseudo inverse method can be used to solve the

control allocation problem.

Let us define the performance index J € R as

minJ = %uTWu (43)

u
where W e R is the weighting matrix.

The Hamiltonian H € R is defined as
(7
H= (" Wu)+ 1, (Bu-u,,) (44)

where h, € R"™" being the Lagrangian multiplier.

The partial derivative of H w.r.t u is given by
oH
= = (Wu)+(.B) (45)

Similarly, the partial derivative of H w.r.t &, is given by
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oH

- (Bu-u,,) (46)
Setting (45), (46) to zero gives us
(Wu)=-B"2," (47)
and
Bu=u, = BW 'Wu=u,, (48)
Substituting (47) into (48) gives us |
BW'[-B"2" )=u,, (49)
Then koris given by
2, =(BW'B | u,, (50)

From (47) and (50) the u is given by
u=wW'B (BW'B" ) u,, (51)
The answer for the u enables to distribute the control effort among the actuators to match

the u,,, .

2.3. Tracking Control of Vehicles

For the energetic swarm application, WMRs are considered to form the swarm
members. One reason is that many WMRs can be built quickly in a short period of time
to be considered as a swarm in an academic environment. This section discusses the
control properties of a WMR and how the trajectory controllers can be developed. The
WMR trajectory tracking is a popular research topic over the last decade since it is

nonholonomic.
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Let q=[x y 6] be the generalized coordinates of WMR. The nonholonomic

constraint of the WMR is given by

0
[sin9 ~cos@ 0] y|= 8 (52)

0
Aq=0
That is the lateral motion of the WMR is zero. Then the allowable motion can be
expressed by the following driftless form
q=G(@Qw (53)
where w € R” is the control input. G(q) € R™" is the matrix of column vectors contains
the allowable motion of the WMR. Firstly, important mathematical tools such as Lie
derivative, Lie bracket and Frobenius theorem which are greatly used to analyze

nonholonomic systems will be introduced as in [52].

A. Lie Derivative

Let f:R"” — R" be a smooth vector field on R"and 4:R" — R be a smooth
scalar function. The Lie derivative of 4 with respect to f, defined as L h=Vhf , is the
directional derivative of the function » along the direction of the vector f and it is a

scalar function.

The Lie derivative can be taken recursively and defined as

L'h=h
' i1 i1 (54)
Li'h=L(Ly ™ h)y=V(L' I fori=12,...
Also, the following holds for a vector field g,
L, Lih=V(L;h)g, (55)
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B. Lie Bracket
The Lie bracket of vector fields f and g, is defined as
[f,g0]1=Vg,f - Vfg, (56)
The Lie bracket [f,g,] is generally written as ad,g,

Similarly, as Lie derivative, repeated Lie brackets are defined as

adfogo =80

. . (57)
adig, =[f,ad;"g,] fori=12,......

C. Frobenius Theorem

A set of linearly independent vector fields f,,f,,.......f

. 1s completely integrable

if and only if it is involutive. The linearly independent vector fields f,,f,,....... ,f1s said

to be involutive if the Lie bracket of any pair of vector fields belongs to the distribution
A=spanif f,,..... f 1.

Now, the kinematic equation of WMR, that is the allowable motion (53), can be

expressed by
X cosd 0
yl=|sing 0 [v} (58)
: 1)
o 0 1

where v is the heading velocity of the WMR and @ 1is the angular velocity. It can be

rewritten as

x cosd 0
sin@ v+ 0o
0 0 1

g (Qv+g,(qo

L2
I

(59)
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The distribution of g, and g, is given by A =span{g,,g,}. The Lie bracket of g,

and g, along with g, ,g, is given by

cos@ O siné
[gl g2 [gl,gz ]] = Sine O —'COSQ (60)
0 1 0

The rank of the Lie bracket of g, and g, is three and the Lie bracket of g, and
g, cannot be written as linear dependant of g, and g, hence, the system is not integrable

and it is nonholonomic.

It is proved that the feedback stabilization at a given posture is not possible by a
smooth time invariant control for the above kinematic equation. Three mainly used
different kinds of controllers are discussed namely converting the kinematics into a

chained form, the input out linearization and the dynamic feedback linearization.

2.3.1. Chained Form

The kinematic equation (58) can be converted into a very popular chained form
by static state feedback as in [50]. A system with two inputs wu=[y, uz]T and n

generalized coordinates can be converted into the following (61) chained form by a

suitable coordinate transformation z=[z, - - z,]' =T(q) and a static state feedback.
zZ =y,
Zy =u,
Zy = Z,U
3 ] L 61)
2n = Zn-lul
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In order to change the kinematic equation (58) into the chained form (61), apply

the following change of coordinates

z, =0
z, =xcosd+ ysind (62)

z3 =xsinf~ycosd

and the static state feedback

V=1, + z4U
2+ Z3l (63)
O =u,
Then the kinematic equation (58) is converted into the following chained form
Z =y
z, =u, (64)
Zy = Z U

One can search for controllers for the above system.

2.3.2. Input-Output Linearization

The kinematic equation (58) can be input-output linearized as in [51]. Consider

the system of the following form

x =f(x)+ g(x)u
y =h(x)

(65)

where the state vector is given by x € R",f(-) and h(-) are smooth vector fields, g(-) is

the nxm matrix contains smooth column vector fields g(-)=[g, - - §g,], control

input vector is given by u =[u, - - um]r and finally, the output vector is represented

by y € R? with p >m. This is a multi input multi output system (MIMO).
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The system is input-output linearized when the output function in (65) is
repeatedly differentiated until the input appears. The first differentiation of the output

function is given by (66) for i =1,...., p
5, = 200 5 OO 03+ )

oh,(x) oh (x) ~
= 20+ = 2o (66)

7

= Leh,(X)+ Y Ly b (X,
j=1
If L; h(x)=0Vj=1,....m, then the control inputs don’t appear in the output

equation hence, it needs repeated differentiation until one of the inputs appears in the
output equation. If it takes r differentiations, then the general form of difterential

equation for i output is given by
yi =L hi(x)—*_zl"g“jL?»lhi(X)uj (67)
=

Then the whole output vector is given by

r 7 r = - . ri-1

wl [ame] | b he

J=1 U
= +
. m ' u (68)
r, r, ;= m imxi
Ve | L h (O] Y L 177 (x)
L=l dpxm

y" =Px)+E(x)u
where E(x), the pxm matrix, is the decoupling matrix which is nonsquare. Then apply
the input transformation as follows

u=E"E) 'ET [¥-P(x)) (69)

where V is the new input. Then the equation (68) becomes
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y" = (70)

Let the tracking error be defined as
e=y, -y (71)
where y, is the reference trajectory. If the new input V is chosen as
V=y" +Ke""+...+K, _é+K.e (72)
where K, Vi=1,....,r is a positive constant matrix and the closed loop system becomes
e!” +Kle""’ +ot K, 6+Ke=0 (73)
In order to apply the above input-output linearization to the equation (58), select
the output vector as y =[x+ Dcosd y+ Dsin@ 8] where D is the distance between the

centre of axle and tip of the robot. The output is differentiated once to get

cosd —Dsiné
y=|sin¢ Dcos@ Y
@ (74)
0 1
=FEu
Applying the control law as
u={E"E)"ET|®) (75)
with the new input v chosen as
v=y, +K,e (76)

Then the kinematic equation (58) is input-output linearized to track the desired trajectory.

2.3.3. Dynamic Feedback Linearization

In this section, the dynamic feedback linearization will be discussed as in [45].
Dynamic feedback linearization problem is to tind a controller of the following form for a

driftless nonlinear system given in (53)
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& =a(q,%) +b(q,E)u

(77)
w =¢(q,&) +d(q,E)u

where & e R"is a state vector, ue R” is the new input, a(-) e R" and ¢(-) € R" are vector
fields and matrices b(-)e R”" and d(-)e R™" contain column vector fields. The closed

loop system of (53) and (77) will be linear under a state transformation 7 =T(q,&).

Define the output vector of (58) as

-
11={ } (78)
y

First differentiation of the output gives

. |cos@ O v (79

1 siné 0w
Since the 1 1s not affected by the @, it is necessary to differentiate until both the inputs
appear in a non-singular way. In order to avoid differentiation of the original inputs, since

e R', a new state ¢ is necessary such that it becomes the integrator for the original

input. Define ¢ as

v=¢

E=a

. | £cosf
=nN= .
&siné
Differentiating (80) gives

L cosd —-Esinffa ol
= sinf  £cosl || o @D

Define [¢ ] assuming that it is non-singular when ¢ # 0, as follows:

al [cos@ -&sind] [y
=| (82)
@ sin@  £cosé U,
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where u=[u, u, ]T 1s the new control input. Then the system (81) becomes

ﬁ==[“‘} (83)
Uy

The dynamic compensator is given by

&=u,cos0+u,sind

v=¢ (84)

o2 cosf —u,sin @

3

Now, define the state transformation Z =T(q,&) as follows:

z, x
Z, y
= 85
Z, & cost ®3)
Z4 &sind
Then the system in the new coordinates becomes
| [o o 1 ofz] [o
Z 0 10 0 0 11Z,] (0fu
7 e [‘} (86)
Z, 0 0 0 0Ofz 1 fu,
Z,0 10 0 0 0%, | |1

This is a fully linearized system. In other words (86) can be rewritten as

Z "
o= (87)
Zy Uy
The controller (84) is singular if the velocity of the WMR is zero. This situation should

be avoided.
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3. Energetic Swarm Control

This section introduces the energetic swarm control. Sliding mode control is
primarily used to calculate virtual controllers and the control allocation is used to find
actual control inputs. Firstly, the control allocation approach will be discussed without
saturation constraints but later, saturation constraints are brought with the control

allocation. Simulation results are provided to study the energetic swarm behavior.

3.1. Problem Statement

This section presents the theory of energetic swarm control developed as in [48].
Consider a swarm system with M members. The following second order model represents
the energetic swarm motion:

m¥; = ha; —bv; +d;(0)
11 171 [ I (88)

Xl-=Vl-

where for each member i, i=12,...,M , mass is given by m,, x; € R" represents the
position, v, € R" represents the velocity, A4, is the control coefficient associated with the
control input given by u, € R”, b, is the coefficient of the viscous damping b,v; and
finally, d.(7) € R” is the disturbance. The following assumptions are considered.

Assumption 1
The following energetic swarm control theory will be developed for an n
dimensional case. Later, in section 3.4, the simulations will be carried out to validate the

theorem for a 2-dimensional case. Also, in chapter 5, the high level swarm layer (88)
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considered is for a 2-D case since here the energetic swarm control theory will be applied
for a WMRs system (165).
Assumption 2

In this chapter, we consider particle dynamics (88) to develop the energetic
swarm control theory. However, later in chapter 5 it is shown that the energetic swarm
can be applied for vehicles with nonholonomic dynamics with a combination of a low
level layer (165)-(174). Future research will focus on rigid body dynamics.
Assumption 3

The mass m;, the coefficient of the viscous damping b, and the control
coefficient 4, are known for each agent.

Assumption 4

There will be no communication delay among the members in updating their
states and their motion is synchronous. That is no time delay is assumed in transferring
the states of one member to the other members. This system is a centralized one when
considering the experimental implementation. It means that, though there is no leader
follower approach here, each agent has to transfer its state to every other member. Future
research will focus on each member transferring its states to the neighbors only.
Assumption 5§

The system is controllable. That is h, #0Vi=1,....,M . Further, we assume full

state measurement of the system.
Assumption 6

It is assumed that the disturbance is bounded by a positive coefficient g, ,Vt>0.
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la.@|<pVi=1,....M (89)
To validate the theory, for simulations, sinusoidal inputs will be considered as the

disturbance wherever necessary.

The control input u; is the sum of external and internal inputs given as:

u; =u! +ul (90)

i
where uf" € R" is the external input which makes the swarm to achieve multiple control

i

objectives such as following desired trajectory and tracking the temperature and potential
while u/” € R", the internal input used for the cohesion and collision avoidance between

the members of the swarm, is of the following form given as in [37]

) M
P=- Y e(x-x)) ©1)

oLz

u

where g:R" — R" is the artificial function to create attraction and repulsion forces

between members given by

g(x; ~x,;) =~(x; —x Il (x; =x; )~ 7 (x; —x; )] (92)

where g,:R" — R" is the magnitude of attraction force for the cohesion between each
members and g, :R” — R™ is the magnitude of the repulsion force for the collision
avoidance between each members. Further, it is assumed that the g, has a long range

attraction and g, has a short range repulsion. For example, one choice for the g(-) is to
have a constant attraction and unbounded repulsion between the members i and j given

by the following terms

A

g4 (”y”) = ”y“ (93)
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B
g (yh=—5 (94)

]

where 4,Be R™. In this particular g(-), the repulsion forces become dominant than the

attraction forces if the agents are closer to each other and the attraction forces are

dominant if the members are too far with respect to each other. This g(-) is of

conservative type; that is no energy is added or removed to or from the system since if we

consider the whole system the net effect of g(:) is zero.

Next, the macroscopic quantities such as swarm centre, swarm temperature and
swarm potential are defined as following in order to control the overall behavior of the
swarm members. It is important to note that the collective behavior of the swarm

members is considered rather than an individual member behavior. The swarm centre
X € R" defined in (95) is the weighted position of each swarm member and the swarm

centre velocity ve R” is given by (96).

a5
b

where @; is a positive coefficient. Here, one of the objectives of uf™ is to make the

Mz
8l

(93)

T Pllﬁi

I l

Bl

(96)

swarm centre to track a given desired trajectory.
Swarm temperature, another control objective of u;™, is what makes the swarm

an energetic system. The swarm temperature, defined as the average of swarm internal

kinetic energy in [38] , is given by the following expression
1
T(v)= E(Ek(v)—Eb(v)) (97)
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where £, in (98) is the weighted kinetic energy of the swarm and E, in (99) is the

weighted bulk kinetic energy of the swarm. @, is a positive coefficient.

1H 2
E (V)= 5 Z‘w" vl (98)

(& _ )\ e
E,(W)=—| 2. |V (99)
i=1
If the swarm centre is on a translation, the swarm possesses bulk kinetic energy.
However, even if the bulk kinetic energy is zero, swarm has kinetic energy since it is due
to the individual swarm members’ back and forth motion relative to the swarm centre.
For a homogeneous case, the swarm temperature is directly proportional to the velocity

difference between the members [38].

The final control objective of the u;™ is to track a potential like function J e R"
by which the swarm is kept in cohesion. That is it keeps the swarm size bounded. The

swarm size p € R" is defined as

p= izl{l;_;{éf_MQIxi =) (100)

A particular choice of the potential function J is given by

1Y -2
J=52ai“xi—x” (101)
i=}
where «; is the connection weight. This potential function can be considered as the

swarm members are connected with the swarm centre by linear attraction or repulsion

potential functions depending on the choice of «; .
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3.2. Sliding Control Design

The virtual control inputs for the swarm centre trajectory tracking, temperature
and potential tracking will be calculated using the sliding mode control as proposed in
[48]. The actual inputs will be calculated using the control allocation approach which be
discussed in the next section.

A. Tracking Control

Let us define the tracking error X and the sliding surface s as

X=X-X,, (102)
51
s=| " |=X+diag(h)X (103)
En
where X, is the desired swarm centre and A =[4, . . A, is a vector with strictly

positive constant gain terms. The first differentiation of s is given by

M —
Zﬁdi(t) z&hz’“fﬂ
m

s = g+ diag (L)X — X 4, + =1 e (104)

where ¢ is given by

M —

M ==

o; , @; , ;

] i I !

E —hu;, — E —bv

i=1 ™M i=1

g= 7 (105)

Za),.
=1

The virtual input v, € R" for the swarm centre tracking is chosen as
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M M
Z evt/Z A (106)

The virtual controller v, is then selected as

s\e;

v, = -+ diag(R)% - X, )~ diag(k,)sgn(s) (107)

where k_ is a vector of positive constant gain terms given by

kc z[klc ch knc]T (108)
The time derivative of § then becomes by using (104), (107) as follows

M_.

z&di(l)
§== 0 diag(k,)sgn(s) (109)
2.3,
i=1

In order to satisty the following (110) sliding condition

- S s < 110
2 <l 1o
k. will be chosen as following with 77, strictly a positive constant.
M @. M
k. zzmiﬁ Zco +n, for j=12,....n (111)

Finally, in order to avoid the chattering the virtual controller is modified with the

boundary layer as follows
(g +diag ()% ~% 1, ) diag (k,)sat(diag (&, )S) (112)

T
. , : 1 1 :
where sat(-) is the saturation function and g, :{— - —} , the thickness of the
€ &y

boundary layer, is a vector with positive constant gain terms.
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B. Swarm Temperature Tracking
Next, the virtual controller for the swarm temperature will be discussed. The
sliding surface s, for the swarm temperature tracking is defined as

s =T(V) =T, (113)

where 7, is the desired swarm temperature. The first derivative of s, is given by

. o4yt 1| ¥Eh A
Sp=—4+—4 AL V. _wa)lv uer TES 114
r M M{gmf( Y V=T o

where @ is a coefticient given by

and the terms o, 7, are given by

RS

(115)

(Zh ——(u”’) v) v [Zh iy ]
= Z((v) d(z)] [ 'd(r)) (116)

w:v%(z ‘bvj Z[(v) 4;”)

=N i=1 ;

The virtual input v; € R for the swarm temperature tracking is then chosen as

i=t M

1 M hi ~ —-\7 i
Ur=— Z_(a)ivi —wa)l.v) oy (117)
The virtual controller v, for the swarm temperature tracking is selected as

vy =—“A;”’ — Ky sgn(sy) + T, (118)

where k, is a positive constant gain term.

Time derivative of 5, then becomes by using (114), (118) as follows
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$ =ﬁ—kr sgn(s;) (119)

The upper bound of y is calculated using (89) as

M p M
B, B,
ol S o3, 22 120
i=1 M = M
Then using (120), k; is chosen as (121) with 77, a positive constant in order to satisfy

sliding condition S78; < -1y lST‘ .

kT(v)——tzﬂ’ B, a2 ')H;T (121)

=t
Finally, in order to avoid the chattering the virtual controller is modified with the

boundary layer as follows (122) and &, is the thickness of the boundary layer.

o+
vy =—

—k, sat[s—rj+Td€S (122)
&
C. Swarm Potential tracking
Finally, the virtual controller design for the swarm potential tracking will be
discussed. The sliding surface s, for the swarm potential tracking is defined as
s;=d+ A, =T ) (123)
where J,,1s the desired swarm potential and A, is a positive constant. The first

derivative of s, is given by
T T
~ U h , L, ¥ 1 o,
s, =&+ a (X, —X)——"Lhy | u+ a— X —xX)——y | d.(¢
ST ;( 'mi( %) m, 'Xj ' 2( 'm,( 9 m, X) 0 (124)

+A,J

where £ is given by (125)
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~ U k h, . T
E=D (v, -V (v, -+ | o, (x,~X)~—Lhy | u”
i=] i=1 m; m,

. . - r (125)
_Z[ai : (x; —i)_‘ibiX] V;
i=l ]nz

m

i

and the term % is defined as

M M
X=Z%(X;—i>/2@"j (126)
= =l

The virtual input v, for the swarm potential tracking is then chosen as -

< hi < CT): ! ext
UJZZ ai;(xi—x)—;hix u; (127)

i=1 i i

The virtual controller for the swarm potential tracking is selected as

v, =&+ 4,7 )-k, sgn(s,) (128)

where k; is a positive constant gain term.

The time derivative of 5, then becomes by using (124), (128) as follows

M T
;- Z[a, L _g)-%] 4,0k, sen(s,) (129)
m m.

i=] i i

In order to satisfy the sliding condition s,5; < -7, ls Jl choose &, as (130) where 77, 1s

a positive constant

M 1 _ &)“ M , / M .
k=2 B e ;7?”"1 “"XHJ”?IZC’J‘”"J‘ x|/ Y@ |+, (130)
i=1 i /=l

m; i
Finally, in order to avoid the chattering the virtual controller is modified with the

boundary layer as follows (131) and ¢, is the thickness of the boundary layer.

v, =—(F+2,0)-k, saz(s—fj (131)

&y
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3.3. Control Allocation without Saturation

Actual inputs that match the virtual input requirements will be found using the
control allocation as in [48]. The energetic swarm system is an over actuated system.
Since the system (88) is an n-dimensional case the number of output n, is n, =n+2.
That is tracking the desired swarm centre, and the desired swarm temperature and
potential values. If the number of swarm members are given by M , then the number of 7
inputs n will be n; = M xn. The swarm is over actuated when the number of inputs
exceeds the number of outputs. That means the solution is not unique. There exists more
than one solution for an over actuated system.

In order to find the actual inputs we need to use the control allocation as discussed

in section 2.2 . The actual control input vector u e R™ is given by

wellf s f G| (13)

Now, the virtual input vector v, (106) can be re-written as

Bu=v (133}

c

where B, is given by (134) with Te€ R™” is an identity matrix

1 ®, o, Oy
Bc = M—___—[ h] —n:l_lnxn hZ _n_Inxn hM ——/_I”X” :| (134)
(Di 1 2 M nxm

i=1

Similarly, the virtual input for the swarm temperature (117) can be re-written as
B,u=v, (135)

where B, is given by
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BT=

P Ay _ ~ _ ~ —
—{:—L (@,v, —oov)" ﬁ(a)zvz —ao,v) ... ﬂ‘—(a)MvM —wa)Mv)T} (136)
1 ny My

Finally, the virtual input for the swarm potential (127) can be re-written as

B,u=v, (137)
where B, is given by
- _ a7
@ ﬂ("1 _i)—ﬂhlx
m, m,
h, . o,
—= (X, =X)——=h
B, = a, m, (x; —x) m, 2K (138)
7Y hi(XM _i)_ﬂhklx
| my, my, |

The equations (133), (135), (137) can be combined together as the following relation

Bc v,
B, v,

That is the virtual inputs of the swarm centre, swarm temperature and swarm potential are
related to the actual control input u by the following equation
Bu=v (140)

where B e R i the control effectiveness matrix given by
B

B=|B, (141)
B

and ve R™? is the virtual input vector consists of virtual inputs of the swarm centre,
swarm temperature and swarm potential given by
oy v, (142)

v=[v,
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The actual control input will be calculated by formulating the following objective

function:
.17 )
min —2—u Wu, subject to Bu=v (143)
u
where W e R is a weighting matrix given by
W] IInxn W]ZInxn WIMInxn
W= W21'In><n w22'In><n WZM‘Inxn (144)
WMlInxn WMZInxn te WMMInxn nMxnM

and each w; is a weighting coefficient. The pseudo inverse which minimizes the
objective function given in (143) is used to solve this control allocation problem. The
feasible solution for the u is given by

u=(W'B"(BW'B)" b (145)

The above solution solves the over actuated problem and finds the actual control input.

3.4. Simulation Results of Energetic Swarm

In this section, simulation is done to study the behavior of the energetic swarm
and to show the validity of the proposed [48] sliding controller design and the control

allocation approach given in the above section. The desired swarm centre trajectory, for

all the simulations, is selected as X, =[5.0cos(¢) 5.0sin(r)]” . The disturbance in

equation (88) is chosen as d;(¢) =[2.0sin(?) 2.0sin(#)]” . The attraction term in (93) is

given by ﬁ and the repulsion tem in (94) is given by ﬁoTzz
y y

The desired temperature is set at 7, = 5.0 and the desired potential 1s selected as

J 4es = 5.0. The mumber of agents is six for all the experiments. Three sets of results are
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shown here. The first set of experiment is to validate all three controllers given by the
following figures. In Fig.1, trajectories followed by each individual are shown while

Fig.2 shows the swarm size for the selected 7, =5.0 and J,, =5.0. From Fig.1 it is

obvious that the trajectories followed by each individual are highly chaotic. Energetic
swarm control focuses on controlling the collective behavior of the swarm rather than
controlling the individual’s behavior or its trajectory following. Fig.1 shows how the
individuals behave for a particular temperature and potential values but, collectively they
track the desired swarm centre. By changing the primary parameters temperature and

potential, one can change the entire swarm behavior.

10- - B - - - St B
Member1
8: // | Member2
! . i - Member3 |
6 ) - Member4 | |
\ - Member5 |
4 Member6 -
2
~~
\E/ H
>~ o
-2
4
6.
-8 A _
-8 -6 -4 -2 0 2 4 6 8

Fig.1. Trajectory followed by the swarm members
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Fig.2. Swarm size

Fig.3 shows the trajectory tracking of the swarm centre while Fig.4 illustrates that

the swarm temperature is regulated at 7,,, =5.0
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Fig.3. Trajectory tracking of the swarm centre
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Fig.4. Swarm temperature regulation

Fig.5 shows the potential regulation at J,,, =5.0
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Fig.5. Swarm potential regulation
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In the second set of experiment, the potential is kept at J,, =5.0 but T, is
increased to T, =10.0, 7, =20.0 and T, =40.0 respectively. The objective is to

study the swarm’s foraging behavior when the swarm temperature is increased. Fig.6,

Fig.7, and Fig.8 show the individual swarm member’s trajectories for the 7, =10.0,

T,

s =20.0 and T, =40.0 respectively. When the swarm temperature is increased, the
swarm gets more internal kinetic energy and the swarm is more energetic. This is similar
to water molecules kept on a stationary table, move faster and aggressively when we add

some heat energy. Each individual travels at higher speed and they sweep more area

keeping the maximum swarm size constant with respect to the fixed potential J,,, =5.0.

These figures explain that more foraging behavior can be observed when the swarm

temperature is increased.
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Fig.6. Swarm members trajectories at 7, =10.0
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In the third set of experiment the swarm temperature is kept at a constant value

T

es

=5.0 but the swarm potential is increased from J,, =10.0,J,, =20.0 and

J 40s = 40.0 respectively. The objective is to understand the relationship between swarm

size and the swarm potential. From Fig.9, Fig.10, and Fig.11, it can be seen that when the

swarm potential is increased the swarm size increases. Increasing the swarm potential

lessens the cohesiveness of the individual members. When the swarm size increases the

attractive forces are more dominant than the repulsive forces since the swarm gets more

room to travel in the area.
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Fig.9. Swarm members trajectories at J,,, =10.0
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The above experiments illustrate that by changing the control variables swarm
temperature and potential, the swarm can be made to forage and sweep an area with
different kinds of behaviors. Swarm temperature controls the aggressiveness of the
members and the foraging behavior of them and the radius of coverage can be controlled

by the swarm potential.

3.5. Control Allocation with Saturation

The pseudo inverse approach that was used to minimize the objective function in
section 3.3 fails when the solution is not feasible. Further, there is no saturation bound on
u, which is not suitable for the practical implementation of the swarm. In real
applications the actuators have physical limits. These two problems can be overcome by
using the SNOPT [49] optimization solver, a general purpose program for large scale
nonlinear programming, minimizes linear or nonlinear functions that have constraints or
bounds on variables.

The constraints on the actual control input vector u are brought with the control
allocation algorithm in order to account for the saturation on the inputs. The objective

function (143) will be modified as follows [56]:

1

. T

min—u’ Wu,
u

subject to (146)
Bu=v
ext ext ext .
U in Sui Sui max® 1—1,2,...M
where u{" mip and u™ ax correspond to the lower and upper saturation limits of the input

ext

u;~ respectively. For example, in a servo motor u

ext
i ma

. can correspond to the maximum
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ext
I min

positive voltage that can be applied to make the motor rotate in clockwise and u can

be that of in the opposite direction.

ext ext

However, w;" . ,w;™

can not be lowered than a threshold value, otherwise the

control allocation problem (146) is not feasible. That is the SNOPT cannot find feasible

solution for the actual control input that satisfies the virtual input requirements. That

mean we have to find and set the allowable w™ . wu{"

values such that they are
above the minimum allowable values so that allocation problem would be feasible and,
also below the maximum allowable values which depend on the physical limits of the

actuators.

ext ext

Fig.12 shows that for one of the members in the swarm, w;™ . ,u;™ are set to
+ /=35 . These limits are well below the minimum allowable values.
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Fig.12. Control input with saturation limits
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Fig.13 shows the corresponding error plot between the required virtual inputs and

the SNOPT solutions for the desired virtual inputs. It is obvious that the SNOPT cannot

satisfy the virtual input demand if we set the u{ . uf™ _ below the threshold value.
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Fig.13. Difference between the desired virtual input and the SNOPT solution

ext ext

u; depends on various factors such

The minimum allowabie values of u;" . |
min I omax

as the desired temperature and potential values 7, and J, ., the desired swarm centre
trajectory X, and the initial condition of the swarm members.

It is found that the minimum allowable values can be varied for transient and
steady state cases. As such, the minimum allowable values of u/” . u/™  can further
be set to two different values. In order to get a feasible solution for the allocation problem
throughout the run time, one set of values may be used for the transient case and another

set for the steady state case. For instance, during the transient phase if the minimum
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allowable values are higher than the steady state case values, we can set the threshold to

some higher values and then once the system stabilizes we can lower the minimum

allowable uf" . u®™ values. By doing so, the SNOPT satisfies the virtual input

I min’"/ max

constraints with feasible solution throughout the run time of the swarm.
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Fig.14. Control input with two sets of saturation limits

Fig.14 shows for one of the members of the swarm, two allowable limits are set

e wf™ ; one for the transient case and the another one for the steady state case.

or u; min® "/ max’

During the transient phase the value is +/-25 but in the steady state case the value is
+ /=36 . The SNOPT matches the virtual input requirement for both the cases.

In the steady state case, the primary factors that influence the minimum allowable
ext ext

u are the desired temperature and potential values. The steady

values of w; o W
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state minimum allowable values for u/™ . u?  are found experimentally at different

operating conditions over the domain

5.0<T <20 (147)
5.0<J<20 (148)

varying only the temperature and potential but keeping other conditions fixed. The
surface plot in Fig.15 shows how the minimum allowable value varies with respect to the

temperature and potential values given for the range (147), (148) .

Minimumallowable value

Temperature Energy (J) Potential Energy (J)

Fig.15. Minimum allowable values of the control input

The result shows that when we increase the temperature the minimum allowable
value increases. This is expected since, when we increase the temperature swarm gets
more energy and its velocity increases. The swarm is more energetic and it sweeps more
area. When the temperature increases while the potential is kept unchanged, the swarm
needs more control effort in order to restrict the swarm size. The virtual controller of the

temperature (122) primarily depends on o,y during the steady state. In a viscous
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environment y 1s more dominant since when the velocity increases the viscous term gets

a higher value and the virtual controller for the temperature increases [55]. The swarm
needs more control effect to cope with that. If the swarm moves in a non viscous

environment ¢ 1s more dominant since y is zero. Also when the temperature increases

o gets a higher value. This makes more control effort from the controller. The minimum
allowable values increase when the desired temperature is increased.

On the other hand, if the potential increases while keeping the swarm temperature

fixed, the minimum allowable value decreases for u” . uf . When the potential

increases the swarm size increases and it gives the swarm members more room to travel.
That is the attraction of the swarm members is more dominant than the repulsion between
the members. When the swarm members are confined to a lesser swarm size, the
repulsion term in (92) gets more dominant and the swarm controller needs more control
effort to keep the members in side the swarm size [55]. As a consequence, the minimum
allowable value is higher when potential is small and gets lower when the potential

increases.

Let us consider the minimum allowable value of u{__ and denote it by u

max satmin *

Then the feasible operating region U,,, of the saturation limits is bounded by [55]
usal min (T? J) < Usat &S usatmax (149)
where u, 1is the physical saturation limit of the actuator. That is the feasible operating

region should be above the minimum allowable value in order for the SNOPT to satisfy

the virtual input constraints and lesser than the physical saturation limit of the actuator.
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When in steady state, the desired temperature T, and potential J,, values

dominates the upper bound of u That is if the 7,,, and J,,, are not varying with

satmin *
time, which is the most common case in this thesis, then the following lower bound on
the operating region will be considered [55]

u <cy+tel+cJ <U, (150)

saf min

where ¢,,¢;, ¢, are determined over the domain (147), (148). The coefficients will be
¢y =12.0, ¢, =145, ¢, =-0.20 and they satisfy the condition (150) inside the operating

region (147), (148). Also, the values should satisty the condition in (149). That 1s they

should hold

c,+eT+e,J<U._, <u (151)

sat — T satmax

The upper bound of u in steady state case for a general case, where we need

satmin

to track time varying 7, and J,,,, will be a nonlinear function and will depend upon on

the following parameters [56]

usa,min(T,T,J,J,j) (152)
However, an approximate lower bound on the operating region can be proposed for a

more general case of the swarm as following [56]

u <co+o T +eyJ +esT+ed +esd (153)

sat min

The coefficients ¢;,c|,c,,c5,¢4,¢5 need to be determined depending on the desired

temperature and potential values. One can expect the same discussion (149)-(153) for the

ext

minimum allowable value of u/” . In general, these two limits are equal but their sign

{ min

or direction is different.
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4. Modeling and Identification of Wheeled Vehicles

In order to implement the swarm system experimentally, WMRs are chosen as the
primary application since it is much easier to make a swarm with WMRs in an academic
environment. As WMRs are actuated by Radio Controlled (RC) servo motors, it is
important to model and identify the parameters of the RC servo motor and its dynamic
behavior when it is attached with the WMRs. This chapter focuses on the modeling and

parameter identification of the WMRs as in [54].

4.1. Kinematic Model of the Wheeled Vehicle

)| e

»
»

O X

Fig.16. The WMR configuration w.r.t a fixed frame

Fig.16 shows the schematic top view of the WMR. Let us assume that the wheels
do not slip. Then the kinematic equation (58) of the WMR is modified as following with

v and @ are expressed in terms of angular velocities of the right and left wheels.
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xX= %(OJRRR +@, R, )cos6
L1 .
y:E(a)RRR +a)LRL)sm9 (154)
.1
0= i(wRRR - a)LRL)
where x,y are the coordinates of the body attached frame in the fixed frame OXY, 0 is
the angle between the heading velocity and the fixed frame, R, and R, are the radius of

the right and left wheel respectively, @, and @, are the angular velocities of the right and

left servo motors and finally, / is the axle distance between both the wheels. Fig.17 and
Fig.18 show one of the WMRs built in the Control and Information System (CIS) lab for

the model verification and experimental implementation of the swarm system.

Fig.17. The perspective view of the WMR Fig.18. Top view of the WMR with color objects

4.2. Dynamic Model of the Vehicle Actuators

Each WMR is attached with two RC servo motors that are modified for the
continuous rotation. Since it is modified, the pulse width is proportional to the angular

velocity of the motor in the operating range. The input to the motor is the voltage across
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data acquisition card (MultiQ) and it is transmitted wirelessly and converted into pulse
width. The modeling equation, governing the dynamics of the motor, given in [54] is
med)wm = Kl mewm ~em@rwm _wama)wm —luwmsgn(a)wm) (155)

where J,,, denotes the moment of inertia, @,,, represents the angular acceleration, K

Iwm
and 7,,, are constant parameters associated with the motor, the voltage applied to the

a)\

Vi

is the angular velocity of the motor, the

wm >

motor via the MultiQ is given by U

linear friction coefficient of the motor is given by K, and finally, z is the Coulomb

bwm

friction coefficient.

4.2.1. State Equations of the Wheeled Vehicles

The state equation of the wheel vehicle is the combination of kinematic equation
of the WMR and the dynamic equation of the actuators given by (156) . The equation
(155) is considered for both the left and right wheels of WMR with subscripts L and R

denoting those respectively and the term wm is removed for the ease of representation.
1
X E(QJRRR +, R, )Jcos &
.1 :
y= E(Q)RRR +m, R, )sin@
-
QZY(QRRR_C‘)LRL) (156)

. 1
w; = J_(KI,LUL —nw, =K, 0, -4, Sgn(“)L))
L

1

Op = T(KI.RUR —NrOg — Ky g@p — g Sgn(“)R)) _
R
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4.3. Apparatus

The swarm experiment was done in the CIS lab. The WMRs were built with two
front drive wheels and one rear castor wheel. The wheels were driven by the HS-422
servo motors which had been modified to allow continuous rotation. Since it is modified,
then the pulse width is proportional to the angular velocity of the wheel in the linear
operating region considered. The block diagram of the experimental setup is shown in
Fig.20. |

Vision feedback is used to get WMR’s position and the orientation. Arrays of
overhead webcams are setup as in Fig.19. There are nine webcams connected
individually with nine vision processing computers in order to reduce the processing
power and computational time of central host computer. These vision processing
computers process the image captured and send the data of the WMR’s position and
orientation over a network interface to the central server host computer. The test bed
roughly covers an area of 5x5m. The maximum reachable frequency of the webcams
is25Hz.

The host computer, based on data received from the vision processing computers,
calculates the inputs to the WMRs. Then the corresponding input values are written on
the MultiQ board to which a RC transmitter is attached. Typically 2.5V was taken as the
neutral position for the MultiQ interface. The signal is changed into D/A by multiQ and
send to the wireless transmitter. The RC wireless receiver, attached with the WMRs,
recetves the corresponding data and converts back into A/D. To the motors, the signal is
sent in as the pulse width. C++ 1s used as the programming language for the vision

processing task and all other control related tasks.
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Fig.20. Block diagram of the experimental setup
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4.4. Parameter Identification

Vision sensing is used for the position feedback and the central finite difference is
used to find the first and second derivatives wherever necessary in the following

subsections.

4.4.1. Parameter Identifications of the Actuators

Two different color objects, equally spaced from the axle of the motor, are
attached in a cross bar as shown in Fig.21 . The vision library in the CIS lab captures the
image and processes it in order to find the centroid of the color targets. The angle is
found from the centroidal information. Angular velocity and angular acceleration of the

motor are found using the central finite difference method.

Fig.21. RC servo motor

The equation (155) is re arranged since we can minimize the number of
parameters to be identified as follows:
& =aU -a,0-a,sgn(w) (157)

where a,,a,,a, are given by
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J
+K

%:”Jb (158)
U

0327

The subscript wm is removed for the ease. The least square curve fitting method is used

to find out the parameters in (158) . Let ¢ €[#,,7,] be the run time of the experiment. The

equation in (157) is then re arranged for the Vre(r,z,] as

Uty) -aly) —sgn(o(s)) o) ]
4
a, |=| - (159)
. . . La3 .
Ut;) —o(t;) —sgn(o(t,) _c'o(tf )_

The over determined system (159) can be solved for the parameters a,,a,,a, using the

pscudo inverse method.

Let A,Y,X be given by

U -o() -—sgn(a(t))

Ut;) —o(t;) —sgn(o(i,)
o) ]
(160)

71



Then using the pseudo inverse approach the parameters of the RC motor are given by

X=(aTA)'ATY (161)
Two sets of initial conditions (IC) are used to find the parameters of the right and

left wheel motors as shown in Table 1.

Time(s) IC#1 IC#2
1<5 U(t)=0.0V U(t)=0.0V
1>5 Ut)=0.5 U(t) =-0.5V

Table 1. Initial conditions for the parameter identification

Table 2 summarizes the identified parameters a,,a,,a; for the right wheel motor.
The values of a,,a,,a, are the average values of a number of data samples taken. Same

initial conditions are considered for all the different sets of data samples. Also the

deviation column gives the maximum and minimum variation of parameters a,,a,,a,

from the average values.

Parameters of the right wheel IC#1 Max/Min IC#2 Max/Min
motor Deviation Deviation

a, 243.3405 +14.7115 415.223 +11.749

a, 9.028315 +0.740805 15.1073 +0.299
a, -0.7417085 +1.2905115 -2.585695 +1.420975

Table 2. Parameters of the right wheel motor

Fig.22 and Fig.23 show the angular acceleration and angular velocity of the right
wheel motor for the IC#1 respectively. Experimental data set versus the simulation data

set, using the estimated parameters in the Table 2, is shown in those figures.
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Fig.24 and Fig.25 show the angular acceleration and angular velocity of the right
wheel motor for the IC#2 respectively. Experimental data set versus the simulation data

set, using the estimated parameter in the Table 2, is shown in those figures.
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Fig.24. Angular acceleration of the right wheel motor for the IC#2
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Fig.25. Angular velocity of the right wheel motor for the 1C#2
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Similarly, Table 3 summarizes the parameters a,,a,,a; for the left wheel motor.

Similar plots for the left the wheel motor can be obtained for the verification but those are

omitted here.

Parameters for the left wheel IC#1 Max/Min IC#2 Max/Min
motor Deviation Deviation
a, 124.65 +37.357 354.603 +15.25
a, 4.51495 +4.41181 11.5469 +3.515975
a, -6.50073 +2.07883 -2.52157 +1.98958

Table 3. Parameters of the left wheel motor
4.4.2. Model Verification of the Actuators
Now, the average values of the parameters a,,a,,a, are taken for the right and

left wheel motors from the IC#1 and IC#2. Table 4 summarizes the updated values of the

parameters a,,d,,a; for the right and left wheel motors.

Parameters Right wheel motor Left wheel motor
a, 329.2818 239.6265
a 12.0678 8.0310
2
a -1.6637 -4.51115
3

Table 4. Parameters of right and left wheel motors

This time a sinusoidal input is applied for both the actuators as shown in Table 5.

The sinusoidal input is shown such that it does not go beyond the saturation limit of the

motors.
Time(s) IC#3
Right wheel motor Left wheel motor
t<5 Ug=0.0V U, =00V
t>5 U, =0.5sin(?) U, =0.5sin(r)

Table 5. Initial conditions for the model verification of the motors
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Fig.26 and Fig.27 show the validation of motor parameters for the right and left

wheel motors respectively.
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Fig.26. Angular velocity of the right wheel motor for the 1C#3
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Fig.27. Angular velocity of the left wheel motor for the IC#3
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4.4.3. Parameter Identification of the Wheeled Vehicles

The values for the parameters a;,a,,a; found in previous section need to be
checked and fine tuned when they are attached with the WMRs since, when they are
attached with WMRs, the rotational friction changes considerably due to the weight of
the WMRs. That means when ever the motors are attached with a WMR with different
mass and structural configuration, it is necessary to re evaluate the parameters a,,a,,a,
for that particular configuration. For a swarm system, one can assume without loss of
generality, that all the members will be homogeneous ones w.r.t mass and structure. It
means that, if we could find the parameters for one WMR, we can assume same values
for the parameters g,,a,,a; for all the members.

The equations (156) and’(157) are rearranged as in (162) in order to find the
angular velocities of the motors and parameters are again re identified for both the left

and right wheel motors.

roR=% x. cﬁs& %}jj’9¢~—Vn L3,...
a)R:% X sm9 %e—)ﬁ’éinﬂVn 0,1,2...
a)L:—IZ— X, iés& 2 ]szé? 2= L3,... (162)
a)L=»12— stfnﬁ R )zﬁ’é’inﬂ‘v’n—Oll..

Op =0, Uy —0a, 0, — a5, Sgn(wR)

o, =a,,U, —a,,0, —ay, Sgn(a)L)
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This time the translational motion and the rotational motion of the WMR are
considered for the parameter identification process. Table 6 summarizes the ICs for the

translational motion of the WMR.

Time(s) IC#4
x=0.511 y= 03747 6 =0.7184rad
Right Wheel Left Wheel
<5 Uyp =0.0V U, =0.0V
t>5 U,=05V U, =05V

Table 6. Initial conditions for the translational motion of the WMR

Two color objects are attached with the WMR this time for the vision feedback

and x,y,0 are obtained. As mentioned earlier the central difference method is used to
calculate the X,y,0. @g,®, and the parameters a,,a,,a; for the left and right wheel

motors are calculated as in (162) .

Fig.28 and Fig.29 show the experimental vs. simulation data of the velocity

components in the X and Y directions of the WMR for the IC#4 respectively.
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Fig.28. Velocity of the WMR in the X direction for the IC#4
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Fig.29. Velocity of the WMR in the Y direction for the IC#4

Fig.30 and Fig.31 show the angular velocity of the WMR and the angle turned for

the IC#4 respectively.
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Fig.30. Angular velocity of the WMR for the IC#4
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Finally, Fig.32 and Fig.33 show the position of the WMR and path traveled

during the run time for the IC#4 respectively.
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Fig.32. Position of the WMR for the IC#4
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Fig.33. Path followed by the WMR for the IC#4

Similarly, Table 7 summarizes the ICs used for the rotational motion of the

WMR.
Time(s) IC#5
x=1.3545 y= 0.7871 6 = -0.4444rad
Right Wheel Left Wheel
1<5 Uy =0.0V U, =0.0V
t>5 Up,=0.5V U, =-0.5V

Table 7. Initial conditions for the rotational motion of the WMR

Fig.34 and Fig.35 show the experimental vs. simulation data of the velocity
components in the X and Y directions of the WMR for the IC#5 respectively. It is pure

rotational motion.
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Fig.34. Velocity of the WMR in the X direction for the IC#5
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Fig.35. Velocity of the WMR in the Y direction for the IC#5
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Fig.36 and Fig.37 show the angular velocity of the WMR and the angle turned for

the [C#5

Angular velocity (rad/s)

Angle(rad)

respectively.
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Fig.36. Angular velocity of the WMR for the IC#5
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Fig.37. Angle of the WMR for the IC#5
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Finally, Fig.38 shows the position of the WMR for the IC#5.
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Ys imulation

P

Fig.38. Position of the WMR for the IC#5

Table 8 summarizes the updated values for the parameters of a,a,,a; with

subscript L and R denoting the left and right wheel respectively.

Parameters 1C#4 Max/Min IC#5 Max/Min
Deviation Dewiation

a p 24.89375 +16.2381 20.5380 +2.1410

a; x 0.730149 +1.226 0.7231 +0.0311

as 0.9006 +9.28434 -1.7613 +0.5548
a, 38.2014 +2.8059 18.7796 +1.9764
a; 1.18651 +0.2794 0.50305 +0.1486
a, -0.4206 +3.7983 2.6065 +2.7233

Table 8. Parameters of the right and left wheel motors when attached with the WMR
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4.5. Model Verification of the WMR

Now, similar to the model verification of the actuators earlier, the average values
of the parameters a;,a,,a; is taken for the right and left wheel motors from IC#4 and
IC#5. Table 9 summarizes the updated values of the parameters a,,a,,a; for the right

and left wheel motors.

Parameters Right wheel motor Left wheel motor

a, 23.15147 30.4327

a 0.72736 09131
2

a -0.1642 -0.79022
3

Table 9. Parameters of the right and left wheel

A new set of inputs is applied this time for the WMR as shown in Table 10. The

inputs are chosen such that they do not go beyond the saturation himits of the motors.

Time(s) IC#6
Right motor Left motor
<5 U, =0.0V U, =0.0V
t>5 U, =03 U,=0.5

Table 10. Initial conditions for the model verification of the motors

Fig.39 and Fig.40 show the experimental vs. simulation data of the velocity
components in the X and Y directions of the WMR for the IC#6 respectively. It is noted
that the simulation and experiment results match each other initially but there is a notable
deviation after some time period. This is primarily due to the noise in the vision sensor
feedback. Better results could be obtained had angular velocity and translational velocity
values been measured by suitable sensors rather than using central finite difference

method to calculate those values from position and orientation values.
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Fig.39. Velocity of the WMR in the X direction for the IC#6
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Fig.40. Velocity of the WMR in the Y direction for the IC#6

Fig.41 and Fig.42 show the angular velocity of the WMR and the angle turned for

the IC#6 respectively.
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Fig.42. Angle of the WMR for the IC#6

Fig.43 and Fig.44 show the position and path traveled by the WMR for the IC#6

respectively.
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Fig.44. Path followed by WMR for the IC#6

The results show that the calculated values of parameters can be used for the

actuator dynamics in the following swarm experiments in chapter 5.
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5. Application of Energetic Swarm Control to Wheeled
Vehicles

When recent results have been developed on swarm control, most often a point
mass dynamics is considered in the literature. But making a swarm of real vehicles and
controlling it have not been widely implemented due to a number of challenges such as
nonholonomic behavior of vehicles, saturation constraints and uncertainties. There are
only few results applicable to the real vehicle applications. On the contrary, a single
WMR or hovercraft has been made to follow trajectories or be controlled experimentally
but, even controlling a single WMR experimentally needs much attention and rigorous
work due to the presence of nonholonomic constraints, saturation constraints of actuators,
unmodeled dynamics of vehicles, and disturbances.

This chapter discusses the application of the energetic swarm control with WMRs.
Since energetic swarm control is developed for a point mass system, it can not be applied
directly to the WMRs. A low level controller is developed with dynamic feedback
linearization. As explained previously, many numbers of WMRs can be built in a quick
time period to be considered as a swarm. Also, they can be efficiently manipuléted over a
limited space. Hovercrafts may be replaced with WMRs but they are hard to control over
a limited space when they are many vehicles. However, WMRs can be controlled with
much ease rather than hovercrafts because of their modeling equations governing the

dynamics of the system.
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5.1. Low Level Controller Design

In order to implement the energetic swarm with a group of wheeled vehicles
experimentally and to get a better tracking performance, inputs from a low level

controller are preferred. Here, the high level control input is considered as the w; in (88)

and high level dynamics is given by (88). Further, low level controllers are successfully
applied experimentally to get better tracking performance in [45]-[46] where trajectory
tracking of WMRs is considered. When high-level controller inputs are applied directly
to a WMR, the trajectory tracking is largely poor and a low level controller is preferred
for a better tracking performance.

In the high level layer of energetic swarm dynamics, the point mass is considered.
But a WMR consists of vehicle dynamics along with kinematic equations and it is
nonholonomic as well. High level control inputs, generated from the control allocation
approach, cannot be directly applied to the WMRs. The kinematic equation of WMRs is
considered to be the lower level dynamics. As in [45] the dynamic feedback linearization
is chosen as the low level controller since this enables the centroid of WMRs to track the
desired trajectory. Input output linearization can be done as in section 2.3.2 for the low
level dynamics but the proposed low level controller can be used to track the tip of the
WMRs which is not desirable. Tracking the centroidal of WMR is preferred and the
dynamic feedback linearization closely relates to the form of a PID controller which is
used to track trajectories successfully.

Let us consider an i” member of the swarm. Its high level dynamics is given by

(88). Let the output of the high level dynamics be
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'xr.i
Xout = y,.;,- (1 63)

The lower level dynamics is given by the kinematic equation of the WMR as in (58). The

desired reference trajectory [x,, »,,]’ that the WMR should track is the output from the

high level swarm dynamics. That is

Xai X,
= (164)
yd,i yr,i
The lower level dynamics can be converted into the linear system as in (87) by dynamic

feedback linearization.

Let the lower level dynamics of i member be

X, cosf, 0

V.
¥, |=|siné, 0[ } (165)
0, 0 1"

Define the output vector n, of the lower level dynamics as

X;
n, =[ } (166)
Yi
The first differentiation of the output vector n, gives
. _|cosf O, 167
= sind, 0| o, (167)

Since the 7, is not affected by the ,, it is necessary to differentiate the output vector

until both the inputs appear. In order to avoid differentiation of the original inputs, a new

state ¢, is necessary such that it becomes the integrator for the original input. Define ¢, as

:Vi

S
. 168
~é-7 ew
Differentiating (167) gives
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. _|cosf —¢sind | a 169
= sind, & cosb, || o, (169)

Define [5,. o, as follows and it is non-singular when ¢ #0

{Ei jl [cos 6, ¢ sin 9,}_1
- u, (170)

o, sinf, £ cosO,

where u, = [u“ “2,1}7 is the new control input. Then the system (169) becomes

U, .
ﬁ!{ } (171)
Uy

Then for the system (171) choose the control law as

u,, Xy, +k, (x, —x)+k, (%, - %)
Ll “d‘ prLi\Aq, dl, .d; . (172)
Uy, Yai +kp2,i(yc1,f = V)t kg (Ve =)
where k,, >0,k, >0k, >0,k;,, >0 fori=12,...M
Finally, the dynamic compensator is given by
& = U, ;€080 +u,,;sin G,
v, =g _ (173)
u,,cost ~u, sing,
o, =% .
S
In terms of control inputs, the angular velocities of the wheels of the WMR are given by
(2v,+wl)
" 2RRi
. ’ 174
— (2vi — a)il) ( )
Li 2RLJ-
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Fig.45. Block diagram of the high level swarm layer and the lower level layer
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Fig.45 shows the complete block diagram of the high level swarm layer and how
it is combined with the low level layer. The high level layer is the lower part of the Fig.45
and it consists of swarm dynamics, virtual controller and control allocation process. The
low level layer is the upper part of the Fig.45 and it consists of WMR dynamics and the
low level controller. For the high level swarm controller the inputs are the desired swarm
centre trajectory, and the desired temperature and potential values. Based on those
desired inputs, the virtual controller that tracks the desired swarm center and regulates
desired temperature and potential values will be calculated using the sliding mode control
method. Since the system is over actuated, using the control allocation approach, actual
inputs that match the necessary virtual inputs will be calculated with saturation
constraints.

The output of the swarm dynamics is the trajectories of each individual member.
The output of the swarm dynamics will be the desired reference trajectories for the
WMRs. The low level controller tracks the desired trajectories of the high level swarm
layer and these trajectories are generated online. Further, they are of chaotic type. Here,
the dynamic feedback linearization will be used calculate the low level controller since
the system (165) is an under actuated one and the inputs to the system (165) are generated
online by the high level layer. There is no prior knowledge of these trajectory patterns
and the dynamic feedback linearization is preferred than the sliding mode control
method. However, in the high level layer, virtual controllers are calculated using the
sliding mode control method since, once the virtual controllers are introduced in (104),

(114) and (124), the system is neither under actuated nor over actuated. The sliding mode
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controllers successfully track the desired swarm centre, desired swarm temperature and

desired swarm potential with the presence of disturbance.

5.2. Simulations

In this section, the high level swarm dynamics and the low level dynamics are
simulated together. Swarm consists of six members. The desired swarm centre trajectory
and the temperature and potential values are chosen as

_ 5.0cos(?)

Xd = .
5.0sin(t)

Td - 5'0

J, =50

(175)

Table 11 shows the ICs of the swarm members in the high level layer and all other
coefficients and positive constants defined in chapter 3. Here, the coefficients are selected
such that the members will be homogenous however, different values can be selected if

that case is necessary.
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1Cs Member 1 Member 2 Member 3 Member 4 Member 5 Member 6
0.0 [5.0] 1.0 F 3.0 [—2.0] [4.0]
X
’ 0.0 15.0] 1.0 |-3.0] |-2.0] 12.0]
2.0] [1.0] 3.0 [—2.0] [—5.0] (8.0
\%
’ 2.0 1.0 ~3.0 | 0.0 | | 5.0 8.0
m, 1.0 1.0 1.0 1.0 1.0 1.0
h, 1.0 1.0 1.0 1.0 1.0 1.0
b, 1.0 1.0 1.0 1.0 1.0 1.0
d 1.0sin(z) 1.0sin(?) 1.0sin(¢) 1.0sin(?) 1.0sin(¢) 1.0sin(z)
" 1 11.0sin(t) | | |1.0sin(¢) | | |1.0sin(r) | | |1.0sin() | | | 1.0sin() | | |1.0sin(?)
B 2.0 2.0 2.0 2.0 2.0 2.0
g0 20 20 20 20 20 20
Iy vl Iyl vl vl lv]
eol 21 Z )zl 2]
vl vl vl Il Ivl vl
@ 1.0 1.0 1.0 1.0 1.0 1.0
@, 1.0 1.0 1.0 1.0 1.0 1.0
@, 1.0 1.0 1.0 1.0 1.0 1.0

Table 11. Initial conditions of the high level swarm layer

Table 12 summarizes the sliding mode parameters defined in section 3.2. Here the
parameters X, A, are chosen such that the swarm achieves the steady state in a reasonable
time. The parameters 77.,77;,77, are chosen such that the disturbance effect is completely

removed from the system. The values of the boundary layers are chosen such as the
chattering effects are completely eliminated from the system. One can note that the

boundary layers ¢, and &, are higher than the g.. This is because stabilizing the
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temperature w.r.t the corresponding potential value needs more room and a control effort.

Also these temperature and potential functions are highly nonlinear functions.

Parameters Value
A 2.0
12.0]
7. 2.0
g, [1.0]
- 1.0]
Ny 3.0
&p 0.5
A, 2.0
n, 3.0
& 0.5

Table 12. Sliding mode parameters

Table 13 shows the saturation constraints used in the control allocation process in
the upper level swarm layer. These constraints are chosen such that these limits are above
the minimum allowable values. Again, homogenous bounds are chosen but one can
choose different values of saturation constraints based on the required temperature and

potential values.

Saturation Constraint Value
u® -25.0

I mn
-25.0
s 25.0

! max
25.0

Table 13. Saturation constraint values
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Fig.46 shows the trajectory tracking of a WMR by the lower level control inputs.
The reference trajectory is generated from the high level swarm dynamics. The initial

conditions of the WMR are

X, 2.0
yi =] 3.0 (176)
0, 0.52

The gains of the lower level controller (172) is selected as

k1[40
k 4.0
p2
= 177
k| 4.0 (177)
k| |40

These gains are chosen such that the error between the desired trajectory and the WMR
trajectory is as small as possible and achieves steady state at a reasonable time. The

possible potential singularities of the lower level controller are eliminated by resetting ¢,

in (168) as follows, if £, approaches zero.

if £ < 0.01
&=0.01iff &>0 (178)
£ =-0.01iff & <0
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Fig.46. Trajectory tracked by the WMR generated by the high level swarm layer

Fig.47 and Fig.48 show the corresponding lower level control inputs which are

o] in (173)

Control input (nvs)

w

o 5 10 15 20 25 30 35 40 45 50
Time(s)
Fig.47. Low level control input
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Fig.49 shows the error between the desired trajectory and the trajectory followed

by the WMR. The lower level controller achieves the desired objective.
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Fig.49. Error plot
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Y(m)
o

X(m)
Fig.50. Trajectory tracked by another WMR generated by the high level swarm layer

Fig.50 shows the trajectory followed by another WMR and Fig.51 shows the

corresponding error plot.

Error(m)
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Fig.51. Error plot

101



5.3. Low Level Controller for Experimental Setup

Although in simulations the lower level controller achieves good tracking
performance of the online trajectories generated by the high level layer, in reality, the
high level controller and the lower level controller should be synchronized for a practical
setup due to disturbances or any other mismatches. In order to get a better tracking
performance in a practical implementation, the two loops should be combined together.
First, the actual inputs to the high level swarm layer will be found. Next, the high level
swarm 1s allowed to generate the desired trajectories for a certain time period and the
outputs of the swarm will be applied to the low level controller. The actual positions and
velocities of each WMRs are then computed for the same time period. Finally, the high
level swarm states will be updated according to the actual WMRs position and velocities.

The following procedure summarizes the high level and low lever layer

synchronization [56].

1) Firstly, the high level swarm is allowed to generate desired trajectories between

t=[t, t.+T ] where ¢, is the initial time and T, is the synchronization time

1271 swarm swarm

between the high level swarm dynamics and the low level dynamics.

2) The desired trajectories for the lower level dynamics are the trajectories generated

from the high level dynamics between time ¢ =[z;,z,+7. 1. The outputs from the high

177 swarm
level dynamics are applied as the inputs to the lower level controller for the time
t=[t,t,+T ] and the actual positions and velocities of the WMRs are found.

1% Sswarm
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3) In reality there are differences between the trajectory tracked by the WMR and the
trajectory generated from the high level swarm dynamics. In order to eliminate the error
as much as possible, the states of WMRs are fed back to the high level dynamics. That is,
the states of the swarm members in the high level swarm model will be re-initialized with

the WMRs positions and velocities found in Step (2).

4) Once the states are fed back, step (1) to step (3) are repeated until the end of the run
time.
The above procedure combines the higher and lower level layers at each time

interval T, . Furthermore, T

earm wam 18 the key parameter which determines the tracking
performance of WMRs and the stability of high level layer. In an inner loop and outer
loop cascaded system, careful adjustment of the gains of both inner loop and outer loop is
required. In general, the combined inner and outer loop system shows good tracking
performance when the inner loop is significantly faster than the outer loop.

Fig.52 shows the complete block diagram of the high level swarm layer and the

low level layer. As explained earlier, two loops will be combined together at every time

interval 7, where the WMRs actual states will be updated at that time. If 7, is

higher than a particular value then the WMR will deviate from the desired trajectory by a
certain amount due to the presence of disturbance, but if it is too small then there will not
be enough time for the high level layer to adjust the disturbance caused by the state
feedback. It may make the high level layer unstable. It is very difficult to regulate the
desired temperature in this case due to its nonlinear behavior. Here in the following

simulations in section 5.4 it will be found by trial and error.
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5.4. Simulation Verification

In this section, simulations are done to verify the synchronization of the high level
layer with the low lever layer. As explained previously, the states of the high level layer

will be updated with the states of WMRs at a time interval T

" varm - 1HE two loops will be
closed together. Again the swarm has six members.
The desired swarm centre and the desired temperature and potential values for this
case 1is
_ 5.0cos(¢)
X, = .
5.0sin(¢)
T, =10.0
J, =10.0

(179)

The initial positions and velocities of the swarm members in the high level layer will be
same as that of in the Table 11. Also, any other coefficients and parameters will be kept
the same as that of in the Table 11. However, the sliding mode control parameters will be
updated as in Table 14. Since the states are fed back, more control effort is necessary and
the parameters will be chosen such that the tracking errors are as small as possible in the

high level and low level layers.
Here the parameters h, A, are chosen such that the swarm achieves the steady

state in a reasonable time when it gets external disturbance by the state feedback from the

low level layer. The parameters 77.,7;,77, are chosen such that the disturbance effect is

completely removed from the system. The boundary layer values will be selected such
that the chattering effects are completely eliminated from the system. However, the price
of large boundary layer is the tracking or regulation error at the steady state of the

system.

105



Parameters Value

x [3.0 3.0
1. 5.0
£, [0.1 0.1]
Ny 5.0
&r 0.6
A, 5.0
n, 5.0
£, 0.6

Table 14. Sliding mode parameters

Further, the saturation constraints will also be relaxed as shown in Table 15.

Saturation Constraint Value
ul?x,min =300
-50.0
u! 50.0
I max
50.0

Table 15. Saturation constraint values

The T, will be selected as 1.0. The value is a good choice as shown in Fig.59

swarm

and Fig.63. If the 7, is beyond this value then the errors will be high due to the

warm

disturbance applied to the WMRs. The disturbance will be selected as

[1.0sin(2¢) 1.0sin(21)]". However, if the T is reduced further, the high level layer

swarm

does not have enough time to adjust the disturbance and needs more control effort to
track the temperature and potential values and to stabilize the system.

Fig.53 shows the trajectories of each swarm member in the high level layer.
Fig.54 shows the swarm centre and the desired swarm centre. Since the WMRSs’ positions
are updated after a certain period of time, the tracking is not smooth but it recovers each

time. The swarm centre deviates from the desired one, but it quickly recovers

106



— — Membert
8- — - Member2 | .
‘ Member3

6 Member4
- —— Member5 -

Y(m)

X(m)

Swam Centre |
-—- Swarm Centre desired

i

i
i
3
e

8 . ,
4 -2 0 2 4 6
X(m)
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Fig.55 shows the temperature regulation at the desired value. Since the WMRS’

positions are updated, in this graph too, the effects of that are visible.
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Fig.55. Temperature of the swarm
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Likewise Fig.56 shows the potential regulation and Fig.57 shows the

corresponding swarm size.

6.5, ST

655

Swarmsize (m)
»
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Fig.57. Swarm size

Fig.58 shows the one of the swarm members’ high level control input. As

mentioned, the saturation limits are set to +/—50 during the steady state condition.
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Fig.58. High level control input
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Fig.59. Trajectory followed by a WMR

In Fig.59 the trajectory followed by a WMR is shown and the corresponding

tracking error of the trajectory is shown in Fig.60.
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Time(s)
Fig.60. Error plot
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Fig.61. Low level control input

In Fig.61 and Fig.62 the corresponding low level control inputs are shown. Even

though there are no saturation constraints directly set for the low level controller, it is

obvious from the simulations that the bound on high level swarm controller generates

bounded low level control inputs.
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Fig.62. Low level control input
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Fig.63 shows the trajectory tracking of another WMR.
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Fig.63. Trajectory followed by another WMR

Fig.64 shows the corresponding error plot of the tracking.
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Fig.64. Error plot
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Fig.65. Trajectory followed by a WMR

Finally, Fig.65 shows the trajectory followed by another WMR in the swarm. The
error between the desired trajectories and the trajectories followed by any WMR 1is
reasonable one considering the kind of trajectories generated by the high level layer.
These are online trajectories of highly chaotic type. There is no prior knowledge of these
trajectories. The low level controller successfully follows the trajectories and enables the

energetic swarm to be successfully applied to the WMRs.
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6. Conclusion and Future Works

In this thesis, the energetic swarm control approach from [36]-[38] is explained
and the proposed controllers in [48] are verified through numerous simulations of the
high level swarm control system. The main contribution of this thesis is the application of
energetic swarm control to WMRs using dynamic feedback linearization as a low level
controller. Since the high level energetic swarm layer is a point mass dynamics, the high
level inputs cannot be applied directly to the nonholonomic WMRs. Further, the
implementation algorithm of the lower level layer enables better trajectory tracking
performance while coping with disturbances and keeps the high level controller tracks the
desired temperature and potential values.

Also, the saturation constraints on the high level controller are studied
numerically for the steady state case. It is found that the pseudo inverse is not adequate
enough to handle the control allocation to generate feasible high level control inputs
through out the run time. The pseudo inverse is replaced with the SNOPT optimization
solver and the actual high level swarm inputs areA generated using SNOPT for the control
allocation approach. Although SNOPT generates satisfactory high level inputs, there is a
minimum allowable limit and below that SNOPT fails to match the virtual inputs. The
minimum allowable limits are numerically calculated for the steady state case for a
certain operating region. Generally, the minimum allowable limit is a nonlinear function
which depends mainly on the temperature and potential values, and their derivatives w.r.t
time.

Finally, the modeling parameters of the servo RC motor are identified using

vartous simulations and experiments. RC servo motors are used on WMRs and it is
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important to study the modeling parameters of the real actuators in order for the
experimental implementation of the energetic swarm.

Future research focuses on modeling the high level swarm dynamics with 2D and
3D rigid body dynamics. It is important to get a mathematical equation that correlates the
minimum allowable limits exactly for the steady state case and transient state case. Future
research will also investigate the saturation effects on the lower level controller as well.
Furthermore, the lower level controller will be expanded such that it is robust to noise
and disturbances. Finally, the energetic swarm controller will be applied and tested on

various types of vehicles such as hovercrafts, helicopters and robotic fish systems.
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