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ABSTRACT 

Building-Integrated Photovoltaic/Thermal Systems (BIPV/T) systems are photovoltaic 

installations incorporated as the exterior layer of the building envelope with the additional 

function of recovering thermal energy, which can then be used for space heating, domestic 

water heating and possibly for cooling. Some advantages of a BIPV/T system over an 

autonomous PV array include lower installation costs due to the replacement of cladding 

material, elimination of extra support structures and reduced electrical transmission losses. 

In addition, recovering the heat from the photovoltaic panels cools them and thus improves 

their electrical efficiency. Due to the novelty of BIPV/T systems, there is a need for the 

measurement of convective heat transfer coefficients and development of correlations for 

their prediction. The development of an integrated energy model, including correlations for 

the prediction of convective heat transfer coefficients in BIPV/T systems was one of the 

main objectives of this thesis. 

Accurate measurements of convective heat transfer coefficients have been carried out for 

two open loop BIPV/T configurations: smooth and ribbed. The BIPV/T systems were 

tested at 30°-45° tilt angles and had a length/hydraulic diameter ratio of 38 which is 

representative of roof applications. It was found that for the BIPV/T ribbed case, the 

calculated Nusselt numbers are on average 2.6 times higher than the Nusselt numbers 

predicted by the Dittus-Boelter correlation. 

Pressure drop measurements were performed for the two configurations and the results 

are presented in terms of the Darcy friction factors and compared to the Blasius equation. 

For both cases, the friction factors are higher compared to the ones predicted by the Blasius 

equation. 
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Previous existing electrical photovoltaic models have been used to couple their features 

to the lumped parameter thermal network modelling approach used in this thesis. Two 

thermal network models, steady state and transient, have been developed in this work and 

validated against experimental data. The steady state model is useful for a quick evaluation of 

the thermal/electrical performance, while the transient model gives a more accurate 

representation of the system by considering the thermal storage capacity of the materials. 

Finally, conclusions and general recommendations and guidelines for the design and 

construction of BIVP/T systems are provided. 
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1. Introduction 

1.1 Background 

No matter how abundant they may seem, fossil energy sources are finite. Moreover, they 

have the serious drawback that their exploitation has detrimental environmental 

consequences, in both the short and long terms. Fossil fuel reserves are concentrated in a 

few countries in the world, with important geopolitical implications. Finally, these fossil 

resources must be transported at considerable financial and energy expenditure. As a result 

of the reasons expressed above, it is vital to invest in the research, development and 

applications of renewable energy sources. 

Alone among renewable energy sources, solar energy is available to everyone, worldwide, 

in virtually every climate. It is environmentally clean, extremely abundant and infinite on the 

human scale. Unlike hydro power and wind generation, solar energy use has practically no 

effect on the landscape. Often, its use does not require complicated or expensive systems. It 

can be applied to a broad range of scales - from powering solar watches and calculators to 

supplying electricity to neighborhoods and cities. Quiet and often unobtrusive, systems that 

recover, transform or control solar energy are ideal for integration as functional elements of 

buildings. 

Building-Integrated Photovoltaic (BIPV) systems consist of photovoltaic arrays that are 

integrated as components of the building envelope of residential homes or commercial 

buildings. Apart from providing electricity, they serve an architectural purpose as the 

cladding material of facades or roofs. As widi any other element of the building envelope, 

their integration has to be done carefully in order to avoid problems with rain penetration, 
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wind loads and thermal expansion. Fire and electrical hazard protection must also be 

considered in their design. BIPVs offer lower installation costs than stand-alone PV systems 

by replacing shingles, bricks or the external layer of curtain walls and by obviating the need 

for extra framing systems. BIPVs optimize the use of space, which is especially important in 

densely populated areas. Another advantage is that, since the electricity is generated on site 

where it is needed, electrical transmission losses are reduced. 

A BIPV/Thermal (BIPV/T) system is a special type of BIPV technology in which part of 

the solar energy received by the PV panels is collected as heat. This heat is usually removed 

by circulating a fluid, which can be either a liquid or air, beneath the panels. The heat 

removed can then be used for purposes such as fresh air and domestic water heating, space 

heating and clothes drying (Chen, Y. et at, 2007a). It can even be used for cooling (e.g., with 

a desiccant cooling device). This arrangement also lowers the temperature of the PV panels, 

thus increasing their electricity generation efficiency as described below in section 1.3. This 

PhD thesis will focus on one of the most common and useful configurations of BIPV/Ts: 

open loop air-based systems. In this type of system, outdoor air is drawn under the BIPV 

with a fan, getting heated as it flows. It is then brought to the mechanical room or energy 

system of the house for use as heated fresh air or as a source of useful heat for a heat 

exchanger or a heat pump. 

Efforts of researchers towards understanding and modelling the energy balance of air-

based BIPV/T systems still have not led to an accurate model of the heat transfer in typical 

full-scale installations. The heat transfer is usually modelled using a thermal network 

approach. This method requires convective and radiative heat transfer coefficients in order 
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to write the conservation energy equations, and thus to find the PV and bulk air 

temperatures. 

Previous studies (Bazilian, M.D. & Prasad, D., 2002; Eicker, U., 2003; Charron, R. & 

Athienitis, A.K., 2006b; Charron, R. & Athienitis, A.K., 2006a) have employed heat transfer 

correlations developed for similar geometries such as pipes and channels. This implicitly 

assumes a number of ideal conditions including developed flow conditions, symmetric 

heating, and either uniform wall temperatures or uniform heat flux rates, among others. 

However, this approach is not accurate because of the complexity of BIPV/T channels, 

which include heating asymmetry, high aspect ratios, non-uniform heat fluxes, non-uniform 

wall temperatures, non-developed flow conditions, mixed flows (air and water vapour), and 

non-uniform cross sections due to framing and different PV geometries. A major objective 

of the research presented here is to contribute to accurate modelling of heat transfer and 

fluid flow phenomena in BIPV/T systems for design, optimisation, operation control and 

evaluation of their performance. The temperature of the PV panels is also needed to 

accurately determine their electrical output. 

After this background discussion, this chapter continues with a description of the energy 

balance existing in a BIPV/T system. Following this, a brief description of electrical 

considerations of photovoltaic systems is presented and the influence of temperature on 

their power output is discussed. A brief description of solar geometry is presented. Next, a 

summary of the main motivations of the research is presented. Finally, the problem 

statement is presented and discussed. 
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1.2 Energy Balance of a BIVP/T System 

Photovoltaic modules either absorb or reflect the electromagnetic radiation that comes 

from the sun (including a small portion that is reflected from neighboring surfaces such as 

the ground). The fraction of energy that is absorbed will depend on the optical properties of 

the PV module and on the incidence angle of the solar radiation, which is a function of time 

of day, month of the year and tilt angle of the PV module. Photovoltaic modules are usually 

covered with a layer of tempered glass or another encapsulant that often has an antireflective 

coating. The portion of the reflected solar radiation is on the order of 5-8% for normal 

incidence angles (Parretta, A. et al, 1999). 

The fraction of incident solar radiation within the spectrum region for which the solar 

cells are sensitive (band gap) (DGS, 2005) can be converted into electricity. The efficiency of 

a photovoltaic module is the fraction of the total incident energy that is converted into 

electricity and is typically 8 to 18% for commercially available modules. The rest of the 

absorbed solar radiation is converted into heat. This heat will be released to the exterior of 

the building and to the back of the PV panel through convective and longwave radiation 

heat transfer. Radiation heat transfer is often modelled using the PV temperature and a 

reference sky temperature in the Stefan-Boltzmann equation. The heat released by 

convection to the exterior air will depend on the speed of the wind impinging on the PV 

panel. In the back surface of the panel, heat is also transferred by convection to the air 

passing through the channel. The rest of the energy is exchanged by radiation between the 

surfaces in the PV channel. Figure 1.1 depicts the energy exchanges taking place in a typical 

BIPV/T roof installation. 
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Figure 1.1. Schematic of a typical air-based open-loop BIPV/T system, subdivided into five 

sections for thermal network modelling (Candanedo, L.M. et al, 2010). 

The BIPV/T system shown in Figure 1.1 (typically 6-10m long) has been discretized into 

five sections for thermal network modelling. Simple and relatively accurate representations 

can be created with lumped parameter models. A single control volume representing the 

whole BIPV/T channel can be used; however, several control volumes (as depicted in Figure 

1.1), increase the accuracy and spatial resolution of the results. The thermal network for a 

section of the system is presented in Figure 1.2. This thermal network assumes a negligible 

thermal capacitance and resistance for the PV module. 

The energy balance for the PV module can be expressed as: 

o - A ^ G ^ E p + T L + Q ^ Q , 1-1 

where ocAm-G is the absorbed solar radiation, Ep is the electrical power produced by the 

photovoltaic module, TL is the thermal heat transfer rate loss from the top part of the 



module to the exterior (convective + radiative to the sky), Qc is the convective loss from the 

module to the channel air stream and Qris the radiative heat transfer to the back plate. 

Convective heat transfer between the heated air and the BIPV/T roof surfaces is a 

complex phenomenon, heavily dependent on the geometry of the installation. Many 

researchers have traditionally employed Nusselt number correlations developed for fully-

developed flow in smooth pipes and channels. These correlations usually do not represent 

the actual conditions found in an open-loop BIPV/T system such as non-uniform cross 

sections and non-uniform heat fluxes and non-develop flow conditions. 

Tsky T0 

Elec. Power 

Tinletl 

P V module 

Toutlet 

Combined radiative and 
convective heat transfer ^ 1/ht 
coefficients 

Tair attic 

Tsurface insulation 
Insulation 

T surface insulation 

Figure 1.2. Basic lumped parameter thermal network for a section of the BIPV/T roof 

installation. 
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1.3 Electrical Considerations of PV 

As their temperature increases, silicon cells commonly used in PV modules suffer a 

reduction in their electrical conversion efficiency. Temperature coefficients are employed to 

calculate the influence of temperature on different parameters such as: voltage, current and 

maximum power. The maximum power temperature coefficient is the most commonly used 

temperature coefficient (Duffie, J.A. & Beckman, W.A., 2006). 

Temperature increase can thus have an important effect on the performance of a PV 

system. It has been reported that unvenulated PV installations on facades can deliver 9% less 

energy than delivered by stand-alone systems; for unventilated systems installed on roofs, the 

reduction in energy delivery is of the order of 5.5% (DGS, 2005). This effect is likely due to 

higher temperatures. 

Standard test conditions (STC) have been defined in order to be able to compare 

different cells and modules and to determine their electrical characteristics. These standard 

test conditions, are described in the IEC standard IEC 60904-1 (2006) as follows: 

• Normal irradiance of 1000 W/m2; 

• Cell temperature of 25°C with a tolerance of ± 2°C; 

• Defined light spectrum (spectral distribution of the solar reference irradiance 

according to IEC 60904-3) with an air mass AM = 1.5. 

The nominal efficiency of solar modules, y\n, is measured under standard test conditions 

(STC). 
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It is defined as: 

p 
_ • rMPP(STC) 

A-1000 ~ 
m 

where PMPP^TQ is the power produced at the maximum power point1 under standard test 

conditions and A is the area of the module. The effective efficiency is taken as (Duffle, J.A. 

& Beckman, W.A., 2006) 

*rnP=*mp,ref+/i1 1-3 

The change of efficiency is given by: 

4*1 = Mmpx (Tc ~ TCi rej) 1.4 

where Te is the temperature of the cell and p^ is the temperature coefficient for the 

maximum power. (The temperature coefficient //^ is also often indicated with the Greek 

letter /?). The reference temperature, T ^ i s usually 25°C. Typically/^ is negative. 

The temperature coefficient pi^ can be calculated from equation 1.2 as follows: 

dVmp (' dVmp dlmp\ 1 
Vmp dT ymp dT +Vmp dT ) AG{ 

1.5 

where Gt is the total solar irradiance on the module or cell, and A is the area of the PV 

module. 

Commercially available monocrystalline and polycrystalline modules typically have 

maximum power efficiency temperature coefficients between -0.04 to -0.08 % per °C (Sandia 

National Laboratories, 2006). 

As discussed in the next section, the maximum power point is the point in the current-voltage curve where 
maximum power is produced. 



Amorphous PV technology is less affected by temperature increase (King, D.L. & 

Kratochvil, J.A., 1997; DGS, 2005). For low kradiance levels (below 500 W/m2), they may 

even have positive temperature coefficients (i.e., their performance improves with 

temperature), but on average their coefficients are negative. The power temperature 

coefficients for amorphous PV modules are between -0.01 to -0.026 % °C (Sandia National 

Laboratories, 2006) . 

Since PV modules perform better at lower temperatures, two objectives can be achieved 

by reducing their temperature in a BIPV/T application: to increase electrical performance 

and to collect useful thermal energy. 

1.3.1 Electrical characterization and modelling of photovoltaic 

modules 

The basic unit of a PV module is a solar cell. A solar cell can be modelled as a current 

source in parallel with a diode. A diode is a two-terminal device that allows electrical current 

to flow in only one direction. The standard model of a solar cell is called a single-diode 

model (DGS, 2005) and includes a parallel resistance (accounting for leakage losses) and a 

series resistance (accounting for voltage losses) between the semiconductor and the electrical 

contacts of the module. 
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Figure 1.3. Single-diode circuit (DGS, 2005). 

In Figure 1.3, V is the solar cell terminal voltage, VD is the diode voltage, IPH is the so-

called photocurrent (the ideal current produced by the panel), ID is the diode (or dark) 

current, Ip is the parallel resistor current, I is the solar cell terminal current, Rp is the parallel 

resistance, and Rg is the series resistance. 

The characteristic equation of the circuit is given by 

( V+IR5
 N 

1 - fpH ~ ^o 
V + IRS 

RP 1.6 

where the first term corresponds to the photocurrent, the second term represents the 

current through the diode, and the third term represents the current through the parallel 

resistor. The parameters I0, VT, Rg and RP in equation 1.6 depend on the photovoltaic 

technology employed, as well as on the construction of each cell. The physical parameter "a" 

depends on the temperature of die panel. 

Equation 1.6 can be used to trace the IV curve of a solar cell. Solar modules, which 

consist of many cells, have similar characteristic curves. Since the IV curve depends on both 

solar radiation and temperature, different curves will be found under different conditions. 
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The operating voltage will depend on the characteristics of the load connected. For 

example, a battery has nearly constant voltage, and it would suffice to replace V in equation 

1.6 with the battery voltage. The IV characteristic of a resistor is a straight line. To find the 

operating conditions, equation 1.6 must be solved simultaneously with the line equation 

corresponding to this load (V = IRJ, which is equivalent to finding the intersection of the 

straight line and the characteristic curve (a typical characteristic curve is shown in Figure 

1.4). 

Figure 1.4. Left: Current-Voltage (I-V) curve of a solar ceU. Right: I-V curve for a module, 

and the effect of temperature on the maximum power point at same irradiation level (DGS, 

2005). 

Solar cells and PV modules may produce energy at a maximum power point (MPP), 

where the product I x V is maximal. The position of the MPP changes depending on the 

solar radiation and temperature of the panel (Figure 1.4). For instance, in the case of 

constant solar radiation, higher temperatures will reduce the voltage of the maximum power 

point, thus reducing the power output of the module. Maximum power point tracking 

algorithms are used by charge controllers and inverters to ensure that the MPP is tracked. 

A common variable used to compare solar cells is the fill factoi, which represents the 

ratio of the actual maximum power obtained to the power that could be obtained if the cell 
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operated at open circuit voltage and short circuit current. Figure 1.5 shows the representative 

areas for Isc & Voc, and Imp with Vmpp. 

VMtrsjrMirirjiafifX MPPJiVoc 
cell voltage V 

Figure 1.5. I-V curve of a solar cell and the corresponding fill factor (DGS, 2005). 

1.4 Solar Geometry and Availability 

In order to be able to predict the total incident radiation on a surface, it is necessary to 

describe the sun's position in the sky. The total incoming solar radiation can be described by 

three main components: beam solar radiation, diffuse sky solar radiation and diffuse 

radiation reflected from the ground. Appendix A summarizes the main solar angles 

employed to describe the sun position in the sky and the equations used to calculate the solar 

incidence angle to any surface as a function of time. 

1.5 Building Envelope 

In order to successfully integrate the PV modules into the building envelope, it is 

necessary to incorporate architectural/structural considerations and to take measures to 

prevent rain penetration and reduce snow accumulation. It is also advisable that the system 
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be applied seamlessly so that the system is not "architecturally disturbing" (Prasad, D. & 

Snow, M., 2005). For this, roof tile dimensions and color of the project must be considered. 

In roof installations, the PV modules can be overlapped like shingles so that the system 

is waterproof (Eiffert, P. & Kiss, G.J., 2000). There are special profiles on the market for 

the integration of PV modules into the roof that are watertight. Usually these elements are 

made of aluminum (Prasad, D. & Snow, M., 2005). Thin film PV roof systems are usually 

attached with adhesive on a metal roof and they are nailed or screwed on the top part of the 

PV module and then covered by the roof ridge to avoid any water infiltration. 

1.6 Motivation 

The photovoltaic industry is growing rapidly. It has been reported that during the 1980s 

and 90s PV panel production grew between 18 to 20% per year (Lin, G.H. & Carlson, D.E., 

2000). According to these authors, PV electricity production could reach 65 GW per year by 

the year 2025, and the application of PV would be mainly for building-integrated systems 

due to the aforementioned lower installation costs. In a report by the European Photovoltaic 

Industry Association (2010) it is stated the world installed capacity by the end of 2009 was 

22.8 GW. 

Residential buildings in Canada consume a considerable amount of energy, mainly due to 

the heating needs during the winter months (about 17% of the secondary energy 

consumption (Natural Resources Canada, 2009; Statistics Canada, 2009)). Space and water 

heating accounted for 80% of the energy consumed in residential buildings between 1997 

and 2007 according to statistics from the Natural Resources of Canada and Statistics Canada 
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(2009; 2009). Passive solar design guidelines help to reduce the heating loads. Measures such 

as using large windows oriented to the south, efficient use of distributed thermal mass and 

high insulation values in walls help to reduce heating loads considerably. However, these 

measures do not eliminate all the heating loads. This is an important argument in favor of 

the use of BIPV/T systems. 

The BIPV/T system is an application that is particularly well-suited to Canadian weather 

conditions: the coldest days during the winter, when heat is needed the most, are often clear, 

sunny days. Therefore, it is expected that BIPV/T systems will become more common and it 

is important to find optimum integration guidelines that can be used by engineers and PV 

installing companies, in order to improve the overall utilization of the available solar energy. 

Table 1-1 presents a list of the facilities and concepts, along with demonstration projects 

studied at Concordia University over the past five years. 

14 



Table 1-1. Concordia University BIPV/T studies and facilities. 

Project / Facility Concepts under study 

BIPV/T in a multifunctional facade (roof 
of the BE Bldg). The facility has been used 
for the determination of heat convective 
transfer coefficients, as well as of the thermal 
and electrical performance of the system 
(Charron, R. & Athienitis, A.K., 2006a; Liao, 
L. et a/., 2007). It incorporates a ventilated 
window section to allow daylight into the 
facility. On the left, the PV modules are 
exposed to the exterior, while on the right the 
PV is inserted in the interior of the cavity. 
The electrical production is higher in the 
installation on the left but the thermal energy 
delivered is lower compared to that delivered 
by the panels inserted in the gap. 

The Northern Light was the first Canadian 
house participating in the U.S. Department of 
Energy's Solar Decathlon competition in 2005. 
It employed the concept of BIPV/T. A prize 
for integration of the solar panels onto the 
roof was granted by BP Solar. The tilt angle of 
the PV installation was optimized for 
Washington, DC, where the competition was 
held. 
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The EcoTerra Alouette solar house located 
in Eastman, Quebec, was one of the winners 
of the EQuilibrium competition organized by 
the CMHC (Chen, Y. et al., 2007a). It 
incorporates several concepts in passive solar 
energy design as well as an active BIPV/T 
system and a geothermal heat pump. The 
house employs amorphous PV modules 
installed on the roof of the second storey. The 
system has an installed capacity of 2.8 kW. The 
air is heated as is taken from under the soffit 
and blown through the cavity formed by the 
modules and the roofing. The hot air is then 
used to heat up a hollow core slab in the 
basement and to preheat DHW. EcoTerra 
produces about 2,500 kWh of electricity a year. 
The roof thermal efficiency is about 9.4% and 
the PV efficiency is about 5.1%. 

The Alstonvale Net Zero House is another 
winner of the EQuilibrium competition 
(Candanedo, J.A. et al., 2007). Polycrystalline 
modules will be used and placed close to the 
air inlet. After passing under the PV section, 
the air will flow under a glazing section, using 
low-emissivity glass to increase the thermal 
energy collected and to boost the temperature 
with the purpose of increasing its usefulness. A 
highly-insulated duct brings the air to a heat 
exchanger where the air can be used directly or 
as the source of two heat pumps.2 

The house was damaged in a recent fire and the company (Sevag Pogharian Design -SPD-) has plans to 
rebuild it. 
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This picture displays a new test facility at 
Concordia University. A BIPV/T system has 
been incorporated onto the roof of the facility 
and its performance is being evaluated. On the 
facade, the concept of a perforated (transpired) 
solar air collector is tested together with PV 
modules. The air removes the heat from the 
PV modules making them more efficient and 
the pre-heated air can be employed as make-up 
air in HVAC commercial systems. 

The new John Molson School of Business 
has 24.5 kWp of photovoltaic panels installed 
on its near south-facing facade. The modules, 
which have been custom-made, are 
incorporated on top of transpired solar air 
collectors. They are narrower than 
conventional modules and are placed 
horizontally. 
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1.7 Problem Statement 

As shown in the previous sections, the electrical power production of PV modules is 

affected considerably by temperature. It has been reported that high operating temperatures 

(greater than about 75-80 °C) can cause deterioration of the modules and shorten their life 

expectancy (Zondag, H.A. & van Helden, W.G.J., 2002). Therefore, when designing such 

systems, it is important to keep the PV panels as cool as possible. When water (or other 

liquid) is used as the heat transfer fluid in solar thermal systems, closed loop systems are 

employed, in which the fluid is continuously circulated through the solar absorber. 

Optimal design of open-loop BIPV/T systems has not been studied in detail. Convective 

heat transfer coefficients or pressure drops have not been quantified under different 

conditions, such as channel aspect ratios or flow rates. This situation has forced engineers 

and researchers to estimate the values of the heat transfer coefficients with correlations 

developed for either pipes or ducts which give an approximate idea of the performance, but 

only provide rough estimates of the surface and air temperatures and cannot fully represent 

the thermal interchange taking place in the BIPV/T system. It is also important to take into 

account factors such as heating asymmetry, mixed flows, non-developed flow conditions, 

non-uniform cross section, and so on, making this a very complex problem. Optimal design 

can only be achieved through detailed and complementary experimental and numerical 

thermofluid studies. 

When the appropriate values of convective heat transfer inside the channel formed by the 

PV and the roofing are known, it is possible to accurately estimate the energy that can be 

extracted from the system, as well as the achievable outlet air temperatures. Consequently, 

other parts of the HVAC mechanical system in solar homes and buildings, such as heat 
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pumps and thermal storage tanks, can be selected correcdy. It is also necessary to be able to 

estimate the static pressure loss in the air stream due to friction across the roofs or facades in 

order to select die appropriate fan and to develop appropriate control strategies. 

If the temperature distribution across the PV modules in the cladding of the building can 

be estimated, modules that will work at the same voltage level due to their temperature can 

be appropriately wired, ensuring maximum electrical power production. Research will be 

focused on the integration of the PV on roof surfaces. 

1.8 Objectives and Scope 

This thesis focuses on thermal and fluid modelling of typical BIPV/T installations in 

order to accurately predict their electrical and thermal energy output. 

The specific objectives of this work are: 

• To develop a general methodology for the integrated energy analysis of open 

loop air-based BIPV/T systems. 

• To measure local and average convective heat transfer coefficients and to 

develop correlations for the most commonly used BIPV/T configurations. 

These heat transfer correlations may be used as inputs for simple lumped 

parameter thermal models (as presented in this work). They may also be used in 

whole building simulation software packages such as ESP-r, EnergyPlus and 

TRNSYS, to allow other researchers and engineers to evaluate the energy 

outputs of customized BIPV/T systems. 
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• To determine the pressure drop and calculate friction factors in typical BIPV/T 

systems and to compare them to typical friction factor correlations. This 

information is especially important for the selection of the fan driving the air 

flow. 

• To develop guidelines for the selection of simple electrical models and to 

compare their results to field conditions and identify their advantages and 

limitations. 

• To develop and validate lumped parameter steady state and transient BIPV/T 

numerical models for performance evaluation. 

This work does not intend to model and assess the integration of BIPV/T systems in 

buildings. There are a number of advanced and validated software tools for building energy 

simulations, such as ESP-r, EnergyPlus and TRNSYS that can be used to obtain the energy 

loads profiles for buildings at different environmental conditions. For example, depending 

on the available solar radiation level at a specific time, it may or not justify turning on the 

fan of the BIPV/T system. An example of an investigation of control strategies considering 

a BIPV/T system was carried out by Candanedo, J.A. & Athienitis, A.K. (2010). In their 

work, weather forecasts were used in combination with real-time model based predictions 

of the building response in order to manage collection, storage and delivery of thermal 

energy from a BIPV/T system. 
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1.9 Thesis Overview 

Chapter 1 starts by describing the motivation of this work and establishing the problem 

statement in BIPV/T systems. The basic energy balance for BIPV/T system is presented 

and the main research objectives are presented. 

Chapter 2 presents a literature review. Research on air-based PV/T systems (not 

necessarily building-integrated) is included and special focus is placed on solar air collectors 

and transpired solar air collectors because they share many attributes and features with 

BIPV/T systems. The importance of the accurate determination of pressure drop and actual 

heat transfer coefficients is identified in this chapter. Much of the previous experimental 

work on heat transfer in solar air collectors has been done using "flow straithteners". A 

typical BIPV/T system would not use such installations. Common numerical modelling 

approaches have been identified and have been taken into account in the thesis. For 

example, it was determined that thermal capacitive effects must be taken into consideration 

when modelling PV/T systems in order to account for sudden changes in solar radiation 

levels and wind gusts. The chapter also identifies typical values of Nusselt numbers. 

Chapter 3 presents a detailed experimental study on convective heat transfer coefficients 

for BIPV/T systems. The chapter starts with a summary of the correlations that have been 

employed to date to estimate convective heat transfer rates in BIPV/T systems. An 

extensive literature review is presented discussing the experimental procedures used to 

develop these correlations, and how these conditions compare with typical BIPV/T 

installations. The chapter presents the developed Nusselt number correlations for BIPV/T 

systems. Finally, the chapter presents typical pressure drops in the studied BIPV/T channels. 
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In order to obtain ratios of the effective pressure drop, the Darcy friction coefficients are 

calculated and compared to the Blasius correlation, using the data from the measurements. 

Chapter 4 compares two existing electrical models employed in this research to evaluate 

electrical performance of PV modules. The models can predict the power curve (I-V), 

including the effect of temperature. The models are used in Chapter 5 where lumped 

parameter numerical models are presented. 

Chapter 5 presents transient and steady state models developed for air-based open-loop 

BIPV/T systems. First, a short review of current models is given. From them, common 

modelling approaches are identified and suggestions to improve them are presented. The 

energy balance equations are written for a set of nodes and solved using computer codes 

written in MATLAB. Although not measured, a group of two exterior convective heat 

transfer correlations are selected because of their good agreement with experimental data. 

Finally, the model is compared to a demonstration project (EcoTerra House). 

Chapter 6 summarizes the main conclusions, presents some design guidelines for 

BIPV/T systems and proposes future work. 
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2. Literature Review of BIPV/T Systems 

Ait based PV/T systems are coveted, first subdividing them into solar air collectors, 

which are considered here because of their many similarities to PV/T systems, then into 

BIPV/T systems, and finally into transpired solar air collectors. A short review of water-

based solar collectors and liquid PV/T systems is then presented. 

2.1 Air-Based PV/T Systems 

A hybrid solar air collector is a module in which the Photovoltaic Panel (PV) is employed 

as a solar absorber and produces electricity and heat by heating up the circulating air 

(Zondag, H.A., 2008a). See Figure 2.1. Hybrid solar air collectors come in different 

configurations, including one in which the PV panel is exposed directiy to the exterior and 

another in which the PV is covered with an extra glass panel. The extra glazing acts to 

reduce the effect of wind on the exterior heat losses. 

2.1.1 Solar air collectors 

There is a considerable amount of public documentation on solar air collectors and they 

have very similar configurations to hybrid solar air collectors, the main difference being the 

absence of PV modules, these are included as part of the literature review. 
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Figure 2.1. A: Basic unglazed hybrid solar air collector. B: Glazed hybrid solar air collector. 
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Early in the 1960's solar energy research was carried out on the performance of solar air 

heaters (Whillier, A., 1964). A model was presented and a discussion was presented on the 

effect of adding either a metallic or plastic wire screen into the air stream, which would 

increase the heat gains due to the reduction of the radiation resistance between the absorber 

and the air flow. 

One of the first studies on duct design optimization for solar air heaters was done in 

Australia (Charters, W.W.S., 1971). The study focused on the developed flow region of the 

duct. It was recognized that further work on relationships of pressure drop and heat transfer 

in the non developed region was necessary. The report concluded that there was no easy 

method to optimize the design of the duct based on technical approach, and that any 

optimization must also include the materials' costs. 

Related work on hybrid solar air collectors was carried out at different institutions, 

(Smith, D.R. et al, 1978; Hendrie, S.D., 1982; Zondag, H.A., 2008a). Hendrie (1982) studied 

the performance of early designs of flat plate hybrid collectors. The electrical and thermal 

efficiencies were below the expected. New designs were made, but testing was not carried 

out due to budget cuts. 

At Waterloo University, optimization studies on the passage geometry of air solar 

collectors was carried out (Hollands, K.G.T. & Shewen, E.C., 1981). The main conclusion 

was that when the length of the air flow passage is made less than 1 m, the heat transfer 

coefficient increases dramatically. This is not a surprising result, since the heat transfer 

coefficients are higher for the entrance regions for pipes and ducts (Oosthuizen, P.H. & 

Naylor, D., 1999; Incropera, F.P. & De Witt, D.P., 2002; Kays, W. et al., 2005). However, the 

maximum heat transfer augmentation happened when adding a V-shaped corrugated 
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absorber plate as the top surface, in which case the heat transfer is increased between 47 to 

300%. There were gains in efficiency on the order of 7 to 12%. Gains of 3.3% in the 

efficiency were reported when changing the emissivity of the inner surface of the flow 

passage from 0.2 corresponding to bare metal to 0.9 for painted black metal. It is important 

to mention that the geometry for the V-shaped corrugated plate absorber does not resemble 

the one found in typical hybrid PV-T collectors, which prevents the extension of the results 

to these systems. 

Research on heat transfer enhancement in solar air heaters using transversal wires placed 

on the bottom plate was done in the turbulent flow regime. The results were summarized in 

Nusselt number correlations for Reynolds numbers in the range of 3,000 to 18,000 (Gupta, 

D.et al, 1993). 

Work related to BIPVs was also done at the University of Wales (Cross, B.M., 1994). 

Even though it did not include BIPV/T systems, it is interesting to mention that 

temperatures of 80 °C were measured for the modules close to the ridge of the roof. The 

experiment was carried out in a Solar Simulator, where special light bulbs reproduce the 

effect of the solar radiation. 

A comparison of numerical studies and experimental results was presented in the work of 

Ong (1995a) for different types of solar air collectors. Nusselt number correlations for the 

laminar, transitional, turbulent and natural regimes that are available in the public literature 

were employed for the models. According to the author, the models seemed to yield accurate 

results using those correlations. The research was done for rectangular channels, which are 

not representative of a BIPV/T system. 
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Work concerning optimization of the flow channel depth for flat plate solar air heaters 

was carried out by Hegazy (1996). The examination was done in a purely theoretical fashion. 

An expression was developed, but it relies on the determination of the friction factor and the 

skin friction coefficient. 

An analytical solution for a hybrid air solar heater was developed by Sopian et al. (1996). 

The analysis considered two design options, one in which the air flow was limited to one 

side of the PV, and another in which the air will flow around both sides of the PV. The 

numerical results show a better thermal performance for the double-pass design. This is a 

very similar configuration to the one displayed in the testing facility at Concordia University 

as the first item of Table 1-1. 

Vandaele et al. (1996) examined different issues concerning the installation of hybrid 

PV/T air liquid systems into buildings and pointed out different objectives for research, 

including thermal and electrical performance of the system, and ventilation performance for 

natural and mechanical ventilation. 

A naturally ventilated PV facade was constructed and tested indoors at the Hong Kong 

Polytechnic University and a numerical model versus a CFD model were compared for a 

BIPV/T application (Yang, H.X. et al., 1996). It was not mentioned, however, which type of 

turbulence model was employed for the CFD analysis. Temperature reductions of the PV 

modules between 15 to 20 °C and a power increase yield of 8% were reported. 

The building simulation software ESP-r has been used to evaluate PV/T air systems 

(Clarke, J.A. et al, 1997). A model was used to compute the electrical power produced by the 

PV modules using an algorithm to find the maximum power production. The model is 
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compared with experimental results: however, the agreement is only qualified as reasonable, 

and no measure of the error between simulated and measured performance is mentioned. 

Similar research on performance evaluation of hybrid PV/T solar air collectors was 

carried out at the Indian Institute of Technology (Garg, H.P. & Adhikari, R.S., 1997). Their 

model uses analytical solutions for the differential equations in the energy balance. The main 

assumptions of the model are steady state analysis, constant heat flux across the boundary, 

no air leakage through die system, the temperature of the elements only change along the 

direction of the air flow, and negligible side losses. 

Evaluation of four different configurations of hybrid solar air heaters was carried out by 

Mohamad (1997). The study focused on use of a glazing layer on top of the PV to minimize 

the convection losses due to wind that would exist if the PV was in direct contact with the 

exterior. 

Results from the PV facade integration at the Mataro public library in Spain and from a 

testing rig in Stuttgart were simulated and reported by Eicker (1999). The results show that 

exit air temperatures of the facade easily reach 50 °C during the summer. The researchers 

recommended to extent the length of the facade and reduce the mass flow rate to achieve 

temperatures high enough to regenerate a desiccant-based cooling system. 

The performance evaluation of an air BIPV/T system in North Carolina was discussed 

by Fitzpatrick (1999). It is important to note that PV electrical power output was reduced 

between 17 to 25% when the fan that drew the air in the system was stopped. 

Experimental and numerical work was carried out in Germany for different configuration 

of solar air heaters (Pottler, K. et al., 1999). The results indicated that for smooth surfaces, 

the optimum air gap depth for maximum heat extraction was between 7 and 8 mm. The heat 
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extraction was increased with the same mass flow rate in a channel with a wider gap using 

continuous aluminum fins attached to the absorber and it proved to be 33% more effective 

at removing heat from the absorber. 

It has been pointed out that conditions for the roof usually fall in the developing region 

of pipes and ducts (Brinkworth, B.J., 2000). The developing regions are where the 

temperatures and velocities are continuously changing. Different correlations are employed 

on the model depending on its nature, laminar or turbulent, based on the Reynolds number. 

In another study, Brinkworth et al. (2000), developed a model for naturally ventilated PV. 

The model is presented and validated against experimental data taken at an indoor test rig. 

The model includes the effect of wind and buoyancy. However, it is not clear how the 

simulated external wind conditions were reproduced in an indoor test. 

Eicker and Fux (2000) reported an air temperature increase of 35 °C for a ventilated PV 

facade when the radiation exceeds 700 W/m2 (Mataro library, Barcelona). It was explained 

that for summer time, the temperature of the air is high enough to be used for an adsorption 

cooling system. The measurement of the heat extracted from the PV facade indicates that 

the system can provide 20% of the heat required for an adsorption cooling system. 

In Egypt, a study of four different PV/T configurations was performed (Hegazy, A.A., 

2000a). The designs were all the glazed solar hybrid air heaters type. One of the main 

conclusions of the study is that due to the high temperatures in these configurations, low 

emissivity coatings in the glass are not adequate because of the subsequent electrical power 

reduction caused by high temperatures. It is possible that the glass contained large portions 

of iron that could diminish the transmittance of this transparent layer, which could explain 

the power reduction in the system. 
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In another study on optimal geometry for solar air heaters it was found that the depth to 

length ratio should be 2.5X10"3 (Hegazy, A.A., 2000b). The results were obtained with the 

following main assumptions: 1) the flow in the channel is hydraulically smooth, 2) there was 

no air leakage, and 3) the heat capacity of the materials is negligible and that the temperature 

of the top and bottom plates only changes in the x-direction. 

In Greece, a study of a hybrid PV/T air system was carried out and it was found that 

introducing a flat black metal plate, similar to that in Figure 2.2, helped to increase the exit 

air temperature of the system. The temperature of the inner most layer was also lower with 

this plate (Tripanagnostopoulos, Y. et al., 2000a). The author stresses the affordability of this 

modification. 

The same group in Greece tested different configurations of PV/T air systems and 

compared them to water systems (Tripanagnostopoulos, Y. et al., 2000b). The study 

concluded that adding fins to the surface opposite to the PV increases heat transfer to the 

air, subsequently reducing the temperature of the surface that belongs to the exterior of the 

building. It also reduces the temperature of the PV panel by around 2 to 3 °C and increases 

the air output temperature by between 1 and 2 °C (see Figure 2.2). Regarding the 

performance of the water system, the report concluded that removed more heat from the 

PV panel during the summer, but pointed out that the system is also more costly. 
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Figure 2.2. The three PV/T air configurations tested at Patras University 

(Tripanagnostopoulos, Y. et al., 2000b). 

According to simulation work by Yang et al. (2000), adding PV to the facade of buildings 

contributes to reduce the cooling load by removing a fraction of the solar heat impinging the 

building by the ventilated facade. The study carried out relies on simulation; the performance 

evaluation for the cities of Beijing, Shanghai and Hong Kong were done using its respective 

weather data. The concept is supported by the idea that the heat transfer coefficients for the 

front of the exterior wall of the building are lower due to the presence of the air cavity 

formed by the PV and the brick cladding. It is concluded that reductions of up to 50% of 

the cooling load can be achieved for the city with the highest solar radiation, in this study 

Beijing. The study was done for conditions of natural convection of the air (see Figure 2.3). 
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Figure 2.3. Schematic of the PV facade structure simplification studied by Yang et al. (2000). 
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A study carried out by the National Institute of Standards and Technology of the United 

States (NTIST), on prediction of the building integrated cell temperatures, describes the 

development of a one-dimensional transient heat model (Davis, M.W. et al., 2001). Although 

the model does not include the effect of having a ventilated PV cavity on the exterior of the 

building, it is interesting to note that very accurate results were obtained with the transient 

model. It was stated that accounting for the heat storage by the PV panel eliminates 

unrealistic temperature swings due to quick changes in the impinging solar radiation. 

A thermal study using CFD for a BIPV system in an atrium found that changing the 

position of the air inlet improved the cooling effect of the PV panels that were installed on 

the roof of the structure (Gan, G. & Riffat, S.B., 2001). The simulations were done with 

constant heat fluxes through the roof. These were in the range of 25 to 400W/m2, which 

represent a third of the energy incident on the roof (solar radiation between 75 to 

1200W/m2). The work concluded that the ventilation of the roof would have to be 

mechanical for acceptable thermal comfort levels. 

In another publication, the response of the PV module temperature to changes in solar 

radiation was studied (Jones, A.D. & Underwood, C.P., 2001). It was found that a time 

constant of 7 min exists for a PV module composed of three layers of materials. The time 

constant is defined as the time taken by the module temperature to reach 63% of the total 

change in temperature resulting from significant change in radiation. Because of this, the 

authors developed a one-dimensional transient model to study the thermal behavior of the 

PV module. The array was exposed on both sides to the exterior temperature. The analysis 

distinguished between the forced convection effect and the natural convection effect. From 

the experimental data, the researchers estimated the exterior forced convection heat transfer 
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coefficients to be in the range of 2 W/m2K for periods where the wind speed is 2 to 4 m/s , 

and 4 W/m2K for wind speeds over 4 m/s . 

A study on the viability of hybrid PV/T systems was carried out in Denmark and 

included an extensive literature review on PV/T systems (Bosanac, M. et al, 2003). The PV-

Hyphen project stands out among the literature surveyed. The project consisted of 

experimental and numerical work for different European cities, employing the ESP-r 

software program. The results concluded that the systems in northern European cities 

perform better in buildings with high demand of fresh air where up to 10% of the annual 

heating demand can be saved. 

Two numerical models were compared to experimental data at the National Institute of 

Standards and Technology in the United States (Davis, M.W. et al, 2003). One of which was 

developed by Sandia National Laboratories and the other by researchers at the NIST. The 

model from SNL needs more detailed information about the PV panels. The calculated 

energy output agreed within 7% of the measured energy output. The models under-predict 

the power production for high incidence angles of the solar radiation impinging on the 

panel. 

Modelling of connective heat transfer in air collectors has been performed in detail and 

suggests which Nusselt number correlations can be employed for the different cases of 

convection (Eicker, U., 2003). It is stated that for developed laminar flow, the Nusselt 

number is around 5.4. The use of the Petukhov equation is recommended for the case of 

turbulent flow. Considerations when designing the air duct system and choosing the 

appropriate fan to drive the air flow are reviewed. 
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Experimental determination of natural convection film coefficients for curtain walls was 

carried out at Concordia University by researchers at the Center for Building Studies (Ge, H. 

& Fazio, P., 2003). The test consisted of the determination of the maximum air velocity 

beside the glass or the framing section of the curtain wall, in order to measure the inner 

region of the boundary layer where conduction effects dominate. By measuring the thermal 

gradient and knowing the conductivity of air, the heat flux in this region is determined using 

Fourier's equation. Then, since the heat flux is known, the computation of the convective 

film coefficient is easily done. The results of this research can be used to simulate PV 

installed in a curtain wall, employing the heat transfer coefficients as boundary conditions in 

a CFD model. 

Comparisons between numerical models versus experimental results are presented for a 

naturally ventilated roof and facades by Infield, D.G. et al. (2003). The temperature 

difference between the model and the experiment is usually around 4 °C. The difference can 

be larger or smaller depending on die solar radiation level and the wind speed. It is also 

recognized that the main problem for modelling natural convection flows is the 

determination of the accurate flow rate inside die ventilated facade. It is important to note 

that the model employed the ambient air temperature as inlet temperature. Experimental 

data taken at Concordia suggest tiiat this is not a correct assumption. The temperature at the 

inlet can differ from the exterior temperature by up to 5 °C. 

Experimental work on heat transfer augmentation in solar air heaters by the use of a wire 

mesh was carried out in India (Thakur, N.S. et al, 2003). The correlations for pressure drop 

and heat transfer were summarized using the Colburn j factor and are supposed to be valid 

for Reynolds numbers from 182 to 1168. The experiment employed flow straighteners in 
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front of the entrance of the test sections. The straightener sections had a length of 0.9 m, 

which represents 19 times the hydraulic diameter of the test. An average heat transfer 

coefficient was determined based on the experimental data. No information about local heat 

transfer coefficients was presented. 

Zondag, H.A. & van Helden, W.G.J. (2003) from the Energy Research Center of the 

Netherlands examined numerically the results of different PV/T systems, water and air, 

open and closed systems. The paper recommends the use of PV/T water system based on 

the fact it can perform better thermally. However, the conclusion does not include the 

increased cost of PV/T water systems compared to air systems. 

The importance of different aspects in PV/T module design and manufacturing in order 

to enhance the heat transfer in PV/T systems is discussed by van Helden, W.G.J, et al. 

(2004). The study states that careful selection of spectrally selective coatings can increase the 

system performance by absorbing a larger portion of the incoming solar radiation. The 

absorption for the reflective metallic wiring connecting the PV cells in the modules should 

be increased by lowering their reflection through the use of coatings or by simply reducing 

the area they cover. 

Determination of buoyancy-driven flows for ducts was examined in detail experimentally 

in a test rig and compared to the theory by Brinkworth, B.J. & Sandberg, M. (2005). The 

effects of using different rigs, or transversal elements attached to one of the sides, were 

examined experimentally and then compared to the theoretical estimation; a satisfactory 

agreement was apparently obtained. 

Strategies to increase the solar absorption of the PV module in the long-wave region are 

discussed by Santbergen and van Zolingen (2005). The study explains in detail the 
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composition of a typical PV panel, which consists of a glass over, a top grid, and anti-

reflection coating, a semiconductor and a back contact. The study relies on the assumption 

that the absorption in the semiconductor only takes place for the band gap energy, the rest 

of the long-wave irradiance is not absorbed. It is recommended that semitransparent solar 

cells be used; these will absorb the short-wave radiation but allow the passage of the long

wave radiation to be absorbed in the back contact. It is important to note that in the article, 

long-wave radiation is considered as that with a wavelength longer than 1.1 pirn. Solar 

irradiance lies mostly in the region below 3 |im. Typically long-wave radiation is defined as 

having a wavelength longer than 3 [xm (Duffle, J.A. & Beckman, W.A., 2006). 

The feasibility of maintaining the outlet temperature of a glazed solar air collector was 

studied in Japan (Ito, S. et a/., 2006). The results were encouraging, suggesting that the 

control system based on the air flow rate manages to maintain the exit air temperature. The 

control employed a simple digital controller that regulated the speed of the fan according to 

the temperature at the exit. For sudden changes in irradiation, the thermal mass of the 

collector will keep the outlet temperature within the tolerance margin. However, when there 

are continuous changes in wind velocity, solar radiation and mass flow rate in the system, it 

is necessary to account for the thermal mass. In the cases of estimation of yearly 

performance of solar air collectors, steady state analysis seems to yield adequate results. 

Researchers from the Indian Institute of Technology performed several experiments for a 

ribbed solar air heater and developed correlations for Nusselt number and friction factors 

(Jaurker, A.R. et al., 2006). The heat flux was controlled by means of electrical resistances and 

the data reduction was for an averaged h coefficient instead of a local one. The researchers 
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estimated that the effect of the ribbed surfaces increased the Nusselt number on the order of 

twice that of a smooth surface. 

Researchers from the Center of Energy studies from the Indian Institute of Technology 

carried out studies of a hybrid PV/T air system for the climate of New Delhi (Tiwari, A. et 

al, 2006). The researchers claim good agreement between the experiment and the numerical 

analysis; however, it is not clear how the convective heat transfer values were obtained from 

the experiments in the channel. 

Experimental work was carried out in solar air heaters to increase the overall efficiency by 

the use of baffles inside the channel (Romdhane, B.S., 2007). For the experiment, the baffles 

were pasted onto the absorber. No relationships for the convective heat transfer coefficients 

were provided, but the different designs showed significant improvements in efficiency. 

An extensive literature review on correlations for different types of solar air collector was 

carried out by researchers in India (Varun et al, 2007). The correlations examine the use of 

different shapes of fins and ribs and provide an averaged value of heat transfer coefficients 

and friction factors. These can be employed for numerical comparisons for different 

geometries. 

2.1.2 BIPV/T systems 

Hybrid solar air collectors were first used in the roof and facade of the Solar One house 

of the University of Delaware built in 1973/1974 (Boer, K.W. & Tamm, G., 2003). 

Studies of a BIPV/T installation have been done using a thermographic camera (Ba2ilian, 

M.D. et al, 2002). The study states that infrared cameras are useful tools for qualitatively 

evaluating BIPV/T installations in terms of temperature gradient and are efficient in 

36 



detecting air leakage in the system. The effect of the emissivity of the surfaces is also 

detected by the infrared camera. For the BIPV/T installation section, when there is no 

forced heat removal with air in the cavity, the temperature can be 10 °C higher than the 

surrounding metallic shingles used in the house. 

The same research group developed a numerical model for performance evaluation of 

BIPV/T systems (Bazilian, M.D. & Prasad, D., 2002). It employed the Engineering Equation 

Solver from the University of Madison, ESS, to solve the equations of the model. See Figure 

2.4 for a representation of the thermal network. The model was also used to evaluate yearly 

performance using TMY2 weather data files. 

1 

/US5 t 

' 

1 

Tambierst 

* 

• 

1/hrad2< 

< 1 fconvl 

• Ttop 

<L1/k1A 

T Tpv 

<L2*2A 

'• Sliiheanv2 

* t Tductetr 

<l#icaiw3 

* Tback 

Figure 2.4. Thermal network representation of the BIPV/T simplified model by Bazilian and 

Prasad (2002). 

Another numerical model for PV cooling was developed at Cardiff University 

(Brinkworth, B.J., 2002). The model focused on the thermal interaction by radiation and 

convection between the two smooth grey surfaces, where the back surface was assumed to 

be adiabatic. It was also mentioned that information about turbulence intensity was scarce 

for CFD input and validation. 
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A neural network approach was employed to determine the total heat transfer coefficient 

(Mei, L. et al, 2002). Four main parameters were identified to represent the thermal behavior 

of the facade (Figure 2.5). 
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Figure 2.5. Facade heat transfer parameters after Mei et al. (2002). 

A study presented by Tripanagnostopoulos et al. (2002) states that for PV building 

application in locations with low solar radiation and low exterior temperatures, such as 

Canada, where space heating is required for most of the year, PV cooling using air can be 

more useful and cost-effective than using a liquid system. The authors estimated that a liquid 

hybrid PV solar heater costs around 10% more than a simple PV installation compared with 

5% more for a hybrid air-based system. The investigation also compares gla2ed and unglazed 

collectors. Reflectors are used to increase the incident radiation on the panel and its effect on 

the efficiency is studied. Figure 2.6 illustrates the efficiency increase by the use of reflectors. 
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Figure 2.6. Thermal efficiencies for four types of hybrid PV/T systems. The filled symbols 

correspond to the PV/T collectors with reflectors (Tripanagnostopoulos, Y. et al., 2002). 

A review on building-integrated PV products was done at the University of Southampton 

and different types of special PV tiles and popular frames were detailed (Bahaj, A.S., 2003). 

The paper lists requirements for the satisfaction of die users of BIPV systems. These include 

easy incorporation into any housing design, capacity to eliminate a portion of the roof to 

diminish costs, satisfaction of building regulations, installation by a traditional roofer, and 

finally ease of maintenance. For roof installations the systems generally are made of 

aluminum. 

Investigation of a double skin facade with integrated photovoltaic panels was carried out 

in Montreal at Concordia University by Athienitis, A.K. et al. (2004). The report describes 

the outdoor experimental setup and the development of a numerical model. In one test, the 

PV modules were exposed to the exterior; in another, the module was mounted in the 

middle of the cavity. The test in which the PV was mounted in the middle of the cavity 

resulted in significantly higher thermal efficiencies. 
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A two-dimensional model using the control volume finite difference method was 

developed for a ventilated PV facade at Concordia University (Dehra, H., 2004). The results 

showed general good agreement with experimental measurements. For the PV module, the 

model over-predicted the temperature of the panel by 4°C. The model under-predicted the 

measured temperature of the air by 2 °C. 

An experimental and numerical study of a hybrid PV facade was done in Italy at the joint 

Research Centre of the European Commission, in the Renewable Energies section at Ispra 

(Bloem, J.J., 2004). The model under-predicted the temperature of the exit air and over-

predicted the temperature of the surfaces, which led to the conclusion that the convective 

heat exchange between the surfaces and the air was underestimated. A three-dimensional 

model of the test was created using FLUENT (FLUENT Inc., 2006), and it was concluded 

that the convective heat exchange is non-linear. According to the authors, the relative 

location of the inlet and oudet affect turbulence, which in turn increases the heat transfer 

coefficient. After the simulations in FLUENT, the new film coefficients were incorporated 

into the numerical model and helped to obtain more accurate results. However, there is no 

mention of the value of the heat transfer coefficients estimated with FLUENT. 

Experimental studies suggest that wind has a strong impact on the performance of 

ventilated facades (Infield, D. et al, 2004). The largest contribution of the wind to the air 

ventilation rate in the Mataro Library occurs when the wind is perpendicular to the facade. 

The heat extracted from the ventilated PV facade in Mataro is used also to provide cooling 

to the building during the summer months (Mei, L. et al, 2006). The system is also 

connected to a solar air collector to boost the temperature incoming from the ventilated PV 

facade. It is then connected to a desiccant wheel system in order to regenerate it (dry it) for 
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use in dehumidification of the intake air intended for cooling of the building (see Figure 2.7). 

When comparing die simulated values with those measured in the system, there was a 

disagreement in the incoming air from the BIPV/T system and solar air heaters of 7.8 °C. 

The incoming measured air was 61.7 °C versus 69.5 °C simulated. 
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Figure 2.7. Schematic of the desiccant cooling system and process representation in a 

psychrometric chart. Adapted from (Mei, L. et al., 2006). 

A theoretical study on the optimal channel depth was done theoretically assuming a 

constant heat flux (Brinkworth, B.J., 2006). In order to obtain a recommended value of 

channel depth, the criteria of minimization of the temperature rise on the PV side were 

employed. For such situations, the theoretical analysis gives a ratio of length of the channel 

to hydraulic diameter (L/DJ of around 20 for ducts, and a ratio of 40 for very wide ducts. It 

is assumed that the heat fluxes across the boundary and the value of the convective heat 

transfer coefficient are constant. 

A one-dimensional numerical model is employed to estimate the heat removal increase 

from PV panels using fins attached to them in a double facade set-up (Charron, R. & 

Athienitis, A.K., 2006a). The use of the fins is recommended for the case when the PV is 

placed in the middle of a cavity of a double facade. Figure 2.8 shows the set-up. In this case, 

the PV panel tends to have a higher temperature, thus lowering the electrical efficiency. 

However, the thermal efficiency is higher than when only the PV is exposed to the exterior. 
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An algorithm was embedded in the numerical model to choose which correlation for 

convection film coefficient to use, based on Reynolds and Grashof numbers. 
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Figure 2.8. Configurations studied numerically and experimentally by Charron and Athienitis 

(2006a). 

The ID model developed by Charron and Athienitis was later improved using a 2D 

model that accounted for the PV temperature variation along the vertical direction of the 

set-up (Charron, R. & Athienitis, A.K., 2006b). The study concluded that discrepancies 

between the model and experimental results were caused by the lower values of convective 

heat transfer coefficients in correlations than the ones found experimentally and numerically. 

A group of researchers from Australia and Ireland compared different configurations of a 

hybrid BIPV/T using a Life Cycle Energy Analysis (Crawford, R.H. et al., 2006). The 

comparisons used, among other things, the concept of the embodied energy of the materials 

for the construction of the BIPV/T system. The system that yielded the shortest energy 

payback period, 4.3 years, was the one that used amorphous PV material. The study states 

that the location of the system will have an impact on the period of energy payback for the 

system. 
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Computational Fluid Dynamics and experimental work was carried out by researchers 

from Concordia University, Waterloo University and the CANMET Energy Technology 

Center (Liao, L. et aL, 2007). The work focused on the determination of convective heat 

transfer coefficients for a PV/T facade. The results were also reported using the Nusselt 

number correlation for the PV facade and for the insulation side. The model found a higher 

convective heat transfer coefficient for the insulation side compared to the PV side. The 

numerical model was two-dimensional and represented a simple smooth channel. However, 

die strength of the work resides in the use of actual measured data for the boundary 

conditions. The simulated channel had a lengdi of 1 m, which has the limitation that the 

Nusselt number correlation may not be valid for other lengths. The convective heat transfer 

coefficient was evaluated at a reference temperature: taken as the inlet air temperature of the 

facade. However, in order to adhere to a more standard definition of heat transfer 

coefficient, the bulk temperature should have been used to determine the film coefficients. 

Simulations were performed of the integration of a BIPV/T system for one of the 

participating houses for the CMHC EQuilibrium Housing competition, the Alstonvale Net 

Zero house (Candanedo, J.A. et aL, 2007). The simulations employed TMY2 weather data for 

the city of Montreal. For turbulent flow, the simulations employed the Gnielinski correlation 

to determine the convective heat transfer coefficient inside the BIPV/T system. In order to 

ensure high temperatures at the oudet even for low irradiation levels and high wind speed, a 

glazed section following the BIPV/T is included. The air duct system is later connected to a 

heat exchanger or to a heat pump. The final use of the air will depend on the exit 

temperature; if this air temperature is high enough, the air will be used to heat water in a 

thermal storage tank, otherwise it will be used as the source of a heat pump. It is recognized 

43 



by the author that the highest uncertainty in the simulation resides in the appropriate values 

for the convective heat transfer coefficient. 

Experimental work was done on a hybrid PV/T collector in Greece in order to quantify 

the heat transfer enhancement achieved with die use of fins and a metallic sheet inserted in 

the middle of the air cavity (Tonui, J.K. & Tripanagnostopoulos, Y., 2007; Tonui, J.K. & 

Tripanagnostopoulos, Y., 2008). It is not mentioned how the airflow inside the channel was 

determined. The results however, do show that the efficiency is increased to 30% with the 

use of the fins compared to 25% efficiency for a simple design. Work in the same area was 

continued in another publication by one of die authors (Tripanagnostopoulos, Y., 2007) in 

which the heat impinging the PV/T surface was increased using reflectors. The study does 

not mention any value for the convective heat transfer coefficients. 

Another experimental facility of BIPV/T in a vertical surface was tested in Italy (Bloem, 

J.J., 2008). The experiment stated that thermal efficiencies of up to 42% can be achieved for 

a simple case that consists of a smooth cavity. The study also includes computational fluid 

dynamics analysis and utilizes the thermal boundaries conditions. It is stated that the 

convective heat transfer coefficients are higher than expected because of the short length of 

the channel. However, the values of the film coefficients for each velocity are not quoted. 

2.1.3 Transpired solar air collectors 

A transpired solar air collector is another type of solar heat exchanger in which the 

absorber plate or cladding is perforated. Air is then taken in all around the structure. It is one 

of the most efficient systems but has the disadvantage of typically having not very high 

outiet air temperatures. It is usually preferred for make-up air for HVAC systems in 

commercial buildings. 
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Studies focusing on the airflow characteristics for perforated unglazed solar air collector 

were carried out in Waterloo (Gunnewiek, L.H. et al, 1996). It has been recognized that this 

type of air heater is efficient because the connective heat loss to the air in front of the 

perforated plate is later recuperated when the thermal boundary layer is taken into the 

plenum. The study was a two-dimensional CFD model of the perforated solar air heater that 

employed a k-e turbulence model. It also focused on the effects of buoyancy on the velocity 

profiles and performance of the collector. 

A CFD study was carried out for the transpired solar air collector (Arulanandam, S.J. et 

al., 1999). This work considered the exterior temperature conditions but assumed no wind 

conditions. The numerical study also only considered one perforated entry out of the 

multiple entries present; repeatability was assumed for the rest of the domain. Nusselt 

number correlations were reported. 

Studies on exterior connective heat transfer coefficients for transpired solar air collectors 

were carried out at the National Renewable Energy Laboratory (NREL) (Gawlik, K. & 

Kutscher, C , 2002). The study was done using experimental data and numerical simulations. 

See Figure 2.9 for a schematic of the energy balance. FLUENT 4.25 was employed as the 

CFD software for such task. The study determined that the maximum heat loss ocurred at 

the crest points of the corrugated solar air collector. The difference between the numerical 

and the experimental results for heat transfer was less than 3%. It was determined that when 

the velocity of the air is high enough, there is a separation that increases the heat loss to the 

exterior. An alternative to reduce separation is to increase the suction velocity. 
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Figure 2.9. Left: Sketch of the heat fluxes for the corrugated plate. Right: Boundary layer 

development for the corrugated transpired solar air collector (Gawlik, K. & Kutscher, C , 

2002). 

An experimental study of a transpired collector was carried out at the National 

Renewable Energy Laboratory of the United States in a controlled test environment (Gawlik, 

K. et at, 2005). The study focused on the impact of the thermal conductivity of the 

transpired solar collector materials on heat transfer. Transpired solar collectors made of 

aluminum, styrene and polyethylene were compared. Significant performance decreases were 

not found using a material having a lower thermal conductivity, although the maximum 

efficiency was found with aluminum solar collector. The results were corroborated by the 

researchers with CFD simulations. The study concluded stating that collectors can be made 

of flexible sheets which can be easily dismounted after their use. The results appear to be 

consistent since the effectiveness of a transpired solar collector depends on the intake of the 

thermal boundary layer forming directly in front of the collector. 

The SolarWall product with a PV attached to it was tested at the CANMET's National 

Solar Test Facility and promising results were obtained regarding the cooling effect of the 

PV and electrical efficiency improvement (Hollick, J., 2005). Figure 2.10 illustrates the effect 

of the forced ventilation on the temperature of the PV modules. In the study the orientation 
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of the groove was vertical as shown in Figure 2.11. The importance of the portion of the PV 

covering the solar wall and its impact on overall efficiency were not studied. 

Table 2-1 and Table 2-2 summarize the companies that produce hybrid PV/T products 

and the demonstration projects utilizing BIPV/T throughout the world. 
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13:45 14:00 14:16 14:32 14:48 15:04 1S:20 15:35 15:51 

Figure 2.10. PV SolarWall results for 900 W/m2 solar radiation, 1 m/s wind speed and a 

flow rate of 7 CFM/ft2 (Hollick, J., 2005). 
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Figure 2.11. The test set-up at CANMET (Hollick, J., 2005). 

Table 2-1. Companies producing hybrid PV/T systems. 

Air-based PV/T systems 

Company 

Conserval 

Grammer Solar 

SolarVenti Ltd (formerly Aidt Miljo) 

Secco Sistemi 

Millenium Electric 

PVT Solar 

Country 

Canada 

Germany 

Denmark 

Italy 

Israel 

US 

Products 

SolarWall 

TwinSolar 

Hybrid solar SV line 

Tetto Ibrido Solarizzato 

Multi Solar PV/T/A System 

Echo™ 

Liquid-based PV/T systems 

Company 

PVTWINS 

Millenium Electric 

Power-Spar 

Country 

The Netherlands 

Israel 

Canada 

Products 

PV-T Collectors 

Multi Solar PV/T/A System 

Energy MUST® 

Concentrated solar heat for 

electricity and hot water 
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Table 2-2. BIPV/T demonstration projects around the world. 

Country 

Canada 

Canada 

Canada 

USA 

USA 

Italy 

Spain 

Switzerland 

Denmark 

Denmark 

Netherlands 

Project 

Eco Terra home, Eastman, Quebec (Aloutte homes/Concordia) 

Alstonvale Net Zero House, Hudson, Quebec (SEVAG POGHARIAN 

DESIGN/Concordia 

West Prep School in Toronto 

Louisville, Kentucky, PV/T solar House, SunWatt Corporation 

Applebee's restaurant (Innovative Design) 

Ispra, EISA Building, ventilated PV facade 

Library of Mataro, ventilated PV facade 

Aerni, Airsorf, ventilated PV facade 

The yellow House in Aalbor, ventilated PV facade 

Lundebjerg, Shouvlunde, Copenhagen 

City Archives in Rotterdam, hybrid PV roof 

2.2 Water-Based Solar Collectors and Liquid PV/T Systems 

A solar collector can be considered as a special type of a flat-plate collector, which is a 

special kind of heat exchanger that transforms solar radiation into heat (Duffie, J.A. & 

Beckman, W.A., 2006). The typical configuration consists of an absorber plate with back-

mounted pipes in which water or another liquid is circulated to remove the energy absorbed 

by the plate. These collectors can be covered with a layer of glass to minirruze convective 

heat losses to the exterior due to wind and to radiation. 

A liquid PV/T collector is basically a solar collector in which the absorber plate has been 

replaced with a PV module (see Figure 2.12). 
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Figure 2.12. Typical closed loop liquid-cooled PV/T system (Bosanac, M. et al., 2003). 

The first studies on the detailed performance of flat plate solar collectors go back to the 

1940s at the Massachusetts Institute of Technology (Hottel, H.C. & Woertz, B., 1942). It 

must be noted that the fluid used in the study was water. 

Literature on modelling and performance evaluation of PV-thermal water based systems 

is discussed by Zondag, H.A. (2008b). It must be noted that since these systems work in a 

closed loop where water or another liquid is circulated in pipes behind the PV, they suffer 

from the problem of higher stagnation temperatures. Zondag and van Helden (2002) 

reported stagnation temperatures of around 130°C for a glazed PV-T water collector in 

outdoor test conditions in the Netherlands. Other problems with liquid fluids are freezing or 

boiling of the fluid in the pipes that can render the system inoperable. It was also noted that 

problems with the encapsulation material of the solar cells, EVA, (ethylene vinyl acetate) can 

exist if the temperature exceeds 130 °C. The study also revealed that the time constant for 

this type of collector is larger due to its higher thermal mass. When there is water flowing in 

the pipes the time constant can be as low as 2 minutes; in the case of no flow conditions, the 

time constant is on the order of 30 minutes. 
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Numerical work on water-based hybrid PV/T collectors was carried out in the 

Netherlands (Zondag, H.A. et al., 2002). The work compared one-dimensional, two-

dimensional, and three-dimensional numerical models for transient and steady states. It was 

found that a one-dimensional steady state was sufficiendy accurate for annual thermal energy 

output calculation. However, it is recognized that 2D and 3D models give more information 

regarding thermal distribution and relevant information needed to improve the collector 

design. 

A publication from researchers at the University of Delaware and the University of 

Florida examines a water hybrid PV/T system connected to a heat pump with the objective 

of supplying enough domestic heat for the house (Boer, K.W. & Tamm, G., 2003). The 

publication also emphasizes that electrical and thermal efficiencies should not be simply 

added, since the effect of the different entropies of the energies involved must be included. 

The publication states that because of this, the electrical yield of the system has to be 

maximized. 

2.3 Demonstration Projects 

A survey on PV/T products was carried out by Esbensen, a consulting engineering 

company based in Denmark (Sorensen, H. & Munro, D., 2000). In the survey nine air-based 

systems were examined for roofs and six systems for facades; one of them being SolarWall, 

the commercial available product from Conserval Engineering from Canada. This was 

installed at the West Prep School at Toronto and consisted of 15 m2 of solar wall and two 

PV modules of 60 W each. The heated air is used to improve indoor air quality in the 

classroom. 
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Another demonstration project was done in Ispra, Italy in the ELSA building. This 

building has a facade covered by an array of 505 m of amorphous PV with a peak power 

rating of 21 kWp. The air is being heated as it flows from an existing gap between the PV 

and insulation, and is later used for ventilation purposes. 

The Yellow House in Aalborg, Denmark, has five different groups of PV systems. In 

Switzerland, in 1991 a company called Atlantis Energy Systems, built a ventilated PV 

installation with an installed electrical capacity of 62 kW and a thermal output of 115 kW. In 

the Netherlands there is an installation at the City Archives in Rotterdam. In this installation 

there are 1840 m2 of PV modules on the roof. During the summer months the heat 

recuperated is stored in the ground to provide heating in winter. Conversely, during the cold 

months, cold air is used to lower the ground's temperature in order to provide cooling 

during the summer. 

The aforementioned EQuilibrium projects (EcoTerra and Alstonvale), as well as the 

facade are also relevant demonstration projects carried out in Canada. 

A summary of institutions working on BIPV/T systems is presented in Table 2-3. 
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Table 2-3. Main BIPV/T research groups listed by country. 

Country 

The 
Netherlands 

Greece 

UK 

Denmark 

India 

China 

Germany 

USA 

Canada 

Australia 

European 
Union 

Research group/University 

Energy Research Center of the Netherlands (ECN), Eindhoven, Eindhoven University of 
Technology, 

University of Patras (Physics department) 

Cardiff University, University of Wales, University of Strathclyde, London South Bank University, 
University of Northumbria, Centre for Renewable Energy Systems Technology, Loughborough 
University 

Esbensen Consulting Engineers 

(Center for Energy Studies) Indian Institute of Technology, (Department of Mechanical 
Engineering) University of Roorkee 

(Department of Thermal Science and Energy Engineering) University of Science and Technology 
of China, (Division of Building Science and Technology) City University of Hong Kong, The 
Hong Kong Polytechnic University 

Department of Building Physics, Hochschule fur Technik, Stuttgart, Germany 

University of Florida, North Carolina State University, National Institute of Standard and 
Technology 

Conserval (SolarWall), Concordia University, Waterloo University 

(Centre for Sustainable Energy Systems) Australian National University, (National Solar 
Architecture Research Unit, Faculty of the Built Environment), University of New South Wales, 
University of Melbourne 

Institute for Environment and Sustainability, Research Centre, Institute for Environment and 
Sustainability, Italy 

Researchers 

Zondag, De Vries, van Helden, 

van Zolingen, van Steenhoven 

Tripanagnos top oulos 

Brinkworth, Clarke, Mei, Infield 

Bosanac, Miroslav, Sorensen 

Jaurker, Tiwari 

Yang, Wang, 

Eicker 

Davis, Dougherty, Fanney, Boer, 
Gawlik 

Hollick, Collins, Hollands, Athienitis 

Bazilian, Prasad, A. Blakers 

Bloem 
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3. Convective Heat Transfer Coefficients in a Building-
Integrated Photovoltaic/Thermal System 

3.1 Introduction 

Accurate convective heat transfer coefficients (CHTCs) are essential for solving the 

energy balance equations used for lumped parameter thermal network modelling of Building 

Integrated Photovoltaic/Thermal systems (Figure 3.1). The CHTCs are necessary to 

quantify the thermal and electrical energy production of BIPV/T systems, which in turn 

provide adequate means for sizing associated equipment, such as heat exchangers and 

electrical inverters. The PV temperatures obtained by solving the energy balance equations 

for the PV modules are useful in designing the array layout in order to maximize the total 

energy production by connecting modules with similar temperatures in parallel as much as 

possible. The heat transfer coefficients are also important for the development of algorithms 

to control the airflow (Candanedo, J.A. & Athienitis, A.K., 2010) since the higher the 

airflow, the more is the heat recovered and the lower the PV temperature (with 

correspondingly higher electrical efficiency). However, in practice mere is an optimum 

outlet air temperature determined by the planned utilization of the heated air and the fan 

energy consumption. 

In this thesis, the BIPV/T system of interest incorporates a variable speed fan that 

controls air flow in order to produce an air outlet temperature that is suited for the specific 

desired application. The system's application may include preheating fresh air, acting as a 

source for a heat pump or as a heating application through a heat exchanger (e.g. air-to-water 

heat exchanger to heat water). 
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When modelling BIPV/T systems, researchers and designers have usually relied on heat 

transfer correlations developed for pipes and channels. This approach is not satisfactory due 

to the inherent complexity of BIPV/T channels, which include heating asymmetry, high 

aspect ratios, non-constant heat fluxes, non-uniform wall temperatures, non-developed flow 

conditions and non-uniform cross sections (due to structural framing). 

The focus of this chapter is the determination of the internal convective heat transfer 

coefficients for a BIPV/T system with outdoor air as the cooling fluid. Two configurations 

were tested. The first is a smooth channel that has an aspect ratio (width-to-height) of 10. 

The channel studied in this work is smooth in order to obtain the lower limits of the actual 

heat transfer coefficients. The second configuration consists of a ribbed BIPV/T channel in 

order to simulate the installation utilized in the EcoTerra™ EQuilibrium demonstration solar 

house (Chen, Y. et al., 2007b) designed by Concordia's Solar and Daylighting Laboratory. 

Figure 3.1 presents a thermal network schematic of a typical BIPV/T system. For the 

particular BIPV/T design prototype studied in this paper, an amorphous PV module is 

attached with an adhesive that comes with the PV Module to a metal roof sheet. The 

amorphous PV module is formed from different layers. These layers are, from top to 

bottom: TEFZEL (an encapsulant material), antireflective coating, amorphous silicon, a 

backing substrate, TEFZEL, adhesive and a stainless steel layer which the adhesive was 

pasted. RTefeel and R ^ represent the thermal resistances of the PV module encapsulant 

(RTefze]), and of the backing substrate and the adhesive combined with the metal roof sheet 

where it is mounted. The convective heat transfer coefficients for the top and bottom 

surfaces are represented by hct and hcb and are linked to the bulk air temperature (L^) node 

respectively. Tplate and T ^ represent the temperatures of the plate and the insulation used to 
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compute the radiative and convective heat transfer coefficients. R^ is the thermal resistance 

of the insulation. 

T in let f 

PV module attached 
to roof metal sheet 

Roof 
Metal sheet 0.5 mm 

Insulation 
sheathing 1.76RSI 

plywood 9.5 mm thick 

Figure 3.1. BIPV/T thermal network model showing the interior convective heat transfer 

coefficients hctand hcb (Candanedo, L.M. et al., 2010) (the configuration shown corresponds 

to an experimental prototype studied in this thesis). 

3.3 Convective Heat Transfer Coefficients 

Several studies report that typical correlations used to evaluate the heat transfer 

coefficient underestimate their actual values (Eicker, U. et al, 1999; Ba2ilkn, M.D. & Prasad, 

D., 2002; Bloem, J.J., 2004; Charron, R. & Athienitis, A.K., 2006b). A brief discussion of 

available representative related literature for BIPV/T applications and solar air heaters in 

which air is drawn through the system with a fan is presented below. A discussion on mixed 

convection effects is also presented. Some of the main correlations from the literature are 
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summarized in Table 3-1. Work on pure natural convection heat transfer in open-ended 

rooftop and facade photovoltaic installations is not the focus of this work and is not 

reviewed. One may refer to the following publications for information on passive cooling of 

PV modules: (Brinkworth, B.J. et al., 2000; Brinkworth, B.J. & Sandberg, M., 2005; Cipriano, 

J, etal., 2008; Mittelman, G. et al., 2009) 

3.3.1 Correlations employed in BIPV/T models 

Eicker et al. (1999) developed a model for a BIPV/T facade system and compared it to 

experimental data. It was reported that the model data could not fit the experimental results 

by using simple heat transfer correlations (e.g. parallel plate) to represent the heat transfer in 

the gap formed between the PV module and the colder room-side glass. The reported heat 

transfer coefficients for the hot PV side with an average air velocity of 0.3 m/s and a gap of 

14 cm were between 4 to 5 W/m2K. For the colder glass side, the connective heat 

coefficient was about 3 W/m2K. The Reynolds and Nusselt numbers were not reported; 

using the information provided, the estimated Reynolds number is around 4800 and the 

estimated Nusselt number are between 42 to 52 for the hot PV side and 31 for the colder 

glass side. Bazilian et al. (2001) developed a numerical model for a photovoltaic heat recovery 

system. The model compared three different correlations: one for turbulent flow with 

uniform heat flux, another one developed for smooth solar air collectors by Malik and 

Buelow (1998), and the modified Petukhov equation or Gnielinski correlation (Kakac, S. et 

al, 1987; Duffie, J.A. & Beckman, W.A., 2006). Bazilian and Prasad (2002) presented 

another numerical model for a ventilated PV-roof facade for the case of natural convection. 
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The authors point out that the model seemed to underestimate the outlet air temperature 

and overestimate the PV module temperature. 

For solar air heaters, Eicker (2003) recommends the use of the Petukhov equation for 

turbulent flow (Re>3100) and the Tan and Charters equation for fully developed turbulent 

flow (1970) (Re>9500). For laminar flow, Eicker recommends Nusselt number correlations 

by Altfeld (1985) and by Shah and London (1978). For vertical ventilated photovoltaic 

facades Eicker states that the free convection regime must be taken into account even when 

the flow is fan-driven. Then, it is recommended that the Nusselt number should be 

calculated as a weighed value of the laminar and turbulent portions 

i.e. Nu = ^ N u l a m
2 + Nu t u r b

2 . 

Bloem (2004) developed a numerical model for a PV facade in the simulation program 

TRNSYS and points out that the interior connective heat transfer coefficients were 

underestimated in the model when compared with measurements. There is no indication 

which Nusselt number correlation was employed for the validation. 

Charron and Athienitis (2006b) used the Gnielinski correlation modified with the Hausen 

entrance factor (Gnielinski, V., 1983) to estimate the heat transfer in a BIPV/T double 

facade. The authors argued that the convective coefficient correlations possibly resulted in 

an underestimation of the actual heat transfer coefficients by up to 50%. Another important 

conclusion is that the recommended limits for the ratio of Gr/Re2 have to be revised to 

determine if the flow is driven by natural, mixed, or forced convection. Chen et al. (2007a) 

modeled a BIPV/T roof system with a correlation for turbulent flow (Kreith, F. & Bohn, 

M.B., 2001). Candanedo et al. (2007) employed the Gnielinski correlation for turbulent flow 
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and another correlation for laminar developing heat transfer (Lienhard, J.H.I. & Lienhard, 

J.H.V., 2008). 

3.3.2 Correlations employed in air hybrid photovoltaic/thermal 

(PV/T) collector models 

Sopian et al. (1996) employed a Nusselt number correlation for fully developed turbulent 

flow (Duffie, J.A. & Beckman, W.A., 2006) for asymmetric heating to model a hybrid 

photovoltaic/thermal (PV/T - i.e. modular - not BIPV/T) heater. Garg and Adhikari (1997) 

employed the Tan and Charters correlation in their numerical model. Hegazy (2000a) used a 

Nusselt number correlation that contains an exponential correction to account for the 

diminishing convective heat transfer away from the entrance (Altfeld, K. et al., 1988). 

Ong, K.S. (1995b) employed different Nusselt number correlations depending on the 

fluid flow regime. He employed the Heaton correlation for laminar flow, the Hausen 

correlation for transitional flow, and the Tan and Charters and the Petukhov correlations for 

fully turbulent flow. The difference between predicted and experimental air temperature 

predictions was around 5 °C (Ong, K.S., 1995a; Ong, K.S., 1995b). " 

Ito et al. (2006) used the Mercer correlation for laminar convection (Duffie, JA. & 

Beckman, W.A., 2006). For forced convection he employed a modified version of the Kays 

and Crawford correlation which considers the developing flow conditions (Duffie, JA. & 

Beckman, W.A., 2006). 
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3.3.3 Context of the heat transfer correlations 

The previously mentioned correlations are generally valid as long as the conditions for 

which they were developed are met. A brief description of how the correlations were 

obtained through experiments is presented below. It identifies under which conditions the 

correlations would represent die connective heat transfer in a BIPV/T cavity. 

Dittus and Boelter (1930; 1985) developed their correlation for tubes by averaging the 

results of different researchers. Incropera and DeWitt (Incropera, F.P. & De Witt, D.P., 

2002) recommend the use of the Dittus-Boelter correlation for Re> 10,000 and length to Dh 

ratios (L/D,,) > 10. In contrast, McAdams (1954) recommends the Dittus-Boelter 

correlation but in a more restrictive manner for the range 10,000<Re< 120,000 and for ratios 

of L /D h of 60 or more. McAdams (1954) also recommends the equation for "moderate 

temperature differences" without giving detail on what can be considered moderate 

temperature differences. 

A correlation that has not been used in BIPV/T systems nor in solar air collectors is the 

Martinelli equation (Martinelli, R.C., 1947). This equation is recommended in Kakac and 

Yener (1995) for turbulent flow in pipes and for parallel plates. The original paper contains 

typos in some of the equations. The corrected equations can be found in (McAdams, W.H., 

1954) and a list of the assumptions is given. One of the main benefits of the Martinelli 

equation is that it can explain the heat transfer behavior for different Prandtl numbers. It 

considers the use of the bulk air temperature to determine the heat transfer coefficient and 

the friction factor. 

Tan and Charters (1969) studied the effect of the entrance length using a duct with 103 

diameters of heated length. The Reynolds numbers ranged from 9500 to 22000. In the 
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report, there is no indication that the channel was tilted. The work was further expanded to 

present a Nusselt number for developed flows (Tan, H.M. & Charters, W.W.S., 1970). The 

experimental data showed lower heat transfer rates compared to the Dittus-Boelter 

correlation. Results agree with those obtained by Sparrow for an asymmetrically heated 

channel (Sparrow, E.M. et al, 1966). In Sparrow's investigation, the duct had two sections, 

an initial unheated section with a length of 40 Dh followed by the heated section with length 

equal to 140 Dh (in Sparrow's investigation the orientation of the duct was horizontal). A 

description of the setup can be found in (Novotny, J.L. et al., 1964). 

Cheng and Hong (Cheng, K.C. & Hong, S.W., 1972) performed a numerical study with 

inclined tubes at low Reynolds numbers (5<Re<20). For the tilted tube, strong buoyancy 

effects on heat transfer were found at Rayleigh numbers above 100. 

Experimental results by Malik and Buelow (1973) were obtained using ducts of length 

162 Dh. Although not explicidy stated, it appears that the duct was horizontal. Two ducts 

were analyzed, one with a flat cover and one widi a corrugated cover. 

3.3.4 Limitations of the correlations that have been used in BIPV/T 

modelling 

Most of the correlations were developed for high Reynolds numbers (above 10,000), and 

employed long heated lengths to establish fully developed conditions. Also, most of the 

studies have been carried out in horizontal channels and pipes where buoyancy effects might 

not be as significant. Most of them investigated symmetrical heating while in a BIPV/T 

system it is asymmetric. In a typical roof BIPV/T system, such as the one in EcoTerra™ 
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EQuilibrium demonstration solar house (Chen, Y. et al., 2007b), the length of the system is 

about 5.8m. It has an L /D h ratio of about 70 and is installed at a 30° tilt angle. 

3.3.5 Mixed convection studies 

The maps by Metais and Eckert (1964) for the regimes of free, forced and mixed 

convection for horizontal and vertical pipes can be employed to determine when mixed 

convection heat transfer must be taken into account. Previously, Metais (1963) developed a 

correlation to determine the Nusselt number at mixed regime for a horizontal tube. The 

equation was obtained using fluids with Prandd number in the range 2.43<Pr<1200. The 

correlation has a margin of error of 20%. The same equation is listed by (Metais, B. & 

Eckert, E.R.G., 1964) who state that the figures are useful for preliminary assessment and 

that they ".. .may have to be adjusted when more results become available." For this reason 

the figures should not be used as a final determination of the actual convection regime. 

Petukhov (1976) presented equations to establish Grashof numbers for forced 

convection, for vertical, and for horizontal pipes when buoyancy effects will affect the heat 

transfer by about 1% relative to its value. When these limits are surpassed, the actual Nusselt 

numbers will be at least 1% higher than the values predicted by the forced convection 

correlation for circular pipes. The equations are functions of Reynolds and Prandd numbers 

as follows: 

For vertical pipes: 

_ 1.3 • 10-4Re2-7SPr[Re1/8 + 2.4(Pr2/3 - l ) ] 
G r q " log(Re) + 1.151og(5Pr + 1) + 0.5Pr - 1.8 3 1 
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For horizontal pipes: 

Grq = 3 • 10-5Re2-7SPros[l + 2.4(Pr2/3 - l )R e - 1 / 8 ] 

where, 

Gnielinski (1983) states that there are two main factors that influence the heat transfer 

coefficient for air, nitrogen, and helium: a) variable physical properties and b) natural 

convection. Variable physical properties for gases do not increase the heat transfer more 

than 10%. However, the effect of free convection may increase the heat transfer to three to 

four times the estimated heat transfer due to pure forced convection alone. 

Jackson et al. (1958) studied combined free and forced convection in a vertical tube where 

the tube wall temperature was maintained constant. A Nusselt number correlation was 

developed. Brown and Gauvin (1965) studied combined free and forced convection in aided 

flow in a vertical pipe (aided or assisted flow occurs when air flows upward in a heated pipe 

and downward in a cooled pipe). Brown and Gauvin's results show a decrease in Nusselt 

numbers for assisted laminar flow compared to experimental data presented by Hallman 

(Hallman, T.M., 1961) and Brown (1960). However, for turbulent flow, the heat transfer was 

augmented compared to the equation presented by Hausen (1959) for assisted flow. 

Mori, et al. (1966) studied heat transfer in a horizontal pipe using air as the heat transfer 

fluid; the pipe was uniformly heated. Their results show that the experimental Nusselt 

numbers were higher than the value 48/11 which corresponds to Poiseuille flow. The 

constant value 48/11 (4.36) is for pipes with uniform surface heat flux and laminar fully 
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developed conditions and is independent of Re, Pr and axial location (Incropera, F.P. & De 

Witt, D.P., 2002). 

McComas and Eckert (1966) carried out experiments in a horizontal circular tube with air 

as the fluid. The tested Reynolds number was in the laminar region (100 to 900) and the 

Grashof number ranged from 0.13 to 1000. It was found that for the Gr = 1000 and Re = 

220 the experimental Nu was around 1.8 times the value of 4.36 (48/11) at x/Dh=45. 

Axcell and Hall (1978) carried out experiments for downward flow of air in a vertical pipe 

for Reynolds numbers between 20,000 to 130,000. For a Reynolds number of 18,800, the 

measured Nusselt number was 164 - more than 2.7 times higher than the Nusselt number 

predicted with the Petukhov and Kirillov equation and 3.1 times higher than the Nusselt 

number given by the Dittus-Boelter correlation. Axcell and Hall (1978) also compared their 

experimental results against a correlation developed by Fewster and Jackson (1976) for 

turbulent buoyancy-assisted flows; their results were still 20 to 25% higher than what the 

corrected correlation was predicting. 

A study on laminar mixed convection heat transfer for water flow through horizontal 

parallel plates with asymmetric heating was done by Osborne and Incropera (1985). As 

expected, it was found that the asymmetric heat flux caused higher Nusselt numbers at the 

bottom insulated surface than at the top surface. 

Maughan and Incropera (1987) carried out numerical and experimental studies on mixed 

convection heat transfer for airflow in horizontal and inclined channels. The studied channel 

was heated from below and the Re was in the range of 125 to 500. The Nusselt number 

increased with the influence of higher Grashof numbers. 
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A comprehensive review of mixed convection in vertical tubes is presented by Jackson et 

al. (1989). They report that for laminar mixed convection regimes in assisted flow 

convection in vertical tubes, the heat transfer is almost always enhanced. However, for some 

values of Grb /Re2 7 in the turbulent flow mixed convection regime for pipes, the results 

show that there is a heat transfer drop. For the case of downward buoyancy opposed flow, 

the heat transfer is always enhanced. The same type of behavior is reported in a paper by 

Aicher and Martin (1997) on mixed turbulent convection in vertical tubes. 

Sudo et al. (1990) carried out experiments in a vertical duct and explored the effect of 

aspect ratio on heat transfer. Results were reported based on dimensional parameters. When 

Grx/Rex
21/8Pr1/2is between 10* and 10"2, in both aiding and opposing flow, the heat transfer 

is on average higher than those predicted by correlations. Presented in their paper is the ratio 

of the measured Nusselt number to the Nusselt number predicted by the Dittus-Boelter. 

Correlations are also presented based on aiding and opposing flows. In Sudo et al.'s 

investigation, most of the time, heat transfer enhancement was found for buoyancy assisted 

and opposed flows. 

Smyth and Salman (1991) carried out experiments on combined free and forced 

convection heat transfer in a rectangular duct for the laminar region. For Gr in the order 

107, the Nusselt number was found to be in the range of 14 to 19. 

Zhang and Dutta (1998) studied mixed buoyancy-assisted convection with asymmetric 

heating conditions in a vertical, square channel. The employed fluid was water. It was found 

that the Nusselt number was higher than predicted with the Gnielinski equation. The 

Nusselt numbers were also higher when compared to the Nusselt number ratio predicted by 

the Cotton and Jackson equation (1989). The authors presented a new formula in Dutta et 
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al. (1998) to correlate Gr/Re with the ratio of the actual Nusselt number to the Nusselt 

number predicted by the Dittus-Boelter correlation. 

Busedra and Soliman (2000) studied laminar mixed convection in an inclined semicircular 

duct for both assisted and opposed conditions. The experiment was carried out for 3 

Reynolds numbers (500, 1000 and 1500). The employed fluid was water. For the tilt angle 

inclination of 20° from the horizontal (this was the maximum angle tested), the fully 

developed Nusselt number was found to increase with Grqr number (based on heat flux and 

radius) and was less dependent on Re number. 

Chong et #/.(2008) studied the effect of the inclination angle for an inclined rectangular 

duct with a heated plate in the middle of the channel. The studied Reynolds numbers were in 

the range of 420 to 2630, while the Gr was in the range of 6.8X103 to 4.1 X104. The tested 

angles were -90°, -60°,-30°, 0°, 30°, 60° and 90°. The negative sign is used to indicate 

opposed flow conditions. The authors report that the maximum heat transfer occurred at 

30° tilt angle and that for Reynolds numbers above 1800, the influence of the tilt angle on 

the Nusselt number seemed to diminish. 

3.3.6 Friction factor correlations 

Many of the heat transfer correlations employed in the literature have been developed as 

a function of a friction factor. ASHRAE (2005) recommends the use of the friction factor 

equation developed by Churchill (1977). The advantage of the equation is that it is valid for 

all ranges of Reynolds numbers (laminar, transitional and turbulent). 
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The equation is: 

f = 8 f — 
12 

^ReDhy (A+B)1-5 

1/12 

3.4 

where 

A = 2.4571n 

i Re D h 

0.9 

i'O, 

16 

3.5 

B - r 37530 

L Re 

16 

3.6 

Table 3-1. Nusselt number correlations for flow in a cavity or duct 

Author / 

Reference 

Dittus-Boelter (1930; 

McAdams, W.H., 

1954; 1985; 

Winterton, R.H.S., 

1998) 

Gnielinski correlation 

(Incropera, F.P. & De 

Witt, D.P., 2002) 

Modified Petukhov 

equation for short 

channel lengths and 

Correlation/ Comments 

Nu = 0.023ffe°-8Pr0-4 3.7 

Recommended for fully developed turbulent (hydrodynamically and 

thermally) flow in smooth pipes for Re>l0,000 and L /D>10 

0.7<Pr<160 (Incropera, F.P. & De Witt, D.P., 2002) 

10,000>Re> 120,000 , L/D>60 and moderate AT(McAdams 

1954) 

( f l e - l O O O ) P r ^ 
Nu = = 2 _ 

l + 12.7jJ(Prl-l) 

Smooth tubes, 

For 3000<Re<5xl06 

0.5<Pr<2000 

* 2
 1 + ( L ) 

l + 1 2 . 7 ^ ( P r 3 - l ) 

, W.H., 

3.8 

3.9 

Flow & Heating 

conditions 

Average Nu for forced 

convection and 

symmetrical heating 

Average Nu for forced 

convection and 

symmetrical heating 

Average Nu for forced 

convection and 

symmetrical heating 
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(Eicker, U., 2003) 

pipes 

Where, / = (0.79 ln(fle) - 1 .64) - 2 and 

Re>3,000 

Tan and Charters 

(Eicker, U., 2003) 

for air (Pr = 0.71) 

Nu = 0.0158fle°-8 + (0.00181/?e + 2.92)e(-°03795^/z,":i 3.10 

for a horizontal duct, Re>9500 

Average Nu for forced 

convection and 

asymmetrical heating 

Martinelli (McAdams, 

W.H., 1954) 

Note: Original Nu 

correlation presented 

in (Martinelli, R.C., 

1947) but had 

typographical errors 

and was corrected in 

(McAdams, W.H., 

1954). 

Nu 

Re-Pr-JT/2 

Q£=§) •5\Pr+<n(1+5Pr)+°-SN°*ln (§f J ) 3.11 

Average Nu for forced 

convection and 

symmetrical heating 

where Tw is die temperature of die wall, Tb the bulk air temperature, 

and Tc temperature at the center of the pipe. NDR is a diffusivity ratio 

that depends on Re and Peclet number. 

NDR is plotted against Re and Pr in (Martinelli, R.C., 1947), for air 

Pr=0.71 and 1000<Re<10000, 0 . 7 < N D R < 0 . 9 8 . 

tw-tb - Atmean, tw-tc = Atmax 

For air (tw-tb)/(tw-tc) 0.78 to 0.84 for 2000<Re< 10000 

Malik and Bluelow 

(Bazilian, M. et a/., 

2001) 

Nu = 
0.0192Re*Pr 

1 + 1.22Re~s(Pr - 2) 
3.12 

Average Nu for forced 

convection and 

asymmetrical heating 

Recommended for 10000<Re<40000 and L / D h >162 

Mercer correlation 

(Duffie, J.A. & 

Beckman, W.A., 2006) 

Nu = 4.9 + -
0.0606 («eilDnf 

f n ^ 0 • 7 

1 + 0.0909 [RePr^j Pr° 

3.13 

Laminar flow Re<2300 

Average Nu for forced 

laminar convection 

and asymmetric 

heating 
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3.4 Experimental Setup 

The experimental setup used in this research consists of a near full-scale BIPV/T system 

and a similar system without PV panels (just metal roof) connected to an outdoor test facility 

fully instrumented for air collector testing. The BIPV/T system is a small scale version of 

the roof BIPV/T system in the EcoTerra™ EQuilibrium demonstration near net-zero 

energy solar house (see Figure 3.2) (Chen, Y. et al., 2007b). 

Clear days with low wind conditions were selected for the experiments so as to reduce 

the variability due to wind effects and passing clouds. 

Figure 3.2. Photograph of the BIPV/T roof in the EcoTerra™ House. The amorphous PV 

modules are attached to a metal roof skin on vertical and horizontal wood framing that also 

creates the flow channel. (The roof has a length of 5.8 m in the flow direction shown by the 

arrows). 
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Figure 3.3. (a) Experimental BIPV/T setup replicating 1 strip of the BIPV/T system of the 

EcoTerra house with and without amorphous PV modules attached; (b) schematic of the 

setup; (c) cross section details of BIPV/T. 

The solar air collector, (without the PV module) was employed to determine how heat 

generation is affected by attaching PV panels (Candanedo, L.M. et aL, 2010). 
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The BIPV/T system included an amorphous PV module with an electrical efficiency of 

6.1% at standard test conditions. This module was attached by built-in adhesive to a steel 

metal roof sheet with a thickness of 0.5 mm. The cross-sectional area of the channel, Ac was 

0.01549 m2. The hydraulic diameter Dh is given by 4AC/U, where U is the wetted perimeter 

(Dh= 0.073 m). The length of the channel was 2.84 m. The thermocouples were special limit 

T-type with a 0.3°C maximum error. The tilt angle employed in the majority of the 

experiments was 45°, followed by several tests at a tilt angle of 30° to determine whether 

natural convection had any significant effects in this slope range. The channel considered 

was smooth with no framing. The bottom of the channel consisted of 2 inches of 

polysterene insulation (1.76 Km2/W, R-10) and 9.5 mm (3/8 in) thick plywood board (see 

Figure 3.3). 

Since the major thermal gradients exist along the direction of the flow, 40 thermocouples 

were placed along the middle of the channel from the inlet to the outlet. Infrared photos of 

the metal channel showed insignificant thermal variation along its width. The same type of 

behavior was reported by Ong (1995a). The following temperatures were measured: average 

inlet and outlet air temperature, the temperature of the interior side of the metal plate and 

the surface temperature of the insulation. 

The data was recorded at 1 minute intervals through a data acquisition system. The PV 

module was connected to a charge controller with a maximum power point tracker. The 

wind speed and ambient air temperature were recorded by a weather station. The 

anemometer was a 3-cup type. The wind speed and the ambient air temperature sensors 

were placed about 10 m above ground. 
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The total convective heat transfer to the air for each of the control volumes in the 

BIPV/T cavity was calculated as follows: 

Qincv = ihcp(T0Utlet — Tiniet) 3.14 

Toudet is the average temperature of the air at the outlet and T ^ is the average air 

temperature at the inlet, which may be higher than T0 due to local heating from the ground. 

The specific heat c is given by the equation: 

CV = cpa "•" ** ' cpv 3^5 

where IF is the air moisture content, cpa is the specific heat of dry air and has the value of 

1.0 kJ/(kga-K) and cpv is the specific heat of water vapor and has the value of 1.86 kj/(kgv-

K). The moisture content of the air has been calculated using the relative humidity (RH) and 

the dry bulb temperature. The saturation pressure has been calculated based on correlations 

provided by ASHRAE (2005). The mass flow rate was measured with a laminar flow element 

(LFE). The LFE comes with a calibration curve in order to determine the actual volumetric 

flow rate. This curve gives the flow rate as a function of the pressure drop across the LFE. 

It was found that taking 40 measurements per minute gave a reading that was sufficiently 

representative for the flow rate calculations. The LFE was calibrated by the manufacturer for 

a range of 0 to 0.05 m3/s (0 to 105 CFM). The pressure drop at the maximum flow rate was 

about 2000 Pa (8 in of water). For this LFE, the largest error was 0.25 CFM compared to its 

calibration standard. The fan can provide a flow rate of up to 0.023 m3/s (47.5 CFM) with a 

maximum average velocity of 1.45 m/ s through the channel. The pressure transducer used 

for the LFE can measure pressures from 0 to 2500 Pa (10 inches of water) with 0.25% full 

scale accuracy. 
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Because of relatively high longitudinal thermal gradients for the metal plate and the 

insulation along the direction of the flow, the channel was divided into six control volumes. 

The radiation exchange for a control volume between the interior surface of the metal plate 

and the insulation surface is given by 

n , _ fpiateMsu ' "-cv ' G ' \} plate ' insu) 

T- + T--1 

where sa and e2 are the longwave emissivities of the surfaces. The emissivities were 

measured using a calibrated hemispherical emissometer. The measured emissivity of the steel 

plate was 0.80 while the corresponding value for the insulation board was 0.20. FplaJe^nsu'is the 

view factor between the two cavity surfaces (Incropera, F.P. & De Witt, D.P., 2002). 

3.4.1 Transient response 

For approximately constant solar radiation and exterior wind speed, the BIPV/T system 

usually reached steady state after 8-9 minutes, as shown in Figure 3.4. 

With numerical analysis, Kakac (1968) studied the effect of step changes in the 

boundaries of a channel; the transient response for Re~9370 needed approximately 0.07 

seconds to reach steady state for the studied configuration. This analysis however does not 

consider the thermal capacitance and resistance of the materials. 

A practical way of analyzing the time response of the system is to consider it as a simple 

RC thermal circuit. The time required to reach 63% of steady state change is the product RC 

(time constant), where R is the thermal resistance and C the total thermal capacitance. After 
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five time constants, steady state is approximately attained. The combined thermal 

capacitance of the module and die metal roofing steel sheet is 7838 J/m2K; their combined 

thermal resistance is 0.011m2K/W. The time constant, (RC), is 86.2 seconds. The 

approximate time to reach steady state (about five time constants) is 7.2 minutes. This value 

is significandy close to die measured value stated above (8-9 minutes). 

Time, 2 min 
increase 

0 +--

0 0.5 1 1.5 2 

Distance from the inlet, m 

2.5 

Figure 3.4. Transient response of the bulk air temperature for constant volumetric flow rate 

0.021m3/s and incident total solar radiation 815 W/m2 (the arrow shows increasing time). 

The bulk air temperature rise in the channel follows an exponential trend. Using Mathcad 

(Parametric Technology Corporation, 2007), an exponential correlation was fitted to the 

experimental data, which was based on an optimized version of the Levenberg-Marquardt 

The equation has the following form 
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T b (x)=A(l -e- f ) + C 3.17 

where A, B, and C ate fitted parameters. The correlation coefficients (R2) of the 

regressions shown in Figure 3.5 are high (R2 ~ 0.99). 

It was noted that the temperature increase had a distinctive bent around x /D h =19. This 

can be due to the fact that less thermocouples were employed to determine the air 

temperature before and after the middle section (x/Dh=16 and x/D h = 22). It is expected, 

however, that the exponential fitting of the curve would lower the uncertainty in the 

determination of the bulk air temperature. 

35 -. 

30 -I 

A Re =1284 — 

•Re =2479 — R2= 0.994 

10.0 20.0 30.0 

Nondimensional distance from entrance, x/Dh 

40.0 

Figure 3.5. Bulk air temperature for different Reynolds numbers compared with exponential 

correlation fits (points show experimental measurements and solid lines the exponential fit). 
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3.4.2 Computation of convective heat transfer coefficients 

Average internal instantaneous CHTC values were obtained by using the local control 

volume averaged temperatures of the plate and the insulation (Tlate and T ^ J each minute. 

Since the air temperature distribution is known from the corresponding exponential fit for 

each of the tested flow rates, local coefficients can be calculated for each control volume. 

The convective heat transfer coefficient for the corresponding control volume for the top 

plate was computed as 

Qincv - Qradcv 
nct,cv ~~ / Z 7 J - 1 ° 

Acv (Tplatecv
 _ Tb c vJ 

where Qincv was determined with equation (20) and Qradcv was computed with equation 

(3.16). 

For the bottom surface, 

u Qradcv 
h cb,cv = 7Z — TV 3.19 

Acv ^Mnsu,cv — \i\>,cv)j 

In this analysis, the bottom heat loss can be considered negligible due to the 

comparatively high thermal resistance value of the insulation. This approach of employing 

two heat transfer coefficient is not new. Two Nusselt numbers -one for each of the control 

boundaries- have been used for parallel plates and channels by (Hatton, A.P. & Quarmby, 

A., 1963; Sparrow, KM. et al, 1966; Osborne, D.G. & Incropera, F.P., 1985) and for 

asymmetric heating in concentric circular tubes (Kays, W. et al., 2005). 
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The average Nusselt numbers are, in turn, given by 

N U t =
 h C t ° h 3.20 

Kair 
for the top channel surface and by 

hc^Dh 3 2 1 
Wubot - ^r 

Kair 
for the bottom surface. 

3.5 Results and Discussion 

3.5.1 Local effects 

The local Nusselt numbers are plotted in Figure 3.6. As can be seen, when the flow is 

turbulent, it reaches fully developed conditions in shorter lengths. The behavior is opposite 

for the laminar flow conditions. It is important to determine when the fully developed heat 

transfer condition is reached in order to decide whether a local or an average heat transfer 

coefficients is appropriate. 
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Figure 3.6. Local Nusselt number for the top surface versus non-dimensional distance from 

the entrance. 

Many researchers have studied Nusselt number development length solutions for laminar 

and turbulent flow. To obtain the fully developed solution for the laminar flow (Re<2300) 

Kays (Kays, W. et al., 2005) recommends using the entry length solution for the circular tube 

relationship 

— « 0.05RePr 
Dh 

while Hallman (Hallman, T.M., 1961) employs the relationship 

3.22 
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— > 0.0425i?ePr 3.23 

Dh 

For the turbulent region, White (White, F.M., 2003) states that the development length is 

shorter and that it can be estimated with 

- | - « 4 . 4 R e 1 / 6 

Dh 3.24 

The experimental results agree with the previous correlations to determine the 

development length. For instance, based on equation 3.23 at Re ~ 1284, the developed flow 

conditions are reached when x /D h > 38.7. Comparing this result to Figure 3.6 where for 

x /D h = 29 to x /D h = 36 the change in Nusselt number is about 9.6%, indicating that the 

flow is clearly not being fully developed yet. However, in the turbulent region, for Re ~ 4094 

the developed flow conditions are reached when x/D h > 17.6 based on equation 3.24. The 

experimental data suggest mat for an increase of x/Dh from 16.2 to x/Dh=22.6, the Nusselt 

number decrease is only 3%. 

3.5.2 Average Nusselt numbers 

In Figure 3.7 and Figure 3.8, the average Nusselt number coefficients for the top and die 

bottom surfaces were calculated from the local distributions and graphed as a function of the 

Reynolds number. Since this is an outdoor experiment with an uncontrolled inlet air 

temperature, Nusselt number data for other Rayleigh numbers cannot be studied directly. 

Because of that, a correlation for the average Nusselt number as a function of the Reynolds 

number has been obtained. As shown later, this is an acceptable approximation for air-based 

open loop BIPV/T systems It was found by means of an optimized version of the 

Levenberg-Marquardt method for minimization (Parametric Technology Corporation, 2007). 
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The following correlations provide acceptable estimates of Nu at the top and bottom 

BIPV/T channel surface. 

For the top surface, for 250 < Re < 7500, 

Nu t o p = 0.052Rea78Pr0-4
 3 2 5 

and for the bottom surface, for 800 < Re < 7100, 

N u b o t t o m = 1.017Re°-471Pr0-4
 3 ^ 

The correlations, along with the uncertainly in the data, are plotted in Figure 3.7 and 

Figure 3.8. Appendix B summarizes how the uncertainties were calculated. As can be seen, 

the Nusselt numbers for the bottom surface are higher than the ones for the top surface. 

Sparrow et al. (1966) found the same behavior in the experiments where the heated wall had 

a lower Nusselt number than the unheated one. In the present case, because the bottom 

surface is insulated, the heat gain by longwave radiation from the top heated surface is 

approximately equal to the heat transfer to the air by convection, thus resulting in a small 

temperature difference between the bottom surface and the air. 

The uncertainties in the Nusselt numbers for the top surface are very small. In general, 

they range between 4.8% to a maximum of 7% for 1760<Re<7500. The highest 

uncertainties occur at the lowest Reynolds numbers. For example, the uncertainty is 66% at 

Re = 256 and 13% for Re = 802. The same behavior has been reported by Novotny et al. 

(1964). The uncertainties for the Re numbers are between 3.3 to 8% for 1100<Re<7500. At 

low flow rates the uncertainties are higher, e.g. for Re = 250 the uncertainty is 31% and for 

Re = 800 it is 10%. 
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The experimental results show significantly more uncertainty regarding the heat transfer 

coefficients of the bottom surface; however, their effect on outlet air temperature calculation 

is far less important than that of the heat transfer coefficients of the heated top surface. The 

high uncertainties are due to the fact that the air bulk temperature and the surface 

temperature are very close -small error in the temperature measurement can cause high 

errors in the heat transfer coefficient-. Barrow (Barrow, H., 1962) obtained similar scattered 

results in the data because of high uncertainty in the Nusselt number. 
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Figure 3.7. Nusselt numbers for the top surface versus Reynolds number. The data is 

compared with the correlation given by equation 3.25. The uncertainties of each of the data 

points are shown by the vertical line segments. 
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Figure 3.8. Nusselt numbers for the bottom surface versus Reynolds number. The data is 

compared with the correlation equation 3.26. The uncertainties of each of the data points are 

shown by the vertical bars. 
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Figure 3.9. Nusselt numbers for the top surface versus Reynolds number comparison for 45° 

and 30° tilt angles. 
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The experiment was performed for tilt angles of 30° and 45° since this range represents 

most Canadian sloped roof housing (see Figure 3.9). The results show no significant 

difference between the Nusselt numbers for the two tilt angles that were studied, except for 

low Reynolds numbers (up to about 1600) where stronger buoyancy effects (due to the 

steeper angle) were evident. Nevertheless, for the correlations developed, this effect was not 

considered significant enough to be represented for modelling and design purposes, because 

the flow rates corresponding to Re < 1600 are too low for most practical applications 

(resulting in low thermal efficiency). 

3.5.3 Comparison of the new correlation with previous results 

The Nusselt numbers for the top surface (eq. 3.25) are compared with a few of the most 

typical correlations in Figure 3.10. The Martinelli and Gnielinski correlations were evaluated 

with the friction coefficient proposed by Churchill (1977). 
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Figure 3.10. Comparison of the top channel surface Nusselt number correlation (eq. 3.25) 

with Dittus-Boelter, Gnielinski, Martinelli, Malik and Mercer correlations. 

Although the Dittus-Boelter correlation is recommended for Re> 10,000, it has been 

plotted to indicate the possible low limit of the heat transfer. As can be seen from Figure 

3.10, the Dittus-Boelter and Gnielinski correlations predict very similar values. Martinelli's 

correlation includes a correction for the ratio of temperature difference of the wall, the bulk 

air temperature and the temperature at the center of the duct. The ratio (Tw-Tb)/(TW-Tc) was 

computed from the experimental data and ranges from 0.9 to 0.96. Martinelli's correlation 

predicts the measured Nusselt number for the top surface very close to the current 

correlation. The experiment, in general, shows higher values of Nusselt numbers in the low 
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Reynolds number range compared to the Mercer correlation and this is mainly due to the 

fact that fully developed conditions are not attained. 

3.5.4 Local Nusselt numbers for the top surface 

The Nusselt number distributions for the development length, x, have been calculated for 

the top surface for the whole length of the BIPV/T system (39DJ,). They are expressed by 

the following formulas. 

For laminar region, 250 < Re < 2400 
x 

Nutop(x) = 0.039Re°-78Pra4e 20Dh + 0.034Re078Pr0-4 3-27 

For turbulent region, 2400 < Re < 7100 
x 

Nutop(x) = 0.012Rea78Pr°-4e 909Dh + 0.049Rea78Pra4 3-28 

Both correlations represent the convective heat transfer distribution up to the maximum 

length of the analy2ed BIPV/T system. The last term in the Nusselt number distribution for 

the turbulent region (0.049Re° 78Pr°4) represents the fully developed value. For the laminar 

region, the last term represents the Nusselt number value at the maximum length of the 

BIPV/T system. It is expected that for larger lengths, the Nusselt number will tend to keep 

decreasing. 

3.5.5 Grashof and Rayleigh numbers 

Petukhov (Petukhov, B.S., 1976) pointed out that when Grashof numbers surpass a 

certain upper limit, actual Nusselt numbers will be at least 1% higher than the value 

predicted by forced convection correlations for circular pipes. This "maximum" Grashof 

number is a function of the Reynolds number (Figure 3.11), and is different for vertical and 
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horizontal pipes. As can be seen in Figure 3.11, the Grashof numbers measured in the 

BIPV/T channel exceed, by several orders of magnitude, the Petukhov's upper limit curves 

given by equations 3.1 and 3.2. This indicates that forced convection correlations commonly 

used for circular pipes -will be inadequate for the cases discussed in this paper, in which 

natural convection effects will clearly play an important role. 

E 

1.0E+08 

1.0E+07 

1.0E+06 

J* 

A Experimental Grq 

-•-Petukhov Vertical 

-•-Petukhov Horizonta 

2 1.0E+05 H 
<5 

1.0E+04 

1.0E+03 

2000 4000 
Re 

6000 8000 

Figure 3.11. Comparison of Equations 3.1 and 3.2 with the experimental data (Pr=0.71). All 

the experimental points are above the limits established by the equations. 

The product RaDh/L was computed from the experimental data and plotted in Figure 

3.12a. As can be seen, most of the experimental data falls in the mixed convection regime 
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for both laminar and turbulent flow regimes as compared to the map by Metais and Eckert 

(1964) (Figure 3.12b) for vertical tubes. The Ra numbers are in the range of 1 xlO5 to 9xl05. 
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Figure 3.12. a) Experimental Re and Ra(Dh/L) data, b) Metais and Eckert (1964) map for 

vertical tubes. 

The experimental Nusselt data are also in agreement with the results obtained by Sudo et 

al. (Sudo, Y. et al., 1990) for a vertical heated rectangular channel, for which the Nusselt 

number is 1.7 to 2.4 times the value predicted by the Dittus-Boelter correlation. 

3.5.6 Nusse l t numbers for the laminar convection regime (Re<2300) 

Incropera and De Witt (2002) and Kays et al. (2005) have mentioned that a common 

practice is to correlate mixed convection heat transfer with an expression of the form 

Nu11 = NuF
n ± NuN

n 
3.29 

where NuF corresponds to correlations for forced convection and NuN for natural 

convection correlations. The + sign is recommended for assisting and transverse flows. 
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It was found that for the laminar regime the effective Nusselt number could be 

represented as the simple addition of the forced convection and the natural convection 

effects (n = 1). For the forced convection, the Dittus-Boelter equation 3.7 is employed. For 

the natural convection, a correlation developed by Azevedo and Sparrow using water in an 

inclined channel is used (equation 3.30). Equation 3.30 is quoted by Incropera and De Witt 

(2002). 
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Figure 3.13. a) Experimental data of measured Nusselt number to the addition of the Dittus-

Boelter and natural convection components for 30° and 45° tilt angle (n=l in equation 3.29). 

b) Experimental data comparison of Nusselt numbers to equation 3.29 (for n = 1 for Re< 

2300 and n = 0.638 for Re>2300). 

As can be seen in Figure 3.13a, the Nusselt number predicted as the simple addition of 

the two components works relatively well for the laminar region Re<2300. However, it 

seems to slightly overestimate the Nusselt number. If the uncertainties in the measurement 

are taken into account, the difference is negligible. For the turbulent convection regime, 
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another exponent —n- should be found for the forced convection and the natural 

convection. 

A curve-fitting technique was used to determine the n exponent that will give the least 

square error using equation 3.29. This value of n was found to be 0.638. Figure 3.13b 

compares the results for the two regimes. For 2300<Re<4500, the n = 0.638 fitting over 

predicts the Nusselt number values. For higher Re numbers, the effect of the natural 

convection tends to diminish. 

3.5.7 Comparison with Wu, Xu and Jackson correlation 

Wu et al. (2002) developed a correlation where the ratio of effective Nusselt number to 

the Nusselt number for forced convection is given by a function of the Grashof (based on 

heat flux), Re and Pr numbers. The equation was developed for a vertical annular passage. In 

this configuration, there was a heated core and a thermally insulated outer casing. The 

employed fluid was water. The experimental results were represented with the following 

equation: 

_ 2 10.46 

where NuFWu is an equation for forced convection developed by Wu et al. (2002). NuFWu 

predicts values that are about 6% higher than those predicted by the Dittus-Boelter equation. 

NuF>Wu = 0.042Re a 7 4Pr0-4 3.32 

The Wu et al. equation is valid for 6,000<Re<20,000. Equation 3.32 was developed for 

opposed flow conditions. 

Nu 

NuF / W u 
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One of the strengths of equation 3.31 is that it correlates the influences in Grashof, Re 

and Pr numbers. The experimentally calculated values of Gr in the BIPV/T system are in 

the range of 5.56X106 to 6.13X 107. Equation 3.31 is plotted together with the experimental 

data for the BIPV/T system for Re>6000 (see Figure 3.14). A least-square optimization 

technique was employed to find the constant that multiplies the ratio of Grashof to Re and 

Pr numbers. 

Nu 
Nu F,Wu 

1 + 1.9 x 106 / G r q N / N u J 

VRe3-425Pr0-8; VNufiWu, 

- 2 0.46 

3.33 

is valid for the BIPV/T system for 6000>Re>7500. Equation 3.33 is plotted in Figure 

3.14, as well. It must be kept in mind that the equation must be validated for different 

combinations of Grashof and Re numbers. 

6 _| —Wuetal.(Eq. 3.31) 

= 5 A 

3 

3 

2 3 

2 

1 

Exp. Results 

Nu 

Nu] - = [i + " >< «6 LJ^)(£) j (Eq. 3.33) 

1.00E-06 1.00E-05 

Grq/(Re342s*Pr0-8) 

1.00E-04 I 

Figure 3.14. Experimental data comparison to Equations 3.31 and 3.33. 
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3.6 Framing Effects on Nusselt Number 

PV modules are usually installed on the roof by means of custom made metallic or wood 

support framing, such as the one found in the BIPV/T system of the Northern Light 

Canadian Solar Decathlon 2005 house (Pasini, M. & Athienitis, A.K., 2006) (see Figure 

3.15a). These structural framing members enhance the heat transfer by increasing turbulence 

and they change the local distribution of the convective heat transfer coefficients. 

Figure 3.15. a) Photo of the wood framing structure employed to support the PV modules in 

the BIPV/T system of Northern Light Canadian Solar Decathlon 2005 house (Pasini, M. & 

Athienitis, A.K., 2006) b) Photo of the wood framing elements employed to support the PV 

modules in the BIPV/T system of the EcoTerra demonstration house (Chen, Y. et al., 

2007a). 

In order to replicate the conditions in Figure 3.15b, wood framing elements were inserted 

at the bottom of the BIPV/T experimental setup. Four rectangular pieces of wood were 

spaced equally starting at the leading edge of the channel, at distances of 0.508 m (see Figure 

3.16). 
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Figure 3.16. Sketch of the wood framing effect test in the BIPV/T channel. 

The top and bottom Nusselt numbers were computed as described in the previous 

section. 
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Figure 3.17. Nusselt numbers for the top surface versus Reynolds number. The data is 

compared with die correlation given by equation 3.34 . The uncertainties of each of the data 

points are shown by die vertical and horizontal line segments. 
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For the top surface, for 620 < Re < 7000 

Nu t o p = 0.085Re°-755Pr0-4 

For the bottom surface, for 620 < Re < 7000 

N u b o t t o m = 4.772Re°-498Pr0-4
 3 3 5 

Equation 3.34 yields Nusselt numbers that are on average about 30% higher than those 

obtained with equation 3.25. Equation 3.34 gives on average Nusselt 2.6 times higher than 

the equation given by Dittus-Boelter (Equation 3.7) —although the latter is developed for 

smooth pipes. 

The measured Nusselt numbers for the framing case are compared with similar studies 

done in rectangular ribbed channels. In order to compare the results, some parameters 

typically employed in ribbed channels are defined: the pitch of ribs, P (m) and the rib height, 

e (m) (See Figure 3.18). For the studied BIVP/T system, the ratio oiP/e is 25.4 and the ratio 

of <?/Dh is 0.274. 

Similar studies on rectangular channels have reported very similar results. Promvonge 

and Thianpong (2008) measured Nusselt numbers in a rectangular channel with an aspect 

ratio of 15, P/e is 6.67 and a e/Dt ratio of 0.16. The experiments were done using air in the 

Re ranging from 4000 to 16,000. On average, the ratio of the measured Nusselt number to 

the Nusselt number given by Dittus-Boelter correlation was around 2.7. The ratio remained 

about the same for the whole range of Re numbers. In a similar study, SriHarsha et al. (2009) 

measured Nusselt numbers for a rib configuration with P/e = 1 0 and e/Dh = 0.25. The 

tested Re numbers were 10,000, 15,000 and 30,000. At Re 10,000, the ratio of the Nusselt 

number to the Nusselt number given by Dittus-Boelter was between 2 and 4.5. 
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p 
0.508 m 

Figure 3.18. Pitch of ribs and rib height in the BIPV/T channel. 

The data points, together with the corresponding uncertainty, are plotted in Figure 3.17. 

Appendix B summarizes how the uncertainties were calculated. 

For the top surface, the uncertainties in the Nusselt numbers are small. In general, they 

range between 6% to a maximum of 7% for 2000<Re<7000. Again, the highest 

uncertainties occur at the lowest Reynolds numbers. For example, the uncertainty is 20% for 

Re = 620 and 11% for Re = 1100. The uncertainties for the Re numbers are between 3.6 to 

5.3% for 2000<Re<7000. At low flow rates the uncertainties are higher, e.g. for Re = 660 

the uncertainty is 15% and for Re = 1080 it is 8.5%. 

In the framing case, there is an even smaller temperature differential between the bottom 

surface and the bulk air. Consequently, the uncertainties in the determination of the bottom 

coefficient are considerably higher. They are typically in the range of 100% to 700%. 

Therefore correlation 3.35 is only used to have an idea of the order of magnitude of the 

bottom heat transfer coefficient. Again, because the bottom surface is adiabatic, the 
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influence of the convective heat transfer coefficient on the outlet ait is not as critical. This is 

discussed in detail in section 5.10. 

3.6.1 Local Nusse l t numbers for the top surface 

In general, the Nusselt number for the turbulent region (Re>2300), has a tendency to 

increase slightly with increasing development length. The increase is especially marked at Re 

= 6930, for which the increase in the Nusselt number from the entrance to the exit of the 

BIPV/T system is 18.5% (see Figure 3.19). For the laminar region, the Nusselt number 

decays in an exponential fashion. 
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Figure 3.19. Local Nusselt number for the top surface for the framing test versus non 

dimensional distance from the entrance. 
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3.7 Pressure Drop in the BIPV/T systems 

Figure 3.20 includes pressure drop measurements for die BIPV/T systems for both the 

smooth and the framing configurations. The regression curves in Figure 3.20 show that the 

pressure drop, as expected, varies with the square of the flow rate. 
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Figure 3.20. Pressure drop as a function of the flow rate in the channel in L/s. 

The measured pressure drops for the smooth channel are relatively small; for a flow rate 

of 19 L/s (40 CFM), the pressure drop is around 7 Pa. Assuming that the combined 

efficiency of the electric motor and the fan is only 20%, the resulting electric power 

consumption would be: (0.019 m3/s)(7 Pa)/0.20 = 0.66 W. For the framing case, the 

pressure drop at 19 L/s (40 CFM) is around 62 Pa. Assuming a combined efficiency of 20%, 

the theoretical fan consumption would be: (0.019 m3/s)(62 Pa)/0.20 = 5.8 W. These result 
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illustrate the usefulness of air-based BIPV/T systems, as the required power consumption 

for driving the flow in the channel is small in comparison with the recovered energy (in this 

case, 68 W of electric power, and hundreds of watts of thermal energy). This information is 

very useful for design purposes: it suggests that it is advisable to optimize the ducting system 

and connecting manifold, since the most significant pressure drops will be much larger there 

than in the BIPV/T channel. 

3.7.1 Friction factors 

The Darcy friction factor has been calculated at different flow rates in the BIPV/T 

system for the two configurations (smooth and framing), with the following equation: 

AP 

f ~ (L\PV2 3 ' 3 6 

U>J 2 

As a comparison, the ratio of the measured friction factors to the friction factor predicted 

for turbulent flow in a circular smooth pipe using the Blasius relationship is calculated for 

the turbulent region. The Blasius (White, F.M., 2003; McKeon, B. et at, 2005) relationship is 

given by: 

_ 0.3164 3 3 7 

/ B " Re025 

The friction factor for the laminar region, Re<2300 (ASHRAE, 2009), is calculated using: 

_ 6 4 

flam ~ /te 3-38 

The results for the turbulent region are shown in Figure 3.21 and Figure 3.22. As 

expected, the friction factor diminishes for higher Reynolds numbers for the two 

configurations, as seen in the Moody diagram (White, F.M., 2003) (see Figure 3.21). The 

ratio of friction factors for the framing in the BIPV/T system lies in the range of 44 to 52. 
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This result agrees with the results presented in the work by SriHarsha et al. (2009). In 

SriHarsha et al. 's study, the friction factor ratio was in the same range (48-50) for Re ranging 

from 5,000 to 15,000. The results by (Promvonge, P. & Thianpong, C , 2008) for their 

ribbed channel are very close to the measurements. They reported friction factors in the 

range of 1.2 to 1.3 for Reynolds numbers ranging from 4000 to 16000. Their friction factor 

ratio (f/fb) is in the range of 30 to 40. For die smooth BIPV/T system case, the ratio is 

almost constant; in the range 5 to 6 (see Figure 3.21). 
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Figure 3.21. Measured friction factors in the two BIPV/T systems as a function of Re 

number. 
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Figure 3.22. Friction factors ratio in the two BIPV/T systems as a function of Re number. 

In the laminar region, the results are summarized in Figure 3.23 and Figure 3.24. 
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Figure 3.23. Measured friction factors in the two BIPV/T systems in the laminar region. 
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Figure 3.24. Friction factors ratio in the two BIPV/T systems in the laminar region. 

For the laminar region, the friction factors for the smooth BIPV/T system also decrease 

with Re. Meanwhile, for the framing case, the friction factor is slightly larger at higher Re 

numbers (see Figure 3.23). The ratio of friction factors for the smooth case in the laminar 

region is in the range of 6 to 13. For the framing case, the ratio of friction factors is in a 

wider range, from 16 to 49. 
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4. Comparison of Electrical Models for the Tested Photovoltaic 
Modules 

Electrical models for the PV module used in this research have been implemented and 

compared with two existing PV models: a five-parameter single-diode model developed by 

(De Soto, W. et al., 2006) and the photovoltaic array performance model developed by King 

et al. (2004) at Sandia National Laboratories. The five-parameter model developed by De 

Soto et al. is suitable because its parameters can be found with typical data provided by the 

PV module manufacturer. The De Soto et al. model also borrows some of the concepts 

developed in the Sandia model for the treatment of absorbed solar radiation in the solar cell. 

The Sandia model uses empirical parameters obtained for different PV modules. 

4.1. Single-Diode Model 

The single-diode model presented is based on the work by De Soto, W. et al. (2006). As 

seen in chapter 1, solar cells and PV modules can be modeled as a current source in parallel 

with a diode. A diode is a two-terminal device that allows electrical current to flow in only 

one direction. The standard model of a solar cell is called a single-diode model (DGS, 2005), 

and includes a parallel resistance (shunt resistance RgJ to account for leakage losses, and a 

series resistance (Rs) to account for voltage losses, between the semiconductor and the 

electrical contacts of the module. 
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Figure 4.1. Single-diode circuit (De Soto, W. et al., 2006). 

In Figure 4.1, V is the solar cell terminal voltage, I0 is the diode reverse saturation current, 

IL is the so-called light current or photocurrent (the ideal current produced by the panel), ISH 

is the parallel resistor current or shunt current, I is the solar cell terminal current, RSH is the 

parallel or shunt resistance, and Rs is the series resistance. 

The characteristic equation of the circuit is given by: 

l = IL-I0-ISH=IL-I0 e a -1 

v j 

V + I-Rs 

RSH 

4.1 

where the first term corresponds to the photocurrent, the second term represents the 

current through the diode, and the third term represents the current through the parallel 

resistor. The electrical power is the product of I- V: 

P = IV 4.2 

The parameters I0, a, Rs and RSH in 4.1 depend on the photovoltaic technology employed, 

as well as on the construction of each cell. The physical parameter a depends on the 

temperature of the panel (De Soto, W. et al., 2006) and is given by: 
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a = 
N5n1kTc 4.3 

where q represents the electron charge, k the Boltzmann's constant, n: is the ideality 

factor, Ns is the number of cells in series and Tc is the cell temperature. 

T o calculate the five parameters of the equations, the reference values can be obtained 

easily from the manufacturers' data. These conditions are obtained at standard test 

conditions as previously discussed in the introduction. Three equations come from current-

voltage pairs, the short circuit current, die open circuit voltage, and the current and voltage 

for the maximum power point. Another equation comes from the knowledge that the 

derivative of V at the maximum power point is zero. 

The first equation gives the short circuit current by replacing I ^ a n d V—0 into equation 

4.1: 

*sc,ref ~~ *L,ref *o,ref 

JSC,refRS,ref 
e Oref _ I hc.refR-s.ref 4.4 

R sh.ref 

The second equation by evaluating equation 4.1 at open circuit voltage, when I —0 and V 

V, octrvf 

0 — h.ref ~ lo.ref 

Vpc.ref 
e a-ref _ \ ' oc,ref 

R 
4.5 

sh.ref 

The third equation is obtained by evaluating equation 4.1 at the maximum power point 

conditions: 

*mp,ref ~ *L,ref 'o,ref 

|" Vmp,ref+Imp,refRs,ref 

e "ref - 1 
'mp.ref <" 'mprefR-S.ref 

R sh,ref 
4.6 

The derivative with respect to V at the maximum power point is zero, 
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*o,ref 
aref 

' Vmp,ref+Imp,refRS,refl 

e aref , 1 
1 » 

n-sh.ref *mp,ref 
Vmv,ref ~~+ I0>refRs ^ S l l ^ t ^ L + Rs 

4.7 

aref "sh.ref 

Another equation can be written by knowing the temperature coefficient of open circuit 

voltage 

*oc ~ v0c,ref 
Hvoc = -=; ~ 4.8 

1C ~ 1 C.ref 

However, the equation requires computing the Voc at a different cell temperature. In D e 

Soto et al. (2006) it is stated that the temperature chosen is not critical. Their analysis showed 

that a temperature difference of between 1 and 10 °C above or below the reference 

temperature would yield basically the same results. 

To obtain a at a different cell temperature, the following expression is employed 

a Tc 

~ ~ T 4.9 

aref 1 C,ref 

The I0 parameter depends on the temperature as well. Messenger and Ventre (2004) 

provided an expression to obtain I0 at different temperatures. 

l(EgTC,ref E3TC 

*o - ( T c y c \ n ^ e / - r c y / 410 ) ) 
*o,ref \*C,refJ 

In the equation above, k is the Boltzmann's constant and Eg is the material band gap. For 

silicon cells at TCre/it has the value of 1.12eV. For the UNI-SOLAR PVL-68 module, which 

uses triple junction amorphous cell technology, EgTCn,fha.s a value of 1.6 eV. The Eg value for 

a different cell temperature is found using the following expression (De Soto, W. et al., 2006) 
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9 = 1 - 0 .0002677(7 - TCxef) 
EgTcxef - " • • " " 4.11 

The next equation to define is the light current formula. It is usually expressed as a linear 

function of the absorbed incident solar radiation. 

S M 

Sref Mref 
_ r ( w 

ll ~ c 77 VL.ref + "-ISCVc ~ TC,ref)\ 4.12 

In the equation above Snj and Mnf are the absorbed solar radiation and the air mass 

modifier at the standard reference conditions. The temperature coefficient at the short 

circuit, aisc, is a commonly measured and provided parameter in the specification sheets of 

PV modules. The absorbed solar radiation, S, is a parameter that affects the results 

significantly and it is analyzed further here. The absorbed solar radiation at reference 

conditions is Sref = Gref(Ta)b. The air mass modifier ratio M/M^ is expressed as a summation 

of empirical parameters that are a function of the air mass. The air mass is the ratio of air 

that the beam radiation has to traverse at a specific location and time to the amount of air it 

must traverse if the sun were directly overhead. King et #/.(1998) uses the following 

expression for the air mass 

1 
AM ~ cos(0 z) + 0.5057(96.080 - 0 z ) - 1 6 3 4 4 1 3 

where 6Z is the zenith angle in degrees. 

King et al. (2004) uses the following expression for the air modifier, 

4 

= Y4<k<AM)i 4.14 
Mref Q 

In the Sandia National Laboratories (2002) online database, there is a list of different PV 

modules with their empirically determined a{ parameters. 
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Duffie and Beckman (2006) provide different methods to compute the absorbed solar 

radiation, S. For the case where there is global (direct + diffuse) measurement of solar 

radiation IT on the plane of the module, a reasonable assumption is to assume tfiat the 

absorbed solar radiation is the following: 

S = 0 « W r = 0.96(ra)bIT 4.15 

Srefis defined as Grefxan. Using the results by King et al. (1998) Duffie and Beckman (2006) 

arrive at the equation Kxab(0)= (xa)b/(xa)n Then the previous equation can be rewritten in 

terms of (xoc)n, as follows: 

S = 0.96(Ta)fc/r = 0.96KTab(Q)(ra)nIT 4 . ^ 

Therefore, the ratio S/Sref can be expressed as 

S Q.96Krab(e)IT 

Jref '-'ref \.\1 

The value of Kxocb(6)is given by a summation of empirical parameters (£) measured at 

Sandia Laboratories and also available in an online database (King, D.L. et al, 2004). It is 

defined as 

3 

4.18 
i=0 

In order to complete the model, the dependence of R. and Rsh are addressed. De Soto, W. 

et al. (2006) assumes that the Rs is completely independent from temperature. It follows that 

for a different temperature Rs=Rsref. For R.h, it is assumed that its value varies with the 

absorbed solar radiation and can be expressed as 

Rsh Sref 
T, = —n~ 4.19 
nsh,ref ° 
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The set of equations is complete to determine the IV curve. The first step is the 

determination of the reference parameters. For that, equations 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 

4.12, and equation 4.5 evaluated at a different temperature must be solved simultaneously. In 

order to obtain the reference parameters, the terms in equation 4.12, corresponding to the 

total absorbed radiation and the air modifiers, are set to: S=Sref and M=Mref. From the 

previous definition, it also follows that for reference parameter determination, R ^ R ^ f 

from equation 4.19. 

It is important to state that the set of equations is highly non-linear, thus it is important 

to use reasonable initial guesses for each of the parameters to find the solutions. Duffie and 

Beckman (2006) provide guidelines to set the initial guesses for the solution of the equations. 

4.2. Photovoltaic Array Performance Model (Sandia) 

The model presented here is based on the research work done by King et al. (1997; 1998; 

2004). This model is also currently used in the building energy simulation program 

EnergyPlus (US D O E & Lawrence Berkeley National Laboratory, 2009). 

The equations define five points of the IV curve. These include the Isc, Vo c , (V ,Imp). 

The two other intermediate points are the ones for V = 0.5 V o c and current Ix, and for V = 

0.5(Voc+Vmp) and corresponding current L^. 

The equations are defined below 

ISC = JsCref w l 1 + alSC\Jc ~ Tc,ref)\ 
Mref 

GbKrab(&) + Gd 

Gref 
4.20 

Imp - Imp.refl^o^e + cl^e \[l + alMP\Jc ~ Tc,ref)\ 4.21 

Ix = Ix . re fMe + C5Ee
2] [ l + ( ^ L ± ^ (jc - T c > r e /)] 4.22 
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Ixx = hx,ref[ceEe + c7Ee
2][l + ctIMP(Tc - Tc>ref)] 4.23 

Vm = Vvm,ref + c2NsS(Tc)\n(Ee) + c3Ns[6(Tc)ln (£e)]2 + /3VmpEe(Tc - TCxef) 4 . 2 4 

V0c = Voc,ref + Ns8(Tc)ln(Ee) + BV0CEe (Tc - Tc>ref) 4 . 2 5 

*mp = 'mp"mp 4.26 

E„ = 
hc[l + aisc(Tc-Tc,ref)] 

4.27 

S<JC) - — — 4.28 
H 

In equation 4.20, the term G^ corresponds to the beam component of solar irradiance 

incident on the module, Gj, = EaniCOS(&). G^ is the diffuse component of solar irradiance 

incident on the module surface. The empirical model parameters c0 to c7, Isc^ Ixnj, 1^^ 1^^ 

aiso ai*p> Pvoo Pvmp> ^s> ND are found in the Sandia Database (Sandia National 

Laboratories, 2002) for different photovoltaic modules. The system of equations is solved 

using Mathcad and has also been coded in MATLAB; the codes can be found in Appendix C 

andD. 

4.3 Model Performance Comparison at STC 

The two models are compared based on the specification papers for the Uni-Solar PVL-

68 module. The specification papers from the manufacturer list the data in Table 4-1. 

108 



Table 4-1. Reference parameters at STC conditions for Uni-Solar PVL-68 

manufacturer's data 

Maximum Power 

mo 

•"-mo 

^SC 

v n r 
a1SC 

Hvnc 

68 W 
16.5 V 
4.13 A 
5.1 A 
23.1V 
5.1X10"3A/K 
-0.088 V / K 

Table 4-2. Sandia Model Parameters at STC for Uni-Solar PVL-68 

Area 

Material 

Series Cells 

Parallel C-S 

±sc,rtf 

Voc,nf 

lmp,nf 

Vmp,nf 

disc 

almf) 

Co 

G 

fivoco 

PVmpo 

n 

G 

G 

ao 

ai 

1.1225 

3-a-Si 

11 

1 

5.1 

23.1 

4.1 

16.5 

0.00085 

0.0012 

1.096 

-0.096 

-0.098 

-0.052 

3.77 

-1.14162 

-2.89115 

1.047 

0.000821 

ai 

as 

04 

bo 

h 

h 

b3 

b4 

bs 
d(Tc) 

fd 
a 

b 

G 

G 

±x,ref 

Ixx,ref 

G 

G 

-0.0259 

0.003174 

-0.00011 

1 

-0.00502 

0.000584 

-2.3E-05 

3.83E-07 

-2.3E-09 

1 

1 

-3.581 

-0.113 

1.044 

-0.044 

4.72 

2.9 

1.13 

-0.13 
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Figure 4.2. Current-Voltage (I-V) curve simulated with the five parameter model and Sandia 

Model. 

As can be seen from Figure 4.2, the two models yield essentially the same results at STC 

conditions. The small difference found in between the maximum power points for the two 

models is mainly caused by the discrepancies in the reference parameters from the Sandia 

model and in the specification sheet of the manufacturer i.e. For Sandia Vmp= 16.5 V and 

Imp=4.1 A, according to the manufacturer Vmp=16.5 V and 1^ =4.13 A. 

4.4 Model Performance Comparison at Different Temperatures 

The two models yield very similar results up to about 40°C, when the percent difference 

based on the Sandia Model is 4.9%. Table 4-3 presents Maximum Power Point comparison 

at different temperatures. 

110 



Table 4-3. Maximum power at different cell temperatures for 1000 W/m2 radiation 

obtained with five parameter model and Sandia model for Uni-Solar PV-68. 

Cell 
Temp 

°C 

25 
30 
35 
40 
45 
50 
55 
75 

MP 
5 Parameter Model 

W 

68.14 
66.27 
64.35 
62.38 
60.36 
58.31 
56.21 
47.48 

MP 
Sandia Model 

W 

67.65 
66.98 
66.30 
65.61 
64.91 
64.19 
63.46 
60.41 

MP5p - MPS 

W 
0.49 
-0.71 
-1.95 
-3.23 
-4.55 
-5.88 
-7.25 

-12.93 

(MPSv - MPS\ 

V MPs ) 
% 

0.72 
-1.06 
-2.94 
-4.92 
-7.00 
-9.16 

-11.42 
-21.40 

0 5 10 15 20 251 

Voltage, [V] _ \ 

Figure 4.3. Current-Voltage (I-V) curves simulated with the five parameter model and Sandia 

Model for 1000 W/m2 radiation and different cell temperatures. 
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4.5 Model Performance Comparison at Field Conditions 

I-V curves for the Uni-Solar PVL-68 module have been experimentally measured at 

different solar radiation and temperature conditions. A Daystar DS-100C IV tracer was 

employed for die measurements; it has an accuracy of 0.5% of die measured voltage and 

current. 

The total amount of solar radiation going in to the solar module has been measured with 

a LI-200 pyranometer sensor. It is a silicon photovoltaic-based sensor that incorporates a 

cosine corrected head. The maximum error estimated by the manufacturer is 5% of the 

reading (LI-COR, 2005). However, King and Myers (1997) state that the error could be as 

large as 10%. 

Actual electrical performance of photovoltaic modules (power output) will depend on 

many factors besides the solar irradiance level, e.g. cell temperature, soiling, solar spectrum 

and the angle of incidence. The models employed here (five-parameter and Sandia Model) 

correct for the solar spectral influence due to the air mass and the angle of incidence. The 

corrections do not account for more random atmospheric factors such as water vapor 

content, aerosols and turbidity (King, D.L. et al., 1997). Also, these models do not account 

for stabilization characteristics after solar exposure (degradation). 

Amorphous photovoltaic modules have been shown to suffer from power-output 

degradation. The work by King et al. (2000a) showed that triple-junction amorphous 

modules can suffer power degradation of about 16% of their rated peak power at STC in 

the first year of continuous use, and up to 20% degradation in a little bit less than 2 years 

(Figure 4.4). Evidence of thermal annealing effects for these modules was also found. 

Thermal annealing refers to when PV modules recover some or all of their initial 
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performance at elevated temperature. The data of King et al. (2000a) shows about a 7% 

improvement due to thermal annealing effects. 
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Figure 4.4. Normalized Performance at STC for 13 a-Si modules by (King, D.L. et al., 2000a) 

Long-term peak power degradation can be represented by three components —an initial 

degradation seen in the first year, a seasonal variation and a long-term variation as described 

by (Delahoy, A.E. et al, 2002) (see Figure 4.5). Although Figure 4.5 does not show many 

points, the seasonal trend variation, has been shown in (Ruther, R. et al, 2008) for the field 

factor (See Figure 4.6). 

113 



1.00 

0.S5 

| 0.90 

a U.8U 

I 

0.75 

0.70 

ctois: =P^-4E ouidotr data, comresy sandsa HsOoiat laboratories 
fh i fe lP„«47.TW) 

0.-^0 i ) His -nocsHing (see texij 

•-J 

0 20D 400 600 600 1000 120D 1400 1630 1600 

Total lime of dcployncnt (days) 
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Figure 4.6. Fill factor curve for amorphous silicon modules at 250 and 1000 W/m2 by 

Ruther, R. et al. (2008) 

I-V curve measurements have been compared using the two numerical models on two 

different days (November 28th, 2009, and March 5th, 2010, Figure 4.7 and Figure 4.8 

respectively). Both measurements were performed at conditions close to solar noon. The 

main solar parameters are listed in the figures, as well. 
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Figure 4.7. Models comparison to I-V measurements for November 28th, 2009. 
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Figure 4.8. Models comparison to I-V measurements for March 5th, 2010. 
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Table 4-4. Models comparisons for November 28th, 2009 (AST = 12.4hr). 

Input Parameters 
It =734 W/m 2 

6Z=67.2° 
0 =37.5° 

Thark=40°C 
Ga = 656.75 W/m 2 

MP 

oeak 

oeak 

Measured 

43.1 W 
15.8 V 
2.7 A 

Five-parameter 
model 

44.3 W 
15.7 V 
2.8 A 

Sandia Model 

46.6 W 
16.5 V 
2.9 A 

Table 4-5. Models comparisons for March 5th, 2009 (AST = U.4hr). 

Input Parameters 
It =974 W/m 2 

67=57.5° 
0=24° 

Tback=33°C 
Ga = 933 W/m 2 

MP 

oeak 

oeak 

Measured 

57.5 W 
15.7 V 
3.7 A 

Simulated with 
Five-parameter 

model 

61.5 W 
15.7 V 
3.9 A 

Simulated with 
Sandia Model 

62.9 W 
16.2 V 
3.9 A 

In both Figure 4.7 and Figure 4.8, the numerical models were compared using the 

maximum measured temperature in the PV back surface as the temperature input. The input 

and the measured data are summarized in Table 4-4 and Table 4-5. For November 28th, 

2009, the two models' predictions agree more with the measurement than the predictions for 

March 5th. The five-parameter model over-predicts the maximum electrical power 

production by 2.3%, while the Sandia model over predicts the maximum power by 8.12%. 

However, the Sandia model gives a better prediction for the Isc and Voc conditions. 

For March 5th, 2010, the five-parameter model over-predicts the maximum power by 7% 

whereas the Sandia model over-predicts it by 9.4%. The better agreement of the numerical 

models for November 28th when compared to March 5th, can be explained by the fact that 

the air mass modifier predicts a lower amount of absorbed solar radiation for November 
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28th. On November 28th the correction for the air mass is 0.93 whereas for March 5th the 

correction is 0.99. 

In conclusion, the most complete model of the two is the Sandia Array performance 

model. It was found that the five-parameter single-diode model might not give accurate 

results when the temperature of the panel is above 40°C. It must be noted that none of the 

two models offer corrections for PV output degradation and this should be addressed by 

future models. 
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5. Transient and Steady State Models for Open-Loop Air-Based 
BIPV/T Systems 

5.1 Introduction 

Ait-based BIPV/T systems are usually installed in an open-loop configuration (see Figure 

5.1), in which outdoor air is used to cool the PV modules by convection (commonly forced 

convection). The heated air is used to provide thermal energy to one or more functions in 

the building before being exhausted to the exterior. Open-loop air systems are normally 

preferred over closed loop air systems as the latter would likely lead to overheating of the PV 

(reducing its durability and possibly causing delamination) unless fins are built into the PV 

design. It has been reported by (King, D.L. et al., 2000b) that delamination is more common 

and more severe in hot and humid climates, sometimes occurring after less than 5 years of 

exposure. Also, open-loop systems allow for the potential use for fresh air preheating. Since 

the inlet temperatures are lower than in the case of closed-loop systems, the BIPV/T system 

normally operates with higher thermal efficiencies, although its air exit temperatures are 

lower. 

/x / (S( V 
OPEN LOOP 

Heat Exc. 4 /X-V L § i Heat Exc. v-
CLOSED LOOP 

Figure 5.1. Open and closed loop configurations for solar collectors (the heat exchanger may 

be eliminated in the open loop configuration). 
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BIPV/T systems contain several features that complicate their study, such as heating 

asymmetry and a relatively complex geometry. Mathematical models of different levels of 

complexity, emphasizing different phenomena, have been developed over the years (a brief 

literature review is presented below). This chapter presents two models bringing together 

some of the ideas presented in previous works by the authors, and the most relevant findings 

obtained from measurements at the experimental facilities and demonstration projects of the 

Canadian Solar Buildings Research Network (Athienitis, 2008). The models could readily be 

adapted as a design tool for air-based open-loop BIPV/T systems in cold climates. By 

incorporating meteorological data, this model can be used as a decision-making tool in pre-

feasibility studies. 

5.2 Existing Numerical Models 

As presented in chapter 2, mathematical models for the particular case of forced-

convection open-loop BIPV/T systems have been developed by Clarke et al. (1997) , Eicker 

and Fux (2000) , Bazilian et al. (2001), Bazilian and Prasad (2002), Eicker (2003) and Bloem 

(2004). Models for air hybrid photovoltaic/thermal (PV/T) collectors — not necessarily 

installed as a building component — have been developed by several researchers. Examples 

include the work of Sopian et al. (1996) (thermal model for single and double pass hybrid 

PV/T air collector); Garg and Adhikari (1997) (hybrid solar air collectors); and Hegazy 

(2000a) (four configurations of hybrid PV/T systems). 

Models of naturally ventilated BIPV systems have also been studied by several 

researchers. Moshfegh and Sandberg (2001) have carried out CFD simulations of naturally 

ventilated PV facades with heating on one side to simulate solar radiation. Yang et al. (1996) 
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developed a numerical model for a natural ventilated PV roof and facade system. 

Brinkworth et al. (2000) presented a model for a natural ventilated PV roof installation. A 

model of a PV/T air facade was developed in TRNSYS and presented by Bosanac et al. 

(2003). Mittelman et al. (2009) developed a natural ventilated model where Nusselt numbers 

are also reported. 

At Concordia University, different BIPV/T numerical models have been developed both 

for research on these systems and as design tools for demonstration projects. These models 

include the works by Charron (2004), Charron and Athienitis (2006a; 2006b), Athienitis et al. 

(2005), Liao (2005), Liao et al. (2007), Pantic (2007), Candanedo et al. (2007), Chen et al. 

(2007b) and Candanedo et al. (2009). 

The aforementioned models, based on energy balances in control volumes, have used 

different levels of complexity to model the energy interactions between the surfaces. Some 

of the most relevant differences in approach are presented below: 

5.3 Common Modelling Approaches 

5.3.1 Steady state vs transient solution. 

The vast majority of the models have relied on a steady state approach, neglecting the 

thermal capacitance effects of the PV module. In contrast, Ito et al. (2006) developed a fully-

explicit finite difference model for a solar air collector. The authors found that the transient 

model is useful to account for the effects of rapid changes (e.g., variable cloudiness, wind 

speed fluctuations), and therefore it can be useful for the development of robust control 

algorithms for control of flow rate. 
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5.3.2. Air temperature variation within the control volume. 

The simplest approach uses a linear approximation to model the air temperature 

variation within the CV (Ong, K.S., 1995b). In this case, the average air temperature inside 

the control volume is the arithmetic mean of the inlet and outlet temperatures. However, 

most recent investigations use an exponential air temperature variation, which is the exact 

solution if the temperatures of the surrounding surfaces are assumed to be uniform inside 

the CV. The average air temperature (used for the energy balances) is calculated as Tavg = 

/Tdx/Ax. 

5.3.3. Radiative heat transfer. 

Most investigations have used the mean temperature of the surrounding surfaces (T^) to 

calculate a linearization factor (4aT^), as this facilitates the solution of the equations. The 

radiatiave heat transfer coefficient, hr is given then by 4o"Tm/( 1 1) , assuming a 

view factor of 1 between the plates. The radiation exchange difference by using this 

coefficient assuming two plates at 350 and 273 K is about 1.5% underestimated from the 

exact value given by the equation: 

hr = a(T24 - T l 4 ) / ( | - + 1 - l ) 5.1 

5.3.4. Effect of view factors. 

The majority of the models assume, often without stating it explicitly, that the view factor 

between the two surfaces of interest is close to 1. In reality, this assumption is not always 

accurate. Charron (2004) took view factor calculations for radiative heat transfer modelling 

into account. 
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5.3.5. Convective interior heat transfer correlations. 

As explained above, heat transfer in BIPV/T has several particularities due to the 

asymmetric heating (i.e., heat transfer occurs mainly through one side of the BIPV/T 

channel) and the more complex geometry. However, most researchers have used Nusselt 

number correlations developed for pipes and ducts with uniform boundary conditions for a 

given cross section, such as the classic correlation by Dittus and Boelter (1930), and the 

Pethukov equation (Bazilian, M. et al., 2001; Eicker, U., 2003). These correlations tend to 

underestimate convective heat transfer coefficients, because several heat-transfer enhancing 

factors are not taken into account, such as the presence of the framing structure and surface 

imperfections (which act as turbulence promoters) and developing flow conditions at the 

inlet. 

5.3.6. Convective and radiative exterior heat transfer coefficients. 

The determination of the heat loss to the surroundings has been carried out through 

many different approaches. The McAdams formula reported by Duffle and Beckman 

(2006) developed in the 50s, combines radiation and convection into one coefficient. The 

McAdams formula has often been used (Ong, K.S., 1995b; Ito, S. et al, 2006). This approach 

is satisfactory for glazed collectors, since the addition of the glass layer significantly increases 

the insulation, and the effect of the exterior heat transfer coefficients becomes less 

important. Most researchers separate exterior heat losses in two components: convection to 

the exterior air and radiation to a representative sky temperature. The convective heat 

transfer correlations by Test (1981) and Sharpies and Charlesworth (1998) were developed 

for roof-mounted flat-plate collector and are preferable to the McAdams formula, as 

confirmed by the experimental observations mentioned in this paper. Both correlations have 
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been used in modelling BIPV/T systems (Chen, Y., 2009). The Model by Berdahl and 

Martin (1984) presented a simplified calculation for a representative sky temperature, which 

can be used to calculate radiative heat transfer losses. 

5.3.7. Incidence angle adjustments. 

Few researchers have accounted for the effect of the variation of the optical properties 

(transmittance, reflectance, absorptance) of the significant surfaces as a function of the angle 

of incidence. In contrast, incidence angle adjustments has often been considered in 

investigations dealing with the electrical performance of PV and BIPV systems (Fanney, 

A.H. etal, 2003; King, D.L. et al, 2004). 

5.3.8. Effect of moisture content. 

Moisture has an important effect on the physical characteristics of the fluid, in particular 

on the effective specific heat of the air, accounting for a 1-4% increase with respect to the 

specific heat of dry air. This effect is less significant under cold winter conditions. 

5.3.9. Inlet air temperature effects. 

In BIPV/T systems, the inlet air temperature is sometimes slightly higher than the 

exterior air temperature. This is especially true in BIPV/T roofs, where the inlet air has been 

warmed by thermal energy released by the building's facade. However, few works have 

considered this effect in BIPV/T modelling (Saelens, D. et al, 2004). 

5.3.10. Electrical efficiency modelling. 

Most BIPV/T investigations account for the effect of the PV modules' temperature on 

their electrical efficiency with a very simple linear model (Candanedo, J.A. et al, 2007). 
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5.3.11 Equations solving method. 

A common approach has been to linearize all the equations and solve the resulting linear 

system by matrix inversion. Since the system of equations is relatively robust, it can be 

solved by the simple method of assuming guess values and iterating until a convergence 

criterion is met. When the effects of thermal inertia are considered, a transient method, such 

as the fully explicit finite difference method has been used. 

5.3.12 Pressure drop. 

The modelling of the pressure drop in the air channel has been largely overlooked in 

most previous work. It is worth mentioning, however, that the measured pressure drops 

along BIPV/T roofs and facades is often much smaller than the pressure drop along the 

ducting system. Pressure drop is evidently a strong function of the geometric configuration 

of the channel, especially of the framing system used to support the BIPV/T. Since the 

modules repeat themselves at regular intervals, the air pressure follows a "spatially periodic" 

variation inside the BIPV/T channel, with an overall linear trend. 

5.4 Experimental Facility 

The models developed are based on the experimental setup and the inputs to the models 

are provided from the experimental data obtained in a test channel located at Concordia 

University, which is shown in Figure 3.3. The BIPV/T channel was built to simulate a 

section of the roof at the EcoTerra demonstration house (Chen, Y. et al., 2007a). It is shorter 

in length due to practical construction limitations. The top of the channel consists of an 

amorphous PV module, with 6% efficiency under standard test conditions, glued to a 0.5 

mm (0.02 in.) stainless steel sheet. The bottom of the channel consists of 2 inches of 
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polysterene insulation R-10 (1.76 Km2/W) and 3/8 in. thick plywood board (see Figure 3). 

There is a 1.57 in (0.04 m) gap between the PV module and the board (D). A wooden frame 

keeps die top and bottom parts together. The channel's length (L) in the flow direction is 

112 in. (2.84 m), and its width is 15.23 in. (0.387 m). The channel is oriented with a due-

south azimuth angle and a tilt angle (|3) of 45°. 

The visible reflectance of the PV module surface has been measured with a reflectometer 

as 4.3% at a normal incidence angle and it would be expected that the solar value would be 

close to the visible one. The longwave emissivity of the amorphous PV panel has been taken 

as 0.95 (LESO-PB/EPFL, L. et a/., 2000). The measured emissivity of the steel plate is 0.80 

while the corresponding value for the insulation board is 0.20. Thermocouples are installed 

at the interior surface of the PV module and on the insulation (i.e., top and bottom of the 

channel) at nine different positions along the channel. Other measured variables include die 

electrical output of die PV module, solar irradiation, wind speed and relative humidity. No 

thermocouples were installed on top of the PV module, as the resulting shading would have 

reduced die electrical output. 

The air flow rate was controlled in the experiments; it was measured with a laminar flow 

element, with an accuracy of 0.4% of the full-scale (105 CFM). The maximum achievable 

flow rate in the channel is 23.6 L/s (50 CFM), corresponding to an average air velocity in the 

channel of 1.55 m/ s (5 ft/s). 

The amorphous PV module is constructed from different layers. These are from top to 

bottom, Tefzel, antireflective coating, amorphous silicon, a backing substrate, Tefzel, 

adhesive and a stainless steel layer to where it was pasted. The Models used the material 

properties summarized in Table 5-1. 
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Table 5-1. Material Parameters. 

Layer 

TEFZEL 

TEFZEL 

TEFZEL 

TEFZEL 

Anti reflective 
coating 

Silicon 

Silicon 

Silicon 

Backing substrate 
(steel) 

Backing substrate 
(steel) 

Backing substrate 
(steel) 

Backing substrate 
(steel) 

TEFZEL 

Adhesive (Ethylene 
propylene copolymer) 

Adhesive (Ethylene 
propylene copolymer) 

Adhesive (Ethylene 
propylene copolymer) 

Adhesive (Ethylene 
propylene copolymer) 

Steel sheet 

Parameter 

Thickness 

Density 

Specific Heat 

Thermal conductivity 

Thickness 

Thickness 

Density 

Thermal conductivity 

Thickness 

Density 

Specific Heat 

Thermal conductivity 

Thickness 

Thickness 

Density 

Specific Heat 

Thermal Conductivity 

Thickness 

Value IP (SI) 

0.039 in. (1 mm) 

109.2 lbm/ft3 (1750 kg/m3) 

0.251 Btu/lbm°F(l 050 J/kg-K) 

0.139 Btu/h-ft°F (0.24W/m-K) 

1.9xl0"5in. (5E"4mm) 

1.9xi0"5in. (5E4mm) 

145.4 lbm/ft3 (2330 kg/m3) 

85.5 Btu/h-ft°F (148 W/m-K) 

7.87X10"3 in. (0.2 mm) 

493.181 lbm/ft3 (7900 kg/m3) 

0.114 Btu/lbm°F(477 J/kg-K) 

8.61 Btu/h-ft°F (14.9 W/m-K) 

0.039 in. (1mm) 

0.024 in. (0.6 mm) 

134.22 lbm/ft3 (2150 kg/m3) 

0.263 Btu/lbm°F (1100 J/Kg-K) 

0.116 Btu/h-ft°F (0.2 W/m-K) 

0.02 in. (0.5 mm) 
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5.5 Proposed Models: Steady State and Transient 

Assumptions: 

• The temperatures of the surfaces (PV, steel sheet, insulation board) are assumed 

to be uniform inside the control volume. 

• The resistance of the PV module is taken into account in the calculations. 

• No temperature variations are considered across the width of the channel (1-D 

simulation inside the control volume). 

• No edge effects are considered. 

• Properties of solid materials remain constant and uniform. 

• No air leakage or mixing with exterior air after entering the air gap. 

• No humidification or dehumidification of the air stream. 

Convective heat transfer is higher at the entrance region before fully developed 

conditions are established. However, since the focus of this study is the final air temperature 

and the average PV module temperature, a single uniform value was used for the interior 

convective heat transfer coefficients (hct, hcb) for a given air speed. 

Models Considered 

The two models considered here are shown schematically in Figure 5.2. The two models 

are identical except in one respect: steady state model does not consider the thermal 

capacitance of the PV panel (making it a steady-state model), while transient model takes 

into account the thermal inertia (capacitance) of the PV panels. In a dynamic simulation, the 

solution of the equations of the steady state model is independent of previous conditions. In 
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contrast, at every time step, the transient model requires the solution of the previous time 

step with a fully-explicit finite difference scheme. The programming tool MATLAB is used 

to numerically find the solution of both models. 

V^o p PV module attached 
e l e c t / to roof metal sheet 

Roof 
Metal sheet 0.5 mm 

insulation 
sheathing 1.76RSI 

plywood 9,5 mm thick 

- Roof 
Metal sheet 0.5 mm 

viiiiiimii w * uiiiiimu 
1/hc, 

•attic 
—AX-

Insulation 
' sheathing 1.76RSI 

plywood 9.5 mm thick 

Model SS Model TR 

Figure 5.2. Models studied: Model SS (steady state) and Model TR (transient). 

5.5.1 Steady state (SS) model 

The equations corresponding to a representative control volume in Model SS are shown 

below. Equations 5.2 through 5.6 respectively correspond to energy balances at the top 

surface of the PV module, middle of the PV module, bottom surface of the Plate, air node 

and the surface of the insulation: 

128 



r E-^ayTpy - Tsky ) - [Tpv - T0)h0 - 0 
KTefzel ° > z 

A Q , ^ raV™-\ i D yTpVMW ~ TPVTOP) VPVMID ~ TPlate) _ n 0.96Krab (9 J {ra)nIT - PeXect = 0 , , 
KTefzel KMIX 

(TPVMW ~ TPVTOP) _ ( T _ r u _ n 

D '/rod \ l Plate lb)nct ~ u 5 4 

0"Plate ~ Tb)hct + ( ^ 5 ^ — Tb)hcb — q rec 

fT T \u \ljnsu 1 attic) _ „ 
</rad — Vlinsu ~ 1bJncb J~ — u 

" ins "r ^-plywood > uc. 

5.5 

5.6 

9rad — GFplate.insu (T" "*" „ — ^ J ( ^ i a t e — ^insu J 5.7 

>?py = >?S7T + Pmp{TpvMW ~ 25°C) 5.8 

^etect = VPvh 5.9 

T _ T , A-cv^rec 
1 outlet - l inlet + . 5.10 

" i CPair 

„ I f (hctTpiate + hCbTinsu hctTpiate + hcbTinsu —£ Zrf[c?—~ x » J ,- „., 

In the equation system presented above, there are ten unknowns: TpvT 0 P , T P y M m 

Tpiate. Tb> Qrad, ^PV, Pelect, T b , Toutlet a n d Qrec- T h e rest of the variables (solar radiation, 

exterior temperature, mass flow rates, material properties, etc.) are known inputs. However, 

several additional equations are used: 

The view factor F P j a t e j n s u is calculated as a function of geometric parameters (Incropera, 

F.P. & D e Witt, D.P., 2002). 

129 

file:///ljnsu


The absorptance a of the exposed PV surface is cotrected as a function of the angle of 

incidence of beam solar radiation, as described by King et al. (1997) and in chapter 3 (see 

equation 4.18). The effect of die angle of incidence is significant during the early morning 

hours and late afternoon hours. For these models, a correction curve developed specifically 

for the amorphous PV laminate, calculated according to the procedure described by King et 

al. (1997) and available at die Sandia National Laboratories database (2006), was used. The 

value of (ja)n has been taken- as the difference of 1 minus the measured visible reflectance 

at 90 degrees, (1-0.043) = 0.957. 

The sky temperature employed to calculate radiative heat losses to the exterior is obtained 

with the following correlation (Duffie, J.A. & Beckman, W.A., 2006) : 

Tsky = Ta ( 0.711 + 0.0056Tdp + .000073Td p
2 + 0.013cos Cj-)) 5.12 

The specific heat of air (cp) has been calculated for the conditions of temperature and 

relative humidity measured at the inlet of the channel. 

The exterior convective heat transfer is obtained using different correlations to compare 

their effects on the results. These are the correlations by Test et al. (1981), Sharpies and 

Charlesworth (1998), McAdams (McAdams, W.H., 1954; Duffie, J.A. & Beckman, W.A., 

2006) as a function of the wind speed in m/s: 

h0 = 8 . 5 5 + 2.56 -Vwind 5.13 

h0=U.9+2.2-Vwind 5.14 

h0=5.7+3Wwind 5.15 
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The wind speed was measured on site at a height of 10 m above ground in downtown 

Montreal. The measured wind speed has been adjusted to the average height of the BIPV/T 

system using the following relationship (Hutcheon, N.B. & Handegord, G.O.P., 1995) 

- J 5.16 

In the previous equation, Vwind is the wind speed at the BIPV/T system height, V is the 

measured wind speed at 10 m, Z is the height where the wind speed is measured (10 m) and 

Z the average height of the BIPV/T system. The ocw is the mean speed exponent, and it has 

been taken as 0.36, which corresponds to the value recommended for a location in a city 

center (Hutcheon, N.B. & Handegord, G.O.P., 1995). 

The interior convective heat transfer coefficients (hct and hcj,) have been calculated using 

the average Nusselt number correlations developed in chapter 4 (Equations 3.25, 3.26). 

The asymmetric heating conditions inside the channel cause hc^ to be much larger than 

h c t , with the consequence that the average air temperature (T^) is closer to Tjn s u than to 

Tpiate- This result has been confirmed by CFD analysis (see Figure 5.3) and experimental 

results in the channel. 
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Figure 5.3. Ait temperature profiles within the channel as predicted by CFD simulations. 

It is evident from Figure 5.3 that the average air temperature is closer to the temperature 

measured at the bottom of the channel. However, the heat flux through the top of the 

channel is much larger than the heat transferred from the bottom of the channel to the 

airstream. As the insulation creates nearly adiabatic conditions, heat loss through the bottom 

is practically negligible. 

5.5.2 Transient (TR) Model 

As mentioned above, the transient model includes the thermal capacitance of the PV 

module. In this case, a fully-explicit scheme has been used (the temperatures for the current 

time step depend only on the temperatures of the previous time step). Equation 5.19 

corresponds to the energy balance in a node associated with a mid-layer of the PV module. 

This node has a capacitance per unit area of 1800 J/Km2, obtained from estimates of 
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material properties. Capacitances are included only in the top part of PV module, since it is 

exposed to rapidly changing weather conditions including wind and irradiance, whereas the 

bo t tom of the channel is insulated. The equations corresponding to the transient model are: 

TMIDU+1 ~ TPVTOp,i f 4 ~ 
n 73 £iaV PVTOp,i+i ~lsky,i+\) 
"Tefzel/^ 
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- {TPVTOPii+1 - T0li+i)h0 = 0 
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lMIDl,i+\ — *MlDl,i + 7 I n 73 I" 
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The magnitudes corresponding to the time step i + 1 are written as a function of the 

magnitudes of the previous time step (i). In equation 5.17, the solution for TpvT0P,i+i is 

found numerically with the MATLAB® function f^ero, as the rest of the parameters are 

known as inputs or as the result of the previous time step. The function f^ero uses a 

"combination of bisection, secant, and inverse quadratic interpolation methods" 

(MathWorks, I., 2010). The corrections corresponding to incidence angle, specific heat, view 

factor and heat transfer coefficients were also applied for the transient model. 

In both the steady state and the transient models, the channel can be divided into an 

arbitrary number of control volumes. The inlet conditions of a control volume correspond 

to the outlet conditions of the previous control volume. 

5.6 Results - Model Performance 

The transient and steady state models were applied with input measurements (solar 

radiation, exterior temperature, wind speed, and channel flow rate) corresponding to 

February 17th, 2009. During this day, the flow rate in the channel was changed manually 

several times. Figure 5.4a shows the measured average air speed inside the channel, and the 

estimated interior heat transfer coefficients according to equations 3.25 and 3.26. The wind 

speed was measured during this interval as well. The correlations by Test (Equation 5.13) 
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Sharpies and Charlesworth (Equation 5.14) and McAdams (Equation 5.15) were used to 

estimate the exterior heat transfer coefficient (Figure 5.4b). 

In both the steady state and the transient models, four control volumes were used. 

Results corresponding to the average temperature of the top of the channel (Figure 5.4a) and 

the outlet temperature of the air (Figure 5.4b) are presented. The time step used for the 

transient model was 1 second. The output of both models is compared to thermocouple 

measurements taken at intervals of 1 minute. Exterior air temperature and solar radiation 

measurements are presented as well. In general, there is a reasonably good agreement 

between both models and the experimental results. Perhaps the most relevant difference 

between the models is that the temperature fluctuations predicted by the transient model are 

much smaller than those predicted by the steady state model. In this respect, the transient 

model (which includes the capacitive effect) is more accurate than the steady state model. 

The presence of the capacitance considerably stabilizes the temperatures in the PV module, 

and dramatically reduces the effect of the varying wind speed (and its associated heat transfer 

coefficient) and solar radiation changes. 

The effect of the exterior convective correlation on the average temperature of the top of 

the channel can be observed in Figure 5.5. In general, die McAdams correlation over-

predicts the temperature of the top of the channel. Test and Sharpies' correlations give 

better estimations to the average PV bottom surface temperature. Although the Sharpies 

correlation give better results, for high wind velocities it seems to overestimate the exterior 

heat coefficient (h0) value. 
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Figure 5.4. (a) Measured average air speed in the channel, and estimated interior heat transfer 

coefficients; (b) Wind speed and exterior heat transfer coefficient. 
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Figure 5.5. (a) Average temperature of the top of the BIPV/T channel (measurements, 

Model SS), (b) Average temperature of the top of the BIPV/T channel (measurements, 

Model TR) Solar radiation incident on collector (G) and exterior air temperatures (TQ) are 

also shown. 

The predicted oudet air temperature obtained with Sharpies and Charlesworth correlation 

with the SS and TR models is plotted in Figure 5.6. The agreement with the experimental 

data was good in general. 
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The Sharpies and Charlesworth correlation seem to yield the best agreement. The 

transient model with Test correlation practically mirrors the measured curve with an offset 

of a few degrees, which becomes smaller between 12:00 and 13:00. Interestingly, this is the 

time when the highest wind speed values were recorded (about 1.5 m/s , versus 0.5 m/s 

earlier in the day). This result suggests that the test correlation under-predicts h 0 at low wind 

speeds. This can be attributed to local natural convection effects (not considered in most 

correlations) that may become the dominant factor at low wind speeds. 

9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 

Time(h:m) 

Figure 5.6. Outlet air temperatures (measurements, Model SS and Model TR). 

Most researchers have neglected the resistance of the PV module, implicitly assuming 

that the temperature of the top and bottom faces of the PV are the same. However, recent 

investigations have included the resistance of the PV module (Ji, J. et al, 2009). Even if the 
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PV resistance is very small, the heat flux across the PV module represents a difference of a 

couple of degrees between both sides. For example, if a heat flux of 300 W/m2 passes 

through a PV module having a resistance of 0.01 Km2/W, the temperature difference 

between both sides is 3 °C. This resistance is not negligible, since there are several layers of 

material (steel substrate, encapsulation, vinyl, adhesive, etc.). 

5.7 Demonstration Project: EcoTerra House 

The transient model was applied to data recorded at the EcoTerra™ demonstration 

house BIPV/T system (Xiang et al. 2007). This was a prefabricated modular house, with the 

BIPV/T system built as one of the modules in the factory. This is the first time such a 

BIPV/T system is constructed in a factory. Photographs of the BIPV/T module of the 

house and of the completed house are shown in Figure 5.7 and Figure 5.8. Among the input 

parameters used in the model are: ambient air temperature, inlet air temperature, insulation 

R-value, total solar radiation incident on the plane of the PV modules and flow rates. The 

wind speed was not being recorded for this specific day. The wind speed employed was the 

one of the neighboring city of Sherbrooke. The results are summarized in Figure 5.9. The 

length of the roof (flow path) is 5.8 m and the air cavity thickness is 0.038 m. 

Figure 5.7. Left: BIPV/T module of the roof under construction in the factory (before 

installing metal layer and PV modules) Right: BIPV/T module completed (with PV modules 

installed). 
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Figure 5.8. EcoTerra solar house photograph. 

Good agreement was observed between the measured data for the PV back surface 

temperature and the transient simulation result. There was good agreement for the Tb 

temperature. For the oudet air temperature, the agreement was acceptable but not as good as 

for Tp v and Tb. The temperature difference between 10:40 and 11:20 a.m. is probably due to 

the thermal capacitance of the wood framing, which is not modeled, and error in the 

measurement of the flow rate across the BIPV/T roof. 
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Figure 5.9. Temperature profiles for the EcoTerra house on March 17th, 2008 (measurement 

and Model TR) 
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Figure 5.10. Temperature profiles for the EcoTerra house on March 17th, 2008 

(measurement and Model TR using frarning correlation) 

5.8 Heat Removal Factor and Thermal Efficiency 

If the BIPV/T channel is treated as a solar collector, a modified form of the Hottel-

Whillier-Bliss equation which includes the electricity output can be written as: 

Qu = FRAc(ctG - P e l e c t - UL(Tj - Ta)) 5.28 

In this case, UL represents the heat loss coefficient (W/m2) from the air in the BIPV/T 

channel to the ambient air. Neglecting the heat loss through the bottom of the BIPV/T 

channel, we can write: 

U^CCho + h ^ + Rpv)-1 5.29 

Ordinary solar collectors are often designed with a glazing cover and an absorber plate to 

prevent heat losses, and their UL value depends mainly on geometric parameters and the 

materials used, and the influence of convective and radiative coefficients is small. In 
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contrast, in this BIPV/T channel, UL undergoes significant changes with the connective and 

radiative coefficients. The heat removal factor (FR) can be determined experimentally by 

solving for it in 5.28. 

Qu 
FR = 5.30 R Ac(aG - Pelect - UL(Tt - Ta)) 

By dividing Equation 5.28 by the solar radiation times the area (GAJ, and using the fact 

that Peiect = " P V ^ the following expression for thermal efficiency is obtained: 

^Th = F R ( O C - TIPV - UL 

T i - T a 
5.31 

Figure 5.11a shows the heat removal factor calculated with Equation 5.30 (assuming that 

the Rpv value is 0.01 RSI) for February 17th, 2009, and the thermal efficiency calculated 

simply as T]Th = mcpAT/GAc. As expected, the efficiency is higher when the flow rates 

inside the channel are higher. 

0.00 

9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 

Time(h:m) 

Figure 5.11. Heat removal factor and thermal efficiency of the BIPV/T channel. 
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As expected, for higher flow rates the efficiency is much higher (e.g. during the time 

period 9:30 -10:30am in Figure 5.11 due to the higher heat transfer coefficients. 

5.9 Numerical Sensitivity Study of Bottom Heat Transfer 

Coefficient 

Nusselt numbers for the bottom channel surface have a higher uncertainty and it is 

important to assess the impact of this on the BIPV/T performance. However, because the 

bottom surface is highly insulated and is not subjected to direct solar radiation, the 

associated uncertainty is not as critical for the quantitative evaluation of the BIPV/T system. 

In order to study this question, a validated numerical BIPV/T model as described in detail in 

(Candanedo, L.M. et al, 2010) is employed to assess the sensitivity of the bottom heat 

transfer coefficient to the outlet temperature. The numerical model solves the system of 

equations presented in section 5.5.1. 

First, the Nusselt number correlations for the smooth case are considered. Some model 

input parameters are listed below: 

• Inlet air temperature = -5°C 

• 5 m long BIPV/T system 

• Normal incident solar radiation = 1000 W/m 2 

• h0 = 10 W/m2K 

• Flow rate = 8.91 x 10"3m3/s 

• Average air velocity = 0.57 m/s 

• Re = 3000 

• Combined thermal resistance of the insulation and plywood layer =1.9 Km2/W 
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• Dh = 0.074 m 

• hct is 7.89 W/m2K and hcb is 13 W/m2K (from equations (3.25) and (3.26)), 

• Exposed area to solar radiation = 1.94m2 

• Longwave emissivity of insulation and metal facing cavity equal to 0.2 and 0.8 

respectively. 

As a result of employing the parameters above in the numerical model, the final 

predicted outlet air temperature is 26.92°C. If the value of hcb was set to be 1.5 times more 

while keeping all the other parameters constant, the final outlet air temperature would be 

26.91°C. This represents only a 0.01°C deviation from the first result or less than 1% error. 

If the hcb was forced to be 3 times more, the final oudet air temperature would be 26.84°C. 

The deviation is now only 0.1 °C, or less than 1% error in the final computation of outlet air 

temperature. If the hcb was forced to be equal to hct, the final oudet air temperature would 

be 26.89, being the deviation only 0.03°C from the first result. Therefore, it can be 

concluded that the bottom Nusselt number uncertainly is not as important for the 

determination of the BIPV/T system performance. 

Finally, the uncertainty in the Nusselt number correlation for the bottom surface for the 

framing case is studied. The same input model parameters from above are used in the steady 

state model, but the top and bottom heat transfer coefficients are replaced with: 

• hct is 9.72 W/m2K and hcb is 81.38 W/m2K (from equations (3.34) and (3.35)) 

The predicted final oudet air temperature is 28.78°C. If the value of hcb was forced to be 

7 times more while keeping all the other parameters constant (maximum estimated 

uncertainty), the final oudet air temperature would be 28.03°C. This represents only a 

deviation of 0.72 degrees or less than 2.5% deviation from the first result. If the value of hcb 
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was forced to be 7 times less, the final outlet air temperature would be 29.11°C. The 

deviation is only 0.33°C or less than 1.2% deviation from the first result. 

Therefore, it can be concluded that the bottom Nusselt number uncertainty is not as 

important for the determination of the BIPV/T performance. 

5.10 Numerical Sensitivity Study of Insulation Level 

The steady state model has been used to assess the relative influence of the insulation 

level to the final outlet air temperature. The objective of the test is not optimization. The 

model has been tested using the input parameters of section 5.9 and the average Nusselt 

numbers for the framing BIPV/T case. The results are plotted in a logarithmic fashion for 

clarity in Figure 5.12 and Figure 5.13. 

! 35 

30 
,—•*"* 

_ _ _ — — v v fV99—•-- • — • - - • - • 

«r s. 
s -** « u 
SJ 
0 , 

s 0) 
H s_ 

« +* 
4> 
+ i 

s O 

25 + 
1 

Z U 
• 

! 1« : 

1 3 

10 
1 

0.05 0.5 5 

^insulation, K m 2 / W 

50 

Figure 5.12. The figure shows the effect of increasing the insulation value and its effect to 

the outlet air temperature. 
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Figure 5.13. The percentage relative deviation from the outlet air temperature at 50 RSI 

versus the insulation level. 

For RSI = 1, the outlet air temperature is 7.0% (2.1 °C deviation) of the value at 50 RSI. 

For RSI = 2, the outlet air temperature is 3.7% (1.1°C deviation) of the value at 50 RSI. For 

RSI = 5, the outlet air temperature is 1.5% (0.4°C deviation). Clearly, there are diminishing 

returns in terms of the outlet air temperature, with the increase of insulation level. 

As can be seen in Figure 5.12, the final outlet air temperature shows an exponential trend 

with the insulation level. The optimum insulation level is a function of costs and design 

constraints and should be evaluated by the engineer. 
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6. Conclusion 

The objective of this work has been to evaluate and model die performance of a BIPV/T 

system with outdoor air as the heat transfer fluid. In order to analyze BIPV/T systems, an 

integrated modelling approach is fundamental for the prediction of the energy fluxes. The 

typical geometries found in BIPV/T systems, and their particular operating conditions are 

such that the measurement of the effective heat transfer coefficient was essential for accurate 

thermal and electrical performance evaluation. In addition, a survey of the literature 

identified the need for the measurement of convective heat transfer coefficients in order to 

develop new Nusselt number correlations for BIPV/T systems. Pressure drop and friction 

factor information were required to assist in the design stage of BIPV/T systems. Pressure 

drop measurements were taken in BIPV/T systems and friction factors were calculated. 

Numerical models have been developed and validated against experimental data. The 

proposed numerical models can be readily integrated into comprehensive building energy 

simulations tools such as TRNSYS, EnergyPlus and ESP-r. 

Experimental measurement of forced convective heat transfer coefficients for open loop 

BIPV/T systems with outdoor air as the cooling fluid has been carried out in this work. In 

particular, a roof BIPV/T system was considered because of its significant potential for 

collecting useful solar heat in addition to the electricity normally generated from building-

integrated photovoltaic panels. The BIPV/T system studied had a length/hydraulic diameter 

ratio of 38 and was tested for 30-45° tilt angles. The measured data shows no significant 

difference in Nusselt numbers for the 30° and 45° tilt angles (except for low Reynolds 

number), indicating that buoyancy effects are approximately constant in this range of roof 

tilt angles that represent the majority of Canadian housing stock. 
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Because of the heating asymmetry in the BIPV/T system, separate Nusselt number 

correlations are recommended (for the top and bottom surfaces) at different Reynolds 

number ranges. However, because the (near adiabatic) bottom surface does not contribute 

significantly to the amount of heat added to the air, the associated uncertainty in the 

correlation for this surface is not as important in calculating the heat recovery by the flowing 

air and its outlet temperature. Forced convection dominates the heat transfer in the cases of 

practical interest. 

This work presented correlations for the average Nusselt number for the top and bottom 

surfaces in the channel as a function of Reynolds number; the correlations are considered 

adequate for the design of BIPV/T systems where forced convection dominates. Local heat 

transfer coefficient distributions are also presented for laminar and turbulent flow 

conditions. It was found that the Nusselt numbers for the top surface of the BIPV/T 

channel in the present study are significantly higher than the values predicted by the 

smooth-pipes forced convection correlations given by Dittus and Boelter, Gnielinski, and 

Petukhov p i t t a s , F.W. & Boelter, L.M.K., 1930; Incropera, F.P. & De Witt, D.P., 2002). 

Many of the experimental studies were performed for very long and horizontal pipes, and 

high Reynolds numbers, where buoyancy effects are minimal. The present results also 

confirm findings by other researchers (Eicker, U. et al, 1999; Bazilian, M.D. & Prasad, D., 

2002; Bloem, J.J., 2004; Charron, R. & Athienitis, A.K., 2006b) that the Nusselt numbers 

were underestimated. The Martinelli equation, although not developed for asymmetric 

heating, agrees most closely with the presented experimental data. This is due to the fact that 

the equation accounts for the temperature difference between the wall surface and the bulk 

air temperature. 
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Correlations 3.25 and 3.26 developed in this study are recommended for the 

determination of the average Nusselt number for open loop BIPV/T systems and solar air 

heaters at tilt angles between 30° and 45°. Correlations 3.27 and 3.28 include the developing 

length effect for the studied BIPV/T system. The correlations are intended mainly for 

BIPV/T systems working in an open loop configuration, for which the typical Rayleigh 

number is in the range of 1X105 to 9X105. Framing effects on Nusselt numbers were studied 

and it has been found that wood framing may increase the actual Nusselt numbers by about 

30% (relative to correlation 3.25) due to increased turbulence. Correlation 3.34 is 

recommended to obtain the average Nusselt number for the top surface for the framing 

BIPV/T case. Correlation 3.34 gives a Nusselt number on average 2.6 times higher than that 

given by Dittus-Boelter correlation. These results are very close to the results presented by 

Promvonge and Thianpong (2008) in a rectangular ribbed channel. They found that the ratio 

of the measured Nusselt number to the Nusselt number given by the Dittus-Boelter 

correlation was around 2.7. 

Friction factors for the smooth configuration and the configuration with wood framing 

(ribbed) have been presented. It was found that the ratio of the calculated friction factor to 

the one predicted by the Blasius correlation was in the range 5 to 6 for the smooth case; for 

the framing case the ratio ranges from 44 to 52. The higher friction factors in the smooth 

case are explained by the effect of buoyancy that increases the friction factor and by the high 

aspect ratio of the BIPV/T system. The results for the framing case agree with the results 

presented in the work by SriHarsha et al. (2009), for which the friction factors ratio (f/fB) are 

in the range of 48 to 50 for Re values of 5000 to 15000. The results are also very close to the 

work by Promvonge, P. & Thianpong, C. (2008) where friction factors ratios (f/fB) are in 

the range of 30 to 40. 
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Detailed electrical PV modelling was done using two of the most advanced PV models 

and their results were compared to field measurements. The first model presented is based 

on using a single-diode (five-parameter) model developed by De Soto et al. (2006). The 

second model presented is the Sandia array performance model developed by King et al. 

(1997; 1998; 2004). The two models employ corrections for the incidence angle. The De 

Soto et al. (2006) model is built upon the Sandia model in order to determine the amount of 

energy that is incident on the solar PV cell. Both models also correct for spectral influences 

due to zenith angle. It was identified that the models do not offer corrections for PV module 

electrical degradation. Even when the amorphous module was clean, the degradation of the 

solar cell is evident. 

The most complete model of the two is the Sandia performance model. It was found that 

the five-parameter single-diode model might not give accurate results when the temperature 

of the cell is above 40°C. In both Figure 4.7 and Figure 4.8 the numerical models were 

compared using the maximum measured temperature in the back surface of the PV as 

temperature input. For November 28th, 2009 the two models' predictions agree best with the 

measurement. The five-parameter model over-predicts the maximum electrical power 

production by 2.3% while the Sandia model over-predicts the maximum power by 8.12%. 

However, the Sandia model gives a better prediction for the Isc and Voc conditions. 

In this thesis, two models for air-based open-loop BIPV/T systems have been presented. 

The models included phenomena that have often been neglected, including the effect of the 

solar incidence angle, the resistance and capacitance of the PV module, view factors between 

plates and the variation of specific heat with moisture content. 
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In general, the transient model, which includes thermal capacity effects of the PV, follows 

experimental measurements better than the steady state model. The transient model indicates 

a more stable outiet air temperature as well, which reflects the damping effect of the heat 

capacitance of the materials. However, the transient model is probably not necessary for 

system design, as it does not significandy improve average accuracy and requires more 

processing time and more inputs. The transient model is suitable for development of optimal 

control algorithms of the air flow rate. The models performance could be improved by: (a) 

using a more accurate correlation for the exterior heat transfer coefficient, and (b) using 

experimentally measured values for resistance and capacitance. 

6.2 Research Contributions 

The main contributions of the research presented in this thesis can be summarized as 

follows: 

1. The quantification of connective heat transfer coefficients and development of 

Nusselt number correlations for two BIPV/T systems -smooth and ribbed 

configurations- are presented. The Nusselt number local distributions and average 

values are discussed for the laminar and turbulent flow regimes. 

2. The determination of thermal development lengths for laminar and turbulent flow in 

the smooth BIPV/T systems was studied. For laminar flow, equation 3.23 was found 

to give a good estimate of the development length for the smooth BIPV/T case. For 

turbulent flow, thermal developed conditions were reached at shorter lengths and 

that equation 3.24 was a good estimation for the development length. For the 

framing BIPV/T case in the laminar region, it was found that the Nusselt number 
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decayed in a consistent fashion. For the framing BIPV/T case in the turbulent 

region, the Nusselt number increased from the entrance indicating that the ribbed 

elements augmented turbulence. 

3. Natural convection effects on Nusselt number have been studied, in terms of both 

Grashof and Rayleigh numbers for the smooth BIPV/T system. It was found that 

most of the data falls in the mixed convection region established by the Metais and 

Eckert map (1964). All the experimental data is above die limits of Grashof numbers 

established by the Petukhov (1976) correlations for vertical and horizontal pipes 

(correlations 3.1 and 3.2) that established the limit where the deviation from Nusselt 

number from the forced convection value would be higher than 1%. It was found 

that in the laminar region (for the smooth case), the effective Nusselt number can be 

approximated by the addition of the forced and natural convection components. For 

the turbulent region, the best approximation can be taken by assigning the power n 

to 0.638. 

4. The measurement of friction coefficients and comparison with Blasius friction factor 

correlation. For the smooth case, the ratio of the measured friction factor to the 

Blasius friction factor is in the range of 5 to 6. For the framing case, this ratio is in 

the range of 44 to 52. 

5. Electrical PV modelling development using the total impinging radiation and module 

temperature as inputs, with subsequent validation with measurements was done. It 

was found that PV module degradation must be taken into account to ensure a more 

accurate representation of the estimated electrical production. 

6. The development of lumped parameter steady state and transient numerical models 

for BIPV/T systems performance evaluation was done and the modelling results are 
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validated with experimental data. The transient model has considered thermal 

capacitive effects in BIPV/T systems for the first time, and is particularly useful for 

control purposes. It also improves the modelling results by removing effects of quick 

changes in solar radiation and exterior wind speed. 

7. The evaluation and identification of the most adequate available exterior wind 

coefficient correlations through numerical modelling is an important contribution of 

the research. It was determined that the correlations by Test (1981) and Sharpies and 

Charlesworth (1998) give the best results compared to the measured data. It was 

found that the Test (1981) correlation tends to underestimate the exterior wind 

coefficients h0 at low wind speeds. This suggests that natural convection effects may 

become important at low wind speeds. 

8. Sensitivity studies on the effect of the heat transfer coefficient for the adiabatic 

bottom surface show that the influence on the final outlet air temperature is less than 

1%. Therefore the uncertainty in the bottom coefficient is not important for the 

determination of the BIPV/T system performance. 

9. Sensitivity studies on the effect on final oudet air temperature due to insulation level 

were performed. Figure 5.12 and Figure 5.13 can be used to obtain a rapid 

assessment of the insulation level impact on the required final oudet air temperature. 

6.3 Design Guidelines and Recommendations 

The research presented in this thesis has identified some practical concepts for the 

optimal design and performance evaluation of BIPV/T systems. These are summarized 

below: 
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• For roof BIPV/T installations, the air intake should be placed above the south wall 

in order to recuperate some of the hot air layer that is heated by the wall surface 

from the sun. By doing so it is possible to obtain temperatures that are higher than 

the ambient air. 

• Support roof structures for the PV modules should not have any protrusions that 

could potentially interfere with snow and water shedding. Moreover, the PV modules 

and their support structure should extend to the end of the roof to prevent any ice 

dam formation. 

• The roof design should consider the possibility of water infiltration and precautions 

to avoid water damage to the structure are a must. 

• The measurement of the oudet air temperature can be difficult due to thermal 

gradients. Towards the exit, the outlet bulk air temperature is close to the 

temperature of the insulation surface. The temperature of the insulation at the exit 

can be monitored for comparison as well. 

• When designing a BIPV/T system with flexible amorphous PV modules, materials 

with low thermal conductivity should be avoided in the selection of a surface on 

which to mount the PV modules. A high thermal resistance would decrease the 

recuperated heat. 

• PV module construction can be optimized for BIPV/T applications. The backing of 

the PV silicon layer could consist of a thin layer of a highly conductive material to 

facilitate the conductive heat transfer. The emissivity of the backing material should 

be increased to improve radiation heat transfer. Antireflective coatings have been 

proven to increase electrical and thermal efficiencies in PV/T collectors (Santbergen, 

R. et al, 2008), and should be considered in BIPV/T designs. 
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6.4 Recommendations for Future Work 

Further research is recommended in the following areas: 

• The quantitative evaluation of energy performance assessment and comparison of 

different BIPV/T systems designs may be carried out considering different 

parameters such as: photovoltaic modules physical characteristics, climatic 

conditions, utility rates, construction type (residential/commercial, new /retrofits). 

This will permit accurate feasibility studies. 

• Investigation of Rayleigh number effects on Nusselt number needs to be studied. 

The Rayleigh number in the collected experimental data was in the order of 

magnitude of 105. An indoor experimental investigation would allow for detailed 

studies of the Rayleigh number and its influence on Nusselt number. A more 

adequate Nusselt number correlation should be presented as a function of the 

combined effects of Reynolds, Rayleight and Prandtl numbers. 

• The determination of the optimal operating point for thermal energy collection 

versus fan power is required for typical applications. 

• Research on snow shedding is necessary. The surfaces of PV modules have different 

roughness levels that can affect how easily snow slides down, and this should be 

evaluated. The assessment of the tilt angle impact on snow shedding should also be 

studied. 

• The overall thermal and electrical efficiency of the system should be optimized 

through the careful system installation of the system into the building structure and 

wiring arrangement. 
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• Coupling options of BIPV/T systems with heat pumps (or desiccant cooling 

options) that increase the amount of usable energy that can be supplied into the 

space or to the storage media need to be investigated. 

• The integration of new BIPV/T models into energy simulation programs such as 

TRNSYS, EnergyPlus or ESP-r may be examined. 

• Measurement of exterior wind coefficients and the development of a correlation is 

needed. 

• The design of a BIPV/T manifold should be studied in detail in order to reduce the 

pressure drop across it. 
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Appendix A. Solar Geometry and Availability 
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In order to be able to predict the total incident radiation on a surface, it is necessary to 

describe the sun's position in the sky. The total incoming solar radiation can be described by 

three main components: beam solar radiation, diffuse sky solar radiation and diffuse 

radiation reflected from the ground. 

For solar angles calculation, the solar time (a.k.a. apparent solar time) is used. Solar time 

is the time based on the apparent angular motion of the sun across the sky with solar noon 

the time when the sun crosses the meridian of the observer (Duffie, J.A. & Beckman, W.A., 

2006). 

In general, the solar time does not coincide with local clock time. There is a correction to 

account for the difference between the observer's longitude and the longitude on which the 

local standard time is based. There is another correction to account for perturbations in the 

Earth's rate of rotation, referred as the equation of time (E). 

Solar time = 4-(Lst-Li0C) + E + local standard time A.1 

In the previous equation, Lst is the standard meridian for the location and L[oc is the 

longitude of the location in question. In equation A.l, the Lst and Lolc are expressed in 

degrees and E is given in minutes. For Montreal, the standard meridian, Lst, is 75° and local 

longitude, L[oc., is 73.5°. The standard time must be adjusted when daylight saving time (DST) 

is being used. 

When DST is used in the location, 1 hour must be subtracted from the clock time to find 

the local standard time, since clock time is adjusted to be one hour ahead. In Canada, 

daylight saving time usually begins on the second Sunday in March and ends in the first 

Sunday in November. 
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The equation of time, E, is given by the following expression as a function of the day of 

the year, n (Duffie, J.A. & Beckman, W.A., 2006)3 

E = 229.2 
360\ / 360 

0.000075 + 0.001868 cos ( (n - 1) — - - 0.032077 sin \(n - 1) - — 
365/ \ 365 

/ _ 360\ / 360\ 
- 0.014615cosf 2(n - 1 ) ^ ) - 0.04089sin \2(n - 1) — J 

A.2 

The preceding equation A.2 is also presented in (ASHRAE, 2009). 

Another equation for computing the equation of time is given by (Athienitis, A.K. & 

Santamouris, M., 2002). 

E = 9.87 [sin(4 ;?•(«-81)/364]- 7.53 cos (2n(n- 81)364) -1.5 sin (2TT(«-81)364) A.3 

A comparison of equations A.2 and A.3 is shown in Figure A.l. 

20 

-Athienitis&Santamouris, 2002 

Day of the year, n 

Figure A.l. Equations of time E as function of day of the year. 

The maximum difference between the two equations is 1.16 minutes. 

The solar geometry angles are represented in Figure A.2. 
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Zenith 
4 

Norma I to 
horizontal surface 

w-

/ 

,'r. 

Sun 
(b) 

Figure A.2. a) Solar geometry angles for a tilted surface (zenith, slope, surface azimuth, solar 

b) Plan view showing solar azimuth angle (Duffie, J.A. & Beckman, W.A., 2006). 

The position of the sun can be expressed by the following angles: 

• La is the latitude of the location. North is positive, -90°<La<90°. 

• 8 is the declination, equal to the angular position of the sun at solar noon with 

respect to the plane of the equator. North is positive -23.45°<8<23.45°. 

• |3 is the slope or tilt angle between the surface and the horizontal. 0°<|3<180o. 

• y is m e surface azimuth angle, equal to the deviation of the projection on a 

horizontal plane of the normal to the surface from the local meridian, y is 0° 

when the projection of the normal to the surface is due south, it is negative when 

it points towards the east and positive when it points towards the west. 

• h is the hour angle (aka w), which represents the angular displacement of the sun 

east or west of the local meridian due to die Earth's rotation. The Earth rotates 

15° per hour, h is taken as negative in the morning and positive in the afternoon. 
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• 6 is the angle of incidence, which is the angle between the beam radiation on a 

surface and the normal to that surface. 

• 6Z is the zenith angle, which represents the angle between the vertical and the line 

from a surface to the sun. 

• ocs is the solar altitude angle. It is the angle between the horizontal and the line 

from a surface to the sun. From previous definitions, 02+ <xs = 90°. 

• Ys is th e solar azimuth angle. It represents the angular displacement from south of 

the projection of beam radiation on the horizontal plane. 

The declination angle, 8, is given by the following expression (Duffie, J.A. & Beckman, 

W.A., 2006). 

<? = 23.45sin(360-(284 + H)/365) A.4 

The solar altitude angle can be computed using the following relationship (Athienitis, 

A.K. & Santamouris, M., 2002) 

sin(as ) = cos(Za) cos((5) cos(7z) + sin(La) sin(S) A. 5 

where the hour angle, h is given by 

h = (ST-l2hr)— A.6 
hr 

the solar azimuth by 

ys =cos [(sin^Z5)sin(Xa)-sin((y))/(cos^)cos^a)]-/z/|/2| A.7 

and die incidence angle by 

#=cos~ [cos^y)cos^s -f)sin(^+sin(a)cos0)] A.8 
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Appendix B. Measurement Uncertainty 
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The uncertainties associated with the average Nusselt numbers have been calculated with the 

propagation rules (Andraos, J., 1996; Taylor, J.R., 1997). 

Uncertainty in collector area 

The exposed collector area was measured widi an accuracy of 0.000794 m (l/32in). 

The associated error is calculated as 

|/0.000794\2/0.000794\2 _ 
^ \ 2.84728/ + \ 0.387 J 

AA = 1.1019 ' + _ 1 _ _ _ = 2.282 x 10"3m2 

For the area ACT, the associated error is then 

1.1019 Z2.282 x 10"3\2
 A , 

M - = — * J[ 1.1019 ' = 3'8 X 10_4m2 

Uncertainty in radiative heat transfer rate 

First, the errors associated with the radiative heat transfer rate (equation 3.16) are calculated 

based on the uncertainties in the measurement of the surface emissivities of the insulation 

and metal plate surfaces, together with the errors in the temperature measurement of the 

surfaces and the associated error in the control volume area. The uncertainty in each of the 

measured emissivities is 0.3%. The emissivity factor Fe and its uncertainty, AFe, is calculated 

with 

F£ ± AFE = — i -r = =— = = 0.19158 ± 0.19158(^i^) 
E E J——+ — - - 1 5±0.015+1.219±3.65X10 _ 3 -1 5.2195±0.01543 v 5.2195 ' 

O.Z±0.3% 0.82±0.3% 

and AFe has a value of 5.6X10"4 

The error associated with equation 3.16, has been calculated by first computing the error in 

each of the six control volumes associated with the emissivity, the plate temperatures and the 

area, and finally adding them to compute the total error in the total AQrad^. i.e. 

J ( (4 * 0.3 * (Tplate + 273.15)3)2+(4 * 0.3 * (Tinsu + 273.15)3)2 

^Qradcv(AE) - aFplate,lnsu^-cvJ\Jplate + 273.15) - (Tlnsu + 273.15) 4 * 5.6 X 10" 
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^Qradcv(AAcv) — aOpiate,insu^zJ (Opiate + 2 7 3 . 1 5 ) — (Tinsu + 2 7 3 . 1 5 ) 4 * 3.8 X 1 0 

6 6 6 

^ Q r a d = | / , (^Qradcv(AT),n) + /^(^Qradcv(AE),n) + / . V^Qradcv(AAcv),n J 

The uncertainties calculated are in the range of 1.2% of the total Qrad 

Uncertainty in convective heat transfer rate 

The uncertainties in the convective heat transfer rate arise from measurement uncertainties 

in different parameters. There are uncertainties in the mass flow rate due to the pressure 

transducer and the LFE calibration curve, and to uncertainties in the TouIet and T ^ air 

temperature measurements. 

The highest uncertainty for the flow rate is 0.25 CFM due to the calibration curve fitting 

according to the manufacturer's data of the LFE. The pressure transducer has an accuracy 

of 6.25 Pa (0.025 in). Then, the ACFM has been calculated as 

ACFM = ,1.39297 xlO1 -0.025 h. 2 • 0.025AP 

AP 

2 \ 

+ 0.25CFM 

The maximum ACFM is 0.6357 CFM (3xi0"4m3/s) due to the combined effects of the error 

of the calibration curve and the uncertainty in the pressure drop measurement. The AT is the 

result of the addition of the uncertainties of Toudet and T ^ . The uncertainly in the 

thermocouples is 0.3°C, then AT=V0.32 + 0.32 = 0.424°C. 

The maximum uncertainty in the calculation of c of air is 0.01% due to error in the 

measurement of RH (3%). The estimated error associated to density of air is 0.25% 

(McQuiston, F.C. et at, 2005). Then, the total uncertainty in AQina is calculated as: 

AQin = mcp(Toutlet-Tinlet) 
AT 

\2 f 

Slroutlet TinletU 

ACFM mc. * r>. ^2 r.„\2 
Acr 

\CP J 

Ap 

\P J 
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Uncertainty in connective coefficient 

To obtain the top heat transfer coefficient uncertainty, it is necessary to calculate the 

uncertainty of Qin-Qrad. Then 

\Qin-Qrad) ••yjAQin2 + AQrad2 

From equation 3.18, it follows that the uncertainty in hct must consider the uncertainties in 

the area measurement and in the temperature differential 

Ahc, = he. 
f A ^ 

AAT 

2 f Anh 
^2 

Qin-Qrad 

Qin - Qrad 

The uncertainties for hcb have been calculated in a similar fashion. 

Uncertainties in Nusselt numbers 

From equation 3.20, it follows the uncertainty in Nvijis calculated as 

ANutop=Nutop^ 
V ' W J 

+ 
AhctDh 

\ hcttDh j 

The uncertainty in k^ has been calculated with the Sutherland-law thermal conductivity with 

the constant provided in (White, F.M., 2006). The uncertainty of k^ is 2%. 

The uncertainties for Nubot have been calculated in a similar fashion. 

Uncertainties in Reynolds Numbers 

In order to compute the uncertainties in Re {gVDJy.), the uncertainties on each of the 

parameters have been taken into account. 

ARe = Re , | | ^£ + 
AV 

+ 
'AZO 

v A y 
+ 

The uncertainty in |x has been calculated with the Sutherland-law viscosity with the constants 

provided in (White, F.M., 2006). The uncertainty of u. is 2%. 
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Appendix C. Mathcad Single-Diode Model 
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W. De Soto, SA Klein, and W.A. Beckan model implementation in MathCad 

The model computers 5 parameters using the manufacturing data sheet of the PV module 

The model has been build using the manufacturers data for the Unisolar PVL-68. 

Parameters 

Iscref := 5.1 

Impref := 4.13 

uisc:= 0.001-Iscref 

- 3 
|Jisc= 5.1 x 10 

Vocref := 23.1 

Vmpref := 16.5 

p,voc:= -.0038 Vocref 

p,voc = -0.088 

Tc:= (273.15 + 25 + 10) 

Tcref := 273.15 + 25 

Guesses 

- 2 3 
„ 1.51.38110 298.211 n _ „ 

aref := = 0.424 

1.60210 
-19 

a := .85 

ILref :=5.1 

IL:= 4.1 

Ioref := 1.0410 

Voc:= 21 

- 1 1 

Io:= 1-10 
-12 

Rshref := 25 

Rsh:= 20 

Egref := 1.6 

Eg:= Egref [1 - .0002677(Tc - Tcref)] 

Eg= 1.596 

Rs:= 0.541 

Rsref := 0.41 

ILref = 5.1 

181 



Given 

Iscref = ILref - loref • \e 

Iscref-Rs 
aref IscrefRs 

Rshref 

ILref = |_Ioref \ e 

( Vocref \ 

aref 
I;J+ 

V ocref 
Rshref 

(V mpref+Impref- Rs) 

Impref = ILref - Ioref |_e - 1_ 

(Vmpref+Impre f • Rs) 

Vmpref + Impref Rs 

Rshref 

Ioref 
Impref _ aref 
Vmpref 

aref 1 

Rshref 

, Ioref-Rs 
1 + e 

aref 

fV mpref+Impref- Rs^ 

Rs 
Rshref 

Io = Ioref 
\TctefJ 

-22 
1.602-10 " {Egref Eg 

1.381-10" ,-2<5 L Tcref Tc 

a= aref 
Tcref 

IL = 1 [ILref + [iisc-(Tc - Tcref)] 

0 = IL - Io-

rvoc ^ 
a , 

V oc - V ocref 
p,voc= 

Tc - Tcref 

Rsh= IF Ishref 

Voc 
Rsh 
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EM, 
loref 

lo 
JWJ1JL 

IL 
WW 

Rs 

Rsh y 

Find(Rshref,aref,ILref,lQref,a,IoJL,Voc,Rs9Rs^ = 

0 
1 

2 

3 

4 
5 

6 

7 

8 

g 

p. 
21.1D3 
0.813 

5.349 

1.913 lO"12 

0,84 

1.399 '10-11 

5.4 

22.222 

1.029 

21,103 

Voc - Vocref 
-0.088 

Tc - Tcref 

After obtaining reference parameters. Code to obtain the maximum power point. 

IL-5.4 a =0.84 lo-1 .399x10 , -H 

Rs= 1.029 
Rshref = 21.103 

Imp := 2 Vmp := 3 

Given 

Imp _ aref 
Vmp 

fVmp+ImpRs]^ 1 
loref I aief J Rshref 

•e 

Rs . . Rs ^ aief 
1 + + loref e 

Rsbref aref 

fVmp+lKipRs^ 

Imp = ILref - loref 

Armp+ImpRssj 
(Vmp + Imp-Rs 

J ~ I. Rshref 

C\ f 4.097 
'' := Find(Imp,Vmp) = 

SmJ U-627 

Pmx := Imp Vmp 

Pmx = 68.121 

183 



Single Diode Model- Curve Tracing 

After obtaining the five model parametGrs (loref, ILref, Rs, Rshref, a), this code is employed to trace 
the IV curve and compare it to the theoretical max powerpoint equations in (Duffie & 
Beckman2006) equations23.2.13 and 23.2.14. 

Parameters 

loref = 1.913 x 10 ,-12 ILref = 5.349 Rs = 1.029 

Rshref = 21.103 
aref = 0.813 

I nitial guessfor I 

Given 

I:= 1 

I = ILref - loref 

Va-tfRs 
aref , e - ' - 1 

(Va+ IRs) 
Rshref 

^Va):=Find(r) 

k:=0..250O 

Vaixay, := 0.01k 'aixayk 

Solution := I[V array,] 

Power, := Solution. -Varray. 
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I-V curve 

£ Solution 

V 

SO 

60 

•CPoweifc 

20 

PM 

© 

Vairaj^ 

Voltage, V 

Equations23.2.1 3 and equation 23.2.14 are solved simultaneously to obtain a 
theoretical maximum power point (Duffie&Beckman,2006) 

Initia I Guess for Vmp and Imp 

V M := 2 

!.:=3 Rs= 1.029 

Given 

Imp _ 

Vmp 

Vmp+Imp-Rs 
Ioref ^ aref J Rshref 

•e 
•V-L 
J Rshi 

aref 

i . ^ s . i c ^ s V. aref 1 + + Ioref eN 

Rshref aref 

fVmp+-ImpRA 

I aref J 

Imp =ILref - Ioref-

^VmprimpRs^ 
I aref J 

1 
Vmp + ImpRs 

vi i 4 0 9 6 £ l ^ 

" ' := Find(Imp,Vmp) = 
' 16.627 45 J 

;,;= Imp-Vmp 

(P w e fk) = ^ k = SduUor^ 

0.051 

0.102 

0.153 

0.204 

0.255 

0.306 

0.357 

0.408 

0.459 

0.51 

0.56 

0.611 

0.662 

0.713 

0.01 

0.02 

0.03 

0,04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.1 

0.11 

0.12 

0.13 

0.14 

5.1 
5.1 

5.099 

5.099 
5,098 

5.098 

5.097 
5.097 
5.096 

5.096 
5,095 

5.095 
5.095 
5.094 
5.094 

Pmx = 68.121 Compare this result to Powerk table. 
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NextStep 

Obtain AST from clock time in the computer and using equation of time and correction for the 
Longitude of the City 

ETfn) := [9.87 sdnJ4<jr — — J - 7.53cos[2-ir • — — J - 1.5sm|2ir — — J jmin 

ET(304 + 28) = 10.981 min 

AST 12 + — 4 2 ET(304 + 28) (73 - 73.3)4 

60 60-60 60min 60 
la-

AST = 12.445-hr 

ET2(n) := 229.2 .000075 +0.001868 coi 

+ 0 - .014615 c osh- ( n - : 

360 1 
l ) r r r d e g 

365 
360 

36}J 
deg 

- .032077 sir 

- .04089 sir 2-

r 360 1 
( n - 1) ——- deg 

365 _, 
360 

( n - 1 ) 
365J 

deg 

" 

. 

ET2(304+28) = 11.762 

ET2(304 + 28) = 11.762 in minutes 

n:= 1,2 ..365 

20 

10-

ET(ti? 

m i » 0 
ET2(n) 

-10 

-20 

1 

— 

\ / 

V 
1 

^ \ 

1 

( 

I 
Jt 

JV 

A 
/ \ -

f \ 

\ 

i 

100 200 300 
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First compute incidence angle 

P := 30 Tilt angle of PV surface (in degrees) 

La := 45.3 Latitude of Montreal (in degrees) 

sutfaceazimuth:= 0 in degrees 

Obtain solar posion with aparent solar time 

h:- I — - 1 2 I - 1 3 
hir 

h= 6.67 hour angle in degrees 

n:= 304 + 28 

h — = 0.116 
180 

p4-= 23.45-«J 

6 =-21.675 

Day of the year 

360 TT 
(284+ n> 

365 180 

6 = -0.378 
180 

in radians 
co<l) = 0.54 

computing altitude angle 

&.:= aarJ cos La cod 6- cod h- + sin] La Isinl 6 
\ ^ ISO J \ ISO J \ IZOJ \ 180/ V 180, 

ot= 0.397 in radians 

180 
c* =22.75 in degrees 

aziin:= acos 

in(ot)anf La- I - sinf 5 
\ 190 J \ 180 

cosTa)- c os La 
1 180 

agr<-21) = -1 

sig<i$) 
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azim = 0.117 

urfaceazimulh-
180 

1 : - azim - s^ace azimuth--|- s u r f a c e s o | a r a z j m u t h j n r a d i a n s 

1=0.11? 

^ = 6.7 
^ degrees 

180 1 = 6.722 surface solar azimuth in 

8 := acoa cos(cii)-cos(|'v|)an| 6 + sirfoij-cos (3 
TT \ ' " \ 180 J ^ 180, 

8=37.549 in degrees incidence angle 

5 " where 8 is the 

the incidence angle modifier Wa is defined as 2_, i ^ .. pw m o c j u | e in 

degreees 

AIF = 
1+(-0.00502) *incidenceangle+0.0005842*incidenceangleA2+(-0 
. 00002 3) * incidenceangleA 3 +3.82E-7* incidence angle A4+ (-2 . 3 IE 
- 9 ) * incidenceangleA5; 

bi constants obtained in PVSandia 
Database 

Kto<8) := 1 +-0.00502• 8 + .0005842 e2+-0.000023-63+3.826 10 7 -$ 4 +-2.31-10 9 -8 5 

Kto<e) = 1.006 

180 
8z:= 9 0 - a-

or 
8z = 67.25 Zenith angle 

1 Insert zenith angle in degrees 
AM:= 

cos| 8 z — j + 0.5057 (96.080 - 8z)_ 1 ( 5 3 4 
in equation for A M (king et al. 
1998) 

AM = 2.572 

188 



4 

M_M-ef_ratiD is defined = Z ) ^ ^ 
i = 0 

ai constants obtainec in PVSandia 
Database 

M_Mref_ratio:= 1.047 + .00032115 AM - 0 €259- AM2 + 0.3031736 AM3 + 

M_Mref_ratio = 0.927 

Ktc<3) = 1.006 

Final ly, for performance evaluation, multiply messured radiation times correction factars. 

0.96 factcr obtained from Duffie&Beckman (when IT is 
measured) 

Gmeasur3d*0.96*Kth*M Mref 

Ga = 733i7Kto<e) M_Mref_rstio0.96 Replace this value in Ga tc obtain 
IV curve 

Ga= 656.754 

MOTE 
The IV cuivc 
^V modules 

:raccd will be accurate 
cells will reduce power 

as long ac 
production 

it icfor a ounny clear da* Particl chading 
and the rradel does not account for this. 

of 

-0.00011026 AM 
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For operating condition in November 28 2009 

Tcref = 298.15 

Ga:= 656.754 
Insert here radiation corrected for AMM, KTH and reflectance at normal 
incidence angle. Then recalculating temperature dependent parameters. 

aref = 0.813 T a w := 40 + 273.15 

Tcnew 
,a:= -aref 
"?* Tcref 

|aisc = 5.1 x 10 

a = 0.853 

fiW <&•! 
Ga 

1000 
[ILref + ^isc(Tcnew- Tcref)] 

IL = 3.563 

Gref := 1000 

Ioref = 1.913 x 10 ,-12 

Eg-ef = 1.6 

Eg;;= Egref[l - .0002677 (renew - Tcref)] 

E g - 1.594 

,. .'Tcnew'N 
Io := Ioref- e' 

Tcref J 

1.602-10' -32 

1.381 10 -26 

Eg 
Tcnew 

Io= 5.547x10 
-11 

Rsh:= ^ ^ R s h r e f 

Rsh= 32.132 
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Given 

fVmpdmpRs\ 1_ 
io [ a / R A 

Imp _ a 

Vmp 

Rs T Rs 
1 + +Io- e 

Rsh a 

Vmp+IinpRs 

Imp =IL - Io[_e 

Vmp-tlmpRs 

a (V tap + ImpRs^ 

~[ Rsh J 

Fin d(Im.p,V trip) = 
2.798 ^ 

15.827; 

Pmx = 44.278 

Single Diode Model- Curve Tracing 

After obtaining the five model parameters (loref, ILref, Rs, Rshref, a), this code is employed to trace 
the IV curve and compare it to the theoretical max powerpoint equations in (Duffie & 
Beckman2006) equations23.2.13 and23.2.14. 

Initial guess for I 

Given 

I = IL - Io- P .̂ 
i 

(Va-HlRs) 

Rsh 

^Va) := Find© 

k := 0 ..2500 

Varray,.= 0.01k 

Solution. := I fV array, "J 

Power, := SolutionvV array. 
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- V nurvft 

13 
0-> 

O 

^l?amik g 

(=4 

zqustions 23.2.13 and equaton23.2.14 are solved simultaneously :o 
Dbtain a theoretical max mum power point (Duffie&Beckman, 2006) 

nitial Guess fcr Vh-p and 
mp 

Vitro := i 
AVVWVrt 

3mr3 

Given 

Imp 

Vmp 

Io 

a 

Rs = 1.029 

VmpflHipRss'| 1 

RKIL 

Rs , Rs I 
+ + I o 3 s 

Vmp+IrapRs 

Imp = IL - Io 

^VmpfIir.pRss] 
Armp + Iir.pRs 

I Rsh 

Swwvw 

Pmx := ImpVmp 
w w w x A 

Pm l r = 44 7T79 

rind(]iiip,'mp) • 
2.79753 > 

15.82(593 J 

Compare this result to Powerk 
table anc to experimental 
meesurement 

p0"™*) 
0 

0.035 

0.059 

0.134 

0.138 

0.173 

0.237 

0.242 

0.276 

0.31 

0.345 

0.379 

0.414 

0,448 

0.433 

... 

= Vairay, 

0 

0.01 

0,02 

0.03 

0.0-1 

0.05 

0,06 

0.07 

0.00 

0.09 

0.L 

0.11 

0.12 

0.13 

0.14 

... 

Solution. 

0.452 

3.452 

3.452 

3.452 

3.-151 

3.451 

3.451 

3.45 

0.45 

3.45 

3.449 

3.449 

3.449 

3.449 

3.448 

... 
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Appendix D. Mathcad PV Performance Sandia Model 
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Sandia Model. Unisolar PVL-68 parameters. November 28 

Parameters 

Iscref := 5.1 

Vocref := 23.1 

Impref := 4.1 

Vmpref := 16.5 

Tcref:= 273.15+ 25 

otisc:= .00085 

ojimp:= .0012 

BVoc := - 0 9 8 

Bvmp := -.052 

Ixref := 4.72 

Ixxref := 2.9 

co:= 1.096 

cl := -.096 

c2:= -1.14162 

c3:=-2.89115 

c4:= 1.044 

c5 :=- .044 

c6:= 1.13 

c7 := -0 .13 

Ns := 11 

Nd := 3.77 

k:= 1.3806610" 

q:= 1.6021810" 

23 

19 

Evaluated at these conditions: 

Ga:= 656.754 

Tc:= 40+273.15 

Gref:= 1000 

Guesses 

Pmp := 65 

Imp := 4 

Vmp := 20 

Ee := 0.9 

Isc := 4.2 

Ix:=4 

Ixx=3 

Voc:=20 
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Given 

Isc - Iscreff". + odsc(Tc - Tcref)]-
Gref 

(co-Ee + c l - E e 2 ) [ l + Imp = Impref-^coEe + cl-Ee } [1 + oiimp (Tc - Tcref)] 

I x = Ix re f (c4Ee + c 5 - E e | 
(citisr. + oiimp) 

1 -I- —-(Tc - Tcref) 
2 

Ixx = Ikxref (c6Ee + c 7 E e 2 j [ l + a imp(Tc - Tcref)] 

' N d k T c ^ fNdk-Tc 
Vmp = Vmpref + c2Ns- -ln(Ee) -I- c3Ns- ln(Ee) 

K i J \ q 
Nd-k-Tc 

Voc = Vocref + Ns- ln(Ee) + BVocEe-(Tc - Tcref) 

Prnp = Imp Vmp 

Ee = 
hr. 

I sc re : [ l + otisc(Tc - Tcref)] 

Find(Pmp,Imp, Vmp,Voc,Ixx,Ix,Isc,Ee) = 

(46.625^ 

2.831 

16.467 

21.664 

2.025 

3.195 

3.392 

1^0.657 J 
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Appendix E. MATLAB PV Performance Sandia Model 
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function [x, fval] = Sandia3(Ga,Tc,xo2,options) 
% Solves nonlinear equations for power (current and Voltage) at mmp) 
% x(1) Isc 
% x(2) Imp 
% x(3) Ix 
% x<4) Ixx 
% x(5) Vmp 
% x(6) Voc 
% x(7) Pmp 
% x(8) Ee 
Tcref = 25 +273.15; % Operating reference cell temperature 

qc = 1.60218E-19; % Elementary charge, (coulomb) 
Ns = 11; % Number of cells in series 
k = 1.38066E-23; 

Isco = 5.1; % short circuit current (A) 
Voco = 23.1; %Open circuit at reference conditions 
Impo =4.1; % max power point current at reference conditions 
Vmpo = 16.5; -i voltage at max power at reference conditions 
alsc = 0.00085; ENormalized temperature coefficient for Iscd/degC) 
almp = 0.0012; '^Normalized temperature coefficient for Imp (1/degC) 
cO = 1.096; % Empirical coefficients relating Imp to Ee, Co+Cl = 1 
(dimensionless) 
cl = -0.096;% Empirical coefficients relating Imp to Ee, Co+Cl = 1 
(dimensionless) 
BVoco = -0.098; % Temperature coefficient for module open circuit 
voltage at reference conditions 
mBVoc = 0 ; % coefficient for irradiance dependence of open circuit 
voltage temperature coefficient, often zero (V/degC) 
BVmpo = -0.052; % Temperature coefficient for module maximum power 
voltage at reference conditions 
mBVmpo = 0 ; % Coefficient for irradiance dependence of maximum power 
voltage temperature coefficient, often zero ((V/degC) 
ndiode =3.77; I empirically determined 'diode factor' for individual 
ceils 
c2 = -1.14162; % Empirical coefficients relating Vmp to Ee !C2 
dimensionless, C3 is 1/V) 
c3 = -2.89115; % empirical coefficients relating Vmp to Se (C2 
dimensionless, C3 is 1/V) 
aO = 1.047; % Empirical coefficients for fl(AMa) polynomial 
al = 0.00082115;* Empirical coefficients for fl(AMa) polynomial 
a2 = -0.0259;% Empirical coefficients for f1(AMa) polynomial 
a3 = 0.0031736;% Empirical coefficients for fl(AMa) polynomial 
a4 = -0.00011026; % Empirical coefficients for fl(AMa) polynomial 
bO = 1; %Empirical coefficients for fl(AOI) polynomial 
bl = -0.0052; ^Empirical coefficients for f1(AOI) polynomial 
b2 = 0.0005842; %Empirical coefficients for fl(AOI) polynomial 
b3 = -.000023; ^Empirical coefficients for fKAOI} polynomial 
b4 = 3.826E-7; %Empirical coefficients for fl(AOI) polynomial 
b5 = -2.31E-9; ^Empirical coefficients for fl(AOI) polynomial 
c4 = 1.044; % 
c5 = -.044; 
Ixo =4.72; 
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Ixxo = 2.9; 
c6 = 1.13; 
c7 = -0.13; 

[x, fval] = fsolve(@(x) nestedfun(x,Ga, Tc),xo2,options) ; 
Inested function that computes the objective function 
function f = nestedfun(x,Ga, Tc) 

f(l) = - x(l) + Isco*(l+aIsc*((Tc+273.15)-Tcref))*(Ga/1000) 

f(2) = - x(2) + Impo*(c0*x(8)+cl*(x(8))*2)*(l+almp*((Tc+273.15)-
Tcref)) ; 

f(3) = -x(3) + Ixo*(c4*x(8)+c5*(x(8))"2)*(1+ 
((alsc+almp)/2)* ((Tc+273.15)-Tcref) ) 

f(4) = - x(4) + Ixxo*(c6*x(8)+c7*(x(8))A2)*(1+ almp*((Tc+273 .15)-
Tcref)); 

f(5) = - x(5) + Vmpo + c2*(Ns/qc)*ndiode*k*(Tc+273.15)*log(x(8))+ 
c3*Ns*(ndiode*k*(Tc+27 3.15)*log(x(8))/qc)A2 + BVmpo*x(8)*((Tc+273.15)-
Tcref); % 

f(6) = - x(6) + Voco + Ns*ndiode*k*(Tc+273.15)/qc*log(x(8))+ 
BVoco*x(8)*(Tc+273.15-Tcref); 

f(7) = - x(7)+ x(2)*x(5); 

f(8) = - x(8) + x(l)/(Isco*(l+alsc*(Tc+273.15-Tcref)) ) ;? 

end 
end 
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Appendix F. Steady State Model 
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function [xs,fval2] = 
BIPVTtransient3_Revisited(To,G,RH, ho, hi,n,1,Tsky,Rin_pA,area,Tin,rho, Tr 
oom,el,e2,e3,efi,hcb,hct,vel,Rtefzel,Rmix) 

% constants for saturation pressure 
% BIPV/T model using fsolve to solve nonlinearities. 

T = 273.15 + 
TO = 291.15; 
formula 
viscosityO = 

Cons = 120; 

To; 

18.27E-6; 

viscosity = viscosityO*((TO+Cons)/(T+Cons))* 
%Sutherlands formula 
%disp(viscosity) % air viscosity 
%RH = 0.42; 

h Operating temperature 
Reference temperature for Sutherlands 

Reference for Sutherlands 
disp(viscosityO) 
Cons sutherlands 

T/T0)A(3/2)); 

if To >= 0 
ab = -5.8002206E3; 
bb = 1.3914993; 
cb = -4.8 640239E-2; 
db = 4.1764768E-5; 
eb = -1.4452093E-8; 
fb = 6.5459673; 
ps = exp( ab/T + bb 
pressure 

% constants for saturation pressure 
% constants for saturation pressure 
% constants for saturation pressure 
% constants for saturation pressure 
*- constants for saturation pressure 
S constants for saturation pressure 

cb*T+ db*TA2 + eb*TA3 + fb*log(T)); % saturation 

else 
hh = 6.3925247; 
11 = 6.22115701E-7; 
nn = -9.484024E-13; 
gg = -5.6745359E3; 
kk = -9.677843E-3; 
12 = 2.0747825E-9; 
pp = 4.1635019; 
ps = exp(gg/T + hh + kk*T 
constants for saturation or 

« constants for saturation pressure 
% constants for saturation pressure 
% constants for saturation pressure 
% constants for saturation pressure 
% constants for saturation pressure 
%' constants for saturation pressure 
% constants for saturation pressure 

11*TA2 + 12*T"3+ nn*TA4+ pp*log(T)); 
essure 

end 

pv = RH*ps; 
%disp('pv') 
%disp(pv) 
pt = 101325; 
Ra = 287.08 ; 
Rv = 461.38 ; 
pa = pt - pv; 
%disp ('pa'); 
%disp(pa) ; 
densair = pa/(Ra*T) ; 
%disp('air density'); 
%disp(densair); 
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denmois = pv/(Rv*T); 
%disp('moisture density'); 
%disp(denmois); 
dentotal = densair + denmois 
%disp('total density'); 
%disp(dentotal) 
cpa = 1000; 
cpv = 1860; 
W = 0.6219 * (pv/pa); 
cp = cpa + W*cpv; 
%disp('cp') 
%disp(cp); 

%n = 5; i number of divisions along the channel 
%1 = 2.884; % length of the channel in meters 
xx = linspace(0,l,n+l); 
xc = [xx(l,2)/2:(xx(l,3)-xx(l,2)):xx(1,n+1)-(xx(1,2))/2]; 
DeltaPV = xx(1,2)-xx(1,1); 

WidthPV = 0.387; % Channel width 
displate =0.04; % distance between the plates 

%ho = 12.5; % exterior convective heat transfer coefficient 
%hi = 1 2 ; % interior of the room heat transfer coefficient 

Ro = 1/(ho*(DeltaPV*WidthPV)); %thermal resistance to the exterior 

Rroom = 1/(hi*DeltaPV*WidthPV); %thermal resistance to the interior 

% hra =4.7; % radiative heat transfer coefficient to the outside 

% Rra = 1/hra; % thermal 

%vel =0.57; % air speed in m/s 
%area = 0.0152 ; % cress sectional area in m'*>2 
Rflow = l/(vel*area* dentotal*cp); 
%disp('Rflow') 
%disp (Rflow) 
%To = -2.40 %-1.3S; % Exterior air temperature in C 
%Tin = To + 2.2; % Inlet air temperature in C 
%disp(Tin) 

%Tsky = 253; % Sky temperature in Kelvin 

%Troom = 20; 

%el = 0.77; %emissivity of the interior PV surface 
%e2 = 0.20; %emissivity of the insulation 
%e3 = 0.84 ; %emissivity of the module to the exterior 
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%Rin_pA = 1.4; % Rsi Value of the insulation 
Rin = Rin_pA/(DeltaPV*WidthPV); 

%hct = 5; 
Rpvy = 1/(hct*DeltaPV*WidthPV); 

% hcb = 10; hcb is the air to back surface heat transfer coefficient 
Rins = 1/(hcb*DeltaPV*WidthPV); 
%rho = 0.04 3; 

%Ga = (1-rho)*G; % total incident radiation times the absorptivity of 
the panel 
Ga = G; 
rho = rho; 
S = Ga*(DeltaPV*WidthPV); 
xo = [-77 69 -7 -1.7 19 6.23 0.2 15 4 11 280 4 2 2 2 2 2]'; 
%efi = .06; 

;Ahcb = [10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1 
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10] ; 
Rins = 1./(hcb*DeltaPV*WidthPV); 

I h c t = [ 8 . 5 6 . 4 5 . 5 5 5 5 5 5 0 5 5 0 5 5 5 5 0 5 0 5 5 5 5 0 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 j ; 
Rpvy = 1 . / (hc t*Del taPV*WidthPV) ; 

*Rpvy = 

Tpanel = zeros (l,n); '* Pre-sicoating the -ector of Tpane^ 
Tob = zeros(l,n); % Pre-alocating the vector with Tin let 
Tins = zeros(17,n); % Pre-alcoaoing tne vector for the temperature 
at the back plate 
xs = zeros(17,n); % pre-alocating the solutions 

for i = 1:1:n 
Rey = vel*.073*dentotal/viscosity 

if Rey <2000 

hct = 1.*0.0245/.073*(0.039*{Rey)A0.78*0.71A0.4*exp(-
xc(i)/(20*0.073))+0.034*(Rey)A0.78*0 . 71A0 . 4) 

Rpvy = 1./(hct*DeltaPV*WidthPV) 

else 

xc i 1'' I ;9.09""O. 07 3' "^n.Oda^ < P*=y ' '"0 . ̂ S" 0 . "1'' 0 . 4 • 

Rpvy = 1./(hct*DeltaPV*WidthPV) 
end 
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[x, fval] = 
thermal8_Revisited(Rflow,Ro,To,Troom,Rin,Rins,Rroom, Rpvy,el, e2, e3, S, Del 
taPV,WidthPV,efi,Tin,Tsky,displate,Rtefzel,Rmix,rho, xo); 

xs (:,i) = x 
Tin = xs(13,i) 

end; 

% tfinal = x(l,13i; 
% disp('tfinal'}; 
% disp(tfinal); 
% nefinal = x(l,14}; 
% disp{'efi final'); 
% disp(nefinal}; 
% Totalelectric = nefinal*; 
% disp('Total Electric power 
% disp(Totalelectric; 
xx(:,l) = []; 
xsl3= xs(13,:); 
% plot (XX, XS'1'1. 
xc,xs {7, : ;• , "y 
% A new matrix is defined xs2 in order to use the createfigure faction 
% 
% xs2 = [xs(8, : ) ;xs(9, :) ;xs<7, :; I; 
% createfigure !xx, xsl3, >;c, xs2; 
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function [x, fval] = 
thermal8_Revisited(Rflow,Ro,To,Troom,Rin,Rins,Rroom,Rpvy,el,e2,e3, S, Del 
taPV,WidthPV,efi,Tin, Tsky,displate, Rtefzel,Rmix, rho,xo) 
% Solves nonlinear equations in BIPV/T applications 
% Variable definitions = 
% x(l) ql heat flux of energy by the incoming air in the channel 
% x(2) q2 convective heat flux from the bottom of PV panel to the air 
stream 
% x(3) q3 convective heat flux from the air to the bottom surface 
% x(4) q4 total heat flux crossing the bottom insulation 
% x(5) q5 convective heat flux from the top surface to the exterior air 
% x(6) q6 radiative heat flux from the top surface to the bottom 
% x(7) Temperature of the air at midpoint 
% x(8) Temperature of the internal surface of PV module 
% x(9) Temperature of the back plate 
% x(10) Radiative heat transfer coefficient 
% x(ll) Mean temperature for radiation computation 
% x(12) Thermal Radiation resistance 
% x(13) Temperature of the air at the exit of the control volume 
% x(14) Final efficiency of the panel 
% x(15) q7 Radiative heat flux to the sky 
% x(16) Temperature of exterior of the PV module 
% x(17) Temperature of the PV module at the mid point between tefzel 
and 
%Parameters 
% To = temperature at the inlet 

[x, fval] = fsolve(@(x) 
nestedfun(x, Rflow,Ro,To,Troom,Rin,Rins,Rroom,Rpvy,el,e2,e3,S,DeltaPV, Wi 
dthPV,efi,Tin,Tsky,displate,Rtefzel,Rmix,rho),xo); 
%nested function that computes the objective function 
function f = 
nestedfun(x, Rflow,Ro,To,Troom,Rin,Rins, Rroom,Rpvy, el,e2, e3,S, DeltaPV, Wi 
dthPV,efi,Tin,Tsky,displate,Rtefzel,Rmix,rho) 

f(l) = -x(l)-x(2)+x(3); *Heat balance in air 
node 

f(2) = (1/Rflow)*(Tin-x(13))-x(l); ^Calculation of exit 
temperature (Q/(inflow*cp) ) 

f(3) = (x(9)~Troom)/(Rin+Rroom)-x(4); %Heat balance at bottom 
plate 

f(4) = x(3) + x(6) - x(4); %fieat balance at 
surface bottom plate (radiative +Convective) 

f(5) = (x(7)-x(9))/(Rins) - x(3); %Heat balance from the 
air to the bottom surface (convective) 

f(6) = (x(16) - To)/Ro - x(5); %Convective heat 
balance outside 

f(7) = - x(2) - x(6) + (x(17)-x(8) )/Rmix; *.heat balance at 
bottom surface of PV module 

f(8) = (x(8) - x(7))/Rpvy - x(2); 
f(9) = l/x(10) -x(12); 
f(10) = (x(8)-x(9))/x(12) - x(6); 
f(ll) = 

((fij(DeltaPV/displate,WidthPV/displate))*WidthPV*DeltaPV*5.67E-
8*((x(8)+273.15)^4-(x(9)+273.15)A4)/(l/el+ l/e2-l))/(x(8)-x(9)) -
x(10); %necessary to add fij(DeltaPV,WidthPV) to account view 
factoreffeet 

f(12) = ((x(9)+273.15)+(x(8)+273.15))/2 - x(ll); 
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f(13) = x(7) - TMA(x(8) ,x(9) ,Rpvy,Rins,DeltaPV, WidthPV,Rflow,Tin) ; 
^average air temperature by integration 

f(14) = efi - 0.00014*(x(17)-25) - x(14); 
f(15) = e3*(DeltaPV*WidthPV)*5.67E-8*((x (16)+273.15)A4-(Tsky)A4)-

x(15); % Radiative heat flux to the sky 
f(16) = - x(5) -x(15) + (x(17)-x(16))/Rtefzel ; 
f(17) = S*(l-rho) - (x(17)-x(16))/Rtefzel - x(14)*S - (x(17)-

x(8))/(Rmix); 
end 
end 

function y = fij(X,Y) 
y = (2/(pi*X*Y))*(log((1+XA2)*(1+YA2)/(1+XA2+YA2) ) A(l/2) 
+X*(1+YA2)A(l/2)*atan((X/((1+YA2))A(l/2))) ... 

+ Y*(1+XA2)A(l/2)*atan(Y/((1+XA2)A(l/2))) - X*atan(X)-Y*atan(Y)); 
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Appendix G. Transient Model 
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tic; 
cleat; 
clc; 
close all; 
DATA = load('C:\Documents and Settings\Luis 
Miguel\Desktop\BIPVTmfiles\ecoterramarchl72008_2.txt); 
sigma = 5.67E-8; 
el = 0.10; 
20; 
e2 = 0.80; 
e3 = 0.95; 
efi = 0.06; 
%Acelda = 0.881; 
Acelda = 47.4; 
%Rpv = 10E-3; 
Rsteel = 8.5E-5; 
Rtefzel = 4.17E~3; 
Rmk = 7.22E-3; 
Rinsul= 1.0; 
%expJicit transient simulation 
matrix = size(DATA); 
rows = matrix(l,l); 
% &&&&& CAPACITANCES&&&&&&&& 
Cap_pv = 1837.5; % heat capacitance o the PV module 
Cap_b = 30; 
CAP_MIX = 6000; %heat capacitance of the mix layers 
% : 
% ambient air temperature 
% initial pv temperature 
°'o input the time for simulation in minutes 
°'o initialize the time vector 
Tpv = zeros(l,rows); ° opreailocatmg Temperature results 
%—DIMENSIONS OF THE CHANNEL-
WidthPV = 10.4; 
DeltaPV = 5.5; 
displate = 0.037; 
Le = (4*WidthPV*DeltaPV)/(2*WidthPV+2*DeltaPV); 

Ar = WidthPV*DeltaPV; 
o/0 INITIAL VALUES 

Tpv(l) = DATA(1,126); 
Tma(l) = DATA(1,149); 
Tb(l) = DATA(1,152); 
qrad(l) = DATA(1,153)/Ar; 
Pelect(l) = DATA(1,140)/Acelda; 
qsky(l) = DATA(1,127)/Ar; 
Toutlet(l) = DATA(1,150); 
Tinlet(l) = DATA(1,151); 
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qrec(l) = DATA(1,156)/Ar; 
Tattic(l) = DATA(1,79); 
% 
Tiempo = DATA(:,1); 
fori = lrrows 
To® = DATA(i,147); 
%ho(i) = 8.55+ 2.56*DATA(i,137); %Correlation by Test 
%ho(i) = 13.5+1.50*DATA(i,100); 
%ho(i) = 11.4+l,7+DATA(i,l37); % Adjusted by Luis 
ho® = 11.9+2.2*DATA(i,137); % Correlation by Sharpless 
%ho® = 5,7 + 3.8*DATA(i,100); %McAdams Correlation 
% if DATA(i,100) <= 0.22 
% ho® = mcroperaPATA(i,85)?DATAa,lll),DA'IA(i,118)/100,WidthPV,DeltaPV) 
+2; 
% function h = incropera(Tplate,To, IlH,WidthPV,DeltaPV) 
% CHURCHIL(Tpkte,To, RH,WidthPV,DeltaPV) 
% else 
% ho® = ramacha(DATA®85),300,0.024, DATA(i,118)/100, WidfhPV,DeltaPV, 
DATA(L100),45)*0.024/Le; 
% ramacha(To, q, k, RH, WidthPV,DeltaPV,Tel,tilt) 
% end 
%ho® = DATA(L99); % read from the table 
%ho® = 14; 
%hct® = 8.38*DATA(i,139) + 1.7635 ; % hct obtained from experimental formula 
hct® = 0.024/.074*0.052*(DATA(i,139)*.074*1.2/1.8E-5)A0.78*0.71A0.4; 
%hcb(i) = '13.288*exp(1.1734*DATA(i,139)); % hcb obtained from experimental 
formula 
hcb® = 0.024/.074*1.017*pATA(i,139)*.074*1.2/1.8E-5)A0.471*0.71A0.4; 
SR® = 0.96*DATA(i,41); %Sokr radiation 
Tsky® = DATA(i,148); %Sky temperature 
Tinlet® = DATA(i,151); "olnitial air temperature 
mflow® = DATA(i,134); %mass flow rates 
cp_air® = DATA(i,157); %specific heat of air 
Tmanew® = DATA(L149); %mean air emp 
Tattic® = DATA(1,79); %Tattic 
end 
0 oDT — 60; ° otime interval in seconds 
% DT was tested for 60s, 30 s, and 1 s. Numerical Stability must be ensured due to 
capacitance. 
d T = l ; 
%INTERPOLATED VALUES 
Tiempojnt = DATA(l,l):dT:(DATA(rows,l)); 
Tiempo_int = Tiempo_int'; 
To = To'; 
To_int = interpl(Tiempo,To,Tiempo_int,'linear); 
ho_int = inteipl(Tiempo,hoTiempo jit/linear1); 
hct_int = interpl(Tiempo,hct,Tiempo_int, 'linear1); 
hcb_int = interpl(Tiempo,hcb,Tiempo_int,'linear); 
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SR_int = inte£pl(Tiempo,SR,Tiempo_int,'linear'); 
Tsky_int = interpl(Tiempo,Tsky,Tiempo_int,,liiieai-); 
Tinlet_int = intefpl(Tieolpo,Tilllet,Tiempo_int,'lillear,); 
mflow_int = interpl(Tiempo,mflow,Tiempo_iat,,linear'); 
cp_air_int = interpl(Tiempo,cp_ait,Tiempo_int,'linear'); 
Tattic_int = interpl(Tiempo,Tattic,Tiempo_int,'linear'); 
°'oTma_iiit = interpl (Tiempo,Tmanew,'fiempo_int, 'linear'); 

n = numel(To_int); 
%—CORRECTION TO GET SOLAR TIME 
fori = l:n 
Tiempo_cor(i) = (AST(76,Tiempo_int®/3600,l))*3600; 
end 

%—INITIAL VALUES OF CONSTANTS TO DESCRIBE EXPONENTIAL 
RISE 
Cl(l) = (^ct_int(l)*Tpv(l)+hcb_int(l)*Tb(l))/(hct_int(l)+hcb_int(l)); 
C2(l) = (WidthPV*(hct_int(l)+hcb_int(l)))/(rnflow_int(l)*cp_ak_int(l)); 

%—NUMBER OF SECTIONS 
nsec = 6; 
k = lrnsec; %counter 
CAP_PV = Cap_pv; 
CAP_B = Cap_b; 
SECLENGTH = DeltaPV/nsec; 
% 
%—INITIAL VALUES IN SECTIONS 
for k=l:nsec 
TPV_TOP(k,l) = Tpv(l); 
TMIDl(k,l) = Tpv(l)-0.5; 
TPV(k,l) = Tpv(l)-.8; 
TMID2(k, l)=Tpv(l)- l ; 
TPV_BOT(k,l) =Tpv(l)-1.2; 
TB(k,l) = Tb(l); 
TMA_int(k,l) = Tma(l); 
QRAD(k,l) = qrad(l)/nsec; 
QREC(k,l) = qrec(l)/nsec; 
C_ONE(k,l) = Cl(l) ; 
C_TWO(k,l) = C2(l); 
PELECT(k,l) = Pelect(l)/Ar; ° oElectncal output per ml 
QSKY(k,l) = qsky(l)/nsec; 
end 

PROGRESS = 0; 
for k = 1 msec 
for i = 1 :n-l % mimer of times the equation is solved 
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% ENERGY BALANCE EQUATIONS 
%-—ENERGY BALANCE IN THE PV MODULE 
TPV_TOP(k,i+l) = f2ero(@(x) EB_TPVELECT2(x,TMIDl(k,i),To_int(i),Tsky_int(i), 
Rtefzel/2,hoJnt®)/IW_TOP(k,i)); 
TMIDl(k,i+l) = TMIDl(k,i) + (dT/CAP_PV)*( (TPV.TOPtt^-TMIDl^))/ 
(Rtefzel/2) + (TPV(k,i)-TMIDl^))/(Rtefzel/2)); 
%TPV(k,i+l) = ((TMIDl(k,i))/(Rtefzei/2) + TMID2(k,i)/(Rmix/2) + SRJnt®*IACor 
(48,Tiempo_cor(i)/3600) -PELECT(k,i))/(l/(Rtefzel/2) +1 /(Rmix/2)); 
TPV(k,i+l) = ((SR_int(i)*IACor(76,Tiempo_cot(i)/3600) - PELECT(k,i))*(Rtefzel/2)* 
(Rmix/2) + TMIDl(k,i)*(Rmix/2) + TMID2(k,i)*(Rtefzel/2)) /(Rmix/2 + Rtefzel/2); 
TMID2(k,i+l) = TMID2(k,i) + (dT/CAP_MIX)*( (TPV(k,i)-TMID2(k,i))/(Rmk/2) + 
(TPV30T(k,i)-TMID2(^i))/(Rmix/2)); 
TPV_BOT(k,i+l) = fzero(@(x) EB_TPVBOT2(x,TMID2(k,i),TMA_int(krt),TB(k,i), 
Rmix/2,hct_int(i)),TPV_BOT(k^)); 
%TPV_BOT,TMID,Tair,Tabs,Rl,hair 
%----ABSORBER PLATE 
%TB(k4+l) = TB(k,i) + (dT/CAP_B)ir( ri*MA_mr(k,i)~TB(k,i))*hcbjnt(i) + QRAD(k, 
i)); %Absorber Plate 
TB(k,i+l) = (rMA_int(k,i)*hcb_int(i) + Tattic_int(i)/Rinsul + QRAD(k,i)) / (hcb_int(i) 
+1/Rinsul); 
% OTHER EQUATIONS 
C_ONE(ki+l) = (hct_int(i)*TPV_BOT(k,i)+hcb_int(i)*TB(k,i))/(hct_iiit(i)+hcb_int 
®); 
C_TWO(k,i+l) = (WidthPV*(hct_int(i)+hcb_int(i)))/(mflow_int(i)*cp_air_int(i)); 
i f k < = 1 
TMA_int(k,i+l) = (1/SECLENGTH)*quad(@(x) (C_ONE(k,i) + (Tinlet_int(i)-
C_ONE(k,i))*exp(-C_TWO(k,i)*x)),0,SECLENGTH); 
else 
TMA_int(k,i+l) = (l/SECLENGTH)*quad(@(x) (C_ONE(k,i) + (TOUTLET(k-l,i)-
C_ONE(k,i))*exp(-C_TWO(k,i)*x)),0,SECLENGTH); 
end 
%Tma _int(i+l) — (Toutletfi) + Tinlet_int(i))/2; 
i f k < = l 
TOUTLET(ki+l) = Tinletjnt® + QREC(k,i)*(Ai/nsec)/(mflow_itit(i)*cp_air_int 
©); 
else 
TOUTLET(k,i+l) = TOUTLET(k-l,i) + QREC(k,i)*(Ar/nsec)/(mflow_int(i) 
*cp_air_int(i)); 
end 
QREC(k,i+l) = hct_int(i)*(TPV_BOT(k,i)-TMA_int(k,i)) + hcb_int(i)*(TB(k,i)-
TMA_int(k,i)); 
QRAD(k,i+1) = (fij (SECLENGTH/displate,WidthPV/dispkte))*sigma*((l / e l+1 /e2-
1)A-1)*( (TPV_BOT(k,i)+273.15)A4 - (TB(k,i)+273.15yN4); 
QSKY(k,i+l) = sigma*e3*(<TPV_TOP(k,i)+273.15)A4- (Tsky_int(T))A4); 
PELECT(k,i+l) = (efi- 0.00014*(rPV(k,i)-25))*SR_int(i)*.8*IACor(76,Tiempo_cot(i) 
/3600); 

PROGRESS = ((k-l)*n+i)/(n*nsec); 
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progressbar (PROGRESS); 
end 
end 
0^-+*******gT\jj-} Q p "QJQ LOOP****************** 

%gi'id on 
%plotpATA(:,l)/3600,Ipv;+',DA':rA(:,l)/3600,DA/rA.(:,85),'o'); 
%Obtaining PV bottom average%%°/o 
fori=l:n 
TOTAL = 0; 
for k=l:nsec 
TOTAL = TPV_BOT(k,i) + TOTAL; 
end 
TPV_avg® = TOTAL/nsec; 
end 
% % % % % % % % % % % % % % % % % % % % % % 
%Obtaining ABSORBER PLATE Average%%% 
for i=l:n 
TOTAL = 0; 
for k=l:nsec 
TOTAL = TB(k,i) + TOTAL; 
end 
TB_avg(i) = TOTAL/nsec; 
end 
% % % % % % % % % % % % % % % % % % % % % % 
%Obtaming TPV_TOP Average%%% 
fori=l:n 
TOTAL = 0; 
for k= l msec 
TOTAL = TPV_TOP(k,i) + TOTAL; 
end 
TPV_TOP_avg(i) = TOTAL/nsec; 
end 

0/oObtaining TPV Average%%% 
fori=l:n 
TOTAL = 0; 
for k^Lnsec 
TOTAL = TPV(k,i) + TOTAL; 
end 
TPVele_avg(i) = TOTAL/nsec; 
end 
%%' 
close all 

%plot(TiempoJnt/3600,TPV_TOP(4,:);*^Tkmpo_u^t/3600,TPV_MID(4,:)^ ,. 
Tiempo_int/3600,Tm7_BOT(4,:),'o') 
%plotCIlempo_int/3600,TPV_TOP(4,:);*^TiempoJnr/36(K)fT^^Dl(4,:),,+^ 
Tiempo_mt/3600;iTV_BOT{4,:j;o^Tiempo_mt/36CM)JP\?(4,:):k^Tiempo_mt/3600, 
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TMID2(4,:)/b') 
%plot(Tiempo_itit/3600,lPV_TOP(4,:);*',Tiempo_mt/3600,TMIDl(4,:),'d', 
Tiempo_int/3600,TPV(4,:);o,,Tiempo_int/3600,TMID2(4,:),'+,,Tiempo_iat/3600, 
TPV3OT(4,:);xVTiempo_int/3600,TB(4,:);<,,DATA(:,l)/3600,DATA(:,'116),'>,,DATA 
O^^efX^DATA^SSVo') 
%plot(TiempoJnt/3600;rPV_avg,'-',DATA(:,l)/3600,DATA(:,126),!o',Tiempo_mt/3600, 
TB_avg/V,DATA(:,l)/3600,DATA(:,152),'d'); 
%plot(Tiempo_int/3600,TPV_avg;-',DATA(:,l)/3600,DATA(:,126);o';Tiempo_iiit/3600, 
TB_avg;+,,DATA(:3l)/3600>DATA(:,152),'d,,Tiempo_lnt/3600,TPV_TOP_avg,'s,); 
plot(Tiempo_iQt/3600,TPV_avg;-!,DATA(:,l)/3600,DATA(:,126),Vy,Tiempo_int/3600, 
TB_avg;+',DATA(:,l)/3600,DATA(:,152);d',Tiempo_int/3600,TPV_TOP_avg,,s,

) 

Tiempo_iIlt/3600,TPVele_avg,x,,Tiempo_iQt/3600,TOUTLET(6,:),'>,); 
%Temperature ABSORBER PLATE 
%plot(DATA(:;i)/3600,DATA(:;116);*\Tiempo_mt/3600,l"B_aTg,'-'); 
% XI = Tiempo_int/3600; 
% YMatnxl = [rPV_TOPr4.:)* TMID1(4,;)' TPV(4,:)' TMID2(4,:)' TPV_BOTr4,:)* TB 
(4,0']; 
% X2 = DATA(:,l)/3600; 
% YMatrix2 = [DATA(:,116) DATA(:,85)]; 

% cieateiigurel(Xl, YMatrixl. X2, YMatrix2) 
toe 
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