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Abstract 

Orthogonal polynomials, equilibrium measures and quadrature domains 

associated with random matrix models 

Ferenc Balogh 

Concordia University, 2010 

Motivated by asymptotic questions related to the spectral theory of complex ran­

dom matrices, this work focuses on the asymptotic analysis of orthogonal polynomials 

with respect to quasi-harmonic potentials in the complex plane. The ultimate goal 

is to develop new techniques to obtain strong asymptotics (asymptotic expansions 

valid uniformly on compact subsets) for planar orthogonal polynomials and use these 

results to understand the limiting behavior of spectral statistics of matrix models 

as their size goes to infinity. For orthogonal polynomials on the real line the pow­

erful Riemann-Hilbert approach is the main analytic tool to derive asymptotics for 

the eigenvalue correlations in Hermitian matrix models. As yet, no such method is 

available to obtain asymptotic information about planar orthogonal polynomials, but 

some steps in this direction have been taken. 

The results of this thesis concern the connection between the asymptotic behavior 

of orthogonal polynomials and the corresponding equilibrium measure. It is conjec­

tured that this connection is established via a quadrature identity: under certain 

conditions the weak-star limit of the normalized zero counting measure of the orthog­

onal polynomials is a quadrature measure for the support of the equilibrium measure 

of the corresponding two-dimensional electrostatic variational problem of the under­

lying potential. 

Several results are presented on equilibrium measures, quadrature domains, or-
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thogonal polynomials and their relation to matrix models. In particular, complete 

strong asymptotics are obtained for the simplest nontrivial quasi-harmonic potential 

by a contour integral reduction method and the Riemann-Hilbert approach, which 

confirms the above conjecture for this special case. 
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Chapter 1 

Introduction 

1.1 Random matrix models 

A random matrix is a real or complex matrix whose entries are random variables 

corresponding to a probability distribution described in one of the following ways: 

(a) The joint probability distribution of the individual entries is given. 

(b) A probability density is given in terms of matrix invariants (typically, for n x n 

matrices, powers of traces or coefficients of the characteristic polynomial) with 

respect to a reference measure on a subset of C n x n . 

Random matrices were studied independently by Wishart [102] in the 1920's and by 

Wigner [99, 100, 101] in the 1950's from completely different points of view. Motivated 

by questions in multivariate statistics, Wishart considered empirical p x p covariance 

matrices of the form 

S = XtX (1.1) 

where X is an n x p sample matrix whose rows are independent p-dimensional vector-

valued Gaussian random variables and n is the sample size. Wigner investigated the 
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eigenvalues of random sign symmetric matrices whose diagonal elements are 0 and 

the non-diagonal elements have the same absolute value \v\ > 0 and random signs 

(respecting the symmetry). 

This and subsequent works of Wigner were motivated by the statistical analysis of 

energy levels of large atomic nucleii, where precise quantum many-body calculations 

were unfeasible and a statistical analysis of spectral properties was more realistic 

phenomenologically. His idea was to model the unknown quantum Hamiltonian by 

a large n x n Hermitian matrix whose probability distribution is invariant under a 

change of coordinates, i.e., conjugations by n x n unitary matrices. The simplest 

such model is the Gaussian Unitary Ensemble for which the underlying probability 

measure can be characterized in two equivalent ways: 

(a) The entries of the random n x n Hermitian matrix 

XU X12 + iyi2 ••• Xln+ iy\n 

_ X12 - iy\2 £ 2 2 • • • X2n + i?/2n 

M — , (1-^j 

Z l n - iyin X2n - iV2n ••• Xnn 

are given in terms of the real coordinates 

{xki}k<i , {yki}k<i (1-3) 

that form an n2-dimensional random Gaussian vector variable 

[xn, . . . i ^ m i i ^ 1 2 ; ^13) • • • j £71—In; J/12-, 2/13-, • • • j 2/n—In 

] (1-4) 
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with zero mean and covariance matrix E: 

E = (1.5) 

In other words, the entries are independent Gaussian variables with zero mean 

and variance specified by E. i.e. the diagonal elements Xkk have variance 1 and 

the off-diagonal elements XkhVki (k < I) have variance | . 

(b) The probability measure given on the linear space 7in of n x n Hermitian matrices 

by 

dn(M) = ^ - e x p ( - V r ( M 2 ) ) dM 
Zn \ 2 j 

where dM is the Lebesgue measure on TCn 

(1.6) 

dM := Y[ dxkk J J dxkidyki, 
fc=l k<l 

and Zn is the normalization constant (or partition function) 

Zn l e * P ( J 2 Tr{M2) dM 

(1.7) 

(1.8) 

The Gaussian Unitary Ensemble and the closely related Gaussian Orthogonal and 

Symplectic Ensembles were studied extensively by researchers from both the math­

ematical and the theoretical physics communities: the pioneering works of Dyson 

[36, 33, 34, 35], Gaudin and Mehta [71, 70] were of essential importance in the devel­

opment of the subject. 

As a straightforward generalization of the Gaussian Unitary Ensemble they also 

considered unitary invariant probability densities on the space of Hermitian matrices 



of the special form 

-^-exp(-Tr(V(M)))dM , (1.9) 

in terms of a potential function V that has suitable regularity and growth properties 

(see 2.1). Since the eigenvalues of a Hermitian matrix are real, the corresponding 

eigenvalue distributions are supported on the real line. The invariance under uni­

tary transformations implies that that the essential information is encoded into the 

eigenvalues: written in terms of a suitable radial-angular coordinate system on 7in 

corresponding to the group action of U(n), the probability density is independent 

of the angular U(n) part which is therefore integrated out. The Jacobian of this 

coordinate change is a expressible in terms of the Vandermonde matrix evaluated 

on the eigenvalues and therefore the eigenvalue statistics are expressible in terms of 

orthogonal polynomials with respect to the measure e~v^dx (see 3.6). This allows 

the asymptotic questions on random matrix observables to be rephrased (and solved) 

in terms of orthogonal polynomials. 

In recent years there has been an explosion of new results in this area; in particular, 

the introduction of methods originating in the theory of integrable systems has proven 

to be extremely fruitful and gave an insight into several phenomena characteristic to 

such random matrix models. Research activity on large n asymptotics of unitarily 

invariant random matrix models has largely been concentrated around the following 

main topics: 

• global asymptotic behavior of the eigenvalues related to a variational problem 

and an associated "spectral curve" [58, 26], 

• "universality" in the local limiting eigenvalue correlations in the bulk and the 

edge of the spectrum [28], 

• fluctuations in linear statistics of the eigenvalues [58], 
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• gap probabilities and fluctuations of the largest eigenvalue [94], 

• scaling limits at critical points [19]. 

In the meantime, the theory of random matrices has found a vast array of appli­

cations and several connections have been made linking it to diverse fields of mathe­

matics and physics such as: 

• combinatorial enumeration of maps into Riemann surfaces [106], 

• intersection theory on moduli spaces [62], 

• L-functions and related topics in number theory [60], 

• random tilings, random words, random permutations [59, 8] 

• solid state physics [44], 

• two-dimensional topological gravity theories [32] 

and numerous other fields. 

It is also possible to consider pairs or chains of Hermitian random matrices of the 

above form coupled together, forming stochastically dependent matrix systems. This 

approach gives rise to certain types of two-matrix (Itzykson-Zuber coupling [57] or 

Cauchy coupling[17]) and, more generally, multi-matrix models [40, 41]. 

Ginibre [43] considered an analogue of the GUE model for complex non-selfadjoint 

matrices with a Gaussian density. A natural generalization of this matrix model is 

provided by random normal matrix models [21] (see Section 2.2). A completely new 

feature of these models is that the eigenvalues are not constrained to the real axis. 

These matrix ensembles are relevant in modeling two-dimensional physical phenomena 

including two-dimensional Coulomb plasmas, noninteracting fermions and electrons 

in a magnetic field [104]. 
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Similarly to the Hermitian case, the spectral statistics of normal matrix distribu­

tions can be expressed in terms of the corresponding orthogonal polynomials. How­

ever, these polynomials are orthogonal with respect to a measure that is absolutely 

continuous with respect to the area measure of the plane and there is no similarly 

general and effective method to extract asymptotic information regarding such poly­

nomials. Therefore, apart from exactly solvable special cases, it is considerably harder 

to obtain detailed spectral asymptotics for normal matrix ensembles. 

1.2 Asymptotic analysis of orthogonal polynomials 

For any positive measure \x in the complex plane for which the monomials zn are 

square integrable with respect to /j. and form a linearly independent system (i.e., //. is 

not a finite linear combination of point masses) the Gram-Schmidt orthogonalization 

algorithm produces orthonormal polynomials with respect to /x. These polynomials 

are unique up to a phase factor. The monic orthogonal polynomials obtained from nor­

malizing the orthonormal polynomials are characterized by a minimimization problem 

for the Z/2(//)-norm. 

The well-known classical orthogonal polynomials (Hermite, Laguerre, Jacobi, Leg-

endre, Chebyshev and a few others) corresponding to special orthogonality weights 

on the real line appear in several applications in mathematics and physics. These 

polynomials are regarded as special functions since each of them satisfies a second 

order linear differential equation, can be calculated in terms of a generating function 

and has an integral representation in the complex plane. Therefore, standard complex 

analysis techniques may be applied to the available representations and the asymp­

totic behavior of these polynomials can be obtained as the degree tends to infinity 

[2, 91]. 
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For general orthogonality measures on the real line, such representations are not 

available. However, the symmetry of the scalar product on M. has strong algebraic 

consequences such as the three-term recurrence relation, the Christoffel-Darboux tele­

scopic identities and the interlacing properties of the zeroes of consecutive orthogonal 

polynomials [91]. Since there is no general integral representation for these polyno­

mials, a standard steepest descent method [1] is not applicable to the study of their 

detailed asymptotics. 

Fortunately, there is a non-local analogue of the contour integral formalism based 

on Riemann-Hilbert factorization problems for matrix-valued analytic functions; the 

orthogonal polynomials are characterized by a 2 x 2 matrix Riemann-Hilbert problem 

discovered by Fokas, Its and Kitaev in the 90's [55]. This factorization problem may 

be analysed using the nonlinear steepest descent method developed by Deift and Zhou 

[29] of which the standard linear steepest descent approach is just a special 

shown in [15]. This gives asymptotic information about the polynomials in every 

region of the complex plane with error bounds that are uniform on compact subsets. 

For applications to random matrix models the resulting asymptotic expansions are 

sufficient to obtain the limiting behavior of the eigenvalue correlation functions and 

prove universality results [30, 28]. The Deift-Zhou nonlinear steepest descent method 

has proven to be a very powerful and versatile tool for solving several other problems 

that have a representation in terms of a Riemann-Hilbert factorization, many of which 

originate in the area of integrable systems [30]. 

Apart from orthogonal polynomials on the unit circle [86, 87] where the relation 

z = 1/z implies a somewhat similar algebraic framework, the asymptotic properties 

of orthogonal polynomials with respect to general measures in C are much less un­

derstood (and studied). There are results on upper and lower bounds and on limit 

points of the normalized counting measures of the zeroes for a fairly general class of 
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orthogonal polynomials, mostly based on potential theory and on the L2-optimality 

of the orthogonal polynomials [88, 81]. For some special types of planar orthogonal 

polynomials (such as Szego polynomials [91], orthogonal with respect to a weight 

along a curve, or Bergman polynomials [90], orthogonal with respect to the area mea­

sure on a planar domain) there are fairly general asymptotic results based on various 

specific methods. 

In a recent work Its and Takhtajan [56] formulated a 2 x 2 matrix-valued <i-bar 

problem that, similarly to the Fokas-Its-Kitaev Riemann-Hilbert problem, character­

izes the orthogonal polynomials for a fairly general class of weights with respect to 

area measure in the complex plane. However, the analogue of the nonlinear steepest 

descent method is not developed as yet for this inherently non-local problem. The 

spectral asymptotics of normal matrix models are one of the most important motivat­

ing problems in the development of new techniques; new asymptotic results, at least 

as strong as the ones provided by the Riemann-Hilbert approach for weights on the 

real line, are needed to get a better understanding of the local behavior of eigenvalues 

in normal matrix ensembles. 

Parallel to the L2-theory of orthogonality, there are many problems that lead 

to non-Hermitian orthogonal polynomials for weights along contours in the complex 

plane. For that setting, the orthogonality is not with respect to a Hermitian inner 

product, i.e., there is no complex conjugation in the orthogonality relations. This has 

several disadvantages: for instance, the existence of a monic polynomial of degree n is 

not guaranteed automatically, and depends on the non-singularity of a moment matrix 

determinant. On the other hand, the clear advantage is that some of the algebraic 

features of the orthogonal polynomials are preserved, including the Riemann-Hilbert 

characterization. One of the main results of the present thesis relies on the fact that 

the linear system of L2-orthogonality relations for the orthogonal polynomials can be 
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reduced to a system of non-Hermitian orthogonality relations along certain contours 

of the complex plane in the special case considered and therefore the Riemann-Hilbert 

approach may be applied. 

1.3 Electrostatic variational problems on the real line and in 

the complex plane 

It is a well-known fact [30] that the asymptotic distribution of the eigenvalues of 

large Hermitian matrices from the Gaussian unitary ensemble is given by the Wigner 

semicircle distribution [99, 101]. It is also known that this limiting measure is the 

unique solution of an electrostatic variational problem for logarithmic potentials in the 

presence of an external field generated by a quadratic potential [81]. For Hermitian 

matrix models it is true under very general assumptions that the global asymptotic 

behavior of the eigenvalues is governed by the solution of the same energy problem 

with respect to the external field that is given by the potential function V(x). This is 

a consequence of the fact that the joint probability density of the eigenvalues of such 

random matrices may be viewed as the Boltzmann weight of a particle system with 

pairwise logarithmic (planar Coulomb) interaction confined to the real line in the 

presence of an external field generated by the same potential function. The equilib­

rium measure of the corresponding electrostatic variational problem [81] is essential 

in understanding the asymptotics of the eigenvalue distributions as the matrix size 

goes to infinity in a certain scaling limit: for instance, the expectation value of the 

(random) normalized counting measure of the eigenvalues converges to the equilib­

rium measure in the weak-star sense. Also, in the large n asymptotic expansion of 

the partition function Zn the leading term is given by the minimum energy attained 

by the equilibrium measure [58, 30]. 
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Since the n-th monic orthogonal polynomial for the weight e~y(x) gives the aver­

aged characteristic polynomial of the corresponding n x n matrix model (see 3.39), 

it is not surprising that the expected value of the normalized counting measure of 

the zeroes of the orthogonal polynomials converges to the same equilibrium mea­

sure [58, 30]. As a consequence of the Riemann-Hilbert analysis it is easy to show-

that the nth root of the monic orthogonal polynomial behaves essentially like the 

exponentiated (complex) logarithmic potential of the equilibrium measure. 

The natural setting for the logarithmic variational problem with external field is 

actually the complex plane, since the logarithmic kernel is associated to the Laplace 

operator in two dimensions. The existence and uniqueness of the equilibrium measure 

is guaranteed under very mild assumptions of the underlying potential function [81] 

and one may regard equilibrium measures on the real line as charge distributions 

confined to the 'wire' K. 

1.4 Moving boundary problems and normal matrix models 

In recent works [72, 3, 64, 92], Wiegmann, Zabrodin et al. considered random nor­

mal matrix models in connection with a certain two-dimensional moving boundary 

problem called Laplacian growth. The term 'Laplacian growth' or 'growth by har­

monic measure' refers to an idealized mathematical setup to study the dynamics of 

a moving boundary curve in the plane satisfying the condition that the normal ve­

locity of the boundary is proportional to the gradient of the Green's function of the 

unbounded exterior domain. There are several physical problems that are associated 

to the Laplacian growth model, such as 

• viscous flows in a Hele-Shaw cell in a zero surface tension limit [48], 

• diffusion limited aggregation (DLA) in the plane [103], 
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• semiclassical electronic droplets associated to the Quantum Hall Effect [3] . 

(See [48, 52] for a more complete account on the variety of applications.) 

A heuristic description of the growth can be given as follows: if D(t) denotes the 

growing domain at time t, the width of the infinitesimal layer D(t + At) \ D(t) that 

is added in the course of the evolution is proportional to the harmonic measure of the 

domain D(t). (The harmonic measure is the measure supported on the boundary 

dD(t) whose density with respect to the arclength measure is given by the normal 

derivative of the Green's function on dD(t).) 

This law of motion has certain consequences: 

• Even for non-singular analytic initial data, the solution may develop cusp-type 

singularities in finite time preventing the continuation of the solution [48] (see 

Fig. 1.1). 

• There is an infinite number of conserved quantities (the exterior harmonic mo­

ments) [79, 97]. This brings in the tools of integrable systems: the evolution can 

be associated to the dispersionless limit of the two-dimensional Toda hierarchy of 

integrable equations realized on the infinite dimensional 'manifold' of conformal 

mappings [98]. 

• The classes of polynomial, rational and logarithmic exterior conformal mappings 

are all invariant under the flow on the space of conformal mappings associated 

to Laplacian growth [49]. 

Laplacian growth appears naturally in the context of random normal matrix mod­

els, in the following way. Consider the unitary invariant probability measure on the set 

of n x n complex normal matrices corresponding to a quasi-harmonic potential V(z). 

The equilibrium measure of a quasi-harmonic potential is given by the area measure 
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restricted to a compact set D. Therefore the one-parameter family of potentials 

t»-V(z) t>0 (1.10) 

gives rise to a one-parameter family of equilibrium 

supports Dt, where the area grows linearly in t. It can 

be shown [104] that, under certain regularity assump- \ \ 

tions, the exterior harmonic moments are conserved j X ^ 

and the moving boundary dDt undergoes Laplacian ' /y 0 ^ " 

growth. Since the average density of the eigenval- / / 
1/ 

ues converges to the equilibrium measure in a certain ' 

semiclassical limit [50] as the matrix size n goes to in­

finity, the finite n (deterministic) averaged eigenvalue F i g u r e l h C u g p formation for 

density provides a smooth approximation to the do- Laplacian growth in a special case 

main, or more precisely, to the characteristic function 

of Dt- This means that the evolution of the one-parameter family of eigenvalue den­

sities, referred to as quantum Hele-Shaw flow [50], provides a smooth approximation 

to the increasing family of evolving domains Dt-

Since the averaged eigenvalue density is expressible in terms of a Christoffel-

Darboux-type kernel associated to the orthogonal polynomials with respect to the 

potential V [37], the study of asymptotic properties of such approximating flows 

relies on the analysis of the limiting behavior of the underlying orthogonal polynomi­

als. This has motivated many results on the asymptotics of the Christoffel-Darboux 

reproducing kernels and orthogonal polynomials [50, 6, 7, 38, 37, 39, 56]. 
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1.5 Schwarz functions and quadrature domains 

The Schwarz reflection principle in complex analysis says that if a function / is holo-

morphic in a domain D in the upper half-plane whose boundary contains a segment 

L of the real line and / has a continuous real boundary value there then / admits 

an analytic continuation to the domain D U LU D where D is the reflected domain 

in the lower half-plane [80]. This theorem and its generalization involving circular 

arcs and inversions in circles is very useful in constructing special conformal map­

pings, referred to as Schwarz-Christoffel mappings, uniformizing polygonal domains 

and domains bounded by circular arcs [75]. This principle relies on the fact that 

reflections and inversions both provide a globally defined (except the isolated pole 

for the inversion) anti-conformal involution that leaves the line or circle of reflection 

fixed and establishes an involutive map that exchanges the two domains separated by 

the curve. 

This construction can be generalized to arbitrary non-singular analytic arcs and 

Jordan curves, but only in a local sense: it can be shown that for such a curve L there 

exists an anti-conformal reflection ip in a neighborhood of L that leaves the curve fixed 

and exchanges the two sides of the curve in sufficiently small neighborhoods around 

the points of L [25, 85]. The conjugate function of this anti-conformal reflection 

S = Tp is called the Schwarz function: it is analytic in a neighborhood of L and 

satisfies S(z) = z [25, 85]. 

The Schwarz function plays an important role in inverse balayage problems for 

planar domains in potential theory. This involves finding harmonic continuations 

of the logarithmic potential of a planar domain to the interior of the domain [46]. 

Motivated by inverse problems in electrostatics and geophsyics [51, 105], the main 

question is to what extent is it possible to continue the logarithmic potential (also 
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GO 

referred to as electrostatic or gravitational potential [85, 97]) through the boundary 

inwards without hitting singularities that prevent proceeding any further. The com­

plex gradient field of the potential can be expressed in terms of the Schwarz function 

of the boundary [85] and therefore the singularity structure of the Schwarz function 

indicates the nature and location of the singularities that the logarithmic potential 

may have inside the domain [84]. 

The inverse problem described above is closely related 

to quadrature domains [25, 85, 83, 47]. A domain is said to 

satisfy a quadrature identity for the area integral if there 

exist a finite number of points in the domain such that 

the area integral, as a linear functional on the space of 

integrable analytic functions, can be written equivalently 

as a linear combination of point evaluations (possibly in­

cluding evaluations of derivatives of arbitrary orders also). .-,. , o A 4. • i. 
° J i Figure 1.2: A symmetric two-

The simplest such domain is a disk in the complex plane: point quadrature domain 

by Cauchy's theorem, the integral of any holomorphic 

function with respect to the area measure on the disk divided by the area is equal to 

the value of the integrand at the center of the disk. A classical quadrature domain 

is characterized by the property that the Schwarz function of its boundary admits a 

meromorphic continuation to the interior of the domain [25]. Allowing general mea­

sures in the quadrature identity representing the area integral leads to generalized 

quadrature domains [83]. For instance, any ellipse is a generalized quadrature do­

main with a Wigner semicircle-type measure supported along the focal segment of 

the ellipse [25]. 

There is an associated forward problem associated to the inverse balayage prob­

lem: given a compactly supported positive measure in the plane, an equivalent pla-
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nar domain is to be found that generates the logarithmic potential, with respect to 

the standard area measure, as the prescribed measure. In other words, in the for­

ward problem quadrature domains are to be constructed corresponding to a given 

fixed measure. The potential theoretic background of the questions on existence and 

uniqueness in the forward balayage problem makes it necessary to extend the notion 

of quadrature domains involving larger classes of test functions, leading to the notion 

of harmonic and subharmonic quadrature domains [83]. 

The relevance of the Schwarz function to normal matrix models is that, given 

the quasi-harmonic potential associated to the matrix model, the determination of 

the support of the equilibrium measure uses Schwarz function techniques to find the 

conformal mapping that describes the boundary of the support [63]. 

Also, for matrix models corresponding to special cases 

of quasi-harmonic potentials it was observed [37, 12] that 

the zeroes of the corresponding orthogonal polynomials 

are accumulating along certain curve segments and the 

asymptotic distribution satisfies a generalized quadrature 

property with respect to the equilibrium measure. In 

other words, the normalized counting measure of the ze­

roes provides an approximate quadrature measure sup- p . „ N • i i + f 

ported on a finite number of points. It is conjectured the zeroes of orthogonal poly-

[37, 12] that this is a general phenomenon for a large class normals and the support of 

of quasi-harmonic potentials. One of the main results of t h e equilibrium measure for 
. . . . . . „ , . . , . . r . the case studied in Chap. 12 

this thesis is the confirmation of this conjecture for quasi-

harmonic potentials of a special type (see Fig. 1.5 and Chap. 8 for a detailed de­

scription of the conjecture and Chap. 12 for the proof). 
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1.6 Summary of the thesis 

The thesis is based on the following publications, preprints and manuscripts: 

1. F. Balogh, J. Hamad, Superharmonic perturbations of a Gaussian measure, equi­

librium measures and orthogonal polynomials, Complex Analysis and Operator 

Theory, 3 (2): 333-360, 2009. 

2. F. Balogh, M. Bertola, Regularity of a vector potential problem and its spectral 

curve, Journal of Approximation Theory, 161 (l):353-370, 2009. 

3. F. Balogh, M. Bertola, On the norms and roots of orthogonal polynomials in the 

plane and V optimal polynomials with respect to varying weights, arXiv:0910.4223, 

2009. 

4. F. Balogh, External potentials for two-point quadrature domains, in preparation. 

5. F. Balogh, M. Bertola, K. T-R. McLaughlin, S. Y. Lee, Riemann-Hilbert analysis 

of the Bratwurst orthogonal polynomials, in preparation. 

It consists of two main parts: the first part provides a general overview of the 

mathematical background necessary to understand the results; a detailed description 

of the results is presented in the second part. 

Each chapter of the first part is a brief summary of basic definitions and standard 

theorems on the following topics: random matrix models, orthogonal polynomials, 

equlibrium measures for logarithmic energy problems, Schwarz functions, quadrature 

domains and Riemann-Hilbert problems. Most of this material is standard and there­

fore most proofs of cited results are omitted in this part. However, every nontrivial 

statement is accompanied with references to standard monographs or research papers 

where a detailed proof can be found. 
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The second part devotes an individual chapter to each work mentioned above. 

Each chapter contains a short summary and explanation of the results, the re-print 

of the paper itself and an appendix containing extra calculations, if necessary. 

The first paper (see Chap. 8) introduces the notion of superharmonic pertur­

bations of the quadratic potential and the structure of the supports of equilibrium 

measures corresponding to such potentials is studied in detail. For orthogonal poly­

nomials with respect to superharmonic perturbations the validity of a matrix d-b&r 

problem, introduced by Its and Takhtajan [56] for a special case of cut-off potentials, 

is extended. Based on numerical calculations, a general conjecture is stated concern­

ing the connection between the asymptotic distribution of the zeroes of orthogonal 

polynomials and the support of the equilibrium measure via a quadrature identity. 

The second set of results (see Chap. 9) provides a generalized setting for a vec­

tor potential problem and the existence and uniqueness of the corresponding vector 

equilibrium measure is established. Motivated by matrix models, a special case of the 

vector potential problem is considered and the regularity properties of the compo­

nents of the corresponding vector equilibrium measure is discussed. It is shown that 

the resolvents corresponding to the equilibrium measure satisfy a pseudo-algebraic 

equation. As an illustration, a pseudo-algebraic curve associated to a special case is 

calculated explicitly. 

The third topic considered (see Chap. 10) concerns optimal weighted monic poly­

nomials with respect to the Lp-norm corresponding to a a measure on the complex 

plane. The results address the asymptotic location of the zeroes of optimal Lp-

polynomials (and hence include orthogonal polynomials corresponding to the case 

p = 2) and the nth root asymptotics of the ZAnorms of the optimal weighted poly­

nomials. 
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In Chap. 11 a special case of the following inverse problem is addressed: given a 

compact set in the plane, find a quasi-harmonic potential such that the equilibrium 

measure corresponding to the potential is equal to the normalized area measure re­

stricted to the prescribed set. Three different types of two-point quadrature domains 

are considered: bicircular quartics (two distinct points with equal weights), limacons 

(two confluent quadrature nodes resulting in a node of second order) and a pair of 

two disjoint congruent disks. It is shown that the quasi-harmonic potential can be 

written as a superharmonic perturbation of the quadratic potential in all three cases. 

The fifth and final topic considered (see Chap. 12) is the complete Riemann-

Hilbert analysis of the Bratwurst orthogonal polynomials corresponding to a quasi-

harmonic potential with a single logarithmic singularity. It is shown that the system 

of two-dimensional orthogonality relations can be reduced to an equivalent system 

of non-Hermitian orthogonality relations on a contour by constructing a piecewise 

solution of an associated scalar d-bar problem. Therefore the orthogonal polynomials 

are characterized by the Fokas-Its-Kitaev Riemann-Hilbert problem which allows the 

Deift-Zhou nonlinear steepest descent method to be applied. The strong asymptotics 

of the orthogonal polynomials is calculated explicitly for every region in the complex 

plane for all values of the parameters. As an application, the quadrature conjecture 

on the zeroes of the orthogonal polynomials is confirmed for this special case. 
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Part I 

Background 



Chapter 2 

Random matrix models 

The standard references on random matrix models are [70, 30]; the survey paper [104] 

gives an introduction to normal matrix models. 

2.1 Hermitian matrix models 

2.1.1 Probability measures on matrices 

For fixed n € N let 7in denote the space o f n x n Hermitian matrices with complex 

entries. 7in is a linear space over R of dimension n2 and therefore admits the n2-

dimensional Lebesgue measure. In terms of the real coordinate system 

{Mfcfc}i<fe<n ,{Re{Mki)} Kk<l<n •, {Im(Mw)} (2.1) 

this flat measure can be written as 
n 

dM:=\\dMkk J[ dRe(Mkl)dIm(Mkl) . (2.2) 
fc=l l<k<l<n 

This measure is not normalizable to a probability measure but can be used as a 

reference measure that is multiplied by suitable probability densities in order to define 

a probability measure. 
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In the theory of random Hermitian matrices the following standard type of prob­

ability densities with respect to dM are considered: 

pv(M) := i exp(-Tr(l/(M))) (2.3) 

where V: R —> R is called the potential function. The term V(M) in the density has 

the following meaning: if V(x) has a Taylor series expansion around x = 0 

oo 

V(x) = J2a^k (2A) 
fc=0 

that converges everywhere in R then the matrix series 
oo 

F(M) = J]afcM
fc (2.5) 

is convergent for every M € Hn. If V{x) is real analytic V(M) can be defined by the 

formula [23] 

V(M) = — f V(z)(zl - MYxdz (2.6) 
2m Jr 

where T is a simple positively oriented contour in the domain of analyticity of V 

enclosing the eigenvalues of M. 

The potential is assumed to grow sufficiently fast as |x| —> oo such that the nor­

malization constant 

~Zv
n := f exp(-Tr(V(M)))<*M (2.7) 

(also referred to as the partition function) is finite. 

For example, choosing V(x) = \x2 gives the Gaussian Unitary Ensemble (GUE). 

Similarly one may take V(x) to be a real polynomial of even degree. 

2.1.2 Symmetry reduction to the eigenvalues 

Since 

(zl - UMU*)-1 = U(zl - M)'1!/* (2.8) 
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using (2.6) gives 

V(UMU*) = UV(M)U* . (2.9) 

The trace is invariant under unitary conjugations and therefore these measures are 

invariant under the action of the unitary group U(n). This suggests that the co­

ordinates be separated into a radial and an angular part (using the terminology 

reminiscent of the SO(N) spherical coordinate system in M.N) such that the measure 

can be written as a product measure and the density does not depend on the angular 

coordinates. The angular part can then be integrated out to give a constant multiple 

of the volume of the compact group U{n) with respect to the Haar measure. Since 

Hermitian matrices are diagonalizable, we can use the coordinate system given by the 

matrix entries of U and D such that 

M = UDU* (2.10) 

where U is unitary and D is diagonal. Since the eigenvalues of a generic M G 7in are 

simple and the columns of U are unique up to phases, the diagonal elements Ai , . . . , An 

of D up to permutations and the entries of U modulo n phase factors constitute the 

so-called spectral coordinates [30]. These are provide a well-defined coordinate system 

on an open dense subset of 7in. The Jacobian of this change of coordinates has a 

simple form: 

n 1 n 

Y[dMkk H dRe(Mkl)d!m(Mkl) = ——-y J J (A, - A,)2 ]JdXkdU . (2.11) 
fc=l l < f c < K n ^ ' * l<i<j<n h=\ 
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Therefore, if / : Hn —* C is a function that is invariant under unitary conjugation, 

f f{M) exp{-Tr(V{M)))dM 
JH-n 

= TrW~\l if f(UDU*)eM-Tv(V(UDU*)))du) J ] (A* - A,-)2 f [ dAfc (27r)-n! JRn \Ju{n) J i £ i ^ n AA 

= j^rffo\{JJ{n)) f /(diag{A l l . . .>AB})c-El t- lV(Afc ) I I (Ai - A,-)2ft'dA* . 
^ ^ n ' ^ K " K i < j < n fc=l < J ' < T 

(2.12) 

The volume of the unitary group is [106] 
n(n+l) 

Vol(f/(n)) = ^ A " • (2-13) 
Ilfc=i ^! 

This means that taking expected values of such conjugation invariant functions with 

respect to the original matrix measure is essentially the same as taking expected 

values of its evaluation on the space of diagonal matrices with respect to the reduced 

joint probability density on the unordered eigenvalues: 

P„V(A1,...,AB) = ^ I I ( A , - A , ) V ^ - ^ ) , (2.14) 
71 l<i<j<n 

where the partition function is written as 

Zn = Vol(tf(n)) • ( 2 - 1 5 ) 

2.1.3 Correlation functions 

The m-point correlation function [70] is defined to be 

[n-m)\JJ J 

(2.16) 
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(2.17) 

For example, the one-point function is the density of the expectation value of the 

counting measure of the eigenvalues: for any B C K Borel set, 

/A 
E(#eigenvalues in B) = E \ Xs(Afc) 

= / / - - - / ^ X s ( A f c ) ^ ( A l ' - - ' A n ) d A l ' " d A n 

= " / / • • / XB(Ai)Pn
y(A1;..., A„)rfAx • • • dAn 

= / i^iCAOdAi . 

2.1.4 Heurist ic asymptotics 

The joint probability density of the eigenvalues may be rewritten in the form 

Pn
v(A1,...,Aw) = ^ 7 e x p ( - ^ l o g 1

 x | - X > ( A f c ) | , (2.18) 
Z" V w ^~M\ k=1 J 

whose total integral is the partition function Z% • In the terminology of statistical 

physics the density (2.18) is a static Boltzmann-type weight for a particle system with 

logarithmic interaction in the presence of an external potential V(z). Therefore one 

expects the eigenvalues of a random matrix M drawn from the above distribution to 

behave like charged particles of positive unit charge in two dimensions in the presence 

of a confining external electrostatic potential. This fact is referred to as eigenvalue 

repulsion which is consequence of the unitary symmetry and the reduction procedure 

described above. In probabilistic terms, the probability of finding two eigenvalues 

close to each other vanishes quadratically as a function of their mutual distance. 

Moreover, these eigenvalues are confined to the real line since M is Hermitian; this 

particle system lives on a one-dimensional 'wire' (the real line K) embedded into a 

two-dimensional planar geometry. 

If one looks for the eigenvalue configurations that maximize the probability, we 
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have to minimize the logarithmic energy expression 

This suggests that as n —> oo the dominant contribution to the partition function 

comes from configurations that are close to the solution of a continuum variational 

problem given by the logarithmic energy functional 

Iv(fi) := JJ log-r^-dfi(x)dfi{y) +J V(x)d^(x) (2.20) 

where JJL is a probability measure on K. Notice that the discrete energy functional has 

to be rescaled properly to expect that this gives the correct continuum limit: 

U |A*-A«| fe \Un |Afc-A{| nttn J 
In the present form the external potential term (as a Riemann sum) is suppressed 

by the factor -. This shows that the potential V has to be rescaled with n if we 

are interested in the global asymptotic properties of the eigenvalue distribution. This 

suggests including the additional scaling factor TV > 0 attached to the potential V: 

E1°gTr^+^E^^) = "2fEA1°gMJ-^ + -E 1^^)) • U iAfc-A<i fe \Un |Afc_A'1 n f e n / 
(2.22) 

In the limit 

n - + o o , i V - ^ o o , jj^t , (2-23) 

where t is a positive constant, we may expect that the partition function gets the dom­

inant contribution from configurations that are close to the equilibrium configuration 

of the potential ]V(z). 

The above mentioned heuristics have their mathematically rigorous counterparts; 

a formal statement of each of these will be given in the subsequent sections once all 

the necessary ingredients are properly introduced. 
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2.2 Normal matrix models 

The fact that every Hermitian matrix is diagonalizable by conjugation by a unitary 

matrix makes it possible to reduce the unitary invariant measures considered above 

by a symmetry reduction to the eigenvalue space: the relevant expectation values 

are expressible in terms of expectation values with respect to Vn in terms of the 

eigenvalues. This is of considerable advantage because such random matrix ensembles 

are made more accessible using available asymptotic methods available as a result 

of this simplification. A natural generalization is therefore to consider probability 

measures on the algebraic variety of complex normal matrices 

Mn := {N e Cnxn : NN* = N*N} C C n x n . (2.24) 

To be able to consider measures of the form (2.3) we need a reference measure dN on 

M and a spectral coordinate system that makes a symmetry reduction possible. The 

details of this procedure can be found in [104] and [37]; the resulting joint probability 

density on the space of eigenvalues is shown to be 

P«V(*i,-••,*») = 4 Ft N - ^ f e - ^ ^ . (2.25) 
n l<i<j<n 

From a purely probabilistic point of view one may simply start with joint probability 

densities of complex random variables of the above form without any reference to the 

underlying matrix models and study their asymptotic behavior as n —> oo. 
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Chapter 3 

Orthogonal polynomials 

The standard reference on orthogonal polynomials is the monograph of Szego [91]. 

We also refer to the books [30, 88] and the survey papers [95, 93]. 

3.1 Standard L2-orthogonality 

Let / i b e a Borel measure on the complex z-plane and assume that 

(i) fx is a finite positive measure, 

(ii) the support of /J, consists of an infinite number of points, 

(iii) the absolute moments are finite: 

j \z\kdfji(z) < oo A; = 0 , 1 , . . . (3.1) 

Then the monomials 1, z, z2,... all belong to L2(C, dfi) and they are linearly indepen­

dent since the support of \i is not a finite set. The Gram-Schmidt orthogonalization 

procedure guarantees the existence of the orthonormal polynomials 

pn(dfi:z)=jnz
n + 0(zn-1) , 7 n ( ^ ) > 0 (n = 0 , l , . . . ) (3.2) 
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satisfying 

pn{d/j,; z)pm(dfi; z)d^(z) = 5nm n,m = 0,l,... (3.3) 
Jc 

These are unique up to a phase factor; choosing the leading coefficient 7„(cfy/) to be 

real and positive eliminates this ambiguity. 

The monic orthogonal polynomial of degree n 

Pn{dfj,; z) :=—-rj-^-pnidfj,; z) (3.4) 

satisfies the orthogonality conditions 

/ P„(d/u; z)~zkd\i{z) = 5nmhn{dfj,) k = 0 , 1 , . . . , n , (3.5) 

Jc 

with 

Pn(d^;z) = zn + 0(zn-1) 71 = 0 , 1 , . . . , (3.6) 
where 

hn(dfi) = (3.7) 

is the n-th normalization constant of //. 

3.1.1 Moment matrices 

The (complex) moments of the measure \i are 

(3.8) m.ki(dfj,) := / zlzkd/j,(z) k,l = 0 , 1 , . . . . 
Jc 

These form the semi-infinite moment matrix 

M(d(i) := {mki{dfj))kileTio (3.9) 

The truncated moment matrices (or Gram matrices [95]) 

M ^ W : = ( m f c / ( ^ ) ) o < u < n (3-10) 
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are Hermitian and positive definite [95]. 

If the support of the orthogonality measure is a subset of an algebraic curve 

E(z,~z) = 0 for some E(x,y) G C[x, y] the entries of the moment matrix satisfy 

some algebraic relations. For example, if supp(//) C K (i.e., the polynomial is 

E(z, ~z) = z — ~z) then 

mki(dfj)= [ zkzld^(z)= f xk+ldfi{x) (3.11) 

and therefore M(d/j.) is a semi-infinite Hdnkel matrix. If // is supported on the unit 

circle 

SUPP(AO C {Z e C : |<z| = i } (3.12) 

the moments form a semi-infinite Toeplitz matrix: 

mkl(dn) = f zkzld^(z) = f zk~ld^{z) . (3.13) 
J\z\=l JU\=1 

In both cases there is a recurrence relation for consecutive orthogonal polynomials as 

a consequence of these algebraic structures. 

3.1.2 Determinant and mult ip le integral representat ions 

(i) The n-th monic orthogonal polynomial is given explicitly by the determinantal 

formula 

Pn(dji;z) 

det(M("-1)(d/i)) 

mooidfi) . m0i((i/i) m02(di.i) 

m1Q(dfi) m.n(dfx) m,12(dfi) 

mn_i0(d/z) m„_u((f/i) m„_i2(rf/i) 

mon(dfj,) 

mln(dfi) 

mn-in(d^) 

(3.14) 
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and hence 

hM = ^^M, n = 1.2. (3.15) 
det(M("-1)(^)) 

This formula is easily obtained easily by solving the linear system expressing the 

orthogonality conditions for the coefficients of Pn(dfi;z) [95]. 

(ii) The moment determinants are expressible as multiple integrals [30]: 

1 
det(M(n)) \Zk ~ Zl 

0<k<Kn fc=0 

JJd/i(zfc) (3.16) 

n+1 

This identity may be proved using the well-known expression for the determinant 

of Vandermonde matrices: 

n \Zk - Zl = 

0<k<Kn 

1 1 ••• 1 

z0 z2 ••• zn 

zQ zx 

For the idea of the proof see [30]. 

1 1 

20 ^2 

1 

Zn 

ZQ Zl 

(3-17) 

(iii) The Heine formula expresses the monic orthogonal polynomials in terms of mul­

tiple integrals [30, 91]: 

J J "J rE=l(* - Zk) Ul<k<l<n \Zk ~ Zl\2 I lL l Mzk) 

Pn{dfj,;z) = 

J j ' " j n i < f c < K n \Zk - Zl\2 ITfc=l Mzk) 

(3.18) 

3.2 Christoffel—Darboux kernels 

The n-th Christoffel-Darboux kernel is denned by 
n - l 

Kn(dfj,;z,w) :=^Tpk{dii;z)pk(dpi\w) 
fc=0 

(3.19) 
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pi(dfj,;w) 

(3.21) 

This is a reproducing kernel for the subspace Cn_i[z] C L2(C, dfj) of polynomials of 

degree at most n — 1. Every Q(z) € Cn_i[.z] can be written as a linear combination 

n - l 

Q(z) = ^akPk{dfx;z) , (3.20) 
fc=0 

and therefore 

{Q,Kn(dn;-,w))L2{Ctdfl)= / Q(z)Kn(d/j,;z,w)dn{z) 
Jc 
n—1 r . 

= Y ] afc / Pfc(d/z; z)pi(d/j- z)dp(z) 
k,i=o Lie 
n - l 

= y^^akpk{dp\iv) 

fc=0 

= QM -

Orthogonal polynomials on the real line satisfy a three term recurrence relation [95] 

which, in turn, implies the Christoffel-Darboux identity: 

K (du-x v) •= ln-^d^ Pn(d^x)Pn-i(dy;y) - pn-\(dn;x)pn(dn;y) 
7n(d(j.) x-y 

(see [95]). This identity is not valid for general orthogonal polynomials if the support 

is off the real line. 

3.3 L2-minimali ty of or thogonal polynomials 

The monic orthogonal polynomial Pn(dfi; z) is the unique solution of the following 

minimization problem [95]: 

/ \Qn(z)\2dii(z) —• min. 
J (3.23) 

Qn(z) 6 Cn[z] , Qn(z) =Zn + 0 (zn~l) . 

Similarly, for any fixed ZQ G C, the evaluated Christoffel-Darboux kernel 

Kn(dp,; z, ZQ) 

Kn(d/.i;z0,z0) 
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mm. 
(3.25) 

is the unique solution of the minimization problem 

J \Qn(z)\2dn(z) 

Qn € C„[z] , Qn{zo) = 1 • 

3.4 Non-Hermitian orthogonality 

Let T be a system of oriented contours in the complex plane and w(z) a complex 

weight function analytic in a neighbourhood of T. Assume that 

(i) The non-Hermitian moments 

Vk{ ty, T) := / zkw{z)dz (3.26) 

exists for all k = 0,1, 

(ii) The Hankel matrices generated by the moments {vk{w, r)}£L0 

vo(w,F) v>i(w,T) ••• i/n(w,F) 

^i(iy,r) i>2(w,T) ••• un+i(w,T) 
M ( n )(^,T):= 

are nonsingular: 

un(w,v) vn+1(w,r) ••• i>2n{w,r) 

det(M{n\w,T))^0 n = 0 , l , . . . 

(3.27) 

(3.28) 

The monic orthogonal polynomial of degree n with respect to the weight w on the 

contour V is characterized by the orthogonality relations 

/ Pn(w;z)zkw(z)dz = dnkhn(iv,r) k = 0. 1, . . . ,n , 
Jc 

and the condition on its leading coefficient: 

Pn(w;z) = zn + 0(zn-1) . 

(3.29) 

(3.30) 
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Since the matrices M^n\w, T) are not necessarily positive definite, the existence of a 

polynomial of degree at most n that satisfies the orthogonality relations is equivalent 

to the nonsingularity condition det(M^n^(-u;, T)) ^ 0. The solution has exact degree n 

if and only if det(M^n~^(w, T)) 7̂  0. As above, the n-th monic orthogonal polynomial 

is given by the determinantal formula 

Pn(iu;z) 
det(M("-1)(u.')) 

uQ(w,T) UI(W,T) U2{W,T) 

I/I(W,T) u2(w,T) i/3{w,T) 

i/„_i(iu,r) un(w,r) i/n_2(w,r) 
1 z z2 

Also, 

hn(iu,T) 
det(M^(w,T)) 

det(M("-1)(w ;r)) 
n = 1,2, 

Vn{w,T) 

vn+i(w,r) 

l/2n-l(w,T) 

zn 

(3.31) 

(3.32) 

3.5 Hermitian vs. non-Hermitian orthogonality 

In many special cases it happens that a sequence of monic polynomials orthogonal 

with respect to a positve measure in the L2-sense (or Hermitian sense) also satis­

fies non-Hermitian orthogonality relations with respect to a weight function won a 

contour I\ 

A special example, that illustrates an important idea later on, is given by the 

Gaussian orthogonality measure 

dfi(z) := e -|*f+£22+£z2 dA(z) (3.33) 

supported on the whole plane. It is well-known [31] that the orthogonal polynomials 
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with respect to w(z) are expressible in terms of classical Hermite polynomials: 

p-(2) - 2i{l-miH- (v w T 2 j - (a34) 

The proof in [31] uses the generating function of the Hermite polynomials. There is a 

different approach [69] which is of relevance since the same idea will be applied in the 

subsequent chapters. The basic idea is to find a solution to the scalar ci-bar problem 

ar/*(z,z) = _s* c - * *+£* a +£* a (3.35) 

in the whole complex plane. As described in App. B, a piecewise solution of this 

d-bar problem can be constructed in terms of contour integrals on a set of domains 

that cover the plane. Then, by using Stokes' Theorem, the two-dimensional integrals 

are expressible as linear combinations of contour integrals. This method gives the 

following result: 

Theorem 3.5.1 ([69]) The system of two-dimensional orthogonality relations 

f Pn(z)zke-W2+I¥+T¥dA{z) = 0 fc = 0 , l , . . . , n - l (3.36) 

is equivalent to the system of non-Hermitian orthogonality relations 

Pn(z)zke¥(T2~71)dz = 0 k = 0, l,...,n-l (3.37) / 
J In 'Im(Tz)=0 

along the straight line Re(Tz) = 0. 

3.6 Orthogonal polynomials in matrix models 

Consider a Hermitian matrix model with a potential function V{x). The measure 

e~NV{x)dx (3.38) 
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gives a positive measure; we assume that V(x) grows sufficiently fast so that the ab­

solute moments exist and the corresponding orthogonal polynomials are well-defined. 

The Heine formula states that 

Pn{e-NV{x)dx;x) = 

If- ff[{x-xk) J ] {xk-xl)
2e-N*Z"v^dx1--dxn 

J "* J fc=l 0<k<l<n 

\<k<l<n 

= E(det(xJn - M)) . 

(3.39) 

This means that the averaged characteristic polynomial of a Hermitian random matrix 

ensemble corresponding to the potential V(x) is given by the n-th monic orthogonal 

polynomial with respect to the measure e~NV^dx . 

The algebraic structure of the joint probability density V^ implies that the m 

point correlation function R%m(xi,..., xn) is expressible as an m x m determinant 

for every 1 < m < n [70]: 

Kn(e~NVdx;x\, x\) ••• Kn(e~NVdx; x\, xn) 

Kn(e~NVdx;xn,xi) ••• Kn(e~NVdx;xn,xn) 

In particular, the one point function is given by 

(3.40) 

-NV, RZ\{x)=Kn{e-NVdx-x,x) (3.41) 

These formulae hold for normal matrix models as well, simply by taking the ab­

solute value of the Vandermonde term and changing dxi to dA(zi) where dA stands 

for the area measure in the plane [104, 37]. 
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Chapter 4 

Equilibrium measures for 

logarithmic energy with external 

fields 

In this section we briefly describe both the classical and weighted logarithmic energy 

problems of potential theory. The standard references are [78] and [81]. We use the 

conventions of [81] for the sign of the logarithmic kernel. 

4.1 Potential theory preliminaries 

Let D be an open subset of C. A function / : J9 —> [—oo, oo) is called upper semicon-

tinuous if 

{z € D : f(z) < a} (4.1) 

is an open subset of D for every a 6 R. This condition is equivalent to 

l imsup/ (w)</ ( .z ) (4-2) 
w—>z 
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for all z 6 D. Similarly, g: D —• (—00,00] is lower semicontinuous if — g is upper 

semicontinuous. 

A function / : D —> R is continuous if and only if it is both upper and lower 

semicontinuous. 

An example of an upper semicontinuous function is 

/ : C - » (-00,00] f(z)=log\z\. (4.3) 

An upper semicontinuous function restricted to a compact set is bounded from above 

and attains its maximum (but it may be unbounded from below) [78]. 

A function u: D —> [—00, 00) is said to be subharmonic if it is upper semicontinu­

ous and satisfies the local submean inequality: for all a £ D there exists a p > 0 such 

that 
1 f27r 

u{a) <TT u(a + rel6) d0 0 < r < p . (4.4) 

A function g is superharmonic if — g is subharmonic. Again, log \z\ is subharmonic. 

4.2 Logarithmic potentials and Cauchy transforms of mea­

sures 

4.2.1 Logarithmic potential 

Let p, be a compactly supported finite positive Borel measure in the complex plane. 

The logarithmic potential of p, is 

U"(z) := / log, l
 {dp(w) zeC. (4.5) 

Jc \z ~ w\ 

The logarithmic potential of a positive measure is superharmonic on C and har­

monic outside the support of // [81]; moreover 

UfX{z) = p(C)\og1
i- + o(-) , \z\^oo (4.6) 
\A \zj 
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where //(C) is the total mass of // [78]. 

If Ulx{z) is smooth enough the density of the measure // can be recovered from this 

potential by taking the Laplacian of U^(z) [81]: if in a region R C C the logarithmic 

potential U^(z) of the measure \x has continuous second partial derivatives, then // 

is absolutely continuous with respect to the planar Lebesgue measure in R and the 

density is given by 

dfi = -^-AlfdA , (4.7) 

where dA denotes the area measure in the plane. 

4.2.2 Cauchy transform 

The Cauchy transform of a finite Borel measure // is given by 

CM : - / ^ • (4.8) 

The Cauchy transform is holomorphic outside the support of //. If // is compactly 

supported then 

oo 

fc=0 

Outside the support of // the logarithmic potential Ulx{z) is harmonic and therefore 

justified to consider dzU'x{z) there. The following equality holds: 
dzU»(z) = ^C^z) zeC\ supp(M) . (4.10) 

This means that the complex electric field generated by the charge distribution /j, 

is given by 

d_ .d_ 
dx dy 

E(z) = -\^Z + i^7.)Ufi{z) = -2c\U»{z) = -C^z) (4.11) 

outside the support of fj,. 

38 



If K C C is compact and A(K) > 0 then the Cauchy transform (using a simplified 

notation) is 

C M = / ^ • (4.12) 

This function is continuous in C and satisfies [24] 

\CK(z)\ < ^nA(K) . (4.13) 

4.3 Classical energy problem and capacity 

Let K be a compact subset of C and let M. [K) denote the set of all Borel probability 

measures supported on K. In classical potential theory, the logarithmic energy of a 

measure fj, G M.(K) is defined to be 

IKUI) := f U"(z)dn{z) = [ [ l o g r i - I d / i ( i ) ^ ( z ) . (4.14) 
JK JKJK \Z -1\ 

The quantity 

EK:= M-IK(JX) (4-15) 
ixeM(K) 

is either finite or +oo. The logarithmic capacity of K is defined as 

cap(K) := e'EK. (4.16) 

The capacity of an arbitrary Borel set B C C is 

cap(B) := sup{cap(i;C) | K C B, K compact} . (4.17) 

A property is said to hold quasi-everywhere if the set of exceptional points (i.e. those 

where it does not hold) is of capacity zero. 

If EK < oo Frostman's theorem (see e.g. [78]) implies that there exists a unique 

measure UJK in M.{K) minimizing the energy functional IK(-) a n d this measure is 
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called the equilibrium measure of K. The equilibrium measure is supported on the 

boundary dK and 

Uu'K(z) = EK quasi-every z G dK , 
(4.18) 

U"K{z) <EK zeC . 

[78]. The minimal energy value EK = IK{^K) is referred to as Robin constant [81]. 

Example. The equilibrium measure of the interval K = [— 1,1] is 

dujK{x) = dx - 1 < x < 1 . (4.19) 
7T V 1 - ."Z2 

4.3.1 Green's function 

For a domain D C CP 1 a function gjj: JD X D —> (—oo, oo] is a Green's function if 

(i) <7.D(.Z, a) is harmonic in D \ {a}, 

(ii) gn(a,a) = oo and 

f - l o g | z - a | + (9(l) a ^ o o 
gD{z,a) — < as z —• a , (4.20) 

[ log|z| + C?(l) a = oo 

(iii) lim go{z, a) = 0 for quasi-every w G 5£>. 

It is well-known [78] that if dD is of nonzero capacity then there is a unique Green's 

function associated to D. If oo e D then the Green's function at infinity can be 

expressed in terms of the logarithmic potential of the equilibrium measure: 

gD(z, oo) = -lTaD(z) - logcap(&D) . (4.21) 

4.4 Weighted energy problem 

In the weighted setting we have a closed set E C C and a function w: E —-> [0, oo) on 

E called the weight function, usually given in the form 

w(z) = exp(-Q(z)) (4.22) 
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where Q: E —-> (—oo, oo] is the called the external potential. 

The weight function w is said to be admissible [81] if 

(i) w is upper semi-continuous, 

(ii) the set {z E E | w{z) > 0} is of positive capacity, 

(iii) lira |2|u>(z) = 0. 
\z\—»oo 

In terms of the potential, w(z) = exp(—Q(z)) is admissible if and only if Q is lower 

semi-continuous, the set {z G £ | Q(z) < oo} has nonzero capacity and lim (Q(z) — 
|z|—too 

log \z\) = oo. 

Let A^(E) denote the set of all Borel probability measures supported on E C C. 

The weighted energy functional Iw is defined for all ji G Ai(E) by 

Iw{n) := / / log [\z - t\w{z)w(t)] 1dn(z)dfi(t) 

= f j log r^-jd(i(z)dfi(t) + 2 J Q(z)d^z) 
(4.23) 

It is important to note that the factor 2 in the potential term appears in the 

convention of [81] but is not present in the random matrix literature (see [30]). In 

what follows we use the energy functional (4.23). 

The solution of the electrostatic variational problem is a probability measure that 

minimizes this functional on At(E). 

Theorem 4.4.1 ([81]) For an admissible weight w 

Ew:= inf I^fj.) (4.24) 

is finite and there exists a unique measure, denoted by /iw, that has finite logarithmic 

energy and minimizes Iw. Moreover, the support of \iw, denoted by Sw, is compact 

and has positive capacity. 
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The measure \iw is called the equilibrium measure of the weight function w. The 

logarithmic potential of aw satisfies the equilibrium conditions 

U^iz) + Q(z) > Fw quasi-every z G E , 
(4.25) 

U»°{z) + Q{z) < Fw for zGSw , 

where Fw is the modified Robin constant: 

Ew- I Qdjiw. (4.26) w J-^/w 

Therefore, the effective •potential U^ + Q is constant quasi-everywhere on the support 

of /JLW. The physical interpretation of (4.25) is that the charge distribution /i is in 

equilibrium and hence the effective electric field has to vanish on the support. 

Moreover, the equilibrium condition (4.25) characterizes the equilibrium measure: 

Theorem 4.4.2 ([81]) If for a compactly supported measure /i with finite logarithmic 

energy there exists a constant F such that 

U^iz) + Q(z) > F quasi-every z G E 
(4.27) 

U'l{z) + Q{z) < F for all z G supp(yu) , 

then \x = fiw and F = Fw. 

The classical equilibrium problem corresponds to the special choice of weight func­

tion of the form 

w(z) = XK(Z) (4.28) 

where K C C is a compact set of positive capacity. 

4.4.1 A one-parameter family of equilibrium measures 

Assume that {wt(z)} a one-parameter family of admissible weight functions denned 

for t > 0 and consider the corresponding one-parameter family of equilibrium mea-
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sures 

t »-> tfj,wt t > 0 . (4.29) 

The parameter t is often referred to as time or toia/ charge: it is easy to see that the 

electrostatic variational problem with a modified total charge constraint 

/ / log rda(z)da{t) + 2 / Q(z)da(z) -* min. 
J-EJT, \Z —1\ ,/E (4.30) 

a(C) = t 

is equivalent to the standard minimization problem 

/ / log-j -d/j,(z)dfi(t) + - / Q(z)dfj,(z) —> min. 
JK/E k - M * i s (4-31) 

MC) = 1 , 

where the solutions are related by a = t/j,. In other words, t/j,wt gives the time 

evolution of the equilibrium configuration with linearly growing total charge t in the 

presence of the fixed potential Q corresponding to the weight w. 

4.5 Fekete points 

Along with the continuous energy problem for measures of finite logarithmic energy, 

one can consider a discrete energy problem for an n-tuple of positive unit charges. 

Of course, the self-energy of such a measure is infinite, but, by removing the diag­

onal terms in the energy expression, one may consider the variational problem of 

minimizing the functional 

1 
Xn,0(z1,...)2n):=y>gi i + Y,QM • (4-32) 

Definition 4.5.1 An n-Fekete point configuration is a set of points for which the 

minimum ofXnQ is attained. 
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The admissibility conditions on Q guarantee the existence of such minimizing configu­

rations; a Fekete point configuration may not be unique (for instance, if the potential 

has certain symmetries). The distribution of the Fekete point configurations is close 

to the equilibrium measure as n gets large: 

Theorem 4.5.1 ([81]) The normalized counting measure of any sequence n-Fekete 

point configurations converges to the corresponding equilibrium measure in the weak-

star sense. 

4.6 Regularity of the equilibrium measure 

It is important to understand how the regularity properties of the external potential 

influence the regularity of the corresponding equilibrium measure. In many cases 

the explicit recovery of the equilibrium measure uses tools that need some a priori 

regularity assumptions on the potential. 

Theorem 4.6.1 ([26]) If the potential 

V:[-1,1]-4R (4.33) 

of the weight function w(x) = exp(—V(a;)) with E = [—1,1] is in C2[—1,1] then 

the corresponding equilibrium measure /j,w is absolutely continuous with respect to the 

Lebesgue measure, 

dfiw = tp(x)dx ijj{x) > 0 (4.34) 

and the density tp(x) has the following properties: 

• The inequality 

1,(x) < ~ = (4.35) 

holds for some c e (0, oo). 
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• The density ip is continuous on (—1,1). 

• IfV £ Ck[— 1,1] for some k > 3 then tp is Holder continuous of order \. 

• IfVis real analytic in a neighborhood of [—1,1] then ip is supported on a finite 

number of closed intervals. 

This result holds in any bounded closed interval and since the equilibrium measure 

is always compactly supported for an admissible potential, the regularity results of 

4.6.1 are valid for potentials defined on M.. This allows to use algebraic techniques in 

finding the support and the density explicitly for a large class of potentials. 

4.7 Vector potential problems 

There is an extended version of the weighted energy problem relevant to certain 

questions in approximation theory (multiple orthogonal polynomials [96], Nikishin 

systems [76]) and multi-matrix models. A vector potential system involves a finite 

collection of closed sets (conductors) 

S f c C C k = l,...,n, (4.36) 

a family of functions (background potentials) 

Vk: E f c ^ (-00,00] fc=l,...,n, (4.37) 

and a real symmetric positive definite matrix (matrix of interactions) 

A ••= M i < „ < n • (4-38) 

Consider the functions 

hk(z):=\og l , zEC (4.39) 
d(z, Sfe) 
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where d(-,K) denotes the distance function from the closed subset K of the complex 

plane: 

d(z, K) := inf \z - t\. (4.40) 

A vector potential system 

({EfcHU.WJjU^) (4-41) 

is said to be admissible [9] if 

(a.l) The intersection E& fl E; has zero logarithmic capacity whenever aki < 0. 

(a.2) The potentials Vk are lower semi-continuous on E& for k = 1 , . . . , n. 

(a.3) The sets {z G £/. : Vfe(,z) < co} are of positive logarithmic capacity for all k. 

(a.4) The functions 

n |z — r | 

are uniformly bounded from below, i.e. there exists a n i E R such that 

Hkl(z,t)>L (4.43) 

on {(z, t) 6 Efc x Ei : z ^ } for all k,1 = 1 , . . . , n. 

(a.5) There are constants 0 < c < 1 and C > 0 such that 

it rr 
#u(2, i) > —^(Vk(z) + Vi(i)) - — - (4.44) 

(a.6) The functions 

Qk(z):= J ] (-Vt(z) + akMz)\ (4.45) 
o.kl<0 

are bounded from below on T,k. 
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Note that, without loss of generality, one may assume that all the potentials are 

nonnegative and that L = 0 by adding a common constant to all the potentials. 

The weighted energy with interaction matrix A is defined for a vector of measures 

fl = \lH,. .., fj^] ' ukeM(Ek) (4.46) 

as 

W £ ) : = Y,aki I [ log, -dnk(z)dfii(t) + 2 V / Vk(z)dnk(z) . (4.47) 

The following theorem is a joint result of the author with M. Bertola: 

Theorem 4.7.1 ([9]) For an admissible system 

({Xk}U,{Vk}U,A) (4-48) 

the following statements hold: 

• The extremal value 

TAV:=irdIAV{fi) (4.49) 

of the functional IAV{-) is finite and there exists a unique vector measure fT 

such that 

IA,v ••= IAy{F) • (4-5°) 

• The components of p* have finite logarithmic energy and compact support. More­

over, the potential Vk and the logarithmic potential IP1* is bounded on the support 

of nl for all k = 1 , . . . , n. 

• For j = 1 , . . . , n the effective potential 

Uf(z) := U^(z) + Vk(z) > Fk (4.51) 

for some real constant Fk, and equality holds quasi-everywhere on the support of 

47 



It is important to note that this vector potential problem is a slight generalization 

of the potential problem considered in [81]. There the following stronger assumptions 

are made: 

• The condensers £& and Ej are of positive distance for all k, I = 0 , . . . , n, k 7̂  I. 

• The interaction matrix is of the form 

A = mT®m rh = [eimi,e2m2, •• • ,enmn] , (4-52) 

where vrtk > 0 and £> = ±1 are the mass and the sign of //& respectively. 

Under a weaker form of the admissibility conditions the existence and uniqueness is 

guaranteed by Thm. VIII. 1.4. [81] which is generalized by Thm. 4.7.1. 

4.8 Equilibrium measures in matrix models 

4.8.1 Asymptotics of the correlation functions 

In what follows we assume that the weight function 

w(x) = e-^
v{x) (4.53) 

satisfies the following conditions: 

• the potential function V(z) is admissible (see Sec. 4.4) and 

V ( x ) > 1 + 5 (4.54) 
log(.x2 + 1) 

for some 8 for sufficiently large x. 

j \x\ne-%V{x)dx < 00 n = 0,1,2,.. (4.55) 

for all N > 0. 
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Theorem 4.8.1 ([58, 27]) The one-point density of the matrix model corresponding 

to w(x) converges to the equilibrium measure in the weak-star sense 

-R^(x)dx - ^ dfj^t (4.56) 
n 

in the scaling limit 

n 
n - + o o , iV —> oo . >t . (4.57) 

N The convergence is valid in the pointwise sense also, i.e., the one-point density func­

tion converges pointwise to the density of the equilibrium measure. 

Also, the normalized m-point correlation function of the matrix model correspond­

ing tow(x) converges to the m-fold product of the equilibrium measure in the weak-star 

sense: 

n! 
(7? — m ! 

Rml(xi,... , xm)dxi - - • dxm —> dawt x • • • x dfj,wt . (4.58) 

4.8.2 Asymptotics of the averaged the characteristic polynomial 

It follows from (3.39) that the averaged characteristic polynomial in a matrix model 

is given by the corresponding monic orthogonal polynomial. In this way the following 

result on the zeroes of orthogonal polynomials is of considerable importance for matrix 

models: 

Theorem 4.8.2 ([58, 27]) The normalized counting measure 
- n n 

Vn,N •= ~ y~l 5zk,n,N Pn,N(z) = T T ( z - 2fc,„,jv) ( 4 . 5 9 ) 

n *—' J-J-
fc=i fe=i 

of the monic orthogonal polynomial Pn^\z) converges to the corresponding equilibrium 

measure in the weak-star sense: 

vn,N —» Hw1 (4.60) 

in the scaling limit (2.23). 
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4.8.3 Algebraic curves associated to Hermitian matrix models 

Assume for simplicity that V(x) is a non-constant polynomial of even degree 2ro with 

positive leading coefficient. The equilibrium measure fj,w is supported on a finite 

number of intervals with a density function ip(x). The equilibrium condition for //„, 

reads as 

/ 
log , :ip(t)dt + V(x) = F xE supp(^») . (4.61) 

\x — t\ 
The regularity properties of ip allow the differentiation of the logarithmic potential 

[30] 

~ f log y±-mdt = P-v. / ^ ^ x e supp(V0 , (4-62) 
ax J \x —1\ J t — x 

and therefore 

p.v. f ^ ^ + V'{x) = 0 x e suppty) . (4.63) 
j t x 

In the context of matrix models, the Cauchy transform of fj,w 

W(z) := C^ (z) = / ^ ^ z e C \ supp(^) (4.64) 

J s - z 

is called the resolvent function since, by Thm. 4.8.1, this gives the limiting form the 

normalized expectation of the trace of the resolvent: 

-E{Tr((zl - M)-1)) . (4.65) 
n 

By the Sokhotski-Plemelj formulae (5.29) we get 

W+(x)-W.(x) = 2 T T # ( X ) 

ip(t)dt 
W+{x)+W-{x) =2p.v. f 

(4.66) 

t — x 

The function W2(z) is analytic in C \ supp(V>) and has the jump 

Wl(x) - W2_(x) = -4TTii<(x)V'(x) . (4.67) 
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Therefore, 

W2 w . . a / ^ ( # ( 4 . 6 8 ) 

(The difference 

^ ) + !/ffl* (4.69) 
J s - z 

that has no jump and therefore it an entire function converging to zero as z —> 0 and 

hence it is identically zero by Liouville's theorem. Since 

J •MV|» = ! »(.)(V'(.) - V'(z))ds + 
J S - Z J S- Z 

and 

; = 1 /• ^ ( a ) ( V ( a ) - *"(*))<** ( 4 7 1 ) 

2 7 s - z 

is a polynomial of degree 2n — 2 we obtain an algebraic equation for the resolvent: 

W2(z) - 2V'(z)W/(z) - P(z) = 0 . (4.72) 

The equation (4.72) is valid for non-polynomial potentials V(x) as long as ip{x) IS 

regular enough. In that case (4.72) is a pseudo-algebraic curve. 

4.8.4 Asymptotic results for normal matrix models 

wN{z)dA{z) = exp(-NQ(z))dA(z) . (4.73) 

Theorem 4.8.3 ([50]) Assume that the potential function Q: C —> M. is C2-smooth 

and 

Q{z)>A\og\z\ + 0{l) z->oo (4.74) 

for every A > 0 and the orthogonal polynomials exist: 

[ \z\ne-NQ{z)dA{z) < 00 n, N > 0 . (4.75) 
Jc 
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The one-point function Rn^(z) with respect to the measure e converges 

to the equilibrium measure of \Q{z) in the weak-star sense: Then 

^RNJ{z)dA{z) ^ dw (4.76) 

in the scaling limit (4.57). 
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Chapter 5 

Schwarz functions 

5.1 Uniformizing maps 

The standard reference on conformal mappings is [75]. 

5.1.1 Riemann mapping theorem 

According to the Riemann mapping theorem any simply connected domain D C 

CP1 whose complement contains at least two points is conformally equivalent to the 

unit disk; i.e., there exists a univalent (one-to-one) holomorphic function / : D —> D 

mapping onto the domain D (see e.g. [80]). This uniformizing map is unique up to 

compositions with biholomorphic maps of the unit disk onto itself. The freedom of 

choosing a nonsingular linear fractional transformation D —> ED can be eliminated by 

fixing the standard normalization conditions 

/(0) = a and / '(0) e R+ (5.1) 

which give a unique conformal map from D to D. 

The Green's function of D can be written in terms of the conformal map / nor-
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Figure 5.1: Interior and exterior conformal maps of a Jordan curve 

malized as above [81]: 

gD{z,a)=\og\r\z)\. (5.2) 

Let G C C be a Jordan curve. The interior and exterior domains are denoted by G+ 

and G_ respectively. An interior uniformizing map is a conformal map / : D —> G+ 

while an exterior uniformizing map is a conformal map F: int(Dc) —> G-. 

The exterior uniformizing map is usually normalized at u = oo such that F(oo) = 

oo and 

F(u) = ru + V^ ajt—r u —» oo (5.3) 
fc=0 

where r is assumed to be real and positive. This uniquely defined r is referred to as 

the conformal radius of the domain G+. 

Since 

^ G _(2 ,c»)=log |F- 1 (z) | (5.4) 

and 

-U"G{z) - logcap(G) = log \z\ - logcap(G) + O f^-\ 
gG_{z, oo) = ̂  , 1 

log|F_ 1(z) | = log|z| - l o g r + 0 7-
\ \z 

oo 

(5-5) 
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we get 

r = cap(G) . (5.6) 

5.1.2 Boundary behavior 

Caratheodory's theorem states that the conformal map / : D —> G+ can be extended 

to a homeomorphism between the closures cl(D) and cl(C7+) ([80], Theorem 14.19). 

Moreover if G is an analytic curve then there exists an open set U such that D e l / 

and / has an analytic continuation to U [5]. 

5.1.3 Area of the interior region 

Assume that G_ is uniformized by the exterior conformal map 

OO -. 

F(u) = ru + 22l
ak~k U—+CO. (5.7) 

fc=o u 

Then [24] 

A{G+)=nL2~Yjk\akA . (5.8) 

5.2 Schwarz function of an analytic curve 

For the details of the following, we refer to the monographs [25, 85, 97]. 

5.2.1 Definition of the Schwarz function 

Assume that T is a nonsingular analytic arc in the complex plane. This means that 

T is the image of the interval [0,1] under a function F: [0,1] —» C that is one-to-one 

and analytic in a neighborhood of [0,1] and whose derivative F'(t) does not vanish 

on [0,1]. 
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Then, for every point z0 E T, the implicit function theorem implies [85] that there 

exists a neighborhood U of ZQ and an analytic function S(z) such that 

szo{z)=z ZETDU. (5.9) 

Since this can be done in a neighborhood of every point on the arc, by analytic 

continuation these locally defined analytic functions give a function S(z) holomorphic 

in a neighborhood of T and satisfying the equality 

S(z)=z zET. (5.10) 

This is function is called the Schwarz function of the nonsingular analytic arc T. 

If r is a closed curve then a single-valued Schwarz function can be constructed 

in an annular neighborhood A of T. The function obtained by analytic continuation 

cannot be multi-valued along T: if the analytic continuation starts from a function 

element S\(z) in a neighborhood Uoi ZQ E T then the analytic continuation £2(2) 

satisfies 

Si{z) = z = S2{z) zETnU (5.11) 

for some neighborhood U of ZQ but then S\(z) — Si{z) for z E U. 

The Schwarz reflection 

T(z) := 5(7) (5.12) 

is an anti-conformal involution defined for z sufficiently close to T satisfying 

T(z) =z zET . (5.13) 

5.2.2 Examples 

The straight line L that passes through the points z\ — x\-\- iy\ and z2 = ^2 + iyi is 

given in terms of the complex notation z = x + iy by 

(2/1 - 2/2)2; + (x2 - xx)y + y2xi - x2yi = 0 , (5.14) 
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which is equivalent to the complex form 

Z2 — Zi Z2Z\ — Z2Z\ , M , > 
z = z -\ . (5.15) 

z2 — zi z2- zx 

Therefore the Schwarz function is the linear function 

^ ) = g ^ z + ^ - ^ . (5.16) 
Z 2 - Zi Z 2 - 2 l 

The circle C of radius r centered at the point a G C is 

\z-a\2 = r2, (5.17) 

which implies that 
r2 

S(z) = + a. (5.18) 
z — a 

The standard inversion in the circle C is therefore given by 

r2 

T{z) = ^-^+a. (5.19) 
z — a 

5.3 Schwarz function in terms of a uniformizing map 

For a holomorphic function F: D C C defined on a domain D consider the conjugate 

function1 

F:D->C, F(z):=F(z) (5.20) 

where D stands for the reflected domain 

5 : = { z G C : zED} . (5.21) 

Assume now that T is a nonsingular analytic curve and therefore its interior conformal 

map extends analytically to a domain U D D . Along T the parametrization 

z = f(u) \u\ = 1 (5.22) 
1 The term conjugate function is taken from [25]; this definition should not be confused with the notion of a 

harmonic conjugate function [1]. 
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implies that 

-W u 
| 2 \ / ! 

z = f(u) = f{u)=f[^\=fl-) . (5.23) 

The inverted conformal map / (^) is analytic in 

U~l := | = : ueuX . (5.24) 

Therefore in the set 

A := f (U nTJ"1) (5.25) 

we can define 

*) = 7(/4)) (526) 
It is easy to see that S is analytic on A and that S(z) = z for z € T . Therefore 

5 = 5 on A . 

5.4 The decomposition of S(z) 

5.4.1 Sokhotski-Plemelj formulae 

Let 7 be a smooth positively oriented Jordan curve in C Assume that <p(t) is a 

complex valued function that satisfies the Holder condition with Holder constant 

0 < a < 1; namely, 

Hh) - <p(t2)\ < C\h - t2\
a tx, t 2 € 7 . (5.27) 

Then the contour integral 

: = 1 / £W* (5.28) 
L-KI J t — z 

58 



is holomorphic in C \ 7 and has nontangential boundary values $+(*) and $_(£) for 

t G 7; The Sokhotskii-Plemelj formulae [74, 1] for the boundary values give 

This means that 

$ + ( f ) - $ - W = 0(t) t e 7 . (5.30) 

For a nonsingular analytic curve T let fl+ and f2_ denote the interior and the 

exterior domains of T respectively. The function ip(t) = t obviously satisfies the 

Holder condition and therefore the function 

:= 1 1 a» 
Z7U Jr W — Z 

has nontangential boundary values along T satisfying 

<E»+(z)-$_(z)=z = 5(z) zET. (5.32) 

Let 

5* := $ln± • (5-33) 

The functions S+ (z) and 5 " (2) are holomorphic in fi+ and Q_ respectively. 

Therefore the function S(z) + S~(z) is holomorphic in A fl f2_ and its boundary 

value is the same as the boundary value of S+(z) along 7. This means that S+(z) 

has the analytic continuation S(z) + S~(z) to the set Q+ U A. Similarly, S~(z) has 

the analytic continuation S+(z) — S(z) to the set Q_ U A. 
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Q-

Figure 5.2: The domains Q+, ft- and A 

5.5 An algebraic curve associated to a Schwarz function 

Assume that for a nonsingular analytic curve T the exterior domain fi_ is an algebraic 

domain: [97], that is, assume that its Riemann mapping is given by a rational function 

Qiu) 

for some polynomials P and Q with deg(P) = n and deg(Q) = n — 1 for some n G N. 

Then the 

7 ( i ) = ^ (5.35) 

for some polynomials P and Q with deg(P) = n and deg(Q) = n — 1. The rational 

map 

u - l ' / ( u ) , 7 ( ^ ) ) (5-36) 
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embeds the Riemann sphere CP 1 as a curve £ C CP2 . A point (z, w) is on the curve 

if there exists a value of the parameter u such that 

P(u) - zQ(u) = 0 
(5.37) 

P(u) - wQ(u) = 0 . 

Therefore the resultant of the two polynomials has to vanish at u. 

E{z, w) := resultant(P(u) - zQ(u), P(u) - wQ(u)\ u) (5.38) 

This means that along the curve T, E{z,~z) = 0. Therefore 

E(z,S(z)) = 0 zeA. (5.39) 

This curve is of genus zero which is obvious from its construction. The same curve 

can be obtained also from the Schottky double contruction [104, 97]. 

5.6 The Cauchy transform and the Schwarz function 

Let K be a compact set of area A(K) whose boundary dK is a nonsingular analytic 

curve. The Cauchy Transform of the measure XK^A (the area measure restricted to 

K) may be written as (using a simplified notation for the Cauchy transform as) 

CK(.) :=fm = U[f^. (5.40) 
JK C - z 2i JJK Q- z 

If z £ Kc then the one-form 
QdC, 

has no singularities inside dK and its exterior derivative is 

(5.41) 

^ _ dCA^C ( 5 4 2 ) 

\C-zJ C-z 

Stokes' Theorem gives that 

™-kim-kL?k-
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If z e int(A') then the above one-form has a singularity which contributes an extra 

term. The extended Cauchy formula ([42], Lemma II.2.2) applied to the function 

u(z) = ~z implies that 

2ta=fM.+ ff^£, (5.44) 

and hence 

CK{z) = -*z+ *-!-. [ ^ - (5.45) 
2TTZ JdK Q-Z 

for z G mtK. Therefore the Cauchy transform of K may be expressed in terms of the 

components of the Schwarz function of dK: 

n { S~(z) zeKc. 

5.7 Singularity Correspondence 

Let T be a nonsingular analytic Jordan curve. Let / and F denote the interior and 

exterior conformal maps respectively. Observe that [97] 

S(f(u)) = J (-) (5.47) 

along \u\ = 1 and therefore 

/ ( i ) = S(f(u)) = S+(f(u)) - 5"( / («)) |u| = 1 . (5.48) 

Since S+(f(u)) is holomorphic inside the unit disk of the w-plane, the function 

^(u):=j(^j+S-(f(u)) (5.49) 

defined on the boundary |it| = 1 admits analytic continuation to the exterior of the 

unit disk. This implies that there is a singularity correspondence between the analytic 

continuation of the exterior component S~ (z) into T+ and the inverted interior confor­

mal mapping [79, 45, 97]. For example, if S~(z) has a pole of order k at z0 € T+ then 
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/ ( i ) also has a pole of order k at the pre-image UQ = /_1(zo) and vice versa. Since 

the isolated singularities and the branch points of the function f(u) and the inverted 

function / ( i ) are in bijective correspondence with each other via the mapping 

u -> i , (5.50) 
u 

the poles and branch points of the analytic continuations of / and of S~ (z) are in 

bijective correspondence with each other. 

For example, the uniformizing map / is rational if and only if S~(z) admits a 

rational analytic continuation into r + . 

Similarly, 

S ( F ( U ) ) = F Q ) (5-51) 

along |u| = 1 and therefore 

T(-J = S(F(u)) = S+(F(u))-S-{F(u)) \u\ = l. (5.52) 

Now S~(F(u)) is holomorphic outside the unit disk of the u-plane and therefore the 

function 

^(U):=F(^)+S+(F(U)), (5.53) 

defined on the boundary |u| = 1, admits an analytic continuation to the interior 

of the unit disk. Consequently a similar singularity correspondence holds between 

the analytic continuation of the interior component S+(z) into T_ and the inverted 

exterior conformal mapping. 

For example, the interior component S*(z) is polynomial of degree n if and only 

if the only singularity of the exterior conformal mapping is a pole of order n at u = 0 

apart from the simple pole at u = oo. This class of mappings is investigated in detail 

in [37]. 
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5.8 Harmonic moments 

There are two sequences of harmonic moments associated to a nonsingular analytic 

curve T. 

5.8.1 Interior harmonic moments 

The interior harmonic moments of T are given by 

CU := / (kdA(() = mok(xr+dA) (k = 0 ,1 , . . . ) . (5.54) 

It is easy to see that for large z 

-Cr+{z) fc=o 
7T / 

In terms of the electrostatic interpretation these moments can be thought of as the 

coefficients of a complex multipole expansion of the charge distribution xr+dA at 

infinity. 

There is a well-known inverse problem associated to these parameters: given the 

interior harmonic moments of a bounded simply connected domain D is it possible 

to reconstruct the domain D uniquely? In other words, the data given is the Cauchy 

transform (or the electric field generated by the uniformly charged plate D) in a 

neighborhood of infinity. 

The answer to this question is negative: there are known constructions of pairs of 

different simply connected domains whose Cauchy transforms match around infinity 

(see [97], Section 2.3 and [82]). However, a classical result of Novikov [77] says that 

if two bounded domains are star-shaped with respect to a common center and their 

moments are the same then they are equal. 
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5.8.2 Exterior harmonic moments 

There is a certain ambiguity in the definition of the exterior harmonic moments. For 

a G T+ fixed, the Taylor expansion of the holomorphic function S+(z) is given by 

, oo 

S+(z) = -J2Ca
k+i(z-*)k- (5-56) 

7T * — ' 
fc=0 

where C% are the corresponding coefficients of the series expansion. Assuming that 

0 G T+ (which is not a generic assumption) one can make the standard choice o = 0 

and define the exterior harmonic moments as 

Ck : = C°k . (5.57) 

In terms of the Schwarz function, 

Ck = i - / z-kS(z)dz (fceZ). (5.58) 

2% JT 
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Chapter 6 

Quadrature domains 

For details regarding this subsection, see [83, 25, 85, 46]. 

6 .1 T w o s i m p l e e x a m p l e s 

Let D(a,r) denote the open disk of radius r > 0 centered at a 6 C. For any function 

f(z) holomorphic in a neighborhood of D(a,r), we have that 

/ f(z)dA(z) = ± [ f(z)dzAdz 
JD{a,r) £1* JD{a,r) 

= — / f{z)~zdz (by Stokes' Theorem) 
2« JdD(a,r) 

= 1 / f(z)(^— + a)dz (6-1) 
^ JdD(a,r) \Z-a J 

= rhL f f(z) ^ 

27TZ JdD{a,r) z ~ & 

= r2nf(a) . 

Since the area integral functional is expressed as a point evaluation functional (which 

is a quadrature formula), the identity 

/ fdA = r27rf(a) (6.2) 
JD{a,r) 

66 



is called a quadrature identity. The disk D(a,r) is the simplest example of a classical 

quadrature domain. 

Let E(a,b) denote the ellipse 

z = x + iy: ^ + ̂ < l } (6-3) 

with a, 6, G K, a > 6. In terms of the complex parameters z and 2, the boundary of 

E(a, b) is given by the equation 

2a / V 2fa 

and therefore 
(a2 + 62)z - 2 a & v / ? T r ? , e c , 

2 = 5 ' ( 6 - 5 ) 

where c2 = a2 — 62 (the foci of the ellipse are — c and c) and Vz2 — c2 has its branch 

cut along the segment [—c, c] and the sheet is chosen by the condition 

Vz2 — c2 ~ 2 2 —> 00 . (6.6) 

For any function f(z) holomorphic in a neighborhood of E(a, b), we have that 

/ f(z)dA(z) = ^f f(z)dzAdz 
JE{a,b) l t JE{a,b) 

= — / f(z)zdz (by Stokes' Theorem) 
2% JdDY] (6-7) 

= -% I f(z)y/z^^dz 
c l JdD(a,r) 

= —5- / f(x)y/c2 — x2dx . 
c2 y_c 

In the last step the positively oriented contour is deformed to the segment [—c, c] 

along which 

Vz2 — c2dz = i\/c2 — x2dx , (6.8) 

where \ /c2 — x2 is the positive root. 
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The ellipse E(a, b) is a generalized quadrature domain for the measure dv = 

^ V c 2 — x2dx along the focal segment [—c, c]. 

In both examples the boundary is a nonsingular analytic curve whose Schwarz 

function is particularly simple. This allows us to change the 1 term in the boundary 

integral to S(z) and then deform the contour to obtain the quadrature identity. 

6.2 Test function classes 

The formal definition of a quadrature domain is given by Sakai in [83]. Let v be a 

positive Borel measure on the complex plane; for a nonempty domain, i.e., an open, 

connected set Q in C we consider the following test function spaces (as subspaces of 

the Banach space L1(n, dA))\ 

AL\Q) = {Re/ E L\Q, dA) \ f is holomorphic in Q} 

HL\n) = {hE L\n, dA) | h is harmonic in 0} (6.9) 

SL1^) = {s G L1(ri, dA) | s is subharmonic in 0} . 

AL1^!) is just the real part of the Bergman space L\(Vt). In general, 

ALl{tt) C HL\n) c SL\n) . (6.10) 

The first two classes are equal if O is simply connected: every harmonic function on a 

simply connected domain can be represented as the real part of an analytic function 

[78]. The function h(z) = log |z| on f2 = {z : 1 < \z\ < 2} is harmonic, but it is not 

a real part of a single-valued analytic function on Q. 

The inclusion HL1^) C SL1^) is always proper. (Consider the subharmonic 

function sa(z) := log \z — a\ for some a G fl, which satisfies sa E SLl(Q.) \ HL1^).) 

68 



6.3 Quadrature domains 

The domain Q, is called a quadrature domain for a test function class F(fl) of the 

measure v if 

(i) v is concentrated on Q, i.e. v (Qc) = 0 , 

(ii) for every / G F(fi) 

f f+dv < oo and I fdv < [fdA, (6.11) 
Jn Jn Jn 

where / + := max{/,0} . 

Note that if F(Q) is a function class such that —/ G F(£l) whenever / G F(fl) 

then the second condition is equivalent to 

/ \f\du < oo and / fdv = f fdA (6.12) 
Jn Jn Jn 

for every / G F(fl). Let Q(u, F) denotes the set of quadrature domains of v for 

the function class F. For a measure u, the quadrature domains corresponding to the 

classes AL1(fi), HLl{£l) and SLX{Q) are called holomorphic, harmonic and subhar-

monic quadrature domains respectively. We have the obvious inclusion relations 

Q(u, SL1) C Q(u, HL1) C Q(u, AL1) . (6.13) 

The study of questions related to the existence and uniqueness of holomorphic and 

harmonic quadrature domains shows the importance of the notion of subharmonic 

quadrature domains [83]. It turns out that subharmonic quadrature domains are 

unique up to sets of zero Lebesgue measure [83]. 

To illustrate the possible non-uniqueness of quadrature domains even for simple 

measures, consider the measure v supported on {z : |z| = 1} given by 

du = ^-dd 0 < 9 < 2n (6.14) 
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in terms of the parameter z = eie for some t > 0 (the total mass). Introduce the 

auxiliary notation for the annuli 

i t , := < z e C : W - < \z\ < a + t (6.15) 
7T V 7T 

Depending on the values of the parameter t, these are the sets of quadrature domains 

for the three distinguished test function classes: 

Q{v,Al}) = 
{Ra : 7r - t < a < IT} 0 < t < 7T 

Q(u,HL1) = < 

{Ra : 0 < a < TT} U {Z)(0, yft/^)} t > TT 

{Ra(t)} 0<t<7V 

{Ra{t) , D{0, y/ifa)} 7v<t<e7v 

{£>(0,V*A)} t>en 

{Rait)} 0<t<en 

{{z:0<\z\-<y/e} , D(Q,y/e)} t = en 

{D(0, y/tfn)} t > t-n , 

where a(t) stands for the unique solution of the equation 

Qi^SL1) = < 

\/{<x+t)h 

CXJ-K 

r log rdr = 0 

in the interval 0 < a < 1 for 0 < t < en (see [83], Ex. 1.2). 

(6.16) 

(6.17) 

6.4 Quadrature identities in terms of the external field 

For every point z in the complement of a domain fi the test function 

1 
az{w) = 

w — z 
belongs to Ll

a{Vt. dA). If fi G Q(u, ALl) for some measure then 

Cn{z) = Cv{z) z e Qc . 

(6.18) 

(6.19) 
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As a consequence of an approximation theorem of Bers [14], the linear combinations 

of the test functions {az}zeQc are dense in Ll(Q,,dA). Therefore the equality of the 

Cauchy transforms outside is equivalent to the holomorphic quadrature property for 

v. 

Similarly, using the harmonic test functions hz(w) = log r ^ j for z G $~2C and the 

fact that the linear combinations of the /iz's and their derivatives are dense in HL1^) 

[83], the harmonic quadrature property is equivalent to 

U"(z) = Un{z) z E nc . (6.20) 

The quadrature inequality holds for the class of subharmonic functions if and only 

if 

U"(z) = Ua{z) zenc 

(6.21) 
U"(z) > Un{z) z e C . 

6.5 Classical quadrature domains 

A domain ft is a classical quadrature domain if it is a holomorphic quadrature domain 

for a positive linear combination of point masses: 

u = YJ(3k5ak. (6.22) 
fc=i 

Confluence of points in the above formula may be considered: this gives rise to the 

more general form of classical quadrature identities: 

n rrik 

/ fdA = YlJ2^f{l)M f G Lltfl) . (6.23) 

It was shown in [4] that if a domain fl satisfies a classical quadrature identity of the 

form (6.23) then there exists an irreducible polynomial Q(x,y) £ C[x,y] such that 

dttc{zeC : Q(z,z)=0} . (6.24) 
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In particular, if Q is simply connected then (6.23) is equivalent to the condition that 

the interior uniformizing map is rational (see also [25]). Obviously, the rationality 

of the interior conformal map implies the existence of the polynomial Q as we saw 

above. 

If dQ is a nonsingular analytic curve then the corresponding Schwarz function 

satisfies the equation 

Q(z,S{z)) = 0 (6.25) 

by analytic continuation. 

6.6 Potentials associated to analytic curves 

Definition 6.6.1 ([104]) An admissible potential is said to be quasi-harmonic if it 

is of the form 

Q: E -> (-oo, oo] Q{z) = a\z\2 - 2Re{H(z)) (6.26) 

where £ has non-empty interior, a > 0 and H(z) is holomorphic in int(E). 

Definition 6.6.2 ([68]) The potential 

Q(z) = a\z\2 - 2Re(H(z)) (6.27) 

is called semiclassical if H'{z) is a rational function on the Riemann sphere. 

The relevance of these potentials is justified by the following result: 

Theorem 6.6.1 ([63]) For a nonsingular analytic curve G the negative of the loga­

rithmic potential of the area measure of the interior region 

-UG+{z) = - [ log,— l--dA{w) (6.28) 
JG+ \Z-W\ 

is quasi-harmonic in G+. 
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Proof. Let z0 e G fixed. Since dzU
G+(z) = \CG+{z) and 

CG+{z) = -TTZ + TVS+(Z) (6.29) 

for z G G+, the logarithmic potential inside G is given by 

-UG+(z) = \\z\2 -TrRe ( / 2 S + ( C R ) +C , 

(C is a ration) which is obviously quasi-harmonic. 

(6.30) 

It is easy to see that we get semiclassical potentials in (6.28) if and only if S+(z) 

is rational. By the singularity correspondence, this is equivalent to the requirement 

that the exterior uniformizing map of the domain G_ be rational. 

The normalized area measure on G+ 

dn := A,Q ,XG+dA (6.31) 

has the logarithmic potential 

Assume that H(z) is an analytic continuation of the function 

* ' S+(C)d( (6.33) 
2A(G+) Jzo 

to int(E) for some closed set E containing cl(G+). Then the external potential 

V(z) := a\z\2 - 2Re(H(z)) (6.34) 

with 

° : = MG7) (6'35) 

satisfies the first half of the equilibrium condition (4.25) 

U"{z) + V(z) = const. z € cl(G+) . (6.36) 
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Theorem 6.6.2 ([63]) Consider the quasi-harmonic potential 

Q(z) = l\z\
2 - 2Re(H{z)) zEE (6.37) 

and assume that on the interval (to,^i) fO < to < t\ < cx>) there is a monotonically 

increasing one-parameter family of compact sets 

KtcE te{t0,h) t0>0 (6.38) 

with nonsingular analytic boundaries such that 

• 0 e Kt for allt G (t0,ti). 

• The area grows linearly in t: A(Kt) = t for all t € (t0, h). 

• The measure 

dfr •= A(K\XK*dA (6-39) 

is the equilibrium measure for the potential \Q(z) for t £ (to, ti). 

Then the exterior harmonic moments are preserved in the course of the evolution: 

Ck(t) = Ck t £ ( t 0 l t i ) . (6.40) 

Proof. The exterior harmonic moments of Kt are given by the Taylor expansion of 

the Schwarz function Sf(z) of dKt at z = 0: 

oo 

St{Z) = YJCk+xit)zk • (6.41) 
fc=i 

Since fj,t is the equilibrium measure of \Q(z) we have that 

jQ{z) + U>u{z) = Ft z£Kt (6.42) 

for some time-dependent constant Ft. This equality is equivalent to 

^Re (J 5+(C)dc) " iMH(z)) = Gt z £ Kt (6.43) 
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for another constant Gt in z. Therefore applying dz gives 

^ t f ( z ) - \H\Z) = 0 z 6 Kt (6.44) 

which means that 
°° 9 

V c w ( f ) z k = - H ' ( z ) . (6.45) 

The expression on the right hand side is independent of t which is enough to conclude 

that the exterior harmonic moments are preserved. 

6.6.1 Polynomial curves 

Consider analytic Jordan curves given by rational exterior conformal maps F(u) with 

pole at u = oo only: 

n 

F{u) = ru + Y^^T r>0 ,an^0 ,nEN . (6.46) 
k=ou 

In this context these curves appear in the works by Wiegmann and Zabrodin. Elbau 

refers to them as polynomial curves in [37]. The above mappings are univalent and 

produce a nonsingular boundary G only for a certain subset of the parameter space 

(r,a0, ••• ,an). 

The following observation is due to Makarov [67]: The interior component S+(z) 

of the Schwarz function of the image curve G is given by 

^ 1 f F(l)F'(u)du 
S+(z) = T-. / V" , V ' • (6-47) 

2rn JM=1 F{u) - z 

It is known that the generating function 

rw =±m <-) F(u)-z ^ u 
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for large u gives the Faber polynomials {Pk(z)}k
KL0 corresponding to the exterior 

conformal mapping F [90]. Also 

T(l)=ru+it*kuk • t6-49) 
Comparing the coefficients in the contour integral representation we get 

n 

S+(z) = Y/akPk(z). (6.50) 
fc=0 

Therefore the corresponding Schwarz function is a polynomial of degree at most n. 

The corresponding potentials are not admissible in the Saff-Totik sense unless 

n< 2. 

6.6.2 Polynomial curves of degree two 

Assume that 

H(z) = az + —z2 (6.51) 

where \T\ < 1. In [38] it is proven that the equilibrium measure /JW is given by 

d^w = AfG+\XG+dA ., (6.52) 

where G is a polynomial curve. Since 

S+(z)=H'(z)=T2z (6.53) 

has a simple pole at z = oo the singularity correspondence implies that F has to be 

of the form 

F(u) =ru + a0 + — , (6.54) 
u 

where r > 0. To find the coefficients r,ao and a\ we use (6.49): 

, T 2 - , a i ( z - a o ) (RKK\ 
a + 1 z — ao H • (o.ooj 
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Therefore 
—2 a + T2a , . 

ai=rT , aQ= l __ . (6.56) 

The conformal radius r is fixed by the area equation (5.8): 

7T 

2a=,{r>-M')^r = yj^-Wy (6.57) 

The image G of the unit circle under F is the boundary of an ellipse in the z-plane. 

The ramification points of F where F'{u) = 0 are u = T and u = T. The condition 

|T| < 1 ensures that F(u) is univalent in the exterior of the unit disk. The focal 

points of the ellipse are the images of these points under F: 

z±=a0± 2rT . (6.58) 

Note that if T = 0 then G is a circle of radius 

r = {h (6'59) 
centered at z = a. 
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Chapter 7 

Riemann—Hilbert approach 

For a more detailed description of the Riemann-Hilbert approach, see [30, 53, 54, 20, 

65, 15]. 

7.1 Riemann-Hilbert problems 

A Riemann-Hilbert (factorization) problem is given by a pair (T,G) where T is a 

system of oriented contours in the complex plane and M: F —> GL(n, C) is an n x n 

matrix-valued function defined on I\ We seek a function Y(z) satisfying 

(i) Y(z) is holomorphic in C \T and has continuous non-tangential boundary values 

Y+(z) and Y_(z) along T, 

(ii) Y+(z) = Y_(z)M{z) for z e T, 

(hi) Y(z) ~ / as z —> oo. 

The solution to a Riemann-Hilbert problem may not exist or it may not be unique. 

78 



7.2 The Fokas-Its-Kitaev R H problem for orthogonal poly­

nomials 

Let T be a system of oriented contours and w(z) be a weight function analytic in 

a neighborhood of T such that the complex moments vk{w\ Y) exist for all k > 0. 

Consider the following Riemann-Hilbert problem for a 2 x 2 matrix-valued function 

Y(z) [55]: 

(i) Y(z) is holomorphic in C \ T, 

(ii) Y(z) has continuous boundary values Y+(z) and Yl(.z) along T and 

1 w(z) 
Y+(z)=Y_(z) 

0 1 
(7.1) 

(iii) 

Y(z)={l + 0(- CO (7.2) 
zn 0 

0 z~n 

The following results are known to be valid in this case [55]: 

(i) If a solution Y (z) exists then it is unique. 

(ii) The solution exists if and only if det(M(n)(u>, T)) ^ 0 and the solution is given 

by the 2 x 2 matrix-valued function 

1 [pn(t)(t)dt 
Pn{z) 2Wr~T37-

gn_i(£)w(t)cft 
Y(z) = 

qn-\{z ) ~f 
1 2TTiJr 

t-z 

(7.3) 

where the first column is expressed in terms of non-Hermitian monic orthogonal 

polynomials of degree n and n — 1 with respect to the weight to as 

2/K'h 

pn{z) = Pn(w; z) qn-i(z) = -.——Pn-i(w; z) (7.4) 

(see Sec. 3.4). 
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7.3 Deift—Zhou nonlinear steepest descent method for the 

Fokas-Its-Kitaev Riemann-Hilbert problem 

We provide a very brief introduction to the main steps of the Deift-Zhou nonlinear 

steepest descent method for orthogonal polynomials on the real line, following the 

presentation of [53]. 

We study the asymptotic behavior of the matrix-valued function 

1 f Pn,N(t)e-NVUdt 

Y{z) := Yn,N{z) = 

in the scaling limit 

PU,N(Z) 

2TTI 

J 
Jm 

hn-l.N 
Pn-l,N{z) 

2ixi JR t — z 
1 f Pn^N{t)e-NV^dt 

<-n-l,N JM. 

n 

t-z 

(7.5) 

n —> oo , N —> oo , — —> i > 0 

for some t > 0. For simplicity, we assume that 

7V = ^ 
t 

(7.6) 

(7.7) 

7.3.1 The ^-function and the 'undressing' 

The first difficulty arising in the analysis of the Fokas-Its-Kitaev Riemann-Hilbert 

problem is the non-standard asymptotic condition 

Y(z) = [I + O oo 
z 

0 z'n 

One might try to eliminate this problem by considering the undressed matrix 

-n 0 
(7.8) 

U(z) := Y(z)z~ no-3 zec\: (7.9) 

where the abbreviated notation z n<T3 uses the Pauli matrix 

1 0 
0 3 

0 - 1 
(7.10) 
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The matrix U(z) satisfies a Riemann-Hilbert problem with the desired asymptotics 

U(z) = I + o(-j z^oo. (7.11) 

However, a serious drawback of this approach is that by removing the singular be­

havior at z = oo we introduce a new singularity at z = 0 and therefore this new 

Riemann-Hilbert problem is no simpler than the previous one. On the other hand, to 

achieve the normalization for large z one can use any matrix G(z) = Gn(z) depending 

on n that is holomorphic and invertible in C \ R and 

z^Gniz)-1 ~ I n - • oo . (7.12) 

The jump of the undressed matrix 

U(z):=Y(z)G-\z) zeC\R 

is given by 

U+(x) = Y+(x)Gl\x) 

= Y.(x)M{x)G+\x) 

= r_(x)G_(x)-1G_(x)M(x)G;1(x) 

= U-(x) [G-(x)M(x)G+l{x)] . 

We seek G(z) of the special form 

G{z) = Gn{z) = zn9(z)az z e C \ R , 

where g(z) is a holomorphic function in C \ R satisfying 

T 
g{z) = \ogz + 0 oo 

In terms of g(z), the jump matrix is of the form 

en(g-(x)-g+(x)) e n ( - ] V ( i ) + 9 + ( i ) + 9 - ( i ) ) 

en9-{x)M{x)e-n9+{x) = 
0 0n(g+(x)-g-(x)) 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

(7.17) 
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(7.18) 

Note that for points x E R where eng^ has no jump, the jump of the undressed 

matrix has the form 
1 en(-\V(x)+2g(x)) 

0 1 

The goal is to find a function g(z) such that this jump matrix is sufficiently close to 

the identity matrix for large n: it is reasonable to expect that then the solution is 

close to the identity as well, i.e., 

Y(z) ~ Gn{z) n ->• oo . (7.19) 

Note that if g{z) has continuous boundary functions g+(x) and g-(x) there must be 

a non-empty set / C K where 

h{x) := g+(x) - g.(x) xEl (7.20) 

is non-zero because otherwise the asymptotic condition (7.16) cannot be satisfied. 

Following the steps of the non-linear steepest descent method [30], we seek a func­

tion g(z) (the g-function corresponding to this Riemann-Hilbert problem) such that 

the following conditions are satisfied: 

(g-1) The function g(z) is holomorphic in C\R and has continuous boundary functions 

g+(x) and g-{x) on R. 

(5-2) 

g(z)=\ogz + Oi-) z^oo. (7.21) 

(51.3) There exists a set / C M such that 

g+(x)+g.(x)-jV(x) = e xEl (7.22) 

for some constant £ E M. and 

Re(g+(x)-g^(x)) = 0 xEl. (7.23) 
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(gA) The inequality 

holds and 

Re [ g+(x) + g_(x) - -V(z)-e) < 0 i e R \ / (7.24) 

en(g+(x)-g-(x)) = j xER\I _ (7.25) 

(g.h) The function 

h(z) = g+(z) - g^(z) (7.26) 

has an analytic continuation in a thin lens-shaped region D around I such that 

Re(/-i(z)) > 0 zEDD {Re(z) > 0} 

Re(h(z)) < 0 ze DD (Re(z) < 0} . 

The relevance of the assumptions (g.3), (gA) and (g.5) is not clear at this stage; 

the meaning of these will be clarified by the steps of the analysis below. Also, the 

existence such a ^-function is not at all obvious from the above set of conditions. 

It can be shown that the conditions (g.l), (g.2) and (g.3) lead to a scalar Riemann-

Hilbert problem for g'(z) and, for real analytic potentials / consists of a finite number 

of compact intervals [26]. The remaining conditions of the <?-function are then used to 

find the endpoints of the intervals where g(z) has jumps. This solution is intimately 

connected to the equilibrium measure of the potential 

Vt(x) = lv{x) . (7.28) 

Heuristically, the theorem on the asymptotics of the zeroes of the orthogonal poly­

nomials 4.8.2 suggests that 

1 1 f 1 
~ loS TB—T^T ~ / l o § 1 \df*v/t(s) n - • oo , (7.29) 
n \Pn,N{z)\ J \z - s\ 

where (xy/t IS the equilibrium measure corresponding to ^V, since the normalized 

counting measure of the zeroes converges to the equilibrium measure. Therefore it is 
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expected that 

PU,N(Z) ~ n / log(z - s)d/iv/t(s) n —> oo . (7.30) 

Comparing this to (7.19) it is not surprising that the y-function is given by the 

complex logarithmic potential of the equilibrium measure [30]: 

g{z) = I \og{z - s)diiv/t(s) z e C \ l . (7.31) 

As we indicated above, the ^-function can be constructed without considering the min­

imization problem just by solving a scalar Riemann-Hilbert problem implied by the 

g-function conditions. It is important to note that for certain types of non-Hermitian 

orthogonal polynomials the ^-function can be constructed based on a similar set of 

conditions. This construction is not always associated to the solution of a variational 

problem (see [16] for a general scheme and Chap. 12 for a special case of such a 

situation). 

7.3.2 Lens opening 

From now on, for simplicity, assume that the jump set of g-function consists of a 

single bounded closed interval 

I =[a,b] - oo <a < b < oo . (7.32) 

(The analysis can be carried through for the case of several intevals in a similar way 

as described below.) 

On the interval I CM. where (7.22) is prescribed, the jump matrix of the undressed 

matrix is 
en(g-{x)-g+(x)) ^nt 

Q en(9+{x)-9~(x)) 
(7.33) 
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where £ is the related to the modified Robin constant of the variational problem. It 

is easy to see that the slightly modified undressed matrix 

U{z) := e^Y{z)e-ng{z)aze-^a3 zeC\R (7.34) 

gives the jump 

an(g-(x)-g+(x)) 1 

0n(g+(x)-g_{x)) 
x <E (a, b) (7.35) 

0 e-

Since g+(x) — g~(x) is purely imaginary on / , the diagonal terms exhibit rapid oscil­

lations as n —> co. Note that if x is slightly moved off the segment / into C \ R, by 

our assumption on the sign of the real part of the auxiliary function h(z), one of the 

diagonal terms decays while the other grows exponentially (the rate of convergence 

depends on the location of x) as n —• co. Therefore a simple deformation of the 

contour is not effective in making both diagonal terms exponentially small. Instead, 

by using the matrix identity 

A 

0 A - i 

1 0 

A'1 1 

0 1 

- 1 0 

1 0 

A 1 
A^O, (7.36) 

we can split the jump matrix and use both sides of / at the same time. More precisely, 

we can fix two contours T+ and T_ lying entirely in D enclosing the domains Q+ and 

f2_ for which we define the following modified matrix-valued function: 

U(z) 
1 0 

_e-nh(z) j 
z£fl+ 

T{z) := { 
U(z) 

1 0 

enh(z) Y 

U(z) 

z e D -

zeC\(fi+un_uRur+u r_ 

(7.37) 
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Straightforward calculation gives that T+(z) = T-(z)H(z), where 

1 0 
zeT+ , 

e-nh{z) ^ 

H(z) = I 
1 0 

enh{z) ^ 

0 1 

- 1 0 

z e r _ (7.38) 

zel 

This shows that the resulting matrix satisfies a Riemann-Hilbert problem whose jump 

matrix is exponentially close to the identity at every point of (R U Ti U T2) \ /• The 

exponential rate is uniform outside small neighborhoods of the endpoints a and b. 

7.3.3 Model problem 

The above seen asymptotic properties of the jump matrix that determines T(z) = 

Tn(z) suggest that it approximates the solution of the following model problem on the 

interval [a, b]: 

(1) fy(z) is holomorphic in C \ [a, b] and has continuous boundary values on (a, b) , 

(2) 

\P+(.T) = *_(x) 
0 1 

- 1 0 
x £ (a, b) (7.39) 

(3) V(z)=I + 0(±) a s 2 - > o o . 

Note that the solution of this Riemann-Hilbert problem is not unique: without pre­

scribing the asymptotic behavior at the endpoints x = a and x = b, the solution 
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is defined up to adding meromorphic matrix-valued functions E(z) holomorphic on 

C \ ({a} U {b}) such that 

E{z) = o(-J z-*oo. (7.40) 

The relevant solution to this constant jump problem can be constructed explicitly 

[30]: 
B(z) + B(z)~1 B{z)-B{z)-1 

* ( * ) = 2 1 2z 
-B{z) + B(z)-1 B{z) + B(z)-1 

where 
2i 

B(z) = 
0 \ \ 

a 
z e C \ [a, b] , 

(7.41) 

(7.42) 

where the sheet of B(z) is fixed by the asymptotic condition 

B(z) = l + o(-j z -* oo . (7.43) 

Note that the exact same construction can be used if we replace [a, b] with a simple 

smooth contour E joining two arbitrary points z = a and z = b, except that the 

branch cut of B(z) has to be placed on S. 

7.3.4 Small norm Riemann-Hilbert problems 

Since jump matrix of T(z) is exponentially close to the jump matrix of ^(z) pointwise 

except at the endpoints of / , we expect that the error matrix 

S(z) = Sn(z):=Tn(z)q-\z) (7.44) 

is close to the identity matrix as n —̂  oo. The following result is of central importance 

in the conclusion of the asymptotic analysis [53, 22]: 

Theorem 7.3.1 ([53, 22]) Consider a Riemann-Hilbert factorization problem given 

by the data (T, Gn) and assume that 

\Gn(z) — /||z,2(r)ni,°°(r) < 
C 

nu 
n > no (7.45) 
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for some no G N and S > 0. Then, for sufficiently large n, the Riemann-Hilbert 

problem associated to (T,Gn) is uniquely solvable and the solution Yn(z) satisfies the 

following uniform estimate 

\\Yn(z) - / | | < f7 z € A" (7.46) 
(1 + \z\i)n5 

for n> n\ for some n\ > no, on any closed set K C C that satisfies 

inf p V > 0 . (7.47) 
zeK l + \z\ 

The behavior of S(z) at the endpoints imply that the L°°(r)-norm condition of Thm. 

7.3.1 does not hold for S(z). This problem is addressed by the construction of local 

parametrices to find a modified error matrix that does satisfy a small-norm Riemann-

Hilbert problem. 

7.3.5 Local parametrices 

The basic idea to treat the error matrix S(z) at the endpoint x = a (and similarly at 

the endpoint x = b) is to solve the jump conditions for T(z) explicitly in a sufficiently 

small disk D(a,e) around z — a, i.e., to find a matrix-valued function Pa(z) = P%(z) 

in D(a,e) such that Pa(z) has exactly the same jump conditions as T(z) and 

Pa(z) = (l + o(^j^(z) (7-48) 

uniformly on dD(a,e) as n —> oo. Using a conformal change of coordinates such 

solution Pa{z) can be constructed using Airy functions [2]; The steps of this procedure 

are not detailed here; it can be found in [30, 53]. In Chap. 12 the construction of two 

special local parametrices can be found. 



7.3.6 Conclusion of the asymptotic analysis 

Let Er denote the union of the contours 

E r := R U Tx U T2 . (7.49) 

If we consider the modified error matrix 

T{z)y-\z) zeC\{ETf)D(a,e)nD(b,e) 

S(z) := { Tiz^P^z))-1 zeD(a,e) (7.50) 

T(z)(P6(<z))-1 z£D(b,s) 

Then it is shown [30, 53] that S satisfies a small Riemann-Hilbert problem in both 

the L2 and L°°-sense and therefore 

This means that, by tracing back the steps Y >—> JJ i—> T t—* v|> and using the error 

term guaranteed by the error matrix, we obtain strong asymptotics for the original 

matrix function Y as n —• oo uniformly on compact subsets depending on the region 

in question [30, 53]. For a special case of such asymptotics, see Chap. 12. 

7.4 Quadratic differentials 

We restrict ourselves to give the definition quadratic differentials an some of their 

basic properties. For an extensive treatment of the theory of quadratic differentials 

see [89]. See also [73] for a brief and elementary introduction with examples. 

Definition 7.4.1 LetTZ be a Riemann surface with a fixed atlas {(Uk, Zk)} consisting 

of open sets Uk C 71 whose union covers 7Z and local coordinates Zk- Uk —• CF 1 
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with holomorphic transition functions on the regions of overlap. A meromorphic 

quadratic differential ip on 1Z is a collection of meromorphic functional elements pk 

that transform by the rule 

ipk(zk)dzl = <pi(zi)dzf (7-52) 

with respect to a coordinate change on overlapping coordinate neighborhoods Uk and 

Ui, i.e., 

¥k(zk) = <Pi{z) ( — J . (7.53) 

This definition is analogous to the definition of one-forms on an arbitrary Riemann 

surface [42]. A more abstract definition can also be given in the framework of algebraic 

geometry (see [73]). 

Example. On the Riemann sphere 1Z = C P 1 we consider the two overlapping 

coordinate neighborhoods 

Ui := CP 1 \ {oo} , U2 := CP 1 \ {0} (7.54) 

with local coordinates z and z respectively, such that the transition function between 

the two local coordinates is given by 

z(P) = -T5S PeU1f)U2. (7.55) 

Any rational function R(z) gives a quadratic differential denoted by R(z)dz2 on CP 1 

given by the functional elements 

tp^z) = R(z) , ^(i) = R ( \ ) 1 . (7.56) 
\ZJ z4 

A meromorphic quadratic differential i/iona Riemann surface 1Z does not associate 

functional values to the points of 7Z. However, it makes sense to consider poles and 

zeroes of ip since these are independent of the choice of the local coordinate. The 

order of a zero or a pole is also invariant under change of coordinates; the leading 
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term of ip is invariant only for poles of order two [89] (analogously to the case of 

one-forms for which only the residues are invariant). 

Definition 7.4.2 The poles and zeroes of a meromorphic quadratic differential ip are 

referred to as the critical points ofip. 

Given a point PQ E7Z, a distinguished local parameter w can be denned corresponding 

to ip{z)dz2 by considering the one-form 

u := y/<p(z)dz (7-57) 

that is integrated to 

w(P) := [ y ^ d z . (7.58) 
JPo 

Evidently, the one-form u and therefore the coordinate w is defined up to sign in a 

neighborhood of a non-critical point because of the sign ambiguity of the square root. 

The metric associated to a quadratic differential <p(z)dz2 on 1Z is given by the 

length element 

ds2 = \<p(z)\\dz\2 . (7.59) 

The Strebel length of a curve 7 with respect to <p is given by 

IM= [ \<p{z)\i\dz\ . (7.60) 
J-y 

For the properties of this metric, see [89]. The following notions associated to 

quadratic differentials are needed in Chap. 12. 

Definition 7.4.3 Let 

7 : ( a , 6 ) ^ 7 e (7.61) 

be a parametric curve on 1Z. 7 is called a horizontal arc of <p if 

V ( T ( « ) ) ( ^ ) > 0 te(a,b). (7.62) 
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^(7(i))(^r) <0 t6(a'6)' (7-63) 
the curve is called a vertical arc of\p. 

The horizontal and vertical arcs emanating from a point are distinguished geodesies 

of the metric |</?(2:)||(iz|2. A maximal horizontal or vertical geodesic is called a hor­

izontal trajectory or a vertical trajectory respectively. A critical horizontal/vertical 

trajectory is a horizontal/vertical trajectory that emanates from a critical point. 

For every non-critical point P of ip(z)dz2 there exists a unique horizontal and a 

unique vertical geodesic arc passing through P. In the vicinity of critical points, 

however, there is a completely different behavior depending on the nature and order 

of the singularity of ip(z)dz2: 

• In the vicinity of a simple zero P of 73(2) there are three horizontal trajectories 

emanating from P with asymptotic angles 2f. 

• In the vicinity of a double zero P of p(z) there are four horizontal trajectories 

emanating from P with asymptotic angles | . 

• In a neighborhood around a double pole P of ip(z) with negative leading coeffi­

cient (in any local parameter), the horizontal trajectories are concentric circles 

in terms of the distinguished parameter w defined above. 

For a complete list of the local behavior of the trajectories near critical points, see 

[89]. 
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Part II 

Results 



Chapter 8 

Superharmonic perturbations of a 

Gaussian measure, equilibrium 

measures and orthogonal 

polynomials 

8.1 Summary 

This chapter presents the results of the published paper [12]. Four main topics are 

addressed in this work: 

1. A special class of quasi-harmonic potentials (superharmonic perturbations of the 

quadratic potential) is introduced (Sec. 2). 

2. The structure of the supports of equilibrium measures corresponding to super­

harmonic perturbations is studied (Sec. 3). 

3. For orthogonal polynomials with respect to superharmonic perturbations of a 
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Gaussian weight the validity of the Its-Takhtajan matrix d-bar problem (to be 

defined below) is extended (Sec. 4 and 5). 

4. A general conjecture is stated concerning the connection between the asymp­

totic distribution of the zeroes of orthogonal polynomials and the support of the 

equilibrium measure via a quadrature identity (Sec. 6). 

8.1.1 Superharmonic per turbat ions 

In several works on random normal matrix models [92, 38, 37, 56], polynomial quasi-

harmonic potentials of the form 

Q(z) = a\z\2 - 2Re(P(z)) (8.1) 

are considered, where P(z) is an arbitrary polynomial. However, unless the degree of 

this polynomial is at most two, the corresponding matrix integrals do not converge 

since the quadratic term is no longer dominant, and there will be asymptotic sectors 

in the complex plane where the reduced matrix integrals are divergent. For the 

same reason, these potentials are not admissible for the weighted energy problem so 

there is no corresponding equilibrium measure. A standard way of regularizing these 

potentials is to introduce a cut-off domain E C C outside of which the potential 

is assumed to be infinite, i.e., the weight function is set to be zero (similar to the 

notion of an infinite well potential in quantum mechanics). This approach has the 

drawback that £ can be chosen quite arbitrarily (as long as it is bounded) and the 

dependence on the choice of E of the matrix integrals, the orthogonal polynomials 

and the equilibrium measure is not completely understood. 

As an alternative, a special class of quasi-harmonic potentials is introduced: 

Definition 8.1.1 A superharmonic perturbation of the Gaussian potential is a quasi-
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harmonic potential of the form 

Q(z):=a\z\2 + U»(z) , (8.2) 

where Uv is the logarithmic potential of a compactly supported finite positive Borel 

measure v in the complex plane. 

These potentials are shown to be admissible (Prop. 2.4) and the corresponding or­

thogonal polynomials exist (Prop. 4.1). 

8.1.2 Equilibrium measures for superharmonic perturbation potentials 

The paper [12] contains three results on the structure of the supports of equilibrium 

measures for superharmonically perturbed Gaussian weights, which are presented 

below in Thms. 8.1.1, 8.1.2 and 8.1.3. 

First, as an illustration of the complicated structure of the equilibrium domains, 

the following lemma presents a detailed calculation of the support of the equilibrium 

measure for the simplest non-trivial case 

Q(z) = a\z\2 + p\ogv^— (8.3) 
\z-a\ 

where the perturbing measure v is a Dirac point measure of mass f3 > 0 concentrated 

at a E C. It is important to note that although the result was known [92, 67] and 

is elementary to derive, there seems to have been no complete proof available in the 

existing literature. 

Lemma 8.1.1 (Prop 3.3, [12]) Define two radii R and r as 

R:=y^r r:= 

The equilibrium measure \IQ is absolutely continuous with respect to the Lebesgue 

measure with constant density —. The shape of supp(//,g) depends on the geometric 

arrangement of the disks D(0, R) and D(a, r) in the following way: 
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(i) IfD{a,r) C D(0,R) then 

SQ = D{0, R) \ D(a, r) . (8.5) 

(ii) If D(a,r) (£_ D(0, R) then SQ is simply connected and uniformized by a rational 

exterior conformal mapping of the Joukowski-type [1]: 

F(u) = ru + a0 + —^— , (8.6) 

u — A 

where the coefficients r e M+, 0 < |J4| < 1 and ao, v G C are uniquely determined 

by the parameters a, (3 and a. 

The different possible configurations are illustrated in Fig. 8.1. The equilibrium 

measure of the special potential considered above has a simple structure if D(a, r) C 

D(0,R): the equilibrium support is the difference of two disks. There is a simple 

explanation of this from a potential theoretic point of view, as follows. The potential 

Q(z) is the sum of a quadratic term 

Q(z) := a\z\2 (8.7) 

with Laplacian 

AQ(z) = 4a , (8.8) 

and a pure logarithmic potential term Uv(z) corresponding to the measure v = pSa. 

Note that the modified variational problem 

+ 2 / a\z\2dfi(z) —»• min. 
(8.9) 

/ / log -:——-dp,(z)dp,(t) + 2 / a\z\2dfl(z) —> min. 

/1(C) = 1+/? 

with increased total charge 1 + j3 is solved by the measure 

d^Q = -^XD{o,R)dA , (8.10) 
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D(a,r) c D(0,R) a + r = R 

D(a,r)\D(0,R)^$ D{a,r) D D(0,R) = 0 

Figure 8.1: The shape of the support SQ for the different configurations 

where the radius R is the same as (8.4). The excised disk D(a,r) with density — is 

equivalent to the point measure v = f55a outside D{a, r), in the following sense: 

2a 

2a 

UD{a'R\z) = Uu{z) z e C\.D(a, r) 
(8.11) 

7T 

t-UD{a>R\z)>U"(z) zED(a,r). 

This pair of relations is equivalent to the subharmonic quadrature property of the 

disk D(a, r) with respect to the measure r25a. 

Therefore, using the variational inequalities (4.25) for Q, the following inequalities 
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hold: 

Q(z) + U^{z) = Q(z) + Uv{z) + —U^°'R)(z) - —UDM(z) 
7T 7T 

2a, = Q(z) + U^(z) + Uv{z) UD{a'r)(z) 
n 

Q(z) + U^(z) > Fn 

= < F Q 

2a 

zeC\D(0,R) 

z eD(0,R)\D(a,r) 

FQ + U"(z)-—UDM(z) > FA 
IX 

Q z £ D(a,r) 

(8.12) 

In the electrostatic configuration described by the external potential the perturbing 

charge v can be regarded as a 'fixed deposit' of charge 0 in the presence of the 'pure' 

quadratic potential Q. The electrostatic effect of the fixed charge u is the same as 

that of the disk D(a,r) with uniform charge ^s outside D(a,r). Hence as long as 

D(a, r) C D(0, R), the movable charge //. in the variational problem can be arranged 

in such a way that the electrostatic effect of the sum /J, + v is the same as that of the 

equilibrium measure fiQ and therefore /z + v is in equilibrium in the presence of the 

potential Q. 

The generalization of this idea motivated the following 

Theorem 8.1.1 (Thm. 2.4, [12]) Assume that the perturbation measure u can be 

decomposed into a sum 
m 

v = y^vk (8.13) 
fc=i 

where the measures v^ are all finite positive Borel measures satisfying the following 

conditions: 

(i) The supports of the measures v^ are pairwise disjoint and each Uk has positive 

total mass. 
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(ii) Each rescaled measure ^vk has a unique maximal subharmonic quadrature do­

main Dk for k = 1 , . . . , m. 

(Hi) The domains Dk are pairwise disjoint and Dk C D(0, R) for k = 1 , . . . , m where 

(8.14) R 
1 + z/(C) 

2a 

Then the equilibrium measure HQ is absolutely continuous with respect to the Lebesgue 

measure with constant density —, supported on the compact set 

K:=D(0,R)\l\jDk (8.15) 
\k=l 

Figure 8.2: A configuration involving subharmonic quadrature domains: a disk, a two-point quadra­

ture domain and an ellipse 

The situation described in Thm. 8.1.1 is illustrated in Fig. 8.2 for the configuration 

involving the enclosed quadrature domains, corresponding to a point charge, a pair of 

point charges with overlapping disks and a line of charge corresponding to an elliptic 

quadrature domain. The conclusion of Theorem 8.1.1 does not hold if some of the 

domains Dk overlap or intersect the exterior of D(0, R). The complete description of 

all possible configurations becomes quite complicated geometrically if we relax any 
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of the conditions above. However, it is plausible to expect that the support of the 

equilibrium measure is always contained in the disk D(0,R). 

The following result confirms this assertion if v is a positive rational linear com­

bination of point masses. 

Theorem 8.1.2 (Thm. 3.5, [12]) Let u is a measure of the form 

m 

= ! > * « * (8-16) 
m 

V 

where n, T2, - • • ,rm are positive rational numbers. Then the support Sw of the corre­

sponding equilibrium measure is entirely contained in the closed disk D(0, R) where 

8.1.3 The Its-Takhtajan d-har problem for orthogonal polynomials 

The nonlinear steepest descent method of Deift and Zhou applied to the Riemann-

Hilbert problem of Fokas, Its and Kitaev (Sec. 7.2) provided the strong asymptotics 

for orthogonal polynomials on the real line. No comparable method is as yet devel­

oped that is similarly applicable to the asymptotics of orthogonal polynomials in the 

plane. However, some partial results in this direction are known, in which, for certain 

classes of potentials, instead of an associated Riemann-Hilbert problem, the orthog­

onal polynomials are uniquely determined by a suitable d-bax problem. Consider 

quasi-harmonic potentials in the plane 

Q(z) = a\z\2 - 2Re(H{z)) z G E (8.18) 

that are admissible (see Sec. 4.4) and such that the corresponding orthogonal poly­

nomials Pn,N(z) satisfying 

f Pr,.N{z)PmM(z)e-NQ{z)dA(z) = hn^5nm (8.19) 
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exist. In a recent attempt to find an analog of the Riemann-Hilbert approach valid 

for for polynomial quasi-harmonic potentials with a compact cut-off set E, Its and 

Takhtajan [56] considered the 2 x 2 matrix-valued function 

YntN(z) :--

PU,N{Z) 
1 f Pnjtjw) _NQ{. 

TT JC W- Z 

w)dA{i w 

7 Pn~i,N{z) / e vv >dA{w) 
n-n-l,N hn-l,N JC w ~ z -• 

that satisfies the following d-bar problem: 

0 - e - ^ W 

&zYn,N(z) = Yn:N{z) 

0 0 

They showed in [56] that the d-bar problem 

(1) M(z) is continuously differentiable on C, 

(2) M satisfies the d-bax equation 

^ 0 - X E ( z ) e - ^ W 

e C . 

dzM(z) = M(z) 

0 0 

z e C 

(3) 

M(z) = [I + O y-n(T3 OO 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

characterizes the matrix function Yn^(z) uniquely and therefore determines the monic 

orthogonal polynomial Pn,N(z). Note that E is compact and therefore Yn^{z) is 

holomorphic outside E. 

It is shown in [12] that the validity of this d-bai problem can be extended to 

superharmonic perturbations of the Gaussian weight with no cut-off: 
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Theorem 8.1.3 (Prop. [12]) Assume that 

Q(z) = a\z\2 + U"(z) (8.24) 

is a superharmonic perturbation of the quadratic potential. Then the 2 x 2 matrix-

valued function Yn,N{z) 

Yn,N{z) = 

PU,N{Z) 

7T 
-PU-I,N{Z) 

_1 f Pn,NJw) c_NV(w 

IT Jc W - Z 

1 f Pn-iiN(w) _ 

]dA{w) 

NV(w) 

hn-\,N ' hn^\^ JC W — Z 

is the unique solution of the following matrix d-bar problem: 

(1) M(z) is continuously differentiable on C, 

dA(w) 

(2) M satisfies the d-bar equation 

t\M(z) = M(z) 

0 - e - " v W 

0 0 

zeC 

(3) 

M(z)= I + O j - -naz OO . 

(8.25) 

(8.26) 

(8.27) 

The details of the proof are given in the paper [12], comprising the next subsec­

tion. Similarly to the Fokas-Its-Kitaev Riemann-Hilbert problem, the Its-Takhtajan 

<i-bar problem uniquely characterizes the orthogonal polynomials. The first steps of 

a method to analyse this d-bar problem are laid down in [56]; however, at present, 

this approach is not sufficiently developed to provide asymptotic expansions of such 

orthogonal polynomials. 
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8.1.4 Zeroes of orthogonal polynomials and quadrature domains 

Recall (Sec. 4.8) that, under suitable regularity assumptions on the potential, V(x) 

on the real line, the following three sequence of measures converge to the equilibrium 

measure of V in the appropriate scaling limit: 

• the density of the one-point function of the matrix model (Thm. 4.8.1), 

• the normalized counting measure of a fixed Fekete point configuration (Def. 4.5.1 

and Thm. 4.5.1), 

• the normalized counting measure of the zeroes of the corresponding orthogonal 

polynomials (Thm. 4.8.2). 

Recall also that the analogues of the first and the second statements are valid for 

normal matrix models as well (Thms. 4.8.3 and 4.5.1). 

However, the following two examples indicate that the analogous statement to 

Theorem 4.8.2 does not hold for planar orthogonal polynomials. These examples 

however suggest a suitable generalization of Thm. 4.8.2 that forms the basis of the 

above mentioned conjecture. 

Example 1. Circular symmetric planar Gaussian "weights. For the potential 

Q(z) = a\z\2 (8.28) 

the equilibrium measure is given by (recall Sec. 6.6.2) 

dVQ = -ft^XD{o,R)dA (8-29) 

where 

R = (8.30) 
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By the circular symmetry of the potential, 

<>2ir roo 

/ znzke-a]zl2dA(z) = / / rn+k+1ei{n-k)ee-ar2drd6 
Jc JO JO (o o-i\ 

an+1 J0 

r°° _ 7rn! 
sne sds = -~rrrSnk 

where z = rel9. Therefore the corresponding monic orthogonal polynomials are just 

the monomials: 

Pn{e-M2dA; z) = zn . (8.32) 

(Note that this is true for every circular symmetric potential.) The normalized count­

ing measure of the zeroes is 6Q for every n, so the asymptotic distribution is also 5Q. 

This means that 

Vn,N - ^ SQ 7^ fJLQ . (8 .33) 

Example 2. General planar Gaussian weights. The quadratic potential function 

Q(z) = \z\
2 - I (T2Z2 + r V ) , 0 < \T\ < 1 , (8.34) 

corresponds to the Gaussian weight 

w(z) = 

exp ( - [(1 + Im(T)2 - Re(T)2)z2 + (1 + Re(T)2 - Im(T) 2)y2 + 4Re(T)Im(T)xy]) , 

(8.35) 

where z = x + iy. The covariance matrix of this Gaussian density is positive definite 

if and only if | r | < 1. 

The equilibrium measure is given by (Sec. 6.6.2) 

d^Q = ~W^\^EdA • ( 8 - 3 6 ) 

where E is the ellipse given by the exterior uniformizing map 

T2 

F[u) = ru + — , (8.37) 
u 
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with conformal radius 

The foci are given by 

r = ^W^W)- <8'38) 

±c = ±£ (8.39) 

where we use the abbreviated notation 

The monic polynomials Pn,./v (z) with respect to the scaled weight function 

wtf-e-^'W1**^) (8.41) 

are expressible in terms of the Hermite polynomials [31] (see Thm. 3.5.1) 

Pn>N{z) = ^WF«Hn (^-a
z) • (8'42) 

Since 

^ M F ) = ^ I M ^ ) <8-43> 2" AT! 

is the monic orthogonal polynomial on the real line with respect to the weight 

wN (x) = exp (-Nx2) , (8.44) 

Thm. 4.8.1 implies that the normalized counting measure of the zeroes of the rescaled 

Hermite polynomials converges to the Wigner semicircle distribution 

dnu,(x) = —X[-i,i\{x)Vl - x2dx , (8.45) 

as n, TV —» oo, ^ —> \. Therefore the normalized counting measure of the zeroes of 

PTI,N{Z) converges to the probability measure 

da(z) := | | l / l - ( y ) 2 ^ (8-46) 
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Figure 8.3: The zeroes for the orthogonal polynomials for the special cases above 

along the focal segment [—c, c] of E. Note that this density gives the normalized 

quadrature measure for E; for any integrable holomorphic function / on E, 

w)LfdA=fjd°-A(E) 
(8.47) 

The configuration of the preceding two examples is illustrated in Fig. 8.3. Based 

on these examples one can formulate the following 

Conjecture 8.1.1 (Sec. 6, [12]) Assume that Q(z) is an admissible quasi-harmonic 

potential of the form 

Q(z) = \z\
2 - 2Re(H(z)) z G E (8.48) 

with the corresponding monic orthogonal polyomials Pn.N{z) characterized by the or­

thogonality relations 

[ PnMz)zke-N^2+2NRe{H{z))dA(z) = hn,N5nk k = 0 , . . . , n - 1 
Jc 

(8.49) 
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(1) For every t > 0 there exists a probability measure at supported in the polynomial 

convex hull of SQ/J 

supp(a4) C Pc(5g / t) (8.50) 

such that the full sequence of normalized counting measures of the zeroes of 

PU,N{Z) converges to at in the weak-star sense: 

vn,N -^ o-t (8.51) 

in the scaling limit 

n -> oo, N -> oo, — -> t . (8.52) 
N 

(2) The Cauchy transforms of the equilibrium measure and the asymptotic zero dis­

tribution are the same outside the polynomial convex hull of the support SQ^: 

CliQ/t (z) = Cn (z) z e C \ Pc(5Q/ i) . (8.53) 

(3) The measure at is supported along the union of a collection of curve segments 

UjBj depending the value oft for which C,j.Q/t{z) admits an analytic continuation 

Ft{z) to C \ UjB*- such that the one-form 

Re{F\{z) - Fi(z))dz (8.54) 

vanishes along each curve Uj&j. Some of the curves ofUjBj may degenerate to 

points. 

For the case of polynomial quasi-harmonic potentials with a compact cut-off set S, 

essentially the same conjecture appears in [37]. 

Note that this conjecture consists of three distinct statements: 

(1) It is conjectured that there is a unique accumulation point of the sequence of 

measures {vn,N}n- There are many examples of orthogonality measures in [88] for 
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which the sequence of normalized counting measures of the zeroes of orthogonal 

polynomials have more than one accumulation points. 

(2) The weak part of the conjecture is that the asymptotic distribution of the ze­

roes and the equilibrium measure have the same Cauchy transforms outside the 

polynomial convex hull of SQ/*. In [37] this part is proved for cut-off polyno­

mial quasi-harmonic potentials using the multiple integral representation (3.18) 

of Heine for Pn>N and the large deviation method of Johansson [58]. This fact is 

also known for certain classes of general orthogonal polynomials [88]. 

(3) The strong part is the localization of the asymptotic distribution along curves. 

Conceptually this is the same problem as finding a minimal quadrature measure 

for a given bounded domain in the plane [46, 84]. The one-form condition (8.54) 

is just a tautology because it is implied by the positivity of at via the Sokhotski-

Plemelj formulae (5.29). 

8.2 Superharmonic perturbations of a Gaussian measure, equi­

librium measures and orthogonal polynomials, Complex 

Analysis and Operator Theory, 3 (2): 333-360, 2009. 
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Super harmonic Perturbations of a Gaussian 
Measure, Equilibrium Measures and 
Orthogonal Polynomials 

F. Balogh and J. Harnad 

Abstract. This work concerns superharmonic perturbations of a Gaussian 
measure given by a special class of positive weights in the complex plane 
of the form w(z) = exp(—\z\2 + UIM{z)), where V(z) is the logarithmic po­
tential of a compactly supported positive measure /i. The equilibrium measure 
of the corresponding weighted energy problem is shown to be supported on 
subharmonic generalized quadrature domains for a large class of perturbing 
potentials V(z). It is also shown that the 2 x 2 matrix d-bar problem for 
orthogonal polynomials with respect to such weights is well-defined and has a 
unique solution given explicitly by Cauchy transforms. Numerical evidence is 
presented supporting a conjectured relation between the asymptotic distribu­
tion of the zeroes of the orthogonal polynomials in a semi-classical scaling limit 
and the Schwarz function of the curve bounding the support of the equilib­
rium measure, extending the previously studied case of harmonic polynomial 
perturbations with weights w(z) supported on a compact domain. 

1. Introduction 

This work mainly concerns equilibrium problems in potential theory, but its moti­
vation derives largely from two related domains: random matrix theory and inter­
face dynamics of incompressible fluids. Recent work of Wiegmann, Zabrodin and 
their collaborators [18,20] connected the spectral distributions of random normal 
matrices to the Laplacian Growth model for the interface dynamics of a pair of 
two-dimensional incompressible fluids. The unitarily invariant probability measure 
on the set of n x n complex normal matrices in [18] is determined by a potential 

Work supported in part by the Natural Sciences and Engineering Research Council of Canada 
(NSERC) and the Fonds de recherche sur la nature et les technologies du Quebec (FQRNT). 
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function 

V(z,z) = zz + A(z) + ~Ajz) (1.1) 

and the corresponding density is of the form 

f(M,M') = e-r^v(M'M') (1.2) 

with respect to a unitarily invariant reference measure on the set of normal matri­
ces. The function A(z) is assumed to have a single-valued derivative A'(z) mero-
morphic in some domain D C C Under suitable assumptions on A(z), the large n 
limit of the averaged normalized eigenvalue distribution in the scaling limit 

n—» oo , h—>0, nh = t (1-3) 

tends to a probability measure //y.t where t is some fixed positive number (quan­
tum area). It turns out that //y>t is the unique solution of a two-dimensional elec­
trostatic equilibrium problem in the presence of the external potential V in the 
complex plane. In most cases, fj,v,t is absolutely continuous with respect to the 
planar Lebesgue measure with constant density. It can be shown that the support 
supp(/iv,t) undergoes Laplacian growth in terms of the scaling constant t and the 
area of the support is linear in f. However, this evolution problem is ill-defined; 
even initial domains with analytic boundaries may develop cusp-like singularities 
in finite time and the solution cannot be continued in the strong sense (see [17,18]). 
The averaged eigenvalue density of the corresponding normal matrix model for fi­
nite matrix size n can be viewed as describing a sort of discretized version whose 
contiuum limit, may be interpreted as a semiclassical limit (1.3) that tends to y,v,t 
as shown in [1,9]. 

In studying these questions, it is important to understand first the possible 
shapes of compact sets which are supports of equilibrium measures for potentials 
of the form (1.1). In this work we show the support of the equilibrium measure for 
a class of perturbed Gaussian potentials of the form 

Va.„(z):=a\z\2 + U»(z), (1.4) 

where a > 0 and v is a compactly supported finite positive Borel measure, to be 
so-called generalized quadrature domains [8,14]. 

To understand the asymptotic behaviour of the averaged eigenvalue density 
of normal matrix models in different scaling regimes, one has to study the asymp-
totics of the corresponding orthogonal polynomials for the weight e~v(-z\ The 
well-known Riemann-Hilbert approach is not applicable directly in this case be­
cause the orthogonality weight is not constrained to the real axis. However, there 
is a sort of matrix 3-bar problem, introduced by Its and Takhtajan [10], which is a 
candidate to replacing the matrix Riemann-Hilbert problem in the study of strong 
asymptotics of the orthogonal polynomials. In the present work it is shown that the 
3-bar problem is also well-defined and characterizes the orthogonal polynomials 
for the class of perturbed Gaussian potentials considered above. 
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To fix notations, let m denote the two-dimensional Lebesgue measure in the 
complex plane C We denote respectively by H and Hc the closure and the comple­
ment of a set H C C and by In the indicator function. The open disk of radius r 
centered at c e C is denoted by B(c,r), and the Riemann sphere by C. 

2. Weighted energy problem and logarithmic potentials 

In this section we briefly describe both the classical and weighted energy prob­
lems of logarithmic potential theory (see [12] and [13]) and specify the class of 
background potentials we are concerned with in this paper. 

Definition 2.1. Let fi be a compactly supported finite, positive Borel measure in 
the complex plane. The logarithmic potential produced by /i is defined as 

U"(z) := / log -^— dp{w) (zeC). (2.1) 

In particular, for a bounded subset S of the plane with m(S) > 0, we consider 
the measure 77s given by 

dr)S = Isdm. (2.2) 

Thus r)s is the Lebesgue measure restricted to S. In the following, we use the 
simplified notation Us{z) for the logarithmic potential Ur,s{z) of the measure ns-

The logarithmic potential of a positive measure /J. is harmonic outside the 
support of fj. and superharmonic on supp(/x) (see [13], Theorem 0.5.6). Moreover, 
it has the asymptotic behaviour 

U"(z) = f,(C)hg^+o(J], (|z|-oo) (2.3) 

where //(C) is the total mass of p.. If C/M(z) is smooth enough the density of the 
measure fi can be recovered from this potential by taking the Laplaeian of U^{z): 

Theorem 2.2 ([13], II.1.3). If in a region RCC the logarithmic potential Uli(z) 
of the measure \x has continuous second partial derivatives, then fj, is absolutely 
continuous with respect to the planar Lebesgue measure m in R and we have the 
formula 

dn=~~AU"dm. (2.4) 

Now, let if be a compact subset of C and let M(K) denote the set of all Borel 
probability measures supported on K. In classical potential theory, the logarithmic 
energy of a measure fi G M{K) is defined to be 

7(M):= / U'izWiz) = / / log^— d^t)dfi{z) . (2.5) 
JK JKJK \Z —1\ 

The quantity 
EK~ I S L / M (2-6) 
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is either finite or +oc. The logarithmic capacity of K is 

cap(/0 := e~EK . (2.7) 

If EK < oc then, by a well-known theorem of Frostman (see e.g. [12]), there exists 
a unique measure HK in M(K) minimizing the energy functional / ( • ) and this 
measure is called the equilibrium measure of K. The capacity of an arbitrary Borel 
set B c C is defined as 

cap(B) := sup {cap(i^) | K C B,K compact} . 

A property is said to hold quasi-everywhere if the set of exceptional points (i.e. 
those where it does not hold) is of capacity zero. 

In the more general setting we have a closed set S C C and a function 
w: S —> [0, oo) on £ called the weight function. Usually the weight function is 
given in the form 

w(z) = exp ( - Q(z)) , (2.8) 

where Q: T. —> (-00,00]. In the electrostatical interpretation, the set £ is called 
the conductor and Q is called the background potential. 

Definition 2.3 ([13]). The weight function w is said to be admissible if 
• w is upper semi-continuous, 
• {z e £ I w(z) > 0} has nonzero capacity, 
• l im |2Hoc \z\w(z) = °-

The admissibility conditions can be rephrased in terms of the potential Q; 
w(z) = exp(—Q(z)) is admissible if and only if Q is lower semi-continuous, the set 
{^SE Q(z) < oo} has nonzero capacity and lim|s|^oc(<3(2) — log |z|) = 00. 

Let M{T,) denote the set of all Borel probability measures supported on 
£ C C . The weighted energy functional IQ is denned for all n € Ai(i2) by 

/ Q M : = / / I o g N* ~ t K - ' M ' ) ] " " 1 ^ * ) ^ ) (2-9) 

= J J log ̂ —dn{z)dn{t) + 2 J Q{z)dix{z). (2.10) 

The goal is then to find a probability measure that minimizes this functional on 
M(T.). If Q is admissible it can be shown (see [13], Theorem 1.1.3) that 

EQ:= inf IQ{ji) (2.11) 

is finite and there exists a unique measure, denoted by fiQ, that has finite loga­
rithmic energy and minimizes IQ. Moreover, the support of HQ. denoted by SQ, 
is compact and has positive capacity. The measure /J,Q is called the equilibrium 
•measure of the background potential Q. The logarithmic potential satisfies the 
equilibrium conditions 

U^Q(z) + Q(z) > FQ quasi-everywhere on S , 

U^{z) + Q(z)<FQ for all z 6 SQ , (2.12) 
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where FQ is the modified Robin constant: 

FQ = EQ - J QdfiQ . (2.13) 

Motivated by random normal matrix models (see [17,18]), we are interested 
in background potentials of the following type: 

Va.v{z):=a\z\2 + Uv(z), (2.14) 

where a is a positive real number and v is a compactly supported finite positive 
Borel measure. These potentials have a planar Gaussian leading term controlled 
by the positive parameter a and this is perturbed by a fixed positive charge dis­
tribution given by the measure v. 

Proposition 2.4. The potential Va.„(z) is admissible for all possible choices of a 
and v. 

Proof. VaM(z) is lower semi-continuous because U"(z) is superharmonic in the 
whole complex plane. The set where Va„{z) is finite contains at least C\supp(f) , 
which is of positive capacity since supp(^) is compact. Finally, the required bound­
ary condition is also fulfilled: 

V0,„(*) - log \z\ = a\z\2 + U"(z) - log |2 | (2.15) 

= a\z\2 - (u(C) + 1) log \z\ + o ( - \ (2.16) 

so the difference VaM(z) — log \z\ goes to +oo as \z\ —> oo. D 

We are especially interested in cases for which the perturbing measure v is 
singular with respect to the planar Lcbesgue measure m. In particular, v can be 
chosen to be a positive linear combination of point masses, i.e. 

m 

" : = £ > * « » , A e R + (2.17) 
fc=i 

where 0,1,0,2, ••• ,am e C are the locations and Pi,fh,---,Pm are the charges of 
the fixed point masses. 

3. Supports of equilibrium measures and quadrature domains 

The determination of the support of the equilibrium measure for a background 
potential V(z) = Vai/(z) of the form (2.14) above is closely related to finding 
generalized quadrature domains of some measures in the complex plane. Let us 
recall the definition of quadrature domains given by Sakai [14]. 

Definition 3.1. Let u be a positive Borel measure on the complex plane. For a 
nonempty open, connected domain f2 in C let F(U) be a subset of the space 

R e L ^ n ) ^ {Re/ | f e L^n./rn)} . (3.1) 

of real-valued integrable functions on fi. 

114 



338 F. Balogh and J. Hamad Comp.an.op.th. 

The domain ft is called a (generalized) quadrature domain of the measure v 
for the function class F(fi) if 

(a) v is concentrated on Q. i.e. v (fic) = 0, 
(b) 

/ f+dv < oo and / fdu < [ fdm (3.2) 
Jn Jn Jn 

for every / G F(fl) where / + := max{/, 0}. 

Note that if F(Cl) is a function class such that —/ £ F(f2) whenever / 6 F(Q) 
then the second condition is equivalent to 

/ \f\dv < oo and / fdv = / fdm (3.3) 
in Jn Jn 

for every / e F(Cl). We are interested in the following subclasses: 

ReAL1^) = {Re/ 6 L^n .m) | / is holomorphic in Cl} (3.4) 

, m) | ft is harmonic in $2} (3.5) 

SL^fi) = {s e L1(n,m) | 5 is subharnionic in fl} . (3.6) 

For a measure v the quadrature domains corresponding to these classes are called 
generalized classical (holomorphic), harmonic and subharmonic quadrature do­
mains, respectively. We have the obvious inclusions 

Q{u, SL1) C Q(v, HL1) C Q{y, ReAL1), (3.7) 

where Q{v, F) denotes the set of quadrature domains of v for the function class F. 
It is important to note that if the domain 0. belongs to Q(v, F) then its saturated 
set or areal maximal set 

[fi] := iz e C | m(B{z,r)nQ.c) = 0 for some r > o | (3.8) 

also belongs to Q(v, F). 
For example, it can be shown that the disk B(c,R) is the only classical 

generalized quadrature domain for the point measure y = R2ndc (see [14], Example 
1.1). The simplest examples are the classical quadrature domains whose quadrature 
measure is a positive linear combination of point masses: 

m 

v^J^PkSat, Pk€M+. (3.9) 
fc=i 

This means that for every holomorphic function / that is integrable on CI we have 
the identity 

/ 
Jn 

fdm = Tpkf(ak). (3.10) 
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An immediate generalization is obtained by allowing points ajt of higher multiplic­
ities jk > 1 in the above sum, this means allowing derivatives of finite order to 
appear in t h e sum representing the area integral functional: 

/ /dm =][] £&,,/«(«*). (3.11) 
-'f! fc=i z=o 

However, in this work we do not consider such quadrature domains. 
It is easy to see that if Q is a subharmonic quadrature domain of the measure v 

then, using subharmonic test functions of the form 

a,(w) = - l o g 1 — ^ (zeC), (3.12) 
\z — w\ 

we have 

Un{z) < W(z) if zeC, 

Un(z) = U"(z) if * e C \ « . (3.13) 

To illustrate the structure of the equilibrium measure of a potential of the form 
(2.14) above, we consider a simple bu t nontrivial example: 

V(z) = a\z\2 + (3\ogr^— (3.14) 
\z-a\ 

where a e R + , / 3 6 R + and a e C The calculation of the equilibrium measure 
for this potent ial is quite standard (see, for example, [17,18]) bu t the details will 
be of importance in suggesting generalizations. For the sake of completeness, the 
statement of the result and a short sketch of its proof are therefore included here. 

To find the equilibrium measure for this potential one can use the following 
characterization theorem: 

Theorem 3.2 ([13], 1.3.3). Let Q: E —» (—00,00] be an admissible background po­
tential. If a measure a G A1(E) has compact support and finite logarithmic energy, 
and there is a constant F e R such that 

Ucr(z) + Q(z) = F quasi-everywhere on supp{a) (3.15) 

and 

U"(z) + Q(z) > F quasi-everywhere on E , (3.16) 

then o coincides with the equilibrium measure /J.Q. 

The logarithmic potential of the uniform measure 7JB(C.H) o r l a disk B(c, R) 
is easily calculated to be 

1 R27T\Ogj^ \Z-C\>R. 
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Proposition 3.3. Define two radii R and r as 

R:^l±£ and r:^A. ( 3 . 1 8 ) 
The equilibrium measure {xy is absolutely continuous with respect to the Lebesgue 
measure and its density is the constant —. The support Sy of fly depends on the 
geometric arrangement of the disks B(a,r) and B(0,R) in the following way: 

(a) IfB(a,r)cB(0,R) then 

Sv = B(0,R)\B(a,r) (3.19) 

(see (a.l) and (a.2) in Figure 3.1). 
(b) If B(a,r) <f_ B(0,R) then C \ Sy is given by a rational exterior conformal 

mapping of the form 

/ : C \ { C : | C l < l } - » C \ S v , /(C) = pC + « + ^ . (3-20) 

where the coefficients p € R+, 0 < \A\ < 1 and u, v G C of the mapping / (£) 
are uniquely determined by the parameters a,P and a of the potential V(z) 
(see (b.l) and (b.2) in Figure 3.1). 

Proof. Suppose first that B(a,r) C B(0,R). 
Let a be the measure given by 

da := —^IKdm (3.21) 
m(K) 

where K = B(0, R) \ B{a, r). The area of K is 

?2 2\ "" m{K) = (R2 - r*)* = ^ • (3-22) 

Therefore the logarithmic potential of a is 

2a 
U'(z) = — ([/s(°.«) (z) - UB^ (z)) . (3.23) 

Now, for z e K the effective potential at z is 

V (z) + V(z) = aR2 (log ± + 1 - ^ - 2ar2 log ^ - i - j 

•a|z|2 + /31og-
\z -a 

Define 

aR2 ( l o g ^ + 1 ) . (3.24) 

-aR2 [log ^ + l). (3.25) 
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I V.. 
\ 

/ 
/ 

(a.2) 

(b.2) 

FIGURE 3.1. The shape of the support Sy (shaded area) is illus­
trated for the different disk configurations (a) and (b) in Propo­
sition 3.3. 

If z g K a short calculation gives 

U'{z) + V(z) 
F+2ar2f{^) z 6 B(a,r) 

F+2aR2s{^4) \z\>R. 

where 

Six) := 
1 

• log x. 

Since / is nonnegative the effective potential satisfies 

U"(z) + V(z)>F. 

(3.26) 

(3.27) 

(3.28) 

By Theorem 3.2, we conclude that the equilibrium measure for the background 
potential V is a. 

Now suppose that B(a,r) <£. B(0,R). For this case, we only sketch the calcu­
lation giving the system of equations that relate the parameters of the potential 
V(z) and the conformal map /(() . The potential is smooth in the domain C \ {a} 
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and its Laplacian there is constant which suggests, by Theorem 2.2, that the den­
sity of the equilibrium measure is equal to 

^AV(z) = — . (3.29) 
llT IT 

We expect the equilibrium measure therefore to be the normalized Lebesgue mea­
sure restricted to some compact set S C C \ {a}; that is, 

d/J-v = —7w;dm,, (3.30) 
m(b) 

where m(S) is given by (3.22). The first equilibrium condition (3.15) is 

U""{z) + V{z) = F (zeS) (3.31) 

for some constant F. Assuming the necessary smoothness of {/**" (z) and applying 
the differential operator dz, this gives the necessary condition 

_a fdjnH + / _ | _ L \ = 0 {zeS), (3.32) 
IT Js z — w \ 2 z — a J 

which is the same as 
a [ dwAdw _ 8 1 
;— / otz + — = 0 (z e Sj. (3.33) 
\lTl JS - - ° - ~ 2-ni Jg z — w 2 z — a 

By Green's Theorem we get 

1 f wdw 0 1 
r~ = _ o {zeS). 
'"•* JdS z ~ w 2a z — a 
k to express C \ S as t 

disk under a conformal mapping of the form 

, . , „ v - w - , . (3.34) 

Following [18], we seek to express C \ S as the image of the exterior of the unit 

1 /" /(C)/'(CR = _ A _ 1 _ ( 2 6 5 ) . (3.36) 
27rt 7,C|=i z-f(0 2a z-a V ; v y 

/ : £ \ { C = I C I < 1 } - C \ S , /(C) = pC + « + ^ (3-35) 

where p > 0 and 0 < |A| < 1. By rewriting the equilibrium condition eq. (3.32), 
we obtain 

/(C)/ '(CR _ P i 
2ni 7,C|= 

Along the positively oriented simple circular contour |£| = 1 we have 

7(C) = p I + B + _ H ^ . (3.37) 

Therefore the rational function 

^W^l^ isM (3,8) 

must satisfy the equation 

±-. I T(C;z)d<: = -f— (zeS) (3.39) 
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and the parameters p; u; v; A must be chosen to satisfy the area normalization 
condition (3.22). 

The differential T(Q z)d£ has four fixed poles in £ at £ = 0, oo, A, jjj and two 
other poles depending on z via the equation z = /(£). (These extra poles may 
coincide with some of the fixed poles above.) This equation can be rewritten as a 
quadratic equation in £: 

pC2 + {u-z- Ap)C,+ A(z-u) + v = 0. (3.40) 

If z 6 5 both solutions of this equation are inside the unit disk {£ | |£| < 1}. 
To calculate the integral of T(£; z)d(, in terms of residues, we write the contour 
integral in the standard local coordinate £ = 4 around Q = oo: 

The two simple poles inside the disk {£ | |£| < 1} are f = 0 and £ = A and hence 

^ L r ( H f = R - ^ ( H ?+Res^T(H ?• (3-42) 27TZ 

Since 

\Vz)e l {\-A0{zi-ui-P)-ve ' l } 

the residues are 

'1 \ 1 v 

r)i 
«"* U 7 4 2 A (1 - |A|2)(«i4 - uA - p) - tM2 

A short calculation gives the area of S in terms of the mapping parameters: 

Res^oT[-;z)-^ = =-u, (3.44) 

m(S) = n[/-(1^Al2)2). (3.46) 

Finally we obtain the following system of equations: 

P 2 -

u + 

( 1 - | A | 2 ) 2 2a 
v 
= - 5 = 0 

p vA (3-47) 

A + 1 - \A\ 2 

v I vA2 \ _ _ /? 
^ I p ( 1 - |A | 2 ) 2 J ~ 2^ 
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We must prove that if we assume \a\ + r > R there exists a unique solution 
p. u, v, A to this system in terms of the parameters a, P, a. Eliminating u from the 
third equation gives 

The last equation of (3.47) shows that jfe is real. The phases of v and A are 

therefore fixed by (3.48). Writing a in polar form 

a = te^ (3.49) 

(with t > 0 because B(a,r) <ji B(0, R)), we obtain 

v = se2^ ., A = Ke** , (3.50) 

where s and K are positive real numbers. We can express p and s in terms of K: 

>=MKh2+i) (3-5i) 
a = i z * ! ( * V _ ± y (3.52) 

Setting x = K2, this must be a solution of the the cubic equation 

2 t V - ( V + l^~A x2 + J - = 0. (3.53) 

The condition \a\ + r > R means that 

A 1 + 2/3 
' 2 + 4 ^ < ° - (3-54) 

Denning the function 

we have 

g(x) := 2t4x3 - (t4 + ^ ^ * 2 ) ** + 4^2 > (3-55) 

ff(°)=A>° a n d ff(l) = ** " l-±^-t2 + - L < 0 (3.56) 

g'(x) = 6t4x2 - 2 (V + i i ^ t 2 " ) x 

by (3.54). Since 

= 6 ^ ( . - ^ ( t < + I ± ? V ) ) (3.57) 

is negative in the interval [0,1], g{x) has a unique root in (0,1), and therefore K 
is uniquely determined by (3.53). This means that there is a unique solution for 
p. u, v and A of (3.47) in terms of a, f3, a. 

To conclude the proof one should show that the logarithmic potential 2f-Us(z) 
satisfies the inequality (3.16) of Theorem 3.2. This part of the proof is omitted. • 
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The electrostatic interpretation of case (a) in Proposition 3.3 is simple. If we 
replace the point charge Pda by a uniform charge distribution of density 2s o n 

B(a,r), the resulting configuration is in equilibrium in the presence of the pure 
Gaussian potential a|2|2 . The disk B(a,r) is a quadrature domain for the measure 
r2n5a, so 

— UB(a'T)(z)=pU6°{z) in zeB(a,r)c, (3.58) 
IT 

which means that the electric fields of 2f-r)B(a,r) and (35a are indistinguishable 
in the exterior of B(a,r). A quadrature domain shaped cavity emerges in the 
support of the equilibrium measure of the unperturbed Gaussian potential since 
the fixed perturbing measure substitutes the portion of uniform charge placed in 
the cavity of the original equilibrium configuration, as illustrated in (a.l) and (a.2) 
of Figure 3.1. A useful generalization of this idea turns out to be valid in a more 
general setting: 

Theorem 3.4. Let 
V{z) := a\z\2 + U"(z) (3.59) 

be a background potential. Assume that the measure v can be decomposed into a 
sum 

m 

v = J2»k (3-60) 
k-1 

where the measures v^ are all finite positive Borel measures satisfying the following 
conditions: 
(a) The supports of the measures Uk are pairwise disjoint and each v^ has positive 

total mass. 
(b) The measure -i^-vk has an essentially unique {i.e. unique up to sets of measure 

zero) subharmonic quadrature domain, and D^ denotes the saturated element 
of Qi^k, SL1) for all k — 1.2, . . . ,m respectively. 

(c) The domains Dk are pairwise disjoint andDkCB(0, R) for allk = 1 ,2 , . . . ,m 
where 

*~JW- <«•> 
Then the equilibrium measure /iv is absolutely continuous with respect to the 
Lebesgue measure with constant density — and is supported on the set 

K-BJOJFJXIIJDA. (3.62) 

(The situation is illustrated for a simple configuration of point and line charges in 
Figure 3.2.) 

Proof. Let a be the measure given by 

do := IKdm. (3.63) 
m{K) 
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FIGURE 3.2. A typical -configuration involving subharmonic 
quadrature domains: a disk, a so-called bicircular quartic (see [16]) 
and an ellipse. 

To calculate the area of K, we note that the area of Dk is given by 

f 7T f 7T 

m(Dk) = dm = — / dvk = ^ - ^ ( C ) . 

Therefore 

(3.64) 

m{K) = m(B(0, R)) - J^ m(Dk) 
fc=i 

/ m 

= ^(i+"(c)-x;^(c) 

~ 2a' 

(3.65) 

(3.66) 

(3.67) 

For each measure Vk the corresponding logarithmic potential i/** (z) satisfies 

2a 
7T 

2 Q 

-uDk(z)<U'"'{z) if zee, 

UDk{z) = Un(z) if 2 6 C \ D f c . 

(3.68) 

(3.69) 

The logarithmic potential of u is 

2 
U°{z) = —[uB{-°<R\z)-YJU

Dk{z)\. (3.70) 
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Now, if z e K then the effective potential at z is 

[ r ( Z ) + V ( z ) = a * 2 ( l o g i + l - ^ ) - ^ f > D M * ) 

+ a | z | 2 + [/"(*) 

= a/72 (log ^2 + l ) " E Un (*) + t / " W 

= a W l o g - i + l V (3.71) 

Define F := aR2 (log ^ + l ) . If z 0 K then either 2 e D f c for some k or |z| > R. 
If z 6 -Ofc then we have the inequality 

W(z) + V(z) = aR2 (log - 1 + 1 - !ffj - ^ f ; t/D* (z) 

+ Q|Z| 2 + / 7 " ( 2 ) 

= F + t r f e ( z ) - — t /D t(z) 

> F . (3.72) 

On the other hand, if \z\ > R then 

U' (z) + V{z) = 2aR2 log i - — V t/D* (z) 

+ a|z|2 + [/"(z) 

= a|z|2 + a « 2 l o g - 1 2 

= F + 2Q«2 / (M 

> ^ , (3.73) 

where f(x) = ^-^- — log!. Since / is nonnegative the effective potential satisfies 

U"{z) + V(z) > F. (3.74) 

By Theorem 3.2, we conclude that the equilibrium measure for the background 
potential V is a. D 

The conclusion of Theorem 3.4 does not hold if some of the domains D^ 
overlap or intersect the exterior of B(0, R). In the first case we have to find a new 
decomposition of the perturbing measure and the corresponding domains; in the 
second the outer boundary no longer coincides with the boundary of B(0. R) as 
we saw in Proposition 3.3. It is hard to give a complete description of the support 
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of the equilibrium measure in the general case. If v is a finite linear combination 
of point masses then the methods of Crowdy and Marshall in [3] used in the 
fluid dynamical context of rotating vortex patches are applicable to recovering the 
corresponding supports. 

In the cases considered above, the support Sv of the equilibrium measure 
is contained in the closed disk B(0,R). It seems plausible that the same is true 
for all perturbing measures v. The following theorem states that Sv C B(0,R) is 
valid if v is a positive rational linear combination of point masses. 

Theorem 3.5. Let V(z) be a potential of the form 

V{z)=a\z\2 + Uv{z) 

where v is a measure of the form 

v = ^2 rkSa 

(3.75) 

(3.76) 

where r j ,r2, . are positive rational numbers. Then the support Sy of the 
corresponding equilibrium measure is contained in the closed disk B(0,R) where 

H-lllIM. (3.77) 
2a 

Proof. For a continuous weight w(z) = exp(—V(z)) in the complex plane, z e C 
belongs to the support Sv if and only if for every neighborhood B of z there 
exists a weighted polynomial wnPn of degree degFn < n, such that wnPn attains 
its maximum modulus only in B (see [13], Corollary IV.1.4). Since our w(z) is 
continuous this characterization is applicable to this setting. 

Let z € Sy and suppose B is a neighborhood of z. Then there exists a 
polynomial of degree at most n for some n € N such that Pn(z)wn{z) attains 
its maximum modulus only in B. Let q be the least common denominator of the 
rational numbers ri,r2,... ,rn such that 

Pk 

Tk= 

q 
where pk e N for all k = 1, 2 , . . . , m. Then 

(3.78) 

(\Pn(z)\w"(z))q = \Pn(z) n< ak) 

Pn(z)q Y[(z - ak) exp I -n(q + L) 
q + L] 

where 

! > * • 

(3.79) 

(3.80) 
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Since all the pk's are assumed to be positive integers, 
771 

Qn(q+L){z):=Pn{z)q\{{z-ak)
n^ (3.81) 

is a polynomial of degree at most n(q + L). If we consider the modified weight 
v(z) = exp ( — -£TL\Z\2) the corresponding weighted polynomial 

Qn{q+L)(z)v^+L\z) (3.82) 

at ta ins its maximum modulus only in B. Therefore z belongs to the support of 
the equilibrium measure of the weight v(z) which is exactly 73(0, R), where 

' l + i/(C) 
R = 

This proves t h a t Sv C B(0,R). 

q + L 

2qa 
(3.83) 

• 

4. Orthogonal polynomials 

In random normal matrix models, the correlation functions are expressed in terms 
of planar orthogonal polynomials with respect to scaled weight junctions of the 
form exp(—NQ(z)) associated to a potential Q(z) where N > 0 is a scaling 
parameter (TV has the same role as | ) . For our special potentials of the form 
V(z) = Val/(z) defined in (2.14) above we have the weights 

e-NV(z) = (_N T , , 2 + J j 1
 dt,(tt,) 

V L J \z-w\ 

where TV > 0 is the scaling parameter. 

Proposition 4.1. We have 

for all choices of the parameters N, a, v. Moreover, the absolute moments 

L -NV^dm(z) 

(4.1) 

(4.2) 

(4.3) 

are all finite for k = 0 , 1 , . . . 

Proof. The exponent in the weight can be decomposed as 

N a\z\2 + / log fdi/(i 
J \z-w\ 

Na, 
N 

O- i ,9 

2 1*12 + / logi -du(w) 

in which the second term is lower semicontinuous and satisfies 

N ||.f- / log] 
1 

-dt/(w) • N fNP • i/(C) log 
1 

O 

(4.4) 

(4.5) 
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as \z\ —> oo. This means that the expression is bounded from below in C: 

N f |2|2 + / l 0 g R ^ ^ > L (4.6) 

for some constant L e K depending on the parameters N, a and on the measure v. 
So 

0<e-NV^<e-^2e-L, (4.7) 

which implies that 

e-NV(z) e L i ( C ) d m ) n L « , ( C j d m ) ( 4 8 ) 

Moreover, 

/" \z\ke-NVMdm(z) < e~L [ \z\ke-^^ dm(z) < oo (4.9) 
Jc Jc 

for all k = 0 , 1 , . . . D 

It follows from this and the positivity of the weight that the monic orthogonal 
polynomials 

Pn,N(z) = zn + 0(zn-1) (n = 0 , l , . . . ) (4.10) 

satisfying 

[ Pk<N{z)P^)e-NV(-z)dm(z) = hkiN6ki, k,l = 0 ,1 , . . . (4.11) 
Jc 

exist and are unique where /in,Af denotes the square of the L2-norm of PU,N{Z)-

5. Matrix d-problem for orthogonal polynomials 

In this section we show that the 2x2 matrix 9-problem for orthogonal polynomials 
introduced by Its and Takhtajan [10] in the case of measures supported within a 
finite radius (cut-off exponentials of polynomial potentials) is also well-defined for 
the class of potentials considered above and determines the polynomials uniquely. 
In [10] the same family of potentials is considered as in [5]. 

To be able to formulate the fl-problem, we need some estimates of Cauchy 
transforms of measures with unbounded supports. For a given potential V(z) = 
Va.i/{z) of the form (2.14) considered above let A be the measure, absolutely con­
tinuous with respect to the Lebesgue measure in C, having the form 

d\ = e-NV^dm, (5.1) 

where and N > 0. Note that A(C) is finite because e~NV^ £ Ll(C,dm). 
The Cauchy transform of A is defined to be 
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We need to control the asymptotic behaviour of [CX] (z) for such measures at in­
finity allowing the possibility that [CA](«) is not holomorphic in any neighborhood 
of z = oo. 

First of all, it follows from Proposition 4.1 that the density is bounded from 
above: e~NV^ < K for some K e R. For a fixed positive radius R, we have 

d\(w) f Kdm(w) f d\(w) < r 
j c \z-w\ - y,2_ \z-w\>R 

•f 
J\z-w\<R 

i [ d\{w)+ [ [ -rdrdO 
liJc Jo Jo r 

= -X{C) + 2irRK 
R 

(5.3) 

for all z 6 C Thus, there exists an upper bound Hx of [CX] (z) depending only on 
N,a,i/ and independent of z (One can get rid of R in the last expression e.g. by 
minimizing the bound in R): 

dX{w) 
;c \z-w\ L <HX (zeC). (5.4) 

Now 

[CX}(z) 
A(C) 

w -I 
c V z~w 

Hence the absolute value of the difference satisfies 

c \z-w 

dX(w) (5.5) 

[CX] (z) 
A(C) 

w) < J \w\dX{w)+ f . l . \w\2dX( 
Jc Jc \z — w\ 

= [dX(w) + J ^)<~X(C) + H-X, 
Jc Jc \z-w\ JC JC 

where A and A correspond to the measures 
1 , 2 r 

respectively. This means that 

M»-*& + c(l 

(5.6) 

(5.7) 

(5.8) 

If PTI.N{Z) denotes the nth monic orthogonal polynomial with respect to the mea­
sure A, the modified measure 

dXn(z) := \Pn,N(z)\2dX(z) (5.9) 
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corresponds to the perturbing measure 

2 ^ (5.10) 

where {Oj ' , o^n ' ' , . . . , a„' '} are the zeroes of PU]N(Z) and hn^ = An(C). An 
easy calculation gives 

1 1 Pn,N(z) ~Pn,N(W) 1 Pn,N{w) 

z - w PU,N(Z) Z-W 

1 
•Q n _i (z , iu ) + 

Pn,N(z) Z-W 

1 Pn,N{™) 
PU.N(Z PTI,N{Z) Z-W 

(5.11) 

where Qn(z, w) is a symmetric polynomial in 2 and w of degree n — 1 with leading 
order zn~x in the variable z. Therefore, by orthogonality, we get 

L Pn,N{w) 

c z-w 
d\(w) 

Pn,N{w)\'' 1 f \PnM 

PU,N{Z) JC Z-

_ 1 /• c(An(u/ 

•Pn.w(-z) Jc Z-W 

d\(w) 

1 z n 

2" -Pn,jv(z) ¥+° (? 
(5.12) 

Following the approach of I ts and Takhtajan in [10], we consider the following 
2 x 2 matrix-valued function in t he complex plane: 

Yk,N(z) := 

The 3-derivative is 

Pk,N(z) I / c ^ ) e - w W ( i m W 

!-H—Pk_1N(z) - i — fEi=hsMe-NVMdm{i 

(5.13) 

0 2 

0 - f i t , " ( * ) e ~ W W 

= Yk<N(z) 
0 - e - N V ( * ) 

0 0 

(5.14) 
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Using the asymptotic behaviour of the Cauchy transforms as \z\ —» oo proven 
above, we have that 

Pk,N(z) i r 4 » W e - w ( » ) d m ( » ) 
7T J C W — Z ^ ' 

- T T ^ — Pk-i N(Z) - 7 r
J — fr Pk-lMw)e'NV^dm(w) 

2 f e 7T J C W — Z *• / 

hk-i,N zk h k - l r N JC u;—z ^ 

1 0 

0 1 
+ 0 (5.15) 

So YIC,N{Z) is a solution of the following 2 x 2 matrix 9-problem: 

B"'«> 

M(z) = 

Af(z) 

1 0 

0 1 

0 -e~NV^ 

0 0 

- © ) ; 
z* 

0 

0 1 

z~k. 

(zeC) 

oc). 

(5.16) 

The important point made in [10] is that the 3-problem in that setting has 
a unique solution and therefore it characterizes the matrix Yk^{z) and the corre­
sponding orthogonal polynomials. Although we cannot assume that the relevant 
Cauchy transform entries are holomorphic around z = oo, we nevertheless can 
prove that the solution is unique in this case as well. 

Proposition 5.1. The matrix YIC,N(Z) is the unique solution of the d-problem (5.16). 

Proof. We have seen that Yk^ solves the 9-problem (5.16). Conversely, assume 
that the matrix M(z) has continuous entries with continuous partial derivatives 
and M(z) solves (5.16) with the prescribed asymptotic conditions. Then Mn(z) 
and M2i{z) are entire functions with asymptotic forms for large z 

M11(z)=zk + 0{zk~1), 

M21(z)=0{zk-1) | z | - o o . 

(5.17) 

(5.18) 

Hence M\\(z) is a monic polynomial of degree k and Mn(z) is a polynomial of 
degree at most k — 1. The 3-equation in (5.16) can be written in terms of the 
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entries of M(z) as 

§zM12(z) = -MMT)e-NV^ , (5.19) 

J=Af22(z) = -~M2~^z)e-NV^ . (5.20) 
oz 

Taking into account the fact that Mi2(z) —> 0 and M22(z) —» 0 as \z\ —» oo, this 
implies 

Mn(z) = 1 / Bime-Nvwdm{w) (5.21) 
n Jc w- z 

M22(z) = I /" ^ ' ^ r ^ M A n M (5.22) 
7r y c w - z 

(see [2]). Using the expansion 

1 1 zk - u'fc 1 u>fe 

• w zk z — w zk z — w 
fc-J i i „..fc 

^—' Z l + 1 ZK Z — ?/) 2 ' " 2"- Z — W 
(=0 

we get 

Ml2(z) = i / M " ^ ) e - ^ V M ( f m ( U ) ) 

i t—1 

= V 4 r r - f w'Mn{w)e-NV^dm{w) 

+ 1 1 f ™ Mn(w)e_NV{w) 

z" 

The prescribed asymptotic behaviour 

M12(z) = O ( -4ZT ) as | z | -»oo (5.25) 

implies the following equations: 

wlMu(w)e-NV{w)dm{w) = 0, / = 0 , 1 , . . . ,k - 1 
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Hence Mn{z) = Pk,N(z), because Mn(z) is a monic polynomial of degree k. 
Similarly for M2\{z) we have 

I J AM«O e - W v(», d m ( u ; ) 
IX J C W - Z 

= Y4TT- f wlM21{w)e-NV(-wUm(w) 
fzt z n 7c 

fc-i 

and 

implies 

and 

+ 1 1 t ^ M 2 1 H £ _ N V W 

Zk TT Jc W - Z 

M22(z)=^+o(-^) as \z\-*co (5.27) 

f w'M21(w)e'NV{w)dm(w) = 0 I = 0 , 1 , . . . ,k - 2 , 
7c 

(5.28) 

/ wk'lM2l{w)e'NV{wUm{w) = 1. (5.29) 
7c 

Now, if M21{z) = azk-x + O {zk~2), where a e C, then 

/ |M21(u.)|2 e-NV(w)dm(w) = a f wk-1M21(w)e-NV<-w)dm(w) = a. (5.30) 
7c 7c 

Clearly o ^ 0 (because otherwise M2i(z) vanishes and hence also M22(z) would 
be zero which is impossible). So M2\{z) is a polynomial of degree k - 1, and from 
(5.28) we have 

M21(z) = aPfc_1,N(z). (5.31) 

By the asymptotic relation (5.12), 

M22(2) = — / -e l >dm{w) 
•K Jc w — z 

•K JC Z-VJ JC 

which forces the constant a to equal — T—^—, and hence 

M 2 I ( * ) = - T - ? — f t - i , w ( * ) , (5.33) 
"fc-l.TV 

which completes the proof. D 
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6. Zeros of orthogonal polynomials and quadrature domains 

In this final section we briefly discuss some known and conjectured relations be­
tween the asymptotics of orthogonal polynomials in the plane, equilibrium mea­
sures of the type studied in Sections 1 - 3 and generalized quadrature domains. 
These concern relations between the asymptotics of the zeros of orthogonal polyno­
mials and the associated equilibrium measures that have previously been studied 
by Elbau [5,6] for a certain class measures with bounded support. Their validity 
for the class of measures considered here is supported by numerical calculations. 

To relate orthogonal polynomials with the support of the equilibrium mea­
sure we have, for finite values of n, three measures which, in the case of random 
Hermitian matrices are known to approach the same equilibrium measure on the 
real line in the scaling limit (cf. (1.3)) 

n ^ o o , iV->oo, — - > 7 = - , A : = ^ 6 K + . (6.1) 
n t N 

All the limiting relations below are understood in this scaled sense. We introduce 
the notation 

Q t o == \V{Z) (6.2) 
for the rescaled potential corresponding to the scaling parameter 7. Then for a 
large class of real potentials and 2 6 R, all three of the following measures converge 
weakly to the equilibrium measure dfiQ(z) of Q{z): 
1) The normalized counting measure of the zeros 

Zn,N:={z[»-N\ztN\...,z^} (6.3) 

of the orthogonal polynomials Pn,N{z) with respect to the weight exp(—NV(z)) 

Vn,N 
n ze.z,.,N 
71. ^—' 

fn,N -^* MQ (n -» 00). (6.5) 

2) The expected density of eigenvalues (or one-point function) of random Hermit­
ian matrices 

Pn.N{z) = - T \PkAz)\2e-NV(z). (6-6) n z—' /t=o 
derived from the probability density 

^ e x p ( - 7 V T r ( V ( t f ) ) ) d i / , (6.7) 

Zn.N := fexp(- NTr(V{H)))dH (6.8) 

pn.isi(z)dz -^» CIHQ(Z) (n —> 00). (6.9) 

3) The normalized counting measure of equilibrium point configurations 

J$:={z?,...,zS} (6.10) 
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of the two-dimensional Coulomb energy 
N N 

Sn(zu...zN) = - £ l 0 g T — — , + £ < ? ( * ) (6.11) 
* M = i \Zi Zi\ i = i 

(which in the plane become the so-called weighted Fekete points) 

Vn = - Y) <5z (6.12) 
n *—' 

^ ^ 
?7n - ^ PQ (n -+ oo). (6.13) 

For random normal matrices the eigenvalues are not confined to the real 
axis. In this case it is known [1,6,9] that in the scaling limit" (6.1), the analogs of 
Pn,N(z)dz and r)n also approach the equilibrium measure [IQ. 

It is also known [6], for cut-off measures of the form 

e - ^ ' / o W , V(z) = -a\z\2 + Ph a r m(z) , (6.14) 

where I-D is the indicator function of a compact domain V containing the ori­
gin whose boundary curve &D is twice continuously differentiable and Pharm is a 
harmonic polynomial, that 

1 1 /" 1 
Jim - log — — r v = / log -rdMQ(C): zeC\ supp(MQ) • (6.15) 
N-*oc n \Fn,N(Z)\ J |2 - CI 

That is, the limit of the zeros acts effectively as an equivalent source of the external 
Coulomb potential. 

For such potentials, the boundary 9(supp(^Q)) of the support of the equilib­
rium measure is determined through the Riemann mapping theorem as the image 
of the unit circle under a rational cohformal map, whose inverse therefore has 
a finite number of branch points. The Schwarz function S(z), defined along the 
boundary, determines the curve via the equation 

z = S(z). (6.16) 

It has a unique analytic continuation to the interior on the complement of any 
tree Ctree whose vertices include the branch points, with edges formed from curve 
segments. It is shown in [6] that, assuming there is a condensation limit C® for 
the orthogonal polynomial zeros supported on a tree-like graph C t ree whose edges 
are curve segments, Ctree may be chosen so that C® C Ctree. Moreover, denoting 
by 6S(z) the jump discontinuity of S(z) away from the nodes, C t ree may be chosen 
as an integral curve of the direction field annihilated by the real part Ke[6S(z)dz] 
of the differential (SS(z))dz; i.e. such that the tangents X to the curve segments 
forming the edges satisfy 

Re[SS(z)dz}(X) = 0. (6.17) 

We refer to such integral curves as critical trajectories. 
Based on computational evidence, and general results known for other cases 

[15], there is good reason to believe that the same result holds for the class of 
superharmonic perturbed Gaussian measures studied in Sections 1-3, without the 
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/ - — ^ 

/ f I \ 
I • 1 
I \ \ 
\ \ \ / 
\ \ \ / 

v̂ * 

FIGURE 6.1. Zeroes of Pn,N{z) for n = 50 and the critical trajectories. 

need for introducing the cutoff factor I-p- This statement, for some suitable restric­
tions on the permissible superharmonic perturbations, forms the first part of the 
conjectured relation between the zeros of the orthogonal polynomials considered 
in Sections 4-5 and the equilibrium measure HQ. 

The second part gives a more detailed relation; namely, the effective density 
KQ(Z) along CQ of the condensed orthogonal polynomial zeros is given, within a 
suitable scaling constant by 

dKQ{z) ~ J-(5S(z))dz = ^-lm\(5S(z))dz (6.18) 

Explicitly, this means that the external potential due to a uniform, normalized 
charge supported in supp(fj,Q) is 

J logj-^dKQ(0 = Jiogj-^dtiQiO- (6.19) 

To support the validity of these conjectures, we take the case of the potential 

1 
V(z) = a\z\2 + /31og, (6.20) 

in the simply connected case considered in Section 3 above and compare the locus 
of the zeros of the corresponding orthogonal polynomial Pn.N(z) with the two 
different integral curves of the direction field defined by (6.17) joining the branch 
points (Figure 6.1). (The two other critical trajectories emanating from the branch 
points are omitted from the graph.) 

We also compare, in Figure 6:2, the value of the logarithmic potential 
— - log \PTI.N{Z)\ created by the normalized counting measure vn,N of the zeroes of 
PTI.N(Z) with n = 30, JV = 2n = 60 and the external potential as given by (6.19) 
in the external region z g C \ supp(/iy). 
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FIGURE 6.2. The figure on the left is a contour plot of the poten­
tial — i logPnijv(.z)| arising from equal charges at the roots of the 
orthogonal polynomial Pn^(z); the one on the right is the poten­
tial / l o g yjiTjd^Q(C) o n t n e exterior region due to a normalized 
uniform charge on SUPP(/UQ). 
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Chapter 9 

Regularity of a vector potential 

problem and its spectral curve 

9.1 Summary 

This chapter is based on the published article [9]. The paper is organized as follows: 

1. A generalized setting of the vector potential problem (see 4.7) is introduced (Sec. 

2). 

2. The existence and uniqueness of a vector equilibrium measure is established (Sec. 

3). 

3. A special case of the vector potential problem is considered and the regularity 

properties of the components of the corresponding vector equilibrium measure 

is discussed (Sec 4.) 

4. It is shown that the resolvents (Cauchy transforms) of the components of the 

vector equilibrium measure satisfy a pseudo-algebraic equation, i.e., there is a 

spectral curve associated to the problem (Sec. 5). 
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5. The pseudoalgebraic curve is calculated explicitly for a special case involving 

two symmetric semiclassical potentials (Sec. 6). 

9.1.1 The generalized vector potential problem 

We recall the setting of a vector potential problem (see Sec. 4.7) 

({E*}jUTOLi.^) (9.1) 

consisting of a finite collection of conductors Efc, the corresponding potentials 

Vk: Efc-> (-00,00] , (9.2) 

and the interaction matrix A that describes the strength and the sign (meaning 

either attraction or repulsion) of the coupling between the measures on the different 

supports. 

Consider the following (electrostatic) variational problem corresponding to this 

vector potential setting: 

^ y ( £ ) : = y ^ / / l o g] 7\dVk{z)dm(t) + 2Y] / Vk(z)dfik(z) 
k,i • /*vs l I 2 "* 1 fc=i-/s 

/ifc(Efe) G .M(Sfe) k = l,...,n. 

(9.3) 

(Recall that .M(E) means the set of probability measures on E). 

It is necessary to find sufficient conditions on the ingredients of the vector poten­

tial problem to ensure the existence and uniqueness of a vector equilibrium measure 

corresponding to this coupled system. 

9.1.2 Existence and uniqueness of the vector equilibrium measure 

As it was indicated in Sec. 4.7, the admissibility conditions discussed in [81] are 

sufficient but they require that the conductors be pairwise disjoint; this constraint 
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turns out to be too restrictive, keeping in mind the mathematical applications targeted 

in the paper (to be described below). 

Assuming the admissibility conditions introduced in Sec. 4.7 we recall the 

Theorem 9.1.1 (4.7.1, Thm. 3.2, [9]) For an admissible system 

({E*}lUW}Li^) (9-4) 

the following statements hold: 

• The extremal value 

lAf.= mjIAV{fi) (9.5) 

of the functional IAV(-) is finite and there exists a unique vector measure /2* 

such that 

ZA,V--=IA,V(P)- (9-6) 

• The components of jF have finite logarithmic energy and compact support. More­

over, the potential Vk and the logarithmic potential Ulx*k is bounded on the support 

of n*k for all k = 1 , . . . , n. 

• For k — 1,..., n the effective potential satisfies the variational inequalities 

Uf(z) := U»Hz) + Vk(z) > Fk (9.7) 

for some real constant Fk. and equality holds quasi-everywhere on the support of 

9.1.3 Nearest-neighbor interactions 

The aim of the paper [9] that follows is to lay down the necessary background to 

the nonlinear steepest descent analysis of orthogonal polynomials related to a certain 
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Hermitian multi-matrix model of the form 

i n ;= i e-v^M^dMk 
d/i(Mi, . . . ,M„) (9.8) 

Z" IISdet(M f c + MK+1)
N 

where all of the matrices Mk are assumed to be positive definite. It is not in the scope 

of the thesis to describe these matrix models in detail; we refer to the works [18, 17] 

instead for a complete description of the motivation and the setup of the matrix chain 

problem. Therefore we consider the special nearest-neighbor interaction matrix 

2 - 1 0 . . . 0 

- 1 2 - 1 . . . 0 

A:= 0 - 1 2 . . . 0 , (9.9) 

0 0 0 . . . 2 

S t :— (9.10) 

also known as a Nikishin-type interaction matrix [96]. The specific matrix model in 

question (after a suitable procedure involving the reflection x H-> —X on the eigenvalues 

on each matrix with odd index) requires the measures to be supported on the sets 

[0, oo) k odd 

(—oc,0] k even 

for k = 1 , . . . , n. 

Apart from the admissibility conditions on the potentials Vk(x), we assume that 

the derivative V£(x) of each potential on E^ is the restriction of a real analytic function 

defined in a neighborhood of the real axis possessing at most polar singularities on 

K\E f c . 

For the vector equilibrium measure fT corresponding to the above problem we note 

that the individual variational problems 

1 
/ ? » : = log 

z-t 
•da{z)da{t) + 2 / Vk(z)da(z) 

Jxk 
(9.11) 
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corresponding to fixing all components of [i* but /i£, are minimized by a = /z£, where 

the effective potentials Vk(z) are given by 

V,(z) := \vi{z)-\[ log-r-l—di&t) 
2 l

 JT.2 K _ * I 

Vk(z) := ±Vk{z)-\f \og-^—d^k+1{t)-l-f l o g 1 - i - [ d ^ _ 1 ( 0 

fc = 2 , . . . , n - 1 

(9.12) 

Therefore, by applying Thm. 4.6.1 to this standard weighted problem for a single 

measure, we have that the components //£ are absolutely continuous with respect to 

the Lebesgue measure with densities ipk at least Holder-^ continuous and the supports 

of these equilibrium measures have a positive distance from the origin. Since x = 0 is 

the only common point of the nearest neighbor conductors because of the odd-even 

alternation of the supports £/. and the tridiagonal structure of .A, we have that 

supp(V'fc)nsupp('0fc+i) = 0 k = 1, . . . ,n- 1 . (9.13) 

As a consequence of the variational equations for /4, the Sokhotski-Plemelj iden­

tities imply that the following variational equations 

(Wk)+(x) + (Wk)+(x) = V£{x) + Wk+1(x) + Wk_1{x) 
x e supp(V>*) (9.14) 

(Wk)+{x) - (Wk).(x) = -2mfa(x) 

are satisfied for k = 1 , . . . , n for the resolvent functions (see (4.64)) 

Wk{z) : = f t ^ l ^ . z e C \ 8upp(^) . (9.15) 
Jzk z-x 
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and the convention W0 = Wn+i = 0 in the notation is used. 

Since the support of ipk is disjoint from the supports of ipk±i, the resolvents Wk±\ 

have no jumps on supp(ipk)-

9.1.4 The construction of the spectral curve 

Consider the vector functions 

W(z) := 

Wl{z) 

W2{z) 

Wn(z) 

and construct the vector function 

V'(z) := 

V{(z) 

V{{z) 

Z(z) := M{A-y'{z) + W(z)) 

where M is the (n + 1) x n matrix 

M := 

-1 

1 

0 

0 

0 

0 

0 

- 1 

1 

0 

0 

0 

0 •• 

0 •• 

- 1 •• 

o • 
0 •• 

0 •• 

• 0 

• 0 

• 0 

. - 1 

• 1 

• 0 

0 

0 

0 

0 

- 1 

1 

(9.16) 

(9.17) 

(9.18) 

The key result is the following: 

Theorem 9.1.2 (Prop. 5.1, [9]) The power-sum symmetric polynomials 

n 

Y^Z^{z) m = 0,l>... (9.19) 
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of the components Zk{z) of the vector function Z(z) are real analytic in a common 

domain of analyticity of the potentials, namely, they have no discontinuities on the 

supports of the densities ipk • Therefore the elementary symmetric polynomials of the 

Zk 's have no jumps on the supports of the densities tpk-

This immediately implies that 

Theorem 9.1.3 (Thm. 5 .1 , [9]) The functions Zk{z) are all solutions of a pseudo-

algebraic equation of the form 

E(w,z) = wn+1 + C2{z)wn-1 + • • • + C„+i(z) = 0 , (9.20) 

i.e., the coefficients C2(x),..., Cn+i(x) are real analytic functions on the common 

domain of analyticity of the potentials. 

The set of endpoints of the jumps of Zk(z) is contained in the zero set of the discrim­

inant of E(w, z) as a function of z. Since this discriminant cannot have an infinite 

number of zeroes on a compact set, the discontinuities of the functions occur along 

a finite union of compact intervals. Since the sets of points of discontinuity for Y(z) 

and Z[z) are the same, we conclude that 

Theorem 9.1.4 (Cor, 5 .1, [9]) The density ipk(x) is supported on a finite union of 

compact intervals in E^ for all k = 1 , . . . , n. 

The practical importance of this theorem is that it allows us to find the supports 

and the densities explicitly for admissible potential problems, as illustrated by the 

example given in Sec. 6 of [9], motivated by a simple choice of potentials corresponding 

to a matrix model of the type (9.8) for n = 2. 
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9.2 Regularity of a vector potential problem and its spectral 

curve, Journal of Approximation Theory, 161 (1):353— 

370, 2009. 
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Abstract 

In this note we study a minimization problem for a vector of measures subject to a prescribed interaction 
matrix in the presence of external potentials. The conductors are allowed to have zero distance from each 
other but the external potentials satisfy a growth condition near the common points. 

We then specialize the setting to a specific problem on the real line which arises in the study of certain 
biorthogonal polynomials (studied elsewhere) and we prove that the equilibrium measures solve a pseudo-
algebraic curve under the assumption that the potentials are real analytic. In particular, the supports of the 
equilibrium measures are shown to consist of a finite union of compact intervals. 
© 2008 Elsevier Inc. All rights reserved. 

1. Introduction 

In this short paper we consider a vector potential problem of relevance in the study of the 
asymptotic behavior of multiple orthogonal polynomials for the so-called Nikishin systems [15]. 
The original problem was introduced in [8] (without external fields) and further questions have 
been addressed in [9,16,10,1,11]. The main motivation of our interest for this problem arises in 

* Corresponding author at: Centre de recherches mathematiques, Universite de Montreal, C.P. 6128, succ. centre ville, 
Montreal, Quebec, Canada H3C 3J7. 

E-mail addresses: balogh@crm.umontreal.ca (F. Balogh), bertola@crm.umontreal.ca, 
bertola@mathstat.concordia.ca (M. Bertola). 

0021-9045/$ - see front matter © 2008 Elsevier Inc. All rights reserved. 
doi:10.1016/j.jat.2008.10.010 

146 

http://www.sciencedirect.com
http://www.elsevier.com/locate/jat
mailto:balogh@crm.umontreal.ca
mailto:bertola@crm.umontreal.ca
mailto:bertola@mathstat.concordia.ca


354 F. Balogh, M. Bertola / Journal ofApproximation Theory 161 (2009) 353-370 

a recently introduced set of biorthogonal polynomials [2]. These polynomials are related on one 
side to the spectral theory of the "cubic string" and the Degasperis-Procesi peakon solutions 
of the homonymous nonlinear differential equation [5]; on the other end they are related to a 
two-matrix model [3] with a measure of the form 

WMuM2) = ±4MldM2«]y^N (1.1) 
.ZJV det(A/i + M2)

N 

where the Mj's are positive-definite Hermitian matrices of size N x N, a, p are some positive 
densities on IR+ and the expressions a (Mi), /3(M2) stand for the product of those densities on 
the spectra of Mj. 

The relation between the relevant biorthogonal polynomials and the above-mentioned matrix 
model is on the identical logical footing as the relation between ordinary orthogonal polynomials 
and the Hermitian random matrix model [14]. 

In [2] a Riemann-Hilbert formulation (similar to the formulation of multiple-orthogonal 
polynomials as explained in [21] but adapted to the peculiarities of the model) was derived and 
in [3] the correlation functions of the spectra of the two matrices were completely characterized 
in terms of the matrix solution of that Riemann-Hilbert problem. 

In [4] the analysis of the strong asymptotics with respect to varying weight (following [7]) 
will be carried out. A pre-requisite of that analysis is the existence and regularity of the solution 
of a suitable potential problem, namely the one which we explain in the second part of the paper. 

In fact, the present paper is addressing a wider class of potential problems that will be neces­
sary for the study of the spectral statistics in the limit of large sizes of the multi-matrix model 

I ! ctj(Mj)dMj 

dfi(Mi,...,MR) = ^-—p^ (1.2) 

II det(Mj + Mj+i)N 

j=i 

corresponding to a chain of positive-definite Hermitian matrices Mj with densities ay as above. 
In Section 2 we consider the problem as a vector potential problem in the complex plane with a 

prescribed interaction matrix. Under a suitable growth condition for the external potentials Vj (z) 
near the overlap region of the conductors (in particular the common points on the boundaries) 
it is shown that the minimizing vector of equilibrium measures has supports for the components 
separated by positive distances. 

In Section 4 we specialize the setting to the situation in which the conductors Ej = 
(—l)y_1[0, 00) (so that they have the origin in common), with an interaction matrix of Nikishin 
type as in [21]. We prove that the minimizing measure is regular and supported in the interior of 
the condensers (under our assumption of growth of the potentials). 

This result allows to proceed in Section 5 with a manipulation of algebraic nature involving 
the Euler-Lagrange equations for the resolvents (Cauchy transforms) Wj(x) of the equilibrium 
measures. It is shown that certain auxiliary quantities Zj that depend linearly on the resolvents 
and the potentials (see (5.4) for the precise formula) enter a pseudo-algebraic equation of the 
form 

zR + C2(x)zR-l+-- + CR+1(x) = 0 (1.3) 

where the functions Cj(x) are analytic functions with the same singularities as the derivative 
of the potentials V£(x) in the common neighborhood of the real axis where all the potentials 
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are real analytic. In particular the coefficients Cj (JC) do not have jumps on the real axis and the 
various branches of Eq. (1.3) are precisely the Zj (x) defined above. For example, if the derivative 
potentials are rational functions, then so are the coefficients of (1.3). This immediately implies 
that the branchpoints of (1.3) on the real axis (i.e. the zeroes of the discriminant) are nowhere 
dense and hence a priori the supports of the measures must consist of a finite union of intervals 
(since they must be compact as shown in Section 2 in the general setting). 

The role of the pseudo-algebraic curve (1.3) is exactly the same as the well-known pseudo-
hyperelliptic curve that appears in the one-matrix model [6,18]: in the context of the study 
of asymptotic properties of multiple-orthogonal polynomials it has been pointed out since the 
fundamental work [17] that the Cauchy transforms of the extremal measures solve an algebraic 
equation. 

We also mention the recent work [13], in which the limiting behavior of Hermitian random 
matrices with external source is investigated and the presented asymptotic analysis relies on a set 
of conditions which are shown to be equivalent to the existence of a particular algebraic curve. 
The methods used in that paper to prove the existence for some special cases are very similar to 
our approach. 

As it was pointed out by one of the referees, examples of of algebraic curves for special 
external fields were also obtained in the recent papers [11,12]. 

1.1. Connection to a Riemann-Hilbert problem 

The principal motivation to the present paper is the application to the study of biorthogonal 
(multiply orthogonal) polynomials that arise in the study of the model hinted at by Eq. (1.1). 
In [2,3] we introduced the biorthogonal polynomials 

&-N(V1(x)+V2(y)) 

Pn(x)qm(y) • dxdy = c2
nhmn , 

x + y 

p„(x) = x" + . . . , q„(y) = ytt + ••-• (1.4) 

m 

In [3] it was shown how a natural vector potential problem (for two measures) arises in that 
context and leads to a three-sheeted spectral curve of the form (1.3). Such problem enters in 
a natural way in the normalization of the 3 x 3 Riemann-Hilbert problem considered in [2] 
characterizing those polynomials (and some accessory ones) in the limit TV —• oo, n -» 
oo, -^ —> T > 0. The notation Vi, V2 is meant here to reflect the notation that will be used 
in Sections 5 and 6 (up to a reflection V2OO •-» Vj^—y), as explained in [2,3]). 

In perspective the more general situation with several measures considered in Sections 4 and 
5 will be associated to the polynomials appearing in the study of the random-matrix chain (1.2) 
and biorthogonal polynomials for pairings of the form 

/ Pn(x 
e J=1 

fl (Xj+Xj+l)J=l 

P „ ( X ) = * " + • • - , qn{y) = yn + •••• ( 1 . 6 ) 

The details are to appear in forthcoming publications [4]. 
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2. The vector potential problem 

In this section we consider the vector potential problem which is a slightly generalized form 
of the weighted energy problem of signed measures ([20], Chapter VIII; [16], Chapter 5). 

Let A = (flij)f;—Y be an R x R real symmetric positive-definite matrix (in particular it has 
positive diagonal entries), referred to as the interaction matrix, containing the information on 
the total charges of the measures and their pair interaction coefficients. Suppose E\,Ei,..., ER 
is a collection of non-empty, not necessarily disjoint closed subsets of C such that Ek H Ei has 
zero logarithmic capacity whenever a^i < 0. Define the functions h^: C -»• ( - co , oo] for each 
Ek to be 

hk(z):= In l , ( z e C ) (2.1) 
d(z, Ek) 

where d(-, K) is the distance function from the closed subset K of the complex plane: 

d{z,K):=mf\z-t\. 

The function d(z, K) is non-negative, uniformly continuous on C so hk{z) is upper semi-
continuous and hk(z) = oo on Ek-

Definition 2.1. A collection of background potentials 

Vk: Ek -»• ( -00 , 00], k=\,2,...,R (2.2) 

is said to be admissible with respect to the (positive definite) interaction matrix A if the following 
conditions hold: 
[Al] the potentials Vk are lower semi-continuous on Ek for all k, 
[A2] the sets [z € Ek : Vk (z) < 00} are of positive logarithmic capacity for all k, 
[A3] the functions 

u < * Vj(z)+Vk(t) 1 
Hjkiz, t) := — + ajk In (2.3) 

K \Z — t\ 

are uniformly bounded from below, i.e. there exists an L € R such that 

Hjk(z,t)>L (2.4) 

on {(z, t) € Ej x Ek : z / t} for all ; , k = 1, . . . , R. Without loss of generality we can 
assume L — 0 by adding a common constant to all the potentials so that 

Hjk(z,t)>0. (2.5) 

We will also assume (again, without loss of generality) that all the potentials are non-
negative. 

[A4] There exist constants 0 < c < 1 and C such that (recall that akk > 0) 

Hjk{z, t) > {-^-(Vj(z) + Vk{t)) - ^ . (2.6) 

The constant C can be chosen to be positive. 
[A5] The potentials are given such that the functions 

Qk(z):= J2 (^ViW + ak'h'(z)) = jVk(z) + Y, ak'hliz) (2 /7) 

/: au<0 ^ ' /: au<0 

are bounded from below on Ek (here sk < R — 1 is the number of negative a«'s). 
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Note that in the above sum k =fi I because of the assumption that akk > 0. 

Definition 2.2. We define the weighted energy with interaction matrix A of a measure jx = 
[AM,..., HR] with fj,j € M\(Sj) by 

7A,V>(A) := J^ajk / / i n — — d ^ ( z ) d w ( f ) + 2 ^ / V*(z)dw(z) 

= X! [fHjk(z,t)dnj(.z)dnk(t), (2.8) 

where .M i (K) stands for the set of all Borel probability measures supported on some set ^ c C . 

Remark 2.1. The assumption [A3] is a sufficient requirement to ensure that the definition of the 
functional / . y (•) is well-posed and it is a rather mild assumption on the growth of the potentials 
near the overlap regions and infinity. Indeed (with L = 0) 

>A,V&) = Hl! HJk^ OdM;(z)d/i*(0 > 0- (2.9) 
j . k •> J 

Note also that if a conductor Ej is unbounded the condition (2.6) implies that 

j Vj(z) > ajj In \z - 'ol - •£ V,-«D) - - ^ (2.10) 

and hence Vy grows at least like a logarithm. In [20] the usual requirement is the stronger one 
that Vj(z)/\n |z[ -> oo as z -> co. 

Remark 2.2 (A4). is a stronger requirement which will be used for proving tightness (and 
therefore relative compactness) of a certain subfamily of measures over which IA y() is 
guaranteed to attain its minimum value. 

Remark 2.3 (A5). is yet stronger and assumes that all potentials have a suitable logarithmic 
growth near the common boundaries with those condensers carrying an opposite charge. This 
condition could be relaxed in some settings. 

3. Existence and uniqueness of the equilibrium measure 

In this section we prove the existence and uniqueness of the equilibrium measure for the vector 
potential problem described above. Before stating our main theorem, we recall that a family of 
measures J o n a metric space X is said to be tight if for all e > 0 there exists a compact set 
K c X such that /j.(X \ K) < e for all measures fi € T. The following theorem is a standard 
result in probability theory: 

Theorem 3.1 (Prokhorov's Theorem [19]). Let (X, d) be a separable metric space and M\{X) 
the set of all Borel probability measures on X. 

• If a subset T c M \ (X) is a tight family of measures, then T is relatively compact in M \ (X) 
in the topology of weak convergence. 

• Conversely, if there exists an equivalent complete metric do on X then every relatively compact 
subset T of M\(X) is also a tight family. 
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We will use the following little lemma: 

Lemma 3.1. Let F: X —> [0, oo] be a non-negative lower semi-continuous function on the 
locally compact metric space X satisfying 

lim F(x) = oo, (3.1) 
x—»oo 

i.e. for all H > 0 there exists a compact set K c X such that F(x) > H for all x e X \ K. Then 
for all H > inf F the family 

(3.2) FH :=\neMi(X): f Fdp < H 

is a non-empty tight subset of M \ (X). 

Proof. F attains its minimum at some point XQ e X since F is lower semi-continuous and 
lim^-^oo F(x) = oo and therefore the Dirac measure SXo belongs to Tu- To prove the tightness 
of FH, let E > 0 be given. Since F goes to infinity "at the boundary" of X there exists a compact 
set K c X such that F(x) > ^- for all x e X \ K. If fi e TH we have 

fi(X\K)= f dfi<^j[ Fdn < - i - / FdM < - i - « = S- < e. D (3.3) 
JX\K l " JX\K l t i JX ±H I 

Define 

(3.4) 

which is the logarithmic potential (external terms and self-potential together) experienced by the 
fcth charge component in the presence of jl only. 

Theorem 3.2 (See [20], Thm. VIII.1.4). With the admissibility assumptions [A1]-[A5] above the 
following statements hold: 

1. The extremal value 

VA v := inf IA y(il) (3.5) 

of the functional IA y() is finite and there exists a unique (vector) measure jl* such that 
,A,v&)=VA.v- J 

2. The components of p.* have finite logarithmic energy and compact support. Moreover, the Vj 's 
and the logarithmic potentials U'k

l are bounded on the support of /j.k far all k = 1 , . . . , R. 
3. For j = 1 , . . . , R the effective potential 

<Pj(z):=U>''(z) + Vj(z) (3.6) 

is bounded from below by a constant Fj (Robin's constant) on Ej, with the equality holding 
a.e. on the support of fij. 

Remark 3.1. The content of Theorem 3.2 is probably neither completely new nor very surprising 
and the proof is a rather straightforward generalization: the main improvement over the most 
common literature is the fact that we allow the condensers to overlap even if the corresponding 
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term in the interaction matrix is negative. The assumption on the potentials that they provide a 
screening effect so that the equilibrium measures will not have support on the overlap region. 
The theorem will be instrumental in the proof of Theorem 5.1, which is the main result of the 
paper. 

Proof of Theorem 3.2. First of all, we have to prove that 

VA y - infIA y(jl) < oo (3.7) 

by showing that there exists a vector measure with finite weighted energy. To this end, let ij be 
the #-tuple of measures whose kth component r\k is the equilibrium measure of the standard 
weighted energy problem (in the sense of [20]) with potential Vk{z)/akk on the conductor Ek for 
all k. (The potential Vk(z)/akk is admissible in the standard sense on Ek since 

— V*(z) - In |z| > - l n | z - / D | V*(«o) — — lii|z| —> oo (3.8) 
akk c akk cakkK 

as \z\ -> oo for z e Ek if Ek is unbounded.) We know that rjk is supported on a compact set of 
the form 

\zeEk:^<Kk} (3.9) 
I akk J 

for some Kk € K. These sets are mutually disjoint by the growth condition (2.7) imposed on 
the potentials. The sum of the "diagonal" terms and the potential terms in the energy functional 
are finite for rj since this is just a linear combination of the individual weighted energies of the 
equilibrium measures r\k- The "off-diagonal" terms with positive interaction coefficient a« are 
bounded from above because the supports of r/k and 77/ are separated by a positive distance; 
the terms with negative interaction coefficient are also bounded from above since rjk and r\i are 
compactly supported. Therefore 

VAy<IAy(n)<CX>. (3.10) 

Integrating the inequalities (2.6) it follows that 

h.v®* = J2 / / HMZ> ')d/ij(z)dM*(0 > (1 - O £ / Vt(z)dw(z) - C. (3.11) 
j.k=\J-> k=lJ 

We then study the minimization problem over the following set of probability measures: 

R , L 

( 1 - c ) ' 

C Mi(Ei)x--xMi(ER). (3.12) 

The extremal measure(s) are all contained in T since for a vector measure X g T we have 

R „ 

IAy(X)>(\-c)J2 Vk(z)dXk(z)-C>VAV + ]. (3.13) 
k=[ J 

The function ^ V^(z) is non-negative, lower semi-continuous and goes to infinity as |z| —> 00, 
and moreover 

(VA V + C+]) > 0 , (3.14) 

T := \ * '• t i l Vk(z)dnk{z) < JJ-^CVA v + c + » 

( 1 - C ) 
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hence, by Lemma 3.1, all projections of T to the individual factors is a non-empty tight family of 
measures. Using Prokhorov's Theorem 3.1 we know that there exists a measure /x* minimizing 
IA y (•) such that ^ X!yfe=i M* € F• The existence of the (vector) equilibrium measure is therefore 
established. 

Note that now statement (2) follows immediately: indeed from the condition 3 that Hjk > 0 
(and also Vj > 0) it follows that 

V ^ = an Jjlnj-^dfM^d^it) + | j Vl(z)dn*{z) 

L\-t-{\ 1\ J J 
+ 

-IS In- -d^{z)dfi\{t). (3.15) 
\z-t\ 

Thus the logarithmic energy of it* is bounded above by VA y/a\\. Repeating the argument for 
all tx* 's we have that all the logarithmic energies of the /x*- 's are bounded above. 

On the other hand, these log-energies are also bounded below using (2.6) with j = k: 

a" / / l n j T Z T i ^ ^ w - ~7F / v;(z)d";(z) - |> (3'I6) 

(boundedness from below follows since f Vj(z)d/^(z) is bounded above and appears with a 
negative coefficient in the formula). 

Now, using the fact that the quantities Hjk{z, t) are non-negative due to (2.5) and condition 
(3.12) it follows that 

cpj(z) = Vjiz) + J2aJk Iln r T T 7 7 d ^ ( f ) ( 3 1 7 > 

is finite wherever Vj (z) is. Using condition [A5] it also follows that it is lower semi-continuous, 
bounded from below on Ej and hence admissible in the usual sense of minimizations of single 
measures [20]. We also claim that (pj grows to infinity near all the contacts between Ej and any 
Ek for which ajk < 0. Suppose zo e Ej n Ek (with ajk < 0); then on a compact neighborhood 
K of zo we have 

<Pj(z) > Vjiz) + X aJkhk(z) + MK (3.18) 

ajk<0 

for some finite constant MK (which - of course - depends on K). From (5) then 

Vj{z) + Y] ajkhkiz) + MK> -^lVj(z) + MK (3.19) 
w R 

where Sj < R is the number of negative ajk (j ^ k). Since V,(z) tends to infinity at the contact 
points (from the same condition [A5]) then so must be for <pj. 

Note also that 
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and hence (as in [20]) each single /ij,„ is the minimizer of the single variational problem on Ej 
under the effective potential <pj. From the standard results it follows that the support of /̂ *- is 
contained in the set where <pj is bounded, which, due to our assumptions, are all compact and at 
finite non-zero distance from the common overlaps. This proves that the components of jl* are 
actually compactly supported. 

Uniqueness as well as the remaining properties are established essentially in the same way 
as in [20], Thm. 1 Chap. VIII using the positive definiteness of the interaction matrix A, which 
guarantees the convexity of the functional. • 

t . i iic special case 

We now specialize the above setting to the following collection of R conductors: 

27; . ^ ( - l ) ' - 1 [0,oo) (j = l,2,....,R), 

and interaction matrix 

(4.1) 

A := 

2qf 
-q\Q2 

0 

-9192 
lq\ 

-qiq-h 

0 

- < 7 2 < 7 3 

2q\ 

0 0 0 2^J 

(4.2) 

Under the assumptions on the growth of the potentials V) (x) near the only common boundary 
point x = 0, Theorem 3.2 guarantees the existence of a unique vector minimizer. 

We now investigate the regularity properties under the rather comfortable assumption that the 
potentials V) are real analytic on Ej \ {0} for all j ; this is in addition to the host of assumptions 
specified in Definition 2.1. 

In order to simplify slightly some algebraic manipulations lo come we re-define the problem 
by rescaling the component of the vector of probability measures /j,j i->- qjfij so that now the 
interaction matrix becomes the simpler 

r 2 

A := 

-1 0 
-1 2 - 1 
0 - 1 2 (4.3) 

L 0 0 0 • • • 2J 

The electrostatic energy can be rewritten as 

Vv#) = 2 E / / l n j 7 3 ^ d M x ) d M 

-tjflnix^y-\d^iX)^ 
R , 

+ 2J2 / V,-(x)d/iy(*). 

-.00 (4.4) 

(4.5) 
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As explained in the previous section, the above minimization problem has the interesting 
property that the same equilibrium measure is achieved by minimizing only one component of it 
in the mean field of the neighbors and, moreover, the supports of the minimizers satisfy 

supp(p7-) n supp(p ;+!) = 0. (4.6) 

Corollary 4.1. Let jl be the vector equilibrium measure for the above problem. For any 1 < k < 
R we have that 

Iyk(fi):= I I In — ! — dM(z)d/x(r) + 2 / Vk(z)dfi(z) (4.7) 
J£k JSk \Z - t\ JSk 

is minimized by the same p,k, where the effective potentials Vk are 

Vdz) := J V,(z) - i f In — L - d ^ C ) (4-8) 
2 2JS2 \z-t\ 

Vk(z) := \vk{z) - X- [ In _ L _ d w + 1 ( 0 - I f In _ L - d / x * _ i ( r ) (4.9) 

Vi«(z) := ^ j» (z ) - I /" In—!— d/iR-i(0- (4-10) 

Note that the effective potential differs from the original potential by harmonic potentials 
because the supports of ixk±\ are disjoint from the support of /j.k-

We recall the following theorem: 

Theorem 4.1 (Thm. 1.34 in [6]). If the external potential belongs to the class Ck, k > 3 then the 
equilibrium measure is absolutely continuous and its density is Holder continuous of order j . 

Combining Corollary 4.1 with Theorem 4.1 we have that the solution of our equilibrium 
problem consists of equilibrium measures which are absolutely continuous with respect to 
the Lebesgue measure with densities pj at least Holder-1 continuous as long as the external 
potentials are at least C3. Moreover the supports of these equilibrium measures have a finite 
positive distance from the origin. 

Our next goal is to prove that the supports of the p / s consist of a finite union of disjoint 
compact intervals. For that we need a pseudo-algebraic curve given in the next section. 

5. Spectral curve 

Since the equilibrium measures have a smooth density we can now proceed with some 
manipulations using the variational equations. 

For the remainder of the paper we will make the following additional assumption (besides 
those in Definition 2.1) on the nature of the potentials V̂ : 

Assumption. The derivative of the potential V' is the restriction to E° := (— \)i~l(0, oo) of a 
real analytic function defined in a neighborhood of the real axis possessing at most isolated polar 
singularities on K \ Ej. 
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For a function / analytic on C \ f, where r is an oriented smooth curve, we denote 

-S(/)(x) : = / + ( * ) + / _ ( * ) . ' A(f)(x):=f+(x)-f_(x), x e T (5.1) 

where the subscripts denote the boundary values. We remind the reader that under our 
assumptions, the equilibrium measures satisfy Eq. (4.6). 

Definition 5.1. For the solution p of the variational problem, we define the resolvents as the 
expressions 

Wj(z) := J 
Pj(x)dx 

Ej Z-X 
, z e C \ supp(py). (5.2) 

The variational equations imply the following identities for j 

S(WjKx) = V'j(x) + Wj+i + Wj_i 

A(Wj)(x) = —2i7tpj(x), x € supp(pj) 

R: 

(5.3) 

where we have convened that Wo = WR+I = 0. Note that, under our assumptions for the growth 
of the potentials Vj at the contact points between conductors (in this case the origin), the support 
of pj is disjoint from the supports of py±i and hence the resolvents on the rhs of the above 
equation are continuous on supp(pj). 

The following manipulations are purely algebraic: we first introduce the new vector of 
functions 

YR 

-1 

(-0* 

A-1 
~K 

y'*_ 
+ 

"wr 

_WR_ 

} 

(5.4) 

Trivial linear algebra implies then the following relations for the newly defined functions Yj: 

S(Yt) = -Y2 

S{Y2) = -Yi-Y3 

S(Y3) = - 7 2 - ^ 4 

A(YX) = linpi 
A(Y2) = -2inpi 
A{Y3) - liitpT, 

onsupp(pi) 
on supp(p2) 
on supp(p3) 

(5.5) 

5(y«_i) = ~YR-2-YR A(YR-i) = (-\)R2inpR^ on supp(P/?_,) 
S(YR) -YR. A(YR) ^R+l {-\)K+i2inpR o n s u p p ^ ) . 

The above relation should be understood at all points that do not coincide with some of the 
isolated singularities of some potential Vj (points of which type there are only finitely many 
within any compact set). 

Define then the functions 

Z0 := F, , Z, := -Yi - Y2 

\R-l, z*_, = ( - i r - , ( y i t _ i + y j ? ) , 

Z2 := Y2 + y 3 , . . . , 

ZR := (-\)RYR. (5.6) 
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Then: 

Proposition 5.1. All symmetric polynomials of {Zy}o<j</? are real analytic in the common 
domain of analyticity of the potentials, namely they have no discontinuities on the supports of 
the measures pj. 

Proof. A direct algebraic computation using the boundary values of the [Yj] functions gives the 
following boundary values of the functions Zj: 

2Z0± =-Y2±2inpi (5.7) 

2 Z _f-Y2^2inp]=2Zo^ onsupp(pi) 
U \-Yi + Y3±2inp2 onsupp(p2) 

2 | -Yi + y3 T 2i7tp2 = 2Z\^ on supp(p2) (5 •-. 
2± IY2 - y4 ± 2ijrp3 on supp(p3) ' 

i (5.10) 

2 Z _ U-l)R-l(-YR-2 + YR)^:2i]zpR-i =2Z(R-2)T onsupp(pR_i) 
<*-i)± \ (_ i)*-« yJ,_1 ± 2i jrpjj o n s u p p ^ ) 

2ZR± =(-l)R-lYR_1^2ijtpR=2ZiR-lh onsupp(p*). (5.12) 

Consider a symmetric polynomial Pjf := 2K (ZQK + • —h ZR
K) and its boundary values on, 

say, supp(pi); we see above that ZQ± = Z\^ and hence ZQ + Z* has no jump there. The support 
of p2 has no intersection with E\ and supp(pi) (see (4.6)) due to our assumptions, and hence Z2 

may have a jump on supp(pi) only if the support of pj has some intersection with it. In that case 
anyway Z2± = Z^ and hence also Z* + Z^ has no jump on supp(/?3) n supp(pi). 

In general on supp(p^) n supp(pi) we have Z^± = Z* and so the same argument apply. In 
short one can thus check that all the jumps that may a priori occur in fact cancel out in a similar 
way. 

Repeating the argument for all the other supp(p7) instead of supp(pi) proves that the 
expression has no jump on any of the supports, and since a priori it can have jumps only there, 
then it has no jumps at all. Invoking Morera's theorem, we see that the symmetric polynomials 
of the Zt's can be extended analytically across the supports of the p / s . 

Finally, the statement that the symmetric polynomials are real analytic follows from the 
following reasoning: the Z / s are linear expressions in the Wj's and the potentials. In particular 
they are analytic off the real axis (where all the Wj's are) and in the common domain of 
analyticity of the potentials. The same then applies to the symmetric polynomials in the Z / s . 
Finally, on an open interval in K, as long as it is outside of all the supports of the vector measure, 
the Zj are all real analytic functions since Wj 's are. This concludes the proof. D 

A consequence of this proposition is that: 

Theorem 5.1. The functions Z* are solution of a pseudo-algebraic equation of the form 

zR+i + C2(x)zR~l + ••• + CR+1(x) = 0 (5.13) 

where Cj{x) := (—1)J Yli i • Zii ' Z» are (real) analytic functions on the common domain 
of analyticity of the potentials. 
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Remark 5.1. This result is the direct analogue of the results about the existence of the spectral 
curve for the one-matrix model [18] which was established on a rigorous ground in [6]. In a 
different context of matrix models with external source Theorem 5.1 is conceptually similar to 
the result in [13]. 

Proof of Theorem 5.1. We set 

R 

E(z,x):=Y\{z-Zj(x)), (5.14) 
7=0 

and expand the polynomial in z. Clearly we have ZQ + Z\ + - • • + ZR = 0 and hence the 
coefficient Ci vanishes identically. The other coefficients are polynomials in the elementary 
symmetric functions already shown to be real analytic and hence sharing the same property. 

• 
Corollary 5.1. The densities pj are supported on a finite union of compact intervals. Moreover 
the supports of pj and pj±\ are disjoint. 

Proof. The supports of the measures are in correspondence with the jumps of the algebraic 
solutions of E(z, x) = 0; in particular the set of endpoints of the supports must be a subset 
of the zeroes or poles of the discriminant that belong to R. Since the only singularities that these 
may have come from those of the derivatives of the potentials V'(x) on the real axis, and these 
have been assumed to be meromorphic on R and be otherwise real analytic, then the discriminant 
of the pseudo-algebraic equation cannot have infinitely many zeroes on a compact set. We also 
know that the measures pj are compactly supported a priori and hence there can be only finitely 
many intervals of support. D 

Putting together Proposition 5.1 and Theorem 5.1 we can rephrase the properties of the 
functions Zj{x) by saying that they are the R + 1 branches of the polynomial equation (5.13), 
thus defining an (R + l)-fold covering of (a neighborhood of) the real axis. The neighborhood 
is the maximal common neighborhood of joint analyticity of the potentials Vj(x). The various 
sheets defined by the functions Zj (z) are glued together along the supports of the equilibrium 
measures pj in a "chain" of sheets as the Hurwitz diagram in Fig. 1 shows. 

Remark 5.2. In [1] a similar problem was considered in the context of multiple orthogonality for 
Nikishin systems on conductors without intersection and with fixed weights: this corresponds to 
the case of a minimization problem without external fields. It was shown that an algebraic curve 
similarly arises; in the formulation of [1] the algebraic curve involves, rather than the resolvents, 
their exponentiated antiderivatives sP,- 's, namely 

d 
Wj = —\nVj{x) (5.15) 

dx 
and a mixture of algebraic geometry and geometric function theory was used to investigate their 
properties. In particular the functions <Pj figured in an algebraic equation (see Eq. 2.1 in [1]) as 
the various determinations of a polynomial relation 

*R+l+rx{x)<!'R + ---+rR(x)$+rR+l{x) = 0, rs € C[x] (5.16) 

with the discriminant (w.r.t. \P) vanishing at the endpoints of the supports for the measures of the 
corresponding Nikishin problem. Along similar lines, examples of curves of algebraic type for 
Nikishin systems with special choices of external fields were recently obtained in [11]. 
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Fig. 1. The Hurwitz diagram of the spectral curve. 
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6. An explicit example 

We consider the case with R = 2 and the two potentials are the same V\ (x) = Vii—x) and 
are of the simplest possible form that satisfies our requirements (see Fig. 2) 

V\(x) = bx — alnx, x > 0; V20c) = —bx — a ln(—x), x < 0 (6.1) 

where both a, b > 0. 
Quite clearly we can rescale the axis and set b = 1 without loss of generality. 
Using the expressions for the coefficients of the spectral curve (Thm. (5.13)) in terms of the 

potentials V\ = V and V2 = V* = V(—x) we have 

E(z, x) = z3 - R(x)z - D(x) = 0 (6.2) 

where, on account of the fact that the derivative of the potentials have a simple pole at x = 0, 
the coefficients R(x), D(x) have at most a double pole there. From the relationship between the 
three branches of Z and the resolvents W\, W2 (Eq. (5.4)) we have 

Z (0>(X): 
a 1 

-Wi - - + -
x 3 

n\ d 1 
Z(2)(x) = W2 + - + -

x 3 

Zm(x) = -Z(0)(x) - Za)(x) = Wi(x) - W2(x) + 
la 

(6.3) 

(6.4) 

(6.5) 

and hence the general forms that we can expect for the coefficients of the algebraic curve are 

a2 1 C R(x) = — + - + -

D(x) 
2a2 

3x2 27 

2 A B 
(6.6) 

where the constants A, B.C have yet to be determined. 
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The spectral curve z3 — Rz—D = 0 has in general 5 finite branchpoints (which is incompatible 
with the requirements of compactness of the support of the measures) and requiring that there 
are < 4 branchpoints and symmetrically placed around the origin (by looking at the discriminant 
of the equation) imposes that B = C = 0. 

The ensuing spectral curve is 

z3 / l a 2 \ /2a 2 + 3A 2 \ „ 

and a suitable rational uniformi/afion nf this curve is 

Ja2 + A A ( 1 1 

A 2V; 

_A. / 1 1 \ 
'a2TA \x + \ + X-\) 

(6.8) 

3A + 2a2 A(a2 + A) 

3a2 (X
2-(l+A/a2))a*' • > 

The three points above x = ooareX = ± l , 0 and Z is regular there. 
We see that the condition that the measures p\, pj have unit mass requires that 

res Z(0)dx = \+a, res Z(2)dx = - 1 -a. (6.10) 
J :=OO JC=OO 

We need only to decide which point X = ±1 ,0 correspond to the three points over infinity. 
But this is achieved by inspection of the behavior of Y(X) and X(X) near the three points 
A = 0 , L - 1 . 0 . 

By this inspection we have 

X= 1 *> ooi (6.11) 

X= - 1 +>oc>2 (6.12) 

X = 0 -o- oo0. (6.13) 

Computing the residues of Zd* = ZX'dX at these points we have 

res Z(0)dx = J a2 + A = 1 + a (6.14) 
JT=0O 

res Z (2 )(k = -%/a2 + A = - 1 - a (6.15) 
JC=OO 

which imply that A = 2a + 1. 
Collecting the above, we have found that 

^T) 
x = a_±l_7a±1, ' _ ^ , ( 6 . 1 6 ) 

X 2a+ 2 \X+l X- ' ' 

2a2 + 6 a + 3 (2a + l)(a + l) 

3a2 ( X 2 - ( ( f l + l ) 2 / f l
2 ) ) a 4 l ' ) 

and the algebraic equation for z = Z(X) in terms of x = X(X) becomes 

(\ a2\ (2a2 + 6a + 6 2\ e-[L^\,_/^!+^±^_ ^ ) = 0 . (6.18) 

160 



368 F. Balogh, M. Bertola I Journal of Approximation Theory 161 (2009) 353-370 

Fig. 2. Some examples for the equilibrium measure for the example worked out in the text, and a = 0, 1,2,3 respectively 
from left to right. In red is the graph of the potential V\. The symmetry implies that the other equilibrium measure is 
simply the reflection of this around the ordinate axis. The units for the axes are the same in all cases. The growth of 
the density at x = 0 for a = 0 is 0 ( JC~ 2 / 3 ) . Near the other edges the vanishing is of the form 0((x — a) J). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

It is possible to write explicitly the expressions of the branchpoints in terms of a but it is not 
very interesting per se, except to discuss their behaviors in different regimes of a; we find that 
for a > 0 there are four symmetric branchpoints on the real axis and the inmost ones tend to zero 
as a -> 0, whereas they all tend to infinity as a -> oo according to ±(a ± 2^/a) + 0(1) . 

-V • Z2 

siipp(p,) 

• Zo 

3 J 

It is interesting to note that for a = 0 our general theorem does not apply: the potentials 
are finite on the common boundary of the condensers and hence cannot prevent accumulation 
of charge there. However the algebraic solution we have obtained is perfectly well-defined for 
a = 0 giving the algebraic relation 

z 2 2 « (6.19) 
3 x2 27 

A short exercise using Cardano's formulae shows that the origin is a branchpoint of order 3 and 
thus corresponding to the Hurwitz diagram on the side. 

_ 2 

The behavior of the equilibrium densities pj near the origin is (expectedly) x 3. 

7. Concluding remarks 

We point out a few shortcomings and interesting open questions about the above problem. 
The first problem would be to relax the growth condition of the potentials near common points 

of boundaries, if not in the general case at least in the specific example given in the second half 
of the paper, where we consider conductors being subsets of the real axis. 
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The importance of this setup is in relation to the asymptotic analysis of certain biorthogonal 
polynomials studied elsewhere [2] and their relationship with a random multi-matrix model [3]. 

In that setting, having bounded potentials near the origin 0 e R would allow the occurrence 
of new universality classes where new parametrices for the corresponding 3 x 3 (in the simplest 
case) Riemann-Hilbert problem would have to be constructed. 

Based on heuristic considerations involving the analysis of the spectral curve of said RH 
_ 2 

problems, the density of eigenvalues should have a behavior of type x J near the origin (to 
be compared with x~ J for the usual hard-edge in the Hermitian matrix model). Generalization 
involving chain matrix model would allow arbitrary — £ behavior n < n However for ?!! these 
analyses to take place the corresponding equilibrium problem should be analyzed from the point 
of view of potential theory, allowing bounded potentials near the point of contact. 
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Chapter 10 

On the norms and roots of 

orthogonal polynomials in the 

plane and L^-optimal polynomials 

with respect to varying weights 

10.1 Summary 

The present chapter is based on the preprint [10]. This work is concerned with the 

asymptotic behavior of weighted polynomials optimal with respect to the Lp-norm 

corresponding to a positive measure in the complex plane. The main results can be 

summarized as follows: 

1. It is shown to be impossible that a positive proportion of zeroes of Lp-optimal 

weighted polynomials accumulates outside the polynomial convex hull of the 

corresponding equilibrium measure. (Sec. 2). 
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2. A lower and upper estimate for the Z7-norms of optimal weighted polynomials 

is presented (Sec. 3). 

10.1.1 Lp-optimal weighted polynomials and their zeroes 

A weighted polynomial with respect to the admissible varying weight w is of the form 

w'\z)Pn{z) where Fn(z) is a monic polynomial of degree n [81]. The relevance of 

these polynomials for the weighted equilibrium problem is that the logarithm of the 

absolute value of such a weighted polynomial is of the form 

log\wn(z)Pn(z)\ = J2log\z - zk\-nV(z) = -n I £ - log — ^ - + V(z)) , 
*=i \*=i n ]z Zk] J 

(10.1) 

where 
n 

Pn(z)=Y[{z-Zk). (10.2) 
fe=l 

This can be thought of as a rescaled effective potential associated to the normalized 

counting measure of the zeroes of Pn(z) in the presence of the background potential 

V(z). Heuristically it plausible to expect that the absolute value of a weighted poly­

nomial is small for polynomials whose zero distribution is close to the equilibrium 

measure of V and that the maximal value is close to exp(—nFw) where Fw is the 

corresponding Robin constant (see Chap. 4). This motivates the following definition: 

Definition 10.1.1 ([81]) A sequence of weighted polynomials wn Pn is called asymp­

totically extremal if 

lim ( IK 'P joo) - = exp(-Fw) . (10.3) 
n—»oo 

It is important to note that there are asymptotically extremal sequences of weighted 

polynomials: for example, any sequence of Fekete polynomials (monic polynomials 

whose zeroes are given by a Fekete point combination) for a given weight w gives 
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an asymptotically extremal sequence. Obviously, a sequence of optimal polynomials 

with respect to the supremum norm for fixed n, called the generalized Chebishev 

polynomials, is also an asymptotically optimal sequence [81]. 

Any limit point of the sequence of normalized counting measures of the zeroes of 

asymptotically optimal weighted polynomials is related to the equilibrium measure 

in the following way: 

Theorem 10.1.1 ([81]) Let Q be the unbounded component ofCP1\Sw and assume 

that {Pn(z)} a sequence of asymptotically extremal monic polynomials. Any weak-star 

limit point v of the normalized counting measures associated with the zeroes of the 

polynomials Pn satisfies 

/ log-: rdu(s) = / log-: rdfiJs) z 6 f i . (10.4) 
J \z-s\ J \z~s\ 

In particular, supp(^) C C \ f i . 

In other words, it is not guaranteed that the limiting measure is JJLW (there may be 

more than one accumulation points) but any weak-star limit point satisfies the above 

balayage property outside the polynomial convex hull of the equilibrium measure. 

Motivated by the asymptotic analysis of orthogonal polynomials and their zeroes, 

one may consider the following general notion of optimality with respect to the Lp-

norm corresponding to a fixed measure a: 

Definition 10.1.2 ([81]) The weighted polynomial wnPn is called i7-optimal with 

respect to the reference measure a if 

\\PnU)n\\LP,^ = min -J ||Qniw
n||x,p(a)

 : Qn monic polynomial of degree n > . (10.5) 

Recall that the notation Co(5) and Pc(iS) refers to the convex hull and the polynomial 

convex hull of the set S respectively. For Lp-optimal weighted polynomials we have 

the following result [10]: 
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Lemma 10.1.1 ([10], Prop. 2.1) Let K be a closed subset in C \ Co(Sw). Then 

there exists an no G N such that if wnPn is Lp-optimal then Pn(z) has no zeroes in 

K. In particular, for any e > 0 there exists an n\ € N such that for all n > n\ the 

zeroes of Pn are within a distance e from the convex hull. 

Based on the proof of Thm. 10.1.1 in [81], an analogous statement can be proven 

for Lp-optimal weighted polynomials: 

Theorem 10.1.2 (Cor. 2.1, [10]) Let {wn(z)Pn(z)} be a sequence of LP optimal 

polynomials with respect to a reference measure a. Any weak-star limit point v of 

the normalized counting measures associated with the zeroes of the polynomials Pn 

satisfies 

f\OgT^—rdu(s)= flOg-r-^—rdfiM Z £ C \ Pc(5u) . (10.6) 

J \Z ~ S\ J \Z ~ S\ 

In particular, supp(V) C Pc(Sw) . 

10.2 On the norms and roots of orthogonal polynomials in 

the plane and Lp-optimal polynomials with respect to 

varying weights, arXiv:0910.4223, 2009. 
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On t h e n o r m s a n d roots of o r thogona l po lynomia l s in t h e p l a n e 
a n d ZAopt imal po lynomia l s w i th respec t t o va ry ing weights 

F. BaloghtJ1, M. Bertolatt23 

Centre de recherches mathematiques, Universite de Montreal 
C. P. 6128, succ. centre ville, Montreal, Quebec, Canada H3C 3J7 
* Department of Mathematics and Statistics, Concordia University 

1455 de Maisonneuve Blvd. West, Montreal, Quebec, Canada HSG 1M8 

Abs t r ac t 

For a measure on a subset of the complex plane we consider Lp-optimal weighted polynomials, namely, 

monic polynomials of degree n with a varying weight of the form u'n = e~"v which minimize the Lp-

norms. 1 < p < 30 It is shown that eventually all but a uniformly bounded number of the roots of the 

Lp-optimal polynomials lie within a small neighborhood of the support of a certain equilibrium measure; 

asymptotics for the nth roots of the V norms are also provided. The case p = 00 is well known and 

corresponds to weighted Chebyshev polynomials; the case p = 2 corresponding to orthogonal polynomials 

as well as any other 1 < p < 00 is our contribution. 

1 Introduction, background and results 

In approximation theory an important role is played by the so-called Chebyshev polynomials associated to 

a compact set K C C, namely monic polynomials of degree n that minimize the supremum norm over K. 

As a natural generalization, one can consider weighted Chebyshev polynomials with respect to a varying 

weight of the form wn on some E C C that are minimizing the supremum norm of weighted polynomials 

QnVJn over E, where Qn is a monic polynomial of degree n (the weight function w is assumed to satisfy 

certain standard admissibility conditions that make the extremal problem well-posed [1]). 

Along the same lines, given a positive Borel measure a on £ C C, one can consider optimal weighted 

polynomials in the £2(<r)-sense: provided that the integrals below are finite, it is easy to see that there is 

a unique monic polynomial Pn for which the weighted polynomial Pnw
n minimizes the L2(cr)-norm 

IIPnU^lly^-Qf IPnlV-d*)' (1-1) 

^aloghCi'crm.umoritreal.ca 
2Work supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). 
3bertola@crm.umontrea].ca 
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among all monic weighted polynomials of degree n. This polynomial may be characterized as the nth 

monic orthogonal polynomial with respect to the varying measure w2nda, satisfying 

L Pn(z)zKwzn(z)do{z) = 5knhn 0 < k < n , (1-2) 

E 

where 

hn = inf < ||Q7iU)n||L2(0) : Qn(z) monic polynomial of degree n \ . (1-3) 

Orthogonal polynomial sequences for varying measures of the form wnda appear naturally in the 

context of random matrix models [2. 3]: on the space of n x n Hermitian matrices H„, probability 

distributions of the form 

p n (A/)dA/= -^-exp(-nTr(V(Af)))dM , Zn = f exp(-nTr(V(M)))dA/ (1-4) 

are considered where the potential function V(x) grows sufficiently fast as \x\ —• oo to make the integral in 

1-4 finite (AM stands for the Lebesgue measure on H„). The apparent unitary invariance of 1-4 implies 

that the analysis of statistical observables of M may be reduced to that of the random eigenvalues 

A ] . . . . . An with probability distribution 

p B ( A l , . . . ! A „ ) = - i - I ] ( A f c - A O V K - n A O , 

" ^ ^ (1-5) 

hi n (\k - \l)
2e'n^"VMdX1 • • -d\n 

The marginal distributions of p„ (referred to as correlation functions) are expressible as determinants of 

the weighted polynomials p n (x )e~ n V ' I ' / ' 2 where the pn satisfies the orthogonality relation 

f pn{x)xke'nV{x)dx = &knhn k = 0.....n. (1-6) 
•IK 

Therefore the asymptotic analysis of the correlation functions reduces to the study of the corresponding 

orthogonal polynomials. On the real line, the asymptotic analysis is done effectively by the so-called 

Riemann-Hilbert method [3]; however, for the so-called normal matrix models [4, 5], for which the 

eigenvalues may fill regions of the complex plane, much less is known in general. While random matrix 

theory was the original impetus behind our interest, the paper will not draw any conclusions on these 

important connections. 

Following instead a more approximation-theoretical spirit, it is also natural to consider L p -opt imal 

weighted polynomials [6, 7, 8. 9] with respect to the varying weight wn and the measure o\ i.e. to minimize 

the Lp-norm 

\\Pnn:n\\LPM:= (^j \PnWTA0y (1-7) 
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over all monic polynomials of degree n. The paper addresses two questions; the first concerns the location 

of the roots of ZAoptimal polynomials or rather where the roots cannot be. We find that eventually (i.e. 

for sufficiently large n) all roots fall in an arbitrary neighborhood of the convex hull of the support Sw 

of the relevant equilibrium measure /nm (whose definition is recalled in Sect. 1.1); this is accomplished in 

Prop. 2.1 (with a more precise statement). 

If the support is not convex (possibly with holes and several disjoint connected components) then 

we can state that (Prop. 2.2) all but a finite (and uniformly bounded) number of roots falls within any 

arbitrary neighborhood of the polynomially convex hull of the support. A consequence of the above is 

that 

" lim -\nPn{z)= f\n\z-t\duw(t)" (1-8) 

where the quotation marks indicate that the statement is imprecise (see Thm. 2.1 for the precise one); 

the convergence is uniform over closed subsets of the unbounded component C\SW- UK does not contain 

roots of Pn (eventually) then we can remove the quotations and the statement is correct (for example, if 

K is disjoint from the convex hull of Sw). 

The second question deals with the leading order behaviour of the V norms of the p-optimal poly­

nomials and we show that - in fact - they all have the exact same asymptotic behaviour 

hm^ (\\Pnw
n\\LrMy/n = exp(-Fw) (1-9) 

where Fw is the modified Robin's constant of the equilibrium measure p.vl, and this limit is independent 

of 1 < p < oc. 

The case of p = oo of the above statements is known in the literature ([10] for the unweighted case, 

and [1] for the weighted one) even in the varying weight case. It seems to be new for p ^ oo. 

1.1 Potential-theoretic background 

We will consider polynomials on a closed set E C C, called a condenser; on this set a reference measure 

a is supposed to be given. Since we are not seeking the greatest generality (at cost of simplicity) we will 

restrict ourselves to the following situations: 

• E is a finite collection of Jordan curves, with typical example the real axis or union of intervals 

thereof. In this case the measure a is simply the arc-length, 

• E is a finite union of regions of the plane, with the area measure do = dA, 

• I! is a finite union of elements of both types above. 

The main focus will be E = C or E = M or E = 7 a smooth curve in C. 

The weight function w : E —• [0. oc) introduced above is assumed to satisfy the following standard 

admissibility conditions ([1]): 

3 
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• w is upper serai-continuous, 

• cap ({2 : w(z) > 0}) has positive capacity, 

• |z|u'(z) —• 0 as \z\ —> oo in E. 

The potential V(z) is the function for which 111(2) = exp(-V(z)) and it inherits the corresponding 

admissibility conditions. The weighted energy functional is defined as follows; for a probability measure 

/i on £ we define 

J,„[M] ~ Jf In j-^-ldn(z)dnM+ 2 J V(z)d^t(z) . (1-10) 

It is well known in potential theory [1] that there exists a unique measure fiw that realizes the minimum 

of ITO; such a measure is referred to as the equilibrium measure. Its support Sw = supp(^„) is a 

compact set. 

Although it will not be used directly we recall the following indirect characterization of )iw: if we 

denote with 

U"{z):= I In-,——:d/i(w) (1-11) 
J U - w\ 

the logarithmic potential of a probability measure fj, then £t,„ is uniquely characterized as follows. 

There exists a constant Fw called the modified Robin's constant such that the effective potential 

<S>(z):=U^(z) + V(z)-F,l! (1-12) 

satisfies 

$(z) < 0 z G Sw ] 
and \ => $(z) = 0 z 6 Sw q. e. (1-13) 

<[>(z) > 0 z G £ q. e.J 

where 'q. e.' stands for "quasi-everywhere", namely up to sets of zero logarithmic capacity. 

2 Where the roots are not 

Let Pn{z) be any sequence of polynomials of degree < n, Sw = supp(/j„) and let M D Sw be an open 

bounded set containing 5,„. 

In [1] III.u' (eq. G.4) it is shown in general (under certain assumptions on S, w and 0") that if Pn is 

any sequence of polynomials of degree < n we have 

»L"M 
f \Pnio

n\pda < (1 +Ce~ c n ) / \Pnw
n\pdo (2-1) 

where the constants c > 0 and C do not depend on the polynomial sequence under consideration (they 

depend -of course- on w. p and N). 

The inequality (2-1) can be rewritten or equivalently (XN denotes the indicator function of the set M) 

IIP i / 'n l |P 

ll-r-nu- lip +Ce-cn (2-2) 
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The inequality (2-1) shows that the norm of 

Pnw
n lives in a small neighborhood of Sw; this 

will be the main tool in what follows. The ideas 

follow very closely similar steps for the so-called 

weighted Chebyshev polynomials in III.3 of [1]. 

For any set X C C we will denote by Co(X) 

the (closed) convex hull of said set. 

Let. as before AT D Sw be an open, bounded 

neighborhood of Sw. We start from the 

Lemma 2.1 Let X C C be compact that is not a 

singleton and w £ C be such that dist(iu. Co(A')) = 

<S > 0. Then 

\z - z,„| D 

10' 

Q 

Figure 1: Figure for Lemma 2.1 

< 1 D 
\z-w\ ~ VD2 + 52 

where z„. £ Co(X) is the (unique) closest point to w. 

diam(Co(X)) 

(2-3) 

Proof. The set Co(X) lies entirely on one half-plane passing through zw and perpendicular to the line 

segment [z„;.tu]. Let 8W the smallest angle such that Co(X) is entirely contained in a 9W sector centered 

at w, by the convexity and compactness of Co(^Y), 0U- < n. In fact we can estimate the upper bound on 

w of such Su, as 

9W < arctan 
D 

from which (2-3) follows (see Fig. 1). Q.E.D. 

D = diam(Co(X)) (2-4) 

Proposit ion 2.1 Let K be a closed subset in C \ Co(Sw). Then eventually there are no roots of Pn 

belonging to K. In particular, for any e > 0 there is a no 6 N such that Vn > no all roots of P„ are 

within distance t from the convex hull. 

Proof. Since K is closed and has no intersection with Co(5^) we have dist(A'. Co(5„;)) = 26 > 0; Let 

J\f be the d-fattening of Co(5m), namely 

ti := {z e C : dist(z,Co{Sw)) < 6} (2-5) 

It is easy to see that M is convex as well. 

Now consider the p-optimal polynomial Pn(z) and let us decompose it as Pn(z) = Rn(z)Qn{z) where 

R„(z) is the factor of all roots within A'; note that each of these roots is at distance > S from N. 
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For each root z, of Rn{z) we can find the closest point ~Zj £ M: hence we will define Rn{z) as the 

"proximal substitute" of Rn, where each root of Rn has been replaced by its proximal point in jV. Then 

for all z e N we have |J?n(z)| < prn\Rn(z)\ where r n = deg(Hn). Indeed, by Lemma 2.1, 

3 = 1 J' = l 

Thus pointwise 

|P»(*)I < Pr" |Pn(2)| zeM, p := ^ ^ < 1 , D:= diam(A0. (2-7) 

We thus have 

\PnWnxJ" T V l |PnW"x^llS < ^ ll«.tUB | |J (2-8) 

By definition, the p-optimal polynomials Pn have the smallest Lp norm and hence 

I I ^ V I (2-1) ll-PnU^Xv-ll (2-7) 
1 < j ^ < • (1 + ^ ) ~ p ^ | f * (1 + Ce~«)^. (2-9) 

where in the second inequality we have used (2-1) on the sequence of polynomials Pn. Inequalities (2-9) 

amount to 

1 < (1 + Ce-cn)ppr" (2-10) 

and recall that p < 1. This inequality implies at once that l imsupr„ = 0, and hence the sequence of 

natural numbers r„ must eventually be identically zero. The second statement, in the theorem is simply 

obtained by taking for K the complement of the e-fattening of Co(S„,). Q.E.D. 

Having established that there are no roots (eventually) "outside" the convex hull, we get some further 

information about what happens in general. 

We borrow the following nice 

Lemma 2.2 (Lemma III.3.5 in [1], originally in [11]) IfS andK are compact sets such that Pc(S)<~\ 

K — 0 then there is a positive integer in = m{K) and a constant 0 < a(K) < 1 such that for all 

(zi,. . .. zm) 6 Km there are points zi.... ,~zm such that the rational function 

satisfies 

sup|r(z) | <a(K) . (2-12) 
2€S 

Lemma 2.2 allows us to prove 
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Proposition 2.2 For any compact set K contained in the unbounded component ofC\ 5,„ the number 

of roots of the p-optimal polynomials Pn within K is bounded. In particular Ve > 0 there is no S N 

such that Wi > no all but a finite number (uniformly bounded) roots of Pn lie within distance e from the 

polynomial convex hull of Sw (i.e. C \ il. where f! is the unbounded component of C \ Sw). 

Proof. In parallel with the proof of Prop. 2.1 let 2(5 = dist(A'. Sw) and let M be the i-fattening of 

Sw. We decompose Pn = RnQn where Rn has r„ roots (counted with multiplicity) within K. We will 

prove that rn < m(K) eventually, where m(K) is the number of poles in Lemma 2.2 for S = M and 

K. Proceeding by contradiction, there would be a subsequence where r„ > m(K); but then we can use 

Lemma 2.2 to find a polynomial Iin such that 

\Rn(z)\ < a(K)\Rn(z)\ , z € N =*> \Pn(z)\ < a(K)\Pn(z)\ . z&M. (2-13) 

At this point we proceed exactly as in the proof of Prop. 2.1 starting from (2-8) with ppr" i—> a(K), 

namely. 

| | « . « ' n Xv | r ^ <13)«(A')P \\PnWnxJ\P
p < a(K)p \\P«w% . (2-14) 

II lip 

By the p-optimality of the polynomial Pn we must have 

l^"1""! (2-1) | | ^ W " X A . | (2-13) 
1 < h , w < (l + c^Cn)-^ s r 2 < (1 + Ce-c")o(A-)p . (2-15) 

It is clear that the last expression in (2-15) is eventually less than one (since Q(A' ) < 1), which leads to a 

contradiction with the assumption that there were > m(K) roots in K. The last statement follows from 

the fact that there are no roots outside the convex hull by Prop. 2.1 together with the above. Q.E.D. 

Example 2.1 Suppose that the support of the equilibrium measure consists of intervals in the real axis, 

as in the case of ordinary orthogonal polynomials. It is an exercise to see that for any gap the number 

m(K) = 2 and hence there can be at most one zero within each gap. 

We next prove 

Theorem 2.1 Let fl be the unbounded connected component ofC\Sw and A ' c O o compact subset. Let 

zi,n(K) be the roots of P„ belonging to K. 1 = 1.... ,m„(A"). Then, uniformly in K we have 

1 m„(K) 

lim _ l n | P n ( z ) | + - y Gn(z.zl.„)= j In \z - t\dn(t) . (2-16) 
n-.oo n - ' 

- J2 Gn(2. *,.„)= / in | 
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where GQ(Z.W) is the Green's function of it. namely the function such that 

AzGn(z,w) = 0 . 2 S f 2 \ { i o } (2-17) 

GJz,w) = 0, zedil (2-18) 

G{z,w) > 0 . z.w e n (2-19) 

Gn (2. tu) = In , 1 , + 0(1) z -» i« (2-20) 

k ~ "'I 
Additionally, if K is closed and does not contain (eventually) any roots, then, uniformly, 

lim -ln\Pn(z)\ = f\n\z-t\dn(t) (2-21) 

Proof. We reason on the functions 

/nU)~ -m|P„(z)| + - V Gn(z,zt.n)- hn\z-t\d^(t) (2-22) 
n n ~t J 

We will see in Prop. 3.1 together with Corollary 3.1 that Ve > 0 3no : n > no 

- In \P„ (z)wn(z)\ < -Fw + e . Vz € C (2-23) 
n 

Additionally, the /„(z) 's are subharmonic in f2 and harmonic in a neighborhood of 2 = oc: indeed all 

roots are uniformly bounded (from Prop. 2.1) and the Green's function Gn(z,u>) is harmonic away from 

the singularity z = w (in a neighborhood of which it is superftarmonic) and in the neighborhoods of 

zi.n the /„ 's are actually harmonic because the singularities coming from Pn's cancel out exactly those 

coming from the Green's functions. 

For z 6 dQ and Vt > 0 we have eventually (recall that Gfi{z, us) = 0 for z 6 dfl) 

fn{z)<V(z) + U>""(z)-Fw+t<(.: zedCl. (2-24) 

Since /„(z) are subharmonic. they cannot have isolated maxima in the interior of fi and hence we conclude 

that fn(z) < t throughout ft (including z = 00). 

Let f<x>(z) = l imsup n ^ 0 0 fn(z); then Ve > 0 

fx{z) = l imsup/n(z) < E => /oo(z) < 0 , z e C (2-25) 
n—*oo 

Let Pc(S„) = C \ O be the polynomial convex hull of Sw and let now K be a compact set K c SI 

We next analyze the lim inf; let 20 6 K and set 

Lzo := liminf/„,(20) < 700(20) < 0 . (2-26) 

where 20 6 K is some (arbitrary but fixed) point. There is a subsequence n-k of the numbers fn(zoYs 

which converges to this limit; out of it. we can extract another subsequence (which we denote again nt for 
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brevity) such that the counting measures ank have a weak* limit (since they are all compactly supported) 

which we denote by azo (note that both the subsequence and this limiting distribution may depend on 

Zo). Prop. 2.2 implies that its support of <rso lies in the polynomial convex hull of Sw; in particular the 

function In \z — «| is harmonic on supp(<j20) for any z S K. Let ank be the restriction of crnk to those 

atoms outside of K; we know that it differs from onk by a finite number mn(K) of atoms (uniformly 

bounded in n) and hence it obviously has the same weak* limit. Now, for any z S K along the chosen 

subsequence we have 

0 > / o o U ) > lira /„A,(z) = lim / In \z - t\dSn„ (i) - / In \z - t\dfj.w(t)+ 
k—>oo k—"x> J j 

x m„(K) 
+ — Y] (Gr,(z:ze.nk) + \n\z-ze,nk\) (2-27) 

nk 7=1 
Since Gn(z. tu) + ln \z — w\ is jointly continuous in z. w for z, w £ fi. it is also (jointly) bounded on compact 

sets; we know already that zg,„t all are uniformly bounded, hence the last term in (2-27) tends to zero. 

We thus have 

lim /„ t(z) = lim / ln|z - t\dank(t) - / ln|z - t\d/.iw(t) = 

= f\n\z-t\dazo(t)- f\n\z-t\<iiJ.w{t) (2-28) 

The right hand side of (2-28) is harmonic in CI (by inspection) and by (2-25) it is < 0; on the other hand 

at z = oo it vanishes (since both measures are probability measures) and hence it must be identically 

zero. Evaluating it at z = zo yields that Lza = liminf,,,-,^/n(zo) = 0; since ZQ was arbitrary, this shows 

that limn^oo fn(z) — 0; the uniformity of the convergence follows from the fact that the sequence of 

functions 

hn(z):= fln\z-t\dan{l) (2-29) 

are equicontinuous for z 6 K and hence the Arzela-Ascoli Theorem [12] guarantees uniform convergence. 

To see equicontinuity we compute 

\hn(z) - hn(z')\ = | l n ^ ± ddnk(t) = y In 1 + ~ dSnk(t) < J |Lz£jd?n 4( t) < 

- V ~ A (2-30) 
- dist(K, Sw) 

Note that the above chain of inequalities applies more generally for any closed K C fi and also says that 

the sequence is uniformly Lipschitz. 

To prove (2-21) we note that we have used compactness only after (2-27), but if mn{K) = 0 (eventu­

ally) then the same arguments prove uniform convergence without having to use compactness. Q.E.D. 

Theorem 2.1 says loosely speaking that ~ In \Pn\ converges to the logarithmic transform of the equilib­

rium measure as uniformly as it is possible on the "outside" of the support, given that there are possibly 
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some stray roots; if we restrict to the outside of the convex hull of Sw, then this convergence is truly 

uniform (over closed subsets) because -eventually- there are no roots at all (Prop. 2.1). 

Theorem 2.1 has an interesting corollary 

Corollary 2.1 Let h(z) be any harmonic function on a neighborhood of Pc(Sw) and let a be a weak* 

limit point of the counting measures of the Lp-optimal polynomials. Then 

I h{z)do(z) = j h{z)d,iw{z) • (2-31) 

Proof. By Mergelyan's theorem it suffices to verify it for the monomials zJ\ we have seen in the proof of 

Thm. 2.1 (2-27 and discussion thereafter) that 

f\n\z- t\do(t) - fln\z- t | d ^ ( t ) = 0 (2-32) 

for 2 £ n (the complement of the polynomial convex hull of Sw). Taking the large z expansion we have 

easily the statement Q.E.D. 

Remark 2.1 The Theorem 2.1 and Corollary 2.1 assert that whatever limiting distribution the roots of 

the p-optimal polynomials may have, it must be a balayage of the equilibrium measure onto the support 

of this limiting distribution. In order not to swindle the reader, we should point out that it falls short of 

saying that there is a unique limiting distribution, and even further away from any statement about what 

distribution that should be. 

3 Norm estimates 

3.1 Upper estimate for the norms 

The aim of this section is twofold: first we will prove that if Pnw
n are the p-optimal weighted polynomials 

then 

lim -\n\\Pnw
n\\p = -Fm « | | P „ u ) l P = e-"F"+c,<n> (3-1) 

n ^ o o n 

En route we will see that the Lp norms of the wave-functions Pnw
n are asymptotically equal to the L°° 

ones. In particular this implies that the n-th root of the wave functions is uniformly bounded. 

Proposition 3.1 Let Pnw
n be the p-optimal weighted polynomial; then 

l imsup-ln| |P„u, ." | |p < -Fw , (3-2) 
7i—.oo n 

where £ is the Robin constant for the equilibrium measure. 

10 
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Proof. We compare the Lp norms of the P„wn's with the weighted Fekete polynomials Fnw
n • Let A/" be 

a bounded open neighborhood of Sw- Then 

(2-1) 
\\Pnw

n\\P "y ° T " , y \\Fnw
n\\„ < (1 + Ce'cn)\\Fnw

n
XM\\v < (1 + C e - m ) | | F n U ; n ! U ^ e a ( A ^ ) 5 (3-3) 

Now taking — ln() of both sides gives 

-\r,{\\PnW
n\\v) < I l n f l l i W X ) < -ln(| |F,1 if" | |0 O) + 0 ( n - 1 ) (3-4) 

n n ra 

Since 

lim - ln( | |F n tu ' l | | 0 0 ) = -F,„ (3-5) 

(see Thm. III.1.9 in [1]) we have 

l i m s u p - l n d l P n i i / l p ) < l i m s u p - I n ( | | F „ i u n y < lim sup - In {\\Fnw
n\\00) < -Fw . (3-6) 

n—*oo Tl n—»oo 71 ?i —>oo H 

Q.E.D. 

Remark 3.1 /£ may 6e 0/ some importance to note that the above proof can be used to show 

\\P-,wn\\ 
lim sup In " "p < VArea(Sw) (3-7) 

71^00 | | F „ u ; " | | o o 

3.2 Lower es t imate for t h e norms 

We follow the idea in [1], pp 182. 

Lemma 3.1 Let Pn(z) be a sequence of polynomials of degree at most n. Assume further that the potential 

V is twice continuously differentiable. Then there is a constant D > 0 and dj (the Hausdorff dimension 

of E, which for us is either 2 or 1) such that 

!^WJ > Dn-'-f (3-8) 

In particular 

liminf \\Pnw
n\\J > liminf||.P„ii;n | |00" (3-9) 

TI—too n—*oo 

l imsup| |Pn iu"| |p" > limsup||i3„u;n | |0o" • (3-10) 
n—too n—too 

Proof. We work with the normalized polynomials 

1 Pn(z). (3-11) 
WPnW 

11 
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Let zo be a point where |<3„(Z)UJ"(Z)| achieves its maximum value 1 (such a point exists by the 

assumed admissibility conditions on w). We claim that 

3C > 0 : \z - 201 < 
2eCn 

\Qn{z)\e -nV(i) 1 
2e 

Since |Q(zo)|e nVI-z°> — 1 the inequality can be rewritten 

(3-12) 

(3-13) 

Let <5 > 0 and set Cs(zo) •— sup | z _ z o | = i \V(z) - V(zo)\; since we are assuming V{z) to be twice contin­

uously differentiable, ZQ S SW and Sw is compact, we see that a simple argument shows Cs(zo) < C5 

for some constant C > 0 (independent of zo 6 Sw). Let |z — ZQ\ < | 5 ; the formula of Cauchy for the 

derivative implies 

\Q'Jz)\ < \Qn(z0)\^enCS , | z - 2 0 | < i < 5 . 

On the even smaller disk \z — ZQ\ < ^5 we have 

\Qn(z) ~ Q „ ( 2 0 ) | < / IQ^WIIdil < \Qn{zo)\ 
2e" K ~ 2ol 

< jlQnWIe"^ - 1 

If we choose 6 = JJ^ and hence |z - zo| < we have 

\Qn(z)-Qn(z0)\<^\Qn(z0)\ => |Q„(z) | > i | Q n ( z o ) | • 

Multiplying both sides 

| Q „ ( z ) | e - " < ^ > - ^ ° » > l\Qn(z0)\e~^v^-v^» > i |Q„Uo) | e - " c « = ^ # ^ 

(3-14) 

(3-15) 

(3-16) 

\Qn(z)\e-nV(Z) > ^\Qn(zo)\e-nVM = i 

2e 

2e' 2e 

Integrating the inequality (3-12) 

/ \Qn(z)wn\pazzY >( f |Q„(z)w'Td E z 1 > 

2e 
£ E 

1 
4nCe 

(3-17) 

(3-18) 

(3-19) 

Here Bz(6) is the dcr volume of the ball of radius 5 centered at zo in E: in the case E = C this is 

simply 7r<52. in the case E is a smooth curve then BE(<5) > c<5 for some c > 0. The only important 

fact for us below is that Br.(S) is bounded below by some positive power of 5- Therefore, recalling that 

Q„{z) = Fn(z)/||Pnu)"||oc the inequality (3-19) reads 

(\\Pn{z)w'%) > Br. 
1 

4nCe 
\\Pnw' (3-20) 

12 
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Summarizing, there are constants D > 0 and cfe (the ''dimension" of E. which for us is either 2 or 1) 

such that 
IIP_f»1.|nnIL 

> Dn~~f . (3-21) 
||P„(z)tun | |p 

\\PnW" 

Q.E.D. 

Before proceeding we recall 

Theorem 3.1 (Thm. 1.3.6 in [1]) Let P„ be any sequence o/monic polynomials of degree n. Then 

liminf (HPntu"!^)" > exp(-Pm) . (3-22) 

As a corollary of Thm. 3.1 and Prop. 3.1 we have 

Corollary 3.1 The norms of the p-optimal polynomials satisfy 

\J\\PnWn\\p - e-F» , n - oc . (3-23) 

Proof. Using Lemma 3.1 and (3-9) together with Thm. 3.1 we have that the liminf of the left hand side 

cannot be less than e~F'". 

-F,„ '°> lim s u p - In | |P„u" |L > liminf - I n | |Pntun |L '°> liminf - In ||P„u;"||oo '"> ' ~FW . 
n — oo n n—oo n n ^ o o n 

Q.E.D. 
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Chapter 11 

External potentials for two-point 

quadrature domains 

11.1 Summary 

This chapter is based on the manuscript presented in the following section. The goal 

of this study is to solve a forward potential problem corresponding to the simplest 

types of classical quadrature domains corresponding to two quadrature nodes. The 

paper is organized as follows: 

1. Symmetric connected two point quadrature domains are considered and, based 

on the algebraic structure of the Schwarz function corresponding to the boundary, 

admissible quasi-harmonic external potentials are constructed (Sec. 1). 

2. A confluent limit of two-point quadrature domains with a single second order 

node is studied and a corresponding admissible quasi-harmonic background po­

tential is constructed (Sec. 2). 

3. As a degenerate case, quadrature domains consisting of two disjoint congruent 
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disks are considered and a suitable admissible quasi-harmonic potential is found. 

The corresponding equilibrium measure is shown to coincide with the normalized 

area measure concentrated on the disks (Sec. 3). 

4. As an appendix, the quasi-harmonic potentials are represented as superharmonic 

perturbations of the Gaussian potential for explicitly calculated positive perturb­

ing measures along straight lines (Sec. 4). 

11.1.1 Forward potential problem for external fields 

For quasi-harmonic admissible potentials the equilibrium measure is often (not al­

ways) given by the normalized area measure restricted to a compact set K. Assuming 

that the boundary dK consists of a non-singular analytic Jordan curve, one of the 

methods to recover the support set K, as we have seen in Sec. 6.6. is to find the 

positive part S+(z) of the Schwarz function of the boundary and, by the singularity 

correspondence between the Schwarz function and the exterior conformal map, find 

a uniformizing map for CP1 \ K. 

Motivated by applications in approximation theory [13], one may consider the 

forward problem of finding the quasi-harmonic potential associated to a given com­

pact set K of positive area. For sets with simply connected exterior and an explicit 

exterior uniformizing map the Schwarz function and its decomposition into positive 

and negative parts can be calculated explicitly. This means that a corresponding 

quasi-harmonic potential can be obtained by integration according to Thm. 6.6.1. 

It is easy to see that the exact same strategy can be followed if the set K is given by 

its interior conformal map instead: an explicitly given conformal map of the boundary 

allows the recovery of the Schwarz function and a corresponding background potential. 

The special cases considered in the paper are illustrating the simplest cases in 

which K is given by a rational interior conformal map: two point quadrature domains 
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with either two distinct or one confuent quadrature nodes, corresponding to rational 

interior conformal maps of degree two. As a consequence, the corresponding Schwarz 

functions satisfy quadratic equations of the form 

A(z)S(z)2 + B(z)S{z) + C{z) = 0 (11.1) 

where A(z),B(z),C(z) are rational functions in z. The positive part S+(z) of the 

Schwarz function is therefore algebraic also (the negative part is rational because of 

the quadrature property). The integration of this algebraic function leads to a quasi-

harmonic admissible potential Q(z). A proper choice of the branch cut structure of 

S+(z) allows the external potential to be expressed in the form 

Q(z) = a\z\2 + Uv{z) (11.2) 

where v is a positive measure supported on branch cut of S+(z). The detailed formulae 

and the geometric construction of the background potentials can be found in Sec. 1 

and 2. 

The degenerate case of two disjoint disks is considered in Sec. 4. The corre­

sponding external potential is of a much simpler form and therefore the variational 

inequalities may be checked easily, confirming that the equilibrium measure of the 

calculated potential is supported on the prescribed disks. A superharmonic pertur­

bation representation for this potential is also obtained by finding a positive measure 

v supported on the imaginary axis. 

11.2 External potentials for two-point quadrature domains, 

manuscript 
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D O M A I N S 
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ABSTRACT. Admissible background potentials are calculated for three different kinds 
of two-point quadrature domains: bicircular quartics, limacons and the union of two 
disjoint congruent disks. The equilibrium measures of the potentials are normalized 
area measures concentrated to the corresponding quadrature domains. Moreover, all 
three potentials may be represented as a sum of a dominant Gaussian quadratic term 
and a pure logarithmic potential of a positive measure on the plane. 
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1. BICIRCULAR QUARTICS 

1.1. T h e conformal m a p and t h e S c h w a r z function of t h e b o u n d a r y . First of all, 
we start from a special class of rational conformal maps of degree two and show tha t the 
image of the unit disk under such mappings satisfies a two-point quadrature identity. We 
refer to [2], [4] and [5] as standard references on quadrature domains. 

Let r > 0 and E G [1, oo) be given and consider the following conformal mapping on 

(i) /(C) - ^ 
1 1 

E-C E + C, E 2 - C 2 

This mapping is univalent for all considered values of the parameters: for a pair ( i ^= (2 
the equality / ( (1) = /(C2) implies that 

(2) C1C2 = -E2 
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and E > 1 is equivalent to the fact that there are no such pairs £1. £2 £ D satisfying (2). 
Let G denote the image of the open unit disk © of the £-plane under the mapping / in 

the 2-plane: 

(3) C : = / ( » ) . 

FIGURE 1. The conformal map 

The boundary of G is a nonsingular analytic curve for E > 1 and therefore possesses a 
so-called Schwarz function analytic in a neighborhood of dG such that 

(4) S(z) 

(see [2]). On the boundary dG.. 

(5) 

z = /(C) 

€<9G 

£ 2 - C 2 

£ 2 ( 2 - 1 

since the unifonnizing parameter satisifies C = 7- This means that 2 and y = z are 
algebraically dependent on dG. Since, for fixed z £ dG. both polynomials 

rPl(o = 2c2 + r c - £ 2
2 

\P2(C) = £ ; V 2 - ' - C - y • 
must vanish for some ( S c*B, the resultant equation 

(7) P(z,y) = (22(1 - E4)2 - r2E2) y2 - r2(E4 + \)zy - r2E2z2 

is satisfied by z and 2 on the boundary: 

(8) P(z,z) = 0 zedG. 

It is important to note that 

(9) dGc{z:P(z,z) = 0} 

but the equation is also satisfied at 2 = 0 which is not on the boundary of G unless E = 1 
(actually {2: P(z,z) = 0} = dG U {0}). 
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1.2. Quadrature identity. The components of the standard inner-outer holomorphic 
decomposition of S(z) with respect to dG are defined as follows: 

(10) ' ~"JBG 

I f S(t)dt 

i J 5 ( 0 * z £ C V _ 
2wi JdG t - z 

Both functions are analytic in their domain of definition and have non-tangential limit 
functions on the boundary and they satisfy 

(11) S(z0) = lim S+(z) - lim S_{z) z0 £ dG . 
2—*20 Z—'20 

In our case, both functions admit simple analytic continuations t o a large portion of the 
complex plane and the equality 

(12) S(z) = S+(z)-S.(z) 

holds in every region containing dG into which all three functions above admit analytic 
continuations. 

The explicit form of 5_ (z) can be calculated by using the conformal map / to param­
etrize the boundary of dG: 

I f S(t)dt 

(13) m J t c t - * 

/(C)/'(CR 
2TT'' 7 | C | = I /(C) - z -I 
2™ J|CI=1 

This can be rewritten as a contour integral of a rational function on the C-unit circle since 
C = 1/C there: 

S-{z) = ^ - . i 
ZlTl / | C | = 1 /(C) 

/ 0) /'(c)rfc 

(U) f($)f'(OdC / Q ) / ' ( C R 
res —~-~. 1- res 

• z c = * /(C) - z <=-± /(C) 

rf'd) 1 + r / ' ( - 4 ) 1 
2 ^ 2 / ( £ ) - * 2E2 f(-h)-*~ 

(For fixed 2 g C \ G , this rational integrand has six poles, and only two of them, -g and 
— -g, are inside the the unit circle.) In terms of the quantities 

_ r / ' ( j . ) _ r 2 ( £ 4 + l) 

(15) { ' 2E2 2 ( £ 4 - ! ) 2 

'"=~f\EJ = £ 4 - l ' 

the exterior part of the Schwarz function 5_ (z) is the rational function 

(16) S _ W = _=L_ ™ 
a — z a + z 
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with two simple poles. The polynomial equation P(z, y) = 0 is equivalent to the rescaled 
equation 

(17) P(z,y) = {z2-a2)y2-2mzy-a2z2 = 0 , 

whose coefficients are simple functions of the quadrature data m, a. 

Proposi t ion 1. The following statements hold: 

(1) The domain G defined above is a classical holomorphic quadrature domain (in the 
sense of [4]) for the measure 

(18) m5a + mS-a • 

(2) For all m > 0, a > 0 satisfying 

(19) rn > a2 (connectedness condition) 

there exists a unique choice of E > 1, r > 0 such that the corresponding interior 
conformal map f produces a quadrature domain with measure m5a + m 5 _ a . 

Proof. Let h(z) be a test function holomorphic in a neighborhood of G and integrable 
on cl(G). Then 

J h(z)d.A(z) = i J h(z)zdz 

= h /. hwswdz 

(20) 1 fh{z)S+{z)dz-~fh(z)S-{z)dz 

-hi 
0 

h(z) 
•Km nm 

h dz 

= irmh(a) + irmh(-a). 

This proves the first statement. 
The system of equations 

rE 

E4 - 1 
r2 E4 + l 

2 ( £ 4 - l ) 2 

tten as 

2^E2
 + 1 = 0 

a* 
£ 4 - l 

- a——— = U . 

(21) 

for the unknowns r and E may be rewritten as 

(22) 

The quadratic equation x2 - |T?X + 1 = 0 has a unique solution x > 1 because the 
quadratic expression has the negative value 2(1 — ^ ) at x = 1, and therefore both r and 
E are determined uniquely by m and a. 
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By taking h{z) = 1 as test function we get the area of G: 

(23) Area(G) = / UA(z) = 2nm . 
JG 

1.3. Comparison w i t h the formula of Davis. In [2], Davis gives the equation of the 
so-called bicircular quartic in polar coordinates: 

(24) T = {z = pelB : p2 = a2 + As2 cos2 6} , 

where a and E are positive real numbers. The Schwarz function is given by 

n . , z(a2 + 2e2) + zVa4 + Aa2e2 + Ae2z2 

(25) Sr(z) = 2 ( z 2 _ e2) 

(see [2], p. 26, eq. (5.16)). 
This means that y = Sr(z) satisfies the quadratic equation 

(26) (e2 - z2)y2 + (a2 + 2e2)zy + e2z2 = 0. 

After rescaling and equating the coefficients (note that a and therefore E has to be real) 
one gets 

*» 
(' E4 - 1 ' 

1.4. T h e C a u c h y T rans fo rm and S_(z). The Cauchy Transform of the area measure 
restricted to G is 

(28) CG(z) := / £ W 
JG t - z 

By using Stokes' Theorem, CG(Z) is expressible in terms of the inner and outer components 
of the Schwarz function of dG: 

( 2 9 ) CG{Z)-\,S.(Z) , 6 C \ c l ( G ) . 

Using the fact that 

(30) S+(z) = S{z) + S-.(z) , 

an argument shift in (17) implies that w(z) = S+(z) satisfies the equation 

(31) (z2 - a2) w2 + 2mzw - a2z2 = 0 . 

Note that —y and w satisfy the same quadratic equation (this is not a surprise since 
the identity 

(32) -y(z) + w(z) = ~S(z) + S+(z) = 5_(z) = — | ^ 
z — a* 

is exactly Viete's Formula for the sum of the roots of the modified equation (31)). The 
branch y(z) is the one which has two simple poles inside G and w{z) is the other branch 
which is holomorphic inside G (by symmetry, y(z) takes both poles at z = a and z = - a ) . 
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1.5. T h e external potential . The aim now is to find an admissible background potential 
Q(z) such that the equilibrium measure fiw of the weighted energy problem for tu = e~® 
is the normalized area measure on cl(G). 

Since the density is fixed, we look for the potential in the form 

(33) Q(z) = ~\z\2 + h(z) 

where h{z) is a suitable perturbation of the Gaussian leading term and harmonic in a 
subdomain D of C including G. 

The equilibrium condition on G reads as 

(34) Q(z) + -^—UG(z) = F ( z € G ) 

for some constant F where 

(35) UG(z):= [ ^r-^—dMw). 

JG k - w\ 
Then taking <92 formally, we have 

(36) -*-z + dMz) + - * - C G ( z ) = 0 (zeG). 
4m 4-nm 

Therefore 

(37) d2h(z) = -^-S+(z) (z£G). 
4m 

To find a suitable function h(z), the algebraic function S+(z) has to be integrated. The 
singularity structure of S+(z) is indicated by the discriminant of P(z,y): 

(38) £>(z) = 4 z 2 ( a V + m 2 - a 4 ) . 

In terms of 

(39) a :•-

(the positive square root is taken), the two simple branch points of y(z) are 

(40) z\ = ia and z% = —ia , 

and there is also a double point at z = 0. The antiderivative of S+(z) can be obtained by 
a standard Euler substitution: 

(41) 

From now on. 

z — v z2 + a2 

2u 
u — z u2 + a2 

du = ——^—du 
u lu 

(42) -Jz2 + a2 

stands for the analytic function that lives on the complex z-plane with two infinite cuts 
along the imaginary axis: 

(43) S := C \ {z = it: t 6 K, t2 > a2} . 

and takes the value a at z = 0. 

190 



EXTERNAL POTENTIALS FOR T W O - P O I N T Q U A D R A T U R E DOMAINS 

The mapping 

(44) 

FIGURE 2. The mapping z(u) 

*(u) : 
2u 

maps the open right halfplane Ti of the u-plane conformally onto the cut plane S on 
the 2-plane. The points u = ia and u = — ia are fixed by this map. Moreover, if two 
points u\,U2 G 7? are in inversion with respect to the circle |w| = a, i.e. uiui = a2, then 
z(u{) + z(u2) = 0, namely the inversion with respect to the circle |u| = a corresponds to 
the reflection to the imaginary axis of the z-plane. 

By pulling back the one-form integrand to the u-plane, we get 

S+{z)dz • 
JV^T; 

-dz 

(45) 
( q V + m 2 - a 4 ) ( a V - m 2 + a 4 ) 

2au2{au + m — n2)(au + m + a2) 

am 

du 

2 4 i 

a m m — a 1 
2 u 2a v? au + m — a2 au + m + a2 

du 

Therefore the real part of the antiderivative is 

Re 

(46) 

(IS+(z)dz\ = | R e ( « ) + m l n | u | + ^ 4 - ^ - R e / 1 

2a \ t i y 

mln \au + m — a | — mln \au + m + a | 

= - R e u + 
2 V u 

a2\ I 2 / a 2 

- m l n a u H + 2ma 

The function 

(47) F(u) := - R e u + — 
2 \ u 

m l n r.T [u + • 2ma 

has no singularities in 1Z and it is invariant under the inversion to the circle |t/.| = a: in 
particular. 

(48) F(it) = f F i 
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This means that F(u(z)) is smooth in S and continuous across the cuts of S. 

Therefore we find the external potential 
1 

Q(z 

(49) 

4m 
1 

Am 

W + h{z) 

M2 1 
2m 

F(u(z)) 

4m 4m \ u(z) • J - a2 I u(z) H—r—r } + 2ma 
u(z) 

Finally, the asymptotic behavior of Q(z) has to be checked for large \z\ to conclude that 
Q is admissible in the sense of [3]. By pulling back Q to the u-plane, the difference 

" Q(z(u))-\n\z(u)\ = 

(50) 1 
4m. 2n 

a „ / a 
-—Re u + — 
4m. \ w 

+ - I n la ' \u + 
2 I V u 

+ 2ma 
2u 

has to be investigated near u = 0 and u = oo on the halfplane 7?,. Now 

1 a a ' 1 

(51) 

1 l n ~ + 0 ( 1 ) -» oo M 0 ( 2 ( U ) ) 16m |u.|2 4m \u\ 2 *" |«| 

«(*(")) = T ^ > I 2 - - M - h"H + 0(1) - ex M 16m. m 2 
shows that Q is sufficiently strong near z = oo. 

Remark. To conclude that ^.Q is the normalized area measure on G, the standard 
inequality for the effective potential has to be proven outside the support. At this point, 
it seems to be quite complicated. 

2. LlMACONS 

2.1. Conformal map and Schwarz function. To construct quadrature domains with 
a single second order quadrature node, we consider a family of mappings of the £-plane 
to the 2-plane of the form 

(52) /(C) = < + K2 r>0, b € C. 

The images of the unit circle under these mappings are called limagons (see [2]). 

F I G U R E 3. The conformal map 
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The mapping z = f(Q is univalent iff |6| < §: we have /(Ci) = /(C2) for two different 
points (1 j= Q2 when r + b((i + C2) = 0. The existence of such a pair is equivalent to having 
- ^ 6 2D. 

The boundary curve dB of the domain B := / (B) is the zero locus of a polynomial 
equation P(z, ~z) — 0 which can be calculated as above: 

[ z = /(C) = K + K2 

(53) { -fl\ r b 

Therefore we are looking for the resultant of the two polynomials 

" f P i ( C ) = K2 + r(-z 
( 5 4) { o -

\ p 2 ( 0 = y(2-rC + b. 
with y = z along the boundary of B. This gives the quadratic equation satisfied bv 
y = S(z): 

(55) P(z: y) = z2y2 - {2bbz + r2z + r2b)y + b2f - r2bb - r2bz = 0. 

The discriminant, of P(z,y), as a function of z, factorizes in the following way: 

(56) D(z)=r2(4bz+r2)(z + b)2. 

The exterior projection S_ (2) of S(z) is calculated using the conformal map parametriza-
tion: 

(57) 

Since 

2 " ./|c|=i /(C) - z 

— res — 
^=0 r( 4- b(2 - z 

r + ^ { r + 2bO_ l f r b \ , , , . / , < 
^ (r + 260 ( l + 7 + O (C2 

(58) r( + bC2-z z\( C2 

near £ = 0, we have 

(59) *_(,) = _ r i ± ^ _ ^ . 
2 2 ' 

The rational form of 5_ (z) implies the 

Proposi t ion 2. 77?e domain B is a holomorphic quadrature domain with a single second-
order quadrature node: if h(z) is a function analytic and integrable on B then 

(60) / h{z)dA(z) = TT(T-2 + 2|b|2)/ t(0) + 7rr2Wi'(0) . 
J D 

In particular, the area of B is 

(61) Area(B) = n(r2 + 2|6|2) . 

193 



F. BALOCH 

The Schwarz function of dB is given by 

(266z + r2z + r2b) + r(z + b)V4bz + r2 

(62) S(z) = 

where the square root 

(63) 

2z2 

\f%. z + r-

means the branch that is defined on the cut plane 

,.2 
(64) 5 : = C \ -pTb-»^1 

tha t takes the value r a t z = 0. Now. 

S+{z) = S(z) + S-(z) 

_ -{2bbz + r2z + r2b) + r(z + b)V4bz + r2 

(65) 
2z2 

• 0(\) z ^ O . 

2.2. The external potential . Following the steps in the previous section, we need to find 
the antiderivative of S+(z)dz to obtain a suitable background potential which generates 
B. To this end, we use the Euler substitution again: 

(66) 

The conformal mapping 

(67) 

( « = 

dz = 

\/4bz + 

u2 - r2 

46 

Ybdu 

u2-r2 

r2 

46 

takes the right halfplane Tt of the M-plane to S on the z-plane (the imaginary axis is 
mapped to the sides.of the cut). 

0 

-
- -

- - -

? 

-
46 

F I G U R E 4. The mapping z(v.) 
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The antiderivative of S + (2) can be calculated in terms of 1 

r 2 4- 266 2rbb 

(68) 

Let 

(69) 

Js+(z)dz = j 
u + r (u + r)2 J 

~ru- (r2 + 266) \n{u + r) 

F(u) : = Re (ru - (r2 + 266) ln(u + r ) 

du 

Irbb 

u + r 

2r66 

u + r 

Re 
2r66 

(r2 + 266) In |u + r | 

This function is symmetric under conjungation: F(u) = F(u) . 
By following the calculation in previous section, we get a suitable candidate for the 

background potential: 

Q{z) = 2^+hm^2 - r^MF(u{z)) 

(70) 
2(r2 + 2|6|2)' 

1 

r2 + 2|6|2 

1 
Re I ru{z) - ^ I + In \u(z) + r\ 

2(r2 + 2|6|2) ' ' r2 + 2|6|2 " \ ""-~J u(z) + rt 

This potential is smooth on S and continuous on the cut (by the conjugation symmetry 
of F). It is also easy to see that Q(z) is sufficiently strong at infinity. Therefore Q is an 
admissible potential. 

R e m a r k . The variational inequality needs to be proved to conclude that B is the 
support of the equilibrium measure for Q. 

3. T w o DISKS 

In this section we find an external potential whose equilibrium measure is a uniform 
measure supported on two disjoint congruent disks symmetrical to the origin. Recall that 
the logaritmic potential of the area measure restricted to a disk D of radius R centered 
at a is 

(71) UD(z) 

-^\z-a\2+-R2n + R2n\og-

RZTX\ 
1 

£D 

z £D 
\z-a\ 

Without loss of generality, assume that a e R + and R < a (to have disjoint disks). 
Take the following background potential of the form 

1 
(72) 

where 

(73) 

Q(z): 
4R2 \z\' + h(z) 

h(z) : 

-\og\z + a\--^(z + z) R .e(2)>0 

- log |z - a| + ^ ( z + z) R e ( z ) < 0 . 

This function is harmonic in the open left and right halfplanes and continuous on the 
imaginary axis. 
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F I G U R E 5. Disk configuration 

P r o p o s i t i o n 3 . The equilibrium measure is the normalized Lebesgue measure on the 
union of two disjoint disks D + and D_ : 

(74) 
D+ = {z : \z -a\ < R} 

D_ = {z : \z + a\ < R} . 

Proof . The logarithmic potential of the measure v above is 

(75) £/"(*) = I 

1 l l 2 1 

-4 j j i l*-° l +2 
1 . 1 1 , ' 1 
5 log + - log 
I \z — a\ I \z + a\ 

1 . ., 1, 1 

1 1 , 1 1 
_ + _ l o g _ + 4 Z€D+ 

z 6 C \ ( D + U D . 

AR?'~ ' " ' ' 2 

The effective potential for z 6 D+ is 

z + a|'! + ^ l o g r ^ - + - l o g - + - z£D. 
\z — a] 2 R 4 

(76) Q(z) + U"(z)--
1 1 a2 

1 =• = const 
R 4 AR2 

For z e C + \ D + ., 

(77) 
1 . ., 1 , 1 a2 

= 4 F | i " a | + 2 l 0 g ^ ^ - 4 ^ 

1 , 1 1 a2 

^2l0g7f + 4 - 4 i ? -

Since Q(z) and U"{z) are both invariant under the sign change z >—> - 2 , the same equality 
and inequality holds for the corresponding reflected domains respectively. This is enough 
to conclude that JXQ = v. 
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4. A P P E N D I X : REPRESENTATIONS OF E X T E R N A L FIELDS AS P U R E L O G A R I T H M I C 

P O T E N T I A L S 

In this section we find positive charge distributions v in terms of which the perturbing 
terms h(z) in the potentials above are represented as :pure' logarithmic potentials: 

(78) h(z) 
- / ' 

1 

\z-t 
dv(i) . 

These measures all have unbounded support (along the carefully chosen cuts of the alge­
braic functions used in the construction of the h'&). 

If v admits a density p(r) with respect to the one-form dr along a contour F then h(z) 
is differentiable at z 6 C \ T and 

(79) dzh(z) 

By the Plemelj formulae [1], 

[Mr) = l f, 
'J r-z 2j 

1 f du{r) _ 1 f p(r)dT 

(80) P(r)-
1 

lim {dzh){z) - lim (dzh)(z) 

where the limits above are referring to the non-tangential limiting values along V from its 
positive or negative side respectively. 

4.1. C h a r g e dens i t y for two-po in t q u a d r a t u r e d o m a i n s . The notations of the first 
section are used. Consider the contour 

(81) r := {z = it : t € (a,oo)} 

emanating from the branchpoint z = a oriented upwards. Then 

lim u(z) = i ( t - Vt2 - a2) 

(82) 

Consequently, 

(83) 

As 

(84) 

(85) 

z->{it) + 

lim u(z) = i(t + -Jt2 - a2) 
z—(it)~ ' \ I 

imt — at\/t2 — a2 

p(it) 

lim 5H 

- ^ ' - a2 + t2 

im,t + at\/t2 — a2 

-{Z} a2+t2 

d2h(z) = ~^-S+(z), 
Am 

1 

•ni 

4? 

lim (dzh)(z) - lim (dzh)(z) 

1 
niri 

1 at 

2m ni 

lim S+{z)- lim 5+ (z) 
z-»(it)+ z->(it)~ 

Jl2 - a2 

x2 + t2 
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Since p(r)dr = p(it)idt, the non-negative density in terms of the real parameter ( is given 
by 

(86) p(T)dT — , , , 0 — a t 
2mir a2 +t2 

By the reflection symmetry of h with respect to the x axis of the z-plane, the density 
along the opposite cut is obtained by reflection to the x axis. 

FIGURE 6. The density profile along the imaginary axis 

4.2. Cha rge d e n s i t y for l i m a c o n s . Let 

fi~- 46 
(87) 

Let T be the contour 

(88) r := j t j ^ : t > 

oriented outwards (parametrized by t). Then 

{'il^1'1} 

(89) 

Consequently. 

lim u(z) = — i—7=\/t-

lim u(z) = i —7= Jt - 1/31 

(90) 

As 

(91) 

l im S+(z) • 
<t/3/\0\) + 

lim S_ (2) = 
I 2-(//3/|/3|) + 

-(2bb + r2)W/\ft\-

-(2bb + r2)W/\p\-

-r*b- i^wm + bwt-m 
2(t/?/|/3|)2 

-r2b + i^(t0/\P\ + b)^t-\P\ 

dzh(z) = -
2(r2 + 2|fc|2) 

2(t/3/l/?l)2 

S+(z) 
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tf3 > - * lim (dM(z) - lim (d s / i )0) 
101/ « 

1 
(92) 2(r2 + 2|6|2)7ri 

lim S+(z) — lim S + (2) 
,*-.(t/VI/3|)+ z-.(t^/|/9|)-

^ ( i / 3 / | / 3 | + f c ) v ^ 

(r2 + 2|fc|2)* 2(t/3/|/3|)2 

Since p(r)dr = p ( T§I*) rar^i * n e non-negative density in terms of the real parameter 

t is given by 

(93) 
p{r)d,T 

(t + bf)^r-
2(r2 + 2\b\2)^W\-n t2 

r2 (t-\b\)y/T-

2(r2 + 2|6|2)v^|7T t2 

-dt 

ldt . 

'H'*\ « 

' " 'V At 

F I G U R E 7. The density profile along T 

4.3. Cha rge d e n s i t y for t w o disks . Since 

1_1 a_ 

~iz + a ~ 4R2 

(94) 

(95) 

The density is 

(96) 

Re(z) > 0 

dzh(z) = 

i r h + i^ Re«<0 

p(tO = 

a ( 1 

lim (dzh)(z)~ lim (&/i)(z) 
- . (« )+ 2 - ( i t ) -

1 

2™ V /?2 a 2 + t2J ' 

p(il)idt 
a ( 1 

2?r l # 2 a2 + t5 dt . 

This is a positive density since a > R. 
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16 F. BALOGIi 

F I G U R E 8. The density profile along the imaginary axis 

If a = R this perturbing charge configuration is the same as the singular limit corre­

sponding to a bicircular quartic with quadrature data m = a2: 

(97) p{lt)ldt = J__^_dt. 

FIGURE 9. The density profile along the imaginary axis 
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Chapter 12 

Riemann-Hilbert analysis of the 

Bratwurst orthogonal polynomials 

12.1 Summary 

This chapter is concerned with the asymptotic analysis of orthogonal polynomials 

with respect to quasi-harmonic weights corresponding to the family of semiclassical 

potentials of the form 

Q(z) = |2 |2 + 2 c l o g — ^ - , (12.1) 
\z — a\ 

where a,c > 0 and a E C The following results are proved in the manuscript 

presented in the next section that forms the basis of the forthcoming publication [11]: 

1. It is shown that the system of orthogonality relations 

f Pn,N{z)zk\z-a\2Nce-Nlzl2dA(z)=0 k = 0,...,n-l (12.2) 

Jc 

can be reduced to an equivalent system of contour integral orthogonality condi­

tions for an analytic weight function (Sec. 3). 
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2. The associated Fokas-Its-Kitaev Riemann-Hilbert problem for the non-Hermitian 

orthogonal polynomials is shown to have a unique solution (Sec. 4). 

3 . A g-function is constructed for the Deift-Zhou nonlinear steepest descent method 

in terms of a suitable quadratic differential (Sec. 5). 

4 . Complete strong asymptotics for the orthogonal polynomials is obtained by ap­

plying the Deift-Zhou nonlinear steepest descent method. As an application, 

Conjecture "8.1.1 is confirmed for this special case. 

From now on, without loss of generality, we assume that a = 1 and a G R + . For 

the asymptotic analysis of the monic orthogonal polynomials Pn,N(z) in the scaling 

limit 

n -> oo, N -> oo , -^ -> t , (12.3) 

the relevant equilibrium measure corresponds to the rescaled potential 

Qt(z) := ±-Q(z) = hz\2 + - log ^ — . (12.4) 

it it c \z — a\ 

12.1.1 T i m e evolut ion of t h e equilibrium support 

The support sets of the one-parameter family of the equilibrium measures 

< H nQt t > 0 (12.5) 

gives an increasing one-parameter family of compact sets 

t ^ SQ, t > 0 . (12.6) 

Lemma 8.1.1 can be used to find the support of the equilibrium measure. By matching 

the data of the ^-dependent potential, the radii R(t) and r(t) depend on t in the 

following way: 

R(t) = VtT^ r(t) = ^~c . (12.7) 
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Figure 12.1: The boundary evolution for a = 1. c = 1 before the critical time 

There is a critical time 

tc = a(a + 2y/c) (12.8) 

when the disks D(0. R(t)) and D(a,r(t)) are in a critical position: 

r{tc) + a = R(tc) . (12.9) 

Hence the topology of the support changes from simply connected to doubly connected 

as t passes through tc. The time evolution of the domains SQt can be described in 

the following way: 

• As t —> 0, the domain shrinks to the point z0 of absolute minimum of Q(z): 

a — \/a2 + 4c 
ZQ 12.10) 

This is the equilibrium position of one simple point charge in the presence of 
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• For the pre-critical regime 0 < t < tc the support is given by a ^-dependent 

Joukowski-type exterior uniformizing map (see Lemma 8.1.1 and Fig. 12.1). 

• At the critical case t = tc the support of the equilibrium measure becomes doubly 

connected: 

SQtc = D(0, R(tc)) \ D(a, r(tc)) . (12.11) 

• For the post-critical regime t > tc the equilibrium measure is supported on the 

doubly connected set 

SQt=D(0,R(t))\D(a,r(t)). (12.12) 

12.1.2 The orthogonal polynomials 

Since 

J \z\"e-"Q(z)dA(z) = [ \z\n\z - a\2Nce-N\z\2dA{z) < oo (12.13) 
Jc Jc 

for all n, N > 0, the monic orthogonal polynomials 

PnAz) = Pn(e-NVdA:,z) (12.14) 

are uniquely determined by the two-dimensional orthogonality conditions 

[ Pn!N(z)zk\z-a\2Nce-N^2dA{z)=5knhn.N k = 0,l,...,n. (12.15) 

Jc 

These polynomials are referred to as Bratwurst polynomials: the term was coined in 

[61, 66] for the Joukowski mapping that corresponds to the equilibrium measure. 

There are no known formulae expressing the polynomials Pn.N{z) explicitly or in 

terms of classical orthogonal polynomials. A numerical Gram-Schmidt orthogonal-

ization procedure may be used to investigate the behavior of the zeroes of Pn.N{z) for 

fixed values of the parameters a, c and t. The value scaling parameter N depends on 
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n and, for simplicity, it is set to be 

N = - . (12.16) 

Numerical plots of the zeroes and the boundary of the corresponding equilibrium 

support are shown in Figs. 12.2, 12.3. 

The zeroes apparently accumulate along certain arcs of the complex plane: the 

numerical plots of the zeroes indicate that the arc appears to connect the branch 

points of the uniformizing map F for t < tc, and it becomes a closed curve for t > tc. 

12.1.3 Reduction to contour integrals 

To identify the supporting arcs and densities of these asymptotic zero distributions 

one has to investigate the asymptotic behavior of the polynomials of Pn^(z) in the 

limit n, N —* oo, n/N —> t. However, the asymptotic theory of general orthogo­

nal polynomials in the complex plane still lacks a method comparable the powerful 

Riemann-Hilbert approach for orthogonal polynomials on the real line. Below it is 

shown how to reduce the problem involving two-dimensional integrals to an equiv­

alent problem expressed in terms of contour integrals. The method developed to 

prove Thm. 3.5.1 can be adapted to this special case which implies the following 

quadrature-type identity for the measure 

\z - a\Nce-Nlz{2dA{z) (12.17) 

on polynomial test functions: 

Theorem 12.1.1 (Lemma 3.1, [11]) For any polynomial p(z), the following inte­

gral identity holds: 

f p{z)zk\z-a\2Nce-Nz'zdA(z 
Jc 

e-2^Nc * (k\_k_lr(l + Nc+l) £ „,^{z-a)Nc^az dz 

1=0 
^-E(;K~; ^ , //(*) pro 2 ,+ i 
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t = 1.0 t = 1.5 

t = 2.0 t = 2.5 

Figure 12.2: The zeroes of Pn,N{z) for n = 40 with TV = n/t and a = 1 c = 1 for different values of 

t < tc and the corresponding equilibrium supports 
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t = tc = 3.0 t = 4.0 

t = 5.0 

Figure 12.3: The zeroes of Pn,N{z) for n = 40 with N = n/t and a = 1 c = 1 for different values of 

t >tc and the corresponding equilibrium supports 
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• ) 
a I 

where the terra 

Figure 12.4: The contour F 

Nc 

z — a \ , 
~ 1 z ^ o o (12.19) z 

in the integrand has a branch cut along the segment [0, a] and T is a simple positively 

oriented closed contour encircling [0, a] (Fig. 12.4). 

Note that if Nc G Z then (12.18) simplifies considerably: wn^{z) becomes mero-

morphic and the contour T can be deformed into a contour enclosing z = 0 only. All 

the F-integrals are expressible explicitly in terms of residues. This is also clear by 

looking at the finite expansion of the perturbative term 

Nc 

\2 - a\
2Nc = ] T (Nc) (N°) (~l)k+laNc-kdNc-lzkzl . (12.20) 

valid only for Nc £ Z. In terms of the non-Hermitian weight function 

(z _ a)
Nce~az 

u>nA*) •= Jc+n ^ C \ [ 0 i f l ] (12.21) 
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the integral identities (12.18) can be written as 

Pn,N(z)e-NQ^dA(z) 

2ze 2-iriNc 
P, n,N{Z)Ze 

-NQ{z) dA{z) 

IPn,N{z)l>n-le-NQ^dA{z) 
- Jc 

(0\ T(Nc+l) 

i\„v(Nc+i) 
(o)a 1\ T(Nc+2) (1\ F(Nc 

n-l\„n-lT(Nc+l) (n-l\ „n-2T(Nc+2) 
NNc+2 

(n-l\ n - U l J V c + I ) (n-^n 
{ 0 ) a

 NNc+l \ 1 ) a 

0 

0 

n-l\ T(Nc+n) 
ftNc+n 

fn—l 
l n - 1 

<£ p{z)zn 1wn>N(z)dz 

(b p(z)zn~2WntN(z)dz 

p(z)wn:N(z)dz 

(12.22) 

This means that the system of orthogonality relations (12.15) is equivalent to the 

system of non-Hermitian orthogonality relations 

Pn,N(z)zk {z - a)Nce'az 

yNc+n dz = 0 fc = 0.1 n - 1 . 12.23) 

It is important to note that the moment matrices M(n~l\e~N®^) and M(n~^(wntN, T) 

are related by 

(12.24) 

where 

p^-1) = (sk n_!_;; 

^ ( n - i ) = 

-2-niNc 

2% 

0<k,l<n-l 

l\ ,kT(k + Nc+l) 
k) Nk+Nc+1 

(12.25) 

0<k.l<n-l 

Therefore the moment determinants are connected by the equation 

det(M (n-1)(e-7VQ(z))) 

= d e t ( M ( " - 1 ) ( u V i v ! r ) ) ( - l ) ^ 
-2mriA'c n-\ 

(2t)nN n ]\jnNc+-
^Hr(k + Nc + i) 

12.26) 

fc=0 
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Since the Gamma function T(z) has no zeroes and M^n ^ is non-singular, we obtain 

de t (A/ ( " ) (uvv , r ) )^0 (12.27) 

12.1.4 The associated Riemann—Hilbert problem 

Since Pn,N(z) satisfies the non-Hermitian orthogonality relations (12.23) the standard 

2x2 Fokas-Its-Kitaev Riemann-Hilbert problem [55] can be formulated on the contour 

F defined above: 

Theorem 12.1.2 (Lemma 4.1, [11]) For fixed n, N, the Riemann-Hilbert problem 

(Y.l) Y(z) is holomorphic in C \ Y , 

(Y.2)Y+{z) = Y.{z) 
1 WrhN(z) 

0 1 
for z e r 

(Y.3) Y(z) = (l + 0 (D) z~™3 as z -»• oo 

is solvable as a consequence of (12.27) and there is a unique solution of the form 

1 f pn{t)(t)dt 

Y(z) = 
Pn{Z) 

ln-i{z) hjT 

2-7TZ _/r t — Z 
qn^i{t)w(t)dt 

t - z 

;i2.28) 

where 

Yn(z) =pn{z) = PU,N{Z) 

and qn_i(z) is a polynomial of degree at most n — 1. 

(12.29) 

12.1.5 The ^-function 

For what follows we fix the dependence of the parameter N on the degree n: 

N := n (12.30) 
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The non-Hermitian weight function is of the form 

wn,N(z) = e~NV{z) (12.31) 

where the contour potentialfunction V(z) is of the semiclassical type [68] in the usual 

sense: 

V(z) = az-clog(z-a)+ {c + t) logz , V'(z) = a — + — . (12.32) 

z — a z 

We seek a function g(z) in C \ £ where £ is a system of oriented contours (also to 

be determined) and a suitable nomotopic deformation of T in C \ [0, a] such that the 

following conditions are satisfied (generalizing the g-function conditions in Chap. 7). 

(g.l) g{z) is holomorphic in C \ £ and has continuous boundary values g+(z) and g-(z) 

along £, 

(.9.2) g{z) = logz + O (\) a s z ^ o o , 

(<?.3) There exists an arc B C £P\T such that 

9+(z)+g_(z)-1-V(z)=£ z e B , (12.33) 

for some constant I and 

Re(g+(z) - g_(z)) = 0 z e B . (12.34) 

(<?.4) The inequality 

Re(g+(z) + g-(z)-jV(z)) < 0 zeT\B: (12.35) 

holds and 
1 

2 ? r . (<?+(*)-$-(*)) e Z (12.36) 

for each part of £ \ B, i.e., en9^z> is holomorphic in z G C \ B. 
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(g.5) The function 

h(z) := g+(z) - g_(z) (12.37) 

has an analytic continuation in a thin lens-shaped region L around B such that 

Ke(h(z)) > 0 z 6 L on the positive side of B , 

(12.38) 

Ke(h(z)) < 0 z E L on the negative side of B . 

To construct the actual ^-function for the nonlinear steepest descent analysis, we 

follow the constructive approach detailed in [16]. The central object in the construc­

tion of a suitable ^-function is a meromorphic quadratic differential [89] of the form 

R{z)dz2 := - "; J<yZ\0dz2 (12.39) 
zz(z — a)1 

on the Riemann sphere, where J(z) is a monic polynomial of degree four: 

4 

J(z) = J](z - Zl) =z
4 + nz

3 + j2z
2 + n z + j0 . (12.40) 

i=i 

J(z) is assumed to have real coefficients because of the symmetry of the problem with 

respect to the real axis. Consider the one-form 

y(z)dz := -^/R{z)dz = / ^{dz . (12.41) 
i z(z — a) 

on a double cover of the z-plane. To meet the ^-function conditions, we impose the 

equations 

res y(z)dz = ±(t + c) , 

resy(z)dz = Tc , (12.42) 
z=a 

res y(z)dz = t , 
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i .e. , 
\2 

R(z) 

(Lt£r(1 

(l + 0(z-a)) z ^ a , (12.43) 

2 (l + 0(z)) z 
2 

(2 - a ) 2 

- a 2 + — + C> ( 4r ) 2 - ^ 0 0 
Z \ 2 2 

This gives the equations 

J (0) = {t + cf J (a) =c2 - a2(2a + j3) = 2at , (12.44) 

4 2(t + a2) 3 2 / 3 t(i + 2c ) \ , , , ,2 J(z) = J ( i , x; z) = z4 - — -zd + xz2 + a J + (2t - x)a - 2 + (t + c) 
a V a J 

(12.45) 

where the value of the real parameter x has to be chosen appropriately. The numerical 

results suggest tha t the zeroes condense along a connected arc which motivates the 

Genus zero ansatz . We seek a one-form, y{z)dz whose associated algebraic curve 

y{z)2 + R{z)=0 (12.46) 

is of genus zero, in other words, we assume that the polynomial J{z) has at least one 

double root, i.e., the discriminant of J(z) vanishes. Of course, this ansatz has to be 

justified by proving that the resulting ^-function satisfies the required conditions. 

This imposes an algebraic equation of degree five on the possible values of x and, 

depending on the value of the parameter t, there is a unique choice that is compatible 

with the ^-function conditions, as shown below. 

Lemma 12.1.1 (Lemma 5.1, [11]) There exists a continuous function x: (0, 00) —* 

M. such that the genus zero ansatz is satisfied for all t > 0: 

dischm{J(x(t)j; z)) = 0 t > 0 , (12.47) 

with the following properties: 
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limj{x{t),t:z) = (z-z1)
2(z-z2)

2 , (12.48) 

• The double roots z\ and z-i split into a pair of complex conjugate and a pair of 

real roots respectively for small positive t: 

J(z) = (z- bf{z -P)(z- 0) for some b = b(t) , (5 = P{t) , (12.49) 

with b > a and (5 £ R. 

• At the critical value t = tc all of the four roots collide: 

J(z) = (z-a- sfcf (12.50) 

• For t > tc, there are two real double roots: 

J(z) = fz2 - ^ - t l z + (c + £)) =(z-b.)2(z-b+)2 (12.51) 

Pre-critical case. The analysis of the quadratic differential R(z)dz2 shows that 

there exists a critical trajectory B that connects @ and (3 whose intersection with the 

real line is negative (goes on the left of z — 0). The orientation is chosen on B from f3 

to /3. Now y(z)dz can be defined unambiguously o n C \ i B and the equations (12.43) 

correspond to the residue relations 

res y(z)dz = t + c , 
2=0 

vesy{z)dz = -c ., (12.52) 
z=a 

res y{z)dz = t 

as stated above (12.42). Consider the normalized integral function of y(z)dz: 

<fi(z) := ± T y(s)ds . (12.53) 
J ji 
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The real part of (j)(z) is smooth and harmonic on C \ (B U {0} U {a}) with 

t + c 

It 
log \z\ z -—> 0 , 

MM) ~ < (12.54) 

2/, 
log |2r — a| z —> a 

Moreover Re(0(^)) vanishes along all critical trajectories emanating from (5 or /3. Also 

(12.55) ±-V(z)-<P(z)~logz-£- + o(-z z —> oo 

for some £ G K. (the reality of £ follows from the symmetry of y(z)). 

The p-function is constructed as follows: 

L e m m a 12.1.2 (Lemma 5.2, [11]) The function 

g(Z);=^V(z)-^z)+C- (12.56) 

for z e C \ £ satisfies the conditions of the g-function for 0 < t < tc with the choice 

of the integration contour 

T:=BUTZ, (12.57) 

where 1Z is chosen so that T is a simple positively oriented contour around the branch 

cutC\ [0,a]. 

Proof. 

There is a probability measure given by the one-form y[z)dz: 

L e m m a 12.1.3 (Lemma 5.3, [11]) The measure 

dn{s) := ^—^y+{s)ds 

supported on B is a probability measure. Moreover 

Re(g(z)) = / log \z — u\du(u) 
JB 

(12.58) 

[12.59) 

215 



Post-critical case. Past the critical time t > tc the numerator of R(z) has two 

double real roots: 

, 2 . . N 2 

J(z)= (z2-^-^z + (c + t)) =(z-b-)2(z-b. 2 

+ ) > 

where 

b+ = 
a2 + t± y/{t-tc)(t-Tc) 

2a 

The corresponding one-form becomes rational and therefore single-valued: 

y{z) = [a dz . 

12.60) 

(12.61) 

'12.62) 
z z — a , 

The corresponding critical trajectory structure changes: there is a critical trajectory 

B emanating from and returning to 6_ encircling 0 and a. 

Now the integral function has the explicit form 

. l / " 2 , \ , o, . . . c . ( z - a \ t + c. z 
) := 2t J y(s) = - ( z ~ ̂  + - log ( I " ) " ~^~ log z : = 2t It 6_ - a 2t 

(12.63) 

for zG C \ [0,oo). Thus 

z- -logz- - + 0 ( - ] z -> oo 

0(z) 

2t 

t + c 
2t 

logz + 0 ( l ) (12.64) 

2t 
log(z - a) + O (1) z a , 

with 

^ = - y - - l o g ( 6 _ - a ) + — l o g & _ E (12.65) 

Now the real part of <p{z) is smooth and harmonic on C \ ({0} U {a}). 
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Lemma 12.1.4 (Lemma 5.4, [11]) The function 

(I £ 
— V(z) + <p(z) + - z inside B 
LJXJ Z 

9(z) •= { eC\ [o , oo) [12.66) 
1 £ 

. — V(z) — (p(z) + - z outside B 

satisfies the conditions of the g-function along the integration contour T = B. 

Note that the simple form of y(z) makes g(z) quite explicit: 

9(z) = 

c t + c 
-log(z — a) H log z outside B 

a-z + £ 
t 

(12.67) 
inside B 

Lemma 12.1.5 (Lemma 5.5, [11]) The measure 

dfi(s) := -——y{s)ds 
271 it 

;i2.68) 

supported on B is a probability measure. Moreover 

Re{g{z)) = / log \z - u\dfi(u) . (12.69) 
JB 

The conclusion of the asymptotic analysis. The steps of the nonlinear steepest 

descent method give the strong asymptotics of the polynomials: 

Theorem 12.1.3 ([11]) The following strong asymptotic results hold: 

• For C \ B, 

holds uniformly on compact subsets of C\B. 

• ForzeB\{P,p}: 

Dng{z) (12.70) 

Pn,N{z) 

1 
'B(z) + B{z)-x)e-iwpW - i{B(z) - JB(z)~1)e in^ ) + O (-}} e2t V(z)+{ 

'12.71) 
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with the notation 

<p(z) := 7T / dfi{s) zeB . (12.72) 

In particular, since B(z) + B{z)~l has no zeroes in C \ B, by Hurwitz theorem the 

zeroes of PU,N{Z) may accumulate only on B. The asymptotic result above gives tha t 

lim 
n—»oo 

-log\Pn(z)\-Re(g(z)) 
n 

0 zeC\B. (12.73) 

on C \ B. Since 

Re(g{z)) = I log \z - u\dfjL(u) , (12.74) 
JB 

this confirms the conjecture 8.1.1 in this special case: 

T h e o r e m 12.1 .4 The (full) sequence of normalized counting measures 

1 " 
Vn,N:=-Y,5*w n = 0,1,2,... (12.75) 

n *•—' 

of the zeroes of the nth orthogonal polynomial 

n 

Pn,N(z) = H(z-zk^N) n = 0 , 1 , 2 , . . . (12.76) 
fc=i 

converges to fj,t in the weak-star sense. 

12.1.6 Pos t - c r i t i c a l c a se 

The study of the post-critical case follows essentially the same steps as in the pre-

critical situation but the 

Theorem 12.1 .5 The following strong asymptotics holds for the polynomials as n —> 

oo: 

For z outside B: 

Pn{z) = ( 1 + O ( A ) ) en9(2) (12.77) 
>n2 

uniformly on compact subsets in the exterior of B. 
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• For z inside B 

1 1 „ / 1 
Pn(Z) = ( —7^=—V + 0 [ ̂  ) en9iZ) • t 1 2 " 7 8 ) 

where K = —y'(bJ) > 0. Again, this result is valid also uniformly in every 

compact subset inside B. 

• ForzeB\{b_}: 

Pn,N(z)= ( - ^ ^ ^ ^ ' ) + e-ir^z) + 0fl\\e^v(z)+t^ ; ( 1 2 7 9 ) 

again with the notation 

ip(z) :=TT / dfi(s) zEB. (12.80) 
J/3 

The Hurwitz theorem implies that the zeroes of Pn,N(z) may accumulate only on 

B and therefore we get 

Theorem 12.1.6 The (full) sequence of normalized counting measures 

1 

k=i 

^ n , J v : = - y X n „ n = 0,1,2,... (12.81) 

o/ the zeroes of the nth orthogonal polynomial 
n 

Pn,N{z) = \[(z-zKn,N) n = 0,1,2, . . . (12.82) 
fc=i 

converges to nt in the weak-star sense. 

12.1.7 The ^-function and the equilibrium measure 

Figs. 12.2 and 12.3 suggest that for every value of the parameter t the support of 

the asymptotic zero distribution encoded into the ^-function is closely related to the 

geometry of support of the equilibrium measure. The following very important result 

says that the support of the equilibrium measure and the asymptotic distribution of 
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the zeroes of the orthogonal polynomials connected by the same quadrature property 

observed for the Gaussian weights above: 

Theorem 12.1.7 The derivative ofthe g-function is equal to the negative of Cauchy 

transform of the equilibrium measure /iQt outside the polynomial convex hull of SQt. In 

other words, int(SQt) is a holomorphic quadrature domain with respect to the measure 

IH-

Proof. Since supp(y«t) C SQ, by Lemma 10.1.1, g'(z) is holomorphic in the un­

bounded component of C \ SQ,. . 

For t > tc, the derivative of g and the negative of the normalized Cauchy transform 

of the support SQ% = D(0, y/t + c) \ D(a, y/c) are both given by the same rational 

function outside D(0, y/t + c): 

g'(z) = ~-CQt(z) = y (— - — ) • (12.83) 
ixt t \ z z — aj 

For 0 < t < tc, as shown in the appendix to this chapter in Sec. 12.3, the derivative 

of the ^-function satisfies the same algebraic equation and, as and they have the 

same asymptotic behavior as z —>• oo, they are equal in the unbounded component of 

c\sQt. 

m 

12.2 Riemann—Hilbert analysis for the Bratwurst orthogonal 

polynomials, manuscript 
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1 The potential and the orthogonal polynomials 

We consider the function 

Q(z):=\z\2 + 2clogr^— (1) 
\z-a\ 

in the complex plane where c > 0 and. without loss of generality, we assume that a, € R + . 
The only critical points of the potential are 

a - v'a2 + 4c a + \/a2 + 4c ,n. 
21 = ^ 22 = j • (2> 

1 
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These are both local minima, the absolute minimum of Q is attained at z = z\. The corresponding 
weight function in the context of normal matrix models is given by 

e - ^ = \z-a\2ce-^2 . (3) 

By introducing the scaling parameter N > 0 we get a one-parameter family of weight functions. For 
any A' > 0 the absolute moments are all finite: 

\z\ke~NQ{z)dA(z) < oo, fc = 0, 1 , . . . , (4) 
c 

where dA denotes the area measure in C. Therefore the monic orthogonal polynomials Pn,N(z) 
satisfying 

f Pn.N(z)Pm,N(z)e-NQlz)dA(z) = hn.N5nm n , m = 0, 1 (5) 
Jc 

exist and they are unique. The normalization constants hn.N are all positive. The n th monic 
orthogonal polynomial is characterized by the orthogonality relations 

L Pn.N(z)zke-NQ{z)dA(z) = 0 k = 0A,...,n-l . (6) 
c 

In the degenerate case a = 0 the monic orthogonal polynomials are the pure monomials P„.jv (z) = z"l 
from now on we assume that a > 0. 

2 Results 
Motivated by random matrix models [5], we consider the obtain asymptotics of the orthogonal 
polynomials Pn<N U) in the scaling limit 

n -* oo , N -» oo , — -» t . (7) 

By this we mean that for every compact subset K of C we get asymptotic formulae for Pn,n (z) that 
holds uniformly in K. 

For simplicity, we will assume that N = j . 
As a consequence of the Deift-Zhou nonlinear steepest descent or Riemann-Hilbert method 

applied to the Pn,N's we obtain the following main result of this paper: 

T h e o r e m 2.1 There exists a family of probability measures 

I. - IH t> 0 (8) 

given by (64) and (87) such that the sequence of normalized counting measures 

1 " 
"n.N~-J^&zt„N n = 0 , 1 . 2 , . . . (9) 

k-1 

of the zeroes of the nth orthogonal polynomial 

n 

Pn,N(z) = ]J(z-zk.n,N) n = 0 . 1 , 2 : . . . (10) 

converges to put in the weak-star sense. 
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'*-° 

Figure 1: The contour P 

3 Non-Hermitian orthogonality 

First we show that the polynomials Pn,pj(z) satisfy a non-Hermitian orthogonality with respect to 
an analytic weight function on a closed contour in the complex plane. This is a consequence of the 
following 

L e m m a 3.1 For any polynomial p(z), the following integral identity holds: 

f p{z)zk\z - a\2Nce-Nz*dA(z) 
Jc 

e-2*iNc * /fcx r ( Z + jVc+l) / Jz-a^'e-" dz ( 1 1 ) 

- 2 ^ — 1 . (/J0 ' Ni+w %P{Z) ^ 7^-

where the integrand has a branch cut along the segment [0, a] and T is a simple positively oriented 
closed contour encircling [0, a] (Fig. 3). 

The proof of Lemma 3.1 can be found in the Appendix. 
The triangular structure of the above identities implies that the system of orthogonality condi­

tions (6) is equivalent to 

(z - a)Nce~az dz 
^Pn,N(z)(Z a>Nc

e j ^ = 0 J = 0 , l , . . . , n - 1 (12) 

(the diagonals are all different from zero in the above triangular linear system). By relabeling the 
monomials above, we get the following 

Corollary 3.1 The system of Hermitian orthogonality relations (6) is equivalent to the system of 
non-Hermitian orthogonality relations 

1 \ A ; C -0,2 

P„_N(z)zk{Z~aJVf dz^O fc = 0 , l , . . . , n - l (13) 

223 



with respect to the varying weight 

(z-a)N<e— 
wn.N{z) .= j j - j - (14) 

with branch cut along [0, a] . 

Corollary 3 .2 The complex moments of the weight (3) are given by 

f zjzk\z - a\2Nce-N"dA(z) 
Jc Jc 

e~2"iNc ^ fk\ ^jTjl + Nc+l) I J_l(z-a)Nce-az dz 

1=0 

The area integral moment matrices 

EO'-^^i 

M(n) = ( [ zkzl\z - a\2Nce-NzzdA(z)) (16) 
V C / 0 < f c , ; < n - l 

and the Hankel matrix associated to the contour integral moments 

'-^'-f;*-"*) ( i7) 
r 7- / 0<k,l<n-l 

satisfy the relation 
A/ ( n ) = m ( n ) P ( n ) . 4 ( n ) (18) 

where 

P M = ( 4 n - l - ( ) 0 < f c | , < n _ 1 

^ ( n ) e -2niNc l\ l_kT(k + Nc+l)\ (19) 

2i VVfc; Arfc+A'c+i 

and r(z) is the Euler gamma function. 
Therefore the moment determinants are connected by the equation 

-2rnriNc n-\ 

d e t ( A / ( n ) ) = d e t ( m ( n ) ) ( - 1 ) L ? J T-TTT T\T(k + Nc+\) . (20) 

Since T(^) has no zeroes and Af'*1' is non-singular, de t (m ' n ' ) ^ 0. 

4 The Riemann—Hilbert problem 
Since Pn.pj(z) satisfies the non-hcrmitian orthogonality relations, wc may consider the standard 2 x 2 
Riemann-Hilbert problem [6] on the contour T defined above. 

Lemma 4.1 For fixed n, Ns the Riemann Hilbert problem 

(Y.l) Y(z) is holomorphic in C \ V , 
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(Y.2) Y+(z) = Y_(z) 
1 U>n(z) 
0 1 

for z S T , 

(Y.3) Y{z) = (I + O ( i ) ) 2—"3 a s z ^ o o 

/tas a unique solution and Yn{z) = P n ,« (z ) . 

The proof can be found in the Appendix. 

5 The ^-function 

The Deift-Zhou nonlinear steepest descent method [4] will be applied to obtain the asymptotics of 
the solution of the Riemann-Hilbert problem in Lemma 4.1. To perform the standard steps of the 
method, an appropriate auxiliary function g(z) (the so-called g-function) has to be constructed. 
Finding the ^-function is not as straightforward as in the real line case; however, it" is still related to 
the logarithmic equilibrium problem in the complex plane corresponding to the potential (1). The 
equilibrium measure is studied in detail in [1]; instead of using the equilibrium measure, we construct 
a suitable function g(z) from an ansatz satisfying based on the specific conditions expected from the 
^-function. 

The weight function is of the form 

wn,N(z) = e~NV^ (21) 

where the potential function V(z) is of the semiclassical type [7]: 

V(z) = az - c l o g ( 2 -a) + (c + t) log2 . (22) 

for z £ C \ [0, 00) with jumps 

1/ 1 \ 1/ I \ / - 2 ( t + c)7ri x € (0,a) 
V+(x)-V_(x)= < . . (23) 

1 — 2tiri x € (a, 00) . 

Notice tha t the function exp(—V(z)/t) is holomorphic in C \ [0, a.}. 
T h e g-funct ion cond i t i ons . We seek a function g(z) in C \ C where £ is a system of oriented 
contours (also to be determined) and a suitable nomotopic deformation of T in C \ [0, a] such that 
the the following conditions are satisfied: 

(j . l) g(z) is holomorphic in C \ C and has continuous boundary values ^+(2) and g_ (2) along C, 

(g.2) g(z) = logz + O {\) as 2 - • 00 , 

(g.3) There exists an arc B c £ n r such that 

j + W + 9 . ( 2 ) - J v ( 2 ) = / z e S , (24) 

for some constant I and 
Re(g+(z)-9-(z)) = 0 zeB. (25) 
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(g.4) The inequality 

Be(g+{z) + g-(z)-±V(z)\<0 z€T\B, (26) 

holds and 

^-(9+(z)-g.(z))eZ (27) 

for each part of C \ B, i.e.. ens(A j s holomorphic in z e C \ B. 

(3.5) The function 
h(z) := g+(z) - g.(z) (28) 

has an analytic continuation in a thin lens-shaped region L around B such that 

i Ke(h(z)) > 0 2 6 L 0 1 1 the positive side of B , 

Ke(h(z)) < 0 z e L on the negative side of B . 
(29) 

To central object in the construction of a suitable g-mnction is a meromorphic quadratic differ­
ential [9] of the form 

R(z)dz2:=- f,J{Z\,dz2 (30) 
z^(z - a)z 

on the Riemann sphere, where J(z) is a monic polynomial of degree four: 

4 

•Hz) = l[(z - Zi) = z4 +.73Z3 +.J2Z2 +hz + jo . (31) 

J(z) is assumed to have real coefficients because of the symmetry of the problem with respect to 
the real axis. Consider the one-form 

a^JJ(z) 
y{z)dz:=-^R{z)dz= / , dz . (32) 

i z(z — a) 

on a double cover of the z-plane. To make it single-valued on the z-plane we need to introduce a 
suitable branch cut structure between the roots of J(z) that accomodates the ^-function conditions 
and it will depend on the geometry of the critical horizontal trajectories (see [9]) of the quadratic 
differential R(z)dz2. The integral function of this differential form is the essential building block of 
the g-function: this integral has to cancel the jumps of of V(z) and its logarithmic singularities at 
z = 0 and z = a (the fixed poles of y(z)) which gives residue conditions of the form 

res y(z)dz = ±(t + c) . 

resj(z)dz = =Fc , (33) 

res y(z)dz = t . 
2—00 

where the sign ambiguity comes from the the fact that the branch cuts are not specified yet and 
and the overall sign of the j/-term in the definition of g(z) may vary depending on the region in the 
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2-plane. In terms of the quadratic differential there is no sign ambiguity: the conditions (33) are 
expressed as 

(t + c)2 

R(z) = { S 
(z - a) 

-( l + 0(.z)) 2 - 0 , 

(l + 0{z-a)) z-*a, (34) 

~><2at>-o(\ 

This gives the equations 

J(0) = (t + c)2 J{a) = c2 -a2{2a + j3) = 2at , (35) 

that are linear in the coefficients of J(z). Therefore 

J(z) = J(t,x; z) = z4- 2 ( t + a 2 )
2

3 + xz2 + (a3 + (2t - x)a - tl±M) z + (t + cf _ (3 6) 
a \ a / 

where the value of the real parameter x has to be chosen appropriately. Based on the calculations 
in [1] concerning the potential Q(z), we make the following 
Genus zero ansatz. We seek a one-form y(z)dz whose associated algebraic curve 

y(z)2 + R(z)=0 (37) 

is of genus zero, in other words, we assume that the polynomial J(z) has at least one double root, 
i.e., the discriminant of J(z) vanishes. 

This imposes an algebraic equation of degree five on the possible values of x and, depending 
on the value of the parameter t, there is a unique choice that is compatible with the ^-function 
conditions, as shown below. 

Lemma 5.1 There exists a continuous function x: (0,oo) —• R such that the genus zero ansatz is 
satisfied for all t > 0: 

discrim(J(x(*),*;2)) = 0 t> 0 , (38) 

with the following properties: 

lim J(x{t), t: z) = (z- 2i)2(z - z2)
2 , (39) 

• The double roots z\ and 22 split into a pair of complex conjugate and a pair of real roots 
respectively for small positive t: 

J(z) = (z- b)2{z - /3)(z - 0) for some b = b(t) , fi = /?(<) , (40) 

with b > a and f3 <£ R, 

• There is a critical value 
tc := a{a + 2yfc) (41) 

of the parameter t for which all four roots collide: 

J(z) = (z-a- Vc)4 (42) 

7 
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• For t > tc, there are two real double roots: 

J(z)=(z2~°^^z + (c + t)) =(z-b-)2(z-b+)2 (43) 

The analysis of the discriminant of J(t.x;z) and the construction of x(t) can be found in the 
Appendix. 

The parameter ranges 0 < t < tc and tc < t < oo are referred to as pre-critical and post-critical 
respectively. There is a transition in the behavior at t = tc; in the vicinity of tc a double scaling 
limit will be considered. 

5.1 Pre-critical case 

Consider the quadratic differential R(z)dz2 fixed by the conditions above for t < tc. It has five 
critical points: 2 = 0 and z = a are poles of order two, z = oo is a pole of order four, z = 0, z = /? 
are simple zeroes and z = b is a zero of order two. The local behavior of the horizontal trajectories 
is governed by the following rules [9]: 

• In a neighborhood of the double poles with negative leading coefficient the horizontal trajec­
tories are conformally equivalent, to concentric circles. 

• In the vicinity of the single zeroes there are three distinguished directions of incoming critical 
horizontal trajectories (with asymptotic angles 2ir/3). 

• In a neighborhood of a double zero there are four distinguished directions of incoming critical 
horizontal trajectories (with asymptotic angles 7r/2). 

• Out of the four outgoing critical trajectories from b there are at most two converging to oo. 

The two double poles are surrounded by conformal punctured disk domains that are separated 
by critical trajectories. Therefore on the boundary of both disks there has to be at least one zero of 
R{z). Since R(z) has real coefficients, all horizontal trajectories are symmetric with respect to the 
real axis. It follows tha t ,3 is on the boundary if and only if /3 is on the boundary. The topological 
possibilities for the global arrangement of the critical trajectories are shown in table 5.1. Using the 
theory of quadratic differentials and the conditions of the ansatz we conclude (see Appendix) that, 
the only possible trajectory structure is given by the (3,1) entry of the above table. 

The contour B is chosen to be the critical trajectory that connects /3 and p whose intersection 
with the real line is negative (goes on the left of z = 0). The orientation is chosen on B from (3 to /3. 

Since the choice of B and the asymptotic behavior of y{z) is fixed there are no sign ambiguities 
for the one-form y{z)dz\ in particular, the equations (34) translate into the residue relations 

t + c , 

-c , (44) 

t 

as stated above (33). Consider the normalized integral function of y{z)dz: 

<p(z) := i J y(s)ds (45) 

8 

res y(z)dz 
2 = 0 

res y{z)dz 
z = a 

res y(z)dz 
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0\o" b and 0 

impossible impossible 

b and /? impossible 

Table 1: Possible trajectory topologies. 

on C \ £ where 
£ = d U £ 2 U £3 U B 

with C\ = (0, a), £2 = ( a , 0 0 ) and £3 = {/? — iv : f > 0}. The poles of y(z) give lo 
singularities at 2 = 0 and z — a. Since 

y(z) ~a-l- + o(^ 

integration yields 

21 
• + 0(l) z^oo. 

Along the different parts of £ the function d>(z) has the following jumps: 

( 2rd t + c . 
-—— resylsids = TTI 

h(z)-d>-(z) = < 
2iri 

"IT ( resy(s)ds + res y(s)ds) = 
\s=0 s=a J 

z e £ i 

z € £ 2 

. —— (res y(s)ds + res y(s)ds + res y(s)ds) = 2-ni z S £3 

Since B is chosen along a critical horizontal trajectory of R(z)dz2, we have [9] 

z€B , /R(s)ds = i / y(s)ds 6 I 
-',9 

9 
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Figure 2: The contour system C and the sign of Re(<S(z)) (dark gray=positive) 

and therefore 

4>+(z)^4>-(z) = ^tf(y+(s)-y-^))d.s = -tJ\+( s)ds e ?:R Z e B 

Obviously. 

4>+(z) + <f>-(z) = j [ {y+(s) + y-{s))ds = 0 

The real part of <j>(z) is smooth and harmonic on C \ (B U {0} U {a}) with 

t + c, 

Re(</>(2)) . 
21 

- log \z\ z - » 0 . 

2t 
; \z — a\ z —• a . 

(51) 

(52) 

(53) 

Moreover Ke(<j}(z)) vanishes along all critical trajectories emanating from /3 or /3. 

for some C 6 K (the reality of (. follows from the symmetry of y(z)). 

Lemma 5.2 The function 

g{z):=jV{z)-4>{z)+i-

for z 6 C \ C satisfies the conditions of the g-function for 0 < t < tc with the choice of the integration 
contour 

r : = B u K , (56) 

where TZ is chosen so that V is a simple positively oriented contour around the branch cut C \ [0, a\. 

10 

(54) 

(55) 
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Proof. The above function is holomorphic o n C \ £ and the choice of £ gives that 

g(z) = logz + o(-) z ^ o o . (57) 

Moreover, the logarithmic singularities of V and <j> at 0 and a are cancelled and we have g+(x) = 
g~(x) along £1 U £2- On £3 the jump is given by 

g+(z)-g-(z) = 0+ (z) -d>-(z) = 2m . (58) 

Therefore we conclude that g(z) is holomorphic on C \ B U £3 and e™9'2' is holomorphic in C \ B. 
Also for z e B 

g+(z) + g. (z) - jV(z) = </>+{z) + <b-{z) + t = £- (59) 

Along TZ we have 

Re (2g{z) - -V(z) - lJ = 2Re(tf>(z)) < 0 . (60) 

Along the cut B the jump of g(z) is given by 

g+(z)-gM) = <t>-U)~<t>+(z) = UM) -, (61) 

and therefore the function 

( -1(b{z) on the positive side of B 
(62) 

2(j>(z) on the negative side of B 

provides the analytic continuation of g+(z) — <?_ (z) to a lens-shaped region surrounding B. The sign 
of Re(0(z)) implies that 

(63) 

Q.E.D. 

(64) 

!

Re(/i(z)) > 0 on the positive side of B 

Re(/i(z)) < 0 on the negative side of B . 

as requested. 

L e m m a 5.3 The measure 

Ms) •= 7T~fy+(s)ds 

supported on B is a probability measure. Moreover 

Re(g(z))= f log|z - u\d»(u) . (65) 

JB 

Proof. First 

/ dn(s) = - i - / y+(s)ds = r ^ f a + W - 4>-(z)) = 1 , (66) 

where z 6 £3 an arbitrary point. In terms of the arclength parametrization z(v) of B we have 

/ dV=J-^—7 V+{s)ds = ~-ry+(z(v))z'(v) 
JB a,v l-nn J a imt dv jQ a:v til U j a 

(67) 

11 

231 



which is real by the choice of B and nonzero since y+(s) is nonzero along B. Therefore the integral 

function fj d/j, can only increase and therefore /i is a probability measure supported on B. 

To show that Re(p(z)) is the logarithmic potential of /u we note that the Cauchy transform of p, 
is 

[ d ^ = _J_ r y(s)ds 

JB s — z 2irit JB s - z 

1 / ^ y W d a + r e g jy(^fe + r e s y(s)ds + r e s y(s)ds 
2t \s=0 S — Z s = a S — Z s = z s — Z 

\ ( C+l C . , \ 1 
2f V z z — a I 2t 

= oo ,s — 2 

V"(z) + y(z) = - S ' ( z ) 

This means that 

Re(g(z)) = / log|z -u|dit(-u) + K 
JB 

(68) 

(69) 

for some constant, but g{z) ~ logz + 0 (1/z) gives that K = 0. 

5 . 2 P o s t - c r i t i c a l c a s e 

Past the critical t ime t > tc the numerator of R{z) has two double real roots: 

Q.E.D. 

J{z) ad + t + {C, + 1)\ =(z-b_)2(z-b+f 

where 

b± 
a2 + t± y/(t - tc)(t - TC) 

2a 

(70) 

(71) 

The corresponding one-form becomes rational and therefore single-valued: 

j , ( z ) = ( a - — + - ^ - W (72) 
\ z z — aj 

The corresponding critical trajectory structure evolves through the degenerate (2, 2) case as t passes 
through the critical time tc. This is the topological structure of the level set Re($(z)) = 0 which 
contains all the critical trajectories of R(z)dz2 in this degenerate case. The critical trajectory 
emanating from 6_ encircling both z — 0 and z = a will be denoted by B. 

Now the integral function has the explicit form. 

^)..= J_£^s = |(2_b_) + | ,o g (^) t + c , z 
log — (73) 

for z € C \ [ 0 ; o o ) . Thus 

( * ) • 

2t 2 6 2 

t + c 

~2T 
logz + 0 ( l ) (74) 

It 
l o g ( z - a ) + 0 ( l ) 

12 
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with 

1= - — - -log(6_ - a) + — log6_ e R . (75) 

There are jumps only along (0, oo): 

( t + c 

t 
m z 6 (0, a) 

0+U)-(M2)= < 7ri 2 6 (a , 6_) 

7TI 2 € ( 6 - , OO) 

(76) 

Therefore the real part of <p(z) is smooth and harmonic on C \ ({0} U {a}). The behavior around 
z = 6_: 

to 

where 

; U ^ M 2 ( l + C>U-{>_)) z ^ b - , R e ( 2 - 6 _ ) > 0 

- T H - - U - 6 _ ) 2 ( l + 0 ( 2 - 6 _ ) ) 2 -^f>_ , R e ( z - 6 _ ) < 0 

( 6 - ^ - ^ = - ^ - > > ° -

(77) 

(78) 

(The function 2/(2) changes sign from + to - at its zero 2 = 6_ .) 

L e m m a 5.4 7%e function 

<?(*) 

1 £ 
— Viz) + <A(z) + - z inside B 
It 2 

1 . I 
~V(z) — <j>(z) + - 2 outside B 

2 £ C \ [0, 00) (79) 

satisfies the conditions of the g-function along the integration contour T = B. 

Proof. The function g(z) is holomorphic in C \ £ where 

£ : = B u £ i U £ 2 U £ 3 

with Ci = (0,a), £2 = (0 ,6- ) and £3 = (b_,oo). By the choice of (., 

•v 
9 « rz + 0 

(80) 

(81) 

Combining the singularities of V(z) and <j>(z) the logarithmic singularities are cancelled, and the 
jumps of g{z) are: 

C 0 2 6 £ , U £ 2 

s + ( 2 ) - g _ ( 2 ) = j (82) 
[ — 2-ni 2 6 £ 3 . 

Therefore eng^z' is holomorphic on C \ B. Obviously, 

0 + ( 2 ) + . 9 _ ( 2 ) - " V ( 2 ) = ^ e £ . (83) 

13 
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Figure 3: The contour system C and the sign of Re(^>(z)) 

The function 
h(z) := 2<b(z) (84) 

provides the analytic continuation of g+(z) — g~(z) in a lens-shaped region around B \ {&_} with 

f Re(/i(z)) > 0 inside B 

Re{h(z)) < 0 outside B 

Note that the simple form of y(z) makes g{z) quite explicit: 

L e m m a 5.5 The measure 

dn(s) := - — - y ( s ) d s 
Imt 

supported on B is a probability measure. Moreover 

Re(g{z)) = I \og\z - u\dn(u) . 
JB 

Proof. By the residue theorem, 

/ dti{s) = - — — / y(s)ds = - - (Tesy(z)dz + res y{z)dz) 
JB 2-nit JB t Vz=o z=o / 

The rest is proven exactly the same way as above. 

6 Riemann-Hilbert analysis 

(85) 

Q.E.D. 

— log(z — a)-i log 2 outside B 

a ' 7 ' • -A a
 ( 8 6 ) 

-z + I inside B . 

(87) 

(89) 

Q.E.D. 

We have all the ingredients to perform the nonlinear steepest descent method of Deift and Zhou [4], 
Since the structure of the p-function is very different for the pre-critical and the post-critical values 
of the parameter t the Riemann-Hilbert. analysis is done separately for each case. It is particularly 
interesting to look at the transition around t ~ tc where a standard double scaling limit procedure 
due to Bleher and Its [3] is used. 
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6.1 Pre-critical case 

We describe a sequence of invertible transformations Y >—> \J \—> T >-» S to relate the original matrix 
Y to the solution of a model problem *P. 
First transformation (undressing). To normalize the Riemann-Hilbert problem at infinity, we 
consider the undressed 2 x 2 matrix 

U(z) := e- ine"3Y(z)Q'n9iz)"3eine'73 . (90) 

This characterized by the Riemann-Hilbert problem 

(U.l) U(z) is holomorphic in C \ T and has continuous boundary values along I \ 

(U.2) U+{z) = U_(z)Vu(z), where 

,-nh{z) j 

Vv(z) = { 
0 nh(z) 

0-2n*(z) 

0 1 

e S , 

ztr\B. 

(91) 

(U.3) U(z) = 1 + 0(1) as z-^oo . 

Second transformation ( lens opening) . Let L be a lens-shaped domain in which h{z) is holo­
morphic and take two contours <S+ and 5_ on the positive and on the negative side of B respectively, 
contained entirely in L. Let the domains enclosed by S+ and B and by 5_ and B denoted by fi+ 

and fi_ respectively. Hoo and fio &re the remaining domains bounded by B and 1Z. (unbounded) and 
by S+ and 1Z respectively. 

Then the second transformation amounts to 

T(z) : = 

U(z) 

U(z) 

1 0 
-nh(z) -J 

ih{z) 1 

Z E Q J 

e Q_ 
(92) 

£/(z) 2 e ftounoo . 
The matrix-valued function T is the unique solution of the RH problem: 

(T . l ) T(z) is holomorphic in C \ T with continuous boundary values on BWR.U S+ U S_, 

(T.2) 7+(z) = T-{z)VT(z), where 

/ r i n 1 

z 6 <S_ 

VH*) = • 

• 1 0 1 
e-nh(z) j 

1 0 " 
enh(z) j 

r 

. 

0 1 
- 1 0 

1 e-2nci>r2) 

0 1 

(93) 

z £B 

z e R 
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Figure 4: The contours of the Riemarm-Hilbert problem for T 

(T.3) T(z) =1 + 0{\) asz^oo . 

M o d e l problem. Because of the properties 

Re(/i(z)) > 0 z 6 5 + , Re(/i(z)) < 0 z e 5_ Ke(4>(z)) < 0 2 E (94) 

the corresponding off-diagonal elements of Vj-(z) are exponentially small pointwise (but not uni­
formly) along the contours 5 + , 5_ and 72.. By neglecting the jumps that are suppressed as n —» oo, 
we get the following model problem: 

(T. l ) tf(z) is holomorphic in C \ S , 

(T.2) 

tf+(z) = * _ ( * ) 
0 1 

- 1 0 
e £ 

(T.3) #(z) = / + C » ( i ) a s z ^ o o . 

The unique solution is provided by the standard construction [5] 

B{z) + B(z)'1 B(z)- B{z)~l "i 

*(*) = -73(z) + g ( z ) - ' B(z) + B ( z ) - 1 

2i 2 

(95) 

(96) 
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where 

B W = ( r r | ) 4 ' B ( z ) ~ l + o Q ) z^oo. (97) 

Note that B(z) is bounded and bounded away from zero on ever)' compact subset of C \ B. 
L o c a l p a r a m e t r i c e s . The estimate 

VT(z) = O (e~cn) n — oo (98) 

is valid only pointwise and cannot be made uniform in the vicinity of the branch points 0 and 0. 
The standard method [4, 5] to deal with an end point like 0 is to try to solve the Riemann-Hilbert 
problem T(z) exactly in small neighborhood of 0 using a conformal change of variables C, = ( (z ) , 
((0) = 0. The original set of jumps simplifies in terms of the new coordinate and an exact solution 
p{(,) is found whose asymptotic behavior as £ —> oo is matched by the local asymptotics of \&(z) near 
z = 0. Then the original jumps of T(z) around 0 can be traded off for the jumps of P(z) := p(((z)) . 

For £ > 0 consider two disks around the branch points 0 and 0: 

D^e) := {z & C : \z - 0\ < E) , D2(e) := {z S C : \z - 0\ < e) . (99) 

In the disks Dj{e) we construct local parametrices, i.e., 2 x 2 matrix-valued functions Pj(z) such 
tha t 

(P. l) Pj(z) is holomorphic in Dj(e) \BU S+ U S_ UTZ with continuous boundary values along the 
contours. 

(P.2) Pj + {z) = Pj {Z)VT(Z) for z e B U S+ U 5_ U11, 

(P.3) as n —> oo, 
P , ' W = ( ' + O 0 ) * W ' (1°0) 

uniformly on dDj . 

We give the construction of the local parametrix Pi{z) only; the construction of .P2(z) follows by 
symmetry. 

By construction, h(z) = —2q>(z) along <S+ and h(z) — 2<t>{z) along <S„ and 

0 ( * ) ~ | ( z - / 3 ) * ( l + O ( z - / J ) ) zeC\B,z^/3, (101) 

where d is given by 

y{z)~d(z-0)l{l + O(z-0)) zeC\B , z ^ 0 . (102) 

So we introduce a new coordinate 
2 

C := ( |™*(*)) 3 • (103) 

This is a holomorphic change of coordinate because 

2 2 

^ n 0 ( ^ 3 ~ n i ^ ) 3 ( 2 - , 5 ) z ^ / 3 . (104) 

We assume that e is small enough to ensure that f is one-to-one in Dj. 
In the (-plane, we need need to solve the following Riemann-Hilbert problem: 
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(p.l) p(() is holomorphic on C \ E, 

(p.2) p+(z) = p-(z)vp(z) along S, where 

vp(z) = < 

0 1 

- 1 0 

1 0 

e*1 1 

1 e " ^ 5 

0 1 

(P-3) 

p(0 = C 

1 0 

c s < * 1 

1 - i 
1 i 

C e E ! 

C e E 2 

C e s 3 

( e s 4 , 

(105) 

I + O (106) 

where (-> has a branch cut along [0, oo) and the branch is fixed by £" l<=-i ~ — 
N / 2 -

The last asymptotic equation is motivated by the fact that 

9(') = E(z)(C(z))-la> near z — ji . (107) 

where E(z) is a holomorphic function in £>i (s) (assuming tha t s is small enough to ensure this). The 
solution to this problem is standard [5], it is given in the Appendix in terms of the Airy function. 
Actually by the known asymptotic properties of the Airy function (106) improves to 

I + O p(0 = C*' 

Therefore the local parametrix 

Pl(z):=.E(*)p(C(*)) 

satisfies the requirements. 
T h e final transformation (error matr ix ) . Consider now 

C 3 / ! 

S(z) 
T{z)^(zYl Z £ C \ ( S U 5 + U 5 „ UTHJD1(E)UD2(E)) 

T(z)Pj{z)-1 z£ DJ(E)\(BUS+US_UTI) 0 = 1,2) 

(108) 

(109) 

(110) 

Because of the matching jumps of T and Pj inside the disk Dj(e), S{z) is holomorphic in Dj(e). Let 
£ s denote the contours along which S has non-identical jumps. So S(z) solves the Riemann-Hilbert 
problem 

(S.l) S{z) is holomorphic in C \ E s , 
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(5.2) S+{z) = S-(z)Vs(z), where 

Vs(z) = { (111) 
[ y(z)VT(z)*-l(z) 2 G S s \ ( £ » i ( e ) U £ ) 2 ( £ ) ) . 

(5.3) S(z) = I + 0(\) asz^oo . 

The jump matrix Vs(z) ~ / as n —» oo for every z £ Eg. We have tha t 

V s W = { (112) 
( / + O (e~cn) z 6 E s \ (Di(£) U D2(e)) uniformly for some c > 0 

as n —> oo. Since 5(z) is a small-norm Riemann-Hilbert problem, Vs(z) is close to the identity in 
both the L1 and the L°°-norms, we have tha t [5] 

S(z) = I + o(-) n^oo (113) 

uniformly for every compact subset of C \ E s . 
T h e conclusion of the asymptot ic analysis . The consecutive transformations V i—> t/ t—• 
T i—> S are all invertible in the domains in question which allows to get from ^(z) to Y(z) and 
therefore to extract asymptotic information on the polynomial Pn{z) as n —> oo. This provides 
strong asymptotics uniform on every compact subset on C; the particular form of the asymptotic 
result depends on the region in question. 

• 2 6 Uoo U fto \ (Di(e) U £>2(e)): here T(z) = U(z) and therefore 

P„(z) = Yn(z) 

= E/I1(*)enfl(*> 

-lu{z)c ( n 4 ) 

= ( S l I ( 2 ) * n W + 5 1 2 ( 2 ) * 2 1 W ) e " » w 

B(z) + B(z)'1 | g / l 

2 \^n 

uniformly on compact subsets of f^ U f ! o \ (-Di(e) U D2(f)). By deforming the contour 1Z we 
obtain the same asymptotic behavior for the points on TZ. Since s > 0 can be arbitrarily small, 
the same asymptotic result holds for compact subsets of int (f2oo Ufio). Also, by deforming 
the contours S+ and <S_, the validity of this asymptotic formula is extendible to the whole cut 
plane C\B. 
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2 S fi± \ (Di (e) U D2[e)): here U{z) = T(z) 
1 0 

±e*nh 1 
and therefore 

Pn(z) = Yu(z) 

= Un(z)en9iz) 

= (Tii(z) ± e^nh(z)Tl2{z))eng(z) 

= f * i i ( z ) ± e T n / l ( 2 ) * i 2 ( 2 ) + 0 f - ^ e n 9 ( 2 ) 
(115) 

B(z) + B ( z ) - 1
 h ( l ) B ( e ) - B ( z ) - ' / 1 
±e + 0 | - I | e 

n 2 ~ 2% 

uniformly on compact subsets of fl± \ (Di{e) U £>2(e)). 

z 6 B \ { / 3 j } : 

Pn,N(z) = (Y+)u{z) 

= (U+)u(z)en^ 

= ( ( T + ) „ ( Z ) + e - " h < 2 » ( r + ) 1 2 ( 2 ) ) e
n ^ ( ^ 

= (r+)„(z)e^(2 ' + (r+)12(z)e"
9-(z) 

'(¥+),i(z) + ° Q ) ) e~n*+iz) + ((* + )«(*) + ° Q)) 

«s(z) 

i l ; l , u < 

With the notation 

Since 

and we have 

ip(z) := n I d/.L(s) z 6 S , 
y.a 

0±(z) = ± 2 t / ^ + ( s ) d s = ±J¥>(*) , 
J 3 

PnM*) = 5 f(B(«) + BM" V i n v ( 2 ) - i(B(z) - fiWle"'1'1 + O Q j ) 

(116) 

(117) 

(118) 

eA^>+f . 

(119) 

Since B(z) + B(z)~i has no zeroes in C \ B, by Hurwitz theorem we get the following: 

C o r o l l a r y 6.1 The zeroes of PUIN(Z) may accumulate only on B as n, N —> oo, n/N —> t, t <tc. 

This is enough to complete the proof of our first main theorem: 
P r o o f of T h e o r e m 2.1 . The asymptotic formulae gives that 

lim • l o g | P n ( r ) | - R e ( 9 ( 2 ) ) 0 z€C\B. 

on C \ B. Since 

Re(j(z)) = / log|2 - u\dfi(u) , 
JB 

(120) 

(121) 
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this means tha t 

/ log|z - u\dfn,N{u) ~> / log\z - u\dn(u) n —> oo (122) 
JB ' JB 

pointwise in C \ B. Since B is a simple arc, this is enough to conclude that i-v/v converges to \i in 
the weak-star sense [8]. 

Q.E.D. 

6.2 Post-critical case 
We follow essentially the same steps as in the pre-critical case: the notations 9(2),y(z), h(z) and i 
refer to the construction relevant in the post-critical case. 
First transformation (undress ing) . Let 

U(z) : = 

This satisfies the RH problem 

(U.l) U{z) is holomorphic in C \ B . 

(U.2) U+(z) = U-(z)Vu{z), where 

Vu(z) 

3Y{z)e - ng(z)u3 ±n£(73 

nh(z) 

0 
1 

(123) 

z e. (124) 

(U.3) U(z) = I + O ( i ) as z -> co . 

Second transformation (lens opening) . 
Let 5+ be a closed contour inside B such that h(z) is defined and positive there (it has to pass 

through the point 2 = 6_ because it is a saddle point of Ke(h{z)) at the zero level). We may choose 
S_ to be the critical trajectory emanating from z = b+ surrounding B. Let Cl+ and fi_ be the 
domains enclosed by S+ and B and by <S_ and B respectively. Ho and fit*, denotes the component 
Coo \ (0+ U fi_ U B U <Si U ^2) that contains 0 and 00 respectively. 

T(z) 

U(z 
1 0 

-nh(z) 1 

U(z) 
1 

nh(z) 

Z € 0 + 

2 e n_ 

U(z) 2 € f 2 0 u n o 

Therefore T is the unique solution of the RH problem: 

(T.l) T(z) is holomorphic in C \ (B U Sl U S2) , 

(125) 
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(T.2) T+(z) = T-(z)VT{z), where 

VT{z) = I 

1 0 
e - " h W 1 

1 0 " 
enh{z) j 

0 1 
- 1 0 

es + , 

2 € 5 _ (126) 

eS 

(T.3) T(z) = I + O (I) as z — oo . 

Mode l problem. The asymptotic behavior of the entries of Vr(z) suggests that we have to look 
at the model problem 

(\P.l) $>(z) is holomorphic in C \ B , 

(^.2) 'J'(z) has continuous boundary values everywhere on B. 

0 1 
*+(*) = * - ( * ) ! -1 0 

6 8 (127) 

(tf.3) *(z) = / + 0 ( ± ) a s z ^ o o 

The solution is simple: 

* o o -

f [ 0 1 
[ - 1 0 j 

< 

4 

1 0 " 
0 1 

z €B+ 

e B . 

(128) 

Local parametrices. Now z - 6_is the only point where the jump matrix Vr{z) is not close to the 
identity in the L°°-sense. We build a suitable parametrix that solves the Riemann-Hilbert problem 
explicitly and it is uniformly close to * in a circle around 6_. For a fixed e > 0 consider the disk 

D{e) := {z SC : | z - 6 _ | <e} (129) 

where we assume that e is small enough that a and 6+ are not in D. We seek a function P(z) tha t 
satisfies 

(P.l) P(z) is holomorphic i n i 3 \ ( B u 5 i U S2) , 

(P.2) P+(z) = P^(z)VT(z) 

(P.3) as n —> oo, 
P(z)^~l(z)~I ?i- (130) 

on the circle dD(s). 
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Introduce the coordinate 

A ._ -4n<j>(z) Re(z) > 0 
-4n(<p(z) + iri) Re(z) > 0 (131) 

in the vicinity of z = b - . This change of variables is holomorphic in a neighborhood of b and 
univalent for e > 0 small enough since 

C ~ V 2 n ( c ( . z - 6 - ) ( l + 0 ( z - 6 _ ) ) z 

In the £-plane, we look for the solution of the RH-problem 

(p.l) p(C) is holomorphic in C \ T , 

(p.2) p+(C) = p - ( C K ( 0 on r \ { 0 } , where 

(132) 

v,(z) = { 

0 1 

- 1 0 

1 0 
.C 2 /2 , 

C € Si U E 4 

( 6 E2 U £ 3 

(133) 

(p.3) as f —* co. 

PK) = [ ' + O ( - ) ) I « C ) 

vhere v ( ( ) >s defined by the local behavior of the model solution 3>(z): 

C6 A , 

C e A 2 u A 2 u A 3 . iKO == 

J 
0 1 

- 1 0 

(134) 

(135) 

This is solved explicitly in the Appendix; the local parametrix P{z) in terms of z is now simply 

S(z) = 

P{z)=p(az)) 2 6 D ( e ) . 

If we proceed in the same way as above, the error matrix 

T{z)>b(z) J z e C \ ( B u 5 1 U 5 2 U D ( E ) ) 

r ( z ) F ( z ) - 1
 2 £ C ( £ ) \ ( S U 5 1 U 5 2 ) . 

satisfies a small-norm Riemann-Hilbert problem and it can be proven that 

1 

But the fact that * i 

S(z) = I + 0\ 

0 for z S Ho results in the asymptotics 

Pn(z) = 0 [ ~ ) e np( = ) 

(136) 

(137) 

(138) 

(139) 
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which is not strong enough to exclude the presence of zeroes there asymptotically as n —> oo. This 
means tha t we have to obtain more terms in the asymptotic expansion of Pn{z); one possible way 
to do this is to construct a modified model problem \6(z) and an improved local parametrix P(z). 
Modified model problem and improved local parametrix. Following [2], we seek ^ ( z ) and 
P(z) such that 

(P. l ) P(z) is holomorphic in D(e) \ (B U Si U S2), 

(P.2) P+(z) = P_{z)VT(z) o n B u S i U S 2 \ { 6 _ } 

(P.3) as n —» oo, 

P(Z): 

uniformly on the circumference of D(E) • 

I + O * ( * ) (140) 

The function $(z) is a (possibly n-dependent) modification of * ( z ) such that P(z)'i/(z)~1 is bounded 
as z —> 6_. 

Consider therefore the following problem that allows a singularity at £ = 0 in order to improve 
the asymptotic behavior as ( —> oo: 

(p.l) p(C) is holomorphic in C \ T . 

(p.2) p + ( C ) = P - ( C M C ) o n r \ { 0 } 

(p.3) 

P ( 0 = 
• ° ' .? 

v(0 £ —> oo (141) 

Note that the matrix function 

m ( C ) - p ( C ) P _ 1 ( C ) (142) 

that has the same jumps and therefore holomorphic in the punctured ("-plane C \ { 0 } with asymptotic 

behavior Tn(() = I + O (ij as ( —> oo. Therefore 

i(c) = J + £ mk 

fc=l S 

for some 2 x 2 matrix-valued coefficents mjt. The asymptotic condition on p 

1 

' + £ 
nik 

1 + 

gives that the Schlesinger transformation 

m(C) : 

is suitable for this purpose. Since 

1 _ 1 1 

((z) V2TIKZ-I 

1 1 
2TT C 

-(1 + O U - 6 - ) ) 

= / + ( 

(143) 

(144) 

(145) 

(146) 
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the matrix 

satisfies 

M(z) \finnK, z — b-
0 1 

M(z)m(C(z)) = 0 ( l ) z ^ f c _ . 

T h e improved error matrix . With the definitions 

P(z) := M(z)p(C(z)) z 6 D(e) , tf(z) := M(.z)*(z) , 

we define the following modified error matrix: 

C Tiz^iz)-1 z 6 C \ ( S u 5 1 U 5 2 U D ( e ) ) 
5(z)={ 

{ T(z)Piz)-1 z £ £>(e) \ (£ U Si U S2) . 

Since 

p(z)*(z) -1 = M{z)p((,u)maz))^{z)-1M{zyi = M(Z) (V+O (-4)) w w ' = / + o ^ 

(note that 

(147) 

(148) 

(149) 

(150) 

P ( C ) = U + % 3 HO C - oo 

151) 

152) 

is valid) uniformly on dD{e). the function S(z) satisfies a small-norm Rieniann-Hilbert problem and 
it can be proven that 

S(z) = I + o(\j n ^ o o . (153) 

T h e conclusion of the asymptot ic analysis. 

• For z 6 floe,: 

Pn(z) = Yn(z) 

= Uu(z)enslz) 

= T u (z )e" s ( 2 ) 

= ( S n ( z ) * u ( z ) + S 1 2 ( z ) i 2 1 ( z ) ) en9(*> 
(154) 

l + 0 [ — | | £ "9(2) 

uniformly on compact subsets of fix,. By deforming the contour 5 + we obtain the same 
asymptotic behavior for compact subsets outside B as before. 
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For z e n 0 \ £>(e): 

Pn(z) = Y11(z) 

= (7n(z)e n 9 ( z ) 

= Tll(z)en^ 

1 +ofl 

,™s(z) 

„ i s ( z ) 

(155) 

\fiwakz — b- \ n » . 

Again, this result is valid also uniformly in every compact subset inside B. 

For z e n ± \D(e): 

Pn(z)=Yn(z) 

= Un(z)en9,-Z) 

= (Tn(z) ± e^nh[2)T12(z))ens[z) 

= (T 1 1 ( ^ )± e
; f n ' I ( ^ ) ^ 1 2(^ ) )e n ^ ( 2 ) 

= ( ( S n U ) * u ( z ) + S 1 2 (z)* 2 1 (z)) ± e ^ ^ n C O * ^ * ) + S 1 2 ( z ) i 2 2 ( z ) ) ) e n s ( l ) 

v ^ ™ * cnh(2) | p |̂  1 
z — b„ 

„™s(z) 2 e n_. 

(156) 

uniformly on compact subsets of fi±. The last term indicates that there are no zeroes asymp­
totically in Q + : Re(h(z)) > 0 in f?+ and therefore 1 + e ~ " ' 1 ' 2 ' may have no zero in fl+. In ft_ 
the zeroes appear along the curve where the magnitude of two terms balances, i.e., where 

T> 11.1 w * i ^ i r t u t 
Re(fc(z) = - l o g — 

n z — o_ 

This implies that the zeroes lie in the region where Re(/i) = O [ -^jp J as n —> oo. 

F o r z 6 5 \ { b _ } : 

Pn,N(z) = (Y+)u(z) 

= ( t f + ) u ( . 0 e n 9 + w 

= ( (T + )n (z ) + e - " h W(T+) i2(z ) )e" 9 + ( 2 ) 

v /47rn/tcinv, (z) + .e_ i 71v , ( z) + ^ / j . ^ | ezL0,.(2)+t{) 

(157) 

(158 

z - 6 _ 

with the notation 

!fi(z) := 7T / d/J.(s) Z 6 B 

h 
(159) 
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The Hurwitz theorem applied to the asymptotic formulae obtained above implies the following 

Corollary 6.2 The zeroes of Pnjj(z) may accumulate only on B as n,N —> oo,n/N —> t, I > t.c. 

Proof of Theorem 2 .1 . The asymptotic formulae gives that 

'1 
lim 

n—>oo 
- log |P„(z ) | -Re( s (* ) ) 0 e C \ S 

on C \ B. Since 

this means that 

Re( 9(z )) = / log|z -u\dfi(u) 
JB 

j log |z-u |d i /„ ,w(w) -* / log \z - u\dfi{v) n 
JB JB 

(160) 

(161) 

(162) 

pointwise in C \ B. Since B is a simple arc, this is enough to conclude that vn,N converges to n in 
the weak-star sense [8]. 

Q.E.D. 
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A Proofs 

A . l Proof of L e m m a 3.1. 

For a given polynomial p(z) and fixed N, c > 0 we seek a one-form wit on a possibly infinite sheeted 
covering of the complex plane such that 

dujk = ^p(z)zk\z - a\2Nce-Nz*dz A dz . ( A . l ) 
2% 

This is equivalent to solving the rf-bar problem 

•dtfk(z,-z) = ~zk\z - a\2Nce~Nzz , (A.2) 

since the one-form 

Uk ••= yP(z)fk(z,z)dz (A.3) 

satisfies 

dujk = dz{ -p(z)fk(z,z))dzAdz = ~p{z)zk\z - a\2Nce~Nzzdz Adz . (A.4) 
/ 2.1 

A particular piecewise solution to the d-bar problem (A.2) may be 
constructed using contour integration in the following way: the com­
plex plane is divided into four sectors 

z€C : ~ ^ - n < arg(z) < ~ ^ - T T } (A.5) 

.-'*'•. \ " where j = 0,1,2, 3. The boundary ray Rj separates the sectors Sj 
' .. • and Sj+i respectively (the sectorial indices are always understood 

,.-'' • -, " \ mod 4). 
The sectorial solutions are defined by the formulae 

* * ""'• fi3)(z,z):=e-2^Nc(z-a)Nc f sk(s - a)Nce~Nzsds (A.6) 

Figure 5: The sectors St and where 77(2) is a contour from z to 00 in the sector S(_i)i., (to ensure 
the integration contours 7^ the convergence of the integral, Re(zs) > 0 is needed for a fixed value 
i = 0. 1, 2, 3 of z). The branch of algebraic factor (z — a)c is fixed by placing a 

cut along the half line 

C a : = [ a , c o ) (A.7) 

and taking (z - a)Nc ~ \z - a\N c e,N ^ where 0 < <j>< 2TT. This explains the presence of the e-
2l,iNc 

factor in the definition of fk(z,~z): 

(z - a)Nc(z - a)Nc = e2"lNc\z - a\2Nc . (A.8) 

The integration contour 70(2) should not cross the cut Ca in the .s-plane; by convention, 70(2) goes 
to infinit}' above Ca (in the halfplane Im(z) > 0). 
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The function fj. (z, z) has a jump along Ca: 

Ai) ft>{z,z)+=e-™<{z-a)% s (s -a)+ 
J a 

Ai) Pk
n(z,z)_ = e - 2 " i ; v c ( 2 • » - • / • 

- f sk(s-a)N_ce-"zsds 
Ja 

s [s — a)+ e as . 

(A.9) 

Since (z — a)_ = (z — a)+e2lTlNc
} we find tha t the jump itself is independent of z: 

/•OO 

fl%,z)+ - fl%,z)- = (e-2"'N< - 1)(* - a ) f / , f c ( S - a ) f 
Ja 

It is easy to see that 

fU+1Hz,z)-fW(z,z) = 0 e fli 

(A.10) 

(A.ll) 

for j = 1,2,3 (all these contour integrals vanish). For j = 0, how-
' ,.• = ever, we have to take the into account the jump of the integrand that 

.-•' ,. is given by a holomorphic contour integral that, can be deformed to 
\-ti , .•»'--;;.----• the cut Ca (see Figure A.l): 

.,'•'' ' " •• , \"" ' /< 1 ) ( z , z ) - /<° ) ( z 1 z ) = 

>;:. - (e-
2™"<= - l)(z - a)Nc j " " sk(s - a)^e~N"ds . ( A"* 2 ) 

-' \ Ja 
/ \ , -v 

' • As z —> oo, the functions fjf (z,~z) decay exponentially; we prove 
tha t for fl (z,z): the proof for other three is essentially the same. 
To this end. let z = —xo + iyo- the integration contour is chosen to 

Figure 6: The jump on R0 b e t h e h a J f U n e _ (XQ + t ) + lyQ w i t h ( > Q. 

( 2 ) / 

i/n 
\Nc / „fc/^ \Nc„-Nz.s i„ 

a) I s (s — a) e as 
Jul*) 

< ({x0 + a)2 + yt)Nc'2: 
,.oo 

x / ( - i 0 - t -'iy0)
k{x0 -t-iyo- a)

NceN^-x°+i",>'><'Xo+t+i^dt 
Jo 

<((x0 + a)2 + y2
0)

Nc/2e-N^+^x 
/•OO 

x / ((x0 + t)2 + y2
0)

k/2((x0 + t + a)2 + y ^ ^ e ^ ^ d t 
Jo 

< ((x0 + a)2 + y2
0)

Nc/2e-N^+y^ [°° Ce-N""adt 
Jo 

(A.13) 

< C-

tW 

-N(l-s)(x2
0+yZ) 

Xo 

As z -> 0, \fk
J'{z,z)\ -> oo. To overcome this difficulty, we introduce a local solution to the 

rf-bar problem (A.2) in the vicinity of the origin: 

Mz,z) "lN%z - a)Nc f 
J a 

sk{s-a)"ce-""ds |z| = < 5 < ^ . (A.14) 
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(Of course, the contour of integration must not cross the branch cut Ca) We define the functions 

/•OO 

F{
k
s\z) := e~2"'Nc(z - a)Nc / sk(s - a)Nce-Nzsds z S S, , (A.15) 

J a 

where the homotopy class for each sector is chosen as above. The function Fk (z) is holomorphic in 

So\Ca and the other Fjf (z) functions provide an analytic continuation to the cut. plane C\ (C a U/?o) 
(if we compare the boundary values on the other Rj's we find that there is no jump on either of 
them and therefore, by Morera's theorem, they are analytic continuations of each other). We may 
suppress the upper index and use Fk(z) to denote this analytic continuation. The jump of Fk(z) on 
Ca is 

(A.16) 

/*00 

Fk(zU ~ Fk(z)- = (1 - e2*iNc)e-2*iNc(z - a)^c / sk(s - a)^ce-Nzsds 
J a 

= ( l -e 2 " J V c ) f t (z ) + 

and therefore 
Fk(z).=e2"'NcFk(z)+. (A.17) 

The jump on RQ is 

/•OO 

Fk(z)+-Fk(z)-=-(l-e2"Nc)e-2«'N<(z-a)Nc sk(s - a)»ce-N"ds 
Ja (A.18) 

= ~(l-e2^Nc)Fk(z). 

and hence 
Fk(z)-=e~2mN<Fk(z)+ . (A.19) 

The jumps of the solutions of the d-bar problem are expressed in terms of Fk(z): 

fl0)(*,z)+-ti°Hz,z)- = Fk(z)+~Fk(z). zeCa 

f£\z,z)-$\z,z) = Fk(z)+-Fk(z)_ * e / ? 0 (A.20) 

fl3)(z,z) - fk(z,z) = Fk(z) z G Sj, \z\ = S. 
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Figure 7: The approximate domains of integration 

Let RQ denote the part of the ray RQ that is outside the disk |z| < 6. Therefore 

J p(z)zk\z-a\2Nce-N"dA(z) 

p(z)zk\z-a\2Nce-N"d1Adz 
2i ,/c 

lim 
, - = o - ^ ' 

**? + duJk. 

lim , Sj) 4-

u 
3 

£ 
.7=0 

= \ f p{z)(Fk(z)+- Fk(z)-)dz 

+ \j„ p(z)(Fk(z)+- Fk(z).)dz 

\z\<5 

\z\={ 

p{z)Fk(z)dz 

This means that 

\z\=i 

p(z)zk[z-a\2Nce-NzJdA(z) = i / p(z)Fk{z)dz , 
2? ./r 

(A.21) 

(A.22) 

where T is the union of a keyhole contour around RQ and a simple contour around Ca oriented as 
shown on Figure A.l. 
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Figure 8: The integration contour T 

The function Fk(z) can be calculated explicitly (the integral is taken along the real line for 
simplicity, on the positive side of Ca)' 

Fk{z) = e-2*>Nc(z - a)Nc / sh(s - a)1ce'N"ds 
Jo 

-2*iNc(, _ „\Nr.c-az (z-a)"^r (u + a)huNce-Nzudu 

••(.-)"'.- EC)"*-'1 udu 

„iNc('-*)"ce-az 'r (*\„k-ini + Nc+V 1 

£ > ]yl+Nc+l zl+l 

(A.23) 

Therefore 

{z)zk\z - a\2Nce-NzzdA(z) • 

-2^NC ^ fk\k_,r(l+Nc+l) f (z-a)Nce-az dz 
ftl+Nc+l I P^Z' zNc zl+l sr? ' 

(A.24) 

The matching phase terms in the multiplicative jumps Fk(z) allows a different analytic continu­
ation consisting of a single cut along the segment [0,a]. The presence of the factor e~az permits a 
deformation of the integration contour into a closed loop around [0,a]. 

Q . E . D . 
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Figure 9: The final integration contour F 

A.2 Proof of Lemma 4 .1 . 

The proof of the uniqueness is standard [5]. The analyticity, the jump condition and the asymptotics 
for large z implies that 

Y(z) = 
Pn(z) ; 

2-rn Jr 

Pn(t)wn,N (t)dt 

p t — Z 

q„-i(t)wn,N{t)dt 

t - z 

(A.25) 

where pn(z) and qn~i(z) are polynomials of degree at most n and n—\ respectively. p n (z) satisfies 

pn(z) = zn + 0(zn~1) and /p n {z)z k w n , N {z)dz = 0 k. = 0 , 1 , . . . , n - 1 . (A.26) 

This implies that pn{z) = Pn.N(z) (and this settles the existence of the first row). The polynomial 
qn-i{z) satisfies 

q„_1{z)zkwn,N(z)dz = 0 fc = 0 , l , . . . ! n - 2 and / qn-i{z)zn~1wn,N(z)dz = l. (A.27) 

The necessary and sufficient condition to find such qn_\(z) is that de t (m ' n ' ) ^ 0 which is true 
because of the moment matrix equation. 

Q . E . D . 

A.3 T h e analysis of the discr iminant of J(z) 

Consider the polynomial 
J(z) = J{t,x:z) . 

33 

(A.28) 
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The discriminant is of the form 

D(x) = ^A(x)2B(x) , (A.29) 
or 

where 

A(x) =a2x - 2a2c-a4 -4a2t- t2 

B(x) = - 4 a V + ( -16a 4 c + 28a4« + 4o 2 t 2 + 16 a2tc + 16 a2c2 + 13a 6) x2 

+ ( -48 a V - 14 a8 - 54 a V + 64 a V + 24 i2ca2 - 60 a6t + 48 a4«c + 36 a6c + 2 0 t V ) x 

- 232 t3ca2 - 384 i3c2 - 64 a V i - 132 a 4 t 2 c - 32 t5 - 64 aAc3 - 192 t4c + 50 a6*2 

+ 48 a 4c 2 i + 36 a6c2 - 72 a6tc - 96 a 2c 2 t 2 - 256 t2c3 - 32 a4*3 

+ 64 c V + 32 a8S + 5 a10 - 131 a2t4 - 20 ca8 . 
(A.30) 

By picking the double root coming from A(x) 

t2 

xA(t):=2c + a2 +4t+^ (A.31) 

we get two pairs of coalescent roots in J{z): 

= ( ^ - ( a ' + Q e - M c - M ) ) ' 

Note that XA(t) is strictly increasing for I > 0. The discriminant of the quadratic polynomial 
az2 - (a2 + t)z + a{c + t) is 

(a2 + t)2 - 4a2(c + t) = (t - r c ) ( t - tc) (A.33) 

where the critical times are 

TC := a(a - 2%/c) t.c ~ a(a + 2^/c) rc < tc . (A.34) 

For t = 0 we have 

A(x) = a2(x-2c-a2) 
(A 35) 

B(x) = a2(5a2 - 4xa2 + 16c2)(x + 2c - a 2 ) 2 . 

We claim that for t € R + \ {rCl tc} we have exactly one root of B(x) in each of the intervals 

( - o c , a 2 - 2c) , (a2 - 2c,xA{t)) , {xA(t),oo) . (A.36) 

This follows from 

lim B(x) = oo , 
X — ' — OC 

B(a2 - 2c) = -t2 (272 a2tc + 32 t3 + 128 a2c2 + 16 aAc + 192 /.2c + 131 a2*2 4- 12 a4t + 384 <r2 + 256 r 3 ) < 0 

R , , , „ 1 g c ( t + c ) ( ( t - T c ) ( f - t e ) ) 2 ^ n F(x>i(t)) = 16 ^ > 0 , 

lim B(x) = - c o . 
X—> OC' 

(A.37) 
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As t —> 0 we expect, that 

J(z) = (2 - zs)
2(z - z2f = (z2 -az- c)2 (A.38) 

and the branch cut opens at the minimum of the potential z = z\ for very small t. This happens 
for root x = a2 — 2c of B(x); let 2_(t) and x+(t) the solutions in the intervals (oo,a2 — 2c) and 
(a2 — 2c, XA{t)) respectively. 

By elementary perturbation theory, 

dt x± (0 = 2 
a± v V + 4c 4z± 

a 
Now, we are interested in the following: 

dt 
J(t,x±(t):z) -J(t,x±(t);z) + — J(t,x±(t):z)~(t) 

2(z - a)(z2 - 2zz± + az + c) 

(A.39) 

(A.40) 

This implies tha t 

- J ( i , z + ( t ) ; 2 + ) 

- J ( < , i + ( t ) ; z _ ) 

= 0 

2(z_ - a ) ( z • 2z_z + + az_ + c) 4(2_ — a)z_(2_ — z + ) 

J{t,x-{t);z+) 
2(z • a)(z2_ - 2z_z+ + a 2 + + c) 4(z + - o)2+(2+ - 2_) 

TJ{t.,X-(t)\z-)\ 
dt 

This means the following: 

> 0 , 

(A.41) 

< 0 

(A.42) 

Along the solution x_(t) the double root z = z+ splits into a pair of real roots while the 
solution z = z_ evolves further as a double root along the real line. 

Along the solution x_ (t) the double root z = z_ leaves the real line by splitting into a pair of 
complex conjugate roots while the solution 2 = 2+ evolves further as a double root along the 
real line. 

Since the resultant of the two factors A(x) and B[x) is 

resultant(^(x) ,B(x)) = I6a4c(t + c)((t - rc)(t - tc))
2 (A.43) 

the two critical times t = r c and t = tc are the only possibilities for them to have a common root. 
The two critical times are different: if t = TC then XA(TC) coincides with the largest root of B(x) 
while for /. = l.c the root XA(IC) hits the solution x+{t), as it can be seen easily from the factorization 
of B(x) for these critical times. 

The following solution is chosen to fix J(z) for every t > 0: 

x(t) := (A.44) 
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A.4 The trajectory structure in the pre-critical case 
The quadratic differential R(z)dz2 gives rise to a flat metric 
|.R(2)||dz|2 with singularities at the poles and zeroes at R{z) [9]. 
In this metric the trajectories have an associated length, the so-
called Strebel length. The length L of a horizontal trajectory h is 
given by 

r (A.45) L = I y/R{z)dz = / y(z)dz 
Jh Jh 

since the form y(z)dz is real along a horizontal trajectory. 
For the (3,3) configuration simple residue calculus gives 

Figure 10: The (3,3) entry 
with marked trajectories 

(A.46) 

where the Li's are the Strebel lengths of the critical trajectories 
shown on Figure A.4. This implies L3 = 0 that is impossible. This 
means that the (3,3) configuration is not compatible with the con­
ditions (??). 

The same argument can be used to eliminate the configuration (3,2). 

A.5 Local parametrices 

Airy parametrix for the pre-critical case. It is easy to see that 

P(0 '•= CT3P(-C)°"3 

satisfies the following R-H problem: 

(p.l) p is holomorphic on C \ £ , 

(p.2) p+(( ) = f>-(z)vp(z) along £ where 

(A.47) 

vp{z) = { 

0 1 

- 1 0 

1 0 

e ^ § 1 

1 e - ^ 1 

0 1 

1 0 

ei^ 1 

CeS! 

C e S 2 

( 6 £3 

< e £ 4 

(A.48) 
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(p.3) As £ —» oo, 

P(C) 
1 (l + l 

C 
l i 

- l i / + 0 
2 V V2 

and C1/4 has a cut along the negative real axis and it is positive for positive real (". 

This can be written in terms of the Airy function 

1 pioo 

Ai(0 ~ ^ e* 
1 -C,q dq 

Namely, 

where 

and 

P(0 = 
1 + t 

V2 
MO tfi(C) 
/o(C) «/{(C) 

C(Oe^ le i" 3 

/o(C)=Ai(C) , / 1 ( C ) = e " * A i ( e - ^ 1 C ) 

1 0 

0 1 

1 0 

- 1 1 

c(() = i 
0 

1 

1 

0 

- 1 

1 

- 1 

1 

Cefi2 

Cen3 

( € 1 ) 4 

Parametr ix for the post-critical case. 
Let us define 

p(z) := pizMO-1 

This satisfies 

(p.l) p(Q is holoniorphic on T. 

(p.2) p+(C) =p_(C)5p(z) along T where 

(I 

Vp(z) = { 
1 -e<2 /2 

0 1 

( e r , u r 4 

C e r2 u r3 

(P-3) 

p(() = / + O { - J C - oo 

(A.49) 

(A.50) 

(A.51) 

(A.52) 

(A.53) 

(A.54) 

(A.55) 

(A.56) 

37 

257 



This has a simple solution: 

P(C) 

Since 

we have 

p(CW-
0 1 
0 0 

i - / H O 
o . I 

/ ( « ) • 

1 f e~s2'2 

u) = — ds , u $ 
2m JR s -u /(«) = 

1 ^ (2fe)! 1 

^ £ o 2^! "2fc+1 

1 ~ (-l)fc(2fc)! 1 
:/ + 

0 0 M? 

(A.57) 

(A.58) 

C -» oo . (A.59) 

References 

[1] F. Balogh and J. Hamad. Superharmonic perturbations of a Gaussian measure, equilibrium 
measures and orthogonal polynomials. Complex Anal. Oper. Theory, 3(2):333-360, 2009. 

[2] M. Bertola and S. Y. Lee. First colonization of a spectral outpost in random matrix theory. 
Constr. Approx., 30(2):225-263, 2009. 

[3] P. Bleher and A. Its. Double scaling limit in the random matrix model: the Riemann-Hilbert 
approach. Coram. Pure Appl. Math., 56(4):433-516, 2003. 

[4] P. Deift and X. Zhou. A steepest descent method for oscillatory Riemann-Hilbert problems. 
Asymptotics for the MKdV equation. Ann. of Math. (2), 137(2):295-368, 1993. 

[5] P. A. Deift. Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, vol­
ume 3 of Courant Lecture Notes in Mathematics. New York University Courant Institute of 
Mathematical Sciences, New York, 1999. 

[6] A. R. Its, A. V. Kitaev, and A. S. Fokas. An isomonodromy approach to the theory of two-
dimensional quantum gravity. Uspekhi Mat. Nauk, 45(6(276)):135-136, 1990. 

[7] F. Marcellan and I. A. Rocha. Complex path integral representation for semiclassical linear 
functional. J. Approx. Theory, 94(1):107-127, 1998. 

[8] E. B. Saff and V. Totik. Logarithmic potentials with external fields, volume 316 of Grundlehren der 
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, 1997. Appendix B by Thomas Bloom. 

[9] K. Strebel. Quadratic differentials, volume 5 of Ergebnisse der Mathematik und ihrer Grenzgebiete 
(3) [Results in Mathematics and Related Areas (S)[. Springer-Verlag, Berlin, 1984. 

38 

258 



12.3 Appendix 

In this section it is shown that the Cauchy transform of SQt satisfies the same equation 

as g'(z). To this end, consider a general Joukowski-type conformal mapping 

F(u) := ru + a0 + — ~ r > 0 , \A\ < 1 . (12.84) 
u — A 

that maps the exterior of the unit disk to the exterior of a domain B. The condition 

\A\ < 1 is needed to ensure that F is holomorphic in {u: |?/| > 1} . From now on we 

assume that F the following symmetry property: 

F{u) = F(u) (12.85) 

which is equivalent to 

T{u) = F(u) . (12.86) 

This implies that every parameter of F is real. Since F is a rational function of degree 

two, F: C P 1 —> CP1 is a double covering. The branch points of this covering map 

are given by the quadratic equation 

(z-rA- a0)
2 - Arv = 0 . (12.87) 

The mapping F is univalent if and only if 

( 1 - U | ) 2 > - . (12.88) 

r 

For such mappings the image G of the unit disk is given by a nonsingular analytic 

Jordan curve. The function S+(z) is given by 

ZTTI JG W — z 

7(0/'(0 (1289) 

2?" J\Q\=I ./(C) - z 
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The rational one-form 

7 (J) /'(C) 
/(O - z 

has six poles counted with multiplicities: 

d( (12.90) 

u = 0 , oo , A , 1 , F-'iz), , F-\z)2 . (12.91) 

If z £ G+ then only the two poles 

u = - u = oo (12.92) 

are outside the unit circle of the w-plane. Simple residue calculus gives 

V 

V A2 V (l-^2)2) 
S+ (z) = uQ - \ "~ 'J . (12.93) 

•ri Z — -T — U 
r „, vA 

1-A2 

This gives that UQ = ^ and 

v ( vA 
C = 7Z \ 1 

A2 V (I-A2)2 

r v 
a A A{l-A2) ' 

The area equation gives 

(12.94) 

t = r2~ j ^ y 2 • (12-95) 

The Cauchy transform of the domain B is given by 

C{Z)=±[^*!L={-V~Z + VS+{Z) ' ^ (12.96) 

The algebraic equation satisfied by the Schwarz function is obtained from the 

parametrization of z and w = z on dB in terms of the uniformizing coordinate u: 

Pj (u) := Aru2 + {v - A2r - Az)u + A2z 
(12.97) 

P2{u) := A2wv2 + (v - A2r - Aw)u + rA 
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The resultant of the above polynomials provide the algebraic equation 

E(z, w) := resultant(Pi(u), P2(u)) = C2(z)w2 + C1{z)w + C0(z) (12.98) 

satisfied by w = S(z), where the functions Ck(z) are explicit polynomial expressions 

in z. By completion of the square, it can be shown that E(z, w) = 0 is equivalent to 

the equation 

a 1 c lc + t\2 a2(z-b)2({z-d)2-K)_ 
w 

2 2z-a 2 z J 4z2(z-a)< 
where 

d = rA + - (12.100) 

h = Arv . 

The normalized Cauchy transform in the exterior of B is given by 

'"=-iwf^ = -7s"w - K " " r h ) • (12-101) 

that satisfies the equation 

a 1 c l c + A 2 a 2 ( z - 6 ) 2 ( ( z - d ) 2 - / Q 
to-2 + 2l^-2-T-J = 4r>(* - af " ^ ^ 

which is equivalent to 

a2(z-b)2((z-d)2-h) 
(2tw - V\z)f = " ^ ^ l a ) 7 • (12-103) 

It follows from (12.100) that the rational expression on the left hand side is the same 

as R(z) and therefore w = g'(z) solves the same equation as the normalized Cauchy 

transform of B = SQ, outside Sgt. This is enough to conclude that these two functions 

are the same. 
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Appendix A 

Statement on collaborations 

[1] F. Balogh, J. Harnad, Superharmonic perturbations of a Gaussian 

measure, equilibrium measures and orthogonal polynomials 

I found and proved the results Thm. 3.4 and Thm. 3.5 on the structure of the 

support of the equilibrium measure for superharmonic perturbation potentials. 

Most of the calculations in the proof Prop. 3.3 and the proofs of the estimates 

needed for Prop. 5.1 are based on my work. I have performed extensive nu­

merical experiments that support the conjecture of the zeroes of the orthogonal 

polynomials detailed in Sec. 6. 

[2] F. Balogh, M. Bertola, Regularity of a vector potential problem and 

its spectral curve 

My work on this paper contributed to the suitable generalization of the definition 

of admissibility for vector potential problems (Def. 2.1) and also to the detailed 

proof of the existence and uniqueness of the vector equilibrium measure (Thm. 

3.2) based on [81]. In the second algebraic part I did the linear algebra on which 

the existence of the prseudo-algebraic curve (Prop. 5.1, Thm. 5.1) relies upon. 
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[3] F. Balogh, M. Bertola, On the norms and roots of orthogonal polyno­

mials in the plane and Lp-optimal polynomials with respect to varying 

weights 

I was responsible for the potential theoretic background of the proofs of the 

theorems, most of which were worked out jointly. 

[4] F. Balogh, External potentials for two-point quadrature domains 

This manuscript is based solely on my work. 

[5] F. Balogh, M. Bertola, K. T-R. McLaughlin, S. Y. Lee, Riemann-

Hilbert analysis of the Bratwurst orthogonal polynomials 

I found the integral identity used to reformulate the orthogonality in terms of 

contour integrals (Lemma 4.1), constructed a rigorous proof based on a piecewise 

solution of a corresponding scalar c/-bar problem. I calculated the formula for the 

determinant of the moment matrices. The construction of the ^-function relies 

on a finding a suitable quadratic differential R(z)dz2; based on an earlier draft 

manuscript I reformulated the conditions in terms of the numerator polynomial 

J(z) of R(z) that reduces the problem to a quintic equation for a free parameter 

x and analyzed the root behavior of the discriminant of J(z) as a polynomial 

of x depending on the continuous parameter t. I cleaned up the construction 

of the ^-function and the limiting zero distributions in the pre-critical and the 

post-critical cases. I carefully checked and completed the calculations leading 

to the strong asymptotic formulae provided by the nonlinear steepest descent 

analysis. 
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Appendix B 

Non-Hermitian orthogonality for 

the rotated Hermite polynomials 

Proof of Thm. 3.5.1. Our goal now is to rewrite the standard orthogonality 

relations 

[ Pn{z)zke~lzl2+T¥+T¥dA(z)=0 fc = 0 , l , . . . , n - l (B.l) 

Jc 

as non-Hermitian orthogonality relations with respect to a weight function supported 

along a contour in the complex plane. In terms of the complex coordinates z,~z the 

area integral is written as 
r „ T 2 2 7=2 2 1 f T 2 , 2 ™2_2 

/ Pn{z)zke-W +Z?~+Z?-dA(z) = - / Pn(z)zke-z*+^ + T^-dzAdz 
Jc 2z Jc 

(B.2) 

The basic idea [69] is to use the Stokes' Theorem to reduce the area integral to 

integrals on the boundary. To this end, we are looking for a one-form unk in the 

complex plane such that 

I 2 2 —2_2 

dujnk = -Pn(z)zkerz*+^+Z^dz A dz . (B.3) 
2i 
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We seek unk of the form 

Wnfc = -—Pn{z)fk(z,z)dz (B.4) 
h 

where fk solves the d-bar problem 

d,fk(z, z) = -zke-*~z+^2+^z2 . (B.5) 

A solution to (B.5) can be easily constructed in a contour integral form: 

fk(z, z) := e^z2 / ske-zs+J^s2ds k = 0 ,1 , . .. , (B.6) 

where the contour of integration is asymptotic to the ray 

{s = iTu : u > 0} . (B.7) 

This choice ensures that the integral in (B.6) is finite for all values of z. Obviously, 

fk{z,~z) is a smooth function for which the one-form cunk defined above satisfies 

dujnk = -d ( —Pn{z)fk(z,z)dz J 

= -^:ds(Pn(z)Mz,z))dzAdz (B-8) 
Zi 

= ^-Pn(z)zke-zz~+T¥+I¥dz A dz . 

To use Stokes' Theorem, the integral (B.2) in the complex plane has to be approxi­

mated by integrals of the same function restricted to some fixed bounded domains: 

Pn{z)zke-^2+1^^^dA{z) = lim / Pn(z)z*e-^2+S^-+S^dA(z) 
*-°°J\,\<R {B9) 

l im (b (jjnk . 
R-*°°J\Z\=R 

To understand the boundary behavior of unk as \z\ —>• oo one has to investigate the 

asymptotics of fk(z,~z) as \z\ —> oo. 

A linear substitution of the form 

s = ^ 2 ( u e R + ) (B.10) 
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gives 
r-2 T -2 - ^ ik+1e^z f°° , .-... ^ 

fk{z,z) = _k+1 / _ uke lru
 2 du 

T J -iTz 
Ak+l JT(T2-=2) />OO 2 

^Ti / u e V T ; d M 

T J-iTz 
. 2 

The contour of integration above on the t>-plane is asymptotic to the line 

v = u + i= : u G M + 1 . (B.12) 

Since the integrand is exponentially decaying in the sector 

[v : |arg(^)| < J } , (B.13) 

the integration can be performed along a contour that is asymptotic to the positive 

real line on the t>-plane. For this standard choice of the contour of integration, it is 

well-known (see [2] 7.1.23) that the asymptotic series expansion 

7T ,. / Z 
e 2 dv = \ /—erfc . r-2 \V2 

«- T / I + f;(_ir (*»-!)« 
(B.14) 

y 2m 
m = l 

holds as z —> oo in the sector 

z : | a r g ( z ) | < ^ | . (B.15) 

Successive integration by parts gives that for k — 0, 1 , . . . the asymptotic expansion 

/ 
" / e ^ - e - T ^ f l + O ^ ) ) (B.16) 
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is valid as z —» oo in the sector 

\z : | a r g ( z ) | < ^ } . (B.17) 

Since 

v^W: n = 2k 
Cn := / vne-^dv = ^ 2"fc! , (B.18) 

1 0 n = 2/c + 1 

simple symmetry considerations ([1], 6.6.3) imply that 

f ° v
2 f ce-£d t , ~ c2k + e-^z2k~l (l + O (^) ) (B.19) 

is valid as z —> oo in the sector 

z : - < a r g ( z ) < T | . (B.20) 

In other words, there is a Stokes phenomenon occurring on the overlap of the two 

different sectors. 

The case of odd powers is much simpler: we have the explicit formula 

n 

fc=0 

using successive integration by parts. Therefore the expansion 

[°°v2k+1e-£dv ~ e~^z2k (l + O ( ^ \ ) (B.22) 

is valid as \z\ —» oo without restriction. To sum up, we have 

Z' 
e - T * - i ( i + 0 ( - ) ) _ ^ < a r g ( z ) < ^ 

vne~Tdv~t 2 ^ , V y A x • (B.23) 
Cn + e-^z"-1 (l + O - ) ) f < a r g ( z ) < ^ 

, z 

The argument of the integral above is 

z ^ \ 1 + |T|2
T _ . .1-\T\2 

i ( = - TzJ = ^ i - I m ( r 2 ) + z - ^ - R e ( T 2 ) . (B.24) 
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Therefore 

fk(Z;Z) 

, - 2 2 T 2 -S2 
jk+l^ZZ+i-^ + ^f-

Tpfc+1 
/=0 
E i 

fc-i 

T 
l + O 

(B.25) 

as z —> 00 in the half-plane Im(Tz) < 0 and 

fk{z,z) ?pk+l 
1=0 

fc-; 

a 5 ' « 

+ 
r 2 2 w2_2 

2 -r 2 

T fc+i SOU i l ^ - T z ^ [ l + O 
1 

! 2 I ; 

(B.26) 

as z —> 00 in the other half-plane Im(Tz) > 0 . So let 

fk(z-.z) := fk{z,z) 
ik+1e 2 

1 '?*-£) * 

^fc+i £ 
The difference fk{z,l) — fk(z,~z) is analytic and therefore 

z 
zT 

jt-« 

Q (B.27) 

dzfk{z,z) = -ke-zz+^+^-z2 

(B.28) 

also. 

Let 

D+ := {^: | z | < i?: Im(r^) > 0} 

£>- : = {z: \z\ < R, Im(Tz) < 0} 
(B.29) 

Pn(z)zke-W2+ZT-+X^-dA(z) = lim / Pn(z)zke-lz]2+^+^~ dA( 
R^™ -ID+UDR 

lim -
R^oo 2 dD+ 

Pn(z)fk(z)z)dz+ (j) Pn(z)fk(z,z)dz 
8D-

(B.30) 
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Figure B.l: Integration contours 

The asymptotic behavior of /*. and fk imply that the contributions from integrals 

on the circular contours along \z\ = R tend to 0 as R —> oo. The dominant contribu­

tion comes from the difference of the integrals on the line segment along lra(Tz) = 0. 

Therefore 

2 A m(Tz)=0 
Pn(z) \fk(z,z) - fk(z,z) 

Pn(z) 
Im(Tz)=0 

2fc+l e 2 

jk+l 

dz 

i=o I \iT 

k-i 

Cl dz 

•k-i 

Z ^ 9 1 7 J T^k+l+lCk-l 
= 0

 l \ L / T Jlm(Tz)=0 
Pn(z)zle^(T2~^ dz 

(B.31) 

where the orientation of the line lm(Tz) = 0 is chosen in the direction of T. 
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Since the equations above are triangular and CQ ^ 0, the system of linear constraints 

f Pn(z)zke-M2+I¥+I¥dA{z) = 0 fc = 0 , l , . . . , n - l (B.32) 
Jc 

is equivalent to the system of contour integral conditions 

Pn{z)zke^(T2~^)dz = 0 k = 0, l , . . . , n - l . (B.33) 
'Im(Tz)=0 

A simple change of coordinate 

V2 -
Tu n e R (B.34) 

gives 

/ Pn( , =Tu I uke~u2du = 0 fc = 0. l . . . . , n - 1 . (B.35) 

The unique monic polynomial that solves the above system is 

^Hn(u) , (B.36) 

where ,Hn(u) is the nth Hermite polynomial (using the conventions of [2]). Hence 

p-w = 2i(ir|mff/" S T ' ' <a37) 

We note that the truncated moment matrix for the two-dimensional problem can 

be obtained from the truncated moment matrix of the contour integral setup: 

k 

1=0 ^ ' T Jlm(Tz)=0 

(B.38) 

M - ^ ^ w ^ ' f ' ) ^ I ^eiF-*) 

i .e . 
N 

AN) _ X^(N)Q(N) M^ = j:<rs!f (B.39) 
1=0 
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where 

-ck-i k > I 
S^={2VJTk+l+1 (B.40) 

k>l . 
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lower semicontinuous function, 37 

model problem, 86 

modified Robin constant, 42 

moment matrix of a measure, 28 

moments of a measure, 28 

monic orthogonal polynomial, 28 

monic orthogonal polynomials, 6 

normalization constant, 28 

orthonormal polynomials, 27 

partition function, 21 

polynomial curves, 75 

pseudo-algebraic curve, 51 
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quadratic differential. 90 

quadrature domain for a test function class, 

69 

quadrature identity, 67 

quasi-harmonic, 72 

resolvent function, 50 

Riemann mapping theorem, 53 

Riemann-Hilbert (factorization) problem, 

78 

Robin constant, 40 

Schottky double, 61 

semiclassical potential, 72 

Sokhotskii-Plemelj formulae, 59 

spectral coordinates, 22 

Strebel length of a curve, 91 

subharmonic function, 37 

superharmonic function, 37 

superharmonic perturbation, 95 

total charge, 43 

upper semicontinuous function, 36 

vector potential system, 45 

vertical arc, 92 

weighted polynomial, 165 

Wigner semicircle distribution, 106 


