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ABSTRACT
Active Fault Tolerant Control of an Electro-Hydraulic Driven Elevator Based on

Robust Adaptive Observers

Zhao Zhongyu, Ph.D.

Concordia University, 2010

Faults are minor malfunctions that deteriorate the performance of a system. In a safety

critical situation such as the control of an airplane, compounding faults may cascade into

a catastrophic event if not properly compensated. Active Fault Tolerant Control (AFTC)

addresses the fault accommodation problem - the reliability and robustness of the system

in faults - beyond the conventional stability and performance requirements for a normally

operating plant.

This thesis studies the AFTC of an electro-hydraulic driven elevator, which serves as a

primary control surface of an airplane. The proposed AFTC system consists of three

components:

A Fault Detection and Estimation (FDE) component is designed based on two

robust adaptive observers. (1). Adaptive Unknown Input Observer: a disturbance

decoupled observer utilizing the geometry property and measurement redundancy

of the system; (2). HJH_ adaptive observer: an optimization based observer to

maximize the system's response to faults and minimize that to disturbances. The

HJH_ adaptive observer is constructed with the technique of Unitary System,

which is defined as a linear system whose singular values of transfer matrix are

equal.
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A fuzzy Proportional-Integral (PI) controller is designed based on the fuzzy

Tagaki-Sugeno (TS) model of a nonlinear system, which consists of different

linear models at different operating points.

The reconfiguration is carried out based on the fault information available from

FDE. To reduce the time needed for the online computation, multiple controllers

are designed offline for different faults scenarios. A new controller is constructed

online as a fuzzy combination of these controllers to meet the post-fault stability

and performance requirements.

Simulation results show that, with the proposed AFTC, occurring faults are detected

promptly and estimated accurately with the FDE component. The performance of the

post-fault elevator is quickly restored after the reconfiguration.
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CHAPTER 1

INTRODUCTION

1.1 Motivations and Objectives

Faults, according to [1], are "deviation of at least one characteristic property or

parameter of the system from the acceptable/usual/standard condition." Unlike a failure,

which suggests a "permanent interruption" of a system, an occurring fault usually appears

as unexpected but tolerable performance deterioration. If not properly compensated,

however, faults will eventually develop into failures. In a safety critical situation,

compounding faults may even cascade into a catastrophic event as shown in the

following accident, which is adopted from the aircraft accident report [2] of National

Transportation Safety Board (NTSB) USA.

"On January 8, 2003, about 08:47:28 eastern standard time, Air Midwest (doing

business as US Airways Express) flight 5481, a Raytheon (Beechcraft) 1900D, N233YV,

crashed shortly after takeoff from runway 1 8R at Charlotte-Douglas International Airport,

Charlotte, North Carolina. The 2 flight crewmembers and 19 passengers aboard the

airplane were killed, 1 person on the ground received minor injuries, and the airplane was

destroyed by impact forces and a postcrash fire."

After an investigation of one year, NTSB determined that "the probable cause of

this accident was the airplane's loss of pitch control during takeoff." The main reason of

the control loss was accounted as "the incorrect rigging of the elevator control system"
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after a maintenance, which resulted in a discrepancy between the position of control

column and the real position of the elevator. The controlled movement of the elevator

was then limited to the range of -7° to 14°, which was -15° to 22° before the maintenance.

The fatal accident, however, could be avoided if not for the second reason: the overload

of the airplane and the miscalculation of center of gravity, which led the airplane to an

angle of attack that was unrecoverable with the limited elevator. .

Although routines of maintenance and overhaul can reduce the chance of faults

occurring, the risk of faults cannot be eliminated completely due to, partially, the

existence of human errors. The accident above, for example, was the result of a series of

such errors that started when some important steps in the maintenance were skipped.

Since faults are inevitable, constructing a system that functions properly even in the case

of faults is therefore of the same importance as preventing faults.

Fault Tolerant Control (FTC) addresses the fault accommodation problem - the

reliability and robustness of the systems in faults - beyond the conventional stability and

performance requirements for a normally operating plant. Depending on how faults are

handled, FTC can be classified into two categories [3]: Passive FTC (PFTC) and Active

FTC (AFTC).

In PFTC, faults are treated as structured model uncertainties or disturbances.

Robust controllers are designed such that the stability and performance of the closed-loop

system can be maintained even when faults occur. The fault information is neither known

nor estimated when the system is in operation, which results in some disadvantages of

PFTC such as limited fault types, less satisfactory performances, and more conservative
2



Controllers. Moreover, when operating without proper knowledge of the occurring faults,

the system might be further damaged.

AFTC, on the other hand, reselects or reconfigures the applied controller based on

the fault information, which is estimated online with the Fault Detection and Isolation

(FDI) component. In the reselection case, multiple controllers are designed offline - one

for the normal fault-free circumstance and others for different fault situations. In the case

of a fault occurring, the controller for the particular fault, which is identified based on the

result of FDI, is switched on to replace the fault-free controller. Since all controllers are

designed offline, this approach responds faster to the faults and uses less fault

information compared to the reconfiguration method. One disadvantage is that the

accommodated faults are limited to the pre-defined ones.

In the reconfiguration approach, a single controller is designed and applied to the

fault-free system. Occurring faults are evaluated through the FDI process. The model of

the post-fault system is rebuilt based on the fault information. The controller is then

reconfigured or redesigned online based on the post-fault model.

AFTC requires more information compared to PFTC as it involves the process of

FDI. This complexity is necessary in situations where the safety is of the first priority. In

the aforementioned accident, for example, the airplane had nine safe flights with the

faulty elevator after the maintenance. The discrepancy between the control column and

the elevator was recorded by the Flight Data Recorder (FDR) in all of the nine flights.

Due to the lack of proper FDI process, however, the fault never appeared to the flight
crew.
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This thesis studies the Active Fault Tolerant Control of an electro-hydraulic

driven elevator. As a primary control surface, the elevator is attached to the tail (usually

the horizontal stabilizer) of an airplane. The position (angle) variation of the elevator

changes the aerodynamic torque acting on the airplane, which consequently alters the

pose (angle of attack) and the elevation of the airplane. The proper functioning of the

elevator is critical to the safety of the airplane as it is the control surface that provides the

most elevation capability.

The objective of the research is to develop an AFTC system with the following

features:

1. The prompt detection and accurate estimation of faults: Faults in this thesis are

modeled as unexpected abrupt changes of parameters from their nominal values.

An occurring fault needs to be detected promptly and estimated accurately when

the system is subject to disturbances and other existing faults.

2. The stability and performance of the fault-free system: A controller needs to be

designed to meet the performance requirement for the fault-free closed-loop

system;

3. The stability and performance of the post-fault system: A reconfiguration

mechanism needs to be designed; if the performance requirement cannot be

satisfied due to the loss of capability of the post-fault system, the requirement can

be relaxed to prioritize the stability. In either case, the foremost priority is to

reduce the possibility of further damage to the system.



1.2 Content of the Research

Reconfiguration
Mechanism

Reference
Reconfiguration

Controller
Reconfiguration

Fuzzy model
of reference U\ Fuzzy Pl

controller

Fault
Estimation

Fault
Detection

FDE
Adaptive Observers

Elevator

Figure 1.1 Structure of the AFTC system

In this thesis, an active fault tolerant control system is constructed as shown in

Figure 1.1, where in the figure, r0 is the reference signal for the elevator to follow, u is

the control signal, y is the measurement for the purpose of fault diagnosis, and ? is the

controlled output that tracks r0 . The AFTC system has the following features:

1. Fault Detection and Estimation (FDE) based on robust adaptive observers:

Adaptive observers are constructed for the purpose of faults evaluation. The

deviation from zeros of the output estimation errors - the residuals - is taken as

the indicator of faults; the magnitudes of the occurring faults are then estimated

with the parameter estimation component of the adaptive observer. To enhance the

robustness to disturbance and more importantly to reduce the interacting among



different faults, two types of robust adaptive observer, Adaptive Unknown Input

Observer and HJH_ adaptive observer, are designed;

2. Fuzzy PI controller and Reconfiguration: A fuzzy Proportional-Integral (PI)

controller is designed based on the fuzzy Tagaki-Sugeno (TS) model of the fault-

free elevator so that the stability and performance of the fault-free system can be

guaranteed. Multiple controllers are designed offline for different faults scenarios.

A fuzzy model of the reference signal is also developed so that the faulty elevator

will not be forced to follow a reference signal that exceeds its capability. With the

fault information available from FDE, the reconfiguration is carried out so that the

post-fault controller and the reference signal are constructed with the fuzzy

inference technique.

The main contributions of the thesis are summarized as follows:

1. Adaptive Unknown Input Observer is constructed so that, if certain

measurement redundancy requirement is satisfied, the estimation of fault is not affected

by the disturbance and other occurring faults;

2. Unitary System is defined as a system whose singular values of transfer

function matrix are all equal. A method of constructing a closed-loop unitary system is

developed. The benefit of a unitary system is that, for a fault detection system whose

inputs are faults and outputs are residuals, all faults will appear in the residuals with the

same intensity since, for different inputs with the same magnitude, the magnitude of the

outputs is the same for a unitary system.



3. An HJH_ adaptive observer is constructed to reduce the effect of disturbance

and meanwhile maintain the sensitivity to faults. The HJH_ adaptive observer is built

with the technique of Unitary System;

4. A reconfigurable fuzzy PI controller is constructed based on the fuzzy TS

model of the elevator where the dynamics of the elevator - at different operating points

and different fault scenarios - is modeled as linear models in the fuzzy rules. The stability

and performance requirement is enforced in the form of matrix inequalities with the

explicit consideration of performance degradation [4];

5. A reconfiguration mechanism is developed with fuzzy inference technique. The

new controller can be reconfigured as the fuzzy blending of the pre-designed controllers.

The reference signal of tracking is also reconfigured with fuzzy inference.

1.3 Thesis Outline

The researches in the area of Active Fault Tolerant Control are introduced in

Chapter 2. FDI methods based on parameter estimation, output observer and adaptive

observer are introduced with the focus on robust residual generation techniques. Fault

tolerant controller design and reconfiguration methods are reviewed thereafter.

The structure of the electronic-hydraulic driven elevator is introduced in Chapter

3. The nonlinear mathematic model of the elevator is built for the purpose of simulation.

Faults in the elevator are modeled as the abrupt change of different parameters. A linear

model, which is used to construct the fuzzy model of the elevator, is presented.
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In Chapter 4, the Adaptive Unknown Input Observer is developed for the purpose

of disturbance-decoupled estimation. The observer integrates the technique of adaptive

observer and unknown input observer so that, if certain requirements on the measurement

redundancy are satisfied, both the estimation of states and parameters converge to the real

values respectively.

In Chapter 5, Unitary System is defined as a linear time-invariant system whose

singular values of transfer matrix are equal. The method of building a closed-loop unitary

system in a weighted observer form is introduced.

In Chapter 6, HJH_ observer, which has balanced robustness to disturbances and

sensitivity to faults, is designed with the technique of Unitary System. An HJH_

adaptive observer is then constructed so that the estimation of parameters is optimized for

disturbance rejection.

In Chapter 7, a fuzzy PI controller is constructed for a nonlinear system with the

consideration of parameter fault. Performance degradation is modeled into the controller

design procedure as a decay rate constraint. The reconfiguration method for both

controller and reference signal is developed based on fuzzy inference technique. An

Active Fault Tolerant Control system is then constructed and applied to the elevator.

The thesis is completed in Chapter 8 with conclusions and recommendations of

future works.
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CHAPTER 2

ACTIVE FAULT TOLERANT CONTROL: RELEVANT

BACKGROUND

An AFTC system usually contains three components [3]: Fault Detection and

Isolation (FDI), a fault-free controller and a reconfiguration mechanism. In the normal

situation, the system operates under the control of the fault-free controller. The health of

the system is monitored by the FDI. If any occurring fault is identified by the FDI, the

reconfiguration mechanism replaces the fault-free controller with a new one to restore the

performance and prevent further damage of the system. This chapter introduces the

relevant researches with regard to these three components.

2.1 Fault Detection and Isolation

Fault Detection and Isolation (which is also referred as FDD - Fault Detection

and Diagnosis- or FDE - Fault Detection and Estimation - if the magnitude of faults is

estimated) techniques can be classified into three general categories according to [5]:

quantitative model based methods [6], qualitative model based methods, and history data

based methods [7]. Although all three techniques have successful applications, the FDI

research in FTC mainly focuses on the quantitative model based methods, which are also

referred to as model-based FDI, for their closeness to the control theories such as linear

system, dynamics, modeling and identification [90].
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In the model-based FDI, the fault information is extracted from residuals, which

are the artificial signals describing the difference between the real system (with or

without faults) and the mathematical model. For a fault-free system, the magnitude of

residuals is zero or, more practically, smaller than certain threshold value. An occurring

fault can be announced if the difference is larger than the threshold value. According to

the statistics in [8], three popular FDI methods are output observer, parameters estimation

and adaptive observer.

2.1.1 Methodsfor FDI

Output Observer [8-14]

An output observer for FDI utilizes the output estimation errors - the difference

between the outputs of the observer and the real system - for fault detection and isolation.

The Kaiman filter and the Luenberger observer are the two most used state estimation

methods that are applied as output observers in FDI.

The Kaiman filter is an optimal states estimator of linear stochastic process where

disturbances are modeled as zero mean noises with known distribution (covariance). The

estimated states in the Kaiman filter are optimized so that the sensitivity of the estimation

error to the modeled disturbances is minimized. With the Extended Kaiman filter or other

variations of the Kaiman filter [9-1 1], simultaneous states and parameters estimation can

also be accomplished. In [10] for example, an Extended Kaiman filter is applied to

evaluate the leaking fault of a hydraulic actuator.
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The Luenberger observer is a state observer for deterministic linear systems. In

the output observer method based on the Luenberger observer [8], FDI has two separate

steps which are fault detection and fault isolation. Different requirements are applied to

the residual signals in these two steps. In the fault detection, a single residual is required

to respond to all faults. The residual stays zero or almost zero for the healthy system. In

the case of any fault happening, the residual deviates from zero noticeably. In the fault

isolation, multiple residuals are generated. Each residual responds to only one fault. The

location of the fault then can be identified by analyzing the values of all residuals.

Fundamental problems such as the possibility of constructing such residual signals are

discussed in [12] for linear systems with unknown disturbances.

The FDI method based on output observers is capable of fast fault detection.

However, multiple observers are required for the purpose of fault isolation and the

magnitude of occurring fault is not estimated.

Parameters Estimation [15, 16]

In parameters estimation methods, the faults are modeled as functions of

parameters. These parameters are estimated online based on the input-output model of a

system. The differences between the nominal values and the estimated values of fault

functions are taken as the indicators of faults.

The advantage of parameter-estimation-based FDI is that the method gives

accurate post-fault information such as the location and magnitude of faults. In addition,

multiple faults can be diagnosed and evaluated at the same time. The fault information,

11



however, is not available until all estimations converge. The time required for fault

evaluation is thus longer than that for the output-observer-based method.

Adaptive Observer [17-22]

The study of adaptive observers is traced back to the joint state-parameter

estimation for adaptive control systems [23, 24]. On one hand, the unmeasured states are

evaluated for the purpose of state feedback control; on the other hand, the unknown

parameters are estimated online so that the controller can be updated accordingly. When

certain persistent excitation requirements are satisfied, the estimated states and

parameters converge to their real values simultaneously. With the increasing reliability

requirements on control systems, adaptive observers have also been applied to the fault

diagnosis and evaluation, where faults are modeled as the changes of parameters from

their nominal values and then estimated using the convergence capability of adaptive

observers.

The FDI method based on adaptive observers integrates the technique of output

observers and parameter estimation so that the occurring faults can be detected quickly

and estimated accurately. The output estimation error can be taken as the indicator of

fault as that in the output-observer-based method while multiple faults can be located and

evaluated at the same time as in the parameter-estimation-based method.

The robustness to disturbance, however, needs further investigations for adaptive

observers. For faults detection and estimation, the disturbance rejection capability of an

adaptive observer is especially important since it is necessary to minimize, or even

eliminate if possible, the influence of non-targeted faults, which are usually taken as the
12



disturbances to the estimation of targeted faults. Otherwise, the false estimation of one

fault will spoil the estimations of all others.

In [25, 26], the performance of adaptive observers is discussed for the noise

corrupted systems. It is stated in [26] that the expectation of the estimation errors is

bounded if the magnitude of noises is bounded. Furthermore, for systems with

independent noises of zero means, the expectation of estimation errors converges to zero.

Therefore, an adaptive observer is at least Bounded-Input Bounded-Output stable to

unknown external signals.

For a Multiple-Input Multiple-Output system (MIMO), the robustness to

structured disturbances can be further enhanced for an adaptive observer by utilizing the

measurement redundancy of the system. With proper measurements, the influence of

disturbances can be eliminated in the estimation errors. One technique is to incorporate

with the Unknown Input Observer (UIO) [8, 27], which is a disturbance-decoupled

observer for the accurate state estimation. In [22], an adaptive UIO has been designed to

estimate the faulty parameters of an aircraft actuator. The approach, however, needs full

states (n independent) measurements, which reduces the necessity of states estimation.

2.1.2 Robustness in FDI: disturbance-decoupled residual generation

A robust residual insensitive to disturbances has to be built if the disturbances

compromise the fault detection. Robust residuals are also necessary for the fault isolation

with multiple residuals, where, for each residual, all non-targeted faults are considered as

disturbances.
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Eigenvector Assignment (EA) [28-30] and Unknown Input Observer (UIO) [8, 27,

31] are two disturbance-decoupled residual generation methods. In EA, the closed-loop

system matrix (A+LC) of the observer is constructed so that the distribution matrix E of

disturbances is a part of the eigenvectors matrix of (A+LC), where A, C and L are

respectively the open-loop system matrix, the output matrix and the feedback gain of the

observer. With a properly selected weighted matrix W, the transfer matrix from the

disturbances to the residual thus satisfies Gd (s) = WC(si - A - IC)"' E = 0 . In UIO, a

coordinate transformation of states is applied to the observer so that, by utilizing the

geometry property of the system, the estimation error Hy is free of disturbances, where

y is the output estimation error and H is the matrix that describes the coordinate

transformation.

These two methods make use of the analytical redundancy of a system to

decouple disturbances (including model uncertainties) from the residual so that the

response to disturbance in the residual is eliminated. One requirement for building an

AFTC system is the redundancy in actuators and sensors. With redundant actuators, it is

possible to reconfigure the controller when actuator faults occur; with redundant sensors,

it is possible to extract fault information from the measurements. The analytical

redundancy is the redundancy based on physical principles and mathematical relations.

Unlike the hardware redundancy which implies multiple hardware with the same function,

the analytical redundancy uses different hardware for the similar functions.
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Although robust residuals can be generated with the EA and UIO, one main

restriction is that the measurement redundancy required for the disturbance decoupling is

difficult to be satisfied.

2.1.3 Robustness in FDI: optimization-based residual generation

The Approximate Unknown Input Observer (AUIO) method [32] is an

optimization-based robust residual generation technique. Instead of seeking a

disturbance-decoupled residual, this approach tries to minimize the influence of

disturbances on the residual. As this approach usually also reduces the sensitivity to faults,

a trade-off is made between the robustness to disturbances and the sensitivity to faults. In

AUIO, the robust residual generation is formulated into the optimization of a cost

function so that, when it is optimized, the difference between the sensitivities of the

residual to faults and to disturbances, is maximized. Different cost functions in general

forms are introduced in [32]. Most research up to date [33-41] uses similar cost functions

but with different sensitivity definitions.

In [33-36], the problem of residual generation is formulated into H2 or Hx,

optimizations which can be solved with robust controller design methods such as loop

shaping, LQR (Linear Quadratic Regulator) or LMI (Linear Matrix Inequality)

optimization. In general, the residual has the form of:

r = Grd{s)d + GAs)f (2.1)
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where, Grd(s) is the transfer function matrix from the disturbances d to the residual r;

Grf(s) is the transfer function matrix from the faults /to the residual r. To minimize the

sensitivity of the residual signal to the disturbances, the norm of Grd(s) is used as the

cost function and minimized as:

J=\\Grd(s)l (2.2)

To maximize the sensitivity of the residual to the faults/at the same time, the cost

function can be changed to the form of:

j JG^s)W
\\GAs)\\

or:

J=WGrd(s)\\-WGAs)\\. (2.4)

In [37-41], the problem of residual generation is formulated into a multiple

objective optimization with the cost function in the form of:

minmaxmax·/ = Jf - Jd - Jv (2.5)
/ d ?

where / is the targeted faults to be detected; d is the disturbances to be decoupled

(including the non-targeted faults to be separated from /); ? includes other unwanted

sources that may spoil the fault detection, such as the unknown initial states of the system.

Jf , Jd and J1, are the sub-cost functions of the three signals/ d and v, which usually
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have the form of quadratic functions. In [38] for example, the cost function has the form

of:

J = ¿[/Il /HV "Il d IlW< -\\nv-òdr-\\x0fw, (2.6)
where, ||·|| stands for a weighted norm; y is the output estimation error; x0is the initial

state difference between the observer and the real system; the subscripts

Q1, Q2, V, and ? are design parameters of positive definite weight matrices; ? is a

positive scalar parameter.

The multi-objective optimization in Equation (2.6) can be explained as

maximizing the cost function for the system subject to unknown inputs of faults,

disturbances and initial states, where f ]|/||2-., dx , f Il ¡ill2 . dr , and \\x0 ||2, are

I y Il ., ?t is a

constraint on the estimation error so that the optimization of (2.6) is solvable. When (2.6)

is maximized, the difference between the residual's sensitivity to faults and its

sensitivities to the other two inputs is also maximized.

A common feature of these optimizations is to find a balance between the

robustness to disturbances and the sensitivity to faults, which makes them intrinsically all

variations of the HJH_ optimization [42].
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2.1.4 Robustness and sensitivity in FDI: HJH_ optimization

The HJH_ optimization is initially defined in [30] and further explored in

[32,37,41,43-49] with different forms but a common objective: maximizing the

difference between the sensitivity of the residual to faults (HJ) and that to disturbances

In [44] and [45], the optimization is formulated into two H^. minimization

problems: one for Grd(s) , the closed-loop transfer matrix from the disturbances to the

residual; the other for I — Gr/(s), the complementary of the closed-loop transfer matrix

from the faults to the residual. In [37] and [46], a weighting filter is used so that these two

Hx, minimizations emphasize different frequency ranges. These methods, similar to the

approaches used in robust control [50] and robust estimation [51], are all based on the

singular value property of constant matrices. With the consideration of frequency as in a

transfer matrix, however, these methods are less satisfactory in finding the optimum.

In [47], the optimization is formulated into a multi-objective cost function in the

frequency domain and solved with the genetic algorithm. In [48], the optimization is

formulated as a constraint to a Lyapunov function. In [41], the problem is transformed

into a multi -objective optimization in the time domain. The solutions of [41] and [48] are

in the Linear Matrix Inequality (LMI) form. A general feature of the above methods is

that they are all trade-off optimizations involving cost functions with weighted robustness

and sensitivity. In [43], the solution to the HJH_ optimization is given in the form of two

matrix inequalities, which are solved approximately with an Iterative LMI (ILMI) method
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as they cannot be solved in the framework of LMI optimization. For these numerical

methods, however, the calculation time required to obtain the optimum is unknown.

Besides, the inaccuracy of the optimization result - the distance from the optimum - is

hard to evaluate.

The exact solutions to the HJH_ optimization are given in [32] and [49] only for

just-proper systems, where the optimization is tackled through transfer matrix

factorization. In [49] the solution is an open-loop inverse filter and in [32] the solution is

a Luenberger observer.

These two methods, however, are suitable to sensor faults detection since just-

proper systems, where the direct feed-through D (as in the state space form) has full rank,

are assumed. The H.JH_ optimization involves the singular values of two transfer

matrices: from disturbances and faults to residuals. As shown in [32] and [49], the

solution to this robustness and sensitivity problem is to transform one involved transfer

matrix to a special form whose singular values are equal to the same constant at all

frequencies. Therefore, Hx and H_ of the transfer matrix are also equal to the same

constant. However, this solution is available only for a just-proper transfer matrix since

the magnitude frequency response and the singular values of a strictly-proper transfer

matrix always attenuate to zero as the frequency increases to infinity. Besides, for a

strictly-proper system, this solution involves an improper inverse, which cannot be

realized practically. For strictly-proper systems, the HxIH_ optimization is solvable only

when the frequency range is considered since H_ is always zero in the whole frequency
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range, which makes the optimization even complicated. The solution to the HJH_

optimization of strictly-proper systems is still absent.

2.2 Controller Design and Reconfiguration Methods

In a PFTC system a single controller is designed to meet the stability and

performance requirements under all circumstance, with or without faults. In an AFTC

system, each controller only has to deal with the fault situation it is designed for. Many

controller design methods have been applied to AFTC systems such as, to name a few,

poles and eigenvectors placement [52], Linear Quadratic Regulator [53], robust control

[54, 55], Quantitative Feedback Control (QFT) [56], model predictive control [57], and

adaptive control [58, 59].

AFTC has its advantage of changing the parameters and even the structures of

controller based on the FDI results. Therefore, the reconfiguration method is important

for the performance of an AFTC system. Different strategies are applied in AFTC

depending on different objectives of reconfiguration.

Pseudo-Inverse Method (PIM) [59]

PIM calculates the state feedback gain of the post-fault system based on the

identified system dynamics so that the closed-loop system dynamics remains the same or

almost the same. Mathematically, it is formulated to an optimization problem in the form

of:

min H (? + BK)-(Af +BfKf) || (2.7)
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where, A, B and K are respectively the system matrix, input matrix and state feedback

gain of the controller for the fault-free case; Af, Bf, and Kf are their counterparts for

the post-fault system. The objective of the optimization is to recalculate the post-fault

feedback gain Kf so that the norm of the difference between the closed-loop system

matrices is minimized. The solution to this optimization is:

Kf=B/(A + BK-Af), (2.8)

where, 2^+ is the pseudo inverse of B, .

One of the drawbacks of PlM is that the stability of the post-fault closed-loop

system cannot be guaranteed if no extra constraints on the stability are imposed.

Eigensti'ucture Assignment Method [60, 61]

The Eigenstructure Assignment method minimizes the closed-loop performance

difference between the pre- and post-fault systems instead of the difference between

system matrices. The dynamic performance of a linear system depends largely on the

eigenstructure - eigenvalues and eigenvectors - of its system matrix. The Eigenstructure

Assignment method minimizes the eigenvectors differences between the two (pre- and

post-fault) system matrices and keeps their significant eigenvalues the same. The stability

of the closed-loop system then can be guaranteed by the same eigenvalues; meanwhile,

the performance of the post-fault system can be recovered because of the similar

eigenvectors. Mathematically, the Eigenstructure Assignment method for a system with a

state feedback controller can be formulated into an optimization problem as follows:
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mm(v/ -Vi)TW(v,f -?,) (2.9)Kf

subject to the constraints:

(?,+?,?,»,'=^,'

(A + BK)v, = A1V,. (2.10)

where, X1, i=l ...n, is the Uh eigenvalue of the closed-loop system matrix (according to

the poles placement control theory, all eigenvalues can be assigned arbitrarily with a state

feedback controller if the system is controllable); v, and v/ are the corresponding

eigenvectors of the pre- and post-fault closed-loop system matrices; W is a constant

weight matrix.

The advantage of the Eigenstructure Assignment method is the guaranteed

stability and performance of the post-fault system. However, due to its poles placement

nature, it is difficult for the method to deal with disturbances and uncertainties in the

controller design.

Adaptive Control and Model Following [57, 58, 62]

Adaptive control can accommodate the faults in the form of parameters changing

since it has the ability of automatically adapting to the changes of system parameters.

One of the most used adaptive control methods in fault tolerant control is the model

reference control or model following method. In the model following method, a reference

model is selected first. The controller is designed so that the output of the closed-loop
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system tracks that of the model. Depending on whether the fault parameters are estimated

online or not, the method can be further classified into direct and indirect methods. In an

indirect method, the fault parameters are estimated so that the model of the post-fault

system can be built. The parameters of the controller are then tuned based on the post-

fault system dynamics. In the direct method, the parameters of the controller are updated

directly based on the tracking errors and performance of the system.

The disadvantage of adaptive control is that, because of its auto-adapting

characteristic, it might take much time for the updated controller parameters to converge,

which makes it suitable to deal with slow and small parameter variation faults.

Model Predictive Control [63, 64]

The model predictive control (MPC) is an online-optimization-based control

algorithm. The performance requirements of the closed-loop system are formulated into

an optimization problem. At every step, the optimization is carried out based on the

system's current dynamics and the control signal is calculated with the optimization

results. As discussed in [65], "the MPC architecture allows fault-tolerance to be

embedded in a relatively easy way by: (a) redefining the constraints to represent certain

faults (usually actuator faults), (b) changing the internal model, (c) changing the control

objectives to reflect limitations due to the faulty mode of operation."

However, the heavy computational load, which is required for the optimization at

every step, makes MPC only suitable for a slow process.

Multiple Models [63, 66]
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The multiple models method is an integrated method considering both the FDI

and the controller design. In this method, qf + 1 observers are constructed. One fault-

free observer is built with the model of the fault-free system; qf observers are built with

the models of the system with different faults (qf faults in total). Similarly, qf + \

controllers are constructed: one controller is designed for the fault-free system; qf

controllers are designed for the system with different faults. The status of the system is

monitored online based on the difference between the outputs of the system and the fault-

free observer. Once a fault is detected, q, observers for different faults start to run and

their outputs are analyzed to determine the occurring possibility of each fault. The

possibility of each fault is assigned to the corresponding controller, which is designed for

that particular fault, as the effectiveness coefficient. These qf controllers for different

faults are then combined based on their effectiveness.

The Multiple Models method integrates the process of fault evaluation and fault

tolerant control. However, as the magnitude of occurring fault is not estimated, the

method is suitable to deal with the pre-defined faults with known magnitudes.

Fuzzy Control [63, 67-69]

A fuzzy logic system [70, 71] is a valuable tool for the AFTC of the parameter

faults situation since:

1. A fuzzy controller [72, 73] can be designed offline and recalculated online: a

group of controllers addressing the faults of pre-defined magnitudes can be constructed
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offline; a new controller addressing the occurring fault with particular magnitude can be

constructed online as a fuzzy blending of the available pre-defined controllers.

2. The inherent rule-based inference capability makes a fuzzy system a valuable

tool of decision making which is required for the reconfiguration.

The main advantage of fuzzy control method is that, since the reconfigured

controller is constructed online as a fuzzy blending of the offline-designed controllers,

the computation load required for the reconfiguration is light. The disadvantage is that the

detailed and accurate information of occurring fault is required.

2.3 Summary

From the above literature reviews, it is still a challenge to design a complete

Active Fault Tolerant Control system with the capabilities of:

1. Fast and accurate fault detection, isolation and estimation (FDE) which is

robust to disturbances and other non-targeted occurring faults;

2. Quick and proper reconfiguration to restore the performance of the post-fault

system and prevent the further damage.

The research in this thesis addresses this challenge by presenting several original

contributions in the following directions:

1. Robust FDE methods based on robust adaptive observers including Adaptive

Unknown Input Observer and HJH_ adaptive observer;
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2. Controller design and Reconfiguration method based on fuzzy inference

technique.
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CHAPTER 3

MATHEMATIC MODEL OF AN ELECTRO-HYDRAULIC DRIVEN

ELEVATOR

An elevator is the primary control of pitch - the rotation of an airplane about its

lateral axis- whereas an aileron and a rudder are the primary controls of roll and yaw -

the rotations about longitudinal and vertical axes. An elevator is attached to the tail of an

airplane, usually to the back edge of the horizontal stabilizer. An angle position variation

of the elevator alters the camber of the tail airfoil, which consequently changes the torque

on the lateral axis, and thus changes the angle of attack and finally the elevation of the

airplane.

Traditionally, an elevator, as shown in Figure 3.1, is connected to a control

column in the cockpit through a series of cables, levers and pulleys so that it can be

controlled by the pilot manually and directly. Nowadays in a fly-by-wire airplane, these

mechanical components between the elevator and the control column are replaced with

flight control computers and a set of local actuators and sensors: on the one hand, the

movements of the control column are measured and then transmitted as electronic signals

to the computers, where the control commands are computed and sent to the actuators of

the elevator; on the other hand, the movements of the elevator are measured and fed back

to the computers, where commands are calculated and sent to the actuators on the control

column to provide artificial feel to the pilot.
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Figure 3.1 Flight control surface: elevator '

Although the fly-by-wire technique reduces the cost and increases the reliability

of an airplane in the sense of hardware, it also reduces the pilot's control and supervision

since the elevator becomes an autonomous system. Any occurring fault related to the

elevator now needs to be addressed by the flight control computers. Therefore, the fly-by-

wire technique enables as well as necessitates the fault tolerant control.

For the purpose of the active fault tolerant control, this chapter presents the

mathematical models of the elevator including:

1 The figure is adopted from the accident report of AAIB (Aircraft Accident Investigation Board of United Kingdom):
http://wwv.aaib.eov.ulc/cins resources/P/o2D99%20G%20ATMI%20Appendices%2Epdf
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1. The nonlinear model of the fault-free elevator - for the purpose of simulation;

2. The model with faults - for faults simulation and fault detection and estimation;

3. The linear model of the elevator - for the constructing of the fuzzy Tagaki-

Sugeno (TS) model (for the controller design).

3.1 The Nonlinear Model of the Elevator

Joint Stiffness K,
Hinge Stiffness Hn

-Ps-
-Pr-

X

Spring K3

Aa

A1

?2

M
H l·

·« Ps-

M

Figure 3.2 Structure of the elevator

The elevator studied in this research is shown in the simplified illustration of

Figure 3.2. The elevator is adopted from [74], which is developed by Thaïes Canada for

the demonstration of a Fly-By-Wire (FBW) Flight Control System (FCS) targeting
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regional aircrafts. The elevator consists of two subsystems, the left and the right one.

Each subsystem has a panel, a hydraulic cylinder and an Electro-Hydraulic Servo-Valve

(EHSV). The panel of each subsystem, which is fixed to a shaft, is driven by the EHSV

controlled hydraulic cylinder through a spring connection. The two shafts are connected
through a joint so that the two panels will move synchronously. The joint is connected to
the tail of the airplane through a hinge. The control commands u to the servo valves come

from a flight control unit. The hydraulic fluid is supplied by a hydraulic pump station.

A commercial airplane is a highly redundant system. Boeing 767, for example,

has three sets of the system shown in Figure 3.2. These three systems are controlled by

different flight control units and powered with different pump stations [75]. This research,

however, will focus on only one system. The mathematical model of the elevator can be

derived as shown in (3.1) with the principles of mechanics and hydraulics [76].

A1 j X0 j

X2L = [AX3L - AX4L - bX7L - KsL (*1¿ - IX1L )]m, u

QwJ-^?? "*3i) -CAoJ-^L-CnA2L (*3i "*«.)" 4*2.
K+AXM

ß -CvwJ-xdx*L-pR - C1AoLA-^l+ C12A121 (x3L - X4J + A2X2
V2 — A2XiL
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X6L

-<°JX5L - 2^VLX6L + KlUL

-J [KsL (XIL - lxiL ) - BsXSL - KPs {X1L ~ *7Ä ) ~ 0-5H», (X7L + X1R )]

m,
~\_-™iX3R AX47i "X1R K-sR\XiR 'X7R ) J

ß ^VWrA X5Ryj"s X3R ^lAo/îJ yjX3R ^12^127? \X1R ?4? / A"

V}+A,x]R

ß ^VWrJ X5RVX4R "r *"2^2oÄ»j VX4R + ^12^12? \X2R X4RJ + J%?'
V2-A2X11

'axR XSR ~~ 2?????·??6? + KrUR

-[K>R (*1Ä - lxiR ) - BSXiR + KJ-s (X1L ~ X1R ) " 0-5H. {X1L + *7? )] (3 " ' )
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The available measurements are:

y [XÌL X1L X3L X4L X5L X7L XÌR X2R X3R X4R X5R XTR¡ (3.2)

The physical meanings of the states and parameters (and their values) are given in Table

3.1 and 3.2.

The control objective is to move the two subsystems synchronously and follow

the reference angle of the elevator which is given either by the pilot or the flight control

units. Therefore, the controlled outputs of the elevator are taken as:

??? X~l

or,

z = C.x (3.3)

where, x?¿ and ???. are the panel angels of the two subsystem; and

C.
000000 0.5 0000000 0.5 0

000000 0.5 0000000 -0.5 0

The first output is position of the elevator and the second output is the difference between

the two subsystems. The control objective is thus mathematically formulated into:
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(3.4)

where r is the elevator's angle reference.

Table 3.1 States of the elevator

Left system Right system Physical meanings

xil XiR cylinder piston position

X2L X2R piston velocity

Xìl XiR pressure in the active chamber of the cylinder

?4L X4R pressure in the passive chamber of the cylinder

xsl X5R EHSV spool position

X6L X6R EHSV spool velocity

X7L X7R panel angel

xsl xm panel velocity

ul ur control current to EHSV
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Table 3.2 Parameters of the elevator

Left

system

mi

A,

K,¦sL

ß

Qwi,

Right

system

niR

KSR

ß

'P
Cy^R,

Physical meanings

piston mass

cylinder damping

spring stiffness

arm length to the shaft

the oil bulk modulus

Values

7.88 ? IO'3 (lbs2''in)

-. ¿1active cylinder chamber area 3.6264 (in )

::J\passive cylinder chamber area 3.6264 (in )

9.27 (lb/in/s)

2.5*1 05 (Ibf/in)

2.924(in)

1 ? 7 O5 (psi)

W the flow rate gains of the EHSVs 9. 65 71 (in /psi1'2)
\p

P.

the oil supply pressure

the oil reservoir pressure

3000 (psi)

50 (psi)

CA CA leaking coefficients between 3.208 ><10~

chambers (in/sec/psi)
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C2A20.
chambers

j ,Ji,[2" leaking coefficients in the active 0 (in /psi )
chambers

2 leaking coefficients in the passive 0 (in2/psi1''2)

Null volume of active chamber 4. 1 (in )

(O1

à

Kl

Bs

K1¦ps

Hm

cor

??

1CvA

Bs

EHSV natural frequency

EHSV damping ratio

EHSV actuation gain

shaft damping

joint stiffness

hinge stiffness

817 (rad/s)

0.8

0.00337'(Ms2ZmA)

82(lbf-in-s/rad)

equivalent inertia of the elevator 7.5(lbf-in-s)

surface

5*105 (lbf-in/rad)

8.6x10s (lbf-in/rad)

3.2 The Model ofFaults

Faults of an elevator can result in the loss of pitch control, which consequently

reduces the elevation capability and thus endangers the performance, manoeuvrability,
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and safety of an airplane. Two types of faults were considered in this thesis including the

unsynchronized movement of panels and the gain loss of the elevator.

For the purpose of pitch control, the two panels of the elevator need to move

synchronously. Unsynchronized movement of panels may lead to unexpected roll and

yaw of the airplane. Moreover, the generated twisting torque on the joint may lead to the

damage of elevator. For the two identical subsystems in Figure 3.2, which have the same

structure and follow the same command (the current to the EHSVs), the fault of

unsynchronized movement is normally the result of unexpected changes in one of the

subsystem. In this thesis, this fault is modeled as the change of the following parameters:

1 . kvi and kVR are the EHSV gains - a ratio of valve opening to its current

command;

2. KsL and KsR are the stiffness of the springs;

3. C11 = C1A101 I — and CiR = CxAloR \— are the leaking of active chambers to?? \p

environment;

4. C2j = C2A201 I — and C2R = C2A2 R I- are the leaking of passive chambers
\P \P

to environment;

5. C127 = CnAn, and C]2R = CnAnR are the leaking between the active and

passive chambers.
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The other fault considered in this research is the gain loss of the whole elevator,

which means the elevator moves slower than it is expected. In the extreme case, the

motion of the elevator may be restricted. In this thesis, such a fault is modeled as the

increase of hinge stiffness Hm.

For the purpose of fault detection and evaluation, these faults are modeled into the

state space representation of the elevator in the following form:

6

? = Ax + Bu + Y1 F^fi- (3.5)
1=1

where

x = Ax + Bu

is the dynamics of the system with normal parameters; ? is the state vector, which is the

same as that in Model (3.1); ? is the vector of fault parameters; f is a matrix of known

signals; F is the input matrix of f? .

According to the nonlinear model of (3.1), the parameter matrices in Model (3.5)

are given as the followings:
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A =

A,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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0
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0
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0 0 0 0 0
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0

0

0

o
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0

0
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0

o

0

0

0

0

0

J.
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m
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3.3 The Linear Model of the Elevator

The mathematic model presented in Section 3.1 is a nonlinear model. In this

section, a linear model of the elevator is developed. The linear model will be used to

construct the fuzzy model of the elevator in the future for the purpose of controller design.

The nonlinear dynamics of the elevator only exists in the hydraulic cylinders in

the form of:

ß
?,, =¦

CVWL J-^(P5 - X3l) - CAoL J-?/^G - CXlAlL (X3J. " X4/.) ~ AX1L
V1 +Ax1.
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ß ^VWlJ XsVX4¿ "r ("2JhoL-\ VX4I + ^12^12¿ (X3¿ X4i) + ÁX2.

V1 A2X11

ß
•A-1 D

^VWrJ X5R\I°S X3R *-]AorJ yjX3R ^????? \XÌR X4r) ~ ??2.

K+M*

ß vWr\¡ XSRyX4R "r ^2^2oRti VX4fl +^12^12? \X3R X4r) + j^2X2.
V2 A2X1n

where, xj¿ and xjl are the pressures in the active and passive chambers of the left cylinder;

X3R and X4R are the pressures of the right cylinder.

One way of transforming the above nonlinear dynamics into a linear model is to

expand all nonlinear functions locally at certain operating point using techniques such as

Taylor series. For an accurate approximation with this method, however, the nonlinear

model needs to be linearized at many operating points. Instead, the approximate transfer

function [77] of a hydraulic cylinder is used, given in the form of:

XAs)- ?ß??¦p^i XXs) + -(ms2 +bs + K5 ) (Vs + ?ß?f ) + 4ßAp2s ms2+bs + K ¦fis), (3.6)

where, Xp is the position of the piston which is x¡ in the model of (3.1); X1, is the servo

valve opening which is x5 in (3.1);/is the load to the cylinder which IsKJx1 in (3.1); ß ,

Ap, b, V, and Ks are respectively the oil volume modulus, the chamber's section area
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( ?? and A1 ), the cylinder damping, the null volume of the chamber, and the spring

stiffness as defined in Table 3.2. Kf ana Klp are defined as:

[2 P5-(P1-P2)

where, P¡ and P2 are the pressures in the active and passive chambers respectively (xj and

X4); (Pj-P2) > and xvo - or equivalently (x3-x4)o and x5o - are the pressure difference
and valve opening at the linearization point (it thus can be inferred that the transfer

function is a local approximation of the cylinder dynamics at (P^- P1) g and xvo );

ST
CyW —, Ps , and CnAn are defined in Table 3.2.

By replacing Xp, Xv, and /with x¡, x5 and KJx1, the transfer functions of the two

cylinders in the elevator are now in the forms of:

x,Ás) = -, 4PAKx -X5As)+ , Ks±l X11 (s) (3.8),/? ' (ms2 + bs + K51)(Vs + 4ß?f) + 4ßA2s ílK ' ms2 +bs + KsL 7/?

X1H(S) = T-, 1?^1 ? rx<n(s)+ 2 Y r x1R(s). (3.9),( (ms2 + bs + KsR)(Vs + 4ßKlp) + 4ßA2s ms2+bs + KsR
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By transforming the transfer functions back to the state space form, a linear model of the

elevator in the state space form, which is linearized at (x3i-x4i, x5L) and

(?3?-?4?, ?5?) , is obtained in the following form:

x = A0x + Bu. (3.10)

By varying (x3L-x4L, x5L)o and (?3?-?4?, x5R)o , different linear models can be
obtained. The program of constructing the linear models at different operating points is

given in Appendix C. The value of matrix A0 at

(x3i-x4/,, x5L xiR-x4R x5ä)o=(100 0.01 100 0.01)

is also given in Appendix C. In this research, 16 linear models are constructed at 16

different operating points.

3.4 Summary

In this chapter, the nonlinear mathematic model of the elevator, which will be

used to construct the simulation model, is presented. Faults of the elevator are discussed

and modeled as abrupt changes of parameters. For the purpose of control, a local model

of hydraulic cylinders, which is linearized at certain operating point, is constructed.
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CHAPTER 4

ADAPTIVE UNKNOWN INPUT OBSERVER FOR FAULT

DETECTION AND ESTIMATION

In Chapter 3, the mathematical model of the elevator is built and the faults have

been modeled as unexpected parameter changes. In this chapter, an Adaptive Unknown

Input Observer [78,79] that integrates the UIO with parameters estimation will be

developed. A UIO is constructed for disturbance decoupling first; an auxiliary input is

added to the UIO so that the stability of the observer and the exponential convergence of

all estimations are guaranteed if the given requirements on the input signals are satisfied.

The advantage of the proposed observer is that the estimations of both unknown states

and unknown parameters are free of disturbance.

4.1 Problem Statement

The problem addressed in this chapter is the joint state-parameter estimation of a

linear system with structural disturbances. The dynamics of the system is described by

the following equations:

x = Ax + Bu + Ed + f?

y = Cx (4.1)

where, A e R"x" , B e R"""' and C e Rrx" are respectively the system, input and output

matrices; E e R"xpis the known distribution matrix of disturbances; d e Rp is the vector
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of unknown disturbances; <fieR"x is a matrix of known signals, which can be linear or

nonlinear functions of the output y and input u; 0eRkis a vector of unknown parameters.

The objective is to build a robust adaptive observer to evaluate all unknown states

? and parameters ? with the available input u, measurement y and signal matrix f . The

stability of the observer and the convergence of all estimations to real values need to be

guaranteed.

4.2 The Adaptive Unknown Input Observer

The adaptive unknown input observer, with ? and ? as the estimated values of ?

and T, has the form of:

z = Nz + TBu + Ky + T$ + Të

ê = YTTCT{y-Cx)

? = ?? + ?f

? = ? + Hy (4.2)

where, ? is an intermediate states vector and the matrices (H, T, K, N and Y) in the

observer are selected as:

N+Nr <0

(HC-I)E = O
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T = I-HC

A-HCA-KxC = N

NH = K2

K = K, + K2

S = St>0. (4.3)

It is noted that the updates of ? and ? involve an evolving variable matrix of G,

which makes the observer a Linear Time-Varying (LTV) system. To facilitate the proof

of the stability and convergence of the proposed observer, two lemmas regarding the

stability of an LTV system are presented first.

Lemma 4.1: An LTV system as shown in:

? = A(t)x (4.4)

with A(t) = A(t)T < 0 is uniformly exponentially stable if there exist positive constants

T0 and a so that for any t0 , the following inequality holds:

\'°+?°s(??>a>0 (4.5)

where, s is the minimum singular value of A(t) .

Proof:
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According to [80] (Theorem 8.2, page 132), the norm of the state vector in the

autonomous system (4.4) satisfies the following inequality:

\\x{t)\\<\Xo\ey^ir)d\t>t0 (4.6)
where, Ämm(l) is the maximum eigenvalue of A{t) + A(t)T . For a symmetric matrix

A(t) = A{t)T < 0 , its singular values satisfy:

a(t) = -X[A{t)] = ~x[A{t) + A{t)T\ (4.7)

Then it is obvious that:

4»„(0 = -2s(/), (4.8)

which means:

|x(0||<|K||e K . (4.9)

Since one has s (t) > 0 and for any t0

\'°+T°<l{t)dt>a>0, (4.10)

the following inequality is obtained:
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IV (r) ?t
= I <S (r) dz + (^+7. s (?) ?t + . . . + J^ s (?) ¿r
> na > (^2- - \)a > d—^-)a > O

O o

where,

(4.11)

« = floor (4.12)

Therefore the following inequality holds:

-( —i-\)a
Hr(ViII < Hr Wp t" <\\x \\eae T°W^ 'W Il oil Il »II

¦c-'„)
(4.13)

which means the system in (4.4) is uniformly exponentially stable (following the

definition 6.5 in [80], page 101).

Q. E. D.

Remark 4.1: Lemma 4.1 claims that, for an autonomous LTV system (4.4) with a semi-

negative-definite system matrix, the exponentially stable condition is that, over some

constant time period, the integral of the norm of the system matrix is lower bounded by a

nonzero value.

Lemma 4.2: If the system:

"4(0 o
0 A2(O

xi
Xn

(4.14)
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is uniformly exponentially stable, the following system:

A(O A2(O
0 A2(I) (4.15)

is also uniformly exponentially stable if |?,2(0|| ^ s is upper bounded , where |·|| is the
2-norm of a matrix.

Proof:

The solution to differential equation (4.1 5) has the form:

0 F2(/,0 (4.16)

where, F?(?,??) and F2(?,?0) are the state transition matrices associated with A¡(t) and

vi,(0;[z,o ^20] is the initial states vector at time t0. It is obvious that the states of

System (4.14) are:

'*,(', O 0
0 F2(/,?ß) (4.17)

Since System (4.14) is uniformly exponentially stable, there exist positive constants ??,

A1 ?2 and A2 such that, for all / > t0 :

K(M0)I <^<'-'»>

\\<5>2{t,0\<y2e-^-'°\ (4.18)
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By taking z2 in System (4.15) as an external input to the dynamics of Z1, it is derived

that:

?, =F?(/,?>10 + f F,(?,t)??(t)F2(t,?0)?2???t , (4.19)¦"o

or equivalently:

?, = F,(^>,? + (j'ia F^,t)??(t)F2(t,??)???20. (4.20)
From Equation (4.16) one has:

??=F1(?,???0+F]?(?,??)??. (4.21)

Matrix F?2(?,??) thus has the form of:

F.2('»0 = f<ï\(?,r)42(r)02(r,/>r . (4.22)

With the norm property of:

¡F12(/,?| ^ J ' \\F^,t)\\\\??(t)\\\\F2(t,?\\6?t , (4.23)

it is derived that:

¡F12(/,?|| ^ ¿W2 f e'^^e-^-'^dT . (4.24)

Inequality (4.24) is the same as:
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(4.25)

with X = VCIm(X1^X1).

From the norm property:

F, (/,/„) F12(?„)
0 F2(/,/„)

|f.a>?| ?a??.
? ?|F2(',?? (4.26)

it is obtained that:

f, (/,/„) f?2(?,0
? F2(?,? 0 y2e-^('-'-) (4.27)

The following inequality thus holds:

0 ^éT^'"'^ (4.28)

Since for a matrix M e 7G?" , the following norm property holds:

\\M\\<yJmn\Mh\, (4.29)

the following inequality is derived:

\<?e (4.30)
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where, ¡MJ is the maximal absolute of all elements ???? M so that AiJ = max MJ;

?ß-?('-?) js me maximum element in the matrix. It thus follows that System (4.16) is

uniformly exponentially stable.

Q. E. D.

Remark 4.2: The 2-norm of a matrix is an induced norm [82]. For a matrix G and two

vectors a and b that satisfy:

b = Ga ,

the 2-norm of G is defined as:

||G|| = max^,ML

with

Il Il ÍZ 2||a||2 = ^Sa,.

• th

ft= W.

where at and b, are the im element of a and b respectively.

Remark 4.3: The 2-norm of ||^12(0|| satisfies [82]:

\\Ai2(t)\\ = a[An(t)].
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Therefore, the requirement on A]2(t) < s is equivalently to:

s[??(?)]<s,

which means the time-varying s[^12(?)] is upper bounded by s , where s is any
positive constant.

With the above two lemmas, the stability and convergence of the observer are

summarized in the following theorem.

Theorem 4.1: For the system:

x = Ax + Bu + Ed + f?

y = Cx (4.31)

with unknown disturbances d and unknown parameters ? , a robust adaptive observer can

be designed in the following form:

¿ = Nz + TBu + Ky + ?f? + Y ?

§ = ^TTCT(y-Cx)

G = ?G + ?f

? = ? + Hy (4.32)

where, ? is an intermediate states vector and the matrices (H, T, K, N and X) in the
observer are selected as:

54



N + Nr <0

(HC-I)E = O

T = I-HC

A-HCA-Kf = N

NH = K2

K = K1 +K2

S = St>0 . (4.33)

The adaptive observer is uniformly exponentially stable and the estimated states

and parameters converge to the real values in an exponential rate if the following

conditions are satisfied:

1. Rank(CE) = Rank(E) ;

2. (A - HCA, C) is an observable pair;

3- } ° ° s? -E~'rrCrCrW > a > 0 , where a is any positive constant;

4. Z~'rrC7C < ß , where ß is any positive constant .

Proof:

55



(4.34)

(4.35)

The estimation error has the form of:

5c = Ax + Bu + Ed + f? - [Nz + TBu + KCx + ?f? + G?]
- HC(Ax + Bu + Ed + f?)

where 5c = x — 5c.

After manipulations, Equation (4.34) can be written as:

x = (A- HCA - KC)x + (1-HC- T)Bu + (I- HC)Ed
+ (?-?^f?-?f?-??-?T

With K = Kj +K2, the above equation therefore becomes:

x = (A- HCA - Kf)x + (1-HC- T)Bu + (I- HC)Ed

+ (I -HC)W -?f? -(Nz + K2Cx)-Te

With the parameters selected as in (4.33) and:

0 = 0

? = ?-?, (4.37)

Equation (4.36) is written as:

? = Nx + ?f? -(Nx) -?T = ?? + ?f? + ?? . (4.38)

From (4.32), one has:
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G = ?G + ?f. (4.39)

With:

(x-rë) = 5c-të-rê: (4.40)

it is derived that:

(?-G?) = ?(?-G?). (4.41)

With the updating law of the estimated parameters as:

e = Z'irrCT(y-Cx) (4.42)

the dynamics of parameter errors is derived as:

? = -Z~'TTCTCx (4.43)

or equivalent!;/:

? = -Z-T7C7C(Jc - G ?) - 1''T7C1CTO . (4.44)

The dynamics of the adaptive observer is then changed to the form of:

?

{?-??)_
-Z-T7C7CT -E-'r7'C7C

0 TV

?

(?-??)_ (4.45)
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Since N + NT <0 and the condition 3 are satisfied, with Lemma 4.1, the following
system:

?

(?-G?)
-z-'TTcTcr 0

0 N

?

(? -Y?) (4.46)

is uniformly exponentially stable.

With condition 4 that ¡!"'r^C7^! is upper bounded, System (4.45) is also uniformly
exponentially stable following Lemma 4.2. This implies that ? -* 0 and (?-??) -> 0

in an exponential rate.

Q. E. D.

Remark 4.4: The four conditions in the theorem above can be explained as follows:

Condition 1 is required as the measurement redundancy. Disturbances can be

decoupled only when there are enough independent measurements in the system

so that (HC -I)E = O is solvable;

Condition 2 is required so that the poles of the observer, which are the

eigenvalues ofN, can be assigned freely with the feedback gain K¡;

Condition 3 is the persistent excitation requirement on the richness of signals

matrix f , which states that the filtered output G of f must have enough energy in

all channels;
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Condition 4 is the requirement on the size of f. Since the output matrix C and the

selected parameter Y are all known, the upper boundedness of |ErrCrC implies
the norm of f is bounded.

4.3 Simulation Resultsfor Fault Estimation

The proposed Adaptive Unknown Input Observer in the former section is applied

to the fault estimation of the elevator. Three types of parameter faults are considered: the

loss of the EHSV gains, the stiffness change of the springs and the hinge. The dynamics

and the faults of the hydraulic system are taken as disturbance to the system. The

mathematical model of the elevator and all faults was shown in Equation (3.5) of Chapter

3. According to (3.5), the parameter ? and its estimate are defined as:

T- ,T

the signal matrix f is defined as:

F = [?? ??F2 FA]-

In the simulations, the EHSV gain loss is modeled as the change of parameter kv

to 0.5 of its original value (0.00337 in/sec2/mÄ) for the left EHSV and to 0.4 for the right.
The stiffness change of the spring for each cylinder is modeled as the change of

parameter Ks to 5 times of its original value (2.5XlO' Ibf/in) for the left and to 3 times of

its original value (2.5 ^Kf Ibf/in) for the right. The stiffness change of the hinge is
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modeled as the change of parameter Hn, to 10 times of its original value (8.594* 103 lbf-
in/rad). All faulty parameters change simultaneously at 1 second. To simulate the noise

corrupted system, white noises are added to the measurements. The size of the noise

added to each channel is 5 percent ofthat specific measurement. The simulation results of

parameter estimations are shown in Figures 4.1 to 4.3. In each figure, the actual change

of each parameter is shown as the dashed curve; the estimated parameter change is shown

as the solid curve. The results of states estimation errors for x¡ to x« are shown in Figure

4.4, where, in each sub-figure, the solid curve is the state estimation of the left system

and the dashed curve is the estimation of the right system.

From the results, it can be seen that the residuals -output estimation errors of the

observer - response to the occurring faults instantaneously, which guarantees the prompt

faults detection. The locations and magnitudes of the occurring faults are then evaluated

quickly and accurately, even when the pressure dynamics and the faults of the hydraulic

system are taken as unknown disturbances to the observer.
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Figure 4.1 Estimation of kv
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Figure 4.2 Estimation of Ks
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Estimated Change of parameters - Hm
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Figure 4.3 Estimation of Hm

State Observation Error of ?

^ ci

"6I
-7?

Left

Right G

1

o 2 3 4

Time (Sec)

(a)

63



20

O

-20
CO
?—O

? -40
e
?

1 -60
CO
f

-80

-100

-120

KV-

0

State Observation Error of >t

2 3 4
Time (Sec)

Left

Right

(b)

-0.01

-0.02

0.03 h

State Observation Error of x.

?

¦ il? G

Left

Right J

iuii¡üllliffi§i 1 ISi iiiiiiüSÜ ' Blllll !»Biiiiii¦ilHHPlil !Infill 1IH I Il liliHI 111 HI P 11 PI I li PiI f ri 1 111
¦SI i1 " ' ? tr ' M1 '
¦11"

-0.04 :—
0 2 3 4

Time (Sec)

(e)

64



State Observation Error of ?

!¡111!«

H

2 3 4

Time (Sec)

(d)

State Observation Error of >

0.005

0

-0.005
m

o

? -0.01
e
o

? -0.015
?

-0.02

-0.025

-0.03

M

- — Left

- - Right U

0 12 3 4

Time (Sec)

(e)

65



State Observation Error of :

40-

35

30

¡2 25
o

iû 20
o

f 15!
1 10Í

5 ?-

? |-
-5-

0

/ Y

Left

Right

2 3 4
Time (Sec)

(í)

0.1 v-

0.05 i

i
?^-

?

« -0.05 r
C
?
15 -0.1 ?

-0.15;

-0.2 i

-0.25-
0

State Observation Error of ?

Left I
Right I

2 3 4

Time (Sec)

(g)

66



State Observation Error of >

2 3 4

Time (Sec)

4.4 Summary
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Figure 4.4 States estimation errors

In this chapter, an adaptive unknown input observer with the capability of

disturbance rejection has been designed for the fault detection and estimation. The

exponential stability of the observer and the exponential convergence of all estimations to

the real values have been proved. The observer is then applied to the faulty parameters

estimation of the elevator. Simulation results show that the estimations are accurate even

when the system is subject to both unknown disturbances and measurement noises.
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CHAPTER 5

UNITARYSYSTEM

In this chapter, a unitary system is defined as a multi-input multi-output (MIMO)

linear time-invariant (LTI) system with a special property that all singular values of its

transfer matrix are equal to each other. This chapter shows that, for an open-loop system

satisfying certain requirement, a closed-loop unitary system can be constructed in a

weighted observer form. The technique of Unitary System will be used in the next

chapter to solve the HJH_ optimization problem.

5.1 Introduction

The singular values of a transfer matrix [81] are non-negative functions of

frequency that determine the gains of the matrix. Important properties such as H2 norm

[82], //*,norm [83], and H_ index [42] are defined based on these singular values. In the

theories of robust control, robust estimation, and model-based fault detection, one active

research topic is about how to construct a closed-loop system with those properties being

optimized.

As those properties present features of a system from different aspects, the

singular values give a more detailed and accurate description of the system. However, the

studies on the singular values and more importantly the studies on how to construct a

closed-loop system with pre-defined singular values are still rare. The reason partially

lies in the complexity of the singular values of a transfer matrix. In [84], it is shown that

the singular values of a transfer matrix - more accurately, the square of the singular
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values - are roots of a polynomial, whose coefficients are polynomials of complex

variable s (usually taken as s = ]? with ? as frequency) and its conjugate. The authors

thus concluded that these singular values, as functions of 5, are locally analytical. In [85],

the authors further proved that the "unordered unsigned" singular values, which belong to

a set of real functions, are globally analytical. The analytical forms of these singular

values (as functions ofs), however, are not available for a generic transfer matrix.

Even though, the analytical forms of singular values are available for some

specific systems such as the closed-loop unitary system discussed in this chapter. A

unitary system is defined as a system whose singular values of the transfer matrix are

equal to each other as functions of frequency.

The advantage of a unitary system is that the magnitude of its output depends only

on the magnitude and frequency rather than the direction of the input. In a fault detection

observer, such a property means that, for different faults with the same magnitude, the

magnitude of the residuals is always the same independent of the type of faults. As

introduced in Section 2.1, residuals are defined as the functions of faults. The deviation

of residuals from zero, when exceeds some given thresholds, is taken as a sign of

occurring faults. The selection of these thresholds depends on the size of faults as well as

the transfer functions from faults to residuals. As these transfer functions are different,

there is a threshold for each fault. In the fault isolation case with multiple residuals,

multiple thresholds can be assigned. In the case of single observer for multiple faults

detection, the threshold is usually chosen using the minimum gain of the transfer matrix

from faults to the residual or the H_ index. As this is a conservative solution, false alarms
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will occur. For the observer in the form of a unitary system, however, it is easy to select

this threshold since the gains from different faults to the residuals are all the same.

5.2 Preliminary of Unitary System

Some preliminary information related to Unitary System [86] will be presented. In

this section, for simplicity, only a square system, whose number of inputs and outputs are

equal, will be discussed.

5.2.1 Singular value decomposition (SVD) ofa transfer matrix

The SVD [82] of a constant complex matrix, G e C"'""' , has the form of:

G = UYy~, (5.1)

where Z = diag(a1,a2,...am) is a diagonal matrix consisting of m non-negative real

singular values ( s, ); U and V are unitary complex matrices such that UU~ = V~V = 1 (the

sign of "~" denotes the transpose of the conjugate).

As a matrix presents the linear transformation from one vector field to another, its

singular values define the gains of transformation. If two vectors ? and y satisfy:

y = Gx,

then the norms of the two vectors always satisfy:

s||?||< \\y\\^ s||?||

where s and s are the smallest and the largest singular value respectively.
70



A multi-input multi-output (MIMO) linear time-invariant (LTI) system can be

described by a transfer matrix. The elements of a transfer matrix are complex-valued

transfer functions. The SVD of a transfer matrix G(s)eCmxm [81] is expressed in the

form of:

G(s) = U(s)Z(s)V~(s) (5.2)

with:

I(s) = diag[a,(s),a2(s),...am(s)]

U~(s) = Ur(s)

V~(s) = Vr(s)

U(s)U~(s) = U-(s)U(s) = V(S)V(S) = V(S)V~(s) = Im

where, J is the conjugate of 5.

The only difference between equations (5.1) and (5.2) is that the SVD in (5.2)

depends on the complex variable s which is usually taken as s = ]? where ? is

frequency. Therefore, U, S and V are constant matrices; U(s) , E(s) and V(s) are

matrices of functions of s (or equivalently, functions of ? ) .

The SVD of a transfer matrix always exists - at least in a numerical form, which is

available by varying the frequency in s = jœ and taking SVD for the constant complex

matrix of G(jcù). The analytical form of the SVD, however, is available only for the
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transfer matrix in some special forms, such as the unitary system defined in the next

section.

5.2.2 Definition of Unitary System

The singular values of a transfer matrix, which are non-negative real functions of

frequency, define the magnitude frequency response of an MIMO system. Of all singular

values, two of the most importance are the largest one a{s) and the smallest one <x(s)

which give the maximum and minimum possible gains of a system: if the system has an

input u(s) with a magnitude ||w(s)|| , then the magnitude of the output always satisfies:

o:(S)\\u(S)\\<\\y(S)\\<a(s)\\u(S)\\. (5.3)

where ||·| denotes the norm of a vector.

Apparently the smaller the difference between these two singular values is, the

less the variation of \\y(s)\\ is. In the case çr(s) = a(s) , where these two and consequently

all singular values are equal, \\y(s)\\ satisfies ¡;Ks)| = ^(s)||m(j)|| = ct(s)||m(s)|| . Thus

||y(.s)|| depends only on the frequency and the magnitude of u(s) . In this section, a
system with such a property is defined as a unitary system.

Definition: A stable linear multi-input multi-output system is defined as unitary if its

transfer function matrix G(s) e C"""" satisfies:

s,(?) = s2(5) = ... = sß?(?) , (5.4)
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where a,(s) is the ith singular value of G(s) so that the singular value decomposition of

G(s) has the form of:

G(S) = U(S)

a,(s) 0
0 a2(s)

0 0

0

*¦»

V~(s) (5.5)

with

U(s)U~(s) = IT(S)U(S) = V(S)V(S) = V(s)V~(s) = /„, .

The advantage of a unitary system is that the magnitude of its output depends only

on the magnitude and frequency rather than the direction (or component) of the input.

Property 1 of Unitary System: For a unitary system G(s) shown in the above

definition, a,2(s) is a rational function of s and:

a,2(s) =
U(S-Zj)(J-Zj)

k2^l
"r

Tl(s-p>)(s-Pi)
? ? ;

(5.6)

where zy and p, are, Ûiejth zero (transmission zero as defined in [87]) and the lth pole

respectively; n, and ? are the numbers of zeros and poles; k denotes the constant gain

of det(G(s)).

Proof:
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For a unitary system, the SVD of G(s) is in the form of:

G(s) = U(s)ai(s)IV~(s) = a,(s)U(s)V'(s) .

It thus can be derived that:

G{s)G~ (s) = a,(s)U(s)V~(s)V(s)U~(s)ar(s) = a,2(s)I .

Since the diagonal elements of G(s)G~(s) are rational functions, at2(s) is a rational
function.

A useful property [81] of the singular values of G(s) is:

n^(5) = |det(G(5))U
ñ('-*j)
>1

n(s-p,)
(5.7)

or

lK(*) = *2f :—
?(s~ Pi) (s -Pi)

(5.8)

where det(G(s)) is the determinant of G(s) .

It therefore can be concluded that:
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s» =
Yl(s-Zj){l-Zj)

e ^!
"?

n(s - Pi)(s - Pi)

Q. E. D.

Property 2 of Unitary System: If a transfer matrix G (s) e C"""" is unitary with singular

values as a(s), then all non-zero singular vales of G,(s) and G2 (s) are equal to a(s),

where G1 (5) e C"""" and G2 (5) e cn<m~r) is a part of G(s)in the form of:

CW = [G1W G2 (s)].

Proof:

Since G(s) is unitary with singular values as a(s), then, with U'(s) = U(s)V~(s) , one
has:

G(s) = U(s)a(s)IV~(s) = a(s)U(s)V~(s) = a(s)U'(s) .

It thus can be obtained that:

G(í) = [G,(í) G2(s)] = a[u\(s) £/>)]

where, G¿s) = alf¿s) ; G2(V) = s£/*20) ; £/*, (V) e C"xr ; ^y*20)eC'">!('"-r, ; and

[V1(S) V2(S)] = U' (s).
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The SVD of U\(s) and U\(s) has the form of:

U1(S) = U1(S)
¦x(M-r)

V1-(S)

U\(s) = U2(s) '(„-,) V2-(S),

where [/,(J)6C*", t/2(i)eC™ , V;(s)eCrxr and F;(i)eCHxM are unitary
matrices of proper dimensions.

It thus can be derived that:

G1(A) = CZ1Ci)
v(s)Ir

x(m-r)
V;(s)

G2(S) = U2(S)
0_

V2-(S).

Therefore, all non-zero singular vales of G1(S) and G2(s) are equal to a(s) .

Q. E. D.

5.2.3 A closed-loop unitary system in a weighted observerform

For an open-loop system G(s) e C"""" with a minimal realization as:

G(S) = C(Sl-A)^ B (5.9)
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where A e R""" , C e R"k" and 5 e R"™ , its state space presentation has the form of:

? = Ax + Bu

y = Cx (5.10)

where ? are states, y are outputs, and m are generic unknown inputs. Only unknown inputs

are considered in the observer design since known inputs can be cancelled from the

dynamics of the observer. In the transfer matrix form, y(s) = G(s)u(s) . An observer for

System (5.10) can be built as:

x = Ax- L(y - y)

y = Œ. (5.11)

The estimation errors are:

y = y-y

where

x = (A + LC) x + Bu

J) = Cc. (5.12)
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The weighted estimation errors of the outputs are taken as r = Wy with W as a

constant weight matrix so that r(s) = Gy(s)w(s), where Gv(s) is a closed-loop transfer

matrix in a weighted observer form as:

Gu{s) = WC{sI -A- LCY1B. (5.13)

The problem of constructing a closed-loop unitary system is to select L and W so that

G„ (s) is unitary.

It is not always possible to convert G(s) to a unitary Gv(s) . However for System

(5.9) or (5.10), the solution, which is given in next section, exists if the following

conditions are satisfied:

1 . rank(CB) = m or equivalently CB is non-singular. This is a measurement

requirement so that, if satisfied, the states in (5.10) can be classified into two groups

through linear transformation: one group of measured states whose dynamics contains u

explicitly and one group of unmeasured states whose dynamics does not contain u\

2. G(s) does not have zeros on the imaginary axis. This is required for the purpose

of fault detection. If G(s) contains any zero on the imaginary axis, for example zeros at

±jco0 , then the signal u of frequency co0 , for example u = sin(a>j) , cannot be detected

from y [32].
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5.3 Constructing a Closed-Loop Unitary System

This section will present how to construct a closed-loop unitary system in the

form of (5.13). For a square transfer matrix satisfying certain conditions, an exact

solution is given first in Section 5.3.1 followed by an approximate solution for more

general cases in Section 5.3.2. For a non-square open-loop system, as will be shown in

Section 5.3.3, a closed-loop unitary system can be constructed by transforming the non-

square transfer matrix into a square transfer matrix.

5.3.1 An exact solution

An exact solution is given in this section for System (5.10) satisfying the

following two conditions:

1 . rank(CB) = m;

2. G(s) does not have zeros on the imaginary axis.

The open-loop system is transformed to a special form Gr(s) by applying a first

feedback (Lemma 5.1). Then it will be shown that all possible closed-loop systems in the

form of (5.13) can be built from Gr(s) with a second feedback (Lemma 5.2). In Lemma

5.3, it is shown that there exists a companion system G2(s) = Gr(s) + CB for Gr(s) such

that if G2c(s) - the closed-loop system of G2(s) with any feedback - is unitary, then

Grc(s) - the closed-loop system of Gr(s) with the same feedback - is also unitary.

Lemma 5.4 and 5.5 demonstrate that there exists a feedback gain such that the singular
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values of G2c(s) are equal to those of CB. Thus if the singular values of CB are equal to

each other, which can always be satisfied for the non-singular CB through a weight

matrix W = (CB)'1 , then G2c(s) is unitary. The method of constructing a closed-loop

unitary system is summarized in Theorem 5.1 which follows the route of

G(s) -> Gr(s) -> G2O) -» G2c(s) -> Grc(s) -> G^O) with G0 (s) as the closed-loop

unitary system.

Lemma 5.1: A transfer matrix G(s) = C(sI-A)~'B with CS non-singular can be

transformed to:

Gr(s) = C(sl-A- L£)~' B = CB^- (5.14)s + k

with a feedback JL;, where A is a selectable parameter.

Proof:

Since CB is non-singular, there always exists an invertible matrix T in the form of:

T = (CBy1C
B1 (5.15)

so that C = [CB O]T and TB = [l 0]r , where B1 is the transpose of the null space

basis of BT so that B1B = 0{n_m>m . With T, the original G(s) = C(sI - A)~] B can be
transformed to:
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G(s) = CT~l (si - À)~l TB = [CB O] (si -Ay (5.16)

where

A = TAT' = An An
A1x A12

(5.17)

For any k, with:

A = -(¿/„,+4,)(ci?r
-?.(^)-'

(5.18)

the closed-loop system has the form of:

Gr(s) = CT-\sI -?-?£?-?)-???

¦¦er-

ger-

si - An Aì2
A11 A22^

~-(kIm+Àu) 0
-A2x 0_

TB

sl+klm -AX2

[CB 0]

TB

A

0 Sl-A22

'(Sl + Hn,)-1
0 [Sl-A12)-

¦ CB(s + kyìIm
CB(s + Icy1

(5.19)

where ? is a block matrix calculated from the inverse of the upper triangle block matrix.

Therefore, one has:

G1(S) = C(sl - ?''AT - 7"1Z1C)-' B = C(sl -A- T-1LxCy1B = CB(s + k)~ (5.20)
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The transfer matrix G(s) is transformed to the closed-loop system in (5.14) if the

feedback gain is chosen as:

L,=T-%. (5.21)

Q. E. D.

Remark 5.1: For matrix BT <=Rm*" (m<n), its null space N(BT) contains all

vectors ? that satisfy BTz = 0 so that N(Br) = {ze R" : BTz = ?) . B1 e R("-"''>x" js the
transpose of the basis of N(BT) which means the range of (bx) is N(Br) so that

N(BT) = {(#?)G zo : z0 € R"~'" \ . Thus for all zo e R"-m , one has B1 (bl)T zo = 0,
which means BT (B^ = 0„„(„_m) , or B1B = 0(„_m)xm .

With Lemma 1, the original system in (5.10) with ? states is reduced to a closed-

loop system in (5.14) whose minimal realization has only m states. Therefore, Gr(s) has

cancelled poles and zeros. From (5.14), it can be seen that the singular values of Gr(s) is

\s + k\ Sa where S€? are the singular values of CB. This implies that, if all singular

values of CB are equal, the singular values of Gr(s) are also equal to each other.

However as the hidden poles of Gr(s) could not be determined, its stability cannot be

guaranteed.
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In the next step, it will be shown that a closed-loop system in the form of (5.13)

can be built based on Gr(s) . A closed-loop unitary system thus can also be built based on

Gr(s), if it exists.

Lemma 5.2: A closed-loop system in the form of Gc(s) = C(sl -A- LCy1B can

always be expressed as:

Gc = \l- C(Sl-A-L1Cy1 L2 VcB— (5.22)L J s + k

with L = Lx+ L2, where Z1 is selected as in Lemma 5.1 .

Proof:

The closed-loop transfer matrix can be expressed as a serial connection of two systems as:

Gc(s) = C(sl - A- LCy' B = [/ -C(sl - A)~' z]~' C(sl - Ay' B , (5.23)

which also means, with L = Z1 + L2,

Gc(s) = C(sl -A- L1C -L2C)'1 B
-._, · (5.24)

= [/ -C(sl- A-LxCy' Z2] C(sl -A- LxCy' B

By selecting Lx as shown in Lemma 5.3, the closed-loop transfer matrix it is obtained as:

Gc(s) = 17 -C(sl- A -LxCYlX G, (s) = ¡1 -C(sl- A -I1C)-1L1T' C5— . (5.25)L J L "J s + k

Q. E. D.
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From Lemma 5.2 it can be concluded that if there exists a closed-loop unitary

system G11(S) for G(s) , it can be constructed from Gr(s) in the form of

Gv(s) = WGc(s).

Lemma 5.3: If the singular values of G2c(s) are E(s) , then the singular values of Grc(s)

are:

Zrc(5) = |s + £ + lf'Z(s), (5·26)

where:

Gn(s) = C(sI-A-LCy'B (5.27)

G2c(s) = C(sl-A- LCy1 (B + LCB) + CB (5.28)

are, respectively, the closed-loop systems of:

Gr(S) = C(Sl-A)-1B = CB-^- (5.29)s + k

G2(s) = Gr(s) + CB = C(Sl-A)-1B + CB. (5.30)

Proof:

The closed-loop systems in (5.27) and (5.28) can be presented in the following forms:

Gn(S) = [I-C(Sl-A)-1Lj1C(Sl-A)-1B (5.31)
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G11(S) = [I -C(sl -A)'1 Lj* [C(Sl-A)-' B + CB] . (5.32)

Since the SVD of G2c(s) is:

G20(S) = U(S)Z(S)V-(S) = [I-C(Sl-Ay1LyCBi-— + 1
= [l -C(sl- AY L\ Cip? ^1J s + k + ]

(5.33)

it is obvious that:

"'™ ! ^ ^ 1 ,„_? S(?)G„Cj) = [/- C(s/ -^)-1Zj CB- = G2c(s)—— = U(S)-^-V- (s). (5.34)L J 5 + ä: s + k + ] s + k + \

Thus, the singular values of Gn (s) are En, (s) = |s + £ + 1|~' E(s) .

Q. E. D.

From Lemma 5.3, it can be concluded that, if G2c(s) is unitary, Grc(s) is also

unitary given k + 1 > 0 .

Lemma 5.4: A system G(s) e C"'*"' , whose minimal realization is:

G(s) = C(sI-A)~]B + D, (5.35)

satisfies G(s)G(-sY = G(s)G(s)~ = DD' if D is invertible and there exists a positive

definite 7 such that the following equations hold:

AY + YA7 + BBT = 0 (5.36)
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YC' = -BD' (5.37)

Proof:

From Equation (5.36), it is derived that (si - A)Y + Y (si - A)T -BBT = 0 , which

means, by multiplying C (si - A)~ to the left and (-si - A)~r CT to right:

C(sl-A)' YCT + CY(-sI-A) CT -C(sl-A) BBr(-sI-A) CT =0. (5.38)

Equation (5.38) is the same as:

C (si -A)~'yCt + CY (-si - A)'' C1
- C (si - A)'' B + D1ÏC (-si-A)'' B + D
+DDT + C (si- A)'' BDT + DB7 (-si - A)'' C''= 0

(5.39)

Thus if Equation (5.37) is satisfied, then:

C(sl-A)'' B + D UC(Sl-Ay* B + D + DD' = 0 . (5.40)

which means G(s)G(s)T = DD1 .

Lemma 5.5: The closed-loop system:

Q. E. D.

Gc(s) = C(sI-A- LC)'' (B + LD) + D (5.41)
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satisfies Gc(s)Gc(-s)7 = DD7 if the feedback gain L is chosen as:

L = -(YCT + BDT)(DDT)~\ (5.42)

where 7is the solution to the following Algebraic Riccati equation:

(A - BD~'C)Y + Y (A- BD-'cf - YCTD-TD~]CY = 0 (5.43)

Proof:

Following Lemma 5.4, the sufficient condition for Gc(s)Gc(-s)T = DD7 is that Y

and L are solutions to:

YC7 = -(B + LD)D7 (5.44)

(A + LC)Y + Y(A + LC)r + (B + LD)(B + LD)7' = 0, (5.45)

which means (B + LD) = -YC7 D~T and:

AY + YA7 -LD(B + LD)7 -(B + LD)DrLT +(B + LD)(B + LD)r =0 . (5.46)

Since Equation (5.46) is the same as AY + YA7 + BB7 - LDDTLr = 0 and:

AY + YA7 -(B + LD)(B + LD)7 +B (B + LD)r + (B + LD)B7 = 0, (5.47)

it is derived that, with Equation (5.44), y i s the solution of:

AY + YA -YC'D-'D'CY - BD^CY-YC7D-7B7 = 0 (5.48)
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which is the same as Equation (5.43).

From Equation (5.44), L is designed as:

L = -(YCT + bdt)(ddtY ,

Therefore, if equations (5.42) and (5.43) are satisfied, one has:

Gc(s)Gc(-s)T = DD1 .

The above equation also means that the singular values of Gc (s) are constants

and equal to the singular values of D. Since Y is the positive-definite solution to the

Algebraic Riccati equation (5.43), it is a positive definite matrix. With Equation (5.45), it

can be concluded that G1. (s) is stable. Therefore, if the singular values of D are all the

same, Gc.(s) is a unitary system.

Theorem 5.1: For a linear multi-input multi-output system G(s)eC"""" with a

minimal realization of:

G(S) = C(Sl-Ay' B, (5.49)

if CB is non-singular and G(s) does not have zeros on imaginary axis, then a unitary

system can be constructed so that the singular values of the closed-loop system:

G11(S) = (CB)-1C(Sl -A- ZC)"' B (5.50)

satisfy:
88



-1a¡(s) = a2(s) = ... = am(s) = \s + k + \\ . ' (5.51)

Moreover, the SVD of GL,(s) has the form of:

G11(S) = \s + k + ]\~l U(s) (5.52)

where, k is a selectable parameter and k + l>0 ; U(s) is a unitary matrix as

U(s)U(s)' = I.

The feedback gain L in Equation (5.50) is calculated as:

L = L1 +L2, (5.53)

where L1 transforms the system G(s) (following Lemma 5.1) to:

Gr(s) = C(sL-A-LlCyiB = -^—CB; (5.54)s + k

and L2 transforms (following Lemma 5.5):

G2(s) = Gr(s) + CB (5.55)

to:

G2i.(s) = C (si- A-Lf-L2C)'' (B + L2CB) + CB (5.56)

such that:

G2i.(s)Gj(-s) = (CB)(CB)' . (5.57)
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Proof:

It has been proven that System (5.49) can be transformed to Gr(s) in Equation (5.54)

with the feedback gain L1 following Lemma 5.1. For G2(s), L2 can also be calculated

according to Lemma 5.5 so that Equation (5.57) is satisfied, where:

L2 = -[YC7' + B(CB)TJ(CB)(CB)T ]"' (5.58)

[a + L1C - B(CBy c]y + Y [A + L1C - B(CB)'' cj -YCT(CB)'T (CB)'' CY = O. (5.59)

By multiplying (CS)"1 and (CByT to the left and right side of Equation (5.57)

respectively, the following equation is obtained:

[(CByG21Xs)J(CBrG20(S)J = 1,

which means [(CS)~'G2(.(.s)J is a unitary system with singular values as 1. From Lemma
5.3, G!L(s) can be built with the same feedback L2 suchthat:

Gn(S) = C(Sl-A-L1C-L2Cy1B = C(Sl-A-LCyB. (5.60)

As Gn.(s) = G2c(s)/(s + k + ]) from Equation (5.34), one has:

G^s) = (CByGn(S) = (CByG20(S) L-. (5.61)
s + k + ]
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Since the singular values of [(CB) 'G2c(s)] are 1, G11(S) is a unitary system with
singular values of \s + k + 1|~' . The SVD of GyO) therefore has the form of:

Gy(s) = U(s)\s + k + if V-(s) = \s + k + if U(s)V~(s) = \s + k + if U(s) (5.62)

where U(s) = U(s)V~(s) is also a unitary matrix.

Q. E. D.

Remark 5.2: The Algebraic Riccati equation (5.59) has a solution Y > O if

(A + L,C -B(CBy1C, (CBy1C^ is an observable pair and the following Hamilton
matrix //does not have eigenvalues on the imaginary axis [5O]:

\A + Lf -B(CBy1C -CT(CB)-T(CBy'C
0 -{A + L1C -B(CBy1Cf

The observability requirement can be satisfied since Equation (5.49) is a minimal

realization which is both observable and controllable. The eigenvalues requirement of//

in the above form can be satisfied if the open-loop G(s) does not have zeros on the

imaginary axis. This is a reasonable assumption in faults detection studies. If G(s) has a

zero at ]?? , the lower bound of its response to a fault signal with frequency <a0 is zero,

which means the fault cannot be detected.

Remark 5.3: |s + £ + l| is the magnitude of the transfer function \l (s + k + \).

The singular values of Gv(s) therefore present a first order magnitude frequency
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response characteristic. -(A: + 1) is the pole of the transfer function \/(s + k + 1). The

difference between G rc(s) and G11(S) is an artificial weight of (CB)'1 . The singular

values ofGrc(i) are |s + A: + l|~ S€? which, although not necessarily equal to each other,

are still the magnitudes of first order transfer functions. These transfer functions have the

same pole -(A: + 1) but with different gains.

5.3.2 An approximate solution

The non-singularity requirement of CB cannot always be satisfied. In such a case,

an approximate solution is given in this section.

Lemma 5.6: For matrices A, B e C"""" , their singular values satisfy the following

[82]:

s(?±?)<s(?) + s(?) (5.63)

s(?) + s(?) > s(? ±?)> s(?) - s(?) (5 .64)

s(??)>s(?)s(?) . . (5.65)

Lemma 5.7: If A, B, C e C"'*"' , UeRmx"' and s e R' satisfy the following 3

conditions:

1. UUT = 1;

2. C = A(B + aU);
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3. All singular values of C are equal to s as <xc = s

then the following inequalities hold:

s(??)-s<s2/[s(?)-s] (5.66)

s(??)-s(??)<2s2/[s(?)-s] (5.67)

where s and s denote the largest and smallest singular values.

Proof:

With AB = C - s?U and ac = s , it is obvious from inequalities (5.64) and (5.65)
that:

s{??)<s + s{s??) = s + ss{?) (5.68)

s(??) > s - s(s? U) = s - ss{?) (5.69)

which means s(??) -s< ss(?) and s(??) - s(??) < 2ss{?)

From inequality (5.66) and conditions 2 and 3, one has s > s{?)s{? + s??) and thus the

inequality s(?) < s I s(? + s?) holds. From inequality (5.65), we have

s{? + all) > s(?) - s , which means:

s(?) <s/s(? + aU) < s I [s(?) - s] . (5.70)

It is thus derived that:
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s(??)-s<s2/[s(?)-s] (5.71)

s(??)-s(??)<2s2 ?[s(?)-s] . (5.72)

Q. E. D.

Theorem 5.2: For a linear MIMO system G(S)GC"'""' with a minimum

realization of:

G(S) = C(Sl-AY1B (5.73)

and its companion system:

G2(s) = G(s) + s? = C(sl- A)'' B + aU (5 .74)

where U is any real unitary matrix, a feedback gain will transform the two systems in

(5.73) and (5.74) to the following two closed-loop systems:

Gc (s) = C(Sl-A-LC)-1B (5.75)

Glc(s) = C(sI-A-LC)-\B + aLU) + aU . (5.76)

If the singular values of G2c(s) are all equal and satisfy:

a[G2c(s)] = a (5.77)

then the singular values of Gc(s) satisfy the following inequalities:
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g[G'(J)l-g%[G(,y|/a-i (5·78)

ä[Gc(s)h ?[Gc(s)]< -j--^- -. (5.79)a[G(s)\/ s-ì

Proof:

The closed-loop transfer matrices in (5.76) and (5.77) are the same as:

Gc (s) = [I -C(sl -AT1 z]~' C(sl -Ay1 B (5.80)

G2c(s) = [l -C(sl -AT1 Lj' [C(Sl-A)-1 B + all], (5.81)

which also means that, with GL(s) = \l- C(si - A)~x lV ,

Gc(s) = GL(s)G(s) (5.82)

G2c(s) = GL (S)[G(S) + s?]. (5.83)

If the singular values of G2c(s) are equal to s , all 3 conditions of Lemma 5.7 are

satisfied with A = GL(s), B = G(s), and C = G2c(s). Thus the following inequalities
hold:

g[Ge(3)]-o-s s (5.84)<j\G(s)\l s-\
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s2a[GL(s)G(s)]-a[GL(s)G(s)]< = -f^ñ 7 ¦ (5-85>a[G(s)\-a çf[G(s)\/ s-1

Q. E. D.

According to Lemma 5.5, a feedback gain L can be calculated so that the singular

values of G2c(s) are equal to those of aU . Since U is a selectable unitary real matrix,

G2c(s) satisfies inequality (5.77). With the same L, Gc(s) will satisfy inequalities (5.78)

and (5.79).

As s and U can be chosen as any values, an approximate unitary system can be

built by selecting s « çr[G(s)] for all 5 = ja> in the frequency range of interest, which

means s « H \G(s)\ . The inaccuracy of the approximation can be calculated with

inequalities (5.78) and (5.79).

5.3.3 Solutions to a non-square system

Thus far, discussions only concerned a square transfer matrix with the same

number of input and output. In this section, a non-square system in the following form is

considered:

G(s) = C(s/ -^l)-1 5 (5.86)

where, A e R"*" , C e R"""' and B e R'"r with the assumptions of:

1. m> r:
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2. rank(CB) = r so that CB has full column rank.

There are two ways of transforming (5.86) into a unitary system.

1 . Reduce the dimension of C:

For such a system, a corresponding square system can be constructed as:

G11(S) = W1C(Sl-AyB (5.87)

where, W} eiT"" is a real constant matrix so that rank(W£B) = r . If G0 (5) does not

have zeros on the imaginary axis, it satisfies all conditions required in Section 5.3.1. A

closed-loop unitary system thus can be constructed for Gn (s) in the form of:

G„(s) = {Wf:B)~'WiC(sI-A-LC)-'B. (5.88)

2. Increase the dimension of B:

Another method is to construct a square transfer matrix in the following form:

Gt(S) = C(Sl-A)-1IB B0] (5.89)

where B0 is selected so that rank (C [B B0]) = m. If Gh(s) does not have zeros on the

imaginary axis, it satisfies all conditions required in Section 5.3.1. A closed-loop unitary

system thus can be constructed for Gh (s) in the form of:

G11(S) = (C[B Bo]Yc(sI -A-LCr[B B0]. (5.90)
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Moreover, according to Property 2 of Unitary System, all non-zero singular values of

G111(S) = (C[B B0})'] C(sl -A- LC)-1B

are equal.

5.4 Examples

In this section, two examples are given to illustrate the procedures of constructing

a closed-loop unitary system.

Example 1: In this example, a closed-loop unitary system in the form of:

G0(S) = (CByC(Sl-A-LCy1B

is constructed for an open-loop system:

G(s) = C(sI -A)-' B,

which is adopted from [37] with:

-0.0139 0 0.0139
0 -0.027 0.0139

0.0139 0.0139 -0.0278
,B--

0.007 0

0 0.0131

0 0

,C =
143.7908 0 0

0 76.2566 0

The first step is to find Z1 that transforms the original system into Gr(s) form. With:

T = (CBy c
B1

143.7908 0 0
0 76.2566 0
0 0 1

, and A = TAT~ An An
An-. A12
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the feedback gain L1 is calculated as L1 = 7"1Z1 , where, with k selected as k=10:

L J-(V2+ Au)(CBTr[ -A21(CB)-1
The closed-loop system then has the form of:

Gn(S) = C(Sl -A- L1C)-1 B = CB /(s + U) = I2 /(s + U)

as CB=I2 in this example. The companion system is constructed as:

G2(s) = GK(s) + CB

and the Algebraic Riccati equation:

[A + L1C-B(CBy1C]Y + Y[A + L1C - B(CBy1C]1 -YCT (CB)'T (CBy'CY = 0

is solved for Y. The feedback gain L2 is calculated as:

L2 = -\yCt + B(CBf]I(CB)(CBfJ' .

Therefore, the feedback gain L transforms the original system to a closed-loop unitary
system in the form of:

G„(s) = C(sI-A-LCy' B

with singular values of \s + 1 1|~' , where:
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L = I1 + L2
-0.0764 0

0 -0.1439

-0.0001 -0.0002

The singular values plots of the open-loop G(s) and the closed-loop Gv(s) are shown in

Figures 5.1 and 5.2.

Singular Values

m
"O -10

W
?
3 -20

"co
>
?_ -30

O) -40
C
W

\

10 10 10 10 10

Frequency (rad/sec)

Figure 5.1 Example 1 : singular values of the open-loop system
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Singular Values
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I H \
ï- \
^ \
ro -40: \
>
J2 -45
s>
C -50:

CO
-55:

-60
10*

Frequency (rad/sec)

Figure 5.2 Example 1 : singular values of the closed-loop system

Remark 5.4: Since ¡í + ¿ + 1| is the magnitude frequency response of the

transfer function ì/(s + k + l), the singular values plot of the closed-loop system is the

same as the bode magnitude plot of 1 / (s + k + 1) . From Figure 5. 1 , it can be seen that all

singular values of the close-loop system are equal to the magnitude of 1 / (s + 1 1) which

is (?2 + 1 12)""2 as a function of frequency.

Example 2: In this example, a closed-loop unitary system:

Gv(S) = (CBy C(si -A- LCy1B

is constructed for an open-loop system:

G(S) = C(Sl-A)-1B,
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which is randomly generated as:

0.5046 0.0070 0.2952 1.2408
1.6265 0.4572 0.5554 1.8668
0.1535 0.0027 0.3623 1.9462

0.8160 0.3919 0.2873 0.4583

,B =

0.5529 0.6416 0.6332

0.7702 0.2557 1.4140

0.3895 0.0384 1.1211
0.1005 1.4039 0.0108

C

0.7756 0.2396 0.4075 0.4421
0.7088 0.8486 0.9788 0.3494

0.6068 0.2505 0.9409 0.6687

The first step is to find Lx that transforms the original system into Gr(s) form. With:

T = (CB)-' C
B1

0.7756 0.2396 0.4075 0.4421

0.7088 0.8486 0.9788 0.3494

0.6068 0.2505 0.9409 0.6687

-0.4484 0.4916 -0.3680 0.1255

and A = TAT- An An

the feedback gain Lx is calculated as Lx = T 1Z1 , where, with k selected as k=10:

A = -(JcI2 + An)(CBy
-A2x(CB)-1

The closed-loop system then has the form of:

GK(s) = C(sl -A- LxC)-' B = CBI(S + M).

The companion system is constructed as:

G2(s) = Grc(s) + CB
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and the Algebraic Riccati equation:

[A + L1C - B(CBy' C]Y + y[a + Lf - B(CBy1 cj - YCT {CB)'T (CBy' CY = 0

is solved for Y. The feedback gain L2 is calculated as:

L2 = -\YCT +B(CBf 1^(CB)(CB)1Y .

Therefore, the feedback gain L transforms the original system to a closed-loop unitary

system in the form of:

GL,(s) = (CBY C(sl - A-LCy'B

with singular values of Is + 1 ll , where:

L = Lj+ L2-

-19.9902 -0.3428 10.6200'
-5.0800 -8.5893 6.8353

16.8744 -4.1290 -12.9409

-8.6851 14.2991 -16.4507

The singular values plots of the open-loop G(s) and the closed-loop G11(S) are shown in

Figures 5.3 and 5.4.
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Singular Values

Frequency (rad/sec)

Figure 5.3 Example 2: singular values of the open-loop system
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S -35
(O
(D
_3 -40
(D

§,-50
C

» -55

Singular Values
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Figure 5.4 Example 2: singular values of the closed-loop system

Remark 5.5: In [85], it was shown that the "unordered unsigned" singular values,

which belong to a set of real functions, are globally analytical. The analytical forms of
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these functions are not available for a generic transfer matrix, which can be seen in the

open-loop singular values plot. For a closed-loop unitary system, however, these

functions are available in the form of |s + £ + l|~' , where k is a selectable parameter.
Important properties of a transfer matrix, such as the H2 and Hr„ norms thus can be

determined from \s + k + 1|~ .

5.5 Summary

In this chapter, a unitary system is defined as a multi-input multi-output linear

time-invariant system whose singular values of transfer matrix are equal. An open-loop

system can be transformed to a closed-loop unitary system when certain requirements are

met. For a strictly-proper open-loop system, the singular values of the corresponding

closed-loop unitary system are | s + k + 1 |"' , which is the magnitude frequency response

of the transfer function l/(s + k + \). With the method presented in this chapter, the

singular values of the closed-loop unitary system thus can be assigned as a function of s

in the form of \s + k + l G"' or equivalently, as a function of frequency in the form of

[?2 + {k + \)2]~m . Singular-value-related properties of an MIMO system are therefore

defined by the function 1 5 + k + 1 1"' .
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CHAPTER 6

Hco/H_ ADAPTIVE OBSERVER BASED ON UNITARY SYSTEM

Chapter 4 introduced the disturbance decoupled fault estimation with Adaptive

Unknown Input Observer (AUIO). However, the measurement redundancy requirements

on AUIO cannot be always met. A less restricted approach is to construct an optimized

observer so that the response to faults is maximized whereas the response to disturbances

is minimized. This approach is defined as HJH_ optimization in the studies of fault

detection. In this chapter, the HJH_ optimization problem is solved for strictly-proper

multi-input multi-output linear time-invariant systems with an approach of Unitary

System.

6.1 Hco/H_ Optimization

For a transfer matrix, Hx is the supremum of the largest singular value <r(s) in

the considered frequency range of s and H_ is the infimum of the smallest singular value

çr(s) . Mathematically, H1 [50] and H_ [43] are defined as, for a transfer matrix G{s) in

a given frequency range [O O] :

H^[G(S)]= sup a[G(s)] (6.1)

H [G(S)]= inf fffG(j)l (6.2)
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The HJH_ optimization is a combined optimization which, in the area of fault

detection, seeks the balance between robustness and sensitivity. Consider a system with

two unknown inputs d and/in the following form:

x = Ax + Ed + Ff

y = Cx, (6.3)

where d and f are disturbances and faults respectively, A e R'K" ,

E e R"yp , F e R"xl" , C e R""" . An observer for the purpose of fault detection can be

designed as:

? = Ax — L (>> - j>)

y = Cx . (6.4)

The estimation errors ? - ? - ? and y = y- y thus have the form of:

x = {A + LC)R + Ed + Ff

y = Cx . (6.5)

The residuals are defined as the weighted estimation errors:

r = Wy (6.6)

where W e R"""' is a weight matrix. In the transfer matrix form, it is represented as:

107



r(s) = Grd(s)d(s) + Gr/(s)f(S) (6.7)

where:

GrJ(s) = WGdc(s)

Grf(s) = WGfc(s) (6.8)

with:

Gtk.(s) = C(sI-A-LCy] E

G^(S) = C(SI-A-Lc)'1 F (6.9)

as the closed-loop transfer matrices from the disturbances and faults to the estimation

error y .

The structure of a fault detection observer is shown in Figure 6. 1 . The objective of

fault detection is that, by observing the residuals, the occurring faults/ can be detected

even with the interference of disturbances d. From Equation (6.7), it can be seen that the

residuals have two contributors as disturbances and faults, which means r will stay at

zero in the steady state for a disturbance-free and fault-free system. For such a system,

any occurring fault can be detected since r will deviate from zero accordingly. In a

practical system, however, disturbances cannot be totally avoided. The HJH_

optimization is to minimize the influence of disturbances on the residuals (or keep the
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influence under certain level) and meanwhile maximize that of faults so that the fault

detection observer has both the robustness to disturbances and the sensitivity to faults.

A E

Fault detection observer

Open-loop system

W

Figure 6. 1 Fault detection observer

The measurement of the robustness to disturbance is taken as Hx\Grd{s)\ since
one has:

\\Gril(s)d(s)\\<H„[Grd(s)]\\d(s) (6.10)

Similarly, the measurement of the sensitivity to faults f(s) is taken as

H [Gr/(s)1 since one has:

\\G,f(s)f(s)\\>H_[Grf(s)]\\f(s)\\. (6.11)
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To increase the robustness to disturbances, it is desirable to reduce H73[G^(S)].

To increase the sensitivity to faults, it is required to increase H [G^ (j)1. To obtain the
best balanced robustness and sensitivity, the H.JH_ optimization is formulated to:

min k 4 (6.12)

with the selection of constant matrices W e R"""" and L e R'""" .

As Gr/(s) is strictly-proper, its H_ is always zero over the whole frequency range,

which means, for System (6.3), the optimization cannot be solved without considering the

frequency range. In this chapter, the frequency range is set as ? e [? O] with O as any
selected upper bound.

6.2 A Unitary System Solution to the H-/H_ Optimization

The following shows the procedure to solve the HJH_ optimization problem
discussed in Section 6.1 :

mm 7 rdy J\, s = jw, ?6|0 O|. (6.13)

The closed-loop transfer functions can be expressed in the following forms:

Grd(s) = WGL(s)Gd(s) = wïI -C(Sl-AfLV C(sl-A)~] E (6.14)
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Gr/(s) = WGI(s)Gf(s) = w\l-C(sI~AyìL\ C(sI-A)']F (6.15)

where,

GL(s) = \I -C (sí -A)'1 L (6.16)

Gd(s) = C(Sl-A)-' E, (6.17)

Gf(s) = C (si -A)'1 F. (6.18)

The HJH_ optimization problem is thus equivalent to the problem of:

H„[WGL(s)Gd(s)]}
»:"-'\H_[WGL(s)Gf(s))\min (6.19)

by selecting W and L, where s = ja> and ? e [? O] . In [32], the solution to the general
problem of:

mm Hx[G(S)Gd(s)]
H[G(S)Gx(S)) (6.20)

is given as:

G(s) = a0N(s)G-i (s). (6.21)

where s0 is any constant value and N(s)N~(s) = I , where N~(s) = NT(s) is the

conjugate transpose of N(s) . The minimal value is:
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min· HÍG(S)GÁS)\\ = HjGf-\s)GÁs)]. (6.22)H_[G(s)Gf(s)]\ lL/ J

Although G, \s) cannot be obtained practically for a strictly-proper Gf(s), Equation

(6.22) still gives the theoretical minimum to the optimization problem of (6.19), where

G(s) in (6.20) and (6.21) can be replaced with WGL(s) .

Theorem 6.1: For System (6.3) with non-singular CF, \fGf(s) = C(sI - A)'' F does not
have zeros on the imaginary axis, then there exists a feedback gain L and a weight matrix

W = (CF)"1 so that:

Grf{s) = WC(sI -A- LCyx F

is unitary with singular values \s + k + 1|~ ; the obtained L and W also solve the HJH_

optimization problem (6.13) so that the following inequalities hold:

f1^Lhx[GS(S)GAs)-] (6.24)H_lGrf(s)j

where HÏGf '(^)Gj(S)I is the theoretical optimum.

Proof:
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By taking W = (CF) ' , the following is obtained:

ff.^W] _ Hx[(CF)-'C(sI-A-LC)-'e]
H[Gr/(s)) H [(CFy' C(sl- A- LCy F (6.25)

According to Theorem 5.1 in Chapter 5, there exists an L that transforms C(Sl-Ay1F

to a closed-loop unitary system in the form of:

Grf(s) = (CF)-'C(sI - A - LC)-' F .

Also from Theorem 5.1, the closed-loop system satisfies:

Grf(s) = \s + k + \\'U(s).

With closed-loop transfer matrix (6.15), it is then derived that:

WG1 (s) = \s + k + if U(s)G -\s) .

Thus from closed-loop transfer matrix (6.14), the following equation is obtained:

\s + k + \\~ U(s)G''(s)Gd(s)
H \s + k+\\ U(s)

(6.26)

For s = jco and ? e [? O] , it is derived that:

Hx [GrJ(s)] = Hj\s + k + l|~' U(s)G -\s)Gd(s)
sup||;û> + £ + l| V[G, '(J(O)Gj(JCO)]

(6.27)
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which means the following inequalities hold:

#jGri/(5)]<
maxf« + * + if HK [Gf-\ja>)Gd(ja>j\ = \k + if HK [Gf-\ja>)GdUa>j] (6.28)

min \jm + k + Ip' /Zx. [G7"1 (7'0J)G1, (7'»)] = ^O2 +(£ + !/ -#, [Gf-\jœ)Gd{jm)\ . (6.29)

On the other hand, // [~Gr/(s)~| is calculated as:

H_[Grf(s)] = H_ \s + k + l\ U(s) inf s \jo) + k + \\ U(JO))
min lyo + zt + lf =}/yJQ2 + (k + i)2

(6.30)

Thus the following inequality holds:

Jtf/(k + lf + \H„ [G^(S)GAs)] > fjf^* #» [6/'WW]. (6.31)

Q. E. D.

Remark 6.1: The above have shown that the theoretical minimum of the HJH

optimization is Hx [G/"'(í)G(y(í)] . For a strictly-proper Gf(s), its inverse Gf~](s) is an
improper transfer matrix, which cannot be constructed practically. Therefore, the

theoretical minimum of the HJH optimization is not realizable if Gf(s) is strictly-

proper. However by transforming Grf(s) into a closed-loop unitary system, the HJH of

the observer can approximate closely to the theoretical optimum by selecting a large
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\k + l\. The result in Theorem 6.1 is at most ^Jn2 l{k + Yf +1 -1 times larger than the
theoretical optimum. The difference can be further reduced by increasing \k + \\.

The absolute value of H^Grf(s)j can be increased with a smaller \k + l\ as
shown in Equation (6.30). However, the value of HJH might be also increased since its

upper bound has increased according to inequality (6.31).

6.3 Hoo/H_ Adaptive Observer

The procedure from Section 6.2 with respect to the HJH_ optimization is adopted

here to construct the HJH_ Adaptive Observer.

Theorem 6.2: For a system in the form of:

x = Ax + F<pe + Ed (6.32)

an HJH_ adaptive observer can be constructed in the following form:

X = Ax-Ly + Gf? + G?

e=ir'TTCTWTW{y-Œ)

t = (A + LC)r + F0 (6.33)

where the feedback gain L and the weight Ware calculated in the same way as the HJH_
optimization in Section 6.2. AU the estimations of the observer converge to their real
values if the disturbance d is zero. If the disturbance is not zero, the estimation error of
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? is optimized for disturbance rejection. The convergence requirements are similar to

those of the adaptive unknown input observer, which are listed below as:

1- \° ° çr{-Z~]rTCTCr^dt >a > 0 for a constant T0, where a is any positive
constant;

2. S ìrrC7C\\< ß , where ß is any positive constant.

Proof:

From (6.32) and (6.33), it can be obtained that:

(? -?T) = (A + LC)x + ?f? -?T + Ed -?T-?T (6.34)

where

X = X-X

?=?-? .

With (6.34), it is derived that:

(x-Të) = (A + LC)(x-T§) + Ed (6.35)

Since the following equality:

Z''TTCTWTW(y-Œ) (6.36)
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is equivalent to:

? = -Z^T7C7W7WC (? - G?) - S-'?7C7W7WCT? , (6.37)

the estimations thus follow:

?

(? -T?)
-Z-1Y7C7W7WCT -Z-1T7C7W7WC

(A + LC)
?

(? -T?) d. (6.38)

If d is zero, the convergence of the estimation can be proved since System (6.38) is the

same as System (4.45) in Chapter 4. By taking the updating rate as:

S = -T7C7W7WCT
a

(6.39)

with a > 0 , the estimation error of ? has the form of:

9 = -a (T7C7W7WCT) ' T7C7W7WC (x - T?) - a? (6.40)

Thus the magnitude of the estimation error ? depends only on the magnitude of:

(T7C7W7WCtY T7C7W7WC(X - ?T) . (6.41)

From (6.33) and (6.38), one can derive that:

WCT = GA

WC(x-T0) = GrJd. (6.42)
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where:

Grf = Grf (s) = WC(sI -A- LCy' F

Grd=Grd(s) = WC(sI- A- LCy1E. (6.43)

Therefore, (6.41) has the form of:

(ytctwtwct)~1 ttctwtwc (x - t?)
= (F'?,/?^? <PTG/Grdd = [GJ)' Grdd

where,

Since one has:

\t / ,xt .

(6.44)

(Gjf = (/G/G^)"' fG?/ (6.45)

is the pseudo-inverse of (Gj) ·

(Gj) =(<f)Grf-\ (6.46)

for an invertibile Grf, (6.41) is thus equal to

(rrCTWTWCr)~l YTCTWTWC (x - Y?) = (f)1 G/Grdd . (6.47)

Thus the magnitude of the estimation error ? depends on:
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) Grf"GrJd

\{f)" Grf'GrJd\. (6.48)

Since, the following inequality holds:

* IkViIMI ^ IMK VK (MMI (6·49)

the upper bound of the estimation error is:

M^VK(MHI- (6.50)

Therefore, (6.48) is minimized if only the following is minimized:

^-VK(^) =f^, (6-51)
which is the same as the HJH_ optimization problem discussed in Section 6.2. Therefore,

if L and W are selected through the HJH_ optimization, the estimation error of ? is
minimized.

Q. E. D.

Remark 6.2: From Equation (6.37), it can be seen that the dynamics of the

estimation errors is time variant. The convergence rate of the estimation therefore

depends not only on the system matrix A + LC but also the signal matrix of G, which is a

function of f . To reduce the influence of G on the convergence rate, it is a common

choice to select S proportional to the square magnitude of G such as in Equation (6.39).
To avoid the singularity, S is practically designed as:
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S = -(?? + YTCTWrWCT) , (6.52)a ?

where ? is a small positive constant.

6.4 Simulation Resultsfor Fault Estimation

The KJH_ adaptive observer is applied to the elevator for the hydraulic

parameters estimation of the left system. These parameters include the leaking faults

from the chambers to the environment - C17 and C21 - and the leaking faults between the

active and passive chambers - CUI . The mathematical model of the elevator and all faults

was shown in Equation (3.5) of Chapter 3. According to (3.5), the parameter ? and its

estimate are defined as:

?, ;

the signal matrix f is defined as:

f = diagli f, (Zi6];

F is defined as:

F = [F, F5 F6].

Since these faults interact with each other, they cannot be estimated at the same

time. The simultaneous estimation will cause the estimated parameters to converge to
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false values, which can be seen in Figure 6.2: the real fault is the 9 times increase of

C12 whereas the estimations of all three parameters converge to some different values.

The false estimations cannot be detected since the output estimation error y - pressures

in the two chambers - converges to zero simultaneously as the estimated parameters
converge to false values.
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Figure 6.2 Interaction of fault estimation
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The approach in this thesis is to estimate these faults separately by taking one of

the faults as disturbance and evaluating the other two. In this way three adaptive

observers are constructed so that each fault has two estimations: Observer 1 for C11 and

C121 , Observer 2 for C2L and Ci2L ; Observer 3 for CiL and C21 . A fault is identified

when these two estimations converge to the same value.

Three simulations for three fault scenarios are carried out so that each simulation

addresses one fault:

1 . Cn changes from zero to 0.003208 at 1 second;

2. C11 changes from zero to 0.003208 at 1 second;

3. Ci2I increases 9 times from 0.0003208 at 1 second.

The results of the simulations are shown in Figures 6.3 to 6.5. Each figure

demonstrates the estimation results of all three observers. The real faults are shown in

these figures as dashed curves.
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Figure 6.5 Estimations of leaking between the chambers of the left cylinder

By observing the estimation results, the occurring fault can be identified when the

estimations from two different observers converge to the same values:

1. In Figure 6.3, the estimations of C11 in Observer 1 and 3 converge to the same

value;

2. In Figure 6.4, the estimation of C27 in Observer 2 and 3 converge to the same

value;

3. In Figure 6.5, the estimation of C127 in Observer 1 and 2 converge to the same
value.
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6.5 Summary

In this Chapter, a solution to the HJH optimization of strictly-proper systems is

presented by transforming one of the two involved systems into a closed-loop unitary

system. For any given frequency range starting from zero, the solution can approximate

as close as possible to the theoretical minimal value of the HJH optimization by

increasing the value of \k+l\. The optimization result is thereafter used to construct an

HJH adaptive observer for the purpose of parameter estimation for a system that is

subject to disturbances. It is proved that the parameter estimation is optimized in terms of

robustness against disturbances and sensitivity to faults.
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CHAPTER 7

CONTROLLERAND RECONFIGURATION

In this chapter, a fuzzy PI controller is developed to deal with different situations

including: the nonlinearity of the fault-free elevator; the elevator with component faults;
and the elevator with actuator faults. A reconfiguration mechanism is designed based on

the available fuzzy controller. By integrating with the adaptive observers for fault

detection and estimation in Chapters 4, 5, and 6, a complete Active Fault Tolerant

Control system is designed. The simulation results of the AFTC of the elevator are

presented.

7.1 Fuzzy Tagaki-Sugeno(TS) Model of the Elevator

Fuzzy logic was first developed as an inference system of processing incomplete
and ambiguous information [70,71]. In the control theory, however, the researches of

fuzzy system mainly focus on its universal approximation capability [88] that makes it a
great tool of modeling [89]. In this section, the fuzzy TS model of the elevator is

developed.

7.1.1 Fuzzy TS model ofthe fault-free elevator

The fuzzy TS model was developed in [91] as a tool of approximating a nonlinear

system with linear models. As nonlinearity exists in numerous forms, a generic theory
about the behaviour, especially the stability, of all type of nonlinear systems is absent.
Linear systems, on the other hand, have been well studied in the control theory. Therefore,
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a common practice is to represent a nonlinear system with a local linear model, which is

valid only around certain operating point. To enhance the modeling accuracy, multiple
local models can be constructed so that a larger operating range is covered. The model of

the nonlinear system thus switches discontinuously among these linear models according
to different operating conditions. In the fuzzy modeling, multiple local linear models -

which are also referred as rules in the term of the rule-based fuzzy logic system - are
obtained in a similar way. The fuzzy TS model is constructed as a continuous blending of
these local linear models.

The nonlinear model of the elevator, which is shown in (3.1), can be expressed in
the following form:

x = g(x) + Bu

z = C2x (7.!)

where, ? is the vector of state variable; u is the vector of control input; ? is the vector of

controlled output as shown in Equation (3.3); g(x) is a nonlinear function of x, which

can be derived from (3.1).

From Section 3.3, a local linear model of the elevator is available in Equation

(3.10). The model is linearized at vo , where v0 is an operating point of v, which is
defined as:
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V = (7.2)

By varying ? , the rules in the fuzzy TS model of the elevator are developed as:

Rule /:

If ? is V1 , then the model of the elevator is:

? = Ax + Bu

z = C,x, (7.3)

where, i = \.,.nr with nr as the total number of rules - or equivalently, the total number

of available local linear models; v, is the ith operating point where the nonlinear model is

linearized; A1 , B , and C2 are matrices of proper dimensions; ? is the premise variable.

The model at a general ? then has the form of:

x = A(v)x + Bu

z = C.x (7.4)

with,

133



Xa1(V, V1)A1
A(v) = ^ (7.5)

S^(?' ?-)

where, a¡ (?, ?;) is the non-negative real-valued membership of the ith rule, which may

be taken as the weight of each rule.

A nonlinear model of the elevator in (7.1) is therefore transformed to the linear

parameter-varying (LPV) fuzzy TS model (7.4). For simplicity, the membership in the

fuzzy model is presented as:

a,(v, vf)^=IT1 — (7.6)
Sa'(?> v-)

so that:

?(?) = S«,4· (7-7)

7.1.2 Fuzzy TS model with the consideration offaults

In this research, the faults are considered as unexpected abrupt changes of

parameters. For the elevator with varying parameters ? , its dynamics is expressed as:

x = g(x, 6) + B(e)u

Z = C.X
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With the premise variable as (?, T) , a fuzzy TS model can be constructed in a similar

way as shown in Section 7.1.1. As the value of ? is not known, the premise variable is

taken as ??, ?? instead.

1. The model of a system with component faults

For a system with component faults, only parameters in 4 change. The rules are
therefore summarized as:

If (v, §) is (?,, ? ^ , then the dynamics of the elevator is:

? = A1JX + Bu

Z = C,x . (7.9)

After applying fuzzy inference, the model at (?, ?) is obtained as:

x = A(v)x + Bu

z = C,x (7.10)

with,

A-) = i /Xa1(V, ?,). (7.11)
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In a simpler form, Equation (7.1 1) is rewritten as:

?(?) = S «,S/??
y=i

(7.12)

where ng is the number of rules in ? ; af is defined in Equation (7.7); and

ßj ßAe> ?
Iß?*, ?,) (7.13)

2. The model for a system with actuator faults

For a system with actuator faults, only the parameters in B change. The rules are
therefore summarized as:

lf{v, ? J is (v., 9jj, then the dynamics of the elevator is:

i = A1X + BjU

? = Cx , (7.14)

After applying fuzzy inference, the model at ??, ?) is:

x = A{v)x + B[è^u

z-C.x (7.15)

with,
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?(?) = £a,4, (7.16)

B(e) = YßjBj. (7.?)

Remark 7.1: The membership functions of the fuzzy TS model a,. (v, v,.) and

/T7. i(9, #,. j are shown in Appendix B.

7.2 Fuzzy Controller

A fuzzy controller usually consists of multiple local controllers designed offline.

For every operating point, a controller is constructed online with the fuzzy inference

technique. The rules in a fuzzy controller are summarized as:

Rule i:

If ? is v;. , then the control signal is calculated as:

U = U1, (7.18)

where U1 is a function of the states or outputs of the system to be controlled.

The rules in the fuzzy TS model of the closed-loop system therefore are summarized as:

Rule i:

If ? is ?,. . then the closed-loop dynamics of the elevator is:
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? = A1X + Bu{v)

z = Czx. (7.19)

After applying fuzzy inference, the close-loop system then is expressed as:

x = A{y)x + Bu(v)

z = Czx (7.20)

where:

'?

"(v) = !>,«,. (7-2 1)

Therefore the problem for the design of a fuzzy controller is to select u- for the

linear model in every rule so that the stability and performance requirements of the

closed-loop System (7.20) can be satisfied. In this research, a fuzzy output feedback

controller is designed based on the state space representation of the elevator. The reasons

of choosing output feedback over state feedback are:

1 . Full state measurements are not available;

2. The adaptive observers are designed for the purpose of fault detection and fault

estimation. When faults occur, there are false estimations of states until the

estimations of faults converge, which means the performance of the system will

be deteriorated if a state feedback controller is used.
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The following lemma is used in the controller design.

Lemma 7.1 [92]: An LPV system in the form of:

x = AOx (7.22)

is stable if:

PA(t) + A(t)rP<-2yP, (7.23)

where P > 0 is a positive definite matrix; ? > 0 is a positive constant. Meanwhile, the

decay rate of the states satisfies:

d{xTPx)-^-—'- < -2??t?? . (7.24)

7.2.1 Controllerfor the fault-free system

For the fault-free model (7.4), the fuzzy rules in the output feedback controller are
summarized as:

Rule /:

If ? is V1 , then the control signal is calculated as:

u = K1Z = K1C1X . (7.25)

Therefore, the control signal at a general ? is:
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U(V) = J^a1K1C1X. (7.26)

From Model (7.4), the closed-loop dynamics of the elevator becomes:

? - A (?) ? + Bu (v) = J1 U1A1X + BJa:KtC,x
/=1 ;=1

or

? = 2«, (4 + BK1C2 )x . {121)

Theorem 7.1: If there exist a positive definite matrix P and nr feedback gain K1 that

solve the following nr inequalities:

P (A1 + BK1C2 ) + (A1 + BK1C2 )r P < -2?? (7.28)

where i = \...nr, then System (7.27) is stable and the decay rate of states satisfies:

d(xTPx)
dt

Proof:

<-2??t?? . (7.29)

By multiplying a, > 0 to both sides of inequality (7.28) and then taking summation for

;' = 1 ...... it is derived that:
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i>f>, (4 + BK1C1) + Ì>,- (4 + ^C.)> ?-??^a,? . (7.30)

Since Sa? = 1 » the above inequality is the same as:

^S «/ (4 + ^C) + £«, (4 + ^,C. )r/> < -2rP . (7.31)
;=1 /=1

From Lemma 7.1, it is concluded that System (7.27) is stable and the decay rate of states

satisfies inequality (7.29).

Q. E. D.

The controller design problem is therefore to find a positive definite matrix P and nr

feedback gain K1 that solve nr inequalities in the form of (7.28).

Remark 7.2: As inequality (7.28) is not co-convex in both P and K1 , it cannot

be solved in the framework of Linear Matrix Inequality (LMI) [93]. It can be solved with

a Bilinear Matrix Inequality (BMI) optimization tool such as Penopt [94]. One other

option is to solve (7.28) with Iterative Linear Matrix Inequality (ILMI). A solution, which

is adopted from [95], is given in Appendix A.

7.2.2 Controllerfor the system with componentfaults

The controller for the system with faults can be constructed in a similar way so

that the same performance, which is the decay rate of / in this research, can be restored

for the post-fault system. This is, however, only an ideal situation since, more than often,
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the performance cannot be restored because of the restricted capability of the post-fault

system. In a worse case, the attempt of restoring performance may even lead to damage

due to the exploring of the post-fault system limit. In this research, different performance

requirements are applied to different fault situations.

For the fuzzy model (7.9), the rules of the fuzzy output controller are summarized

as:

If (?, ? j is (v;, ? J, then the control signal is calculated as:

U9=K^y = Kf2X. (7.32)

From Model (7.9), the dynamics of the closed-loop system becomes:

*=£
j=1 J=I

S OC1^Pj(A11 + BKf1)X. (7.33)
J=I

Theorem 7.2: If there exist a positive definite matrix P and nr ??? feedback gain Ky

that solve the following nr xn, inequalities:

P(AiJ+BKf!) + (AIJ+BKf2)T P<~2YjP (7.34)

where i = i...nr and j - \...??, then System (7.33) is stable and the decay rate of states

satisfies:

d(xTPx)
dt ^ -^Z, ßJYjX1Px, (7.35)

J=I
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where, ?. is the performance requirement (decay rate) of the system with the fault of ? .

Proof:

By multiplying ßj to both sides of inequality (7.33) and then taking summation for

j = 1 . . .?ß , it is derived that:

"? "it j "gPYßj (A9 + BKf:) + Jjßj (4 + BK0C,) P < -2YßjYjP .
./=1 j=\ j=\

(7.36)

By multiplying a, to both sides of the above inequality and then taking summation for

/ = 1 ...nr, it is derived that:

^S a,S?? + *^)
>1

+S
/=1

«,£ßj(4, + BK&)r ?
./=1

-2S
7=1

(7.37)

which means:

^S a,S???+??,?)
y=i

+S cfLßAA, + BKf,)? \?

?-2S^?
J=I

since Sa<: = 1 ·
?=1

(7.38)
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7=1

Therefore, from Lemma 7.1, the closed-loop system (7.33) is stable and its decay rate

"s

satisfies inequality (7.35). Moreover since 0 < ßj < 1 and ^/^ = 1 , the decay rate of the

closed-loop system satisfies:

^S/^^?' (7·39)

where, /}=y is the decay rate performance requirement for the fault-free system; /n¡ is

the performance requirement for the system with the worst fault.

Q. E. D.

The controller design for the system with component faults is thus to find to a positive

definite matrix P and nrxne feedback gain KtJ that solve nrxne inequalities in the

form of (7.34).

7.2.3 Controllerfor the system with actuatorfaults

For the fuzzy model (7.14), the rules of the fuzzy output controller are

summarized as:

If ??, ?\ is (?/5 ? j, then the control signal is calculated as:

U1J=K1Jy = Kf1X. (7.40)

Since the control signal at (?, ?) is:
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=S
>1

(7.41)

from Model (7.14), the dynamics of the closed-loop system has the form of:

»» «.-

:Sµ,*+S/?aS
j=ì /=1

(7.42)

which is the same as:

»,. h_

*=Sµ*+S
,=1 7=1

"D "D

/V=I y=i
(7.43)

"ff

Since ]T/?¿ = 1 , System (7.43) is equivalent to:

"r f "? \ "r*=S«, Sµ * +S
í=i ?*=? y ?=?

% ( "?? ?
«,Sa LßAKac

A=I ^ ;=1
(7.44)

and

?=Sa< Sa S>,4 *+S "e f "?? ^«,Sa S??»¥
*=? V >1

(7.45)

Therefore, it is derived that:

-S
A=I ^ >1

(7.46)
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Theorem 7.3: If there exist a positive definite matrix P and nr xne feedback gain Ktj

that solve the following nrxnex ne inequalities:

P(A, + BkKf) + (4 + B11Kf1)7 P < -27jP, (7.47)

where, i = \...nr, j = \...?? and k = \...ne, then System (7.43) is stable and the decay

rate of states satisfies:

d(xTPx)
dt < -2^ß,?/Px, (7.48)

where, ? is the performance requirement (decay rate) of the system with the fault of ?j .

Proof:

By multiplying /?. to both sides of inequality (7.47) and then taking summation for

j = 1 ... nB , it is derived that:

V 7=1 J V./=ifjßJ (A, + B11Kf1)U fjßJ (4 + B11Kf1)7 P<-
V J=i J

P. (7.49)

By multiplying ßk to both sides of the above inequality and then taking summation for

k = 1 ...«„, it is derived that:

?S& 2^(4+W7..) +S? ^P1(A1+B11Kf) \P<- YlßjY,
^n, ?

P (7.50)
? ./=? y
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By multiplying a, to both sides of (7.50) and taking summation for i = \...nr, it is
derived that:

?1
< -

S «,Sa £^(4+^^c)r
(7.51)

Therefore from Lemma 7.1, the closed-loop system (7.46), or equivalently (7.43), is

stable and the decay rate satisfies:

>1
(7.52)

Q. E. D.

The controller design for the system with actuator faults is thus formulated to find to a

positive definite matrix P and ?rxn„ feedback gain K that solve ? xn0xn0• o U Too

inequalities in the form of (7.47).

7.2.4 Fuzzy PI controller

The stability of the closed-loop system and its performance of decay rate were

discussed in former sections. For the purpose of following a given reference signal, the
tracking accuracy such as steady-state errors needs to be considered. For low frequency

reference signals, a Proportional-Integral (Pl) controller will efficiently reduce the

tracking errors. A fuzzy Pl controller can be easily constructed with the design method
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discussed in former sections. An integrator, however, needs to be added to the model in

each rule. The integrator has the form of:

(7.53)

so that the rules in the fuzzy model of, for example, (7.4) are now:

Rule i:

If ? is ?,., then the dynamics of the system is:

? = Ax + Bu

x„ = ?

? = C,?

In a single state vector form, System (7.54) is the same as:

XA=AAiXA+BAU

(7.54)

yA = CAXA (7.55)

where

? - A1 0
C. 0

B, and CA =
C. 0
0 /
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A fuzzy PI controller therefore can be constructed with Model (7.55).

7.3 The Reconfiguration Mechanism

In this research, the reconfiguration consists of two parts: the reconfiguration of
controller and the reconfiguration of reference signals.

7.3.1 Controller reconfiguration

With the fuzzy controller design method presented in Section 7.2, the controller

can be reconfigured based on the operating status and the faults information of the system.

The control signal can be calculated for current operating point at (?, ?) as:

-S «,-2>A2
7=1

(7.56)

To reduce the computation load, it is not necessary to recalculate the membership

of ? at every step. In fact the fuzzy inference based on the fault information - or the

reconfiguration of controller - needs to be done only once for the post-fault system. After

the reconfiguration, the fuzzy controller returns to the form of Equation (7.25) with a new
feedback gain so that the rules of the new controller have the form of:

Rule /: If ? is ?,. , then the control signal is calculated as:

U = K1Z, (7.57)

where,



*, = 2>?· (7.58)
>?

7.3.2 Reference reconfiguration

The capacity of a system might be restricted when the faults occur. Hence the

performance cannot be restored to the fault-free level. The performance degradation due

to faults has been considered in the controller design. Different performance requirements

of decay rate are applied to different fault situations. When a system is required to follow

a given reference signal, the reference signal also needs to be reconfigured if the system

might be further damaged if otherwise.

In this research, the reference signal is constructed with a fuzzy TS model as:

Ruley: If ? is # . , then the reference signal has the form of:

r = r + — r0. (7.59)
Tj Tj

where r0 is the desired steady state value of r .

The maximal value of r0 depends on the capability of the system, which is

calculated as:

Rule y': If ? is ¿? , then the maximal value of r0 is:

r=7j. (7.60)

150



The reference signals therefore can be reconfigured with the fuzzy inference

technique.

Remark 7.3: (7.59) is a first order system in the form of:

1
r = 7ro- (7.61)

TjS + 1

The reconfiguration in (7.59) is thus to adjust the time constant of the reference

signal in (7.61). In the research, the objective of control is to drive the elevator to a

required position. The response speed of the elevator is a combined function of the time

constant in (7.61) and the gain of the controller. For the faulty elevator, tracking a

reference signal that is faster than its limit might lead to damage since the actuators are

working in the saturation zone. Therefore, a slower reference signal or a larger t . is

required for the faulty elevator.

7.4 Active Fault Tolerant Control System

With the results from this and former chapters, an AFTC system as shown in

Figure 1 .1 is constructed. The system consists of Fault Detection and Estimation (FDE), a

fault-free controller, and a reconfiguration mechanism:

FDE (as the magnitudes of faults are estimated, FDE is used here instead of FDI -

Fault Detection and Isolation) consists of an Adaptive Unknown Input Observer

and three HJH_ adaptive observers for the fault detection and estimation. For

fault detection, the output estimation errors of the observers are taken as
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indicators of occurring faults; for fault estimation, the estimated values of

parameters are taken as the magnitudes of faults;

A fuzzy controller is constructed in the form of (7.26) for the fault-free system to

meet the stability and performance requirements;

The reconfiguration mechanism reconfigures the controller and the reference

signal based on the fault information. At the detection of an occurring fault, the

reference signal is reconfigured for the first time. Since detailed information of

the occurring fault, namely the type and size of the fault, is not available, the

worst situation is assumed so that the slowest reference signal is selected

temporally. When the fault is identified and estimated, both the reference signal

and the controller are reconfigured using the detail fault information. The

reference signal is recalculated as shown in the rule of (7.59). The gains in the

rule of the fuzzy controller are recalculated as shown in Equation (7.58).

7.5 The AFTC ofthe Elevator: Simulations

The AFTC system is applied to the elevator for the purpose of fault tolerant

control. 5 faults described in Chapter 3 are applied to 5 simulations separately. The faults

magnitudes and their occurring time in each simulation are listed in Table 7.1. The

simulation on the fault of KsL is not included here because, in the simulation, it is found

that the change ofKs¿ has little effect on the performance of the elevator.
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Table 7.1 Details of faults in the elevator

Parameters Nominal Values Fault Magnitudes Occurring Time (sec)

CvI 0.00337'(in/sec'VmA)

H,„ 8.6*103 (lbf-in/rad)

-0.9 hvL

+9H1n

C1. 3.208x10"

(in /sec/psi)

+9C,,

Cn. 0(in2/psi12) +3.208x10"

C, 0 (in'1ZpSi1 2) +3.208x10'-

The objective of the control, as discussed in Chapter 3, is to move the two

subsystems synchronously and follow the reference signal r under various fault
conditions:

?-? I X-T
(7.62)

To show the performance of the elevator, the tracking error e, . the position difference e2

of two sub system, and the twisting torque Tr generated on the elevator are defined as:

7/ IRe, = -1^ — — r
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X1 j X1

Lr — Kp5 [X7 L X7R) · (7.63)

7.5.1 The fault ofkvi

The simulation result of the elevator suffering Kl fault is shown in the Figure 7.1.

Three sub figures represent the tracking of reference signal r, the difference e2 between

two subsystems, and the twisting torque Tr generated on the joint of the elevator.
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Figure 7.1 AFTC simulation on krL fault
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To show the effect of the reconfiguration, the simulation is designed to run 80

seconds consisting of 4 periods:

1 . In 0 - 10 seconds, the fault-free elevator is tracking a fast reference signal;

2. In 10 - 20 seconds, the faulty elevator is tracking the same reference signal as

in 1;

3. In 20 - 60 seconds, the faulty elevator is tracking the slowest reference signal as

discussed in Section 7.4. This is the first reconfiguration (at 20 second) of

reference signal when a fault is detected;

4. In 60 - 80 seconds, the faulty elevator is tracking a reconfigured reference

signal under the control of a new controller - this is the reconfiguration (at 60

second) of both the controller and the reference signal when the fault is estimated.

The performance difference of these 4 periods can also be seen in Table 7.2, where the

steady-state errors of e, , the maximal e2 and the maximal Tr are shown.

From the simulation results, it can be seen that:

1. In the period 1, the elevator has full capability so that it can track a fast

reference signal with small errors; meanwhile, the two subsystems are totally

synchronized;

2. In the period 2 after the fault, the capability of the elevator is impaired so that

following the same reference signal exceeds the limits of the elevator especially
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for the left subsystem; as a result, a huge twisting torque is generated because of

the discrepancy between the two subsystems;

3. In the period 3, the elevator is tracking the slowest reference signal; the

twisting torque is reduced considerably; this is, however, a choice of safety over

performance;

4. In the period 4, both the controller and the reference signal are reconfigured

with the detail fault information; the performance of the system is recovered; the

twisting torque is almost eliminated.

Table 7.2 Performance of the elevator - AFTC for kvL fault

Period Tracking Error Maximal difference Maximal Torque

e ? (rad) e2 (rad) Tr (lbf-in)

1 0.0009 0 0

2 0.0039 0.0288 2.88 ? i O4

3 0.0015 0.0135 1.35x1 04

4 0 2.27X10'4 227

7.5.2 Thefault ofHm

The increase of the hinge stiffness Hn, can restrict the travel range of the elevator.

If the elevator is required to follow a reference signal that exceeds its limit, the difference
157



between the angle of the elevator and the reference signal cannot be eliminated. Due to

the property of a PI controller, the control command to the EHSVs will keep increasing.

In such a case, the hydraulic cylinders will eventually reach their limits and work in the

saturation zone which may result in unexpected vibration and impact. In the long run, the

elevator may be damaged.

The simulation also consists of 4 periods that are as the same as those in Section

7.5.1. The simulation results are shown in Figure 7.2 which consists of sub figures of

elevator angle and the pressures in the cylinders. As the change of Hm will not influence

the synchronization of the two subsystems, their difference and consequently the twisting

torque are all zero.

Elevator angle tracking: dHm/Hm =9
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Pressure ¡? the cylinders: dH/H =9
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Figure 7.2 AFTC simulation on Hn, fault

Table 7.3 Performance of the elevator - AFTC for Hn, fault

Period Tracking Error Maximal difference Maximal Torque

e, (rad) e2 (rad) Tr (lbf-in)

1 0.0009 0 0

0.103

0.10
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From the pressure figure, it can be seen that, in the period 2 and 3, the pressures in

the cylinders reach their limits: 3000psi (supply pressure) for the active chamber and

50psi (reservoir pressure) for the passive chamber. The elevator angle, however, still

cannot follow the reference signal. After the second reconfiguration, a smaller reference

signal is selected. The performance of the elevator is therefore restored partially. The

tracking performance comparison of the 4 periods is also shown in Table 7.3.

7.5.3 Thefault ofCn

Cu is the leaking from the active chamber to the environment. This is a severe

fault as it not only impacts the performance of the elevator but also endangers the whole

hydraulic system for the hydraulic fluid loss. A reasonable reaction is to shut down the

faulty cylinder. The simulation results are shown in Figure 7.3. The simulation consists

of 4 periods:

1 . In 0 - 1 0 seconds, the fault-free elevator is tracking a fast reference signal;

2. In 10 - 20 seconds, the faulty elevator is tracking the same reference signal as

in 1; the left cylinder, however, is shut down;

3. In 20 - 40 seconds, the faulty elevator is returning to its zero position;

4. In 40 - 80 seconds, the reference signal is reconfigured to the slowest one to

reduce the twisting torque.

The performance comparison of the 4 periods can also be seen in Table 7.4.
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X 104 Twisting torque on the elevator: G1. = 0.003208
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Figure 7.3 AFTC simulation on C/¿ fault

Table 7.4 Performance of the elevator - AFTC for C1L fault

Period Tracking Error Maximal difference Maximal Torque

e, (rad) e2 (rad) T1- (lbf-in)

1 0.0009 0 0

0.0295 2.95 * W4

0.0025 -0.0086 -8.6x10"
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From the simulation results, it can be seen that, in the period 2, a huge twisting
torque is generated because of the shutting down of the left cylinder. As the function of

the left cylinder cannot be restored - to prevent the further failure of the hydraulic system,
the reference signal is reconfigured so that the twisting torque is reduced to -8.6 ? 1 03 lbf-
infxom 2.95 xlO4 lbf-in.

7.5.4 The fault ofC2L

C2L is the leaking from the passive chamber to the environment. The simulation

results are shown in Figure 7.4. The simulation consists of 4 periods which are same as

those in Section 7.5.4. The numerical comparison of the 4 periods is shown in Table 7.5.
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Figure 7.4 AFTC simulation on C2L fault
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Table 7.5 Performance of the elevator - AFTC for C2/. fault

Period Tracking Error Maximal difference Maximal Torque
e/(rad) e2 (rad) TV (lbf-in)

1 0.0009 0 0

2 - 0.0298 2.98*104

0.0025 -0.008 -8*103

From the simulation results, it can be seen that, in the period 2, a huge twisting
torque is generated because of the shutting down of the left cylinder. As the function of

the left cylinder cannot be restored - to prevent the further failure of the hydraulic system,
the reference signal is reconfigured so that the twisting torque is reduced to -8*1 03 Ibf-in
from 2. 98 ? IO4 Ibf-in.

7.5.5 The fault ofCm

C121. is the leaking between the active and passive chambers. It is not as severe as

the former two leaking since the hydraulic liquid will not leave the system. When a

leaking fault is detected, however, the type and the magnitude of the fault cannot be

decided. Therefore, the left elevator needs to be shut down for the time period before the

fault is fully evaluated. The simulation consists of 4 periods:

1 . In 0 - 10 seconds, the fault-free elevator is tracking a fast reference signal;
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2. In 10 - 20 seconds, the faulty elevator is tracking the same reference signal as
in 1; the left cylinder, however, is shut down;

3. In 20 -60 seconds, the faulty elevator is tracking the slowest reference signal;
this is not a necessary reconfiguration; it is included in the simulation to show the

effect of reference reconfiguration; the left elevator is still shut down;

4. In 60 - 80 seconds, both the controller and the reference signal are reconfigured
using the available detail information of fault; the left cylinder is switched back to
work.

The numerical comparison of the 4 periods is shown in Table 7.6.
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Figure 7.5 AFTC simulation on Cm fault
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Table 7.6 Performance of the elevator - AFTC for Cm fault

Period Tracking Error Maximal difference Maximal Torque

ei (rad) e2 (rad) Tr (lbf-in)

1 0.0009 0 0

2 0.0009 0.0282 2.828*104

3 - -0.0088 -8.88 x10s

0.0002 0.0034 3.48x1 03

From the simulation results, it can be seen that, in the period 2 after the fault, a

huge twisting torque is generated because of the shutting down of the left cylinder. In the

period 3, the reference signal is reconfigured so that the twisting torque is reduced. In the

period 4, the left cylinder is reconfigured and the twisting torque is further reduced.

From the Sections 7.5.1 to 7.5.5, the simulations on the fault tolerant control of

the elevator show that the presented AFTC system is capable of:

1 . Restoring the tracking performance of the post-fault elevator;

2. Preventing the further damage of the elevator by reducing the twisting torque.

168



7.6 Summary

A fuzzy PI controller is designed for the elevator with possible parameter faults.

Different faults are modeled as different operating conditions of the system so that

controllers addressing these faults can be constructed. Performance degradation due to

occurring faults is considered explicitly in the controller design procedure as a change of
decay rate. With the fault information available from FDI, the controller can be

reconfigured easily with fuzzy inference technique. A reference reconfiguration method

is also presented in the fuzzy inference form by formulating the reference signal into a
fuzzy model. A complete Active Fault Tolerant Control system of the elevator, which

integrates the results from Chapters 4 to 7, is proposed and then validated through the
simulations.

169



CHAPTER 8

CONCLUDING REMARKS

8.1 Conclusions

Faults usually appear as tolerable performance deterioration of a system. In a

safety critical environment, occurring faults need to be addressed properly to restore the

performance of the system and, more importantly, to prevent faults from developing into

severe failures. Active Fault Tolerant Control is an advanced control strategy to maintain

the stability and performance of the post-fault system by reconfiguring the controller with

the evaluated fault information. An AFTC system, therefore, consists of three

components: a fault evaluation system, a reconfigurable controller and a reconfiguration

mechanism. Beyond the common requirements of stability and performance, an AFTC

system is also expected to have the features of prompt fault detection, accurate fault

estimation, and proper post-fault reconfiguration.

This thesis studies the AFTC of an electro-hydraulic driven elevator. An AFTC

system is constructed with the following components:

1. A Fault Detection and Estimation (FDE) component is built based on robust

adaptive observers. The output estimation errors of the observers are taken as

residuals for the purpose of fault detection. Once a fault occurs, the residuals

deviate from zeros immediately so that the prompt detection of fault can be

guaranteed. The location and magnitude of occurring fault are then estimated with
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the parameter estimation part of the observer so that the accurate information of

fault is available for the future reconfiguration;

2. A controller that can be easily reconfigured is designed in the fuzzy PI
controller form. The controller is constructed based on the fuzzy TS model of a
nonlinear system where the dynamics of the system - at different operating points
and different fault scenarios - is modeled as linear models in the fuzzy rules. The
stability and performance requirement is enforced in the form of matrix

inequalities with the explicit consideration of performance degradation;

3. A reconfiguration mechanism is developed with fuzzy inference technique. The
new controller can be reconfigured as the fuzzy blending of the pre-designed
controllers. The reference signal of tracking is also reconfigured with fuzzy
inference.

The main contributions of the thesis are the Fault Detection and Estimation (FDE)
method based on robust adaptive observers and the reconfiguration method based on the

fuzzy inference technique:

1. A disturbance-decoupled adaptive observer - Adaptive Unknown Input

Observer (AUIO) - is constructed so that, if certain measurement redundancy
requirement is satisfied, the estimation of fault is not affected by existing
disturbance and other occurring faults. This is an excellent characteristic

especially in a situation where the interacting faults may spoil the estimation of

others. As shown in Chapter 6. three leaking faults in the hydraulic system are
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interacting with each other so that false estimation might occur. To eliminate the

effect of these false estimation on others, the dynamics and the faults in the

hydraulic system are taken as disturbance to the AUIO in Chapter 4 so that the

accurate estimations can be obtained;

2. Unitary System is defined as a system whose singular values of transfer

function matrix are all equal. The method of constructing a closed-loop unitary

system is developed. The benefit of a unitary system is that, for a fault detection

system whose inputs are faults and outputs are residuals., all faults will appear in

the residuals with the same intensity since, for different inputs with the same

magnitude, the magnitude of the outputs is the same for a unitary system.

3. An HJH_ adaptive observer is constructed based on the HJH_

optimization, which is an integrated optimization of seeking the balanced

robustness and sensitivity. In this thesis, the HJH_ optimization for strictly

proper systems, whose solution is not available before, is solved with Unitary

System technique;

4. The controller design and reconfiguration methods based on fuzzy TS

model are developed. Controller reconfiguration, performance degradation, and

reference reconfiguration are not new concepts. However, to the best knowledge

of the author, it is the first time all of these are considered in the framework of a

single fuzzy inference system.
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8.2 Future Work

The research in this thesis, which mainly focused on the fault detection and estimation

component ofAFTC, can be extended in the following areas:

1 . Fault estimation with nonlinear adaptive observers. It is necessary to develop
nonlinear adaptive observers since nonlinearity exists in most systems. Even for a

linear system, nonlinear adaptive observers are required for the accurate

estimation if certain information of the system, for example the signal matrix f ,

is not available. In this thesis, the signal matrix f consists of functions of known

signals such as u and y so that the elements in f are all known. In the case where

apart of f is unknown, the dynamics of the system becomes bilinear in f and ? .

A nonlinear adaptive observer is thus required for the estimation of ? . Although,
for a system in certain forms, an extended Lungberger observer or extended

Kaiman filter can be applied for the parameter estimation, the disturbance

rejection capability is to be investigated;

2. Unitary System. In this thesis, a closed-loop unitary system was constructed in

a weighted observer form with static output feedback. The singular values of the

closed-loop unitary system are equal to the magnitude response of a first order

transfer function. With a dynamic output feedback, the singular values of a

closed-loop unitary system might be assigned in a more complicated form such as

the magnitude response of a second order transfer function. Moreover, the non-
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Singular requirement on CB of constructing a closed-loop unitary system needs to
be relaxed.
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APPENDIX A

THE ILMI ALGORITHM

This appendix solves the following matrix inequality with Iterative Linear Matrix

Inequality (ILMI) algorithm [95]:

P (A1 + BK1C) + (A1+ BK1C)' P < -2??
P = P7>0

where ? = 1 ... « .

(A- 1)

(A- 2)

The ILMI algorithm

Step 0. Select Q > 0, and solve P" from the following Riccati equation:

AxP + PA7 - PBB7P + Q = Q.
Set k = 1 and X1 = P" .

Step 2. Minimize a subject to nr following LMI constraints:

P11A1 + A17P" - XkBBTPk - P"BB7X"
+XkBB7Xk -IrP" -aPk

(B7P" + K1C)
(PkB + CTK7)

-I

<0,

(A- 3)

(A- 4)

and

Pk = (Pk)T>0
Denote a as the minimized value of a .
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Step 3. If ak < O , the solution is found as K¡ for i = 1 . . .nr . Stop.

Step 4. Solve the following optimization problem for Pk and K1

Op2: Minimize the trace (Pk} subject to (A - 4) and (A - 5) with a = ak . Denote
P" as the optimal value of Pk .

Step 5. If \xk - P'\ < d , where d is a predefined small constant of tolerance, then go to
Step 6. Otherwise, set k = k + 1 and Xk = P* , then go to Step 2.

Step 6. The algorithm cannot find a solution. Stop.
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APPENDIX B

MEMBERSHIP FUNCTIONS

1. Membershipfunctions in the fuzzy TS model ofthefault-free elevator

The premise variable of the fault-free elevator is

For each variable in v, there are two rules. The membership function regardin

and x5 are shown in figures B.l and B.2 respectively.

Membership funçtisn ptoSS pltìt pOtrttS' :' }gj
{X3-X4;IXZ-XA)

mpu! variabb "{x5-x4}*

Figure B.l Membership función of (x, -xA)
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Membership function p»c*s plot points; j IQ]

i'Tput vangbie "xc"

Figure B.2 Membership función of x5

2. Membershipfunctions in the fuzzy TS model ofthefault elevator

Although 5 faults are considered in the ATFC simulation, there are no fuzzy rules for the

two leaking faults to environment, C17 and C27 , since the corresponding actions to these

faults are to shut down the left subsystem. Therefore the premise variables are

T = H

C1.
H..

For each variable in ? , there are two rules. Their membership functions are shown in

figuresB.3-B.5.
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istembershfp function pteis plot points: j jg]

input vaftabie "kv"

Figure B.3 Membership función of kvl

Membership function piots plot points.' 181;

input variabas Xm*

Figure B.4 Membership of H1n
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Membership function plots PN. ppifliS: ¡ -|g·)
c,:

input variable X,.

Figure B. 5 Membership of C1.
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APPENDIX C

LINEAR MODEL OF THE ELEVATOR

1. The program of constructing linear models:

%% Fuzzy model - nonlinear: linearized at (Xv, P_12) %%

clear;

m=7.88e-3; % Piston mass - m
Ap=3.623; % Piston area - Ap
b=9.27; % piston damping - b
omega=817; % Valve frequency - omega
zeta=0.8; % Valve damping - zeta
k=omega~2*0 . 00337; % Valve gain - equaivelent - kv*omegaA2
beta=le5; % Volumn modulus - oil - Beta
cl=3.208e-4; % Valve flow coefficient - Cl
V=4.1; % Cylinder chamber volumn - null position
As=250000; % Stiffness - Piston - Ks

J_of_surf=15/2; % Inertia - elevator panel - Js
B_of_surf=82; % Damping - elevator panel - Bs
l_of_arm=2 . 92 4 ; % Leverage length - elevator panel - 1
Ps=500000; % Stiffness - elevator panel - Kps
HM=300; % Hinge stiffness - Hm
C_v=0. 338/0. 035;

P_sup=3000;
P_rev=50;
xv=[0.01 0.03] ;
P1_P2=[100 2800] ;

for i=l:2

for j=l:2
K_f=C_v*sqrt(P_sup-Pl_P2(j) ) ;
K_p=C_v/2/sqrt(Ps-Pl_P2(j) ) *xv(i) ;
K_leak=cl;
K_tp=K_p+K_leak;

denum=conv ( [m b As], [V beta*K_tp] ) ;
n_order=length (denum) ;
denum (n_order-l ) =denum(n_order-l) +l*beta*Ap"2 ;
num=beta*Ap*K_f ;

sys_x5_2_x2=tf (num, denum) ;
sys_x8_2_x2=tf ( [As*l_of_arm] , [m b As] ) ;
sys_x5_x8_2_x2= [ sys_x5_2_x2 sys_x8_2_x2 ] ;

sys_L_l=ss (sys_x5_x8_2_x2) ;
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n=sìze (sys_L_l . a, 1) ;
sys_L=sys_L_l ;

A_LL= [sys_L. a sys_L.b ( : , 1) *1 zeros(n,2) sys_L.b ( : , 2) ; ...
zeros (l,n) 0 1 0 0 ; . . .
zeros (l,n) -omega'N2 -2*zeta*omega 0 0; ...
As*l_of_arm*sys_L. c/J_of_surf 0 0 -B_of_surf /J_of_surf

- (As*l_of_arm~2+Ps+0.5*HM*57.29) /J_of_surf; . . .
zeros (1, ? ) 0 0 1 O];

A_RR=A_LL;
A__LR=zeros (n+4,n+4) ;
A_LR(n+3,n+4)= (Ps-O . 5*HM*57 . 29) / J_of_surf ;
A_Lìn=[A_LL A_LR; A_LR A_RR] ;

B_Lin=zeros (2*n+8,2) ;
B_Lin(n+2, l)=k;
B_Lin(2*n+6,2)=k;
B_L=B_Lin(l:n+4, 1) ;
B_R=B_L;

C_Lìn=zeros (2, 2*n+8) ;
C_Lin(l,n+4)=l;
C_Lin(2,2*n+8)=l;
C_L=C_Lin ( 1 , 1 : n+4 ) ;
C_R=C__L;

C_Lin_Ps=zeros (2,2*n+8) ;
C_Lin_Ps (1, l:5)=sys_L.c;
C_Lìn_Ps (2, 10:14)=sys_L.c;

C_Lin_Xv=zeros (2,2*n+8) ;
C_Lin_Xv(l, 6)=1;
C_Lin_Xv(2, 15)=1;

A_LL_I=zeros (n+5,n+5) ;
A_LL_I(n+5,n+4)=l;
A_LL_I (l:n+4, 1 : n+4 ) =A_LL;
A_RR_I=A_LL_I ;
A_LR_I=zeros (n+5,n+5) ;
A_LR_I (l:n+4, 1 :n+4)=A_LR;

A_I=[A_LL__I A_LR_I;A_LR_I A_RR_I ] ;

B_I=zeros (2*n+10,2) ;
B_I (n+2,l)=k;
B_I (2*n+6+l, 2)=k;

B_L_I=B_I (l:n+5,l) ;
B_R_I=B_L_I;

C_I=zeros(4, 2*n+10);
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C_I (l:2,9:10)=eye(2) ;
C_I(3:4,19:20)=eye(2);
C_L_I=C_I ( 1 : 2 , 1 : n+5 ) ;
C_R_I=C_L_I;

A{ (i-l)*2 + j}=A_I;
B{ (i-l)*2 + j}=B_I;
C{ (i-l)*2+j}=C_I;

end
end

2. The linear model linearized at

(x}L-x4L, x5i x3R-xAR ^X=OOO 0.01 100 0.01):
A{1} =
[-1185.88 601571233,-8833.637 69554799,-
143. 5666614 68 527, 0,0, 64, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,0, 0,·
0,0,0,0,0,0;
0, 256, 0,0, 0,0, 0,0,0, 0,0, 0,0, 0,0, 0,0, 0,0,0 ;
0,0,0,-117 6.39593908 62 9,-

7745.5782043140,0;
0, 0,0, 4096, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,·
0, 0,0, 0,0, 0,1, 0,0,0, 0,0, 0,0, 0,0, 0,0,0, 0;
0,0,0,0,0,-667489,-1307.0,0,0,0,0,0,0;
0,0,4234 987.62225222,0,17245562.1451492,0,0,-10.9333333333333,-

352805, 0,0, 0,0, 0,0,0, 0,0, 65520. 8666666667, 0 ;
0,0,0,0,0,0;
0,0,0,0,0,0;
0,0,0,0, 0,0,0,0,0,0,-1185.88601571233,-8 833.637 69554799,-

143. 566661 468527, 0,0, 64, 0,0,0, 0;
0,0,0,0,0,0;
0,0,0,0,0,0;
0,0, 0,0, 0,0, 0,0, 0,0, 0,0,0,-117 6.39593908 629,-

77 45. 57820431472, 0,0, 0, 128, 0 ;
0, 0,0, 0,0, 0,0, 0,0,0, 0,0, 0,4096, 0,0, 0,0,0, 0 ;
0,0,1,0,0,0;
0,0,0, 0,0,0,0,0,-667489,-1307.20000000000,0,0,0;

0,0, 0,0, 0,0, 0,0, 65520.86 66666667,0,0,0,4234987.62225222,0,17245562.1451
4 92, 0,0,-10.9333333333333,-352805, 0;
0,0,0,1,0,0;
0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 1,0;]

B{1}
= [0,0;

0, 0;
0, 0;
0, 0;
0, 0;
0,0;
2249.43793000000,0;
0, 0;
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O, 0;
0, 0;
0, 0;
0,0;
0,0;
0,0;
0,0;
0,0;
0,2249.43793000000;
0,0;
0,0;
0,0;]

C{1}
= [0, 0,0, 0,0, 0,0, 0,1, 0,0, 0,0, 0,0, 0,0, 0,0,0 ;

0, 0,0,0, 0,0, 0,0, 0,1, 0,0, 0,0, 0,0, 0,0,0, 0;
0, 0,0, 0, O, 0,0, 0,0, 0,0, 0,0, O, 0,0, 0,0,1, o,·
0,0, 0,0, 0,0, 0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,1;]
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