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ABSTRACT

A DISCRETE HIDDEN MARKOV MODEL FOR THE RECOGNITION OF

HANDWRITTEN FARSI WORDS

PUNTIS JIFROODIAN-HAGHIGHI

Handwriting recognition systems (HRS) have been researched for more than 50

years. Designing a system to recognize specific words in a handwritten clean document is
still a difficult task and the challenge is to achieve a high recognition rate. Previously,

most of the research in the handwriting recognition domain was conducted on Chinese

and Latin languages, while recently more people have shown an interest in the Indo-
Iranian script recognition systems.

In this thesis, we present an automatic handwriting recognition system for Farsi

words. The system was trained, validated and tested on the CENPARMI Farsi Dataset,

which was gathered during this research. CENPARMFs Farsi Dataset is unique in terms

of its huge number of images (432,357 combined grayscale and binary) , inclusion of all

possible handwriting types (Dates, Words, Isolated Characters, Isolated Digits, Numeral
Strings, Special Symbols, Documents), the variety of cursive styles, the number of
writers (400) and the exclusive participation ofNative Farsi speakers in the gathering of
data.
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The words were first preprocessed. Concavity and Distribution features were

extracted and the codebook was calculated by the vector quantization method. A Discrete

Hidden Markov Model was chosen as the classifier because of the cursive nature of the

Farsi script. Finally, encouraging recognition rates of 98.76% and 96.02% have been
obtained for the Training and Testing sets, respectively.
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Chapter 1 : Introduction

1.1 Introduction

In the twenty-first century, the abilities of robots and automated systems have been
used to ease human affairs. Nowadays, customers want to have their demands fulfilled as

soon as possible. Employers want to hire fewer employees. For instance, customers may
want to cash a check at midnight while there is no bank clerk available. Therefore, the

bank may need a signature recognition system to validate the check's signature and to
cash the check for the customer. A post office needs an automatic recognition system

which can separate the letters destined for different cities. During a war, military

authorities may need the help of a system to read threatening letters being sent to them as
soon as possible when they have no access to a translator.

These are a few examples of handwriting recognition, which is a branch of a

practical science called Computer Vision. In other words, handwriting recognition is the
automatic way of reading a human's handwriting.

Handwriting recognition is a combination of three fields of study: Image
Processing, Pattern Recognition and Machine learning. The handwritten words, sentences
or texts are considered as images for the recognition system and should be processed

before they can be sent to the pattern recognition phase. In this phase, they are compared
with the existing patterns which the system has already learned and the recognition

xv



system chooses the best match for the current image. In other words, the system

recognizes the images.

In recent years, a lot of research has been conducted on the recognition of Latin

and Chinese scripts. Unfortunately, fewer researchers have shown an interest in

conducting research in Indo-Iranian languages and the reason has been due to less

governmental support of such handwriting recognition projects.

Farsi (Persian) is a branch of the Indo-Iranian languages and is similar to all of

them in terms of letters, words and grammar. Therefore, a Farsi word recognition system

with some small changes can also be used to recognize the words in all the Indo-Iranian

languages. This research presents a Farsi handwriting word recognition system to

recognize a small scale dictionary of 73 Farsi words, which are most commonly used in
the fields of Finance and Measurement. The proposed method is suitable for limited

vocabulary applications such as reading and recognizing the postal codes and the names
of the cities.

1.2 Literature Survey
1.

A lot of research has been conducted on the recognition of Latin and Chinese

scripts [60-70]. Recently more people have shown interest in Indo-Iranian Languages

script recognition systems [44-59], To be able to train, validate and test our Farsi

Handwriting word recognition system, we needed a Dataset with a sufficient number of

images. Some Farsi Datasets will be described in Chapter 2, Section 2.3.1 [5, 7-10]. The
2



Dataset which we have designed and collected is a multi-purpose Handwritten Dataset,

which includes all possible script types of the Farsi language [19]. Our Dataset will be

compared with the other existing Datasets in Chapter 2.
For a small size lexicon such as 73 words, the holistic method as described in [20]

is used. Among all of the classification models Hidden Markov Models (HMM) were
chosen because of the connected nature of the Farsi script. HMM systems stochastically

model sequences of variable lengths and cope with nonlinear distortions along one
direction [21].

Numerous research studies have been conducted on handwritten word recognition

using HMM [11, 20, 40- 42, 46-49, 56]. Some of these studies are briefly described
below. The following research has helped us to find the correct future research directions.

In M. Dehghan et al.'s research [11] a holistic Farsi word recognition system was

proposed. This system used Discrete Hidden Markov Models (HMM) as the classifier
and a Self-Organizing Feature Map (SOFM) to preserve the neighbourhood information

for smoothing the observation probability distributions of trained HMMs. Some pre-
processing algorithms were applied to the word images to normalize the words' stroke
widths, centralize the baselines and track the words' chaincodes.

The feature extraction method used was based on the word image contour.

Horizontal and vertical sliding windows were then applied over the word image. In each
frame, a local histogram of the contour chain codes was calculated. One of the four

possible slopes (0, 45, 90, 135 degrees) was assumed for the contour direction. Therefore,

the histogram in each zone had four components and each frame was represented as a 20
3



elements feature vector. SOFM was used as a clustering algorithm in the discrete HMM.

The Baum-Welch's algorithm was used as the HMM training algorithm.

A designed topology for the HMM used in this recognition system is shown in

Figure 1-1.

1

X'

bifkj)hdk.1 bdW bAKl) b,{kj)

Figure 1-1: Right to left, HMM topology. Each state has transitions with lengths 1 and 2. N shows the

maximum number of states in the topology [H].

Also, in this study, more than 17,000 images of 198 city names of Iran were

chosen as the dataset. Sixty percent of the images were used as the training set and the

rest were used as the testing set.

The recognition results, after smoothing the HMM with different smoothing parameters,
are shown in Table 1-1.
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Top-?

Ree. RaIe(S^=IO1)
Ree. Eate(S/=ir)
Rèe. RaIc(Sf=W*)
Ree, Rate(S>=10-4)

62,96

65,05

62.68

58,75

74.13

76*09

74.04

7L66

84.40

86.08

85.69

84.29

10

89.67

90.83

91.35

90.46

20

94,56

95.00

94,89

94.72

Table 1-1: Recognition results with different smoothing parameters [H].

In the best case with SF = 1(T4, 94.72% of the testing set' s images were found

between the first 20 recognized words. With SF = 10_1 , the best recognition rate for
the first correctly recognized word was achieved at 62.96 %.

In M. Pechwitz et al.' s research, an offline handwriting word recognition system

was proposed for the Arabic language. The system used a one dimensional Semi-
Continuous HMM (SCHMM) as the classifier and sliding windows to extract the
features. The system was trained and tested on the IFN/ENIT database [39]. Basic
preprocessing tasks such as image binarization, word segmentation and noise reduction
were performed at the database development level. The window slided from right to left
and the features were extracted and concatenated from three successive columns each

time. Baseline dependant features were extracted. Two Baselines including the Upper and
Lower Baselines were considered for each image. The Upper Baseline was fixed at the
40% of the distance between the baseline and the image's top. The length normalization

of words was applied based on the number of characters in each word. The Karhunen-
Loève transform was then applied to the feature vector to reduce its dimension. The
SCHMM had 7 states per character and the following three transitions: A self-transition,



a transition to the next state and the next two states. Finally the recognition result was

increasedto89%[40].

In Y. Kessentini et al. 's research, a multi-stream HMM-based approach was

proposed for offline multi-script handwriting word recognition. The purpose of the
research was to design and implement a handwriting recognition system which could be
used for the recognition of different scripts. The model was composed of some sub-units
which could perform the recombination of input streams such as characters or words.
Some anchor points were defined between the sub-units [41]. The word images were

preprocessed to prepare them for the feature extraction. The preprocessing stage included
Normalization, Contour Smoothing and Baseline Detection. To build the feature vector,

the word image was divided into vertical overlapping sliding windows. Depending on the
nature of the script, the sliding windows were shifted from right to left or left to right.
The Main features used for the system were Contour-related and Density Features. The

Density Features were calculated based on the density of the foreground pixels and the
Contour Features were calculated based on the word image's upper and lower contours.

For each sliding window, the upper and lower contour points were calculated and the
corresponding Freeman directions are determined. Finally, the direction points were
accumulated in the direction histogram and each point was classified as Lower Contour,

Interior Contour, Upper Contour or No Point Found. To train the multi-stream Hidden
Markov Model, two stages were considered: First, the estimation of the model's stream

component parameters and second, the estimation of the proper stream exponents. The
system recognized the words by concatenation of its characters. Twenty-six character
models were considered for the Latin script and 159 character models were considered

6



for the Arabic script, since the Arabic script has more variables. The recognition system

was trained and tested on the IRONOFF and IFN/ENIT databases. The results were

announced for different lexicon sizes which are shown in Table 1-2 [41].

Lexicon Size

Recognition Rate

10

95.6

100

84.2

196

79.6

500

76.2

Table 1-2: The announced results for four different lexicon sizes.

in S. Alma'adeed et al.' s research, a HMM recognition system was used for

Arabic handwritten words. Their recognition system was able to recognize the dataset

written by 100 different writers.

Their handwriting recognition system was divided into three sections:

preprocessing, recognition and post-processing. In the preprocessing stage, the stroke
width, the slope and the height of the letters were normalized. Only 55 classes were

chosen instead of 120 classes to represent different letter shapes in Arabic, because the

system could only recognize the 55 words which were defined in the lexicon. A Modified
Viterbi's Algorithm was (MVA) used in the recognition phase [64].The database was

segmented into Training and Testing sets. Two thirds of the data was used as the Training
set and the rest as the Testing set. A codebook size of seventy was chosen empirically.

Finally, a recognition rate of 45% was found on the Testing set.
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1.3 Our Approach

To design a handwriting recognition system with a high performance, we have to
train it with various handwriting styles. Therefore, as the first step, we gathered a Farsi
Dataset, which could be used as a reference point to measure the performance of not only

a handwriting recognition system, but also word spotting systems [19].

The next step was to design and implement the handwriting recognition system. The

design cycle is shown in Figure 1 -2.

8



Prior Knowledge

NJ

Start

Data Collection

Preprocessing

Feature Selection

Model Selection

Train Classifier

Evaluate Classifier

End

Figure 1-2 : Steps that should be completed to design a recognition system [71].

For implementation of the recognition system, we chose Matlab programming

language, which gives access to an Image Processing Toolbox. This toolbox makes the

design and implementation of the system easier and faster [13].

9



1.4 Our Goal

Our goal is to build a handwriting recognition system using a Hidden Markov
Models (HMM) classifier. HMM is a complicated classifier and it is not as easy to work
with as other classifiers such as Support Vector Machines (SVM). But since the best

results in the research have been gained by using HMM in handwriting recognition,

especially the ones using the holistic method to recognize the words, it was chosen for
our research.

This system is designed to be part of a higher level recognition system which can find the
lexicon's words in our Dataset and pass it through our recognition system. We ran several
experiments while changing the HMM parameters and testing different features. Finally,
encouraging recognition rates of 98.76% and 96.02% have been obtained for the Training
and Testing sets, respectively. Our designed system is reliable, robust to noise and is
reasonably fast.

1.5 Organization of the Thesis

Chapters 2 and 3 present an overview of the Farsi language and the Farsi Dataset,
the Recognition system and a description of how we gathered the data and preprocessed it
to make it ready for our recognition system.

10



Chapters 4, 5 and 6 describe the recognition procedure and the steps which were
fulfilled to reach the recognition result, while Chapter 7 shows the results and error

analysis. Conclusions and directions of possible future work are discussed in Chapter 8.
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Chapter 2: CENPARMI Farsi Dataset
The CENPARMI Farsi Dataset is structurally organized in the same way as the

other CENPARMI Indo-Iranian Datasets. The main purpose of this thesis has been to

design a Dataset which does not only facilitate the development and evaluation of the
Farsi recognition systems but can also be used to compare the performance of different

recognition systems. In this chapter, the Indo-Iranian languages and Farsi Dataset are
described in detail.

2.1 Indo-Iranian Languages

Indo-Iranian languages are a branch of the Indo-European languages. This language

family is widely spoken in central and southern Asia, in Iran, Afghanistan, Iraq, Pakistan,

Turkey, India and Bangladesh. This language family is divided into two language sub-
families, known as the INDIC sub-family and the IRANIAN sub-families.

Table 2-1 shows IRANIAN and INDIC sub-families of Indo-Iranian languages and some

instances of their member languages [2].

12



INDIC

Sanskrit

Prakrit

Pali

Gujarati

Marathi

Hindustani

Hindi

Urdu

Benagli

Bihari

Sindhi

Bhili

Rajasthani

Panjabi

Pahari

Avestan

Pashto

IRANIAN

Old Persian (Farsi)

Persian (Farsi)

Kurdish

Ossetic

Baluchi

Scythian

Table 2-1: IRANIAN and INDIC sub-families of Indo-Iranian languages and some instances of their
member languages.

Indo-Iranian languages are written from right to left in a cursive way. In Table
2-2, a comparison is shown between the isolated characters in Farsi and five other Indo-
Iranian languages.

As shown in Table 2-2, Pashto with its 46 letters has the largest number of letters
among these Indo-Iranian languages. Other languages shown in the table can be

13



considered as a subset of Pashto's letters, except for a few letters that are found in some
languages and can not be found in Pashto. Those letters are circled with a red color in
Table 2-2 (Circled letters: 5, 31, 40, 42, and 48).

14



Miän^Pm i?Rä|hteß ';Ba¡rsií

aa

k-J K-J k-J k-J

k-J k-J K-J K-J

K-J O

tt

ch

dz

seh

V>

K-J

£

e

e

£

C

<—>

e

C

c_-> ¿» K-J

e e e

e e

e C C

kh

dd

Table 2-2: Comparison between Farsi isolated letters and five other Indo-Iranian languages (Part a).
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Table 2-2: Comparison between Farsi isolated letters and five other Indo-Iranian languages (Part b).
16



Phonetics

gh

Pashto

t

O

Urdu

L

O

Farsi

L

O

Dari

L

<-ß

Arabic

t

cJ

gh

g

m

?

nn

O O O

J ^ <3

S s

J J J
G

O

^

¿

J
G

Ü

^

J

h

¦ W

(D

Table 2-2: Comparison between Farsi isolated letters and five other Indo-Iranian languages (Part c).
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Phonetics

ay

3V

ye

Pashto

<¿

\$

Urdu Farsi Dari Arabic

Table 2-2: Comparison between Farsi isolated letters and five other Indo-Iranian languages (Part d).

2.2 Overview of the Farsi Language

In this section, we will describe more about the Farsi Language and the

characteristics of its scripts.

2.2.1 Farsi Language

Farsi (Persian) is widely spoken in Iran, Afghanistan, Tajikistan, Uzbekistan,
Bahrain and the surrounding areas, as shown in Figure 2-1.

18



Farsi has been a medium for literary and scientific contributions to the Islamic

world. For five centuries, prior to British colonization, Farsi was widely used as a second

language in the south western region of the Asian continent. It took prominence as the
language of culture and education in several Muslim courts in southern Asia and became
the "official language" under the Mughal emperors [I].

/j^^a

\

? <f:Cc5=

J
\

*\W
1

V
]

Figure 2-1: Areas shown in red are Farsi-speaking areas in Asia.

2.2.2 Farsi Isolated Characters: Main Characteristics

The Farsi language has 32 letters, which are written from right to left in a cursive

way. This script does not have upper or lower case letters but there are some diacritics
19



which differentiate similar words in terms of pronunciation and meaning. As shown in

Table 2-2 (Section 2-1), some Farsi letters have one, two or three dots. Depending on the
location of the letter within the word, every Farsi letter can have a maximum of four

different shapes (Isolated (Free), Initial, Middle (Medial) or Final shape). Table 2-3:
shows the Farsi characters with their four possible shapes [21].
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Character
AIe
Beh
Pak

The
Thek

Jeem
Chali
??

Kheh
Dal
Thal
Rèi
Zeit

Zieh
Seen
Sheen

Sad
Zad

Tab,
Zab.
Ain
Ghañi
Fell
Ghaf

Kaf
Gaf

Lam

Isolated

,?-

j

?5

cP3
i

iL
L_a

Initial

_L

_c

_a

_s

"T

J

Middle

>

>

_L·

JL

±

Final

C£-

g-

f*—

Jk
J^

^J.

l>

TT"
J-

Transliteration

Th

eh

kh

&

zh

sh

A

eh.

Meeui m

Noon

Waw
Heh
Yak

Table 2-3: Farsi characters with their four possible shapes [21].
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Figure 2-2 shows the anatomy of the Farsi letters. [3] These details can be used to
design the structural features in Handwriting Recognition.

\ K. \ \ %
%%

% ^

^-^^-^-M^-V-^-t
¦fe

% X
% V %V

Figure 2-2: Anatomy of Farsi letters (3).

In Farsi, the same words can be written in different shapes. Some variants are
depicted in Figure 2-3 and Figure 2-4 . These variants have been written by different
writers and have been collected in our Dataset.

C^hyC b% -I~><^

Figure 2-3: Four variants of the word "Payment" in Farsi.

F ¿hr»· s*!S* ¿k-

Figure 2-4: Four variants of the word "Money Order" which is equivalent to ^JlJ* (Havaleh)
in Farsi.
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Concentrating on these shape differences can help us to design a more accurate
recognition system and to achieve a better recognition result.

2.2.3 Farsi Isolated Digits: Main Characteristics

The decimal numbering system originated in India (Devanagart OKx?...) and was
subsequently adopted in Arabic languages with a different appearance (Arabic-Indie

\ Yf Ì¦ ' "K The Europeans adopted decimal numbers from the Arabic languages,

although once again the forms of the digits changed greatly (European numerals 0, 1,2,

3, etc).

In addition, there are two main variants of the Arabic-Indie digits. Those used in

Iran, Pakistan and India (in Farsi, Dari and Urdu languages) are called Eastern Arabic-

Indie numerals and those used in other parts of the Arab world are called Arabic-Indie

numerals [4].

Table 2-4 shows a comparison between Arabic-Indie and Eastern Arabic-Indie

numerals.
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European ¡Arabic- 5£*££?Indic
Numerals JnclIC Rumeni:Numerals

21

3

4

5

B

a

9

G

?

?

ù

?

1

Table 2-4: : A Comparison between Arabic-Indie and Eastern Arabic-Indie Numerals.

Arabic-Indic digits may be written differently for the numbers 0, 2, 4,5,6,7, based

on the language. For instance, the numbers 0, 4, 5 and 6 are written differently in Farsi
from Arabic. Also, for handwritten numerals, in some Arabic countries an Arabic "three"

is written like a Farsi "two". In Table 2-5, numerals are compared in six Indo-Iranian

languages. As shown, they may be different in the cases of 0, 4, 5, and 6.
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European
Numerals

Urdu Pashtu Dan Farsi Arabie

0
1

2

3

4

5

6

7

8

9

)
Y
r
?
ò
9

V
?
?

?
r

V
?

1

Y
r
?
à

?
?
1

Y
r
f

f

V
?

1

Y

4.

Ô

?

V
?
1

Table 2-5: Comparison between the digits in six Indo-Iranian languages.

2.3 Farsi Dataset

The Centre for Pattern Recognition and Machine Intelligence (CENPARMI) has

developed a Farsi Dataset that can be used as a reference point to measure the

performance of not only handwriting recognition systems, but also word spotting systems
[19]. CENPARMI' s Farsi Dataset is unique in terms of its huge number of images

(432,357 combined grayscale and binary) , inclusion of all possible handwriting types

(Freestyle Dates, Words, Isolated Characters, Isolated Digits, Numeral Strings, Special
Symbols, Documents), the variety of cursive styles, the number of writers (400) and the
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exclusive participation of native Farsi speakers in the gathering of data. CENPARMI's
Farsi Dataset also follows the same structural format of the other CENPARMI's other

Indo-Iranian Languages Dataset. For this thesis the selection of Farsi words was based on

the highest frequency of their appearances in the selected financial documents. This

Dataset also includes Farsi Texts (Documents) and the selected texts include the

Dataset's words, which can be used in word spotting systems.

The Dataset in this thesis is divided into Grouped and Ungrouped subsets, which

will give the user the flexibility of whether or not to use CENPARMI's pre-divided

(Grouped) Dataset (60% of the images are used as the Training set, 20% as the Validation

set and the rest as the Testing set) .

2.3.1 Related Work

In order to get a good recognition result, experiments should be conducted on a

structured, high quality Dataset. There have been a few developments in recent years

towards this goal, using the Farsi language.

Because of the fact that the Farsi language is a branch of the Indo-Iranian

languages and is a cursive language, some researchers have been misled into using

Arabic or other Datasets to evaluate the performance of their Farsi handwriting

recognizers. However, according to the comparisons we have made in Table 2-2 ,

Table 2-4 and Table 2-5, the Farsi script has significant differences with other

Indo-Iranian languages. Therefore, the most accurate recognition result can be gained
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only when we use the proper Dataset for the language. Compared with the Arabic

language, Farsi has four more letters in its alphabet (^O'g'V)·.
According to a research study we conducted at CENPARMI, the handwritten

Farsi digit ^ is considered as digit 3 in Arabic, while it is always considered as digit 2
in Farsi [6].

To the best of our knowledge, no multipurpose Farsi Dataset that can cover all

script types ofthat language has been published to date. A standard dataset for
recognition of handwritten digits, numerical strings, legal amounts, letters and dates in
the Farsi Language has been published by CENPARMI [7] .This Dataset includes 18,000

images of Farsi digits and 1 1,900 images of Farsi characters from 171 writers.

In 2006, an isolated character and digit Dataset for the Farsi language was presented by

the Pattern Recognition and Image Processing Laboratory of the Amirkabir University of

Technology in Iran. It consists of 52,380 Grayscale images of characters and 17,740

numerals [5].

In 2007, a Dataset of Farsi handwritten digits was presented by the Tarbiat

Modarres University of Iran [8]. This Dataset consists of 102,352 binary images of Farsi

digits with 200 dpi resolution.

In 2008, IFN FARSI Dataset of city names was presented by Iran's Semnan

University, the Braunschweig Technical University of Germany and the Amirkabir

University of Iran. This Dataset consists of 7,271 binary images of 1,080 Iranian

Province/City names collected from 600 writers [9]. IAUT/PHCN is another Dataset

which was presented in 2008 by the Islamic Azad University of Iran. It contains 32,400
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binary images of the Iranian city names, collected from 380 writers [10]. Table 2-6

compares CENPARMI Farsi Dataset with the mentioned Farsi Datasets.

Dataset

Presented By

Year

of

Presentation

Number

of

Images

Type of Script

<u
13
Q 5

o

CO

P
¦a

(?

CENPARMI[7] 2006
C: 11,900

D: 18,000
X

Amirkabir

University[5)
2006

C:

52,380

D:

17,740

X

Tarbiat

Modarres

University[8|

2007
D:

102,352

Semnan ,

Braunschweig

and Amirkabir

Universities[9]

2008 W: 7,271 X

Islamic Azad

University[10]
2008

W:

32,400

CENPARMI[18] 2009 432,357 X

Table 2-6: A comparison between CENPARMI's Farsi Dataset and existing Farsi Datasets. C, D and

W stand for number of Characters, number of Digits and number of Words, respectively.
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2.3.2 Problems Faced in Data Collection

Although Montreal is a multicultural city and help was obtained from Iranian
students and Concordia University's professors to gather the Farsi forms, it was not easy

to find Iranian people, especially the ones who would be interested in filling out the
forms. Therefore, we decided to send some forms to other cities such as Vancouver,

Toronto and even Tehran, to be sure that the forms would be filled out by native Farsi

speakers.

2.3.3 Data-Collection Process

To collect the data we designed a two-pages collection form. The first page

includes the Words and Special Symbols while the second page includes the Date,

Isolated Digits, Numeral Strings and Isolated Characters. Figure 2-5 and Figure 2-7 show

the two pages of the empty designed form while Figure 2-6 and Figure 2-8 represent the
same form when both pages are filled out.

At the top of each form, some information has been gathered from each writer, such as
gender, handwriting orientation and range of age. This information can be studied in the
psychology of handwriting.
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Ajüfi ^MèiASP* ù

Tarsi Hand*vrittet> Collection Form
Concordia University f Montreal, CanadaJEmail: p_jìfrot<@enc5.concor-àte ca
ht£p://\uusw ccnparmi;ain.coraia.ca

1 455 <& Maisonnetìve W - ÊV3.4C3,
Montreal QC IiSGiMS1Canada

_(.,_> ^UjûL<* rL·; tiiJ . j jji £jU- *jJ tl0A^* joif jl ^¡^-J *? *rfU*í ^- · lV-jji. ¿ta,*· Jjm^- ?™^-? ^ j ,^£±* JjIi vSijl» k u-iy

E-mail:

sJjU

fLóiil SyS Jíj^*" ir*^ Lie I

J^ «uüJjl Jjr ,Ul o IyI

vtr A¿L*I .". ? » i_-^*U_tb,j tLtks

? ? I ? n> IH-Í^-* JIj^ £>^" C1JU fit·" >,U

JU r-u^· J^ 4^-T^ L?*^ -T^

' ¡LS fß fß ^J_> ¿J J^-J ^~> ¿? ¡LS j~»

^jlSjfcjj ur*^? tSj5^ LÎ-» UT" E^-1 ?~?"3?

?? JX ) I...-* ia«J Ojjû JJ V l~~>«j^J ojLmÍ

,tt Ii4Ji"** J^OÄ-5

Figure 2-5: Farsi collection form, Page one, Words and Special Symbols.
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fñRód 7J5
¦ ¦ farti llajiehrTJiicn Collection Furili

Cuanmii» L'riivfTwtt (>lt»tft\jl, CuifeLt)
Emttíl·. ?„jiíiwwí tan^auwatlíw.t* MSS *¦ ÍU¡s«íi>i*iuvc W - tY^O^,

iíimínal IfC JI3G iilB.CaiítJa
,--¿?????.? _,' ,. U.'

/ÚA>·

AÌ

\U

•vir

I: -mai):

.Ul

¦>JJ

cUL

jÎjlLs

ff ^

r '¦//

CS, ¿o>A

OfA^
I :

/

S

JO,

@

Q

tf¿^

¿?

i_>W(/

era*

vi*)

&"

F rr

Figure 2-6: Farsi Collection form, page one, collected and labeled as Far 0371.
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.J1L ¿Ï.5L ?+Ï^JcJ J-SU

Farsi Handwritten Collection Porm
Concordia Untvereity (Montieat, Canada}Emuli: p_j"ifiootBencs.conco¡d¡a-ca
hltp://u)ivu>.c&\parmi.ctit\ajrdìa.aa

Address:
1455 cíe Maisonneuve W - EVJ403, ¦
MontrealQC H3G IMS, Canada

Ja^jj CJU U jJÌS. (làlj 1J j^ ja jVljJiijJ ; JyUji <a._w ¡JJî- CiSj Jj .ji ¡jJjS. jj -Jjja Ca*.t ajjjjljaj U¿ ¡j- jUUa jl ¿jtj» jKjÍj L
¦ ¦> ^. -; .».. .^ jl L,.,L.r:..w< v.l -_¦;¦ .... a>w.Î* /j~jlj ùk; <i 3 U^J* Jj- " ' hi "' ¦ IW J ¡/-^ ^JU *Jw>JU V CWJ^ ?'JJ 4 jUJja.

.CaJ. J»lji ou¿ ij*dJ .JyU. ^ <i-jï 1jî*j .iui jj ij^ji JfS Ji ^S. >j .JjX*^ (íjíjia. lik ySjjji Jal· J .JJjSj ? jl*.

E-mail:

lAYfisfVTl 1 T V f ¿s ? Y A 1 (JU / »l* / ;}J ijjj. *,) ¿jt

TA Tf Ai \ AA AIT Ti Vl VV 4,u

Y f ? A-T T-IT If- A ? 1 -1-. f ? Tl IT f ¦

f/Ut 1 · ¦ V ???? un »if ?T-V ^??

ITVIf-r Y ? ? M ? f ? ' ¦ 4 t ·

AlTViT V(1OfIY ÌÒ-1V1 f Uïlf -?MfT

U*' u-1 J JJ ? ?

3 ò C J J" . J· £ e Ji i

? 3 ?» U= J= £ ¦ J ^ ¦ V a»

cj io c? ?<=>

Figure 2-7: Farsi collection form, Page two, Date, Isolated Digits, Numeral Strings, Isolated
Characters (letters) and some Words.
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O /loci 7.$>
tarmi ïïamlwTÎttco Coli*cU«n Form
Cuiw»"S* Uwv*r«tj ÍMi^tcjJ, Oitiii)

rr

fî- ruai i; íúÍA - íW"í 0 fltfte^ / ·- ÙW\
\ A Y f UtTTi \ r r f Ò f V A ? (JUZ-Ui j,,^.,^*.) ¿í,t

TA ft A? 1· SA ?G rf VV G? "" At,ï

? ? ff KV 1« ?a ?G ty Vi ÍV ?/? Ai,'/
? t a ?·? r-H > ? · api . \ . · ta µ «.t f ·

VU -\<\ t'eïï 'ite AY! oioc iC ñ (T V»
?,,,. fürt ^ · · ? sa»» ur< Aòr it.r Hi

vi,,., nffr cí-v aáav \/v<*<í ^i ^'-r *a¿>
? itvur van* tf..ar- rrA··· vvrs

\,.,.,. \rw/t ^aWV' fv-=A\'* ? t ? « - wo
»infr r>6*iv is.ui fírvu ·*??(t Mrïlf

/wu'vr tï&vw "fa Avi fwf 'Ywtr fWíf
O _ w I

^J —·
/^

(S . ; GJ f ci Ji «/ ¿ ^ ¿~ ^- ¿' i °* &*

Ô * O J v* c¿ -^ f O ¿ <¿_ el Ji -r> O* \
U-^1Ji

í

C^

Figure 2-8: Farsi collection form, page two, collected and labeled as Far 0371.
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2.3.4 Scanning, Noise Removal and Preprocessing Before

Data Extraction

All the forms were scanned and saved as true color (24 Bit), 300 DPI lossless TIFF
images. An algorithm was developed to remove the red lines from the collection forms.
We had the following challenges while removing the red lines:

1. As shown in Figure 2-9 (a-c), in some cases writers wrote outside the field
boundaries and overlapped the red lines.

2. Forms were filled out with black and blue ink pens but if we zoom into some
handwriting, as shown in Figure 2-9 (d), we can see some red traces in pen
strokes. Therefore, the algorithm had to avoid removing the red pixels in the
writing.

3. Some of the forms were delivered from Iran to Canada so they contained
unwanted artifacts due to folding and crumbling.

4. Some of the forms had grayish and yellowish backgrounds.

(a) (b) (e) (d)

Figure 2-9: Examples of Farsi Handwritten words extending outside the red boundaries (a-c) and red
traces in blue or black ink found in some handwritten words (d).

Finally, the forms were converted to grayscale before extracting the handwritten
elements.
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2.3.5 Data Extraction

When the forms were scanned and converted to the grayscale images, the boxes

which included the handwritten samples were extracted. To do so, four small black

squares were considered at the corners of each page. The Center of the top left square

was then selected as the origin of the horizontal and vertical axis. These four black pixels

were also used to do skew correction when it was required.

After this procedure, the correlation matching was applied between the selected

black square of the template with each form, and the boxes that were extracted from all

the forms, and each box was saved in its relevant class (folder).

2.3.6 Noise Removal and Preprocessing after Data

Extraction

In this procedure, we removed the noise from the images. "Salt and Pepper" noise

was found in our images. "Salt and Pepper" noise is represented as random black pixels

on a white background image. A noisy pixel has a value that is not close to the

surrounding pixels. To remove "Salt and Pepper" we used a non-linear filter, which is
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called a Median filter. A Median filter can preserve image details. It is called median

filter because for each pixel in the image, it sorts the neighbouring pixels upon their

intensities and replaces the original value of each pixel with the median value of the

neighbouring pixels. [20]

The Matlab command to remove the Salt and Pepper noise is shown below. The

Medfilt2 function performs median filtering of the matrix A by using the default 3-by-3

neighbourhood [13].

B = medfilt2(A)

Also, we noticed that mapping the intensity value of the grayscale image to new

values could increase the contrast of the output image and consequently, could increase

the quality of the image. Matlab has the following command to increase the contrast of

the image:

B = imadjust(A)

"Imadjust" maps the intensity values in grayscale image I to new values in J such

that 1% of the data is saturated at low and high intensities of I. This increases the contrast

of the output image J [ 1 3 ] .
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Finally, we found the bounding box for each image and saved it with a 300*300

resolution in TIFF file format. All of the images were saved as binary as well as

grayscale images. To find the bounding box of the word, Matlab applies the following
function:

s = regionprops (bw , 'Image');

The Bounding box separated our area of interest from the rest of the image.

Finding the bounding box could prevent unnecessary processes on the image. The area of
interest in word recognition is the smallest rectangular area which includes the whole

word image.

Figure 2-10 shows a word image and the red bounding box which surrounds it.

Figure 2-10: A word image and the red bounding box which surrounds it.

2.4 Dataset Structure Overview

The Farsi Dataset, as introduced in Section 2-3, follows the same structure of

CENPARMFs other Indo-Iranian Datasets. The Data collected from 872 forms has been
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divided into four Series. These series give an advantage to the user to perform separate

experiments on different parts of the Dataset. The first Series has been gathered from the

form's first page and contains 63 different words and 5 special symbols. This data has

been gathered mainly from Farsi native speakers living in Montreal.

The second Series of the Dataset has been collected from the two pages of Farsi

forms and includes 73 Word , 5 Special Symbols, 20 Isolated Digits, 64 Isolated

Characters, 2 Dates and 41 Numeral Strings with different lengths. This data has been

gathered mainly from Farsi native speakers living in Canada (Montreal, Toronto, and

Vancouver).

The third Series of the Dataset has the same format as Series 2. It includes the same

type and number of script boxes. This data has been gathered mainly from Farsi native

speakers living in Iran.

The Dataset is divided into Grouped and Ungrouped subsets, which will give the

user the flexibility of whether or not to use CENPARMI's pre-divided (Grouped) Dataset

(60% of the images are used as the Training set, 20% as the Validation set and the rest as

the Testing set) .

All the images that can be found in Series 1, Series 2 and Series 3 have been

gathered in Series 4. Figure 2-1 1 shows the main structure of the Dataset.

The Dataset also includes the collected forms and the Text (Document) Dataset.

In the next section, we will describe our Dataset in detail.
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CENPARMI Farsi
Dataset

Documents Grouped
Dataset

Ungrouped
Dataset Forms

Series 1

Date

Series 2 Series 3 Series 4

Grayscale Binary

t_L
Special

Symbols
?

Ii
Words Isolated

Digits

Training Set
(60%)

t

Isolated
Characters

Numeral
strings

Integer
Strings Real strings

Validation Set
(20%)

Testing Set
(20%)

Figure 2-11 : CENPARMI's Farsi Data Set structure. Only the Grouped subset includes Training,
Validation and Testing sets.
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2.5 Dataset details and statistics

In this section, we will describe each subset of CENPARMFs Farsi Dataset and its
statistics.

2.5.1 Farsi Words Dataset

The Farsi Words Dataset consists of 73 word classes which are officially used for
measurement and counting purposes. These words include the measurement units of
Distance, Volume, Weight, Currency and words which are usually used in financial
documents and day-to-day business activities. The 73 categorized Farsi words are shown
in Table 2-7.
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Selected Words Farsi Equivalent

Financial Words

Balance ôJûLa

Amount xixâ

Cash ^aJ

Expense •<Gj^A

Credit J4,Luc!

Delivery UiJ=^

Due JLb-UJJ^

Custom ^jA

Expire Lj3AjI

Interest ùj^

Inventory J,LuI

Issue -2JJ*

Period

Table 2-7 : Categorized, selected Farsi words.(part a)
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Selected Words Farsi Equivalent

Financial Words (Cont'd)
Plus

Price

4ilubl

ClAJS

Loan f'J

Rent SjM

Stock alg-u:

Tax jUIU

Total £ja2^

Money Order <d!

Document

Weight UJJ

Width o^jf-

Duty Lp3J1J^

Carton LPJté

Table 2-7: Categorized, selected Farsi words, (part b)
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Selected Words Farsi Equivalent

Financial Words (Cont'd)
Debit CS*^

Number "JILdJOl

Bill 1 il Ul-Si1JJ^

Account j\ > D-S

Distance

Centimeter J"^1jLu)

Inches g¥

Meter JiA

Volume

Milliliter J^-(Ji*

Liter J^

Volume <^

Weight
Milligram fJ^erV

Gram ^

Kilogram r¿ J^
Table 2-7: Categorized, selected Farsi words, (part c)
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Selected Words Farsi Equivalent

Counting

One Li^

Two jJ

Three Ajuj

Four jW

Five &

Six (JACU

Seven CLiA

Eight

Nine AJ

Ten 6.1

Table 2-7: Categorized, selected Farsi words (part d).

Each word class consists of approximately 516 images. In verification and post-

processing stages some images were eliminated because of the remaining noises in the

images that could mislead the classifier. Some Farsi handwritten words are shown in
Table 2-8.
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Equivalent Word in

English

Amount

Liter

Milligram

Tons

Delivery

Farsi Printed word

i-L-O

J^

fj£

(-F

Jjja¿

Equivalent Extracted

Handwritten Image

F
^J

G/

O^

Table 2-8: Selected Farsi words, printed and handwritten, and their equivalents in English.

2.5.2 Farsi Numeral Strings Dataset

The collected Farsi Numerals can be divided into Integer numerals and Real

numerals. Integer numerals can be found in lengths of 2, 3, 4, 5, 6 and 7. Real numerals
which have floating points can be found in lengths of 3 and 4. Statistics for the numeral

strings are shown in Table 2-9. Figure 2-12 and Figure 2-13 show some samples of Farsi
Numeral strings.
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Numerai Strings

Real Strings

Length_3

Length_4

Integer Strings

Length_2

Length_3

Length_4

Length_5

Length_6

Length_7

Number of Images

1064

709

355

12270

4,504

2,130

2,486

354

2,085

711

Table 2-9: Statistics for numeral strings in the Farsi Dataset.
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Sg 83 26 71

940 861

SS86 1839

7S8196 4600S20

O

Figure 2-12: Some samples of gathered Integer numeral strings.

Figure 2-13: Some samples of gathered Real numeral strings.
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2.5.3 Farsi Isolated Digits Dataset

The Farsi Isolated Digits Dataset includes digits which have either been written as

isolated by the writers, or the digits which have been segmented from the gathered
numeral strings. The two types of digits were labelled in different ways so they could be
identified in the future.

Table 2-10 shows the number of occurrences of each isolated digit in each

collected form. The total number of Isolated Digits gathered in all of the forms was

24,121. These digits were saved as Gray_all_0 to Gray_all_l. They were divided into

14,473 digits for the Training set, 4,824 digits for the Validation set and 4,824 digits for
the Testing set. Figure 2-14 shows some Farsi isolated digits gathered from a form, and

their equivalents in English.
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Isolated Digit Number of occurrences in each form

30

14

16

17

16

15

16

15

15

17

Table 2-10: The number of occurrences of isolated Farsi digits in each collected form.

°\
9

?
s

V

6

à
5 4

Ci Y
2

i
O

Figure 2-14: Farsi handwritten digit samples, and their equivalents in English.
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2.5.4 Farsi Isolated Character Dataset

As described earlier, Farsi has 32 letters. Farsi has sets of these letters such that
the letters in each set are similar and their only difference is in the number of dots they

have.

These sets are shown in Figure 2-15.

{ j J ,J} ,{¦> ,J} At Z >£ £} .? >? ·a .y M
{ t>D >{^ M AO^ ,o^} áJ» ¿-»}, Í (3 P }

Figure 2-15: Similar sets of letters in the Farsi characters.They are differenciated by the number of
dots they have.

In order to get more samples from the writers, we chose one letter from each set
of the letters and asked each writer to rewrite it. Finally, we got two or three samples per

set from each writer. If a letter was repeated in the form, it was labelled separately. For

instance, the letter "Saad" was repeated twice so it was labelled as "Saad" and "Saad2".
We did not combine the folders as having separate folders would make it easier to track

the images in the future. In the statistics of Table 2-11, the total number of images for a
letter which exists in both folders is mentioned. Figure 2-16 shows a sample of Farsi

handwritten Isolated Characters.
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' ' / \ J I L 'à ? J

?/)Ufíi^^Ü^^li^cfC/

Figure 2-16: Farsi handwritten isolated characters

Isolated

Characters

Total

21,336

Training Set

12,802

Validation Set

4,267

Testing Set

4,267

Table 2-11: Statistics for Farsi handwritten Isolated Character subsets.

2.5.5 Farsi Text (Document) Dataset

The Farsi Text Dataset consists of three different documents. They have real

financial and commercial contexts one of each page. Each text includes some words from

the Farsi words Dataset so they can be used with the purpose of training the word
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spotting systems. Eleven different writers have rewritten the documents. The number of

data which was gathered in the Farsi Text subset was substantially less than the other

Datasets' subsets and could be a field for further efforts in the future.

The idea behind having this subset was to test a system which could spot each of the 73

existing words in the Text and to send them to a Word Recognition System to examine

the overall efficiency of the Dataset.

2.5.6 Farsi Special Symbols Dataset

The special symbols collected in the Dataset are illustrated in Table 2-12. These

special symbols are the most commonly used symbols in Farsi financial documents.

Statistics for the special symbols subset are shown in Table 2-13.
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Special

Symbols

Selected Symbols
Number sign

At sign

Colon sign

Slash sign

Floating Point

Table 2-12: Selected special symbols in the Dataset

Total

2,738

Training Set

1643

Validation Set

548

Testing Set

547

Table 2-13: Statistics for the Special Symbols subset.

2.5.7 Farsi Date Dataset

Iranians usually follow the YEAR/MONTH/DAY format in writing the dates. The
CENPARMI Farsi Date Dataset includes 295 images. Table 2-14 shows some Dates

collected from the forms and their equivalents in English.
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Date

KV V/ V^

XooV/ W ¡??,
V-v

English Equivalent

1386/9/14

2007/1 1/30

Twenty third ofNovember 2007

Table 2-14: Three Different date styles collected in the forms and their equivalents in English.

2.6 Labelling

After the box extractions were done, each box was labelled in such a way that it

could be identified in the future. For instance, we used "FAR0212_P03_058" to label the

image in Figure 2-17. This label indicates that the image has been extracted from the
form number 2 1 2 and the box number is 58.
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Figure 2-17: The word "account" extracted as box number 58

2.7 Verification and Post-processing

Verification and error detection by the human observer is inevitable in data

gathering. Some handwriting errors may occur during the fillings of forms and some

others can happen during the script box extraction or segmentation of the numeral strings.

Therefore, at the end of each stage, a human observer has checked, cleaned and

distributed the data with errors.

2.8 Conclusion

In this Chapter we described how we gathered the Farsi dataset to train and test our

recognition system with various Farsi handwriting styles. The following chapters will

describe the design and implementation of the handwriting recognition system.
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Chapter 3: Word Preprocessing
After data collection, we had to process the images to make them ready for

recognition. Therefore, this stage was called the Word Preprocessing stage. If the

preprocessing stage was not done successfully, then the raw data would not have a good
quality then it could simply mislead the classifiers, and finally the recognition system
would fail.

The other reason to consider this stage as one of the most important steps in the

Word Recognition Procedure is it forms the foundation in designing the real applications
for the real world. To train our recognition system, we collected specific kinds of data to

fulfill this purpose, in a controlled environment. In other words, the data was not gathered
from the real world's texts such as Bank checks, envelopes, etc. The real world's texts are

not as clean and neat as artificial ones. They may be written on folded and dirty pieces of

paper. Scripts can be broken. People may be more careless in writing the scripts, etc.
Therefore, a good recognition result comes from a good preprocessing which delivers

clean data. This chapter will describe the preprocessing steps taken through our

recognition path, such as Image Binarization, Skeletonization and Dilation.

56



3.1 Image Binarization

Image Binarization converts an image of 256 gray levels to a binary level, black and
white image. The reasons we use a binary image instead of a gray image for the word

recognition processes are as follows:

1 . Image binarization segments an image into foreground and background pixels.

2. Each pixel value in a binary image is saved in a single bit instead of 8 bits for 256

gray levels, so the image will have a smaller size. The smaller size of the image

will lead to less usage of the memory and processor.

3. To preprocess our image such as removing the noises, skeletonizing and dilating

the image, it is much easier to deal with two values instead of 256.

4. The computer is a binary system; therefore, designing a system based on this fact

makes the system more compatible with the computer.

The bit value of zero is interpreted as black while the bit value of one is interpreted as

white.

To binarize an image, we should consider either a single parameter known as the

intensity threshold or multiple thresholds known as a band of intensity, values. Then, each

pixel in the image is compared with the threshold. If the pixel's intensity is higher than

the threshold, the pixel is set to one; otherwise it is set to zero.

To define the intensity threshold, Matlab uses Otsu's method that minimizes the intra-

class variance [12]. The Otsu algorithm shows that minimizing the intra-class variance is
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the same as maximizing the inter-class variance. The threshold that minimizes the intra

class variance can be calculated as follows:

°l = W1(C)+ ?2(0s|(?).

where 0)¿ is the probability of the two classes which are separated by t as the threshold

and af represents the variances of these classes [37].

To convert a gray-level image to a binary image, we use the following Matlab

commands:

level = graythresh(Image);

BW = im2bw(Image,Level);

where the level = graythresh(Image) command computes a global threshold (level) that

can be used to convert an intensity image to a binary image with im2bw. The level is a

normalized intensity value that lies in the range of (0, 1) [13].

After getting the images binarized, we can start making them ready for the

recognition process.
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3.2 Skeletonization

The main purpose of skeletonization is to extract a region-based shape feature of
the general form of an object without having to change the structure of the object. To

process the word images we use the skeleton of the words to avoid dealing with the
unequal stroke width.

Skeletonization in Matlab can be done by using the "bwmorph" function, which applies

a specific morphological operation to the binary image. It is described as follows:

Image_Skeleton = bwmorph (Binary_Image, ' skel ' ,n) ;

Defining ? = Infinity, pixels on the boundaries of objects are removed but it does not

allow objects to break apart [13].

Figure 3-1 shows a word image and its skeleton. Matlab uses the same thinning

algorithm that was used in [14], which is briefly described below:

1 . Divide the image into two distinct subfields in a checkerboard pattern.

2. In the first subiteration, delete pixel ? from the first subfield if and only if the

conditions Gl, G2, and G3 are all satisfied.

3. In the second subiteration, delete pixel ? from the second subfield if and only if

the conditions Gl, G2, and G3 are all satisfied.

Condition Gl:

XH{p) = i
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where

Xh(P)= !Übt,

b _ (1 if x2i_x = O and (x2i = 1 or x2i+1 = 1)1 <- O otherwise

X1, X2, ... , Xs are the values of the eight neighbours of pixel p, starting with the

most eastern neighbour and numbered in a counter-clockwise order.

Condition G2:

where

Condition G3:

2 < IrUn(Ti1 (p),n2(p)},

t

/C=I

fe=l

(X2 V X3 V X8) ? X1 = 0.
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Condition G4:

(x6 V X7V X4) ? X5 — 0.

a

B

Figure 3-1: Black background image at the left shows the skeleton of the white background image at
the right. They both show the word "Account" in Farsi.

3.3 Dilation

Dilation is one of the basic operations used in mathematical morphology. The

dilation operation usually uses a structuring element for probing and expanding the

boundary pixels of an image [16].

We dilate the skeletonized word image to make our system independent of stroke width.

Matlab uses the imdilate function to perform the dilation:

SE = strel ('square',4)

IM2 = imdilate (IM, SE)

In this function call, the strel function creates a square structuring element whose width is

4 pixels.
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The dilation operation takes two pieces of data as inputs. The first is the image
which is to be dilated. The second is a set of coordinate points known as a structuring

element (Kernel). This kernel determines the precise effect of the dilation of the input

image.

In our recognition system, we have defined the strel function as follows:
SE = strel ('square', 4)

The following K matrix shows the structuring element, which is a 4 ? 4 square:

"1111"
1111
1111
.1111.

The mathematical definition of dilation is described as follows:

• Suppose that X is the set of Euclidian coordinates corresponding to the input
binary image, and that K is the set of coordinates for the structuring elements.

• Let Kx denote the translation of K so that its origin is at x.

• Then, the dilation of X by K is simply the set of all points ? such that the

intersection OfKx with X is not empty [17].

In Matlab, the "structuring element decomposition" technique is used to improve the

recognition performance. For instance, the dilation of the object by a large structuring
element, with a size of 20 by 20 is computed faster by dilating first with a 1 by 20
structuring element, and then with a 20 by 1 structuring element. More information can
be found in [13].
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Figure 3-2 shows a written word image from the Farsi dataset and its dilated image.

Figure 3-2: Black background image at left shows the dilated image of the white background image
at right. They both show the word "Account" in Farsi.

After gathering the dataset and preprocessing the data to enhance their qualities

and making them ready for the recognition processes, we can start the recognition

procedure. In the next chapter, we will describe the feature extraction which is the first

step in the recognition procedure.

63



Chapter 4: Feature Extraction

4.1 Definitions

For Feature Extraction, we first need to define the features. In the real world, we

recognize everything by extracting its identifying features which can be different from
one object to the other. In pattern recognition, choosing the types of features depends on
the classifier which will be used to recognize them and the characteristics of the pattern.

Selected features should be able to model the characteristics of the pattern. For instance,

if we want to extract some features to recognize a human's face, we use the following

identifying features: eyes, mouth, nose, etc.

As described earlier in Chapter 2, Section 2.2, Farsi has a cursive script which

means that the letters in a word are connected, making the whole word a complex stroke

[18].

Features can be extracted globally or locally from the image. In extracting the

global features, we usually consider the word as a whole image, which is called the
holistic approach which does not segment the word into smaller connected components.

While in analytical approaches, the word is segmented into smaller units, therefore the

features are extracted locally from each small unit. Examples of local features include:

Percentage of foreground pixels within a window, foreground-background transition
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statistics, percentage of the foreground pixels in the core, and regions of ascenders and
descenders. Global features can be structural or statistical features. It is better to use

structural features than the statistical features in Farsi handwriting recognition because

Farsi has a cursive script with lots of variability in handwriting, and statistical features

(such as number of connected components, holes, ascenders and descenders) cannot

tolerate a large degree of variability. Coefficients of the Fourier transform and invariant

moments are considered as global statistical features [21].

4.2 Feature Selection

Classification accuracy strongly depends on the type of features we choose to

recognize a word. To select the features, we had to consider the Hidden Markov Models'

(HMM's) capabilities and the Farsi scripts' characteristics. Experiences have shown that

HMM can make more accurate recognitions based on the structural features than the

statistical features.

In our recognition system, we used Baseline Dependant Features to identify the

words. Baseline dependant features emphasize the existence of descenders and ascenders.

We designed a sliding window to go over the image and extract its features locally. The

region which was restricted in the sliding window at the time was called a "Frame". The

sliding window's height was the same height as the word image and the width was twice

the stroke width of the word. Before feature extraction, one of the fundamental

morphological operations, Dilation, was applied to the skeleton of the word image to

65



make the image stroke widths at most four pixels wide to ensure proper contour

generation. Therefore, the sliding window was 8 pixels wide and when we shifted the

window to the right, we only shifted it by four pixels. In other words, the windows had

50% of overlap to each other. Figure 4-1 shows the overlap between the two consecutive

sliding windows.

Figure 4-1: The word "Period" is shown in the figure. Red and green windows are consecutive and

the 50% overlap is shown.

The more we give identifying features to the classifier, the better recognition

result we can obtain, unless we mislead the classifier by overtraining it. Therefore, to

extract more features, we divided each window horizontally into 15 equal blocks. Finally,

the local features were extracted.

Our selected features were language-independent and some of them were

calculated with reference to the baselines (Main Baseline, Upper and Lower Baseline) of

the word. These baselines will be described in the next section.
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4.3 Baseline Detection

Finding the baselines is a necessary step prior to doing some script preprocessing

tasks, such as skew corrections, segmentation and feature extractions. We avoided skew

correction in our preprocessing module because it caused distortion in our images. There

were no or little skew detected in our word images so we considered them as the

variations in handwritings.

For each word, the Baseline, Upper baseline and Lower baseline were detected.

The Upper and Lower baselines divided the word image into three zones. The restricted

zone between the Upper and Lower baselines was called the core zone. Baselines are

shown in Figure 4-2 for the "Amount" word image.

Upper baseline

______Baseline
Lower baseline

Figure 4-2: Baselines are shown for the "Amount" word image.
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The techniques used for extracting the baselines in this research are as follows:

1 . Scan the image from top to bottom.

2. Find the row with the most black pixels and call it the "Baseline".

3. Start scanning again from the Baseline of the image to the top of the image

(exclude the Baseline).

4. Find the row with the most black pixels and call it the "Upper Baseline".

5. Start scanning from the Baseline of the image to the bottom of the image (exclude

the Baseline).

6. Find the row with the most black pixels and call it the "Lower Baseline".

We have made two assumptions in this algorithm. Firstly, we processed the bounding

box of the image, which was assumed to be the smallest rectangle containing the word

and secondly, we kept the y coordinates of the rows assuming to be the baselines'

locations.

The features we used to identify our words were baseline-dependant and they could

be divided into Distribution Features and Concavity Features, which are described in the

following sections. Twenty-five features were extracted for each frame.

4.4 Distribution Features

In our system, distribution features are calculated based on the foreground pixels'

(white pixels') densities. Distribution features are easier to detect when compared to the

topological features such as number of loops, but they are less robust to noise and local
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distortion. Since we removed noises in the preprocessing stage and we avoided some

preprocessings which may have caused distortion such as skew correction, we mostly

used the distribution features to recognize the word images. Our approach is based on the

algorithm described in [20] with few alterations.

Our feature vector includes 17 distribution features per frame, which are described

below:

Fl: Density level of the block.

Let b the density level of the block. Then, b = 0 if the number of foreground pixels in

the current cell is zero, else b-\.

F2: Density of foreground pixels, In other words, the sum of foreground pixels for each
row of the block.

F3: Number of transitions between two consecutive blocks of different density levels.

F4: Derivative feature between the current frame and the previous one which shows the

difference between the y position of gravity centers of the current frame and the

previous one.

F5-F12: Eight features that represent the number of white pixels in each column of the
current frame.

Fl 3: Normalized position of the centre of gravity of the foreground pixels in the current

frame with respect to the lower baseline. Fl 3 is calculated as follows:

F13 = ?——
h
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where g is the center of gravity, I is the position of lower baseline and h is the fixed

height of the block.

F 14: Density of foreground pixels over the baseline in the current frame.

Fl 5: Density of foreground pixels under the baseline in the current frame.

Fl 6: Number of transitions between two consecutive blocks of different density levels

above the lower baseline.

Fl 7: This feature represents the zone that includes the centre of gravity. If the center of

gravity is above the upper baseline F 17=1, If it is between the Upper and Lower

baseline F 17=2 and if it is under the Lower baseline F 17=3.

4.5 Concavity Features

To gather some information about the local concavity and to identify the stroke

direction in each frame, we calculated the local concavity features. They were extracted

by using a 3x3 window. Our approach is based on the algorithm described in [20]. We

considered each 3x3 subset of pixels by centering each subset with a background pixel

(which is a black pixel in our images), andtried to match the subset with one Qf the four

templates shown in Figure 4-3. These four templates are the four possible types of

concavity configurations for a background pixel.
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Figure 4-3: Four templates to show the concavity of a background pixel.

Then, we kept track of the number of background pixels which matched one of

the above templates. Since we had different heights for each image, we normalized the

heights by dividing them by the height of the image.

Therefore, F18-F21 were calculated as follows: Nlu stands for the number of

background pixels, which are surrounded by a white pixel at the Left and Up positions.

Nur stands for the number of background pixels, which are surrounded by a white pixel

at the Up and Right, Nrd stands for the number of background pixels, which are

surrounded by a white pixel at the Right and Down positions and Ndl stands for the

number of background pixels, which are surrounded by a white pixel at the Down and

Left positions.

Niu Nur Nrd NdlF18 = _i!£ F19 = _«I F2o = -^ F21= —
HHHH

We also calculated these features for the core zone of the image. To normalize these

values, we divided them by the height d of the core zone as follows:

d = UpperBaseline_YCoordinate - LowerBaseline_YCoordinate
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CNdi CNrd CNiu ^ ^ CNurF22 = —— F23 = —— F24 = —7e F25 = —?-? d d d

From the beginning, we chose Hidden Markov Models (HMM) as the classifier to

perform the recognition job in our system. After having studied many papers in the
handwriting recognition domain, we got the idea that because of the connected nature of

the Farsi script, HMM is an acceptable classifier to recognize the Farsi words. HMM

systems can stochastically model sequences of variable lengths which occur very

frequently in Farsi handwritten words. HMM can also cope with nonlinear distortions

along one direction [21].

We chose a discrete HMM to limit the number of observation symbols. Therefore,

the features should be quantized to a codebook vector. To quantize the feature vector to a

codebook vector, we chose the K-means clustering algorithm, which is described in the

following chapter.
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Chapter 5: Clustering
Data Clustering is defined as follows: to cluster the data which have similar

characteristics. The purpose is to retrieve the relevant information more quickly. The

difference between clustering and classification is that in classification, we assign data to

the predefined classes, while in clustering, clusters are created during the assignment

[24].

5.1 Types of Clustering Methods

Clustering methods can be divided into two basic types, Hierarchical methods and

Partitioning methods.

5. 1.1 Hierarchical Methods

In the Hierarchical method of clustering, a tree structure is created to describe the

grouping of data. There are two main strategies for Hierarchical clustering:

Agglomerative and Divisive. In the Agglomerative method, each data is considered as a

cluster and as the hierarchy moves up, two pairs of clusters are merged. In the Divisive
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method, all data are grouped into one cluster and as the hierarchy moves down, the splits

are done recursively [22].

5.1.2 Partitioning Methods

In the Partitioning method, there is no tree structure to describe the data clustering
and clusters are described in a single level. Each data will finally belong to a cluster and

will be presented by a centroid. The Partitioning method uses the actual observation of
data and not just their proximities. Therefore, it is a more suitable method for clustering
large amounts of data. The K-means uses the partitioning method to cluster the data.

5.2 K-means Clustering Algorithm

The K-means clustering algorithm can cluster ? observations into k mutually

exclusive clusters. Each cluster is represented by a vector, which is the mean of the

existing data in the cluster. Therefore, the data will finally be assigned to the cluster with
the nearest mean. The purpose of the K-means algorithm is to minimize the squared
Euclidean distances between the data in each cluster [23]. K-means is calculated as

follows:

74



fe

t=l dj-eSi

where Id1, d2, ... , dn] is the set of data to be clustered, k is the number of clusters, and

µ? is the mean of data in each set 5¿.

The K-means algorithm is a heuristic algorithm. Therefore, the result depends

strongly on the initial clusters and there is no guarantee of achieving the global optimum.

The algorithm can be simply described as follows:

1 . k initial means are randomly selected from the data.

2. The data with the nearest mean to the initial k randomly selected data will be

assigned to the k th cluster.

3 . The centroid of each cluster becomes the new mean.

4. Steps 2 and 3 are repeated until the sum of distances from each object to its

cluster centroid cannot be decreased further [13].

5.3 Optimum Number of Clusters (k)

In the K-means algorithm, k is the number of clusters that is predefined to the

algorithm and is considered as an input argument. Choosing an inappropriate value for k

may lead to a bad recognition result. The proper choice of k is difficult and depends on

the shape and scale of the distribution ofpoints in a dataset and the desired clustering

resolution [25].
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There are different ways of calculating the proper value of k, such as Rule of thumb

[25], The Elbow Method [27], Information Criterion Approach [28], Information
Theoretic Approach [29], and Choosing k using the Silhouette Plot [24].
We will describe the Silhouette Plot and Rule of Thumb in this section, because the

former is the way that Matlab software uses to find the proper value of k and the latter is
a practical way of finding k in our research.

5.3.1 Choosing k using Silhouette Plot

As described, a way to find the proper value of k is to analyze the existing
clusters. In Matlab, you can use a silhouette plot to see how well the data is separated into
different clusters. There is a measure which ranges from -1 to +1 and indicates if a data

point is very distant from the cluster that it does not belong to or is very close to it.
Positive 1 shows a data point that is very close to another cluster and is probably wrongly
clustered. The larger the quantity of data, the more time consuming and complex the
calculation will be when plotting the K-means silhouette. Therefore, the silhouette plot is

not a practical way of optimizing the number of clusters.
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5.3.2RuIe of Thumb to find the k

Another way to calculate the optimum number of clusters is through the following
formula: [27]

* « f"2
Where ? is the number of data points. Our feature vector's size is 716,596 ? 25 (716,596
is the total number of blocks and 25 is the total number of features). Therefore, the

number of data points is 1,791,490,012 and k is approximately 2993.

5.3.3 Finding the Optimum Value by Validating Data

Validating the trained HMM models gives us the advantage to find the optimum
value for K-means. The process is to train the HMM models and then to try to validate
the models with different values for K-means such as K=256, K=5 12, etc. The K value

which gives us the best result will then be chosen for clustering. The validation process is
described in Chapter 6.
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5.4 K-means in Matlab: (Implementation Issues

and Challenges)

Matlab has a built-in function to run the k-means. It is used as follows:

[IDX5C] = kmeans(X,k)

Or

[...] = kmeans(...,paraml,vall,param2,val2,...)

Where IDX is the clustered data, C is the centroid of each cluster, X is the feature vector

and k is the predefined number of clusters. In Matlab, some parameters and values could

also be used to give the user the ability to control the iterative algorithm used by

k-means. These parameters and values are described in detail in Matlab's Image

Processing Toolbox Documentation [13]. We used the following command to cluster the

data in our case:

[IDX,C] = kmeans(X, 2993,'distanceVsqEuclidean,,'emptyaction','singleton');

The 'distance' parameter shows the algorithm used to calculate the Squared

Euclidean distance of each point to the centroids, to cluster the data. The 'emptyaction'

parameter is a very important parameter, which shows the algorithm regarding which
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action to take if a cluster loses all of its member data. Choosing the 'singleton' value for

this parameter shows the algorithm to create a new cluster consisting of the one point
furthest from its centroid [13].

Unfortunately, this built-in function only works for a small number of data with a
few number of clusters. We ran it for our feature vector with the size of 716,596 ? 25

(716,596 is the total number of blocks and 25 is the total number of features) and we got
an "Out of Memory" error message. All of the memory management solutions suggested
by Matlab documents to solve this problem did not work. Matlab explains the reasons to
get the "Out of Memory" error message, as the system has run out of heap space to hold
all of the variables or the problem is with the memory fragmentation. This topic is

discussed more in [31].

So one way to solve the problem was to write a k-means program which could
optimally use the memory and load our feature vector. We ran the program on the High
Performance Computing (HPC) cluster environment (Super-Computers). Concordia's
ENCS HPC Cluster Environment provides 608 2.2 GHz AMD Opteron

64-bit processor cores for job submission, utilizing the Infiniband network as the means
for node-to-node communication and for I/O to the cluster filesystem. The theoretical

peak performance is 4 GFLOP per second per core. For more information, refer to [30].
The other way to solve the "Out of Memory" problem was to implement the K-means

algorithm in C++ language.

The selection of the Model and HMM will be described in the next chapter.
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Chapter 6: Model Selection and

Hidden Markov Models

After preparing the data, identifying their features and reducing their size by

quantizing them, it was time to select the recognition system's model as this step was

shown in Chapter 1, Figure 1-2. Model selection depends on the characteristics of the

problem. A model is selected to predict output from input, which can be parametric or

non-parametric. There are different types of models which can perform the mentioned

task, such as linear models, classification and regression trees, neural networks, kernel

and hybrid methods. The selection of the optimal model is difficult. The selected method

should perform best on unseen (test) data.

Among all of the classification models, Hidden Markov Models (HMMs) were

chosen because of the connected nature of the Farsi script. HMM systems stochastically

model sequences ofvariable lengths and cope with nonlinear distortions along one

direction. As described previously, the discrete HMM was selected to limit the number of

observation symbols [21]. HMM has particular advantages when compared to the other

models, such as embedded training, in other words, automatic training of character

models on non-segmented words [41].
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In this chapter, we will describe the Hidden Markov Model concepts, our HMM

and its initial estimation. We will also discuss the practical issues related to the

implementation and optimization of HMM.

6.1 Markov Systems

A Markov system is a chain that has different states with stochastic identities.

In this chain, we have states at time / that are influenced by the states at time t-1. Hidden

Markov Models are the best solution to these kinds of problems in Speech Recognition,

Handwriting Recognition, Gesture Recognition, Bioinformatics, Financial Analysis, etc.

In a Markov model, all the states are visible, therefore the state transition probabilities are

the only parameters [33].

6.2 Hidden States

In Hidden Markov Models, the states are hidden to the observers but the outputs are

clear. We call this kind of Markov Model, a "hidden" one because the sequence which

leads to a specific output is hidden, even if the parameters are all precisely identified.
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6.3 HMM Notations

A Hidden Markov Model has three parameters which are shown as follows:
? = (p, A, B)

where A is a Hidden Markov Model which is defined by p, A and B. p is the initial

distribution of the states. A is the state transition matrix and B is the confusion matrix.

We consider N as the number of states in a model and M as the number of distinct

observation symbols per state, which in a discrete HMM is the number of clusters, in
other words, Mis the number of alphabets. We also have to determine the topology of
our Model.

We calculate the state transition matrix as follows:

A = {an},

aij = P\qt+1= Sj\qt = St], l<i,j <N.
We denote S = [S1, S2, S3, ... , Sn] which represents the states and the state at time

tisqi.

The topology of the HMM shows the states which can be reached through each state. For
instance, in our model we considered that each state has a self-transition or a transition to
the next state or the next two states, which is shown in Figure 6-1 . If any state can reach

all the other states, then we have ai}- > 0 for all states [33].

82



WW
Figure 6-1 : A Hidden Markov Model with four states. Each state has a self-transition, a transition to

the next state and another transition to the next two states.

The observation for symbol probability distribution is called the Confusion

Matrix, which is shown by B. It is calculated as follows:

B = {bj(k)l

bjQc) = P[Vk at t\qt = Sj], 1 <j < N, 1 < k < M.
The Confusion matrix shows the probability of emission for symbol k at state j.

Another parameter which should be defined to complete the model is p , as the vector of

the initial state probabilities. It is calculated as follows:

p= {tt¿},

p? = PIq1 = S1], 1 < i < N.

where p is a vector which shows the probability of being in each state at time t = 1.
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6.4 Discrete or Continuous HMM

In speech recognition, Continuous HMM is more acceptable while in handwriting
recognition, there has always been a challenge to select between the Continuous and
Discrete HMM. In 1996, a research was conducted to show a comparison between the
Continuous and Discrete HMM for cursive handwriting recognition [38]. The research
showed that Discrete HMM leads to a better result in handwriting recognition.

In the Discrete Hidden Markov Model (DHMM), the output of the process is observed as
a sequence of observations which belong to a finite alphabet. These observations
represent the indices of a codebook. The codebook is calculated by a vector quantization
method as per our description in Chapter 5. While calculating the quantized vector, some
data will be lost due to the quantization error, which is called distortion. In other words,
DHMM quantizes the data to a limited alphabet, which causes a loss of information.
By using the Continuous HMM (CHMM) we can eliminate the distortion problem, but
CHMM has more parameters and requires more memory [21].
Therefore, we chose DHMM to design and implement our handwriting word recognition
system.
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6.5 Three Main Problems in HMM: Evaluation,

Decoding and Learning

For the Hidden Markov Model to be useful in the real applications, three main

problems should be solved:

1. Evaluation: Suppose we have different HMMs, each with a set of triple

? — (p, A, B) and data as a sequence of observations. The problem is to find the

best model which can generate the data. The Forward algorithm can solve this

problem by calculating the probability of an observation sequence given an HMM

model. This problem usually needs to be solved in script recognition or speech

recognition processes, when we have different models and we want to match a

testing script or spoken word with the existing models.

2. Decoding: The problem is to find the hidden states that lead to the sequence of

observations. The Viterbi's algorithm is usually used to solve this problem. There

is no "correct" sequence to be decoded. Therefore, we use the optimal criteria to

solve the problem [37]. This problem needs to be solved widely in Natural

Language Processing (NLP), where we need to tag the words with their syntactic

classes as nouns, verbs, etc. So we consider the words in a sentence as

observations and the syntactic classes as hidden states. The purpose is to find the

best syntactic class for a word, given the context [36].
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3. Learning: In this problem, we have the observation sequence, we know the
hidden states that have led to the observations and we try to find the best (most

probable) Hidden Markov Model (p, A1 B) that describes the observed sequence.
The Forward-Backward algorithm or Baum-Welch's algorithm is usually used to

solve this problem.

In word recognition, we use the solution to problem 3 (Learning) to model the script,

the solution to problem 2 (Decoding) to improve the model and the solution to problem 1

(Evaluation) to find the best matched script for a given test data.

6.6 Our Hidden Markov Model and Initial

Estimation

It is very important to keep the original size of the image when we model and
design our recognition system with a Hidden Markov Chain, because the number of
sliding windows which should cover the whole image is an identifying feature which can
be used to differentiate some of the words.

One of the most important parameters which should be defined for a Hidden
Markov Model is the number of states. As described in [34], the numbers of states were

chosen based on the average number of frames per class. The chosen number of states for
each class is shown in Table 7-1 .
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For the topology of our model, we considered a right to left HMM (RTL HMM).
Each state could have one self-transition or a transition to the next state or the next two

states, as it was shown in Figure 6-1 , for a four-state model.

To start working with the Hidden Markov Models, we also required some initial values.
In other words, we had to define some initial values for A, B and p.

We considered the equal probability of staying in the current state or going to the
next state or going to the next two states. The probability of going from the current state
to states other than what was mentioned in the topology was zero. The following image

shows a Transition matrix for the model that was illustrated in Figure 6-1 :

Si

V3 V3 V3

V3 V3 V3

V3 V3 V3

V3 V3 V3

This Transition matrix is an (N ? N) size matrix, where N is the number of states.
To calculate the initial values for the Confusion matrix, we considered the equal

probability of emission for each symbol in each state. Therefore, if M shows the number
of symbols, the probability to emit each symbol at each state is 1^. For instance, if we
have 4 states in our model and 3 symbols to emit, then we will have a confusion matrix as
follows:
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O1 O2 O3

s> V3 V3 V3
^"VT-V3-1T3
^""VT1V3-1T3"

where O shows the observation or symbol.

Finally, to calculate p, the random values are chosen for the probability of the

initial states. Then, we normalized the values to make the entries of the array add up to 1 .

6.7 Train HMM Word Recognition System

There are different ways to train an HMM. A detailed description can be found in

[33]. The most common criterion is called Maximum Likelihood (ML). In this criterion,

during the Training stage the HMM parameters are first initialized and then iteratively re-

estimated such that the likelihood of the model produced by the training sequences

increases. In our recognition system, we first defined the initial estimation as per our

description in section 6.6. The training process stops when the likelihood reaches a

maximum value. Maximum Mutual Information (MMI) and Minimum Discrimination

Information (MDI) are the alternative Training criteria [34].
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In this research, we used the Baum-Welch's (BW) algorithm to train word class

models. This algorithm is based on ML criterion. The first step consists of

calculating P(0\X), which is the probability of the observation sequence O, given the
model ?.

We used Forward algorithm to calculate ?(0|?). The Forward variable, at(i), is defined

as follows:

at(i) = P (O1, O2, O3, ... , Ot, qt = S1]A),

which is the probability of the partial observation sequence O1, O2, 03, ... , Ot, and state

S¡ at time t, given the model ?. The algorithm for inducting at(i) is described below:

Initialization:

«t(0 = ^b1 (Ot), 1 < i < N,

Induction:

cct+i(j) = [SG=? CCt(O au ]bi (Ot+1), 1 < t < T - 1,
1 </ <N,

Termination:

P(OlX) = Zl1 "AU-
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The purpose of the BW algorithm is to adjust the model parameters ? = (A, B, p)

to maximize P(0\X),. This is the most difficult problem in the HMM domain. The BW is

an iterative algorithm based on the forward and backward algorithms. The backward

variable ßt(i) is defined as:

ßt(.0= P (.Ot+1, Ot+2, 0t+ 3 0T,qt= S0X),

which is the probability of the observation sequence from t+1 to the end, at state S1 at

time t given the model ?. The algorithm for inducting at(i) is described below:

Initialization:

ßt(?) = 1, 1 < i < N1

Induction:

ßt(Q = ZJLi <kj bj (Ot+1) ßt+i(j), t= T-1,T-2,...,1
1 < í < N.

Now we can define the probability of being in state S1 at time t, and state S¡ at time t+1,

given the model and the observation sequence as follows:

?(?,?) = P(qt= St,qt+1= Sj\0,X),

_ at(Q agbj (Ot+i) ßt+iW
W'J) - ?(?|?)
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yt(0, the probability of being in state 5¿ at time t given the observation sequence O

model ?, is calculated as follows.

Xt(O= P(Qt= S1]O1X),

Or can be calculated using the Forward and Backward variables, as:

n _ «t(0 ßt(QYtW- ?(0(?) ¦
The expected number of transitions from 5¿ is denoted by

T-I

£ Yt (0.
t=i

and the expected number of transitions from S¿ to Sj is denoted by

T-X

^t aJi
t=l

To re-estimate the parameters p, A and B of an HMM, We can use the following
formulas:

1. Expected frequency in state S¡ at time t=l .

Tr1 = Y1(Q.
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2. Transition coefficient = expected number of transitions from state S¡ to Sj, divided

by the expected number of transitions from state S¡.

a,, =
E£ift(U)

lJ S??????'

3. observation symbol probability = expected number of times in state j, while

observing symbol vk, divided by the expected number of times in state j.

Tit=i,s.t.ot=vk Yt(Obj(k) = =?- YtU)

The algorithm to Train the HMM Recognition System is described as follows:
1 . For each folder :

a. For each image in the Training set:

i. Preprocess the image

ii. Find the Feature Vector (FV) for the image [The FV matrix size is:

The Number Of Sliding Windows multiplied by the Number of

Features (25 in our case)].
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iii. Save all FVs in a Matrix while keeping track of the number of FVs

for each image. Call the Matrix as AMFV (All Main Feature

Vectors),

b. Continue until all of the images in the current folder are processed.

2. Send AMFV and the number of preferred clusters to the K-means. The output

matrix has the same row number as AMFV and one column because each row is

now quantized to a single value and is called QFV (Quantized Feature Vector).

Therefore, QFV is a one column matrix. Another output of the K-means will be

the values for the centroids of the clusters.

3. Re-arrange the QFV as each row shows all the values for an image.

4. Save the values for all the images in each word class in a variable called "Data".

5. Call the "HMMTraining" function using Initial estimation and" Data" parameters.

The Output will be three matrices: Transition matrix, Confusion Matrix and Prior

matrix (Matlab's "hmmtrain" function can also be used to train the HMM).

6. Save these three matrices for each word class in a matrix called

MainTrainedMatrices (To improve the model, keep all matrices being calculated

in each of the ten iterations for each word class).

7. Continue until the folders are all processed.

The above process is shown graphically in Figure 6-2.
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Farsi Handwritten Word Database

Training Set Validation Set Testing Set

Image Preprocessing

Sliding the window over the image

Calculation of number of states Feature Extraction

Feature Vector

Clustering (VQ)

• Initial state probability

• Transition matrix initial estimation

• Emission matrix initial estimation

HMM Training

Figure 6-2: Hidden Markov Model Training stage
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6.8 Validation of HMM Word Recognition System

The Validation set is used to tune the HMM Word Recognition System. In

validation stage, we tested samples in the Validation set with ten different models which
were saved during the training of each word class. Finally we saved the model which
could generate the most samples of the class. The Forward algorithm can solve this
problem by calculating the probability of an observation sequence given an HMM model.
We can also use the Viterbi's algorithm to solve this problem. The calculation of Forward

algorithm was described in Section 6.7 and the calculation of Viterbi's algorithm will be
described in Section 6.9.

The algorithm to Train the HMM Recognition System is described as follows:

1 . For each folder:

a. For each image in the Validation set:

i. Preprocess the image

ii. Find the Feature Vector (FV) for the image [The FV matrix size is:

the Number of Sliding Windows multiplied by the Number of

Features (25 in our case)].

iii. Send the FV to the "VectorQuantization" program to find the most

suitable cluster for the FV and save it as QFV (Quantized FV).
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iv. Save QFV in a variable called "Data".
v. For the current folder's iteration from one to ten:

1 . Find the likelihood by using the Forward or Viterbi's

algorithm (or Matlab's hmmdecode function).
2. Keep the most suitable iteration number.

b. When the images in a folder are all processed, choose the iteration number
which was mostly selected as the best iteration number by the current
folder's images.

c. Save the three matrices of the best selected iteration as each word class
model.

2. Continue until all the folders are processed.

The above process is shown graphically in Figure 6-3.
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Farsi Handwritten word Database

Training Set Validation Set Testing Set

Image Preprocessing

Sliding the window over the image

Trained Models

State probabilities for all ten iterations)

Transition matrix estimations for all ten

iterations.

Emission matrix estimations for all ten

iterations.

Feature Extraction
Feature Vector

Vector Quantization

HMM Validating

Figure 6-3: Hidden Markov Model Validation stage
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6.9 Testing of HMM Word Recognition System

In the Testing stage our problem is to find the best model which can generate the
data. Viterbi's algorithm is able to match a single model to an observed sequence of
symbols.

Consider the following variables:

• St (i) : scores the likelihood of the observation sequence O1, 021O3,..., 0t, having
been produced by the most likely sequence of model states, which ends at state i
at time t;

• xp t (i) : The array used to trace the maximum likelihood path which keeps a record
of the states which maximized the likelihood from time / to t.

Viterbi's algorithm is described as follows [34]:

Initialization:

S1(O = nMOJ, 1 < i < N,
Xl)1(S) = 0.

Recursion:

5t(0 = maxi^w [5t-! (0%] ¥°t)· 2 <t <T,
1 <) <N

\pt(i) = argmax1<í<N[5t_1(í)ai;]' 2 -ü - T'
1 <j <N.
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Termination:

P* = max[tfT(0l·
l<i<W

qT* = arg max [S7-(O] ¦

Backtracking for state sequence:

qT ^t+iC^+i). t = T-l.T-2 1.

where P* is the probability of the sequence being produced by each model. The model
that has the greatest likelihood of producing this observation sequence defines the word
class.

To test the new data image with the validated Hidden Markov Models, we used the
following algorithm:

1 . For each folder:

a. For each image in the Testing set:

i. Preprocess the image
ii. Find the feature vector (FV) for the image [The FV matrix size is:

the Number of SlidingWindows multiplied by the Number of
Features (25 in our case)].

iii. Send the FV to the "VectorQuantization" program to find the most
suitable cluster for the FV and save it as QFV(Quantized FV)
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iv. Save QFV in a variable called "Data",
v. For each word class:

1 . Send the "Data" and three selected matrices (Validated
HMM) to the hmm test function (or call Matlab's
hmmdecode function).

2. Find the likelihood value and keep it.

vi. Continue until the likelihood for all word classes are found,
vii. Find the highest likelihood.

viii. Assign the word class with the highest likelihood to the
Recognized Word Class,

ix. If the Recognized Word Class is equal to the Real Class, add one
value to the Correctly Recognized variable,

x. Continue until all images in the current folder are processed.
2. Continue until all the folders are processed.

3 . Find the recognition rate by using the following formula:
(Correctly Recognized / Total Number of the Images) * 1 00%

The above process is shown graphically in Figure 6-4.
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Farsi Handwritten Word Database

Training Set Validation Set Testing Set

Image Preprocessing
----- + ~

Sliding the window over the image

Feature Extraction
Feature Vector

Validated Models Vector Quantization

• Selected best training iteration per

model.

HMM Testing

Figure 6-4: Hidden Markov Model Testing Stage.
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6.10 HMM Toolboxes

Having calculated the initial estimation (as in Section 6.6), we can use the existing
HMM toolboxes. There are different HMM Toolboxes. Some of them have been
designed to be used with Matlab, such as Kevin Murphy's Toolbox, Mendel's Toolbox,
Mathworks stats Toolbox 4.1, Zoubin Ghahramani's Toolbox, Matlab Speech
Processing's Toolbox, Gnu HMM Toolbox and there are some built-in functions in
Matlab for HMM. Some others have been written to be used with C++ programming
language, such as HTK and MVN-HMM.

Matlab has some functions which can be used to train, validate and test the Hidden
Markov Model. To train the model, we can use hmmtrain and to validate and test the
data, we can use hmmdecode functions, which are described in more details as follows:
[ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS) [13].
As described previously, the initial estimation for the Transition matrix and the
Confusion matrix will be sent to the function as TRGUESS and EMITGUESS,
respectively.

The seq should be the quantized data matrix for all images of a class. Each row in
the seq matrix will represent the clustered feature vector for an image.
The hmmtrain uses the Baum-Welch's algorithm for HMM training and can be changed
to the Viterbi's algorithm. The 'Maxiterations' parameter specifies the maximum number
of iterations. There are also some other parameters that can adjust the function and are
described in details in Matlab Image Processing's Toolbox Document.
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The hmmtrain will return the calculated Transition and Confusion matrices for each class
of data. Matlab's hmmtrain and hmmdecode do not create the model that considers the
vector of the initial state probabilities (p), therefore the recognition accuracy of the HMM
system, modeled with Matlab's built-in functions, is less when compared to Kevin
Murphy's HMM Toolbox in Matlab. Hmmdecode function is used as follows:

[PSTATES,logpseq] = hmmdecode(seq,TRANS,EMIS)

The hmmdecode can validate or test the model. The "Seq" is a one row array with
the quantized values of an image's feature vectors. The TRANS and EMIS are the
calculated Transition and Confusion matrices for each class. To find the most likely class
for the image which has been tested, hmmdecode can find the posterior state probabilities
(PSTATES) and logpseq returns the logarithm of the probability of the "Seq" by testing
all existing classes' Transition and Confusion matrices. The class which gives the highest
likelihood is the selected class for the tested image.

We also tried Kevin Murphy's HMM Toolbox1 for matlab. The toolbox should be
copied to the Matlab main directory, and before using it in the program, there should be a
change of directory to the address where it is saved. To train the model with Kevin
Murphy' s toolbox, we also needed to find the initial distribution of the states (p). To
train the HMM with discrete outputs (dhmm), we used the following function:

1 Kevin Murphy's HMM Toolbox can be downloaded for free from the following
website:

httD-//people.cs.ubc.ca/~murphvk/Software/HMM/hmm.html
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[TrainedMatrices,LL, prior2, transmat2, obsmat2] = dhmm_em(seq, priori,
TRGUESS, EMITGUESS, 1HIaX-ItCr1, 10)

The dhmm_em uses the Baum-Welch's algorithm to train the model. Priori is the
p vector, TRGUESS is the initial estimation for the transition matrix and EMITGUESS is
the initial estimation of the Confusion matrix. Max_iter defines the maximum number of
iterations to be completed to find the local maxima. The dhmm_em improves our initial
estimation by using 10 iterations of the Baum-Welch's algorithm. LL (t) shows the
likelihood after iteration t. Therefore, we can plot the learning curve. [3635]
To validate or test the model, Kevin Murphy's toolbox offers the following function:

loglik = dhmm_logprob(data, prior2, transmat2, obsmat2)

Our motivations to choose the Hidden Markov Model for the handwriting word
recognition system rather than the other classifiers such as Neural Networks or Support
Vector Machines are described as follows: 1-HMMs can consider a wide variability in

writing, which exists in cursive scripts such as the Farsi language and 2- HMMs can
consider the whole word as an observation sequence. Therefore, no segmentation is

needed for word recognition. The next chapter discusses our experimental results and the
error analysis.
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Chapter 7: Results and Error Analysis
As described in detail in Chapter 2, our experiments were conducted on the

CENPARMI Farsi dataset with a lexicon size of 73 words most frequently used in Farsi
financial documents. A holistic approach was chosen to model each word as a Hidden
Markov Model. In the literature, words in small size lexicons were modeled separately,

while for the large size lexicons the path discriminant method could be used to reduce the
memory usage and process time.

A right to left HMM was designed to consider the nature of the Farsi script. The
numbers of states were chosen based on the average number of states per class. The
chosen number of states for each class is shown in Table 7-1 .
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Table 7-1: The chosen number of states for each word class, (part a)
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Table 7-1: The chosen number of states for each word class, (part b)

The number of iterations to train each model was ten and the training results

improved steadily using the Baum-Welch's algorithm. In our research we tried to show
the importance of the Baseline-related features. The successful experiments with the high
recognition rates showed that the "Distribution" and "Concavity" features could improve

the recognition system performance.
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7.1 Results

Our system was trained on CENPARMFs Word Training sets. Each of the 73
classes had a maximum 306 images. This approximation comes from the fact that some
images had to be removed from the folders because of their noisy nature, which could
mislead the classifier even after the preprocessing stage. The system was then validated
on the validation sets with a maximum 104 images per class and the testing sets were not
touched before the testing stage. Each testing set included a maximum 104 images per
class and the results are shown in the confusion matrix. The accuracy and the reliability
of the recognition experiment conducted on the Testing set are also presented in
Table 7-2.

Finally, encouraging recognition rates of 98.76% and 96.02% have been obtained
for the Training and Testing sets, respectively. Our designed system is reliable, robust to
the noises and is reasonably fast. Speed of the Testing process is about 3 sec on a single
image scanned at 300 dpi and converted to binary. The experiments executed on an Intel
Duo Core CPU , 2.66 GHZ with 3.25 GB of RAM.
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7.2 Error Analysis

As shown in Table 7-2, the Recognition Rate was 96.02% over all the word classes.
This table also shows the accuracy and reliability for each word class. Accuracy is the
number of correct predictions compared with the accepted value. Reliability is defined as
repeatability or consistency of a prediction. If an experiment is repeated many times and
it is reliable it will give identical results. Reliability shows how trustworthy the classifier
is [72].

The word classes which had the highest accurate recognition are "balance2", "cc",
"Centimeter", "Custom", "Demand", "Dozen", "Expire", "Kilogram", "Liability",
"Milligram", "Milliliter", "Period", "Rent", "Tax" and "Total; each with 100%
recognition rate. The word classes with the most reliability are "Account", "Carton",
"Cost", "Eight", "Five", "gram", "Inches", "Seven", "Total" and "Volume", each with
100% reliability. The word classes with the least accurate results are "Ten" and "Three"
and the word classes with the lowest reliability are "Centimeter" and "Nine".

As we described previously in Chapter 2, Section 2.2.2, Farsi handwritten words have
numerous style variations. These varieties not only can mislead the recognition system,
but they also can cause humans to misrecognize some Farsi words. Generally, the errors
that occurred in recognition can be classified as follows:
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• Possible "Salt and Pepper" noise.

• Less coverage of the different varieties in the Training set for a word class

compared to the other word classes.

• Possible similarity of the word's topology to the other words' topologies.

• The nature of the Farsi cursive handwritten words. Diacritical marks (dots) and

extensions are usually not at the exact position of the word. Also, descenders or

ascenders of a letter can be extended over or under one or more letters of the same

word. Therefore, the sliding window may split letters from their diacritical marks

and it can reduce the word recognition accuracy.

• Some compound words in our lexicon with common words such as "Centimeter",

"Meter", "Kilometer" and "Millimeter" or "Liter" and "Milliliter"

For instance, the word "Five" has only 168 images in the training set, therefore the

classifier is trained with less number of samples. The accuracy of the experiment on the

testing set was 87.27%. This accuracy is ranked as the 68th accurately recognized word
class among all 73 classes. As another example, the word "Ten" can have some

handwritten samples that have similar topologies with the words "Width", "Tons",

"Product", "Plus", "Number", "Money order", "Liter", "Length", "Expire", "Expense",

"Credit" and "Cash". Therefore the recognition rate for this class was 79.71% which is

the lowest recognition rate among the other classes. Figure 7-1 shows two variants of the

words "Ten" and "Cash". As depicted in Figure 7-1, these two words can be written

similarly especially at the beginning parts of the words which misled the classifier.
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Also shown in Table 7-2, the word "Account" had 103 images correctly

recognized while one image was misrecognized as the word "Bank". Written samples o
the words "Account" and "Bank" are shown in Figure 7-2. As depicted in Figure 7-2,

they have some similarities in topologies, especially when "salt and pepper" noise was
found in the word "Bank" image. They are also similar to some letters such as "c" [H],
'V [be] and "<-*" [Kaaf] which some people write in a similar way. These similarities
can mislead the classifier.

As described earlier Some words in our lexicon have common words such as

"Centimeter", "Meter", "Kilometer" and "Millimeter" or "Liter" and "Milliliter" which
may cause confusion errors. For instance, as shown in Table 7-2, the word "Meter" had
94 images correctly recognized while two images were misrecognized as the word
"Millimeter". Samples for the words "Meter" and "Millimeter" are depicted in
Figure 7-3.
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Figure 7-1: Two variants of the words "Ten" and "Cash".

BankAccount

Figure 7-2: Two variants of the words "Account" and "Bank".

Meter Millimeter

Figure 7-3: Two variants of the words "Meter" and "Millimeter ".
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7.3 Related works

Comparing our research with similar research using the same classifier, the same
type of script (words) for recognition and the holistic method, we obtained a better
recognition result since we trained and tested our system on a better quality dataset and
with more samples. We also used the validation set to optimize some of our parameters
such as the number of states and the best iteration values to choose the model. Table 7-3
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Chapter 8: Conclusions

8.1 Summary

A Handwriting word recognition system was presented for Farsi Language. In
order to train, validate and test our recognition system, we had to design and gather a new
Farsi dataset. This new dataset is currently unique in terms of its huge number of images

(432,357 combined grayscale and binary), inclusion of all possible handwriting types
(Freestyle Dates, Words, Isolated Characters, Isolated Digits, Numeral strings, Special
Symbols, Documents), the variety of cursive styles, the number of writers (400) and the
exclusive participation ofNative Farsi speakers in the gathering of data.

The images were preprocessed before being used for the training and evaluation of
the recognition system. Preprocessings were done in the Collecting Forms' level, the
Extraction level and before the Feature Extraction stage.

Feature extraction was applied to reduce the dimensions of the data used for
recognition. Distribution and Concavity features were chosen to represent the word.
A Discrete Hidden Markov Model (DHMM) was selected as the classifier model because
of the connected nature of the Farsi script and to limit the number of observation

symbols.
119



Finally, encouraging recognition rates of 98.76% and 96.02% have been obtained
for the Training and Testing sets, respectively. Some of the errors in recognition occurred
due to similar topologies and numerous style varieties in Farsi handwritten words. These
variations can mislead both the humans and recognition systems to misrecognize some

Farsi words. The other reasons of misclassification are possible "Salt and Pepper" noise

in the word image, the nature of the Farsi cursive handwritten words, common words in
some compound names such as "Centimeter", "Meter", "Kilometer" and "Millimeter" or
"Liter" and "Milliliter", which may cause confusion errors.

8.2 Future Works

The proposed handwritten recognition system can be improved in terms of the size
of the lexicon, the coverage of multi-scripts, increasing the recognition rate and
decreasing the processing time.

Some other methods could be used for large size lexicons while they decrease the

process time, such as path discriminant HMM. This method considers a word as a
pattern, which is classified to the word which has the maximum path probability over all
possible paths [43]. Different approaches have been suggested for HMM multi-script
recognition as described in [41] and could be improved. The Recognition rate and process
time could also be improved by

• Using more advanced preprocessing techniques.
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• Using the fusion of classifiers such as HMM-NN (Neural Networks), HMM-SVM

(Support Vector Machines), etc.

• Using lexicon pruning techniques to decrease the selected words.

• Extraction ofbetter features such as adding the Contour-related features to the

Concavity and Distribution Features.

• Using the more advanced HMM with optimized Viterbi's and Baum-Welch's

algorithms.

• Using more data to train the system.

121



References

1 . P. Clawson, Eternal Iran, Palgrave Macmillan, New York, NY, USA, 2004.
2. S.W. Nicholas, Indo-Iranian Languages and Peoples, Oxford University Press,

Oxford, England, 2002.

3. W.M. Thackston, An Introduction to Persian, 3rd Ed. Ibex Publishers,

Washington, DC, USA, 1993.

4. J.D. Allen and J. Becker, The Unicode Standard, 5th Ed. Addison-Wesley, SC,

USA, 2006.

5. S. Mozaffari, K. Faez, F. Faraji, M. Ziaratban, and S.M. Golzan, "A
comprehensive isolated Farsi/Arabie character database for handwritten OCR
research," in proc. International Workshop on Frontiers in Handwriting
Recognition (IWFHR), Paris, France, Oct. 23-26, 2006, pp. 385-389.

6. H. Alamri, J. Sadri, N. Nobile, and CY. Suen, "A novel comprehensive database
for Arabic Off-Line handwriting recognition," In. Proc. 11th International
Conference on Frontiers in Handwriting Recognition (ICFHR 11), Montreal,

Canada, 2008, pp. 664-669.

7. F. Solimanpour, J. Sadri, and CY. Suen, "Standard databases for recognition of
handwritten digits, numerical strings, legal amounts, letters and dates in Farsi
language," In proc. 10th International Workshop on Frontiers in Handwriting
Recognition (IWFHR 10), La Baule, France, 2006, pp. 743-751.

122



8. H. Khosravi and E. Kabir, "Introducing a very large Dataset of handwritten Farsi

digits and a study on their varieties," Pattern Recognition Letters, vol. 28, pp.
1133-1 141, Feb. 2007.

9. S. Mozaffari, H. El Abed, V. Margner, K. Faez, and A. Amirshahi, "IfN/Farsi-

database: a database of farsi handwritten city names," In proc. 11th International

Conference on Frontiers in Handwriting Recognition (ICFHR 11), Montreal,

Canada, 2008, pp. 397-402.

10. A.M. Bidgoli and M. Sarhadi, "AUT/PHCN: Azad University of Tehran / Persian
handwritten city names, a very large database of handwritten Persian word," In

proc. 11th International Conference on Frontiers in Handwriting Recognition
(ICFHR 1 1), Montreal, Canada, 2008, pp. 192-197.

U.M. Dehghan, K. Faez, M. Ahmadi, and M. shridhar, "Holistic handwritten word
recognition using discrete HMM and self-organizing feature map," In proc. IEEE
Conference on Systems, Man, and Cybernetics, Nashville, TN, USA, 2000, pp.
2735-2739.

12. N. Otsu, "A threshold selection method from gray-level histograms," IEEE

Transactions on Systems, Man, and Cybernetics, vol. 9, pp. 62-66, Jan. 1979.

13. Matlab Image Processing Toolbox, http://www.mathworks.com/access/helpdesk/
help/pdf doc/images/images tb.pdf

14. P. Liu and H. Li, Fuzzy Neural Network Theory and Application, World

Scientific Publishing Company, Hackensack, NJ, USA, 2004.

123



15. L. Lam, S.W. Lee, and CY. Suen, "Thinning methodologies - a comprehensive
survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
14, pp. 869-885, Sep. 1992.

16. E.R. Dougherty, An Introduction to Morphological Image Processing, SPIE
Optical Engineering Press, Washington, DC, USA, 1992.

17. R. Gonzales and R. Woods, Digital Image Processing, Addison-Wesley, London,
UK, 1992.

18. The American Heritage® Dictionary of the English Language, 4th Ed, Houghton
Mifflin Company, Orlando, FL, USA, 2004,

http://dictionary.reference.com/browse/cursive.
19. PJ. Haghighi, N. Nobile, CL. He and CY. Suen, "A new large-scale multi-

purpose handwritten Farsi database," In proc. International Conference on Image
Analysis and Recognition, Halifax, NS, Canada, 2009, pp. 278-286.

20. R. El-Hajj, "Arabic handwriting recognition using baseline dependant features
and hidden Markov models," In proc. 8th International Conference on Document

Analysis and Recognition (ICDAR), Seoul, Korea, 2005, pp. 893-897.
21. M. Haji, "Farsi Handwritten word recognition using continuous hidden markov

models and structural features," M.S. thesis, Shiraz University, Iran, 2005.

22. M. Blumenstein, CK. Cheng, and X.Y. Liu, "New preprocessing techniques for
handwritten word recognition," In proc. 2nd IASTED conference on visualization,
Imaging and Image Processing, Marbella, Spain, 2002, pp. 480-484.

23. D. MacKay, Information Theory, Inference and Learning Algorithms, Cambridge
University Press, New York, NY, USA, 2003 .

124



24. J.H. Ward, "Hierarchical grouping to optimize an objective function," Journal of

the American Statistical Association, vol. 58, pp. 236-244, 1963.

25. R. Ravichandra, "Data mining and clustering techniques," In proc.

Documentation Research and Training Centre (DRTC) workshop on Semantic

Web, DRTC, Bangalore, 2003.

26. K.V. Mardia, J.T. Kent, and J.M. Bibby, Multivariate Analysis, Academic Press,

Maryland Heights, MO, USA, 1979.

27. DJ. Ketchen and CL. Shook, "The application of cluster analysis in Strategic

management research: an analysis and critique," Strategic Management Journal,

vol. 17, pp. 441-458, June 1996.

28. M. Mahajan, P. Nimbhorkar, and K. Varadarajan, "The Planar k-Means problem

is NP-Hard," Lecture Notes in Computer Science, vol. 5431, pp. 274-285, Feb.

2009.

29. M. Inaba and N. Katoh, H. Imai, "Applications of weighted Voronoi diagrams

and randomization to variance-based k-clustering," In proc. 10th ACM

Symposium on Computational Geometry, Stony Brook, NY, USA, 1994, pp. 332-
339.

30. "Memory management", The MathWorks' Product Support, http://www.math

works.com/support/tech-notes/1 100/1 1 06.html.

3 1 . Concordia University, "HPC cluster specifications," http ://users . enes . concordia
¦ca/~cirrus/l .html.

125



32. R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence

Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge
University Press, New York, NY, USA, 1999.

33. L.R. Rabiner, "A tutorial on hidden Markov models and selected applications in
speech recognition," Proceedings of the IEEE, vol. 77, pp. 257-286, Feb. 1989.

34. A. Britto JR., "A two-stage HMM-based method for recognizing handwritten

numeral strings," Ph.D. dissertation, Pontifical Catholic University of Paraná,
Curitiba, Brazil, 2001.

35.K. Murphy, "How to use HMM toolbox," 1998, http://people.cs.ubc.ca/
~murphyk/Software/HMM/hmm_usage.html

36. R. Boyle, "Hidden Markov models," http://www.comp.leeds.ac.uk/Hidden
MarkovModels/html dev/main.html.

37. L.R. Rabiner and B.H. Juang, "An introduction to hidden Markov models," IEEE

Acoustics, Speech and Signal Processing Magazine, pp. 4-15, Jan. 1986.
38. G. Rigoll, A. Kosmala, J. Rottland, and C. Neukirchen, "A comparison between

continuous and discrete density hidden markov models for cursive handwriting

recognition," In proc. 13th International Conference on Pattern Recognition
(ICPR'96), Vienna, Austria, 1996, pp. 39-48.

39. M. Pechwitz, S. S. Maddouri, V. Maergner, N. Ellouze, and H. Amiri, "IFN/ENIT
database of handwritten Arabic words," In proc. Colloque International

Francophone sur l'Écrit et le Document, (CIFED), Tunisia, October 2002, pp.
129-136.

126



40. M. Pechwitz and V. Maergner, "HMM based approach for handwritten Arabic

word recognition using the IFN/ENIT- database," In proc. 7th International
Conference on Document Analysis and Recognition (ICDAR), Edinburgh,

Scotland, 2003 pp. 37-43.

41. Y. Kessentini, T. Paquet, A. Benhamadou, "A multi-stream HMM-based

approach for offline multi-script handwritten word recognition," In proc. 11th
International Conference on Frontiers in Handwriting Recognition (ICFHR 11),

Montreal, Canada, 2008, pp. 147-152.

42. S. Alma'adeed, C. Higgens, and D. Elliman, "Recognition of off-line handwritten

Arabic words using hidden Markov model approach," In proc. 16th International
Conference on Pattern Recognition, Quebec, Canada, 2002, pp. 481 - 484.

43. M. Khorsheed, "Automatic recognition of words in Arabic manuscripts," Ph.D.

dissertation, Churchill College, University of Cambridge, Cambridge, UK, 2000.

44. A. Amin, "Recognition of printed Arabic text based on global features and

decision tree learning techniques," Pattern Recognition, vol. 33, pp. 1309-1323,

Aug. 2000.

45. A. Amin, "Recognition of hand-printed characters based on structural description

and inductive logic programming," Pattern Recognition Letters, vol. 24, pp. 3187-

3196, Dec. 2003.

46. M. Dehghan, K. Faez, M. Ahmadi, and M. Shridhar," Unconstrained Farsi

handwritten word recognition using fuzzy vector quantization and hidden Markov

models, Pattern Recognition Letters, vol. 2, pp. 209-214, Feb. 2001.

127



47. M. Dehghan, K. Faez, M. Ahmadi, and M. Shridhar, "Handwritten Farsi (Arabie)

word recognition: a holistic approach using discrete HMM," Pattern Recognition,
vol. 34, pp. 1057-1065, May 2001.

48. N. N. Kharma and R. K. Ward, "A novel invariant mapping applied to hand-

written Arabic character recognition," Pattern Recognition, vol. 34, pp. 2115-

2120, Nov. 2001.

49. M.S. Khorsheed, "Recognising handwritten Arabic manuscripts using a single

hidden Markov model," Pattern Recognition Letters, vol. 24, pp. 2235-2242, Oct.
2003.

50. R. Al-Alawi, "A neural network recognition system for isolated handwritten

Arabic characters," In proc. 13th International Conference on Artificial Neural

Networks And 10th International Conference on Neural Information Processing

(ICANN/ICONIP), Istanbul, Turkey, 2003, pp. 262-265.

51. L.M. Lorigo and V. Govindaraju, "Offline Arabic handwriting recognition: A

Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), vol. 28, pp. 712-724, May 2006.

52. A. Broumandnia and J. Shanbehzadeh, "Fast Zernike wavelet moments for Farsi

character recognition," Image and Vision Computing, vol. 25. pp. 717-726, May
2007.

53. A. Broumandnia, J. Shanbehzadeh, and M. Rezakhah-Varnoosfaderani,

"Persian/Arabic handwritten word recognition using M-band packet wavelet

transform," Image and Vision Computing, vol. 26. pp. 829-842, June 2008.

128



54. M.S. Khorsheed, "Offline recognition of omnifont Arabic text using the HMM
ToolKit (HTK)," Pattern Recognition Letters, vol. 28, pp. 1563-1571, Sep. 2007.

55. A. Ebrahimi and E. Kabir, "A pictorial dictionary for printed Farsi subwords,"
Pattern Recognition Letters, vol. 29, pp. 656-663, Apr. 2008.

56. A. Benouareth, A. Ennaji, and M. Sellami, "Semi-continuous Hmms with explicit
state duration for unconstrained Arabic word modeling and recognition," Pattern

Recognition Letters, vol. 29, pp. 1742-1752, Sep. 2008.
57. R.A.H. Mohamad, L. Likforman-Sulem, and C. Mokbel, " Combining slanted-

frame classifiers for improved HMM-based Arabic handwriting recognition,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31,

pp. 1165-1 177, July 2009.

58. J. Sternby, J. Morwing, J. Andersson, and C. Friberg," On-line Arabic
handwriting recognition with templates," Pattern Recognition, vol. 42, pp. 3278-
3286, Dec. 2009.

59. Y. Chang, D.T. Chen, Y. Zhang, and J. Yang, "An image-based automatic Arabic
translation system," Pattern Recognition, vol. 42, pp. 2127-2134, Sep. 2009.

60. B. Verma, P. Gader, and W.Chen, "Fusion of multiple handwritten word
recognition techniques," Pattern Recognition Letters, vol. 22, pp. 991-998, July
2001.

61. S. Madhvanath, G. Kim, and V. Govindaraju, "Chaincode contour processing for
handwritten word recognition," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 21, pp. 928-932, Sep. 1999.

129



62. M. Mohammed and P. Gader, "Handwritten word recognition using

segmentation-free hidden markov modeling and segmentation-based dynamic
programming techniques," IEEE Transactions on Pattern Analysis and Machine
Intelligence archive, vol. 18, pp. 548 - 554, May 1996.

63. J. T. Favata, "Offline general handwritten word recognition using an approximate

BEAM matching algorithm," IEEE Transactions on Pattern Analysis and Machine

Intelligence archive, vol. 23, pp. 1009-1021, Sep. 2001.

64. H. Bunke, P.S.P Wang, and H.S. Baird, Hand Book of Character Recognition and

Document Image Analysis, World Scientific Publishing Company, Hackensack,

NJ5USA, 1997.

65. S. Procter, J. Illingworth, and F. Mokhtarian, "Cursive handwriting recognition

using hidden Markov models and a lexicon-driven level building algorithm,"

Computer Vision and Computer Graphics. Theory and Applications, vol. 147,

pp. 332-339, Dec. 2000.

66. N. Arica and F.T. Yarman-Vural, "One-dimensional representation of two-

dimensional information for HMM based handwriting recognition,"

Pattern Recognition Letters, vol. 21, pp. 583-592, June 2000.

67. N. Arica and F.T. Yarman-Vural, "Optical character recognition for cursive

handwriting," IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 24, pp. 801-813, June 2002.

68. E. Kavallieratou, N. Fakotakis, and G. Kokkinakis, "An unconstrained

handwriting recognition. system," International Journal on Document Analysis

and Recognition, vol. 4, pp. 226-242, July 2002.
130



69. A. El-Nasan, S. Veeramachaneni, G. Nagy, "Handwriting recognition using

position sensitive letter N-gram matching," In proc. International Conference on
Document Analysis and Recognition (ICDAR), Montreal, Canada, 1995, pp. 577-

582.

70. CA. Higgins and D.M. Ford, "Online recognition of connected handwriting by

segmentation and template matching," In proc. International Conference on
Pattern Recognition (ICPR), Hague, Netherlands, 1992, pp. 200-203.

71. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, 2nd Edition, Wiley

Interscience Publication, Maiden, MA, USA, 2001.

72. M. Butler, "Optimizing student engagement and results in the quanta to quarks

option," In proc. 11th Biennial Science Teachers' Workshop, Sydney, Australia,
2004, pp. 100-110.

131


