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ABSTRACT

Optical Spectroscopy of Photosynthetic Complexes: Focus on Low-Temperature Protein

Dynamics

Nicoleta Herascu

To perform photosynthesis, plants, algae and bacteria possess well organized and

closely coupled photosynthetic pigment-protein complexes. The information on energy

transfer processes and protein dynamics contained in the narrow zero-phonon lines at low

temperatures is hidden under the inhomogeneous broadening. Thus, it is difficult to

analyze the spectroscopic properties of these complexes in sufficient detail by

conventional spectroscopy methods. In this context, high resolution spectroscopy

techniques such as Spectral Hole Burning, Fluorescence Line Narrowing and Single

Molecule / Single Complex Spectroscopy are powerful tools designed to overcome the

inhomogeneous broadening difficulty. This thesis focuses mainly on the low-temperature

protein dynamics of several photosynthetic protein complexes (LH2, CP43, CP29 and

LHCII). The hole growth kinetics and the shape of the anti-hole due to the non-

photochemical spectral hole burning have been explored, and interpreted within the

framework of theoretical models describing spectral diffusion due to conformational

changes between nearly identical substates on a multi-tier protein energy landscapes.

iii



ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Professor Valter

Zazubovitch whose experience, guidance, and patience contributed tremendously to this

thesis. I appreciate his experience, originality and spirit of discovery in regard to research

and technology.

I would like to thank our group's collaborators for their valuable help in providing

samples and scientific discussions.

It is an honor for me to thank to all of those who supported me in any respect

during the completion of this master degree.

I must also acknowledge to NSERC for the financial support of this research.

iv



TABLE OF CONTENTS

List of Tables viii

List of Figures ix

Tables xv

Figures xix

List of Acronyms lxii

INTRODUCTION 1

CHAPTER 1 BASICS OF OPTICAL SPECTRA 5

1 . 1 Relation between different parameters of optical 5

transitions

1 .2. Optical properties of host-guest systems 7

CHAPTER 2 OVERVIEW OF THE PHOTOSYNTHETIC COMPLEXES 13

STUDIED

2.1 LH2 complexes from purple bacteria - Rps. Acidophila 14

2.2 Light-harvesting complexes of PSII from plants and cyanobactria 15

Synechocystis PCC6803

CHAPTER 3 Experimental Methods 22

3.1 General features 22

3.2 Laser system details 25

3.3 Spectral Hole Burning Simulator 26

3.4 Typical setup of Single Molecule Spectroscopy Experiments 28

CHAPTER 4 SPECTRAL HOLE BURNING (AND OTHER HIGH- 30



RESOLUTION TECHNIQUES) IN CASE OF PROTEIN HOST

4.1 General features of the mechanism of hole burning and hole- 30

burned spectra

4.2 Hole profile 31

4.3. Two-level system 33

4.4 The model ofNPHB and HGK for a chromophore-glass system 35

4.5 Including Energy Transfer 38

4.6 Protein dynamics, energy landscape further development of hole 39

burning model

CHAPTER 5 RESULTS AND DISCUSSION 43

5.1 LH2 complex of purple bacteria Rsp. Acidophila 43

5.1.1 LH2 from Rsp. Acidophila - Sample preparation 43

5. 1 .2 The study of anti-hole absorption of LH2 from Rsp. Acidophila 44

5.1.2.1 The hole growth kinetics of LH2 from Rsp. Acidophila 44

5.1 .2.2 The spectral hole burning of LH2 ofRsp. Acidophila 46

5.1.3 Discussion on LH2 52

5.2 Low-temperature protein dynamics of several small light- 61

harvesting complexes probed via spectral hole growth kinetics

measurements

5.2.1 CP43 63

5.2.1 .1 CP43 - Sample preparation 63

5.2.1 .2 The absorption and SHB action spectra of CP43 of spinach 64

5.2. 1 .3 The hole growth kinetics of CP43 of spinach 65

vi



5.2.2 CP29 68

5.2.2.1 Sample preparation - CP29

5.2.2.2 The absorption and SHB action spectra of CP29 of spinach

5.2.2.3 The hole growth kinetics of CP29 of spinach

5.2.3 LHCII

5.2.3.3 The hole growth kinetics of LHCII oiPisum Sativum

5.3. Discussion

CHAPTER 6 CONCLUSIONS

APPENDIXI PRELIMINARY RESULTS ON PHOTOSYSTEM I FROM

Synechocystis PCC6803 and Thermosynechococcus elongatus

APPENDIX II SUMMARY OF THE EXPERIMENTS PERFORMED

68

68

72

74

5.2.3.1 LHCII ofPisum Sativum - Sample preparation 74

5.2.3.2 The absorption and SHB action spectra of LHCII of Pisum 75

Sativum

82

85

90

92

96

REFERENCES 97

vii



List of Tables

Table 5.1 Parameters to the best fit to the hole shape and HGK curves in LH2

Table 5.2 Absorption features of LHCII

Table 5.3 The summary of the HGK curves simulation parameters Fit parameters

correspond to the lowest burn frequency, highlighted in bold

Table A2: Summary of the experiments performed

viii



List of Figures

Fig. 1.1 Debye - Waller factor and schematic absorption line shape of guest molecules in

perfect lattice

Fig. 1. 2 Identical guest molecules in a perfect lattice

Fig. 1. 3 Absorption line shape of guest molecules in perfect lattice; a. absorption line

shape of a single guest molecule in a perfect lattice; b. Homogeneous lines of identical

guest molecules in a perfect lattice

Fig. 1.4 A disordered lattice doped with guest molecules

Fig. 1.5 Absorption line shape of guest molecules in disordered lattice

Fig. 2.1 X-ray structure of the photosynthetic unit in purple bacteria, R. molischianum

including the reaction center, LHl and LH2

Fig. 2.2 The structure of the peripheral LH2 complex from Rsp. acidophila (a) and the

absorption spectrum of lh2 from Rsp. acidophila (b)

Fig. 2.3 Structure of PS II - (a) view from above and (b) side view along the membrane

plane of dimeric PSII

Fig. 2.4 Structure (the complete structure and the organization of chlorophylls) and low-

temperature absorption spectrum of CP43

Fig. 2.5 Structure and absorption spectrum (with second derivative) of CP29

ix



Fig. 2.6 The trimeric and monomeric structure of LHC-II; a - pigments in the LHC-II

trimer, view along the membrane normal from the stromal side; b and c, d - pigments in

the LHC-II monomer, view at the stromal and lumenal sides, respectively

Fig. 2.7 The low-temperature absorption spectra of LHC-II

Fig. 3.1 Absorption and low-resolution HB set-up

Fig. 3.2 Fluorescence excitation mode set-up

Fig. 3.3 DCM-dye calibration curve

Fig. 3.4 Interface of Spectral Hole Burning Simulator

Fig. 3.5 Single-molecule spectroscopy; (a) diagram of the widefield arrangement of the

microscope; (b) diagram of the confocal arrangement of the microscope

Fig. 4.1 Zero phonon hole width

Fig. 4.2 Non-photochemical hole profiles burnt non-resonantly

Fig. 4.3 (a) Two-level (referred to as I and II) system model (where indices "e" and "g"

indicate the chromophore in its excited and ground state, cûb is the burn frequency of the

laser, and ki is the tunneling rate, I/II denote the preburn/postburn chromophore host

configurations); (b) The TLS parameters (where Wis the tunneling frequency)

Fig. 4.4 NPHB mechanisms accounting the different hierarchical tiers on the energy

landscape

Fig. 5.1 Fig. 5.1 Low temperature (T=5K) absorption spectra of LH2 from Rsp.

Âcidophila

Fig. 5.2 HGK curves obtained at 0.23 W/cm (0.5 s/point; dark gray curve) and 1.37

W/cm2 (0.1 s/point; light gray curve) at 807.5 nm, as well as hole depths extracted from
the spectral holes

?



Fig. 5.3 NPHB of LH2 complex of Rsp. Acidophila (?? = 807.5 nm) for various

irradiation doses

Fig. 5.4 NPHB anti-hole structure for Lh2 complex of Rsp. Acidophila, where the

numerals 1 and 2 refer to different contributions to the NPHB antihole; dotted curves are

the fit to the second, strongly shifted component of the antihole (labeled with the

downward arrow); the dashed curve is the B800 absorption

Fig. 5.5 Non-resonantly burned hole spectrum of LH2 complex of Rsp. Acidophila (?ß =
¦y

790 nm and 150 J/cm ), where the dotted line is the fit to the SHB action spectrum, and

the dashed line is the B800 absorption band (multiplied by a factor of 0.003); the thin red

solid curve represents the hole due to EET and its antihole; dashed arrows show vibronic

replicas of the resonant hole; the inset contains nonresonantly SHB for different

irradiation doses (50, 85, 100, and 150 J/cm , from top to bottom)

Fig. 5.6 The HGK calculated curves for ?? = 7.8, s? = 0 and various shapes of the anti-
hole function

Fig. 5.7 The spectral hole burnt at ?ß = 807.5 nm and the spectral hole calculated for ?? =

7.8, s? = 0, non-shifted Gaussian anti-hole function with the width of 1 .1 cm"1 and several
irradiation doses

Fig. 5.8 The best fit to HGK and the overall shape fit of the shallowest and deepest holes

in the series burned at 807.5 nm (inset A and inset B respectively). The blue and red

noisy curves are the experimental holes

Fig. 5.9 Experimental dependence of the hole width on the fractional hole depth

(triangles, dashed line), predicted dependence (based on eq. 4.5) in the absence of a

homogeneous line width distribution (circles, dotted line), and predicted dependence

xi



assuming the distribution of line widths from ref 63 (diamonds, solid line). The value of

the (shallow) hole width expected based on the time-domain data (i.e., about 6 cm"1) is
indicated by an arrow.

Fig. 5.10 Low temperature absorption spectrum of CP43 (red curve) and the SHB action

spectrum of CP43 (black diamonds); the black pointed arrow indicates the burning

wavelength (?ß = 686.8 nm)

Fig. 5.11 The experimental (black noisier curve) and the best fit (based on eq. 4.5; red

curve) to the hole growth kinetics curve of CP43; the insert shows the spectral hole burnt

at 686.8 nm

Fig. 5.12 Low temperature (T=5K) absorption spectrum of CP29 (red curve) and the

SHB action spectrum of CP29 (black diamonds); the arrows indicate the burning

wavelengths

Fig. 5.13 The SDF and the absorption spectrum of the lowest - energy state of CP29;

where the dashed blue curve is the pigment 1 SDF corrected with phonons and localized

vibrations contribution [82]; dash-dotted red curve is the difference between the whole

absorption spectrum (solid red curve) and the lowest-state absorption (dashed blue

curve); black and green solid curves are the second and third-lowest energy SDFs; dashed

black curve is the absorption spectrum of pigment 2 dressed with phonon and vibration

contributions; black dotted curve is SDF of pigment 2 molecules incapable of downhill

EET (divided by 3 for clarity, to avoid overlapping with other curves).

Fig. 5.14 The experimental HGK curves and the best fit to HGK of CP29 for burn

wavelength of 68 1 .7 nm

xii



Fig. 5.15. Absorption (red curves) and HB action spectra (diamond curves) of LHCII-

monomer (a) and LHCII-trimer (b)

Fig. 5.16 The SDF and the absorption spectrum of the lowest - energy state of LHCII

monomer; where the dashed blue curve is the pigment 1 SDF corrected with phonons and

localized vibrations contribution; dash-dotted red curve is the difference between the

whole absorption spectrum (solid red curve) and the lowest-state absorption (dashed blue

curve); black and green solid curves are the second and third-lowest energy SDFs; dashed

black curve is the absorption spectrum of pigment 2 dressed with phonon and vibration

contributions; black dotted curve is SDF of pigment 2 molecules incapable of downhill

EET

Fig. 5.17 The SDF and the absorption spectrum of the lowest - energy state of LHCII

trimer; where the dashed blue curve is the pigment 1 SDF corrected with phonons and

localized vibrations contribution; dash-dotted red curve is the difference between the

whole absorption spectrum (solid red curve) and the lowest-state absorption (dashed blue

curve); black and green solid curves are the second and third-lowest energy SDFs; dashed

black curve is the absorption spectrum of pigment 2 dressed with phonon and vibration

contributions; black dotted curve is SDF of pigment 2 molecules incapable of downhill

EET

Fig. 5.18 The experimental HGK curves for LHCII - monomer (a) and trimer (b) and the

best fit to HGK for burn wavelength of 684.2 nm and 683.1 run respectively; the insert

shows the spectral hole burned at 684.2 nm

Fig.. 5.19 The structural arrangement of chlorophylls in LHCII

xiii



Fig. Al.l The structural model of Photosystem I and the absorption spectrum of PS-I

wild type where green - chlorophyll molecules, blue, pink, purple, orange, etc - protein

alpha-helixes.

Fig. Al.2 Thermocycled spectral holes burned in to the absorption spectrum of

Synechocystis PCC6803 at 660 nm (T=5K, 2OK, 3 IK, 4OK, 52K, 61K, 73K, 86K, 99K,

11 OK). The lowest-temperature spectrum is the deepest hole spectrum. The vertical line

indicates the burn wavelength.

Fig. Al.3 Thermocycled spectral holes burned in the absorption spectrum of

Thermosynechococcus Elongatus at 659.94 nm (T=5K, 19.5K, 30K, 4OK, 5OK, 69.4K,

85.1K, 100K, 119K, 146K). The lowest-temperature spectrum is the deepest hole

spectrum

xiv



Table 5.1 Parameters to the best fit to the hole shape and HGK curves

Fitting parameter Parameter values

phonon sideband S = 0.45 ± 0.05, copeak = 25 cm"1,
Gaussian/Lorentzian fwhm of 22/40 cm"

homogeneous line width distribution from ref. 65 based on the whole
B850 DOS, peaked at 3.3 cm"1 (1.6 ps)

antihole, tier 1 , shifts ~ 1 cm" f > 10 , ?0 < 7.8, s? < 0.1; not observed in
SHB experiments

3 ± 1 cm" , Io
- IQ"8)

antihole, tier 2, shifts -7-10 cm" fwhm = 35 ± 5 cm" , shift =
10.3±0.2,?·? = 0·7±0.2(f·

Antihole, tier 3, shifts ~ 60 cm" fwhm = 70 ± 10 cm"', shift = 60 ± 10 cm"1, f
~ 10"7; note that only several percent of
molecules are capable of such large shifts
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Table 5.2 Absorption features of LHCII

Experimental results Literature results
D- «. ,U^11 ,„,-.„ LHCII-monomer LHCII-trimer , tí^Tf*tedPigment LHCII- LHCII- LHCII-tnmer

monomer trimer _ , . 4.5K 4.2K77K 4.5K 77K

,,- „, 675.46 nm 662 nm; [34, 87] 676 nm [88] ,?n R R , 676 nm [88] 676.3 nm[89]ChIa 671.08nm 670 nm; [.34, 87] 671 nm [88] ', nm' ^' l'\ 671 nm [88] 671.9nm[89]661.54nm 678 nm; [34, 87] 661.5nm[88] nm· l ' 8/J 661.5nm[88] 662.0 nm[89]
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Table 5.3 The summary of the HGK curves simulation parameters Fit parameters

correspond to the lowest burn frequency, highlighted in bold

Complex
SDF peak and
width (cm"1)
Oscillator strength
(Chi a equivalents)
Lifetime t? (ns)

Thomog (cm" )
Burn frequency
cob (cm1)

SpSB

®m5 A Gauss? 1 Lorentz

(cm1)
??

s?

CP43, ?-state

14641; 180

3.5

0.03

14560

0.30±0.05

17; 15; 70

11.0±0.2

1.0±0.05

CP29

14717, 165 '

1.0-0.7

4.8

0.04

14670

14694

14720

0.60±0.05

22; 20; 110

9.6±0.2

1.4±0.2

LHCII monomer LHCII trimer

14705; 198"

1.2

4.4

0.04

14616,
14628,
14653

0.80±0.054

22; 20; HO4

11.3±0.24
2.0±0.2

14717, 180

1.2

4.4

0.04

14640

14652

14656

1.3+0.1

22,20,110

11.2+0.2

2.3±0.2

1 SDF parameters from [79]: peak 14745 cm"1, FWHM=120 cm"1, S=0.4...0.6.

2 SDF parameters from [88]: peak 14715 cm"1, FWHM=IlO cm"1, S=0.6
3 SDF parameters from [88]: peak 14705 cm"1, FWHM=80 cm"1; S=0.8...0.9

The best fit with electron-phonon coupling parameters exactly as in [88] yields ??=12.0
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Table A2: Summary of the experiments performed

Species
Complex studied
Provider/collaborator
Experiment type

Species
Complex studied
Provider/collaborator
Experiment type
Species
Complex studied
Provider/collaborator
Experiment type
Species
Complex studied
Provider/collaborator
Experiment type
Species
Complex studied
Provider/collaborator
Experiment type

Rps. Acidophila
LH2
Cogdell, U. Glasgow
HB Spectra, hole broadening on a time scale of hours
and HGK
Spinach
CP43
Seibert and Picorel, NREL, Colorado
HB Spectra and HGK
Spinach
CP29
Pieper and Irrgang, Berlin
HB Spectra and HGK
Pea
LHC-II
Neman Nelson, U. Tel Aviv, Israel
HB Spectra and HGK
Synechocystis PCC6803 and Synechococcus elongatus
PSI
T.W. Johnson / Petra Fromme ASU
Thermocycling of the whole satellite hole structure.
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Fig. 1.1 Debye - Waller factor and schematic absorption line shape of guest
molecules in perfect lattice (from ref. [9 and 19])
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Fig. 1. 2 Identical guest molecules in a perfect lattice (after ref. [8, 9])
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Fig. 1. 3 Absorption line shape of guest molecules in perfect lattice

a. absorption line shape of a single guest molecule in a perfect lattice;
b. Homogeneous lines of identical guest molecules in a perfect lattice (from ref. [8, 9])
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Fig. 1.4 A disordered lattice doped with guest molecules (after ref. [8, 9])
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Fig. 1.5 Absorption line shape of guest molecules in disordered lattice

G - inhomogeneous lines width; ? - homogeneous lines width (from ref. [8, 9])

xxiii



Lh-

-ci· f

*.-?
?875 Bchi â

-ray structure of the photosynthetic unit in purple bacteria, R. molischianum
(from ref. 4), including the reaction center, LHl and LH2.
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Fig. 2.2 The structure of the peripheral LH2 complex from Rsp. Acidophila (a) and the
absorption spectrum of lh2 from Rsp. Acidophila (b) (from and ref. 17; 18)
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Fig. 2.3 Structure of PS II - (a) view from above and (b) side view along the membrane
plane of dimeric PSII (from http ://www.lbl . gov/Science-Articles/Archive/PBD-
CP29.html and http://www.sciencemag.org/feature/data/prizes/ge/2006/loll figure.gif)

XXVl



(a)

I
es

I ^J

3SO 430 510 590 670 750

wavelength (nm)

(b)

Fig. 2.4 Structure (the complete structure and the organization of chlorophylls) and low-
temperature absorption spectrum of CP43 (from ref. 19, 20)
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Fig. 2.5 Structure and absorption spectrum (with second derivative) of CP29

(from www.lbl.gov/-/Archive/PBD-CP29.html; réf. 21)
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Fig. 2.7 The low-temperature absorption spectra of LHC-II (from réf. 26)
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Fig. 4.1 Zero phonon hole (after ref [9])
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Fig. 4.3 (a) Two-level (referred to as I and II) system model (where indices "e" and "g"
indicate the chromophore in its excited and ground state, gob is the burn frequency of the

laser, and ki is the tunneling rate, I/II denote the preburn/postburn chromophore host
configurations);

(b) The TLS parameters (where W is the tunneling frequency), (from ref [12])
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INTRODUCTION

The importance of photosynthesis as unique physico-chemical phenomenon was

pointed out many years ago, but research into its mechanisms and related structures

reached the height of attention only during the past 40 years. This interest continues

further, owing to the constant development of various experimental approaches and

emergence of new high-quality samples. Photosynthesis is a highly interdisciplinary field

of research with implications affecting areas from solar energy conversion to biosensors

to general properties ofprotein energy landscapes.

Photosynthesis is the process by which plants, algae and photosynthetic bacteria

convert solar energy into a form that can be used to sustain the life process [1-3].

6CO2 + 12H2O^C6HnO6 +6O2
There are certain steps of photosynthesis which are followed to arrive at the above

equation [1-3]:

> light absorption and energy delivery by antenna systems - photo-physical process;

> primary electron transfer in reaction centers - photochemical process;

> energy stabilization by secondary electron transfer- chemical process;

> synthesis and transport of stable sugar products - biochemical process.

To perform primary steps of photosynthesis, plants, algae and bacteria possess

well organized and closely coupled photosynthetic pigment-protein complexes. The

structures of various photosynthetic complexes are reviewed in Chapter 2 and Appendix

I. The common denominator is that proteins in these complexes hold together a network
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of pigment molecules, which is optimized for light harvesting, energy transfer and charge

separation.

Photosynthetic pigment-protein complexes are complicated systems, and it is

difficult to analyze their spectroscopic properties in full detail [5-7]. Traditionally the

optical spectra of photosynthetic pigment-protein complexes at low temperatures are

analyzed in the same way as that in the case of chromophores in amorphous solid hosts

[8] (e.g. glasses and polymers), as they exhibit large inhomogeneous broadening due to

static disorder. This is caused by individual pigments, e.g. chlorophylls,

bacteriochlorophylls or carotenoids, experiencing slightly different local environments

even in the same protein site, which leads to a broad distribution of electronic transition

frequencies [5-7]. The background information on optical spectroscopy in general and in

the case of amorphous solids in particular will be presented in Chapter 1.

Inhomogeneous broadening hides the information about the energy transfer

processes and protein dynamics of photosynthetic complexes, which is contained in the

widths and positions of the narrow (at low temperatures) homogeneously-broadened

lines, which contain information on energy and charge transfer or pure dephasing (see

Chapter 1). This problem can be solved by utilizing methods of high-resolution optical

spectroscopy [9, 10]. One of such high-resolution methods is Spectral Hole Burning

(SHB). Persistent non-photochemical hole burning (NPHB) is a variety of SHB occurring

in structurally disordered hosts such as glasses, polymers, and proteins. It does not

involve any photochemical reactions but is a result of rearrangement of pigment's local

environment. The latter can be interpreted as tunneling between different host-

chromophore configurations [H]. The tunneling is triggered by excitation of the
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chromophore and occurs while the chromophore is in its excited state [12]. Investigation

of single molecules / complexes (Single Molecule Spectroscopy, SMS) is the ultimate

method of escaping inhomogeneous broadening. However, SMS is technically much

more demanding and, as we will demonstrate, may provide results which are not

statistically relevant representatives of the large ensembles of identical proteins. Both

SMS and SHB can be employed to explore light-induced spectral diffusion, which is a

manifestation of low-temperature protein dynamics. The latter is the key subject of the

present thesis. The studies of low-temperature protein dynamics by methods of optical

spectroscopy published so far [63, 62] do not address the comparison between the results

obtained by different methods for the same proteins. While SHB studies focused on heme

protein and horseradish peroxidase [51], SMS was applied almost exclusively to

photosynthetic protein complexes, mainly LH2 antenna complexes of purple bacteria (see

Chapter 2) [46].

In Chapter 2 we present the structures of various photosynthetic complexes used

in this work. In Chapter 3 we discuss the technical details of our SHB experiments and

give some overview of SMS experiments by Aartsma's and Köhler groups with which we

compare our results. In Chapter 4 we discuss the theoretical models relevant from the

viewpoint of studying low-temperature protein dynamics by optical methods.

In Chapter 5 we present the results of our hole burning experiments and discuss

them within the framework of available models. For LH2 [38] we demonstrate partial

incompatibility of SMS results with our SHB data. In the next sections we discuss the

results of similar SHB experiments for several small chlorophyll a -based antenna

complexes, which are, generally, in line with the LH2 results.

3



Conclusions of our work are summarized in Chapter 6.

Appendix I contains very recent data on protein dynamics in still another

photosynthetic complex, cyanobacterial Photosystem I.
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CHAPTER 1. BASICS OF OPTICAL SPECTRA

1. 1 Relation between various parameters of optical transitions

The optical transitions of atoms and molecules are characterized by such

parameters as Einstein coefficients, transition dipole moment, oscillator strength,

absorption coefficient, and the line shape function.

There are three coefficients to describe optical transitions of atoms and molecules.

The Einstein A2] coefficient defines the total rate of spontaneous emission [13, 15]:

647G4?3µ 2g,
Al = „, s " > andT2· = 1/A21 0-1)3hc g2

where ? is the frequency of transition; g¡ is the degeneracy of level i; t2i is the natural

(fluorescence) lifetime; µ? is the transition dipole moment, µ? = \?*2µ?\dV and

¿?- ' ' is the electric dipole moment operator; µ?1 is proportional to the transition

probability, which gives the selection rules: for a forbidden transition |µ| = 0 and for an

allowed transition ( \µ\ f? ).
The Einstein coefficient B21 characterizes the transition rate of stimulated

(induced) emission while the transition rate of absorption is proportional to the Einstein

coefficient B12 (as well as to the energy density in the field). One notes that stimulated

emission is a coherent process while the spontaneous emission is an incoherent process

[13, 15]. In our experiments we are concerned only with absorption and spontaneous

emission.

5



8p3
Bn = B2x , and Bn = —-? µ, O -2)ich ?

The Einstein coefficient of spontaneous emission is related to the Einstein

coefficient of absorption/stimulated emission by the following formula [13, 15]:

. _ 87thv „?2?~ ?2?

The Einstein coefficient for absorption or stimulated emission is related to the

absorbance one can find in Beer's law:

Z = Z0Kr00= Z0I(T" (1:3)
where OD is optical density, or "absorbance" (see subsequent sections), c is the

concentration of the chromophore, and e is the molar extinction coefficient. The latter is

related to absorption cross-section. The absorption cross section is wavelength-dependent

and depends on the line-shape function. a(cm2) = — — ; and the integrated cross2>ch

section Ja(v)dv = hvB12 , [13-15].
Since optical transition process is quantum-mechanical in nature, the Heisenberg

uncertainty principle applies.

AEAt > — (1:4)
2p

This principle states that to determine either the energy or the lifetime of a

particular transition one has to restrict the accuracy of the other. Therefore, the spectral

lineshape of an optical transition is necessarily broadened by this condition, and it is

often referred to as natural or homogeneous lineshape of an optical transition and natural

or homogeneous broadening respectively [13-15].
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Broadening of lines arising from finite lifetime of a state gives rise to a Lorentzian

line-shape function, Íl(v).

Yl/
?2p

(V-V0)2 + ?£/4fL(v) = 7- (2 2 , , 0:5)

where, yl is the Lorentzian full width at half maximum (FWHM), which is inversely

proportional to the natural lifetime [16, 18].

Wem"1) = -!- (1:6)
?p?t

where c is speed of light in cm/s and t in the natural lifetime in seconds.

1.2. Optical properties of host-guest systems

In the host - guest systems the optical properties of guest molecules are strongly

influenced by the nature of the host lattice. The host system could be either a crystalline

or amorphous solids. "Guest" refers to chromophores which generally are impurities, or

dopants [8, 9]. (In the case of photosynthetic complexes, however, chlorophylls are not a

result of artificial doping, but are built into protein by Nature.) While the optical

properties of certain crystalline materials doped with different molecules have been

studied from the early days of the low temperature optical spectroscopy, the study of

more complex host-guest systems, like photosynthetic complexes, is still evolving [8, 9].

The absorption line shape of a single molecule embedded in a solid presents two main

features, [8, 9]: (a) the zero-phonon line, ZPL (that represents the zero-phonon transition

or the purely electronic transition) and (b) the phonon side band, PSB (for electronic

transition accompanied by creation or destruction of phonon(s), the quantum of lattice

vibration). Homogeneous line width, and Huang-Rhys or Debye Waller factors are
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parameters that characterize the optical line shape of a chromophore in a solid lattice [8,

9].

I
aft (<u - ?')

—··<—?

\ — ?—i

-----^ ir^· —==- _» f
?

Fig. 1.1 Debye - Waller factor and schematic absorption line shape of guest
molecules in perfect lattice (from ref. [9 and 19])

Homogeneous line width is inversely proportional to the dephasing time, X2 [8, 9].

1111
? = — = — + — (1:7)

where t? is excited state lifetime / energetic relaxation time and %2 is pure dephasing

time. The latter corresponds to the processes when, for example, scattering of a phonon

off the chromophore results in a random shift of the excited state wavefunction phase

without molecule actually returning to the ground electronic state (such returning would

be described by t?). The dephasing time t? represents the lifetime of the excited state

coherence [9]. In other words, there are two types of processes that determine the

dephasing time xj'. the decay processes of the excited state population that contributes

with the finite lifetime t? and pure phase-destroying processes with X2 [9]. One should

note that in the limiting case when temperature approaches the absolute zero (T = OK) the

pure-dephasing time becomes infinitely long (there are no phonons to be scattered) and ?
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depends only on t?. Also, factor 2 in equation 1.7 occurs because the lifetime of the

ground state is infinitely long [9].

The Debye - Waller factor represents the relative intensity in the zero-phonon line

and it is determined by the strength of the electron-phonon coupling [8, 9]

a = ^= hpL = exp(-S) (i :8)* Total *ZPL * PSB

where Izpl is the integral intensity of the zero-phonon line and Iiotai is the total intensity

and IpsB is the integral intensity of the phonon sideband. S is the Huang-Rhys factor that

is related to the displacement ? between the minimum energy positions of harmonic

vibrational potentials associated with ground and excited electronic states.

S = J-A2 h = 2n^mrvlh(be-bg) (1:9)
where ? is the vibrational frequency, (be - bg) is the change in generalized coordinate (in

the simplest case of a linear diatomic molecule - change of the equilibrium bond length).

Since the Huang-Rhys factor is related to the Franck-Condon factor and further to

the square of nuclear wavefunction overlap, it determines the probability of exciting

particular vibration during electronic transition. Excitation of these transitions gives rise

to vibrational replicas in absorption and fluorescence spectra [13-16].

Both homogeneous line width and Debye-Waller factor vary strongly with

temperature. At low temperatures the ZPL width is much narrower and ZPL becomes

more prominent than PSB. The relative intensity in the zero-phonon line decreases with

increasing temperature, e.g. the zero-phonon becomes virtually indistinguishable from

PSB for temperatures above 50 K [8, 9]. The homogeneous line width increases with

temperature leading to the thermal broadening of line shape.
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Now we turn to the spectra of the ensembles of molecules and to origins of the

inhomogeneous broadening. One can consider the case of a perfect host lattice doped

with guest molecules in a very low concentration (Fig. 1.2). In this case the guest

molecules can be considered isolated from one another and will have identical spectral

features due to identical local environment [8, 9]. In other words, the host-guest

interaction introduces a certain spectral shift, named "solvent shift". For a perfect host

lattice this interaction determines the same shift for all molecules and hence their

transition frequencies are identical [8, 9].

in
c

Fig. 1. 2 Identical guest molecules in a perfect lattice (after ref. [8, 9])

ZPL

CL
I»

PSB

V-

v-

3 —¦

frequency W.-tít-^tJ^ ?

a. b.

Fig. 1. 3 Absorption line shape of guest molecules in perfect lattice
a. absorption line shape of a single guest molecule in a perfect lattice;

b. Homogeneous lines of identical guest molecules in a perfect lattice (from ref. [8, 9])

In contrast to the perfect lattice, the individual guest molecules experience

different environments and the respective absorption energies will present dispersion. In
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consequence the associated band is broad and this broadening due to static disorder is

called inhomogeneous broadening [8, 9].

Fig. 1.4 A disordered lattice doped with guest molecules (after ref. [8, 9])

frequency
Fig. 1.5 Absorption line shape of guest molecules in disordered lattice

G - inhomogeneous lines width; ? - homogeneous lines width (from ref. [8, 9])

As it is shown in Figure 1.5 the inhomogeneous absorption band is the

convolution of the single molecule line shape ("single site spectrum") with the site

distribution function and the respective inhomogeneous width G is very large [8, 9]. The

site distribution function (SDF) describes the probability to find a molecule with the

purely electronic (0-0) So-Si transition at a certain frequency, [17]. Since the
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homogeneous line is hidden under the inhomogeneously broadened absorption band, ?

cannot be obtained by conventional spectroscopy, one can use the high resolution

spectroscopy methods to solve this issue, [10].
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CHAPTER 2 OVERVIEW OF PHOTOSYNTHETIC COMPLEXES STUDIED

In plants and cyanobacteria there are two categories of photosynthetic pigment-

protein complexes: Photosystem I (PSI) and Photosystem II (PSII). Both photosystems

are transmembrane proteins located in the thylakoid membrane. Both are composed of

the reaction center and antenna. In PSII the reaction center can be isolated from the

antenna proteins, while in PSI both reaction center and antenna chlorophylls are held by

the same protein(s). Despite that difference, there are multiple similarities in the

arrangement of pigments in the core antenna of PSI and PSII. The reaction centers of

each photosystem absorb light of somewhat different wavelengths: PSI reaction center is

believed to absorb at 700 nm (P700) and PSII RC absorbs at 680 nm (P680). Over the

course of photosynthesis processes electrons flow from PSII through cytochrome befand

further to PSI [1-5]. This flow of electrons along the membrane is coupled to the flow of

protons through the membrane. PSII is responsible for water splitting and oxygen

production.

In purple bacteria the cytoplasmic membranes contain, in addition to the reaction

centers, two types of light-harvesting complexes: the light-harvesting LHl complex and

the peripheral light-harvesting LH2 complex, both complexes having coaxial ring-like

structures. The LHl complex surrounds reaction center (RC) and LH2 transfers the

energy via LHl to the RC [3, 4]. The LHl complex has maximum absorption at 875 nm

while LH2 has two absorption maxima placed slightly to the blue at 800 and 850 nm

respectively [3, 4].
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Photosynthetic pigment-protein complexes that have been studied by

spectroscopic methods are the following:

2.1. LH2 complexes from purple bacteria - Rps. Acidophila

LH2 is a pigment-protein complex that serves as a peripheral light-harvesting

antenna in bacterial photosynthesis [1 - 4]. The X-ray crystallographic studies show that

LH2 of Rps. Acidophila contains 27 bacteriochlorophyll a molecules arranged in two

highly symmetric coaxial rings. One ring has nine well separated BChI a molecules,

which absorb light at ? = 800 nm (12,500 cm"1; B800) while the other ring consists of 18
closely interacting BChI a molecules, which absorb light at ? = 850 nm (11,765 cm"1,

B850) [1 - 4]. Some other purple bacteria, like Rb. -Molischianum, feature very similar

design, but with 16 and 8 bacteriochlorophylls in the B850 and B800 rings, respectively.
o ©
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Fig. 2.1 X-ray structure of the photosynthetic unit in purple bacteria, R. molischianum
(from ref. 4), including the reaction center, LHl and LH2.
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Fig. 2.2 The structure of the peripheral LH2 complex from Rsp. Acidophila (a) and the
absorption spectrum of lh2 from Rsp. Acidophila (b) (from and ref. 17; 18)

2.2 Light-harvesting complexes of Photosystem II

Photosystem II (PSII) is a large supramolecular pigment-protein complex

embedded in the thylakoid membranes of green plants, algae, and cyanobacteria [19].

The green plant PSII consists of at least 25 different types of protein subunits, many of

which have a light-harvesting or antenna function [19]. There are two groups of light-

harvesting complexes in PSII. The first is formed by the core antenna proteins - CP47 and

15



CP43 and the second group is formed by the peripheral antenna dominated by the light-

harvesting complex II - LHCII [19] and also containing smaller antenna complexes

genetically close to LHCII: CP24, CP26 and CP29. The second group consists of a

collection of related ChI alb binding proteins and these proteins do not show sequence

homology with the core antenna proteins [19].

The core antenna complex CP43 is a chlorophyll-protein complex that binds 13

chlorophyll a molecules located in between the three alpha-helix dimers [19, 20]. As a

core antenna the main function of CP43 complex is to funnel the excitation energy from

the peripheral PSII antennas complexes (major antenna complexes LHCII and minor

antenna complexes named CP29, CP26, and CP24 (or Lhcb4, Lhcb5, and Lhcb 6

respectively) to the reaction center containing P680 [19]. It is also involved in

maintaining the structure of the PSII complex [19, 20].

The pigment-binding protein CP29 is a minor PSII light-harvesting antenna, that

binds 6 ChIs a and 2 ChIs b, and it always exist in monomelic form [21]. This antenna

complex is located between the reaction center and the peripherally located major LHCII

antenna [22].
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Fig. 2.3 Structure of PS II - (a) view from above and (b) side view along the membrane
plane of dimeric PSII (from http://www.lbl.gov/Science-Ailicles/Archive/PBD-
CP29.html and http://www.sciencemag.org/feature/data/prizes/ge/2006/loll figure.gif)
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(from www.lbl.gov/.../Archive/PBD-CP29.html; réf. 21)

Light-harvesting complex II (LHCII) is located peripherally to the reaction center

and is the most abundant light-harvesting antenna associated with PSII, binding

approximately 65% of its chlorophyll [23, 24]. In its natural form in the thylakoid

membrane, the LHCII antenna appears as a trimeric complex and each of its monomers
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contains 14 chlorophyll molecules arranged in two layers close to the luminal and stromal

surfaces of the membrane [23, 24]. According to most recent crystal structure data [25,

26], 8 of these chlorophylls are ChI a and 6 are ChI b, and the structure sites are

unambiguously assigned to either ChI a or ChI b. Earlier mutagenesis data, however,

suggests that some sites can be occupied by either type of chlorophyll. Thus, an isolated

trimer contains 21-24 chlorophylls a, 15-18 chlorophylls b, 2 luteins and lneoxanthin

[23,24].
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Fig. 2.6 The trimeric and monomeric structure of LHC-II; a - pigments in the LHC-II

trimer, view along the membrane normal from the stromal side; b and c, d - pigments in
the LHC-II monomer, view at the stromal and lumenal sides, respectively (from ref. 27)
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Fig. 2.7 The low-temperature absorption spectra of LHC-II (from ref. 26)
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CHAPTER 3. EXPERIMENTAL METHODS

3.1. General features

The absorption spectra presented in the following sections were measured using a

Cary 5000 UV-VIS-NIR spectrophotometer. The hole spectra were measured in either

absorption or fluorescence excitation modes. The holes were burned and scanned using

the tunable Spectra-Physics (Sirah) Matisse Dye Laser or Spectra-Physics 3900

Titanium-Sapphire Laser (in case of LH2), depending on the wavelength. For all

experiments both in fluorescence and absorption mode a laser power stabilizer was used

(Brockton Electro-Optics Corp).

The setup used to measure absorption spectra and some spectral holes at low

resolution (>0.05 nm or ~1 cm"1) is depicted in Figure 3.1

A

pc l

Cary Lamp

Ltfzn

PC

5 !

Fig. 3.1 Absorption and low-resolution HB set-up
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The burning light of the dye or Ti-sapphire laser was focused on the sample using

an open beam optical system.

In high-resolution experiments the holes were usually burned and recorded in

fluorescence excitation mode. The laser power density (light intensity) was adjusted

accordingly with the type of measurement (burning or reading) using neutral density

filters. Thus, the power density for burning varied between several µWem" to hundreds

of mW cm" , while for holes reading, the laser power density was about tens of nWcm" .

Fluorescence signal was attenuated by a long pass filter AELP730 in case of chi a

and AELP 850 in case of bchl a (Omega) and conventional long-pass and neutral density

filters. The attenuated emitted light was focused on the sensitive area of H7421-50

photon counter module (Hamamatsu) and recorded/converted by NI counter board. The

H7421-50 PMT uses a photomultiplier tube having a semiconductor photocathode with a

high quantum efficiency that allows measurements over a wide spectral range, ? = 380 -

890 nm, [28]. To deliver a higher S/N ratio the H7421 PMT is equipped with a Peltier

element (thermoelectric cooling element) that reduces thermal noise and a thermistor that

measures the temperature [28]. In order to ensure that slight movements of the sample

inside of the cryostat due to thermal expansion and contraction do not affect the

alignment, the laser beam was expanded to 1 cm in diameter. Figure 3.2 depicts the

typical setup in the case of fluorescence excitation experiment.

During spectroscopy experiments, to maintain the samples at low temperature, an

optical Liquid Helium cryostat (a gas flow / bath cryostat A240B produced by Ukrainian

Academy of Science) was used. This type of cryostat enables cooling of the sample
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chamber in the range of (300 - 1.5) K, [29]. To achieve the optimum conditions inside

the cryostat, vacuum pumps and a pressure stabilizer were used in the cryogenic setup.

During experiments, the sample chamber temperature is uniformly controlled by an

external temperature regulator (TR). Thus, the optical cryostat A240B allowed enough

samples cooling for our goals in experiments at liquid helium temperature and was able

to keep the temperature almost constant even in the cases of high burning powers (Pb >

300 mW) and long burning times (tb > 30 min), [29].

Contro 1er
stabi izei

(yyostat

Controller

PC

; Chiller

Controller

£"&<**

Fig. 3.2 Fluorescence excitation mode set-up
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To erase the holes the sample has been heated in the dark to ~ 150K and the

absorption spectra have been measured once again to verify if its spectral features had

been restored. Heating the sample to temperatures lower than 150 K results in partial

filling of the holes (see Appendix I). Analyzing this effect one can determine the

distribution of the barriers on a protein energy landscape in the ground state. In

thermocycling experiments (see Appendix I) the holes were burnt at low temperature (5

K) as described above and then the sample was subjected to temperature cycling: heating

up to a certain temperature and cooling down to 5K. The absorption spectra have been

measured at low temperature after each cycle. The hole-burned spectra and the

thermocycled hole-burned spectra are post-burn absorption spectra minus pre-burn

absorption spectra. The holes growth kinetics curves were measured by monitoring the

signal at burn frequency during burning as a function of time. Burn parameters (times and

intensities) are given in the text and figure captions of subsequent section.

3.2 Laser system details

For spectral hole burning experiments on complexes containing Chi a the laser

system based on a high resolution Spectra Physics Matisse DS dye laser (produced by

Sirah Gmbh, Germany) was used. The emitted laser radiation is horizontally polarized

and depending on the dye and optics set the output wavelength tuning range extends from

550 ran to 660nm or from 640 nm to 760 nm. For all reported results, DCM dye (DCM in

EG 60% / EPH 40% mixture) was used together with its specific mirror set (MOS5).

Thus, the tuning rage expands from 645 nm to 695 nm, having the maximal power at 660

nm [30]. The laser bandwidth is down to 250 KHz and the typical beam diameter is

between 1 .2 and 1 .4 mm. Matisse DS-dye ring laser operates in TEMoo spatial mode. It is
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tuned using a precise long-travel piezo to allow single-frequency scanning over 45 GHz

while maintaining stable power output without mode hopping [30].

Matisse DS (S/N 07/31/31) @6W pump;
DCM in EG(60%)/EPH(40%) @20 bar

TfcV,«V**<^i*A*'w10OO
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Fig. 3.3 DCM-dye calibration curve (from ref. [30])

3.3 Spectral Hole Burning Simulator

Computer modeling of various spectra was employed to compare the results of

experiments with theoretical predictions. Spectral Hole Burning Simulator (developed by

V. Zazubovich and T. R. Connolly, using some earlier algorithms by Hayes, LyIe and

Reinot) was used. It is based on the theories presented in Chapter 4 below. With the

current version of this ever-evolving program one can calculate the absorption spectra,

the Single Site Spectra, hole spectra, ?-FLN spectra, Hole growth kinetics curves and

hole width dependence on irradiation (burn) dose. In this respect a set of parameters

describing the Site Distribution Function (width and peak), phonon and vibration modes

(Huang-Rhys factor; widths and peak frequency of Gaussian and Lorentzian

contributions to PSB) of the pigment-protein complex have to be chosen from literature
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or measured. The parameters of the experiment, e.g. burn frequency and time, diameter

and power of the laser beam and optical density of neutral density filters are required for

spectra calculation. The simulator includes also various distributions (distribution of

tunneling parameter ?; line width distribution, and oscillator strength distribution) as well

as NPHB anti-hole if additional effects must be considered. It is also possible to simulate

the hole burning into the overlapping absorption bands of two pigments, the situation

occurring in most of the photosynthetic complexes at least at some wavelengths.
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Fig. 3.4 Interface of Spectral Hole Burning Simulator
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3.4. Typical setup of Single Molecule Spectroscopy Experiments

As in this research a comparative study of SHB and SMS results by Aartsma's

and Köhler's groups [45-50, 61-63] was performed, we briefly discuss the setup of their

SMS experiments. To perform single molecule spectroscopy two different experimental

arrangements have been used. First, fluorescence microscopy has been performed using

the wide-field arrangement while fluorescence-excitation measurements have been

performed using the confocal set-up (a home-built microscope that can be operated either

in wide field or confocal mode has been used). A CW tunable titanium-sapphire

(Ti:Sapphire) laser (pumped by a frequency-doubled continuous-wave

neodyniumyttrium-vanadate Nd:YV04 laser) has been used to illuminate the samples in

both types of measurements [46]. In order to scan the wavelength range of the laser a

motorized micrometer screw has been used to rotate the intra-cavity birefrigent filter. The

wavelength has been measured with a wavemeter.

In case of fluorescence microscopy experiments the excitation light is focused on

the sample by means of a simple planoconvex lens and the emitted light is first collected

by the single aspheric lens of the objective (placed inside the cryostat) and then it is

focused on the CCD camera after passing suitable band-pass filters that cut the residual

laser light.

In the confocal mode the excitation light is focused onto the sample after it passed

through a sophisticated focusing optical system which main parts are the excitation

pinhole, the scanning mirror, the telecentric lenses and then the objective lens inside the

cryostat [46]. This focusing system aimed to ensure a very small diffraction-limited
• · "X ¦

excitation volume (< l//m ). Particular volumes (particular complexes) were selected by
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tilting the direction of the excitation beam with a scan mirror) and by a very precise

alignment of sample with the confocal aperture. The emitted light is collected back by the

same optical system and focused onto an APD (single-photoncounting avalanche

photodiode) module [46].

In these experiments fluorescence excitation spectra have been measured in rapid

succession by scanning the laser repetitively through the spectral range of interest and

recorded as different traces separately. The aim was to diminish the light-induced

fluctuations of the fluorescence intensity on a time scale of seconds and extract

information about the spectral dynamics.

widefield mode confocal mode

\ sHeeentr« leases »yp«3S N
scanmiirof *-\ / \ /^ G\

I *y ofc*ectve

y

\f
exc'jt-or ? nhofe *5&- OICf-O«

fUioresoecoe
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a) b)
Fig. 3.5 Single-molecule spectroscopy; (a) diagram of the wide-field arrangement of the
microscope; (b) diagram of the confocal arrangement of the microscope (from ref. 46)



CHAPTER 4 SPECTRAL HOLE BURNING (AND OTHER HIGH-

RESOLUTION OPTICAL SPECTROSCOPY TECHNIQUES) IN CASE OF

PROTEIN HOST.

4.1. General features of the mechanism of hole burning and hole-burned

spectra

Spectral hole burning is one way to uncover a narrow, homogenous line from an

inhomogeneously broadened spectral band at low temperatures. The hole is burnt by

means of selective photoreactions in a solid solution [9, 10, 31-33]. Irradiation of a

sample with a narrow-band laser (g>b being burn frequency) results in excitation of

molecules absorbing at the laser frequency. Molecules absorbing at the burning frequency

(or their local environment) may be able to undergo photo-transformation, and,

consequently, their absorption spectrum will be shifted to higher or lower frequencies,

leaving a narrow hole in the inhomogeneous spectrum at cob [15, 9, 10, 31, 32]. The

shifted molecules' absorption after the shift is referred to as "photoproduct" or "anti-

hole". It should be mentioned that, the photoproduct band or "anti-hole" is usually much

broader than the resonant hole [10]. Depending on the actual cause of burning (chemical

reaction versus structural change of local environment) one can distinguish

photochemical and non-photochemical hole burning. Non-photochemical hole-burning

(NPHB), the process actually occurring in photosynthetic complexes, was first observed

by Personov and co-workers in glasses [10, 12, 32-35]. If the photoproduct is stable at

low temperature, the hole will be persistent while if the photoproduct is in a metastable

state a transient hole is created [10]. The spectral hole can be read in absorption,
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fluorescence excitation or fluorescence mode (?-FLN), using very low laser scanning

powers [10, 31, 32]. The fluorescence excitation method is more convenient in the case

of samples of low optical density [10].

4.2 Hole profile

The hole-burning spectrum is obtained from the difference between the absorption

spectrum before and after burning and it shows the structure of the absorption spectrum

of burnt molecules [32]. It is obvious that in the first approximation the hole spectrum

represents a negative replica of the zero phonon line and it is named Zero Phonon Hole

(ZPH), Figure 4. 1 . The width of the ZPH, G??? is twice the homogeneous line width [9,

10, 31, 32], G??? = 2?. The hole width (G???) also yields the lifetime of the excited

electronic state (or optical dephasing time, t?) and thus provides information about

relaxation processes of the excited state.

Photoproduct

r*=2y

?

U*er

Frequency

Fig. 4.1 Zero phonon hole (after ref [9])

The hole burnt spectra exhibits contributions not only at the burning frequency

but at all vibronic transition frequencies of burnt molecules, as well [32]. The most
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obvious contribution of this class is so called real phonon sideband (real-PSB), which is

the phonon sideband of the ZPH. Additionally, molecules can be burnt not only

resonantly via ZPL but also non-resonantly via their PSB. The latter contribution to the

hole spectrum is called pseudo-PSB. Thus, the zero-phonon hole is accompanied by

additional features located on both sides of ZPH but mainly on its long wavelength side

[32]. The low-frequency phonon sidebands contain information about "solvent"

vibrations that are coupled to the electronic excitation [15]. Higher-frequency vibronic

replicas contain information on localized intra-molecular vibrations of the chromophore.

iti-hole

Real PSBH

Pseudo PSBH

G,

Wavelength

Fig. 4.2 Non-photochemical hole profiles burnt non-resonantly (from ref. [16])

It should be mentioned that the homogeneous ZPL width in glassy matrices,

polymers and proteins shows, at very low temperatures, T<5 K, an unusual temperature

dependence [10, 21]G(G) ^ G13*'4. This unconventional temperature dependence is

explained via interaction of the guest molecules with the two-level systems, TLS (the

chromophore is electrostatically coupled the TLS) of the amorphous host [10, 32, 33].
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4.3. Two-level systems

The TLS model was introduced many years ago to explain the anomalous thermal

and acoustic low temperature properties (specific heat, thermal conductivity, saturation

effects in ultrasonic absorption) of amorphous solids and soon thereafter it was

successfully used to explain the NPHB spectra [32-34]. Essentially, it is tunneling in TLS

that is responsible for non-photochemical spectral hole burning at low temperatures in

structurally disordered hosts such as glasses and polymers [12, 32-36]. The tunneling is

triggered by excitation of the chromophore and occurs while the chromophore is in its

excited state [12, 35].

TLS can be viewed as an asymmetric double well potential with each well

representing a distinct structural configuration of the glass [12, 33-35]. The NPHB

mechanism presented in Ref. 12 is based on the so-called standard tunneling model.

There, the TLS are divided into two classes: the TLS associated with the glassy host

named intrinsic TLS (TLSjnO an^ the TLS associated with the guest dye molecule and its

inner shell of solvent molecules named extrinsic TLS (TLSext) [12, 35]. The TLS

tunneling mechanism works as follows: first, the laser irradiation leads to the tunneling of

TLSjnt in the outer shell. The TLS¡nt being intimately connected with the excess free

volume of glasses its tunneling leads to the diffusion of this volume to the inner shell

opening the way for phonon-assisted tunneling of the TLSext. In the standard tunneling

model, TLS-TLS coupling or connectivity is neglected [12].
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TLS

W- «¡„¡fÇpf-K)

Fig. 4.3 (a) Two-level (referred to as I and II) system model (where indices "e" and "g"
indicate the chromophore in its excited and ground state, cûb is the burn frequency of the

laser, and ki is the tunneling rate, I/II denote the preburn/postburn chromophore host
configurations);

(b) The TLS parameters (where W is the tunneling frequency), (from ref [12])

The tunneling frequency and tunneling parameter are given by, [12],

W = í»Bexp(-A)and2 = í/(2mF)1/2, respectively. Here m is the effective mass of the

tunneling entity, d is the displacement between the two potential energy minima and V is

the barrier height. Because of structural heterogeneity, there is a distribution of TLSext

(i.e. ? is subject to distribution), with varying barrier height or asymmetry parameter.

This results in a broad distribution of the tunneling rates and further to a high dispersion

of hole growth kinetics [12, 35]. Based on mechanism described in Ref. 12 a model for

persistent hole burned spectra and hole growth kinetics calculation has been developed

[12, 35, 36], which we are going to expand further.
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4.4. The model of NPHB and HGK for a chromophore-glass system

A model for NPHB and PHB (including HGK) of the So - ¿? origin absorption

bands of chromophores in amorphous hosts such as glasses, polymers and proteins at low

temperatures have been developed in ref [35]. This model includes some assumptions as

follows, [33]:

> linear electron-phonon coupling. The peak frequency of phonons that couple to

the electronic transition is very low (~20 cm" ).

> three distributions that lead to dispersive hole growth kinetics:

1. ?-distribution. The ?-distribution is the most important distribution, the distribution

for the tunneling parameter between the bistable configurations of the chromophore-

host system that are interconverted by hole burning

2. ? distribution - The ?-distribution accounts for the fact that ZPLs whose Lorentzian

profiles overlap the laser profile can be exactly resonantly at cob or off-resonance. This

distribution is also responsible for pseudo-PSB.

3. a distribution - The a-distribution comes from the fact that a, the angle between the

polarization of the burn laser and the transition dipole of the chromophore, varies from

molecule to molecule in a random fashion as molecules/complexes are randomly

oriented.

Thus, the absorption spectrum after a burn at cob with photon flux P and burn time

t and assuming that the laser linewidth is much narrower than the width of the ZPL, is

given by [10] the following master equation:

?(O,0 = 1.5 Jd(OL(Q - ?)T{?) \dÀf(À) ¡da sina cos2 ^-^W£(—» > cos2 «
(4:1)
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where ? is the frequency of the zero-phonon line (ZPL); G(a>) is the Gaussian

distribution of ZPL frequencies, or site-distribution function (SDF); L(ü-co) is the single

site absorption spectrum that consists of the ZPL and PSB. It is given by

L(mB-a>) = exp-[i:Sk(2ñk+\)]Yl JT
*=1,2 A=O

lRj!(a>B-û>-Ra>k). (4:2)

where Ir are line shape functions with R=O, 1,2... corresponding to the zero, one-, two-

,... phonon transitions. For instance, Io is the Lorentzian zero-phonon line. The width of

the homogeneous ZPL contributing to ¿(?) is determined not by tj, but by the total

dephasing time \2. 1/t2=1/(2t¡)+1/t2*, where r^* is pure dephasing time.. Homogeneous

line width is rhom=l/ncT2, where Ff10n, is in cm"1 and c is speed of light in cm/s. Sj0 ?^

and ñk are the Huang-Rhys factor, frequency and thermal occupation number of the k-th

coupled phonon / vibration. ñk are temperature-dependent. The phonon side band peaked

at com can be described by a Gaussian on its low energy side (side closer to ZPL) and a

Lorentzian on its high energy side. f(X) is the normalized Gaussian distribution function

for tunneling parameter ?, centered at ?? and having standard deviation s?. As stated

above, a is the angle between the polarization of the burn laser and the transition dipole

of the chromophore. s is the integrated absorption cross section of the chromophore with

transition dipole parallel to laser polarization. f(?) is the hole burning quantum yield

given by

"W-O0TSw-' (4:3)O0 exp(-2/l) + Tj,
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O0 exp(-2/l)is the tunneling rate, O0 is the constant pre-factor in the Fermi-Golden rule

expression for the TLS relaxation rate for NPHB and Tß is the fluorescence lifetime (i.e.

t?).

One could note that for t=0 the Equation 4. 1 yield the pre-burn absorption spectrum,

as it becomes the convolution of the unmodified Gaussian SDF and of the single site

absorption spectrum. The hole burning spectrum is defined as the post-burn absorption

spectrum minus pre-burn absorption spectrum: HBS = A(Cl, t) - A(Q. - 0) . The fractional

hole depth at time t is given by FHD = 1 ?(??,?)
?(?0,0)

At this point the model does not include the treatment of the anti-hole absorption due

to NPHB and of light-induced hole filling (LIHF). To account for the effects of

photoproduct absorption and LIHF in the calculated spectrum some assumptions have

been made [35]. For instance, it has been assumed that in the act of LIHF any given

photoproduct site reverts to the educt site from which it originates (the "perfect

photomemory model") and the hole burning and LIHF tunneling rates of a given site are

equal [35]. The latter model allows calculation of hole-burned spectra in glasses for a

certain set of parameters and wide range of irradiation doses. To calculate the hole

spectra for systems like photosynthetic pigment-protein complexes this model has to be
modified further.

37



4.5. The model of NPHB and HGK for photosynthetic pigment-protein

complexes (Including Energy Transfer)

The model developed in ref. [35] for the case of the chromophores well isolated

from each other in a glassy matrix does not account the distribution of the homogeneous

line widths due to variations in EET rates. Distribution of excited state lifetimes due to

pure dephasing variations from molecule to molecule has been considered in [38] and its

effect was ruled negligible. The distribution parameters may be very different in the case

of EET in photosynthetic complexes.

Thus, the old model [35] was modified by including the lifetime (energy transfer

time,T££7· ) distributions. The lifetime affects both the homogeneous single-site spectrum

(via the ZPL width) L(cob -cd), and the spectral hole burning yield f{?) that now is given

by [38]:

F(^??G) = O°6??(-2^ , (4:4)O0 exp(-2/l) + tß + t??G

The new master equation that calculates the absorption spectra is given by [38]:

?)(O, t) = 1 .5 \dû)L(Q - ?, t??? )G(a>) \dÀf(À) \?t????{t??? ) ?

? ¡da sin a cos2 a ¿-?*«·*™)*·»-**™**** (4:5)
where T(teet) is the distribution of excited state lifetimes and all other quantities are the

same as in Equation 4.1 above.

The new model includes some assumptions as follows, [38]:

> There is no correlation between the SHB rate O0 exp(-2A) (governed by the TLS

dynamics) and energy transfer time (governed by inter-pigment interactions and

spectral overlaps).
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> For the sake of simplicity, the distributions of the homogeneous line widths

G=(2pt??t) '+constant pure dephasing-limited width, rather than the distributions
of the lifetimes;

The effects of the homogeneous line width distributions are not the main focus of this

work. Other effects resulting from the multichromophoric nature of the photosynthetic

complexes, for example the oscillator strength distributions (for delocalized excitonic

states) have proven to have negligible effect on spectral hole evolution. More

importantly, protein dynamics is expected to be somewhat different in the case of protein

as compared to the case of glass. These differences will be described in the next

subsection.

4.6. Protein dynamics, energy landscape further development of hole burning

model

Proteins are supra-molecular machines that perform a large variety of tasks in

living organisms and that in their native state have a well-defined highly ordered tertiary

structure [11, 39-42]. However, to perform a biological function proteins don't have to

be rigid structures. As proved by X-ray crystallography, proteins do not possess a unique

state of minimum free energy but assume a large number of slightly different structures

(states), called conformational substates. These conformational substates can be

represented by nearly isoenergetic local minima in a complex free energy landscape,

separated by energy barriers that have to be surmounted during a conformational change,

that can be crossed either by tunneling or thermal activation [11, 39-42]. The term

"energy landscape" refers to the potential energy hypersurface and it features a large
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number of minima, maxima, and saddle points]. Each minimum in this landscape

represents a different conformational substate that corresponds to a different arrangement

of the atoms [39]. In the energy landscape, the conformational substates are grouped into

hierarchical tiers that can be characterized by the average energy barriers between the

states belonging to each tier. The distribution of energy barriers is broad. A consequence

of this broad distribution is that the dynamics of proteins cover a wide range of time

scales. Chromophores embedded in the proteins feel the conformational fluctuations of

proteins because there are fluctuations in the local distance-dependent interactions. Thus,

the electronic transition frequencies of these chromophores change and conformation

fluctuations of proteins can be monitored by optical spectroscopy [1 1, 39, 40].

Energy landscape in proteins can be considered the further development of the

two-level system (TLS) model in glasses. The main difference between these models is

that proteins have structures in which the conformational substates are hierarchically

organized, while glasses are randomly disordered [11, 39, 40]. The observations on

evolution of hole spectra in proteins as a function of time leads to conclusion that

proteins show spectral diffusion phenomena somewhat different from those in glasses.

Spectral diffusion observed in temperature cycling experiments may be used to measure

barriers or even distribution ofbarriers in the energy landscape of a protein [1 1, 41] in the

electronic ground state. SMS experiments [45-50, 59-63] allow one to observe the

protein-induced spectral fluctuations on a single molecule level.
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Fig. 4.4 NPHB mechanisms accounting the different hierarchical tiers on the energy
landscape (from ref. 38)

As may be deduced from the discussion in the previous subsections, in addition to

SMS and long-term spectral diffusion in the dark [68] experiments, other experiments are

possible, for instance the hole growth kinetics measurements, including the influence of

NPHB anti-hole on that kinetics, with which one can, in principle, determine the

magnitudes and probabilities of various spectral fluctuations and respective barriers.

The number of the similar but non-identical substates of the protein is

significantly larger than two (as in TLS). To reflect this fact, one needs to depart from

the perfect spectral memory model developed in [35] for glasses and to allow for spectral

shifts between multiple spectral positions. Namely, it was assumed that molecules

starting at ???? before burning are redistributed around ????? according to a certain

distribution, called anti-hole function, as a result of burning. Technically, the following
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sequence has been repeated in a loop: The SDF of the burnt molecules,

G(co) (1 -exp(-Pta(f>L(û)-coB)cos a)) was convoluted with the properly normalized anti-

hole function, and added to the burnt SDF G(cù) exp(-Pta<j)L((ù-a)B)cos a). This results

in a modified shape of the SDF G(a>), without change in its normalization. (One starts

with G((o) being Gaussian). Unlike in [43-44], there was no spectral memory (i.e. it was

assumed, based on SPCS results for LH2 [45-50] and LHCII [52, 53] that the single

molecule line can be found at significantly more than two frequencies) and no correlation

was implied between the shifts of the absorption of a molecule in the consecutive steps.

The probability of burning at each step of the sequence was still determined by the

standard SHB yield formula (Eq. 4.2).
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CHAPTER 5 RESULTS AND DISCUSSION

5.1. LH2 complex of purple bacteria

Our studies started from LH2 complex due to the availability, in the literature, of

large amount of single complex spectroscopy data for comparison. Originally, our intent

was to verify that the phenomena observed in SMS experiments [45-50, 59-63] are

manifesting also via SHB. Eventually, we extended our studies to other photosynthetic

complexes (see following sections).

5.1.1. Sample preparation - LH2 from Rsp. Acidophila

LH2 samples were isolated and purified by the group of Dr. R. Cogdell at the

University of Glasgow as described in [54, 55]. Briefly, chromatophores were incubated

for 2 h in a 2% LDAO solution and subsequently ultracentrifuged overnight on a

discontinuous sucrose gradient. The samples were diluted in a buffer (30 mM

Tris/EDTA, pH = 8.0) containing 0.3% LDAO [55]. Immediately before the experiment

the samples were mixed with glycerol at a ratio of 1 :2 buffer/glycerol (99.9%) in order to

form the high-quality transparent glass formation upon cooling.

The low temperature (T=5K) absorption spectra of LH2 shows the two

characteristic bands centered at ? = 800 nm (12,500 cm"1; B800) and ? = 850 nm (1 1,765
cm_,,B850),(Fig.5.1).
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Fig. 5.1 Low temperature (T=5K) absorption spectra of LH2 from Rsp. Acidophila

5.1.2 The study of anti-hole absorption of LH2 from Rsp. Acidophila

5.1.2.1 The hole growth kinetics of LH2 from Rsp. Acidophila

The hole growth kinetics (HGK) curves at ?? = 807.5 nm for different burning

intensities have been recorded and two of these, for I = 0.23 W/cm and I- 1.37 W/cm

are shown in Fig. 5.2. The choice of the wavelength on the lower-energy side of the B800

band has been determined by the observation that at this wavelength the lifetime of the

B800 molecule excitations is determined by B800 to B850 energy transfer only, and is

not affected by energy transfer between nine pigments responsible for the B800 band.

1
ft

P
^ 0.75
o

13
tí
o

¦&
o

0.5

0.25
1 10 100 1000

Irradiation Dose (J/cm2)
Fig. 5.2 HGK curves obtained at 0.23 W/cm2 (0.5 s/point; dark gray curve) and 1.37

W/cm2 (0.1 s/point; light gray curve) at 807.5 nm, as well as hole depths extracted from
the spectral holes (red circles for data as measured, blue circles - for data corrected for

white-light-induced hole filling, see ref 38 for details on LIHF)
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One can notice that the HGK curves expressed as Fractional Hole Depth versus

Irradiation Dose do not depend on the burn intensity, both curves (as well as not depicted

curves obtained at lower intensities) exhibit similar behavior within this irradiation dose

range. The absence of additional fast components of SHB kinetics (for example very fast

burning in the beginning on a time scale faster than 0.5 seconds channel length; transient

holes) has been assured in another independent way. It has been confirmed that the

change of absorbance which can be calculated based on the HGK curves is within

experimental uncertainty equal to that obtained from the hole spectra measured after the

measurements of the HGK have been finished (i.e several minutes later). Using Beer's

law (Chapter 1) one can obtain the following ratio

/// =/ // =1 o00""'"0^'*beg end preburn postburn ?

where It,eg and Iem¡ are transmission signals in the beginning and the end of HGK

measurement; Ipreburn and lpostbum are transmission signals at burn wavelength in the

unprocessed hole spectra, and ODbeg and ODe„d are respective optical densities. Thus, we

conclude that there is no fast burning. Data obtained from the holes reported in the next

sections is superimposed onto the HGK curves (each hole is represented by a pair of

circles in the Figure 5.2). The upper circles (in red) correspond to the hole depths as

measured (next section), while the lower circles (in blue) correspond to hole depth

expected in the absence of white light-induced filling.
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5.1.2.2 The hole spectra for LH2 of Rsp. Acidophila

To study the anti-hole structure (absorption) a set of holes has been burnt into

both lower and higher energy sides of the B800 band of the LH2 complex. At 807.5 nm

holes have been burnt with various irradiation doses (9.5, 32, 79, 123, 443 and 808

J/cm2). Figure 5.3 shows these holes.
Wavelength (nm)
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Fig. 5.3 NPHB of LH2 complex of Rsp. Acidophila (?ß = 807.5 nm) for various
irradiation doses. T=5K.

Analyzing the holes spectra from Fig. 4.3 one can notice that for shallow hole (I =
9 9

80 mW/cm for 120 sec, i.e. irradiation dose of 10 J/cm , fractional depth -5.6%) the

width of the zero phonon hole (ZPH) is 4.2 cm"1, which corresponds to the B800—»B850

energy transfer time of 2.5 ps, while for the largest burn dose (810 J/cm2) the width of the
ZPH reaches -8.0 cm"1, and the fractional hole depth reaches - 40%.
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The observation of just 40% being burnt for such a large irradiation dose is

somewhat surprising, as the Huang-Rhys factor S is small for the B800 band (i.e. S = 0.5,

[57, 59]), and the maximal fractional hole depth is expected to be approximately exp(S)

= 0.6 when the hole is burnt into the low-energy side of the absorption band. The reasons

of such slow burning include light- and temperature-induced hole filling [56], the

geometry of the experiment, and the influence of the SHB anti-hole or just exceptionally

low hole burning yield (for some of the molecules).

Due to the non-photochemical nature of the hole burning both real and pseudo

phonon sidebands (PSB) are masked by the anti-hole, except for the pseudo sideband for

larger irradiation doses. However, the anti-hole absorption is not uniformly distributed

over the whole original B800 absorption band, but over much narrower range both to the

blue and to the red of the ZPH. It appears that for all irradiation doses the red fraction of

the anti-hole approximately compensates the pseudo-PSB. The integral of the hole

spectrum over the broad enough spectral range is close to zero, in agreement with the

non-photochemical nature of the hole burning process.

To characterize the holes spectra in the above figure the gap between the center of

mass of the positive and the negative features of the spectra is considered. The lowest-

dose spectrum is almost perfectly symmetrical with respect to the burn wavelength due to

the weak electron-phonon coupling and the photoproduct shape centered on the burn

wavelength. The anti-hole absorption is peaked at 10 cm"1 to the blue and to the red of the
burn wavelength. Unfortunately, the signal to noise ratio of this shallowest hole spectrum

does not allow for reliable determination of the integral intensities of the positive and

negative features. For higher-dose spectra the gap between the centers of mass ofpositive
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and negative features gradually increases to ~ 60 cm" , with anti-hole at higher energy

with respect to the resonant hole.
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Fig. 5.4 NPHB anti-hole structure for Lh2 complex of Rsp. Acidophila, where the
numerals 1 and 2 refer to different contributions to the NPHB antihole; dotted curves are

the fit to the second, strongly shifted component of the antihole (labeled with the
downward arrow); the dashed curve is the B800 absorption

From Fig. 5.4 it is obvious that the anti-hole exhibits quite complicated behavior

even for relatively small irradiation doses and that the experimentally observed anti-hole

should be described with at least a two-peak distribution (labeled as 1 and 2 in Fig. 5.4).

While the first peak is located in the vicinity of the original hole, the second one is shifted

much further to the blue (the solid arrow in Fig. 5.4). For realistic shape of the PSB and

value of the Huang-Rhys factor S of the order of 0.5, the latter peak cannot be attributed

solely to the real phonon sideband of the first one. One could also note that for medium

and large irradiation doses the second peak (at -12460 cm"1) of the anti-hole does not
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develop as fast as the first one (labeled as 1), i.e. it most likely saturates for relatively low

irradiation doses, with the further slow increase of absorption around 1 2460 cm"1 most

likely being due to the phonon sideband of the peak 1 . This means that large spectral

shifts resulting in the formation of the anti-hole peak 2 are experienced only by a small

fraction of molecules but the SHB yield for this small fraction is, on average, larger than

for the molecules forming anti-hole peak 1. Finally, it is worth to mention that the

parameters of the anti-hole illustrated by peak 2 (dotted Gaussian curves) are still

significantly different from those of the whole B800 band (see the dashed curve). This

indicates that the largest spectral shifts still do not result in redistribution of the

molecules' absorption over the whole B800 band.

Figure 5.5 shows the second set of holes that have been burnt at the higher-energy

side of the B800 band at 790.5 ran and also a set of calculated spectra (the fit to the SHB

action spectrum and the hole due to EET and its anti-hole). Burning at this wavelength

enables the B800-»B850 and B800-»B800 energy transfer. The B800-»B800 energy

transfer leads to both hole burning yield and induced absorption rate at resonance with

the laser are significantly reduced, but the broad hole is formed at lower energies within

the B800 band. The complicated hole-burned spectrum structure displays its resonantly

burnt ZPH at 790.5 nm, its real and pseudo-PSB, the anti-hole absorption distributed in

the vicinity of the resonant hole (similar to the case in Figure 5.3), as well as non-

resonantly-burnt broad low-energy hole and its anti-hole.

49



Wavelength (nm)
820 800 780

' \

I
I \

f

0.0025 r

12300 12500 12700
<?
o ? \\

\

yO
?O

<

12250 12500 12750

Wavenixmber (cm1)
Fig. 5.5 Non-resonantly burned hole spectrum of LH2 complex of Rsp. Acidophila (?? =
790 nm and 1 50 J/cm2), where the dotted line is the fit to the SHB action spectrum, and

the dashed line is the B800 absorption band (multiplied by a factor of 0.003); the thin red
solid curve represents the hole due to EET and its antihole; dashed arrows show vibronic

replicas of the resonant hole; the inset contains nonresonantly SHB for different
irradiation doses (50, 85, 100, and 150 J/cm2, from top to bottom)

The non-resonantly burned hole spectrum shown in Fig. 5.5 displays a set of sharp

satellite holes (indicated by the dashed arrows) at 168, 197, 224 cm"1 (with respect to the
resonant ZPH) that are its vibronic replicas (i.e., ZPLs burnt via vibronic bands due to

intra-molecular vibrations) [57], and not a part of the broad feature due to B800—>B800

energy transfer. These vibronic holes are accompanied by narrow anti-hole features (the

positive spikes between the vibronic holes). The main feature of this non-resonant burned

spectrum is that the anti-hole of the broad hole due to the B800—»B800 energy transfer is

strongly blue-shifted with respect to the broad hole itself.
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The average shift of transition energies of pigments burned within the B800 band

has been roughly estimate at about 60-70 cm"1. In this respect two assumptions have been

made. First, it was assumed that the SDF of the burned fraction of the B800 band can be

described with the same curve as the SHB action spectrum that has been taken from [58]

and that the anti-hole SDF of that broad hole is also Gaussian in the first approximation.

The red derivative-like curve in Figure 5.5 is the sum of these two Gaussians, lower-

energy one (broad hole centered near 12430 cm"1) for the initial absorption which has
been burnt, and the higher-energy one - for the anti-hole absorption. Interestingly, the

area of the former Gaussian is just 0.17% of the area under the B800 band, or 0.5 % of

the integral intensity of the absorption of B800 molecules incapable of the B800-»B800

energy transfer, and therefore more prone to spectral hole burning. Increasing the

irradiation dose from -150 J/cm2 to -300 J/cm2 (at 791.8 nm, where OD is slightly

higher, and therefore the fraction of absorbed photon flux also higher) resulted in just

20% increase in the integral intensity of the burnt band (other parameters of the band

could stay the same and still result in a good fit. This indicates that the position of the

broad feature near 12430 cm"1 is not correlated with the burn wavelength, in agreement

with this broad hole being due to energy transfer). Such behavior also indicates that the

fraction of B800 molecules experiencing large spectral shifts in this experiment is quite

small. It needs to be stressed that the shape of the broad non-resonant hole and its anti-

hole in Figure 5.5 is only weakly dependent on the irradiation dose (see insert of the

Figure 5.5), which in turn suggests that the feature is formed as a result of one large

spectral shift per each individual B800 molecule line rather than as a result of many small
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shifts. Otherwise one would expect gradual migration of the derivative-like hole-antihole

feature to higher energies.

5.1.3 Discussion on LH2

The goal of this study was to determine if the hole burning results would be

compatible with the available SMS data, i.e. if the protein dynamics parameters

obtainable from the latter would yield agreement between theory and experiment in terms

of SHB. Both the widths of the spectral lines / holes and the shape of the anti-hole are

expected to be affected by protein dynamics. The widths of the spectral holes or SMS

lines in LH2 are determined by excitation energy transfer times and by the spectral

diffusion occurring in steps smaller than the hole width and at the timescale faster than

the time scale of the experiment.

SMS data is available in Refs [59-63, 45-50] in the forms of a) distributions of

line shifts between consecutive laser scans (SMS experiments on LH2 were performed in

fluorescence excitation mode), b) the distributions of the line widths, which (widths)

change from scan to scan for the same line and c) first moment or first cumulant

distributions. In the latter case the information on the exact sequence of shifts is lost, but

one can see at which wavelengths the line is more likely to be found as it jumps between

multiple positions. The shift distributions are dominated by very small, 1-2 cm"1 shift.
This allows one to estimate the likely shape of the anti-hole function (see Chapter 4) as a

Gaussian with the width of a few cm"1. Note that in this case one has somewhat unusual

situation as anti-hole function width is comparable to the width of the ZPH. Moreover,

analyzing the photon budgets of the SPCS experiments one can arrive to the probabilities
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of molecules to experience light-induced spectral shifts, which in our SHB model are

nothing else but the HB yield f. From the latter the average value of the tunneling

parameter ? can be estimated as 7.8. (see Ref [38] for details) Taking into account that

the line widths changed from scan to scan, one could also conclude that lines in SPCS

experiments experienced not one, but several jumps per scan, and, therefore, that this

value of lambda is just the upper limit (lambda values corresponding to the larger shifts

can be estimated using the similar logic, and they appear to be much higher). Thus, HB

process is supposed to be dominated by smaller shifts.

To fit the HGK curves from Fig. 5.2 and the holes in Fig. 5.3 the modified SHB

model including anti-hole absorption has been used. The goal of the fit was to determine

a set of parameters (the peak and mean of the tunneling parameter distribution, the shapes

of the phonon side band and of the anti-hole distribution) which allows for satisfactory

fitting of all the holes in the series, taking into account the burn times and intensities used

in the experiment. The key assumption is that the burnable fraction of the B800

molecules is represented by the HB action spectrum, which is peaked at 12425 cm"1

(804.8 nm) (to the red of the B800 band maximum), and has the width of 108 cm"1, (the

dotted line in Fig. 5.4). Therefore, the hole at 12381 cm"1 was burnt 44 cm"1 to the red
with respect to this sub-band maximum. The PSB parameters have been chosen such way

to obtain single-site absorption (SSA) spectrum similar those in Refs. 48 and 64. In the

process of fitting it was determined that the distribution of PSB parameters and of the

oscillator strengths (the latter resulting from excitonic interactions between the pigments

of the B800 ring) provide negligible contribution to the dispersion of SHB kinetics and

they have been neglected. For an appropriate calculation of both HGK curves and SHB
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spectra a large variety of the anti-hole functions has been tested. These functions have

been Gaussian and Lorentzian functions centered at burn frequency, slightly blue-shifted

Gaussian and Lorentzian functions, and two-component anti-hole functions

corresponding to situation when molecules can experience also large spectral shifts but

with smaller probability. The results of these calculations are presented in the following

figures.
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Fig. 5.6 The HGK calculated curves for ?? = 7.8, s? = 0 and various shapes of the anti-
hole function

The calculated HGK for the upper limit (Ao = 7.8) for small shift tier of the

protein energy landscape according to SHB yield (i.e. 1/450 000), s? = 0 and various

shapes of the anti-hole function are presented in Fig. 5.6. In this figure one can notice the

first curve (a) that represents a good fit to the experimental data. It was obtained with the

non-shifted Gaussian anti-hole function with the width of 1.1 cm"1. The next two HGK

curves (b and c) were obtained assuming the presence of larger (~10 cm"1) shifts in
addition to small (i.e. ~1 cm"1) ones. In the case of curve (b) the relative probability of the

large shifts was assumed to be 0.025, which corresponds to Ao = 9.6 for the next tier of
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the energy landscape, and for the case (c) that probability was assumed to be 0.05 (next

tier ?? = 9.2). The last curve was obtained for non-shifted Lorentzian anti-hole function

having the width of 1.1 cm"1. It should be mentioned here that increasing s? results in

more dispersive HGK curves but not slower on average. A significant increase of s?

would make the calculations inconsistent with experiments.
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Fig. 5.7 The spectral hole burnt at ?ß = 807.5 nm and the spectral hole calculated for ?? =
7.8, s? = 0, non-shifted Gaussian anti-hole function with the width of 1.1 cm"1 and several

irradiation doses.

We conclude that for this range of ? values one can successfully fit the

experimental HGK only if one assumes that anti-hole function is a single non-shifted

Gaussian with very narrow, ~1.1 cm"1 FWHM, in some disagreement with the reported

SPCS data in ref. 51. Reduction of tunneling parameter {?? < 7.8) results in further

decrease of the anti-hole distribution width required to fit the SHB kinetics. Any anti-hole

models allowing even a small fraction of the molecules to escape further from the

excitation energy than a fraction of a cm"1 resulted in calculated HGK becoming too fast.
Figure 5.7 presents the fitted holes for the set of parameters used to obtain the curve (a) in
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the Figure 5.6. The figure proves that the parameters used for the best fit of hole growth

kinetics (curve a) do not result in an appropriate fit of overall hole shapes. One also has

to note that the line width (EET rate) distribution has been turned off to limit the

dispersion of the kinetics curves.

Thus, we allowed the parameters of the anti-hole function and of tunneling

distribution parameters to vary freely until we were able to achieve the satisfactory fit to

the experimental data. In this new case the simultaneous gradual adjustment of the

parameters of the tunneling distribution and of the anti-hole function has been performed

in order to determine the optimal set of parameters which would actually results in a

satisfactory match between experimental SHB data and simulations. These new

theoretical curves that best match the experimental curves are presented in Figure 5.8.
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Fig. 5.8 The best fit to HGK and the overall shape fit of the shallowest and deepest holes
in the series burned at 807.5 nm (inset A and inset B respectively). The blue and red

noisy curves are the experimental holes.
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The figure above shows the best fit to HGK curves and the best fits to the holes

obtained with low (inset A) and high (inset B) irradiation doses (see Chapter 3 and

Chapter 4) . For these fittings the electron-phonon coupling parameters and the line width

distribution have been chosen from ref. 57 and 60, respectively, and they were fixed

throughout the fitting procedure. However, it was noticed that varying the Huang-Rhys

factor S within reasonable limits does not affect the fits significantly because a slight

increase of S may be compensated by slight decrease of the ?? (or vice versa) while the

quality of the fit is preserved.
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Fig. 5.9 Experimental dependence of the hole width on the fractional hole depth

(triangles, dashed line), predicted dependence (based on eq. 4.5) in the absence of a
homogeneous line width distribution (circles, dotted line), and predicted dependence

assuming the distribution of line widths from ref 63 (diamonds, solid line). The value of
the (shallow) hole width expected based on the time-domain data (i.e., about 6 cm"1) is

indicated by an arrow.

The hole width dependence on fractional hole depth (diamonds) obtained with the

same parameters as data in figure above, along with the experimental data (triangles) and

data simulated in the absence of the line width distribution but all other parameters being
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same (circles) are presented in Fig. 5.9. As mentioned, the line width distribution from

reference 60 was employed and it is obvious that the match is quite satisfactory

The parameters employed for these fittings are summarized in the Table 5.1.

Table 5.1 Parameters to the best fit to the hole shape and HGK curves

Fitting parameter
phonon sideband

homogeneous line width

Antihole, tier 1 , shins ~ 1 cm"

Antihole, tier 2, shifts ~ 7-10 cm"

Antihole, tier 3, shifts ~ 60 cm"

Parameter values
S = 0.45 ± 0.05, Wpeak = 25 cm"',
Gaussian/Lorentzian fwhm of 22/40 cm"
distribution from ref. 65 based on the whole
B850 DOS, peaked at 3.3 cm"1 (1.6 ps)
f > ??"6, X0 < 7.8, s? < 0.1; not observed in
SHB experiments
fwhm = 35 ± 5 cm" , shift = 3 ± 1 cm" , Xq =
10.3 ± 0.2, s? = 0.7 ±0.2 (f ~10"8)
fwhm = 70 ± 10 cm"1, shift = 60 ± 10 cm'1, f
- 10"7; note that only several percent of
molecules are capable of such large shifts

The absence of fast small-step spectral diffusion is confirmed by following, for ~2

hours after the end of burning, the holes burned at similar wavelengths. Within the

experimental uncertainties, the holes did not exhibit broadening. If spectral diffusion was
indeed described by shift distributions from SMS data [59-63], the holes would broaden

to approximately the width of the first cumulant distribution from [45], i.e. to 8-10 cm" .
Several additional remarks can be made with respect to the Table 5.1. First, the reported

SHB yields for the medium (i.e. -10 cm"1) and large (i.e. -60 cm"1) shifts are in
agreement with the photon budgets of the SMS experiments. In this work all B800
molecules were assumed to be in principle capable of -10 cm"1 spectral shifts, contrary to
what was suggested based on the results of the SMS experiments [45]. However, if one

takes into account the parameters of distribution of HB yields resulting from our analysis,
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there is no contradiction: some molecules followed in SMS experiments just did not

experience the Tier-2 shifts within the timeframe of the SMS experiment. Note that 35

cm"1 FWHM of the anti-hole distribution on this tier of the energy landscape corresponds

to the ~9 cm"1 average shift regardless of direction, i.e. it is in agreement with SCPS

results. It is unclear if the requirement for a "little nudge to the blue" (3 cm"1 blue shift of
the anti-hole function) is an artifact resulting from the calculation algorithm used (e.g.,

insufficient number if iterations) or is the reflection of real physics, or both. One could

argue that the spectral shifts towards global minimum on the protein energy landscape

(corresponding to the maximum of the B800 band) could be slightly more probable than

in the opposite direction. The largest (-60 cm"1) spectral shifts seem to be observed for
only 5% of the B800 molecules (as assumed in calculating the spectra shown in frame B

of the insert of Figure 5.8, and the HGK curve in the main frame ofthat figure). Closer

look at the low-dose hole spectra suggests that about 10% of molecules capable of larger

shifts would be required to produce better fits to the lower-dose holes (see frame A of the

insert in Figure 5.8, as well as Figure 5.2). Thus, it appears that if a given molecule is

capable of the Tier-3 (60 cm"1 on average) shift at all, the average SHB yield of that
process must be higher than for Tier-2. Small fraction ofmolecules capable of large shifts

(tens of cm"1) suggests that the structural rearrangements responsible for Tier-3 dynamics
are atypical, and probably a consequence of some distortions of the normal structure of

the LH2 complex. This suggestion, if confirmed, could also explain dependence of the

frequency of incidence of the large shifts on species [66] and sample preparation.

Finally, in the light of the absence of noticeable hole broadening which indicates

significant degree of spectral memory for Tiers 2 and 3 of the energy landscape, we also
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attempted to fit the HGK data utilizing perfect memory model from [35], i.e. the model

where each pigment molecule is interacting with one and only one TLS. Satisfactory fits

to HGK data (not shown for brevity) can be obtained for Xo= 9.3 with other fit

parameters being same as above. The latter simulation provides the lower limit of Ao for

B800 band of LH2 since, according to the SPCS data [45], more than two distinct states

on the Tier 2 of protein energy landscape were frequently observed. Interestingly, this

lower limit for Ao is still significantly larger than typical Ao ~ 8 obtained for various

glasses [35, 56, 61, 62].

Summarizing, in our SHB experiments on LH2 we do not observe any evidence

of spectral diffusion with parameters corresponding to the lowest-barrier tier of the

protein energy landscape suggested by SMS. There are several possible reasons for this

discrepancy. One, most probable of these reason could be related to the fact that the small

spectral shifts originate from the interaction of the chromophore with the tunneling

entities at the distance of approximately 1 nm away, which places these entities at the

protein / amorphous host interface and beyond. The difference in the sample preparation

procedures in SHB and SMS experiments could explain the difference in outside

amorphous host or protein interface dynamics. Another reason that is not very plausible,

but it cannot be completely excluded, could be related to the higher excitation intensity in

SMS experiments driving the molecules into conformational states less accessible or

unavailable in the dark / lower light conditions.
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5.2. Low-temperature Protein Dynamics of Several Small Light-harvesting

Complexes Probed via Spectral Hole Growth Kinetics Measurements

In the previous section we presented an analysis of the spectral hole shape

evolution for B800 band of the LH2 antenna complex of Rps. Acidophila. This analysis

has been based on the theoretical models (Chapter 4) originally developed for glasses,

which share many important properties with the proteins. A SHB model has been

introduced allowing chromophore / environment system to assume multiple

conformations [38 and Chapter 4]. Surprisingly, our SHB data proved incompatible with

the lowest-barrier tier SMS dynamics reported in [45, 46, 70, 64], while agreeing both

qualitatively and quantitatively with the higher tiers dynamics [38]. The number of

possible conformations on the higher tier(s) of the protein energy landscape, however,

appears to be limited. The same conclusion has been reported in room-temperature SMS

experiments [52, 71, 72]. All these arguments suggest that original SHB models,

extended to include Multi-Level Systems (MLS) still may be satisfactory for these tiers.

In this chapter the detailed hole burning models described in section 4.6 and Ref

38 will be applied to determine the protein dynamics parameters affecting the evolution

of the spectral holes during burning for several protein antenna complexes [19-27]. This

approach allows for determination of the impact of the protein dynamics on non-

photochemical hole burning, and for subsequent disentangling of these effects from the

effects related to the distributions of the energy transfer (EET) rates. The distributions of

the EET rates measurable in the SHB experiments on higher-energy states of the

complexes can then be compared to those theoretically predicted from the structure data,

and additional constraints for transition energies of the chlorophylls in the absence of
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inter-pigment interactions can be obtained. The latter energies are still not precisely

determined for most of the chlorophylls in most of the photosynthetic complexes.

Non-photochemical spectral hole burning (SHB) has been used to probe the low-

temperature protein dynamics of CP43 core antenna complex and CP29 peripheral

antenna complex of spinach Photosystem II, as well as of trimeric and monomeric LHCII

complexes associated with pea Photosystem I.

For all complexes being studied, the same sequence of measurements has been

performed. First, the hole burning action spectrum was measured at high resolution and

low irradiation dose. HB action spectrum is the dependence of the hole depth on

wavelength for fixed irradiation dose. It represents a weighted sum of the (parts of the)

SDF of the two (or more) lowest-energy pigments as has been considered in ref. 73. Only

the lowest-energy pigments of the complexes have been probed in hole growth kinetics

measurements to guarantee that there is no contribution of the dispersion of the excited

state lifetimes (dispersion of the line widths) to the dispersion of the hole growth kinetics.

In this case all HGK dispersion can be ascribed to the distribution of the barriers between

different conformational states of the protein alone. The value of the integrated

absorption cross-section of isolated ChI a molecule has been calculated based on ref. 74

(s=4.5 IO"13 cm2 cm"1 for molecules oriented with transition dipole moment parallel to
the electric field of the burning light).

As the model used requires many adjustable parameters one should make certain

general remarks about the effects of changing these parameters on the hole spectra. The

parameters most strongly influencing the shape of the HGK curve are the mean and the

width of the tunneling parameter distribution, and the Huang-Rhys factor S, describing
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the strength of the electron-phonon coupling. It is well-known that 5" can be estimated

based on the maximal achievable depth of the resonant ZPH. Thus, a rough estimate of S

can be obtained from the HGK curve itself even without any fitting. Other parameters

affecting the maximal hole depth are the shapes of the phonon sideband and of the anti-

hole function. The mean of the tunneling parameter distribution affects overall burning

speed (i.e. how much the HGK curve is shifted towards higher irradiation doses), while

the width of that distribution determines the qualitative behavior of the HGK curve.

Larger s? results in HGK curve (depicted on a logarithmic scale) more resembling the

straight line, smaller s? results in HGK curve being more sigmoidal. Thus, in our fitting

procedure, we initially fixed all parameters except S, Xo and s?, achieved the best

possible fit to the experimental data, and then attempted to fine-tune the shape of the

phonon sideband and of anti-hole function to improve the fit further.

5.2.1 CP43

5.2.1.1 CP43-Sample preparation

To isolate and purify the antenna complex CP43 the same procedure as reported

in ref [75] has been used. The isolation has been performed at NREL at Golden CO by

Drs. Seibert and Picorel. Summarizing, the pigmented product eluted from

DEAEFractogel TSK 650s anion-exchange column was then passed through an S-

Sepharose cation-exchange column and finally it was loaded onto a Q-Sepharose anion-

exchange column at 4 0C equilibrated with the same buffer (20 mM Bis-Tris, pH 6.0, 20

mM NaCl, 10 mM MgCl2, 0.03% (w/v) «-dodecyl ß-D-maltoside (DM), and 1.5% (w/v)

taurine at 22 0C), [75]. The final resulted product was dialyzed twice for 2 h against 1 L
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of 20 mM Bis-Tris, pH 6.0, plus 0.03% DM and concentrateci with 30-kDa cutoff [75].

Dilution with glycerol was performed in order to ensure good glass formation upon

cooling.

5.2.1.2 The absorption and SHB action spectra of CP43

The low temperature absorption spectrum of CP43 core antenna complex of

Photosystem II is presented in Fig. 5.10.
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Fig. 5.10 Low temperature absorption spectrum of CP43 (red curve) and the SHB action
spectrum of CP43 (black diamonds); the black pointed arrow indicates the burning

wavelength (?ß = 686.8 nm)

This spectrum shows that the chlorophyll a molecules display two main

absorption peaks. A broad peak is placed at 669.1 nm (OD = 0.75) while a narrow and

distinct peak is placed more to the red at 682.7. Similar spectral features e.g. a broad

maximum at 669 nm and a very distinct and narrow peak at 682 nm have been reported in

ref[19, 75].
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It has been mentioned in ref. 73 and 76 that the CP43 protein-chlorophyll a core

antenna complexes of Photosystem II possesses two quasi-degenerate lowest-energy Qy-

states (labeled as A and B) characterized with different inhomogeneous bandwidths.

Thus, the hole-burning action spectrum of CP43 has contributions from both A- and B-

state chlorophylls (while ?-state is believed to be localized on a single chlorophyll

molecule, B state may be somewhat delocalized over several chlorophylls). Due to the

static site energy disorder either one or another pigment could be the lowest-energy

pigment of the complex [73, 76]. The ?-state is considered the major contributor to

absorption at 686.8 nm where the HGK measurement presented in the next section was

performed (arrow). One can note that the action spectrum normalized to the absorption

spectrum in the region dominated by the A state overshoots the absorption in the region

of the narrow B state. This indicates that the hole burning effectiveness is larger for the B

state than for the A state (?? is smaller).

5.2.1.3 The hole growth kinetics of CP43 of spinach

In Fig. 5.1 1 the hole growth kinetics curve for CP43 at 686.8 nm and its best fit

are displayed. The insert of this figure shows the spectral hole burnt at 686.8nm and

recorded immediately after HGK measurement. This spectral hole is characterized by a

FWHM of 6.87 GHz and a fractional hole depth of 65%. To obtain the best fit to HGK a

set of parameters characterizing the lowest energy states of protein-complex has been

chosen from published works [52, 64, 70, 72, 75, 76]. The shape of the SDF of the A-

state of CP43 is according to Ref. 76. The homogeneous line width at low temperature (5

K) has also been taken from Ref. 76. Its value of 0.03 cm"1 is determined mainly by pure
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dephasing, since radiative lifetime is as long as 3.5 ns [77, 78]. The electron-phonon

coupling parameters for the CP43 A state [77] is weak, S~0.25... 0.3, and the phonon

sideband [78] is peaked at 17 cm"1 (these values are in agreement with extremely small

Stokes shift observed for CP43 [76, 79]).
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Fig. 5.11 The experimental (black noisier curve) and the best fit (based on eq. 4.5; red

curve) to the hole growth kinetics curve of CP43; the insert shows the spectral hole burnt
at 686.8 nm

Note that within the framework of the model for EET between two quasi-

degenerate states described in [73], the small contribution to the B state which might still

be present at 686.8 nm belongs to the B-type pigments being the lowest-energy pigments

in the complex, and therefore, further downhill EET from these pigments is impossible.

Consequently, contrary to what [78] suggests, non-resonantly excited hole burning does

not contribute to the low-energy sideband in the respective hole spectrum, and the whole

that sideband must in fact be pseudo-PSB. The latter assignment is supported by the

observation that the gap between the burn wavelength and the wavelength where this

10 20 30 40
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I I I
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pseudo-PSB feature tapers off stays constant for burn wavelengths longer than 684 nm

[78]. It appears that the shape of the pseudo-PSB in case of 684<??<686 nm is

determined by the actual shape of the phonon sideband, not by the shape of the SDF, and

therefore, we used the phonon sideband shape following from SHB data (See Table 5.3).

It is well established that that the ?-state of CP43 is localized on a single Chi a molecule,

therefore the integrated absorption cross-section of one Chi a molecule has been used in

these simulations. The shape of the anti-hole function was estimated based on

unpublished old results by V. Zazubovich and from ref. 78. It is obvious that the anti-

hole is distributed both to the blue and to the red of the zero-phonon hole but it is unclear

if the anti-hole is on average blue-shifted with respect to the ZPH or not (because of the

interference between the red fraction of the anti-hole and pseudo-PSB). We used the

Gaussian anti-hole function with the width of 40 cm"1 which is centered on ?????. From the

Fig. 5.11 the fractional depth is about 65%, which is somewhat less than 78%

corresponding to S=0.25 (the maximal fractional depth is given by exp(-S)). The

parameters that lead to the best fit to the experimental HGK, Fig. 5.1,) are the following:

S=0.3, Ao=I 1.0 and 0^=1.0. The hole spectrum displayed in the insert of Fig. 5.1 1 shows

a width oh 6.9 GHz only for a depth of 65% indicating that it is not yet saturated. The

fact there is no significant anti-hole contributions to this hole spectrum within the scan

range of 45 GHz is consistent with the much broader anti-hole function that has been

chosen for this simulation.
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5.2.2 CP29

5.2.2.1. Sample preparation - CP29

CP29 samples were isolated and purified according to the procedure described in

[80] by the group of Klaus-Dieter Irrgang from Berlin. In brief CP29 has been obtained

from spinach PSII membrane fragments in the presence of 2 mM benzamidine (Sigma)

and 1 mM Pefabloc as protease inhibitors. A two step chromatography was performed to

obtain purified CP29. The first chromatography step was running using a CM-sepharose

Fast Flow column under dim green light at 40C and a second chromatography step was

applied to obtain sufficiently purified CP29 [80]. To obtain the required concentration of

the product the purified CP29 has been centrifuged in Centriprep 10 tubes. The samples

were diluted with glycerol as mentioned above.

5.2.2.2. The absorption and SHB action spectra of CP29

At low temperature (T=5 K) the Qy absorption band of CP29 displays the main

peak at 674.7 nm (Fig. 5.12) and a faint shoulder at 664 nm. These two peak positions

were assigned to Chlorophyll a molecules of CP29. This absorption spectrum shows also

two broad bands located at 638.5 nm and 650.2 nm that are due to the two chlorophylls b

molecules of CP29. The final optical density has been about 1.2 at 674.5 nm. Similar

spectral features were reported in [21, 22, 80]. This proves that ~10-year storage at about

-80C° did not affect the properties of the sample significantly.
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Fig. 5.12 Low temperature (T=5K) absorption spectrum of CP29 (red curve) and the
SHB action spectrum of CP29 (black diamonds); the arrows indicate the burning

wavelengths

The HB action spectrum has been measured using the dye laser in high resolution

mode and the hole growth kinetics for the initial stage of burning at various wavelengths.

The maximal irradiation dose (I = 0.005 J/cm") used in this work is ten times smaller than

in ref. 80. This irradiation dose still leads to fractional hole depths of 25% for the lower-

energy edge of the absorption band. The final HB action spectrum reported in Fig. 5.12

has been obtained for irradiation dose of 0.0014 J/cm2 (from the beginning of the HGK
curves that guarantees the holes were far from the onset of saturation) and it displays a

maximum at 680.4 nm. The spectrum is somewhat asymmetric. One can remark here that

hole burning is effective for the red-most tail of the spectrum. Analyzing both spectra

from the Fig. 5.12 a key observation could be done that the absorption of CP29 is

dominated by easily burnable lowest state at wavelengths longer than about 682 nm.

The next discussion has two main goals. First goal is to analyze (Fig. 5.13) the

asymmetric features of the CP29 HB action spectra and to arrive to the parameters of the
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SDF of the lowest state(s). The asymmetry of HB action spectrum of CP29 will be

explained by analogy with CP43 [73]. Thus, this is because of the truncation from the

high-energy side due to EET between the higher-energy and the lowest energy pigments

of each complex [73]. It is important to recall that the exact values of peak and width of

the lowest-state SDF do not significantly affect the HGK as long as the SDF provides the

good fit to the absorption and action spectra at burn wavelength and at longer

wavelengths. The second goal is to determine the realistic range of the oscillator strengths

of the lowest state. This is important because HGK parameters resulting from the fit,

namely those of the ? distribution, are sensitive to the value of the oscillator strength of

the state being burned.

The Fig. 5.13 shows the SDF of lowest-energy pigment 1 (dashed blue curve)

with maximum at 680.0 nm and the width of 165 cm"1. Assuming that Qx bands

contribute about 10% of the total absorption [81], and that oscillator strength for the ChI

b is 0.7 ofthat for ChI a, the oscillator strength of the lowest-energy state corresponds to

0.7 Chi a molecules. The SDF of the second-lowest energy state (pigment 2, black solid

curve) shows its maximum at 678.25 nm and it is assumed to have oscillator strength of 1

ChI a molecule. The third-lowest energy SDF (green curve) is peaked at 675.4 nm.
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Fig. 5.13 The SDF and the absorption spectrum of the lowest - energy state of
CP29; where the dashed blue curve is the pigment 1 SDF corrected with phonons and

localized vibrations contribution [82]; dash-dotted red curve is the difference between the
whole absorption spectrum (solid red curve) and the lowest-state absorption (dashed blue
curve); black and green solid curves are the second and third-lowest energy SDFs; dashed

black curve is the absorption spectrum of pigment 2 dressed with phonon and vibration
contributions; black dotted curve is SDF of pigment 2 molecules incapable of downhill

EET (divided by 3 for clarity, to avoid overlapping with other curves).

In order to achieve satisfactory fit to the action spectrum, one has to assume that

the hole burning yield for pigment 2 is approximately 3 times lower than for pigment 1

(the dotted black curve in Figure 5.13 is already corrected by this factor of 3). Shifting

the lowest-energy SDF further to the red allows fitting the action spectrum without

assuming lower HB yields for other states. However, for lowest-state SDF peaked at

681.0 nm its integral intensity must be equal to that of 0.42 chi a equivalents only. As we

will see below, HB effectiveness being equal for different states contradicts the HGK

data while low integral intensity contradicts the results of excitonic calculations. Shifting

the lowest state to the blue results in a situation where, by the time the lowest-state

oscillator strength reaches one Chi a equivalent, the HB yield for the second-lowest state
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has to be reduced by at least an order of magnitude. Thus, one Chi a equivalent is the

upper limit for the lowest state oscillator strength in CP29. The suggested lowest-state

SDF parameters are reported in Table 5.3. Note that they differ significantly from those

reported earlier [84]. Within the framework outlined in [73], not only the action spectra,

but also the non-resonantly burned spectral holes (here and in [52]) and the fluorescence

spectra actually contain two (or more) contributions: one from the pigments which are, on

average, the lowest-energy pigments in the complex (pigment 1) and other from the

pigment(s) which is (are) on average, second-lowest, third-lowest, etc in energy (pigment

2, 3, etc) but happen to be lowest-energy due to disorder. The differences in the shape of

high-dose and low-dose action spectra, and of non-resonantly burned holes can then be

attributed to the differences in SHB efficiencies sfS??ß) between different chlorophyll

molecules in the complex. Allowing for two (or more) different contributions to the

fluorescence origin easily explains the wavelength dependence of the electron-phonon

coupling reported in FLN experiments [84]. With that in mind, we utilize the longer-

wavelength S value of 0.6 [85] as initial guess in subsequent HGK simulations for the

longest burn wavelength where pigment 1 dominates. Comparing our results with those

by [86] et al we suggest that fluorescence lifetimes for pigment 1 and pigment 2 in CP29

are 4.8 and 2.6 ns, respectively, and use these numbers as Tj (Section 2.5) in subsequent

simulations.

5.2.2.3 The hole growth kinetics of CP29 of spinach

To fit the HGK of CP29 a set of parameters has been selected from published

works [80, 85, 83]. Thus, the homogeneous width at low temperature (5K) for CP29 is
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0.04 cm"1 [80], the electron-phonon coupling parameter is S= 0.6 [85] and lifetime of the
lowest state was assumed to be 4.8 ns [83]. One should note, however, that changes in the

parameters of the lowest-state SDF proposed in the previous subsection must result in

some changes of the parameters of the electron-phonon coupling in order to produce the

same delta-FLN spectra [85].
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Fig. 5.14 The experimental HGK curves and the best fit to HGK of CP29 for burn

wavelength of 68 1 .7 nm

The figure above shows the experimental HGK curves and the best fit to HGK for

burn wavelength of 681.7 nm. Some remarks about the parameters of fitting should be

made. The theoretical HGK is faster than observed at shorter wavelength for the same

tunneling distribution parameters. The electron-phonon coupling in CP29 is wavelength

dependent with S decreasing towards the shorter wavelengths [85]. Thus, one would

expect experimental HGK becoming somewhat faster, not somewhat slower (as

observed) towards shorter wavelengths, if the only state being burned at shorter

wavelengths was the same as was burned at 681.7 nm. The opposite tendency means that

burning at 680.5 and especially 679.0 nm simultaneously probes two different states /

___I i I I L
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pigments, with the shorter-energy one exhibiting lower SHB yield than the state

dominating absorption at 681.7 nm. Fitting the HGK curves at shorter wavelengths

requires using two bands for simulations rather than one. The electron-phonon coupling

strength of S=0.4 [85] has been used for the second-lowest energy band. In this case

reasonable (but not perfect) fit to the higher-energy HGK curves was achieved for Äq2 ~

10.5. This corresponds to HB rate for the second state being approximately 1/6 ofthat for

the first state, in reasonable agreement with estimates made above based on action

spectrum shape alone (1/3 to 1/10).

5.2.3. LHCII

5.2.3.1 Sample preparation — LHCII ofPisum Sativum

LHCII isolation and purification has been performed by the group of Nathan

Nelson at Tel-Aviv University, Israel. Isolation of thylakoid membranes from 12-day-old

pea {Pisum Sativum) was performed based on the previously described method in ref.

[83]. The material resulted from the first centrifuge procedure was suspended using a

glass-Teflon homogenizer in a buffer (0.3 M sucrose, 20 mM Tricine (pH 8) and 1 mM

phenylmethyl-sulphonyl fluoride (PMSF) at a chlorophyll concentration of 3.0 mg

chl/ml) and then solubilized by 6.0 mg DM per mg chi. A second centrifugation was

applied to remove the unsolubilized material. The resulted material was washed with 25

ml of the same buffer. The eluded LCHII was further centrifuged to separate it into

trimeric and monomeric complexes. The last centrifuge procedure provided highly

purified trimer and monomer complexes. All procedures were performed in dim light at

4-6 C°. Concentrated samples were diluted with buffer prior to experiment.
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5.2.3.2 The absorption and SHB action spectra of LHCII of Pisurn Sativum

The absorption spectra of LHCII monomer and trimer are presented in Fig. 5.15.

The absorption spectrum of LHCII-monomer displays the Qy peak characteristic to

chlorophyll a at 675.86 nm. The Qy absorption band of LHCII trimer displays

characteristic peak for chlorophyll a at 675.46 nm and one can note two weak shoulders

at 671.08 nm and 661.54 nm. Similar absorption peaks have been reported in published

papers [87-90] despite LHCII complexes explored here belonging to different plants, pea

and spinach, respectively, and despite the fact that our LHCII is associated with

Photosystem I rather than Photosystem II. Still, some differences do exist i.e. the

shoulder at -671 nm is not as well-resolved in case of the pea.

A comparison between the absorption features of LHCII spectrum reported in this

work and in earlier reported [87-90] is presented in Table 5.2.
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Table 5.2 Absorption features of LHCII
Experimental results Literature results

„. . , .,„.. ...^>, LHCII-monomer LHCH-trimer r JPÏt.· 6Pigment LHCII- LHCII- LHCH-trimer
monomer trimer __., ? ,„ __,, 4.5K 4.2K
fi7^Rn„m 675.46 nm 662 nm; [34, 87] 676nm[88] . 676nm[88] 676.3 nm[89]ChIa oo.sonm 67108nm 670 nm; [.34, 87] 671 nm [88] °'" '?-,' l'i 671 nm [88] 671.9 nm [89]

661.54 nm 678 nm; [34, 87] 661.5 nm [88] nm' L ' J 661.5 nm[88] 662.0 nm[89]

One should note that, as mentioned above, an important difference between

LHCII employed in this work and earlier ones is that LHCII associated with Photosystem

I rather than Photosystem II is explored in this work. Thus, the sample used in these

experiments is supposed to have a relative enrichment in Lhcb2 protein and contain a

negligible amount of Lhcb3 protein [91-94]. The Lhcb2 protein is exhibiting the most

blue-shifted lowest-energy state among the Lhcbl-3 proteins while the Lhcb3 protein

normally comprising about 10% of LHCII samples (6:2:1 Lhcbl:Lhcb2:Lhcb3; [92]) is

known to exhibit the most red-shifted lowest state at room temperature. Despite these

differences, qualitatively, all the tendencies observed earlier for LHCII from spinach are

present in the case of pea: the spectrum of the monomer is somewhat less structured,

slightly red-shifted and with stronger lowest-energy region absorption.

The monomer's SHB action spectrum Fig.5.15 (a) - diamonds), obtained with

irradiation dose of 0.0018 J/cm2 (low-dose) is somewhat asymmetrical and is peaked at

680.2 nm, slightly to the red compared to 679.6 nm recently reported in ref. 88 for

spinach monomer at slightly higher dose of 0.003 J/cm2. The FWHM of this action
spectrum reported in this research is -120 cm"1. Note that since action spectrum is
asymmetrical, we report the true FWHM value, not the result of a Gaussian fit.

Comparing the absorption and action spectra displayed in Fig 5.15 (a) one can notice that
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burning at wavelengths longer than 684 nm would guarantee that only the lowest-energy

state is probed.

To determine the parameters of the SDF of the lowest-energy (on average)

pigment (oscillator strength) an approach similar to that presented in previous sections

(for CP29 and CP43) in used in the case of LHCII. In Fig. 5.16 all three lowest states of

LHCII monomer have oscillator strength equal to 1.2 Chi a molecules. In order to

achieve a good fit, one has to assume that the hole burning efficiency of the pigment 2 is

several times lower than for pigment 1 , while that of pigment 3 is only slightly lower.

Obviously, reasonable fits to action spectrum can be obtained for certain range of SDF

parameters. Again, like in the case of CP29, the purpose of the fitting of action spectrum

is not only the determination of the SDF parameters, but also of the range of reasonable

oscillator strengths of the lowest-energy state(s). All employed parameters are

summarized in Table 5.3. The 4.4 ns lifetime of the lowest state [95] is used for both

monomeric and trimeric LHCII.

It is obvious that the SHB action spectrum for LHCII trimer shown in Fig.5.15 (b)

is narrower than for monomer. It maximum is located at 678.9 nm and it has the FWHM

of 90 cm'1. This could be compared to the data for spinach LHCII trimer from ref. 89.
The Gaussian fit to the high-dose HB action spectrum has its maximum located at 678.2

nm and it has a width of 85 cm"1. In the ref. [95] has been reported the HB action

spectrum peaked at 679.3 nm and with the width of 110 cm"1. Interestingly, much larger
fraction of the absorption spectrum can be fitted to the low-dose action spectrum in the

case of the LHCII trimer than in the case of the monomer. It is also much more obvious
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than in the case of the monomer that the action spectrum of the trimeric LHCII contains

two different components, much like that of CP43.
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Fig. 5.16 The SDF and the absorption spectrum of the lowest - energy state of

LHCII monomer; where the dashed blue curve is the pigment 1 SDF corrected with
phonons and localized vibrations contribution; dash-dotted red curve is the difference

between the whole absorption spectrum (solid red curve) and the lowest-state absorption
(dashed blue curve); black and green solid curves are the second and third-lowest energy
SDFs; dashed black curve is the absorption spectrum of pigment 2 dressed with phonon
and vibration contributions; black dotted curve is SDF of pigment 2 molecules incapable

of downhill EET

In case of the trimeric LHCII different approaches are possible within the

framework of [73], depending on the rate of energy transfer between the lowest-energy

pigments of adjacent monomers. The SDF of these three lowest-energy states are peaked

at 679.8, 678.4 and 677.1 nm and have the widths of 70 cm"1 according to [96]. The rate

of respective energy transfer was not determined. In ref. 96 it has been assumed that the

high-dose HB action spectrum is the sum of these SDF but not only the lowest-energy
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band alone. This implies that energy transfer between adjacent monomers is relatively

slow. The irradiation dose dependence of the position of the broad non-resonantly burned

hole indicates that SHB yield is varying between the lowest-energy states of the three

monomers, suggesting some inter-monomer energy transfer is lowering the SHB yield for

two of the pigments. Although in the light of this analysis such effect can be assigned to

the onset of burning of the second-lowest pigments of the monomers, the dose

dependence of the non-resonant hole is much weaker, if present at all, for LHCII

monomers [89]. It has also been argued that only the lowest one of the three low-energy

sub-bands of the trimer is the origin of fluorescence. On the other hand, three narrow

lines per single LHCII trimer, with approximately equal intensities, have been reported in

single complex emission spectra [83, 97], indicating the absence of inter-monomer EET.

One should note that effective inter-monomer EET should suppress the action spectrum,

ultimately bringing its integral intensity down to a value corresponding to one ChI a per

LHCII trimer, i.e. per 42 chlorophylls (or slightly more for a delocalized excitonic state).

A quick look at Fig. 5.15 (b) and Fig. 5.17 allows noticing that this is not the case. Thus,

the effects of inter-monomer EET will be ignored in subsequent discussion. It is assumed

that errors resulting from the possibility of such EET are smaller than those resulting, for

example, from the differences in the lowest-state parameters of Lhcbl and Lhcb2

proteins comprising the sample. In other words this assumption means that the

differences in the spectral properties of monomelic and trimeric LHCII complexes are

ascribed to the small changes in the overall protein structure of the LHCII monomers

upon monomerization, not to the changes in interactions between Chlorophylls a

belonging to the adjacent monomers.
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An example of deconvolution of the low-energy region of the spectrum using

three states is presented in Figure 5.17. All states have oscillator strengths of 1.2 Chi a

equivalents, and the lowest state SDF has been made broad enough to fit the low-energy

tail of the absorption spectrum. Again, the HB action spectrum has to be fitted with a

weighted sum of the dotted curves. Clearly, a satisfactory fit to the action spectrum can

be obtained with HB yields for either second or third states being larger than for the

lowest-energy one. This result is different from that obtained for CP29 and LHCII

monomer. Lowest-state parameters can be found in Table 5.3.
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Fig. 5.17 The SDF and the absorption spectrum of the lowest - energy state of LHCII
trimer; where the dashed blue curve is the pigment 1 SDF corrected with phonons and
localized vibrations contribution; dash-dotted red curve is the difference between the

whole absorption spectrum (solid red curve) and the lowest-state absorption (dashed blue
curve); black and green solid curves are the second and third-lowest energy SDFs; dashed

black curve is the absorption spectrum of pigment 2 dressed with phonon and vibration
contributions; black dotted curve is SDF of pigment 2 molecules incapable of downhill

EET
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4.2.3.3. The hole growth kinetics of LHCII of Pisurn Sativum

The experimental HGK curve, the best fit to HGK and the spectral hole burned at

684.2 nm are presented in Figure 5.18a for monomeric LHCII. The hole has the width of

about 0.1 cm"1 and the fractional hole depth of about 15% for an irradiation dose of -210"

3 J/ cm2 at ?ß = 682.6 nm. Figure 5.18b contains experimental HGK curve and its fit for

trimeric LHCII (?ß =683.1 nm) As it has been reported in Ref. 83, the 10 K fluorescence

decay kinetics of LHCII has two components, 1.8 and 4.4 ns. In this work the latter value

has been used to simulate the lowest-energy HGK curves for both monomer and trimer.

The parameters that have been used to fit monomer's HGK include homogeneous line

width of 0.04 cm"1 [80] and electron - phonon coupling parameters of 0.9 [88] for initial

guess. However, due to the changes in the SDF parameters proposed above, the actual

phonon sideband shape may differ somewhat from that proposed in [88].

Moreover, as can bee seen from HGK curves for both monomeric and trimeric

LHCII, the maximal fractional hole depth (-45% for monomer and -35% for trimer) is

significantly smaller than expected for S=0.6 (monomer) and S=0.8-0.9 (trimer) reported

in [88, 86, 95-98]. The fits to HGK obtained with the initial guess values of S were

relatively poor, and resulted in ??>12 for lowest-energy bands of both trimeric and

monomeric LHCII. It was also clear that in order to simulate the early leveling off of the

kinetics at high irradiation doses one had to introduce high values of s?. > 2, which, in

turn resulted in poorer fits to the beginning of the spectra. Therefore, we allowed S to

increase significantly for both monomeric and trimeric LHCII. Simultaneously, we

decreased the width of the Lorentzian part of the PSB somewhat to arrive to

approximately the same simulated overall shape of the ?-FLN spectra as reported in [88].
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One should also note that producing acceptable fits also for shorter burn wavelength

holes (not depicted) required that the second-lowest state (with parameter different from

those for the first state) contributes significantly to absorption already at 682 nm

(monomer) and 681 nm (trimer), respectively. This in turn places limitations on the

oscillator strength of the lowest-energy state.
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Fig. 5.18 The experimental HGK curves for LHCII - monomer (a) and trimer (b) and the
best fit to HGK for burn wavelength of 684.2 nm and 683.1 nm respectively; the insert

shows the spectral hole burned at 684.2 nm

The Fig. 5.18 (a) and (b) have been obtained assuming that the oscillator strength

of the two lower-energy states of both the monomeric and trimeric LHCII does not

exceed 1.2 Chi a equivalents, in agreement with super-radiance data [100]. Again, fit

parameters are summarized in Table 5.3.
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Table 5.3 The summary of the HGK curves simulation parameters Fit parameters

correspond to the lowest burn frequency, highlighted in bold

Complex
SDF peak and
width (cm1)
Oscillator strength
(Chi a equivalents)
Lifetime Xi (ns)

rhomog (cm" )
Burn frequency

g>b (cm1)

SpSB

®mí i Gaussi i Lorentz

(cm1)
??

CP43, ?-state

14641; 180

3.5

0.03

14560

0.30±0.05

17; 15; 70

CP29

14717, 165 '

1.0-0.7

4.8

0.04

14670

14694

14720

0.60±0.05

22; 20; 110

LHCn monomer LHCII trimer

14705; 198

1.2

4.4

0.04

14616,
14628,
14653

0.80±0.054

22; 20; HO4

14717,180

1.2

4.4

0.04

14640

14652

14656

1.3+0.1

22,20,110

11.0±0.2 9.6±0.2 11.3±0.24 11.2+0.2

s? 1.0±0.05. 1.4±0.2 2.0±0.2 2.3±0.2

1 SDF parameters from [79]: peak 14745 cm"1, FWHM=120 cm"1, S=0.4...0.6.
2 SDF parameters from [88]: peak 14715 cm"', FWHM=I 10 cm"1, S=0.6

3 SDF parameters from [88]: peak 14705 cm"1, FWHM=80 cm"1; S=0.8...0.9

The best fit with electron-phonon coupling parameters exactly as in [88] yields ??=12.0
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5.3. Discussion

Concerning the HGK curves simulation parameters (table 5.3) the key observation

is that the parameters of the tunneling distribution observed for photosynthetic protein

complexes are significantly different from those reported for hyperquenched glassy water

and simple organic glasses [35, 56, 97]. The LH2 antenna complex, which was explored

in detail earlier [previous section and Ref. 38] and which contains bacteriochlorophyll a,

not chlorophyll a, exhibited parameters in the same range (??=10.3±0.2, s?=0.7±0.1).

Generally it can be noticed that the hole burning yield is 30-100 times lower in protein

complexes than in water and organic glasses. This is reasonable and it is due to tunneling

entities in proteins being larger and heavier than in the amorphous host. In all cases (LH2

and Chi a antenna complexes) we did not observe any evidence for fast spectral

diffusion. The latter is associated with TLS of the amorphous host surrounding the

pigment-protein complexes or with surface TLS. There was no accumulation of anti-hole

absorption in the immediate vicinity of the resonant hole , which could be expected if

majority of molecules were capable of experiencing small, <1 cm"1 shifts upon burning
[45, 70, 64]. Summarizing, our data reflects the true dynamics of the intact protein and

not the interface or surrounding amorphous host dynamics.

It is obvious that the differences in protein dynamics parameters reflect the

differences in the protein environment of the respective chlorophyll molecules. In this

respect it is instructive to note that these parameters are the same, within experimental

errors, for the lowest-energy state of monomeric and trimeric LHCII. This indicates that

the lowest-energy state of this complex most likely is not significantly affected by

monomerization of LHCII. A very interesting observation is that the protein dynamics of
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the lowest-energy state of CP29 is significantly different from that of the LHCII. This

suggests that either the lowest state is localized on completely different chlorophylls in

CP29 and LHCII, or that the excitonic lowest state of LHCII is significantly contributed

to by a chlorophyll molecule either absent in CP29, or present but in significantly

different environment. In this respect it is worthwhile to recall the results of the recent

excitonic calculations performed based on the high-resolution structure of LHCII (the

structure for CP29 is not available, but similarities are expected based on genetics).
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Fig. 5.19 The structural arrangement of chlorophylls in LHCII (after ref. 27)

In the Fig. 5.19 the structural arrangement of chlorophylls in LHCII is shown.

Several groups [101-103] reported the results of modeling, including that of not only

absorption, LD and fluorescence spectra, but also of various 1 D and 2D time-domain

data. It has been concluded that ChI 604. proposed by Pieper et al. [88] to be the lowest-

energy pigment in the complex, is required to absorb at much higher energy. Lowest-

energy state was placed on ChIs 610, 611 and 612. Thus, it seems reasonable that the

lowest-energy state probed by SHB is localized predominantly on ChIs 610, 61 1 and 612,

with subsequent states on 602-603 and 613-614 dimers. Assignment of the lowest state to
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the 610-611-612 trimer is also in agreement with the assumption of negligible EET

between the lowest-energy states of the adjacent monomers which we made above, as

these pigments are situated far from the similar chlorophylls in the adjacent monomers.

Note that ChI 61 1 is absent in CP29 [27, 104, 105]. As the dynamics of the second-lowest

state of LHCII is significantly affected by monomerization, one could speculate that this

state is localized on ChIs 613 and 614 which are the closest to the interface between the

monomers in the trimer. It cannot be completely excluded that this state is localized on

ChIs 602 and 603 but it is less probable. The ChIs 602 and 603 of adjacent monomers are

close to each other according to the trimer structure (Fig. 5.19), and energy transfer

between chlorophylls 602 and 603 belonging to adjacent monomers would suppress

burning into the second lowest state of the trimer with respect to the monomer. In reality,

however, the second-lowest state contributes more to the action spectrum of the trimer

than to the action spectrum of the monomer.

Finally, we address the electron-phonon coupling parameters following from this

work and their disagreement with ?-FLN data from [88]. Use of the parameters derived

from ?-FLN data [84, 88] results in poor fits to the hole growth kinetics curves. This

discrepancy can be attributed either to our assumption about the absence of weak

aggregation-related bands in the low-energy edge of the spectra being invalid (i.e. to our

lowest-state SDF parameters being incorrect), or to our SHB model applied being

inapplicable to proteins in general, or just to the differences between the species.

However, an interesting alternative explanation also exists, namely, that the ?-FLN data

fittings in Refs 21, 22 are subject to a systematic error. One could notice, for example,

that the equation used to simulate the ?-FLN spectra in [84, 88] is valid only in the
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shallow hole limit, while the data which was fitted with that equation corresponds to

~30%-deep holes. The latter estimate can be obtained after throwing just a brief look at

the Figure 2C of [85] and 7A and 8A of [88]. Also, the irradiation doses reported in ref.

85 and ref. 88 (32 mJ/cm2) must result in ~30%-deep holes according to the data

presented in this work (upward arrows in Fig. 5.18 (a) and 5.18 (b)). The anti-hole

absorption, which is distributed both to the red and to the blue with respect to the

excitation wavelength, also was not taken into account in [85, 88]. In order to explore

how using more accurate treatment would affect the ?-FLN spectra, we modified the

existing software based on Equation 1 to allow for calculation of ?-FLN spectra for a

broad range of irradiation doses, as well as in the presence of NPHB anti-hole. The

modification was very straightforward: SDF modified by burn (see Chapter 4)

{G((o)exp(-Pta(j)L((ù-(OB)cos a) + normalized anti-hole)

was convoluted with the single-site emission spectrum. The latter is just the single site

absorption spectrum flipped with respect to the ZPL. Strictly speaking, such a procedure

results in ?-FLN spectra being conservative, which is obviously in contradiction with all

published results. Thus, before convoluting SDF modified by burn as in equation above

with the single-site emission spectrum one has to remove from that modified SDF the

part of the anti-hole which is blue-shifted with respect to the excitation energy. Such a

removal is physically justified, as molecules to the blue of the ZPH are not excited and do

not contribute to the ?-FLN spectra. Within the frame of this model, the electron-phonon

coupling parameters presented in Table 5.3 result in even better agreement with ?-FLN

spectra from ref. 88 than the theoretical data from work [29] itself. For example, the

broad bump several nm to the red of the burn wavelength is reproduced by our fits and
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missed by the fits from [88]. One should note, however, that the fits to hole growth

kinetics data, especially for LHCII trimer, can be further improved if one allows for even

narrower phonon sidebands. In Fig. 5.18 (b), blue curve, obtained for the 90 cm"1 FWHM

of the Lorentzian contribution to phonon sideband, offers somewhat better fit to the

experimental data than the red curve (Lorentzian FWHM of 110 cm"1). Detailed

theoretical study of ?-FLN spectra, for all irradiation doses and including NPHB anti-

hole contributions, is the subject of future papers.
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6. CONCLUSIONS

Low-temperature protein dynamics has been explored for the lowest-energy

pigments of several photosynthetic protein complexes (CP43, CP29 and LHCII) as well

as for the B800 band of LH2 by means of high resolution hole burning spectroscopy. In

particular, spectral hole growth kinetics has been measured and analyzed. It has been

demonstrated that hole-burning yields are significantly lower in photosynthetic proteins

than those in simple molecular glasses. This is consistent with the idea that the tunneling

entities are much larger and heavier in protein.

We found no evidence for fast small spectral shifts routinely observed in SMS

experiments. The agreement between SHB and SMS data for other tiers of LH2 dynamics

is good though. Support has been provided for the theories of B800-B850 energy transfer

involving the whole B850 density of states.

The parameters of tunneling distribution obtained in this work for a number of

complexes can be employed for disentangling the effects of this distribution and of the

distribution of energy transfer rates in the hole burning data obtained from higher-energy

states.

We also assigned the lowest-energy states of LHCII complex to particular

chlorophylls known from structure data. The lowest-energy state of LHCII, in both

trimeric and monomelic form, was assigned to excitonically coupled ChIs 610, 611 and

612. It is unclear however, if ChIs 610 and 612 are responsible for the lowest state of

CP29, as protein dynamics of the lowest state of CP29 differs significantly from that of
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LHCII. The second and third lowest states were assigned to ChIs 613-614 and/or

602/603, respectively.

Finally, the importance of developing more detailed procedures for modeling ?-

FLN data has been demonstrated as this will allow for obtaining more precise values of

electron-phonon coupling parameters.
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Appendix 1. Preliminary results on Photosystem I from Synechocystis

PCC6803 and Thermosynechococcus elongatus.

The research on protein energy landscapes can be extended also to other systems,

for example cyanobacterial Photosystem I. PS I is one of the two major photosystems

involved in oxygenic photosynthesis and the largest and most complex membrane protein

for which detailed structural and functional information is now available [106, 107]. The

main function of PS I is to capture and convert light energy into chemical energy by

transferring electrons through the photosynthetic (thylakoid) membrane from

plastocyanine or cytochrome c6 to NADP+ [106, 107]. A pair of closely-spaced Chi a

molecules called P700 (and allegedly absorbing at 700 nm) serves as a primary electron

donor in the light-induced charge separation process. There is significant degree of

similarity between the structures of PS I and PS II, but most of the antenna of PS I is

connected to just two proteins, PsaA and PsaB proteins, and therefore PS I cannot be

taken apart into various relatively small antenna complexes as PS II.

Cyanobacterial Photosystem I can exist in the photosynthetic membrane in both

trimeric and monomeric forms and it captures the sunlight by the large antenna system

that consists of >90 antenna chlorophylls and 22 carotenoids [106].
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Fig. Al.l The structural model of Photosystem I and the absorption spectrum of PS-I
wild type (a -from ref. 106, b - from our group data). Green - chlorophyll molecules,

blue, pink, purple, orange, etc - protein alpha-helixes.
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In case of this complicated system containing -100 chlorophylls per monomer,

connected by energy transfer, one can utilize another method of exploring the barrier

parameters distributions - the recovery of the satellite hole structure resulting from HB

following energy transfer (Figures A. 1.1 and A. 1.2.). As can be seen, different satellite

holes recover at different temperatures. Analysis of this data is in progress.
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Fig. Al.2 Thermocycled spectral holes burned in to the absorption spectrum of
Synechocystis PCC6803 at 660 nm (T=5K, 2OK, 3 IK, 4OK, 52K, 61K, 73K, 86K, 99K,
1 10K). The lowest-temperature spectrum is the deepest hole spectrum. The vertical line

indicates the burn wavelength.

1OK

5 K

94



O

660 680 700 720 740

Wavelength (nm)

Fig. A1.3 Thermocycled spectral holes burned in the absorption spectrum of
Thermosynechococcus Elongatus at 659.94 nm (T=5K, 19.5K, 30K, 40K, 5OK,

69.4K, 85.1K, 100K, 1 19K, 146K). The lowest-temperature spectrum is the
deepest hole spectrum



Appendix II.

Table A2: Summary of the experiments performed

Species
Complex studied
Provider/collaborator
Experiment type

Species
Complex studied
Provider/collaborator
Experiment type
Species
Complex studied
Provider/collaborator
Experiment type
Species
Complex studied
Provider/collaborator
Experiment type
Species
Complex studied
Provider/collaborator
Experiment type

Rps. Acidophila
LH2
Cogdell, U. Glasgow
HB Spectra, hole broadening on a time scale of hours
and HGK
Spinach
CP43
Seibert and Picorel, NREL, Colorado
HB Spectra and HGK
Spinach
CP29
Pieper and Irrgang, Berlin
HB Spectra and HGK
Pea
LHC-II
Nethan Nelson, U. Tel Aviv, Israel
HB Spectra and HGK
Synechocystis PCC6803 and Synechococcus elongatus
PSI
T.W. Johnson / Petra Fromme ASU
Thermocycling of the whole satellite hole structure.
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