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ABSTRACT

Iterative Joint Source Channel Decoding for H.264 Compressed Video Transmission

Nguyen Nguyen Quang

In this thesis, the error resilient transmission of H.264 compressed video using

Context-based Adaptive Binary Arithmetic Code (CABAC) as the entropy code is

examined. The H.264 compressed video is convolutionally encoded and transmitted over

an Additive White Gaussian Noise (AWGN) channel. Two iterative joint source-channel

decoding schemes are proposed, in which slice candidates that failed semantic

verification are exploited. The first proposed scheme uses soft values of bits produced by

a soft-input soft-output channel decoder to generate a list of slice candidates for each

slice in the compressed video sequence. These slice candidates are semantically verified

to choose the best one. A new semantic checking method is proposed, which uses

information from slice candidates that failed semantic verification to virtually check the

current slice candidate. The second proposed scheme is built on the first one. This

scheme also uses slice candidates that failed semantic verification but it uses them to

modify soft values of bits at the source decoder before they are fed back into the channel

decoder for the next iteration. Simulation results show that both schemes offer

improvements in terms of subjective quality and in terms of objective quality using
PSNR and BER as measures.

Keywords: Video transmission, H.264, semantics, slice candidate, joint source-

channel decoding, error resiliency.
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Chapter 1
Introduction

1.1 Transmission of Compressed Video
In recent years, there has been an increasing demand for video services over a variety

of wireless channels. However, transmitting video signals requires a large amount of

resources. For example, consider a one-second video sequence that has a frame rate of 30

frames/second, a frame size of 352x240 pixels, and uses YUV 4:4:4 sampling. To

transmit this video sequence, the required bandwidth is about 60Mp/s, which is too large

in practice. Therefore, video compression, a process of compacting video data into a

smaller number of bits by exploiting the spatial and temporal redundancy of the video

sequence is used to reduce the required bandwidth [I]. In addition to transmission, video

compression is also important in video storage since it increases the quantity of video

data that can be stored.

Several video compression standards have been developed to address the issue of

video transmission and storage. For example, the Motion Picture Expert Group (MPEG)

has developed several video compression standards such as MPEG-I, MPEG-2 and

MPEG-4 that have been internationally accepted. These video standards have led to a

wide range of applications such as Digital Versatile Disc (DVD), Blu-ray Disc, High

Definition TV (HDTV), Internet video streaming, and videoconferencing.
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More recently, H.264/AVC video compression standard has been developed and been

widely accepted. This new video compression standard provides higher compression

performance than previous standards [2] and better support for reliable transmission [I].

H.264 technology is currently used in Blu-ray Disc, HDTV broadcasting, and a variety of

mobile devices. In this thesis, the transmission of H.264 compressed video is studied.

When transmitted over communication channels, a compressed video may suffer

from channel noise and hence bit errors occur. There are several types of transmission

errors that can occur in a noisy channel including erasures caused by packet loss in

network congestion, burst errors caused by multipath fading channels and random bit

errors caused by random channel noise. In this thesis, an Additive White Gaussian Noise

(AWGN) channel is assumed and thus only random bit errors are considered.

Since compression removes spatial and temporal redundancy in a video sequence, it

makes a compressed video more fragile to transmission errors than an uncompressed

video. Due to the compression mechanisms in H.264, a single bit error can propagate

both within a frame and between frames, which is called the error propagation effect. One

mechanism that causes the error propagation effect is the use of entropy coding. Another

cause of error propagation is the use of spatial-temporal prediction in video coding. Thus,

a single bit error can propagate and cause a large portion of video to be corrupted.

Therefore the transmission of compressed video sequences over wireless channels is a

challenging task.
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1.2 Problem Statement

In order to enhance error resilience of compressed video when transmitted over

wireless channels, many approaches have been proposed [3]. In general, the most

common approach to enhance error resilience is the use of channel coding, which

systematically adds redundant information (i.e. parity check bits) into a bit stream to

correct transmission errors. Another approach is the use of residual redundancy in the

source coding. In particular, after compression, a compressed video sequence still

contains residual redundancy, and this redundancy information can be exploited to

correct transmission errors without any extra information being added into a bit stream.

Furthermore, these two approaches can be combined so that the channel decoder and the

source decoder can jointly correct transmission errors.

This thesis investigates methods of improving error resilience in the transmission of

H.264 compressed videos that use CABAC as the entropy code. Particularly, both the

redundancy systematically added by the channel coding and the residual source

redundancy in a compressed video are exploited, in a co-operative manner, to detect and

correct transmission errors. The wireless channel considered in the thesis is an AWGN

channel.

1.3 Figures of Merit
In order to evaluate the performance of the schemes proposed in the thesis, several

figures of merit are used. In particular, the figures used are the objective quality

(including Peak Signal to Noise Ratio (PSNR) and Bit Error Rate (BER)), the subjective

quality, and the computational complexity.
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PSNR is the most commonly used measure for the quality of a reconstructed video

sequence when compared to the original video sequence. It is measured on a logarithmic

scale and depends on the mean squared error of between the original frame and the

reconstructed frame [I]. The PSNR of a video sequence is measured for the luminance

(Y), blue chrominance (U) and red chrominance (V) components, which are respectively

defined as follows:

PSNR(Y) = IOlOg
2552

,0ir£(/U']-ArM)2 (L1)
PSNR(U) = IOlOg

2552
10 . Ny¿-£u>ouV\-pA®3 (L2)

PSYJg(H = IOiOg10 Nv 2552
-^ZOvM-aJO)2 (L3)

Here, NY , Nv , Nv are the number of luminance, blue chrominance and red

chrominance pixels in a frame, respectively. poY [/] , polI [/'] , poV [i] are the luminance, blue

chrominance and red chrominance pixel values in the original frame. prY[i] , prU[i] , prV[i]

are the luminance, blue chrominance and red chrominance pixel values in the

reconstructed frame.

Also, BER is a measure used to evaluate the quality of a reconstructed bit stream

(from the viewpoint of channel coding). It is calculated as the number of bit errors

divided by the total number of bits in the bit stream, as shown in Equation 1 .4.
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number of error bits . .
BhR = \ 1 A)number of total bits

For example, a bit stream of length 10000 bits is transmitted over a noisy channel. At

the receiver side, the received bit stream has 5 bit errors. Thus, BER in this case is

0.0005.

In this thesis, BER of the compressed video bit stream obtained after the channel

decoder and BER of the compressed video bit stream obtained after the proposed error

correction schemes have been performed are shown for comparison.

For subjective video quality, rigorous subjective quality testing is not performed due

to the consideration of cost and time. Instead, several frames of the original and

reconstructed video are shown for reader's own evaluation and commented by the author.

The computational complexity of the proposed schemes in this thesis is also a figure

of merit. The complexity is measured by "the number of slice candidates verified" and by

the run time (measured in seconds). In addition, the time ratio of a module, which is

defined as the run time ofthat module to the run time of the H.264 decompressor, is also

used as the measure of computational complexity.

1.4 Thesis Outline

This thesis is organized as follows:

Chapter 2 reviews the background about the H.264/AVC video coding standard

including some important coding features of the H.264/AVC, the H.264 compressor and

decompressor. A literature review on joint source-channel decoding for the transmission

of images and videos is also presented.
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Chapter 3 presents the first proposed scheme: Iterative Joint Source-Channel

Decoding using Virtual Checking method (IJSCD-VC). The scheme makes use of the

H.264 source semantics residual redundancy together with soft values of bits produced by

the channel decoder to correct transmission errors in an iterative manner. A method,

called Virtual Checking, is proposed, which uses information of slice candidates that

failed semantic verification to virtually check the current slice candidate. Also, this

scheme follows a previous work to modify soft values of bits before feeding them back

into the channel decoder for the next iteration.

Chapter 4 presents the second proposed scheme: Iterative Joint Source-Channel

Decoding using Voting and Virtual Checking method (IJSCD-VVC), which is built on

the first scheme. A new method of modifying soft values of bits at the source decoder is

proposed, namely the Voting method, which makes use of information of several slice

candidates that failed semantic verification.

Chapter 5 concludes the thesis and discusses some future work.
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Chapter 2
Background and Literature Review

In this chapter, background information on video compression and decompression

using the H.264/AVC standard is covered. In particular, the structure of the H.264 bit

stream as well as mechanisms for error propagation are discussed.

Like previous video coding standards (the MPEG-4 standard for example), the H.264

compressed bit stream is structured in such a way that error resilience is enhanced, which

makes it suitable for use in error-prone environments.

As discussed in Chapter 1, a bit error often propagates both within a frame and

between frames in a compressed video sequence. Thus, this chapter also explains the

operation of the H.264 compressor and decompressor to clarify the mechanisms that

cause errors to propagate in the compressed video bit stream as well as to shed light on

the question of how errors are detected by the H.264 decompressor during the

decompression.

Section 2.1 discusses the structure of the H.264 compressed bit stream and explains

the operation of the H.264 compressor and decompressor. Section 2.2 presents a literature

review of existing joint source-channel decoding schemes for the error resilient

transmission of images and videos. Section 2.3 summarizes the chapter.
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2.1 H.264 Video Compression
H.264/AVC is the standard developed by the Joint Video Team (JVT), including

experts from the Video Coding Experts Group (VCEG) and the Motion Picture Expert

Group (MPEG). The H.264/AVC standard is also called the MPEG-4 Part 10 standard. In

this section, background information about the H.264/AVC standard relevant to the work

of the thesis is provided. Section 2.1.1 represents the overview of the H.264 standard.

Section 2.1.2 discusses the hierarchical structure of the H.264 compressed bit stream.

Section 2.1.3 discusses video coding techniques used in the H.264

compression/decompression. Section 2.1.4 and 2.1.5 describes the H.264 compressor and

decompressor respectively.

2.1.1 Overview of the H.264/AVC Standard

The H.264/AVC standard comprises a set of seven profiles [I]. Each supports a

particular set of coding features and each is suitable for a particular set of applications.

? Baseline Profile: suitable for low cost application such as videoconferencing

and mobile video.

? Main Profile: intended for broadcast and storage applications.

? Extended Profile: suitable for video streaming applications. This profile has

relatively high compression capability and some extra tricks for robustness to

data losses (e.g. data partitioning).

? High Profiles: there are four variant of High profiles, including: High Profile,

High 10 Profile, High 4:2:2 Profile, High 4:4:4 Profile. These profiles are

different at the maximum number of bits per pixel supported and the

allowable number of chrominance samples per video frame. High Profiles are
8



intended for Digital Video Broadcast, high-definition television applications

(Blu-Ray, HD-DVD).

Following the work in [4], [5], a video sequence is encoded using Main Profile in this

thesis.

2.1.2 Structure of the H.264 bit stream

Like previous video coding standards, in the H.264/AVC standard the encoder is not

standardized. Only the bit stream the encoder produces and the procedure for decoding

the bit stream are standardized. The compressed bit stream generated by a compliant

encoder has to follow the syntax/semantics specified by the standard. Thus, the structure

of the H.264 compressed bit stream is introduced in this section.

An H.264 bit stream is hierarchically organized as different layers: Sequence, Group

of Pictures (GOP), Frame, Slice, Macroblock and Block, as depicted in Figure 2.1. They

are described as follows.

Sequence

I
Group of Pictures

(GOP)

Frame

Slice

J
Macrcblock

X
Btock

Figure 2. 1 : Hierarchy of an H.264 compressed bit stream.
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Sequence layer

The top level in the H.264 bit stream is the sequence, which begins with a sequence

header (i.e., Sequence Parameter Set (SPS)) and is followed by a series of GOPs. The

SPS is a header that contains information common to the entire video sequence such as

the profile, the frame size, the number of reference frames, the choice of progressive or

interlaced coding [I]. An error in the sequence header can make it impossible to correctly

decode the sequence. Therefore, as will be discussed in Chapter 3, bits in the slice

headers and higher layers which are important for the decompression are assumed to be

transmitted without errors.

GOP layer

The next level below the sequence is the GOP. A GOP is a set of adjacent frames

where the number of frames and the type of each frame is specified. Each GOP starts by

an I-frame and followed by P-frames and/or B-frames. Since I-frames use intra prediction

(described later), for GOP in which the proportion of I-frames is low, the compression

efficiency is high with the cost that there are few synchronization points which may not

ideal for random access and for error resilience. Note that an access point (i.e. an I-frame)

allows the decoder to start decoding properly after some loss or corruption. In contrast,

for GOP in which the proportion of I-frames is high, the compression efficiency is low,

however, there are more opportunities for synchronization.

Frame layer

Within a GOP are frames. There are three main types of coded frames: intra-coded

frames (I-frames), predictive frames (P-frames) and bidirectional frames (B-frames). An

I-frame is coded using intra prediction, i.e. prediction using pixels within the current
10



frame only. As mentioned above, I-frames are used as the basis for decoding of other

frames and provide access points to the coded sequence where decoding can begin.

Meanwhile, a P-frame is coded using forward prediction, i.e. prediction using pixels from

the nearest previously coded frame (i.e., a past I-frame or P-frame available in an encoder

and decoder buffer). On the other hand, a B-frame is coded using bidirectional prediction,

i.e. prediction using pixels from both the previous and future I-frame or P-frame.

One should note that I-frames eliminate the temporal error propagation effect in the

video sequence since it is coded independently of any other coded frames. However, I-

frames have poor compression efficiency since no temporal prediction is used. On the

other hand, P-frames and B-frames have higher compression ratio due to temporal

prediction, however, they make errors propagate.

Slice layer

The next level below the frame is the slice layer. Each frame is comprised of one or

more non-overlapped slices. The H.264/AVC standard supports five types of slices: I-

slice, P-slice, B-slice, SP-slice (Switching P) and Si-slice (Switching I). More details on

each slice type can be found in [6]. Each slice begins with a start code (a

resynchronization point). A slice header is attached after the start code, which contains

the information about the frame number, the coded frame type, the slice type, the number

of the first macroblock in the slice. The slice header is followed by the slice data which

consists of a series of coded macroblocks. The last byte of the slice data is padded with

zeros so that the slice is byte aligned [I].

As discussed in Chapter 1 , a single bit error can propagate both within a frame and

between frames. When an error propagates in an H.264 video sequence, the
11



decompressed video becomes corrupted. And the video corruption continues until the

decompressor reaches a resynchronization point (i.e. the start code that prefixes each slice

header). Whenever the decompressor reaches a resynchronization point, it can

resynchronize to the bit stream and restart decoding from the next slice header.

Therefore, within a frame, the video corruption caused by loss of synchronization can not

propagate beyond the end of slice, in other words, resynchronization points prevent errors

from propagating beyond the end of slice. (However, one should note that error

propagation still occurs between frames due to temporal prediction). In light of this, the

error correction schemes proposed in this thesis are done on a slice by slice basis.

Macroblock layer

Each slice contains an integer number of macroblocks (as depicted in Figure 2.2).
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Figure 2.2: Each frame in the video comprises of non-overlapped slices. Each slice contains an integer
number of macroblocks.

In the popular 4:2:0 sampling format, each macroblock contains coded data

corresponding to a 16x16 luma block and two 8x8 chroma blocks. The coded data in a
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macroblock includes a macroblock header (describing macroblock type (I/P/B), motion

vector(s)) and residual data [I].

Block layer

During the encoding process, the residual data for all macroblocks is subdivided into

4x4 blocks and is transformed using the Integer Cosine Transform (ICT).

2.1.3 Video Coding Techniques

This section discusses techniques used during the video compression/decompression

process. By that, the mechanisms of error propagation effect in the compressed video bit

stream are clarified. The operation of the H.264 compressor and decompressor will be

discussed in Section 2.1.4 and 2.1.5 respectively.

2.1.3.1 Integer Cosine Transform (ICT)

ICT is a mathematical method that transforms image data from spatial domain to

frequency domain. Using ICT, the visually important information of a block in a video

frame is concentrated into a small number of coefficients which can be efficiently

encoded. By this way, the amount of spatial redundancy in a residual frame can be

significantly reduced [I].

2.1.3.2 Quantization

The ICT-transformed coefficients are quantized so that the near-zero coefficients are

set to be zero and the remaining coefficients are represented with a reduced precision.

This process causes signal loss. However, it offers better compression [I].
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2.1.3.3 H. 264 Prediction

In general, a coded macroblock in a slice is predicted from samples that have already

been encoded. There are two types of prediction supported in H.264/AVC standard: inter

prediction and intra prediction, which are to be described as follows. Note that prediction

techniques used during the video compression is one cause of error propagation.

2.1.3.3.1 Inter Prediction

For inter prediction, a macroblock is predicted using information from the previously

encoded frames(s). The H.264/AVC standard allows macroblocks to be partitioned for

inter prediction. In particular, each 16x16 macroblock can be partitioned using either a

single 16x16 partition, or two 16x8 partitions, or two 8x16 partitions, or four 8x8

partitions. When the 8x8 mode is used, each 8x8 block can be further divided into smaller

blocks as either one 8x8 partition, two 8x4 partitions, two 4x8 partitions or four 4x4

partitions, as depicted in Figure 2.3.
16x16 16x8 8x16 8x8

MB (16x16) types

Sub MB (ftxei
types

Figure 2.3: Segmentation of macroblocks for inter prediction. Top: segmentation of a 16x16

macroblock. Bottom: segmentation of an 8x8 partition [I].

Once the partition is chosen, a block matching algorithm is applied to find the best

match of the partition from previously encoded frame(s). This process is called the

motion estimation. The position of the matching block is presented by a vector called the
14



motion vector. The selected best match block is subtracted from the original block to

produce a residual block for further processing. This process is called the motion

compensation. One should note that the choice of the partition size has an influence on

the compression performance. The smaller the partition size is, the more accurate the

motion estimation is, and thus the less the residual energy remains. This comes up with

the cost of increased computational complexity (more search operations are required) and

extra bits required to represent the motion vectors [I].

One should also note that, due to the mechanism of inter prediction, bit errors can

temporally propagate between frames. Specifically, an erroneously decoded portion of an

I-frame or P-frame can temporally propagate to other P-frames and/or B-frames if it is

used as a reference sample for the currently decoded frame [3]. Moreover, since a B-

frame can make use of reference frames before or after it in temporal order, errors can

propagate forward or backward in time in a compressed video sequence.

2.1.3.3.2 Intra Prediction

For intra prediction, a macroblock is predicted using spatially neighboring blocks

without using any information from other frames. To perform intra prediction, each

macroblock is partitioned as either 16 4x4 blocks or one 16x16 block. For the prediction

of a 4x4 block, there are nine possible prediction modes, as depicted in Figure 2.4. For

the prediction of a 16x16 block, there are 4 possible prediction modes, as depicted in

Figure 2.5.
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Figure 2.4: Nine possible 4x4 intra prediction modes. Pixels in mode 0 are extrapolated from upper

pixels. Pixels in mode 1 are extrapolated from left pixels. Pixels in mode 2 are the average of the upper

pixels and left pixels. Pixels in modes 3-8 are a weighted average of the relevant pixels [I].
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Figure 2.5: Four possible 16x16 intra prediction modes. Pixels in mode 0 are extrapolated from upper

pixels. Pixels in mode 1 are extrapolated from left pixels. Pixels in mode 2 are the average of the upper

pixels and left pixels. Pixels in mode 3 are predicted from the upper pixels and left pixels using a linear

plane function [I].
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In summary, each intra prediction mode uses previously encoded pixels above and/or

to the left of the current block being predicted. One should note that, bit errors can

spatially propagate within a slice when intra prediction is used. One should also note that,

in order for a prediction mode to be usable, the pixels used for prediction must be part of

the current slice. In the thesis, each slice is encoded as one row of macroblocks.

Therefore, all blocks at the top edge of each macroblock can not use upper pixels for

prediction since these pixels are not part of the current slice. Similarly, all blocks at the

left edge of the first macroblock in the slice can not use left pixels for prediction since

these pixels are not part of the current slice. Therefore, there are many blocks in each

slice that have unusable prediction modes. Thus, if a bit error causes the H.264

decompressor to apply a prediction mode which is unusable for the current block being

predicted, a semantic error is detected. See Section 3.3.1 for details.

2.1.3.4 Entropy Coding

In the H.264/AVC standard, syntax elements within the slice layer and below are

entropy coded using either Context Adaptive Variable Length Coding (CAVLC) or

Context-based Adaptive Binary Arithmetic Coding (CABAC). Compared to CAVLC,

CABAC achieves higher compression efficiency at the price of the increased

computational complexity [7].

Following the work in [4], [5], CABAC is chosen for entropy coding in this thesis.

The entropy coding process using CABAC consists of three steps: Binarization, Context

Modeling and Binary Arithmetic Coding, as depicted in Figure 2.6 [7].
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Figure 2.6: Block diagram of CABAC entropy coding process [7].

Binarization is a preprocessing step in which a nonbinary valued H.264 syntax

element is mapped onto a unique binary sequence (so-called bin).

In context modeling, a probability model is selected for the binarized syntax element.

The choice of the probability model depends on the type of the binarized syntax element

and in many cases depends on the previously encoded syntax elements.

After the assignment of a context model, the binarized syntax element is encoded

using the arithmetic code.

Model update: the selected context model is updated based on the actual coded value

(e.g. if the value of a bit in the binarized syntax element is ? ', the frequency count of ' 1 '

is increased).

One should note when CABAC entropy coding is used, if a bit error occurs in a

compressed video bit stream, its encompassing syntax element will be erroneous [4]. And

because the decoding of a syntax element is in general dependent on the decoding of

previous syntax elements, bit errors often propagate in the H.264 video bit stream when

CABAC entropy coding is used, as mentioned in Section 1.1.

2.1.4 H.264 Compressor

As mentioned earlier, the H.264/AVC standard does not define an inflexible video

encoding-decoding process [I]. Rather, it defines syntax and semantics elements of the

decoded bit stream and their orders in the bit stream, which is well explained in [8]. The

H.264 compressor as well as the H.264 decompressor used in this thesis is the
18



H.264/AVC reference software version JM 9.6 [9]. The block diagram of the H.264

compressor is shown in Figure 2.7.
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Figure 2.7: H.264 compressor [I].

For an input frame to be encoded, depending on the coded frame type, each

macroblock in the frame is predicted using either intra prediction or inter prediction (as

discussed in Section 2.1.3.3). The predicted block is subtracted from the original block to

produce a residual block. The residual block is then transformed using ICT and quantized.

The quantized values are then entropy coded using either CABAC or CAVLC. The

entropy-encoded coefficients, together with side information required to decode each

macroblock (prediction modes, quantizer parameters, motion vector information, etc)

form the compressed video bit stream [I].

In addition to encoding each macroblock, the encoder also decodes it to provide a

reference for further predictions. The coefficients are de-quantized and ICT inverse

transformed to produce a reconstructed residue. The predicted block is added to the

reconstructed residue to create the reconstructed macroblock (a decoded version of the

original macroblock). A filter is used to reduce the effects of blocking distortion. After
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this process has been applied to all macroblocks in a frame, the decoded frame is stored

in either List 0 or List 1 for further prediction.

One should note that although compression removes spatial and temporal redundancy

in a video sequence, compressed video signals still contain residual redundancy, and this

redundancy information can be exploited to correct transmission errors without any extra

information being added into a bit stream (See Chapter 3 for further discussion). The

more redundancy information that a compressed video sequence has after the

compression, the less the compression efficiency is, however, the more resilient the

compressed video sequence becomes to transmission errors.

2.1.5 H.264 Decompressor

The block diagram of the H.264 Decompressor is shown in Figure 2.8.
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Figure 2.8: H.264 decompressor [I].

The H.264 decompressor first entropy decodes the data for each macroblock to obtain

both the prediction information and a set of quantized coefficents. The coefficients are

de-quantized and ICT inverse transformed to produce a decompressed residue. The

prediction information is added to the decompressed residue. The resulting blocks are

then filtered to create decompressed macroblocks. The decompressed macroblocks are

stored in either List 0 or List 1 for further prediction.
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As will be discussed in Chapter 3, when bit errors occur in an H.264 compressed

video bit stream, they usually cause semantic errors and the H.264 decoder is able to

detect them. There are several types of semantic errors. Among the most common of

these error types are: Intra prediction mode errors, slice fragment errors, slice run-on

errors, macroblock run-on errors and illegal reference index errors. See Section 3.3.1 for

details.

2.2 Literature Review on Joint Source Channel Decoding for Video
Transmission

In order to enhance error resilience of compressed images and videos when

transmitted over noisy channels, several authors have recently proposed schemes which

exploit the residual redundancy in the compressed data along with the redundancy

systematically introduced by the channel coder.

Joint Source Channel Decoding (JSCD) schemes using the Arithmetic Codes (AC)

were proposed in [10]-[12]. The input sequence is source encoded using the AC. During

the source encoding process, a small interval for a forbidden symbol (which does not

belong to the source alphabet) is embedded into the bit stream. Basing on this added

redundancy, the AC decoder is able to detect transmission errors. Specifically, if the AC

decoder detects the forbidden symbol, it means that transmission errors occur.

Tingjun et. al. [10] proposed a JSCD scheme that uses Low-Density Parity-Check

(LDPC) codes and AC for the transmission of image/video over an AWGN channel.

After AC encoding, the source encoded bit stream is interleaved and channel encoded

using LDPC. The coded bit stream is Binary Phase-Shift Keying (BPSK) modulated and

transmitted across the AWGN channel. At the receiver side, the LDPC decoder sends the
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decoding results to the AC decoder. Basing on the added redundancy information, the AC

decoder is able to detect errors. The information about the error location provided by the

AC decoder is then sent back to the LDPC decoder to correct more transmission errors.

The JSCD scheme proposed in [11] is a concatenated scheme, in which the source

decoder and the channel decoder are combined. In particular, the error detection provided

by the AC is used as the outer code. A sequential decoder is used as the inner code. This

inner code uses the information obtained at the output of the channel along with the error

detection capability provided by the AC (the outer code) to perform error correction.

Grangetto et. al. [12] proposed a JSCD scheme in which the input sequence is source

encoded using the AC. At the receiver side, a MAP (maximum a-posteriori) decoder is

proposed to decode the information, which unifies the AC decoding and error correction

tasks into a single process. The coding redundancy associated with the forbidden symbol

is used by the proposed MAP decoder to select the most probable decoded sequence.

The JSCD approach represented in [10]-[12] requires extra bits to be transmitted at

the source encoder. Several authors proposed another JSCD approach that does not

require bandwidth expansion at the source encoder [13]-[17].

Wang and Yu [13] proposed a joint source channel MAP decoding scheme which is

applied to the decoding of motion vectors in an H.264 coded video bit stream. The H.264

motion vectors are modeled as a 1-D Markov processes. This 1-D Markov source is

Variable Length Code (VLC) encoded, convolutionally encoded and transmitted over a

noisy channel. Note that all syntax elements other than motion vectors are assumed to be

error-free. At the receiver side, the MAP decoder uses information from both the channel

and the source statistics to select the most probable set of motion vectors.
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In Syntax Based Error Concealment (SBEC) [14], the MPEG-2 bit stream is simply

channel encoded by adding 1 parity check bit after each 12-information-bit block. At the

receiver side, by parity checking, the 13 -bit blocks that contain bit errors are located, and

are Error Detection (ED) blocks. With the assumption that each ED block has only one

error, there are 13 possible correct interpretations. Therefore, the slice containing an ED

block is decoded up to 13 times and each time a slice candidate is generated by toggling

one different bit. Note that if a slice contains N ED blocks, the number of candidates

needs to be generated and syntactically verified is 13* . These candidates were

decompressed and the first one without syntax violation is accepted as the correct bit

stream.

Syntax and Discontinuity Based Error Concealment (SDBEC) [15] is an extension of

SBEC developed in [14]. SDBEC is the same as SBEC in the sense that it makes use of

the syntactic residual redundancy in the video. The difference is, rather than stopping

when a syntactically correct slice candidate is found, this scheme keeps decompressing

all remaining candidates. After the decompression is complete, a set of seemingly correct

candidates for each slice is obtained. A discontinuity measure is proposed to evaluate the

spatial smoothness of each candidate in the set. Note that this measure works in the

decompressed domain. The smoothest slice candidate is finally chosen as the correct bit

stream.

Joint Forward Error Correction and Error Concealment for Compressed Video [16]

works with the MPEG-2 videos. The channel code used in the scheme is a block-based

(16, 8) quasi-cyclic code. Using the Hamming distance as a measure of slice candidate's

likelihood, slice candidates are generated and grouped into three groups: the shortest
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Hamming distance group- the one that has the highest priority, the shortest Hamming

distance plus 1 group and the shortest Hamming distance plus 2 group- the one that has

the lowest priority. These slice candidates are decompressed and verified for

syntactic/semantic error. A discontinuity measure is then applied to evaluate the spatial
smoothness of the slice candidates that have no syntactic/semantic violation. The best

slice candidate is chosen by taking into account two measures: the discontinuity measure

and the Hamming distance of each slice candidate. The priority level of each measure is

decided experimentally.

The schemes proposed in [13]-[17] do not feed information from the source decoder

back to the channel decoder. Schemes proposed in [5], [18]-[20] considers feeding

information back to the channel decoder in an iterative manner.

Peng et. al. [18] proposed an Iterative Joint Source Channel Decoding (IJSCD)

scheme applied for the transmission of vector quantized images, JPEG images and

MPEG-I video data. A turbo code is used as the channel code. The source decoder

performs error detection using soft values of bits generated by the channel decoder.

Basing on the error detection results, the extrinsic information of bits introduced by one
of the two MAP decoders is modified and passed to the other MAP decoder to begin the

next iteration.

Pu et.al. [19] proposed an IJSCD framework for JPEG2000 transmission. In this

scheme, JPEG2000 is used as the source coder and an LDPC code is used as the channel

coder. The decoding process is performed iteratively. Specifically, on each iteration, the

LDPC decoding is performed. The decoded bit stream is then source decoded by a
JPEG2000 decoder. The JPEG2000 decoder is able to detect errors in the bit stream by
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using built-in error resilience tools. The error detection information from the source

decoder is passed to the channel decoder and used to modify the soft values of bits to

begin the next iteration.

Another IJSCD schemes were proposed in [20], [5]. The compressor in [20] is

MPEG-4 using VLC for entropy coding. A turbo code with two convolutional codes is

used as the channel code. Meanwhile, H.264/AVC is used for the compression in [5] with

CABAC as the entropy code. A single convolutional code is used as the channel code.

For both [20], [5], in each iteration, for each slice, soft values obtained from the output of

the channel decoder are used to generate and rank a list of slice candidates in descending
order of likelihood. At the source decoder, these slice candidates are verified for semantic

correctness and the Best Slice Candidate (BSC) is chosen among them. For both [20], [5],

the first slice candidate which passes the verification is chosen as the BSC. In case there's

no slice candidate passing the verification, [20] chooses the one with the highest

likelihood as the BSC, while [5] chooses the one with the latest failure location as the

BSC. In both [20] and [5], soft values of decoded information bits are modified according
to hard values of these bits in the BSC and fed back to the channel decoder for the next

iteration. On the last iteration, the BSCs of all video slices are decompressed to get a final

output video.

The schemes proposed in this thesis are built primarily on the work in [5]. In contrast

to the work in [5], slice candidates that failed semantic verification are exploited. The

performance of the schemes proposed in the thesis is only compared to the performance
of the scheme in [5] since they use the same framework (i.e. the same source coder and

channel coder). See Chapter 3 and Chapter 4 for details.
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2.3 Summary
This chapter discussed background information about the H.264/AVC video

compression standard which is relevant to the work of this thesis. In particular, the

structure of the H.264 bit stream and the operation of the H.264 compressor and

decompressor were presented. Also, a literature review on the previous work about joint-

source channel decoding for the transmission of videos and images was presented.
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Chapter 3
Iterative Joint Source-Channel Decoding Using Virtual
Checking Method (IJSCD-VC)

Chapter 2 discussed the important coding features of the H.264/AVC standard as well

as the mechanism of the H.264 compressor and decompressor. This chapter proposes an

IJSCD scheme that makes use of the H.264 source semantics residual redundancy

together with soft values of bits produced by the channel decoder to correct transmission

errors in a noisy video sequence. A method, called Virtual Checking, is proposed, which

uses information of slice candidates that failed semantic verification to virtually check the

current slice candidate.

First, conventional error concealment methods are discussed in Section 3.1. The

proposed scheme, namely Iterative Joint Source-Channel Decoding using Virtual

Checking method (IJSCD-VC) [21] is then discussed in Section 3.2. The operation of the

Source Semantic Verifier is described in Section 3.3. Section 3.4 discusses the error

detection capability of the Source Semantic Verifier. Next, the Virtual Checking method

is presented in Section 3.5. The Modifier is discussed in Section 3.6. The performance of

the proposed scheme is assessed objectively and subjectively in Section 3.8. The

complexity of the proposed scheme is also evaluated in Section 3.8. Finally, the chapter

concludes with a summary in Section 3.9.
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3.1 Conventional Error Concealment

As mentioned in Chapter 1, a compressed video bit stream is vulnerable to

transmission errors. Errors that occur in one frame can propagate within that frame and to

subsequent frames and severely degrade the output visual quality of the decompressed

video. One mechanism that causes the error propagation effect is the use of entropy

coding since a single bit error can result not just in an error in the symbol currently being

decoded but also in subsequent symbols due to the loss in synchronization [3], [13].

Another cause of error propagation is the use of spatial-temporal prediction in video

coding. Specifically, bit errors in an erroneously decoded portion of an I-frame or P-

frame can spatially/temporally propagate if it is used as a reference sample for the

currently decoded frame.

To cope with the vulnerability of compressed videos when transmitted over noisy

channels, many error concealment techniques have been proposed [22] -[3 7]. In general,

the two basic types of error concealment techniques are: spatial error concealment and

temporal error concealment. These two techniques involve estimating the lost pixels due

to transmission errors by exploiting the temporal/spatial correlation in a compressed

video bit stream and do not require any additional bits to be transmitted [3].

In this thesis, when the proposed schemes fail to correct errors, temporal replacement

- one of the simple temporal error concealment methods is used. Basically, in case an

error is detected during the final decompression, this method replaces each macroblock in

the current slice from the point where the error is detected to the end of slice by a

corresponding macroblock at the same spatial location from the previously decoded

frame [4]. This simple concealment does not take into account motion compensation and
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hence shifts in the concealed picture will be visible if there is motion. Note that temporal

replacement is also used as a benchmark for every proposed scheme in this thesis.

3.2 Iterative Joint Source-Channel Decoding Using Virtual Checking
Method (IJSCD-VC)

In this chapter, the IJSCD-VC scheme is proposed to enhance the error robustness of

H.264 compressed video sequences when transmitted over a noisy channel. This scheme

follows the previous work [5], [20] in exploiting both the redundancy systematically

added by the channel coding and the semantic residual redundancy in the compressed

video, in an iterative manner, to correct transmission errors. The block diagram of the

IJSCD-VC scheme is shown in Figure 3.1.

The pseudocode explaining how the scheme works is as follows.

At the transmitter side:

1. Compress the raw video sequence using CABAC entropy coding

2. Split the compressed video sequence to two parts: header stream (assumed to be

error-free) and data stream

3. Interleave the data stream

4. Encode the data stream by a convolutional code

5. Modulate the encoded bit stream using BPSK

6. Transmit the modulated bit stream over an A WGN channel

At the receiver side:

1. FOR i=l: numjteration // num iteration is the total number ofiterations
1. ¡.Decode the received bit stream by a MAP decoder

1.2.Deinterleave the decoded bit stream
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1.3. Merge the header stream with the deinterleaved bit stream

1.4. Generate a list ofslice candidatesfor each slice by using soft values ofbits

1.5. Verify the semantic validity of these slice candidates to choose the best slice

candidate for each slice

1.6. Modify soft values ofbits in each slice by using the information extractedfrom

the semantic verification process

1. 7. Interleave the modified soft valued bit stream

1.8. Feed the interleaved bit stream back to the channel decoder for the next

decoding iteration

ENDFOR

2. Send the best slice candidate ofeach slice to the H. 264 decompressor

3. Decompress to get the output video sequence

The remainder of this section describes the modules in the IJSCD-VC scheme with

the exception of the H.264 compressor and H.264 decompressor, which were discussed in
Section 2.1.4 and 2.1.5 respectively.
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Figure 3.1: Block diagram of the USCD-VC scheme.

3.2.1 Stream Splitter and Stream Merger
As discussed in Chapter 2, an H.264 bit stream is hierarchically organized into

different layers: sequence, GOP, frame, slice, macroblock and block. The task of the

Stream Splitter is to split the compressed video bit stream into two parts: the header
stream which includes all bits in the slice headers and higher layers; and the data stream

which includes the remaining slice data bits in the video sequence [5]. The header stream
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is assumed to be protected by a very strong code and consequently error-free. By doing

this the header information in the compressed video is not damaged or lost and so the

decompression process can be performed properly. The data stream, on the other hand, is

sent over a noisy channel.

At the receiver side, the Stream Merger combines the noisy data stream with the

header stream to produce a noisy H.264 video sequence. This video sequence can now be

displayed using software that supports H.264 standard such as VLC media player.

3.2.2 Interleaver and Deinterleaver

In convolutional decoding, incorrect decoding decisions often make errors appear as

"bursts", that is when an information block is in error, several bits in it are erroneous.

Consequently, it is often the case that there are many errors in some slices while others

are error-free. In such situations, the IJSCD-VC scheme does not work effectively.

Specifically, for slices that are severely damaged by errors, it is difficult for the IJSCD-

VC scheme to correct them properly. Moreover, for slices that are error-free, applying

IJSCD-VC scheme can not yield better result either (when compared with convolutional

decoding only). Hence, it is important that errors occurring in a particular convolutional

decoding block should be spread out among many slices so that each slice only suffers

from a manageable number of errors.

To effect this, an Interleaver is used. At the transmitter side it reorders the bits in a

predetermined manner.

At the receiver side, the Deinterleaver reconstructs slices by collecting bits from

multiple convolutional decoding blocks and restoring their original order.
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Generally, common interleaving techniques include the block interleaver, the random

interleaver and the convolutional interleaver. In this thesis, a block interleaver with a

5000-by-10 matrix is used.

3.2.3 Convolutional Encoder

A constraint length of 2, rate Vi Recursive Systematic Convolutional code with

generator (1, 5/7) is used in this thesis. The generator matrix G(D) is chosen as follows

[38]:

G(D) = 1
\ + D2

\ + D + D\
The corresponding controller canonical form is shown in Figure 3.2.

(3.1)

<D-
4>

-n + ^-

-------------------------------------?· P

Figure 3.2: Controller canonical form of the Convolutional Encoder [4], [38].

The data stream after being interleaved is divided into information blocks of 10000

bits, which are then encoded one after another. For each information block to be encoded,

four 0's are padded at the end of it in order to reset the encoder state to zero state after the

encoding process is completed. By doing this, it is certain that the subsequent information

blocks will be encoded with a refreshed encoder state. Therefore the actual length of each

information block is 10004 bits and after being encoded, each coded block consists of

10000 information bits, 10000 parity check bits and 8 padded bits. Due to the use of a
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systematic convolutional code, the structure of the coded bit stream is: one information

bit followed by one parity check bit and so on. The coded bit stream is then BPSK

modulated and sent over a noisy channel.

3.2.4 Channel Model

In this thesis, an AWGN channel with noise variance s2 is assumed.

3.2.5 MAP Decoder

The decoding technique used at the channel decoder is the MAP algorithm which

utilizes soft-input soft-output values [39]. The MAP decoding algorithm for rate 1A

Recursive Systematic Convolutional (RSC) code with AWGN channel and BPSK

modulation described as follows comes from [39]. Denote:

? m: the RSC encoder's memory

? S: the set of all 2m states of the RSC encoder

? sk : the state of the encoder at time k

*?* u = (ui,u2,...,uk,...,uN)<=[0,l]N : the information bit sequence

? p = (Pi,p2,...,pk,...,PN)e[0,\]N : the parity check bit sequence

*?* xs = (x",x¡,...,x"N)e [-1,1]" : the BPSK modulated information bit sequence

? xp = (xp,xp,...,xp) e [-1,If : the BPSK modulated parity check bit sequence

*?* x = (x¡,xf,x¡,x2a...,xiN,xp)e[-l,lfN ¦ the modulated coded bit sequence. It

includes ?:' and xp .

? y* =(ys],y¡,...,ysN)e'SÍN : the noisy version of xs

? y ? = (y? 5 y? , ..., y? ) e <¡RN : the noisy version of xp
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? y = {ys,yp,ys,y2,-;ysN,ypN)^'^1N : the received noisy bit sequence after the

channel. It includes ys and yp .

The MAP decoder examines the received sequence and computes the a posteriori

probability (APP) of bit uk (where k is the time index), which is defined as:

(
L(uk \y) = In P{uk=\\y) (3.2)

Here, P(uk=\\y) is the probability that the decoded bit uk=\ given that y is

received. P(uk = 0\y) is similarly defined.
Incorporating the trellis of the RSC encoder, with some manipulations, Equation 3.2

can be rewritten as:

L(uk \y) = In S «,_,(* ^* (* \s)ßk (s)
V (.v',v)eS"»

(3.3)

Here, Sm is the set of the pairs of states (s', s) such that the transition from Sk_¡ =s'

to Sk=s is caused by the input uk=\. S(0) is similarly defined for uk = O .

In Equation 3.3, c^O^and ßk{s) are called the forward metric and the backward

metric respectively. These two metrics are recursively calculated as:

«* CO = S "*-·(* >*(*'»*)
all s·

(3.4)

AW = Iii(^^")
all .v"

Here, /k (s ', 5) is called the branch metric, defined as

(3.5)
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7k(s\s) = P(Sk=s;yk\Sk_i=S')
After some manipulation, yk (s', s) is calculated as:

(3.6)

rk(s',s) = AkBkexp

Where:

1 xsk(L(uk) + Lcy¡) fk{s\s) (3.7)

A = 2ps2 exp
(y¡)2+(yD2+2

2s2

Bk =
( e-Uu„)/2 ^

l + e-LM/2

rck(s\s) = exp -Lcxpkypk

Here, L(uk) is called the a priori information which is defined as follows:

(3.8)

(3.9)

(3.10)

L(uk) = in

And Lr is called the channel reliability
P(uk=0)

(3.11)

L -A-^C 2
s

(3.12)

After incorporating the a priori information, the soft value of bit uk can be further

represented as:

L(MkIy)= L(uk) + Lc-y¡ +ln
a priori channel value

information

S ock_,(s')Yl(s\s)ßk(s)
(s\s)zSm
S a*-?(*>;(*',?)?(?)

V1 (s;s)eSw
V"

extrinsic information

(3.13)
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In summary, the soft value of bit uk obtained at the output of the MAP decoder

comprises of three terms: the a priori information of bit uk , the channel value and the

extrinsic information of bit uk (denoted Le {uk ) ).

On the other hand, given that L(uk \y) is obtained at the output of the MAP decoder

(Equation 3.13), and that P(uk -l\y) + P(uk = 0|j>) = l, the a posteriori probability of
uk = 1 and uk = 0 can be calculated as follows:

P{uk=\\y). eUuk\y)
? , pUuk\y)l + e (3.14)

?«.?=?|/)=t-G(,?)
Basing on Equation 3.14, the MAP decoder decides uk=\ if

P{uk =\\y)^.P{uk=Q\y) and uk = 0 if P(uk =\\y)<P{uk =Q\y) . In other words, the

sign of the soft value L{uk \y) will indicate whether uk is 1 or 0. Furthermore, the

magnitude of L{uk \y) implies how certain the hard decision made on bit uk would be. If

L(uk\y)~Q> this leads to the fact that P{uk =1 \y)&P(uk = 0|_v) . Hence the decision

made on uk is not certain. Vice versa, ifZ(w¿ \y) » 0 or L(uk \y) « 0 , this corresponds to

the fact that P(uk =l\y) » P(uk = 0|j>) or P(uk =l\y) « P(uk - 0\y) . Consequently it is
almost certain about the decision made on uk . It is obvious that the higher the magnitude

of L(uk \y) , the more certain the decision made on uk .
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The soft values of all decoded information bits are used in the Slice Candidate

Generator module in order to generate slice candidates, which is to be described in

Section 3.2.6.

3.2.6 Slice Candidate Generator (SCG)

3. 2. 6. 1 The General Idea

As mentioned in Chapter 2, each slice in the H.264 compressed video sequence is

decoded independently [6]. The advantage of this decoding mechanism is that the effect

of error propagation between slices in the same frame caused by the loss of

synchronization can be eliminated. In light of this, the proposed error correction schemes

in this thesis are done on a slice by slice basis, i.e. not on a macroblock basis or frame

basis. Note that a raw video sequence in this thesis is compressed in such a way that each

slice contains one row of macroblocks.

When transmitted over a noisy channel, the compressed bit stream is contaminated by

noise and hence errors occur. For each slice, the SCG tries to recover the original error-

free slice (which is called the Target Candidate) from its noisy version by flipping one or

more bits which are suspected of being erroneous. As discussed in Section 3.2.5, the soft

value of each bit produced by the MAP decoder indicates the most likely value for the bit

in question as well as its reliability. Hence, bits that have small absolute soft values are

more likely to be erroneous than bits that have large absolute soft values.

When the hard decisions are done for all decoded information bits in the slice, the

most likely slice candidate is generated. This is called the Primary Slice Candidate (PSC).

A slice candidate is defined by a set of bits that are different or "flipped" from the PSC.
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These are called the flip-bits. By definition the PSC has no flip bits. An example

illustrating the concept of a slice candidate is shown in Figure 3.3. In this example, Slice

candidate 1 has one flip-bit at position 3 in the bit stream. Slice candidate 2 has one flip-

bit at position 1 in the bit stream.
Soft values

Primary slice candidate

Slice candidate 1

Slice candidate 2

¦0.7 -15 0.3 4.9 1.1

Figure 3.3: An example of slice candidates.

The main task of the SCG is to generate a list of slice candidates for each slice with

the expectation that the Target Candidate is listed as high as possible on the list [4]. If a

slice is N bits long, one way to make sure the Target Candidate is included in the list is to

generate all 2N slice candidates. However, this method's complexity is too high. For

example, with a 300-bit-long slice, the total number of slice candidates must be generated

for that slice is more than 2*1 090.

Previous work [4], [40], proposed a method of choosing a certain number of the most

likely slice candidates by using the soft values of bits in the slice. These are ranked in

descending order of likelihood based on the soft values of flip-bits.

Section 3.2.6.2 discusses how to mathematically rank slice candidates in descending

order of likelihood as what was presented in [4], [40]. Section 3.2.6.3 discusses how

many slice candidates should be generated for each slice.

3. 2. 6. 2 Ranking Slice Candidates

For a given slice of length N, denote:
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* s = (S1 , s2 , ..., sN ) e [O, If : a particular slice candidate

? ? = (? , ? , ..., ? ) e [0, l]N '¦ the Primary Slice Candidate (PSC)
Given that the APP of each decoded information bit is available by Equation 3.14, in

conjunction with the assumption that bits in the same slice are independent, the likelihood

of the PSC, denoted P(v) , can be calculated as the product of the APP of its bits:

P(v) = f[P(vk=uk\y) (3-15)
k=\

Where P(vk =uk\y) is the APP of bit uk. Note that P(vk =uk\y)> P(vk = uk\y),in

which ïïk is the inversed value of uk (i.e. if uk =0then uk =1 and vice versa). In other

words, if the hard decision made for uk is 1 then P(vk = 1 1 y) > P(vk = 0 1 y) . Otherwise,

if the hard decision is 0 then P(vk =1| y)<P(vk =0| y). Obviously, the likelihood of

the PSC is highest among slice candidates.

Similarly, the likelihood of slice candidate s, denoted P(s) , is defined as follows:

P{s) = f\P(sk=uk\y) (3-16>
The bit stream in slice candidate s only differs from the one in the PSC at flip-bits'

positions. Denote Fs the set of indices to the flip-bits of s , which can be mathematically

represented as follows [4]:

keFs if sk®vk=\ (3·17)
Where T is the exclusive-or operation.

A bit k in slice candidate s can be represented as:
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Sk = \vk, k£Fs
|?» keFs

(3.18)

Here, vk is the inversed value of vk .The bit stream of slice candidate s can be

conceptually divided into two parts: one part is identical to the PSC, and the other one is

the flipped version of the PSC. Therefore, Equation 3.16 can be rewritten as follows:

P(s) = ? P(sk = uk I y)Y\P{sk = uk\y)
k(Fs kzFs

Combining with Equation 3.18, Equation 3.19 can be rewritten as:

P(s) = ? P(vk = uk I y)U ^(v* =ük\y)
keFs keFs

Denote R(s) the rank of slice candidate s . It is calculated by:

Ä(s) = -In fp(s)}
V ^(V) J

= -ln
? p(v* ="* I ^)Il p(v* =«*!¦»')

keFsk*Fs

y keFs

= -ln

UP(vk=uk\y)YlP(vk=uk\y)
ke¡

P(vk =ük\y)
k*Fs

?
tef,\P(vk=uk\y).

= -Xln
keF,

f p(vk =uk\y)
P(Vk=Uk\y).

P{vk = uk\y)

(3.19)

(3.20)

(3.21)

keF, v p(vk =uk\y)j

Equation 3.21 shows that, ranking a slice candidate s in descending order of P(s)

P(v)can now refer to ranking it in ascending order of R(s) due to the relation P(s) = -^- .
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Note that i?(s) is always a positive number since the condition

p[vk =uk\y)> P(vk =uk\y) is always satisfied. In order to avoid any contusion, R(s)
can be rewritten as follows:

Ä(s) = S
AeR

J^P(V*= «4 IjO^ ( 3.22 )
P(vk = uk\ y) ?

Finally, the rank of the slice candidate s1 can be written as:

A(s)=£|¿("*M (3.23)
AeR

In summary, the rank R(s) of slice candidate s is the sum of the absolute soft values

of its flip-bits. The smaller the rank is, the more likely the slice candidate is. One should
note that the PSC has no flip-bits, hence its rank is zero.

3. 2. 6. 3 The Choice ofthe Number ofSlice Candidates
The Incomplete Partial Sums Algorithm (IPSA) which was well described in [4] is

used to generate the Nsc most likely slice candidates and put them in descending order of

likelihood. Here, Nsc is a number chosen by taking into account the required

computational complexity. If Nsc is chosen to be too small, the probability of having the

Target Candidate included in the list is reduced. In contrast, if Nsc is larger, the

probability of having the Target Candidate included in the list is higher, but the
computational complexity is also higher.

The Nsc most likely slice candidates generated for each slice are then sent to the next
module - the Source Semantic Verifier.
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3.3 The Source Semantic Verifier (SSV)
As mentioned in Chapter 2, the H.264/AVC standard does not define an inflexible

video encoding-decoding process [I]. Rather, it defines syntax and semantics elements of

the decoded bit stream and their orders in the bit stream, which is well explained in [8].

By that, the compressed bit stream encoded by a compliant encoder can be decodable by

following the decoding process defined in the standard [I]. Therefore, if an error occurs

and violates the syntax/semantics structure of the compressed bit stream, the H.264

decompressor is able to detect it. Section 3.3.1 describes several types of semantic error

detected by the SSV. Section 3.3.2 discusses the operation mechanism of the SSV as in

[4], [5].

3.3.1 Detecting Errors in H.264

In general, there are two kinds of errors that can be detected by the H.264

decompressor: syntactical errors and semantic errors. If an error causes an invalid entropy

decoded syntax element, a syntactical error is detected. On the other hand, if an error

causes the H.264 decompressor to execute an incorrect task, this is a semantic error [4].

As mentioned in Chapter 2, the entropy code used in this thesis is CABAC. Since all

syntax elements in CABAC are valid, there are no CABAC syntax errors. Therefore,

when CABAC entropy coding is used, the only errors that can be detected by the H.264

decompressor are semantic errors [4].

The Detection Bit (DB) is a term used to refer to the bit at which the semantic error is

detected. The actual location of the bit error(s) is between the Start of Slice (SOS) and the

DB. Note that when the first semantic error is detected in a slice, means this slice is
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known to be erroneous, the H.264 decompressor will stop checking for more semantic

errors in this slice. Therefore, each slice has at most one semantic error [4].

Generally, there are five common types of semantics error that can be detected in

H.264, which are well described in [4], [41]: Intra prediction mode errors, slice fragment

errors, slice run-on errors, macroblock run-on errors and illegal reference index errors.

These types of semantic errors can be classified into three different categories as shown

in Figure 3.4 below.

Semantics in H.264

Picture parameter set
semantics

Slice data
semantics

Illegal
Reference
Index Errors

MB layer
semantics

Slice fragment
error
Slice run-on
errors

• Intra prediction
mode errors

• MB-Overrrun errors

Figure 3.4: Types of semantic errors in H.264/AVC standard.

Intra Prediction Mode Errors

As discussed in Chapter 2, the H.264/AVC standard provides nine intra prediction

modes for each 4x4 luma block, four intra prediction modes for each 16x16 luma block,

and four intra prediction modes for each chroma component. An intra prediction mode

error occurs if the decompressor is instructed to use an unavailable intra prediction mode

[4]5 [41]. For instance, horizontal prediction mode is unusable on a block at the leftmost

of a slice since all pixels located at the left side of this block are not from the same slice

(see Figure 3.5). So, if a 4x4 luma block at the leftmost of a slice is instructed to use the

horizontal prediction mode, an intra prediction mode error is detected.
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Mode 1 - Horizontal

M

Figure 3.5: Horizontal prediction mode for 4x4 luma block: the left samples I, J, K, L are extrapolated

horizontally [I].

Slice Fragment Errors

The end_of_sliceJlag is a parameter in the H.264 decompressor that signals whether

the decompressor reaches the end of the current slice or not [8]. If end of sliceJlag

equals to 0, the decompressor is informed that another macroblock is following in the

slice. Otherwise, if endofjslicejlag equals to 1, it specifies that the End of Slice (EOS)

is reached and that no further macroblock follows. In this case, all remaining bits in the

slice, if exist, are ignored by the decompressor.

If the decompressor does not reach the last byte of the slice while the

end_of_sliceJlag equals to 1 , a slice fragment error is detected.

Slice Run-On Errors

In contrast to slice fragment errors, a slice run-on error is detected when the

decompressor reaches the start code of the next slice while the end'of"sliceJlag equals

to 0. In other words, the decompressor has already reached the end of the current slice

and moved on to the next slice while the end of sliceJlag still signals that another

macroblock is following in the current slice.
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Macroblock-Overrun Errors

This kind of error happens if the number of macroblocks decoded in the current slice

is not correct when the decompressor has already reached the EOS.

Illegal Reference Index Errors

In the H.264/AVC standard, previously decoded frames can be used as reference

frames and are organized into two lists: list 0 and list i [I]. While P-macroblocks are

predicted using one reference frame stored in list 0, B-macroblocks are predicted using

one or two reference frame(s) taken from list 0 and/or list 1. These two lists are not

always full. Therefore, during the inter prediction process to reconstruct a P-macroblock

or B-macroblock, if the decompressor is instructed to use an index to an empty element in

list 0 and/or list 1, an illegal reference index error is detected [4], [41].

Simulations in [4], [41] show that, nearly all detected errors in I-slices are intra

prediction mode errors, whereas the majority of detected errors in P-slices and B-slices

are macroblock-overrun errors.

3.3.2 The Operation of the SSV

The task of the SSV is to verify the semantic correctness of slice candidates in the

list, one by one from the most likely (the PSC) to the least likely. Semantic verification

involves a partial decoding of the bit stream where the semantic correctness is checked

but a fully decompressed video is not generated. The SSV is developed based on the

H.264 video codec software provided by [9].

During the semantic verification process, if there is a slice candidate that passes

verification, it is chosen as the BSC and the SSV stops verifying the remaining slice

candidates in the list. This makes sense since slice candidates are ranked in descending
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order of likelihood, therefore the first semantically correct slice candidate is the one

which is the most similar to the PSC.

In contrast, if the SSV has verified all slice candidates in the list and none of them

passes verification, the location where the semantic error is detected for each slice
candidate is used as a measure to choose the BSC. In particular, the slice candidate of

which DB is detected latest is chosen as the BSC. In other words, the slice candidate that

has the DB nearest to the EOS is chosen as the BSC. This is because, if a DB is detected

near the SOS, it is more likely that the true bit error locates near the SOS. Hence, it is

more likely that this bit error can propagate to the EOS and cause significant visual

quality degradation. In contrast, if a DB is detected near the EOS, it is more likely that

the true bit error can only propagate from that point to the EOS, and thus the damage

caused by the error propagation is less severe.

3.4 Error Detection Capability of the SSV
This section discusses the error detection capability of the SSV. In particular, if an

error occurs in a slice, how probable is that it is detected? The question whether or not the

location of an erroneous bit influences the probability that it is detected is also discussed

in this section.

3.4.1 Estimating the Error Detection Capability of the SSV
In this section, the capability of detecting errors of the SSV is investigated as what

has been done in [4], [41]. If a slice has a semantic error, there must be at least one error

locating somewhere between the SOS and the DB. However, if one or more errors

happen in a slice, it's not always the case that there is a semantic error detected in that
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slice. In other words, it is admitted that the SSV can not detect all errors occurring in a

slice. An experiment is set up to investigate the capability of detecting errors of the SSV.

The experiment is repeated as in [4], [41] by first inserting one error into the Data

Stream of the compressed video bit stream for each run. The noisy bit stream is then

verified for semantic errors. Observations are made to investigate whether the SSV is

able to detect the error or not. The probability of detecting errors of the SSV is calculated

as the number of times it detects a semantic error divided by the total number of runs of

the experiment.

Simulations are run for two video sequences: Football and Table-Tennis. Each

sequence is 4-second in length and has a frame size of 352x240. They are compressed

using Main profile, CABAC entropy coding with a Group of Picture (GOP) of length 10
and IPPPP structure.

Table 3.1 shows the simulation results for the two video sequences "Football" and

"Table-Tennis". It is observed that for both video sequences "Football" and "Table-

Tennis", the SSV can detect almost 99% of bit errors, and less than 1% of errors are

undetected.

Table 3.1 :The probability of undetected bit errors for two video sequences "Football" and "Table-
Tennis" when each simulation run contains one bit error

Video

Football

Table-Tennis

#Runs

1108947

1231188

Number of Undetected Errors

7097

8125

Probability of Undetected Errors

0.0064

0.0066

The experiment results imply that if the H.264 decompressor does not detect any

semantic errors in a slice, this slice has a high probability (over 99%) of not having any

bit errors [41].
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3.4.2 The Relation between the Bit Error's Location and the Error Detection

Capability of the SSV

This section further investigates the relation between the locations of bit errors in a

slice with the detection capability of the SSV. It is hypothesized that the locations of bits

in a slice influence the error detection capability of the SSV for this slice. Specifically, it

is believed that the missed error detection is more likely to happen if bit errors arise near

the EOS. In other words, it is believed that errors occurring close to the SOS are more

likely to be detected than errors occurring close to the EOS.

An experiment is repeated as in [4], [41] to verify this hypothesis. The two

compressed video sequences "Football" and "Table-Tennis" are used as the inputs for

this experiment. For each run, a bit error is inserted into each slice. If this bit error is not

detected by the SSV, the distance in bits between the bit error and the EOS is recorded.

At the end of the experiment, histograms showing the probability of undetected errors

versus the distance (in bits) from them to the EOS are plotted.

^?? Va AvV1 aWV /^/?/??? wW ?/?/^???
Distance ta the end of slice (in Ms}

Figure 3.6: The probability of undetected errors as a function to the EOS for video sequence
"Football".
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Figure 3.7: The probability of undetected errors as a function to the EOS for video sequence "Table-
Tennis".

Figure 3.6 and Figure 3.7 show the probability of undetected bit errors as a function
of the distance between those bit errors and the EOS for the two video sequences

"Football" and "Table-Tennis" respectively. The results show that, for both "Football"

and "Table-Tennis", the probability of not detecting an error increases precipitously near

the EOS. One of the reasons to explain this phenomenon is, in H.264/AVC standard,

some O's bits are padded at the end of each slice in order to make sure that slices are

byte-aligned (as discussed in Chapter 2). These redundant bits have no effect on either

the decompression process or the output visual quality and in case they are damaged by

noise, they cannot be detected by the SSV.

Observations made in [4], [41] showed that undetected bit errors do not cause any

degradation in terms of visual quality and PSNR measurement. This means that, in terms

of visual assessment, it is acceptable to display a video slice which is semantically correct

although it still contains undetected bit errors.
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3.5 Virtual Checking Method (VC)
As discussed in Section 3.3.2, the task of the SSV is to find the BSC for each slice.

The SSV in previous work [5], [20] verifies slice candidates in the list, one by one from

the most likely to the least likely until it finds the one that does not cause any semantic
error or until it verifies all slice candidates in the list.

In this section, a new checking method, namely Virtual Checking (VC) is proposed to

accelerate the work of the SSV. Using VC, slice candidates are not sequentially verified

as in [5], [20]. In fact, it is possible to eliminate some slice candidates without verifying

their semantics by relying on the results of previous slice candidates that failed semantic

verification. This can be illustrated with an example depicted by Figure 3.8.

SOS 6730 6900 EOS

Slic* Candidate , f ? . # Flip bi, pûsition
6730 ^6900 7000 X Detection bit position

Slice Candidate » „„„„f.· , X f ¦¦ ¦¦ ¦ m
2

Figure 3.8: An example of Virtual Checking method.

Two slice candidates (which are uniquely defined by their sets of flip-bits Fs) are to

be verified for semantic errors. Slice Candidate 1 flips the bit at position 6730. After

attempting verification, a DB is detected at 6900. Slice Candidate 2 flips two bits at 6730
and 7000. One can see that the two candidates are identical from the SOS to the DB.

Hence, it is not necessary to attempt to verify the semantic correctness of Slice Candidate

2. This is because it is known a-priori that Slice Candidate 2 will fail the semantic

verification in exactly the same way as Slice Candidate 1 , i.e. the DB of Slice Candidate

2 would be at 6900.
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In summary, VC uses semantic verification results of previous slice candidates that

failed verification to investigate the semantic correctness of the current slice candidate

without running the verification. Specifically, whenever a slice candidate to be verified is

identical to a previously verified (and failed) slice candidate, up to the DB of that

previously verified slice candidate then it is known that the current slice candidate will

fail the semantic verification in exactly the same way. This slice candidate is said to be

virtually checked.

VC can be used to speed up the work of the SSV while yielding the same

performance. In other words, when VC is used, the number of slice candidates actually

verified is in general reduced while the BSC chosen for each slice is the same as the case

when VC is not used. This is called the Fast Search (IJSCD-VC-FS) scheme.

Alternatively, VC can achieve better performance while keeping almost the same

complexity. This is because with the same number of slice candidates actually tested by

the SSV (300 slice candidates, for example), the number virtually checked can be much

larger (one should also note that checking semantics for a slice candidate takes much

more time than generating it). Thus, the probability of finding the BSCs which are

semantically correct is higher. This is called the Performance Improvement (IJSCD-VC-

PI) scheme. Denote N MAXthe maximum number of slice candidates generated for each

slice when VC is used. Then the SSV using VC can virtually check up to N MAX slice

candidates to find the BSC for each slice. For the simulation, N MAX is empirically chosen.
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3.6 Modifier

After the SSV is completed, information about the BSC as well as the soft value of

each bit is passed to the Modifier. The IJSCD-VC scheme follows the Modifier proposed

in [5] to modify the soft value of bit uk (where k is the time index) in the bit stream

u = (ul,u2,...,uk,...,uN)e [0,1]* according to its hard value in the BSC as follows:

LXuk\y[n) = a.L(uk\y[n) + ß (3.24)
Here> ylj]=(yuJ^2,r-^N,.r-y2N-iJ^2Nj)^^2N is the received noisy bit sequence

at the jth iteration. L(uk\y{J]) is the soft value of bit uk obtained after the channel

decoding at the jth iteration, defined by Equation 3.2. L\uk \y[n) is the modified version

of L(uk I y, ,) . The values of the two modification parameters a and ß are chosen

empirically (see Table 3.2) taking into account three conditions: whether the bit is flipped,

whether the BSC passes verification, the sign of the bit in question.

Table 3.2: Modification Parameter a anaß [5]

Type of Bit

Flip-Bit

Non-Flip-

Bit

Sign of Bit

+

+

BSC passes verification

a

0.1

0.1

ß

BSC fails verification

a ß

2.5

-2.5

The modified soft values of the bit stream is interleaved and fed back into the channel

decoder for the next iteration as in [5].
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3.7 Performance Metrics

As discusseci in Chapter 1, PSNR and BER are the two metrics used to evaluate the

performance of the proposed schemes. Also, at each channel SNR value, the simulation is

run several times and with the average being taken. To investigate the accuracy of the

averaged values, the Chebyshev's upper bound and lower bound are plotted. At each
channel SNR value, denote:

? M: the number of run of simulations

? X1 : the PSNR value obtained at the i'h run

? X : the averaged PSNR value (obtained after M runs)

The averaged PSNR value is calculated by:

x=—Y^ (325)

Since Xx , X2 .., XM represent a random sample of size M, the sample standard

deviation is calculated as [42]:

*?-^S«(*.-*)' (3'26)
The standard deviation of random variable X , denoted S is calculated as [42]:

Á

S_=-% (3.27)? 4m

According to Chebyshev's theorem [42], the probability that the estimated mean
value X will be a value within ? standard deviations of the mean is at least 1 - 1/z . With

54



the choice of 90% of confidence (this leads to the choice of ? = VÏÏÏ ), the Chebyshev's
upper bound and lower bound are given as follows:

? Chebyshev's upper bound: X + -JlOS-
?

? Chebyshev's lower bound: X- -JlOS-

These two bounds mean that, the averaged PSNR value X falls into the range

[ X - VfOS- ; X + VlO1S1 _ ] with the probability of at least 90%.
? ?

3.8 Simulation Results

To evaluate the performance of the proposed schemes (IJSCD-VC-FS and IJSCD-

VC-PI), two sets of simulations are performed, using the two video sequences "Football"

and "Table-Tennis".

3.8.1 Simulation Results for Video "Football"

The 4-second video sequence "Football" with frame size of 352x240 pixels is

encoded using Joint Model (JM) software version 9.6 [9]. This video is encoded at bit

rate 1Mbps and frame rate 30frames/second. It uses a GOP of length 15 with IBBPBBP

structure. Each slice in the video sequence contains one row of macroblocks. After

compression, without channel noise, the maximum luminance PSNR (Y-PSNR) of the

sequence is 28.97 dB (which is determined by the compression). The size of the

compressed bit stream is 4333752 bits.
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3.8.1.1 The Choice ofthe Number ofSlice Candidates Actually Verified Nsc

As discussed in Section 3.2.7.3, Nsc - the number of slice candidates actually verified

(without using VC) for each slice is chosen empirically. In this section, a simulation is

run to investigate the effect of changing Nsc . The IJSCD-VC-FS scheme is run for one

iteration with different values of Nsc : 50, 100, 300, 500. At each channel SNR value, the

simulation is run 1 0 times and with the average being taken. The simulation results are

also compared to the results obtained when the received bit stream is channel decoded

and decompressed.

NSC=500
Nsc=300
NSC=IOO
Nsc=50
Convolutmnal code

? 22

2 25
Channel SNR(dB)

Figure 3.9: Compare the performances with different values of Nsc : Y-PSNR vs. channel SNR for

video "Football".
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Figure 3.10: Compare the performances with different values of N50 : BER vs. channel SNR for video
"Football".

Figure 3.9 and 3.10 show the objective performance in terms of Y-PSNR and BER

respectively when different values of Nsc are used. With convolutional decoding only,

the saturated Y-PSNR is achieved at the channel SNR of 4.3dB. Meanwhile, using 50,

100, 300, 500 slice candidates, the saturated Y-PSNR is achieved at channel SNR of

2.7dB, 2.6dB, 2.5dB and 2.5 dB respectively. In other words, the gains in channel SNR

over convolutional decoding are 1.6dB, 1.7dB, 1.8dB and 1.8dB respectively.

One can see that there is improvement in terms of performance when increasing N80

from 50 to 300. However, almost no performance improvement is observed when

increasing Nso from 300 to 500. Hence, N30 is chosen to be 300.

3.8.1.2 Evaluate the Complexity Improvement ofIJSCD- VC-FS Scheme
In this section, the complexity improvement of IJSCD-VC-FS Scheme is investigated.

JVSC=300 slice candidates are generated for each slice. The SSV verifies the semantics of
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these slice candidates using VC and without using VC. The total number of slice

candidates that have been verified in the first iteration is measured. At each channel SNR

value, the simulation is run 10 times and with the average being taken.

Table 3.3: Complexity comparison: Non-VC vs FS Scheme for sequence "Football" with 10 runs of
simulation

EbNO

Number of candidates

verified without using

VC

Number of candidates

verified using VC

(FS Scheme)

Percentage of candidates

eliminated by VC

Mean
Standard

deviation

1.2 134526 46478 65.45% 0.29%

1.3 112545 37499 66.68% 0.30%

1.5 73611 22856 68.95% 0.33%

1.6 56577 17753 68.62% 0.42%

1.7 42077 13393 68.17% 0.45%

1.8 29818 9658 67.61% 0.49%

1.9 20816 6960 66.56% 0.62%

2.0 13904 4833 65.24% 0.64%

2.2 5726 2259 60.55% 0.9%

2.4 2373 1123 52.66% 1.3%

2.6 826 492 40.36% 3.3%

2.8 385 265 31% 5.5%

Table 3.3 shows the total number of slice candidates verified for video "Football" at

different channel SNR values in case VC is not used and in case it is used. One can see

that the higher the channel SNR, the smaller the total number of slice candidates verified.
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This is because the higher the channel SNR, the less the number of errors that each slice

has, thus the BSC for each slice is likely to be found sooner.

Number of slice candidates verified without using VC
Number oí slice candidates verified using VC (FS Scheme)

Channel SNR(dB)

Figure 3.11: Number of slice candidates verified using VC and without using VC for video "Football".

Figure 3.11 visualizes the data shown in Table 3.3. One can see that at low channel

SNR values (i.e. lower than 2.2dB), using VC does decrease the number of slice

candidates actually verified. However, at higher channel SNR values, the SSV using VC

and without using VC has approximately the same complexity. This is because, as

discussed above, at high channel SNR values, the SSV finds the BSC quickly and thus

the number of slice candidates verified is not significant.

Figure 3.12 compares the complexity of the SSV in terms of time (measured in

seconds) using and without using VC. It is observed that at low channel SNR values,

using VC does speed up the semantic verification process since the number of slice

candidates verified is significant. At high channel SNR values (i.e. at channel SNR higher

than 2dB), the number of slice candidates verified is smaller, and hence the amount of

time saved for the work of the SSV when using VC is also smaller.
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Figure 3.12: Time measured for the work of the SSV with and without using VC for video "Football".

3.8.1.3 Evaluate the Performance ofIJSCD- VC-PI Scheme
In this section, simulations are run to compare the performances of the following

schemes:

? The scheme proposed by Levine et.al. [5]. It is called the IJSCD-I scheme.

? The IJSCD-VC-PI scheme.

In the simulations, the number of slice candidates actually verified is JVSC =300. The

maximum number of slice candidates virtually checked is NMAX = 2500 . At each channel

SNR value, simulations are run 1 5 times and with the average being taken. Also, in order

to investigate the accuracy of the averaged values, the Chebyshev upper bound and lower

bound are plotted with 90% of confidence.

3. 8. 1. 3. 1 Simulation Resultsfor the IJSCD-I Scheme

Figure 3.13 and Figure 3.14 show the objective performance of the IJSCD-I scheme

in terms of PSNR and BER. Results are also compared to the results of the convolutional
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decoding scheme. One can see that after 4 iterations there is little improvement,

particularly in the high PSNR area of the curve. This suggests that further iterations may

not be useful.
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Figure 3.13: Y-PSNR vs. channel SNR for video "Football" of the IJSCD-I scheme.
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Figure 3.14: BER vs. channel SNR for video "Football" of the IJSCD-I scheme.

Figure 3.15 shows the Chebyshev upper bound and lower bound with 90% of

confidence for the Y-PSNR vs. channel SNR curve of the scheme at the 4th iteration.
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Figure 3.15: Chebyshev's upper bound and lower bound for Y-PSNR vs. channel SNR curves at the 4'

iteration of the IJSCD-I scheme and at the output of the channel decoder for video "Football".

3.8.1.3.2 Simulation Resultsfor the IJSCD- VC-PI Scheme
Figure 3.16 and 3.17 show the objective performance of the IJSCD-VC-PI scheme,

which is performed up to the fourth iteration since there's almost no improvement after 4

iterations. Results are also compared to the ones of the convolutional coding scheme.
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Figure 3.16: Y-PSNR vs. channel SNR for video "Football" of the IJSCD-VC-PI scheme.
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Figure 3.17: BER vs. channel SNR for video "Football" of the IJSCD-VC-PI scheme.

Figure 3.18 shows the Chebyshev upper bound and lower for the Y-PSNR vs. channel

SNR curve at the 4th iteration.
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Figure 3.18: Chebyshev upper bound and lower bound for Y-PSNR vs. channel SNR curves at the 4th

iteration of the IJSCD-VC-PI scheme and at the output of the channel decoder for video "Football".
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ih3.8.1.3.3 Compare Performance ofSchemes at the 4 iteration
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2 25
Channel SNRidB)

3.5

Figure 3.19: Comparison of IJSCD-I scheme and IJSCD-VC-PI scheme: PSNR vs. channel SNR obtained

at the 4th iteration for video "Football".

IJSCD-I scheme
USCD-VC scheme

1.5
Channel SNR(dB)

Figure 3.20: Comparison of IJSCD-I scheme and IJSCD-VC-PI scheme: BER vs. channel SNR obtained at

the 4th iteration for video "Football".

Figure 3.19 and 3.20 compare the performance of the two schemes at the 4th iteration.

With convolutional decoding, the maximum achievable PSNR is obtained at channel
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SNR of 4.3dB. The IJSCD-I scheme obtains that value at channel SNR of 2.2dB.

Meanwhile, the IJSCD-VC-PI scheme achieves that value at channel SNR of 2.OdB.

Thus, without bandwidth expansion, the IJSCD-VC-PI scheme can achieve 0.2dB of

channel SNR reduction over the IJSCD-I scheme, and up to 2.3dB of channel SNR

reduction over convolutional decoding.

In terms of computational complexity, generating 2500 slice candidates for every

slice in the video sequence takes about 24 seconds. Meanwhile, generating 300 slice

candidates for every slice in the same sequence takes about 4 seconds. Hence, the IJSCD-

VC-PI scheme keeps almost the same computational complexity when compared to the

IJSCD-I scheme proposed in [5].

For the reader's own assessment, the output video of the IJSCD-VC-PI scheme is

compared to the one of the IJSCD-I scheme and of the convolutional decoding. Frames

31 and 64 of the output videos of these schemes at channel SNR of 1.8dB are shown.~~ "v ·"," \G· ?G"" "

*¦ Iti« r
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Figure 3.21: Decompressed error-free frame 31 of video sequence "Football".
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Figure 3.22: Frame 31 of video sequence "Football" transmitted over an AWGN channel at channel

SNR of 1.8dB using convolutional decoding only.
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Figure 3.23: Frame 31 of video sequence "Football" decoded by the IJSCD-I scheme at channel SNR

of 1.8dB and at the 4th iteration.
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Figure 3.24: Frame 31 of video sequence "Football" decoded by the IJSCD-VC-PI scheme at channel

SNR of 1 .8dB and at the 4th iteration.
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Figure 3.25: Decompressed error-free frame 64 of video sequence "Football".
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Figure 3.26: Frame 64 of video sequence "Football" transmitted over an AWGN channel at channel

SNR of 1.8dB using convolutional decoding only.
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Figure 3.27: Frame 64 of video sequence "Football" decoded by the IJSCD-I scheme at channel SNR
of 1.8dB and at the 4th iteration.
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Figure 3.28: Frame 64 of video sequence "Football" decoded by the IJSCD-VC-PI scheme at channel
SNR of 1 .8dB and at the 4th iteration.

It is observed that the decompressed video using convolutional decoding only is

blocky and a large portion of each frame is damaged by black stripes. In contrast, the

decompressed video using the IJSCD-I scheme [5] is mostly viewable although some

frames still have visible errors. The visual quality of the decompressed video using

IJSCD-VC-PI scheme is further improved with less visible errors.

3.8.2 Simulation Results for Video "Table-Tennis"

The 1 1 0-frame video sequence "Table-Tennis" is encoded using the same parameters

used for "Football". After compression, the maximum luminance PSNR of the sequence

is 34.35 dB, which is determined by the compression. The size of the compressed bit

stream is 3438208 bits.
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3.8.2. 1 The Choice ofthe Number ofSlice Candidates Actually Verified N,sc

Similar to what has been done for "Football", in this section the choice of JVV forsc

video sequence "Table-Tennis" is determined by simulation. The IJSCD-VC-FS scheme

is run for one iteration with different values of Nsc : 50, 100, 300, 500. At each channel

SNR value, the simulation is run 1 0 times and with the average being taken.

Figure 3.29 and 3.30 show the objective performance in terms of Y-PSNR and BER

when different values of Nsc are used.

NSC=SOO
Nsc=300
NSC=IOO
Nsc=50
Convoíutional code

2.5 3
Channel SNR(dB)

Figure 3.29: Compare the performance with different values of Nsc : Y-PSNR vs. channel SNR for
video "Table-Tennis".
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Figure 3.30: Compare the performance with different values of Nsc : BER vs. channel SNR for video
"Table-Tennis".

The convolutional decoding scheme achieves the saturated Y-PSNR at channel SNR

of 4.8dB. Meanwhile, using 50, 100, 300, 500 slice candidates, the saturated Y-PSNR is

achieved at channel SNR of 3.IdB, 3.0dB, 2.8dB and 2.8dB respectively. In other words,

the gains in channel SNR over convolutional decoding are 1.7dB, 1.8dB, 2.OdB and

2.OdB respectively. One can see that almost no performance improvement is observed

when increasing Nsc from 300 to 500. Hence, Nx. is chosen to be 300.

3. 8. 2. 2 Evaluate the Complexity Improvement ofIJSCD- VC-FS Scheme
In this section, the complexity improvement of IJSCD-VC-FS Scheme is investigated

for "Table-Tennis". Nsc =300 slice candidates are generated for each slice. The SSV

verifies the semantics of these slice candidates using VC and without using VC. The total

number of slice candidates that have been verified in the first iteration is measured. At

each channel SNR value, the simulation is run 10 times and with the average being taken.
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Table 3.4: Complexity comparison: Non-VC vs FS Scheme for sequence "Table-Tennis" with 10 runs

of simulation

EbNO

Number of candidates

verified without using

VC

Number of candidates

verified using VC

(FS Scheme)

Percentage of candidates

eliminated by VC

Mean
Standard

deviation

1.5 55229 20826 62.29% 0.52%

1.6 44818 16210 63.83% 0.36%

1.7 35277 12269 65.22% 0.85%

1.9 19689 6456 67.21% 1.17%

2.0 14179 4693 66.9% 1.27%

2.2 6591 2240 66% 1.63%

2.4 2853 1132 60.3% 2.76%

2.6 1410 665 52.8% 2.87%

2.8 819 468 42.74% 2.4%

Table 3.4 shows the number of slice candidates verified by the SSV using VC and

without using VC. It also shows the percentage of slice candidates eliminated by VC.
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Figure 3.3 1 : Number of slice candidates verified using and without using VC for video "Table-

Tennis".

Figure 3.31 visualizes the data shown in Table 3.4. It is observed that the number of

slice candidates verified using VC is smaller than the one without using VC, particularly

at channel SNR lower than 2.2dB. This is because at low channel SNR, each slice has

more errors. Hence, the SSV has to verify many slice candidates to find the BSCs.

Therefore, using VC in this case can eliminate many slice candidates. At channel SNR

higher than 2.4dB, using VC and without using VC offer almost the same complexity

since the number of slice candidates verified is not significant.

Figure 3.32 compares the complexity of the SSV in terms of time (measured in

seconds) using VC and without using VC. As what was discussed for video "Football",

one can see that at low channel SNR values, using VC does speed up the semantic

verification process since the number of slice candidates verified is significant. When

channel SNR increases, the number of slice candidates verified is smaller, and hence the

amount of time saved for the work of the SSV using VC is also smaller.
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Figure 3.32: Time measured for the work of the SSV with and without using VC for video "Table-
tennis".

3. 8. 2. 3 Evaluate the Performance ofIJSCD- VC-PI Scheme
Similar to the simulations performed for "Football", in this section, simulation is run

to compare the performances of the IJSCD-I scheme and the IJSCD-VC-PI scheme. The

number of slice candidates actually verified is Nsc - 300 . The maximum number of slice

candidates virtually checked is NMAX = 2500 . At each channel SNR value, the simulation

is run 1 5 times and with the average being taken. Also, the Chebyshev upper bound and

lower bound with 90% of confidence are plotted.

3. 8. 2. 3. 1 Simulation Resultsfor the IJSCD-I Scheme
Figure 3.33 and Figure 3.34 show the objective performance of the IJSCD-I scheme

in terms of PSNR and BER. Results are also compared to the results of the convolutional

decoding scheme. The scheme is run with 4 iterations since no improvement is observed

after 4 iterations. The Chebyshev upper bound and lower bound is shown in Figure 3.35.
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Figure 3.33: Y-PSNR vs. channel SNR for video "Table-Tennis" of the IJSCD-I scheme.
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Figure 3.34: BER vs. channel SNR for video "Table-Tennis" of the IJSCD-I scheme.
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Figure 3.35: Chebyshev's upper bound and lower bound for Y-PSNR vs. channel SNR curves at the 4th
iteration of the IJSCD-I scheme and at the output of the channel decoder for video "Table-Tennis".

3.8.2.3.2 Simulation Resultsfor the IJSCD-VC-PI Scheme
Figure 3.36 and 3.37 show the objective performance (PSNR and BER) for the

IJSCD-VC-PI scheme. The Chebyshev upper bound and lower bound is shown in Figure

3.38.
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Figure 3.36: Y-PSNR vs. channel SNR for video "Table-Tennis" of the IJSCD-VC-PI scheme.
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Figure 3.37: BER vs. channel SNR for video "Table-Tennis" of the IJSCD-VC-Pl scheme.

- Chebyshev upper bound
- USCD using VC at iteration 4

••^-•' Chebyshev lower bound
¦¦-?-- Chebyshev upper bound
? Convotutional Decoding

·¦*?¦¦· Chebyshev tower bound

2.5 3
Channel SNR(dB)

Figure 3.38: Chebyshev's upper bound and lower bound for SNR vs. channel SNR curves at the 4th
iteration of the IJSCD-VC-PI scheme and at the output of the channel decoder for video "Table-Tennis".

Ih ...3.8.2.3.3 Compare Performance ofSchemes at the 4 iteration
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Figure 3.39: Comparison of IJSCD-I scheme and IJSCD-VC-PI scheme: PSNR vs. channel SNR obtained
at the 4th iteration for video "Table-Tennis".
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Figure 3.40: Comparison of IJSCD-I scheme and IJSCD-VC-PI scheme: BER vs. channel SNR obtained at
the 4th iteration for video "Table-Tennis".

Figure 3.39 and 3.40 compare the performance of the two schemes at the 4th iteration .
With convolutional decoding, the maximum achievable PSNR is obtained at channel

SNR of 4.8dB. The IJSCD-I scheme obtains that value at channel SNR of 2.5dB.
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Meanwhile, the IJSCD-VC-PI scheme achieves that value at the channel SNR of 2.3dB.

Thus, without bandwidth expansion, the IJSCD-VC-PI scheme can achieve 0.2dB of

channel SNR reduction over the IJSCD-I scheme (with almost the same computational

complexity), and up to 2. 5dB of channel SNR reduction over convolutional decoding.

For the reader's own assessment, frames 55 and 100 of the output videos of these

schemes at channel SNR of 1.7dB are shown below. One can see that there are

improvements in terms of picture quality when the IJSCD-VC-PI scheme is used in

comparison to the IJSCD-I scheme and convolutional decoding scheme.
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Figure 3.41: Decompressed error-free frame 55 of video sequence "Table-Tennis".
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Figure 3.42: Frame 55 of video sequence "Table-Tennis" transmitted over an AWGN channel at

channel SNR of 1 .7dB using convolutional decoding only.
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Figure 3.43: Frame 55 of video sequence "Table-Tennis" decoded by the IJSCD-I scheme at channel
th uSNR of 1.7dB and at the 4m iteration
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ure 3.44: Frame 55 of video sequence "Table-Tennis" decoded by the IJSCD-VC-PI scheme at

channel SNR of 1 JdB and at the 4th iteration.
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Figure 3.45: Decompressed error-free frame 100 of video sequence "Table-Tennis".
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Figure 3.46: Frame 100 of video sequence "Table-Tennis" transmitted over an AWGN channel at

1 .7dB channel SNR using convolutional decoding only.
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Figure 3.47: Frame 100 of video sequence "Table-Tennis" decoded by the IJSCD-I scheme at channel
SNR of 1 .7dB and at the 4th iteration.
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Figure 3.48: Frame 100 of video sequence "Table-Tennis" decoded by the IJSCD-VC-PI scheme at
channel SNR of 1 .7dB and at the 4th iteration.

3.9 Summary
This chapter presented the IJSCD-VC scheme in which both the redundancy

systematically added by the channel coding and the H.264 source semantic residual

redundancy in the compressed video are incorporated, in an iterative manner, to detect

and correct transmission errors. A new checking method, namely VC, was proposed. VC

uses information from slice candidates that failed semantic verification to check the

semantic correctness of the current slice candidate without running the verification.

Simulation results show that, using VC can reduce the computational complexity while

keeping the same performance (IJSCD-VC-FS scheme). Alternatively, IJSCD-VC-PI

scheme achieves a performance improvement over the IJSCD-I scheme proposed in [5]

while keeping almost the same computational complexity.
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Chapter 4
Iterative Joint Source-Channel Decoding Using Voting and
Virtual Checking Method (IJSCD-VVC)

Chapter 3 presented the IJSCD-VC scheme. A new checking method, namely VC,

was proposed, which uses information from slice candidates that failed semantic

verification to virtually check the current slice candidate. The Modifier used in that

scheme was proposed in [5], in which soft values of bits are modified according to their
hard values in the BSC.

Chapter 4 proposes another IJSCD scheme, called Iterative Joint Source-Channel

Decoding using Voting and Virtual Checking method (IJSCD-VVC). Like the last

chapter the work in this chapter will use slice candidates that failed semantic verification
but it will use them in the Modifier. Specifically, a new modification scheme is proposed

to modify soft values of bits before feeding them back into the channel decoder for the

next iteration by taking into account whether the BSC passes the verification or not. It is
believed that besides the BSC, slice candidates that failed semantic verification also

provide information about the correctness of bits. This new scheme is called the Voting
method.

Chapter 4 is organized as follows: An experiment examining the delay in detecting
errors is discussed in Section 4.1. Section 4.2 introduces the proposed IJSCD-VVC

scheme for H.264 video transmission. The Modifier module is discussed in Section 4.3.

84



The performance as well as the computational complexity of the proposed scheme is

evaluated in Section 4.4. The chapter concludes with a summary in Section 4.5.

4.1 Estimation of the Error Detection Delay in H.264
The modification method of soft values of bits proposed in this chapter takes into

account how each of the slice candidates that didn't pass verification failed. Therefore, in

this section, an experiment is performed to shed light on the question of when a bit error

occurs in a video slice, how long it takes to be detected. Due to the nature of the

compressed video, the location where a semantic error is detected by the SSV (i.e. the

DB) is not the same as the location where it actually occurs. The distance in bits between

the bit error location and the DB is called the Error Detection Delay (EDD). This section

repeats the experiment performed in [41] to estimate the probability density function of

EDD.

The experiment consists of inserting one bit error into a compressed video sequence

for each run and many runs are performed for every bit in the data stream of the video

sequence. In each run, if the source decoder can detect a semantic error, the value of the

observed EDD is recorded. At the end of the experiment, the histogram of EDD as well

as the CDF of EDD is plotted.

The experiment is performed with the two video sequences "Football" and "Table-

Tennis". Each sequence is 4-second in length and has a frame size of 352x240 pixels.

They are compressed using Main profile, CABAC entropy coding with a GOP length of

10 and GOP structure is IPPPP.
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4.1.1 Simulation Results for Video "Football"

Figure 4.1 shows the histogram of EDD for video "Football". It is observed that after

reaching a peak (within the first 20 bits), the curve drops down quickly in the range of

[300, 500] and then slowly decreases to zero.

"?»»"MWfrMfrMt^
200O 2500 3000
EDD in bits for football video se<juence

4000
___1_

4500

Figure 4. 1 : The histogram of EDD for video sequence "Football".
Cumulative density Function tor football video sequence

EDO m bits

Figure 4.2: The CDF of EDD for video sequence "Football".
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Figure 4.2 shows the CDF of EDD. The curve monotonically increases and has a knee

point at around 1600 bits.

4.1.2 Simulation Results for Video "Table-Tennis"

Figure 4.3 shows the histogram of EDD for video "Table-Tennis". It has the same

trends as what was observed for video "Football". Figure 4.4 shows the CDF of EDD for

both videos "Table-Tennis" and "Football". It is observed that the CDF of EDD for

"Table-Tennis" reaches the knee point faster than the CDF of EDD for "Football". This

implies that, it takes more time on average to detect errors in video "Football" than in

video "Table-Tennis".

"'¦¦-'¦ - ' '

2000 2500 3000
EDD in bits fot tennis '.ideo seouence

Figure 4.3: The histogram of EDD for video sequence "Table-Tennis".
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Figure 4.4: The CDF of EDD for video sequences "Table-Tennis" and "Football".

4.1.3 Implications of Simulation Results

Observing Figure 4.1 and 4.3, one can see that the curves showing the histogram of

EDD have long tails. This means that the distance (in bits) between the DB and the true

location of the bit error can vary greatly, from a short distance (within 5 bits for example)

to a very far distance (up to 2000 bits for example). Hence, it is difficult to locate the

exact location of a bit error based on the location of the DB.

However, these curves also show that in case the bit in question is in error, the

probability that it is detected sooner is larger than the probability that it is detected later.

In other words, a bit error is more likely to be detected after short delays than after long

delays. Observing the histogram of EDD for video sequence "Football" (Figure 4.1), for

instance, one can see the probability that a bit error is detected after 20 bits is about

2.8* 10"3, while the probability that it is detected after 500 bits is about 0.5* 10"3. From
this observation, a method to evaluate the correctness of flip-bits in slices at the source
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decoder is proposed, namely the Voting method, which is used in the IJSCD-VVC

scheme.

4.2 Iterative Joint Source-Channel Decoding Using Voting and Virtual
Checking (IJSCD-WC)

The proposed scheme, IJSCD-VVC, incorporates the redundancy systematically

added by the channel coding and the source semantic residual redundancy in the H.264

compressed video in an iterative manner to detect and correct transmission errors. The

block diagram of the IJSCD-VVC scheme is the same as the block diagram of the IJSCD-

VC scheme shown in Figure 3.1.

All the modules in the diagram except the proposed Modifier were discussed in

Chapter 3. The proposed Modifier is described in the following section.

4.3 The Proposed Modifier
The Modifier proposed in [5] uses the information from the BSC only. For example,

if the hard value of a bit in question is 1 in the BSC, the Modifier [5] modifies the soft

value of this bit in such a way that its a-posteriori probability of being 1 is increased.

In many cases, several slice candidates that failed semantic verification contain

information about the correctness of several bits in the slice. In light of this, a new

Modifier is proposed in this chapter. The proposed Modifier alters soft values of

information bits depending on whether or not the BSC passes semantic verification.

Sections below represent in detail the operation of the Modifier for two cases: when the

BSC passes semantic verification and when it fails semantic verification.
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4.3.1 Modification When the BSC Passes Semantic Verification

The experiment performed in Section 3.4.1 in Chapter 3 implies that if the H.264

decompressor does not detect any semantic errors in a slice, this slice has a high

probability (over 99%) of not having any bit errors. Thus when the BSC has passed

semantic verification (i.e. the H.264 decompressor does not detect any semantic errors in

the BSC), it is very likely that almost every bit in the BSC is correct. Given this

guideline, the soft value of the information bit uk (where k is the time index) is modified

according to its hard value in the BSC as follows:

L\uk\ym) = Huk\ym) + t (4.1)
Here L\uk |j[y])is the modified version of L(uk Iy1n)- Note that L(uk \y[n)is the soft

value of bit uk obtained from the output of the channel decoder at the jth iteration, defined
by Equation 3.2. The value of/ is determined empirically by taking into account the hard

value of bit uk in the BSC (see Table 4.1).

Table 4.1: The choice of ? for the modification of soft values of bits in case the BSC passes semantic

verification

Value of bit ut in the BSC

0

10

¦10

This operation increases soft values (or reliabilities) of bits corresponding to their
hard values in the BSC. One should note that for the case the BSC passes semantic

verification, the modification method proposed in [5] modifies soft values of flip-bits and

non-flip-bits differently (i.e. soft values of non-flip-bits are reinforced while soft values
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of flip-bits are scaled down and reversed). Meanwhile, the modification method proposed

in this chapter reinforces son values of flip-bits and non-flip-bits equally. Another

important difference is that the value of / is chosen to be larger. This makes the soft

values of bits more reliable so that they are decoded correctly in the next iteration.

However, the value of t can't be too large either to avoid numerical problems (i.e. soft

values of some bits obtained at the channel decoder reach infinity after three or four

iterations).

4.3.2 Modification When the BSC Fails Semantic Verification

4. 3. 2. 1 The General Idea ofthe Voting Method

In case that all slice candidates have failed semantic verification, a method, called the

Voting method, is proposed to modify soft values of information bits. Rather than using

the information from the BSC only (i.e. the slice candidate that failed semantic

verification with the latest DB), this method uses the semantic verification results of

several slice candidates that failed semantic verification to evaluate the correctness of

flip-bits in the slice. Specifically, each slice candidate gives a vote (either a vote 1 or a

vote 0) to each flip-bit in the slice by using the "Voting Rule". In this way, the a

posteriori probabilities of flip-bits can be estimated.

For example, slice candidate sm is about to vote for bit uk . As discussed in Section

4.1, the experiment showed that: a bit error is more likely to be detected after short delays

than after long delays. In light of this, if the distance in bits between bit Uk and the DB of

sm is far enough, it is likely that the error detected in sm is not caused by bit Uk, but by

another bit being in error. Consequently, the hard value of bit w* in sm (either 0 or 1) is
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more likely to be correct. Assuming that the hard value of bit Uk in sm is 1, then sm gives

bit Uk a vote 1 .

In contrast, if the distance between bit w¿ and the DB of sm is short enough, it is

likely that the error detected in sm is caused by bit w*. Consequently, the hard value of bit

Uk in sm is more likely to be wrong. Assuming that the hard value of bit Uk in sm is 1 ,

then sm gives bit Uk a vote 0.

4.3.2.2 The Voting Rule

This section discusses the Voting Rule that each slice candidate in the list (say slice

candidate sm,m = 0...NMAX) uses to vote for flip-bit Uk (where kis the time index).

Denote:

? dk0 : the DB of the PSC (note that the PSC flips no bit).

? dk , : the DB of the slice candidate that flips bit h* only.

? « = (M1, u2, ...,uk,. ..,uN) e [0,If : the uncorrupted input information bit
sequence, which is defined in Section 3.2.6 in Chapter 3.

? y\n = (y^yi,p->yN,p-y2N-xj>y2Nj) e M™ ¦ the received noisy bit sequence
at the jth iteration. Note that y[0] is the originally received noisy bit sequence.
y, ., has 2N elements since the channel code rate is Vi.

? NMAX : the maximum number of slice candidates tested for each slice

? Nk : the number of slice candidates in the current slice participating in voting

for bit uk . Note that Nk < NMAX
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? ????? e[0,ì],k = \..N,m = Ì..Nk : a vote for bit uk given by slice candidate sm

? Àk : the total number of votes uk=\

Define the two thresholds (including the upper threshold and the lower threshold) as

follows:

dk,uppsr=max(dk0,dki) (4.2)
And

dkJower=mWdk.O>dk.l) (4.3)
^k,upper anc* dkluwer are the two proposed thresholds used to set up the Voting Rule for

bit uk . Obviously, these two thresholds are the DBs detected when bit Uk is either 0 or 1

in the PSC. Note that these two thresholds are different for different flip-bits.

After the two thresholds are set up for bit uk , slice candidate sm gives a vote (either a

vote 1 or a vote 0) to bit Uk as follows.

Denote ukm e [0,1] the value of bit position k in sm (note that because the PSC is slice

candidate m = 0, uk0 is the value of bit position k in the PSC); ukm e [0,1] the inversed

value of bit position k in sm (i.e. if U10n = 0 then ïïkm - 1 and vice versa); DB1n the DB

detected in sm . The Voting Rule is described as follows:

? If DB1n > dk , this means that the DB of sm is far away from the location of

bit Uk . Hence, it is likely that uKm is correct. Consequently sm gives a vote

"* = Ukn, ¦

? If DB1n < dk lower , this means that the DB of sm is close to the location of bit uk.

Hence, it is likely that Ukm is incorrect. Consequently sm gives a vote uk = u~km .
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From this explanation, Table 4.2 generalizes the Voting Rule as follows.

Table 4.2: The Voting Rule that slice candidate Sm uses to vote for flip-bit uk

If

DB >d,m k , upper

( U17n is correct)

DBm<dkJmer

( U1011 is incorrect )

*km

The vote that slice candidate

S1n gives to bit position k

0

The zone between the two thresholds dk upper and dk ¡ower is called the null zone. One

should note that if the DB of slice candidate sm falls into this zone (this means that

dk,hWer < Dßm < ^k,upper )> Sm ls not allowed to vote for bit uk . This is because if DB1n falls

into this zone, it is very likely that there is the interaction caused by other flip-bit(s)

which are close to bit uk . In general, this interaction makes the vote that S1n gives to bit

uk unreliable.

One should also note that, in case dk = dklower , this means flipping uk does not

change the location where the DB is detected in the PSC and thus the correctness of uk

can not be evaluated by slice candidates that failed semantic verification. This happens

when the location of uk is after the DB of the PSC. In such the case, uk is said to not

satisfy the Voting Rule and thus uk is not voted.
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The example that follows illustrates how each slice candidate votes for each flip-bit.
Bit Erros
Flip-bits
Hard values of ¡lip-bits in the PSC
PSC) Slice candidate 0)
Slice candidate 1
Slice candidate 2
Slice candidate 3
Slice candidate 4
Slice candidate 5
Slice candidate 6
Slice candidate 7
Slice candidate 8
Slice candidate 9
Slice candidate 10
Slice candidate 11

10090: 10112 10139 10213
0: i" i 0

10372
0:

10649 10666
1 1

mm
10213

10112;

10112

10139

:J0139

10649.

10643

.10649
;10643

10139 : 10213
10090

AlWTZ

Figure 4.5: 12 slice candidates in video "Football" are semantically verified. Their flip-bits, their DBs

as well as the locations of bit errors are highlighted in yellow, green and pink respectively.

In this example, a slice in the video "Football" is considered. This slice has two bit

errors locating at 10213 and 10372 in the bit stream, which is highlighted in pink. 12 slice

candidates are generated for this slice. There are totally 7 flip-bits which are highlighted

in yellow (including 10090, 10112, 10139, 10213, 10372, 10649, 10666). Each slice

candidate is semantically verified and its DB is highlighted in green. The voting process

for some flip-bits is demonstrated as follows.

Vote for flip-bit 1 locating at 10090:

The DB of the PSC is 10285.

The DB of Slice candidate 10 (the one that flips flip-bit 1 only) is 10255.

Applying Equation 4.2 and 4.3, the two thresholds for flip-bit 1 are: J11 ,upper 10285

and d,1, low er 10225 . Table 4.3 demonstrates the voting result for flip-bit 1.
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Table 4.3: The Voting table made for flip-bit 1 located at 10090

Slice candidate DBm,(m = 0.M)
Original value of flip-

bit 1 in each candidate

Votes for flip-bit 1

^1-1(W = O.. 11)

PSC 10285 0 0

Slice candidate 1 10285

Slice candidate 2 10464

Slice candidate 3 10464

Slice candidate 4 10285

Slice candidate 5 10259 Not vote

Slice candidate 6 10223

Slice candidate 7 10259 Not vote

Slice candidate 8 10223

Slice candidate 9 10679

Slice candidate 10 10255

Slice candidate 1 1 10285

Note that Slice Candidates 5 and 7 have their DBs (at 10259) fall into the null zone

(i.e. [10225, 10285]), thus they are not allowed to vote for flip-bit 1.

In summary, there are 10 slice candidates voting for flip-bit 1. This bit receives 8

votes 0 and 2 votes 1 .

Vote for flip-bit 2 locating at 10112:

The DB of the PSC is 10285.

The DB of Slice candidate 6 (the one that flips flip-bit 2 only) is 10223.

Applying Equation 4.2 and 4.3, the two thresholds for flip-bit 2 are: d2upper = 10285

and d.2,lower 10223 . Table 4.4 demonstrates the voting result for flip-bit 2.
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Table 4.4: The Voting table made for flip-bit 2 located at 101 12

Slice candidate Z)fie,(i« = 0.. 11)
Original value of flip-

bit 2 in each candidate

Votes for flip-bit 2

?2„,(?? = 0.??)

PSC 10285 1 1

Slice candidate 1 10285

Slice candidate 2 10464

Slice candidate 3 10464

Slice candidate 4 10285

Slice candidate 5 10259 Not vote

Slice candidate 6 10223

Slice candidate 7 10259 Not vote

Slice candidate 8 10223

Slice candidate 9 10679

Slice candidate 10 10255 Not vote

Slice candidate 1 1 10285

In summary, there are 9 slice candidates vote for flip-bit 2. This bit receives 9 votes 1 .

Vote for flip-bit 4 locatine at 10213:

The DB of the PSC is 10285.

The DB of Slice candidate 2 (the candidate that flips flip-bit 4 only) is 10464.

Applying Equation 4.2 and 4.3, the two thresholds for flip-bit 4 are:d4uppi,r =10464

and J4 ltmer = 10285 . Table 4.5 demonstrates the voting result for flip-bit 4.

97



Table 4.5: The Voting table made for flip-bit 4 located at 10213

Slice candidate ßÄ., (ib = 0.. 11)
Original value of flip-

bit 4 in each candidate

Votes for flip-bit 4

?, Am = Q. .U)

PSC 10285 0

Slice candidate 1 10285

Slice candidate 2 10464

Slice candidate 3 10464

Slice candidate 4 10285

Slice candidate 5 10259

Slice candidate 6 10223

Slice candidate 7 10259

Slice candidate 8 10223

Slice candidate 9 10679

Slice candidate 10 10255

Slice candidate 1 1 10285

In summary, there are 12 slice candidates voting for flip-bit 4. It receives 12 votes 1.

Vote for flip-bits locating at 10372. 10649. 10666:

These three flip-bits are not voted by any slice candidates since they do not satisfy the

Voting Rule.

4. 3. 2. 3 The Source Intrinsic Information

After the voting process is completed, a new soft value, namely the source intrinsic

information, can be estimated for each flip-bit that has experienced the voting process as

follows.
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i
The total number of votes 1 for bit u. can be calculated as the sum of N1 votes $

consisting only of zeros and ones:

Denote P(uk =\\\) and P{uk=0\\) the a posteriori probabilities of bit uk ''f,

estimated at the Source Decoder. Specifically, P(uk -^\\) is the probability that bit uk

is 1 given that it receives Nk votes. Similarly, P(uk =0\Äk) is the probability that bit uk

is 0 given that it receives Nk votes. They can be derived as follows:

PiMk=A**)" A.
N. (4.5)

And

P(uk=0\\) = l- N, (4.6)

The source intrinsic information of bit w, obtained at the Source Decoder, denoted

L(uk \\), is the a posteriori log-likelihood ratio defined as follows:

L{uk\Xk) = \n 'P(Ii4=Il^
f K ^

In
P(uk=0\Ak)

Finally, the source intrinsic information of bit ukis:

Nt

1-A
V "kj

(4.7)

L{uk\\) = \n (4.8)

Note that when Äk=Nk(this means that P{uk -\\Xk)-\) oxXk= 0 (this means that

P(uk = 1 ¡Äk ) = 0 ), the source intrinsic information of bit uk reaches infinity or minus
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infinity, which causes numerical difficulties. In order to avoid this problem, P(uk =l|^)

is set to be 0.999999 if Xk = Nk . And P(uk = l|^)is set to be 0.000001 if \ = 0

4. 3. 2. 4 Combine Channel Soft Values with Source Intrinsic Information
After the channel decoder, each information bit has a soft value defined by Equation

3.2. After the source decoder, for the case when the BSC fails verification, several flip-

bits have new soft values defined by Equation 4.8.

Finally, the modified soft value of bit uk at the jth iteration, denoted L\uk \y[n,\), is
the a posteriori log-likelihood ratio defined as follows:

L\uk\ymi\) = \D. r P{uk=\\y[ñA)^ (4.9)P{uk=Q\y[fl,\)
Here, P(uk = l\y ,Äk) and P(uk = o\y[n,Àk) are the a posteriori probabilities of bit

uk that has experienced the channel decoding and the source decoding.

Using Bayes methodology, we can write:

P(uk =i Iy1n ?) = — ' -,, (4.10)
It is assumed that y[n,Ak are independent. Roughly speaking, this assumption is

rather fair since Ák mainly depends on the hard value of bit uk and the relative distance

between the location of uk and the DBs of slice candidates voting for uk . It is also

assumed that information bits are equally likely. Thus we can write:

%,?? =1) = ^mk =1WK=1) (4.11)
Similarly,
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P(uk=o\y[n,\) pcym,^k=o)^K=Q)

And

(4.12)

¿??,???"* =0) = P(yy]\uk=0)P(Äk\uk=0)
Combining (4.10), (4.1 1), (4.12) and (4.13), we have:

(4.13)

( -w\
L\uk\y{j]Ak) = \n

The Bayes rule is used once again:

P(y[n\uk=\)P{\\uk=\)
P(yin\uk= O)P(A11 \uk=0) (4.14)

P(yui\uk=l) =

PiK k = i) =

POr1n k = °) =

P(Ak\uk=0) =

PK=l|.v[7])P(,ym)
PK=I)

??=?|?)?(?)
PK=I)

PK =o|^])P(^m)
PK=O)

??=?µ,)?(4)
PK=O)

(4.15)

(4.16)

(4.17)

(4.18)

With the assumption that information bits are equally likely, we have

PK = 0) = PK = 1) = 1 / 2 . Hence, L \uk \y ,Ak) can be further derived as follows:

L\uk\y{j],kk) = \n PK=IIvn)PK=IK)^[J]

PK=olym)PK=oK)
(

In PK = 1 J'm)
PK=O ^1)

+ In >?=?|?)
PK=o|4)y (4.19)

thFinally, the modified soft value of bit uk at the j iteration for the case when the BSC

fails verification is:
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L\uk \yin,Äk) = L{uk \yu]) + L(uk \Äk) (4.20)
Here L(uk \y ) is the soft value of bit uk obtained from the output of the channel

decoder at the j,h iteration defined by Equation 3.2. L{uk\Xk)\s the source intrinsic

information of uk defined by Equation 4.8. Equation 4.20 implies that, the modified soft

value of bit uk for the case the BSC fails verification is the sum of the soft value of uk

obtained at the channel decoder and the source intrinsic information of uk obtained at the

source decoder.

The modified soft valued bit stream is interleaved. This creates a new information bit

stream, which is fed back into the channel decoder for the O+I)* iteration as in [5].

4. 3. 2. 5 The Choice ofSample Size

Sections 4.3.2.1 - 4.3.2.4 have discussed the Voting method. The advantage of the

Voting method is that the correctness of the bit in question is evaluated by several slice

candidates that experienced the semantic verification, not by the BSC only. However, not

all slice candidates in the list vote for each flip-bit since the vote is only valid if it

satisfies the Voting rule. Therefore, to make the voting result for each flip-bit reliable, the

number of votes it receives must be large enough. From this explanation, denote N, the

minimum number of slice candidates voting for a bit required to make the voting result

reliable. The value of N1 is estimated in this section.

Assume that votes which slice candidates give to bit uk are independent. This leads to

the fact that each vote is a Bernoulli trial and the voting process done for bit uk is a
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Bernoulli process. Consequently Xk is a Binomial random variable [42]. Given Äk is

available, the probability that bit uk is 1, denoted P(uk =l|^), can be estimated. In [42],

the reliability of the estimation of P(uk = l|/l/t)can be evaluated. In particular, it can be at

least (1-µ).100% confident that the error in estimating P(uk =?|/^)\??11 not exceed a

specified amount e when the minimum number of slice candidates voting for bit uk is

[42]:

N1=-^ (4.21)

Here, ? /2 is the value of the standard normal curve above which an area of µ 1 2 is

found.

In this thesis, e is chosen to be 0.1 and µ is chosen to be 0.95. Hence, N1 can be

estimated as follows:

N=^. =!^^ (4.22)' Ae2 4*0.12
An experiment is set up to investigate the effect of changing N1 . The IJSCD-VVC

scheme is run with the input video "Table-Tennis" at channel SNR of 1.6dB. The number

of slice candidates actually verified is 300. 2500 slice candidates are generated for each

slice for VC. The value of N1 varies from 1 to 2500. At each value of N1 , the simulation

is run 8 times and with the average being taken.

Figure 4.6 shows the performance of the IJSCD-VVC scheme with different values of

N1 at the 4th iteration. It is observed that changing N1 in the range from 1 to 1 1 00 does

not make significant change in terms of PSNR. In other words, the performance of the
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IJSCD-VVC scheme is not very sensitive to N1 in the range of [1, 1 100]. However, when

N1 is further increased, the PSNR of the output video starts to decrease. Specifically, the

PSNR of the output video in case N1 = 2500 is about 27.5dB, which is almost 3dB

smaller than the PSNR of the output video in case N1 =100. The reduction in PSNR is

therefore significant. This is because when N1 is set too high (i.e. higher than 48% of the

number of slice candidates generated for each slice for VC), this means that the voting

result for a bit is accepted only if at least 48% in the total of 2500 slice candidates votes

for it. This leads to the fact that the number of bits of which soft values are modified by

the Voting method is reduced significantly. Consequently, this makes the performance of

the scheme decrease.

œ 29

27.5h-

2500

Figure 4.6: Compare the performance of the IJSCD-VVC scheme with different values of N1 : Y-PSNR vs.

channel SNR for video "Table-Tennis" at channel SNR of 1 .6dB and at the 4th iteration.

In summary, the voting result of a bit is only accepted if the number of slice

candidates voting for it is equal or larger than N1 =100. In contrast, if the number of slice
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candidates voting for this bit is smaller than 100, the voting result is considered to be

unreliable and thus it is discarded.

4.4 Simulation Results

The three video sequences "Football", "Table-Tennis" and "Garden" are used in the

simulations. They are compressed using the same parameters that have been used in

Chapter 3. In all of the experiments performed, the number of slice candidates actually

verified is Nsc =300. The maximum number of slice candidates virtually checked is

Nmax =2500. At each channel SNR value, simulations are run 15 times and with the

average being taken. Also, in order to investigate the accuracy of the averaged values, the

Chebyshev upper bound and lower bound are plotted with 90% of confidence.

4.4.1 Performance Evaluation

4.4.1.1 Simulation Resultsfor Video "Football"

In this section, the performance of the proposed scheme IJSCD-VVC is evaluated

using the video sequence "Football" as the input video.

4.4.1.1.1 Simulation Resultsfor the Proposed Scheme IJSCD- WC

Figure 4.7 and Figure 4.8 show the objective performance in terms of PSNR and BER

for the IJSCD-VVC scheme. The scheme is performed up to the fourth iteration since

there's almost no improvement after 4 iterations. Figure 4.9 shows the Chebyshev upper

bound and lower bound with 90% of confidence for the Y-PSNR vs. channel SNR curve

at the 4th iteration.
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Figure 4.7: Y-PSNR vs. channel SNR for video "Football" of the IJSCD-VVC scheme.
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Figure 4.8: BER vs. channel SNR for video "Football" of the IJSCD-VVC scheme.
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Figure 4.9: Chebyshev's upper bound and lower bound for Y-PSNR vs. channel SNR curves at the 4'
iteration of the IJSCD-VVC scheme and at the output of the channel decoder for video "Football".

4.4.1.1.2 Compare Performance ofSchemes at the 4' iteration
In this section, simulations are run to compare the performances of the following

schemes at the 4th iteration:

? The scheme proposed by Levine et.al. in [5], which is called the IJSCD-I

scheme.

? The IJSCD-VC-PI scheme proposed in Chapter 3.

? The proposed IJSCD-VVC scheme: in case the BSC passes verification, soft

values of bits are modified using Equation 4.1. In case the BSC fails

verification, soft values of bits are modified using the Voting Method.

? The IJSCD-VVC-II scheme: in case the BSC passes verification, soft values

of bits are modified using Equation 3.24. In case the BSC fails verification,

soft values of bits are modified using the Voting Method.
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Figure 4.10 and Figure 4.1 1 compare the performance in terms of PSNR and BER of

the four schemes at iteration 4th. One can see that, the maximum achievable PSNR is
achieved at channel SNR of 2.2 dB when the IJSCD-I scheme is used. The IJSCD-VC-PI

scheme achieves that value at channel SNR of 2.OdB. Meanwhile, the IJSCD-VVC

scheme achieves that value at channel SNR of 1.8dB. With convolutional decoding, the

maximum achievable PSNR is obtained with a channel SNR of 4.3 dB or higher. In other

words, without bandwidth expansion, the IJSCD-VVC scheme can achieve 0.4dB of

channel SNR reduction over the IJSCD-I scheme, and up to 2.5dB of channel SNR

reduction over convolutional decoding.
30

28

26
USCD-WC scheme
USCD-WC-I scheme
IJSCD-VC scheme24

m USCD-I scheme
Cc Convolutional Decoding
05 22
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S 20

18
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14

1
0.5 1.51

Channel SNR dB)

Figure 4.10: Comparison of IJSCD-I scheme, IJSCD-VC-PI scheme, IJSCD-VVC-II scheme and IJSCD-

VVC scheme: PSNR vs. channel SNR obtained at the 4th iteration for video "Football".
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Figure 4.1 1: Comparison of IJSCD-I scheme, IJSCD-VC-PI scheme, IJSCD-VVC-II scheme and IJSCD-

VVC scheme: BER vs. channel SNR obtained at the 4th iteration for video "Football".

4.4.1.1.3 Subjective Performancefor Video "Football"

For the reader's own assessment, the resulting decompressed videos of the three

schemes (IJSCD-I scheme, IJSCD-VC-PI scheme and IJSCD-VVC scheme) at the 4th
iteration and of the convolutional decoding only are compared. In particular, frames 4

and 41 of the output videos of these schemes at channel SNR of 1.5dB are shown. For

comparative purposes, the error-free frames are also presented. It is observed that the

decompressed video using convolutional decoding only is not viewable since a large

portion of each frame is damaged by black stripes and shifts. In contrast, the

decompressed video using the IJSCD-I scheme obtained at the 4l iteration is viewable

although there still remains some black stripes and some shifts. The qualit y of the

decompressed video using the IJSCD-VC-PI scheme at the 4th iteration is further
improved although there are still some visible errors. Meanwhile, the decompressed
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video using the IJSCD-VVC scheme obtained at the 4th iteration is the most viewable
since almost all black stripes are removed and video slice shifts are corrected.

Figures below show decompressed results at frame 4.

M/J-

Figure 4.12: Decompressed error-free frame 4 of video sequence "Football".

¦

Figure 4.13: Frame 4 of video sequence "Football" decoded using convolutional decoding only at

channel SNR of 1.5dB.
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Figure 4.14: Frame 4 of video sequence "Football" decoded by the IJSCD-I scheme at channel SNR of

1.5dB and at the 4* iteration.
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Figure 4.15: Frame 4 of video sequence "Football" decoded by the IJSCD-VC=PI scheme at channel SNR

of 1 .5dB and at the 4th iteration.
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Figure 4.16: Frame 4 of video sequence "Football" decoded by the IJSCD-VVC scheme at channel SNR of
1 .5dB and at the 4th iteration.

Figures below show decompressed results at frame 41 .
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Figure 4.17: Decompressed error-free frame 41 of video sequence "Football".
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Figure 4.18: Frame 41 of video sequence "Football" decoded using convolutional decoding only at

channel SNR of 1.5dB.
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Figure 4.19: Frame 41 of video sequence "Football" decoded by the USCD-I scheme at channel SNR of

1.5dB and at the 4th iteration.
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Figure 4.20: Frame 41 of video sequence "Football" decoded by the IJSCD-VC-PI scheme at channel SNR
of 1 .5dB and at the 4th iteration.
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Figure 4.21: Frame 41 of video sequence "Football" decoded by the IJSCD-VVC scheme at channel SNR
of 1.5dB and at the 4th iteration.
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4.4.1.2 Simulation resultsfor Video "Table-Tennis"

In this section, the performance of the proposed scheme IJSCD-VVC is evaluated

using the video sequence "Table-Tennis" as the input video.

4.4.1.2.1 Simulation Resultsfor the Proposed Scheme IJSCD- WC
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Corrvolutional Decoding
-V- USCD-WC Iteration 130

USCD-WC Iteration 2
JSCO-VVC Iteration 3
JSCD-WC Iteration 4
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Figure 4.22: Y-PSNR vs. channel SNR for video "Table-Tennis" of the IJSCD-VVC scheme.

10 1
Convolutional Decoding
IJSCD-VVC Iteration 1
USCD-WC Iteration 2
USCD-WC Iteration 3
JSCD-WC «eradon 410

10
r f

Ul ì
m

10

t

10 0 0.5 151
Channel SNR(dB)

Figure 4.23: BER vs. channel SNR for video "Table-Tennis" of the IJSCD-VVC scheme.
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Figure 4.24: Chebyshev's upper bound and lower bound for Y-PSNR vs. channel SNR curves at the 4th
iteration of the IJSCD-VVC scheme and at the output of the channel decoder for video "Table-Tennis".

Figure 4.22 and Figure 4.23 show the objective performance of the IJSCD-VVC

scheme in terms of PSNR and BER for video "Table-Tennis" with 4 iterations. Figure

4.24 shows the Chebyshev upper bound and lower bound for the Y-PSNR vs. channel

SNR curve of the scheme at the 4l iteration.

4.4.1.2.2 Compare Performance ofSchemes at the 4' iteration
Figure 4.25 and Figure 4.26 compare the performance in terms of PSNR and BER of

schemes at iteration 4th. One can see that, the maximum achievable PSNR is achieved at
channel SNR of 2.5 dB when the IJSCD-I scheme is used. The IJSCD-VC-PI scheme

achieves that value at channel SNR of 2.3dB. Meanwhile, the IJSCD-VVC scheme

achieves that value at channel SNR of 2.OdB. With convolutional decoding, the

maximum achievable PSNR is obtained with a channel SNR of 4.8dB or higher. In other

words, without bandwidth expansion, the IJSCD-VVC scheme can achieve 0.5dB of
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channel SNR reduction over the IJSCD-I scheme, and up to 2.8dB of channel SNR

reduction over convolutional decoding.

IJSCD-VVC scheme
IJSCD-WCJI scheme
IJSCD-VC scheme
IJSCD-I scheme
Convolutional Decoding

2.5 3
Channel SNR(dB)

Figure 4.25: Comparison of IJSCD-I scheme, IJSCD-VC-PI scheme, IJSCD-VVC-II scheme and IJSCD-

VVC scheme: PSNR vs. channel SNR obtained at the 4th iteration for video "Table-Tennis".
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Figure 4.26: Comparison of IJSCD-I scheme, IJSCD-VC-PI scheme, IJSCD-VVC-II scheme and IJSCD-

VVC scheme: BER vs. channel SNR obtained at the 4* iteration for video "Table-Tennis".
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4.4.1.2.3 Subjective Performancefor Video "Table-Tennis "
For the reader's own assessment, the resulting decompressed videos of the three

schemes (IJSCD-I scheme, IJSCD-VC-PI scheme and IJSCD-VVC scheme) at the 4th
iteration and of the convolutional decoding only are compared. In particular, frames 4

and 42 of the output videos of these schemes at channel SNR of 1 .5dB are shown. For

comparative purposes, the error-free frames are also presented. As was observed for

"Football", there are obvious improvements in picture quality when the IJSCD-VVC

scheme is used in comparison to the convolutional decoding scheme, the IJSCD-I scheme

and the IJSCD-VC-PI scheme.

Figures below show decompressed results at frame 4.

¦P3

Figure 4.27: Decompressed error-free frame 4 of video sequence "Table-Tennis".
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Figure 4.28: Frame 4 of video sequence "Table-Tennnis" decoded using convolutional decoding only
at channel SNR of 1.5dB.

Figure 4.29: Frame 4 of video sequence "Table-Tennis" decoded by the IJSCD-I scheme at channel SNR of

1 .5dB and at the 4th iteration.
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Figure 4.30: Frame 4 of video sequence "Table-Tennis" decoded by the IJSCD-VC-PI scheme at channel

SNR of 1.5dB and at the 4th iteration.

«* *¦# *

Figure 4.31: Frame 4 of video sequence "Table-Tennnis" decoded by the IJSCD-VVC scheme at channel
SNR of 1.5dB and at the 4th iteration.

Figures below show decompressed results at frame 42.
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Figure 4.32: Decompressed error-free frame 42 of video sequence "Table-Tennis".
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Figure 4.33: Frame 42 of video sequence "Table-Tennnis" decoded using convolutional decoding only

at channel SNR of 1. 5dB.
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Figure 4.34: Frame 42 of video sequence "Table-Tennis" decoded by the IJSCD-I scheme at channel SNR

of 1.5dB and at the 4th iteration.
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Figure 4.35: Frame 42 of video sequence "Table-Tennis" decoded by the IJSCD-VC-PI scheme at channel
SNR of 1 .5dB and at the 4th iteration.
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Figure 4.36: Frame 42 of video sequence "Table-Tennnis" decoded by the IJSCD-VVC scheme at channel

SNR of 1 .5dB and at the 4th iteration.

4.4.1.3 Simulation Resultsfor Video "Garden"

In this section, the performance of the proposed scheme IJSCD-VVC and the IJSCD-I

scheme is compared. The input video is "Garden".

4.4.1.3.1 Simulation Resultsfor the IJSCD-I Scheme

Figure 4.37 and Figure 4.38 show the objective performance of the IJSCD-I scheme

in terms of PSNR and BER for video "Garden" with 3 iterations. Results are also

compared to the results of the convolutional coding scheme.
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Figure 4.37: Y-PSNR vs. channel SNR for video "Garden" of the IJSCD-I scheme.
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Figure 4.38: BER vs. channel SNR for video "Garden" of the IJSCD-I scheme.
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4.4.1.3.2 Simulation Resultsfor the Proposed Scheme IJSCD- WC
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Figure 4.39: Y-PSNR vs. channel SNR for video "Garden" of the IJSCD-VVC scheme.
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Figure 4.40: BER vs. channel SNR for video "Garden" of the IJSCD-VVC scheme.

Figure 4.39 and Figure 4.40 show the objective performance of the IJSCD-VVC

scheme in terms of PSNR and BER for video "Garden" with 4 iterations.
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4.4.1.3.3 Compare Performance ofthe Two Schemes at the 3 iteration
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Figure 4.41: Comparison of the IJSCD-I scheme and the IJSCD-VVC scheme: Y-PSNR vs. channel SNR
obtained at the 3th for video "Garden".
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Figure 4.42: Comparison of the IJSCD-I scheme and the IJSCD-VVC scheme: BER vs. channel SNR
obtained at the 3th for video "Garden".

Figure 4.41 and Figure 4.42 compare the performance of the two schemes in terms of
PSNR and BER at the 3th iteration. One can see that, the maximum achievable PSNR is
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achieved at channel SNR of 2.8 dB when the IJSCD-I scheme is used. Meanwhile, the

IJSCD-VVC scheme achieves that value at channel SNR of 2.4dB. With convolutional

decoding only, the maximum achievable PSNR is obtained at the channel SNR of 5.2dB

or higher. In other words, without bandwidth expansion, the IJSCD-VVC scheme can

achieve 0.4dB of channel SNR reduction over the IJSCD-I scheme, and up to 2.8dB of

channel SNR reduction over convolutional decoding.

4.4.2 Complexity Measurement

The complexity of the proposed scheme IJSCD-VVC is evaluated for one iteration

using the time ratio as a measure as in [4]. The time ratio of a module in the scheme

compares the run time of that module to the run time of the H.264 Decompressor. The

time ratio for one IJSCD iteration is the sum of the time ratios of the MAP Decoder, the

Deinterleaver, the Stream Merger, the SCG, the SSV, the Modifier and the Interleaver.

An experiment is performed to measure the time ratio for each of the modules in the

proposed scheme. Video sequence "Football" is used in the experiment, which is

compressed under the same conditions as in Section 4.4.1. The experiment is performed

by running the IJSCD-VVC scheme three times at several channel SNR values and with

the average being taken.

Simulation results show that, with the exception of the SSV, the complexity of all

other modules in the IJSCD-VVC scheme is not dependent on the channel SNR. On the

other hand, as discussed in Chapter 3, the complexity of the SSV is dependent on the

channel SNR. This is because the lower the channel SNR, the more the number of errors

that each slice has. Consequently, the number of slice candidates verified is in general
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larger at lower channel SNR. As a result, the complexity of the SSV is higher at lower

channel SNR values.

Table 4.6: Time ratio between each module in the IJSCD-VVC scheme and the H.264 Decompressor for

video "Football" at 2.0 dB channel SNR for the 1st iteration

Module

MAP Decoder

Deinterleaver

Stream Merger

SCG

SSV

Modifier

Interleaver

TOTAL

Time Ratio

0.87

0.0247

0.0004

0.1147

0.6723

0.084

0.0247

1.7908

% of Iteration Time

48.58%

1.38%

0.022%

6.4%

37.5%

4.7%

1.38%

100%

Table 4.6 shows the time ratio of each of the modules in the IJSCD-VVC scheme for

video "Football" at 2.OdB channel SNR for the first iteration. The percentage of the

iteration time that each module takes is also shown in Table 4.6. One can see that the

majority of run time is spent between the MAP decoder and the SSV (about 86% of the

run time). For the subsequent iterations, the complexity of the IJSCD-VVC scheme is

reduced. This is because for subsequent iterations, BSCs are likely to be found sooner

due to the reduction of the number of errors in the video. Consequently, the complexity

of the SSV is reduced. One should also note that on the last iteration, the complexity of

the H.264 Decompressor is taken into account (the time ratio of the H.264 Decompressor

is always 1) while the time ratio of the Modifier and Interleaver are excluded (they are

not run at the last iteration).
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4.5 Summary
This chapter presents the IJSCD-VVC scheme for the transmission of H.264

compressed video using CABAC entropy coding. A feedback loop is created between the

Source Decoder and the Channel Decoder, which allows iterative decoding to be

performed.

The objective and subjective performance results show that, without bandwidth

expansion, a single iteration of the proposed scheme IJSCD-VVC significantly

outperforms convolutional decoding only. Furthermore, the performance of the IJSCD-

VVC scheme is better than that of the IJSCD-I scheme at the same iteration. The

complexity of the proposed scheme is also measured for a single iteration.
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Chapter 5
Conclusion

5.1 Contributions

This thesis proposes two error resilient transmission schemes for H.264 compressed

videos using CABAC entropy coding. Slice candidates that failed semantic verification

are used in these schemes. And each scheme uses them as different ways.

First, Iterative Joint Source-Channel Decoding using Virtual Checking Method

(IJSCD-VC) is proposed [21], which combines source decoding and channel decoding in

an iterative manner. In this scheme, soft values of bits produced by the channel decoder

are used to generate a list of slice candidates for each slice, which are ranked in

descending order of likelihood. The SSV verifies semantics for these slice candidates to

choose the BSC for each slice. A new semantic checking method, called Virtual

Checking (VC), is proposed, which uses information of slice candidates that failed

semantic verification to virtually check the current slice candidate. Simulation results

show that, using VC can reduce the computational complexity while keeping the same

performance (IJSCD-VC-FS Scheme). Alternatively, using VC yields a performance

improvement over the scheme without using VC while keeping almost the same

computational complexity (IJSCD-VC-PI Scheme).

Second, Iterative Joint Source-Channel Decoding using Voting and Virtual Checking

Method (IJSCD-VVC) is proposed, in which a new Modifier is proposed to modify soft
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values of bits at the source decoder. In particular, when the BSC passes verification, the

proposed Modifier enlarges soft values of bits corresponding to their hard values in the
BSC. When all slice candidates fail verification, the proposed Modifier applies the

Voting method, in which several slice candidates that failed semantic verification follow

the set up Voting rule to give each flip-bit a vote. The voting results of flip-bits are used

to modify their soft values. After the modification, soft values are fed back to the channel
decoder for the next iteration. Simulation results showed that, for video sequence "Table-

Tennis" for instance, without bandwidth expansion, the IJSCD-VVC scheme can achieve

0.5dB of channel SNR reduction over the IJSCD-I scheme proposed in [5], and up to

2.8dB of channel SNR reduction over convolutional decoding.

5.2 Conclusions

According to the work in this thesis, the following conclusions can be drawn.

? The semantic correctness is a good measure to evaluate the correctness of a

slice for H.264 compressed video using CABAC entropy coding. Thus, it can

be applied at the source decoder to correct transmission errors.

? Many slice candidates (which are generated for a slice) fail semantic

verification in the same way (i.e. they have the same DB). Thus, the semantic

verification results of previously verified slice candidates can be used to check

the semantic correctness of the currently considered slice candidate. This

speeds up the semantic verification process.

? The information of the slice candidates that failed semantic verification can be

used to evaluate the correctness of several bits.
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5.3 Future Works

The channel code used in this thesis is a convolutional code. In the future, the IJSCD-

VVC scheme could be implemented using a turbo code, which is a more powerful

channel code that is able to further enhance error resilience of compressed video when

transmitted over noisy channels.

In the Voting Method, to modify the soft value of a bit, each slice candidate uses the

Voting Rule to give it a vote. The Voting Rule proposed in this thesis does not seriously
take into account the interaction between flip-bits in the slice. As mentioned in Chapter 4,

the interaction between flip-bits in a slice sometimes makes a vote unreliable. In the

future, the Voting Rule could be improved that handle the interaction of flip-bits in a

slice.

There are some other jobs that can be parts of the future work such as considering a

fading channel instead of an AWGN channel and using different compressed scheme

such as H.264/MPEG-4 SVC (Scalable Video Coding).
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