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ABSTRACT 
 
 

The Psychophysics of Reward: Empirical Studies and Modeling of Performance 
for Medial Forebrain Electrical Stimulation in the Rat 
 
 
Rebecca Brana Solomon, Ph.D. 
Concordia University, 2014 
 
 

Brain stimulation reward (BSR), the effect of electrical stimulation that animals 

seek to reinitiate, is a useful tool to investigate reward-seeking behaviour and its neural 

underpinnings. The experiments in this thesis pursue this approach by applying the 

"reward-mountain" model of performance for BSR. This model provides a framework for 

describing the computational processes that link the induced neural activity to reward-

seeking behaviour. The data to which the model is fit are obtained by measuring operant 

performance for BSR (time spent pressing a lever) as a function of subjective intensity of 

the stimulation (controlled by pulse frequency) and opportunity cost (work time required 

to earn a reward). Determining the stage of neural circuitry responsible for the 

behavioural impact of physiological manipulations is among the principal goals of this 

strategy. 

At the core of the model is the subject’s computation of “payoff” via the 

integration of reward intensity and costs.  An important initial stage, often overlooked in 

neuroscientific studies of decision-making, is the transformation of the objective into 

subjective variables. The formal relationship between these variables (termed 

psychophysical functions) is often non-linear: what is experienced is not necessarily a 

direct reflection of the external world. An analysis of these transformations is important 

for the full understanding of cost-benefit decision-making. A central goal of the 
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experiments in this thesis is to estimate the psychophysical functions of reward-seeking 

variables. 

Chapter 1 reviews the BSR literature and describes the reward-mountain model.  

The experiment described in Chapter 2 concerns the valuation of time: the translation of 

the experimenter-set opportunity cost (the objective price) into the equivalent subjective 

domain (subjective price). The experiment described in Chapter 3 estimates the 

frequency-response function of the directly stimulated neurons subserving the rewarding 

effect. This function translates the experimenter-set pulse frequency (the inducing 

stimulus) into the firing frequency of the neuron (the induced physiological response). 

Chapter 4 describes a proof-of-principle study: the ability of the reward-mountain 

paradigm to detect the effect of a lesion challenge on pursuit of BSR and to link this 

effect to one or more stages of processing. Chapter 5 concludes with a general discussion. 
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1.1. Brain stimulation reward and natural rewards 

Brain stimulation reward (BSR), the phenomenon that an animal will seek out 

trains of electrical brain stimulation, was an unexpected discovery made by scientists 

James Olds and Peter Milner in 1953. With the goal of studying avoidance behaviour 

using aversive effects of electrical brain stimulation, electrodes were aimed at the 

reticular activating system. Ironically, what they observed was the opposite of what they 

had initially set out to study:  the rat would go to locations in the testing apparatus where 

it had received the electrical stimulation. What they learned subsequently was that the 

electrode tip was situated, not in the reticular activation system, but instead in the septal 

area. In further tests, the experimenters demonstrated that rats lever-pressed for electrical 

stimulation, not only of the septal area, but also for areas such as the tegmentum, 

subthalamus, and cingulate gyrus of the cortex (Olds & Milner, 1954). This behaviour 

has been termed intracranial self-stimulation (ICSS); it reveals that electrical stimulation 

of particular brain areas can serve as a reinforcer. This exciting discovery led to optimism 

that perhaps motivated behaviours, reinforcement, and learning could be understood on a 

neural level.  In addition, studies conducted soon after the discovery of BSR 

demonstrated that dependence-inducing drugs exert some of their influence on ICSS 

(Wise, 1996). Thus, working out the chemical neuroanatomy of the neural circuitry 

subserving BSR could also shed light on the mechanisms of actions of specific drugs and 

issues significant to psychopharmacological research. 

A rat will vigorously press a lever or run down an alley to obtain rewarding 

electrical stimulation of many brain areas, to the point of exhaustion (Olds, 1958) but 

what exactly is the meaning or nature of this signal? Does the electrical signal mimic 
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some of those that are normally triggered by a natural occurring goal objects or does it 

exert its influence in some aberrant fashion?  Early studies suggested a relationship 

between natural goal objects and rewarding electrical brain stimulation (e.g., Balagura & 

Hoebel, 1967; Hoebel and Titelbaum, 1962; Hoebel & Thompson, 1969; Margules & 

Olds, 1962; Mogenson & Morgan, 1967; Routtenberg & Lindy, 1965; Hoebel, 1965; 

Hoebel, 1968; Hoebel, 1969). For instance, it has long been known that electrical 

stimulation of the lateral hypothalamus (LH) elicits eating; in accordance, lesions of this 

area cause complete termination of eating (Glickman & Schiff, 1967; Valenstein, Cox, & 

Kakolewski, 1970). It was later shown that the LH electrode that elicits feeding also 

supports robust self-stimulation (Hoebel & Teitelbaum, 1962; Margules & Olds, 1962) 

which suggests the possibility that the rewarding electrical brain stimulation is encoding 

some aspect of the food reward. Furthermore, studies have shown that the LH stimulation 

causes consummatory behaviours not only when water or food is present but also causes 

goal-directed responses when food or water is absent (Miller, 1957; Andersson, 1953).  In 

terms of sexual reward, the rats will self-stimulate for olfactory-midbrain pathway 

activation while often displaying sexual responses in response to this stimulation 

(Herberg, 1963). Thus, studies in this vein pointed to a structural and functional overlap 

of natural rewards and rewarding electrical brain stimulation.  

The early studies suggest that electrical brain stimulation may be representing 

certain elements of natural goal objects, yet there were no precise quantitative tests of this 

hypothesis.   Furthermore, it was not clear what aspects of the goal object were being 

represented.  The most compelling evidence that BSR is linked to natural rewards comes 

from a series of more recent, refined experiments using a forced-choice testing paradigm 
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that investigates the relationship between rewarding electrical brain stimulation and 

gustatory stimuli (Conover and Shizgal 1994a, 1994b; Conover, Woodside, & Shizgal, 

1994). The authors first point out obvious important differences between a natural food 

reward and the electrical reward.  For example, in an operant paradigm, unlike the 

electrical reward, a natural goal object can be seen, smelled, heard, and touched.  Also, 

for a food reward, the instrumental response precedes the consummatory response; there 

is a delay between them, and the two responses are typically performed in different 

locations within the test cage.  In contrast, to obtain rewarding stimulation, a single 

response is sufficient to both procure and consume the reward in an immediate manner. 

Additionally, rewarding electrical stimulation does not lead to the accumulation of 

substance in the gut, unlike food and water which lead to postingestive feedback signals 

that influence behaviour. Take together, the electrical signal seems to be mimicking some 

feature(s) of natural rewards, but not all. They reasoned that in order to accurately 

compare natural and electrical rewards, they must control for the differences as much as 

possible. The forced-choice paradigm described below offers such control. 

In Conover and Shizgal’s forced-choice preparations, the rat’s task is to choose 

between the electrical reward and the sucrose reward. The rat has a stimulation electrode 

aimed at the lateral hypothalamus (LH), an intra-oral catheter, and intragastric cannula 

attached to a drain tube such that the sucrose solution drips out from the gut thereby 

eliminating postingestive effects.  Touching an empty drinking spout triggers the delivery 

of a concentrated drop of sucrose solution to the intra-oral catheter via a connected pump.  

Touching a second spout delivers electrical brain stimulation. In both cases, a single 

response is sufficient to procure and consume the reward.  At the end of a 2 minute trial, 
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the number and kind of each reward obtained was recorded. The “standard” sucrose 

reward was held at a fixed concentration across trials. The “alternate” reward was an 

electrical reward that varied in strength (number of pulses in a stimulation train) across 

trials. When the strength of the electrical stimulation was relatively low (the stimulation 

contained few pulses), the rat chose the sucrose reward almost exclusively.  However, 

when the strength of the stimulation train was increased, the rat reversed its preference, 

choosing the electrical reward instead. Also, a key finding was that moderate strength 

stimulation trains that the rat had worked for previously without the option of the sucrose 

reward, when presented alongside the sucrose choice, were now foregone.  The 

experimenters’ interpretation was that if two different rewards can compete with each 

other, then the rewards must be subject to an evaluation on a common measurement scale 

and therefore must share a common property.  

A further experiment using the forced-choice paradigm (Conover & Shizgal, 

1994a) demonstrated that the rats could combine the value of both rewards, underscoring 

the notion that both rewards share a common characteristic. The standard reward that was 

held constant across trials was a compound consisting of both the sucrose reward and the 

electrical reward.  The alternate electrical reward was varied from trial to trial. As 

compared to the sucrose standard alone, the rat assigned a higher value to the compound 

electrical stimulation-sucrose reward: reward summation between electrical stimulation 

and sucrose occurred. For summation of two different rewards to occur, the two objects 

must share a common property. 
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Early studies of BSR focused a great deal on the internal state of the animal. For 

instance, at some brain sites such as the LH, a reduction in hunger can reduce the rate of 

self-stimulation (Hoebel, 1969; Hoebel, 1976). Consequently, it was suggested that 

because a reduction in hunger decreases responding for both a natural food reward and 

self-stimulation, then the electrical stimulation could be mimicking the effects of a food 

reward. However, this proposal is problematic because a reduction in responding does not 

unambiguously imply that the rewarding effects of the stimulation have been blunted; 

alternatively, response capacity may have been affected.  To address the role of 

physiological state and BSR, the forced-choice method outlined above was employed to 

test the effects of the rat’s physiological state on competition and summation of a 

gustatory reward and rewarding electrical stimulation (Conover, Shizgal, & Woodside, 

1994; Conover & Shizgal, 1994b).  Conover, Woodside and Shizgal (1994b) perturbed 

the rat’s sodium balance as the physiological manipulation and presented the rat with a 

saline reward and LH electrical stimulation.  They showed that inducing sodium 

depletion increased the value of saline without altering the value of the electrical 

stimulation.  A similar study by Conover, and Shizgal (1994b) modified the rat’s 

postingestive feedback such that the solution was allowed to accumulate in its gut via 

closure of the gastric cannula thereby degrading the sucrose value over time.  Using this 

preparation, in a summation paradigm, a compound reward consisting of sucrose and LH 

electrical stimulation was available while the electrical stimulation was presented without 

the sucrose. They showed that closing the gastric cannula decreased the choice of the 

compound reward across trials but not the choice of electrical stimulation alone:  

postingestive feedback preferentially affected the value of sucrose but not the electrical 

6



stimulation. Taken together, these studies suggest that the physiological state of the 

subject (in the context of sodium depletion and postingestive feedback) does not affect 

the evaluation of the electrical stimulation at the stimulation sites tested in those studies.  

In contrast, an important later study implied that this interpretation of 

physiological states and reward processing may depend on the nature of the physiological 

manipulation. Fulton, Woodside and Shizgal (2000) demonstrated that chronic food 

restriction and body weight loss can enhance the performance for BSR at some sites in 

the LH but not others. Importantly, this finding suggests that there may be at least two 

functionally different subpopulations of LH neurons, one of which is altered by long-term 

energy signals as opposed to short-term signals induced by acute manipulations in the 

forced-choice experiments. 

The forced-choice experiments showed that the effects of LH stimulation and 

sucrose can be evaluated on a common measurement scale and be combined 

agonistically. In addition, the studies demonstrated that the physiological state affected 

the evaluation of the natural rewards while it did not affect the subjective value of the 

electrical stimulation. On the other hand, Fulton and colleagues (2000) showed that long-

term energy signals had an effect on the subjective valuation of the rewarding electrical 

signal, but only for a subset of subjects. Taken together, what can be inferred concerning 

the nature of the rewarding electrical signal? According to one account, the neural signal 

subserving BSR is proposed to represent a natural goal object’s subjective reward 

magnitude or “reward intensity” (Shizgal, 1997; Shizgal, 2012) on a unidimensional 

scale, allowing for qualitatively different goals to be compared. In keeping with this 

framework, in a natural context, a subject assigns a reward intensity value to all 
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competing goal objects. For goal selection to occur, such as deciding whether to hunt, 

nest-build, or mate, there must be a way of representing the value of the competing goals 

that are qualitatively different from each other via a common currency.  When all of the 

competing resources can be evaluated on a common scale, comparisons can be made such 

that the most optimal goal or resource is selected. It is important to note that the 

assignment of subjective reward intensity to a goal object is different than the assignment 

of a subjective sensory value. For instance, in reward processing, a sucrose concentration 

is initially assigned a subjective sensory value of  “sweetness.” In contrast, the 

assignment of subjective reward intensity conveys the subjective values of the strength of 

how “rewarding” or “good” or “valuable” the goal object is on a general scale.  In line 

with this interpretation of goal selection, sensory processing is at an early stage of reward 

processing, influenced by the subject’s physiological state as shown in the forced-choice 

studies.  In a subsequent downstream stage, assignment of a reward intensity value to a 

goal object occurs. In addition, as revealed by Fulton and colleagues (2000), there may be 

some populations of neurons at this downstream stage of reward representation that are 

influenced by long-term physiological states. In summary, when a rat receives a 

rewarding train of electrical stimulation, the reward-processing stage that is being tapped 

into is at the level of unidimensional reward evaluation. There are other computations 

associated with goal selection such as the accompanying costs that influence the subject’s 

decisions; these will be discussed later on (Section 1.3). 

Given that the electrical signal mimics some properties of natural rewards, 

rewarding electrical stimulation is an appropriate reinforcer to use in experiments that 

investigate motivated behaviours. Although there are several differences between 
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responding for the electrical reward and natural reward as pointed out above, the 

advantage of the electrical reward is that it offers a direct way to probe reward-seeking 

behaviour at a single stage of reward processing. That is, the stage investigated is at a 

purely unidimensional, “reward” level without the confounding effects of response 

variables such as the handling of food or physiological feedback. As a result, a subject’s 

behaviour is more stable with electrical rewards than with natural rewards within 

experimental sessions lasting many hours over many months. Thus, the use of BSR 

allows us to collect large amounts of data which are necessary for scaling and 

psychophysical experiments. As well, the electrical stimulation is easily manipulated by 

adjusting the electrical stimulation parameters such as current which sets the effective 

radius of excitation and pulse frequency which sets the firing rate (Gallistel, Shizgal, & 

Yeomans, 1981). This ease of manipulation provides the experimenter with precise 

control over the intensity as well as the timing of the reward delivery. Also, at a well 

positioned electrode location, the strength of the rewarding effect is powerful and the rats 

will work to obtain it even when the response cost or work requirement is high; this 

potency permits the study of response costs (as will be described in Chapter 2).  Finally, 

the electrode can be aimed at particular brain sites of interest allowing for the investigator 

to better understand the relative contributions of brain areas to the complex circuitry 

underlying reward-seeking behaviours. 
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1.2. Physiological properties of the substrate for BSR 

Numerous studies have shown that discrete brain regions supporting intracranial 

self-stimulation are extensive throughout the brain (Routtenberg & Malsbury, 1969). 

These sites are distributed across the dienchaphalic and telencephalic structures (Olds, 

1963), but are also found in brain stem structures such as the nucleus of the solitary tract 

(Carter & Phillips, 1975) and the cerebellum (Corbett, Fox, & Milner, 1982). However, 

the most extensively studied self-stimulation sites are found in the medial forebrain 

bundle (MFB), particularly at the level of the lateral hypothalamus (LH) and posterior 

hypothalamus, as well as at the ventral tegmental area (VTA).  The MFB is defined as the 

central pathway linking the forebrain to the midbrain, extending from the olfactory 

tubercle to the midbrain tegmentum (Niewenhuys, Geeraedts, & Veening, 1982).  This 

pathway is composed of an ascending and descending heterogenous dense bundle of 50 

projection systems and components encompassing differing origin and termination sites 

through the forebrain (Nieuwenhuys, Geeraedts, & Veening 1982). Due to the complexity 

of this substrate, identifying the nature and origin of the neurons that are activated and are 

responsible for the rewarding effect of the electrical stimulation has been challenging. 

Although the field of neuroscience has experienced a substantial growth in sophisticated 

experimental techniques over the 60 years since the discovery of BSR, the exact identity 

of the directly stimulated neurons that give rise to the rewarding effect remains unknown. 

Nonetheless, advances have been made in identifying the properties of these neurons as 

well as possible sites of origin, narrowing down potential candidates. This identification 

has been a central goal in studies of brain stimulation reward.  Several approaches have 

been adopted, including: electrophysiological characterization using psychophysical 
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techniques, pharmacological studies, neuronal tracers, neurochemical recordings, lesions, 

and refined behavioural measurement strategies. The characteristics of the neurons and 

pertinent studies will be reviewed. 

 

1.2.1. Experimenter-controlled electrical stimulation parameters 

Before describing the properties of the substrate implicated in BSR, it is important 

to specify the parameters of the electrical pulse trains. The pulses are rectangular, 

cathodal, monophasic, constant-current, usually of short duration (0.1 ms). They are 

separated by interpulse intervals (also termed the period which is the reciprocal of the 

pulse frequency, in ms).  The pulse frequency is the number of pulses per second (Hz).  A 

train of electrical stimulation is defined as the length of time from the onset of the first 

pulse to the offset of the last pulse: typically a short train is employed (in the present 

experiments, 0.5 s).  Depending on the experiment, the various parameters can be 

manipulated.  

 

1.2.2.  The counter model  

The rate of firing is set by the pulse frequency (within limits); the number of 

stimulated neurons is roughly proportional to the current (this principle is developed in 

Chapter 3).  Gallistel (1978) and Gallistel, Shizgal, and Yeomans (1981) demonstrated 

that an x-fold increase in pulse frequency has the same effect on reward intensity as an x-

fold increase in current intensity. This finding implies that firing 10 neurons, 100 times 

produces the same rewarding effect as firing 100 neurons, 10 times. This demonstration 

led to the “counter model” which describes how the postsynaptic effects of the induced 
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neural firing is integrated over time and space. Specifically, the targets of the directly 

activated neurons act in a simple manner, as a spike counter, as if to count the aggregate 

number of spikes conveyed by the directly stimulated neurons within a given time 

window (Gallistel, Shizgal, & Yeomans, 1981). 

Thus, the rewarding effect is a function of aggregate spike rate. Following suit, 

increasing either the pulse frequency or the current increases the rewarding effect. The 

experiments presented below hold the current constant while varying the pulse frequency 

to vary the strength of the stimulation. (The experiment in Chapter 3 manipulates the 

current as well.) 

The formal descriptions of the rat’s processing of the reward signal in stages 

subsequent to the initial spatial and integration of the signal will be discussed at length in 

section 1.3. 

 

1.2.3. Electrophysiological properties of the substrate 

The identity of the directly stimulated (“first-stage”) reward-relevant neurons has 

been narrowed down by assessing their electrophysiological properties, such as their 

refractory period and conduction velocity. Electrical stimulation of the MFB activates 

multiple neural populations due to the heterogeneity of that particular structure, yet, many 

of the activated populations play no role in the rewarding effect. Therefore, a purely 

electrophysiological approach does not provide much insight into the properties of the 

reward-relevant neurons. Instead, by employing psychophysical techniques, the 

quantitative neurophysiological and anatomical properties of the neurons responsible for 

reward-seeking behaviour can be revealed (Deutch, 1964; Gallistel, 1975; Gallistel, 
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Shizgal, & Yeomans, 1981).  The neuronal properties obtained from the psychophysical 

techniques can then be compared to the identified neurons with known 

electrophysiological characteristics that are obtained with conventional electro-

physiological techniques. 

To estimate the physiological properties of the neurons using behavioural 

techniques, early studies (Deutsch, 1964) used changes in behavioural ouput (such as 

lever pressing) to infer changes in reward intensity. This methodology was eventually 

recognized as flawed (Yeomans, 1975; Gallistel, 1975) because the relationship between 

the reward intensity and performance is unknown and most likely non-linear. For 

instance, a given manipulation could cause a change in reward intensity yet might not be 

detected in changes in lever pressing rates, resulting in erroneous conclusions. Instead, 

subsequent studies used behavioural “trade-off” methodology which allows the 

experimenter to “see through” the behaviour such that the analysis is unconfounded by 

performance variables (Gallistel, Shizgal, & Yeomans, 1981). Two stimulus variables are 

used rather than one. The effectiveness of one stimulus variable is assessed not by its 

effect on behaviour but by its effect on the second variable. A fixed response level 

(behavioural ouput) is chosen as the behavioural index (such as half-maximal 

responding); setting a fixed behavioural index implies setting a fixed rewarding effect.  

The various combinations of two stimulation variables that produce a criterion level of 

responding reveal the physiological properties of the neurons that carry the reward signal.  

In particular, refractory periods, conduction velocity, and the continuity of 

reward-related fibers between two stimulation sites have been inferred by paired-pulse 

experiments that use behavioural trade-off methodology. To estimate recovery from 
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refractoriness, pulse pairs are delivered by a single electrode in a bundle of axons. The 

first pulse in each pair, referred to as the C (conditioning) pulse, evokes an action 

potential. The second pulse, referred to as the T (test) pulse, only produces an action 

potential if the C-T interval is longer than the refractory period of the axons. The number 

of action potentials doubles when the C-T interval is longer than the refractory period of 

the axons. In the behavioural version of the refractory C-T experiment, the trade-off 

stimuli are the C-T interval and number of C-T pulse pairs in a stimulation train. To 

maintain a given level of behaviour, different combinations of C-T intervals and number 

of pulse pairs within a stimulation train are assessed.  When the T-pulse falls within the 

absolute refractory period, the number of pulse pairs must be increased to compensate for 

the failure of the T-pulse to fire the axons. The estimated range of C-T intervals wherein 

the required number of pulse pairs decline indicates the recovery of the axons that are 

fired by the T-pulse, and thus the refractory periods of the elements of the activated 

substrate. The refractory periods have been shown to be 0.4 to 1.2 ms (Yeomans, 1975; 

Yeomans, 1979; Shizgal, Schindler, & Rompre, 1989; Murray & Shizgal, 1996). The 

finding that recovery occurs gradually (over a range of refractory period durations) and 

not abruptly reflects the notion that different reward-relevant neural populations are 

activated by the stimulation (Murray & Shizgal, 1994). That is, the stimulation activates 

fibers of different calibers with refractory periods of different durations. Hence, the 

contribution of these different neural types is reflected in the measured range of 

refractory periods. 

Furthermore, recovery from refractoriness also depends on the phases of the post- 

stimulation excitability cycle and the distance from the electrode to the activated neuron. 
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In the first post-stimulation recovery phase (the absolute refractory period) the neuron 

cannot fire, no matter how intense the T-pulse. In the second phase (the relative 

refractory period), the neuron can fire, but only if the intensity of the T-pulse is well 

above resting threshold. In the context of paired pulse behavioural trade-off experiments, 

the C-T estimates are the consequences of the excitability phases and how far an 

activated neuron is from the electrode. Namely, there are two areas of interest within the 

brain region fired by the C-pulse (the area closest to the electrode, the area further away 

from the electrode). The density of the current producing excitation declines in 

magnitude with distance from the electrode. (The inverse square law indicates that the 

current intensity is inversely proportional to the square of the distance from the tip.) The 

neurons closest to the electrode tip will be exposed to current densities considerably 

higher than their resting threshold. In this region, the T-pulse will produce firings as soon 

as the absolute refractory periods of the neurons are exceeded. However, neurons further 

away from the tip will fire again only after their relative refractory period has ended. 

Thus, the post-synpatic excitability of the neurons in both regions is reflected in the 

estimated refractory period duration range. 

The collision technique is used to infer whether the axons of reward-relevant 

neurons directly link two self-stimulation sites. Also, if two sites are linked, then the 

conduction velocity of the axon can be determined. In this method, two electrodes are 

used: the first electrode delivering the C-pulses, and second electrode delivering the T-

pulses. When stimulating an axon with one electrode, two action potentials are always 

evoked: one orthodromically (toward the terminals), and one antidromically (toward the 

cell body). If two electrodes placed on a longitudinal plane simultaneously stimulate the 
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same axon, then a total of four action potentials are evoked. However, the spikes 

traveling towards each other will collide and cancel each other out. In order for them not 

to collide, there must be a sufficient amount of time between the induction of the C and T 

pulse so that the first action potential induced (by the C pulse) and the refractory period 

propagating in its wake can pass beyond the second electrode (that induces the T pulse). 

Only if the C-T interval is greater than the sum of the inter-electrode conduction time and 

corresponding refractory period, will both spikes triggered by the C and T pulse reach the 

synaptic terminals.   The “collision interval” is the C-T interval at which the collision 

effect is just avoided and is the measure of conduction time between the two electrodes.  

In the behavioural version of this technique, the C-T interval is traded-off against the 

number of pulse pairs within a stimulation train. At short C-T intervals, action potentials 

lost due to collision must be replaced by an increase in the number of pulse pairs. As the 

C-T interval is increased, there is an abrupt decline in the required number of pulse pairs 

needed to maintain the behavioural criterion because the lost action potentials are 

recovering.  

If there is a synapse between two electrodes, a simple collision effect is not seen. 

However, evidence of a collision effect shows that the two electrodes are stimulating the 

same axon. Using this method several studies showed (Shizgal, Bielajew, Corbett, 

Skelton, & Yeomans, 1980; Bielajew & Shizgal, 1986; Shizgal & Murray, 1996) that 

reward relevant neurons course between the lateral hypothalamus (LH) and ventral 

tegmental area (VTA). Linkage of the reward relevant neurons has also been 

demonstrated from the lateral preoptic area (LPO is a neighbouring site anterior to the 

LH) to the lateral hypothalamus (LH) (Bielajew, Thrasher, & Fouriezos, 1987; Bielajew, 
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Konkle, Fouriezos, Boucher-Thrasher, Schindler, 2001) as well as between the posterior 

mesencephalon and the VTA (Boye & Rompre 1996), and from the LPO to the VTA 

(Bielajew, Bushnick, Konkle, & Schindler, 2000). 

Conduction velocity is determined by dividing the interelectrode difference (mm) 

by the sum of the collision interval and refractory period. In the LH-VTA pathway, 

conduction velocities are in the range of 1 to 8 m/s which suggest that the fibers 

responsible for the effect are myelinated, with diameters of 0.5 to 2 μm (Bielajew & 

Shizgal, 1982; Bielajew & Shizgal, 1986; Murray & Shizgal, 1996).   

The behavioural collision test was adapted to demonstrate the direction in which 

the LH-VTA neurons project  (Bielajew & Shizgal, 1986). Anodal hyperpolization block 

was employed to temporarily disrupt the conduction between a self-stimulation electrode 

and the terminals that transmit reward information to the next stage. If the anodal block is 

interposed between the soma and electrode, reward effectiveness will not be altered. 

However, if the anodal block is interposed between the electrode and terminals, reward 

effectiveness will be reduced. After determining linkage between two electrodes of the 

LH-VTA path, this hypothesis was tested by setting the LH electrode as the cathode and 

VTA electrode as the anode, and subsequently reversing the order. The direction of the 

pathway could be inferred by comparing the behavioural effectiveness of stimulation 

delivered with either polarity. The results are consistent with rostral to caudal conduction, 

from the LH to the VTA, which implies that at least some of the first-stage neurons 

project in this direction. 

To summarize, most of the recovery from refractoriness in the LH-VTA pathway 

occurs between 0.4 and 1.2 ms as revealed through behavioural C-T experiments.  
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Conduction velocities are in the range of 1 to 8 m/s which suggest fine myelinated fibers, 

0.5 to 2 μm in diameter; at least some of the first-stage neurons project in the rostral-

caudal direction. The experiment presented in Chapter 3 adds another physiological 

characteristic of the first-stage neurons using psychophysical techniques that employ 

trade-off methodology: the maximum firing rate of the neurons of the LH.   

These psychophysically derived characteristics have been compared with the 

electrophysiological characteristics of neurons observed via unit recordings.  Early 

studies demonstrated that refractory periods of the MFB derived from behaviourally 

derived psychophysical studies (Deutsch, 1964) matched with the electrophysiological 

properties of the thalamus, midbrain reticular formation, pontine tegmentum (Gallistel, 

Rolls, & Green, 1969; Rolls, 1971). However, given the finding that some of the reward-

relevant neurons project rostral-caudally (Bielajew & Shizgal, 1986), later studies shifted 

the focus to the forebrain structures. Indeed, the behaviourally psychophysical 

characteristics have been shown to overlap with the electrophysiological properties of 

many forebrain areas such as lateral septum, medial septum, diagonal band of Broca, bed 

nucleus of the stria terminalis, ventral pallidum, lateral and medial preoptic areas, 

magnocellular preopotic nucleus, olfactory tubercle, substantia inominata (sublenticular 

extended amygdala), interstitial nucleus of the stria medularis (Rompre & Shizgal, 1986; 

Shizgal, Schindler, & Rompre, 1989; Murray & Shizgal, 1996b). 

The behaviourally derived properties of the substrate provide crucial information 

not readily obtained from unit recordings on their own. However, the limitation to this 

approach is that even if a given neuronal type corresponds to the physiological and 

anatomical properties inferred from psychophysical data, there is no guarantee that this 
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proposed neuronal type constitutes the first-stage neurons. It is possible that a neuronal 

type simply resembles the first-stage neurons and plays no role in reward-processing. 

Thus, other complementary approaches are necessary for the assessment neurons as 

candidates for the directly stimulated stage. Nonetheless, on the basis of these properties, 

one can confidently rule out the kinds of neurons that do not match these characteristics 

such as the dopamine neurons which have figured prominently in the BSR and reward 

circuitry literature. The role of dopaminergic neurons is described in the next section.    

 

1.2.4. The role of dopamine in BSR 

An early hypothesis regarding the nature of the first-stage neurons is that the 

dopamine (DA) neurons are the directly activated neurons in the path and carry the 

reward signal (Wise, 1978; Stein, 1962; German & Bowden, 1974; Corbett & Wise, 

1980).  Initially, the correlation between the brain regions supporting self-stimulation and 

the location of the catecholamine pathways contributed significantly to this proposal 

(Ungerstedt, 1971; Corbet & Wise, 1980). In addition, pharmacological studies that have 

shown an involvement of DA in BSR have largely influenced this hypothesis. For 

instance, using the curve-shift paradigm, DA antagonists have been shown to decrease 

rewarding impact of the electrical stimulation (eg, Franklin, 1978; Gallistel, Boytim, 

Gomita, & Klebanoff, 1982) whereas DA agonists have been shown to increase its 

impact (eg, Crowe, 1970; Rompré & Bauco, 1990).  

The DA neurons that have been implicated in reward processes originate in the 

ventral tegmental area (VTA) and substantia nigra (SN) and project rostrally via the MFB 

to the nucleus accumbens (NAC) and medial prefrontal cortex (review, Ikemoto, 2010).  
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Two active states of DA have been described (Schultz, 2002): sustained low frequency 

firing tonic firing and intermittent high frequency bursting. Self-stimulation of the MFB 

causes increases in DA of the NAC in both these states (tonic release: Hernandez et al., 

2007; Hernandez & Hoebel, 1988; Nakahara, Ozaki, Miura, Miura, Nagatsu, 1989; You, 

Chen, & Wise, 2001; You, Tzschentke, Brodin & Wise, R. A. 1998; phasic release: 

Beyene, Carelli, Wightman, 2010; Cheer et al., 2007). The two different DA states have 

been suggested to play different roles in BSR. Initially, it was proposed that phasic DA 

may act as a learning signal, involved in the acquisition of the instrumental response. The 

hypothesis was based on the application of temporal difference learning to electro-

physiological data from Schultz’s group (Montague, Dayan, & Sejnowski, 1996; Schultz, 

Dayan, & Montague, 1997). In addition, this proposal was supported by the finding that 

the DA signal fell below the detection limit within a minute of the onset of self-

stimulation (Garris, Kilpatrick, Bunin, Michael, & Walker, 1999). However, a more 

recent voltammetry study showed that a DA phasic response was recorded in the NAC 

after every train when a 10 s post reward time-out was imposed (Cheer et al., 2007), thus 

complicating the initial learning phasic signal hypothesis.  The tonic state has been 

suggested to be implicated in maintaining the BSR instrumental response (Hernandez et 

al, 2006) and response vigour (Niv, Daw, & Dayan, 2007).  What functions these 

different DA states in reward processes play continues to be determined. 

Despite the pharmacological and neurochemical evidence, on the basis of 

physiological properties, it is highly unlikely that DA neurons compose the first-stage 

(Gallistel, Shizgal, & Yeomans, 1981). DA neurons are unmyelinated, have too slow 

conduction velocities (0.3 - 1.5 m/s) and too long refractory period periods (1.8 - 20 ms). 
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In contrast, the psychophysically derived properties of the reward-relevant neurons 

suggest myelination, have faster conduction velocities (1 – 8 m/sec), and shorter 

refractory periods (0.4 - 1.2 ms). As well, the direction of DA neurons along the MFB is 

caudal-rostral whereas the behaviourally derived data show that at least some of the 

reward-relevant neural projections are rostral-caudal.  

Alternate functions have been proposed for mesolimbic DA: it may invigorate 

(Salamone, Correa, Farrar, & Mingote, 2007; Niv et al., 2007) and enable animals to 

exert effort to execute the required instrumental task (Cousins & Salamone, 1994; 

Aberman & Salmone, 1999; Denk et al., 2005), initiate goal-directed responses (Nicola, 

2010) and increase the willingness to pay for the reward (Hernandez, Breton, Conover, & 

Shizgal, 2010).  However, the DA neurons’ role in transmitting a reward signal should 

not be discounted: although the DA neurons of the LH-VTA pathway are probably not 

the first-stage neurons, they may receive input from them and carry the reward signal in 

some capacity (Wise, 1980; Shizgal 1989; Moisan & Rompre, 1998).  This hypothesis is 

supported in recent studies using optogenetic techniques which enables the selective 

activation of a neuronal type using transgenetics and light gated channels.  Witten and 

colleagues (2011) showed that direct activation of DA VTA neurons was sufficient for 

the rats to acquire and sustain self-stimulation (a nosepoking response) in rats. It is 

difficult to argue against the proposed involvement of VTA DA at some stage in the 

reward neural circuitry given that a rat will self-stimulate for its activation.  
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1.2.5. Input to VTA dopamine neurons: proposed neural candidates 

Given that rewarding electrical stimulating may depend on transynaptic 

involvement of VTA dopamine neurons, what neurons may provide input to the VTA DA 

neurons? 

 

1.2.5.1. Cholinergic neurons of the pedunculopontine tegmental nucleus (PPTg) and 

lateral tegmental nucleus (LDTg) 

Numerous lines of evidence suggest that acetylcholine input into the DA neurons 

of the VTA may play an important role in ICSS. Older studies suggested a link between 

BSR and acetylcholine: acetylcholine or carbachol infused into the posterior 

hypothalamus or VTA increased bar pressing rates (Olds, Yuwiler, Olds, & Yun, 1964; 

Redgrave & Horrell, 1976) suggesting a rewarding effect for this neurotransmitter.  

Injection of atropine (a muscarinic blocker) into the VTA raised the ICSS threshold 

(reduced the rewarding impact) for LH rewarding electrical stimulation by over 300% 

(Yeomans, Kofman, & McFarlane, 1995). Also, the inhibition by oligonucleotides of the 

M5 muscarinic receptor mRNA in the VTA produced an increase in the threshold for 

ICSS responding (Yeomans, et al., 2000; Yeomans, Forster, & Blaha, 2001). In terms of 

anatomy, cholinergic neurons of the pedunculopontine tegmental nucleus (PPTg) and 

neighbouring lateraltegmental nucleus (LDTg) of the brainstem send ascending axons to 

the VTA and neighbouring substantia nigra. These cells make contact with the DA 

somata of the VTA (Woolf, 1991). 

Yeomans, Mathur, and Tampakeras (1993) assessed whether the PPTg neurons 

are responsible for the attenuating effects of muscarinic blockers on ICSS. They showed 
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that manipulating PPT neurons by autoreceptor activation or inactivation modulates 

ICSS: behavioural thresholds increased by over 400% with autoreceptor activation and 

decreased by 20-80% with deactivation. In a later study, extracellular acetylcholine was 

increased in the VTA during self-stimulation of the (perifornical) LH and infusion of 

atropine into the VTA via the microdialysis probe stopped self-stimulation (Rada, Mark, 

Yeomans, & Hoebel, 2000).  Taken together, they proposed that the (unidentified) 

descending myelinated axons activate PPTg neurons which in turn ascend to activate 

VTA dopamine neurons which then ascend to project to the NAC and other structures. It 

is also possible that the descending MFB fibers may not directly project to the PPTg 

neurons, but instead could go first to other sites such as the nearby parabrachial nucleus 

which is implicated in BSR (Routtenburg & Malsbury, 1969; Arvanitogiannis, Flores, & 

Shizgal, 1997).  

Another view regarding these cholinergic neurons from the PPTg (Wise 1998) is 

that given that these neurons project rostrally along the MFB (Woolf & Butcher, 1986) 

the first-stage neurons might actually be the PPTg and LDTg neurons that are activated 

antidromically. Electrical stimulation of the MFB could trigger antidromic action 

potentials that may activate collaterals that project to the VTA DA neurons. 

 

1.2.5.2. Glutamatergic input to the VTA DA neurons 

Several lines of evidence suggest that glutamatergic input to the VTA is 

implicated in reward processes. Glutamate agonists injected into the VTA increase the 

firing rate of VTA DA neurons (Chergui et al., 1993; Johnson, Seutin, & North, 1992) 

and cause DA release in the NAC (Kalivas, Duffy, & Barrow, 1989).  LH stimulation   
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causes extracellular increases of glutamate in the VTA along with simultaneous release of 

DA in the NAC (You, Chen, &Wise, 2001). Together, these studies suggest that 

glutamatergic activation may be activating the DA neurons of the VTA that ascend to the 

NAC. 

Anatomically, by combining retrograde tracer with in situ hybridization of 

vesicular glutamate transports, Geisler, Derst, Veh and Zahm 2007 demonstrated the 

glutamatergic afferents into the VTA along the MFB originates in many descending 

structures: prefrontal cortex, prelimbic cortex, lateral hypothalamic and preoptic areas, 

medial, ventral pallidum, medial preopotic area, medial septum/diagonal band complex, 

sublenticular extended amygdala, and lateral habenula. Ascending glutamatergic inputs 

were also revealed: periaqueductal and central gray, mesencephalic and pontine reticular 

formation, pedunculopontine, laterodorsal tegmental nuclei, parabrachial and cuneiform 

nuclei, and median raphe. 

Thus, there are many candidates that may provide glutamatergic input to the VTA 

and influence reward processing.  For example, the lateral habenula which supports ICSS 

(Sutherland & Nakajima, 1981) sends glutamaterigic inputs along with DA and GABA 

projections to the VTA (Omelchenko, Bell, & Sesack, 2009).  DA neurons of the VTA 

are inhibited by stimulation of the lateral habenula (Christophe, Leonzio, & Wilcox, 

1986), which suggests some sort of modulatory role for this region. 

Another link to glutamatergic transmission in ICSS comes from a recent 

optogenetic study (Kempadoo, Tourino, Cho, Magnani, Leinninger, Stuber, Zhang, 

Myers, Deisseroth, Lecea, Bonci, 2013). In this study, it was first directly demonstrated 

that the specific projection from the LH to VTA promotes ICSS of the VTA in the 
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mouse. This finding is particularly important because while previous studies had only 

suggested, on the basis of collision studies and tracer studies, that the LH-VTA pathway 

underlies ICSS, the specificity of the employed technique allowed a direct confirmation 

of this hypothesis.  This investigation focused on the neuropeptide neurotensin (NT) that 

has previously been shown to be found in one third of the LH neurons projecting to the 

VTA, and known to interact with DA neurons, such as by increasing their firing rate. 

Behaviourally, they showed that blocking a neurotensin receptor Nts1 in the VTA 

attenuated optogenetic self-stimulation of the LH-VTA pathway. Next they showed that 

blocking the NMDA receptor (glutamate receptor) in the VTA also attenuated 

optogenetic self-stimulation of this pathway. Given that both glutamate and neurotensin 

plays a role in ICSS, they investigated their relationship to each other and to VTA DA 

neurons. By whole cell patch-clamp, they demonstrated that Nts1 activation potentiated 

NMDA (N-methyl-D-aspartate) mediated-current in VTA DA neurons.  In summary, this 

study suggests that NT is an important LH peptide that directly mediates ICSS by 

enhancing glutamate transmission in VTA DA neurons. 

Taken together, it is possible that the directly stimulated neurons are 

glutamatergic neurons arising from various forebrain structures that project to VTA DA 

neurons. However, on the basis of these studies, we cannot rule out that the glumatergic 

inputs could be transynaptically activated by the first-stage neurons. 

 

1.2.6. A role for the central extended amygdala in BSR 

A recent proposal concerns the role of the central extended amygdala network of 

the basal forebrain in the subject’s valuation of reward intensity. Waracyznski (2006) 
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argues that this structure, particularly the central sublenticular extended amygdala 

(SLEAc), is anatomically in an ideal position to receive motivationally salient stimuli 

input from the basolateral amygdala and frontal cortex as well as from sensory input from 

the brainstem. The central extended amygdala in turn sends efferents to brainstem 

structures that are implicated in autonomic, hormonal viscermotor responses. It also 

sends efferents to the striatopallidum, the structure that has traditionally been linked to 

reward and goal-directed behaviours. These efferents and afferents course through the 

MFB. In terms of reward processing, it is proposed that the central extended amygdala 

may be more important than the nucleus accumbens (NAC). That is, the NAC may play 

in learning and directing responses towards the reward. In contrast the SLEAc’s role may 

be more direct in reward processing, such as the transformation of sensory input into 

survival utility and subsequent informing of response mechanisms. Several studies have 

demonstrated effects of pharmacological manipulations of the SLEAc on performance for 

BSR (Waraczynski, 2008; Waraczynski, Salaeme, & Farral, 2010; Waraczynski, 

Zwifelhofer, & Kuehn, 2012).  For instance GABA receptor agonists of the SLEAc 

increased BSR thresholds (Waraczynski, 2008). DA receptor manipulations of this area 

had only modest effects (Waraczynski, Salaeme, & Farral, 2010) whereas dopamine-

glutamate manipulations influenced BSR thresholds, but counter to the predicted 

direction (Waraczynski, Zwifelhofer, & Kuehn, 2012). The exact role of the SLEAc in 

BSR, whether it is the first-stage or downstream stage and its relationship to other brain 

areas and BSR are avenues to be investigated. 
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1.2.7. Lesion effects 

Another method used to assess the origin of the reward-relevant neurons are 

lesion techniques.  The destruction of a candidate brain area and subsequent assessment 

of behaviour under study (such as vigour of lever pressing) tests the necessity of the 

destroyed brain area for the relevant behaviour. The model of reward circuitry that has 

guided a large part of the lesions studies is that of the “descending path hypothesis” 

which proposes that the directly stimulated reward fibers of the medial forebrain bundle 

(MFB) originate in the basal forebrain and descend through the MFB. The descending 

path hypothesis is based on Bielajew and Shizgal’s (1986) finding that at least some of 

the reward-relevant neurons project in the rostral-caudal direction, and that 

electrophysiological properties of the neurons match those of the forebrain. It is also 

based on the proposal that VTA DA neurons are transynaptically activated by the 

electrical stimulation (Hernandez et al., 2010; Moisan & Rompré, 1998), and that many 

of the forebrain areas were activated following electrical stimulation (Flores, 

Arvanitogiannis, & Shizgal, 1997; Arvanitogiannis, Flores, & Shizgal, 1997; 

Arvanitogiannis, Flores, Pfaus, & Shizgal, 1996). Other lesions studies investigated the 

mid and hindbrain areas as well. 

Lesions of several brain areas have been shown to reduce the reward efficacy of 

the electrical stimulation. However, the effects of lesions to the forebrain areas have often 

been variable within and across studies, not long lasting or not substantial, thus casting 

doubt on the strength of the descending path hypothesis.  In some cases, the brain damage 

that was unique to the group of rats showing a behavioural effect was not evident.  In 

addition, there are methodological differences between studies such as the sort of lesion 
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employed as well as the electrical stimulation parameters, complicating comparisons 

across studies. Chapter 4 provides a detailed overview of the different brain areas tested 

and the magnitude and meaning of the effects. 

In terms of the forebrain, lesions to the anterior LH (Shizgal & Murray, 1996; 

Gallistel, Leon, Sim, Lim, & Waraczynski, 1996), sublenticular extended amygdala 

(Arvanitogiannis, Waraczynski, & Shizgal, 1996; Waraczynski, 2003), and lateral 

preoptic area (Arvanitogiannis, Waraczynski, & Shizgal, 1996) have demonstrated 

relatively large and long-lasting lesion effects on LH and VTA stimulation. In terms of 

more posterior areas, lesions to the lateral habenula of the midbrain have been 

particularly effective (Morissette & Boye, 2008). 

If a sole region was the origin of the first-stage neurons, then one would expect 

more dramatic lesion effects then what has characteristically been seen. These non-

substantial lesion effects may suggest a diffuse reward circuitry system in which several 

distinct regions give rise to the rewarding effect of electrical stimulation. A related 

perspective is a model that can account for small effects when a large proportion of 

directly stimulated substrate is destroyed (Arvanitogiannis, Waraczynski, & Shizgal, 

1996), further discussed in Chapter 4.  
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1.3. The measurement of intracranial self-stimulation  

Following the discovery that rats will work for electrical stimulation of various 

brain areas, it was evident that measurement strategies were needed to quantify the 

subjective strength of its rewarding effect. Assessing the subjective strength of the 

rewarding effect produced by the electrical stimulation before and subsequent to changes 

in stimulation parameters or physiological manipulations such as pharmacological agents 

or lesions is essential for understanding the underlying neural circuit. 

 

1.3.1. The 1-dimensional measurement approach 

To infer the subjective strength of the rewarding effect of the stimulation, early 

studies employed a 1-dimensional response-rate method that measures the vigour of 

responding (such as the rate of bar pressing) for a stimulation train of fixed parameters. 

The subjective strength of its rewarding effect was presumed to be reflected in the rate at 

which the subject performs the required task to attain the electrical stimulation (Olds, 

1958). If a drug caused rates of responding for the electrical stimulation reward to 

increase, then it was inferred that the drug increased the rewarding efficacy of the 

electrical stimulation. If rates of responding decreased, it was inferred that the drug 

attenuated the rewarding efficacy of electrical stimulation. Similarly, effects of lesions to 

particular brain areas on response rates were commonly used to infer the role of a given 

brain area (e.g., Olds & Olds, 1968; Boyd & Gardner, 1967; Keesey & Powley, 1973; 

Ward, 1960). The limitation to this method is that if the average response changed after a 

manipulation, one cannot be certain whether manipulation affected the rewarding 

efficacy of the stimulation or alternatively, the performance capacity of the subject 
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(Valenstein, 1964; Edmonds & Gallistel, 1974; Gallistel, Stellar, & Bubis, 1974). A 

further limitation of this response rate method is the dependence on one arbitrary chosen 

train of fixed stimulation parameters that may mask effects. For instance, if a train of 

fixed stimulation parameters that sustains maximal or near maximal responding is used, 

then drugs proposed to increase the rewarding effect of the electrical stimulation will not 

have the ability to further increase responding, thus resulting in faulty inferences. 

However, if the chosen fixed stimulation parameters sustain a low level of responding, 

then that same drug dose will produce a large increase in response rate.  

 

1.3.2.   The 2-dimensional measurement approach 

The 2-dimensional rate-frequency curve shift method (Edmonds and Gallistel, 

1974; Gallistel, Stellar, & Bubis, 1974; Miliaressis, Rompre, Laviolet, Philippe, 

Coulombe, 1986) was developed to differentiate between the subjective strength of the 

stimulation’s rewarding effect and the rat’s ability to perform the task. A further 

advantage is that this method does not make inferences based solely on the effects of one 

arbitrarily chosen train of fixed stimulation parameters. The rate-frequency curve plots 

performance as a function of the pulse frequency of a stimulation train while all other 

stimulation parameters such as current stays constant. The dependent performance 

variable is usually rate of bar pressing or as illustrated in Figure 1, “proportion of rewards 

harvested,” the proportion of rewards that the rat reaped within the amount of time 

available. A high proportion of rewards harvested implies that the rat is attending to the 

lever a great deal because the stimulation is very rewarding; a low proportion implies that  

 

30



1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0
  Baseline

Pr
op

or
tio

n 
of

 R
ew

ar
ds

 H
ar

ve
st

ed

Pulse Frequency (Hz)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Log10(Pulse Frequency)

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0
  Baseline

      reward effectiveness

      reward effectiveness

Pr
op

or
tio

n 
of

 R
ew

ar
ds

 H
ar

ve
st

ed

Pulse Frequency (Hz)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Log10(Pulse Frequency)

A

B

31



Figure 1. A. An example of a rate frequency curve.  As pulse frequency is 
increased, the proportion of rewards harvested is initially low but increases 
rapidly over a relatively small pulse frequency range and eventually  levels-off.  
The index of measurement is the pulse frequency required to maintain a given 
level of behaviour: in this example, the criterion level of behaviour is half-
maximal performance denoted by the dotted vertical line (referred to as FM50).  B. 
Lateral shifts of the curve from baseline.  If a drug potentiates the rewarding 
effect of the electrical stimulation, the curve will shift leftward from baseline (FM50 
is reduced) as denoted by the purple curve. Less electrical stimulation is 
required to maintain half-maximal performance because the rewarding efficacy 
of each train of electrical stimulation has been boosted by the drug. On the other 
hand, the curve will shift rightward if a drug attenuates the rewarding effect of the 
stimulation (FM50 is increased) as denoted by the pink curve. In this case, to 
maintain half-maximal performance, a higher pulse frequency train of electrical 
stimulation is needed relative to baseline because the rewarding efficacy of the 
stimulation has been attenuated by the drug.   
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the rat is not attending to the lever because the stimulation is not very rewarding.  Figure 

1A illustrates the rate frequency curve in semi-logarithmic space: as pulse frequency is 

increased, proportion of reward harvested is initially low but increases rapidly over a 

relatively small pulse frequency range and eventually levels-off.  

The index of measurement is the pulse frequency required to maintain a given 

level of behaviour, usually half-maximal performance. This index is referred to as the 

pulse frequency threshold or FM50.  The effect of a physiological manipulation is reflected 

in the lateral shifts of this curve (Figure 1B). If a drug potentiates the rewarding effect of 

the electrical stimulation, the curve will shift leftward from baseline (FM50 is reduced). 

Less electrical stimulation is required to maintain a given level of performance because 

the rewarding impact of each train of electrical stimulation has been boosted by the drug. 

On the other hand, the curve will shift rightward if a drug attenuates the rewarding effect 

of the stimulation (FM50 is increased). In this case, to maintain a given level of 

performance, a higher pulse frequency train of electrical stimulation is needed relative to 

baseline because the rewarding impact of the stimulation train has been attenuated by the 

drug. Manipulations affecting the rewarding efficacy of the electrical stimulation are said 

to affect the “sensitivity” of the reward substrate.  

Manipulations that affect the subject’s capacity to perform the task had been 

traditionally understood to affect the curve’s upper asymptote but not the pulse frequency 

threshold.  However, it was later shown that manipulating the response cost such as effort 

(energetic exertion) can indeed cause lateral shifts as well (Fouriezos, Bielajew & Pagatto 

1990; Frank & Williams 1985). Figure 2 shows the lateral shifts that occur when 

increasing or decreasing the cost. When the stimulation train is made more “expensive”  
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Figure 2.  Lateral shifts of the rate frequency curve occur when increasing or 
decreasing the cost. When the stimulation train is made more “expensive” (e.g., 
energetic costs are increased), to maintain a given level of responding, (such as 
half-maximal performance) the required pulse frequency is increased and the 
curve shifts rightward. When the stimulation is made “cheaper” (e.g., energetic 
costs are reduced) the pulse frequency required to maintain a given level is 
reduced and the curve shifts leftward. 
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energetic costs are increased), the curve shifts rightward. That is, to maintain a given 

level of responding, an increase in pulse frequency is required. When the stimulation is 

made “cheaper” (energetic costs are reduced), the curve shifts leftward; to maintain a 

given level or responding, a reduction in pulse frequency is required.  

The lateral shifts that occur due to the manipulation of the reward costs indicate 

that using this 2-dimensional measurement strategy to infer changes in reward intensity 

following a physiological manipulation is inherently flawed.  One cannot distinguish 

whether a physiological manipulation to the reward circuitry affects the intensity of the 

reward or another variable implicated in reward seeking, such as the perceived cost of the 

reward. Thus, indistinguishable curve-shifts on a 2-dimensional plot may result from 

physiological manipulations that affect different stages of processing. Figure 3 

demonstrates that decreasing the reward effectiveness of the stimulation can have the 

same effect on the rate frequency curve as increasing the cost of the stimulation: the two 

curves are superimposable.  Consequently, incorrect conclusions can result from the use 

of this 2-dimensional method.  

 

1.3.3. The 3-dimensional reward mountain model 

To eliminate this ambiguity, Arvanitogiannis and Shizgal (2008) and Hernandez 

and colleagues (2010) proposed a 3-dimensional model termed the “reward-mountain 

model” that measures performance as a function of both reward strength and cost.  The 

reward strength of the stimulation is experimenter-set by the pulse frequency (Hz). The 

experimenter-imposed cost, also referred to as the “price,” is an “opportunity cost”:  the 

time (in seconds) that is required for the subject to hold down the lever to reap the reward  
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Figure 3. Decreasing the reward effectiveness or increasing the cost of the 
stimulation can have identical effects on the displacement of the rate frequency 
curve.  The indistinguishable curve shifts imply that  this measurement technique 
is inherently flawed: one cannot distinguish whether a physiological manipulation 
to the reward circuitry affects the subjective intensity of the reward or another 
variable implicated in reward seeking, such as the perceived cost of the reward. 
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at the expense of other “opportunities” or activities it could be engaging in such as 

grooming or exploring in the operant box. The schedule of reinforcement used in the 

present studies is that of the “fixed cumulative handling time schedule” (FCHT) which 

tightly controls opportunity costs so as to preclude engagement in alternate activities 

while the subject works for the reward.  Specifically, this schedule requires that the 

subject hold down the lever for the cumulative required time (termed the price). For 

instance, for a 10 s price, the rat could hold-down the lever, release the lever for any 

given amount of time, and resume the hold-down task for the rest of the imposed time 

interval to obtain the reward.    

The dependent variable is time allocation, the amount of time that the rat holds 

down the lever (“working”) as a proportion of the total time available. Time allocation 

increases as the pulse frequency is increased or when the price is decreased (see Figure 6 

A). 

We distinguish between the “objective” price and “subjective” price. The 

objective price (OP) is the experimenter-set price while the subjective price (SP) is the 

rat’s interpretation of the objective price. The two variables may not necessarily be 

identical along the whole range. For now we assume that objective price equals the 

subjective price but will revisit this relationship in Section 1.4. 

Figure 4 shows again the ambiguity of the 2-dimensional curve shifts as in Figure 

3 but also demonstrates how these shifts are explained by the 3-dimensional 

representation and are distinguished clearly in that view. On the basis of the limited 

perspective of the 2-dimensional representations, one cannot ascertain the direction in 

which the corresponding 3-dimensional structure has moved. The green figure views the  
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Figure 4.  Displacements of the 3-dimensional reward mountain 
representation (left column) are ambiguous in the corresponding 2-
dimensional representation (right column). The green figure facing 
the pulse frequency axis perceives the world in 2 dimensions. The 
price axis is hidden to him and he sees the corresponding 3-
dimensional structure as a 2-dimensional silhouette, the left outline of 
the 3-dimensional structure. Panels b,d,f show the left outlines of the 
silhouettes perceived by the green figure.  In panel f, the dashed blue 
line  that is due to a shift of the 3-dimensional structure (panel e) 
along the price axis is superimposed on the solid pink outline of the 
mountain that has shifted along the pulse frequency  axis (panel c). 
The superimposed curves demonstrate that the 2-dimensional 
projections from both of these different effects are essentially 
identical, yet, a 3-dimensional representation can clearly distinguish 
between these effects. 
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world in only 2 dimensions. From his perspective (Figure 4a), facing the pulse frequency 

axis, the mountain is collapsed onto its 2-dimensional silhouette, in the plane defined by 

time allocation as a function of pulse frequency. The left outline of the silhouette of the 

reward mountain in grey (Figure 4a) is represented by the grey curve seen in Figure 4b of 

the 2-dimensional plot. If a manipulation such as a lesion caused a reduction in rewarding 

efficacy of the stimulation, a shift of the mountain structure along the pulse frequency 

axis (Figure 4c) occurs. This would be viewed in 2 dimensions as a rightward shift of the 

silhouette along the pulse frequency axis (Figure 4d). If the perceived cost of the 

stimulation were increased by some manipulation, from the 3-dimensional perspective, 

the mountain would shift along the price axis (Figure 4e). The critical consequence of 

this shift along the price axis and argument for the necessity of the 3-dimensional 

measurement strategy is that this shift drags the mountain such that the silhouette of the 

2-dimensionsal perspective of time allocation as a function of pulse frequency is also 

shifted rightward (Figure 4f).  

The 2-dimensional projections from both of these effects (on reward strength and 

cost) are essentially identical, yet, as shown in Figure 4, a 3-dimensional representation 

can clearly distinguish between them. The reward mountain eliminates this ambiguity. A 

further advantage of this measurement strategy is that shifts in the position of the 

mountain model can be related to different variables and stages of reward processing. 

This link can be made because the reward mountain model is based on the “minimal 

model,” the sequence of stages that ties the neural signal through a multistage circuitry 

(Gallistel, Shizgal, & Yeomans, 1981) to behaviour. The following section describes 
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these stages of reward processing and the associated displacements of the 3-dimensional 

reward mountain structure that may occur after perturbations to the described stages. 

 

1.3.4. The stages of the minimal model 

The minimal model depicted in Figure 5 describes the stages that link the 

electrical signal to the behavioural output of the subject. Briefly, the directly stimulated 

neurons (Figure 5A-1) provide input to an “integrator” (Figure 5A-2) that combines the 

effect of incoming action potentials over time (duration of the pulse train) and space (the 

number of neurons that are activated). The output of this integrator is the rat’s subjective 

evaluation of the neural signal produced by the integrator, termed “the subjective reward 

intensity.” This output is passed through a peak detector to measure the peak reward 

intensity of a given stimulation train (Figure 5A-3). Next, the rat makes subjective 

estimates of the associated costs of obtaining the reward (Figure 5A-4). Then, the subject 

weighs the peak subjective reward intensity of the electrical signal with the subjective 

costs of obtaining the reward to compute a “payoff” of the electrical stimulation; this 

computation is likened to the weighing of the benefits to costs of a good (Figure 5A-5). 

The subject also computes a payoff of the alternate activities it may engage in during the 

experiment when not working for the reward such as exploring or grooming (Figure 5A-

6). These two payoffs are compared; subsequently, the subject makes a choice between 

either allocating its time to performing the task to obtain the reward (“working”) or 

engaging in other activities. This choice is reflected in its behaviour and measured as 

time allocated to performing the task as a function of both reward strength and cost  
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Figure 5. Graphical representation and summary of the reward-mountain model. 
The action potentials produced by the electrical stimulation (1) are integrated 
temporally and spatially  and transformed into a signal representing subjective 
reward intensity (2). The peak reward intensity  (3) is combined in a scalar 
manner with subjective estimates of probability  and cost (4) so as to compute a 
payoff (UB) (5). The rat computes a payoff of “everything else” (UB) (6). It 
compares the payoff of BSR with the payoff of everything else and allocates its 
behaviour accordingly (7). B. Time allocation is represented as a function of 
reward strength (pulse frequency) and objective opportunity cost (objective 
price) of the stimulation. Perturbations acting prior to the output of the integrator 
shift the 3-dimensional structure along the pulse frequency axis. These shifts are 
measured as changes in parameter Fhm that locates the structure along the 
pulse-frequency axis. C.  Perturbations acting subsequently  to the output of the 
integrator displaces the structure along the price axis as measured by changes 
in parameter OPe that locates the structure along the price axis.
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(Figure 5A-7).  A more in depth and formal description of the stages of the model is 

outlined out below.   

 

1.3.4.1. The counter model 

A train of electrical stimulation excites the neurons surrounding the electrode tip, 

dubbed the first-stage neurons. The subsequent stage(s) of processing is termed the 

“integrator.” Within the integrator, the targets of the directly activated neurons have been 

shown to act in a simple manner, as a spike counter as if to count the aggregate number 

of spikes conveyed by the directly stimulated neurons within a given time window 

(Gallistel, Shizgal, & Yeomans, 1981). This counting is represented by Σ  in the 

illustration in Figure 5A.  

The current sets the effective radius of neural activation, consequently, the 

number of neurons activated. The experimenter-applied pulse frequency sets the spike 

rate. (It is assumed for the moment that each neuron fires once per induced pulse, this 

will be revisited in Chapter 3). Thus, the counter model specifies that holding the 

stimulation train duration constant, a high frequency, low current train will produce the 

same rewarding effects as a low frequency, high current train. For example, firing 10 

neurons, 100 times produces the same rewarding effect as firing 100 neurons, 10 times. 
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1.3.4.2 Reward intensity function: reward intensity as a function of pulse frequency 

and train duration 

The aggregate spike rate is transformed into a reward intensity by a 3-dimensional 

function.  Reward intensity grows non-linearly and approaches asymptote as the 

aggregate spike rate is increased or as the duration of the stimulation train is increased. 

Holding current constant, the spike rate can be expressed as the experimenter-set pulse 

frequency F. The reward intensity is a logistic function that initially grows steeply and 

levels-off (Leon & Gallistel, 1992; Simmons & Gallistel, 1994; Conover & Shizgal, 

2005; Sonnenschein, Conover, & Shizgal; 2003): 

 

RI(D,F) = RImax ×
Fg

Fg + [Fhm (D)]g  

 

Rearranging terms such that a relative reward intensity value is computed:  

 

RIrel (D,F) = Fg

Fg + [Fhm (D)]g  

 

where, 

RI = reward intensity 

RIrel = relative reward intensity, RI/RImax which varies from 0 to 1 

RImax = the maximal reward intensity 

D = duration of the stimulation train in seconds (held constant at 0.5 s in these 

experiments) 
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F = pulse frequency (Hz) 

Fhm = pulse frequency that produces half-maximal reward intensity (Hz) 

g = the intensity growth exponent, controls the steepness at which RIrel  grows 

 

Embedded in the reward intensity function described above is the hyperbolic 

strength duration function that measures Fhm(D) to account for the effect of train duration 

on reward intensity.  In the strength duration function, Fhm, the frequency required to 

drive reward intensity to its half-maximal value, is a rapidly declining rectangular 

hyperbolic function of train duration (Gallistel, 1978; Sonnenschein et al. 2003; 

Hernandez et al. 2010):  

 

Fhm (D) = FhmR
× (1+ C

D
)
 

 

where, 

FhmR
= the rheobase: the pulse frequency required to produce a reward of half-maximal 

intensity at an infinitely long duration, the horizontal asymptote 

C = the chronaxie; the train duration at which Fhm(D) is twice FhmR
, determines the 

curvature of the function 

 

Taken together, the subjective reward intensity as a function of pulse frequency is 

represented by the blue curve in Figure 5A-2: reward intensity as a function of spike rate 

grows then levels-off. No further increases in pulse frequency cause increases in 

subjective reward intensity. Also as represented by red curve in Figure 5A, the reward 
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intensity grows as a function of train duration (the duration of a stimulation train in 

seconds) and levels-off.  In other words, prolonging the duration of the stimulation train 

does not alter performance once the duration exceeds some critical value (Shizgal & 

Matthews, 1977; Gallistel, 1978, Sonnenschein et al., 2003).  

The stored value of reward intensity is assumed to reflect the peak reward 

intensity value. It is proposed that the output of the intensity-growth function is passed 

through a “peak detector” en route to memory such that the peak (or maximum subjective 

reward intensity) of a given train is stored (Gallistel, 1978; Sonnenschein, Conover, & 

Shizgal, 2003). This peak detector is represented by the vertical upward arrow in the 

Figure 5A-3.  The peak detector can be thought of as a running tab or gauge throughout 

the duration D of the stimulation train. At each point in time (t) during the duration of the 

train, a detector assesses the reward intensity magnitude. The peak reward intensity is the 

maximal reward intensity that has been detected by the end of the stimulation train. At 

the end of the stimulation train, this peak reward intensity (RIpeak) is recorded and stored 

in memory. This stage is expressed as:  

 

RIpeak (t, F)
0≤t≤D

= RI(D, F)  

 

where, 

RIpeak = peak reward intensity registered during the stimulation train 

D = the total duration of stimulation train in seconds 

t = the time during the stimulation train 
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Thus, in the above formulation, peak reward intensity (RIpeak) is a function of 

pulse frequency (F) and time (t) of the entire train duration D. The maximal reward 

intensity of a stimulation train of given pulse frequency F and train duration D is 

assessed.  

 

1.3.4.3. Subjective estimation of external values and computation of payoff 

After the properties of the electrical stimulation are “integrated” and the peak 

reward intensity is stored in memory, as described in the previous steps, the subjective 

reward intensity is then combined with “external” variables relating to the reward such as 

subjective estimates of subjective reward probability, effort cost (rate of exertion to meet 

a response requirement such as the number of bar presses or the amount of force required 

to hold down a lever) and opportunity cost. Thus, the rat makes the estimates of these 

external values, transforming the objective values into subjective ones (Figure 5A-4).  

On the basis of the matching law and its generalizations that specify that different 

dimensions of reinforcement are combined multiplicatively (Miller, 1976; Kileen, 1972, 

Baum & Rachlin, 1969; Gallistel & Leon, 1991; Neuringer, 1977; Rachling 1989), the 

stored reward intensity values are proposed to be combined with these “external” values 

in a scalar (multiplicative) fashion. 

This combination is named the “payoff” represented by UB, an index of how 

“worthwhile” it is to the rat to work for the electrical stimulation.  (This is represented in 

Figure 5A-5). Colloquially, we can describe the subject as computing the index of payoff 

as a ratio of benefits (the reward intensity of the electrical stimulation) to the costs of 

obtaining the electrical stimulation (the product of the effort and opportunity cost). 
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UB(p,P, RI peak ,ξ ) =
RI peak × p

(1+ξ )×OP
 

 

where, 

RIpeak = peak reward intensity registered during the stimulation train 

UB = net payoff of BSR 

p = subjective probability that BSR will be delivered once the work requirement has been 

satisfied 

OP = objective price, the opportunity cost in seconds set by the experimenter, assuming 

for now that the experimenter-set objective price equals the subjective price 

ξ = the subjective rate of exertion required to hold down the lever (kcal) 

 

(The addition of 1 in the denominator prevents the extreme growth of UB as ξ  becomes 

very small.) 

Next, the rat will evaluate the payoff deriving from activities other than the 

operant task that it can engage in such as resting, exploring, and grooming.  The payoff 

derived from “everything else” is represented by UE.   

 

1.3.4.4. Transformation of payoff into behaviour 

The rat will then compare the payoff derived from working for electrical 

stimulation to the payoff derived from everything else and allocate its time to these 

options accordingly. Therefore, the last stage is the translation of the comparison of 
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payoffs into behaviour.  Specifically, the comparison that the rat makes is represented by 

the expression related to McDowell’s (2005) generalization of Herrnstein’s single operant 

matching law (Herrnstein, 1970; Herrnstein, 1974; Heyman, 1988). (Figure 5A-7)�
 

TA(UB ,UE ) = TAmin + (TAmax −TAmin )× U a
B

U a
B +U a

E

⎡

⎣
⎢

⎤

⎦
⎥  

 

where, 

a = the payoff-sensitivity exponent, represents how sensitive the rat is to the price of the 

reward; it accounts for over or under-matching 

TAmax = the maximum time allocation 

TAmin = minimum time allocation 

UE = payoff from “everything else” or activities other than the operant task 

UB = payoff from electrical stimulation 

 

(The maximal and minimal time allocation (TAmax and TAmin) in the equation scales the 

time allocation.)  

The payoff from electrical stimulation (UB) is expanded in terms of the 

stimulation parameters as described previously in Section 1.3.4.2. and 1.3.4.3. The payoff 

of everything else (UE) can also be expressed in terms of electrical stimulation 

parameters. How this is possible is described below. 
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1.3.4.4.1. How the payoff of “everything else” is specified in terms of rewarding 

electrical stimulation variables 

The payoff from “everything else”, UE can actually be expressed in terms reward 

intensity deriving from the electrical stimulation and the associated costs at specific 

experimental parameters. This way of expressing UE is possible because the payoff of 

BSR (UB) is equal to the payoff of everything else (UE) when the rat allocates half of its 

time to working and half of its time to everything else at a specific reward intensity and 

cost of the stimulation.  Specifically, the price at which time allocation is half-maximal 

(TA = 0.5) at the maximal reward intensity (RImax) can be measured and is referred to as 

parameter OPe. Therefore, the payoff from the electrical stimulation at which the 

parameters (reward intensity and cost) are set to values such that the rat spends half of its 

time working for the stimulation (thus half of its time engaging in other activities, 

‘everything else’) is denoted as UmidBSR and can be expressed as: 

 

UmidBSR = RImax × p

(1+ξ )×OPe

 

 

Because the payoff of working for the stimulation for half of the available time (UmidBSR) 

is equal to the payoff  of ‘everything else’ (UE ),  

 

UE = RImax × p

(1+ξ )×OPe
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1.3.4.4.2. Time allocation expressed in terms of pulse frequency and price 

 

Given that,  

RI(D,F) = RImax ×
Fg

Fg + [Fhm (D)]g

 

and, 

 

RIpeak (t, F)
0≤t≤D

= RI(D, F)
 

and, 

 

UB(p,P, RI peak ,ξ ) =
RI peak × p

(1+ξ )×OP  

and, 

 

UE = RImax × p

(1+ξ )×OPe  

and, 

 

TA(UB ,UE ) = TAmin + (TAmax −TAmin )× U a
B

U a
B +U a

E

⎡

⎣
⎢

⎤

⎦
⎥  
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Then, time allocation as a function of pulse frequency and price and can be expressed: 

 

 

TA(D,F,P,ξ ) = TAmin+ (TAmax −TAmin )×

RImax × p
(1+ξ )×OP

× Fg

Fg + [Fhm (D)]g

⎛
⎝⎜

⎞
⎠⎟

a

RImax × p
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Multiplying the payoff expressions by (1+ξ )×OP

RImax × p

⎛
⎝⎜

⎞
⎠⎟

 in order to simplify the expression: 

 

TA(D, F, P) = TAmin + (TAmax −TAmin )×

F g

F g + [Fhm (D)]g
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Thus, time allocation as a function of pulse frequency and objective price is defined by 

the above expression. The wire mesh in Figure 6 represents this function. 

 

1.3.5. Displacements of the mountain can reveal at what stages perturbations act  

Displacements of the reward-mountain model along the pulse frequency axis 

(Figure 5B) occur due to manipulations that act on stages prior to the output of the reward 

integrator, before reward intensity is processed. For instance, these perturbations may 

include lesions that reduce the number of neurons that carry the reward signal or drugs  
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that alter the output of these neurons. Alterations that occur before the output of the 

integrator are said to cause changes in “sensitivity” of the reward substrate.  

Displacements of the reward mountain along the price axis are caused by 

influences acting on later stages of the minimal model. There are several stages following 

reward integration that can be affected. For instance, alterations can influence the 

perceived cost of the reward, or alternatively, they can alter the payoff derived from 

alternative activities that the subject can engage in. In addition, perturbations could 

influence the scaling of the integrator’s output; this is referred to as a changing the 

substrate’s “gain.” An increase in gain would increase by a common multiplicative factor 

the reward intensity produced by each pulse frequency.  

Within the framework of the minimal model, shifts along the price axis do not 

reveal the exact stage that is affected, only that it occurred at a stage subsequent to the 

output of the integrator. Nonetheless, whether the physiological manipulation acted on 

the circuitry implicated in the stages that occur before or after the integrator provides 

important insight into the circuitry under investigation. For instance, a long-standing 

view regarding cocaine (and by extension, dopamine) is that it increases the sensitivity of 

the reward substrate. Conventional methods using 2-dimensional representations cannot 

directly and unambiguously evaluate this hypothesis. The 3-dimensional methodology 

demonstrated that the effect of cocaine on rewarding electrical stimulation caused the 

reward mountain to shift exclusively along the price axis, challenging the conventional 

view (Hernandez, Breton, Conover, and Shizgal, 2010). Additional studies involving 

dopamine agonists and antagonists (Hernandez, Trujillo-Pisanty, Cossette, Conover, & 

Shizgal 2012; Trujillo-Pisanty, Conover, and Shizgal, 2013) show that this methodology 
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detects displacements exclusively along one axis (price axis). Taken together, this 

methodology provided important insights into the role of dopamine in reward-seeking 

behaviour. It has also been used to investigate the role of cannabinoid receptor blockade 

(Trujillo-Pisanty, Hernandez, Moreau-Debord, Cossette, Conover, Cheer, & Shizgal, 

2011) in which the displacement of the reward mountain exclusively along the price axis 

was also demonstrated. As well, several studies have further validated this methodology 

(Arvanitiogiannis & Shizgal, 2008; Breton, Conover, & Shizgal, 2013). 

 

1.3.6. Overview of the reward mountain model methodology 

Figure 6 shows an example of a 3-dimensional reward mountain with simulated 

parameters (panel A and B).  Its corresponding contour graph in panel C is seen from an 

aerial view (B). Each contour curve is horizontal a slice through the mountain structure 

and corresponds to a given time allocation. The two “location parameters” are Fhm 

(denoted by the red line), which locates the reward mountain along the pulse frequency 

axis and OPe (denoted by the blue line), which locates the structure along the objective 

price axis. Specifically, Fhm is the pulse frequency axis at half-maximal reward intensity 

and OPe is the price at which the subject allocates half-maximal time to working for the 

reward when the reward intensity is set to a maximal value). These parameters are the 

indices used to assess the extent of changes along the pulse frequency axis (Fhm) and 

price axis (OPe) before and after a manipulation.  

To obtain this reward mountain, conventionally, 3 sampling vectors are employed 

(Figure 7A).  A “pulse frequency sampling matrix” is comprised of 14 points (red) in 

which the price is held constant and pulse frequency varies. A “price sampling matrix” is  
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Figure 6.  An example of a 3-dimensional reward mountain with 
simulated parameters (panel A and B). The colour gradient indicates 
that time allocation is highest at pink shades and lowest at blue 
shades.  Its corresponding contour graph in panel C is seen from an 
aerial view (B). Each contour curve is a horizontal slice through the 
mountain structure and corresponds to a given time allocation. The 
two “location parameters” are Fhm that locates the reward mountain 
along the pulse frequency denoted by the red line and OPe that 
locates the structure along the price axis denoted by the blue line. 
These parameters are the indices used to  assess the extent of 
changes along the pulse frequency axis (Fhm) and price axis (OPe) 
before and after an experimental manipulation. 
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Figure 7.  To obtain the reward mountain, conventionally, 3 sampling 
matrices are employed (Figure 7A).  A pulse frequency sampling 
matrix is comprised of 14 points (red) in which the price is held 
constant. A price sampling matrix is comprised of 14 points (blue) in 
which the price varies but the pulse frequency is constant. A radial 
sampling matrix is comprised of 14 points (green) in which the 
objective price is increased while the pulse frequency is decreased. 
These three sampling matrices provide sufficient information to  fit 
the 3-dimensional time allocation function represented by the wire 
mesh in panel B. Figure 7 shows the sampling vectors used to  fit the 
mountain on the contour plot (A) and the actual points in the 3-
dimensional space (B).
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comprised of 14 elements (points in blue) in which the price varies but the pulse 

frequency is constant. A “radial sampling matrix” is comprised of 14 points (green) in 

which the price is increased while the pulse frequency is decreased. These three sampling 

matrices provide sufficient information to fit the 3-dimensional time allocation function. 

Figure 7 shows the sampling vector used to fit the mountain on the contour plot (A) and 

the actual data points (time allocation as a function of pulse frequency and objective 

price) in the 3-dimensional space (B). 

 

1.4. Thesis aim: the transformation of objective variables into their subjective 

equivalents  

Within the stages of the minimal model, certain inherent, unrealistic assumptions 

have been made regarding the independent variables. The first assumption is that of the 

experimenter-imposed opportunity cost (in seconds). The experimenter manipulates the 

opportunity cost, and the subject combines the subjective reward intensity to estimate a 

payoff. However, before this step, the subject must evaluate the experimenter-imposed 

opportunity cost (termed the objective opportunity cost or objective price, OP) and 

translate it into the subjective equivalent.  In the model, we assume that objective 

opportunity costs and subjective opportunity costs are equal to each other along the entire 

range of prices. However, this is an unrealistic assumption at very low costs.   For 

instance, reducing the cost from 0.2 to 0.1 s does not allow the animal to perform 

additional “alternate activities” (e.g., grooming, resting) of any significance, therefore, 

low opportunity costs are most likely subjectively equivalent along the low objective 
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price range.  The experiment in Chapter 2 develops the psychophysical function that 

describes the translation of objective opportunity costs into their subjective equivalents. 

The other assumption concerns that of the second independent variable, pulse 

frequency. This assumption entails the physiological properties of the neurons. In the 

model, it is assumed that each neuron fires once per experimenter-induced pulse. 

However, this assumption must break down as the pulse frequency becomes high; there 

must be a limit to the maximum firing rate of any axon due to physiological properties 

such as synaptic blocking or fatigue as suggested by Gallistel (1978). The goal of the 

experiment in Chapter 3 was to model frequency following and its progressive failure as 

the pulse frequency is increased. By this method, the maximal firing frequency for the 

reward-relevant neurons of the lateral hypothalamus is determined. 

In summary, the objective values of pulse frequency (F) and price (OP) have been 

used in previous studies using the reward mountain methodology in the time allocation 

function presented below. It is unrealistic to assume that the objective values are 

equivalent to their subjective (in the case of price) or physiological (in the case of pulse 

frequency) values.  In the present experiments, the psychophysical functions describing 

the subjective equivalents of pulse frequency (F) and objective price (OP) will be 

developed (Chapter 2 and Chapter 3). 
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Once these psychophysical functions are developed, they will be incorporated into 

the reward mountain model for future experiments. Independent variable F (pulse 

frequency) will be replaced with the psychophysical function describing FF, the firing 

frequency (the actual induced firing frequency). Independent variable OP (objective 

price) will be replaced with the psychophysical function describing SP (the subjective 

price). Accordingly, the parameters Fhm and SPe will be replaced with FFhm and SPe: 
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Figure 8 describes the stages of the reward mountain model that will be formally 

described by psychophysical transformations.  The frequency-following response 

function is represented by the pink question mark and the opportunity-cost function is 

represented by the blue question mark. 

The experiment in Chapter 4 uses the reward mountain model methodology to test 

the effects of a manipulation, electrolytic lesions on operant behaviour. To date, 

experiments employing pharmacological and electrical manipulations have used and 

validated the reward mountain methodology. In the present thesis, the use of this 

methodology to assess effects of electrolytic lesions on reward-seeking behaviour will 

further validate this approach and in particular validate this methodology to be used 
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alongside more specific lesioning techniques such as optogenetic mediated silencing or 

excitotoxic lesions in future studies. 
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Figure 8. Graphical representation of the reward-mountain model. A.  The 
psychophysical functions estimated in this thesis are denoted by the question 
marks: (i) the frequency-following response function represented in pink and (ii) 
the opportunity-cost function represented in blue. 
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Chapter 2 

 

Estimation of subjective opportunity costs 

 

Abstract 

 Time is a precious commodity to a forager because pursuit of one objective usually 

precludes simultaneous pursuit of another. Time spent searching for food reduces the 

time available for mating, nest building, and other essential activities. Thus, each 

exclusive activity entails what economists call an “opportunity cost:” the forgone benefits 

from competing activities that were eschewed in favor of the one that was pursued. 

Opportunity costs are an important factor in decision-making and include components 

related to travel, search, procurement, handling, and consumption of prey items. The 

present experiment derives the function mapping objective opportunity costs into 

subjective ones. The experiment was carried out in a simplified environment, an operant 

chamber. Operant performance was rewarded according to a “cumulative handling-time” 

schedule of reinforcement: rewarding electrical stimulation was delivered via a medial 

forebrain bundle electrode when the cumulative time a lever had been depressed by the 

rat reached a criterion duration (defined as the price or cost). 

 This function is particularly important in the context of the reward-mountain 

paradigm because the opportunity cost is a variable that is experimentally manipulated 

and is used to scale reward intensity.  Previous versions of the reward-mountain model 
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incorporated the assumption that objective opportunity costs are equal to subjective 

opportunity costs along the entire tested range. Yet, psychophysical functions often differ 

from such identity functions; what we experience is not necessarily a direct reflection of 

the external world. We proposed that the opportunity-cost function is a non-identity 

function in the form of a hockey stick. The present results supported this form of the 

function. When opportunity costs were very low (e.g., working for only a small fraction 

of a second triggers delivery of a reward), the subjective cost varied little as a function of 

the objective cost. Specifically, although the rat may be capable of detecting the 

difference between 0.1 s and 0.2 s, it did not appear to increment its opportunity-cost 

function over such intervals. This range is represented by the flat “blade” of the function. 

The finding that low costs are subjectively equivalent makes sense: there may be no 

beneficial activities that the rat could substitute for work over such short intervals. As the 

objective opportunity cost rose, the subjective cost began to rise as well, and beyond 

values of ~ 2 s, we estimated the subjective cost to rise at the same rate as the objective 

cost. This portion is represented by the “handle” of the function. 

Furthermore, the subjective cost function we proposed was compared to ones 

derived from conventional hyperbolic and exponential models of delay discounting. The 

findings suggest the possibility that a different principle of intertemporal choice is 

involved in evaluating time spent working for reward and time spent waiting for reward 

after work requirements have been satisfied. 
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Introduction 

2.1. Time as an opportunity cost 

Time can be thought of as a cost.  Humans and animals invest their valuable time 

acquiring, producing, and maintaining goods and services. The time that is invested 

reaping those particular benefits, however, is also time that could have been spent 

engaging in another activity. For example, the time spent studying for a good grade could 

have been time spent working to earn money. Economists call this interpretation of a cost 

an “opportunity cost:” the foregone benefits of the next best competing activity that were 

rejected in favour of the one that was pursued.  Opportunity costs are especially evident 

in a foraging context: time spent searching for food reduces time available for other 

essential activities for survival (Stephens & Krebs, 1986).  

As described by the reward-mountain model, the subject integrates the many 

variables that concern the reward and associated costs, computes the goal’s overall 

payoff, and decides how to allocate its time.  However, before the subject computes the 

overall payoff, one of the crucial, initial stages of reward processing is the transformation 

of all of the objective variables into their subjective equivalents. The mathematical 

relationship describing the transformation of a physical stimulus into its subjective 

strength is termed a psychophysical function.  Traditionally, psychophysical functions 

have described sensory experience such as the transformation of the physical intensity of 

light into perceived brightness.  However, studies of reward seeking, in particular BSR, 

have extended psychophysical scaling to the realm of valuation, motivation and decision-

making.  For example, several studies have described the transformation of pulse 

frequency into subjective reward intensity (Hamilton, Stellar, & Hart, 1985; Gallistel & 
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Leon, 1991; Leon & Gallistel, 1992; Mark & Gallistel, 1993 Simmons & Gallistel, 1994). 

Similarly to the psychophysical transformation of pulse frequency into reward intensity, 

the subject must transform the opportunity cost variable into its subjective equivalent.  

Although the psychophysical function that computes reward intensity (the “reward-

intensity” function) has been formally described, the psychophysical function that 

computes subjective costs (the “subjective price” function) has not. This is a salient 

lacuna.  The present experiment estimates this function.   

The objective opportunity cost refers to the actual, measurable, time that the 

animal could spend engaging in other activities, a value that everyone would agree on.  

The subjective opportunity cost refers the animal’s estimate of the cost, which takes into 

account the personal significance of the time that could be spent engaging in other 

activities.  For instance, in a natural setting, a forager may have to decide if it is it worth 

spending three minutes hunting for its prey at the expense of other activities. In an 

operant box, the subject has to decide if it is worth spending a given amount time 

depressing the lever (“working”) for a reward at the expense of time away from other 

available activities such as resting, grooming, or exploring.     

The subjective price function is particularly important in the context of the 

reward-mountain paradigm. The reward mountain model has previously assumed that 

subjective price function is an identity function (objective opportunity costs are equal to 

subjective opportunity costs along the whole tested cost range). Yet, psychophysical 

functions are often non-identity functions. The relationship that has been assumed 

hitherto (an identity function) is illustrated in Figure 1 and is referred to as the “objective  
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Figure 1. “The objective price function.” The relationship between 
subjective price and objective price is scalar along the full range of 
objective prices. This relationship has been assumed in previous 
studies using the reward mountain model. 
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price function.” In the present thesis, the subjective price function is hypothesized to be a 

non-identity function, the reasons for which will be elaborated on later (section 2.3). 

 

2.2. Schedules of reinforcement 

Before describing the proposed opportunity cost transformation, it is important to 

understand how objective opportunity costs are manipulated in our experiments.  In 

traditional operant experiments, the subject’s response requirement is controlled by 

“ratio” or “interval” schedules of reinforcement.  Shizgal and Conover (2005) argue that 

both of these schedules do not stringently control the opportunity cost because the subject 

has partial control of it.  For instance, on a traditional ratio schedule, the subject must 

emit the experimenter-set response, such as a required number of bar presses, in order to 

earn a reward.  However, although the work requirement is determined by the 

experimenter, the subject controls the time between rewards (the minimum inter-reward 

interval); the faster the subject works, the shorter the time required to obtain the reward.  

The other commonly used schedule of reinforcement, the interval schedule, does not 

control both types of costs.  On an interval schedule, the subject is reinforced for the first 

response it makes after an experimenter-set amount of time. Consequently, the maximum 

rate at which rewards can be earned is controlled by the experimenter-set minimum inter-

reward interval. The subject works during a large portion of the time interval; a 

characteristic scalloped response pattern is seen. However, the opportunity cost is not 

strictly set by this interval: although the subject works during most of the interval, it does 

not respond over its entirety. Specifically, at the beginning of the interval, response rates 

are low. During this time, the subject can be can be engaged in activities other than the 
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operant task, such as resting or exploring.  Therefore, the subject has partial control of the 

opportunity cost. Furthermore, the subject chooses the rate at which it responds and thus 

has some control over the effort cost.   Therefore, taken together, both the ratio and 

interval schedules do not strictly control opportunity costs. 

To control opportunity costs so as to preclude engagement in alternate activities 

while the subject works for the reward, we used the fixed cumulative handling-time 

schedule (FCHT) in which both the work requirement and the minimum inter-reward 

interval are experimenter-set (Breton, Marcus, & Shizgal, 2009).  The opportunity cost 

(also referred to as the “price”) as controlled by the FCHT schedule requires that the 

subject hold down the lever for a cumulative experimenter-set time interval to earn a 

reward.  That is, if the opportunity cost were set to 10 s, the subject could pause in 

between bouts of work (lever holding) and would be rewarded for depressing the lever 

for the total cumulative time of 10 s.  

Electrical brain stimulation reward used in combination with the FCHT schedule 

provides a simplified environment to study the contribution of opportunity costs to 

reward-seeking behaviour.  For a foraging animal in a natural setting, opportunity costs 

entail multiple components: searching, procuring, handling (e.g., opening a nutshell), and 

consumption.  By substituting electrical brain stimulation reward for a natural reward, 

(e.g., food and water) and employing the FCHT schedule, components of the opportunity 

cost are collapsed into one:  the work time required to trigger the delivery of rewarding 

electrical stimulation. These tightly controlled experimental variables (reward intensity 

and opportunity costs) afford the precise manipulation required to estimate the subjective 

price function (method described in section 2.5). 
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2.3. The translation of objective opportunity cost into subjective opportunity cost 

The FCHT schedule sets the objective opportunity cost; the subject translates 

these objective costs into subjective costs, but how? The price the subject pays is time; 

therefore the estimation of time intervals contributes to the estimate of the subjective 

price. Importantly, the functions describing the estimation of time intervals and the 

estimation of prices are not identical. For instance, a subject may be able to discriminate 

very small time intervals such as 0.1 s and 0.2 s, yet when these intervals are set as an 

opportunity cost, they may be interpreted as equivalent.  That is, reducing the cost from 

0.2 to 0.1 s does not allow the animal to perform additional “alternate activities” of any 

significance.  For this reason, low opportunity costs are proposed to be subjectively 

equivalent along a range of low objective prices. Estimating the psychophysical cost 

function will test whether this hypothesis holds, and if so, reveal the range at which 

objective prices are subjectively equal to each other. 

Before developing the forms of the subjective price functions to be evaluated, it is 

first important to recognize that embedded within the subjective price function is the 

subjective time interval function. How can the subjective time interval function be 

expressed? We propose that the subject estimates the subjective time interval (st) from 

the experimenter-set cumulative time required to depress the lever (objective price, op), 

as described by the function f. The subjective time interval function has been extensively 

measured by the use of different methods and schedules of reinforcement.  In this 

experiment, the exact form of the subjective time interval function is not of great 

importance; the crucial characteristic of this function is that most leading theories of 
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interval timing studies would agree that the estimates of subjective time are scalar over a 

wide range of intervals (Gibbon, 1977). Thus,  

 

st = f(op) 

where, 

st = the subjective time estimate (s) 

op = the objective price (s) 

f = the function translating the set objective price to a subjective time estimate 

 

Once this transformation occurs, the subjective time is then converted into subjective 

price by a second function, called g: 

 

sp = g(st) 

 

Combining both of the transformations above, we see that f is embedded within g, 

therefore the subjective price function can be expressed as: 

 

sp = g (f(op)) 

 

The embedding of f in g can be referred to as the “subjective price function” and we can 

simplify this and name it h which incorporates the transformation of objective time 

intervals into subjective time and subjective time into subjective price: 
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sp = h(op) 

 

What is the predicted form of the subjective price function?  It seems rational that 

the subjective cost should mirror the objective cost; failure of the two to match would 

cause distortions from reality, compromising an animal’s fitness.  For instance, if 

subjective cost rose faster than objective cost, an animal would perceive costly options as 

being more expensive than they actually are.  This particular animal would avoid 

valuable, but costly options, perceiving them as “too expensive,” while a competitor that 

more accurately perceives the real cost pursued them instead.  On the other hand, if 

subjective cost rose more slowly than objective cost, the animal would perceive costly 

but valuable options as being less expensive than they actually are.  This particular 

animal may pursue many options with the erroneous perception that the options are 

inexpensive and forego other important options.   

As described above, it is reasonable to predict that objective costs and subjective 

costs should match over time intervals likely to be encountered in a foraging context. In 

other words, the relationship is predicted to be scalar, with a slope of 1.  However, this 

direct match may break down at low costs because as described above, the subjective 

opportunity costs associated with very low objective prices are predicted to be equivalent 

over the low objective cost range.  Thus, the shape of the function is proposed to 

resemble a hockey stick.  It should have a flat “blade” that extends over the range of 

initial, low costs. This “blade” extends into upward-curving portion where the animals 

begin to discriminate opportunity costs to a straight “handle” which extends over the 

range of higher costs over which the objective and subjective costs mirror each other. The 
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opportunity cost function indicates at what point the relationship between the objective 

and subjective opportunity costs are scalar and at what point this relationship breaks 

down. (See Figures 2, 4, 5). 

 

2.4. Plausible forms of the subjective price function 

 

2.4.1. The objective price function  

The most parsimonious subjective price function which has been assumed in 

previous uses of the reward-mountain model is referred to as the “objective price 

function.” The scaling of objective price to subjective price is 1 over the entire range of 

objective prices. It is an identity function (a function that always returns the same value 

that was used in the argument). 

 

SP = OP 

where , 

SP = subjective price (s) 

OP = objective price (s) 

 

This function has a slope of 1 and passes through the origin, illustrated in Figure 1 

described in section 2.1. 
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2.4.2. Shizgal’s subjective price function 

Another plausible formal account of the subjective price function is “Shizgal’s 

subjective price function.”  The form of this function is the integral of a sigmoid which 

gives rise to the proposed hockey stick shape, described as follows: 

 

SP = SPmin + (SPbnd × ln(1+ e
OP−SPmin

SPbnd ))  

where, 

SPmin = minimum subjective price (s) 

SPbnd = controls the abruptness of the transition from the “blade” to “handle”  

OP = objective price (s) 

SP = subjective price (s) 

 

This function is described in Figure 2. The shape of the function at different possible 

values of SPmin and SPbnd is illustrated in Figure 2B and Figure 2C. 
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Figure 2. A. “Shizgal’s subjective price function.” The relationship 
between subjective price and objective price is scalar along a range 
of objective prices but breaks down at low objective prices. 
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Figure 2. A. Shizgal’s subjective price function at various parameter 
values of SPmin: 0.5 s, 1 s, 2 s. Parameter SPmin sets the horizontal 
starting value of the dependent scale of the function. B. Shizgal’s 
subjective price function at various parameter values of SPbnd: 0.25, 
0.5, 1. The smaller the bend value, the steeper the bend from 
“handle” to “blade”.
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2.4.3 Opportunity cost treated as a delay to the reward delivery 

Up until now, we have assumed that the subject treats the time interval required to 

hold down the lever as an opportunity cost, but what if it is treated as a different, but 

related, psychological variable instead: delay to the reward delivery?  In traditional 

studies of reward delays, there is an experimenter-imposed delay until reward delivery 

that occurs after the subject makes only a brief response on the lever. In contrast, in 

studies using the reward-mountain methodology, the subject must depress the lever for a  

required amount of time in order to reap the reward. Yet, when setting an opportunity 

cost, there is an intrinsic delay to reward delivery. For instance, if the price is set to 4 s, 

the delay to reward delivery is 4 s as well. Could the subject be treating this 

experimenter-set opportunity cost as it does a simple delay, or are these two variables 

treated differently? In other words, two distinct processes may be responsible for the 

evaluation of time spent waiting for the reward and time spent working for the reward, or, 

the same process may govern these two evaluations.  An illustration contrasting the two 

different paradigms, one in which a delay is imposed and one in which an opportunity 

cost is imposed, is presented in Figure 3. 
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Delay set to 4 s

4 s

“Waiting”
(the subject is in operant box but not depressing the  lever because it 
has been retracted after work requirement has been met)

REWARD

Work requirement has been 
met (1 lever press)

Opportunity cost set to 4 s

4 s

“Working”
(depressing the lever for the entire 4 s interval)

REWARD

Subject begins working 
(depressing the lever)

Figure 3. Two different experimental paradigms in which the delay to reward or 
the opportunity  cost is manipulated are contrasted. In a delay discounting 
experiment, a delay to reward is imposed after a simple work requirement (1 
lever press) has been met. In this example, the imposed delay is 4 s.  In an 
experiment manipulating opportunity costs, the subject is required to depress a 
lever for the duration of an experimenter-set amount of time (opportunity  cost), 4 
s in this example. However inherent in the opportunity  cost is a delay to the 
reward delivery. The experiment in Chapter 2 investigates whether two different 
evaluation processes are responsible for time spent working and time spent 
waiting, or if the same process is responsible for these transformations.
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2.4.3.1. The (inverted) hyperbolic subjective price function 

Thus, one possible form of the subjective price function, h, is a variant of Mazur’s 

(1987) hyperbolic delay discount function.  Mazur’s (1987) delay discounting function 

describes how a future reward is discounted: as the delay to the delivery of the reward is 

increased, the reward’s present value is discounted hyperbolically: 

 

Value = Scale

1+ (k × Delay)
 

where,  

Value = discounted subjective value of the future reward  

Scale = proportional to reward amount; controls the vertical scale of the function 

k = determines how abruptly the value of the function declines as the delay grows 

Delay = the delay in seconds from the completion of the response requirement to the 

reward 

 

If we extend Mazur’s definition of value to our definition of payoff: 

 

Value = in economic terms, the subjective “payoff” of the reward which is the ratio of 

reward intensity to subjective price (RI/SP) 

Scale = reward amount is equivalent to the subjective reward intensity (RI) in BSR 

studies  

k = determines how abruptly the value of the function declines as the delay grows 

Delay = can be considered the objective price (OP) if the subject is treating the cost as a 

delay 
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Thus, rewriting Mazur’s hyperbolic delay discounting function in terms of the parameters 

used in the reward mountain model: 

 

Payoff = RI

1+ (k ×OP)
 

 

Thus, the payoff declines hyperbolically as the OP (objective price) is increased. 

 

Expanding the definition of payoff: 

 

RI

SP
= RI

1+ (k ×OP)
 

 

According to this interpretation, the reward intensity is the factor being discounted by the 

subjective price.  However, we can easily re-plot this as a subjective price function.  If we 

invert the function, holding reward intensity constant, as we do in our experiments, the 

discounted factor (numerator) is now subjective price.  In this form, the discount now 

increases with the independent variable (OP) instead of decreasing, giving rise to a 

hockey-stick shape.  Thus, the subjective price function in accordance with Mazur’s 

hyperbolic function is: 

 

SP

RI
= 1+ (k ×OP)

RI
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RI is canceled out. Thus,   

 

SP = 1+ (k ×OP)  

where, 

SP = subjective price (s) 

OP = subjective price (s) 

k = parameter controlling the rate at which the function rises 

 

Figure 4 illustrates this function with different values of k and is referred to as the 

“(inverted) hyperbolic subjective price function.”  A notable difference between 

Shizgal’s subjective price function (Figure 2) and Mazur’s form (Figure 4) is the  

sharpness of the bend from blade to handle as well as the very slow rise over the 1 to 10 s 

objective price domain.  Evaluating these two models would shed light on whether the 

price is treated psychologically as an actual delay or as an entirely different psychological 

variable, subjective opportunity cost.  
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Figure 4. “The hyperbolic delay discounting function (inverted).” The form 
of the function is of a hockey-stick shape. As the objective price is 
increased, the function is flat along a range and then rises. The k values 
are from those derived in BSR and delay studies (Mazur, Stellar, 
Waraczynski, 1987; Fourezios & Randall, 1997).  The greater the k, the 
faster the function rises. 
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2.4.3.2. The (inverted) exponential subjective price function 

A second delay discounting function, the exponential delay discounting function 

described by Samuelson (1937) is also tested.  Its inverted form is expressed as: 

 

SP = ek×OP  

where, 

k = controls the rate at which the function grows 

 

The inverted exponential delay discounting subjective price function is described in 

Figure 5 at various k values. 
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Figure 5. “The exponential delay discounting function 
(inverted)”. The form of the function at different values of k.  
The larger the k value, the more rapidly the function rises.
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2.5. How to measure the subjective price function 

Trade-off methodology is used to measure the subjective price function. This 

methodology assesses the effectiveness of one variable by its effect on a second variable. 

The two variables trade off against each other so as to hold behaviour constant. A fixed 

response level is chosen as the behavioural index (half-maximal responding).  The 

various combinations of the two variables that produce the criterion level of responding 

reveal an underlying function, the subjective interpretation of the variables. The two 

trade-off variables used in the present experiment are pulse frequency and objective price. 

Analogous to traditional accounts of the matching law, payoff from the electrical reward 

is expressed as: 

 

UB (p, SP, RIpeak,ξ ) =
RIpeak × p

(1+ξ )× SP  

where, 

RIpeak = reward intensity at its peak value 

SP = subjective price (s) 

p = the subjective probability of obtaining the reward after the work requirement has been met

ξ = the subjective rate of exertion required to hold down the lever

 

If reward delivery is certain upon meeting the response requirement and the effort 

entailed is minimal, the function can be approximated by: 

 

87



UB(SP, RI peak ) ≈
RI peak

SP  

 

Reward intensity (set by the pulse frequency) and subjective price (set by the objective 

price) are related in a scalar (multiplicative) fashion.  Accordingly, an increase in 

subjective price should be offset by an equivalent proportional increase in reward 

intensity along the whole range of tested variables. On a logarithmic scale, reward 

intensity as a function of subjective price, would be represented by a straight line with a 

slope of 1, similar to the shape of the function in Figure 1. 

However, it is the objective variables that are directly manipulated: pulse 

frequency and objective price. The scalar relationship of reward intensity and subjective 

price may not hold in their respective objective domain (pulse frequency and objective 

price) if the relationship between the objective variables and their corresponding 

subjective variables is not scalar. Specifically, according to the proposed subjective price 

models, very low objective prices are subjectively equal to each other (the relationship 

between subjective price and objective price is not scalar along the low range of prices). 

Thus, any increase in the objective price along this low price range will not require any 

offset in reward intensity (and thus pulse frequency) to maintain the behavioural 

criterion. On a common logarithmic scale of pulse frequency as a function of objective 

price, this relationship is represented by a horizontal line at low objective prices that 

gradually increases, reaching a slope of 1, similar to the shape of the function in Figure 2. 

The procedure outlined below describes how the trade-off function is acquired, as 

well as the predicted form of this trade-off function, as illustrated in Figure 6.  The 

dependent measure is time allocated to holding down the lever.  Rats are presented with a 
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series of “pulse frequency sweeps,” each conducted at a different price. A sweep is a 

series of trials over which the pulse frequency is varied from one trial to the next.  Figure 

6A shows the corresponding behavioural allocation curves, time allocation as a function 

of pulse frequency.  Each curve is denoted by a different colour representing a different 

price.  The behavioural criterion is half-maximal time allocation (FM50), denoted by the 

vertical dashed line for every curve.  As the prices are halved within the one-to-one 

subjective-objective price range, the pulse frequency curves shift leftward by the same 

magnitude, one half. However, as the objective price approaches the price at which the 

scalar subjective-objective relationship breaks down, each halving of the price produces a 

smaller magnitude in the shift of the curves. For instance, at the lowest prices, 0.125 and 

0.25 s, the curves overlap, indicating that these prices are subjectively equivalent because 

no pulse frequency offset was required. 

Figure 6B describes the corresponding trade-off plot: required pulse frequency at 

the behavioural criterion (half-maximal time allocation) as a function of objective price. 

Along the low objective price range, the required pulse frequencies are equivalent to each 

other as indicated by the flat portion of the curve.  As subjective and objective prices 

become roughly equal, the required pulse frequencies increase at the same rate that 

objective prices increase (indicated by the rising portion of the curve). After the points on 

the trade-off plot are acquired, the different forms of the subjective price functions are fit 

to the data points.  The best fitting subjective price function is assessed.                                   

The rationale laid out above and in Figure 6 is the general foundation as to how 

the subjective price function will be estimated. The trade-off functions fit to the data will 
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incorporate the proposed subjective price functions as well as the reward mountain 

parameters described in Chapter 1. 
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Figure 6. 
A. A simulation of a family  of behavioural time allocation functions relating time 
allocation to pulse frequency. In the experiment, rats are presented with a series 
of “pulse frequency sweeps” in which pulse frequency is varied throughout a 
session along a pulse frequency range. Each pulse frequency sweep is 
conducted at a different price.  Each curve illustrates the behaviour obtained in a 
pulse frequency-sweep  condition.  The vertical dotted line represents the pulse 
frequency at half-maximal time allocation (FM50), the index of measurement. 
Along the veridical subjective-objective price range, as the price is reduced by 
one half, the curves shift leftward by that magnitude.  However, as the objective-
subjective price scalar relationship  breaks down, each halving of the price 
produces a smaller magnitude of the shift of the curves. 

B. The pulse frequency-objective price trade-off plot.  The FM50  values for each 
of the curves are plotted.  The flat portion of the curve represents the flat part of 
the subjective price function. At higher prices, the trade-off curve increases, 
representing the portion of the subjective price function in which objective prices 
are distinguishable from each other. In this relationship, the relationship  is scalar 
at a higher range: as the prices are increased by a doubling, the required pulse 
frequency is increased by a doubling.
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Materials & Methods 

2.6. Subjects 

The subjects were 6 male Long Evans rats (Charles River, St. Constant, Quebec, 

Canada) that weighed between 450 g and 600 g at the time of surgery. They were housed 

individually in plastic ‘shoebox’ cages and had unlimited access to food (Purina Rat 

Chow) and water. A reverse light cycle was in effect (lights off from 0800 to 2000).  

 

2.7. Apparatus and materials 

The test boxes had the following dimensions: 34 cm x 23 cm x 60 cm. The boxes 

had four Plexiglas walls with a hinged Plexiglas front door.  Two retractable levers (1.5 

cm x 5 cm) (ENV–112B, MED Associates, St. Albans, Vermont) were located in the 

center of the right and left walls, 10 cm above the wire-mesh floor; only the right lever 

was used in the present experiment. Cue lights were located 2 cm over the levers and 

were illuminated when the lever was depressed. A house light on the back wall, 35 cm 

from the floor, flashed between trials. 

Monopolar stimulating electrodes (0.25 mm diameter) were constructed from 000 

stainless steel insect pins.  The insect pins were insulated with Formvar to within 0.5 mm 

of the tip.  An insulated wire was soldered to the middle of the insect pin and terminated 

in a gold-plated male amphenol pin. The insect pin served as the cathode. The anode 

consisted of two skull screws which were connected by a wire that was crimped to a male 

amphenol pin.  The amphenol pins were inserted into an externally threaded, nine-pin 

connector (Scientific Technology Centre, Carleton University, Ottawa, Ontario, Canada) 

which was attached to the skull with dental acrylic and anchored by 6 jeweller’s screws 
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embedded in the frontal and parietal bones. Dental acrylic was used to secure the 

electrode and connector to the screw anchors and skull.  

A mating connector terminated the stimulation leads, which were attached to a 

slip-ring assembly to allow the rat to circle without twisting the leads. A second cable 

linked the slip-ring assembly to the output of the constant-current stimulator.   

 

2.8. Surgical procedure 

An injection of atropine sulfate (0.05 mg/kg sc) was given prior to surgery in 

order to reduce bronchial secretions.  Ten minutes later, ketamine-xylazine (100mg/kg ip) 

was administered to induce anesthesia; to confirm that the level of anesthesia was 

sufficiently deep, the tail was pinched 5 min after administration. Before the rat was 

maintained on isoflurane for the rest of the surgery, buprenorphine (0.17 ml/kg sc) was 

administered as an analgesic and penicillin-g was administered to prevent infections. The 

anesthetized rat was mounted into a stereotaxic frame.  Pilot holes were drilled for the six 

jeweller’s screws that served as anchors for the electrode assembly.  The electrode was 

aimed at the lateral hypothalamus: a hole was drilled in the skull over the stimulation 

targets, which are 2.8 mm posterior to bregma, 1.7 mm lateral to the midline and 9.0 mm 

ventral from the skull according to the Paxinos and Watson (2007) atlas.  The stimulation 

electrodes were lowered into place using standard stereotaxic manipulators and secured 

with dental acrylic. Rats were given a 1-week recovery period after surgery to allow 

healing before preliminary testing began. 
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2.9. Experimental procedure 

The description of the conditions of the experiment is described below; the 

sequence of the conditions is illustrated in Figure 7. 

 

2.9.1. Screening: preliminary testing  

The preliminary testing allowed the experimenter to determine whether the 

stimulation electrode was in the correct location. Throughout the experiment, stimulation 

consisted of 0.5 s trains of cathodal, constant-current pulses, square wave in shape, 0.1 

ms in duration.  The subject was connected to the stimulator by a cable and could move 

freely around the test cage.  Using manually operated stimulators, the rat was initially 

given a low-intensity train of electrical stimulation (a low current intensity and pulse 

frequency) and the stimulation intensity was increased if the rat failed to approach the 

lever and no signs of aversion or motor-effects were observed. The rat was trained to 

press the lever using standard shaping techniques.  Once the rat learned to press the lever, 

the current and pulse frequency were gradually increased to determine the parameters 

supporting maximal response rates for the rat. Once successfully shaped, subjects were 

transferred to an automated operant set-up controlled by a customized program named 

“PREF” developed by Steve Cabillio.     

 

2.9.2. Schedules of reinforcement  

In the automated setup, the schedule of reinforcement was manipulated in all 

phases of the experiment. The schedule of reinforcement sets the “price,” which refers to 

the cumulative amount of time the rat is required to depress the lever to harvest the  
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Preliminary testing
(1 session)

Pulse frequency-sweeps 
(5-10 sessions)

Price-sweeps
(10-15 sessions)

3-sampling matrix mountain
(10 stable sessions)

9-sampling matrix mountain
(10 stable sessions)

Training phases

Figure 7. Sequence of conditions of the subjective price experiment. It is the 
data from the 9 sampling vector mountain condition that are used to assess the 
best fitting subjective price function. 

Experimental phase: 
data from this phase 
are used to estimate 
the subjective price 
function
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reward.  The subjects performed on a fixed cumulative handling time (FCHT) 

reinforcement schedule, which requires the subject to be hold down the lever for a 

cumulative amount of experimenter-set time in order to harvest the reward (Breton et al., 

2009; Hernandez et al., 2010).  

 

2.9.3. General experimental structure   

The present experiment measured time allocated to holding down the lever as a 

function of the two independent variables, pulse frequency and price. The levels of these 

two variables can be represented in the experimental parameter space [Log10(F) vs. 

Log10(OP)]. Thus, an individual point in the space is a function of both a pulse frequency 

value and an objective price value.  The structure of the experiment was arranged such 

that the pulse frequency and objective price of a given point in the space was set on a 

given “trial.” A daily session was divided into several relatively brief trials; the trial time 

was set such that the rat could harvest a maximum of 20 rewards (e.g., 1 s price times 20 

rewards = trial time of 20 s, 2 s price times 20 rewards = 40 s, etc.).  The points in the 

parameter space that were tested depended on the experimental condition (frequency 

sweeps, price sweeps, mountain conditions).    

The lever was extended at the beginning of the trial and was withdrawn for 2-4 s 

immediately after the rat is rewarded. The duration of this black-out delay was dependent 

on the subject. A low time allocation may be due to aversive or motor effects. Therefore, 

if the time allocation was 0.6 or less, the black-out delay was increased by 1 s to drive 

maximal performance to at least 0.7 to 0.8. (The use of black-out delays is elaborated on 

in the next section.)   
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When the lever was depressed, the cue light was illuminated to aid learning.  In 

between trials, the house light flashed for 10 s to signal the beginning of the next trial.  

Before every trial, during the last second of the flashing house-light period, the rat 

received 1 train of priming stimulation. For the training “sweep” conditions, the pulse 

frequency of the priming train was set to the same value as in the train that would be 

triggered by the lever on that particular trial. In the actual “mountain” experimental 

condition, the priming stimulation was a high pulse frequency value, constant across all 

of trials. (Because of the PC clock system constraints, the actual computer-generated 

price is not exactly the experimenter-set price, but very close. The error is somewhat 

larger at the lower prices, but is inconsequential given that the models predict a flat 

subjective price range along these very low prices. Appendix A demonstrates the 

differences between the experimenter-set prices and computer-generated prices at 0.3 log 

unit intervals, from 0.125 s to 8 s. Prices will be described in this chapter by the 

experimenter-set price.) 

 

2.9.4. Training: frequency sweeps   

The first phase of training in the automated setup consisted of daily sessions of 

“frequency sweeps.” A “sweep” in this context colloquially refers to an ascending or 

descending sequence of experimental parameter values.   Nine points of the sample space 

were tested:  in a frequency sweep, the price remained fixed while the pulse frequency 

decreased by equal logarithmic steps from trial to trial. For example, if the logarithmic 

step size was set to 0.1, then the pulse frequencies were: 200 Hz, 159 Hz, 126 Hz, 100 

Hz, 80 Hz, 63 Hz, 50 Hz, 40 Hz, 32 Hz. Because it was the pulse frequency that changed 
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in this condition, this sampling matrix is termed the “pulse-frequency sampling matrix.”  

Each trial was defined by an element (point) of the pulse-frequency sampling matrix.  

An individual sweep consisted of a total of 10 trials ranging from highest pulse 

frequency value of the pulse-frequency sampling matrix to the lowest pulse frequency 

value. The first trial in the set served as a warm-up trial; this pulse frequency was the 

same as that of the second trial. The data from the warm-up trial were discarded in the 

analysis. One daily session consisted of a total of 10 sweeps. The data from the first 

sweep were discarded in the analysis. Time allocation varies in sigmoidal fashion as a 

function of pulse frequency.  The range of the pulse frequencies tested was set so as to 

drive performance from its minimal to maximal values and to include both lower and 

upper asymptotes (Figure 6A). The pulse frequency-sweep structure is illustrated in 

Figure 8A. 

In the first frequency-sweep session, the price was set to 1 s.  If the maximal time 

allocation was at least 0.8, the price was raised to 2 s on the next session.  If the maximal 

time allocation was less than 0.8, the current and pulse frequencies were adjusted to drive 

performance to a time allocation of at least 0.8.  The price was increased until it reached 

4 s. The range of pulse frequencies was adjusted such that there were several points along 

each of the upper and lower asymptotes and the sloping portion of the psychometric 

curve relating time allocation curve to pulse frequency.  Next, a frequency sweep was 

conducted at a price of 0.125 s to determine whether the time allocation to the lever 

would be significantly compromised due to the potential motor or aversive side effects 

that may be manifested at a high rate of reward delivery.  If the time allocation of this 

frequency sweep was less than 0.6, then the black-out delay was increased in order to  
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200 Hz

159 Hz

126 Hz

100 Hz

80 Hz

63 Hz

50 Hz

40 Hz

32 Hz

200 Hz

Pulse frequency sweep @ 4s 
(trial time  =  4 s  ×  20  = 80 s)

× 10

Price sweeps @ high pulse frequency (200 Hz)
(trial time = price (s) ×  20 )

4 s

6.3 s

10 s

15.9 s

25.3 s

40 s

63.4 s

100.5 s

159.2 s

4 s

× 3

Total: 100 trials Total 30 trials 

Figure 8.  A. An example of a pulse frequency-sweep  training session. Each box 
represents a trial.  The pulse frequency is reduced across trials while the price 
stays constant. Ten trials are repeated 10 times throughout the session. B. An 
example of a price-sweep training session. The price is increased across 10 
trials while the pulse frequency is set to a constant high value. These 10 trials 
are repeated 3 times.

A B
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drive maximal time allocation back to the level achieved at the higher prices.  If there 

was a need for adjustment, the black-out delay determined in this condition was used for 

the rest of the experiment. This training phase was approximately 5-10 daily sessions. 

 

2.9.5. Training: price sweeps  

The second training phase entailed the price sweeps:  the pulse frequency 

remained fixed while the prices were space by by equal logarithmic steps. For example, 

at a step size of 0.2 log units, the tested prices were: 4 s, 6.3 s, 10 s, 15.9 s, 25.3 s, 40 s, 

63.4 s, 100.5, 159.2 s.  Because it was the price that changes in this condition, this 

sampling vector is termed the “price-sampling matrix.”  The pulse frequency remained 

constant, set to the maximum value used in the previous condition.   Each trial in the 

condition was defined by an element of the price-sampling matrix.  

An individual sweep consisted of a total of 10 trials. The first trial in the set 

served as a warm-up:  the first trial of the sweep was a warm-up, set to the same price as 

the one in effect on the second trial.  The range and starting price were adjusted such that 

there were several points on the upper and lower asymptote and on the sloping portion of 

the time allocation versus price plot. The trial times were set as above (the price × 20 

rewards). Because the rat required long trial time duration at high prices, there were only 

2-3 sweeps conducted per daily session. In total, the rats trained in this condition for 

approximately 10-15 daily sessions.  The price-sweep structure is illustrated in Figure 8B. 
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2.9.6. Mountain conditions  

 

2.9.6.1. Radial-sampling matrix  

The third sampling matrix is the “radial-sampling matrix” which is incorporated 

into the mountain experimental paradigm described below.  In the radial-sampling 

matrix, both price and pulse frequency are varied simultaneously by equal logarithmic 

steps. Specifically, the price is increased while the pulse frequency is decreased such that 

the trajectory of the radial-sampling matrix in the parameter space [Log10(F) vs. 

Log10(OP)] passes through or near the point defined by the fitted position parameters, 

[Log10(OPe), Log10(Fhm)]. (This trajectory ensures there is sufficient data around these 

important parameter values to provide the most accurate fit possible of the mountain 

model.) The range of the experimental parameters (pulse frequency and price) for this 

matrix was established using data from the frequency sweep and price sweep, which were 

entered in a simulator developed by Yannick Breton in Matlab (The Mathworks, Natick, 

MA). The green segment in Figure 9B represents the radial-sampling matrix for one rat. 

 

2.9.6.2.  The structure of the mountain testing paradigm  

In the mountain condition, points were sampled at random and without 

replacement from the sampling matrices.  The “standard” mountain paradigm (used in 

previous experiments, Hernandez et al., 2010) employs 3 sampling matrices: the pulse-

frequency sampling matrix @ a 4 s price, the price-sampling matrix @ a high pulse 

frequency, and the radial-sampling vector.  As described above, a trial is defined by a 

point from a sampling matrix.  The trial time was set such that the rat could harvest a 
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maximum of 25 rewards (i.e., 4 s price times 25 rewards = trial time of 100 s).  The range 

of pulse frequency and price values of the sampling matrices were chosen based on the 

behaviour that the rat displayed in the pulse frequency and price-sweep training 

conditions such that the chosen values capture the sigmoidal nature of the behaviour 

(time allocation versus pulse frequency or time allocation versus price).  A survey is 

defined as a test of all of the points of the 3 sampling matrices.  

Each trial was presented in a “triad” fashion, in between two “bracketing trials.” 

The first bracketing trial (the leading trial) consisted of the maximum pulse frequency the 

rat would encounter in the experiment, at a price of 1 s. The second bracketing trial (the 

trailing trial) consisted of a very low pulse frequency at a price of 1 s. Due to the 

possibility that the randomized nature of the sampling could confuse the subject, the 

bracketing trials were employed to give the subject a frame with which to “compare” the 

pulse frequency (of the test trial) to two extremes.  The priming stimulation did not 

change from trial to trial, but was always set to the pulse frequency employed on the first 

bracketing trial. (See Figure 11 for an illustration of how the trials were structured). 

 

2.9.6.3. Training: 3-sampling matrix mountain condition 

The rats were trained in the experimental mountain paradigm described above. 

After 5 sessions in this mountain condition, the reward mountain model was fit to the 

data. If the radial-sampling matrix did not pass through, or close to the crosshair defined 

by the two location parameters [Log10(OPe), Log10(Fhm)], then the vector was adjusted 

using the mountain simulator. After 5 sessions, the data were analyzed again, and if the 

radial sampling vector passed through the location parameters, 5 more sessions were 
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conducted.  

In total, for this condition condition, there are 126 trials: 42 test trials defined by 

the points of the sampling vectors and 84 bracketing trials. Each daily session was 

approximately 6 hours in duration.  

These 3 sampling matrices were needed to estimate the parameters of the 3-

dimensional mountain model: time allocation to depressing the lever as a function of 

stimulation pulse frequency and price. However, note that this is a training condition for 

the rats and was used to determine which experimental parameters should be used in the 

next “9-sampling matrix mountain testing paradigm.”  The structure of this condition is 

summarized in Figure 9A. Figure 9B illustrates an example of the sampling matrices used 

in this condition for one rat. (The statistical analysis for the data from this condition is 

described in Chapter 3, Appendix D.) 
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The structure of the 3-sampling matrix mountain condition

There are 3 sampling matrices in this training condition:  1 pulse frequency sampling matrix, 1 
price sampling matrix, and 1 radial sampling matrix.

Each sampling matrix has 14* elements (points). An element is a unique pulse frequency-price 
combination.

A trial is defined by a point of a sampling matrix.

The names of the sampling vectors are in bold:

pulse-frequency sampling matrix @ 4 s
the pulse frequency varies across 14 points by common logarithmic steps while the price 
remains constant

price-sampling matrix @ high pulse frequency
The price varies across 14 points while the pulse frequency remains constant, set to a high 
value

radial-sampling matrix
The price is increased while the pulse frequency is decreased across 14 points

Figure 9A. Experimental structure of the 3-sampling matrix mountain condition.  
(*  For two rats, F3 and F9 there were 9 points in a sampling matrix.)  This is a 
training condition. The data obtained in this condition is used to guide the 
parameter values to be set in the next condition, the 9 sampling matrix mountain 
condition.
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Figure 9B.  An example of the sampling matrices used in a 3-sampling matrix 
mountain paradigm. Each colour represents a distinct sampling matrix. Each 
point is a unique combination of pulse frequency and price. A trial in the session 
is defined by a point of a sampling matrix. A point of the sampling matrix is 
sampled once, without replacement within a session.

Sampling Matrices:

Objective Price (s)

Log10 Objective Price 
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2.9.6.4. Experimental subjects 

Note that the number of elements (points) of the sampling matrices and the 

distribution of the experimental trials in the experiment differed slightly across two 

groups of rats. In group 1 (rats F3, F9) each sampling matrix consisted of 9 points. The 

3rd to the 7th points in all three sampling spaces were tested twice per survey. These 

points were tested twice to increase the amount of sampling data along the steep portions 

of the psychometric curves, which are the portions that most influence the values of the 

position and slope parameters of the mountain model. These additional data shrink the 

confidence intervals surrounding the estimates of these parameters. Nine points were 

tested per sampling matrix; there were a total of 14 trials for each sampling matrix.  

For the second group of rats (rats F12, F16, F17, F18), each sampling matrix 

consisted of 14 points, instead of the 9 points in group 1 (rats F3, F9).  The intervals 

separating the 10 central points were half as large as those separating the points on the 

extremes. Thus, the steep portions of the psychometric curves were sampled more 

densely than the less critical, flatter regions at either end. 

 

2.9.6.5. 9-sampling matrix mountain condition 

In this condition, 9 sampling matrices were employed. In addition to the 3 

sampling matrices in the previous condition (pulse-frequency sampling matrix @ 4s, 

price-sampling matrix, radial-sampling matrix), 6 more pulse frequency sampling 

matrices were added, at prices of 0.125 s, 0.25 s, 0.5 s, 1 s, 2 s, and 8 s. (The pulse 

frequencies within the matrix were chosen based on the behaviour displayed in the 3-

sampling matrix mountain condition.)  As above, the sequence of test trials was 
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randomized, and test trials were presented in between 2 bracketing trials. The 

psychometric curves were adjusted such that there were several points along both 

asymptotes as well as along the slope. In total, there were 378 trials, 126 experimental 

trials, and 252 bracketing trials.  Each daily session lasted 7 to 8 hours. 

Once all of the pulse frequency curves were adjusted and the radial-sampling 

matrix passed through the location parameters, as described above, 10 sessions were 

collected. It is the data obtained from this condition that are used for the subjective price 

model analyses.  The structure of this condition is summarized in Figure 10A and 

example of the sampling matrices used is described in Figure 10B. The structure of the 

trials within a session is summarized in Figure 11. 
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Figure 10A. Experimental structure of the 9 sampling matrix mountain condition.
*two rats had 9 points in the sampling matrix instead of 14. Data obtained from 
this condition is used to estimate the subjective price function.

The structure of the 9-sampling matrix mountain condition
There are 9 sampling matrices in the experimental condition: 7 pulse frequency sampling 
matrices, 1 price sampling matrix, and 1 radial sampling matrix.

Each sampling matrix has 14* elements (points). An element is a unique pulse frequency-price 
combination.
A trial is defined by a point of a sampling matrix.

The names of the sampling vectors are in bold:

pulse-frequency sampling matrix @ 0.125 s 
pulse-frequency sampling matrix @ 0.25 s
pulse-frequency sampling matrix @ 0.5 s
pulse-frequency sampling matrix @ 1s
pulse-frequency sampling matrix @ 2 s
pulse-frequency sampling matrix @ 4 s
pulse-frequency sampling matrix @ 8 s
Pulse frequency matrices: the pulse frequency varies across 14 points by common logarithmic 
steps while the price remains the same

price-sampling matrix @ high pulse frequency
The price varies across 14 points while the pulse frequency remains constant, set to a high 
value

radial-sampling matrix
The price is increased while the pulse frequency is decreased across 14 points
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Figure 10B.  An example of the sampling matrices used in a 9-sampling matrix 
mountain paradigm. Each colour represents a distinct sampling matrix. Each 
point is a unique combination of pulse frequency and price. A trial in the session 
is defined by  a point of a sampling matrix. A point of the sampling matrix is 
sampled once without replacement within a session.

Sampling Matrices:

Log10 Objective Price 

Objective Price (s)
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Leading trial
(High pulse frequency @ 1 s price)

Trial time: 25 s
Test trial
(Randomly sampled point from a 
sampling vector, without 
replacement. A point is a unique 
pulse frequency-price pair)

Trial time: price × 25

Figure 11. Sequence of trials in the 9-sampling matrix mountain condition. The 
rectangles represent a trial in the experiment. The trials within the condition are 
presented in a “triad” form. The test trial is always between two bracketing trials: 
the leading, (high reward) trial, and the trailing (low reward trial). The test trial is 
defined by a point from one of the 9 sampling matrices and is sampled without 
replacement. In total the experimental session has 378 trials. 

Trailing trial
(Low pulse frequency @ 1 s price)

Trial time: 25 s

Total: 378 trials
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Statistics and Results 

2.10. Raw data 

In the operant box, the rat is faced with a choice.  It can choose to “work” for the 

reward, that is, hold down the lever for the cumulative experimenter-set length of time 

(referred to as the “price”). Alternatively, it can choose to engage in activities other than 

working, such as grooming, resting, and exploring. These are referred to as “everything 

else” or “alternate activities.” 

The raw data obtained were the distribution of “holds” (intervals during which the 

lever was depressed by the rat) and “releases” (intervals during which the lever was 

extended but not depressed by the rat). The times during the trial that the rat held and 

released the lever and the duration of these holds and releases were recorded. The goal 

was to sum the cumulative amount of time the subject held the lever (total work time) 

during a given trial. This total hold (work) time was then converted into a proportion by 

dividing the total hold time by the total trial length. This proportion of time allocated to 

holding the lever is the dependent measure, referred to as the time allocation.�
Before the hold time was transformed into the time allocation measure, two 

adjustments were made to the raw data.  The first adjustment accounts for a rat’s 

occasional tendency to interrupt a depression of the lever with a very brief, apparently 

involuntary, release, which we call a “tap” (Breton, Marcus & Shizgal, 2009).  

Specifically, for the present experiment, short releases were classified as brief taps and 

were not considered to be representative of alternate activities in the operant box because 

these brief intervals are too short for the rat to be engaged in alternate activities.  During 

these very brief releases, the rat is usually standing with its paw over the lever and is not 
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engaged in other activities. Therefore, a correction was implemented to treat releases of 

less than 1 s as work; these short release intervals were included in the measure of time 

allocation.  

A second correction was made to the raw data. At the start of any given 

randomized trial, the rat does not know the parameters of the reward (reward intensity 

and cost). Thus, at the beginning of a new trial, the rat shows persistence in holding the 

lever, enabling it to discover the reward strength and cost as quickly as possible. Previous 

data (Breton, 2013b) has shown that the rat needs only one encounter with the reward to 

learn the values of both reward parameters on a given trial. In the present study, we are 

interested in the rat’s behaviour once the reward parameters have been learned. A 

subject’s behaviour before the first encounter (i.e. before it has learned the reward 

intensity and cost) is not representative of how it allocates its time to obtaining a given 

reward with known parameters. Thus, we discarded from the analysis the data obtained 

before the first reward encounter. 

After the two adjustments were made to the raw data, the “adjusted” amount of 

time the rat holds the lever as a proportion of total trial time, was calculated. This 

“adjusted” time allocation will be referred to simply as  “time allocation” in the analyses 

described below. 

 

2.11. Psychometric functions: determining the FM50 and OPM50 values 

In total, 9 sampling matrices were tested: 7 pulse-frequency sampling matrices, 1 

price-sampling matrix, 1 radial-sampling matrix. Overall, 10 surveys (10 daily tests of the 

9 sampling matrices) were collected for each rat.  Thus, after completion of the 
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experiment, for one subject, there were altogether 90, 2-dimensional curves relating time 

allocation to pulse frequency or to price that can be plotted. (However, for rat F3 a total 

of 11 surveys were collected, rat F16 a total of 8 surveys, and rat F17 a total of 9 

surveys.).  Spline functions (polynomials joined together by fixed points or knots) were 

fit to each 2-dimensional psychometric curve (using the Matlab spline function routine). 

For each of the 90 individual psychometric curves (9 sampling matrices × 10 tests), the 

pulse frequency at half-maximal responding, denoted by FM50 (for the psychometric 

curves corresponding to the pulse-frequency sampling matrices and radial-sampling 

matrices), or objective price at half-maximal responding, denoted by OPM50 (for the 

psychometric curves corresponding to the price and radial-sampling matrices), were 

determined.  

Figure 12 illustrates an example of a set of psychometric curves with fit spline 

functions, obtained after 10 surveys, for the tests of the pulse-frequency sampling matrix 

@ 4 s for rat F18. The first graph of Figure 12 (for Survey 1) demonstrates how the FM50 

was determined: the half-maximal time allocation is calculated (represented by the dotted 

horizontal line), and the pulse frequency corresponding to the half-maximal value was 

measured, represented by the dotted vertical line and red star on the x-axis. The FM50 

values were derived in this manner for all of the psychometric curves.  

An example of the distribution of half-maximal values collected after completion 

of the experiment corresponding to the tests of all sampling vectors are illustrated in 

Table 1 for rat F18. There were 10 tests of each of the 9 sampling matrices, therefore 10 

corresponding psychometric curves (as in Figure 12). This scheme implies a distribution 

of 10 FM50 or OPM50 values. Note that for the test of the price-sampling matrix, the OPM50  
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Survey 1 Survey 2

Survey 3 Survey 4

Survey 5 Survey 6

Survey 7
Survey 8
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Survey 9 Survey 10

Figure 12. A set of psychometric curves with fit spline functions, obtained after 
10 surveys (thus 10 days), for the tests of the pulse frequency sampling matrix 
@ 4 s for rat F18. The first graph (for Survey 1) demonstrates how the FM50 is 
determined: the half-maximal time allocation is calculated (represented by the 
dotted horizontal line), and the pulse frequency corresponding to the half-
maximal value is measured, represented by the dotted vertical line and red star 
on the x-axis. The FM50 values are derived in this manner for all of the 
psychometric curves (vertical and horizontal lines not shown for the rest of the 
curves).
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The spline functions 
corresponding to this 
data set are illustrated 
in Figure 12

Pulse frequency sampling matrix at 0.125 s (-0.903 log units)

Pulse frequency sampling matrix at 0.5 s (-0.301 log units)

Pulse frequency sampling matrix at 2 s (0.301 log units)

Pulse frequency sampling matrix at 8 s (0.903 log units)

Radial sampling matrix

Price sampling matrix at 164 Hz (2.215 log units)

Pulse frequency sampling matrix at 0.25 s (-0.602 log units)

Pulse frequency sampling matrix at 1 s (0 log units)

Pulse frequency sampling matrix at 4 s (0.602 log units)
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Table 1. The distribution of FM50 values and OPM50 values for Rat 18, across the 
complete experiment, 10 surveys (sessions). Values are expressed in 
logarithmic units. For the tests of the pulse frequency sampling matrix, FM50 is 
derived as illustrated in Figure 12. For the tests of the price-sampling matrix, 
OPM50 is derived. For the tests of the radial sampling vector, both FM50 and 
OPM50 are derived. These values are plotted in [Log10(F) vs. Log10(OP)]  space. 
For example, for the pulse frequency sampling matrix @ 0.125 s, the first point 
plotted in space is for survey 1: coordinates (-0.903, 1.528), the second point, 
survey 2: (-0.903, 1.5770), etc. All of the values in the table are plotted in this 
manner in the  [Log10(F) vs. Log10(OP)] space.  The pulse frequency-objective 
price trade-off functions can then be fit to the points in space.
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was measured because it was the objective price that varied across the sampling matrix. 

Also note that for the test of the radial-sampling matrix, FM50 and OPM50 values were 

obtained for each psychometric curve because both the pulse frequency and objective 

price varied.  This distribution of FM50 and OPM50 values are plotted in [Log10(F) vs. 

Log10(OP)] space, illustrated in Figure 13.  

 

2.12. The pulse frequency-objective price trade-off functions 

The pulse frequency-objective price trade-off functions in the [Log10(F) vs. 

Log10(OP)]  space are then fit to the distribution of the FM50  and OPM50 values for each 

rat. There are 4 pulse frequency-objective price trade-off functions: each one incorporates 

one of the proposed subjective price functions as well as the reward mountain parameters.  

The form of the pulse frequency-objective price trade-off functions is the contour 

line of the 3-dimensional reward mountain at half-maximal time allocation. This trade-off 

function is collapsed into two dimensions in the space [Log10(F) vs. Log10(OP)] as  

illustrated in Figure 14A and B. Derivation of the 4 forms of the pulse frequency-

objective price trade-off functions from the general TA reward mountain equation are 

described in Appendix B. 
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Figure 13.  Distribution of all values from Table 1 for Rat F18 after 
completion of the experiment. It is to this distribution that the 
proposed pulse frequency-objective price trade-off functions are fit.
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The four pulse frequency-objective price trade-off functions fit to the FM50 and OPM50 

data points are: 

 

(1). The objective price trade-off function: 

(This is the form of the subjective price function that has been assumed in previous 

studies using the reward mountain model) 

 

LogFM 50 = Log(Fhm )+ 1

g
× Log

SP

SPe − SP

⎛
⎝⎜

⎞
⎠⎟

 

where, 

SP = OP 

(with 3 parameters: Fhm, SPe, g) 

 

(2). Shizgal’s subjective price trade-off function: 

 

LogFM 50 = Log(Fhm )+ 1

g
× Log

SP

SPe − SP

⎛
⎝⎜

⎞
⎠⎟

 

where, 

SP = SPmin + (SPbnd × ln(1+ e
OP−SPmin

SPbnd ))  

(with 4 parameters Fhm, SPe, g, SPmin, SPbnd) 
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(3). The inverted hyperbolic discounting trade-off function: 

 

LogFM 50 = Log(Fhm )+ 1

g
× Log

SP

SPe − SP

⎛
⎝⎜

⎞
⎠⎟  

where, 

SP =1+ (k ×OP)  

(with 4 parameters: Fhm, SPe, g, k) 

 

 

(4). The inverted exponential discounting trade-off function: 

 

LogFM 50 = Log(Fhm )+ 1

g
× Log

SP

SPe − SP

⎛
⎝⎜

⎞
⎠⎟  

where, 

SP = ek×OP  

(with 4 parameters: Fhm, SPe, g, k) 

 

The forms of these 4 functions are illustrated in Figure 14 for demonstration, with 

parameters set to values typically seen in BSR experiments.   
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By substituting for half-maximal time 
allocation in the TA expression above and 

simplifying, the contour line at half-maximal 
time allocation is expressed as:

Figure 14. A and B.  The pulse frequency-objective price trade-off function to be fit to the 
data points of the (90) psychometric functions is the 3-dimensional reward mountain 
representation (A) collapsed onto a 2-dimensional plane when time allocation is half-
maximal (B). The trade-off function is  expressed in terms of independent variables OP
and F and reward mountain parameters Fhm, g and SPe and the associated subjective 
price parameters.  The above 3-dimensional reward mountain and corresponding pulse 
frequency  trade-off function and equations are expressed for the “objective price 
function” where the transformation of the objective price into subjective price is one to 
one,  SP = OP.  The same logic applies for deriving the forms of the pulse frequency-
objective price trade-off functions for the other subjective price functions to be fit to the 
data. The derivation for the contour line is described formally in Appendix A.
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Figure 14. C-E.The other proposed forms of the pulse frequency-objective price 
trade-off functions. C. Shizgal’s subjective price trade-off function D. The 
(inverted) hyperbolic trade-off function. E. The (inverted) exponential trade-off 
function. The parameter values are set to values typically seen in BSR and delay 
discounting experiments. 

125



2.13. Fitting the pulse frequency-objective price trade-off functions to the data 

The 4 pulse frequency-objective price trade-off functions are fit to the distribution 

of FM50 and OPM50 values in the [Log10(F) vs. Log10(OP)] space (using the Matlab least 

squares fitting routine in the Statistical Toolbox) and then evaluated to determine the best 

fitting function.     

The resampling method was employed with the goal of obtaining 200 data sets of 

resampled FM50 and OPM50 distributions and fitting the pulse frequency-objective price 

trade-off functions to each of the 200 data sets. 

To obtain one entire set of resampled data, for each sampling matrix, the FM50 

values were sampled with replacement for the number of times equivalent to the number 

of surveys collected (for most rats, 10). For example, considering the distribution of data 

points for Rat F18 in Table 1, when resampling with replacement for the data obtained in 

the tests of the pulse frequency sampling vector @ 0.125 s, the resampled data points 

(FM50 values) could be from survey numbers: 2, 4, 1, 5, 6, 7, 1, 9,1, 9. For the pulse 

frequency sampling vector @ 0.25 s, the resampled data points could be from survey 

numbers: 4, 10, 9, 6, 1, 6, 2, 3, 2, 1. This resampling is employed for all of the sampling 

matrices. Thus, one entire set of resampled data will look like Table 1 and Figure 13, but 

with the resampled values.  The pulse frequency-objective price trade-off functions are 

then fit to this resampled data set and parameters (such as Fhm, SPe, g, SPmin, SPbnd, k ) are 

derived.  The resampling methodology is then repeated, generating a second data set that 

looks like Table 1 but with resampled values. To this resampled data set, the pulse 

frequency-objective price trade-off functions are fit, and parameters are again derived. 

This resampling procedure is repeated 200 times (obtaining 10 tables like Table 1 but 
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with resampled values). After the 10 iterations, the mean trade-off function parameter 

values (Fhm, SPe, g, SPmin, SPbnd, k) are calculated along with their 95% confidence 

intervals.  The resampling method is employed because it allows for confidence intervals 

around the parameter means. 

For each rat, the mean parameters and corresponding 95% confidence intervals 

for each function are presented in Tables ApC.1-6 of Appendix C.  For each rat, the pulse 

frequency-objective price trade-off functions are plotted for each subjective price 

function.  Figures 15 and 16 (left panels) illustrates the 4 pulse frequency-objective price 

trade-off functions for rat F16 and rat F18. The other rats’ pulse-frequency-objective 

price trade-off functions are in Figures ApD.1-4 of Appendix D.   

 

2.14. Subjective price as a function of objective price 

Once the parameters of each of the objective price-pulse frequency trade-off 

functions are determined for each rat, each of the 4 proposed subjective price functions 

can be plotted: subjective price (SP) as a function of objective price (OP).    

Furthermore, for graphical purposes, the data points (FM50 values) of the [Log10(F) 

vs. Log10(OP)] space can be transformed into subjective price space [Log10(SP) vs. 

Log10(OP)].  

This transformation is completed by the expression below that has been derived 

from the reward-mountain equation by solving for SP when time allocation (TA) is half-

maximal (Appendix E): 

 

SPMidTA = RIrel × SPe  
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where, 

RIrel =
Fg

Fg + Fhm
g  

 

SPMidTA = the subjective price corresponding to half-maximal time allocation 

 

To derive the SPMidTA values, the parameters, g, SPe, Fhm are obtained from the respective 

pulse-frequency trade-off functions.  The subjective price function plots for rats F16 and 

F18 are illustrated in the right panels of Figure 15 and 16. The plots for the other rats are 

in Figures ApD.1-4 of Appendix D. 
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Objective price function

Shizgal’s subjective price function
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E F

G H

The (inverted) hyperbolic subjective price function

The (inverted) exponential subjective price function
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Figure 15. For rat F16, the pulse-frequency trade-off functions (left) and 
corresponding subjective price functions (right). A & B. The objective price 
model. C  & D. Shizgal’s subjective price function. E & F. The inverted hyperbolic 
delay discounting subjective price function. G & H. The inverted exponential 
delay discounting subjective price function. “Contour” denotes the function, 
“interpolants” denotes the data points. 

For illustrative purposes, the data points represented on the pulse-frequency 
trade-off function graphs (left) are the resampled data points means (FM50 and 
OPM50) with associated 95% confidence intervals. Specifically, 1000 resampled 
distributions were generated: the mean of the FM50 distribution corresponding to 
each sampling vector was calculated. The data points represent the mean of 
these 1000 means for each sampling vector. The trade-off function plotted 
(contour) uses the parameters from the fit to the initial (non-resampled) data.

The corresponding subjective function is plotted to the right of the trade-off 
function. The parameters derived from the trade-off function are used to plot the 
subjective price function. The data point means are the transformed pulse 
frequency values (described in text). Thus, each obtained FM50 value from the 
spline function corresponds to a subjective price (SP) at half-maximal 
responding. The resampling technique is used as above, 1000 resampled 
distributions corresponding to each sampling vector was calculated, the mean 
SP of each of the 1000 means was calculated.
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A B

C D

Objective price function

Shizgal’s subjective price function
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E F

G H

The (inverted) hyperbolic subjective price function

The (inverted) exponential subjective price function

Figure 16. For rat F18, similar caption as for Figure 15.
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2.15. Model comparisons based on AIC values 

To compare the model fits and determine which model provided the best fit to the 

data, the Akaike Information Criterion (Akaike, 1974) was employed. Briefly, the AIC 

statistic provides an estimate of the relative superiority of the tested models by balancing 

the goodness of fit with the complexity of the model (the number of parameters). For 

each rat, the AIC statistic was calculated for each model. The AIC values and associated 

statistics for the models for each rat are presented in Tables 2-7.  On a relative scale, the 

more negative the AIC value, the better the model. The difference between the AIC for all 

of the models and the highest ranked model, termed dAIC, is determined. The likelihood 

corresponding to each dAIC is calculated (likelihood = e(-dAIC/2)), which determines the 

probability that a given model is better than the highest ranked model. The AIC weight is 

the probability that the model is the best model among the whole set of candidate models 

(AIC weight = likelihood/sum of likelihood of all models). The evidence ratio is the 

number of times the highest ranked model is more likely to be better than a given model 

(evidence ratio  = AIC weight of highest ranked model/AIC weight of given model). The 

residual sum of squares (RSS) is the sum of the squared errors of prediction, a measure of 

the difference between the (observed) data and a (predicted) model.  In the Tables 2-7, SP 

refers to Shizgal’s subjective price model, HD is the inverted hyperbolic delay 

discounting model, ED is the inverted exponential discounting model, and OP is the 

objective price function. The models in the table are presented from best to worst. For the 

purposes of interpretation and discussion below, it is easiest to discuss the AIC scores 

with respect to AIC weights:  the probability that the model is the best model among the 

whole set of candidate models. 
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Model 
Name

AIC value dAIC Likelihood AIC 
weight

Evidence 
Ratio

N N params RSS

ED -461.4674 0 1 0.50001 1 99 4 0.85961

HD -461.4673 0.0001 0.99995 0.49999 1.00005 99 4 0.85961

SP -437.0955 24.372 0.00001 0 1.96E+05 99 5 1.07518

OP -425.9095 35.558 0 0 5.26E+07 99 3 1.25841

Table 2.  Rat F3

Model 
Name

AIC value dAIC Likelihood AIC 
weight

Evidence 
Ratio

N N params RSS

ED -474.3459 0 1 0.49928 1 90 4 0.42113

HD -474.3346 0.0114 0.99434 0.49645 1.00569 90 4 0.42118

SP -464.8207 9.5252 0.00854 0.00427 117.0523 90 5 0.45662

OP -437.2582 37.088 0 0 1.13E+08 90 3 0.65156

Table 3.  Rat F9

Model 
Name

AIC value dAIC Likelihood AIC 
weight

Evidence 
Ratio

N N params RSS

SP -471.9116 0 1 0.84334 1 90 5 0.42202

HD -467.8755 4.036 0.13292 0.1121 7.52343 90 4 0.45252

ED -465.8793 6.0323 0.04899 0.04132 20.41226 90 4 0.46267

OP -460.7914 11.12 0.00385 0.00325 259.8491 90 3 0.50165

Table 4.  Rat F12

Model 
Name

AIC value dAIC Likelihood AIC 
weight

Evidence 
Ratio

N N params RSS

ED -346.9345 0 1 0.37696 1 72 4 0.51619

HD -346.9114 0.0231 0.98854 0.37264 1.01159 72 4 0.51636

SP -346.1162 0.8182 0.66425 0.2504 1.50547 72 5 0.5056

OP -317.5419 29.393 0 0 2.41E+06 72 3 0.80102

Table 5.  Rat F16
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Model 
Name

AIC value dAIC Likelihood AIC 
weight

Evidence 
Ratio

N N params RSS

SP -500.5989 0 1 0.49022 1 90 5 0.30683

HD -499.2927 1.3062 0.52043 0.25512 1.9215 90 4 0.31918

ED -499.289 1.3099 0.51947 0.25466 1.92503 90 4 0.31919

OP -458.8359 41.763 0 0 1.17E+09 90 3 0.51266

Table 7.  Rat F18

Model 
Name

AIC value dAIC Likelihood AIC 
weight

Evidence 
Ratio

N N params RSS

ED -345.2044 0 1 0.43224 1 81 4 1.02778

HD -344.9413 0.2631 0.87674 0.37897 1.14059 81 4 1.03113

SP -343.5363 1.6681 0.4343 0.18772 2.30257 81 5 1.02013

OP -333.2022 12.002 0.00248 0.00107 403.8734 81 3 1.22497

Table 6.  Rat F17

Tables 2-7. The AIC values and associated statistics for all rats, for all models. 
The models are presented in order from best to worst. (The more negative the 
AIC value, the better the model). 
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For rat F3 (Table 2), the inverted exponential and hyperbolic discounting models 

are equivalent in terms of AIC statistics score.  The AIC weights demonstrate that there is 

an equal chance that the exponential discounting model or the hyperbolic discounting 

model is the best model, with a 50% chance corresponding to both models.  According to 

the AIC weights, Shizgal’s subjective price function and the objective price function have 

a 0% chance of being the superior model out of all the models tested. 

For rat F9 (Table 3), the AIC values and associated statistics demonstrate the 

same pattern as F3: a 50% chance that either the exponential delay discounting model or 

hyperbolic discounting model is the best while Shizgal’s subjective price model has a 

0.4% chance, followed by the objective price model at 0%. 

For rat F12 (Table 4), the AIC demonstrates that Shizgal’s subjective price model 

is the highest ranked model with an 84% probability. The hyperbolic discounting model 

is second, with an 11% chance of being the best model, followed by the exponential 

delay discounting model at 4%, and objective price function at 0%. 

For rat F16 (Table 5) the exponential delay discounting and hyperbolic 

discounting models, were of equal probabilities of being the superior model at 37%, 

followed closely by Shizgal’s subjective price function at 25% while the objective price 

model had a 0% chance of being the superior model. 

For rat F17 (Table 6), the exponential discounting function had the highest 

probability of being the best, at 43% followed by the hyperbolic discounting at 37%, 

Shizgal’s model followed at 18%, the objective price function at 0%. 
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For rat F18 (Table 7), Shizgal’s subjective price function ranked the highest, with 

a 50% chance of being the best model, followed by the hyperbolic delay discounting and 

exponential delay model, each at 25%, and objective price function at 0%. 

In summary, according to the AIC statistic, for 3 rats (F3, F9, F16), both the 

hyperbolic and exponential discounting models with the same weight were the superior 

models, and for 1 rat (F17) the exponential discounting was the highest ranked model.  

For two rats (F12 and F18), Shizgal’s subjective price model was ranked as the superior 

model. The objective price model was consistently the lowest ranked model.  

In addition to the AIC statistic, the best model for each rat was assessed with 

regards to theoretical validity. First, the assessment was made with respect to the output 

of the function. Second, the reasonableness of the parameter values of g and Fhm of the 

proposed functions were considered based on previous reward mountain experiments; k 

was considered based on previous BSR experiments, and SPmin and SPbnd based on 

simulations. The theoretical validity of the models for each rat will be evaluated in the 

next section.  
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Discussion 

The present experiment tested four psychophysical functions that transform 

objective opportunity costs into their subjective equivalents to determine the most 

plausible transformation. These psychophysical functions include: the previously 

assumed objective price function in which objective prices equal subjective prices along 

the whole price range; Shizgal’s subjective price function in which the function is flat 

along low objective prices but becomes scalar at a higher range; the inverted hyperbolic 

discounting function, which describes prices being treated as a delay to the reward, 

similar to the “hockey-stick” shape of Shizgal’s subjective price function but with a 

smoother transition and a non-scalar relationship; and the inverted exponential delay 

discounting function, a similar function that describes prices being treated as a traditional 

delay to a reward. Reward mountain methodology was used such that 9 sampling 

matrices of the [Log10(F) vs. Log10(OP)] space were tested. The FM50 and OPM50 values 

were derived from the psychometric curves and plotted in the [Log10(F) vs. Log10(OP)] 

space. The 4 pulse frequency-objective price trade-off functions with the embedded 

proposed subjective price functions were fit to the FM50 and OPM50 data points. The 

parameters of the subjective price functions were derived (g, SPe, Fhm, k, SPmin, SPbnd) 

and the subjective price function was plotted in the space [Log10(SP) vs. Log10(OP)].  

The AIC statistic which balances the goodness of fit with the complexity of the 

model was used to statistically rank the quality of the proposed models. For 3 rats (F3, 

F9, F16) the hyperbolic and exponential discounting models of the same AIC weight 

were the superior models, while for 1 rat (F17) the exponential discounting function was 

the highest ranked.  For 2 rats (F12 and F18), Shizgal’s subjective price model was 
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ranked as the superior model. The objective price model was consistently the lowest 

ranked model. 

 

2.16. Model comparisons based on the theoretical validity of predicted subjective prices  

In addition to statistically ranking the models using the AIC, the plausibility of a 

model in terms of theoretical validity was assessed. Specifically, the theoretical 

credibility of each model was examined by considering each given model’s predicted 

subjective prices, as elaborated below. 

For F3, for both delay discounting functions, the output, subjective price, spanned 

a very small range at the low end of the subjective price scale. Examining the range of 

tested objective prices, 0.125 s to 8 s (~1.8 log unit range), the inverted hyperbolic 

discounting function predicted subjective prices at a range of only  ~ 0.035 common 

logarithmic units, from about 1 to 1.09 s.  For the inverted exponential delay discounting 

model, the predicted subjective prices over the tested objective price range spanned only 

~ 0.08 log units ranging from 1 s to 1.2 s. Visually, the y-axis is magnified to illustrate 

the shape of the function, but if both the x-axis and y-axis scales matched (as for the plots 

of Shizgal’s subjective price function and the objective price function), the curve would 

be an almost horizontal line, even shallower than the orange curve representing this 

function in Figure 3 (a simulation) in the introduction. This implies that the rat interprets 

an objective 8 s price almost the same as it does a 0.125 s price. According to these 

models, a 0.125 s and an 8 s would be interpreted as approximately a 1 s value.  

However, this inference is clearly unsound: by simply considering the 2-dimensional 

psychometric curves and assessing the FM50 value at 0.125 s, and at 8 s, an increase in the 
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FM50 value of significant magnitude is seen. For rat F3, the increase is about 0.5 common 

logarithmic units, a 216 % increase from baseline, traditionally considered a very large 

effect. Thus, although ranked as statistically superior to Shizgal’s subjective price 

function, this function is not logically superior in terms of theoretical validity for this rat. 

The other models were evaluated for this rat: the subjective price ranges predicted by 

both Shizgal’s subjective price function and the objective price function matched the 

objective price range more realistically. 

For F9, this same pattern of unrealistic subjective price scaling arises for both of 

the delay discounting functions. Over the tested objective price range (0.125 s to 8 s), the 

hyperbolic discounting function predicts the subjective prices to span a range of ~ 0.045 

log units, from 1 s to 1.1 s. The exponential delay discount function predicts subjective 

prices that span a range of 0.1 log units, from 1 s to 1.26 s. This extremely small range 

was not realistic given that the difference in FM50 values was 0.3 log units when testing 

the pulse frequency matrix at 0.125 and at 8 s, which implies a 100% increase from 

baseline.  The subjective price values for Shizgal’s subjective price function and for the 

objective price function matched the objective price range more closely. 

For F12, all of the proposed functions predict subjective prices that are within a 

realistic range. 

For F16, over the tested range (0.125 to 8 s), the hyperbolic discounting function 

predicted subjective prices of  ~ 0.03 log units, from 1 s to 1.07 s; the exponential delay 

discounting function predicted subjective prices over a range 0.06 log units from 1 s to 

1.15 s. Like the other rats, these ranges are too small to be theoretically valid given the 

large FM50 increase when comparing 0.125 s with 8 s.  Both Shizgal’s subjective price 
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function and the objective price function predicted subjective prices over a more 

plausible range. 

For rat F17, over the tested objective price range (0.25 to 8 s), the hyperbolic 

discounting function predicted subjective prices of ~ 0.2 log units, from 1 s to 1.58 s. The 

exponential delay discounting function predicted subjective prices over a range of 0.4 log 

units, from 1 s to 2.51 s. These ranges are considered small, yet theoretically possible; the 

FM50 increase between 0.125 s and 8 s was 0.2 log units (58%), which is considered a 

large increase but not as large as for the other rats.  Shizgal’s subjective price function 

and the objective price function predicted subjective prices over a plausible range. 

For rat F18, over the tested range (0.25 to 8 s), the hyperbolic discounting 

function predicted subjective prices of  ~ 0.25 log units, from 1 s to 1.7 s.  This small 

range is not realistic possible given that the pulse frequency trade-off function 

demonstrated an effect of 0.3 log units from 0.125 s and 8 s. The exponential delay 

discounting function, Shizgal’s subjective price function and the objective price function 

predicted subjective prices over a plausible range. 

In summary, the interpretation of the transformation of objective prices into 

subjective ones was considered to be non-realistic if, over the tested objective price range 

of 0.125 s to 8 s, a model predicted subjective price values of an extremely small range.  

The occurrences in which the models predicted such a small subjective price range imply 

that the rat’s interpretation of 8 s is almost indistinguishable from 0.125 s. This inference 

is illogical based on pulse frequency-objective price trade-off magnitudes (large FM50 

increases over the tested range). This small subjective price range was seen for the two 

delay discounting functions. Specifically, the two delay discounting functions predicts 
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this small subjective price range for rats F3, F9, F16. The range spanned only about 0.1 

log units, in which the objective prices were interpreted to be around 1 s. For F17, both 

delay discounting functions predicted subjective prices in the range of 0.2 to 0.5 log 

units, a small yet plausible range due to the relatively small pulse frequency-objective 

price trade-off effect. For rat F18, the hyperbolic delay discounting predicted unrealistic 

subjective prices, while the exponential function predicted values over a reasonable 

range. 

 

2.17. Model comparisons based on the credibility of reward mountain and delay 

discounting parameters 

The tested models were also assessed with regards to the value of the parameters 

that are typically seen in reward-mountain experiments, g and LogFhm. Also, we 

considered the plausibility of LogOPe which is back-solved from parameter LogSPe of the 

present experiment; parameter LogOPe is considered because it is this parameter that has 

been used in previous versions of the reward-mountain model. The plausibility of 

parameter LogOPe is easy to assess: it is the half-maximal value of the time allocation 

curve of price-sampling matrix condition. It typically spans from 0.85 to 1.08 (7 to 12 s 

in anti-log units).  In previous reward-mountain studies, parameter g typically spans from 

2 to 10; parameter LogFhm typically spans 1.5 to 2.  For F3 and F9, parameters g and 

LogFhm are well out of the typical range for both of the delay discounting functions. For 

example, for F3 (Table AB1), the inverted hyperbolic discount function reported a 

LogFhm value of 0.27 log units (which is 1.86 Hz): this is an implausible pulse frequency 

at half-maximal reward intensity given that rats will not even respond for a 1.86 Hz train 
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of electrical stimulation.  (Depending on the rat, the typical test range of test pulse 

frequency values begins at about 20 Hz, an electrical stimulation strength for which the 

rat spends 10-20% of its time responding.) For F12, the parameters were all within the 

appropriate range. For F16, for both delay discounting functions, LogFhm is outside the 

appropriate range. For F17, for both delay discounting functions, the parameters are 

within the range. For F18, for the hyperbolic discounting function, LogFhm is outside of 

the range. Interestingly, in most cases LogOPe is in an appropriate range; the exception is 

rat F17 for the hyperbolic delay discounting model in which LogOPe is outside the 

plausible range of values. 

The k values that have been previously estimated in terms of hyperbolic delay 

discounting in BSR studies range from 0.037 to 0.455 (Mazur, Stellar, & Waraczynski, 

1987; Fouriezos & Randall, 1997). Using the inverted hyperbolic discounting function, 

the present study reports k values: F3: 0.009, F9: 0.027, F12: 1.20, F16: 0.012, F17: 0.13, 

F18: 0.10. These k values are within reasonable bounds, although at the lower limit of 

what has previously been reported in BSR research with the exception of rat F12 which 

has a high value. The reasonable bounds of the k values gives strength to the use of the 

“inverted” form of the function. However, when we assess the delay discounting 

functions at low k values by considering the plausibility of the rat’s psychological 

treatment of objective price, the delay discounting functions do not offer realistic 

interpretations as explained above (2.15).  

The k values for the exponential function are also within a reasonable range.  The 

SPmin and SPbnd for Shizgal’s subjective price function were also within realistic bounds 

based on simulations as demonstrated in Figure 2B and 2C. 
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2.18. Conclusion: inferring the best model using statistical and theoretical criteria 

Taken together, to deduce the best subjective price function for each rat, the AIC 

score was considered, as well as the theoretical validity of the subjective price output and 

reward-mountain parameters. For rats F3 and F9, both of the delay discounting functions 

are superior with respect to the AIC statistic. However, the subjective price output and 

the reward-mountain parameters were very far from a reasonable range. This suggests 

that the next highest ranked model according to the AIC, Shizgal’s subjective price 

function, probably provides the best fit for these rats. Given that the AIC for Shizgal’s 

subjective price function and the objective price function are 0, we calculated the 

associated AIC statistics without the delay discounting and exponential functions (Tables 

ApF.1-6 of Appendix F). This calculation demonstrated that Shizgal’s subjective price 

function is the best function out of the two: according to the AIC weight, there is a 

dramatic 99.6% chance that Shizgal’s subjective price function is the best model for this 

comparison for F3, and a 99.9% chance for F9. 

For F12, the AIC statistic demonstrated that Shizgal’s subjective price function is 

the best model with an 85% probability. Furthermore, the subjective prices and reward-

mountain parameters were within reasonable bounds for this function. Thus, it was 

concluded that Shizgal’s subjective price function is the superior model for this rat.    

For F16, the exponential and hyperbolic discounting function were the best 

models according to AIC, yet for these models predicted subjective prices and reward 

mountain parameters outside of reasonable ranges. Thus, it was concluded that the third 

ranked model, Shizgal’s subjective price function, was the best model. Comparing the 

AIC statistics of Shizgal’s subjective price model with the objective price model without 
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the two delay discounting functions demonstrated that there is a 99.9% chance that 

Shizgal’s subjective price function is the superior model (Table ApF.4). 

For F17, the exponential discounting model was the highest ranked according to 

the AIC, followed by the delay discounting function. The subjective prices were in a 

smaller range as compared to other rats, yet still fell within a plausible range. Thus, it was 

concluded that the exponential discounting function was the superior model.  

For F18, the AIC statistic predicted Shizgal’s subjective price function to be the 

best model at 50% followed by the hyperbolic discounting function and exponential 

discounting followed each with a 25% chance. The reward-mountain parameters were out 

of the reasonable range for the hyperbolic discounting model. It was concluded that for 

this rat, Shizgal’s subjective price was the best model. 

Overall, it was concluded, for 5 out of the 6 rats, based on statistical and 

theoretical criteria, Shizgal’s subjective price function was the best model. 

 

2.19. Implications 

Of the 6 rats, the “objective price function” ranked last with regard to the AIC 

statistic. This consistent ranking confirms the hypothesis that the function previously 

assumed in reward-mountain experiments is a poor way to describe the transformation. 

Furthermore, given that the AIC penalizes the addition of a parameter, the objective price 

function should have an advantage over the other models; it has one fewer parameter than 

the delay discounting functions and two fewer than Shizgal’s subjective price functions. 

However, even given this advantage, the objective price function is not a convincing way 

to describe the transformation of objective into subjective prices. 
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Shizgal’s subjective price function was the best model to describe the 

transformation of objective prices into subjective prices. The parameters of this function 

SPmin (the minimum subjective price) and SPbnd (a value controlling the bend of the 

function) were consistent across rats, which further underscores the strength of this 

model.  The SPmin values are: 0.91 s (F3), 0.94 s (F9), 0.93 s (F12), 1.70 s (F16), 1.00 s 

(F17), 0.97 s (F18). The SPbnd parameters are: 0.01 (F3), 0.01 (F9), 0.01 (F12), 0.36 

(F16), 0.51 (F17), 0.02 (F18).  Across rats, the mean SPmin is 1.08 and mean SPbnd is 0.15. 

The function with these parameters resemble the function in the simulation in Figure 3C 

of the introduction, the green curve. According to the estimated parameters in the 

experiment, the function begins to be scalar at around 2 s, therefore setting prices above 2 

s would be appropriate in operant experiments that use price as a variable. In future 

reward-mountain models incorporating Shizgal’s subjective price function, the SPmin and 

SPbnd parameters will be fixed at 1.08 s and 0.15, respectively. 

Conventional hyperbolic and exponential models of delay discounting were 

assessed in their inverted form to determine whether time spent working for the reward 

(opportunity cost) is treated as a related psychological variable, the delay to reward 

delivery.  In traditional studies of reward delays, there is an experimenter-imposed delay 

to reward delivery after the subject makes a brief response.  In contrast, in studies using 

opportunity costs, the subject must work for a total required amount of time to reap the 

reward. However, an inherent delay to reward delivery is set by the imposed price (Figure 

2). Thus, it is possible that the same system controls both types of evaluations of the 

imposed time interval to reward: waiting and working. However, the findings revealed 

that the delay discounting functions were not able to account for the behaviour 

147



convincingly. Thus, this suggests that two different principles of intertemporal choice are 

involved in evaluating the time spent working for the reward and time spent waiting for 

the reward after work requirements have been satisfied. In other words, two different 

processes are involved in the evaluation of a time interval depending on the context, 

namely, what the subject is doing during the delay to the reward. 

To further strengthen the hypothesis that time spent working and time spent 

waiting are evaluated by different processes, an analogous experiment can be conducted 

by directly manipulating delays instead of opportunity costs while the work requirement 

is set to a constant value. Thus, a pulse frequency-delay trade-off function can be derived 

in the same fashion: by testing pulse frequency sampling matrices at a range of different 

delays. Next, the proposed functions, Shizgal’s subjective price function, the objective 

price function, the inverted hyperbolic discounting, and the exponential discounting 

function can be embedded in the pulse frequency-delay trade-off function and fit to the 

data. Because the present study suggests that two systems are involved in the evaluation 

of delays and opportunity costs, it is hypothesized that when delays are imposed, the 

inverted delay discounting functions would be superior to Shizgal’s subjective price 

function. 

The present experiment focused on opportunity costs, one type of cost specified in 

the reward-mountain model. The other component is that of “effort cost,” the amount of 

exertion per unit time required to obtain the reward. In the present experiment, effort 

costs have been held constant. However, the effort in an operant experiment can be 

manipulated by varying the force required to depress the lever via attaching weights to 

the lever mechanism.  The methodology employed to measure the psychophysical 
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function of opportunity cost can also be used to estimate the psychophysical function of 

effort costs.  Effort costs are of particular interest in operant experiments because it has 

been suggested that dopamine plays an important role in overcoming this type of costs 

(Salamone & Correa, 2002; Salamone, Correa, Farrar, & Mingote, 2007; Salamone, 

Correa, Mingote, & Weber, 2003). The effort (the subjective variable) as a function of 

force (the objective variable) is predicted to increase as the required force is increased 

and level off at a certain point, thus, indicating the force at which subjective effort is 

maximal. Determining the psychophysical function that transforms required force into 

subjective effort would allow for a refined measurement strategy to evaluate the effects 

of dopamine manipulations.     
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Appendix A: The experimenter-set price versus the computer-
generated price

Table ApA.1: Because of the PC clock system constraints, the computer-
generated price is not exactly the experimenter-set price, but very close. The 
error is somewhat larger at the lower prices, but is inconsequential given that the 
models predict a flat subjective price range along these very  low prices. The 
table demonstrates the differences between the experimenter-set prices and 
computer-generated prices, from 0.125 s to 16 s.
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Appendix B: The derivation for the expression of the contour line at half-maximal 

time allocation of the reward mountain model: F as a function of OP for each of the 

4 proposed subjective price functions. 

 

First, a general form of the contour line, F as a function of SP will be derived.  

Second, SP will be replaced with the 4 proposed subjective price functions.  

The time allocation equation can be rearranged and expressed as: 

 

TA −TAmin

TAmax −TAmin

=

Fg

Fg + Fhm
g

⎛
⎝⎜

⎞
⎠⎟

a

Fg

Fg + Fhm
g

⎛
⎝⎜

⎞
⎠⎟

a

+ SP
SPe

⎛
⎝⎜

⎞
⎠⎟

a  

 

When time allocation is halfway between TAmax and TAmin, the left side of the 

above equation is equal to 0.5. F can be expressed as FM50, the pulse frequency that 

maintains half-maximal responding. At half-maximal time allocation, the expression 

above can be simplified:  

 

FM 50
g

Fg
M 50 + Fhm

g = SP

SPe

 

 

The next steps are taken to express FM50 as a function of SP. 

 

Fg
M 50 = (Fg

M 50 + Fg
hm )× SP

SPe

⎛
⎝⎜

⎞
⎠⎟
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g × LogFM 50 = g × Log(Fhm )+ Log
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⎛
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⎞
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Finally, 

LogFM 50 = Log(Fhm )+ 1

g
× Log
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SPe − SP

⎛
⎝⎜

⎞
⎠⎟
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The above equation relates FM50 to SP.  Next, SP is replaced with the 4 proposed 

subjective price functions such that F as a function of OP can be plotted. 

 

1. The objective price trade-off function:  

The expression below is the contour line at half-maximal time allocation that 

incorporates the objective price function. It is referred to the objective price trade-off 

function. This function has parameters:  Fhm, SPe, g. 

 

LogFM 50 = Log(Fhm )+ 1

g
× Log

SP

SPe − SP

⎛
⎝⎜

⎞
⎠⎟

 

 

where, 

SP = OP 

 

2. Shizgal’s subjective price trade-off function 

The expression below is the contour line at half-maximal time allocation that 

incorporates Shizgal’s subjective price function.  It is referred to as Shizgal’s subjective 

price trade-off function. This function has parameters: Fhm, SPe, g, SPmin, SPbnd. 

 

LogFM 50 = Log(Fhm )+ 1

g
× Log

SP

SPe − SP

⎛
⎝⎜

⎞
⎠⎟

 

where, 

SP = SPmin + (SPbnd × ln(1+ e
OP−SPmin

SPbnd ))  
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3. The (inverted) hyperbolic trade-off function: 

The expression below is the contour line at half-maximal time allocation that 

incorporates the (inverted) hyperbolic subjective price function. It is referred to as the 

(inverted) hyperbolic trade-off function. This function has parameters: Fhm, SPe, g, k. 

 

LogFM 50 = Log(Fhm )+ 1

g
× Log

SP

SPe − SP

⎛
⎝⎜

⎞
⎠⎟  

where, 

SP =1+ (k ×OP)  

 

4. The (inverted) exponential trade-off function: 

The expression below is the contour line at half-maximal time allocation that 

incorporates the (inverted) exponential subjective price function. It is referred to as the 

(inverted) exponential trade-off function. This function has parameters: Fhm, SPe, g, k. 

 

LogFM 50 = Log(Fhm )+ 1

g
× Log

SP

SPe − SP

⎛
⎝⎜

⎞
⎠⎟  

where, 

SP = ek×OP

 

 

 The forms of the 4 functions are illustrated in Figure 14. 
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Appendix C: Reward-mountain parameters for all models, for each rat
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Table ApC.1. Parameter values for rat F3 for all models. CB Lo indicates the 
lower 95% confidence band (limit). CB hi indicates the higher 95% confidence 
band (limit). CB Width indicates the interval from the lower to the higher 
confidence bounds. Ex Lo indicates the lower 95% confidence error (interval). Ex 
high indicates the higher 95% confidence error. MB Lo indicates the lower model 
bound: the lower limit set in the model. MB hi indicates the higher model bound.
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Table ApC.2. Parameter values for rat F9 for all models.
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Table ApC.3. Parameter values for rat F12 for all models.
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Table ApC.4. Parameter values for rat F16 for all models.
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Table ApC.5. Parameter values for rat F17 for all models.

160



Table ApC.6. Parameter values for rat F18 for all models.

161



Appendix D: Pulse frequency trade-off functions and corresponding 
subjective price functions for all models, for each rat
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A B

C D

Objective price function

Shizgal’s subjective price function
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E F

G H

The (inverted) hyperbolic subjective price function

The (inverted) exponential subjective price function

Figure ApD.1. Rat F3. Similar caption as for Figure 15.
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A B

C D

Objective price function

Shizgal’s subjective price function
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E F

G H

The (inverted) hyperbolic subjective price function

The (inverted) exponential subjective price function

Figure ApD.2 Rat F9. Similar caption as for Figure 15.
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A B

C D

Objective price function

Shizgal’s subjective price function
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E F

G H

The (inverted) hyperbolic subjective price function

The (inverted) exponential subjective price function

Figure ApD.3. Rat F12. Similar caption as for Figure 15.
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A B

C D

Objective price function

Shizgal’s subjective price function
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E F

G H

The (inverted) hyperbolic subjective price function

The (inverted) exponential subjective price function

Figure ApD.4. Rat F17. Similar caption as for Figure 15.
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Appendix E: The derivation of the expression for SP as a function F at half-maximal 

time allocation 

First, the general form of the contour line, SPTAmid as a function of RIrel will be 

derived.   Next, SPTAmid will be expressed as a function of F and parameter g. This 

expression is needed to transform the points of the [Log10(F) vs. Log10(OP)] space into 

points of the [Log10(SP) vs. Log10(OP)] space  (Figure 15 & 16).  

 

First, the goal is to isolate SP in the general form of the reward mountain equation: 

 

TA = TAmin + (TAmax −TAmin )×
RIrel( )a

RIrel( )a + SP
SPe

⎛
⎝⎜

⎞
⎠⎟

a  

 

TA −TAmin

TAmax −TAmin

=
RIrel( )a
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⎛
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⎞
⎠⎟

a

 

 

TA −TAmin

TAmax −TAmin

× RI a
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⎜
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⎠
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RI a
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TA −TAmin
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× RI a
rel +

TA −TAmin

TAmax −TAmin
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⎛
⎝⎜

⎞
⎠⎟

a
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RI a
rel × 1− TA −TAmin

TAmax −TAmin
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Solving for SP: 

 

SP = RIrel × SPe ×
TAmax −TA

TA −TAmin

⎛
⎝⎜

⎞
⎠⎟

1
a

 

 

When TA falls halfway between TAmax and TAmin: 
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TAmax −TA

TA −TAmin

= 1  

 

When 1 is raised to any exponent the result is 1, 

 

1( )
1
a = 1  

 

Thus at half-maximal time allocation: 

 

SPTAmid = RIrel × SPe  

 

Expanding, 

RIrel =
Fg

Fg + Fhm
g  

 

Substituting for RIrel in SPTAmid = RIrel × SPe : 

 

SPTAmid =
Fg

Fg + Fhm
g × SPe

 

 

Thus, to transform the points plotted on the contour plot (F as a function of OP) 

the above formula was employed. Parameters Fhm, g, and SPe are obtained from the 

respective pulse-frequency trade-off functions.  
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Appendix F: AIC tables comparing  the subjective price function and 
objective price function for each rat
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Model 
Name

AIC value dAIC Likelihood AIC 
weight

Evidence 
Ratio

N N params RSS

SP -437.0955 0 1 0.99629 1 99 5 1.07518

OP -425.9095 11.186 0.0037237 0.00371 268.5508 99 3 1.25841

Table ApF.1.  Rat F3

Model 
Name

AIC value dAIC Likelihood AIC 
weight

Evidence 
Ratio

N N params RSS

SP -464.8207 0 1 0.999999 1 90 5 0.45662

OP -437.2582 27.563 1.03E-06 1.03E-06 966334.2 90 3 0.65156

Table ApF.2  Rat F9

Model 
Name

AIC value dAIC Likelihood AIC 
weight

Evidence 
Ratio

N N params RSS

SP -346.1162 0 1 0.999999 1 72 5 0.5056

OP -317.5419 28.574 6.24E-07 6.24E-07 1602635 72 3 0.80102

Table ApF.4.  Rat F16

Model 
Name

AIC value dAIC Likelihood AIC 
weight

Evidence 
Ratio

N N params RSS

SP -471.9116 0 1 0.996166 1 90 5 0.42202

OP -460.7914 11.12 0.00385 0.003834 259.8488 90 3 0.50165

Table ApF.3.  Rat F12
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Model 
Name

AIC value dAIC Likelihood AIC 
weight

Evidence 
Ratio

N N params RSS

SP -500.5989 0 1 1 1 90 5 0.30683

OP -458.8359 41.763 8.54E-10 8.54E-10 1.17E+09 90 3 0.51266

Table ApF.6.  Rat F18

Model 
Name

AIC value dAIC Likelihood AIC 
weight

Evidence 
Ratio

N N params RSS

SP -343.5363 0 1 0.994331 1 81 5 1.02013

OP -333.2022 10.334 0.00570122 0.005669 175.401 81 3 1.22497

Table ApF.5.  Rat F17

Tables ApF.1-6. The AIC values and associated statistics comparing only 
Shizgal’s subjective price model and the objective price model for all rats.
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Chapter 3 

  

Psychophysical inference of frequency-following fidelity in the neural substrate for 

brain stimulation reward 

 

Abstract 

Brain stimulation reward (BSR) has been studied extensively for over 50 years, 

yet the identity of the neurons directly responsible for this phenomenon is still unknown. 

Many psychophysical and electrophysiological experiments have been conducted to 

characterize these neurons. For example the properties of the directly-stimulated (“first-

stage”) substrate for self-stimulation of the medial forebrain bundle (MFB) are consistent 

with those of fine myelinated axons (Bielajew & Shizgal, 1982; Murray & Shizgal, 1996; 

Shizgal et al. 1980), at least some of which project rostro-caudally (Bielajew & Shizgal, 

1986). The present psychophysical experiment estimates an additional property of the 

first-stage neurons: their maximum firing frequency. When the electrical stimulation was 

delivered at low pulse frequencies, the first-stage neurons fired once per pulse. As the 

pulse frequency was increased, the probability of firing in response to each pulse rolled 

off, and the induced firing frequency reached a plateau of a median of 363 Hz, across 7 

rats.  

The frequency-following function was derived under the assumption of the 

“counter model of reward integration,” which stipulates that the rewarding effect of a 

pulse train of a given duration is determined by the aggregate number of spikes it triggers 

in the first-stage neurons. This spike count is the product of the number of first-stage 
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neurons activated (as set by the stimulation current and pulse duration) and the mean rate 

at which they fire (as set by the pulse frequency) (Gallistel, 1978; Gallistel, Shizgal, & 

Yeomans, 1981; Simmons & Gallistel, 1994). Within a given time period, spike count 

can be produced by firing many neurons at a low rate or fewer neurons at a higher rate. 

Thus, in the computation of the rewarding effect, the current and pulse frequency are 

reciprocally related and are said to “trade-off.” In self-stimulating rats, we measured 

current-pulse frequency trade-off functions that were embedded in a 4-dimensonal reward 

model. The stimulation current required to maintain a given level of operant responding 

at each of a series of pulse frequencies was determined. In accordance with the counter 

model, as the pulse frequency was increased from low values, the current required to 

maintain a given level of behavior steadily declined. However, this relationship broke 

down at higher pulse frequencies, and the required current leveled off. The pulse 

frequency beyond which further increases in frequencies were ineffective in reducing the 

required current was inferred as the maximal firing frequency of the first-stage neurons. 

That the estimated maximum firing frequencies were very high is consistent with the 

relatively high estimated conduction velocities and rapid onset of recovery from 

refractoriness in first-stage neurons subserving MFB self-stimulation. 
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Introduction 

The previous chapter tested an unrealistic assumption that was formerly 

incorporated in the reward mountain model, the assumption that the rat interpreted the 

objective-subjective opportunity relationship in a scalar manner. We demonstrated that 

this scalar relationship did not hold at low opportunity costs. Similarly, the experiment in 

Chapter 3 investigated another unrealistic assumption that has traditionally been 

incorporated in BSR experiments; this assumption concerns the firing capabilities of the 

directly stimulated neurons. Specifically, implicit in models of BSR is perfect frequency 

following: that each directly stimulated neuron fires once per pulse, regardless of the 

experimenter-set pulse frequency. However, it is more plausible to assume that the one-

to-one mapping breaks down as the pulse frequency becomes high. There must be a limit 

to the firing rate of any axon due to physiological properties such as synaptic blocking or 

fatigue as suggested by Gallistel (1978). The goal of the present experiment was to model 

the progressive failure of frequency following as the pulse frequency is increased and 

determine the maximal firing frequency for the reward-relevant neurons of the lateral 

hypothalamus. An extension of the 3-dimensional measurement strategy of the reward 

mountain model, a 4-dimensional measurement approach, was used. 

 

3.1. The proposed frequency-response function 

 The pulse frequency (F) of a stimulation train set by the experimenter is the 

“inducer.”  The actual average firing rate of the directly stimulated neurons, termed the 

firing frequency (FF), is the “induced.” Forgie and Shizgal (1993) developed a model 

describing the relationship between the pulse frequency and firing frequency based on 
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behavioural trade-off data. The model posits that FF follows F perfectly at low F values 

(the slope of the function is 1). However, frequency following fidelity breaks down (rolls 

off) past a certain high F value (at this F value, the slope of the function declines, 

represented by the bend portion of the function in Figure 1). As F continues to be 

increased, a maximum FF is eventually reached and maintained. (The slope approaches 

0, represented by the horizontal portion of the function.) In other words, increasing F 

above a limit has no effect on firing rate. The frequency following function is expressed 

as: 

FF = Fb (ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))  

 

where,  

FF = the average firing frequency (Hz); the induced physiological response 

F = the pulse frequency that is experimenter-set (Hz); the inducing stimulus value 

Fnmax = the pulse frequency at which the firing frequency is near the maximal firing 

frequency that the substrate can attain; the position parameter of the frequency-response 

function; a demonstration that this value is near the maximal firing frequency is 

described in Appendix B 

Fb = the parameter describing the abruptness of the transition between the range of 

perfect frequency following to the range of frequency roll-off 

 

 The frequency-response function was developed by computing the integral of a 

sigmoidal function that relates the rate at which the induced firing frequency changes (the 

firing frequency derivative) to pulse frequency. The sigmoidal expression and  
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Figure 1. The firing frequency as a function of the (experimenter-set) pulse 
frequency in common logarithmic space.  The firing frequency follows the 
experimenter-induced pulse frequency at low pulse frequencies but declines 
smoothly at high frequencies such that a maximum firing frequency is 
maintained. 

FF = Fb (ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))
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corresponding figure are described in Appendix A and B.  

 

3.2. The counter model 

 The frequency following experiment described in this chapter is based on the 

counter model of reward integration. The counter model describes the spatial-temporal 

integration of the output from the directly stimulated reward-relevant neurons (Gallistel 

et al., 1981). The post-synaptic substrate, referred to as the integrator, processes the input 

from the directly stimulated neurons within a given time period. The integrator’s output is 

a function of the overall spike rate and determines the subjective reward intensity that 

results. Thus, 

 

RI = f(S) 

 

where, 

RI = reward intensity  

S = aggregate spike rate  

 

The aggregate spike rate is the product of the rate of firing (FF) and the number of 

neurons (Nn) that are fired.  

 

S = FF × Nn  
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For example, according to this model, in a time window of 1 s, it does not matter whether 

100 neurons fire 10 times each (aggregate rate = 1000 spikes/1s) or whether 20 neurons 

fire 50 times each (aggregate rate = 1000 spikes/s). The reward intensity will be 

equivalent. 

The firing frequency (FF) is controlled by the experimenter-set pulse frequency 

(F). With pulse duration held constant, the total number of stimulated neurons (Nn) is set 

by the current intensity and is believed to be roughly proportional to the effective current 

intensity; this relationship is developed in detail in Appendix C. 

Note that the number of stimulated neurons is proportional to the effective current, 

which is distinct from the applied current.  Briefly, the applied current intensity (IP) is 

proportional to the cross-section area of the stimulated region: the higher the current, the 

greater the cross-section area of the stimulated region (see Appendix C). However, there 

is scar tissue that surrounds the electrode. Thus, a given amount of current (a very low 

intensity) is considered to be “ineffective” (or “waste”) current, denoted as I0. 

Specifically, I0 is the current that just suffices to fire a hypothetical neuron located at the 

edge of the scar tissue surrounding the electrode tip. The effective current is the 

difference between the applied and ineffective current (IP - I0). It is the effective current 

that is proportional to the total number of stimulated neurons: 

 

Nn = K × (IP − I0 )  

 

where,  

Nn = the total number of directly stimulated nerve fibers 
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K = density constant; the number of neurons recruited per μA (neurons/μA) 

IP = the applied current intensity at a given pulse duration (μA) 

I0 = the “ineffective” or “waste” current; the current that just suffices to fire a 

hypothetical neuron located at the edge of the scar tissue surrounding the electrode tip 

(μA) 

 

Returning to the expression for the aggregate spike rate (S): 

 

S = FF × Nn  

 

We can substitute the experimenter-set parameters for the “induced” parameters. The 

effective current (IP - I0) multiplied by K is substituted for Nn, and F is substituted for 

FF: 

 

S = F × K × (IP − I0 )  

 

Returning to the counter model: reward intensity is a function of the aggregate spike rate 

arriving at postsynaptic terminals. 

 

RI = f(S)  

 

Expanding the aggregate spike rate in terms of experimenter-set parameters as described 

above: 
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RI = f (F × K × (IP − I0 ))  

 

K and I0 are constant no matter what pulse frequency (F) or applied current intensity (IP) 

are tested. 

 

For now, we’ll consider the effective current IP - I0 as roughly equivalent to IP because I0 

is very small: 

 

(IP - I0) ≈ IP 

 

So, 

 

RI ≈ f (K × F × IP )  

 

According to the above formulation, pulse frequency (F) and current intensity (IP) 

are related in a reciprocal manner. Doubling the pulse frequency F (within the firing 

frequency fidelity range) has the same effect on reward intensity (RI) as doubling the 

current intensity (IP).  Similarly, reducing the pulse frequency (F) by half (within the 

firing frequency fidelity range, the range where FF is equal to F) has the same effect on 

the reward intensity as reducing the current by a half. It is this current-pulse frequency 

trade-off relationship, demonstrated in numerous studies, that has led to the counter 

model. The example below describes the conventional approach used to demonstrate the 
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current-pulse frequency reciprocal relationship and the firing frequency limit. 

Furthermore, it provides the basis for the experiment presented in this chapter. 

 

3.3. Illustrative example of the current-pulse frequency trade-off relationship 

 Figure 2 is an example of what the counter model predicts as demonstrated by 

current-pulse frequency trade-off methodology. The dependent measure is time allocated 

to holding down the lever.  Rats are presented with a series of current sweeps, each 

conducted at a different pulse frequency. A sweep is a series of trials over which the 

current is decremented systematically from one trial to the next.  Figure 3A is a family of 

such current sweep curves. Time allocation as a function of current is plotted; each 

current sweep is denoted by a different colour.  The current required to sustain half-

maximal time allocation (the behavioural criterion) is denoted by the vertical dashed line 

for every curve.  As the pulse frequencies of the current sweeps are doubled, the curves 

shift leftward.  This is consistent with the counter model: at a higher pulse frequency, 

fewer neurons and therefore a lower current is required to achieve the behavioural 

criterion.  In the range of perfect frequency following, doubling the pulse frequency 

results in a halving of the required current: the current sweep curves shift leftward by the 

same magnitude (one half) at each doubling of pulse frequency.  It is this finding, 

demonstrated in numerous studies, that has led to the counter model.   

 Next, as the pulse frequency approaches the maximal firing frequency of the 

substrate, each doubling produces a progressively smaller effect on the current required 

to reach the behavioural criterion. The shifts of the current sweep curves become 

progressively smaller; at high pulse frequency values, they eventually overlap. For  
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instance, at the highest pulse frequencies (500 Hz and 1000 Hz), the current sweep curves 

overlap, which indicates that the induced firing frequency is the same at these different 

pulse frequencies. In other words, no reduction in current is required to compensate for 

an increase in pulse frequency at this very high range because these high pulse 

frequencies induce equivalent firing frequencies. This breakdown of the current-pulse 

frequency scalar relationship has been demonstrated in several studies (as will be 

described below). However, pulse frequencies above 500 Hz have not been tested. 

 Figure 2B describes the following functional relationship: required current at the 

behavioural criterion as a function of pulse frequency. As pulse frequency is increased, 

lower currents are required to meet the behavioural criterion.  At high pulse frequencies, 

the firing frequency response eventually rolls off and saturates as indicated by the 

leveling off of the trade-off function. 

 

3.4. Previous current-pulse frequency trade-off studies  

The counter model was initially demonstrated by a current-pulse frequency trade-

off experiment in which the rat was required to run down an alley to a goal box in order 

to obtain rewarding electrical stimulation (Gallistel, 1978). For every doubling of pulse 

frequency, there was (an approximate) halving of required current. A range of pulse 

frequency-current combinations at pulse frequencies spanning from 12.5 – 50 Hz to 400 

Hz spaced by a proportion of 2 was tested; a consistent reduction in required current was 

demonstrated. Train durations of 0.1 s, 1 s, and 10 s were tested. Pertinent to the present 

experiment, in this early study, Gallistel (1978) noted that there was a frequency roll-off, 
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from around 200 Hz to 400 Hz depending on the subject and the length of the train 

duration.   

If in the computation of the rewarding effect, pulse frequency and current 

intensity are reciprocally related (as the counter model proposes), then on a common 

logarithmic scale, the plot of the required current as a function of pulse frequency will be 

a straight line with a slope of -1. Simmons and Gallistel (1994) demonstrated this 

reciprocal relationship for most rats (4 out of 6) at pulse frequencies ranging from about 

10 Hz to 100 Hz - 177 Hz in a lever-pressing task. Furthermore, pulse frequencies above 

the upper limit to which the regression line was fit (177 Hz to about 350 Hz) were tested. 

Along this range, the current intensity required to sustain half-maximal responding was 

roughly equivalent, which implies that the firing frequency reaches a plateau. In a 

separate dual-operant procedure, the pulse frequency at which the subjective magnitude 

of the reward attains its maximum possible value was employed as the behavioural 

criterion.  Again, they showed that for most rats (4 out of 6), the slopes were not 

significantly different than -1. However, the points that diverged from the slope of -1 

were at pulse frequencies higher than 250 Hz.   

Several other studies are in support of the counter model.  For instance, Gallistel, 

Leon, Waracynski, and Hanau (1991) used current-pulse frequency trade-off 

methodology: the counter model was supported in the tested frequency range, 13 Hz to 

200 Hz. Similarly, in a current-pulse frequency experiment, Forgie and Shizgal  (1991) 

tested pulse frequencies up to 495 Hz; they demonstrated that the counter model held at 

pulse frequencies up to 250 Hz.  Gallistel and Leon (1991) tested pulse frequencies up to 

200 Hz in a dual-operant procedure and also demonstrated that the counter model holds: 
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increasing the current by a given proportion had the same effect on reward intensity as 

increasing the pulse frequency by that same proportion.  This equal effect on reward 

intensity implies a scalar relationship between current and pulse frequency.  Thus, taken 

together, it is evident that there is substantial support for the counter model. 

Frequency-following fidelity can be inferred from the current-pulse frequency 

relationship.  The pulse frequency range at which current-pulse frequency reciprocity 

holds denotes the range at which frequency following is perfect. The pulse frequency 

range at which the reciprocal relationship no longer holds implies frequency following 

roll-off. Although numerous current-pulse frequency trade-off studies have demonstrated 

both the reciprocal relationship as well as its breakdown at high pulse frequencies, a 

formal description of frequency following is lacking. Firstly, most studies have not tested 

a high range of pulse frequencies; typical tests do not exceed ~ 350 Hz. Furthermore, 

although a study by Forgie and Shizgal (1991) has formally described the shape of the 

frequency following function (as discussed in section 3.1), the proposed model was used 

for demonstrative purposes and was not actually fit to the data. Moreover, the electrodes 

were located in the ventral tegmental area. 

The purpose of the experiment in this chapter was to obtain improved estimates of 

frequency following in the neural substrate of self-stimulation of the lateral hypothalamic 

level of the medial forebrain bundle.  Forgie and Shizgal’s (1991) proposed frequency 

following function was embedded in the 4-dimensional reward model and fit to the data.  

The 4-dimensional reward model is described below.  
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3.5. The 4-dimensional reward model  �
The logistic reward growth equation at the core of the mountain model is written as: 

 

RIrel =
F g

F g + Fhm
g
�

��
where, �
Fhm = the pulse frequency that produces a half-maximal reward intensity (Hz) 

RIrel = the ratio of reward intensity (RI) to maximum reward intensity (RImax) 

g = the reward growth exponent 

 

In the above expression, current intensity is held constant.  Furthermore, this expression 

is based on the assumption of perfect frequency following whereby each pulse triggers an 

action potential in every stimulated neuron.  

 

To generalize the above formulation in terms of the total induced spikes arriving at the 

integrator (S): 

 

RIrel =
Sg

Sg + Shm
g  

 

where, 
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S = the total number of spikes per second produced by the electrical stimulation of the 

directly stimulated neurons 

Shm = total number of spikes per second required to produce a reward of half-maximal 

reward intensity 

 

We can expand S (total number of spikes per second):  

 

S = FF × K × (IP − I0 )  

 

where, 

K = density constant; the number of neurons recruited per μA (neurons/μA) 

FF = the firing frequency of the directly stimulated substrate (Hz) 

IP = the applied current at a given pulse duration (μA) 

I0 = the minimum effective current (μA) 

 

Replacing this expression into the reward intensity formula: 

 

RIrel =
(FF × K × (IP − I0 ))g

(FF × K × (IP − I0 ))g + Shm
g

 

 

Dividing through by K, 
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RIrel =
(FF × (IP − I0 ))g

(FF × (IP − I0 ))g + Shm

K
⎛
⎝⎜

⎞
⎠⎟

g  

 

Let, 

 

Shmin =
Shm

K
 

 

where, 

Shmin = the ratio of the total number of induced spikes per second required to produce a 

reward with half-maximal reward intensity and the number of neurons recruited per μA; 

(spikes × μA)/(seconds × neurons) 

 

Therefore, 

 

RIrel =
(FF × (IP − I0 ))g

(FF × (IP − I0 ))g + Sh min( )g  

 

The reward mountain equation developed in the general introduction of this thesis 

is the ratio of the payoff from the rewarding electrical stimulation to the total sum of the 

payoffs (from the electrical stimulation and from alternate activities). Because the 

subjective price function has been developed in Chapter 2, the subjective price (SP) can 

now be substituted for objective price in the reward mountain equation.  Thus, time 

allocation (TA) is expressed as: 
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TA = (TAmax −TAmin )
RIrel( )a

RIrel( )a + SP
SPe

⎛
⎝⎜

⎞
⎠⎟

a +TAmin  

 

where, 

SP = subjective price (s) 

SPe = the subjective price at which the rat allocates half of its time to the pursuit of the 

rewarding electrical stimulation (s) 

RIrel = the ratio of reward intensity (RI) to maximum reward intensity (RImax) 

a = the price sensitivity exponent 

TAmin = the minimum time allocation 

TAmax = the maximum time allocation 

 

Replacing the RIrel with the expanded version that incorporates firing frequency (FF) and 

current (IP, I0), the expression is: 

 

TA = (TAmax − TAmin )

(FF × (IP − I0 ))g

(FF × (IP − I0 ))g + Shmin

⎛
⎝⎜

⎞
⎠⎟

a

(FF × (IP − I0 ))g

(FF × (IP − I0 ))g + Shmin

⎛
⎝⎜

⎞
⎠⎟

a

+ SP

SPe

⎛
⎝⎜

⎞
⎠⎟

+ TAmin  

 

 

where FF is the proposed firing frequency function, 
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FF = Fb (ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))  

 

and where SP is Shizgal’s subjective price function, 

 

SP = SPmin + (SPbnd × ln(1+ e
SPmin−OP

SPbnd )  

 

The full 4-dimensional reward model is expressed as: 

 

TA = (TAmax −TAmin )

(Fb(ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))× (IP − I0 ))g

(Fb(ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))× (IP − I0 ))g + Shmin

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a

(Fb(ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))× (IP − I0 ))g

(Fb(ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))× (IP − I0 ))g + Shmin

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a

+ SPmin + (SPbnd × ln(1+ e
SPmin−OP

SPbnd )
SPe

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+TAmin

 

 

The function described above is a 4-dimensional model because there are 3 

independent variables. The first 2 were independent variables in the 3-dimensional 

version of the model: F (the pulse frequency in Hz), and OP (the objective price in 

seconds). The added independent variable in this version of the reward mountain is IP 

(the stimulation current intensity in μA). (In the 3-dimensional reward mountain model 

described in the introduction, the stimulation current was held constant.) 

 

The parameters of the 4-dimensional reward mountain model are: 

 

a: the price-sensitivity exponent 
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Fb: the parameter controlling the abruptness of the transition between the range of perfect 

frequency following to the range of frequency roll-off 

Fnmax: the pulse frequency that produces near maximal firing frequency (Hz) 

I0: the ineffective current; the current that just suffices to recruit the neuron nearest to the 

border of the scar tissue surrounding the electrode tip (μA) 

SPe: the subjective price at which the rat allocates half of its time to the pursuit of 

electrical stimulation (s) 

Shmin: the ratio of the total number of spikes per second and the number of recruited 

neurons per μA required to produce a half-maximal reward ((spikes × μA)/(seconds × 

neurons)) 

TAmax: the maximal time allocation 

TAmin: the minimal time allocation 

SPbnd:  the parameter controlling the abruptness from the flat portion to the rising (scalar) 

portion of the subjective price function curve  

SPmin: the minimum subjective price (s) 

 

One way to visually represent a 4-dimensional model is by two 3-dimensional plots. In 

the first 3-dimensional plot, time allocation is plotted as a function of pulse frequency 

and objective price, while current is held constant. This representation includes the pulse 

frequency and price sampling matrices. Figure 3A plots this representation and Figure 3B 

plots the corresponding contour plot. In the second representation, time allocation is 

plotted as a function of pulse frequency and current (while the price is held constant). 

Figure 4A plots the representation and Figure 4B plots the corresponding contour graph.  
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3.6. The current-pulse frequency trade-off function derived from the 4-dimensional 

model 

After the 4-dimensional reward model is fit to the data, required current (IP) as a 

function of pulse frequency (F) can be derived and plotted (at the behavioural criterion of 

half-maximal time allocation). The form of the current-pulse frequency trade-off function 

is obtained by solving for IP.  Below is the function representing required current as a 

function of pulse frequency at half-maximal time allocation. 

 

I p =

SP
SPe − SP

⎛
⎝⎜

⎞
⎠⎟

1
g

× Shmin

Fb (ln(1+ e
fnmax

fb )− ln(1+ e

Fnmax−F

Fb ))+ I0

 

 

This trade-off function is represented by the red curve on the contour plot of 

Figure 4B.  Figure 4C represents this trade-off function rotated 90 degrees and plotted as 

current as a function of pulse frequency.   

The mapping of pulse frequency into firing frequency is reflected in the current-

pulse frequency trade-off function. The present experiment uses the 4-dimensional 

reward method to derive the current-pulse frequency trade-off function for the tested 

subjects and to estimate parameters Fnmax (the pulse frequency that produces near 

maximal firing) and Fb (the parameter controlling the abruptness of the transition between 

the range of perfect frequency following to the range of frequency roll-off).  �
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Method 

3.7. Subjects 

In total, 7 male Long Evans rats served as subjects: the 6 rats that were used in the 

subjective price experiment from Chapter 2 (rats F3, F9, F12, F16, F17, F18), and 1 

additional subject (rat LesRO1). 

 

3.8. Apparatus and Materials & Surgical Procedure 

See Chapter 2.  

 

3.9. Training: current sweeps 

After the subjects had completed the subjective price experiment, they were 

trained in a current-sweep condition. A current sampling matrix consisted of 14 elements 

(points) in which 14 current intensity values were spaced by equal logarithmic units 

while the pulse frequency and price remained constant. The points were adjusted such 

that there were several along the upper and lower asymptotes, and along rising portion of 

the psychometric curves relating time allocation to current intensity. Eight separate 

current sampling matrices were tested at 8 different pulse frequencies separated by 0.15 

logarithmic units:  1000 Hz, 708 Hz, 502 Hz, 354 Hz, 252 Hz, 178 Hz, 126 Hz, 90 Hz.  

The price was set to 4 s.  A single sampling matrix was tested one to two times to 

determine the range of currents that drove performance from its lower to its upper 

asymptotes.  
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3.10. 4-dimensional testing paradigm  

The parameter space for this condition was [Log10(OP) vs. Log10(F) vs. Log10(I)] 

where OP is the price, F is the pulse frequency and I is the current intensity. This 

condition consisted of 11 sampling matrices, including the pulse-frequency sampling 

matrix @ 4 s, price-sampling matrix, and radial-sampling matrix. (These were roughly 

the same matrices that were used in the previous subjective price experiment). In 

addition, there were 8 current sampling matrices at the different pulse frequencies listed 

in the current sweep training condition described above (in which the price was held 

constant at 4 s).  

For one survey (one complete test of all points of the 11 sampling matrices), the 

elements of the sampling matrices were chosen at random, without replacement. 

Bracketing trials were employed in the same fashion as in the subjective price 

experiment. One survey was comprised of 2 daily sessions; each daily session was about 

6 to 7 hours in duration. Per survey, there were 462 trials (154 experimental trials, and 

308 bracketing trials). 

After collecting 5 surveys, the data were analyzed (described below). If the 

psychometric curves (time allocation as a function of price, current, or pulse frequency) 

did not have well-defined upper and lower asymptotes, the sampling matrix was adjusted, 

and 5 additional surveys were collected and the psychometric functions were re-assessed. 

In total, 10 surveys were collected. 
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3.11. Data analysis 

The data were analyzed using the bootstrapping technique described in Appendix 

D (4-dimensional model). Briefly, 1000 resampled data sets were generated. The 4-

dimensional model was fit to each of the 1000 resampled data sets; the mean parameters 

and corresponding 95% confidence interval were estimated. 
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Results 

Figure 5A shows the 3-dimensional section (time allocation as a function of pulse 

frequency and objective price) of the 4-dimensional reward model, for rat F12. Figure 5B 

illustrates the corresponding contour plot. The vertical blue line represents the location 

parameter OPe. The horizontal red line represents the location parameter Fhm.  The 

horizontal cyan line represents Fnmax. The dashed lines represent the 95% confidence 

intervals around the location parameters.  Figure 6A is the 3-dimensional section (time 

allocation as a function of pulse frequency and current) of the 4-dimensional reward 

model, for rat F12. Figure 6B is the corresponding contour plot, pulse frequency as a 

function of current intensity. The red line denoted in both of the 3-dimensional and 

contour plot is the current-pulse frequency trade-off function. Figure 6C illustrates the 

trade-off function; the Fnmax parameter is denoted by the vertical cyan line.  

The 3-dimensional sections of the 4-dimensional reward model for the other rats 

are illustrated in Figures ApE.1-12 of Appendix E.  The trade-off functions for all of the 

subjects are illustrated in Figure 7. The fitted Fnmax parameters of the subjects range from 

236 Hz to 380 Hz: rat F3 (380 Hz), rat F9 (338 Hz), rat F12 (363 Hz), rat F16 (380 Hz), 

rat F17 (380 Hz), rat F18 (331 Hz), rat LesRO1 (236 Hz). The Fb ranged from 3.5 to 50 

across rats: F3 (10.2), F9 (22.3), F12 (20.6), F16 (6.3), F17 (3.5), F18 (31.4), LesRO1 

(50.3). The full set of parameters for each rat is presented in Tables ApF.1-7 of Appendix 

F.  The median and interquartile range for Fnmax is 363, +/-  45.5 Hz.  The median and 

interquartile range for Fb is 21, +/- 25. 
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Figure 7A-F. The current-pulse frequency trade-off functions for the other subjects. The solid cyan 
line represents Fnmax and the dashed lines represent the 95% bootstrapped confidence intervals.
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In common logarithmic space, the slope of the diagonal line of the current-pulse 

frequency trade-off function (prior to Fnmax) for rats F3, F9, F12, F16, F18, and Les RO1 

was -1 and close to -1 for rat F17 (-0.89). A slope of -1 indicates a reciprocal relationship 

between current and pulse frequency. This reciprocal relationship implies that the counter 

model holds for a given range of pulse frequencies (before firing frequency roll-off 

occurs). ����������������
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Discussion 

3.12. The counter model was supported  

The present experiment tested the unlikely assumption that the directly stimulated 

neurons fire once per pulse, regardless of the pulse frequency. Rats performed in an 

operant task in which price, pulse frequency, and current intensity varied. A 4-

dimensional reward model that incorporated the frequency-response function was fit to 

the data.  From this fit, the current-pulse frequency trade-off function was derived: the 

contour function at half-maximal time allocation in the space [Log10 (I) vs. Log10 (F)]. 

This trade-off function reflects the firing capabilities of the behaviourally reward-relevant 

neurons.  

The present experiment supports the counter model of reward integration. The 

counter model states that reward intensity is a function of aggregate spike rate (the 

product of the number of neurons simulated and the rate at which they fire). By 

extension, reward intensity reflects the conjoint contributions of pulse frequency and 

current intensity. In other words, to maintain a given level of reward intensity, increasing 

the pulse frequency by a given proportion is compensated by a reduction in current 

intensity by that same proportion. This relationship implies that the two variables are 

reciprocally related: in common logarithmic space, this relationship predicts that the 

slope of the current versus pulse-frequency trade-off function will be -1. For most rats in 

this experiment, the trade-off function had a slope of -1 or close to -1, prior to the bend of 

the function (Figure 7). Thus, the present experiment adds to the numerous studies that 

support the counter model.  
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3.13. Frequency-following fidelity broke down at high pulse frequencies 

As predicted, over the highest range of pulse frequencies, no reduction of current 

was needed to maintain the behavioural criterion (half-maximal time allocation). The 

firing frequency eventually reaches a physiological limit, therefore a reduction in the 

number of stimulated neurons (set by the current intensity) is not required to maintain the 

behavioural criterion. The firing frequency roll-off is reflected in the bend portion of the 

current-frequency trade-off function, its slope denoted by parameter Fb. The median near 

maximal firing frequency of the substrate (Fnmax) across rats was demonstrated to be a 

median and interquartile range of 363 +/-  45.5 Hz.  The median and interquartile range 

for Fb is 21, +/- 25. (The median was used because the value of 236 Hz for rat LesRO1 

was considered to be an outlier).  This range is in accordance with other studies that have 

reported that the first-stage neurons have the ability to follow high pulse frequencies but 

reach an asymptote past a certain pulse frequency.  

 Note that what distinguishes rat LesRO1 from the other rats is that the bend is 

gradual rather than sharp, not that the curve flattens out at a drastically lower pulse 

frequency. Parameter Fnmax (near maximal firing frequency) indicates the location of the 

middle of the bend of the derivative of the frequency-response function.  When the bend 

is gradual, Fnmax is lower than the maximal firing frequency (Fnmax is to the left of where 

the curve flattens). For the other rats, the bend is sharper and thus Fnmax is close to the 

maximal firing frequency (indicated by the start of the flat portion of the curve). The plot 

for Rat LesRO1 demonstrates that raising the pulse frequency from ~ 250 Hz (2.49 log 

units) to ~ 350 Hz (2.54 log units) actually does decrease the required current as it does 

for the other rats.  Thus, the discrepancy between the data from rat LesRO1 and the other 
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rats is not as pronounced when considering the bend and its effect on Fnmax and relation to 

the maximal firing frequency. 

 

3.14. Why does frequency following fail at high pulse frequencies? 

To account for this roll-off, it makes sense that if the pulse period of the 

stimulation train (the time between pulses) is less than the absolute refractory period, then 

frequency following will fail. According to this hypothesis, given that the directly 

stimulated reward relevant neurons have an absolute refractory period of 0.4 ms to 1.2 ms 

(Yeomans, 1979), frequency following should start failing at a pulse frequency of at least 

800 Hz at the train duration tested. However, the present experiment showed that 

frequency following began to fail from at most 380 Hz.  Thus, another mechanism must 

contribute to the frequency roll-off.  Accordingly, Gallistel (1978) suggested that pulse 

frequency roll-off may be due to synaptic blocking or fatigue. In Gallistel’s study, 

current-pulse frequency trade-off functions were estimated using a range of train 

durations. Frequency following broke down sooner (at lower pulse frequencies) at the 

longer train duration (10 s) than at the shorter train durations. The earlier breakdown in 

the case of the longer train durations suggests that synaptic fatigue and negative feedback 

may play a role in frequency-following failure. 

 

3.15. Reward intensity saturation is not caused by frequency following failure  

 The present study demonstrated that reward intensity saturates before frequency 

following fails at the current used for frequency, price, and radial sampling matrices. This 

is revealed in the pulse frequency versus price contour plots (Figure 5B, Appendix E: 
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Figures ApE.1B, 3B, 5B, 7B, 9B, 11B): the near maximal frequency (Fnmax, represented 

by the cyan line) occurs at a significantly higher pulse frequency than the pulse frequency 

at which the reward intensity saturates (represented by the shoulder of the curves).  Thus, 

reward intensity saturation is probably due to a mechanism other than frequency 

following roll-off.  This idea is supported in a previous study that measured the reward 

intensity function at different currents using a dual-operant procedure (Simmons & 

Gallistel, 1994). For the same subject, when the reward intensity function was measured 

at a high current intensity, the reward intensity leveled-off at a lower pulse frequency 

than when the function was measured at a lower current intensity. If the reward intensity 

function saturated due to the frequency roll-off, then both functions (measured at low and 

high current intensities) would saturate at the same pulse frequency.  As was clearly not 

the case, reward intensity must saturate due to some other mechanism. The present study 

further demonstrated that reward intensity saturation is not due to frequency firing roll-

off. 

 

3.16. Implications: properties of the reward-relevant neurons  

 The exact identity of the directly stimulated neurons is presently unknown; due to 

the heterogeneity of the medial forebrain bundle, electrical stimulation of the substrate 

activates several neural systems. Consequently, many of the systems that are activated are 

probably not responsible for the rewarding effect. A purely electrophysiological approach 

will not give much insight into the properties of the neurons responsible for the rewarding 

effect. By employing behavioural trade-off experiments, previous studies have revealed 

the quantitative neurophysiological and anatomical properties of the neurons responsible 
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for reward-seeking behaviour (described below). The results of the present experiment 

provide further insight into the nature of the stimulated substrate. 

 The absolute refractory periods of the directly stimulated neurons of the medial 

forebrain bundle have been shown to range from 0.4 to 1.2 ms as revealed through 

behavioural C-T experiments (Yeomans, 1979). Conduction velocities are in the range of 

1 to 8 m/s which suggest myelinated, fine fibers that are 0.5 to 2 μm in diameter 

(Bielajew & Shizgal, 1982).  As well, the reward-relevant direction of conduction in at 

least some of these fibers is rostro-caudal (Bielajew & Shizgal, 1986). The results of the 

present experiment add to the criteria for identifying the first stage neurons: the ability of 

neurons to follow high pulse frequencies (median and interquartile range of 363 +/-45.5 

Hz).  

The known electrophysiological properties of the first-stage neurons allow 

experimenters to rule out candidate neurons that do not match these properties.  In 

particular, the quantitative properties identified by behavioural trade-off experiments do 

not support the “catecholamine hypothesis,” the early hypotheses concerning the nature 

of the first-stage neurons (Wise, 1978).  The correlation between the brain regions 

supporting self-stimulation and the location of the catecholamine pathways initially 

contributed to this proposal. Also, numerous pharmacological studies had demonstrated 

an involvement of dopamine (DA) in BSR. Thus, it was evident that DA neurons play an 

important role in BSR. However, the known physiological properties of DA cannot 

account for the behaviourally derived trade-off data: DA neurons are unmyelinated, have 

slower conduction velocities (0.3 – 1.5 m/sec), longer refractory period periods (1.8-20 

msec). As well, the direction of conduction of DA neurons along the MFB is caudal-
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rostral whereas at least a subset of the reward-relevant neural projections have been 

demonstrated to be rostral-caudal (Bielajew & Shizgal, 1986). The findings of the present 

study contribute to the evidence that suggests that the directly stimulated neurons are 

non-dopaminergic: it is unlikely that DA neurons could follow frequencies up to such a 

high rate due to their long refractory periods and slow conduction time. 

 

3.17 A direct application of the frequency following function: behavioural-neural 

activity correspondence  

The behavioural trade-off functions in previous and present studies have 

identified physiological properties that do not support the hypothesis that DA neurons 

constitute the directly stimulated substrate. However, results from the BSR curve shift 

and neurochemical experiments imply that DA neurons are implicated in reward-seeking 

behaviour. One proposal is that the DA neurons are in series with the neurons directly 

activated by the electrical stimulation. The DA neurons are suggested to receive input 

from the directly activated neurons (Wise, 1980). Because at least some neurons of the 

MFB send descending projections to the VTA (Shizgal & Bielajew, 1986), it is possible 

that DA neurons of the VTA are transynaptically activated. The ventral tegmental area-

substantia nigra complex of the midbrain sends DA projections throughout the brain. One 

particular projection from the posteromedial VTA to the nucleus accumbens (NAC) shell 

is of particular interest to studies on BSR because it is implicated in goal-directed 

behaviours (Ikemoto, 2010). Thus, much of the focus on DA and ICSS has been on the 

VTA-NAC shell projection.  It is this projection and thus DA release in the NAC shell 

that can provide insight into the nature of VTA DA neurons in BSR. The behavioural 
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trade-off function can be used as a tool in combination with neurochemical and 

electrophysiological methods to test the hypothesis that DA neurons of the VTA are in 

series with the directly activated neurons. 

In this procedure, the behavioural and neural activity trade-off functions are 

measured in succession. The neural activity trade-off function is analogous to the 

behavioural trade-off function except that the dependent measure is DA activity, such as 

DA neuronal firing rate (measured via electrophysiology) or DA transient magnitude 

(measured by fast-scan cyclic voltammetry FSCV, in which peak oxidation current 

reflects DA magnitude). If the required current levels off for DA activity over the same 

pulse frequency range as it does for behaviour, then this would suggest that the VTA DA 

neurons are in series with the directly activated neurons. The rationale for the argument 

that this correspondence can be used as an indicator that a given neuronal population is a 

stage of the reward-relevant circuitry was originally discussed by Gallistel and colleagues 

(1981) and is explained in the following paragraph. 

The function that relates behavioural output (time allocation to pursuit of 

electrical stimulation) to stimulus input (the electrical stimulation parameters) arises from 

the concatenation of “buried” or “hidden” functions, each describing a stage of reward 

processing. Among these hidden stages is the early stage during which the aggregate 

spike rate is transformed into reward intensity and the later stage during which the 

penultimate output is transformed into behaviour.  An important property of the measured 

behavioural allocation function (time allocation versus stimulation parameters) is 

monotonicity. In a monotonically increasing function, each output corresponds to one 

input value (along the ascending portion of the curve), or a range of consecutive input 
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values (illustrated by a leveling-off of the function).  In reward evaluation, we assume a 

serial linking of stages (concatenation), in which the output of a stage of processing is the 

input to the next stage. Assuming the stages are concatenated, then for this monotonic 

behavioural allocation function to occur, it is necessary for all of the preceding hidden 

functions to be monotonic as well (Gallistel et al., 1981). Thus, if the experimenter holds 

the behavioural output constant, then this implies that all of the inputs of the preceding 

stages are held constant as well.  In this view, there is a one-to-one correspondence 

between behaviour and any given input. Therefore, determining whether activity of a 

given neural substrate corresponds to the behavioural output would indicate the 

possibility that the substrate in question is an input in the series of concatenated stages. 

(This method is correlative, therefore a behavioural-neural activity correspondence does 

not indicate definitively, but rather the possibility that an input is implicated in reward-

seeking behaviour.) 

 Using this rationale, Moisan and Rompré (1998) employed behavioural and 

electrophysiological techniques to test whether midbrain DA neurons comprise a stage of 

the reward circuitry that is activated by electrical stimulation of the posterior 

mesencephalon (PM).  The PM axons project to the ventral midbrain where DA neurons 

are one of the constituents.  The goal was to determine whether the DA neuron cell 

bodies of the ventral midbrain track the current-frequency combinations.  Behavioural 

measurements entailed two pulse-frequency sweep curves (obtained at a low and high 

current) that ranged from 10 Hz to 110 Hz. Four current-pulse frequencies combinations 

were chosen based on the behavioural data.  They demonstrated that the magnitude of 

DA activation was not correlated with the stimulation frequency or current intensity of 
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the stimulation train alone, but with its rewarding intensity.  These findings support the 

hypothesis that DA neurons are transynaptically activated by the directly activated 

reward-relevant neurons. In accordance, shifts of the reward-mountain structure along the 

price axis following a DA manipulation suggests that DA may be activated at stages of 

the reward circuitry further downstream (Hernandez et al., 2010, Hernandez et al., 2012; 

Trujillo-Pisanty et al., 2013). 

Cossette (2011) used the same rationale as Moisan and Rompré (1998) but 

employed neurochemical detection of DA in the NAC shell. Current sweeps were 

obtained at 4 fixed pulse frequencies (60 Hz, 130 Hz, 250 Hz, 1000 Hz). The required 

current intensity at the behavioural criterion (half-maximal time allocation) as a function 

of pulse frequency was plotted in logarithmic space. The behavioural results were similar 

to the findings in this chapter.  Specifically, the function declined monotonically over the 

tested range and leveled off over the final decrement, from 250 Hz to 1000 Hz. Cossette 

(2011) then measured DA transients in the NAC using voltammetry at each of the 4 

current-pulse frequency combinations. The DA trade-off function declined as the pulse 

frequency was increased from 60 Hz to 130 Hz, which was consistent with the 

behavioural trade-off function. However, further increases in pulse frequency resulted in 

a leveling off or even a rise, which was inconsistent with the behavioural data. This 

divergence of the neurochemical trade-off function from the behavioural trade-off 

function is problematic for the hypothesis that DA neurons are in series with the directly 

activated reward relevant neurons. 

The discrepancy between Cossette’s (2011) and Moisan and Rompré’s (1998) 

findings may be due to methodological differences.   Because detection of DA transients 
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by means of FSCV is restricted to the location of the carbon-fiber detection electrode, 

only a small proportion of DA terminals in the NAC can be described. It is possible that 

the set of local DA terminal responses detected by FSCV could jointly comprise a stage 

of the reward evaluation. For instance, one set of DA neurons could track the aggregate 

firing rate along the low range of pulse frequencies, while another set could track the 

aggregate firing rate along the intermediate range, and yet another along the high range. 

The total aggregate firing rate across all pulse frequencies may be reconstructed by 

integrating the DA response subsets. However, the problem with this proposal is that 

none of the DA transients in Cossette’s (2011) study tracked the decline in the 

behavioural trade-off function past 130 Hz. Thus, there was no evidence of DA tracking 

the middle and high pulse frequency range. A further limitation to Cossette’s study is that 

the FSCV data were obtained in anesthetized subjects, which may affect the results.  The 

behavioural current-pulse frequency experiment and complementary FSCV experiment 

will be repeated using FSCV in behaving subjects.  In previous studies (Cosette, 2011; 

Moisan & Rompré, 1998), the trade-off functions were not formally derived and only 

four points in the sampling space were tested. Formally estimating the function and 

tracking the DA response along a broader range of points would provide greater 

resolution with which to assess the neural activity-behavioural correspondence.   

 

3.18. Further implications: first-stage neurons and glutamate 

The findings from the present 4-dimensional frequency following experiment can 

also be used in conjunction with other techniques to help identify the first-stage neurons.  

One hypothesis is that glutamate forebrain neurons projecting to the ventral tegmental 
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area (VTA) of the midbrain constitute at least a subset of the first-stage neurons. Several 

lines of evidence support this proposal. For example, Geisler & Zahm (2005) showed that 

numerous forebrain regions send glutamatergic projections to the VTA through the MFB. 

In addition, You, Chen, and Wise (2001) demonstrated glutamate and DA release in the 

VTA during self-stimulation of the MFB.  Kempadoo and colleagues (2013) showed that 

LH to VTA optical stimulation promotes peptide neurotensin and glutamate release in the  

VTA.  In addition, Jennings and colleagues (2013) demonstrated that glutamatergic and 

GABAergic projections from the bed nucleus of the stria terminalis produced 

functionally opposing rewarding and aversive states. Thus, a plausible mechanism of 

MFB stimulation is that the electrical stimulation directly activates glutamate neurons in 

the MFB, which in turn activate the VTA DA neurons.  The first test of this hypothesis 

will employ optogenetic methods to determine whether rats will self-stimulate for optical 

stimulation of glutamate terminals of the VTA. Optogenetic techniques allow for 

specificity and temporal control, manipulations not previously achievable with the use of 

drugs. The opsin will be injected into a specific candidate forebrain area and transported 

to the VTA (provided that there is a projection of the target area to the VTA). The 

candidate forebrain areas will be chosen based on results from lesion studies. Whether the 

opsin is transported to the VTA will be apparent if the rat self-stimulates for light 

activation of the VTA, and can also be visualized in tissue slices post mortem.  

 If the rats self-stimulate for light activation of glutamate terminals in the VTA, the 

next step would be to use the collision method to determine whether the glutamate 

terminals (stimulated by the optical probe in the VTA) and the MFB fibers (stimulated by 

an electrode that supports electrical self-stimulation) constitute a common pathway. 
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Collision studies can reveal a common pathway linking two implants. If the fibers 

contributing to the reward signals are common (and if the experimenter-set interval 

between these two signals is sufficiently short), then orthodromic action potentials 

triggered by the electrode site will collide with antidromic action potentials triggered by 

the optical probe. Collision of action potentials causes conduction failure, which in turn 

causes a reduction in the subjective reward intensity (reflected in the behaviour). The 

same optical probe can potentially be used for recordings or coupled with a recording 

microelectrode. The physiological properties of the stimulated glutamatergic neurons can 

be compared with the characteristic properties of the first-stage neurons such as the 

frequency following limit, the absolute refractory period, and conduction velocity. If the 

properties match, this would further strengthen the hypothesis that the first-stage neurons 

are glutamatergic neurons projecting from the forebrain to the VTA. 

 

3.19. Implications for reward-mountain methodology 

 The frequency following roll-off experiment findings are important in the context 

of the reward-mountain methodology. To drive performance to its upper bounds, the 

experimenter manipulates the range of tested pulse frequencies and currents. However, it 

is necessary to know at what pulse frequency the roll-off occurs. Consider a case in 

which a lesion causes a disruption of first-stage neurons: an increase in pulse frequencies 

(due to a shift of the mountain along the pulse frequency axis) is required to restore 

baseline behavioural levels.  If the experimenter-set pulse frequency range includes 

values that exceed Fnmax, the findings and conclusions could be inaccurate and 

misleading. In this case, the reward intensity function could saturate due to frequency 
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firing failure, before the output of the reward integrator can reach its maximal level 

(RImax). Thus, if the experienced maximal reward is actually due to frequency following 

failure, the experienced maximal reward intensity will be less than the maximal reward 

intensity (RImax) that the substrate can attain. For instance, we choose a pulse frequency 

well-above Fnmax  and call it Fhi, such that Fhi >> Fnmax. If the experimenter-set pulse 

frequencies are below Fnmax, then the maximal reward intensity, RImax, can be reached and 

will equal the reward intensity produced by Fhi (denoted as RIhi): thus, RImax = RIhi 

(Figure 8A).  However, in another scenario, if several of the tested pulse frequencies are 

above Fnmax, it is possible that the maximal reward intensity of the integrator (RImax) is not 

reached.  Consequently, it is likely that the experienced reward intensity (the measured 

asymptotic reward intensity, red curve in Figure 8B) is due to frequency following failure 

rather than reward saturation. In this case, RImax > RIhif  (Figure 8B). 

 In the scenario is which RImax is not reached, the experienced maximal reward 

intensity (RIhi which is less than RImax) has a major influence on the detection of changes 

in parameter SPe.  Recall that SPe (the subjective price of “everything else”) is calculated 

as  

 

SPe =
RImax

Ue

 

 

When the output of the integrator cannot reach its maximum value, the subject 

experiences a value less than RImax, referred to as RIhi. Therefore,  
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SPe =
RIhi

Ue

 

 

where, 

RIhi < RImax 

 

 Therefore, in the second case, SPe is lower than what it would have been if the 

reward integrator had been able to reach the maximal reward intensity of the substrate. 

This is problematic in studies measuring the effects of manipulations on the location 

parameters. For instance, if a manipulation such as a lesion to a particular brain area 

caused Fhm to increase, the experimenter might increase the range of pulse frequencies to 

very high levels in order to capture the sigmoidal shape of the time allocation curve. 

However, some of the experimentally chosen pulse frequency values could be above 

Fnmax; as a result, the SPe will be reported to have decreased when in fact the 

manipulation may have had no true effect on SPe. The transformation of pulse 

frequencies (F) into firing frequencies (FF) described in this chapter circumvents this 

potential erroneous inference. Future studies will incorporate the frequency roll-off 

expression in the 3-dimensional testing paradigm with Fnmax set to the fist quartile value 

measured in this study, 316 Hz (rounded down from 317.5 Hz) and median Fb of 21. 

 ����
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Figure 8. A. The reward intensity function. As pulse frequency increases, reward 
intensity increases and then levels off. If the tested pulse frequencies are below 
Fnmax (denoted by the dotted vertical line), then the maximal reward intensity 
RImax is reached.  If a pulse frequency higher than Fnmax is chosen, referred to as 
Fhi, the reward intensity  corresponding to these two pulse frequencies would be 
equivalent.  B. In another scenario, if several of the tested pulse frequencies are 
above Fnmax, the reward intensity function will saturate due to Fnmax, and will not 
reach RImax. The dotted red line represents the reward intensity  function that 
saturates due to Fnmax. The black solid line represents the output of the reward 
intensity function if Fnmax had not been reached.   The reward intensity 
corresponding to the high frequency pulse train (RIhi) is less than the maximal 
output  that could have been attained by the reward intensity  function (RImax) if 
Fnmax had not been reached.
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Appendix A: Derivation of the frequency-response function 

 

 The frequency-response function was developed by computing the integral of a 

sigmoidal expression that describes the rate at which the induced firing frequency 

changes (the frequency-response derivative) as a function of pulse frequency. The shape 

of this derivative function is sigmoidal. Figure A1 plots this functional derivative in 

linear space (upper panel) and in common logarithmic space (lower panel) with 

hypothetical parameter values. The firing frequency follows low pulse frequencies 

perfectly, which is represented by the flat line with a derivate of 1. However, at a certain 

point, the derivative of the function (slope) decreases and reaches an asymptotic value. 

(The derivative never reaches 0, but is very close.) The derivative of the firing frequency, 

FF’ is expressed as: 

 

FF ' = e
−(

F−Fnmax

Fb

)

1+ e
− (

F−Fnmax
Fb

)
 

 

where,  

FF = the average firing frequency in Hz 

F = the pulse frequency that is experimentally-set in Hz 

Fnmax = the position parameter of the sigmoid, the pulse frequency at which the slope of 

the function is half-maximal; the firing frequency at this pulse frequency is actually near 

maximal and thus the reason why “nmax” is in the subscript (demonstrated in Appendix 

B) 

223



Fb = parameter governing the slope of the sigmoidal function 

 

The integral of the above function (as illustrated in Figure 1) is the actual function that 

predicts frequency firing and is expressed as: 

 

FF = Fb (ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))  

 

As F is increased, FF increases and reaches an asymptote at around Fnmax. 
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Figure ApA1.  A. The derivative of the firing frequency (the induced) as a function 
of pulse frequency (the inducer).  B. The same function plotted in common 
logarithmic space.  The firing frequency follows perfectly at low pulse 
frequencies, which is represented by the flat line at a derivate of 1. However, at a 
certain point, the derivative decreases which reflects the gradual bending and 
reaching of an asymptotic value of the function relating firing frequency to pulse 
frequency.  The derivative never reaches 0, but is very close.
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Appendix B: A numerical example demonstrating that the near maximal 

firing frequency parameter (Fnmax) of the frequency roll-off comes very 

close to the maximal value of frequency firing FF. 

 

The example below shows that the near maximal firing frequency parameter (Fnmax) of 

the frequency roll-off comes very close to the maximal value of frequency firing FF. 

 

Given the background literature, the maximum firing frequency is achieved at a pulse 

frequency well below 1000 Hz.  Thus, we can set F to 1000 Hz to drive the neurons to 

their maximal firing frequency.  The numerical example below shows that the maximal 

firing frequency FF will be very close to parameter Fnmax when driving the neurons to 

their maximum firing frequency. 

 

Let, 

Fnmax = 316 Hz 

Fb = 50 

F = 1000 Hz 

 

FF = Fb (ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))  

 

FF = 50 × (ln(1+ e
316
50 )− ln(1+ e

316−1000
50 ))  
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FF = 316.089916175 

 

Thus, the maximal firing frequency FF is very close to Fnmax. 

 

Also, increasing F from 1000 Hz to 10 000 Hz further shows that the maximal firing 

frequency FF stays nearly the same as Fnmax: 

 

FF = 50 × (ln(1+ e
316
50 )− ln(1+ e

316−10000
50 ))  

 

FF = 316.089916277 

 

Thus, this example further underscores the premise that “near maximal” firing 

represented by Fnmax is very close to the maximal firing frequency. 

 

It is important to note that the discrepancy between Fnmax and the maximal firing 

frequency depends on the bend parameter, Fb. The higher the value of Fb, the broader the 

bend, and the further away Fnmax  is from the maximal firing. For example, 

 

Let, 

Fnmax = 316 Hz 

Fb = 100 

F = 1000 Hz 
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FF = 100 × (ln(1+ e
316
100 )− ln(1+ e

316−1000
100 ))  

 

FF = 320.1507 Hz 

 

Here, the maximal firing frequency (FF) at parameters Fnmax (316 Hz) and Fb (100) is 320 

Hz.  Although the maximal value computed here is higher than the “near maximal” 

(Fnmax) value, the difference is not very large (a difference of ~ 4 Hz).  In the previous 

example, Fb was set to a lower value (50 Hz); the difference between the calculated 

maximal firing frequency and Fnmax was negligible.  
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Appendix C: The relationship between current and the number of 

stimulated neurons 

 

The relationship between the current intensity and stimulated surface area 

The current density threshold (Idt) is the current density (μA/mm2) needed to 

activate a neuron 1 mm away from the electrode tip (Tehovnick, 1996) and varies 

depending on the properties of the neuron (size, myelination, etc). 

Thus, knowing the current threshold constant Idt of a particular substrate, the 

threshold current required to stimulate a neuron Re from the electrode tip will be: 

 

IP = Idt × Kgeom1× Re2  

 

where,  

IP = the applied current intensity at a given pulse duration in units μA 

Idt = the current density threshold in units μA/mm2 

Re = the radius of excitation; the mean distance from the center of the electrode to the 

edge of the region in which neurons are directly stimulated, in units mm 

Kgeom1 = a scalar that translates Re2 into a surface area; for example, if the field were 

spherical Kgeom1 would be 4π 

 

Alternatively, if the experimenter wants to determine the radius of excitation Re when 

applying a particular current: 
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Re = IP

Idt × Kgeom1
 

 

The product of current intensity and the scalar that translates the radius (Re) into surface 

area, Idt × Kgeom1 , is traditionally simplified and expressed as:  Kidist, the current 

distance constant in units μA/mm2. 

 

Therefore, 

 

Kidist = Idt × Kgeom1 

 

Simplifying the above expression: IP = Idt × Kgeom1× Re2  

 

IP = Kidist × Re2

 

 

Current distance constants have been described ranging from 100 to 4000 μA/mm2 

(Tehovnick, 1996). Fouriezos and Wise (1984) demonstrated that the Kidist mediating 

MFB self-stimulation is 1300 μA/mm2 (at a pulse duration of 0.1 ms). Also, Yeomans, 

Maidment, and Bunney (1988) demonstrated Kidist values ranging from 1800 to 4000 

μA/mm2 (also corresponding to a pulse duration of 0.1 ms) in the MFB which has been 

suggested to correspond to high threshold dopamine neurons. 
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Next, to relate the current to the number of stimulated neurons, we need to take into 

account that, a glial scar surrounds the electrode.  There is a minimum current that will be 

“ineffective” near the electrode tip. This “waste” current is expressed as: 

 

I0 = Kidist × Rs2  

 

where, 

I0 = the “ineffective” or “waste” current; the current that just suffices to fire a 

hypothetical neuron located at the edge of the scar tissue surrounding the electrode tip 

Rs = the average distance from the electrode tip to the edge of the scar tissue 

 

The difference between IP, the applied current and I0, the ineffective current is the 

“effective” current. 

 

IP − I0 = Kidist × Re2 − Kidist × Rs2  

 

IP − I0 = Kidist(Re2 − Rs2 )  

 

Rearranging the expression (to be used in the next section):  

 

(Re2 − Rs2 ) = IP − I0

Kidist
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The relationship between the current intensity and the number of neurons stimulated 

 

The formula that relates the number of neurons to the surface area is simply geometric 

principles: 

 

Nn = Kpack × Kgeom2(Re2 − Rs2 )  

 

where. 

Nn = the total number of directly stimulated nerve fibers 

Kpack = a scalar that determines spatial density (packing) of the stimulated neurons in 

units neurons/mm2; for simplicity, we assume a homogenous spatial density around the 

electrode tip 

Kgeom2 = a scalar that translates Re2 into cross sectional area; if the stimulated cross-

section were circular, it would be π 

 

Re2 - Rs2 = the difference between the radius of excitation and radius of scar tissue 

 

Substituting 
IP − I0

Kidist
 for (Re2 − Rs2 ) , 

 

Nn = Kpack × Kgeom2
I p − I0

Kidist

⎛
⎝⎜

⎞
⎠⎟

 

 

Next, let,  
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K = Kpack × Kgeom2

Kidist
 

 

where K has units neurons/μA 

 

Therefore, 

 

Nn = K × (IP − I0 )  

 

Thus, assuming a homogenous distribution of equally excitable neurons at the 

electrode tip, the number of stimulated neurons Nn grows in a scalar fashion as a 

function of effective current, IP - I0. ��
�

�

�
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Appendix D: The resampling technique  

 

Why the resampling technique is used 

It is conventionally assumed that the measure of dispersion around the parameters 

of a data set is symmetrical about the mean. However, in the present data sets, this 

dispersion may be uneven.  Specifically, as time allocation is constrained from 0 to 1, 

there could be floor and ceiling effects. Past a certain point, the independent variable can 

no longer affect the dependent variable: a rat cannot respond more than 100% or less than 

0% of the time. These constraints on the dependent variable can lead to skewness in the 

parameter estimates’ distributions (e.g, a, g, Fhm, OPe, TAmax, TAmin). To free us from the 

assumption of normality, we use a resampling technique with replacement 

(bootstrapping) that allows for empirically derived parameter distributions and 95% 

(asymmetrical) confidence intervals around the parameter means (Efron & Tibshirani, 

1986).  

Furthermore, the empirically derived distributions permit us to avoid making 

unrealistic assumptions concerning the lack of correlation between parameters. By 

estimating the parameter distributions, correlations between the parameters can be 

determined. 

 

How the raw data are obtained  

For the 3-dimensional mountain model, one survey consists of a test of a total of 3 

sampling matrices: pulse-frequency sampling matrix @ 4 s, price-sampling matrix, 

radial-sampling matrix. One daily session is required to collect data from 1 survey.  In 
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total, for most rats, 10 surveys make up a complete experiment.  The conventional 

statistical analysis would be to fit the reward mountain model to these data by a non-

linear least squares regression technique. Instead, a resampling with replacement 

procedure was used for the reasons explained above.  The resampling approach involves 

generating 1000 resampled data sets and obtaining a distribution for each of the 

parameters (a, g, Fhm, OPe, TAmax, TAmin).  

 

Fitting the 3-dimensional model 

The 3-dimensional mountain model was fit to the data from the early training 

condition, described in Chapter 2.  The pool from which we resample consists of the data 

from the 10 surveys of the complete experiment. A single resampled data set consists of 

data from 10 surveys that are resampled with replacement from the pool. For example, 

the list of surveys comprising a single resampled data set could entail survey numbers: 

2,4,5,2,6,6,9,1,9,3. In another resampled data set, the survey numbers could be: 

1,5,6,2,10,10,9,3,6,7.  In total, 1000 resampled data sets resembling the previous 

examples are generated. Figure D1 illustrates this example.  The reward mountain model 

is individually fit to each of the 1000 data sets using the non-linear least-squares routine 

in the MATLAB Optimization Toolbox (The Mathworks, Natick, MA).  The mean 

parameters (g, OPe, Fhm, TAmax, TAmin, a) are determined and their respective 95% 

confidence intervals are calculated by excluding the lowest 2.5% and highest 2.5% of the 

estimates.  
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Two methods are used to determine the parameters of a resampled data set. The first 

method is employed to minimize the bias that would be introduced to the slope 

parameters (a, g) if these were estimated by computing a conventional average of the 

data. Such an average would introduce bias because the data includes daily variation due 

to hidden factors that occur during the daily sessions.  This problem and its solution are 

illustrated in a simplified 2-dimensional example (time allocation as a function of pulse 

frequency) in Figure D2. In this example, there is substantial drift in the lateral 

displacement of the curves (a drift in Fhm). Fitting the function to the data from each 

individual survey and subsequently averaging the parameters yields a curve (denoted by 

a thick grey line) with a slope representative of the individual curves. However, fitting 

the function to the averaged time allocation values produces a curve with a slope, 

shallower than the slopes of the individual curves (black dotted curve). The first method 

termed the “location-specific” approach, captures across-survey drift of the location 

parameters while minimizing the number of free parameters. The model is fit separately 

to the data from each survey such that the location parameters Fhm and OPe are free to 

vary across surveys while the remaining parameters (g, TAmax, TAmin, a) are kept 

common. Thus, by this method, a 24-parameter model is fit (2 location parameters that 

are free to vary × 10 surveys + 4 common parameters = 24 parameters). The number of 

free parameters is minimized with this approach:  if all 6 parameters had been free to 

vary, there would be 60 estimated parameters (6 location parameters that are free to vary 

× 10 surveys = 60 parameters).  
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The second method, termed the “all parameters common” method, entails fitting 

the mountain model to the pooled data from the resampled surveys of an individual data 

set. With this method, only 6 parameters are estimated (g, OPe, Fhm, TAmax, TAmin, a). If 

across-survey drift is small, this method may be more appropriate than the first method 

due to the reduced number of parameters. 

To determine which method (the location-specific vs. all parameters common 

approach) provided the best fit to the data, the AIC statistic (Akaike information 

criterion) was calculated. The AIC value balances the goodness of fit with the number of 

parameters whereby each additional parameter penalizes the AIC value. In all rats tested 

in the experiments presented in this thesis, according to the AIC value, the location-

specific approach was best. 

 

4-dimensional model 

The 4-dimensional model fit to the data described in Chapter 3 is expressed as: 

 

TA = (TAmax −TAmin )

(Fb(ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))× (IP − I0 ))g

(Fb(ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))× (IP − I0 ))g + Shmin

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a

(Fb(ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))× (IP − I0 ))g

(Fb(ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))× (IP − I0 ))g + Shmin

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a

+ SPmin + (SPbnd × ln(1+ e
SPmin−OP

SPbnd )
SPe

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+TAmin

 

 

where, 

a: the price-sensitivity exponent 

Fb: the parameter controlling the abruptness of the transition between the range of perfect 

frequency following to the range of frequency roll-off 
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Fnmax: the pulse frequency that produces near maximal firing frequency (Hz) 

I0: the ineffective current; the current that just suffices to recruit the neuron nearest to the 

border of the scar tissue surrounding the electrode tip (μA) 

Shmin: the ratio of the total number of spikes per second and the number of recruited 

neurons per μA required to produce a half-maximal reward ((spikes × μA)/(seconds × 

neurons)) 

TAmax: the maximal time allocation 

TAmin: the minimal time allocation 

SPbnd:  the parameter controlling the abruptness of the change between the flat portion and 

the rising (scalar) portion of the subjective price function curve  

SPmin: the minimum subjective price (s) 

SPe: the subjective price at which the rat allocates half of its time to the pursuit of 

electrical stimulation (s) 

 

The fitting approach was carried out by generating 1000 resampled data sets, in 

the same manner as the fit of the 3-dimensional model (described above). However, only 

the “all parameters common” method was employed. In total, there were 8 parameters (a, 

Fb, Fnmax, I0, Shmin, TAmax, TAmin, SPe) that were estimated. Parameters SPmin and SPbnd 

were set to fixed values that were estimated in previous subjective price analyses. (That 

is, each rat, had unique values of SPmin and SPbnd.) 
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A single survey consists of a (daily) test of 3 sampling matrices (pulse-frequency  
sampling matrix @ 4 s, price-sampling matrix, radial-sampling matrix). The time 
allocation corresponding to each element of a sampling matrix is measured. A 
complete experiment consists of 10 surveys. The data from each of the 10 
surveys make-up the pool of data from which we resample.

Survey 1
Survey 2
Survey 3
Survey 4
Survey 5
Survey 6
Survey 7
Survey 8
Survey 9
Survey 10

 Data obtained from 
10 surveys of an 

experiment (the pool)

Survey 2
Survey 4
Survey 5
Survey 2
Survey 6
Survey 6
Survey 9
Survey 1
Survey 9
Survey 3

Resampled data set #1 consists 
of data from the survey numbers 
listed below

Survey 1
Survey 5
Survey 6
Survey 2
Survey 10
Survey 10
Survey 9
Survey 3
Survey 6
Survey 7

Resampled data set #2 consists 
of data from the survey numbers 
listed below

An example of the resampling procedure

1000 resampled data sets

resampling with replacement

resampling with replacement
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Figure ApD.1. An example of the resampling approach.  A single resampled data 
set consists of data from 10 resampled surveys from the pool. One thousand 
resampled data sets are generated.
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From Hernandez et al. 2010

Figure ApD.2. Fitting the function to the data from each individual survey and 
subsequently  averaging the parameters yields a curve (denoted by  a thick grey 
line) with a slope representative of the individual curves. Fitting the function to 
the averaged time allocation values produces a curve with a slope (black dotted 
curve), not representative of the  slopes of the individual curves.  
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Appendix E: 

The 3-dimensional sections of the 4-dimensional model for all rats
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Figure ApE1. For rat F3, a 3-dimensional section (time allocation as a function 
of price and pulse frequency) of the 4-dimensional reward model. B. The 
corresponding contour plot. The vertical blue line represents OPe,  the 
horizontal cyan line represents Fnmax, the horizontal red line represents Fhm. The 
dashed lines represent the 95% confidence intervals.
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Figure ApE.2.  For rat F3, a 3-dimensional section (time allocation as a function 
of current and pulse frequency) of the 4-dimensional reward mountain model. B. 
The corresponding contour plot. The horizontal cyan line represents Fnmax. The 
dashed lines represent the 95% confidence intervals. 
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Figure ApE.3. For rat F9, a 3-dimensional section (time allocation as a function 
of price and pulse frequency) of the 4-dimensional reward model. B. The 
corresponding contour plot. The vertical blue line represents OPe,  the 
horizontal cyan line represents Fnmax, the horizontal red line represents Fhm. The 
dashed lines represent the 95% confidence intervals.
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Figure ApE.4. For rat F9, a 3-dimensional section (time allocation as a function 
of current and pulse frequency) of the 4-dimensional reward mountain model. B. 
The corresponding contour plot. The horizontal cyan line represents Fnmax. The 
dashed lines represent the 95% confidence intervals. 
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Figure ApE.5. For rat F16, a 3-dimensional section (time allocation as a function 
of price and pulse frequency) of the 4-dimensional reward model. B. The 
corresponding contour plot. The vertical blue line represents OPe,  the 
horizontal cyan line represents Fnmax, the horizontal red line represents Fhm. The 
dashed lines represent the 95% confidence intervals.
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Figure ApE.6. For rat F16, a 3-dimensional section (time allocation as a function 
of current and pulse frequency) of the 4-dimensional reward mountain model. B. 
The corresponding contour plot. The horizontal cyan line represents Fnmax. The 
dashed lines represent the 95% confidence intervals. 
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Figure ApE.7. For rat F17, a 3-dimensional section (time allocation as a function 
of price and pulse frequency) of the 4-dimensional reward model. B. The 
corresponding contour plot. The vertical blue line represents OPe,  the 
horizontal cyan line represents Fnmax, the horizontal red line represents Fhm. The 
dashed lines represent the 95% confidence intervals.
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Figure ApE.8. For rat F17, a 3-dimensional section (time allocation as a function 
of current and pulse frequency) of the 4-dimensional reward mountain model. B. 
The corresponding contour plot. The horizontal cyan line represents Fnmax. The 
dashed lines represent the 95% confidence intervals.
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Figure ApE.9. For rat F18, a 3-dimensional section (time allocation as a function 
of price and pulse frequency) of the 4-dimensional reward model. B. The 
corresponding contour plot. The vertical blue line represents OPe,  the 
horizontal cyan line represents Fnmax, the horizontal red line represents Fhm. The 
dashed lines represent the 95% confidence intervals.
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Figure ApE.10.  For rat F18, a 3-dimensional section (time allocation as a 
function of current and pulse frequency) of the 4-dimensional reward mountain 
model. B. The corresponding contour plot. The horizontal cyan line represents 
Fnmax. The dashed lines represent the 95% confidence intervals. 
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Figure ApE.11. For rat LesRO1, a 3-dimensional section (time allocation as a 
function of price and pulse frequency) of the 4-dimensional reward model. B. 
The corresponding contour plot. The vertical blue line represents OPe,  the 
horizontal cyan line represents Fnmax, the horizontal red line represents Fhm. The 
dashed lines represent the 95% confidence intervals.
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Figure ApE.12.  For rat LesRO1, a 3-dimensional section (time allocation as a 
function of current and pulse frequency) of the 4-dimensional reward mountain 
model. B. The corresponding contour plot. The horizontal cyan line represents 
Fnmax. The dashed lines represent the 95% confidence intervals.
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Appendix F: 

The parameter values of the 4-dimensional model for all rats
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Table ApF.1

Table ApF.2

Table ApF.3

Table ApF.4
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Table ApF.5

Table ApF.6

Table ApF.7

Table ApF.1-7. Parameter values for all rats. CB Lo indicates the lower 95% 
confidence band (limit). CB hi indicates the higher 95% confidence band (limit). 
CB Width indicates the interval from the lower to the higher confidence bounds. 
Ex Lo indicates the lower 95% confidence error (interval). Ex high indicates the 
higher 95% confidence error. MB Lo indicates the lower model bound: the lower 
limit set in the model. MB hi indicates the higher model bound.
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Chapter 4 

 

Three-dimensional analysis of the effects of a lesion challenge to the rewarding effect 

of electrical brain stimulation 

 

Abstract 

Rats will work to obtain electrical stimulation of various brain sites. The effect 

that leads the rat to seek out the stimulation is called “brain stimulation reward” (BSR). 

Extensively studied BSR sites are arrayed along the medial forebrain bundle (MFB) 

which contains dozens of different fiber populations. Although many characteristics of 

the directly stimulated (“first-stage”) fibers underlying BSR have been described, it is as 

yet unknown exactly which MFB fibers are responsible for the rewarding effect. Lesions 

are among the many methods that have been marshaled to meet this challenge. We report 

a 3-dimensional, psychophysical measurement method that can link lesion-induced 

changes in intracranial self-stimulation to particular stages of neural processing and can 

thus help identify first-stage fibers. In this method, operant performance for BSR is 

measured as a function of both the strength (pulse frequency) and opportunity cost (work 

time required to earn a reward) of the rewarding electrical stimulation. The dependent 

variable is time allocated to holding down the lever.   A 3-dimensional surface is obtained 

by fitting the reward-mountain model to these data. One location parameter of this model, 

Fhm, sets the position of the 3-dimensional surface along the pulse-frequency axis 

whereas the other, OPe, sets the position along the opportunity cost axis. Changes in Fhm 

result from perturbations of components that precede the output of the reward-intensity 
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function that translates the induced volley of action potentials into the intensity of BSR. 

These early-stage components include the first-stage neurons. Changes in OPe result from 

perturbations of components beyond the output of the reward-intensity function (after the 

computation of the rewarding effect has occurred).  These components entail processes 

such as the evaluation of subjective effort, opportunity costs, and competing rewards. 

The model predicts that a lesion that damages first-stage fibers will increase Fhm.  

To test this hypothesis, we made small electrolytic lesions through the stimulation 

electrode. In 6 out of 7 subjects, the value of Fhm increased, as predicted. These increases 

were often accompanied by decreases in OPe that may reflect the consequences of 

multiple integrators, and/or damage to local dopaminergic fibers excited transynaptically 

by the stimulation.  The results from this proof-of-principle experiment demonstrate that 

the 3-dimensional reward model can play a useful role in the quest to identify the first-

stage neurons subserving BSR. Namely, the 3-dimensional reward model and testing 

paradigm can be used in conjunction with more specific lesion techniques as well as with 

optogenetic silencing methods. 
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Introduction 

A long-term goal of BSR research is the identification of neurons mediating 

lateral hypothalamic self-stimulation.  One model of reward circuitry is the “descending 

path hypothesis” which proposes that the directly stimulated reward fibers of the medial 

forebrain bundle (MFB) originate in the basal forebrain and descend through the MFB. 

Several lines of research have led to this hypothesis. For example, anatomical studies 

show that the MFB extends from the forebrain to the VTA and traverses the lateral 

hypothalamus (LH) (Nieuwenhuys, Geeraedts & Veening, 1982). Bielajew and Shizgal 

(1986) demonstrated through the use of a psychophysical adaptation of the 

hyperpolarization-block technique that at least some of the reward-relevant neurons 

project in the rostral-caudal direction linking the lateral hypothalamus (LH) with the 

VTA. Together, Nieuwenhuys’ and Bielajew and Shizgal’s results suggest the possibility 

that the neurons in question arise from the forebrain structures.  Accordingly, single unit 

recording studies have shown that several forebrain nuclei have electrophysiological 

properties that are consistent with the properties of the first-stage neurons (Bielajew, 

Shizgal & 1982; Murray & Shizgal, 1996a; Murray & Shizgal, 1996b; Rompre & 

Shizgal, 1986; Shizgal, Shindler, Rompre, 1989). Taken together, these data suggest that 

there is a strong possibility that the first-stage neurons originate in the forebrain areas. 

Lesions are among the many techniques that have been employed to investigate 

the identity of the first-stage neurons.  The destruction of a “candidate” brain area and 

then subsequent assessment of the behaviour under study (e.g. bar pressing for a reward) 

tests the necessity of the destroyed brain area for that particular behaviour.  Although 

lesions to several brain areas have been shown to reduce the reward efficacy of the 
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electrical stimulation, the effects have been variable. Early lesion studies in which the 

rostral sources of MFB fibers were destroyed often failed to significantly and consistently 

alter reward efficacy of more caudal MFB sites (e.g., Boyd & Gardner, 1967; Huston, 

Orenstein, Lehner, 1982; Olds & Olds, 1969; Lorens, 1966). However, these early studies 

compared self-stimulation rates collected at a single combination of stimulation 

parameters, thus rendering the results difficult to interpret due to the limitations of the 1-

dimensional approach (discussed in Chapter 1). More recent studies using the rate-

frequency curve shift method developed by Gallistel (1978) have largely confirmed the 

conclusions of early work. For instance, Colle and Wise (1987) destroyed the forebrain 

via suction ablations and noted only small effects or no effects at all.   Furthermore, in 

experiments in which the lesion was more specific (reviewed below), the effects of 

lesions to the forebrain areas have been either variable within and across studies, not 

long-lasting or unsubstantial, casting doubt on the validity of the descending path 

hypothesis.  

Selected findings of the BSR-lesion literature will be reviewed as the basis for 

conducting the present proof-of-principle experiment that validates the 3-dimensional 

reward mountain methodology for detecting lesion-induced effects. The 3-dimensional 

approach has the potential to reconcile several controversies noted in past lesion studies.  

Importantly, it also provides a means to link a candidate brain area with a stage of the 

circuitry implicated in reward seeking, an inference not previously feasible with the rate-

frequency curve shift method.  
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4.1. Measuring and interpreting lesion effects 

The rate-frequency curve is plotted as the behavioural response (such as the 

number of bar presses) as a function of pulse frequency (while the current is held 

constant). Under the assumption of the counter model, the magnitude of lateral shifts is 

proportional to the lesion-induced reduction in reward-relevant neurons. The pulse 

frequency required to maintain half-maximal responding is the index of measurement for 

reward efficacy; it is referred to as the “pulse-frequency threshold” and denoted as FM50.  

Changes in reward efficacy are reported as changes in pulse-frequency thresholds from 

baseline. Typically, these pulse-frequency threshold changes from baseline are reported 

in common logarithmic units. Increases less than 0.1 log units are considered negligible, 

attributed to day to day variability, increases from 0.1 to 0.2 log units are considered 

small and of interest, whereas increases greater than 0.2 log units are considered 

moderate to large. Further discussion of the meaning of pulse frequency thresholds on a 

logarithmic scale can be found in Appendix A. 

 

4.2. The effect of lesions to forebrain and hypothalamic regions on ICSS 

In an extensive study, Waraczynski (1988) made unilateral coronal knife cuts to 

transect many MFB projection systems and measured the pulse frequency thresholds of 

rewarding electrical stimulation of the lateral hypothalamus (LH) during approximately 2 

weeks following the cut. Overall, the effects on the pulse-frequency threshold were 

variable and not pronounced for the various areas that were transected. For rats in which 

knife cuts transected the diagonal band of Broca and septal region, the pulse frequency 

threshold increases were on average small to moderate, only around 0.1 log units to 0.2 

262



log units; most of these increases were transient. For subjects with cuts in the lateral 

preoptic area (LPO), 4 rats showed small increases in pulse-frequency thresholds (0.1 to 

0.2 log units) lasting over a week, 2 rats showed smaller increases (around 0.1 log units), 

while 4 other subjects with similarly placed cuts showed only transient and variable 

changes in pulse frequency thresholds. Subjects that had knife cuts in the medial preoptic 

area (MPO) showed no effects on pulse frequency thresholds or a slight decrease in 

pulse-frequency thresholds.  

The most surprising results of Waraczynski’s study (1988) were the rats that 

received cuts just anterior to the stimulating electrode of the lateral hypothalamus (ALH). 

If the rewarding effect arises from the forebrain and is carried by the MFB neurons, then 

transecting the ALH should presumably interrupt most of the transmission from the 

forebrain and thus substantial changes in the pulse-frequency threshold should be seen.  

However, only half of these rats showed increases in pulse-frequency threshold; most of 

these shifts, which were approximately 0.2 log units on average, did not persist beyond 

one week. The other half of subjects showed no changes in pulse-frequency threshold. 

The damage specific to the rats with the behaviourally effective lesions was unclear. 

Further studies (Murray & Shizgal, 1991, 1996c; Gallistel, Leon, Lim, Sim & 

Waraczynski, 1996) confirmed these mixed effects of ALH lesions.  Thus, in 

Waraczynski’s knife cut study, transections of many MFB projection systems did not 

have a pronounced or consistent effect on the pulse frequency threshold as one might 

expect if the reward-relevant cell bodies resided in the forebrain areas.  

 

263



Another surprising result is the relative ineffectiveness of lesions to the nucleus 

accumbens and ventral pallidum. These areas are probably not the first-stage neurons but 

have traditionally been implicated in reward modulation given that the nucleus 

accumbens receives dopaminergic projections from the ventral tegmental area and 

interacts with the ventral pallidum (Ikemoto, 2010). Johnson and Stellar (1994) damaged 

the nucleus accumbens (NAC) and ventral pallidum (VP) and the juncture between these 

two areas using excitotoxic lesions (neurotoxin N-methyl-D-aspartic acid, NMDA) to 

assess their effects on LH self-stimulation. This type of lesion selectively destroys cells 

bodies, leaving fibers of passage largely intact. Of the 5 subjects with lesions to the 

nucleus accumbens, only one displayed a marginal increase (0.13 log units) in pulse-

frequency threshold. Of the 5 subjects with lesions to the ventral pallidum, only 2 showed 

moderate effects (reductions in pulse frequency of 0.2 log units). Of the subjects with 

lesions to the juncture between the nucleus accumbens and ventral pallidum, there were 

both moderate increases and decreases in pulse-frequency threshold. Waraczynski and 

Demco (2006) later confirmed the ineffectiveness of ventral pallidum inactivation on 

self-stimulation of the LH.  Thus, the effects of lesions to these areas are mixed, and not 

pronounced.   

To follow-up on studies by Waraczynski (1988) as well as Janas and Stellar 

(1987) that detected small to moderate effects of lesions to the LPO, Arvanitogiannis, 

Waracyznski, and Shizgal (1996) targeted the LPO using excitotoxic lesions (NMDA).  

Electrolytic lesions and knife cuts do not have the specificity of excitotoxic lesion, thus it 

was not clear whether the effects of damage to the LPO seen previously were due to 

fibers of passage passing through the LPO or neurons originating in the LPO. In 
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Arvanitiogiannis and colleagues’ (1996) study, the lesions destroyed at least some of the 

LPO, as well surrounding regions such as the anterior lateral hypothalamus, and 

sublenticular exentended amygdala (SLEA) in all rats. Five of the 15 subjects displayed 

large and long-lasting increases in pulse frequency threshold spanning from 0.2 to more 

than 0.4 log units above baseline. Seven of the subjects displayed a moderate or transient 

increase:  pulse-frequency threshold increases spanned from 0.15 to 0.4 log units but 

stabilized to an increase of about 0.1 log units. However, for 2 subjects in which the 

damage was similar to the damage in the rats who showed an effect, no change in pulse-

frequency threshold was detected. Thus, excitotoxic damage rostral to the LH at the LPO 

and surrounding structures has a relatively stable effect on the pulse frequency threshold 

as compared to other brain areas.  

Arvanitogiannis and colleagues (1996) showed that damage often included the 

sublenticular extended amygdala (SLEA).  Expanding on these findings, Waracyznski 

(2003) further assessed the involvement of the SLEA in MFB self-stimulation. the medial 

and lateral components of the SLEA and neighbouring areas was temporarily inactivated 

(via lidocaine). The magnitude of threshold increases ranged from 0.2 to 0.4 log units; on 

average damage to central structures result in larger threshold increases.  

 

4.3. The effect of lesions to the mid and hindbrain on ICSS 

The descending path hypothesis led to numerous studies of the effects forebrain 

lesions on LH and VTA electrical self-stimulation. The studies reviewed above focused 

on lesions rostral to the stimulation electrode. Given that at least some of the reward-

relevant neurons extend from the LH to the VTA, disruption of the neurons posterior to 
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the LH should disrupt the reward processing. Gallistel and colleagues (1996) 

demonstrated that cuts just outside the anterior border to the VTA or dorsal and 

somewhat caudal to it tended to have more of an effect than cuts actually transecting the 

VTA (Waraczynski, 2006). The lack of substantial lesion-induced effects of the VTA was 

also shown by Janas and Stellar (1987). These findings suggest that although MFB 

neurons send and receive projections to and from the VTA, there may be a subset of 

reward-relevant neurons that turn dorsally to continue caudally to mid- and/or hindbrain 

structures; conversely, the reward-relevant projections could arise from mid- and/or 

hindbrain structures (Waraczynski, 2006).  

Waraczynski’s (2006) proposal that a subset of reward-relevant MFB neurons 

project to or arise from the mid or hindbrain structures is consistent with the findings that 

many midbrain and hindbrain cell bodies send efferents to and/or receive afferents from 

the MFB (Nieuwenhuys, Geeraerdts, & Veening, 1982; Veening, Swanson, Cowan, 

Nieuwenhuys, & Geeraerdts, 1982).  Also in support of this proposal is the fact that 

electrical stimulation of some of these mid- and hindbrain areas is rewarding.  In 

accordance, Gallistel and colleagues (1996) proposed that the neurons carrying the 

reward signal could be located in the midbrain or hindbrain rather than in the forebrain. 

They suggested that these neurons are bipolar: both their nuclei and terminals are located 

in the midbrain with projections to the MFB. Therefore, subsequent lesion studies 

targeted structures of the midbrain and hindbrain to assess the extent of reward-relevant 

neuronal damage.  

Several studies of inactivation or lesions to the mid and hindbrain structures 

showed little or no effect on lateral hypothalamic self-stimulation.  Targeted structures 
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included the parabrachial nucleus (Waraczynski & Shizgal, 1995), peduncolopontine 

tegmentum and neighbouring lateral dorsal tegmentum (Waraczynski & Perkins, 1998), 

mesencephalic grey and dorsal raphe (Waraczynski, Carlton, and Perkins, 1998), 

superiour cerebellar peduncle, and the median raphe and interpeduncular nucleus 

(Waracynski, Perkins & Acheson, 1999). However, lesions to the lateral habenula 

(Morissette & Boye, 2008) caused long-lasting pulse frequency threshold increases that 

ranged from 0.12 to 0.28 log units; in one rat the pulse frequency threshold increased by 

0.54 log units.  

 

4.4. Summary of lesion-induced effects 

Taken together, lesions to the basal forebrain, midbrain, and hindbrain tend not to 

have substantial effects on pulse frequency threshold.  The largest effects were seen in 2 

subjects (Murray & Shizgal, 1996c): immediate increases of around 0.5 to 0.7 log units 

after lesions of the ALH. Another large increase of about 0.54 log unit was seen in one 

rat with a lateral habenula lesion. The more consistent lesion effects were observed after 

LPO and SLEA damage; these threshold increases ranged from 0.2 to 0.4 log units. 

Nonetheless, a 0.4 log unit increase in pulse-frequency threshold implies only a 60% 

reduction in reward relevant fibers according to the logic advanced by the proponents of 

the curve-shift method. The majority of the reported effects were even lower than this 

increase.  
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4.5. Validity of the rate-frequency curve method to assess lesion-induced effects 

Given that lesions of many brain regions do not have substantial effects on pulse- 

frequency thresholds that are measured using the rate-frequency curve method, Gallistel 

and colleagues (1996) assessed the validity of this method by conducting a proof-of-

principle study. Electrolytic lesioning through the stimulation electrode was the chosen 

manipulation. By targeting the electrical stimulation site, the authors were assured that 

the lesions removed reward-relevant fibers. Substantial increases in pulse-frequency 

threshold were seen: progressively bigger lesions through the stimulating electrode had a 

progressively increasing effect on pulse frequency thresholds. After the most extensive 

lesion, the threshold increased dramatically by 1.2-1.3 log units (a 15 to 19 fold increase 

or about a 1400% to 1800% & increase).  

It is unlikely that such large increases in thresholds will occur when destroying 

neurons that are not directly in the field of stimulation. Nonetheless, the importance of 

Gallistel’s (1996) study is that it demonstrates the ability rate-frequency curve shift to 

detect potentially large lesion effects. 

 

4.6. Validity of the reward-mountain model to assess lesion-induced effects 

Although the rate-frequency curve shift method is a useful method for evaluating 

the effects of lesions on ICSS, it is limited in terms of what it can reveal regarding the 

role of brain areas in reward processing. Changes in lateral displacements of the rate-

frequency curve do not distinguish between the effects of manipulations acting before or 

after the output of the reward integrator. This method does not reveal whether a given 

manipulation perturbs the first-stage neurons or the neurons that are implicated in a later 
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stage of reward processing, such as the perceived cost of the reward or evaluation of 

competing activities. Reward-mountain methodology can distinguish between the two: 

displacements along the pulse frequency axis (reflected in changes in parameter Fhm) 

indicate disruptions of the directly activated first-stage neurons. Displacements along the 

objective price axis (changes in parameter OPe) indicate disruptions of the circuitry that 

occur after reward integration. The reward-mountain measurement strategy is elaborated 

on in Chapter 1. 

The 3-dimensional measurement strategy could also reveal effects that are 

traditionally hidden by the use of traditional 2-dimensional rate-frequency curves.  

Specifically, after destruction of a given brain area, rate-frequency methodology may not 

detect an effect on parameter FM50; this leads to the conclusion that brain area under 

investigation is not implicated in reward pursuit.  However, for this same region, it is 

possible that reward mountain methodology can detect a significant effect on parameter 

OPe. Accordingly, the use of the reward-mountain measurement strategy to assess the 

effects of a cannabinoid blocker on self-stimulation of the LH demonstrated that while 

there was no significant effect on pulse-frequency threshold values (FM50), a significant 

effect on parameter OPe was detected (and not Fhm) (Trujillo-Pisanty, Hernandez, 

Moreau-Debord, Cossette, Conover, Cheer, Shizgal, 2011). Therefore, the reward-

mountain measurement strategy could potentially reveal lesion-induced effects of brain 

regions that conventionally showed no effects using past methodologies.  

The present experiment is analogous to Gallistel’s (1996) proof-of-principle 

experiment.  While Gallistel’s study validated the rate-frequency curve methodology, the 

present study is aimed at validating the reward-mountain measurement strategy to detect 
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a lesion-induced effect on lateral hypothalamic self-stimulation.  The lesion is electrolytic 

and delivered through the stimulation electrode.  The prediction is that there will be a 

rightward shift of the reward mountain structure along the pulse frequency axis (an 

increase in location parameter Fhm). That is, eliminating the directly activated first-stage 

neurons would affect the stage of processing preceding reward integration by disrupting 

the actual input to the integrator, thus causing a rightward shift along the pulse frequency 

axis. Specifically, the surviving substrate would require more action potentials to drive 

behaviour back to baseline levels. The secondary possibility is that there may be 

displacement of the structure along the objective price axis (reflected in changes in 

parameter OPe) for several possible reasons.  Among them are the consequences of 

multiple integrators, elaborated on in the discussion section. The more obvious possible 

reason for a change in OPe is that due to (1) the intermixing of different populations of 

ascending and descending fibers traversing through the lesion site and (2) the non-

selectivity of the electrolytic damage, neurons implicated in post-reward integration 

stages could have also been disrupted. Parameter OPe could either increase or decrease 

depending on the role of the damaged neurons. 

In the present experiment, electrolytic damage of the LH through the stimulation 

electrode is predicted to cause an increase in location parameter Fhm.  These changes in 

location parameters would confirm that the reward-mountain measurement strategy could 

be used to assess lesion-induced effects. This methodology and prediction is summarized 

in Figure 1. Furthermore, a group of sham rats not receiving the lesion is tested to assess 

the variability of pulse-frequency threshold changes over time and to guide us in our 

interpretation of “meaningful” effects.   
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Figure 1. Summary of the possible displacements of the mountain 
structure and the prediction of the displacement of the structure 
after a lesion through the stimulating electrode.
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Materials and Methods 

4.7. Subjects 

The same 7 male Long Evans rats that served as subjects in the frequency-

following fidelity experiment in Chapter 3 served as subjects in the lesion group of the 

present study. Furthermore, a control group consisting of 3 additional rats with electrodes 

implanted in the LH was added.  

 

4.8. Baseline condition 

After completion of the frequency-following experiment (Chapter 3), the rats 

were trained in the 3-sampling matrix mountain condition. The sampling matrices were: 

pulse-frequency sampling matrix @ 4 s, price-sampling matrix, radial-sampling matrix. If 

the radial-sampling matrix did not pass through or near the point defined by the fitted 

position parameters of the mountain [Log10(OPe), Log10(Fhm)], it was adjusted. 

Furthermore, if the psychometric curves did not have well defined upper and lower 

asymptotes, the corresponding sampling matrices were adjusted.  In total 5 to 10 sessions 

were collected.   

The control rats were first trained in pulse frequency and price-sweep conditions 

as described in Chapter 2 (section 2.94 and 2.95).  Next, they were trained in the 3- 

sampling matrix mountain condition. The radial-sampling matrix and psychometric 

curves were assessed and adjusted as described above. After stable responding was 

evaluated (confidence interval widths of 0.1 log units or less), 10 sessions were collected. 
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4.9. Electrolytic lesion and post-lesion condition  

Rats were lesioned through the stimulating electrode at 100μA for 15 s. They 

were not tested for 24 hours after the lesion. Subsequently, the subjects underwent the 

post-lesion condition, which was a 3-sampling matrix mountain condition (described 

above). If no effect (no change in parameter Fhm or OPe) was seen after 2 sessions, then a 

second lesion was given at 200μA for 15 s and the subject was tested again.  After every 

1 or 2 sessions, the mountain model was fit to the data.  Adjustments were made to the 

experimental parameters (pulse frequency and objective price) for subsequent sessions so 

that the sigmoidal form of the psychometric curves could be captured. This usually 

involved raising the pulse frequencies of the pulse-frequency sampling matrix and raising 

the pulse frequency of the price-sampling matrix. (If the pulse frequency of the price-

sampling matrix is close to the Fhm value, then the mountain model cannot be fit 

successfully to the data because of mathematical constraints.) Once the parameters were 

adjusted and the mountain model could be fit to the data, about 15 sessions were 

collected.  

The control rats were connected to the lesion-maker for 15 s, but the stimulation 

was not turned on. After a 24 hour rest period, the control rats underwent the 3-sampling 

matrix mountain condition for 20 sessions.  

 

4.10. Histology 

After completion of the experiment, the rats were anesthetized with a lethal dose 

of sodium pentobarbital. For 15 s, through the stimulation electrode, a 1 mA anodal 

current was delivered to deposit iron ions at the site of the electrode tip.  The animals 
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were perfused intracardially with 0.9% sodium chloride, followed by a formalin-Prussian 

Blue solution (10% formalin, 3% potassium ferricyanide, 3% potassium ferrocyanide, 

and 0.5% trichloroacetic acid) that forms a blue reaction with the iron deposited at the tip 

of the electrode. The brains were removed and were fixed with a 10 % formalin solution 

for at least two weeks. Coronal sections, 30 to 40 mμm thick, were cut with a cryostat 

and tip locations were determined under low magnification with reference to the 

stereotaxic altas of Paxinos and Watson (2007). 
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Statistics and Results 

The rats that received lesions once were F16, and F18, LESRO1. The rats that 

received lesions twice were F3, F9, F17. 

The resampling procedure described in Chapter 3 was used to fit the mountain 

model to the data and estimate the model parameter values (Fhm, OPe, g, TAmax, TAmin, a). 

The goal of this study was to determine whether there were differences in location 

parameters (Fhm and OPe) between the baseline and post-lesion conditions. This was 

achieved by obtaining 1000 bootstrapped difference values of the Fhm and OPe parameters 

from baseline. To obtain these difference values, first 1000 bootstrapped estimates of Fhm 

and OPe are estimated for the baseline condition. Second, 1000 bootstrapped estimates of 

Fhm and OPe for the post-lesion condition are estimated. Third, a difference value (post-

lesion parameter value minus baseline parameter value) was calculated for the 1000 

estimates. The mean difference value of the 1000 estimates and associated 95% 

confidence interval was determined. An example of this strategy is described in 

Appendix B.  If the 95 % confidence interval of the difference value included 0, the effect 

was considered non-significant. 

The 3-dimensional and corresponding contour plots of data from the averaged 

sessions for the baseline condition and post-lesion condition are illustrated in Figure 2, 

for Rat F16. An illustration of the comparison of parameters Fhm and OPe is shown in 

Figure 3.  The contour plots corresponding to the baseline condition are displayed twice 

for clarity: the top left-hand panel and bottom right-hand panel. The location parameters 

of Fhm (represented by the red line) and OPe (represented by the blue line) can be easily 

compared with the lesion condition in the bottom left-hand panel. For parameter Fhm,  
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Figure 2.  For rat F16, The 3-dimensional plot and corresponding contour 
plot (an aerial view) for the average of all tested days of the baseline 
condition (A) and the post-lesion condition (B).
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Figure 3A. For rat F16, the contour plots of the baseline condition and of the 
post-lesion condition. The contour plots corresponding to the baseline condition 
are displayed twice, the top left-hand panel and bottom right-hand panel such 
that the location parameters of Fhm (represented by the blue line) and OPe 
(represented by the red line) can be compared with the lesion condition in the 
bottom left-hand corner. For parameter Fhm, there is an over 0.2 log unit increase 
and for parameter OPe, an over 0.1 log unit decrease from baseline. These 
increases and decreases in the parameters from baseline are represented in the 
bar graph.
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Figure 3B-E. A  3 dimensional representation can be represented by several 2 -
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stays constant. Panels B-E are the corresponding 2-dimensional plots of Figure 
3. B. Time allocation as a function of pulse frequency (corresponding to the 
pulse frequency sampling vector @ 4 s). C. Time allocation as a function of 
objective price (corresponding to the price sampling vector). D & E. The tests of 
the radial sampling vector can be represented by time allocation as a function of 
pulse frequency, and time allocation as a function of objective price. 
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there is an increase of over 0.2 log units and for parameter OPe, a decrease of over 0.1 

log units from baseline. These increases and decreases in the parameters from baseline 

are represented in the bar graph in the upper right-hand panel. Figures 3B-D are the 

corresponding 2-dimensional psychometric curves for each tested sampling matrix: the 

pulse-frequency sampling matrix @ 4 s (red curve), the price-sampling matrix (blue 

curve), the radial-sampling matrix (green curve: 2 plots). The shifts in parameters viewed 

in Figure 3A are also seen from the 2-dimensional perspective: time allocation as a 

function of pulse frequency or objective price.  

Figure 4 displays the time course of post-lesions changes in parameters Fhm (red) 

and OPe (blue) for Rat F16. Testing started on “post-lesion day 1”. Each data point 

represents the averaged (bootstrapped) difference from baseline for the parameters 

collected over 2-4 days. For rat F16, the parameter differences were sustained throughout 

the post-lesion test days without evidence of recovery. 

The other rats showed changes of similar magnitude in the location-parameter 

estimates (Figure 5). In 6 out of 7 rats, significant increases of parameter Fhm were seen.  

In these rats, the magnitude of the increase was around a 0.2 log unit increase from 

baseline (58% increase). Rat F18 was the only rat to have an Fhm difference less than 0.05 

log units (< 12%). In 5 out of 7 rats, decreases in parameter OPe were seen ranging from 

0.1 to 0.3 log units (20-50% reduction). In one rat (LesRO1) there was an increase in OPe 

of about 0.1 log units, but this was not significant (p < 0.05). 

Figure 6 displays the time course of the changes in the parameter values over the 

tested post-lesion days. In most rats, recovery did not occur, except for Rat F18. For rat 

F12 and F17, the parameter magnitude changes peaked somewhat over the initial post- 
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Figure 4. For rat F16, the time course of post-lesions changes in parameters Fhm 
and OPe. Day 0 is the day after the lesion in which the rat rests for 24 hours. 
Testing starts on post-lesion day 1. Each data point represents the averaged 
(bootstrapped) difference of the parameters from baseline around the 
represented post-lesion day.
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Figure 5. Shifts along the frequency axis (ΔFhm) are shown on the left and shifts 
along the objective price axis (ΔOPe) on the right for each rat. In all subjects, the 
lesion shifted the 3 dimensional mountain rightward along the pulse frequency 
axis (positive direction). Leftward shifts (negative direction) along the price axis 
were reliable in 5 out of the 7 subjects. (*  denotes cases in which the 95% 
confidence interval around the shift fails to include 0).
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Figure 6. For all rats, the time course of post-lesions changes in parameters Fhm 
and OPe. Day 0 is the day after the lesion in which the rat rests for 24 hours. 
Testing starts on post-lesion day 1. Each data point represents the averaged 
(bootstrapped) difference of the parameters from baseline around the 
represented post-lesion day.
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lesion sessions and progressed closer to baseline over the course of the post-lesion testing 

days. 

Figure 7 shows changes in the location-parameter estimates for the 3 control rats. 

(These rats were connected to the lesion-maker, but not lesioned). Rat G3 and Rat G4 

showed very small parameter differences from baseline (less than 0.05 log units). For Rat 

G5, there was an initial 0.13 log unit increase from baseline for parameter OPe (not 

shown). However, after eliminating the first ten sessions (from the baseline condition) 

and comparing the 10 post-lesion sessions with an additional 10 sessions (collected after 

the post-lesion condition), the difference in the parameter value OPe was no longer seen 

(Figure 7C) which indicates that the rat required more sessions for the behaviour to reach 

stability.  Figure 8 illustrates the electrode locations on a coronal plane for each rat, all 

located within the lateral hypothalamus.  
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Figure 7.  Control rats: (A-C) Shifts along the frequency axis (ΔFhm) are shown 
on the left and shifts along the objective price axis (ΔOPe) on the right for each 
rat. The magnitudes of the shifts in parameters are small in comparison to the 
experimental subjects .  
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Discussion 

 As predicted by the model, a lesion that damaged the directly stimulated substrate 

shifted the reward mountain structure rightward along the frequency axis (reflected in an 

increase in Fhm). Proof-of-principle was demonstrated: to compensate for the damage, the 

surviving neurons had to fire at higher pulse frequencies to restore baseline levels of 

behaviour.  These changes in Fhm were often accompanied by changes in OPe. In 5 out of 

7 rats, the lesion of the directly stimulated substrate shifted the 3-dimensional structure 

leftward along the objective price axis (reflected in a reduction in OPe) implying that 

some of the fibers destroyed act beyond the output of the integrator (section 4.14).  

Alternatively, the shift on the objective price axis may be a consequence of multiple 

integrators (section 4.13).  

 The magnitude of parameter changes from baseline in this study were substantially 

smaller (0.1 – 0.3 log units) than the magnitudes reported by Gallistel and colleagues 

(1996), in which FM50 values were shown to increase by 1.2 -1.3 log units after lesions 

were made through the stimulating electrode. However, Gallistel and colleagues made 

progressively larger lesions at 300 μA, at 10 s, then 20 s, then 40 s, (the currents of the 

tested rats ranged from 500 to 700 μA) while the present study entailed smaller lesions 

of 100μA to 200μA for 15 s (the tested currents ranged from 350 to 600 μA). If the 

lesions used in this study were made progressively larger, it is predicted that the 

magnitudes of parameter changes from baseline would increase to the level seen in 

Gallistel and colleagues’ (1996) study. Also, the magnitudes of parameter changes are in 

the range detected in previous studies using the reward mountain methodology 

(Arvanitogiannis et al., 2008; Hernandez et al., 2010; Trujillo-Pisanty et al. 2011; 
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Hernandez et al., 2012; Breton et al., 2013; Trujillo-Pisanty et al. 2013), which further 

validates this methodology for lesion-induced effects. 

 There was no relationship between the current intensity used during testing and 

whether the rat required a second lesion to be behaviourally affected. For example, rat 

F3, tested at a current of 500μA required a second lesion for an effect to be detected, 

while rat F16 also tested at 500μA, required only one lesion.  This suggests that for rat 

F3, the reward-relevant neurons were situated further from the electrode tip as compared 

to rat F16. 

 

4.11. Time course analyses 

 For most rats, no evidence of recovery to baseline was seen for both parameters 

(Fhm and OPe), (Figure 6). The exception was rat F18: both parameters recovered around 

day 20 of the post-lesion sessions. Furthermore, for F12 and F17, the magnitude of the 

parameter differences from baseline peaked somewhat during the initial post-lesion 

sessions. In general, the magnitude of parameter changes from baseline were consistent 

across subjects. 

 For the time course plots (Figure 6), each data point represents the averaged 

bootstrapped difference from baseline (as described in Appendix B) for parameters Fhm 

and OPe collected over 2-4 sessions.  The limitation to the bootstrapping approach 

employed in the study is that it does not allow for the analysis of parameter changes from 

baseline for a single session, which is the reason why each data point represents an 

average of several sessions rather than a single session.  Future statistical approaches may 

allow improved assessment of bootstrapped changes from baseline over time such that 
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the mountain model can be fit to a single session and the corresponding 95% confidence 

interval around the parameters can be obtained. This involves resampling at an even 

“finer grain” than what is employed here. Here the time allocation values are resampled 

across sessions, whereas the ensuing statistical analysis will resample the distribution of 

“hold times” of the lever, within a trial of a single session. 

 Furthermore, the reward mountain model could usually not be fit to the data 

collected during the first and second post-lesion sessions. These data were typically noisy 

and the parameters needed to be adjusted to capture the sigmoidal form of the 

psychometric curves.  Appropriate changes to the experimental parameters were usually 

only in effect on the third session. Thus, it is possible that the magnitude of Fhm or OPe 

changes from baseline are considerably higher on the first and second days post-lesion. 

That is, a large transient effect, which has been reported in previous studies, may have 

occurred but was undetected with the present approach. The resampling approach 

described above may provide a way to model the individual noisy sessions with a 

bootstrapping approach, across time.  The procedure described above fixes parameters g, 

a, TAmin, TAmax across the sessions but the location parameters Fhm and OPe are free to 

vary. Thus, the later sessions in which the data is less noisy provides a good estimate of 

parameters g, a, TAmin, TAmax such that they can guide the estimate of the location 

parameters of the initial individual noisy sessions. With this approach, it is predicted that 

for rat F18 (in which no significant change in Fhm was detected), the magnitude of the 

increase in parameter Fhm from baseline could be large at the initial sessions of the post-

lesion condition. Furthermore, it is possible that this statistical approach could reveal 

large transient effects during the initial post-lesion days for the other rats.  
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 As well, in the present time course graphs, changes in the parameter values Fhm and 

OPe across time are plotted.  Future statistical analyses will be aimed at modeling the 

post-lesion time course of lesion-induced effects such that persistent and transient effects 

can be identified (e.g., Trujillo-Pisanty, Martel, Conover, Arvanitogiannis, & Shizgal, 

2013). Two examples of potential models are shown in Figure 9.  

 In addition, the reward-mountain analysis used for this experiment does not take 

into account the transformation of objective prices into subjective prices or pulse 

frequencies into firing frequencies. Subsequent analyses will incorporate these 

transformations. Because the objective price values and pulse frequency values are within 

or close to the identity range (the range in which objective prices equal subjective prices 

and the range in which pulse frequencies equals firing frequencies) the results obtained 

with the present analysis are expected to be close to the results of the future analysis that 

will incorporate the two transformations.  
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Figure adapted from Kent Conover

Exponential, transient effect

Linear, persistent effect

Figure 9. Examples of two potential models that can be used to fit the time 
course of post-lesion effects. A. The lesion effect is transient such that the 
change in parameter Fhm increases abruptly and decreases rapidly over time. B. 
The lesion effect causes an increase of the Fhm parameter change and persists.

A

B

F
h

m
F

h
m

Post-lesion day

Post-lesion day
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4.12. The control group and stability 

 Two rats in the control group initially did not show substantial changes in 

parameter values from baseline. However, rat G5 initially showed a change in OPe of 

about 0.13 log units. Yet, after testing rat G5 for an additional ten sessions, and 

eliminating the first 10 sessions, the OPe difference from baseline was no longer seen. 

This finding implies that rat G5 required more training in order for stable behaviour to be 

achieved. Thus, some rats may require a longer training phase as compared to others. 

Future experiments should be guided at ensuring that changes in parameter values are not 

detected before commencing the experimental condition. To confirm stability, the 

conventional criterion is to make certain that the confidence intervals around the 

parameter estimates do not exceed 0.1 log units. Nonetheless, as demonstrated by rat G5, 

a further test may be required: for example, the first test of 10 sessions with a succeeding 

test of 10 sessions can be compared before the experimental phase is commenced. If the 

rat is persistently variable between the averaged sessions (a greater than 0.1 log unit 

difference) this individual variability could be later statistically taken into account when 

comparing the baseline condition with the experimental condition. 

 

4.13. The dual-integrator model and implications for lesion-induced effects 

 A dual-integrator model of reward integration may have implications for the 

variability detected by the rate-frequency curve shift method that is traditionally observed 

between rats with lesions to the same areas. Furthermore, in the context of reward 

mountain methodology, the dual-integrator model may also explain the (leftward) shifts 

along the objective prices axis (decreases in OPe). A description of this model and its 
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relationship to lesion effects is provided below. 

 The most parsimonious models of BSR and the reward mountain model assume a 

homogenous reward substrate and thus a single integrator. However, it is possible and 

even likely that the rewarding effect of stimulating particular brain areas such as the 

lateral hypothalamus is due to the direct activation of heterogeneous neural populations. 

That is, different brain areas could potentially serve different initial reward-related 

functions and provide input to multiple integrators. Their axons may be intermixed in the 

MFB; the electrical stimulation could be activating this intermingling of functionally 

different populations of axons.  In the dual-integrator model, the outputs of two 

integrators (the reward intensity values from two populations) are summed to obtain a 

total value of reward intensity.  In contrast, the single integrator model conventionally 

assumed (discussed in Chapter 1) entails one population of neurons undergoing reward 

integration, and thus one integrator.  The two models make different predictions in the 

ability of curve-shift methodology to detect lesion-induced effects: the dual-integrator 

model could explain why lesion-induced effects have traditionally been difficult to 

discern. 

 The output of the reward integrator is described as a logistic function that grows 

and levels off (termed the reward-intensity function). The rate of growth (steepness of the 

function) is controlled by parameter g.  According to the single integrator model, 

destroying half of the reward-relevant neurons would require a doubling of pulse 

frequency to restore behaviour to its baseline level (time allocation as a function of pulse 

frequency), regardless of the form or steepness of the reward intensity function 

(controlled by parameter g). Thus, the detection of effects should prove to be relatively 
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simple if a lesion to an area is considerably large. 

 According to the dual-integrator model, damaging half of the substrate within the 

stimulation field would not require a doubling of the pulse frequency to restore behavior 

to baseline.  Consider a simple scenario in which half of the fibers coursing through the 

stimulation site arise from a given brain area and provide input to one integrator. The 

other half of the fibers within the stimulation site arises from another brain area that 

provides input to a second integrator. If the neurons of the first population are totally 

destroyed, then half of the fiber population within the stimulation site has been damaged, 

and there is no more input to the first integrator.  To restore behaviour how much should 

the pulse frequency be proportionally increased to fire the intact population to achieve 

baseline behavioural levels? If the outputs of the two integrators are combined by simple 

addition so as to achieve a value of total reward intensity of both neural populations, and 

g is large, then only a very small proportional increase in pulse frequency is needed to 

compensate for the damaged population. These very small required increases in pulse 

frequency may go undetected using the rate-frequency curve method because of the small 

signal to noise ratio. Therefore, the variability traditionally seen in lesion-induced effects 

could be due to activation of a heterogeneous substrate and across site differences in 

reward growth (controlled by parameter g) (Arvanitogiannis et al., 1996). 

 The dual-integrator model also has implications for reward mountain methodology 

and lesion-induced effects, namely, the detection of a change in parameter OPe after the 

destruction of first-stage neurons.  If there are two populations of neurons, and thus two 

integrators, each integrator can have differing properties (Breton et al., 2013). For 

instance, the rate at which the reward intensity grows (controlled by parameter g) may 
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differ across integrators. In addition, the maximal reward intensity that a given substrate 

can achieve can differ across integrators. It is proposed that the total maximum reward 

intensity is the sum of the maximum reward intensities from both integrators. Assuming 

the simplest case in which the integrators are weighted equally:  

 

RImax1 + RImax2 = RImaxTotal  

 

where, 

RImax1 = the maximal reward intensity from integrator 1 

RImax2 = the maximal reward intensity from integrator 2 

RImaxTotal = the total maximal reward intensity of both integrators 

 

For example, if a lesion destroys the substrate that provides the input to integrator 1, then 

the total maximal reward intensity could only be provided by integrator 2. However, 

firing the intact population more (by increasing the pulse frequency) to compensate for 

the lesion will not bring the maximal firing rate back to the (pre-lesion) baseline total 

maximal reward intensity level. This is because integrator 2 will have reached its 

maximum, which by definition is less than the total maximal reward intensity.  

 Thus, if only the input to integrator 2 is intact, then the maximum output of 

integrator 2 (denoted RImax2) will never be able to reach the previous baseline total reward 

intensity value, (RImaxTotal) no matter how much the neurons are fired: 

 

RImax2 < RImaxTotal  

299



 

This reduction in the total maximal reward intensity has implications for the effects on 

parameter OPe. 

 Recall that parameter SPe is the subjective price at which working for the maximal 

reward intensity of the stimulation (RImax) occurs at half-maximal time allocation. At 

half-maximal time allocation, the payoff obtained from the stimulation can be denoted 

UmidBSR. 

 

Thus,  

 

UmidBSR = RImax

SPe

 

 

Rearranging, 

 

SPe =
RImax

UmidBSR

 

 

However, in the example above, after the lesion to the population of neurons providing 

input to integrator 1, the total maximum reward intensity achievable now only comes 

from integrator 2, and thus RImax2.  

 

SPe =
RImax2

UmidBSR
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But remember: RImax2 < RImaxTotal  

 

When a reduction in total reward intensity has occurred, the rat spends half-maximal time 

allocation to the lever at a reduced value of SPe. A reduced value of SPe implies a 

reduced value of OPe (when testing prices within the scalar range of the subjective price 

function).  This reduction in OPe implies a shift of the mountain structure leftward along 

the objective price function. 

 Therefore, in the present lesion study, if the lesion caused a shift of the structure 

along the pulse frequency axis due to damage to the first-stage neurons and if dual 

integration occurred, the maximal attainable reward intensity experienced could be 

reduced (compared to the baseline condition). Consequently, the objective price at which 

the rat spends half of its time working for the reward of maximal intensity (OPe) would 

be reduced, post-lesion. This model may explain why most of the rats in the present 

experiment showed a reduction in parameter OPe from baseline. 

 

4.14. Dopamine and OPe changes from baseline 

 The above hypothesis regarding OPe changes from baseline assume that only the 

first-stage neurons have been disrupted, consequently, the associated OPe changes could 

potentially be due to a lowering of maximal reward intensity values for various reasons. 

However, the decreases seen in parameter OPe could also be due to the disruption of 

neurons that are transynaptically activated by the stimulation, neurons located 

downstream from the first-stage neurons. The non-specificity of the electrolytic lesion 
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which damages cell bodies and fibers of passage that ascend and descend through the 

lateral hypothalamus strongly suggests the possibility that later-stage neurons could be 

damaged.  In particular, the decreases in OPe may reflect damage to local dopaminergic 

fibers that have been previously proposed to be excited transynaptically by the 

stimulation. This hypothesis is consistent with the finding that drugs that alter dopamine 

tone, such as cocaine, GBR, and pimozide which change the value of OPe (Hernandez et 

al., 2010; Hernandez et al. 2012; Trujillo-Pisanty, 2013). The hypothesis that the 

reductions in OPe were due to damage to local dopaminergic fibers can be tested by 

measuring phasic and tonic dopamine release in rats working for BSR after a lesion is 

made through the stimulating electrode. If a reduction in phasic or tonic dopamine is 

found, this would suggest that a lesion to the directly stimulated substrate damages local 

dopaminergic fibers excited transynaptically by the stimulation. 

 

4.15. Further implications 

 These results show that the reward mountain model can play a useful role in the 

search to identify the first stage neurons: damage to the first stage fibers shifts the 

mountain rightward along the pulse frequency axis. The model can be used in 

conjunction with more specific lesion techniques such as excitoxic lesions of different 

neural populations of interest. One such population is the source of glutamatergic inputs 

to the VTA. These inputs are of interest because glutamatergic transmission in the ventral 

tegmental area is necessary for MFB stimulation to drive DA transients in the nucleus 

accumbens (Sombers et al., 2009). Also, MFB stimulation releases glutamate in the VTA 

(You et al., 2001). Lesions producing increases in Fhm will be interpreted to have 
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damaged fibers involved in early stages of the BSR substrate, prior to the output of the 

integrator. These damaged neurons showing this effect are candidates for the directly 

stimulated stage of the circuit. Candidate areas include the lateral preoptic area (LPO) 

and sublenticular extended amygdala (SLEA) that have produced relatively stable shifts 

using the rate-frequency curve shift methodology. Whether these neurons are the first-

stage neurons or transynaptically activated can be elucidated with the reward mountain 

methodology.  While not impossible, it may be difficult to obtain shifts exclusively along 

the pulse frequency axis without the associated OPe shifts for the various reasons outlined 

above.  However, because in past studies it has been possible to achieve shifts exclusively 

in parameter OPe, consistent and sizeable changes in parameter Fhm with possible 

associated shifts in OPe can be interpreted to have affected the first-stage neurons.   

Furthermore, this measurement strategy can be used in conjunction with 

optogenetic methods (Yizhar et al., 2011) for temporally controlled silencing and 

stimulation of activity in neurochemically and anatomically defined neural populations.  

The combination of the new neuroanatomical techniques that provide considerable 

specificity with the refined behavioural measurement strategy validated here could offer 

novel insights into the nature of the reward circuitry not previously accessible with past 

approaches. 
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Appendix A: The meaning of common logarithmic unit changes using 

rate-frequency curve shift methodology 

The interpretation of logarithmic changes in the rate-frequency curve that has 

traditionally been assumed is presented below. 

A 0.1 log unit increase in pulse frequency threshold (FM50) is a 26% increase from 

baseline (10^0.1=1.26, 1.26-1= 0.26), for example, an increase from 63 Hz to 80 Hz. 

According to adherents of the curve shift-method, an increase in reward threshold implies 

a reduction in reward-relevant neurons*: reductions in reward-relevant neurons are of the 

same magnitude but in the opposite direction on a logarithmic scale. Therefore, a 0.1 log 

unit increase in pulse frequency threshold implies a 0.1 log unit reduction in reward 

relevant neurons, or a 20 % reduction in reward-relevant neurons (10^-0.1=0.80, 1-

0.8=0.2).  A 0.2 log unit increase implies a 58% increase from baseline (10^0.2=1.58, 

1.58-1=0.58), for example, an increase from 63 Hz to 100 Hz. This threshold increase 

refers to a 37% reduction in reward relevant neurons (10^-0.2=0.63, 1-0.63=0.37).  A 0.3 

log unit increase is a 100% increase from baseline (10^0.3=2, 2-1=1), for instance an 

increase from 63 Hz to 126 Hz which refers to a 50% reduction in reward relevant 

neurons (10^-0.3=0.5, 1-0.5=0.5).  

It is best to work in common logarithmic units when describing changes from 

baseline because equal proportional changes in magnitude (from baseline) in the positive 

and negative direction are not equal in magnitude when presented on a scale of 

percentage values (examples provided above). These equivalent proportional changes are 

equal on a logarithmic scale. 

*The reward-mountain model shows that increases and decreases in FM50 do not necessarily imply that the directly 

stimulated neurons are affected by a physiological manipulation. 
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LogFhm 

Baseline
LogFhm 

Post-
lesion

LogFhm 
Difference

value

1.9 2.1 0.2

1.89 2 0.11

1.91 2.1 0.19

1.85 2.2 0.35

1.88 2 0.12

1.99 2.1 0.11

Appendix B

Example of how the 1000 bootstrapped difference value estimates of a 
parameter are obtained.

1000 estimates

1000 bootstrapped estimates of Fhm for the baseline and post-lesion are 
estimated as well as the corresponding “Difference value”. An example is 
illustrated above.

The mean of the 1000 Fhm Difference values and corresponding 95% confidence 
interval is reported.
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Chapter 5 

General discussion and conclusion 
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The marked and impressive systematic behaviour that the rats demonstrated from 

the onset of the first sessions underscores the nature of reward-cost integration: a process 

of fast encoding and combining of variables and consequent storing of the result in 

memory.  The experimental tasks were complex in the sense that they were characterized 

by several frequently changing variables. The methodology presented in this thesis, a 

variant of the reward-mountain paradigm which conventionally consists of 3, and 

sometimes 4 sampling matrices (Hernandez et al., 2010; Hernandez et al., 2012; Trujillo-

Pisanty et al., 2013; Breton et al., 2013), tests additional sampling matrices within a 

session. In the first experiment in Chapter 2, the rat was presented with 9 sampling 

matrices, which in total included 126 unique pulse frequency-objective price 

combinations, randomized throughout a daily session. After completion of this 

experiment, the same rats were then presented with 11 different sampling matrices, which 

in total included 154 unique pulse frequency-objective price-current intensity 

combinations, also presented in a randomized fashion (Chapter 3).  The rats were 

methodical, performing consistently in their decision to attend to the lever or engage in 

other activities. At low prices as well as at high reward intensities, the rats allocated a 

high proportion of their time to the lever. As the price was progressively increased or 

reward intensity was decreased, the rats adjusted their behaviour such that their time 

allocation to the lever was steadily reduced. This systematic behaviour was displayed 

even though the numerous points of the sampling matrices were randomized within a 

session. Notably, even when a complete test of the sampling matrices was divided over 2 

days as was the case for the condition in which 11 sampling matrices were tested 

(Chapter 3), consistent and logical behaviour was demonstrated.  
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The presentation of trials in a triad manner allowed the rats to (indirectly) 

compare the pulse frequency of an experimental trial to two extreme values of reward 

intensity: a constant very high intensity on the leading trial and a very low intensity on 

the trailing trial.  However, the rat’s methodical performance suggests that it is not simply 

comparing the pulse frequency of the experimental trial with that of the leading and 

trailing trials and making a binary decision as to whether it is of higher or lower value. 

Rather, the rat’s choices imply a processing of benefits and costs, a computation of the 

overall value or “payoff” that is encoded in memory.  

Survival depends on an animal’s ability to rapidly and accurately integrate reward 

and costs in the face of changing variables, thus it is not surprising that the rat is 

exceptionally efficient at this complicated experimental task. Quantitative models have 

been successful at describing goal-directed behaviours. For instance, matching studies 

have demonstrated that rewards and costs are combined in a scalar (multiplicative) 

manner.  

An important initial stage of reward processing, often overlooked in 

neuroscientific studies of decision-making, occurs before the integration of reward 

intensity and cost. Namely, the translation of each objective, external variable into the 

corresponding subjective, internal value. The formal relationship between the external 

and internal variables, termed psychophysical functions, are often non-linear: what is 

subjectively experienced is not necessarily a direct reflection of the external world. An 

analysis of the transformations of the reward-related variables is important for the full 

understanding of cost-benefit decision-making.  Traditionally, psychophysical functions 

have described sensory experience such as the translation of the physical intensity of light 
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into perceived brightness, or sound waves into perceived loudness. However, studies of 

reward pursuit have extended psychophysical scaling to the realm of valuation, 

motivation and decision-making. 

 

5.1. Psychophysical functions of reward-seeking variables  

 

5.1.1. The psychophysical function of reward intensity: previous studies 

In BSR experiments, several studies have shown the transformation of pulse 

frequency into reward intensity is a logistic (sigmoidal) growth function, which can be 

approximated by a power function with an exponent from 2 to 10, over a portion of its 

domain (Hamilton, Stellar, & Hart, 1985; Gallistel & Leon, 1991; Leon & Gallistel, 

1992; Mark & Gallistel, 1993 Simmons & Gallistel, 1994). As well, the time allocation 

function of the 3-dimensional reward mountain model incorporates and validates the 

form of this reward intensity function (Arvanitogiannis & Shizgal, 2008; Hernandez et 

al., 2010; Hernandez et al., 2010; Trujillo-Pisanty et al., 2011; Trujillo-Pisanty et al., 

2013; Breton et al., 2013). The reward intensity function is expressed as: 

 

RIrel (D,F) = Fg

Fg + [Fhm (D)]g

 

 

where,  

RIrel = the relative reward intensity: the reward intensity as a proportion of maximal 

reward intensity 

Fhm = the pulse frequency that produces half-maximal reward intensity (Hz) 
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g = the intensity growth exponent; controls the steepness of the reward-intensity function 

D = duration of the stimulation train in seconds (held constant at 0.5 s in these 

experiments) 

F = pulse frequency (Hz) 

 

5.1.2. The psychophysical function of opportunity costs: Chapter 2 summary 

When confronted with an option, the subject not only evaluates the reward 

intensity, but the cost of the reward as well.  The cost of the reward in the behavioural 

paradigm employed in this thesis has two components: the effort cost, defined as the 

amount of exertion per unit time to obtain the reward, and the opportunity cost, the 

experimenter-set time required to work or engage in the task to secure the reward. The 

opportunity cost is incurred at the expense of the foregone opportunities or benefits 

arising from the next best option. In the present experiments, effort cost is held constant 

while the opportunity cost varies. The function that describes the translation of the 

experimenter-set opportunity cost (termed the objective price) into the equivalent 

subjective domain (subjective price) was measured in Chapter 2: 

 

SP = SPmin + (SPbnd × ln(1+ e
OP−SPmin

SPbnd ))  

 

where, 

SPmin = minimum subjective price (s) 

SPbnd = controls the abruptness of the transition from the “blade” to “handle”  

OP = objective price (s) 
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SP = subjective price (s) 

 

The shape of the function resembles a hockey stick.  It has a flat horizontal 

“blade” that extends over the range of initial, low costs. The flat part of the function 

along the low range of objective costs indicates that very low opportunity costs are 

subjectively equal to each other. For example, comparing an opportunity cost of 0.5 s to 

0.25 s, the foregone benefits arising from the alternate activities that could be performed 

within these two intervals are equivalent. Further up on the scale, at around 2 s, the flat 

region is joined by a steep upward-curving portion of the curve that represents the range 

at which animals begin to discriminate between opportunity costs. Further, a straight 

“handle” extends over the range of higher costs in which the objective and subjective 

costs mirror each other. Parameters SPmin (the minimum subjective price that the rat 

estimates) and SPbnd (the parameter that controls the bend from the blade to the handle) 

are within a narrow range across rats which strengthens the validity of the form of this 

function. The mean SPmin is 1.08 s, the mean SPbnd, 0.15. The form of the function is 

described in Figure 1A.  

 

5.1.3. The psychophysical function of the frequency-following response: Chapter 3 

summary 

The subjective components that comprise the rat’s computation of payoff have 

been described above: the subjective reward intensity and opportunity cost. However, the 

psychophysical translation of pulse frequency into reward intensity has an embedded 

stage that deserved testing and a formal description: the translation of the experimenter-
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set pulse frequency (F, the inducing stimulus) into the actual firing frequency of the 

neuron (FF, the induced physiological response). The translation of pulse frequency into  

reward intensity as described earlier assumes that the firing frequency (FF) perfectly 

follows the experimenter induced pulse frequency (F). However, the experiment in 

Chapter 3 recognizes that this following must break down: as the pulse frequency 

becomes high, a physiological limit of maximal firing frequency that the substrate can 

attain is reached. The frequency-following response function was estimated in Chapter 3 

using the 4-dimensional reward mountain model and testing paradigm (the additional 

independent variable: current intensity). The form of the function measured in Chapter 3 

is expressed below: 

 

FF = Fb (ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))  

 

where,  

FF = the average firing frequency (Hz); the induced physiological response 

F = the pulse frequency that is experimenter-set (Hz); the inducing stimulus value 

Fnmax = the pulse frequency at which the firing frequency is near the maximal firing 

frequency that the substrate can attain; the position parameter of the frequency-response 

function 

Fb = the parameter describing the abruptness of the transition between the range of 

perfect frequency following to the range of frequency roll-off 
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Parameter Fnmax and Fb were both within a narrow range across rats. The median Fnmax is 

363 Hz and Fb is 21. The form of the function is described in Figure 2B. To be 

conservative, the first quartile value of Fnmax (rounded to 316 Hz) will be used in future 

reward-mountain analyses that incorporate the psychophysical function of the frequency-

following response. 
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Figure 1. A. The subjective price function estimated in Chapter 2. The mean 
values of the parameters across parameters are used here: SPmin, 1.08 s and 
SPbnd, 0.15. B. The frequency-following function estimated in Chapter 3. The 
median values of the parameters are  Fnmax, 361 Hz and Fb, 21. 
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5.2. Implications: psychophysical functions and neural signals 

Psychophysical functions can be used to identify the neural correlates of a given 

process by assessing whether the predicted encoding matches a neural signal. The 

frequency-following response function derived in this thesis has applications for this 

endeavor. Specifically, whether dopamine tracks the behaviourally derived frequency-

following response function can reveal whether these neurons are transynaptically 

activated by the directly activated substrate. Several studies have used this rationale to 

investigate the role of dopamine in reward pursuit.  Moisan and Rompré (1998) tested 

four behaviourally derived trade-off current-pulse frequencies combinations and showed 

(via electrophysiology) that dopamine neurons of the ventral tegmental induced by 

posterior mesencephalon electrical stimulation tracked the combinations. Cossette (2011) 

tested four behaviourally derived current-pulse frequency trade-off combinations and 

measured the electrochemical dopamine response in the nucleus accumbens (via cyclic 

voltammetry) that was induced by ventral tegmental area stimulation.  Unlike Moisan and 

Rompré’s results (1998), dopamine did not track the rewarding effect along the whole 

range of tested pulse frequency-current combinations. However, in both Moisan and 

Rompré and Cossette’s experiments, the trade-off functions were not formally derived 

and only four points in the sampling space were tested. Formally estimating the function 

and tracking the dopamine response along a broader range of points provides greater 

resolution with which to assess the neural activity-psychophysical correspondence.   
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5.3. Implications: the psychophysical functions bolster the reward-mountain model 

The psychophysical functions strengthen the computational framework of reward 

seeking employed in this thesis: the reward-mountain model. Through a series of stages, 

the reward-mountain model ties the electrical activation of the substrate that supports 

self-stimulation to the subject’s operant behaviour. Hitherto, the behaviour (time 

allocated to holding down the lever) is expressed as:  

 

 

TA(D, F, P) = TAmin + (TAmax −TAmin )×

F g

F g + [Fhm (D)]g

⎛
⎝⎜

⎞
⎠⎟

a

F g

F g + [Fhm (D)]g

⎛
⎝⎜

⎞
⎠⎟

a

+ OP
OPe

⎛
⎝⎜

⎞
⎠⎟

a

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

 

where,  

Fhm = pulse frequency that produces half-maximal reward intensity (Hz) 

g = the intensity growth exponent; controls the steepness of the reward-intensity function 

D = duration of the stimulation train in seconds (held constant at 0.5 s in these 

experiments) 

a = the payoff-sensitivity exponent; represents how sensitive the rat is to the price of the 

reward; it accounts for over or under-matching 

TAmax = the maximum time allocation 

TAmin = the minimum time allocation 

OP = the objective price: the opportunity cost in seconds set by the experimenter (s) 

F = pulse frequency (Hz) 
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The two experimenter-set independent variables used to measure time allocation 

(TA), pulse frequency (F) and objective price (OP) have now been expanded into the 

subjective realm: the firing frequency (FF) and subjective price (SP), respectively.  Time 

allocation is now expressed as: 

 

 

TA(D,F,P) = TAmin + (TAmax −TAmin )×

FFg

FFg + [FFhm (D)]g

⎛
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where, 

FF = Fb (ln(1+ e
Fnmax

Fb )− ln(1+ e
Fnmax−F

Fb ))  

and, 

SP = SPmin + (SPbnd × ln(1+ e
OP−SPmin

SPbnd ))  

 

The principal goal of the reward-mountain model and the associated measurement 

strategy is to determine the stage of neural circuitry that has been disrupted by a 

manipulation such as a pharmacological or physiological challenge. The 2-dimensional 

measurement strategies, wherein performance is measured as a function of one 

independent variable (either pulse frequency or cost), have the ability to detect an effect 

on self-stimulation but cannot distinguish at what stage of processing the effect has 

occurred. Specifically, a given manipulation could have impacted the directly activated 
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neurons or alternatively, a subsequent processing stage such as the one that computes the 

perceived cost of the reward. The 3-dimensional measurement strategy has the ability to 

reduce this ambiguity by measuring performance as a function of both the reward 

intensity and opportunity cost.  The direction of the displacements of the 3-dimensional 

structure can reveal whether a given manipulation affects the directly activated neurons 

(as indicated by displacements along the pulse frequency axis), or a stage further 

downstream, subsequent to the integration of the rewarding effect (as indicated by 

displacements along the cost axis).  The stages of reward processing that now incorporate 

the forms of the subjective price function and frequency-following response function are 

illustrated in Figure 2. 

Thus far, the reward-mountain model has been validated (Arvanitogiannis et al. 

2008; Breton et al. 2013). Experiments using this testing paradigm have challenged a 

long-standing viewpoint regarding the role of dopamine in reward processing (Hernandez 

et al., 2010; Hernandez et al., 2012, Trujillo-Pisanty et al., 2013).  In addition, the ability 

of the 3-dimensional paradigm to detect a lesion challenge as demonstrated by the proof 

of principle study in Chapter 4 implies that the model is well suited for the detection and 

measurement of lesion-induced effects of targeted brain regions.  Aptly, new optogenetic 

tools allow for the activation and silencing of specific neural populations. When matched 

with the sophisticated computational approach of the reward-mountain model, the 

potential to deconstruct the complexity of the underlying circuitry is unprecedented.  
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Figure 2. Graphical representation of the reward-mountain model. A.  The 
psychophysical functions estimated in this thesis are denoted by the question 
marks: (i) the frequency-following response function represented in pink and (ii) 
the subjective price function represented in blue. B. The question marks are 
replaced by the psychophysical functions.
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5.4. The necessity for specifying psychophysical functions in the reward-mountain 

model 

If the assumption is that the objective and subjective variables are identical along 

the whole range, the detection of the pharmacological or lesion manipulations could 

potentially be obfuscated. Consider a case in which, a lesion causes a disruption of first-

stage neurons:  an increase in pulse frequencies (due to a shift along the pulse frequency 

axis) to restore baseline behavioural levels would be required. However, if the tested 

pulse frequencies exceed the firing frequency limit (Fnmax), a premature reduction in the 

maximal achievable reward intensity could occur. This reduction in maximal reward 

intensity could lead to a displacement of the structure along the cost axis, thus resulting in 

flawed inferences regarding the affected stages. Knowing the limits within which to set 

the pulse frequencies (as estimated in Chapter 3) circumvents this potential problem.   

A test of the subjective-opportunity cost function was needed: if the cost is used 

to scale the form of the reward-intensity function, it is necessary for the scale to embody 

the subjective interpretation of the cost. Making incorrect assumptions regarding the form 

of the cost scale could lead to an incorrect estimation of the reward-intensity function, 

which in turn could result in imprecise measures of the displacements of the reward-

mountain structure. The experiment presented in Chapter 2 demonstrated the objective-

subjective price relationship. The two are scalar over a range, and it is the scalar range 

that should be employed in the testing paradigm. 
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5.5. Additional psychophysical functions 

In addition to reward intensity and opportunity cost, the reward-mountain model 

includes other variables: probability, effort cost, and delay (all held constant within the 

present and previous experiments). A full generalization of the reward-mountain model 

would entail extending these variables into the subjective domain. The same logic used in 

this thesis can be used to estimate the psychophysical functions of these variables.  

 

5.6. Summary 

Reward-seeking behaviour is complex. The multifaceted nature of the goal and 

context, such as the intensity of the reward, associated costs, selection, execution, state of 

the subject, and competing options make for a demanding computational task. 

Remarkably, the brain performs these multistage computations seemingly at ease. How 

such computations are carried out and the nature of the encoding has broad implications, 

from animal foraging to how humans make choices. Furthermore, working out the 

circuitry has implications for disorders such as drug dependence and obesity, 

impairments understood within the context of dysfunctions in reward processing and 

decision-making. 

Accordingly, behavioural ecologists have long considered animal behaviour from 

the perspective of benefits and costs (Stephens and Krebs, 1986). In recent years, 

numerous neuroscientific studies have been directed at the analysis of cost-benefit based 

decision-making and behaviour. A non-exhaustive list of the subjects of such studies 

includes rodents (Salamone, Cousins, Bucher, 1994; Denk, Waltong, Jennings, Sharp, & 

Rushworth, 2005), humans (Croxson, Walton, O’Reilly, Behrens, & Rushworth, 2010; 
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Basten, Biele, Heekeren, & Fiebach, 2010), nonhuman primates (Hosokawa, Kennerley, 

Sloan, Wallis, 2013; Pasquereau & Turner, 2013) and lower organisms (Hirayama, 

Catanho, Brown, & Gilette, 2012). The ultimate purpose of these studies is to link 

variables of reward seeking to the underlying neural mechanisms. 

Computational models of information processing and sophisticated testing 

paradigms such as the 3-dimensional model of brain stimulation reward in the rodent 

afford a way to identify and understand the neural representation of the reward and 

associated variables, motivated behaviour, and the decision-making process. 
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