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Abstract
On a Generalization of the de Bruijn-Erdős Theorem

Cathryn Supko

The de Bruijn-Erdős Theorem from combinatorial geometry states that every set of n non-

collinear points in the plane determine at least n distinct lines. Chen and Chvátal conjecture that

this theorem can be generalized from the Euclidean metric to all finite metric spaces with appro-

priately defined lines. The purpose of this document is to survey the evidence given thus far in

support of the Chen-Chvátal Conjecture. In particular, it will include recent work which provides

an Ω(
p
n) lower bound on the number of distinct lines in all metric spaces without a universal line.
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Chapter 1

Introduction

Our starting point is a special case of a classic theorem due to de Bruijn and Erdős ([14]) from an

area of combinatorics known as incidence geometry. This result is one of two theorems known as

“the de Bruijn-Erdős Theorem” and asserts the following:

Theorem 1.1. Every noncollinear set of n points in the plane determines at least n distinct lines.

As the name suggests, theorems from incidence geometry are less concerned with angles and

lengths of line segments than with the incidences of points and lines. It was noted by Erdős that

Theorem 1.1 can in fact be viewed as a consequence of another well-known result from incidence

geometry referred to as the Sylvester-Gallai Theorem [16]:

Theorem 1.2. For every set S of at least 3 noncollinear points in the plane, there exists a line

which passes through exactly two points of S.

One notion which is significant in incidence geometry is that of betweenness: in the plane, it is

said that a point y is between points x and z, denoted by [xyz], if d(x, z) = d(x, y) + d(y, z) where

d is the Euclidean distance metric. The set of points contained in a line determined by two points

x and y, which we will denote by xy, can be defined in these terms as

xy = {x, y} [ {z : [zxy]} [ {z : [xzy]} [ {z : [xyz]}.

Several axiomatizations of betweenness in the Euclidean plane have been established by mathe-

maticians including but not limited to Pasch [21], Peano [22], Hilbert [17], and Coxeter [13]. Coxeter

used seven of his ten axioms of planar betweenness in his proof of Theorem 1.2 which appears in

[13], making his axiomatic system of particular interest to us. The following is a list of the axioms

of planar betweenness on which his proof relies:

(i) There are at least two points.

(ii) If a and b are two distinct points, then there is at least one point c such that [abc].
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(iii) If [abc] then a 6= c.

(iv) If [abc], then [cba] but not [bca].

(v) If a and b are distinct points on the line cd, then c is on the line ab.

(vi) If ab is a line, then there is a point c not on this line.

(vii) If a, b, and c are three points not lying on the same line such that [bcd] and [cea] then there

is a point f on the line de for which [afb].

The lack of a need for explicit reference to the Euclidean metric in the proof of Theorem 1.2

suggests that perhaps there are other structures for which incidence theorems make sense. More-

over, the concept of betweenness need not be restricted to Euclidean distances: metric betweenness,

a notion introduced by Menger in [20], is a ternary relation in a metric space (X, d) such that

[xyz] () d(x, z) = d(x, y) + d(y, z).

In [9], Chen and Chvátal use the idea of metric betweenness to suggest a possible generalization

of the de Bruijn-Erdős Theorem. Similar to the definition of a line in the plane in terms of

betweenness, they define a line determined by two points x and y in a metric space (X, d) as

xy = {x, y} [ {z : [zxy]} [ {z : [xzy]} [ {z : [xyz]}.

If a line xy contains the entirety of X, then xy is called universal.

Many, but not all, of Coxeter’s axioms for planar betweenness also hold for metric betweenness.

As a result, lines in general metric spaces exhibit very different behaviour from lines in the plane.

To make this more concrete, we will consider the following example: let

X = {v1, v2, v3, v4, v5}, (1.1)

d(vi, vj) = 1 if j = i+ 1 mod 5 or j = i− 1 mod 5,

and

d(vivj) = 2 otherwise,

where i and j are integers between 1 and 5. In this metric space, we can see that

v1v2 = {v1, v2, v3, v5}

v1v3 = {v1, v2, v3},
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and

v2v4 = {v2, v3, v4}.

This should be considered peculiar not only because the intersection of the two lines v1v3 and

v2v4 exceeds one, but also because the line v1v3 is a proper subset of the line v1v2, both scenarios

being forbidden in the Euclidean plane.

In this framework, Chen and Chvátal posed the following conjecture:

Conjecture 1.3. Every finite metric space (X, d) such that |X| ≥ 2 either has a universal line or

the points of X determine at least |X| distinct lines.

Although there have been several partial results in the direction of a positive response, Conjec-

ture 1.3 remains wide open today. As previously mentioned, in the Euclidean metric Theorem 1.1

is a corollary of Theorem 1.2. It is therefore natural to ask if the same is true in all metric spaces.

Unfortunately, as is exhibited by the example provided in (1.1), a generalized version of Theorem

1.2 with this definition for lines in metric spaces is false: every line determined by two points at

distance 1 contains precisely four points and every line determined by points at distance 2 contains

precisely three points. The metric space in this example does, however, have at least as many lines

as it has points: no two lines in this metric space are equal and hence there are 10 distinct lines.

Chvátal conjectured and Chen proved (in [12] and [8] respectively) that with a slightly different

definition of lines, Theorem 2 can be generalized to arbitrary metric spaces; however, as shown by

Chen and Chvátal in [9], the de Bruijn-Erdős Theorem does not generalize in that setting.

Although it therefore appears that a proof of Conjecture 1.3 relying on a generalized version of

Theorem 1.2 will not be possible, the definition of lines in metric spaces as given above does seem

to be suitable for a generalization of Theorem 1.1. Evidence for this has thus far been concentrated

on special cases of metric spaces. We will now state a fairly comprehensive list of known results,

noting that all relevant definitions will be provided in the chapters which follow. In particular,

Conjecture 1.3 has been verified in the following cases:

• Every metric space (X, d) where X is a set of points in the plane no two of which share an

x− or y− coordinate and d is the Manhattan metric either has a universal line or contains

at least |X| distinct lines (Kantor and Patkós, [19]).

• Every 1-2 metric space (X, d) either has a universal line or contains at least |X| distinct lines
(Chvátal, [11]).

• Every metric space (X, d) induced by a chordal graph either has a universal line or contains

at least |X| distinct lines (Beaudou, Bondy, Chen, Chiniforooshan, Chudnovsky, Chvátal,

Fraiman, and Zwols, [5]).
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• Every metric space (X, d) induced by a distance-hereditary graph either has a universal line

or contains at least |X| distinct lines (Aboulker and Kapadia, [2]).

Further partial results have previously been achieved in more general settings:

• Every metric space (X, d) where X is a set of points in the plane and d is the Manhattan

metric either has a universal line or contains at least |X|/37 distinct lines (Kantor and Patkós,

[19]).

• The vertices of every 3-uniform hypergraph (X,H) with |X| = n ≥ 2 determine at least

(2−o(1)) log n distinct lines (Aboulker, Bondy, Chen, Chiniforooshan, Chvátal, and Miao,[1]).

• Every metric space induced by a connected graph G either has a universal line or has n2/7/(28/7)

distinct lines (Chiniforooshan and Chvátal, [10]).

The following stronger partial results were recently obtained by the author and her coauthors :

• Every metric space induced by a connected graph on at least 2 vertices either has a universal

line or has at least (2n/3)1/2 distinct lines.

• Every metric space (X, d) contains either a universal line or at least n1/2/2 distinct lines.

The purpose of this thesis is to survey the results which have verified Conjecture 1.3 for partic-

ular metric spaces and to give the proofs of these new results. Many of the details of the proofs of

the previous results will be given throughout the following sections so as to illuminate some of the

key ideas which led to these improvements.
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Chapter 2

Survey of results

2.1 Preliminaries and notation

Throughout what follows, we will always use n to denote the number of points in a metric space

and m to denote the number of lines in a metric space, provided it is clear to which metric space

we are referring. We say that a metric space (X, d) has the de Bruijn-Erdős property if the metric

space either has a universal line or the points of the metric space determine as many distinct lines as

there are points in the metric space. Keeping this in mind, we can see that the following statements

are equivalent:

• Conjecture 1.3 is true.

• Every metric space (X, d) either contains a universal line or m ≥ n.

• Every metric space (X, d) has the de Bruijn-Erdős property.

These three characterizations will be used interchangeably. We will now proceed with our chronicle.

2.2 Lines in hypergraphs

A hypergraph (V,H) is a set of vertices V together with a set H of hyperedges, which are subsets

of the vertex set. It is said that a hypergraph is k-uniform if each of its hyperedges has cardinality

precisely k.We can translate the definition of lines in metric spaces into the language of hypergraphs;

indeed, from a metric space (X, d) we can construct the hypergraph (X,H(d)) which contains a

vertex corresponding to each point in the ground set of (X, d) and has hyperedges

H(d) = {{x, y, z} : [xyz]}.

Chen and Chvátal define a line determined by vertices x and y in a 3-uniform hypergraph

(X,H(d)) as

xy = {x, y} [ {z : {x, y, z} 2 H(d)}.
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Note that the lines determined by the vertices of the hypergraph (X,H(d)) will be precisely the

same as the lines determined by the points of (X, d). Using this framework and the fact that in

the Euclidean plane each pair of points can belong to precisely one maximal line, the original de

Bruijn-Erdős Theorem can be stated as:

If every two vertices of (X,H) belong to precisely one maximal line and there is no line that

contains the entirety of X then the number of distinct lines determined by the vertices of X is at

least |X|.
In fact, since for every metric space (X, d) a 3-uniform hypergraph (X,H(d)) can be constructed

such that the lines determined by the points in the ground set of the metric space are the same

as the lines in this hypergraph, a proof of a lower bound on the number of lines in a 3-uniform

hypergraph also serves as a proof of a lower bound on the number of lines in metric spaces. It is

for this reason that lines in hypergraphs are of interest to us. Some partial results in this direction

appear in [4], [1], and [10]. Unfortunately, as shown in [14], there exist examples of 3-uniform

hypergraphs which have no universal line and fewer than n lines:

Theorem 2.1. There exist positive constants n0 and c such that if n ≥ n0 then m  c
p

ln(n).

Theorem 2.1 does not, however, disprove Conjecture 1.3. Although a 3-uniform hypergraph

(X,H(d)) can be constructed from every metric space (X, d) such that the two share the same lines,

it is not the case that every 3-uniform hypergraph corresponds to a metric space. For example, it

has been shown that the hypergraph which is constructed from the Fano plane does not arise from

any metric space (see [12]).

As a result, we can infer that our study of lines in arbitrary 3-uniform hypergraphs may not

immediately allow us to reach the desired lower bound on the number of distinct lines determined

by the points of a metric space, but can certainly still provide insight. The best known lower bound

on the number of lines in hypergraphs, due to Aboulker, Bondy, Chen, Chiniforooshan, Chvátal,

and Miao ([1]) was also the best known lower bound on the number of lines in arbitrary metric

spaces before the results which will appear in Chapter 4 were proved:

Theorem 2.2. The vertices of every 3-uniform hypergraph (X,H) with |X| = n ≥ 2 determine at

least (2− o(1)) log n distinct lines.

We will present the proof of Theorem 2.2 as it appears in [1]. Their proof relies on a result

of which Theorem 2.2 is an improvement and is due to Beaudou, Bondy, Chen, Chiniforooshan,

Chudnovsky, Chvátal, Fraiman and Zwols (see [4]):

Theorem 2.3. The vertices of every 3-uniform hypergraph (X,H) with |X| = n ≥ 2 determine at

least log n distinct lines.

It also requires the use of the following lemmas.
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Lemma 2.4. For every ✏ > 0, there exists δ > 0 such that for every positive integer N,

X

i<δN

✓

N

i

◆

 2✏N .

Proof of Lemma 2.4. A special case of Bernstein’s inequality from [6] states that for every positive

integer N and every integer k between 0 and bN/2c,

k
X

i=0

✓

N

i

◆


✓

N

k

◆k ✓ N

N − k

◆N−k

.

Letting δ be such that limδ!0+

(

e
δ

)δ
= 1,

we then have that
✓

N

k

◆k ✓ N

N − k

◆N−k


✓

eN

k

◆k

 2✏N .

Let L be the set of lines determined by the vertices of a hypergraph (X,H). We will denote |L|
by m. Define the mapping ↵ : X ! 2m to be such that

↵(x) = {` 2 L : x 2 `}

for every x 2 X and the mapping β : X ! 2m to be such that

β(x) = {xw : w 6= x,w 2 X}

for every x 2 X.

Lemma 2.5. If f : X ! 2m is a mapping such that β(x) ⇢ f(x) ⇢ ↵(x) for all x 2 X, then f is

one-to-one and {f(x) : x 2 X} is an antichain.

Proof. We first observe that from our definitions of ↵ and β, β(x) ⇢ ↵(x) for all x 2 X. To show

that {f(x) : x 2 X} is an antichain, it is therefore enough to show that β(x)− ↵(y) 6= ; for every

x, y 2 X as this will guarantee that f(x) 6⇢ f(y) for all x, y 2 X. We will do so by considering the

line xy for arbitrary distinct vertices x and y in X. We may assume that xy is not universal and

so there exists a point z such that z /2 xy. This means that {x, y, z} is not a hyperedge of (X,H)

and hence xz 2 β(x)− ↵(y).

Lemma 2.6. If x, y and z are vertices such that xy = xz, then ↵(y) \ β(x) = ↵(z) \ β(x).

Proof. To prove Lemma 2.6, it will suffice to show that if xy = xz and y 2 xw, then z 2 xw.

This is indeed the case: if y 2 xw then {x, y, w} must be a hyperedge of (X,H). This implies that

w 2 xy, and so from our assumption that xy = xz it must also be the case that w 2 xz. Hence,

{x, z, w} 2 H and so indeed z 2 xw.
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Lemma 2.7. If n ≥ 2 and S is a nonempty set of s vertices which spans a set T of t lines, then

m− t ≥ log(n− s)− s log(t).

Proof. Denote the vertices of S by v1, ..., vs. We note that since we require that S is nonempty, it

must also be the case that t > 0. We define a mapping γ(x) : (V − S) ! T s to be such that

γ(x) = (xv1, xv2, ..., xvs).

Since T = [s
i=1β(vi), if there are vertices y and z in V −S such that γ(y) = γ(z), then by Lemma

2.6, ↵(y)\ β(vi) = ↵(z)\ β(vi) for all vi in S. It then follows that ↵(y)\ T = ↵(z)\ T. Combining

this with Lemma 2.5 gives us that if y and z are distinct and γ(y) = γ(z) then ↵(y)−T 6= ↵(z)−T.

We denote by C a subset of V − S where γ is constant, and note that there exists such a set of

size at least (n− s)/ts. It now follows that

(n− s)

ts
 |C|  2m−t;

hence, log(n− s)− s log(t)  m− t as desired.

Proof of Theorem 2.2. Letting ✏ be any fixed positive real number, we will show that for sufficiently

large n, m ≥ (2− 4✏) log n. To do so, we consider a maximal set S of vertices which spans at least

((δ log n)/2)|S| lines, where δ is as in Lemma 2.4. We denote |S| by s and the number of lines

spanned by S as t. We may assume that t < log n since m ≥ t and so otherwise we would have the

result of Theorem 2.2 immediately. This implies that we may also assume that s < 4/δ.

If t > 0, then by Lemma 2.7 we now have that m− t ≥ (1− o(1)) log n; if t = 0 then the same

bound on m− t follows from Theorem 2.3. We may therefore also assume that t  m/2.

We will now consider the maximal set R of vertices of X such that β(y) \ T = β(z) \ T for

every pair of vertices y, z 2 R. Note that |R| ≥ 2t. By Lemma 2.5, we know that β is one-to-one

and so β(y) − T must be distinct from β(z) − T for every y, z 2 R. We can also see that since S

is maximal, the set β(y) − T includes fewer than (δ log n)/2 lines as otherwise it could have been

added to S. Combining these two observations with Lemma 2.4 gives us that

|R| 
X

i<δ logn/2

✓

m− t

i

◆


X

i<δ(m−t)

✓

m− t

i

◆

 2✏(m−t)  2✏m

for all n such that log n/2 < m− t. It follows that

n  2t|R|  2t+✏m  2(✏+1/2)m  2m/(2−4✏)

and hence (2− 4✏) log n  m.
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2.3 Integral metrics

A metric space (X, d) is called integral if for every choice of distinct points x and y in X, d(x, y)

is an integer. In particular, (X, d) is called a k-metric if d(x, y) is always an integer between 1 and

k. For general k, the best lower bound on the number of distinct lines in a k−metric is no different

from the bound on general metric spaces; however, much more is known about 1-2 metric spaces,

which, as the name suggests, are metric spaces where every non-zero distance is either 1 or 2. In

[10], Chiniforooshan and Chvátal showed the following:

Theorem 2.8. The number of distinct lines determined by the vertices of a 1-2 metric space on n

points is at least (1 + o(1))2−7/3n4/3.

Theorem 2.8 guarantees that every sufficiently large 1-2 metric space has the de Bruijn-Erdős

property. This was later improved by Chvátal in [11], in which he showed that in fact all 1-2 metric

spaces have the de Bruijn-Erdős property.

Theorem 2.9. All 1-2 metric spaces on at least 2 points have the de Bruijn-Erdős property.

We will now present Chvátal’s proof of Theorem 2.9.

Proof. A 1-2 metric space (X, d) is critical if it is a minimal counter example to Theorem 2.9.

We will prove Theorem 2.9 by showing through a series of claims that a critical 1-2 metric space

does not exist. This will then guarantee that in fact every 1-2 metric space must have the de

Bruijn-Erdős property.

We begin with a claim whose proof is very straight-forward. Its statement will require the

following definition: two points x and y in a metric space are called twins if d(x, y) = 2 and for

every vertex z 2 X − {x, y}, d(x, z) = d(y, z).

Claim 2.9.1. If v1, v2, v3 and v4 are four distinct points in a 1-2 metric space then:

(i) if d(v1, v2) 6= d(v3, v4) then v1v2 6= v3v4,

(ii) if d(v1, v2) = d(v2, v3) = 2 then v1v2 6= v2v3, and

(iii) if d(v1, v2) = d(v2, v3) = 1 and v1 and v3 are not twins then v1v2 6= v2v3.

Proof of Claim 2.9.1. To verify (i), we first observe that if either v1 /2 v3v4 or v4 /2 v1v2 then the

two lines are not equal. We may therefore assume that v1 2 v3v4 and v4 2 v1v2. Since (X, d) is a

1-2 metric space, it must therefore be the case that d(v3, v1) = d(v4, v1) = 1, from which we can

deduce that d(v2, v4) = 2. This now implies that v2 /2 v3v4, and hence the two lines are not equal.

To verify (ii), we note that since d(v1, v2) = d(v2, v3) = 2 and d(v1, v3) 2 {1, 2}, there is no

formulation of the triangle inequality for which these three values will hold with strict equality.

Therefore, v3 will not be contained in v1v2 and the two lines cannot be equal.
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To verify (iii), we first note that since v1 and v3 are not twins, either d(v1, v3) = 1 or d(v1, v3) = 2

and there must exist a vertex x such that d(v1, x) 6= d(v3, x). If it is the former then the two lines

are not equal as v1 would not be contained in v2v3, and so we may assume it is the latter. Without

loss of generality, we may assume that d(v1, x) = 1 and d(v3, x) = 2. If d(v2, x) = 1, then x 2 v2v3

and x /2 v2v1 and hence the two lines are not equal. Otherwise, d(v2, x) = 2 and so x 2 v1v2 and

x /2 v2v3 and again the lines are not equal.

Claim 2.9.2. For every pair u, v of twins in a critical 1-2 metric space (X, d), there exists a

third point w in X such that d(u,w) = d(v, w) = 2 and d(x, y) = 1 whenever x 2 {u, v, w} and

y /2 {u, v, w}.

Proof of Claim 2.9.2. Since S is a critical 1-2 metric space, we know that S does not have

the de Bruijn-Erdős property whereas S − {v} does. From this fact, we know that the line uv

is not universal in S and hence there exists a point w such that d(v, w) = d(u,w) = 2 in S. We

will show that w has the other desired properties stated in the conclusion of this claim, i.e. that

d(w, y) = d(v, y) = 1 for all y 2 S − {u, v, w}. We will show that this is the case by proving that

wu must be a universal line in S − {v} : to see that this is the case, we will consider each of the

lines xy \ {u, v} where x and y are distinct vertices in S − {v}. We can see that since u and v are

twins, if x and y are both distinct from u then in S the line xy will either contain both of u and

v or neither u nor v. If one of x or y is equal to u, then the line xy will contain v if and only if

d(x, y) = 1. The existence of w therefore ensures that there are fewer lines in S−{v} then there are

in S. From our assumption that S is critical, it must be the case that S − {v} has a universal line

xy such that in S xy does not contain v. Our previously stated observations about the intersection

of lines in S−{v} with {u, v} reveal that the only candidate for such a universal line is determined

by u and a vertex at distance 2 from u. We may therefore assume that w is this vertex. Since wu

is universal line S − {v} and u and v are twins, it follows that in S, d(w, y) = d(v, y) = d(u, y) = 1

for all vertices y in S − {u, v, w} as promised.

Claim 2.9.3. No critical 1-2 metric space contains a pair of twins.

Proof of Claim 2.9.3. Let S = (X, d) be a critical metric space. We will prove Claim 2.9.3 by

assuming to the contrary that S does contain a pair of twins (u, v). To do so, we will consider the

maximal set Y = {Y1, ..., Yk} of pairwise disjoint 3-point subsets such that d(x, y) = 1 if x 2 Yi

and y /2 Yi. and d(x, y) = 2 if x, y 2 Yi for all integers i such that 1  i  k. By Claim 2.9.2

and our assumption that S contains a pair of twins, we are guaranteed that k ≥ 1. We will be

able to use this fact to show that the vertices of X determine at least |X| distinct lines, which is a

contradiction to our assumption that S does not have the de Bruijn -Erdős Property.

To see that this is the case, we will consider the sets of lines L1 = {xy : x, y 2 Yi, 1  i  k}
and L2 = {xy : x 2 Y1, y 2 X − Y }.
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If xy is in L1 and {x, y, z} 2 Y then by the definition of Y, xy = X − {z} and so

|L1| = 3k. (2.1)

If xy is in L2, then xy = Y1 [ Zy where Zy = {z : d(y, z) = 2, z 2 X − Y }. By the maximality

of Y and k and Claim 2.9.2, we are guaranteed that if y 6= w and y and w are in X − Y, then

Zy 6= Zw. We now have that

|L2| = |X| − 3k. (2.2)

Further, we from these descriptions of the lines in L1 and L2 we can see that L1 \ L2 = ;, and so

combining (2.1) and (2.2),

m ≥ |L1|+ |L2| = 3k + |X| − 3k = |X|

as desired.

To complete our proof of Theorem 2.9, we let T be a maximal set of lines that are all equal.

The combination of Claim 2.9.1 and Claim 2.9.3 guarantees that T is either a set of lines such that

no single point determines more than one line in T, or a set of lines of size at most 4. This implies

that |T | is at most max{(n− 1)/2, 4} and hence

m ≥
(

n
2

)

|T | ≥ n

for all n ≥ 7. If n  7, then the it can be shown by a routine case analysis that (X, d) has the de

Bruijn-Erdős property and this portion of the proof will be omitted.
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Chapter 3

Graph metrics

Another special case of an integral metric space which has been relatively well studied in this

context are metric spaces induced by graphs. Before proceeding with our discussion, we will need

several basic graph theoretic definitions, all of which can be found in [7]. A graph G = (V,E)

consists of a set of vertices V (G) and a set of edges E(G) which are unordered pairs of the vertices

of G. If u and v are vertices of G and {u, v} is an edge of G then u and v are said to be adjacent

and are called neighbours; otherwise, u and v are nonadjacent. The set of all neighbours of a fixed

vertex v 2 V (G) is called the neighbourhood of v and is denoted N(v). A path P of length t in a

graph G is a sequence of distinct vertices p1, p2, ..., pt in V (G) such that for every value of i from

1 to t− 1, {pi, pi+1} is an edge. A graph is called connected if for every pair of vertices u, v in the

graph there exists a path P with u and v as endpoints. If there exists a pair of vertices u and v for

which no such path exists, then the graph is called disconnected.

The distance between vertices u and v of G, denoted d(u, v) is defined to be the number of edges

in a shortest path from u to v. The diameter of a graph G, denoted by diam(G), is defined to be

maxx,y2Gd(x, y). Throughout what follows, we will assume that the graphs are connected; without

this assumption there may be pairs of vertices for which their distance is not well-defined. The

ground set V (G) of a graph together with this distance function induce a metric space for every

connected graph G. To see that (V (G), d) is indeed a metric space, we note that it satisfies all of

the necessary conditions associated with being a metric space:

• d(u, v) ≥ 0 for all u, v 2 V (G) (there cannot be a path of negative length),

• d(u, v) = 0 if and only if u = v,

• d(u, v) = d(v, u) for all u, v 2 V (G) (since the edges are not directed, every path from u to v

is also a path from v to u), and

• d(u, v)  d(u,w) + d(w, v) for all u, v, w 2 V (G) (the length of the shortest path between

two vertices is at most the length of a walk between those two vertices which goes through a
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particular vertex).

The remainder of this chapter will be split in three parts: the first two will pertain to several

classes of graphs for which Conjecture 1.3 has been verified, and the third will give the proof of

the best previously known lower bound on the number of distinct lines in metric spaces induced by

arbitrary connected graphs.

3.1 Preliminary examples

In this section we will first define three classes of graphs and then show that if a graph G is contained

in one of these three classes then G has the de Bruijn-Erdős Property.

A clique Kn is a graph where every pair of vertices is adjacent. A set of vertices that are pairwise

nonadjacent are a stable set. A graph is bipartite if the vertex set of G can be partitioned into two

sets X and Y such that X and Y are each stable sets. In a similar vein, a graph G is complete

k-partite if the vertex set of G can be partitioned into sets X1, ..., Xk such that two vertices u 2 Xi

and v 2 Xj are adjacent if and only if i 6= j for all i and j between 1 and k. Notice that this

definition requires that Xi is a stable set for every i such that 1  i  k. We will now show that

if G is in one of these three classes, then the metric space induced by G has the De Bruijn-Erdős

property.

We will first show that if G is a clique then the metric space induced by G either contains a

universal line or at least n distinct lines. Note that if n = 1 then G is a single vertex and so no lines

can be determined in this metric space. If n = 2 then G is an edge {u, v} and the line determined

by these two vertices will contain the entire vertex set since they in fact are the entire vertex set.

It is therefore enough to consider G such that n ≥ 3.

Fact 3.1. Every metric space induced by a clique Kn on n ≥ 3 vertices contains at least
(

n
2

)

distinct

lines.

Proof. We will show that Kn has
(

n
2

)

lines by proving that for every choice of vertices u and v in

Kn, uv = {u, v}. To do so, we let u,w and v be arbitrary distinct vertices in Kn and we will show

that w is not contained in the line uv. By the definition of a clique, d(u, v) = d(w, v) = d(u,w) = 1.

From this we can see that

• d(u, v) = 1 < 1 + 1 = d(u,w) + d(w, v),

• d(u,w) = 1 < 1 + 1 = d(u, v) + d(v, w), and

• d(v, w) = 1 < 1 + 1 = d(v, u) + d(u,w).

We can therefore conclude that w is not contained in uv. Since w is an arbitrary vertex in the

graph, it follows that the only vertices contained in the line uv are u and v. We know from the
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definition of a line that if u, v, w and z are points in a metric space, then uv = wz only if w and

z are contained in uv; hence, for every pair of vertices u and v in Kn there cannot exist a line

determined by vertices w and z such that uv = wz. Fact 3.1 now follows.

We will now show that all metric spaces induced by bipartite graphs have the de Bruijn-Erdős

Property.

Fact 3.2. Every metric space induced by a bipartite graph G on n vertices with bipartition (X,Y )

contains a universal line.

Proof. Let u and v be adjacent vertices in G. By the definition of a bipartite graph, u and v must

be in different parts of the partition. Without loss of generality, we may assume that u is contained

in X and v is contained in Y. We will prove Fact 3.2 by showing that if w is an arbitrary vertex in

G distinct from u and v then w must be contained in the line uv. To do so, we first observe that

since d(u, v) = 1, a vertex w will be excluded from the line uv if and only if d(u,w) = d(v, w). It is

therefore enough to show that no such vertex exists. We will proceed by considering the parity of

d(u,w) and d(v, w).

First we will suppose that w is an arbitrary vertex in X, and we will let P = {u, p1, ...ps, w}
and Q = {v, q1, ...qt, w} be shortest paths from u to w and from v to w respectively. Since there

are no edges between two vertices which are in the same part, we can see that pi is in Y if and only

if i is an odd number between 1 and s and pi is in X if and only if i is an even number between 1

and s. We are assuming that w is in X, and so ps must be in Y and hence s must be odd. There

are s+ 1 edges in P and so we can conclude that d(u,w) = s+ 1 is an even number. Similarly, qi

is contained in X if and only if i is an odd number between 1 and t, and qi is in Y if and only if i

is an even number between 1 and t. From our assumption that w is in X, we can deduce that pt is

in Y and so t must be even. Since d(v, w) = t+1 we can conclude that d(v, w) must be odd. From

the difference in the parity of these two values, we can conclude that there does not exist a vertex

in X such that d(u,w) = d(v, w). The symmetric argument will hold by swapping X for Y, and

so in fact if w is an arbitrary vertex in G then the parity of d(u,w) and d(v, w) must be different;

hence, every vertex of G will be contained in uv and therefore it is universal.

We will complete this section by considering complete k-partite graphs. Note that if k = 1

and the graph is connected then the graph must consist of a single vertex, and so no lines will be

defined in this metric space. If k = 2 then the graph is a complete bipartite graph and so the fact

that the metric space induced by this graph has the de Bruijn-Erdős Property follows from Fact

3.2. It is therefore enough to consider the case of when k ≥ 3.

Fact 3.3. Every metric space induced by a complete k−partite graph G on n vertices with partition

{X1, ..., Xk} and k ≥ 3 contains at least n distinct lines.
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Proof. We will prove Fact 3.3 by considering the cardinality of each Xi for 1  i  k. If there exists

a value of i such that |Xi| = 2, then the line determined by the two vertices u and v contained in

Xi will be universal; indeed, by the definition of a complete k−partite graph we are guaranteed

that d(u, v) = 2 and d(u,w) = d(v, w) = 1 for every vertex w distinct from u and v. This implies

that for every vertex w in G,

d(u, v) = 2 = 1 + 1 = d(u,w) + d(w, v)

and hence uv is universal.

We may now assume that |Xi| = 1 or |Xi| ≥ 3 for all i. We will count the lines determined by

the vertices of G by grouping them into two sets as follows:

• uv 2 L1 if u 2 Xi, v 2 Xj , and i 6= j, and

• uv 2 L2 if u 2 Xi, v 2 Xj , and i = j.

Let uv be a line in L1 where i and j are fixed distinct integers between 1 and k and u and v are

arbitrary vertices in Xi and Xj respectively. From the definition of a complete k-partite graph, we

know that d(u, v) = 1, d(u,w) = d(v, w) = 1 if w /2 Xi [Xj , d(u,w) = 1 and d(v, w) = 2 if w 2 Xj ,

and d(u,w) = 2 and d(v, w) = 1 if w 2 Xi. Together these facts imply that uv = {Xi [ Xj} for

every u 2 Xi and v 2 Xj and so

|L1| =
✓

k

2

◆

. (3.1)

We will now consider the line uv 2 L2 where i is a fixed integer between 1 and k and u and

v are arbitrary vertices in Xi. We know that d(u, v) = 2, d(u,w) = d(v, w) = 2 if w 2 Xi, and

d(u,w) = d(v, w) = 1 if w /2 Xi. This implies that uv = {[` 6=iX` [ {u, v}} and hence

|L2| =
k

X

i=1

✓|Xi|
2

◆

. (3.2)

We note that

|L1| =
✓

k

2

◆

≥ k ≥
X

i:|Xi|=1

|Xi|.

Combining (3.1) and (3.2) now gives us that

|L1|+ |L2| =
✓

k

2

◆

+
k

X

i=1

✓|Xi|
2

◆

=

✓

k

2

◆

+
X

i:|Xi|≥3

✓|Xi|
2

◆

≥
X

i:|Xi|=1

|Xi|+
X

i:|Xi|≥3

|Xi|

= n.
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Therefore in this case G will have at least n lines as required to complete the proof.

3.2 Subgraphs

A subgraph H of a graph G is a graph obtained from G by deleting a subset of the vertices and

the edges of G. An induced subgraph H of a graph G is a graph whose vertex set is obtained from

deleting a subset of vertices from G and whose edge set contains the edge {u, v} if and only if

u, v 2 V (H) and {u, v} 2 E(G). We denote the distance between vertices u and v in a subgraph

H by dH(u, v). A subgraph H of G is called isometric if dG(u, v) = dH(u, v) for every u and v

in V (H). Note that an isometric subgraph is always an induced subgraph; however, an induced

subgraph is not necessarily isometric.

Fact 3.4. If H is an isometric subgraph of G, then the number of lines in the metric space induced

by G is at least the number of lines in the metric space induced by H.

Proof. This follows directly from the definition of an isometric subgraph.

Several classes of graphs can be defined in terms of their subgraphs. A familiar example is

a tree, which is a connected graph which does not contain a cycle as a subgraph. Classifying

graphs in terms of their forbidden subgraphs is useful because frequently we are able to exploit

known structural properties of these classes to prove that they have other desirable properties (for

example, the de Bruijn-Erdős property). This will be the case for each of the classes of graphs

discussed in this section. We will begin by showing that trees have the de Bruijn-Erdős property:

Fact 3.5. Every metric space induced by a tree on n vertices contains a universal line.

Proof. Let T be a tree on n vertices, u be a leaf of T, and v be the neighbour of u in T. Since

T is a tree, the only path from u to an arbitrary vertex w in T must go through v; therefore,

d(u,w) = d(u, v) + d(v, w) for every vertex w in T and hence uv is universal.

The remainder of this section will discuss two other classes of graphs defined in terms of their

subgraphs for which Conjecture 1.3 has been verified.

3.2.1 Chordal graphs

A graph is chordal if it does not contain any cycles with at least 4 vertices as an induced subgraph.

Beaudou, Bondy, Chen, Chiniforoooshan, Chudnovsky, Chvátal, Fraiman, and Zwols proved in

[5] that every metric space induced by a chordal graph has the de Bruijn- Erdős property. The

remainder of this subsection will give their proof of this result.
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Theorem 3.6. Every metric space induced by a chordal graph G either has a universal line or has

at least n distinct lines.

Their argument relies on the following theorem due to Dirac about the structure of chordal

graphs whose proof will be omitted (see [15]).

Theorem 3.7. If G is a connected chordal graph on at least two vertices then there exist two

distinct vertices u and v such that N(u) and N(v) each induce a clique.

Proof of Theorem 3.6. A vertex v is called simplicial if the subgraph induced by N(v) is a clique.

By Theorem 3.7, if G is a chordal graph then G contains two simplicial vertices. We will denote

one of them by s and will denote two other distinct vertices in G by x and y. We write d(s, x) as j

and d(s, y) as k. Without loss of generality, we may assume that j  k. To prove this theorem, we

will begin by proving the following claim:

Claim 3.6.1. If sx = sy then xy is a universal line in G.

Proof of Claim 3.6.1. We define the set A`(s) to be the set of vertices z in G such that d(s, z) = `.

Our proof of Claim 3.6.1 will require validation of the following statements:

(i) If sx = sy then d(s, y) = d(s, x) + d(x, y).

(ii) If sx = sy then x is a cutvertex in G separating y from s.

The combination of these two statements will be almost enough prove our claim: together they will

allow us to show that every vertex w in G is contained in the line xy.

We will first verify (i). To do so, we must show that d(s, x) < d(s, y) + d(x, y) and d(x, y) <

d(x, s) + d(s, y). The former is guaranteed by the assumption that k is at least j and the fact that

d(x, y) is at least 1. The latter is guaranteed by the fact that G is simplicial: to see this, we will

select one vertex in A1(s) which is on a shortest path from x to s and one vertex in A1(s) which is

on a shortest path from y to s and denote these vertices by w and z respectively. If w is equal to

z then

d(x, y)  (j − 1) + (k − 1) < j + k.

Otherwise, w and z are adjacent since A1(s) is a clique and so

d(x, y)  (j − 1) + 1 + (k − 1) < j + k.

This proves (i).

We will now prove (ii). To do so, we note that Aj(s) is a cutset of G which separates s from

y. We define B to be a minimal subset of Aj(s) which is a cutset separating s from y. By our

assumption that sx = sy and (i), we can see that x will be contained in B. We denote by z

an arbitrary vertex in B, and will prove our claim by showing that in fact z = x. We will do so
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by considering d(x, z). We first note that d(x, z)  1 : to see this, note that since x and z are

contained in a minimal cutset separating y from s, there exists a path from x to z both in the

component S containing s and in the component Y containing y in G − B. We will denote by

P and Q the shortest paths from x to z in S and Y respectively. If d(x, z) is at least two then

the lengths of both P and Q must be at least 2, from which we can infer that P [ Q would be

a chordless cycle with at least 4 vertices. This cannot happen since G is a chordal graph; hence

d(x, z)  1. If d(x, z) = 1, then P must be a path of length 2; otherwise G is not chordal. This

implies that there exists a vertex w in Y \Aj+1(s); however, the existence of w guarantees that z

is contained in sy and not sx, contradicting our assumption that sx = sy. To see this, we first note

that d(w, s) = d(w, x) + d(x, s) and so w is contained in sx. It must therefore also be contained in

sy and be such that d(s, y) = d(s, w) + d(w, y). Since w is adjacent to z, we can then infer that

d(s, y) = d(s, z) + d(z, w) + d(w, y) = d(s, z) + d(z, y) and hence that z is contained in sy. On the

other hand, since d(s, x) = d(s, z) = j and d(x, z) = 1 we can see that z will not be included in sx.

We have now proved that d(x, z) < 1, and so indeed d(x, z) = 0 and x must be the only vertex in

B.

To complete the proof of Claim 3.6.1, we may assume that there exists a pair of vertices x and

y such that sx = sy; otherwise, G contains at least n− 1 lines which all contain s and so we have

the result. We proceed by showing that an arbitrary vertex w in the graph will be contained in xy.

We define P to be a shortest path from w to s and Q to be a shortest path from w to y. By (ii), x

is a cutvertex separating y from s and so at least one of P and Q must contain x. If Q contains x

then by our definition of Q, d(w, y) = d(w, x) + d(x, y). This implies that w is indeed contained in

xy.

We may now assume that P contains x. By our definition of P, we have that d(s, w) =

d(s, x) + d(x,w) which implies that w is contained in sx. Recall that sx = sy, from which we can

infer that w must also be contained in sy. We know that d(w, y) < d(w, s) + d(s, y) since s is

simplicial. If d(s, w) = d(s, y)+d(y, w), then by subtracting d(s, x) from both sides of this equation

we obtain that

d(x,w) = d(s, w)− d(s, x) = d(s, y) + d(y, w)− d(s, x) = d(x, y) + d(y, w).

This implies that in this case xy contains w. Else it must be the case that d(s, y) = d(s, w)+d(w, y).

Subtracting d(s, x) from both sides we have that

d(x, y) = d(s, y)− d(s, x) = d(s, w)− d(s, x) + d(w, y) = d(x,w) + d(w, y).

Here we can again deduce that w is contained in xy. This completes the proof of Claim 3.6.1.

Claim 3.6.1 is almost enough to prove the theorem. Indeed, Claim 3.6.1 guarantees that G

will either have a universal line or at least n − 1 distinct lines. To complete the proof we need to

only provide one additional line or show that G contains a universal line. This can be done by
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considering the neighbourhood of s. If |A1(s)| = 1 then the line determined by s and the single

vertex in its neighbourhood is a universal line. If |A1(s)| is at least 2 then we label two distinct

vertices in A1(s) by w and z and claim that the line wz is distinct from every line sx. To see this,

we observe that every line sx will contain s; however, d(w, z) = d(z, s) = d(s, w) = 1 and so the

line wz does not contain s. We are now guaranteed that the vertices of metric space induced by G

determine at least n distinct lines, as desired.

3.2.2 Distance-hereditary graphs

A graph is called distance-hereditary if every connected induced subgraph is also an isometric

subgraph. In [2], Aboulker and Kapadia proved the following:

Theorem 3.8. Every metric space (X, d) induced by a distance-hereditary graph G has the de

Bruijn-Erdős property.

We will not reproduce the entirety of their proof here, but will give the key ideas which are

used. Similar to the proof of Theorem 3.6, their proof relies on other results which characterize the

structure of graphs in this class. The three key such results that they make use of are:

(a) Any cycle of length at least 5 in a distance-heredity graph has two crossing chords.

(b) If x is a vertex in a distance-hereditary graph, u and v are adjacent vertices such that d(u, x) =

d(v, x) = i, and z is a vertex such that d(z, x) = i− 1, then z is adjacent to u if and only if z

is adjacent to v.

(c) Any 2-connected distance-hereditary graph with at least four vertices has two disjoint pairs

of twins.

The term twins in (c) is used in a similar sense here as it is used in our discussion of 1-2 metrics:

a pair of vertices u and v are twins if N(u)−v = N(v)−u. See a paper of Howorka [18] as a reference

for (a) and a paper of Bandelt and Mulder [3] for (b) and (c). Together (a), (b), and (c) are used

to prove the following lemmas about lines in distance hereditary graphs:

Lemma 3.9. Let G be a connected distance hereditary graph and let {x, y} be an edge of G. Then

either the edge {x, y} is contained in a triangle in G or xy is universal.

Lemma 3.10. Let G be a connected distance hereditary graph and x, a, and b be three distinct

vertices of G. If xa = xb, then either ab is a universal line or [axb].

They then use a strategy similar to that used in the proof of Theorem 2.9: they assume that

a metric space (X, d) induced by a distance-hereditary graph G is a minimal counter example to

Conjecture 1.3, and then through a series of claims related to the existence of a pair of twins in the

graph deduce that such a minimal counter example does not exist.
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3.3 All graph metrics

In this subsection we will present the proof of Chiniforooshan and Chvátal from [10] which gives

the best previously known bound for all metric spaces which are induced by graphs.

Theorem 3.11. Every metric space induced by a connected graph G either has a universal line or

has n2/7/(28/7) distinct lines.

The proof of Theorem 3.11 will rely on the following two Lemmas.

Lemma 3.12. Every metric space induced by a connected graph G with diameter diam(G) either

has a universal line or has at least (n/diam(G))2/3/4 distinct lines.

Lemma 3.13. Every metric space induced by a connected graph G with diameter diam(G) either

has a universal line or has at least
p

diam(G)/2 distinct lines.

In order to prove Lemma 3.12, we will need to use the following additional Lemma about

lines in hypergraphs. As discussed previously, for every metric space (X, d) we can construct a

3-uniform hypergraph (V,H(d)) whose vertex set determines the same lines as (X, d). Therefore,

by showing that the hypergraph associated with the metric space induced by a graph G satisfies

the assumptions of this lemma, we will be able to apply its conclusion. Here we will denote by K3
4

the 3-uniform hypergraph on 4 vertices with all 4 possible hyperedges.

Lemma 3.14. Let H be a 3-uniform hypergraph, x be a vertex of H, and T = {v1, ..., vt} be a

set of the vertices of H excluding x such that x, vi, vj and vk do not induce a K3
4 in H for every

1 < i < j < k  t. Then H contains at least (2|T |)2/3/4 distinct lines.

Proof of Lemma 3.14. Throughout the proof, we may assume that |T | > 4 as otherwise (2|T |)2/3/4 
1 and so the conclusion follows immediately.

We define S = {v1, ..., vs} to be a maximal set of vertices in T such that xvi = xvj for every i

and j between 1 and s. If |S|  (2|T |)1/3, then H contains at least |T |/|S| ≥ (2|T |)2/3/4 distinct

lines determined by x and the vertices in T . We may therefore assume that |S| > (2|T |)1/3. We

will complete the proof by showing that every line induced by a pair of vertices in S is distinct.

To see this, we will consider the line vivj for a fixed choice of i and j. We note that if vk is an

arbitrary vertex in S distinct from vi and vj , then the sets {x, vi, vj}, {x, vj , vk} and {x, vi, vk}
must be hyperedges in H. Further, since vi, vj , and vk are in T we know that these four vertices do

not induce a K3
4 and hence {vi, vj , vk} is not a hyperedge in H. From this we can infer that vk is

not contained vivj . Since vk is an arbitrary vertex in S, we can moreover conclude that vivj \ S is

precisely vi and vj . It is therefore indeed the case that each line determined by a pair of vertices in

S is distinct. Hence, in H we have that

m ≥
✓|S|

2

◆

≥ (2|T |)1/3((2|T |)1/3 − 1)

2
≥ (2|T |)2/3

4
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as desired.

Proof of Lemma 3.12. Let x be an arbitrary vertex in G. We can partition the vertex set of G

into sets A1, ..., Adiam(G) such that for every k between 1 and diam(G), Ak is the set containing

all vertices y in G such that d(x, y) = k. We can see that there exists an integer ` between 1 and

diam(G) such that

|A`| ≥
n− 1

diam(G)
≥ n

2diam(G)
.

We denote one fixed set A` where this inequality is satisfied by T. We will prove Lemma 3.12

by showing that from G we can construct a hypergraph (X,H(d)) such that the set of vertices in

T satisfy the assumption of Lemma 3.14. Since |T | ≥ n/(2diam(G)), applying Lemma 3.14 will

immediately imply the result.

To proceed, we will now consider the hypergraph (X,H(d)) where X = V (G) and

{x, y, z} 2 H(d) =) d(x, z) = d(x, y) + d(y, z).

To see that T satisfies the assumption of Lemma 3.14, we will consider three arbitrary vertices

vi, vj , and vk in T such that {x, vi, vj}, {x, vj , vk} and {x, vi, vk} are in H(d). By our definition of

T , d(x, vi) = d(x, vj) = d(x, vk) = ` and hence if these three sets are hyperedges in H(d) then

2` = d(vi, vj) = d(x, vi) + d(x, vj)

= d(vj , vk) = d(x, vj) + d(x, vk)

= d(vi, vk) = d(x, vi) + d(x, vk).

Since all of the quantities d(vi, vj), d(vj , vk) and d(vi, vk) are equal, we can deduce that {vi, vj , vk}
is not in H(d). The vertices vi, vj , and vk were chosen arbitrarily from T and hence there are no

three vertices of T which induce a K3
4 with x. This shows that the assumptions of Lemma 3.14 hold

and so our proof of Lemma 3.12 is now complete.

Proof of Lemma 3.13. We define P = p0...pdiam(G) to be an isometric path of length diam(G) in G

and define S to be a maximal set of of edges in P such that pipi+1 = pjpj+1. If |S| 
p

2diam(G)

then the pairs of endpoints of the edges of P determine at least diam(G)/|S| ≥
p

diam(G)/2

distinct lines and so we have the desired result. We may therefore assume that |S| ≥
p

2diam(G).

To complete the proof, we select a vertex q which is not contained in the line pipi+1 generated by

the endpoints of the edges in S. We may assume that q exists; otherwise, pipi+1 is universal and

again we have the desired conclusion. We will show that for every three vertices pi, pj , and pk which

are endpoints of edges that are contained in S, at least two of qpi, qpj and qpk are distinct. This

will guarantee that m ≥ |S|/2 ≥
p

diam(G)/2 and hence will be enough to complete the proof of

Lemma 3.13.
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To prove this claim, we will begin by showing that if i < `, p` is an endpoint of an edge in S,

and p` is contained in qpi then d(pi, p`) = d(pi, q) + d(q, p`). We will show that this is the case by

eliminating the two other formulations of the triangle inequality as possibilities: we can see that

d(q, pi) = d(q, pi+1)  d(q, p`) + d(p`, pi+1) < d(q, p`) + d(p`, pi)

and

d(q, p`)  d(q, pi+1) + d(pi+1, p`) = d(q, pi) + d(pi+1, p`) < d(q, pi) + d(pi, p`).

The only remaining possible formulation of the triangle inequality which would allow p` to be

contained in qpi requires that d(pi, p`) = d(pi, q) + d(q, p`). Since we may assume that i < j < k, it

must therefore follow that if pj and pk are both contained in qpi then d(pi, pj) = d(pi, q) + d(q, pj)

and d(pi, pk) = d(pi, q) + d(q, pk).

We will now assume that qpi = qpk since otherwise our claim follows immediately. From our

assumptions that q is not contained in the line pkpk+1 and that d(pk, pk+1) = 1, it must be the case

that d(pk, q) = d(pk+1, q). This, together with our observation that d(pi, pk) = d(pi, q) + d(q, pk),

implies that

d(pi, pk) = d(pi, q) + d(q, pk) = d(pi, q) + d(q, pk+1) ≥ d(pi, pk+1) = k + 1− i.

It must therefore be the case that either d(pi, q) > j − i or d(pk, q) > k − j. If d(pi, q) > j − i,

then d(pi, pj) = j − i < d(pi, q) + d(q, pj) and so in this case pj /2 qpj . Otherwise, d(pk, q) > k − j

from which we can see that d(pj , pk) = k − j < d(pj , q) + d(q, pk) and so again pj /2 qpk. Since pj

will not be contained in qpk in both of these cases, we are guaranteed that qpk 6= qpj and so our

claim follows.

The proof of Theorem 3.11 now follows easily by combining these lemmas.

Proof of Theorem 3.11. If G is a graph with diameter at least 2−9/7n4/7 then the result follows

from Lemma 3.13; otherwise, it follows from Lemma 3.12.
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Chapter 4

New results

Here we will present recent improvements on the lower bounds for the number of distinct lines in

graph metrics as well as general metric spaces. This is joint work with Pierre Aboulker, Xiaomin

Chen, Guangda Huzhang, and Rohan Kapadia.

4.1 A new bound for graph metrics

This subsection will be dedicated to the proof of the following improvement of Theorem 3.11:

Theorem 4.1. Every metric space induced by a connected graph on at least 2 vertices either has a

universal line or has at least
p

2n/3 distinct lines.

The proof of Theorem 4.1 will rely on the following two lemmas, the first of which applies

specifically to metric spaces induced by graphs and the second of which can be applied to all metric

spaces.

Lemma 4.2. If G is a graph without a universal line, then

m ≥ 2n

3diam(G)
.

For the next lemma we will need the following definition: an isometric path in a metric space

is a sequence of points p1, ..., pt such that d(pi, pj) = d(pi, pk) + d(pk, pj) for all 1  i  k  j  t.

Lemma 4.3. If (X, d) is a metric space which contains an isometric path P = {p1, ..., pt} with t

points, then (X, d) either has a universal line or contains at least t distinct lines.

Note that in metric spaces induced by graphs, the maximal number of vertices in an isometric

path will be equal to the diameter of the graph, and so in that case Lemma 4.3 implies that the

points of such a metric space will determine at least diam(G) distinct lines or a universal line.

Using Lemma 4.3, we were in fact able to generalize this lower bound on the number of lines to

a Ω(
p
n) bound for all metric spaces. The proof of that result will be presented in the next section.
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Proof of Lemma 4.2. Let x and y be two vertices in G such that d(x, y) = diam(G). We define the

set Aj(x) for every j between 1 and diam(G) to be the vertices z such that d(x, z) = j.

We now fix j = diam(G)/2 and partition the set Aj(x) into sets B1, ..., B` such that vertices u

and v are both contained in a set Bi for some i between 1 and ` if and only if xu = xv. We note

that if diam(G) is odd then in fact Aj is the empty set. If Aj is nonempty, then without loss of

generality we may assume that sets Bi with i between 1 and an integer k which is at most ` are

each singletons, and that the sets Bi with i between k + 1 and ` contain at least 2 vertices.

We partition the vertex set of G− {x} into three sets in the following way:

• v is in R if d(x, v) > j.

• v is in S if v is in
Sk

i=1Bi

• v is in T if d(x, v) < j or if v is in
S`

i=k+1Bi.

We will denote |R| by r, |S| by s, and |T | by t. Our proof of Lemma 4.2 will require the following

claim:

Claim 4.2.1. Let i be an integer such that k < i  ` and w and z be vertices in G such that w is

in Bi and z is in Aj+1(x). Then z is not adjacent to w.

Proof of Claim 4.2.1. By our definition of Bi, in addition to w there exists a vertex u in Bi such

that xw = xu. Since these two lines are equal, we must have that d(u,w) = d(x, u) + d(x,w) =

2j = diam(G). We know that diam(G) is greater than 2 since otherwise the conclusion follows from

Theorem 2.9, and so if the distance from u to w is equal to diam(G) then u and w cannot both

be adjacent to z; hence, at least one of u and w is not adjacent to z. Without loss of generality,

we may assume that u is not adjacent to z. We will denote d(z, u) by a. We now observe that

1 < a  diam(G), which leads us to conclude that z is not contained in xu :

d(x, u) = j < j + 1 + a = d(x, z) + d(z, u),

d(x, z) = j + 1 < j + a = d(x, u) + d(u, z),

and

d(u, z) = a < j + j + 1 = d(u, x) + d(x, z).

It must therefore also be the case that z is not contained in xw. Writing d(z, w) as b, we will

complete the proof by showing that 1 < b  diam(G) for the following inequalities to be satisfied:

d(x,w) = j < j + 1 + b = d(x, z) + d(z, w)

d(z, w) = b < j + j + 1 = d(z, x) + d(x,w),
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and

d(x, z) = j + 1 < j + b = d(x,w) + d(w, z).

Indeed, these inequalities will hold only if 1 < b  diam(G). We can now conclude that z and

w are not adjacent, completing our proof of Claim 4.2.1.

Claim 4.2.1 will be useful to us as it allows us to assume that all of the vertices in T are at

distance greater than diam(G)/2 from y. To be able to proceed, we will also need to rely on the

following claim:

Claim 4.2.2: Let a be an integer strictly larger than diam(G)/2 and let x,w, and z be distinct

vertices in G such that w and z are both contained in Aa(x). Then xw is distinct from xz.

Proof of Claim 4.2.1. To see that these lines must be distinct, we will show that under these

assumptions z is not contained in xw. Since w and z are distinct vertices contained in Aa(x), we

have that d(x,w) = d(x, z) = a and d(w, z) = b where b is an integer which is positive and at most

diam(G). From these facts we can determine that there is no formulation of the triangle inequality

which will hold with strict equality for these 3 vertices:

d(x,w) = a < a+ b = d(x, z) + d(w, z),

d(x, z) = a < a+ b = d(x,w) + d(w, z),

and

d(w, z) = b  diam(G) < a+ a = d(x,w) + d(x, z).

Hence, z is not contained in xw and so the two lines are distinct. This concludes the proof of our

claim.

We now let C = diam(G)/(diam(G) − 1). We can see that showing that m ≥ n/(Cdiam(G))

will imply our desired result: indeed, if diam(G)  2, then a stronger result follows from Theorem

2.9, and so we may assume that diam(G) ≥ 3. This implies that C = diam(G)/(diam(G)−1)  3/2

and hence if m ≥ n/Cdiam(G) then m ≥ 2n/(3diam(G)). We will now be able to conclude the

proof.

If s ≥ n/Cdiam(G), then from our definition of the sets Bi and S, each of the lines determined

by x and a vertex in S will be distinct and so Lemma 4.2 follows.

If r ≥ 2C, then there exists a value of i > j such that

|Ai| ≥
r

j
≥ n

2Cj
=

n

Cdiam(G)
.

By Claim 4.2.2, each of the lines determined by x and a vertex in Ai(x) for this value of i will be

distinct, and so again in this case Lemma 4.2 follows.
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We may now assume that s < n/(Cdiam(G)) and r < n/(2Cdiam(G)) and hence

t = n− 1− (s+ t) > n− 1− n

Cdiam(G)
− n

2Cdiam(G)
≥ n− n

Cdiam(G)
− n

2C
.

As noted previously, all of the vertices in T are at distance greater than j from y. We can therefore

find a value of i > j such that

|Ai(y)| ≥
t

j
≥

2(n− n
Cdiam(G) − n

2C )

diam(G)
=

n

Cdiam(G)

with C = d/(d− 1) as prescribed. Lemma 4.2 now follows from Claim 4.2.2.

Proof of Lemma 4.3. Throughout our proof, we may assume that (X, d) does not contain a uni-

versal line as otherwise the conclusion of our lemma follows immediately. We can therefore select

a vertex qi for each line pipi+1 such that qi is not contained in pipi+1. We do not require that qi

and qj be distinct for distinct values of i and j. We claim that for every choice of distinct i and j,

piqi 6= pjqj . Without loss of generality, we will assume that i < j. To see that the lines piqi and

pjqj are distinct, we first observe that if j = i+ 1 then qi is not contained in pipj and hence pj is

not contained in piqi.

We may therefore assume that j > i + 1. If pj is not contained in piqi then it is clear that

pjqj 6= piqi; otherwise, one of the following must hold:

(i) d(pi, qi) = d(pi, pj) + d(pj , qi),

(ii) d(qi, pj) = d(qi, pi) + d(pi, pj), or

(iii) d(pi, pj) = d(pi, qi) + d(qi, pj).

If (i) or (ii) holds, then since P is an isometric path qi must also be contained in pipi+1,

which contradicts our choice of qi. If (iii) holds, then it must also be true that d(pi, pj+1) =

d(pi, qi) + d(qi, pj+1) since P is an isometric path. This shows that pj+1 is contained in piqi. On

the other hand, by our choice of qj we know that pj+1 is not contained in pjqj and hence the two

lines cannot be equal.

We are therefore guaranteed that the t − 1 lines piqi will all be distinct as promised. To find

an additional line which is distinct from qipi for every i between 1 and t − 1, we observe that the

line p1p2 will fit this purpose: p1p2 will contain all of the vertices in P, whereas each piqi excludes

pi+1.

Proof of Theorem 4.1. We may assume that G is a graph without a universal line; indeed, if G

contains a universal line then the result holds trivially. This assumption allows us to apply Lemma

4.2 and Lemma 4.3. The combination of these two lemmas is enough to prove the theorem: if
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diam(G) is at most
p

2n/3 then the result follows from Lemma 4.3; otherwise, it follows from

Lemma 4.2.

4.2 A new bound for metric spaces

This section will provide a generalization of Theorem 4.1.

Theorem 4.4. Every metric space (X, d) contains either a universal line or at least
p
n/2 distinct

lines.

Proof of Theorem 4.4. Let x and y be points in X such that the distance between x and y is the

greatest distance possible between two points in the metric space. We denote by t the number of

vertices in the largest isometric path in (X, d) and we will proceed by considering the value of t.

Case 1. t ≥ p
n/2. In this case the result follows immediately from Lemma 4.3.

Case 2. t <
p
n/2. We define three subsets of the points of X in the following way:

• z 2 X1 if d(z, x) > d(x, y)/2

• z 2 X2 if d(z, y) > d(x, y)/2

• z 2 X3 if z 2 X − (X1 [X2).

Note that each point in X will be contained in at least one of these subsets and that if z is in

X3 then d(z, x) = d(z, y) = d(x, y)/2. We define a partial order on X1 where w ≺ z if d(x, z) =

d(x,w)+d(w, z). Similarly, we define a partial order onX2 where w ≺ z if d(y, z) = d(y, w)+d(w, z).

To see that this relation does indeed define a partial order, we note that these relations satisfy the

following necessary conditions:

(i) w ≺ w,

(ii) if w ≺ z and z ≺ w, then w = z, and

(iii) if u ≺ w and w ≺ z then u ≺ z.

Condition (i) is satisfied due to the fact that d(w,w) = 0 and hence d(x,w) = d(x,w)+d(w,w).

Since d is a metric, we know that d(a, b) = 0 if and only if a = b and so (ii) follows. The validity

of (iii) can be derived from the fact that d is a metric space and from the assumptions of condition

(iii); indeed, from this we know that

0 = d(x, u) + d(u,w)− d(x,w) (4.1)

and

0 = d(x,w) + d(w, z)− d(x, z). (4.2)
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Adding 4.1 to 4.2, we have that

0 = d(x, u) + d(u,w) + d(w, z)− d(x, z).

We would now like to deduce that d(x, u) + d(u, z) = d(x, z), which will grant us (iii). Since d

is a metric, we know that d(x, u) + d(u, z) ≥ d(x, z). They in fact must be equal as otherwise we

would have that

0 = d(x, u) + d(u,w) + d(w, z)− d(x, z) ≥ d(x, u) + d(u, z)− d(x, z) > 0,

a contradiction. Therefore, this relation does define a partial order as promised. Further, we

observe that due to the transitivity of this relation which is guaranteed by (iii), if a set of vertices

P is a chain in one of these partial orders then P is an isometric path with x or y as an endpoint.

We will complete our proof by considering the cardinality of each of the Xis. If |X1| ≥ n/4,

then there is a set C of size at least n/(4t) which is an antichain in X1. We claim that if w and z

are arbitrary vertices in C then xw 6= xz. To see this, we note that since C is an antichain, it must

be true that d(x, z) < d(x,w) + d(w, z) and d(x,w) < d(x, z) + d(w, z). Further, since w and z are

in X1,

d(w, z)  d(x, y) < d(w, x) + d(x, z).

This shows that w is not contained in xz and hence xz 6= xw. Since w and z are arbitrary

vertices in C, there are indeed |C| distinct lines determined by x and each of the vertices of C.

Swapping x for y where necessary, the same argument shows that if |X2| ≥ n/4, then there are

at least n/(4t) distinct lines determined by y and the vertices in a maximal antichain in X2. By our

assumption that t <
p
n/2, in both of these cases we get that m ≥ n/(4

p
n/2) >

p
n/2 as desired.

We may therefore assume that |X3| > n/2. To complete our proof, we partition the vertices of

|X3| into sets Yi such that w and z are both in Yi if and only if xw = xz. If |Yi| 
p
n for every

choice of i then there are at least n/(2
p
n) distinct lines determined by x and the vertices contained

in X3. Otherwise, there exists a value of i such that |Yi| >
p
n. We observe that for every choice of

w and z in Yi, since d(x,w) = d(x, z) = d(x, y)/2 and xw = xz it must follow that d(w, z) = d(x, y).

This implies that for every choice of u, v, w, and z in Yi, uv 6= wz. In this case we therefore have

that

m ≥
✓|Yi|

2

◆

≥
✓p

n

2

◆

>
p
n/2.

This concludes our proof.

4.3 Conclusion and Future Directions

Although the results given here are a large step forward, there is still a long way to go towards

determining the validity of Conjecture 1.3. One potential way to move forward would be to find
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a better lower bound in terms of the number of points in the largest isometric path in a metric

space as this would immediately improve Theorem 4.4. It may also be fruitful to find a completely

different strategy to improve the lower bound on all graphs and then try to generalize this approach

to all metric spaces as Theorem 4.1 generalizes to Theorem 4.4. We note, however, that relying on

graph metrics may be unnecessarily limiting as in most cases techniques which rely on induction

cannot be applied. It may therefore be advantageous to consider k−metrics for values of k larger

than 2 yet still sufficiently small to get a handle on.
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Section Mathématiques des Annales Scientifiques des Institutions Savantes de l’Ukraine 1

(1924), 38-49.

[7] A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
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