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Abstract

Cooperative Coverage Control of Multi-Agent Systems

Farid Sharifi, Ph.D.

Concordia University, 2014

In this dissertation, motion coordination strategies are proposed for multiple mo-

bile agents over an environment. It is desired to perform surveillance and coverage

of a given area using a Voronoi-based locational optimization framework. Efficient

control laws are developed for the coordination of a group of unmanned aerial ve-

hicles (UAVs) and unmanned ground vehicles (UGVs) with double-integrator and

non-holonomic dynamics. The autonomous vehicles aim to spread out over the envi-

ronment while more focus is directed towards areas of higher interest. It is assumed

that the so-called “operation costs” of different agents are not the same. The center

multiplicatively-weighted Voronoi configuration is introduced, which is shown to be

the optimal configuration for agents. A distributed control strategy is also provided

which guarantees the convergence of the agents to this optimal configuration. To

improve the cooperation performance and ensure safety in the presence of inter-agent

communication delays, a spatial partition is used which takes the information about

the delay into consideration to divide the field. The problem is also extended to the

case when the sensing effectiveness of every agent varies during the mission, and a

novel partition is proposed to address this variation of the problem. To avoid obsta-

cles as well as collision between agents in the underlying coverage control problem,

a distributed navigation-function-based controller is developed. The field is parti-

tioned to the Voronoi cells first, and the agents are relocated under the proposed

controller such that a pre-specified cost function is minimized while collision and

obstacle avoidance is guaranteed. The coverage problem in uncertain environments

is also investigated, where a number of search vehicles are deployed to explore the

environment. Finally, the effectiveness of all proposed algorithms in this study is

demonstrated by simulations and experiments on a real testbed.
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Chapter 1

Introduction

Cooperative control of multi-agent systems is concerned with a group of dynamic

agents that are working collectively to meet a common objective. Typical common

objectives include consensus, persistent surveillance, monitoring and serving. These

types of systems are used in a wide range of applications including air traffic control,

automated highway systems, search and rescue missions, satellite networks, forest fire

monitoring, to name only a few. In these applications, the objective can be achieved

more efficiently and reliably using a team of cooperative agents rather than a single

agent. Technological advances and development of relatively inexpensive commu-

nication, navigation, and computational systems have enabled greater autonomy in

multi-agent systems. Therefore, there has been a shift towards cooperative systems

over the past few decades in order to achieve the control objectives more efficiently.

The control of a group of interconnected agents (which are, in fact, subsystems of

the whole network) is sometimes performed in a centralized manner, where a central

controller communicates with each agent and coordinates their actions. However, a

centralized control structure has important shortcomings in practice. First of all, it

may not be a reliable configuration as it has a single point of failure. In other words,

the failure of the control decision maker can lead to the failure of the entire network.
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Secondly, a centralized control system can become computationally inefficient as the

number of agents increases. The required computation and communication resources

rapidly grow with the number of group members. Due to the aforementioned prob-

lems, there has been significant interest in the development of distributed controllers

for these types of systems over the past several years [1–3].

In a distributed cooperative control systems, the control decisions are made lo-

cally by either individual agents or subgroups of agents, requiring less information

flow between the control units and agents. Therefore, a distributed control struc-

ture yields increased autonomy while reducing the computational burden. Unlike a

centralized control scheme which uses the state of the overall systems to determine

the control inputs for all agents, in a distributed control regime the agents use the

information of certain agents only (often called neighboring agents) to autonomously

compute their own control inputs in order to achieve the overall objective of the net-

work. The information flow between a local controller and the neighboring agents

is usually carried out through inter-agent communication and onboard sensors. The

performance of a distributed cooperative control law is highly dependent upon the

communication structure of the multi-agent system. The communication structure

determines the information available to each agent in the network, which may be

constrained by sensing, communication, and computational limitations. In many ap-

plications, agents only communicate with those neighbors that are located within a

certain distance from them.

As mentioned, cooperative control of multiple agent systems covers a broad range

of applications. In this research, novel cooperative control techniques are proposed

for coverage control of multi-agent systems. The problem of covering an environment

(or serving different points of the environment) is thoroughly investigated in this work

from different aspects.
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1.1 Literature Review

A considerable amount of research in cooperative control of multi-agent systems is

focused on the coverage problem. In particular, the deployment of a group of agents

(mobile sensors, unmanned aerial/ground/surface/underwater vehicles, etc.) over an

environment to carry out distributed surveillance and sensing task is called coverage.

Some important applications in this area that are investigated in the literature in-

cludes forest fire surveillance and detection [4–7], gas pipelines monitoring [8], and

environmental monitoring [9].

In the coverage problem, it is important to place the nodes in the network such

that the covered area is maximized. For instance, in the traditional art gallery prob-

lem in computational geometry [10] it is desired to determine, for some polygonal

environment, the minimum number of cameras that can be placed such that the en-

tire environment is observed. In the problem of sensing coverage, the autonomous

agents are deployed to collectively maximize a prescribed objective function related

to the quality of coverage [11–15].

The coverage control problem considered in this research work is based on the

optimization formulation introduced in [11] which uses the geometrical notion of a

Voronoi partition to assign the agents to different parts of the environment. This work

employs some concepts from locational optimization [16], which is concerned with the

optimal placement of industrial facilities, and can be formulated in the context of the

classical problem of finding the geometric median points. The coverage controller

in [11] drives the robots towards a centroidal Voronoi configuration [17]. The same

problem is considered in [12] with a more realistic model, where the sensing range is

restricted to a bounded region. In [18], a directional-search online control schemes

is proposed for this type of sensors in order to achieve the optimum coverage. A

Voronoi-based algorithm is developed in [19] for network coverage in a mobile sensor

3



network (MSN) which does not require any global location assurance condition for

the sensors. In [20], a deterministic annealing technique is used to relocate the final

robot configurations to improve covered area by the network. The Voronoi diagram is

used in [21] to discover the coverage holes, and different sensor deployment strategies

are proposed to increase coverage. In [22], the authors provide an efficient deployment

strategy for a heterogeneous group of robots with different sensor footprints.

The Voronoi partition is generalized in [23], where the power diagram is intro-

duced to achieve equitable mass partitions. The problem of coverage control in an

environment with the time-varying priority function is addressed in [24]. In [25], the

coverage problem for target points that appear sporadically over time in a bounded

environment is investigated (see also [26, 27] for a more cohesive presentation of this

problem). An entropy-based metric is used in [28] to construct a map that deter-

mines the reachable regions of the environment. While the mobile robots explore

the environment, they also use a centroid geodesic Voronoi tessellation to distribute

themselves such that proper coverage is maintained.

In addition, some research works have addressed coverage control in a non-convex

domain. The coverage problem in non-convex polygonal environments is presented

in [29]. A path-planning algorithm is used to compute the trajectory of mobile robots

around obstacles and corners. Another common method for coverage of environments

with non-convex boundaries by applying the geodesic distance measure to Voronoi

coverage is presented in [22]. Using a proper diffeomorphism, the non-convex environ-

ment is transformed in [30] to a convex region where conventional Voronoi partition

can be applied. Probabilistic scenarios that use a similar control strategy for coverage

problem in non-convex environment have also been considered in [14, 31]. In [32], a

novel discrete partitioning and coverage control algorithm for a non-convex environ-

ment is presented. This method requires only short-range communication between

4



pairs of robots.

Some other Voronoi-based coverage strategies, on the other hand, consider a more

realistic environment. For example, in [33], an energy-aware coverage strategy is

proposed for mobile sensor networks where the agents (sensors) have limited power

to move. A self-triggered coordination algorithm is presented in [34] for a group of

agents performing an optimal deployment task when individual agents do not have

up-to-date information about each other’s locations. A dynamic awareness model is

proposed in [35] to cover events dynamically taking place over a given task domain

using a multi-vehicle sensor network with intermittent communications. The work [36]

provides a lower bound on the communication range of an agent in a sensor network in

order to optimize the coverage of the field. In [37], a coverage algorithm for unicycle

vehicles like wheeled mobile robots is investigated via hybrid modeling.

A centralized mission planning is presented in [38] for persistent surveillance using

a team of small unmanned vehicles with a centralized health manager. The system

controls the group such that a certain number of vehicles always cover a region of

interest while it considers the refueling needs of vehicles based on a stochastic fuel

consumption model. A generalized Voronoi partition is used in [39] for the problem

of area-constrained coverage. The overall area of the region assigned to each agent

is assumed to be fixed, and a Jacobi iterative algorithm is used to assign weights to

the generalized Voronoi partition that satisfies the area constraints. The problem of

target tracking using a heterogeneous mobile sensor network is studied in [40], and a

novel space-partitioning algorithm is provided in [41] to tackle the same problem.

A huge body of research work in the area of formation control has considered the

collision and obstacle avoidance issues [42–44]. However, few works have addressed

these issues on cooperative coverage control in multi-agent systems. An algorithm is

presented to dynamically cover a field with flocking and collision avoidance properties
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in [45]. In [46] a Voronoi-based coverage control is proposed for a group of wheeled

mobile robots with a dynamic constraint, where a collision avoidance term is also in-

corporated in the kinematic controller using potential functions to avoid inter-agent

collision. In [47], a deterministic full coverage method is presented based on computa-

tional geometry for a region with arbitrary boundary and obstacles with the regular

and irregular shapes. In [48], an obstacle-resistant robot deployment algorithm is

presented, where a robot deploys a near-minimal number of sensor nodes to achieve

full sensing coverage. This problem is investigated in the environment containing

unpredicted obstacles with regular or irregular shapes.

In [14] the authors consider a probabilistic network model and a density function to

represent the frequency of random events taking place over the mission space. Using

this information, an optimization problem is formulated which aims at maximizing

coverage using sensors with limited ranges, while minimizing communication cost.

A potential-field-based approach is presented in [49] for sensor deployment in an

unknown environment. In [50], a receding-horizon-based path-planning algorithm

is presented for time-sensitive cooperative surveillance using UAVs equipped with

cameras. An algorithm is presented in [51] to add a relatively small number of mobile

sensors to a set of static sensors in order to improve network coverage. The algorithm

employs a strategy which aims to optimize the contribution of the mobile sensors to

the overall coverage.

In dynamic coverage control, on the other hand, it is desired to develop a motion

control strategy for coordinated multi-vehicle systems in order to dynamically cover a

given arbitrarily-shaped domain. The objective is to survey the entire search domain

such that the information collected at each point reaches a prescribed level. In [45],

a feedback control law is presented that guarantees each point in the search domain
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is surveyed by search vehicles until a certain preset threshold is achieved, while colli-

sion avoidance is guaranteed. The method is centralized, however, is not necessarily

optimal. As an alternative approach for searching in an uncertain environment, si-

multaneous localization and mapping (SLAM) strategy is presented in [52]. In [53],

a sweep coverage model is proposed to periodically monitor a set of points-of-interest

in surveillance applications.

The problem of multi-vehicle search in an uncertain environment has been studied

in recent years, and a number of approaches have been formulated. The problem is

converted to a multi-vehicle path planning problem, and an optimization problem is

subsequently developed where an optimal path is obtained by maximizing a global

objective function subject to a set of constraints [54–59]. Dynamic programming

(DP) and approximate dynamic programming (ADP) algorithms are the most widely

used techniques for solving this type of problem. A combined deploy and search

strategy using a centralized Voronoi partitioning is proposed in [60], where the mobile

agents are autonomously deployed to maximize the reduction of uncertainty about

the environment at each step. In [61], a set of mobile sensors collaborate with a group

of stationary sensors in order to detect an event. A path planning algorithm based

on receding horizon optimization is presented to move the mobile sensors towards the

areas that are least covered by the stationary sensors.

A common assumption in all of the coverage control results cited in the previous

paragraphs is that the distribution of sensory information in the environment is known

a priori by all agents. This assumption was first relaxed in [62], where the agents

approximate the sensory function (a function indicating the relative importance of

different areas in the environment) from sensor measurements. Then, the problem

of online learning of the priority function was addressed in [15]. In [63], the priority

function estimation was proposed using a neural network approach. Although in the
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above papers the priority function is unknown, it is assumed to be measurable by each

agent locally. In the present dissertation also the priority function is unknown but is

not locally measurable. Motivated by a number of real-world applications, the priority

function is assumed to be a function of position of some unknown targets which can

be detected by appropriate sensors. In order to accomplish the coverage task more

efficiently, some search vehicles are assigned to find the targets. This leads to more

effective coverage of uncertain environments. Furthermore, not much experimental

work is available in the literature on this type of multi-vehicle systems. In one of this

work [64], a mechanism is proposed for surveillance of an area using a group of three

wheeled mobile robots subject to navigation failures. In [65], the coverage problem is

investigated for an MSN with anisotropic sensor model which depends on the distance

and orientation of a target point. The algorithm is then implemented on a mobile

robot testbed.

1.2 Dissertation Outline

The dissertation is organized as follows. In Chapter 2, first the coverage control

problem is introduced and then the optimal solution for it is provided. The dynamic

model of a quadrotor UAV as well as a unicycle type UGV is presented, and a planar

position controller is subsequently proposed for this group of vehicles.

In Chapter 3, the above problem is investigated for the case when serving (sensing)

capabilities of different agents are not the same. The necessary background material

on the multiplicatively-weighted Voronoi (MW-Voronoi) partition for weighted nodes

is presented and some results concerning locational optimization are also provided.

A distributed control strategy based on the MW-Voronoi diagram is also proposed in

this chapter, and the theoretical developments are validated through experiments.
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Two novel partitioning techniques are presented in Chapter 4 for coverage con-

trol of multi-agent systems in the presence of inter-agent communication delays and

variable sensor effectiveness (health), respectively.

In Chapter 5, an effective coverage technique is developed for multi-agent systems

using navigation function with guaranteed collision avoidance and obstacle avoidance.

A distributed navigation function is introduced and its convergence properties are

studied.

In Chapter 6, a new formulation is proposed which is suitable for the search and

coverage problems in uncertain environments. The probability map updating rules,

dynamic programming formulation and derivation of priority function based on the

probability map are also presented in this chapter.

Finally, Chapter 7 summarizes the contributions of the thesis and provides sug-

gestions for future research directions in this area.

1.3 Research Contributions

Contributions of this thesis lie in investigating different aspects of the coverage control

problem for a network of cooperative autonomous agents. It is aimed to address some

of the practical challenges and realistic assumptions concerning this type of network.

Most of the prior work in the Voronoi-based coverage control consider single-

integrator dynamics for the agents. However, in practice a wide range of mobile

agents such as unmanned vehicles have more complex dynamics, which can invalidate

the performance of the algorithms developed for trivial dynamics. The present work

is an attempt to contribute to this aspect by proposing a control law for the deploy-

ment of agents with different dynamics (quadrotor, double-integrator and unicycle-

type dynamics). To this end, a planar position controller is proposed for a group of

heterogeneous mobile agents.
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The problem of providing a prescribed service (such as coverage) using a group of

mobile agents is also investigated, where it is desired to minimize the overall service

cost. The serving capabilities of different agents are assumed to be nonidentical,

while in the literature they are often supposed to be the same. Note that in the

case of agents with nonidentical operating costs, the conventional Voronoi diagram

is no longer as effective in developing agent-deployment algorithms. Instead, the

field is partitioned using the MW-Voronoi diagram introduced in the literature. A

distributed coverage control law is then provided which guarantees the convergence

of agents to the optimal configuration w.r.t. the above-mentioned cost function. To

further generalize the results, a prescribed priority function is used to prioritize the

importance of providing service to different points in the field.

Typically, each agent in a multi-agent system transmits its position information

to a subset of agents (often referred to as neighbors) and receives similar information

from them. Most of the existing results on the coverage control of sensor networks

assume that this information exchange has no delay. However, it is known that

neglecting the effect of delay in the analysis and design of multi-agent systems can

lead to poor performance as well as unsafe behaviors such as inter-agent collision.

While the effect of communication delay in the flocking and formation control of

multi-agent systems has been investigated in the past few years, not much work

has been done in cooperative coverage control of a network of agents subject to

communication delay. The problem is also extended to the case where the sensors have

varying effectiveness (health). The sensor effectiveness factor of agents is incorporated

in the locational optimization problem. Hence, two different spatial techniques are

introduced to partition the field into smaller regions (one for each agent) and study

the coverage control problem for multi-agent systems, where the agents are subject

to communication delays and health degradation. A motion coordination algorithm
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is subsequently proposed for the agents based on the latest information received from

their neighbors such that the coverage performance function is minimized over the

regions assigned to agents.

There is a substantial body of research on collision and obstacle avoidance in multi-

agent systems. However, not much work has been reported on cooperative coverage

control of multi-agent systems. To address this problem, a distributed navigation

function is used for both collision and obstacle avoidance in multi-agent coverage

problem. The field is partitioned to the Voronoi cells first, and a control strategy is

subsequently proposed to relocate the agents. This is performed in such a way that a

prescribed coverage cost function is minimized while collision and obstacle avoidance

are guaranteed. The convergence analysis is provided to show the stability of the

network under the proposed control strategy.

Another common assumption in most of the existing results on the Voronoi-based

coverage control is that the distribution of sensory information about the environment

is required to be known a priori by all agents. However, this assumption is not realistic

in many applications. Therefore, the coverage problem in uncertain environments is

investigated using some search agents to explore the environment. The uncertainty

in the environment is captured by an unknown priority function. Motivated by real

applications, a new priority function is introduced which is a function of the position of

some unknown targets in the environment. To cover this uncertain environment more

efficiently and to improve the coverage performance, the task of finding the targets

can be carried out by some search agents. The search agents possess the probability

maps of targets in the environment, and update these probability maps based on the

sensor measurements during the search mission. A Voronoi-based coverage control

strategy is then proposed to modify the configuration of coverage agents such that a

prescribed coverage cost function is minimized using the updated probability maps
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which are provided by the search agents.

Finally, not many experimental results are available in the literature on this type of

multi-vehicle systems. In order to show the effectiveness of the Voronoi-based coverage

control of multi-agent systems as a practical framework for real-time applications (like

forest fire detection and monitoring), some of the proposed algorithms are verified

experimentally on a real testbed. To this end, a group of unmanned systems consisting

of quadrotor helicopter and different ground vehicles are employed to perform some

experiments in the Networked Autonomous Vehicles Lab (NAVL) of the Department

of Mechanical and Industrial Engineering, Concordia University.
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Chapter 2

Coverage Control of Multi-Agent

Systems

2.1 Introduction

In general, an agent refers to a dynamical system. However, in the context of this

work the term “agent” is interchangeable with “vehicle” or “robot”. The multi-agent

system is defined as a cooperating group of autonomous mobile agents capable of mo-

tion, communication, sensing and computation. In general, these capabilities can have

some constraints: The motion is subject to dynamics of the platform, nonholonomic

constraints and limits on velocities. Important constraints for the communication are

maximum range, available bandwidth and delay. Sensing is typically limited by range

or field of view of the sensors, and sensor accuracy. This is schematically illustrated

in Fig. 2.1.

In the cooperative control one deals with a team of agents instead of one agent;

hence, in addition to the teaming objective the interaction between agents must be

taken into account. As some examples of such interactions one can point to phys-

ical interactions such as collision avoidance, formation keeping and communication
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Figure 2.1: A schematic illustration of capabilities of multi-agent systems.

interaction. It is also assumed that there are no sensor errors, actuator errors, model

uncertainty, obstacles in the environment or communication noise. These assumptions

allow one to focus on the core issue of the problem “coverage control”. However, the

proposed approaches in this chapter will be extended to the cases above by suitably

modifying the proposed algorithms to account for these non-ideal effects.

Cooperative control of multi-agent systems has received considerable attention

over the last decade because of technological advances and development of relatively

inexpensive communication, computation, and sensing devices. Then, a plenty of

research work has been done on the coverage problem as one of the main applica-

tions of cooperative control. In [11], One of the remarkable references in this area,

a decentralized control law is designed for mobile sensor networks to cover an area

partitioned into Voronoi region, in the sense that continually driving the agents to-

wards the centroids of their Voronoi cells. In this chapter, a motion coordination

strategy for the deployment of multiple quadrotor UAVs and wheeled robot UGVs

via Voronoi-based locational optimization framework introduced in [11] is proposed.

Most of the prior works in the area of Voronoi-based coverage control assume single-

integrator dynamics for the agents. However, in reality many current vehicles such as

unmanned systems have non-trivial dynamics, which can invalidate the performance

of the proposed algorithms. Moreover, aerial vehicles offer the advantage of wide
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area coverage and relative insensitivity to terrain considerations. Hence, to overcome

this problem with existing works, a planar position controller is proposed for hetero-

geneous vehicles with nonholonomic dynamics. In this chapter, first the locational

optimization problem is reviewed and the dynamic model of vehicles are then pre-

sented. Furthermore, using LaSalle’s invariance principle, it is proved that under

proposed controller the network of vehicles converges to the optimal configuration.

Finally numerical simulation is provided to show the effectiveness of the proposed

method.

2.2 Problem Statement

Let Q be a convex field in R2, and denote an arbitrary point in Q by q. Consider

a group of n mobile agents randomly distributed in Q with the position of the i-th

agent represented by pi. Accordingly, the positions of all agents are denoted by the

set P = {p1, p2, . . . , pn}. Let also ϕ : Q → R+ be a priority function which assigns a

weight to each point in the field, and represents an a priori measure of information on

Q. The function ϕ can reflect a measure of relative importance of different points in

the field or reflect a knowledge of the probability of occurrence of events in different

regions, which means the agents should monitor the points with higher value of ϕ

more closely.

Let V = {V1, V2, . . . , Vn} be the Voronoi partition of Q, where the agent positions

are the generating points. By definition, the Voronoi region Vi of agent i is the locus

of all points that are closer to that agent than to any other agents in the field. This

can be expressed mathematically as:

Vi = {q ∈ Q| ‖q − pi‖ ≤ ‖q − pj‖ , ∀j �= i}, i ∈ n := {1, 2, . . . , n} (2.1)
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Agents i and j are called neighbors if Vi ∩ Vj �= 0 (or more precisely if they share an

edge). The set of all neighbors of agent i is denoted by Ni. One can see easily that at

a fixed-agents location, the optimal partition of environment is the Voronoi partition

in which the agent positions are the generator points. The schematic Voronoi diagram

of 7 agents which are spread randomly over a region is depicted in Fig. 2.2.

Figure 2.2: Schematic Voronoi diagram of 7 agents.

The cost of covering (or sensing) a point q by the i-th agent is denoted by fi(q),

where fi : R → R+ is a known strictly increasing convex function. The cost of

covering incurred by an agent is closely related to the distance of the point to be

covered from the agents; the longer the distance the higher the cost. It is assumed

that each agent is in charge of covering all points in its own Voronoi region. Since the

whole field is partitioned by all Voronoi regions, the coverage performance function

as a measure of the system performance is defined as:

H(P) =

n∑
i=1

∫
Vi

fi(q)ϕ(q)dq (2.2)

Note that (2.2) represents the coverage function which measures the ability of the cov-

erage provided by the mobile sensing network in Q. Roughly speaking, the function H
quantifies how well the agents are located inside the field Q. More precisely, a smaller
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H means the agents are deployed more effectively and a higher value corresponds to

a poor coverage performance. Then, it is desired to minimize it. Throughout this

chapter, it is assumed that the coverage cost function of each agent has the following

form:

fi(q) =
1

2
‖pi − q‖2 , ∀i ∈ n (2.3)

2.3 Centroidal Configuration

In general for every region Vi two following terms can be defined.

Definition 2.1. The mass and center of mass of a region Vi with respect to the

priority function ϕ are respectively defined as follows:

MVi =

∫
Vi

ϕ(q)dq (2.4)

CVi =
1

MVi

∫
qϕ(q)dq (2.5)

If there is only one agent in the field, then minimizing H1 =
∫
Q
fi(q)ϕ(q)dq is often

referred to as the 1-center problem [66]. In the special case, if the cost of coverage of

the 1-center problem is chosen as (2.3), then the optimal position of the agent is the

centroid (also called the center of mass) of the field [66], i.e.:

CQ =

∫
Q
qϕ(q)dq∫

Q
ϕ(q)dq

(2.6)

We will show that this result is valid in the case of n agent in the field. Assume

function Hi defined as follows:

Hi =

∫
Vi

1

2
‖pi − q‖2 ϕ(q)dq (2.7)
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Let the above function Hi be differentiable everywhere on its domain so that its

partial derivative with respect to the agent’s position is well-defined. Easily one can

show that

∂Hi

∂pi
=

∫
Vi

(pi − q)ϕ(q)dq =MVi(pi − CVi) (2.8)

So the partial derivative of Hi with respect to the position of the i-th agent only

depends on its own position and the position of its Voronoi neighbors. Therefore the

computation of the derivative of Hi with respect to the agents’ location is distributed

in the sense of Voronoi. It is clear that each partial derivative must be zero for a local

minimum.

Clearly, the extreme points of Hi are those in which every agent is at the centroid

of its Voronoi region, pi = CVi, ∀i ∈ n. The resulting partition of the environment is

commonly called a Centroidal Voronoi configuration. Readers are referred to [26] for

more discussions on this configuration.

2.4 Dynamic Model of Vehicles

UAVs have desirable features such as high speed of coverage and a wide-area view

of the region, while certain tasks such as precise localization may be better suited

to UGVs. One way to combine the best features of both ground- and aerial-based

vehicles is to examine a heterogeneous team. In this chapter, a group of quadrotor

UAVs and wheeled robot UGVs is considered.

2.4.1 Model of a Quadrotor UAV

One type of UAV with a strong potential for both indoor and outdoor flight is the

rotorcraft and the so-called quadrotor helicopter UAV has been chosen by many

researchers as the most promising vehicle [67–69]. A quadrotor UAV is an aircraft
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that is lifted and propelled by four rotors. Control of quadrotor UAV can be achieved

by varying the relative speed of each rotor to change the thrust and torque produced

by each propeller. The ability of quadrotor helicopters to take off and land vertically,

to perform hover flight, as well as their agility, makes them ideal vehicles, specifically

in the search and coverage problems.

In this section, the dynamic model of a quadrotor UAV has been studied briefly.

A body-fixed frame B and the earth-fixed frame E are assumed to be at the center

of gravity of the quadrotor UAV, where the z -axis is pointing upwards, as seen in

Fig. 2.3. The position of the quadrotor UAV in earth frame is given by a vector

(x, y, z). The orientation of quadrotor UAV that referred to as roll, pitch, and yaw

is given by a vector (φ,θ,ψ) which is measured with respect to the earth coordinate

frame E.

Figure 2.3: The structure of a quadrotor UAV and its frames.

The transformation of vectors from the body-fixed frame to the earth-fixed frame

can be obtained based on Euler angles and the rotation matrix REB.

REB =

⎡
⎢⎢⎢⎢⎣
CψCθ −SψCφ + CψSθSφ SψSφ + CψSθCφ

SψCθ CψCφ + SψSθSφ −CψSφ + SψSθCφ

−Sθ CθSφ CφCθ

⎤
⎥⎥⎥⎥⎦ (2.9)
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where the abbreviations S(.) and C(.) have been used for representing sin(.) and cos(.),

respectively. It is important to note that REB = RT
BE . The trust force generated by

rotor i (∀i ∈ {1, 2, 3, 4}) is Fi = bω2
i where b is the thrust factor and ωi is the speed

of rotor i. In the body-fixed frame, the forces are defined as follows:

FB =

⎡
⎢⎢⎢⎢⎣
FxB

FyB

FzB

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

0∑4
i=1 Fi

⎤
⎥⎥⎥⎥⎦

In the earth-fixed frame, the forces can be described as:

⎡
⎢⎢⎢⎢⎣
Fx

Fy

Fz

⎤
⎥⎥⎥⎥⎦ = REB.FB = (

4∑
i=1

Fi)

⎡
⎢⎢⎢⎢⎣

SψSφ + CψSθCφ

−CψSφ + SψSθCφ

CφCθ

⎤
⎥⎥⎥⎥⎦ (2.10)

Therefore, the equations of motion (x, y, z) in the earth- fixed frame are represented

as:

m

⎡
⎢⎢⎢⎢⎣
ẍ

ÿ

z̈

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Fx −K1ẋ

Fy −K2ẏ

Fz −mg −K3ż

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

(
∑4

i=1 Fi(SψSφ + CψSθCφ))−K1ẋ

(
∑4

i=1 Fi(−CψSφ + SψSθCφ))−K2ẏ

(
∑4

i=1 Fi(CφCθ))−mg −K3ż

⎤
⎥⎥⎥⎥⎦
(2.11)

where Ki is the drag coefficient. Note that these coefficients are negligible at low

speed. Also, assuming total thrust approximately counteracts gravity,
∑4

i=1 Fi ≈
F̃ = mg, except in the Z axis. Finally, by applying the small angle approximation to
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the rotation matrices, one can obtain:

m

⎡
⎢⎢⎢⎢⎣
ẍ

ÿ

z̈

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 F̃ 0

−F̃ 0 0

0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

φ

θ∑4
i=1 Fi

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

0

−mg

⎤
⎥⎥⎥⎥⎦ (2.12)

By neglecting the gyroscopic effect of propeller rotation, body rotation, drag effects,

and assuming the equal amount for all inertia Ix, Iy and Iz, the following linear model

for angular equations can be obtained:

φ̈ =
l

Ix
U1

θ̈ =
l

Iy
U2 (2.13)

ψ̈ =
1

Iz
U3

where l and Ui are the lever factor and system’s inputs respectively.

It becomes obvious that the quadrotor UAV model can be decomposed into one

subset of differential equations that describes the dynamics of the attitude (i.e. the

angles) and one subset that describes the translation of the UAV.

2.4.2 Model of UGV

Each UGV is modeled as a nonholonomic two-wheeled mobile robot. Each UGV

moves on a horizontal plane and the kinematic equation of the vehicle is given by:

ẋi = vi cos θi

ẏi = vi sin θi (2.14)

θ̇i = wi
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where (xi, yi) is the coordinate of a point pi located at the mid-axis of the rear wheels

of the i-th robot, θi is the orientation of the i-th robot with respect to the X-axis

of the coordinate frame, vi and wi are the linear and angular velocities of the center

of mass of the i-th robot, respectively (see Fig. 2.4). The dynamic equation of the

mobile robot can be described as follows:

mv̇i = F

jẇi = T (2.15)

where F and T represent the force and torque exerted on the robot respectively. And

m and j are the mass and moment of inertia of the robot respectively.
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Figure 2.4: A schematic diagram of the i-th unicycle-type robot.

2.5 Coverage with Multiple UGVs and UAVs

In this section, the problem of deploying a group of heterogeneous vehicles to cover an

environment is investigated. Then it is desired to design a set of planar position con-

trollers for vehicles with different dynamics (the decoupled model of Quadrotor UAV

and unicycle-type dynamics for UGVs). For the purpose of coordinating multiple

vehicles to cover the points in the environment, it is desired to design a position-

control strategy based on the centroidal Voronoi configuration. To achieve this goal,
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the following assumptions are needed.

Assumption 2.1. Every vehicle has complete knowledge of its own dynamics.

Assumption 2.2. The vehicles have the ability to compute their own Voronoi regions

in a distributed manner.

Assumption 2.3. Each vehicle can communicate with other vehicles in its neighbor-

ing Voronoi regions.

We consider n vehicles each of which belonging to a group of na quadrotor UAVs

or a group of ng wheeled robot UGVs (n = na + ng).

2.5.1 Control of UAVs

As shown in Subsection 2.4.1, the linear model of quadrotor UAV is decoupled. Then

the height and yaw angle independently can be easily controlled by any conventional

control methods. However for the purpose of coordinating of multiple vehicles to

cover a planar environment, the position controller based on the Cenroidal Voronoi

configuration is designed. Consider that the planar position of the i-th vehicle in the

earth frame is denoted by pi = (xi, yi) and CVi = (CVi,x , CVi,y) is the center of Voronoi

that corresponds to the i-th vehicle. The following position control law is proposed

for the i-th UAV:

uix =
1

g

(
ki1MVi(CVi,x − xi)− ki2ẋi

)
uiy = −1

g

(
ki1MVi(CVi,y − yi)− ki2ẏi

)
(2.16)

where ki1 and k
i
2 are the positive gains and MVi mass of the i-th Voronoi region which

is defined in (2.4).
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Theorem 2.1. Consider a group of na quadrotor UAVs whose dynamic models are

described by (2.12) and (2.13). Let the assumptions (2.1) through (2.3) hold. Under

control law (2.16), it is guaranteed that the whole system is asymptotically stable and

the planar positions of quadrotor UAVs converge to a centroidal Voronoi configuration.

Proof. Consider a Lyapunov function candidate as:

ϑ =

na∑
i=1

ki1Hi +

na∑
i=1

1

2
ṗiṗ

T
i (2.17)

where Hi is defined as (2.7), ṗi = (ẋi, ẏi) is the velocity of the i-th vehicle and ki1 is

the controller gain. Since ki1 is positive number and also ‖.‖2 and ϕ(q) are positive

functions, thus the candidate Lyapunov function ϑ is lower-bounded by zero. By

taking the time derivative of ϑ along the trajectories of systems one arrives at:

ϑ̇ =

na∑
i=1

ki1Ḣi +

na∑
i=1

p̈i ṗ
T
i (2.18)

Using (2.8) and the fact ∂Hi

∂z
= ∂Hi

∂φ
= ∂Hi

∂θ
= ∂Hi

∂ψ
= 0, the (2.18) can be rewritten as

follows:

ϑ̇ =

na∑
i=1

[(
ki1MVi (pi − CVi) + p̈i

)
ṗTi
]

(2.19)

Because of the decoupling characteristics of linear model of the quadrotor UAV, the

pitch and roll angles of the quadrotor are the control input for planar position equa-

tion. The dynamic equation of planar position (2.12) can be easily rewritten as

follows:

p̈i = g

⎡
⎢⎣ uix

−uiy

⎤
⎥⎦
T

(2.20)

By substituting (2.20) into (2.19), and using control input (2.16), the time derivative
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of Lyapunov function can be obtained as follows:

ϑ̇ =
na∑
i=1

(−ki2ṗiṗTi )

which is clearly non-positive. Let S be the set of all points in Q where ϑ̇ = 0. Due

to the convexity of the region Q, one can conclude that each of the Voronoi centroids

CVi lies in the interior of the i-th Voronoi region and so in the interior of the region

Q. Then the vehicles move towards the interior of the region Q and never leave it.

This in turn means that S is a positive invariant set for the trajectories of the closed-

loop system. Since this set is closed and bounded, one can use LaSalle’s invariance

principle to infer that quadrotors planar positions converge to the largest invariant

subset of the set S. For any trajectory belonging to the set S, it results from the

planar model (2.20) and the control law (2.16) that:

ṗi ≡ 0 ⇒ p̈i ≡ 0 ⇒ uix = uiy ≡ 0 ⇒ pi = CVi, ∀i ∈ {1, . . . , na}

One can then conclude that for any i ∈ {1, . . . , na}, pi = CVi is the largest invariant set

corresponding to the centroidal Voronoi configuration. Therefore, under the control

law (2.16), the closed-loop system is asymptotically stable and the quadrotors planar

positions converge to the centroidal Voronoi configuration.

2.5.2 Control of UGVs

In this subsection, a position control law for UGVs with unicycle-type dynamics is

designed based on the centroidal Voronoi configuration. The kinematic equation of

UGVs mentioned earlier in (2.14) in which the position of the i-th vehicle in the

earth frame is denoted by pi = (xi, yi) and θi is the orientation of the i-th vehicle

with respect to the X-axis of the earth frame. Similar to the UAVs case, the following
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control law is proposed for the i-th UGV with unicycle dynamics:

vi = −kiv · exi
wi = kiw · arctan(eyi

exi
)

(2.21)

where kiv, k
i
w are positive gains, and exi , eyi are error variables in the vehicle coordinate

system defined as follows:

⎡
⎢⎣exi
eyi

⎤
⎥⎦ =

⎡
⎢⎣ cos θi sin θi

− sin θi cos θi

⎤
⎥⎦ (pi − CVi)

T (2.22)

Theorem 2.2. Consider a group of ng wheeled robot UGVs whose kinematic models

described by (2.14). Let the assumptions (2.1) through (2.3) hold. Under the control

law (2.21), it is guaranteed that the whole system is asymptotically stable and the

positions of UGVs converge to a centroidal Voronoi configuration.

Proof. Consider a Lyapunov function candidate as:

ϑ =

ng∑
i=1

kiv Hi (2.23)

Since kiv is positive and Hi is also an integral of strictly positive terms, thus the

candidate Lyapunov function ϑ is lower-bounded by zero. Substituting (2.14), (2.8)

and (2.22) into the time derivative of ϑ along the system trajectory and using the

control input (2.21) results in:
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ϑ̇ =

ng∑
i=1

kiv MVi (pi − CVi)

⎡
⎢⎣cos θi
sin θi

⎤
⎥⎦ vi

=

ng∑
i=1

kiv MVi (pi − CVi)

⎡
⎢⎣cos θi
sin θi

⎤
⎥⎦ · (−kiv)

[
cos θi sin θi

]
(pi − CVi)

T

= −MVi k
i
v

2
ng∑
i=1

‖pi − CVi‖2

(2.24)

which is clearly non-positive. Analogous to the proof of Theorem 2.1, it can be con-

cluded that for any i ∈ {1, . . . , ng}, pi = CVi is the largest invariant set corresponding

to the centroidal Voronoi configurations. Therefore, under the control law (2.21), the

closed-loop system is asymptotically stable and the configuration of UGVs converge

to the centroidal Voronoi configuration.

It is worth to mention that although each controller depends on its Voronoi cen-

troid, calculation of the center of Voronoi depends on the neighboring Voronoi region.

So each vehicle needs to communicate with other vehicles in its neighboring Voronoi

regions to compute its Voronoi region. Another advantage of the Voronoi approach

is the inherent collision avoidance feature of this partitioning technique. The vehicles

applying their control law will move towards the centroid of their Voronoi region. Due

to the convexity of region, the centroid is always inside the Voronoi region. Also by

designing a suitable controller for heights of multiple vehicles, they can fly at different

levels. Therefore, the collision avoidance can be guaranteed in the entire mission even

for the large dimension vehicles.
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2.6 Simulation Results

The proposed distributed coverage algorithm has been demonstrated via numerical

simulations in MATLAB/Simulink environment.

The region Q to be surveyed is a convex set in R2. A combined UAV-UGV team,

consisted of na = 4 quadrotor aerial vehicles and ng = 4 wheeled robot ground

vehicles is started from random initial positions. The heights and heading angles of

UAVs and orientation angles of UGV are zero. Nominal parameters of the quadrotors,

and controllers in the simulation are shown in Table 1. In this simulation, the priority

function is assumed to be a bimodal Gaussian function as follows:

ϕ(q) =
1

σ
√
2π

(
e−

(q−μ1)
2

2σ2 + e−
(q−μ2)

2

2σ2

)

where μ1 = (−0.5, 0.4), μ2 = (1, 0), and σ = 0.2. The initial configuration of planar

position, the trajectories of positions of the group in 3D plane and the final configura-

tion of each vehicle are shown in Figs. 2.5-2.7 respectively. The contributing Gaussian

functions are shown in blue in those figures with a color intensity proportional to the

value of the function.

Table 1: Simulation parameters

Quadrotor parameters Controller parameters

m 1.4 Kg k1 10
l 0.2 m k2 1

Ix, Iy, Iz 0.03 Kg.m2 kv 3
j 10−4 Kg.m2 kw 6

Q

(
1 0
0 0.001

)
R 0.1

The error between each vehicle’s planar position and the centroid of its Voronoi

region is used as a performance criterion. The time history of the mean error measured

in this way is depicted in Fig. 2.8. Note that the error diminishes over time as would
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Figure 2.5: The initial configuration of planar position of a combined UAV-UGV team. (The
helicopters represent the aerial vehicles and robots represent the ground vehicles.)
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Figure 2.6: The trajectories of the position of eight vehicles in 3D plane (the final center of each
Voronoi region that corresponds to final planar position of each vehicle in XY plane is marked by
black ∗).

Figure 2.7: The final configuration of planar position of a combined UAV-UGV team. (The
helicopters represent the aerial vehicles and robots represent the ground vehicles.)
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be expected. A LQR method is used for controlling the height and heading orientation
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Figure 2.8: The mean error between the vehicle’s planar positions and the centroids of their
Voronoi regions.

of each quadrotor UAV. The parameters of LQR controller are presented in Table 1.

The height and yaw angle of each quadrotor UAV is shown in Figs. 2.9 and 2.10

respectively. For the purpose of collision avoidance, each quadrotor UAV flies in a

different level. Moreover, the desired yaw angles for all quadrotor UAVs in a group

are 20 deg. The performance of the proposed controller is clearly demonstrated in

the simulation results.
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Figure 2.9: The height of each quadrotor UAV in the mission.
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Figure 2.10: The yaw angle of each quadrotor in the mission.
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Chapter 3

Deployment Strategy for a

Network of Non-Identical Agents

The problem of providing a prescribed service (such as coverage) using a group of

heterogeneous mobile agents is investigated in this chapter, where it is desired to

minimize the overall service cost. First, the problem of incorporating heterogeneity

of the agents is addressed by allowing them to have different dynamics and different

serving capabilities. In fact, when the operating costs of agents are different, the

conventional Voronoi diagram is not effective for agents deployment in the network.

To address this issue, the field is partitioned using multiplicatively-weighted Voronoi

(MW-Voronoi) diagram. To further generalize the results, a priority function is as-

sumed to be given to prioritize the importance of giving service to different points

in the field. The proposed approach is then evaluated experimentally using four un-

manned systems consisting of one quadrotor helicopter and three ground vehicles

available in the Networked Autonomous Vehicles Lab (NAVL).
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3.1 Problem Statement

Similar to the problem defined in Section 2.2, let Q be a convex field in R2 and

consider a group of n agents randomly distributed in Q with the position of the i-th

agent denoted by pi for any i ∈ n := {1, 2, . . . , n}. Accordingly the positions of all

agents are denoted by the set P = {p1, p2, . . . , pn}. Let also ϕ : Q→ R+ be a priority

function which represents the likelihood of an event taking place at any arbitrary

point q ∈ Q.

Denote by fi(q) the cost of serving an event taken place at point q by the i-th

agent, where fi : R → R+ is a known strictly increasing convex function. For points

located far from an agent, the cost of serving incurred by the agent is higher. In this

type of problem, the cost function can encode different quantities of interest such as

the travel time or the energy consumption required to serve any point in the field.

It is to be noted that while the function fi is not necessarily the same for different

agents, it is assumed to be identical for any set of points located at the same distance

from the corresponding agent. In other words, fi(qj) = fi(qk), for any qj, qk ∈ Q such

that ‖pi − qj‖ = ‖pi − qk‖, where ‖.‖ denotes the Euclidean norm.

The objective of this chapter is to develop a proper agent-deployment algorithm

such that the following cost function (performance index) is minimized:

H̄(P,W) =

n∑
i=1

∫
Wi

fi(q)ϕ(q)dq (3.1)

while each point in the field is serviced by exactly one agent. The set W = {W1,W2,

. . . ,Wn} represents a partition of the field Q into n regions, where the i-th agent is

in charge of serving all points in region Wi. Roughly speaking, the function H̄ shows

how well the agents are located inside the field Q. More precisely, a lower value of

H̄ represents a more effective deployment of agents. This problem will hereafter be
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referred to as the service optimization problem. Minimizing the above cost function

implies maximizing the overall quality of service.

If the functions fi are all the same for different agents (i.e., fi(q) = fj(q), ∀i, j ∈
n), then for a fixed set of agent locations P the conventional Voronoi diagram provides

the optimal partitioning of the field [11], [39]. It is also shown in the previous chapter,

the centroidal Voronoi configuration is the optimal configuration for agents in this

case. However, when fi is agent-dependent, conventional Voronoi partitioning is no

longer optimal. The problem of finding the optimal partitioning in this case can

be very cumbersome, in general, but can be simplified significantly under a realistic

assumption given below.

Assumption 3.1. Throughout this chapter it is assumed that the service function of

each agent has the following form:

fi(q) = αi ‖pi − q‖2 , ∀i ∈ n (3.2)

where αi’s are pre-specified strictly positive coefficients. The performance index (3.1)

with the above service functions will be denoted by H(P,W) [70].

The service optimization problem introduced above is investigated in previous

chapter and in [26, 39] for the case where the coefficients α1, . . . , αn are equal. We

showed that the center of mass of each Voronoi region corresponding to each agent is

the optimal configuration of agents to move towards it. In the next section, the service

optimization problem introduced here will be investigated in the case of nonidentical

coefficients.
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3.2 Locational Optimization

3.2.1 Background

Let S denote a set of n distinct weighted nodes {(S1, w1), (S2, w2), . . . , (Sn, wn)} in a

2D field, where wi > 0 is the weighting factor associated with the node Si, for any

i ∈ n. The weighted distance is defined below.

Definition 3.1. The weighted distance of a point q from the node (Si, wi), i ∈ n, is

defined as:

dw(q, Si) =
d(q, Si)

wi

where d(q, Si) denotes the Euclidean distance between the point q and the node Si.

Assume that the field is partitioned into n regions such that each region contains

only one node, which is the nearest node, in the sense of weighted distance, to any

point inside the region. The diagram obtained by this type of partitioning is called the

multiplicatively-weighted Voronoi (MW-Voronoi) diagram [17]. The resultant regions

Π1, . . . , Πn obtained by such partitioning are described mathematically as follows:

Πi =
{
q ∈ R

2 | dw(q, Si) ≤ dw(q, Sj), ∀j ∈ n− {i}} (3.3)

for any i ∈ n.

Definition 3.2. The Apollonian circle of the segment AB, denoted by ΩAB,k, is the

locus of all points E such that AE
BE

= k [71].

To construct the i-th MW-Voronoi region, the Apollonian circles ΩSiSj ,
wi
wj

are

found for all Sj ∈ S\{Si}, as described in [72]. This generates a number of closed

regions in the field, and the smallest region containing the i-th node is referred to the

i-th MW-Voronoi region (e.g., see Fig. 3.1).
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Figure 3.1: The MW-Voronoi region for a node S1 with four neighbors S2, . . . , S5.

Definition 3.3. The mass and center of mass of a region Wi with respect to the

priority function ϕ are respectively defined as follows:

MWi
=

∫
Wi

ϕ(q)dq (3.4)

CWi
=

1

MWi

∫
qϕ(q)dq (3.5)

Definition 3.4. A center multiplicatively-weighted Voronoi (CMWV) configuration

of n distinct weighted nodes {(S1, w1), (S2, w2), . . . , (Sn, wn)} in the prioritized field Q,

is a configuration where each node is located in the center of mass of its MW-Voronoi

region. This configuration will hereafter be denoted by CMWVn(w1, w2, . . . , wn).

An example of the MW-Voronoi diagram for a group of 20 weighted nodes is

depicted in Fig. 3.2. The MW-Voronoi diagram is used in this chapter to develop a

distributed deployment algorithm for multi-agent systems.

3.2.2 Optimal Configuration

In what follows, it is desired to find agents configuration such that the underlying cost

function is minimized for the case when agents have heterogeneous serving capabilities
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Figure 3.2: An example of the MW-Voronoi diagram for a group of 20 nodes with different weights
in a network.

(i.e., non-identical coefficients as described in Section 3.1). The optimal configuration

problem is addressed in the sequel.

Proposition 3.1. Assume that the agent positions P = {p1, p2, . . . , pn} are fixed. If

the coefficients α1, . . . , αn in H are not identical, then the MW-Voronoi diagram of the

set of weighted nodes
{
(p1,

1√
α1
), (p2,

1√
α2
), . . . , (pn,

1√
αn
)
}

is the optimal partitioning

of Q for minimizing H.

Proof. Let the above-mentioned MW-Voronoi diagram be denoted by MW(P, α),

where α := [α1, α2, . . . , αn]. Let also the i-th region of MW(P, α) be represented by

MWi(P, α). Suppose that W = {W1,W2, . . . ,Wn} is the optimal partitioning of Q

w.r.t. H, and that W �= MW(P, α). Therefore:

∃ Q1 ∈ Q, ∃ i, j ∈ n :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q1 ⊆ Wi

Q1 ∩MWi(P, α) = ∅,

Q1 ⊆ MWj(P, α), j �= i

Now, consider the new partitioning Ẃ =
{
Ẃ1, Ẃ2, . . . , Ẃn

}
of Q be defined as:

Ẃk = Wk, ∀k �= i, j, Ẃi = Wi −Q1, Ẃj =Wj ∪Q1
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Denote the values of the cost function H corresponding to the partitionings W and

Ẃ by HW and HẂ, respectively. It is straightforward to verify that the following

equation holds:

HẂ = HW +

∫
Q1

(αj ‖pj − q‖2 − αi ‖pi − q‖2)ϕ(q)dq (3.6)

On the other hand, since ∀q ∈ Q1, q ∈ MWj(P, α) and q /∈ MWi(P, α) one arrives

at:

‖pj − q‖
1/
√
αj

<
‖pi − q‖
1/
√
αi

, ∀q ∈ Q1 (3.7)

or equivalently:

αj ‖pj − q‖2 < αi ‖pi − q‖2 , ∀q ∈ Q1 (3.8)

From (3.6) and (3.8), it can be concluded that:

HẂ < HW (3.9)

which contradicts the initial assumption that W is the optimal partitioning of Q.

This completes the proof.

Remark 3.1. The above result shows that for any arbitrary set of points P, the

optimal partition for the underlying service problem is the MW-Voronoi partition,

i.e., the following relation holds:

H (P,MW (P, α)) ≤ H(P,W)

where W is any arbitrary partition of the field.

In the case the partitions in the field are fixed, the problem can be considered as n

independent 1-center optimization problem. As mentioned in Section 2.3, the center
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of mass of each partition is the optimal position for each agent. Then, the following

result is a straightforward extension of the 1-center problem.

Remark 3.2. Assume W = {W1,W2, . . . ,Wn} is a fixed partition of the field Q.

Then the center of mass of each region is the optimal position for the correspond-

ing agent in order to minimize the cost function H with non-identical coefficients

α1, . . . , αn in (3.2).

According to Remark 3.2, for any arbitrary partition W of the field the agent

positions for the optimal service are the centers of mass of each region. More precisely:

H({CW1, CW2, . . . , CWn},W) ≤ H(P,W)

where P is any arbitrary set of n points (one in each region). This motivates the

definition of the centroidal configuration for the MW-Voronoi diagram.

Based on Definition 3.4, one can easily establish the following optimality result.

Remark 3.3. Given n distinct weighted nodes S and service functions (3.2), the

configuration CMWVn(1/
√
α1, 1/

√
α2, . . . , 1/

√
αn) is the solution to the service op-

timization problem minH.

3.3 Distributed Coverage Control

In this section, it is desired to design a set of planar position controllers for agents

with double-integrator dynamics. Most of the existing Voronoi-based coverage con-

trol schemes assume single-integrator dynamics for the agents [11]. However, many

unmanned systems have non-trivial dynamics, which can invalidate the performance

of the corresponding algorithms. The motion of a broad class of mobile agents can be

expressed by a double-integrator dynamic model. In addition, the dynamics of many
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agents can be feedback linearized to a double-integrator form. As will be shown in

Section 3.5, double-integrator dynamics is a proper model for the quadrotor helicopter

system.

For the purpose of coordinating multiple mobile agents to service the points in the

environment, it is desired to design a position-control strategy based on the CMWV

configuration. To achieve this goal, the following assumption is needed.

Assumption 3.2. Each mobile agent can communicate with other vehicles in its

neighboring MW-Voronoi regions.

In the remainder of the chapter, CWi
represents the center of mass of the MW-

Voronoi region that corresponds to the i-th mobile agent, currently positioned at

pi.

Consider a set of agents modeled as double-integrator point masses moving in Q

as follows:

p̈i = ui (3.10)

where ui is the control input of the i-th agent. A position-control law of the following

form is proposed for the i-th agent:

ui = 2αik
i
1MWi

(CWi
− pi)− ki2ṗi (3.11)

where ki1 and ki2 are some positive gains to be chosen by the designer, and MWi
is

the mass of the i-th MW-Voronoi region as defined in (3.4). The following theorem

presents the convergence result.

Theorem 3.1. Consider a group of n mobile agents with dynamic models described

by (3.10). The overall system is asymptotically stable under the local control laws of

the form (3.11), and the positions of agents converge to the CMWV configuration.
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Proof. Consider a Lyapunov function candidate as:

ϑ =

n∑
i=1

ki1Hi +

n∑
i=1

1

2
ṗiṗ

T
i (3.12)

where Hi =
∫
Wi
αi ‖pi − q‖2 ϕ(q)dq. Since αi, k

i
1 are positive numbers and also ‖.‖2

and ϕ(q) are positive functions, thus the candidate Lyapunov function ϑ is lower-

bounded by zero. Moreover, it can be easily shown that:

∂Hi

∂pi
= 2αi

∫
Wi

(pi − q)ϕ(q)dq = 2αiMWi
(pi − CWi

) (3.13)

By substituting (3.10) and (3.13) into the time derivative of ϑ along the system

trajectory and using the control input (3.11), one arrives at:

ϑ̇ =

n∑
i=1

ki1Ḣi +

n∑
i=1

p̈i ṗ
T
i

=

n∑
i=1

[(
2αik

i
1MWi

(pi − CWi
) + p̈i

)
ṗTi
]

=
n∑
i=1

(−ki2ṗiṗTi )

which is clearly non-positive. Let M be the set of all points in Q where ϑ̇ = 0. Since

every center of mass CWi
, i ∈ n lies in the interior of the region Q, hence the mobile

agents never leave their regions. This in turn means that M is a positive invariant set

for the trajectories of the closed-loop system. Since this set is closed and bounded,

one can use LaSalle’s invariance principle to infer that the positions of mobile agents

converge to the largest invariant subset of the set M. For any trajectory belonging

to the set M, it results from the model (3.10) and the control law (3.11) that:

ṗi ≡ 0 ⇒ p̈i ≡ 0 ⇒ ui ≡ 0 ⇒ pi = CWi
, ∀i ∈ n
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One can then conclude that for any i ∈ n, pi = CWi
is the largest invariant set

corresponding to the CMWV configuration. Therefore, under the control law (3.11)

the closed-loop system is asymptotically stable and the positions of agents converge

to the CMWV configuration.

The proposed distributed deployment strategy to coordinate the mobile agents to

service the points in the environment utilizes the position control law (3.11). At each

time step, agent i detects its neighboring agents and exchanges position information

with them. Then, agent i constructs its MW-Voronoi cell (as explained in Section 3.2)

and calculates its center of mass in order to construct the control input, under which

the agent moves towards CWi
. At every time step all agents in the group follow the

above steps simultaneously to finally converge to the optimal configuration.

3.4 Simulation Results

In this section, the efficacy of the proposed distributed agent-deployment algorithm

is demonstrated by simulations.

The environment used in the simulations is a 10m × 10m square. A group of

10 agents with double-integrator dynamics are deployed to service the points in the

environment. The coefficients α1, α2, . . . , α10 in H (which reflect the operating cost

of different agents) are given as 25
9
, 25

9
, 25

9
, 25
16
, 25
16
, 1, 1, 1, 1, 25

49
, respectively.

Two different scenarios are considered in the sequel. In the first scenario, the

initial positions of agents are chosen randomly, and the serving priority is given by

the following Gaussian function:

ϕ(q) =
1

σ
√
2π

(
e−

(q−μ)2

2σ2

)
(3.14)

where μ = (5, 5) and σ = 0.6. The initial and final configurations of agents along with
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their trajectories under the presented deployment algorithm are shown in Fig. 3.3. In

this figure, the initial position of agents are shown by ×, and the final position of each

agent is depicted by a circle whose radius is equal to the inverse of the square root

of the corresponding coefficient in H (e.g., the radius of the 4th circle is 4/5 because

α4 = 25/16). Moreover, the Gaussian priority function ϕ(.) is shown in gray with a

color intensity proportional to the value of the function.
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Figure 3.3: The initial and final positions of agents in the first scenario along with their trajectories
under the proposed deployment algorithm. The corresponding MW-Voronoi regions’ boundaries are
also depicted by dashed curves.

In the second scenario, the same group of agents are considered, but with bimodal

Gaussian priority function as follows:

ϕ(q) =
1

σ
√
2π

(
e−

(q−μ1)
2

2σ2 + e−
(q−μ2)

2

2σ2

)
(3.15)

where μ1 = (8, 2), μ2 = (2, 8), and σ = 0.6. Unlike the previous case, it is assumed

that agents start their move from the border of the field. Similar to the first scenario,

each agent computes its MW-Voronoi region and moves towards its mass center based

on the control input (3.11). The results are provided in Fig. 3.4, analogously to those

in Fig. 3.3. As shown in this figure, all agents aggregate around the more important
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areas in the field. The cost functions resulted from using the proposed controller are

depicted in Figs. 3.5(a), (b) for both scenarios. As it can be observed from Fig. 3.5,

in both cases the cost function decreases by time significantly.
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Figure 3.4: The initial and final positions of agents in the second scenario along with their trajecto-
ries under the proposed deployment algorithm. The corresponding MW-Voronoi regions’ boundaries
are also depicted by dashed curves.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6
x 104

Time (s)

C
os

t F
un

ct
io

n

(a)

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7
x 104

Time (s)

C
os

t F
un

ct
io

n

(b)

Figure 3.5: The cost function H obtained by using the proposed deployment strategy for: (a) first
scenario, and (b) second scenario.

In order to evaluate the average performance of the proposed deployment strategy,

50 different simulations have been carried out with random initial positions for the

first scenario. The resultant average cost function is depicted in Fig. 3.6, which

demonstrates the effectiveness of the approach in general.
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Figure 3.6: The average cost functionH obtained by using 50 different random initial configurations
for the first scenario.

3.5 Experimental Results

To demonstrate the efficacy of the presented theoretical developments, some experi-

ments are conducted on four unmanned systems consisting of one quadrotor helicopter

and three ground vehicles. These unmanned systems are equipped with a QuaRC-

powered single-board Gumstix embedded computer (QuaRC is the real-time control

software by Quanser Inc). QuaRC allows to rapidly implement controllers designed

in MATLAB/Simulink environment for real-time control of vehicles. Sensors mea-

surement, data logging and parameter tuning are supported between the ground host

computer and the target vehicles. The experiments are performed indoor with no GPS

signals, and a network of OptiTrack camera systems from NaturalPoint is employed

to provide the systems positions in the 3D space. In Fig. 3.7, the experimental envi-

ronment consisting of the four unmanned vehicles, a host computer, and the network

of OptiTrack cameras is illustrated.

3.5.1 Unmanned Aerial Vehicle: the Qball-X4

The quadrotor UAV available at the Networked Autonomous Vehicles (NAV) Lab in

the Department of Mechanical and Industrial Engineering of Concordia University is
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Figure 3.7: The experimental environment.

the Qball-X4 testbed shown in Fig. 3.8. Detailed description of the system can be

found in [73].

Figure 3.8: The Qball-X4 UAV.

A simplified linear model can be derived for the Qball-X4 by assuming hovering

conditions (uz ≈ mg in the x and y directions) without yawing (ψ = 0) and with

small roll and pitch angles:

ẍ = θg; J1θ̈ = uθ

ÿ = −φg; J2φ̈ = uφ (3.16)

z̈ = uz/m− g; J3ψ̈ = uψ

where x, y and z are the coordinates of the quadrotor UAV center of mass in the
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earth-frame, and θ, φ and ψ are the Euler angles in pitch, roll and yaw, respectively.

The lift uz generated by the four propellers is applied to the quadrotor UAV in the

z-direction (body-fixed frame), and the torques uθ, uφ and uψ tend to rotate the

quadrotor in the directions of θ, φ and ψ, respectively. Moreover, m is the mass and

J1, J2 and J3 are the moments of inertia along the y, x and z axes, respectively. The

four motors of the system are driven by pulse width modulated (PWM) inputs, with

the following relations between the lift/torques and the PWM inputs:

uz = K(u1 + u2 + u3 + u4)

uθ = KL(u1 − u2)

uφ = KL(u3 − u4)

uψ = KKψ(u1 + u2 − u3 − u4)

(3.17)

where u1, . . . , u4 are the PWM inputs, K and Kψ are positive constants and L is the

distance between the motor and the quadrotor’s center of mass.

It is important to note that since the linear model of the quadrotor is decoupled

along the three axes, one can easily control the height and yaw angle independently

by using conventional control methods. Moreover, for the coordination of multiple

vehicles in order to cover a planar environment, the position controller is designed

based on the CMWV configuration.

3.5.2 Unmanned Ground Vehicles: the Qbot UGV and the

Quanser QGV

Qbot (shown in Fig. 9(a)) is an autonomous ground vehicle and an ideal platform for

research in an indoor lab environment. It has a low power Gumstix Verdex XL6P

600 MHz on-board computer operated by Linux OS. The Quanser QGV (depicted in
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Fig. 9(b)) is a vehicle platform suitable for a wide variety of UGV related research.

Both the Qbot and the Quanser QGV are differential drive ground robots. The

Quanser QGV is also equipped with a 4 degree-of-freedom robotic manipulator with

gripper but will not be used in the experiments since control of these grippers is not

the objective of this thesis. The dynamic model of the QGV (without gripper) and

the Qbot is considered as exactly the same as (2.14) for this coverage control problem,

therefore the structure of control inputs for these vehicles is analogous to (2.21).

(a) The Qbot (b) The QGV

Figure 3.9: The unmanned ground vehicles used in the experiments.

3.5.3 Experimental Tests

The environment used in the experiments is a 2m × 2m square surface with high

ceiling to allow the UAV to fly without any physical restriction. A group of two QGV

UGVs, one Qbot UGV and one Qball-X4 UAV is deployed to cover the environment.

The vehicles start their mission from the corner of the field. To validate the pro-

posed theoretical results, several experiments are conducted through the following

four scenarios.

Scenario 1

The coefficients of H are identical and equal to 1 (i.e., α1 = . . . = α4 = 1), and

the priority function is uniform (i.e., ϕ(q) = 1, ∀ q ∈ Q). Each vehicle constructs

its MW-Voronoi cell based on the positions of the neighboring vehicles, and then
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moves to the center of mass of its own cell by the proposed control input. The

experimental results of this scenario are presented in Fig. 3.10(a) along with the

corresponding computer simulation results in Fig. 3.10(b) for completeness. Note

that since the priority function is uniform and all coefficients are identical, the field

is divided symmetrically between the four vehicles in this case.
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Figure 3.10: Trajectories of vehicles along with their correspondingMW-Voronoi regions in the first
scenario. The initial and final planar positions of each vehicle are indicated by × and �, respectively.
(a) Experimental results obtained in the lab; (b) simulation results obtained by MATLAB.

Scenario 2

The coefficients of H are again identical and equal to 1 but the priority function

in this case is the Gaussian function defined in (3.14) with μ = (1.2, 0.6) and σ =

0.2. It is noteworthy to mention that the priority function is known a priori by all

vehicles, as required by the proposed deployment strategy. The results are depicted

in Figs. 3.11(a), (b), analogously to those in Fig. 3.10. It can be observed from these

figures that the vehicles eventually aggregate around the higher priority points in the

field, shown by higher gray levels.
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Figure 3.11: Trajectories of vehicles along with their corresponding MW-Voronoi regions in the
second scenario. The initial and final planar positions of each vehicle are indicated by × and
�, respectively, and the gray level of the field is proportional to the value of the Gaussian priority
function. (a) Experimental results obtained in the lab; (b) simulation results obtained by MATLAB.

Scenario 3

In this scenario, it is assumed that the priority function of the field is uniform but the

operating cost of each vehicle are different. To this end, let the coefficients α1, . . . , α4

in H (which reflect different serving capabilities of vehicles) are chosen as 1
4
, 1
4
, 1, 1

25
,

respectively. The results are depicted in Figs. 3.12(a), (b) analogously to those in

Fig. 3.10. As shown in Fig. 3.12, vehicles with higher operating costs (i.e., those with

smaller coefficients) are assigned to regions with larger area.

Scenario 4

In the fourth scenario (which is the most complete one), the priority function is as-

sumed to be a bimodal Gaussian function as defined in (3.15), with μ1 = (0.3, 1),

μ2 = (1.6, 0.3) and σ = 0.2. The operating costs of vehicles are the same as the previ-

ous scenario. The experimental results of this scenario along with the corresponding

computer simulations are depicted in Figs. 3.13(a), (b). The resultant trajectories in

this case show that the vehicles eventually cover the most important areas.
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Figure 3.12: Trajectories of vehicles along with their corresponding MW-Voronoi regions in the
third scenario. The initial and final planar positions of each vehicle are indicated by × and �,
respectively. (a) Experimental results obtained in the lab; (b) simulation results obtained by MAT-
LAB.

X (m)

Y
 (m

)

1

2

3

4

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5
QGV1
QGV2
Qbot
Qball

(a)

1

2

3

4

X (m)

Y
 (m

)

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

(b)

Figure 3.13: Trajectories of vehicles along with their corresponding MW-Voronoi regions in the
fourth scenario. The initial and final planar positions of each vehicle are indicated by × and �,
respectively, and the gray level of the field is proportional to the value of the Gaussian priority
function. (a) Experimental results obtained in the lab; (b) simulation results obtained by MATLAB.
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The velocities of all vehicles at X and Y directions for all these four scenarios are

also depicted in Fig. 3.14. It can be observed from this figure that as the vehicles

converge to the optimal configuration at the end of mission, the velocities of the

vehicles approach zero.
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Figure 3.14: Velocities of all vehicles in the X and Y directions in the four scenarios. (a) First
scenario; (b) Second scenario; (c) Third scenario; (d) Fourth scenario.

Finally, these four scenarios are carried out consecutively, where the final positions

of vehicles in each scenario are their initial positions in the subsequent scenario. The

video that shows the experimental results in this case is available in [74].
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Chapter 4

Coverage Control of Multi-Agent

Systems subject to Communication

Delay

Usually in the multi-agent systems, the agents in the team transmit/receive their

position information to/from a subset of agents. Most of the existing works on sen-

sor network coverage control assume that this information exchange has no delay.

However, it is known that neglecting the effect of delay in the analysis and design of

multi-agent systems can lead to poor performance as well as unsafe behaviors such

as inter-agent collision. While the effect of communication delay in the flocking and

formation control of multi-agent systems has been investigated in the past few years

(e.g., see [75], [76]), not much work has been done in the area of cooperative coverage

control of a network of agents subject to communication delay.

Motivated by [34], a spatial partitioning technique is considered in this chapter to

address the problem of coverage control subject to inter-agent communication delays

induced by certain communication faults. A strategy is introduced for updating
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the information vector of each agent and constructing its guaranteed Voronoi region

based on the latest information received from its neighbors. A motion coordination

algorithm is subsequently proposed for the agents such that a prescribed coverage

performance function over the guaranteed Voronoi cell of every agent is minimized.

One of the important properties of the proposed algorithm is inter-agent collision

avoidance in the faulty conditions, which is also confirmed by simulation.

The above problem is also extended for the case sensors of agents may have vari-

able effectiveness (health). The sensor effectiveness factor of agents is incorporated

in the locational optimization problem, and a novel partitioning technique is also in-

troduced to address this problem. Analogous to the motion coordination algorithm

in the previous case, an algorithm is proposed to drive agents in such a way that the

coverage performance function is minimized over the regions assigned to agents. The

effectiveness of the proposed algorithm is evaluated by simulations.

4.1 Problem Formulation

Similar to the problem of Chapter 2, Q is a convex field in R2, and an arbitrary point

in Q is denoted by q. Consider a group of n mobile agents randomly distributed in Q

with the position of the i-th agent represented by pi, and the positions of all agents

are denoted by the set P = {p1, p2, . . . , pn}. Let also ϕ : Q → R+ be a priority

function which assigns a weight to each point in the field, representing the likelihood

of an event taking place at any arbitrary point in Q. Let V = {V1, V2, . . . , Vn} be

the Voronoi partition of Q, where the agent positions are the generating points. It is

assumed that each agent is in charge of covering all points in its own Voronoi region.
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Then, the coverage performance function is defined as:

H(P) =
n∑
i=1

∫
Vi

fi(q)ϕ(q)dq (4.1)

where fi(q) the cost of covering (or sensing) a point q by the i-th agent is chosen as

(2.3).

The objective here is to develop an algorithm to properly place the agents in

the field where individual agents receive the information about each others’ locations

with some delay caused by communication faults. In the next section, the inter-

agent communication delays under certain fault conditions are introduced first, and a

specific partitioning technique is then presented to divide the field among all agents.

4.2 Inter-Agent Communication Delays

Each agent in the team receives/sends the information from/to neighboring agents

through a communication channel. Normally, all agents receive/send information

from/to their neighbors with negligible processing or transmission delays. However,

when the communication channel of an agent fails, the received and transmitted

information from/to faulty agents are both subject to delays. Moreover, it is assumed

that faulty agents and the magnitudes of their communication delays can be easily

diagnosed with a proper fault detection and diagnosis (FDD) algorithm such as the

one proposed in [77] (development of FDD schemes is beyond the scope of this thesis).

To proceed further, some important assumptions are made in the sequel.

Assumption 4.1. The clocks of all agents are synchronous, i.e., the time steps for

all agents start at tk = t0 + kΔt for k ∈ N, where Δt is the smallest time step (which

is known a priori), and t0 is the initial time.

Assumption 4.2. The communication delays in the faulty conditions are larger than
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the smallest time step, i.e. τ > Δt. Further, to ensure synchronization between the

communication delay and discrete time step it is assumed that τ = dΔt, where d ∈ N.

Assumption 4.3. The maximum velocity of every agent is bounded. For simplicity

and without loss of generality it is assumed that this maximum velocity is the same

for all agents. Denote this maximum velocity by vmax; the movement of agents at

each time step will be bounded according to the following relation:

pi(tk+1)− pi(tk)

Δt
≤ vmax (4.2)

Fig. 4.1 shows the inter-agent communication between two agents in the presence

of delay. As noted earlier, agents receive delayed information from faulty neighbors

and non-delayed information from healthy neighbors. Thus, the current information

of agent i from a faulty neighbor, say agent j, is based on the last known position pij ,

and the elapsed time τ ij ∈ R+ after the information was received from agent j. One

can use this formulation to describe the information flow between agent i and all of

its neighbors, and set τ ik to zero if agent k ∈ Ni is healthy. It is also assumed that

the position of agent i is available for itself with no delay, i.e., pii = pi and τ
i
i = 0.

��

Agent  i Agent  j
Delay �

Delay �
�������

�	�����	
����
���

��
	
���
���

Figure 4.1: The inter-agent communication between two agents with faulty communication chan-
nel.

Since the last information available to agent i from the neighboring agent j, ∀j ∈
Ni, at time t is pij(t − τ ij ), according to Assumption 4.3 agent i knows that the

maximum displacement of agent j from the time instant t− τ ij to t is upper bounded

by rij = vmaxτ
i
j . In other words, based on the information available to agent i at
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time t − τ ij , it is guaranteed that at time t neighboring agent j is inside the ball

B̄ = (pij , r
i
j). Consequently, the information vector of agent i at time t is updated

to Di = [pi, (p
i
j, r

i
j)]; j ∈ Ni. It is noteworthy that if the information of a fault-free

neighboring agent j at time t is available with no delay, then rij is zero.

Since the exact locations of some agents are not available in the faulty case, the

conventional Voronoi partitioning cannot be used to optimize the coverage function

H(P). Hence, the guaranteed Voronoi diagram introduced in [78] is described briefly

in the next section to address the coverage problem subject to communication delays.

4.3 Guaranteed Voronoi Partitioning

Let D be a set of regions in Q, denoted by D = {D1, D2, . . . , Dn}, each region

containing exactly one agent. The guaranteed Voronoi region Gi, associated with

agent i is the locus of all points that are closer to this agent than to any other agents,

i.e.:

Gi = {q ∈ Q| max
x∈Di

‖q − x‖ ≤ min
y∈Dj

‖q − y‖ , ∀j �= i}, i ∈ n := {1, . . . , n} (4.3)

An example of a guaranteed Voronoi diagram with disc-shaped regions is given in

Fig. 4.2. As it can be observed from this figure, some of the points in the field do

not belong to any guaranteed Voronoi region. In other words, unlike the conventional

Voronoi diagram, the guaranteed Voronoi diagram does not partition the field. In

this section, it is assumed that region Di is a ball of radius of ri centered at pi. Then,

the boundary shared between the guaranteed Voronoi region Gi and its neighboring

region Gj is a set of points q satisfying the following condition:

‖q − pi‖+ ri = ‖q − pj‖ − rj
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where pi and pj are the centers and ri and rj are the radii of the circular regions of

guaranteed Voronoi regions Gi and Gj, respectively. Since ri and rj are constant, the

points on the boundary lie on the hyperbola arm with foci pi and pj, closer to pi. In

the special case when the circles’ radii are both zero, the points on the boundary lie

on the perpendicular bisector of pipj .

Figure 4.2: An example of the guaranteed Voronoi diagram for a group of 7 agents.

In general, for any regionDi containing the agent pi, the guaranteed Voronoi region

Gi is a subset of the corresponding conventional Voronoi region Vi (i.e., Gi ⊆ Vi). In

the special case, when the region Di has only one point, then Gi will be the same as

the conventional Voronoi partition Vi.

4.4 Distributed Coverage Control in Faulty Situa-

tions

In this section, the coverage control problem subject to communication delays in-

duced by faulty communication of a group of mobile agents is investigated. A motion

coordination strategy for each agent is proposed based on the available information

in faulty conditions.
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4.4.1 Deployment Strategy

In this work, it is assumed that each agent is responsible for sensing or covering the

points in its own Voronoi region. In the fault-free case, the exact location of agents is

available, and coverage function H can be optimized accordingly. In the presence of

communication delays between agents, on the other hand, the field is divided based

on the guaranteed Voronoi diagram. As noted before, in such partitioning, there is

some neutral region in the field. These points are not assigned to any agent, and

hence cannot be covered. Therefore, there is no guarantee to find the global optimum

for the coverage function H in the general case.

Although the guaranteed Voronoi diagram does not partition the field, one can still

use the results of the 1-center problem optimization to drive each agent towards its

centroid. The optimization in each guaranteed Voronoi region Gi can be considered as

the 1-center problem optimization. Therefore, the centroid of the guaranteed Voronoi

region Gi is the optimal destination for the agent i.

4.4.2 Motion Control

Each mobile agent is modeled as a double-integrator point mass moving in Q as

follows:

p̈i = ui (4.4)

where ui is the control input of the i-th agent. It is assumed that each agent is able

to compute its own guaranteed Voronoi region at every time step based on its last

updated information vector. Subsequently, each agent calculates the centroid of its

guaranteed Voronoi region and applies its control input to move towards its centroid.

A control law of the following form is proposed for the i-th agent:

ui = ki1MGi
(CGi

− pi)− ki2ṗi (4.5)
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where ki1 and k
i
2 are some positive gains to be chosen by the designer. Also, MGi

and

CGi
are the mass and centroid of the i-th guaranteed Voronoi region, respectively.

Let HGi
=
∫
Gi

1
2
‖pi − q‖2 ϕ(q)dq. Thus:

∂HGi

∂pi
= −

∫
Gi

(q − pi)ϕ(q)dq

= −MGi
(CGi

− pi)

(4.6)

Proposition 4.1. The control input (4.5) can drive the i-th agent to the centroid of

the guaranteed Voronoi region Gi by using HGi
.

Proof. Consider the Lyapunov function candidate as:

ϑ = ki1HGi
+ ṗiṗ

T
i

This function ϑ is lower-bounded by zero since ϕ and ‖.‖2 are both positive. By

substituting (4.4) and (4.6) into the time derivative of ϑ along the system trajectory

and using the control input (4.5), the time derivative of the above Lyapunov function

can be obtained as follows:

ϑ̇ = ki1
∂HGi

∂pi
ṗTi + p̈i ṗ

T
i

=
(
ki1MGi

(pi − CGi
) + p̈i

)
ṗTi

= −ki2ṗiṗTi

which is clearly non-positive. Let M be the set of all points in Gi where ϑ̇ = 0. Since

the center of mass CGi
lies in the interior of the region Gi, hence the i-th mobile agent

always stays in the interior of Gi. This in turn means that M is a positive invariant

set. Since this set is closed and bounded, one can use LaSalle’s invariance principle

to infer that the position of the i-th mobile agent converges to the largest invariant
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subset of the set M (i.e. CGi
).

Remark 4.1. The control input (4.5) of the i-th agent depends on its own position

and centroid of its dominance region. For the computation of CGi
, however, the

positions of its neighboring guaranteed Voronoi regions are needed, and this shows the

distributed nature of the proposed controller.

Remark 4.2. Due to the convexity of each guaranteed Voronoi region, the centroid of

every region lies in its interior. Since each mobile agent moves towards the centroid of

its associated guaranteed Voronoi region, inter-agent collision avoidance is guaranteed

(even in the presence of inter-agent communication delays) if agents initially start

their movement from a safe configuration.

4.4.3 Motion Coordination Algorithm

The proposed motion coordination algorithm utilizes the motion control law with

the updated information vector of agents. Every agent uses its information vector at

each time step to construct its guaranteed Voronoi cell. The shape of each guaranteed

Voronoi region and the size of neutral regions depend heavily on the communication

delays between that agent and its neighboring agents. The higher communication

delays, the larger neutral regions.

As mentioned in Section 4.2, the information vector of each agent contains the

position of itself and those of its neighboring agents, as well as communication delays

between the agent and its neighbors. The constructed guaranteed Voronoi cell and

the motion coordination mechanism that each agent follows at every time step are

presented in Algorithm 1.

According to Algorithm 1, agent i at each time step detects its neighboring agents

and exchanges position information with them. The magnitudes of the communi-

cation delays of its faulty neighbors are subsequently obtained, and its information
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Algorithm 1

1. At time step tk, every agent i ∈ {1, . . . , n}:

i. finds the set of neighboring agents Ni, and receives
their positions pj , ∀j ∈ Ni;

ii. updates its information vector Di = [pi, (pi
j , ri

j)], j ∈
Ni, and sets D = Di;

iii. constructs the guaranteed Voronoi region Gi and cal-
culates its centroid CGi ;

iv. computes the control input ui, and applies it to the
agent.

2. terminate the algorithm if H|tk
− H|tk−1 is less than a

predefined threshold; otherwise set k = k + 1 and go to
Step 1.

vector is updated as described in Section 4.2. Then, agent i constructs its guaran-

teed Voronoi cell as explained in details in [34], and calculates its centroid in order

to construct the control input (4.5), under which the agent moves towards CGi
. At

every time step all agents in the group follow the above steps simultaneously until

the difference between the coverage performance H at time step tk and tk−1 is less

than a prescribed threshold.

In the next section, a problem similar to the one introduced in Section 4.1 is

investigated where the sensor effectiveness of each agent varies during the mission.

The sensor effectiveness factor of agents is incorporated in the locational optimization

problem, and a novel partitioning technique is also introduced to address this problem.

The inter-agent interaction in the presence of delay in this case is considered as the

same as introduced in Section 4.2.
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4.5 Coverage Control of Multi-Agent Systems

subject to Communication Delay and Health

Degradation

Analogous to (3.2), the cost of covering (or sensing) a point q by the i-th agent is

denoted by fi(q, hi), where hi ∈ [0, 1] is a sensor effectiveness factor for the i-th agent

which represents varying health conditions. The sensor effectiveness factor hi = 1

denotes the healthy i-th agent, and hi = 0 corresponds to total failure in the sensor

of i-th agent. As the distance of points from an agent increases, the cost of covering

by the corresponding agent grows as well. Moreover, the sensing quality of the agents

varies for various reasons (e.g., in the outdoor environment, weather conditions can

degrade the quality of sensing). Variations of sensor effectiveness can lead to the

variations of sensing quality. It is to be noted that while the function fi is not

necessarily the same for different agents, it is assumed to be identical for any set of

points located at the same distance from the corresponding agent. In other words,

fi(qj , hi) = fi(qk, hi), for any qj , qk ∈ Q such that ‖pi − qj‖ = ‖pi − qk‖, where ‖.‖
denotes the Euclidean norm.

It is desired that regardless of the inter-agent communication delay, the field is

properly partitioned into n regions and the agents are relocated in the field such that

each point in the field is covered by exactly one agent and the following coverage

performance function is minimized:

H(P,W) =

n∑
i=1

∫
Wi

fi(q, hi)ϕ(q)dq (4.7)

where the set W = {W1,W2, . . . ,Wn} represents a partition of the field Q, and the

i-th agent is in charge of covering all points in the region Wi. Minimizing the above
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coverage performance function implies maximizing the overall quality of covering.

Furthermore, it is assumed that each mobile agent can communicate with other agents

in its neighboring partition, and the set of all neighbors of agent i is denoted by Ni.

If the functions fi, and sensor effectiveness factor hi are all the same for different

agents (i.e., hi = hj and fi(q, hi) = fj(q, hj), ∀i, j ∈ n), then for a fixed set of agent

locations P the conventional Voronoi diagram provides the optimal partitioning of

the field [11], [39]. However, when fi is agent-dependent, conventional Voronoi parti-

tioning is no longer optimal. The problem of finding the optimal partitioning in this

case can be very cumbersome, in general. However, it can be simplified significantly

under a realistic assumption as follows:

fi(q, hi) =
1

hi
‖pi − q‖2 , ∀i ∈ n (4.8)

where hi is pre-specified strictly positive coefficients. It is assumed that the magni-

tudes of the sensor effectiveness factor can be measured with a proper method. In

fact, the hi affects the performance of agent i’s sensor. In the case all other variables

are constant, a higher hi results in a lower cost for the i-th agent and vice versa (e.g.,

in the case of fully healthy agent hi = 1, the cost of covering is minimum and for the

degraded health sensor this cost will increase). It is to be noted that when the i-th

agent is fully faulty and its sensor effectiveness factor is zero, the cost of covering of

any point in the field by the i-th agent would be infinity. Therefore, the i-th faulty

agent can not incorporate in the group to cover the environment.

Regardless of communication delay, the coverage optimization problem with the

cost functions (4.8) is investigated in Chapter 3 when the coefficients 1
h1
, . . . , 1

hn
are

non-identical. In this case, it is shown that the center of mass of multiplicatively-

weighted Voronoi (MW-Voronoi) region is the optimal configuration. The objective
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here is to develop an algorithm to properly place the agents with varying health con-

ditions in the field where individual agents receive the information about each others’

locations with some delay caused by communication faults. Since the exact locations

of some agents are not available in the faulty case, the MW-Voronoi partitioning can-

not be used to optimize the coverage function H. On the other hand, in the faulty

situation agents can not precisely construct their regions, and communication delays

can also result in overlap between some regions. Consequently, as the agents of the

overlapped regions move to the center of mass of their regions, there is a chance that

they collide. Hence, a specific partitioning technique is presented to divide the field

among all agents in the next subsection.

4.5.1 Guaranteed Multiplicatively-Weighted Voronoi Parti-

tioning

Let D be a set of regions in Q, denoted by D = {D1, D2, . . . , Dn}, and each region

contains exactly one weighted node. It is worth to mention that the weighted distance

is defined in Subsection 3.2.1. The GMW-Voronoi region GMW i, associated with

node Si is the locus of all points that are closer to this node than to any other nodes,

i.e.:

GMWi = {q ∈ Q | max
Si∈Di

dw(q, Si) ≤ min
Sj∈Dj

dw(q, Sj), ∀j �= i}, i ∈ n (4.9)

An example of a GMW-Voronoi diagram for 9 nodes with arbitrary weights and

with disc-shaped regions is given in Fig. 4.3. As it can be observed from this figure,

some of the points in the field that are shown by dark blue do not belong to any

GMW-Voronoi region. In other words, unlike the conventional Voronoi diagram (or

MW-Voronoi diagram), the GMW-Voronoi diagram does not partition the field.
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Figure 4.3: An example of the GMW-Voronoi diagram for a group of 9 agents with different
weights.

In this section, it is assumed that region Di is a ball of radius of ri centered at

pi, and the weight of wi corresponds to the i-th agent. Then, the boundary shared

between the GMW-Voronoi region GMWi and its neighboring region GMWj is a set

of points q satisfying the following condition:

dw(q, pi) + ri = dw(q, pj)− rj

where pi and pj are the centers and ri and rj are the radii of the circular regions

of GMW-Voronoi regions GMWi and GMWj , respectively. In the special case when

the circles’ radii are both zero, the points on the boundary lie on the Apollonian

circles Ωpipj ,wi
wj

(the locus of all points q such that piq
pjq

= wi

wj
[71]). In general, for

any region Di containing the agent pi with weight of wi, the GMW-Voronoi region

GMWi is a subset of the corresponding conventional MW-Voronoi region. In the

special case, when the region Di has only one point, then GMWi will be the same as

the conventional MW-Voronoi partition.

As mentioned in Section 3.2 in the previous chapter, in the case there

is no inter-agent communication delays and when the coefficients 1
h1
, . . . , 1

hn
in
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H are not identical, the MW-Voronoi diagram of the set of weighted nodes{
(p1,

√
h1), (p2,

√
h2), . . . , (pn,

√
hn)

}
is the optimal partitioning of Q for the fixed

agent positions {p1, p2, . . . , pn}. According to this result when the network of agents

is subject to communication delay, the same set of weighted nodes here is used for

the GMW-Voronoi diagram (weight of
√
hi for the i-th agent).

4.5.2 Motion Control

It is assumed that each agent is responsible for sensing or covering the points in its

own dominance region. In the presence of communication delays between agents and

varying health conditions, the field is divided based on the GMW-Voronoi diagram.

As noted before, in such partitioning, there is some neutral region in the field. These

points are not assigned to any agent, and hence cannot be covered. Therefore, there

is no guarantee to find the global optimum for the coverage function H in the general

case. Although the GMW-Voronoi diagram does not partition the field, one can still

use the results of the 1-center problem optimization to drive each agent towards its

centroid. The optimization in each GMW-Voronoi region GMW i can be considered

as the 1-center problem optimization. Therefore, for the optimization problem minH
with the cost functions (4.8), the configuration CGMWVn(

√
h1,

√
h2, . . . ,

√
hn) can

be considered as the candidate destination for the agents to move towards it.

Suppose each agent in the team is modeled as a single-integrator point mass

moving in Q as follows:

ṗi = ui (4.10)

It is assumed that each agent is able to compute its own GMW-Voronoi region at

every time step based on its last updated information vector. Subsequently, each

agent calculates the centroid of its GMW-Voronoi region and applies its control input

to move towards its centroid. A control law of the following form is proposed for the
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i-th agent:

ui = ki1(CGMWi
− pi) (4.11)

where CGMWi
is the center of mass of the i-th GMW-Voronoi region, and ki1 is positive

gain to be chosen by the designer. Similar to Proposition 4.1, one can prove that the

control input (4.11) will drive the i-th agent to the centroid of the GMW-Voronoi

region GMW i.

Remark 4.3. The GMW-Voronoi regions are mutually disjoint, and the centroid of

every region lies in its interior. Since each mobile agent moves towards the centroid

of its associated GMW-Voronoi region, inter-agent collision avoidance is guaranteed

(even in the presence of inter-agent communication delays) if agents initially start

their movement from a safe configuration.

Using the motion control law and the updated information vector of agents, a

motion coordination algorithm can be proposed analogously to Algorithm 1. Every

agent uses its information vector at each time step to construct its GMW-Voronoi

cell. The shape of each GMW-Voronoi region and the size of neutral regions depend

heavily on the inter-agent communication delays, and the weights of agents correspond

to their health conditions. As mentioned in Section 4.2, the information vector of each

agent contains the position of itself and those of its neighboring agents, as well as

communication delays between the agent and its neighbors. The constructed GMW-

Voronoi cell and the motion coordination mechanism that each agent follows at every

time step are presented in Algorithm 2.

According to Algorithm 2, agent i at each time step detects its neighboring agents

and exchanges position information and sensor effectiveness factor with them. The

magnitudes of the communication delays of its faulty neighbors are subsequently ob-

tained, and its information vector is updated as described in Section 4.2. Then, agent
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Algorithm 2

1. At time step tk, every agent i ∈ {1, . . . , n}:

i. finds the set of neighboring agents Ni, and receives
their positions pj , and sensor effectiveness factors hj

∀j ∈ Ni;
ii. updates its information vector Di = [pi, (pi

j , ri
j)], j ∈

Ni, and sets D = Di;
iii. constructs the GMW-Voronoi region GMW i and

calculates its centroid CGMWi ;
iv. computes the control input ui, and applies it to the

agent.

2. Terminate the algorithm if H|tk
− H|tk−1 is less than a

predefined threshold; otherwise set k = k + 1 and go to
Step 1.

i constructs its GMW-Voronoi cell, and calculates its centroid in order to construct

the control input (4.11), under which the agent moves towards CGMWi
.

4.6 Simulation Results

In this section, the effectiveness of the proposed distributed agent-deployment algo-

rithms are demonstrated by simulations in two different scenarios. The environment

used in this simulation is a 10m × 10m square. In the first scenario, a group of

nine agents deployed to cover the environment. The maximum velocity of agents is

vmax = 2 m/s, with faulty communication channels for agents 3 and 5, generating de-

lays of τ3 = 0.5 s and τ5 = 0.8 s between these agents and their neighbors. Moreover,

the field coverage is prioritized by the following bimodal Gaussian function:

ϕ(q) =
1

σ
√
2π

(
e−

(q−μ1)
2

2σ2 + e−
(q−μ2)

2

2σ2

)
(4.12)

where μ1 = (2, 2), μ2 = (8, 8), and σ = 1 m. The mobile agents start their move from

the area indicated in the top-left corner of the field, as shown in Fig. 4.4. Agents 3

and 5 are assumed to be faulty agents, which are respectively shown in red and blue.
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Furthermore, the priority function ϕ(q) (which is concentrated in two disjoint areas)

is shown in gray in the figure, with a color density proportional to the value of the

function. The final configuration of agents along with their trajectories under the

proposed deployment Algorithm 1 are shown in Fig. 4.5.
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Figure 4.4: The initial positions of the nine agents in the first scenario.
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Figure 4.5: The trajectories of agents and their final positions under the proposed deployment
algorithm in the first scenario.
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One of the important properties of a deployment algorithm based on the guaran-

teed Voronoi diagram is inter-agent collision avoidance. However, this is not neces-

sarily the case with other partitioning methods. To demonstrate this, the simulation

is also performed with conventional Voronoi partitioning. In this case, each agent

constructs its Voronoi polygon based on the latest position information received from

the neighboring agents, and moves towards its centroid. It is to be noted that in the

presence of the communication delays (for faulty agents), the current position of a

faulty agent is different from the position information received by its neighbors. The

distance between the blue agent (faulty agent) and all other agents using both parti-

tioning is depicted in Figs. 4.6 and 4.7. As it can be observed from the curves in these

figures, the faulty agent collides with one of the agents when the conventional Voronoi

diagram is utilized in the agent deployment procedure but no collision happens when

the guaranteed Voronoi partitioning is used instead.
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Figure 4.6: The distances between the blue agent and other agents in the conventional Voronoi
partitioning.

As mentioned in Section 4.3, there are some neutral regions in the field when

the guaranteed Voronoi partitioning is used. Thus, one cannot compare the coverage

performance H obtained by conventional Voronoi partitioning with that computed
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Figure 4.7: The distance between the blue agent and other agents in the guaranteed Voronoi
partitioning.

based on the guaranteed Voronoi diagram. Hence, in order to compare the cover-

age performance, at each time step after updating the position of every agent using

Algorithm 1 with the guaranteed Voronoi diagram, the field is partitioned by the con-

ventional Voronoi polygons, and the coverage performance H is measured w.r.t this

diagram. The result obtained is compared with the coverage performance measured

based on the conventional Voronoi partitioning, as depicted in Fig. 4.8. The figure

demonstrates that the field is covered more effectively when the guaranteed Voronoi

partitioning is used in the presence of faulty agents.

In the second scenario, a group of eight single-integrator agents is considered

in the same field as before. All agents start their move from the border of the

environment, and the sensor effectiveness factors h1, h2, . . . , h8 in H are chosen as

1, 0.25, 0.2, 0.66, 0.33, 0.1, 1, 0.66, respectively. It is also assumed that the communi-

cation channels of agents 3 and 7 are faulty, generating delays of τ3 = 0.5 s and

τ5 = 0.25 s between these agents and their neighbors. The field is prioritized again

by the bimodal Gaussian density function (4.12) in where μ1 = (2, 8), μ2 = (8, 2),
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Figure 4.8: The coverage performance H obtained by using the proposed deployment strategy
(solid curve), and the conventional Voronoi partitioning in the first scenario.

and σ = 0.6 m. The initial configuration of agents, their trajectories and final config-

uration are depicted in Fig. 4.9. In this figure, the initial and final position of agents

are shown by × and ◦ markers, respectively. As expected, the agents cover the most

important area.
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Figure 4.9: The initial and final positions of agents in the second scenario along with their trajec-
tories under the proposed deployment Algorithm 2.

As mentioned previously, there are some neutral regions in the field when the
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GMW-Voronoi partitioning is used. Thus, one cannot compare the coverage per-

formance H obtained by conventional MW-Voronoi partitioning with that computed

based on the GMW-Voronoi diagram. Hence, in order to compare the coverage perfor-

mance, at each time step after updating the position of every agent using Algorithm

2 with the GMW-Voronoi diagram, the field is partitioned by the conventional MW-

Voronoi polygons, and the coverage performance H is measured w.r.t. this diagram.

The weights of all agents which correspond to hi’s coefficients in H are the same in

the both partitioning techniques. The result obtained is compared with the coverage

performance measured based on the conventional MW-Voronoi partitioning, as de-

picted in Fig. 4.10. The figure demonstrates that the field is covered more effectively

when the GMW-Voronoi partitioning is used in the presence of faulty agents.
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Figure 4.10: The coverage performance H obtained by using the proposed deployment strategy
(solid curve), and the conventional MW-Voronoi partitioning in the second scenario.
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Chapter 5

Coverage Strategy with

Guaranteed Collision Avoidance in

Multi-Agent Systems

There is a substantial body of research works addressing collision and obstacle avoid-

ance in multi-agent systems [42–44]. However, few works have been reported on coop-

erative coverage control in multi-agent systems. An algorithm is presented in [45] to

dynamically cover a field with guaranteed collision avoidance. In [46] a Voronoi-based

coverage control is proposed for a group of wheeled mobile robots with a dynamic

constraint, where a collision avoidance term is also incorporated in the kinematic con-

troller using potential functions. However, none of these works addresses the problem

of obstacle avoidance in multi-agent systems.

This chapter aims to develop an effective coverage technique in a multi-agent

system with both collision avoidance and obstacle avoidance properties. The proposed

technique employs a navigation function which consists of two main components. One

of these components aims to drive the agent to the desired location, while the other
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component repels the agents from obstacles and from each other. A priority function

is also defined for different points in the field to prioritize different points in the field

in terms of coverage.

5.1 Problem Formulation

Similar to the problem in previous chapters, let q be an arbitrary point in a convex

field in Q ⊂ R2. Consider a group of n mobile agents whose dynamic is single-

integrator (4.10). The agents are randomly distributed in Q, and the position of

the i-th agent is denoted by pi. Let ϕ : Q → R+ be a prescribed priority function

that assigns a weight to every point in the field, reflecting the relative importance

of different points in Q. Moreover, there exist M obstacles in the field which are

modeled as fixed points w1, . . . , wM [79].

A collision region is also defined for agent i, i ∈ n := {1, 2, . . . , n}, such that any

other agent or obstacle inside a circle of radius Ri around the agent is considered as

an obstacle. The set of obstacles of agent i is defined as:

Ci = {‖pi − pj‖ ≤ Ri, ∀j �= i} ∪ {‖pi − wk‖ ≤ Ri, k = 1, . . . ,M} (5.1)

Assume for simplicity that the radius of the collision region is the same for different

agents, i.e. Ri = Rcol, where Rcol is a given positive value. Fig. 5.1 shows an example

of collision region of the i-th agent in the presence of obstacles.

Let V = {V1, V2, . . . , Vn} be the Voronoi partition of Q, where the agent positions

are the generator points. Agents i and j are called neighbors if Vi ∩ Vj �= 0 (i.e.,

they share an edge). The set of all neighbors of agent i is denoted by Ni. In this

chapter, it is assumed that the cost of covering (or sensing) a point q by the i-th agent

is ‖q − pi‖2. As the distance of points from an agent increases, the cost of covering
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Figure 5.1: The collision region of the i-th agent in the presence of obstacles, and its Voronoi
region.

of those points by the corresponding agent grows as well. It is also assumed that

each agent is in charge of covering all points of its own Voronoi region. Since the

whole field is partitioned by all Voronoi regions, the coverage performance function

is defined as:

H(P) =
n∑
i=1

∫
Vi

‖q − pi‖2 ϕ(q)dq (5.2)

where P is the set of all agent positions (P = {p1, p2, . . . , pn}).
In Chapter 2, it shown that the centroidal Voronoi configuration, the configuration

in which each agent is placed in the center of mass of its corresponding Voronoi region,

is the optimal for the case when cost of coverage is a quadratic function. In other

words, the centroidal Voronoi configuration is the optimal solution for the coverage

function (5.2). Hence, this results will be used in the following section to develop a

distributed control strategy for driving the agents such that inter-agent collision and

obstacle avoidance are guaranteed.
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5.2 Navigation Functions

The navigation function is widely used in the literature [43,80,81]. Define the follow-

ing distributed navigation function φi : Q→ [0, 1] for agent i:

φi =
γi

(γki + βi)
1/k

(5.3)

where γi : Q→ R+ is a positive semi-definite scalar function called the goal function

which vanishes only when the i-th agent reaches its desired position; βi : Q → [0, 1]

is called the collision avoidance function and vanishes only when the i-th agent is

in contact with the obstacles or other agents, and k ∈ R+ is a tuning parameter.

The maximum value of the navigation function is 1 (achieved when βi = 0) and the

minimum value is 0 (achieved when γi = 0). The navigation function φi is required

to be [82]:

• analytic on Q, (at least a C2 function);

• admissible on Q, i.e. it is uniformly maximum on the obstacles’ boundary;

• polar on Q, i.e. reaches its unique minimum only if the i-th agent is at its

desired position, and

• a Morse function, i.e. the critical points of φi are non-degenerate.

In what follow, the goal and collision avoidance functions are further elaborated upon.

5.2.1 The Goal Function

The goal function γi in (5.3) reflects the control objective of agent i, which is mini-

mized once the desired objective with respect to this particular agent is fulfilled. As

mentioned in Section 5.1, the optimal configuration to cover the most important area
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of the field for the quadratic coverage cost is the centroidal Voronoi configuration.

Then, at every time instant the desired destination of each agent is the centroid of

its corresponding Voronoi region. Let the goal function of agent i be defined as:

γi = ‖pi − CVi‖2 (5.4)

It is clear that the above function has a unique minimum at its desired position.

5.2.2 The Collision Avoidance Function

The collision avoidance function βi in (5.3) is defined as:

βi =
∏
l∈Ci

βil (5.5)

where βil is the mutual avoidance coefficient between agent i and agent or obstacle

l. The collision avoidance function βi guarantees collision avoidance for agent i by

monitoring agents and obstacles located within its collision region at every time in-

stant. Specifically, the collision avoidance function βi is designed in such a way that

it vanishes whenever agent i touches a fixed obstacle or another agent. The function

βil is chosen as a sigmoidal function below:

βil =
1

1 + e
−(‖pil‖−Rcol

2
) 12
Rcol

(5.6)

where ‖pil‖ = ‖pi − pl‖, and Rcol is the radius of collision region of the i-th agent.

This function ensures that agent i is repulsed from other agents or obstacles to prevent

collision. As shown in Fig. 5.2, the function βil has a unique minimum at collision

(‖pil‖ = 0), and reaches its maximum 1 for ‖pil‖ > Rcol.
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Figure 5.2: An example of the collision function βil(‖pil‖), with Rcol = 8.

The navigation function is used to control each agent to satisfy the desired ob-

jective and to avoid the obstacles. Every agent sends its position information to

its neighboring agents and then constructs its Voronoi region at each time instant.

Then, it calculates the mass center of its Voronoi region, and is driven towards it by

its local control input. To coordinate the mobile agents for covering an environment

while avoiding collision, the controller for the i-th agent is designed as:

ui = −α∇piφi (5.7)

where α is a positive scalar gain, and ∇piφi is the gradient of φi with respect to

pi. In the next section, some important properties of the distributed controller and

navigation function are presented.

5.3 Convergence Analysis

In what follows, the convergence of the overall system is investigated.

Consider a Lyapunov function candidate V(P) =
∑N

i=1 φi, where P = [p1, ..., pN ]
T

is the states of all agents. Since dynamics of all agents are single-integrator and using
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(5.7), the time derivative of V is computed as:

V̇ = (∇V)T Ṗ = −α
N∑
i=1

N∑
j=1

(∇piφi)
T (∇piφj)

Clearly, the largest invariant set for which V̇ = 0 is the set of critical points. To prove

the stability, it is required to show that V̇ is negative whenever at least one agent is

not located in its critical point. Assume the i-th agent is not located in its critical

point (i.e. ∇piφi �= 0). Then V̇ can be rewritten as:

V̇ = −α
∑

i:∇piφi �=0

(
‖∇piφi‖2 +

∑
j �=i

(∇piφi)
T (∇piφj)

)
(5.8)

It is straightforward to verify that V̇ in (5.8) is negative definite when∑
j �=i (∇piφi)

T (∇piφj) > 0. The gradient of the navigation function (5.3) can be

easily obtained as:

∇piφi =
1

(γki + βi)
1
k
+1

(βi∇piγi −
γi
k
∇piβi)

T

(5.9)

By substituting (5.9) into
∑

j �=i (∇piφi)
T (∇piφj) one arrives at:

(βi∇piγi − γi
k
∇piβi)

T

(γki + βi)
1
k
+1

(∑
j �=i

βj∇piγj − γj
k
∇piβj

(γkj + βj)
1
k
+1

)
> 0 (5.10)

Since γi and βi are positive functions and cannot both be zero simultaneously, thus

the above expression is positive if:

(
βi∇piγi −

γi
k
∇piβi

)T (∑
j �=i

(βj∇piγj −
γj
k
∇piβj)

)
> 0, (5.11)
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The above inequality can be rewritten as:

1

k2
a1 +

1

k
a2 + a3 > 0 (5.12)

where a1, a2 and a3 are defined as follows:

a1 = γi(∇piβi)
T
∑
j �=i

γj∇piβj

a2 = −βi(∇piγi)
T
∑
j �=i

γj∇piβj − γi(∇piβi)
T
∑
j �=i

βj∇piγj

a3 = βi(∇piγi)
T
∑
j �=i

βj∇piγj (5.13)

In order to prove the inequality (5.12) holds, assume first that a3 < 0. Hence, the

polynomial (5.12) is positive for:

k >
−a2 +

√
a22 − 4a1a3
2a3

On the other hand, for any a3 ≥ 0 the inequality (5.12) is positive if k > −a1
|a2| . Finally,

it can be concluded that if k > max
{−a2+

√
a22−4a1a3

2a3
, −a1|a2|

}
, then the overall system

converges to the set of critical points. This result is formally presented in the following

theorem.

Theorem 5.1. Consider a group of n mobile agents whose dynamic models are single-

integrator. Under the control law (5.7), the overall system is stable and converges to

the largest set of critical points C = {q|∇piφi|q = 0} if the tuning parameter in (5.3)

satisfies the inequality k > max
{−a2+

√
a22−4a1a3

2a3
, −a1|a2|

}
.

Proposition 5.1. The navigation function is minimized at the centroid of the Voronoi

regions.

Proof. If the Hessian of φi, i ∈ n, is positive definite at a critical point, then the
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navigation function φi would be minimized at this point. The i-th goal function and

its gradient at the centroid of the corresponding Voronoi region are zero (γi|CVi
=

0;∇piγi|CVi
= 0). By substituting these equalities in the gradient of the navigation

function (5.9), one can conclude that∇piφi|CVi
= 0. Thus, the centroid of the Voronoi

region CVi is a critical point of φi. The Hessian of ϕi, on the other hand, is:

∇2
pi
φi =

1

k(γki + βi)
1/k+2

{(γki + βi)[k∇piβi∇piγi
T ]}

−∇piγi(∇piβi)
T + kβi∇2

pi
γi − γi∇2

pi
βi

−
(
1

k
+ 1

)
[kβi∇piγi − γi∇piβi][kγ

k−1
i ∇piγi +∇piβi]

T} (5.14)

At the centroid of the i-th Voronoi region the Hessian becomes ∇2
pi
φi|CVi

= β
− 1

k
i ∇2

pi
γi.

Since the collision avoidance function and the Hessian of the goal function at centroid

are both positive (βi > 0 and ∇2
pi
γi|CVi

= 2), thus the Hessian matrix becomes

∇2
pi
φi|CVi

= 2β
− 1

k
i which is clearly positive definite. Therefore, the navigation function

is minimized at the centroidal Voronoi configuration.

The following proposition follows directly from the dual Lyapunov analysis in [83].

Proposition 5.2. The attractors of the undesirable critical points of the navigation

function are sets of measure zero.

Remark 5.1. It was shown in Theorem 5.1 that the closed-loop system converges to

the largest set of critical points. On the other hand, it is inferred from Propositions

5.1 and 5.2 that the set of centroids of the Voronoi regions is the only set of stable

critical points. Then, the overall system under the control law (5.7) is asymptotically

stable for almost all stable initial positions.
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5.4 Simulation Results

In this section, the effectiveness of the proposed distributed agent-deployment algo-

rithm is demonstrated by simulations.

The environment used in this simulation is a 10m × 10m square. Two different

scenarios are considered in this section. In the first scenario, a group of five agents

with single-integrator dynamics starts moving from up-left corner of the environment.

Consider the following Gaussian density function:

ϕ(q) =
1

σ
√
2π

(
e−

(q−μ)2

2σ2

)
(5.15)

where μ = (7.5, 3.5) and σ = 0.6. The radius of the collision regions is Rcol = 0.8,

and the tuning parameter in the navigation function (5.3) is k = 1.

A fixed square obstacle also exists in this scenario, which is depicted in black in

Figs. 5.3 and 5.4. Moreover, each agent is shown by a circle, and the Gaussian density

function ϕ(.) is shown in gray, with a color intensity proportional to the value of the

function. The initial configuration of the agents is shown in Fig. 5.3. Each agent

computes its Voronoi region and moves towards its center of mass under the control

input (5.7). The trajectories of the agents along with their final positions are shown in

Fig. 5.4. Furthermore, the coverage function H resulted from the proposed controller

is depicted in Fig. 5.5, which demonstrates a rapid drop to a small neighborhood of

zero.

One of the advantages of the proposed navigation function-based coordination

algorithm is the inter-agent collision avoidance. This characteristic is very important

in a real-world application when each mobile vehicle has a reasonable size and collision

can be very expensive. The distance among all the agents throughout the simulation

is depicted in Fig. 5.6. As it can be seen from this figure, these distances are always
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Figure 5.3: The initial positions of the five agents along with their corresponding Voronoi regions
in the first scenario.
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Figure 5.4: The trajectories and final positions of the agents along with their Voronoi regions in
the first scenario.
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Figure 5.5: The coverage function H for the first scenario.

greater than the radius of the collision region of agents Rcol = 0.8.
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Figure 5.6: Distances between every pair of agents in the first scenario.

In the second scenario, a group of nine agents with random initial positions is

considered in the same field as before. The priority function is the same as the first

scenario (5.15) with center μ = (5, 5). Moreover, two fixed obstacles exist in the

environment. The initial configuration of agents, their trajectories and final config-

uration are depicted in Figs. 5.7 and 5.8. As shown in Fig. 5.8, the agents cover

the most important area while they avoid obstacles. For comparison, simulations
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are also carried out using the method introduced in [70], where the visibility-aware

multiplicatively-weighted Voronoi diagram (VMW-Voronoi) is used for partitioning

the field in the presence of obstacles. The coverage function values in the second

scenario resulted from the proposed controller and the VMW-Voronoi-based method

are shown in Fig. 5.9. These curves show that, the coverage function resulted from

the controller proposed in the present work drops more rapidly and has a smaller final

value.
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Figure 5.7: The initial positions of the nine agents along with their corresponding Voronoi regions
in the second scenario.
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Figure 5.8: The trajectories and final positions of the agents along with their corresponding Voronoi
regions in the second scenario.
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Figure 5.9: The coverage function H in the second scenario using the proposed control strategy
and the VMW-Voronoi-based method.
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Chapter 6

Coverage Control of Multi-Agent

Systems in Uncertain

Environments

In this chapter, it is considered the case in which some service vehicles are deployed

to cover an uncertain environment. They are expected to spread out over the envi-

ronment while aggregating in areas of high service needs. Furthermore, the service

vehicles have uncertain information on the exact areas of service needs beforehand.

In order to reduce the level of uncertainty, the environment is searched by some

search vehicles which are equipped with sensors to detect the exact areas of service

needs. As mission goes on, the service vehicles use the updated information pro-

vided by the search vehicles to change their position and cover the environment more

efficiently [84].

Most of the previous works in the area of Voronoi-based coverage control assume

the distribution of sensory information in the environment is required to be known

a priori by all agents. However, the problem of the online learning of the priority
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function, and estimation of priority function using neural networks while moving

towards the optimal locations is addressed respectively in [15], [63]. In another work

[85], local interpolations are used to represent spatial fields as they are measured by a

mobile sensor network which are able to take point measurements. A nonparametric

estimate of the field is provided by two interpolation methods, which are refined via

a Kalman filter-like recursion. In all above mentioned studies, it is assumed that the

unknown priority function can be measured by each agent at its position.

In this chapter, a new formulation is proposed that allows the study of search and

coverage problems in uncertain environments. The uncertainty in the environment is

captured by an unknown priority function. Unlike the aforementioned works, in this

study the priority function is not directly measurable at each point. Motivated by

real applications, a new priority function is introduced which is a function of position

of some unknown targets in the environment. The information about the position

of targets is updated by some search vehicles, using a decentralized decision mak-

ing approach. A centroidal Voronoi method is then used to optimally deploy service

vehicles over the environment. This new formulation is a reasonable and practical

problem set-up in view of better efficiency and cost effectiveness for different applica-

tions such as forest fire monitoring and detection using separate search and fighting

(service) UAVs, as well as search and rescue missions. To evaluate the performance

of this method for real-time applications, some experiments are conducted on the real

test-bed. Both simulation and experimental results confirm the effectiveness of the

proposed approach.
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6.1 Forest Fire Monitoring and Detection: A

Practical Application

The cooperative multi-vehicles search and coverage approach is useful for many appli-

cations involving distributed sensing and distributed actuation. This framework can

be used by groups of vehicles to carry out tasks such as environmental monitoring

and clean-up, or search and rescue [5, 86]. For example, consider a team of UAVs

tasked to detect and extinguish multiple fires in a partially known environment such

as a forest. With their on-board sensors, the UAVs search the environment to find

the center of fires. Then by using this information, the fire fighter UAVs aggregate

in the perimeter of fires. Similarly, consider a group of water-borne vehicles which

are in charge of monitoring and cleaning up an oil spill. The monitoring vehicles find

the areas where the spill is most severe, while cleaning vehicles distribute themselves

over the spill and concentrate their efforts on the areas mostly affected, without ne-

glecting the areas where the spill is not much severe. In general, any application in

which a group of automated mobile agents is required to provide collective sensing

and actuation over an environment can be considered as an example of the use of the

multi-vehicle search and coverage systems.

As mentioned, forest fire monitoring and detection is a practical application for the

problem set-up that will investigate in details in this chapter. Hence, a few research

work in the literature on this application is shortly surveyed in this section.

Despite the technological advances and substantial infrastructure dedicated to

forest fire fighting, the average annual area burned in Canada is 2.5 million hectares

based on the report of Natural Resources Canada [87]. Forest fires are highly com-

plex, non-structured environments where the use of multiple sources of information

at different locations is essential. Traditional fire protection methods use mechanical
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devices or humans to monitor the surroundings which are very dangerous activi-

ties requiring extensive human resources [88]. However, due to rapid growth of the

electronics, digital camera technologies, artificial vision and image processing tech-

niques there has been a shift from conventional forest fire detection systems towards

computer-vision-based systems for forest fire detection [88,89]. In general, the studies

of forest fire detection can be divided into three different groups: ground systems,

systems on aerial means, and satellite based systems [6]. These platforms have dif-

ferent technological and practical problems for their use in operational conditions.

Therefore, UAVs with computer-vision based systems represent a natural and good

option to fill in this gap by providing rapid and low-cost responses to the forest fires

and accomplishing long missions which are way beyond human capabilities [90, 91].

Vision-based systems generally use three features of the fire: color, motion, and

geometry. The image processing is one of the main techniques widely used and imple-

mented for automatic fire detection and monitoring [92]. Fire detection estimations

are obtained from the processing of both infrared and visual images. In [93], a novel

method is proposed to detect the fire and flame by processing the video data cap-

tured by an ordinary camera, monitoring an open scene and combining fire flicker

and color clues to reach a final decision. In addition, intelligent methods are widely

used in the recent years for fire detection to reduce the false alarms rate and the cost

of sensors [94].

Dynamics of forest fires are considered as one of the most important scientific

challenges in the field of the environmental studies [95]. In [96], the feasibility of the

application of a team of small (low altitude, short endurance) UAVs to cooperatively

monitor and track the propagation of large forest fires is explored. This work pro-

vides simulations using a numerical propagation model for the forest fire monitoring

and detection. The Airborne Wildfire Intelligence System (AWIS) includes wildfire
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detection and mapping of the fire-front and burned area [97]. In general, the main

objective of the forest fire monitoring system based on UAVs is to automatically

monitor and detect forest fires in real time. The location and shape of the fire front,

the rate of spread and the fire flame height are the most important elements in the

UAVs-based forest fire monitoring [98].

6.2 Problem Statement

This chapter addresses the cooperative multi-vehicle search and coverage problem

in an uncertain environment. Consider the scenario that some search vehicles are

deployed to search and detect some targets in the terrain. There are also service

vehicles that their duty is to spread out over the environment to provide coverage.

The search vehicles broadcast their information about the environment to the service

vehicles. This information allows the service vehicles to find where in the environment

they are mostly needed and to aggregate in those areas.

For the search problem, the environment is discretized in cells that are described

by a probability of target existence. There is an uncertainty region corresponding to

each target. Each target is assumed to lie somewhere within its uncertainty region,

but its exact position is unknown. Each search vehicle stores a probability map, which

contains the probability of existence of all targets in each cell. During the mission,

sensors of search vehicles can detect targets in their footprints. The probability map

is updated during the mission based on whether or not the target is detected by the

sensors. The objective of the cooperative search mission is to maximize the amount

of information about the environment.

The objective of service vehicles is to spread out over the area to cover the entire

environment. However, in most cases, all points in the environment do not have the

same level of importance. A priority function which reflects the measure of relative
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importance of different points in the environment is also considered. The priority of

each point is a decreasing function of the distance between that point and position

of targets. Therefore, points closer to the targets have more value and more level of

importance in the environment. Since our information about the position of targets

improves during the search mission, the priority function is changed and get more

accurate as mission goes on.

The number of targets in the environment is known a priori. However their exact

position is unknown. Each vehicle is assigned a unique altitude, therefore avoiding

the need to consider collision avoidance, which is outside the scope of this chapter.

Although search vehicles are at different altitudes, their sensor footprints can be

assumed to have almost the same resolutions without loss of generality. It is also

assumed that each search vehicle can communicate with all other vehicles in the team.

Moreover, all service vehicles can communicate with their neighboring vehicles.

6.3 Search Problem

A decision making approach is proposed for the search problem. The search vehicles

cooperatively try to choose the best paths to gain the maximum amount of informa-

tion about the environment. Each search vehicle uses a limited look-ahead dynamic

programming (DP) algorithm [99] to find its path. The search vehicles can share

their sensor measurements and their locations at each time step with others over

their communication channels. Therefore, search vehicles are always aware of the

current information of the system when they have to decide their next action. An

appropriate model must incorporate the influence of the current control action on

future states. In general, the search vehicle model is of the form

xik+1 = f(xik, u
i
k, w

i
k), ∀i ∈ {1, 2, ..., ns} (6.1)
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where xik is the state of the i-th search vehicle at the discrete time step k, uik is the

control input of the i-th search vehicle, wik is a random variable that captures the

stochastic elements in the system dynamics, and ns is the number of search vehicles.

The state of the search vehicle consists of the search status and the vehicle status. The

probability of existence of targets and their level of uncertainty in location constitute

the search status. The vehicle status comprises position and heading angle of the

vehicle. The search vehicles can communicate with each other so they can form a

comprehensive view of the state. The control input, uik, comes from a set of possible

assignments U such as: turn left, turn right, or go straight. Stochastic elements which

are captured by wik come from different sources, including unknown locations of search

targets, unknown actions of other vehicles, and imperfect sensor information.

6.3.1 Updating the Probability Map

Search vehicles store a probability map, which contains the probability of existence of

a target in any given cell. An initial map of the environment, which is uncertain and

incomplete, is created based on the a priori knowledge of the environment. Search

vehicles are equipped with sensors which are able to detect the targets in their foot-

prints. During the mission, the probability map is updated based on whether or not

the target is detected by the sensors. Therefore, the following events can be defined:

El
x,y: target l is in the cell (x, y)

Dl
Ω: target l is detected in the region Ω

where Ω is the collection of cells that are covered by the vehicle sensor during its last

step.

97



Target not detected

When the sensor has not detected the target during the last step of the mission, the

probability of existence of the target for each cell can be updated by Bayes’ rule as

follows:

P (El
x,y|D̄l

Ω) =
P (El

x,y)P (D̄
l
Ω|El

x,y)

P (D̄l
Ω)

where the overbar on the events represents the complement of the events. The prob-

abilities of true positive and false positive measurements of sensors are assumed to

be as follows:

γ � P (Dl
Ω|El

Ω)

ε � P (Dl
Ω|Ēl

Ω)

These two parameters are obtained from technical specifications on the sensors, and

are considered to be known a priori. Therefore, the probability map can be updated

as follows:

P (El
x,y|D̄l

Ω) =

⎧⎪⎪⎨
⎪⎪⎩

P (El
x,y)γ̄

P (D̄l
Ω)

(x, y) ∈ Ω

P (El
x,y)ε̄

P (D̄l
Ω)

(x, y) /∈ Ω

In the derivation of second equation, the fact is used that the existence of target l in

a cell outside of coverage region Ω means that there is no target inside that region.

The probability that target l is not detected in the last step of the mission, P (D̄l
Ω),

can be calculated as follows:

P (D̄l
Ω) = P (D̄l

Ω|El
x,y)P (E

l
x,y) + P (D̄l

Ω|Ēl
x,y)P (Ē

l
x,y)

= γ̄P (El
Ω) + ε̄(1− P (El

Ω))

= γ̄(
∑

∀(x,y)∈Ω
P (El

x,y)) + ε̄(1−
∑

∀(x,y)∈Ω
P (El

x,y))
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Therefore, if the total probability of finding target l in the collection of cells Ω is

defined as:

N l
Ω =

∑
∀(x,y)∈Ω

P (El
x,y)

the posterior probability of existence of target l in each cell can be computed as

follows:

P (El
x,y|D̄l

Ω) =

⎧⎪⎪⎨
⎪⎪⎩

P (El
x,y)γ̄

γ̄N l
Ω + ε̄(1−N l

Ω)
(x, y) ∈ Ω

P (El
x,y)ε̄

γ̄N l
Ω + ε̄(1−N l

Ω)
(x, y) /∈ Ω

It is always assumed that the probability of true positive measurement of sensors is

more than 0.5 and the probability of false positive measurement of sensors is less

than 0.5. In this case, it is easy to show that when a target is not detected, the

probability of existence of that target in the cells inside the footprint of the sensor

will be decreased, while the probability of the cells outside the sensor footprint will

be increased.

Target detected

Using a similar procedure, when the sensor has detected the target, the posterior

probability of existence of target l in each cell can be computed as follows:

P (El
x,y|Di

Ω) =

⎧⎪⎪⎨
⎪⎪⎩

P (El
x,y)γ

γN l
Ω + ε(1−N l

Ω)
(x, y) ∈ Ω

P (El
x,y)ε

γN l
Ω + ε(1−N l

Ω)
(x, y) /∈ Ω

6.3.2 Dynamic Programming Formulation

The search vehicles must choose a control signal such that it results in the best possible

paths, in the sense that the team of search vehicles gathers maximum information

about position of targets. In other words, each search vehicle attempts to optimize the
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number of expected found targets over the planning horizon of the decision process.

This leads naturally to the idea of applying DP techniques [99]. However, as the

dimension of the problem grows so does the computation time. The dimension of

the problem is given by the possible states to be examined over the planning horizon

of the entire mission. To make the problem tractable, and solvable in real-time, a

rolling horizon limited look-ahead policy can be utilized [54, 99]. The price to pay

for such an approximation is a loss in performance (near optimality). This rolling

horizon approximation defines a horizon of time steps T , and then replaces the value

of final gain with the gain at T -steps ahead. Define J ik(x
i
k) as the “gain” of i-th

search vehicle at decision time step k which represents the time-discounted expected

number of targets identified by the vehicle as it travels from time step k to T -steps

ahead. The rolling horizon approximate dynamic programming (ADP) equation for

this problem can be expressed as:

J ik(x
i
k) = max

uik∈Ω
{Ewi

k
{g(xik, uik, wik)}+ J ik+1(f(x

i
k, u

i
k, w

i
k))} (6.2)

where the term g(xik, u
i
k, w

i
k) is the single step gain. The optimal decisions can be

found by taking the arguments of the maximization of the DP recursion. To calculate

the gain function, one needs to find the expected value of single step gain or the gain

that i-th search vehicle will receive at one time step (specifically at time step k). This

value can be written as:

g(xik, u
i
k, w

i
k) = λkδikσ

i
k (6.3)

where σik is the search gain for the i-th search vehicle at time step k which is the

expected value of the number of targets detected during the mission from time step

k to time step k + 1, δik is the probability that the planning vehicle is operational at

time k, and λ ∈ [0, 1] is the time discount factor. Let Ωik be the collection of cells that
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the i-th search vehicle covers during its mission from time step k to time step k + 1.

The search gain σik can be calculated by adding up the probabilities of existence of

targets over Ωi
k, i.e.

∑
∀l

∑
∀(x,y)∈Ωi

k

p(El
x,y). The term δik is normally a decreasing function

of time which means the probability that the vehicle is operational decreases as time

goes on. With the time discount less than one, it is typically desirable to find the

objects as soon as possible.

6.3.3 Cooperative Decision Making

The objective of search mission is to search the terrain to gain as much information

about the environment as possible. To achieve this goal, a decentralized method is

used where each vehicle makes a decision about its next action individually. Each

vehicle is viewed as a self-interested decision maker. The proposed approach in this

section consists of optimizing a global objective function through autonomous vehi-

cles that are capable of making individual decisions to optimize their own objective

functions. In non-cooperative decision making, it is possible that two or more search

vehicles decide to search the same area. Although the decision of each vehicle may be

individually optimal, the overall gain will be less than the case if the vehicles search

completely different areas addressing a team goal. It is desired to obtain localized

objective function for each vehicle that aligns with the global objective function. In

the proposed approach, each vehicle uses a look-up table to estimate the probability

of different actions of other vehicles. These probabilities are utilized to modify the ob-

jective function of the vehicle to comply with the global objectives. Therefore, when

the search vehicles want to make decisions on their next actions, they must simply

optimize their own objective functions which also optimize the global objective.

It has been shown that when a vehicle searches an area and does not find any

targets in it, the probability of target existence in that area is reduced. Therefore
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the gain σ of searching that area in the future decreases. If all vehicles know the

future position of other vehicles, a similar method can be used to prevent them

from searching the same areas in the future. Assume that each vehicle knows the

probability of presence of other vehicles in each cell over the future look-ahead horizon.

Then the modified search gain of the vehicles can be defined as follows:

σ̂ik =
∑
∀l

∑
∀(x,y)∈Ωi

k

ρkx,yp(E
l
x,y) (6.4)

where ρkx,y ∈ [0, 1] is the interference discount factor which is a decreasing function

of the probability that other vehicles also decide to search the cell (x, y) in the next

k steps. Now, one can modify the single step gain of the i-th vehicle in (6.3) by

replacing σik with σ̂
i
k. Evaluating the probability of presence of other vehicles exactly

requires each vehicle to expand the planning tree of every other vehicle as shown in

Fig. 6.1.

Figure 6.1: Future position of a vehicle for three steps look-ahead.

Although this method reduces the computational complexity of cooperative de-

cision making compared to a centralized approach, it is still impractical when the

number of vehicles or the search horizon increases. To reduce the computational bur-

den, we provide all search vehicles with a look-up table that contains the probability

of presence of a search vehicle in each cell at the next k steps, given its current po-

sition and heading, i.e. p(x, y, k|x0, y0, θ0), where (x, y) is the position of vehicle at

k -step ahead and (x0, y0), and θ0 are its current position and heading. This table
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is made off-line and can be produced analytically by using different estimation algo-

rithms or simply through reasonable amount of simulations where the vehicle chooses

its next action randomly. It is obvious that since the search vehicles neglect the prob-

ability map of targets in the approximation of the next positions of other vehicles,

the method is not optimal, but it dramatically decreases the computational demand

and processing time. By using the probability of presence of the other vehicles, the

interference discount factor for the i-th search vehicle can be defined as:

ρkx,y = e
− ∑

∀j �=i

k∑

t=1
pj(x,y,t)

where pj(x, y, t) is the probability of j-th search vehicle being in the cell (x, y) at t

step ahead.

6.4 Coverage Problem

Analogous to the coverage problem in Chapter 2, every arbitrary point in the environ-

ment Q is denoted as q, the position of the i-th service vehicle is pi, and the set of all

service vehicle positions is denoted as P = {p1, p2, . . . , pnc}. The function ϕ : Q→ R+

is a priority function that defines a weight for each point. This function may reflect

knowledge of the probability of occurrence of events in different regions, or simply a

measure of relative importance of different regions in Q. Therefore, the higher the

value of ϕ(q) the more attention the group has to pay to q. Let V = {V1, V2, . . . , Vn}
be the Voronoi partition of Q, for which the service vehicle positions are the generator

points. Moreover, two service vehicles Vi and Vj are (Voronoi) neighbors if Vi∩Vj �= 0.

Similar to previous chapters, as a measure of the system performance, the coverage
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function is defined as:

H(P) =
nc∑
i=1

∫
Vi

1

2
‖q − pi‖2 ϕ(q)dq (6.5)

where it is assumed that the i-th service vehicle is responsible for its Voronoi region

Vi. Note that the function (6.5) measures the ability of the coverage provided by

the network of service vehicles in Q. Qualitatively, a low value of function (6.5)

corresponds to a good configuration for coverage of the environment Q.

The above coverage problem is completely investigated in Chapter 2, and it is

shown that the Centroidal Voronoi configuration (i.e., every vehicle is at the centroid

of its Voronoi region, pi = CVi , ∀i ∈ {1, 2, . . . , nc}) is the optimal solution for this

problem. This result will be used in following subsections to propose a coverage

controller in uncertain environments.

6.4.1 Priority Function

The definition of the priority function ϕ(q) depends on the desired application. It

defines a weight for each point in the environment which is a measure of relative

importance of that point. In many applications, there are some critical points and

the level of importance of each point in the terrain is inversely proportional to the

distance between the point and the critical points. For instance, the critical points

can be hotspots in a forest fire or the source of gushing in the oil spill. Let ϕ(q) =∑nt

i=1 φ(q, q
i
c) where q

i
c is the i-th critical point and nt is the number of critical points.

Function φ(q, qic) is known a priori and it has a maximum at the i-th critical point

qic. Therefore, knowing the exact location of critical points, one can find the weight

of all points ϕ(q).

In many cases, the locations of critical points are not known precisely but it is
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known that they are lied somewhere inside some uncertainty regions. Knowing the

probability distribution of each critical point i in its uncertainty region, P (qic), priority

function ϕ(q) can be obtained as follows:

ϕ(q) =

nt∑
i=1

∫
Λi

φ(q, qic)P (q
i
c)dq

i
c (6.6)

where Λi is the uncertainty region of the i-th critical point. Indeed,∫
Λi
φ(q, qic)P (q

i
c)dq

i
c is the expected value of function φ(q, qic) with respect to qic.

These critical points are in fact the targets of search problem. Since the search is

done in a discrete environment, the probability of all points inside a cell is assumed

to be equal. Therefore, (6.6) can be modified as follows:

ϕ(q) =

nt∑
i=1

∑
∀(x,y)∈Λi

P (Ei
x,y)

∫
qic∈(x,y)

φ(q, qic)dq
i
c (6.7)

At the beginning of the mission, service vehicles have a priori information of

probability distribution of critical points. They use this information to compute

priority function ϕ(q). Then, service vehicles spread out over the environment based

on this distribution. During the mission, search vehicles update the probability maps

of critical points and transmit this information to the service vehicles. Using these

updated probability maps, service vehicles modify their configurations and change

their positions in the environment.

6.4.2 Distributed Coverage Controllers

In this section, the coverage control for a group of service vehicles is investigated.

Each service vehicle is modeled as a double-integrator point mass moving on a two-

dimensional (2-D) plane (i.e. p̈i = ui where ui is the control input of the i-th service
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vehicle). Following assumptions are used for derivation of distributed coverage con-

trollers in this chapter:

Assumption 6.1. The service vehicles have the ability to compute their own Voronoi

regions in a distributed manner.

Assumption 6.2. Each service vehicle can communicate with other service vehicles

in its neighboring Voronoi regions.

Assumption 6.3. The i-th service vehicle has a receiving region which is assumed

to be a circle of radius Rri, centered at pi. The i-th service vehicle can receive the

information of search vehicles if they are inside of its receiving region.

For the purpose of coordinating multiple-service vehicles to cover a planar en-

vironment, the position controller based on the Centroidal Voronoi configuration is

designed. Consider that the position of the i-th service vehicle is denoted by pi, and

CVi is the center of Voronoi that corresponds to the i-th service vehicle. The position

control law is proposed for the i-th service vehicle as:

ui = ki1MVi(CVi − pi)− ki2ṗi, ∀i ∈ {1, 2, ..., nc} (6.8)

where ki1 and k
i
2 are the positive gains. The following results can be inferred with the

analogous analysis in Theorem 2.1.

Theorem 6.1. Consider a group of nc service vehicles whose dynamic models are

described as a double-integrator. Let the Assumptions 6.1 through 6.3 hold. Under

the control law (6.8), it is guaranteed that the whole system is asymptotically stable and

the planar positions of service vehicles converge to a centroidal Voronoi configuration.

The service vehicles applying the control law (6.8) will move towards the centroid

of its Voronoi region. Due to the convexity of region, the centroid is always inside the
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Voronoi region. Therefore, the Voronoi approach has implicit collision avoidance. In

addition, by designing a suitable controller for heights of multiple vehicles, they can

fly at different levels. Then the collision avoidance can be guaranteed in the entire

mission even for the large dimension vehicles.

6.5 Simulation Results

The proposed distributed search and coverage algorithm has been demonstrated first

via numerical simulations in the MATLABR© environment. The environment used in

simulation is a 1 km × 1 km square. Since the search problem has discrete nature, the

environment is divided into 10000 cells which make a 100 × 100 square grid. There

exist three targets known to be in the squared areas as shown in Fig. 6.2, but their

exact positions are unknown. The a priori probability of existence of these targets is

uniformly distributed in their uncertainty region while their real positions are marked

by the ∗ marker. It is also considered that a virtual target exists in the environment

and its uncertainty region is the whole terrain. Considering this target enforces search

UAVs to search the unexplored area of the environment.

A group of three fixed-wing search UAVs (ns = 3) and ten quad-rotor service

UAVs (nc = 10) are deployed to search and cover the environment. Each search UAV

is equipped with a sensor that can detect targets in its footprint which is assumed

to be equal to the size of a cell. All three search UAVs start their mission from the

south west corner of the terrain, while all service UAVs start their mission from their

individual bases which are located on the border of the environment as shown in

Fig. 6.2. The radius of the receiving region of all service vehicles are 150 m.

At each decision time step, search UAVs must decide to go straight, turn 15 degrees

left or 15 degrees right. It is assumed that once a search UAV has made a decision

about its next action, that action can be performed immediately and then the search
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Figure 6.2: The problem environment; the grey rectangles are the uncertainty regions of different
objects and * denotes the actual position of objects. Search UAVs and service UAVs are shown by
� and ◦ markers respectively.

UAV continues its mission in a straight path until the next decision time step. The

speeds of search UAVs are assumed to be constant. In order to execute the simulation

in a reasonable amount of time, the look-ahead horizon of the DP algorithm is set to

5 time steps. Probabilities of true positive and false positive measurements of sensors

are set to be 0.9 and 0.1 respectively. In this simulation, the following Gaussian

density function is used:

φ(q, qic) =
1

σ
√
2π

(
e−

(q−qic)
2

2σ2

)
(6.9)

where σ = 70 m. The initial and final probability maps and their corresponding

priority functions are shown in Fig. 6.3.

Following scenario has been considered in the simulation. At the beginning, cov-

erage vehicles spread over the terrain based on the imprecise initial priority function

which is derived from the a priori probability maps. The final configuration of planar

positions, the trajectories of all UAVs, and the exact priority function are shown in

Fig. 6.4(a). This distribution is calculated based on the actual position of critical

points (targets). The color intensity is proportional to the value of priority function

108



0
50

100

0

50

100
0

0.01
0.02
0.03
0.04
0.05

X (cell)Y (cell)

(a)

0
50

100

020406080100
0

0.01
0.02
0.03
0.04
0.05

X (cell)Y (cell)

(b)

0
50

100

020406080100
0

20
40
60
80

100

X (cell)Y (cell)

(c)

0
50

100

020406080100
0

20
40
60
80

100

X (cell)Y (cell)

(d)

Figure 6.3: (a) the initial probability map, (b) the final probability map, (c) the initial priority
function, and (d) the final priority function.

at each point. Corresponding priority function based on the probability maps is also

depicted in Fig. 6.4(b). It can be seen from this figure that the configuration of service

UAVs in the environment is optimal according to available priority function.

Next, search UAVs start their mission to explore the terrain. During the mission,

they update the probability maps of targets and transmit these updated maps to the

service vehicles on a regular basis. The position and trajectory of all UAVs and the ex-

act priority function are shown in the Figs. 6.4(c), 6.4(e), and 6.4(g) for three different

time steps, respectively. The positions of service UAVs and the corresponding priority

function based on the most updated probability maps are shown in the Figs. 6.4(d),

6.4(f), and 6.4(h), respectively. It is noteworthy that as search UAVs explore the

environment, the probability maps become more precise, and therefore the current

priority function gets more similar to the exact one. Especially in Figs. 6.4(g) and

6.4(h), the priority functions are almost the same in the both figures. As expected,
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deployment of search UAVs helps service vehicles to improve their performance to

cover the most needed areas.

In the proposed algorithm, it is assumed that there is no limit on communication

between neighboring service vehicles. To evaluate the effectiveness of the proposed

method in more realistic situations where the communication is limited, the above

simulation has been repeated with different communication ranges. The value of

coverage function which is a measure of the system performance is reported in the

Table 2 for five different times, using the exact priority function. It can be seen that

the coverage performance is improved about 25% by using this approach in the case of

no limit on communication ranges. As expected, the coverage performance degrades

when the communication between service vehicles is limited. However, it can be

seen that the performance degradation is insignificant and the proposed method still

improves the coverage performance considerably.

To evaluate the average performance of the proposed approach, different simula-

tions have been carried out 25 times. The average number of detected targets and

the value of coverage function are depicted in Fig. 6.5. The uncertainty regions and

actual positions of targets are randomly chosen for each repetition of simulation. As

the number of detected targets increases, the value of coverage function decreases and

the coverage performance improves.

Table 2: The coverage function H at different times for the scenario with different communication
ranges

��������������������

Communication
Ranges

T (sec)
0 120 160 200 240

No limit 2.4339 0.6771 0.6235 0.5948 0.5443

200 m 2.4339 0.6884 0.6294 0.5989 0.5468

100 m 2.4339 0.7801 0.6433 0.6127 0.5578

75 m 2.4339 1.4026 0.8925 0.7127 0.5872

Heterogeneous in [75, 200] 2.4339 0.8810 0.6728 0.6321 0.5692
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Figure 6.4: Left: The configuration and the trajectories of all UAVs and the exact priority function.
The color intensity is proportional to the value of priority function. Search UAVs and service UAVs
are shown by � and � respectively. Right: The configuration of service UAVs and the corresponding
priority function based on the probability maps. (a) and (b) t=100 sec, (c) and (d) t=160 sec, (e)
and (f) t=200 sec, (g) and (h) t= 240 sec
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Figure 6.5: The average number of detected targets and the value of coverage function for 25
simulations.

6.6 Experimental Results

To demonstrate the effectiveness of the presented theoretical developments, an ex-

periment is conducted on a group of UGVs available at the Networked Autonomous

Vehicles Lab (NAVL) of Concordia University, which are provided by Quanser Inc.

In this experiment, it is considered that the search mission is still carried out by

simulation due to the difficulty for flying fixed-wing UAVs in the indoor testing envi-

ronment, and the service problem is performed using a network of virtual robots and

three available physical UGVs (Qbot and QGVs which are introduced in Subection

3.5.2).

As shown in Subsection 2.4.2, the kinematic model of UGVs can be described

by (2.14). The nonholonomic kinematic model of UGVs can be transformed into

a linear controllable system using Dynamic (i.e., time-variant) state feedback [100].

This results in a fully linearized model which can be described by a double-integral

model as follows:

ẍ = ux

ÿ = uy
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where (x, y) is the coordinate of a point located at the mid-axis of the rear wheels of

the robot, ux and uy are the control inputs. The resulting dynamic compensator is

v = ξ

ω =
uxcos(θ)− uysin(θ)

ξ

ξ̇ = uxcos(θ) + uysin(θ) (6.10)

where v and ω are the linear and angular velocities of the center of mass of the robot.

Therefore, as Theorem 6.1 suggests, using the following control law for each UGV

guarantees that the whole system is asymptotically stable and the planar positions

of all service vehicles converge to a centroidal Voronoi configuration:

⎛
⎜⎝ux
uy

⎞
⎟⎠ = k1MV

(
CV −

⎛
⎜⎝x
y

⎞
⎟⎠)

− k2

⎛
⎜⎝ẋ
ẏ

⎞
⎟⎠

Inputs v and ω therefore can be calculated using (6.10). It is worth to mention that

the model of virtual service vehicles is still a double-integrator and their control law

is given by (6.8).

6.6.1 Experimental Tests

The environment in the experimental setup is similar to the simulation case. The

terrain is a 3 m × 3 m square which is divided to 10000 cells to make a 100 × 100

square grid. There still exist three targets known to be in their 60 cm × 60 cm

uncertainty region but their exact positions are initially unknown. The a priori

probability of existence of these targets is uniformly distributed in their uncertainty

region. It is also considered that a virtual target exists in the environment and its

uncertainty region is the entire terrain.
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The search mission is performed by a group of three virtual UAVs. At each

decision time step, search vehicles must decide to go straight ahead, turn 15 degrees

left, or turn 15 degrees right. The velocity of each search vehicle is equal to 20

cm/s. The look-ahead horizon of the DP algorithm is set to 5 time steps. Simulation

of search mission for all three UAVs is performed on the host computer which has

a dual core 3.2 GHz processor. Service vehicles include seven virtual vehicles and

three physical UGVs. Simulation of virtual vehicles is also performed on the host

computer. The positions of vehicles are measured using the network of OptiTrack

cameras. Host computer then sends the positions of all service vehicles (virtual and

real) to the UGVs via the wireless communication channel. The Gaussian density

function φ(q, qci ) is similar to the priority function in simulation (6.9) and the standard

deviation is equal to σ = 20 cm.

At the beginning, service vehicles spread over the terrain based on the imprecise

initial priority function which is derived from the a priori probability maps. After 30

sec, the search mission is commenced. The updated probability map is transmitted

to the service vehicles every 5 sec by the host computer. The final configuration of

planar position and the trajectories of all service vehicles for different time steps, 30

sec, 50 sec, 65 sec, and 80 sec are shown in the Fig. 6.5. The UGVs are shown by

marker and their trajectories are shown by solid lines. The trajectory of virtual service

vehicles are shown by dashed lines. The priority function based on the most updated

probability maps are also shown in the figures. The color intensity is proportional to

the value of priority function at each point. It can be seen from this figure that the

configuration of service vehicles in the environment is optimal according to available

priority function.

The value of coverage function H, using the exact priority function, is shown in

Fig. 6.6. As expected, the value of coverage function decreases dramatically at time
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Figure 6.5: Experimental results: The configuration and the trajectories of all service vehicles and
the corresponding priority function based on the probability maps. The color intensity is proportional
to the value of priority function. The UGVs are shown by � marker and their trajectories are shown
by solid lines. (a) t=30 sec, (b) t=50 sec, (c) t=65 sec. (d) t= 80 sec

steps 45 sec, 60 sec, and 75 sec when the probability map is considerably improved

due to the detection of a new target.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work, the cooperative coverage control problem for multi-agent systems is in-

vestigated from different aspects. There are many different challenges that need to

be addressed in the coverage control problem, especially when considering real world

applications. In Chapter 2, first the coverage problem which is the main framework of

this study is stated, and the Voronoi diagram is then introduces as an optimal parti-

tioning technique. Unlike the common assumption in the literature that the dynamics

of agents are single-integrator, non-trivial dynamics are considered for agents. There-

fore a planar position controller based on centroidal Voronoi configuration is proposed

for group of quadrotor UAVs and wheeled robot UGVs. The Lyapunov-based sta-

bility analysis showed that the vehicles finally converge to the optimal configuration

and the whole system is stable.

In Chapter 3, the problem of providing a prescribed service (such as coverage)

using a group of heterogeneous mobile agents is investigated. It is assumed that the

serving capabilities of different agents are nonidentical. The problem of service cost

optimization is defined and the notion of center multiplicatively-weighted Voronoi
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(CMWV) configuration is subsequently introduced to solve the problem. A motion

coordination strategy is then proposed for group of agents. The effectiveness of the

proposed technique is confirmed via numerical simulations and experiments on a

testbed with a group of unmanned aerial and ground vehicles.

The inter-agent communication delay is unavoidable in multi-agent systems and

neglecting the effect of delay in the analysis and design of multi-agent systems can

lead to poor performance as well as unsafe behaviors such as inter-agent collision.

In Chapter 4 a spatial partitioning technique is considered to address the problem

of coverage control subject to inter-agent communication delays induced by certain

communication faults. The above problem is also extended for the case sensors of

agents may have variable effectiveness (health). The sensor effectiveness factor of each

agent is incorporated in the locational optimization problem, and a novel partitioning

technique is also introduced to address this problem. The notion of GMW-Voronoi

diagram is introduced which divides the field based on the latest information received

by the agents. Therefore, a distributed deployment algorithm is proposed for a net-

work of mobile agents where the sensor effectiveness of agents may change with time

and the inter-agent information exchange is subject to delay. One of the important

properties of the proposed algorithm is inter-agent collision avoidance. Simulation

results demonstrate the effectiveness of the proposed technique.

In Chapter 5, an effective coverage technique is developed in multi-agent systems

with both collision avoidance and obstacle avoidance properties. It is desired to

improve coverage using navigation functions. A distributed control law is proposed to

drive the agents in the field in such a way that the coverage cost function is minimized.

In addition, agent-to-agent and agent-to-obstacle collision avoidance are guaranteed

under the proposed control strategy. The convergence of the closed-loop system is

analyzed and the results show that the overall system is stable and asymptotically
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convergent to the centroidal Voronoi configuration.

Most of the previous works in the area of Voronoi-based coverage control assume

the distribution of sensory information in the environment is required to be known

a priori by all agents. In Chapter 6, a new formulation is proposed that allows

the study of search and coverage problems in uncertain environments. A group of

vehicles called service vehicles are deployed to service the points or areas where they

are mostly needed in the environment based on the Voronoi configuration. Since the

high service areas are not known beforehand, a group of search vehicles are used

to explore the environment based on the limited look-ahead dynamic programming

method. The proposed approach leads to covering an uncertain environment more

effective and improving the coverage performance. The proposed approach has been

successfully verified by both numerical simulations and experimental tests.

7.2 Future Work

A framework for cooperative coverage control of multi-agent systems is presented

in details in this thesis. However, there are several directions and possible related

research areas in which future work can be carried out.

In Chapter 3, the optimal partitioning and configuration of agents introduced

when the service (coverage) cost of agents are non-identical and in form of (3.2).

However, this realistic assumption significantly outperform existing techniques, it can

be made more general. In the general case, the conventional Voronoi-based diagram

is not effective for agents deployment in the network. The problem of finding the

optimal partitioning in this case can be very cumbersome, in general. It is also

needed to find the optimal configuration of agents in this case.

To further generalize the results, a priority function is assumed to be given to

prioritize the importance of giving service to (or covering of) different points in the
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field. In this thesis, it is assumed that this priority function is stationary function like

the Gaussian function in the simulation parts. Future work will extend the analysis

of these algorithms to more general classes of problems such as dynamic priority

function or moving targets in the environment.

The obstacle and collision avoidance feature in coverage control problem presented

in Chapter 5. Throughout this chapter, it was assumed obstacles are fixed and has

arbitrary shapes. Future work will utilize the same framework introduced here to

develop the distributed control algorithms in the presence of moving obstacles in the

environment.

In Chapter 2, the low level controller for vehicles with different dynamics provided

based on the locational optimization problem. Although the problem of varying sensor

effectiveness of vehicles considered in Chapter 4, the effect of uncertainty on actuator

of vehicles did not address in this work. Therefore, uncertainty in the outcomes of

vehicle actions and the degradation of the solution in this case can be considered as

a future work.

In Chapter 6, two types of vehicles with different tasks used for search and coverage

problems in uncertain environments. In order to design the technique provided here

for more different applications and scenarios, the capabilities of search and coverage

vehicles can be combined on one vehicle. This modification needs to redesign all

algorithms but can reduce the operational cost and will be effective in more realistic

applications like forest fire monitoring and detection.
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