
Collaborative Coding Techniques with Analog Network Coding

in Wireless Y-Channel-Relay Networks

Issa Al-Fanek

A Thesis

in

The Department

of

Electrical & Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Electrical Engineering) at

Concordia University

Montreal, Quebec, Canada

August 2014

© Issa Al-Fanek, 2014

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Issa Al-Fanek

Entitled Collaborative Coding Techniques with Analog Network Coding in

Wireless Y-Channel-Relay Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical Engineering)

complies with the regulation of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final Examining Committee:

______Dr. M. Z. Kabir________________________

Chair

______ Dr. Y. R. Shayan______________________

Examiner

______ Dr. H. Harutyunyan____________________

Examiner

______Dr. M. R. Soleymani____________________

Supervisor

Approved by __

 Chair of Department or Graduate Program Director

__________________ 2014 __

 Dean of Faculty

iii

Abstract

Collaborative Coding Techniques with Analog Network Coding

in Wireless Y-Channel-Relay Networks

Issa Al-Fanek

After channel coding reached near Shannon-limit performance with the introduction of Turbo

codes and Low-Density Parity-Check (LDPC) codes, research moved on to network coding

techniques to enhance overall network performance. The most recent and novel of those

approaches is the idea of Physical (Analog) Network Coding which embraces interference from

other users, mixes signals in the channel rather than in a relay, and can theoretically increase

throughput in the two-way relay channel by up to two folds. In this thesis, we explore this idea,

and analyze the theoretical gains of using network coding in a Y-Channel problem - where three

users communicate through a common relay. We study existing collaborative coding techniques

for the Y-Channel like nested recursive convolutional codes, and Combined Network Channel

(CNC). After that, we introduce enhanced nested codes based on turbo codes that achieve good

performance in poor SINR conditions. In addition, we propose a novel equal-rate collaborative

coding scheme based on algebraic linear block codes. This scheme is simpler to implement than

CNC, yet its burst-traffic performance is better than any of the studied solutions. In theory, this

code reduces the number of transmission timeslots by up to three folds. Finally, we put forward

practical scenarios where physical network coding can be harnessed – mainly in Long Term

Evolution (LTE) Multicast (eMBMS), and opportunistic routing in Wireless Mesh Networks.

iv

Acknowledgements

This thesis wouldn’t have been possible without the support and guidance from many people.

First of all, I would like to express my deepest sense of gratitude to my supervisor, Dr. M. Reza

Soleymani who always offered his guidance and advice whenever I needed it during the course

of developing this research and writing this thesis.

I would also like to thank my brother, Basel, and my sister, Rund and her delightful family for

their continuous support and encouragement. A very special thank you goes to my nephew,

Sammy, whose spectacular smile always managed to lift my spirit up.

A big thank you goes to all my friends and co-workers who stood by me and encouraged me

throughout this journey.

Last but certainly not least, I would like to thank the two closest persons to my heart, my lovely

parents, who always believed in me, and who continuously provided me with their love, care and

support in whatever I set out to do.

v

Table of Contents

List of Figures ... viii

List of Tables .. xiii

List of Abbreviations ... xvi

Chapter 1: Introduction ... 1

1.1. The problem statement .. 3

1.2. Organization of the thesis ... 7

Chapter 2: Background and Literature Review .. 8

2.1. Wireless Mesh Networks .. 8

2.1.1. Properties of Wireless Mesh Networks ... 9

2.1.2. Applications of Wireless Mesh Networks ... 10

2.1.3. Opportunistic Routing in Wireless Mesh Networks.. 10

2.2. Relaying & Network Coding .. 11

2.2.1. Two-Way-Relay communication .. 11

2.2.2. Digital Network Coding .. 13

2.2.3. Analog (Physical) Network Coding .. 18

2.3. Y-Channel-Relay Communication.. 20

2.3.1. Y-Channel Two-Sender Topology .. 22

2.3.2. Y-Channel Three-Sender Topology .. 30

2.4. The Hybrid Error-Erasure Binary Channel ... 39

2.4.1. Capacity in Two-Way-Relay Scenario .. 41

2.4.2. Capacity in Two-Sender Y-Channel-Relay Scenario with One Common Receiver 42

2.4.3. Capacity in Three-Sender Y-Channel-Relay Scenarios .. 45

2.4.4. Y-Channel-Relay Analysis without Coding .. 49

2.5. Existing Coding Techniques for The Y-Channel-Relay Problem 56

2.5.1. Nested Codes ... 56

2.5.2. Combined Network Channel (CNC) Coding .. 60

Chapter 3: Proposed Coding Techniques for the Y-Channel-Relay Network 66

3.1. Nested Recursive Convolutional Codes Solution ... 66

vi

3.1.1. Encoding ... 66

3.1.2. Decoding ... 68

3.1.3. Simulation ... 73

3.2. Nested Turbo Codes Based Solution .. 77

3.2.1. Encoding ... 77

3.2.2. Decoding ... 79

3.2.3. Simulation Results .. 83

3.3. Collaborative Algebraic Linear Block Codes Solution .. 87

3.3.1. The Decoding Process ... 89

3.3.2. Algorithm for Decoding Using Array Manipulation ... 99

3.3.3. Algorithm for Decoding Using Table Lookup .. 107

3.3.4. Theoretical Limit of Performance of Algebraic Linear Block Codes in a Noiseless Channel

(Erasures-Only) .. 121

3.3.5. Simulation of the (7,4) Algebraic Linear Block Code Example ... 125

3.3.6. Effect of Increasing Rate of the Code ... 126

3.4. Comparison of The Different Coding Techniques.. 130

Chapter 4: Applications to Modern Wireless Networks ... 132

4.1. LTE Multimedia Broadcast/Multicast Service (eMBMS) .. 132

4.2. Use in Wireless Mesh Network .. 134

4.3. In Backbone of Wireless Networks .. 135

Chapter 5: The Mesh Network Simulator .. 137

5.1. Design Objectives ... 138

5.2. Software Architecture ... 138

Chapter 6: Conclusions .. 141

6.1. Future Research .. 142

Appendix A: Channel Coding Techniques ... 150

A.1. Linear block codes .. 150

A.1.1. Hamming codes ... 151

A.1.2. Bose-Chaudhuri-Hocquenghem (BCH) codes .. 151

A.2. Convolutional (Trellis) Codes ... 152

A.2.1. Description .. 152

vii

A.2.2. Recursive Convolutional Codes .. 152

A.2.3. Encoding .. 153

A.2.4. Decoding ... 154

A.3. Turbo Codes .. 159

A.3.1. Encoding .. 159

A.3.2. Iterative Decoding ... 162

A.4. Concatenated Codes .. 163

A.5. LDPC Codes ... 164

Appendix B: The Mesh Network Simulator Interface .. 165

B.1. The Home Menu.. 165

B.2. The Main Interface .. 165

B.3. The Options Dialog ... 167

B.4. Link (Channel) Options Dialog ... 168

B.5. The Node Properties Dialog .. 169

viii

List of Figures

Figure 1: The Y-Channel-Relay problem ... 4

Figure 2: Two-Sender vs. Three-Sender networks.. 5

Figure 3: Y-Channel-Relay extreme scenario with 3 different packets sent to six receivers 6

Figure 4: Mesh Network with a gateway .. 8

Figure 5: Two-Way-Relay problem .. 11

Figure 6: Two-way communication with a relay in the middle .. 12

Figure 7: Butterfly Network Topology ... 14

Figure 8: Transmission flow diagram in a butterfly network without network coding 14

Figure 9: Transmission flow diagram in a butterfly network with network coding 15

Figure 10: Using network coding for large scale content distribution.. 17

Figure 11: Two-way communication with relay and digital network coding 18

Figure 12: Two-way communication with relay and analog network coding 19

Figure 13: An example of a Three-Node communication through a relay in a Wireless Mesh

Network... 21

Figure 14: The Y-Channel-Relay problem ... 22

Figure 15: A Y-Channel-Relay problem in a Two-Sender topology. Example 1. 23

Figure 16: Transmission in Two-Sender network (example 1) without the use of network coding

... 24

Figure 17: Decision regions at receiver in a Two-Sender Y-Channel-Relay scenario (non

adaptive (left) vs. adaptive (right) power transmissions).. 26

ix

Figure 18: Transmission flow in a Two-Sender Y-Channel-Relay problem (example 1). Three

transmissions are required... 27

Figure 19: Transmission flow in a Two-Sender Y-Channel-Relay problem with physical network

coding. Only two transmissions are required. ... 27

Figure 20: Two-Sender Y-Channel-Relay problem (example 2). .. 28

Figure 21: Transmission flow in Two-Sender Y-Channel-Relay problem (example two). Four

transmission slots are required. ... 28

Figure 22: Transmission flow in Two-Sender Y-Channel-Relay topology with Digital Network

Coding (example 2). Three transmissions are required. ... 29

Figure 23: Transmission flow in Two-Sender Y-Channel-Relay topology with Analog (Physical

Network Coding) (example 2). Only two transmissions are required. 30

Figure 24: Three-Sender Y-Channel-Relay scenario (example 1). .. 31

Figure 25: Transmission flow diagram for Three-Sender Y-Channel-Relay scenario (example 1).

... 31

Figure 26: Transmission flow diagram Three-Sender Y-Channel-Relay Scenario with Digital

Network Coding (example 1).. 34

Figure 27: Transmission flow diagram for O=Shape Y-Channel-Relay Scenario with Analog

(Physical) Network Coding (example 1) .. 35

Figure 28: Three-Sender Y-Channel-Relay scenario (example 2) ... 35

Figure 29: The hybrid error-erasure binary channel ... 40

Figure 30: Transmission and decoding in a Two-Sender Y-Channel-Relay scenario with one

common receiver ... 43

Figure 31: Transmission and decoding in the maximum configuration of a Two-Sender network

with two sender and three receivers .. 44

Figure 32: Transmission and decoding in Three-Sender Y-Channel-Relay scenario 46

x

Figure 33: Decision regions on the receiver side .. 50

Figure 34: Theoretical BER performance curve of the uncoded solution 54

Figure 35: The simulated BER curve for the uncoded solution.. 56

Figure 36: Packet Error Rate when using nested codes in Two-Sender Network with two senders

and a common receiver ... 59

Figure 37: Throughput (information bits/sec) when using Nested Codes in Two-Sender Y-

Channel-Relay problem with two senders and one common receiver. 59

Figure 38: Throughput (information bits/sec) when using Nested Codes in Three-Sender Y-

Channel-Relay problem and each sender needs to send the same packet to the other two

users. ... 60

Figure 39: System throughput (info bits/sec) for full transmission scheme in an Three-Sender

Network using CNC .. 64

Figure 40: Recursive Convolutional Codes based solution to the Y-Channel-Relay with ANC

problem ... 67

Figure 41: Recursive Convolutional Encoder of Node 1 .. 67

Figure 42: Recursive Convolutional Encoder of Node 2 .. 67

Figure 43: Recursive Convolutional Encoder of Node 3 .. 68

Figure 44: Iterative Decoder for the Recursive Convolutional Codes based solution 69

Figure 45: The Decision Regions for estimating erasures .. 70

Figure 46: Simulated BER performance of the RSC based solution example with K=7 74

Figure 47: RSC encoder of Node 1 with K=5... 75

Figure 48: RSC encoder of Node 2 with K=5... 75

Figure 49: RSC encoder of Node 3 with K=5... 75

xi

Figure 50: Effect of used RSC constraint length on BER performance 76

Figure 51: Turbo encoder of node 1 ... 78

Figure 52: Turbo encoder of node 2 ... 78

Figure 53: Turbo encoder of node 3 ... 79

Figure 54: High-level Turbo based solution decoder ... 80

Figure 55: Low level turbo-codes based solution decoder ... 80

Figure 56: Decision Region used to estimate erasures in Turbo based Nested Codes solution ... 81

Figure 57: Simulated BER performance of Turbo based solution .. 85

Figure 58: Comparison in BER performance between Turbo and RSC based solutions 86

Figure 59: Bubble notation for the Collaborative Hamming Code encoder used in each terminal

... 88

Figure 60: Theoretical performance limits of an algebraic linear block codes solution with

(n=200) .. 124

Figure 61: The simulated BER curve of the (7,4) Hamming code solution 126

Figure 62: Increasing the length of the code lowers the error floor of guessing erasures 127

Figure 63: SNR versus Information Bit Throughput in Y-Channel-Relay Scenario 129

Figure 64: System throughput performance proposed solutions and existing solutions 130

Figure 65: eMBMS deployment example ... 133

Figure 66: Example of a carrier configuration when ANC and algebraic linear block codes are

used ... 134

Figure 67: A Mesh Network ... 134

xii

Figure 68: The proposed practical system for VOIP applications using Network Coding 136

Figure 69: The IF-Mesh network simulation app ... 137

Figure 70: High-Level Software Architecture of the IF Mesh Network Simulator 139

Figure 71: Convolutional Encoder example ... 153

Figure 72: Turbo Encoder ... 160

Figure 73: Turbo Decoder ... 163

Figure 74: A communication system with concatenated codes .. 164

Figure 75: The Home Menu (Hub) of the IF Mesh Network Simulator 165

Figure 76: The Main Interface of IF Mesh Network Simulator .. 166

Figure 77: The Sliding Menu (Drawer) .. 167

Figure 78: Options Dialog .. 168

Figure 79: Link (Channel) Options Dialog ... 169

Figure 80: Node Properties Dialog ... 170

xiii

List of Tables

Table 1: Possible binary outcomes of the two-way communication with relay and digital network

coding .. 18

Table 2: Received signal at Node 3 when using digital network coding in a Two-Sender Y-

Channel-Relay scenario .. 25

Table 3: Forwarded signal from the relay when using network coding in a Two-Sender Y-

Channel-Relay scenario .. 26

Table 4: Transmitted signal of relay when using network coding in a Three-Sender Y-Channel-

Relay scenario ... 32

Table 5: Transmitted signal of relay when using network coding in a Three-Sender Y-Channel-

Relay scenario and adapted power scheme to match the power of a transmitting node 33

Table 6: Summary of the properties and scenarios of Three-Sender and Two-Sender Y-Channel-

Relay networks.. 36

Table 7: In depth look at all possible scenarios involving three terminals and a relay 37

Table 8: Capacity of Two-Way-Relay Scenario ... 46

Table 9: Capacity of Two-Sender Y-Channel-Relay Scenarios ... 47

Table 10: Capacity of Three-Sender Y-Channel-Relay Scenarios ... 48

Table 11: Message of node 1 .. 50

Table 12: Message of node 2 .. 50

Table 13: Message of node 3 .. 50

Table 14: Received signal at relay .. 51

Table 15: Transmission Flow Diagram in an Three-Sender Y-Channel-Relay network using

Combined Network Channel (CNC) coding ... 61

xiv

Table 16: Encoding table for collaborative linear block code solution example 89

Table 17: Node 1 message .. 90

Table 18: Node 2 message .. 90

Table 19: Node 3 message .. 90

Table 20: Received mixed signal at relay ... 90

Table 21: Received mixed signal at Node 1 after deducting its message 91

Table 22: Initial estimation of Node 2 message at Node 1 ... 91

Table 23: Initial estimation of Node 3 message at Node 1 ... 91

Table 24: Node 2 decoded message at Node 1 ... 93

Table 25: Node 3 decoded message at Node 1 ... 93

Table 26: Received mixed signal at Node 2 after deducting its message 93

Table 27: Initial estimation of Node 1 message at Node 2 ... 93

Table 28: Initial estimation of Node 3 message at Node 2 ... 94

Table 29: Node 1 decoded message at Node 2 ... 96

Table 30: Node 3 decoded message at Node 2 ... 96

Table 31: The recieved mixed signal at node 3 after deducting its message 96

Table 32: Initial estimation of Node 1 message at Node 3 ... 96

Table 33: Initial estimation of Node 2 message at Node 3 ... 97

Table 34: Node 1 decoded message at Node 3 ... 99

Table 35: Node 2 decoded message at Node 3 ... 99

xv

Table 36: Decoding lookup table at Node 1 ... 108

Table 37: Decoding lookup table at Node 2 ... 112

Table 38: Decoding lookup table at Node 3 ... 116

Table 39: Theorectical limits for different information bit sequence lengths, and different

algebraic linear block code rate .. 124

Table 40: Interleaver Input.. 161

Table 41: Interleaver Output ... 161

xvi

List of Abbreviations

ANC Analog Network Coding

BER Bit Error Rate

CNC Combined Network Channel

DNC Digital Network Coding

DoF Degree of Freedom

eMBMS Evolved Multimedia Broadcast Multicast System

LDPC Low-Density Parity-Code

LTE Long Term Evolution

MAC Medium Access Control

OSI Open System Intercommunication model

PNC Physical Network Coding

RSC Recursive Systematic Convolutional Code

SINR Signal to Interference & Noise Ratio

SISO Soft-Input Soft-Output

SNR Signal to Noise Ratio

WMN Wireless Mesh Network

1

Chapter 1: Introduction

As channel-coding techniques on the physical layer reached near Shannon-limit performance,

after the introduction of robust practical solutions like Turbo Codes and Low-Density Parity-

Check (LDPC) codes, the research community shifted their attention to increasing the

performance of overall network throughput. This meant blurring the boundaries between the

physical layer and higher layers of the OSI model: the Data Link and Network layers. One of the

outcomes of this was the introduction of Network Coding.

Network Coding procedures rely on intuitively mixing received packets at the relay using

modulo-add operation, and later forwarding the resulting packet to the next hop rather than

transmitting each packet individually. The recipient extracts information based on his partial a

priori knowledge of the data. Hence, reducing the number of required transmissions in the

network, and increasing overall network throughput. This proved highly efficient in point-to-

multipoint (multicast) applications.

Traditionally, concurrent transmissions from multiple users were always considered harmful

interference that needs to be avoided. Multiple-Access procedures in the Data Link layer of the

OSI model are in place to prevent that from happening. That is until Physical/Analog Network

Coding (PNC) emerged - a novel idea that embraces wireless interference by allowing multiple

users to transmit simultaneously, assuming that the recipient receives the relative bits from each

sender at roughly the same time, and the received power after path loss from each sender is

roughly equal. The result at the receiver is an analog signal that combines the concurrent

transmissions over the air. That is equivalent to mixing packets at the relay with Digital Network

Coding, albeit achieved with lower number of transmissions. This idea was conceived in 2008

and was limited to Two-Way-Relay networks. In this scenario, ANC reduces the number of

required transmissions from four to two when compared to traditional routing methods, and from

three to two when compared to classical network coding. A few practical solutions that add the

capability of using PNC in Wireless Mesh Networks with opportunistic routing were developed.

2

One of these systems, named MIXIT, was designed and tested in MIT. They saw significant

improvement in overall network throughput when compared to traditional networks.

The discussion in literature expanded to the study of the feasibility and gains of using PNC in

more complicated scenarios like the Y-Channel-Relay problem – where three users communicate

through a common relay. In this case, PNC reduces the number of required transmission slots

from six when using traditional routing to only two, given the assumption that each receiver has

the ability to separate the combined received signal, and extract data belonging to the two other

users. The complexity of this approach is that after deducting its information sequence, the

receiver ends up with a packet that is a result of adding the relative bits of the other two users.

This introduces erasures into the equation, and thereby, transforming the problem to a separate

Hybrid Erasure-Error Channel at each receiver. Therefore, requiring collaborative coding

schemes to complete the solution. This means that while the number of required transmissions

drops by three folds, the actual throughput of the network may not increase by that factor due to

the added redundancies from coding.

There exist a few practical collaborative coding schemes tailored to the Y-Channel-Relay with

PNC problem. We will explore two of the top performing solutions in this thesis; the first is

based off the idea of Nested Codes. In this approach, each sender uses a unique RSC channel

encoder. Upon the reception of the mixed signal from the relay, each recipient decodes the

received sequence iteratively by first calculating the extrinsic value for each bit using a SISO

decoder based on the encoder of the first user. Then, the extrinsic information sequence is

traversed and treated via a flipping operation based on whether the bit is supposedly erased. The

process is repeated for a number of iterations before a soft decision is made.

The second idea we study is called Combined Network Coding (CNC). In this approach, two

users at any given time transmit at full channel rate, while the third transmits at half channel rate.

The users take turns in a cyclic fashion transmitting at half-rate while the other two users

transmit at full rate. The best performance of this technique has a degree of freedom equal to two

and it is realized when each sender has a continuous stream of data to transmit. As of this

3

writing, CNC is the top performing technique for solving the Y-Channel-Relay with PNC

problem.

In this thesis, we will explore network coding and analyze the Y-Channel-Relay problem. Then,

we propose an enhancement to the Nested Codes solution by nesting turbo codes rather than

RSC codes. We will present simulation results showing increased performance in low SINR

region when compared to RSC Nested Codes.

After that, we introduce an equal rate algebraic linear block codes based solution where each

sender uses a linearly independent generator matrix to encode its information bits. Once a user

receives a mixed packet, it applies algebraic procedures to decode at the receiver. We show that

we can have more than rate half code per node while maintaining zero Bit-Error-Rate. Even

though this novel scheme is simpler to implement in practice relative to CNC, it achieves

competitive performance. Moreover, this method applies to any of the transmission scenarios in

a Y-Channel-Relay problem, and performs well with bursty traffic patterns, while CNC works

best when users have data to transmit at all times.

At the end, we propose a practical solution to reduce the bandwidth requirement in certain

deployment scenarios of the LTE broadcast standard – Multimedia Broadcast Multicast Service

(eMBMS). The proposed mechanism reduces used bandwidth by up to 15%. Furthermore, we

recommend enhancements to the MIT MIXIT system by adding opportunistic routing techniques

that recognize Y-Channel-Relay scenarios. Thus, improving overall throughput of Wireless

Mesh Networks by a large margin.

In the following section, we define the Y-Channel-Relay model used throughout this thesis.

1.1. The problem statement

This research looks in-depth into the scenario where three terminals communicate through a

common relay in a wireless network. This situation is not uncommon in wireless mesh networks

4

with opportunistic routing, or wireless multicast applications such as LTE eMBMS (Multimedia

Broadcast Multicast Service).

Figure 1 shows such a network. Throughout this thesis, we shall refer to this topology as the Y-

Channel-Relay problem, and we make the following assumptions:

 Packet A, Packet B, and Packet C are always associated with Node 1, Node 2, and Node

3 respectively.

 Packet A, Packet B and Packet C have the same length of bits.

 For the sake of simplicity, we assume that communication between the sending nodes is

only possible through the use of the relay. I.e. none of the sending nodes can overhear or

receive any partial side-information when others transmit to the relay. As such, the results

presented in this thesis are considered worst-case analysis. Theoretically, having partial

information from previous transmissions enhances the performance considerably.

 A node uses the whole bandwidth available in the channel when transmitting a packet.

FDMA (Frequency Division Multiple Access) is not an option. Also the channel is

assumed to be half-duplex.

 The received power at the relay from each user after path loss is equal. In other words, all

users transmit at the same power, and the distance between each user and the relay is

equal.

Figure 1: The Y-Channel-Relay problem

5

There are multiple transmission scenarios that might arise when two or three terminals need to

send packets in a Y-Channel-Relay problem. We will touch on them briefly here, and discuss

them in more detail in Section 2.2. Those situations are categorized into two groups; Two-Sender

and Three-Sender Y-Channel networks (Figure 2).

Figure 2: Two-Sender vs. Three-Sender networks

As the name suggests, in Two-Sender scenarios, two terminals need to send to either a common

recipient or multiple recipients. An example is shown in Figure 2-i where Node 2 and Node 3

want to send to the same receiver (Node 1). In Three-Sender scenarios, on the other hand, each

node has a packet to be sent to either one or two receivers. The total number of packets at the end

of the transmission here will vary between three in the simple case of Node 1 wants to send to

Node 2, Node 2 wants to send to Node 3, and Node 3 wants to send to Node 1 (Figure 2-ii), to

the extreme situation of six packets when Node 1 wants to send Packet A to Node 2 and Node 3,

Node 2 wants to send Packet B to Node 1 and Node 3, and Node 3 wants to send Packet C to

Node 1 and Node 2. This extreme situation is described in Figure 3.

6

Figure 3: Y-Channel-Relay extreme scenario with 3 different packets sent to six receivers

Traditionally, transmission in wireless networks relied on Medium-Access-Control procedures to

prevent collisions, and prevent multiple users from accessing the wireless medium concurrently.

Transmission from one user was always perceived as unwanted interference to other users. In

recent years, however, there has been a lot of research around digital network coding schemes to

mix packets from different nodes to reduce the number of required transmissions in relayed

networks. [1] [2] Moreover, physical (analog) network coding schemes were introduced that

embrace the nature of the wireless medium, and allow multiple users to send at the same time,

and thus, harnessing what was classically looked at as interference and mix packets in the air

rather than at the relay. [3] [4] [5] [6]This allowed for theoretically more efficient networks, and

lower number of overall transmissions. For example, it takes four transmission slots to complete

the communication scenario posed in a Two-Sender network using MAC procedures. However,

it takes only two transmissions to send those packets when physical network coding is used.

In this thesis, we will explore existing collaborative coding schemes with physical network

coding in different Y-Channel-Relay scenarios. In addition, a novel equal-rate coding scheme

that can work in virtually any Y-Channel-Relay scenario is proposed. Its capabilities reduce the

number of transmissions in a wireless mesh network by up to three folds.

7

1.2. Organization of the thesis

In Chapter 2, we start with a literature review where we discuss Wireless Mesh Networks and the

physical attributes of the wireless channel that can be harnessed for gains in network

performance through physical network coding. Then, we explore relaying and network coding

both in its digital and physical flavors. After that, we look at existing solutions for the Y-

Channel-Relay with ANC problem. In Chapter 3, we propose several coding schemes to solve

the general case of Y-Channel-Relay transmission. In Chapter 4, we propose practical solutions

for PNC in real world deployments such as LTE eMBMS and Wireless Mesh Networks with

Opportunistic routing. In Chapter 5, we take a brief look at the Wireless Mesh Network

simulator developed during the development of this research. Finally, in Chapter 6, we conclude

this thesis, and discuss the limitations of the collaborative coding schemes. Also, we propose

future research directions. At the end of this thesis, there are Appendices that cover various

physical channel coding schemes that were explored throughout the development of this

research, as well as a visual tour of the Mesh Network Simulator.

Chapter 2: Background and Literature Review

2.1. Wireless Mesh Networks

Mesh networks are a sub-class of wireless multi-hop networks that doesn’t have a recognizable

topology, and rely on a decentralized approach for management. [7] Unlike traditional wireless

networks, which have a base station that virtually handles all the administrative tasks, wireless

mesh networks rely on distributed measures that treat all connected wireless terminals equally.

[8] Thus, each wireless node handles some control and routing responsibility. This not only

makes the network expandable and scalable, but also offers redundancy and reliability since the

network doesn’t depend on a central unit for its survival. However, this also means that each

node is required to be more complex to handle administrative tasks. Moreover, distributed

routing and multiple access mechanisms are more complex than their centralized counterparts.

The IEEE 802.16 standard [9] (or WiMax) defines the data link (MAC) protocol of the Wireless

Metropolitan Area Network (WMAN). It provides a lower cost solution to connect home and

business to the Internet wirelessly.

Figure 4: Mesh Network with a gateway

9

2.1.1. Properties of Wireless Mesh Networks

The following section provides some of the properties of wireless mesh networks that will be

exploited further on in this thesis.

The broadcasting nature of the wireless medium: This means that nearby nodes can receive a

packet intended for a particular neighbor receiver. While this can be regarded as wireless

interference, it can be exploited, as we will see later on in this thesis, to enhance network

performance. On the other hand, there is more than one path from source to destination over

multiple hops, and this can be used in different ways; such as providing redundancy to the

network, or dynamically shifting traffic along different paths to deal with congestion. Moreover,

in contrast to wired mesh networks, there are no pre-defined paths between connected nodes.

Each node is virtually connected to all the nodes within its radio range.

Redundancy and reliability: Decentralized mesh networks don’t depend on a central unit for

management. Thus, the network adapts dynamically when a node is lost, and thereby is more

immune to vast network outages. I.e. if one or more nodes go offline, the network remains

operational.

Scalability and expandability: In traditional wireless networks, a node should be within the

range of a base station to connect to the network. In contrast, a wireless node simply needs to be

within range of any connected wireless node.

Inexpensive and practical in some scenarios: Mesh networks are practical in deploying

wireless networks on a large scale for VOIP and data services. The fact that a node is required to

be near an access point or a base station means that simpler antennas with less power can be used

to provide connectivity. The complexity of the nodes pays for the reduction in costs in static

relay equipment, access points, and base stations.

The previous properties lead to some advantages as well as challenges when deploying wireless

mesh networks. Although wireless mesh networks are scalable, dynamic, and reliable, there are

10

many challenges drawn from its distributed nature. Using the wireless medium efficiently while

routing the packets and managing the network in a distributed fashion proved to be extremely

challenging in practice. That is why wireless mesh networks haven’t been widely used. However,

many practical systems have recently evolved to address these issues. This thesis discusses those

attempts and comes up with some enhancements and tweaks of its own.

2.1.2. Applications of Wireless Mesh Networks

Wireless mesh networks can be used as a practical and inexpensive solution for VOIP

applications due to their expandability and the fact that it is not necessary for a wireless node to

be near a base station to be connected to the network. Thus, the network should easily support

unicast as well as multicast transmission to allow both private calls and conferencing.

In addition, they have received much attention in recent years to provide community broadband

Internet services. Such an application requires the wireless mesh network to allow and maintain

several point-to-point connections simultaneously and in an efficient manner.

2.1.3. Opportunistic Routing in Wireless Mesh Networks

Opportunistic routing is a routing scheme that tries to reduce the number of transmissions inside

a mesh network by trying to forward the packet to the neighbor that is closest to the final

destination. This requires the nodes to keep track of their neighbors at all times. [10] In contrast,

other routing methods in mesh networks are similar to those of traditional wireless networks.

They rely on either pre-defined static routing tables or dynamic tables that get updated regularly

according to some tracked routing metric.

11

2.2. Relaying & Network Coding

Relaying is used to increase the throughput or extend the coverage of wireless networks. An

intermediary node is used to forward the message received from one node to another. Network

Coding, in the other hand, is the process of intelligently mixing packets at a relay before

forwarding to the next hop. It is used to reduce the number of transmissions in the packet, and

therefore, allows for more efficient networks. In the following sub-sections, we explore relaying,

and discuss network coding in its digital and analog flavors.

2.2.1. Two-Way-Relay communication

When two wireless nodes are too far to communicate directly with each other, a relay can be

used to facilitate the communication. This scenario is referred to in literature as the Two-Way-

Relay problem (Figure 5). In this thesis, the following assumptions are made for this scenario:

 Node 1 wants to send Packet A to Node 2, and Node 2 wants to send Packet B to Node 1.

 Packet A and Packet B have the same length of bits.

 For the sake of simplicity, we assume that communication between the sending nodes is

only possible through the use of the relay. I.e. none of the sending nodes can overhear or

receive any partial side-information when others transmit to the relay.

 Transmission in the channel is half-duplex. Transmitting terminals use the whole

bandwidth available in the channel when communicating with the relay.

 The received power at the relay from each user after path loss is equal. In other words, all

users transmit at the same power, and the distance between each user and the relay is

equal.

Figure 5: Two-Way-Relay problem

12

Traditionally, communication in a Two-Way-Relay scenario goes as follows: Node 1 sends

packet A to the relay in the first time slot. Then, the relay forwards packet A to Node 2 in the

second time slot. The same sequence is performed on the opposite direction to transfer packet B

from Node 2 to Node 1 through the relay. [11] The transmission flow for this scenario is shown

in Figure 6. It is important to note here that each transmission has to happen in its own timeslot

to avoid collisions. The MAC (data link) layer takes care of coordinating the transmissions in

such fashion. In total, four time slots are needed to send bi-directional data through one shared

wireless channel and a relay. [12]

Figure 6: Two-way communication with a relay in the middle

When the relay receives a packet, it can either amplify or decode the signal before forwarding it.

The following two sub-sections describe those two processes in more detail.

2.2.1.1. Amplify & Forward approach

In the Amplify and Forward approach, [13]the relay receives the signal, amplifies it and forwards

it. In other words, the relay acts as an analog repeater, which means that when the signal is

amplified, the noise is amplified as well.

13

2.2.1.2. Decode & Forward approach

In the Decode and Forward approach, [14]the relay decodes the received digital symbols based

on used MCS (Modulation & Coding Scheme). After that, it re-modulates and re-encodes the

message before forwarding it through the wireless channel. The benefit of this approach is that

decoding/demodulating the received signal accounts for the noise in the channel, and in most

cases, produces better performance than the Amplify and Forward approach. [4] This approach is

generally used in digital telecommunication networks.

Even if relay communication with analog network coding is used, the received signal at the relay

can be decoded using known decision intervals before forwarding the signal to receivers.

Throughout this thesis, the Decode and Forward approach is used in all the described solutions &

simulation results.

2.2.2. Digital Network Coding

Network coding is the process of mixing packets in a telecom network through add-modulo

operations, and hence, decreasing the number of transferred packets to achieve higher network

throughput. The simplest form of network coding is explored via the butterfly topology shown in

Figure 7. [15] In this scenario, four terminals communicate via a relay, with the following

assumptions in mind: Node 1 wants to send packet A to Node 5, and Node 3 wants to send

packet B to Node 4. Also, Node 1 and Node 3 cannot communicate directly with Node 5 and

Node 4 respectively. Hence, both senders are forced to transmit through the relay R.

14

Figure 7: Butterfly Network Topology

If traditional routing is used and network coding is not considered, Node 1 sends packet A to the

relay, then the relay decodes the received message and forwards it to Node 5. After that, Node 3

sends packet B to the relay, and the relay forwards it again to Node 4. Thus, four transmissions

in total are needed. This is shown in the following figure.

Figure 8: Transmission flow diagram in a butterfly network without network coding

15

Now let’s assume that network coding was used in conjunction with basic routing. Since there is

a link between Node 1 and Node 4, Node 1 broadcasts packet A to Node 4 and the relay

simultaneously. Similarly, Node 3 broadcasts packet B to Node 5 and the relay. The relay uses

network coding to mix packets A and B together by performing an XOR operation, and transmit

the new packet (A+B) to Nodes 4 and 5 concurrently. Since Node 4 already has packet B, it can

extract packet A easily by using basic algebra; XORing A with A+B will give back packet B.

Similarly at Node 5, packet B is extracted from packets A and A+B. The transmission flow is

shown in Figure 9.

Figure 9: Transmission flow diagram in a butterfly network with network coding

With network coding, only three transmissions are required to accomplish the same task as

traditional routing without network coding. That is a gain of 4/3 = 1.33.

It can be seen from the previous example that network coding can be an extremely viable and

practical solution for multi-cast applications, but it has captured some attention in the past few

years as a novel solution to enhance throughput for unicast transmissions in wireless mesh

networks. [16] Giving the broadcasting nature of the wireless medium, a sent packet in wireless

mesh topology is often received by more than one terminal, making network coding a natural

progression for enhancing wireless networks. Traditionally, if the packet wasn’t received by the

intended next hop in a wireless network, it is ignored and dropped from the recipient’s queue.

However, with network coding, a received packet is kept for a short period of time regardless of

whether the receiver is the next hop or not. Based on knowledge (or prediction) of what the

contents of neighbors’ queues are, the stored packets can be mixed together in smart ways to

16

reduce the number of overall transmissions as much as possible. In other words, we can look at

network coding as a form of compression that enhances the overall throughput and efficiency of

the network. We will go through a few practical systems that take advantage of network coding

to enhance network performance in the next few sections.

2.2.2.1. Practical Use of Network Coding in Modern Networks

Network coding has been used conventionally in multi-cast, VOIP, and content distribution

network applications. Microsoft Research has proposed a content distribution system that relies

on network coding for delivery. Their solution transforms desktop clients/users into partial

contributors to the delivery mechanism. Let’s assume that an OS Software Developer wants to

deliver a software update to all of its connected users. Normally, all users try to access the server

and obtain the update at the same time. This causes wasted bandwidth because the same

information is sent multiple times to multiple users. In addition, the servers may not handle the

excessive simultaneous requests to download the update. With network coding in mind, the

servers can send to a subset of users, who in turn can mix those packets in smart ways before

forwarding to other users who will use the mixed packets to extract new packets, and choose a

different combination of packets to mix before transmitting again. Through redundancy, and the

effect of network coding, all users will end up with software update efficiently and without

disrupting the download servers. [17].

17

Figure 10: Using network coding for large scale content distribution

In recent years, a novel use of network coding emerged in wireless mesh networks. Much

research has gone to come up with algorithms and protocols to utilize opportunistic network

coding with opportunistic routing for unicast along with multicast transmission to achieve

significant network throughput gains. Those proposed systems include BEND [18], COPE [19],

and MIXIT [2].

2.2.2.2. Two-Way-Relay Communication with Digital Network Coding

Digital network coding can be used in the two-way communication with relay scenario. Let’s

assume we have a Two-Way-Relay scenario, where Nodes 1 and 2 want to transmit messages A

and B respectively to each other (Figure 11). If no network coding is used, four messages need to

be transmitted (Node one to relay, relay to Node two, Node two to relay, and relay to Node one).

However, with digital network coding, Node 1 sends message A to relay, and Node 2 sends

message B to relay. After that, the relay mixes the two messages digitally using an XOR

operation and transmits A+B to both terminals, thereby exploiting the broadcasting nature of the

wireless medium. Upon reception, Node 1 extracts message B from the received message by

remixing the received signal with its own message using an XOR operation. The same operation

is conducted at Node 2 to extract message A. The following table gives all the possibilities for A

and B given that they are binary bits, along with the outcome of the relay, and the final extracted

messages at each node.

18

Table 1: Possible binary outcomes of the two-way communication with relay and digital network coding

Bit @ Node 1 Bit @ Node 2 Bit transmitted

by relay

Bit extracted at

Node 1

Bit extracted at

Node 2

A B R = A+B B’= R+A A’=R+B

0 0 0 0 0

0 1 1 1 0

1 0 1 0 1

1 1 0 1 1

The following figure shows the transmission flow when digital network coding is used in a Two-

Way-Relay scenario.

Figure 11: Two-way communication with relay and digital network coding

With this approach, the total number of required transmissions is reduced from four to three.

Many network routing schemes for wireless mesh networks emerged to exploit digital network

coding and reduce the total number of transmissions in a network. The most notable is COPE,

which was introduced by an MIT team in 2008. Invalid source specified.

2.2.3. Analog (Physical) Network Coding

In a multi-user multi-node wireless environment, a transmission from one node is considered

unwanted noise for other nodes/users who transmit on the same channel. The MAC layer in the

19

OSI model is responsible of managing multiple nodes in a network, and preventing multiple

users of transmitting at the same time to avoid collisions in the channel. However, noise can be

exploited through collaborative concurrent transmission between multiple nodes to minimize the

number of transmissions, and that is what Analog Network Coding (ANC) is about. [5]

Let’s consider an example to explain the idea of ANC. Assume we have a Two-Way-Relay

scenario, and that Node 1 and Node 2 are synchronized in some way to send their packets

concurrently so that the i
th

 bit of Node 1 and the i
th

 bit of Node 2 are received at the relay at

exactly the same time, and the received power from each user at the relay is relatively equal.

Obviously, their packets will collide in air, and the relay antennas would receive an analog signal

that is the result of adding both signals. [5] [20] Traditionally, this scenario would be considered

non-ideal as the interfering node will induce low SINR (Signal to Interference & Noise Ratio)

and reduce the receiver’s fortune of decoding the packets successfully. However, with analog

network coding in mind, the relay simply amplifies the signal as it is (or decodes using known

decoding decision regions), and forwards it to both ends. From the mixed signal, and the

knowledge of its own packet, each node can extract the other node’s packet. This theoretically

means that two-way communication through a relay can be achieved with only two

transmissions. In other words, using ANC in this case is equivalent of putting one of the nodes in

the location of the relay. [21]

Figure 12: Two-way communication with relay and analog network coding

The problem with this approach is that if the relay doesn’t use the decode-and-forward approach,

and instead it amplifies then forwards the received signal, noise will also be amplified with the

20

signal before the second slot transmission, which will also add more noise to the final received

signal. Thus, we expect the BER will be relatively larger to using Digital Network Coding. In

addition, perfect synchronization between the collided signals at the relay is extremely difficult,

especially when one takes into account that the nodes might be moving, and the relay might be at

proximity of one of the nodes. Moreover, the received power from each terminal at the receiver

should be roughly equal, in order for the decoding decision regions to be accurate. This is

challenging when the users are moving. Last but not least, the length of the packets might be

different, which adds to the complexity of the signal extraction algorithms at the receiving ends.

What is great about analog network coding is that it blurs the boundaries between the layers of

the OSI model, by elevating the physical layer to perform activities that were once only reserved

for higher layers. ANC is essentially network coding, done on the physical layer. In addition, the

fact that ANC uses pure noisy signals to reduce transmission time makes this technique unique

and novel.

Giving exact bounds on coding gains when using ANC in a wireless mesh network is extremely

difficult, especially when you have multiple sources. That is due to the fact that the topology of

wireless mesh networks is not known and constantly changing (if the wireless nodes are

moving). [16]

2.3. Y-Channel-Relay Communication

The model for multiuser communication channel, in which multiple users exchange information

with the help of a relay terminal was first introduced by D. Gunduz in [22]. It was called the

Multiway Relay Channel. In this model, an interfering group of users wants to communicate

among themselves by multicasting messages among themselves via a relay in the middle. It is

assumed that none of the users can receive messages, even partially, from other users directly.

21

In this section, we extend the discussion on relaying to the Y-Channel-Relay problem – where

three terminals communicate via a common relay in a wireless medium. [23] This scenario is

practically realized in multi-cast applications like LTE eMBMS, VoIP and tele-conferencing

applications when three wireless users communicate over a relay, or in Wireless Mesh Networks

with Opportunistic Routing. The following diagram shows an example Y-Channel-Relay

problem in a such a network.

Figure 13: An example of a Three-Node communication through a relay in a Wireless Mesh Network

Figure 10 shows such a network – three terminals communicating via a common relay.

Throughout this thesis, we shall refer to this topology as the Y-Channel-Relay problem. We

assume the following:

 Packet A, Packet B, and Packet C are always associated with Node 1, Node 2, and Node

3 respectively.

 Packet A, Packet B and Packet C have the same length of bits.

22

 For the sake of simplicity, we assume that communication between the sending nodes is

only possible through the relay. I.e. none of the sending nodes can overhear or receive

any partial side-information from the other nodes directly.

 Transmission is half-duplex. Also, a terminal uses the whole bandwidth available in the

channel when transmitting a packet. FDMA (Frequency Division Multiple Access) is not

an option.

Figure 14: The Y-Channel-Relay problem

There are many transmission scenarios that arise when having three nodes communicating

through a relay in a wireless medium. Table 7 lists all the possible scenarios. The ones involving

three nodes can be categorized into two classes: Two-Sender, and Three-Sender topologies.

2.3.1. Y-Channel Two-Sender Topology

In Two-Sender topologies, two nodes have packets to be sent to a subset of the three users in the

network. [4]Let’s take Figure 15 as an example. In this scenario, Node 1 wants to send Packet A

to Node 3, and Node 2 wants to send Packet B to Node 3. In total, we have two senders, and one

receiver.

23

Figure 15: A Y-Channel-Relay problem in a Two-Sender topology. Example 1.

Without the use of network coding, Node 1 has to send packet A to the relay in the first time slot.

Then, the relay forwards the packet to Node 2 in the second time slot. After that, Node 2 sends

Packet B to the relay in the third time slot. Finally, the relay forwards Packet B to Node 3. In

total, 4 transmissions are required to conclude the communication. Figure 16 shows the

transmission flow for this scenario.

24

Figure 16: Transmission in Two-Sender network (example 1) without the use of network coding

Now let’s assume that digital network coding is considered and the following assumptions are

made:

 Node 1 and Node 2 are equi-probable binary sources over the domain { }.

 The modulation scheme used @ Node 1 and Node 2 is BPSK:

o For Bit 0, the transmitted signal  √ ()

o For Bit 1, the transmitted signal  √ ()

o () √

 (), where is the carrier frequency, and is the period of

transmitting one bit. [24]

Node 1 sends Packet A to the relay. Then, Node 2 sends Packet B to the relay. After that, the

relay decodes and mixes the two packets through an XOR operation and broadcasts the mixed

signal (). Given the assumptions above, the broadcasted bit can be one of three possibilities

detailed in Table 2.

25

Table 2: Received signal at Node 3 when using digital network coding in a Two-Sender Y-Channel-Relay scenario

Bit @

Node 1

Bit @

Node 2

Signal transmitted by

relay

Outcome upon reception @ receiving user

(Node 3)

A B R =

0 0 √ ()  Receiving node can conclude that both Bit A

and Bit B are 0.

0 1 0  Erasure

1 0 0  Erasure

1 1 √ ()  Receiving node can conclude that both Bit A

and Bit B are 1.

It is interesting to note that the transmission power of the relay is equal to the sum of the

transmission power of both transmitting nodes. Since Node 1 and Node are equi-probably binary

sources, the bit energy and transmission power are as follows:

 ()

 ()

 ()







Where is the bit energy of zero, is the bit energy of one.

We can see that the transmission power at the relay is twice that of a sender. That being said, we

can adapt the transmission power of the relay so that it is equal to that of a sender. We shall call

this mode of transmission the Adapted Transmission mode. Table 3 details the levels that the

relay should transmit at in order to have the same transmission power as any of the senders. One

must bear in mind that the system will suffer a ~3 dB loss in physical layer performance when

using this mode.

26

Table 3: Forwarded signal from the relay when using network coding in a Two-Sender Y-Channel-Relay scenario

Bit @ Node 1 Bit @ Node 2 Signal transmitted by relay

A B R =

0 0

 √

 ()

0 1 0

1 0 0

1 1

 √

 ()

Upon the reception of the signal over an AWGN channel (), the receiver at Node 3

demodulates based on the decision regions shown in Figure 17, then forwards the mixed packet

to the receivers.

Figure 17: Decision regions at receiver in a Two-Sender Y-Channel-Relay scenario (non adaptive (left) vs. adaptive (right)

power transmissions)

When the received signal is in the decision region √ √ , the receiver won’t be

able to give a decision based on modulation alone, and the bit is considered erased. This is

equivalent to a Hybrid Binary Erasure Channel (See section 2.4 for more details). [25] Recent

research efforts [26] [27] [28] proposed multiple collaborative coding schemes to solve this

problem and provide reliable communication using network coding in a Y-Channel-Relay

topology. It is important to note that these schemes/solutions add redundancy and parity, and

reduce the rate of sent information packets. However, the gain introduced by reducing the

number of transmissions outweighs the decrease in the rate of information in a sent codeword.

Those schemes proved that using network coding in a Y-Channel-Relay may boost overall

27

throughput of the network. The following diagram shows the transmission flow when digital

network coding is used; three transmission time slots are needed.

Figure 18: Transmission flow in a Two-Sender Y-Channel-Relay problem (example 1). Three transmissions are required.

If we take the previous problem, and consider the use of Analog (Physical) network coding,

Node 1 and Node 2 can send Packet A and Packet B simultaneously. If we assumed that the relay

receives the i
th

 bit of each at exactly the same time, then the signals will be mixed over the air as

per Table 2. In this case, the number of transmissions is reduced from three to only two (Figure

19).

Figure 19: Transmission flow in a Two-Sender Y-Channel-Relay problem with physical network coding. Only two

transmissions are required.

Let’s look at another example of a Two-Sender Y-Channel-Relay topology. In this scenario, we

have two senders, but more than one receiver. Node 1 wants to send Packet A to Node 3, and

Node 3 wants to send Packet C to Node 2 and Node 1.

28

Figure 20: Two-Sender Y-Channel-Relay problem (example 2).

If we don’t consider network coding and we rely on opportunistic routing and medium access

control in the wireless medium, four transmissions are required to complete the communication;

Node 1 will send Packet A to the relay in the first transmission instance. Then, the relay will

broadcast Packet A. After that, Node 3 will send Packet C to the relay in the third transmission

slot after which the relay broadcasts it.

Figure 21: Transmission flow in Two-Sender Y-Channel-Relay problem (example two). Four transmission slots are

required.

29

If we consider digital network coding in this example, Node 1 sends Packet A to the relay in the

first time slot. Then, Node 3 sends Packet C to the relay in the second time slot. After that, the

relay mixes the two packets and broadcasts (). Upon reception:

 At Node 1: Since Node 1 has knowledge of its own information packet (Packet A), Node

1 can extract Packet C by conducting the following XOR operation:

o () ()

 At Node 2: Node 2 will have to separate the two signals with the use of pre-coded

collaborative coding schemes and retrieve Packet C.

 At Node 3: This node will extract its information packet (Packet C) from the received

signal:

o () ()

Figure 22 shows the transmission flow for this example.

Figure 22: Transmission flow in Two-Sender Y-Channel-Relay topology with Digital Network Coding (example 2). Three

transmissions are required.

As we saw, using digital network coding reduced the number of transmissions from four to three.

Now, if we consider analog (physical) network coding, we can reduce the number of

transmissions to two by allowing Node 1 and Node 2 to send Packets A and C concurrently.

Figure 23 shows the transmission flow when using analog network coding.

30

Figure 23: Transmission flow in Two-Sender Y-Channel-Relay topology with Analog (Physical Network Coding)

(example 2). Only two transmissions are required.

In the next sub-section, we will discuss scenarios where all terminals in a Y-Channel-Relay

topology are senders.

2.3.2. Y-Channel Three-Sender Topology

Three-Sender topology is a class of Y-Channel-Relay scenarios where all three users are sending

to a combination of the three available nodes. The following assumptions are taken into

consideration throughout this discussion:

 Node 1, Node 2 and Node 3 are equi-probable binary sources over the domain { }.

 The modulation scheme used @ Node 1, Node 2 and Node 3 is BPSK:

o For Bit 0, the transmitted signal  √ () Transmission power =

o For Bit 1, the transmitted signal  √ () Transmission power =

o () √

 (), where is the carrier frequency, and is the period of

transmitting one bit. [24]

Figure 24 shows an example of a Three-Sender Y-Channel-Relay network; Node 1 wants to send

Packet A to Node 2, Node 2 wants to send Packet B to Node 3, and Node 3 wants to send packet

C to Node 1. Without network coding, each node waits for its turn to send its packet to the relay,

31

which broadcasts the packet to the final destination. Thus, six transmissions are needed (Figure

25).

Figure 24: Three-Sender Y-Channel-Relay scenario (example 1).

Figure 25: Transmission flow diagram for Three-Sender Y-Channel-Relay scenario (example 1).

If digital network coding is used, each node sends its packet to the relay, and the relay can either

use a Decode & Forward or Amplify & Forward approach to broadcast the mixed signal

(). The number of required transmissions drops to 4 transmissions as can be seen in

Figure 26. Table 4 shows the possible signals that the relay broadcasts.

32

Table 4: Transmitted signal of relay when using network coding in a Three-Sender Y-Channel-Relay scenario

Bit @

Node 1

Bit @

Node 2

Bit @

Node 3

Signal transmitted

by relay

Outcome upon reception @ receiving

user (Node 3)

A B C R =

0 0 0 √ ()  Receiving node can conclude that both

Bit A and Bit B are 0.

0 0 1 √ ()  Erasure

0 1 0 √ ()  Erasure

0 1 1 √ ()  Receiving node can conclude that both

Bit A and Bit B are 1.

1 0 0 √ ()

1 0 1 √ ()

1 1 0 √ ()

1 1 1 √ ()

The average transmission power at each node is calculated as follows:









We can conclude that the transmission power at the relay is three times higher than the

transmission power at each sender. This ~4.77dB increase in power requirement can be deemed

insignificant in high SNR situations since the reduction in the total number of transmission

(network performance) can be much more beneficial than physical layer performance. We

conclude that the power of the relay increases linearly with the number of senders in a Y-

Channel-Relay network [22]:

33

We can adapt the relay in very high SNR conditions to send at the same power as any of the

sender nodes (this can also be used if the relay is constraint to have the same transmission power

as the users). [22] Table 5 details the signals transmitted at the relay when its transmission power

is equal to any of the transmitting terminals:

Table 5: Transmitted signal of relay when using network coding in a Three-Sender Y-Channel-Relay scenario and

adapted power scheme to match the power of a transmitting node

Bit @

Node 1

Bit @

Node 2

Bit @

Node 3

Signal transmitted by

relay

Outcome upon reception @ receiving user

(Node 3)

A B C R =

0 0 0

 √

 ()

 Receiving node can conclude that both Bit

A and Bit B are 0.

0 0 1

 √

 ()

 Receiving node can conclude that both Bit

A and Bit B are 0.

0 1 0

 √

 ()

 Erasure

0 1 1

 √

 ()

 Erasure

1 0 0

 √

 ()

 Erasure

1 0 1

 √

 ()

 Erasure

1 1 0

 √

 ()

 Receiving node can conclude that both Bit

A and Bit B are 1.

1 1 1

 √

 ()

 Receiving node can conclude that both Bit

A and Bit B are 1.

 ()

By using an adapted transmission power at the relay, we lose ~3dB physical layer performance.

This might be acceptable in high SNR conditions given that the number of transmissions will be

reduced from six without network coding to only 2 with network coding. However, we might

need to transmit at higher power in low SNR conditions to reduce the number of re-transmissions

induced by bit error in that region.

34

Upon the reception of the broadcasted signal from the relay, each receiving node subtracts its

packet as follows:

 At Node 1: () ()

 At Node 2: () ()

 At Node 3: () ()

The scenario, in this case, is reduced to an erasure problem similar to the one discussed in Figure

17. In the following chapter, we will discuss solutions introduced in recent research efforts.

Figure 25 shows the transmission flow when using Digital Network Coding in a Three-Sender Y-

Channel-Relay scenario.

Figure 26: Transmission flow diagram Three-Sender Y-Channel-Relay Scenario with Digital Network Coding (example

1)

When Analog network coding is considered, the number of transmissions is reduced to two as all

senders are allowed to send concurrently (Figure 27).

35

Figure 27: Transmission flow diagram for O=Shape Y-Channel-Relay Scenario with Analog (Physical) Network Coding

(example 1)

Let’s consider another example for Three-Sender Y-Channel-Relay networks. This time let’s

assume that we have the topology shown in Figure 28, and that Node 1 wants to send Packet A to

Node 2 and Node 3, Node 2 wants to send packet B to Node 1 and Node 3, and finally, Node 3

wants to send packet C to Node 1 and Node 2. This scenario is practically viable if the three

nodes want to do video conferencing with each other for example. This condition presents the

maximum possible number of information packets exchanged in a Y-Channel-Relay problem. In

total, six packets need to be sent (in contrast to only 3 in the example 1).

Figure 28: Three-Sender Y-Channel-Relay scenario (example 2)

36

Without network coding, and with Multiple Access protocol in place, the nodes have to take

turns sending their packets to the relay one at a time, and then the relay forwards the packet to

the other two nodes. Thus, six transmissions are required to complete the communication (Figure

25).

With digital network coding, the number of transmissions is reduced to only four as can be seen

in Figure 26. With analog network coding, the number of transmissions is reduced even further

to only two transmissions (Figure 27).

The following table summarizes the properties of Two-Sender and Three-Sender networks.

Table 6: Summary of the properties and scenarios of Three-Sender and Two-Sender Y-Channel-Relay networks

Number

of

senders

Minimum number of receivers Minimum number of received

information packets

Maximum number of received

information packets

T
w

o
-S

en
d

er
 N

et
w

o
rk

Always 2 1

Example:

13 & 32

2

Example:

13 & 23

4

Example:

12 & 13

21 & 23

T
h

re
e-

S
en

d
er

 N
et

w
o

rk

Always 3 2

Example:

21 & 23

13

31

3

Example:

12 & 23 & 31

6

Example:

12 & 13

21 & 23

31 & 32

37

To be able to study the benefits of network coding in Y-Channel-Relay networks, we

have to look at all the scenarios that involve three terminals communicating through a relay,

whether that it is in a wireless mesh network, or in a multicast wireless transmission system.

Table 7 goes in-depth into dissecting all these scenarios (whether they are Two-Way-Relay or Y-

Channel-Relay problem) just to see or have an idea on how common Y-Channel-Relay situations

are in general.

Table 7: In depth look at all possible scenarios involving three terminals and a relay

Total Number Of

Transmissions

N
o

d
e

1
 s

en
d

s
to

 N
o
d

e
2

N
o

d
e

1
 s

en
d

s
to

 N
o
d

e
3

N
o

d
e

2
 s

en
d

s
to

 N
o
d

e
1

N
o

d
e

2
 s

en
d

s
to

 N
o
d

e
3

N
o

d
e

3
 s

en
d

s
to

 N
o
d

e
1

N
o

d
e

3
 s

en
d

s
to

 N
o
d

e
2

N
u

m
b
er

 o
f

tr
an

sm
it

te
d

in
fo

 p
ac

k
et

s

N
u

m
 o

f
tr

an
sm

it
ti

n
g

n
o
d

es

N
u

m
b
er

 o
f

in
v
o
lv

ed

n
o
d

es

N
o

 N
et

w
o

rk
 C

o
d

in
g

D
ig

it
al

 N
et

w
o

rk
 C

o
d
in

g

A
n

al
o
g

 (
P

h
y

si
ca

l)

N
et

w
o

rk
 C

o
d

in
g

Scenario Classification

No No No No No No 0 0 0 N/A N/A N/A

Yes No No No No No 1 1 2 2 N/A N/A Point-to-Point / Routing

No Yes No No No No 1 1 2 2 N/A N/A Point-to-Point / Routing

Yes Yes No No No No 2 1 3 2 N/A N/A Point-to-Point / Routing

No No Yes No No No 1 1 2 2 N/A N/A Point-to-Point / Routing

Yes No Yes No No No 2 2 2 4 3 2 Two-way communication with relay

No Yes Yes No No No 2 2 3 4 3 2 Two-Sender Network

Yes Yes Yes No No No 3 2 3 4 3 2 Two-Sender Network

No No No Yes No No 1 1 2 2 N/A N/A Point-to-Point / Routing

Yes No No Yes No No 2 2 3 4 3 2 Two-Sender Network

No Yes No Yes No No 2 2 3 4 3 2 Two-Sender Network (Special)

Yes Yes No Yes No No 3 2 3 4 3 2 Two-Sender Network

No No Yes Yes No No 2 1 3 2 N/A N/A Point-to-Point / Routing

Yes No Yes Yes No No 3 2 3 4 3 2 Two-Sender Network

No Yes Yes Yes No No 3 2 3 4 3 2 Two-Sender Network

Yes Yes Yes Yes No No 4 2 3 4 3 2 Two-Sender Network

No No No No Yes No 1 1 2 2 N/A N/A Point-to-Point / Routing

Yes No No No Yes No 2 2 3 4 3 2 Two-Sender Network

No Yes No No Yes No 2 2 2 4 3 2 Two-way communication with relay

Yes Yes No No Yes No 3 2 3 4 3 2 Two-Sender Network

No No Yes No Yes No 2 2 3 4 3 2 Two-Sender Network (Special)

Yes No Yes No Yes No 3 3 3 6 4 2 Three-Sender Network

No Yes Yes No Yes No 3 3 3 6 4 2 Three-Sender Network

Yes Yes Yes No Yes No 4 3 3 6 4 2 Three-Sender Network

No No No Yes Yes No 2 2 3 4 3 2 Two-Sender Network

Yes No No Yes Yes No 3 3 3 6 4 2 Three-Sender Network

No Yes No Yes Yes No 3 3 3 6 4 2 Three-Sender Network

Yes Yes No Yes Yes No 4 3 3 6 4 2 Three-Sender Network

No No Yes Yes Yes No 3 2 3 4 3 2 Two-Sender Network

Yes No Yes Yes Yes No 4 3 3 6 4 2 Three-Sender Network

No Yes Yes Yes Yes No 4 3 3 6 4 2 Three-Sender Network

Yes Yes Yes Yes Yes No 5 3 3 6 4 2 Three-Sender Network

No No No No No Yes 1 1 2 2 N/A N/A Point-to-Point / Routing

Yes No No No No Yes 2 2 3 4 3 2 Two-Sender Network (Special)

No Yes No No No Yes 2 2 3 4 3 2 Two-Sender Network

Yes Yes No No No Yes 3 2 3 4 3 2 Two-Sender Network

No No Yes No No Yes 2 2 3 4 3 2 Two-Sender Network

Yes No Yes No No Yes 3 3 3 6 4 2 Three-Sender Network

38

No Yes Yes No No Yes 3 3 3 6 4 2 Three-Sender Network

Yes Yes Yes No No Yes 4 3 3 6 4 2 Three-Sender Network

No No No Yes No Yes 2 2 2 4 3 2 Two-way communication with relay

Yes No No Yes No Yes 3 3 3 6 4 2 Three-Sender Network

No Yes No Yes No Yes 3 3 3 6 4 2 Three-Sender Network

Yes Yes No Yes No Yes 4 3 3 6 4 2 Three-Sender Network

No No Yes Yes No Yes 3 2 3 4 3 2 Two-Sender Network

Yes No Yes Yes No Yes 4 3 3 6 4 2 Three-Sender Network

No Yes Yes Yes No Yes 4 3 3 6 4 2 Three-Sender Network

Yes Yes Yes Yes No Yes 5 3 3 6 4 2 Three-Sender Network

No No No No Yes Yes 2 1 3 2 N/A N/A Point-to-Point / Routing

Yes No No No Yes Yes 3 2 3 4 3 2 Two-Sender Network

No Yes No No Yes Yes 3 2 3 4 3 2 Two-Sender Network

Yes Yes No No Yes Yes 4 2 3 4 3 2 Two-Sender Network

No No Yes No Yes Yes 3 2 3 4 3 2 Two-Sender Network

Yes No Yes No Yes Yes 4 3 3 6 4 2 Three-Sender Network

No Yes Yes No Yes Yes 4 3 3 6 4 2 Three-Sender Network

Yes Yes Yes No Yes Yes 5 3 3 6 4 2 Three-Sender Network

No No No Yes Yes Yes 3 2 3 4 3 2 Two-Sender Network

Yes No No Yes Yes Yes 4 3 3 6 4 2 Three-Sender Network

No Yes No Yes Yes Yes 4 3 3 6 4 2 Three-Sender Network

Yes Yes No Yes Yes Yes 5 3 3 6 4 2 Three-Sender Network

No No Yes Yes Yes Yes 4 2 3 4 3 2 Two-Sender Network

Yes No Yes Yes Yes Yes 5 3 3 6 4 2 Three-Sender Network

No Yes Yes Yes Yes Yes 5 3 3 6 4 2 Three-Sender Network

Yes Yes Yes Yes Yes Yes 6 3 3 6 4 2 Three-Sender Network

From the latter discussion, we can conclude that in order to complete communication for Three-

Sender Y-Channel-Relay situation, we need:

 Six transmissions with Multiple Access Control and routing.

 Four transmissions with Digital Network Coding.

 Two transmissions with Analog (Physical) Network Coding.

For Two-Sender Y-Channel-Relay & Two-Way-Relay scenarios, we need:

 Four transmissions with Multiple Access Control and routing.

 Three transmissions with Digital Network Coding.

 Two transmissions with Analog (Physical) Network Coding.

It can be clearly seen that with the use of network coding, we can improve network performance

by up to three folds. More realistically, however, if we assume that each of the possible scenarios

described in Table 7 has equal chances of it happening, then the average number of transmissions

required for communication goes down from 4.57 transmissions with routing only to 3.29

39

transmissions with digital network coding, and only 2 with the addition of analog network

capabilities. If we limit the discussion to Two-Sender and Three-Sender scenarios, the average

number of transmissions goes down from 4.76 transmissions without network coding to 3.51 and

2 when using digital and analog (physical) network coding respectively. While practical systems

proposed in [5] [19] harness network coding, their benefits are limited to increasing network

performance by a maximum of two folds. However, by expanding those systems to include Y-

Channel-Relay scenarios, we can reduce the number of required transmissions by 2.4 times.

With that said, a better indication of how much network coding increases performance is the rate

of real information bits that can be sent through the system in one second (i.e. Capacity). In the

following section, we will derive the capacity limits for Two-Sender and Three-Sender networks

with and without network coding.

Most researchers focused on analyzing the Two-Way-Relay communication problem. However,

a few proposals include a joint network coding and superposition coding for three-user relay

channels, in which two-stage operations are required for encoding and decoding [29]. We will be

looking at this approach and others in section 2.5. It is interesting to note that the analysis of the

Y-Channel-Relay communication problem can be extended to N-way relay problem – where N

terminals communicate through a common relay.

2.4. The Hybrid Error-Erasure Binary Channel

The hybrid error –erasure binary channel is one where an input bit is susceptible to both erasures

and errors. [25] Figure 29 shows such a channel:

40

Figure 29: The hybrid error-erasure binary channel

This particular channel has two discrete inputs { } and three probable discrete outputs

 { }, where represents an erasure, and assuming the following:

 (|) (|) () (2.1)

 (|) (|) () (2.2)

 (|) (|) () (2.3)

 (|)

 (2.4)

Equation (2.4) his can also be called the conditional bit error probability.

The capacity for such channel is equal to [16]:

 ()(()) (2.5)

Where () () () is the binary entropy function. Thus, the hybrid

binary symmetric channel can be represented with erasure probability and conditional error

probability as (). In a noiseless channel and 0.5 probability of erasure. The capacity

would be:

 (()) (2.6)

41

In the following sub-sections, we will derive the capacity of different scenarios related to the Y-

Channel-Relay problem with and without network coding. The following assumptions are made

in this discussion:

 For simplicity, we assume we have a noiseless channel and that bit error rate .

I.e. .

 The used modulation scheme is BPSK, and the system is capable of sending one

transmission every second (1 bit/channel use). I.e. the bit rate at which each node

generates and transmits a packet is

 Each node can only receive from the relay. No side information is available in any of the

receiving nodes.

 The relay and the receiving nodes have full knowledge of fading and channel

coefficients, and account for that.

2.4.1. Capacity in Two-Way-Relay Scenario

We discussed the Two-Way-Relay problem in Section 2.2.1, and we saw that without network

coding four transmissions are needed to complete two-way communication. Since there are no

erasures, and with the assumption of a noiseless channel, each node can send at a maximum rate

of 1. The following summarizes the derivation of capacity of this scenario:

 The capacity of Node 1 (User 1) is 1 bit per channel use. [30]

 The capacity of Node 2 (User 2) is 1 bit per channel use.

 Without routing, four transmissions are needed. If each transmission takes 1 second, we

have a total of two bits sent over 4 seconds. That is 0.5 information bits/sec.

With Digital network coding, the number of required transmissions is reduced to three:

 The maximum capacity of Node 1 (User 1) is 1 bit per channel use.

 The maximum capacity of Node 2 (User 2) is 1 bit per channel use.

42

 The relay transmits a mixed signal that is the result of a modulo-2 operation of the

packets received from Node 1 and Node 2. Upon the reception of this signal, each node

can subtract its information bit, and figure out the other user’s information bit. Hence, we

have two information bits sent over 3 seconds. That is 0.67 information bits/sec.

With Analog (Physical) network coding, the number of required transmissions is reduced to two:

 The maximum capacity of Node 1 (User 1) is 1 bit per channel use.

 The maximum capacity of Node 2 (User 2) is 1 bit per channel use.

 We have two information bits sent over 2 seconds. That is 1 information bit/sec.

In this case, the use of physical network coding doubles the capacity of the system when

compared to classical wireless routing schemes. [5] [4]

2.4.2. Capacity in Two-Sender Y-Channel-Relay Scenario with One Common

Receiver

The scenario that is going to be discussed here was looked at in Section 2.3.1. Without network

coding, we saw that we need four transmissions to complete communication. The maximum

capacity in this case is as follows:

 The capacity of Node 1 (User 1) is 1 bit per channel use.

 The capacity of Node 2 (User 2) is 1 bit per channel use.

 We have two information bits sent over 4 seconds. That is 0.5 information bits/sec.

Now let’s consider the case where network coding is used. The system can be described by

Figure 30. Since the common receiver (Node 3 in this case) doesn’t have any prior knowledge of

either or , the problem of decoding the received signal at decoder 3 can be considered a

binary erasure channel problem with 50% change of having an erased bit.

43

Figure 30: Transmission and decoding in a Two-Sender Y-Channel-Relay scenario with one common receiver

In a noiseless channel, the capacity of an erasure binary channel is 0.5 bits/channel use. This,

either or need to be encoded of at least a code of rate 0.5 to account for the erased bits.

Let’s consider for example that was encoded with a code of rate 0.5 that will guarantee

successful decoding of at Node 3. In this case, Node 3 will decode first, then subtract the

decoded signal from to get . Thus, in the case of digital network coding, we will have:

 The maximum capacity of Node 1 (User 1) is 0.5 information bits/sec.

 The maximum capacity of Node 2 (User 2) is 1 information bits/sec.

 We have 1.5 information bits sent over 3 seconds. That is 0.5 information bits/sec.

When analog network coding is used:

 The maximum capacity of Node 1 (User 1) is 0.5 information bits/sec.

 The maximum capacity of Node 2 (User 2) is 1 information bits/sec.

 We have 1.5 information bits sent over 2 seconds. That is 0.75 information bits/sec.

We can see that analog network coding in this case increases the capacity of the system by 50%.

Now, let’s consider the maximum theoretical possible capacity scenario for a Two-Sender

network where we have two senders and three receivers.

44

Figure 31: Transmission and decoding in the maximum configuration of a Two-Sender network with two sender and

three receivers

In this case, with digital network coding:

 The maximum capacity of Node 1 (User 1) is 0.5 information bits/sec.

 The maximum capacity of Node 2 (User 2) is 1 information bits/sec.

 After three seconds, Node 1 decodes the message of Node 2 and has 1 bit, Node 2

decodes the message of Node 1 and has 0.5 bits, and Node 3 decodes both Node 1 and

Node 2 packets and has 1.5 bits. In total, 3 information bits were sent over 3 seconds.

That is 1 information bits/sec.

And with analog network coding:

 The maximum capacity of Node 1 (User 1) is 0.5 information bits/sec.

 The maximum capacity of Node 2 (User 2) is 1 information bits/sec.

 After two seconds, Node 1 decodes the message of Node 2 and has 1 bit, Node 2 decodes

the message of Node 1 and has 0.5 bits, and Node 3 decodes both Node 1 and Node 2

packets and has 1.5 bits. In total, 3 information bits were sent over 2 seconds. That is 1.5

information bits/sec.

45

2.4.3. Capacity in Three-Sender Y-Channel-Relay Scenarios

Let’s now consider the maximum Three-Sender Y-Channel-Relay scenario where each sender

wants to send a packet to the other two nodes. Without network coding, and with routing and

multiple-access scheme in place, capacity is as follows:

 The maximum capacity of Node 1 (User 1) is 1 information bit/sec.

 The maximum capacity of Node 2 (User 2) is 1 information bit/sec.

 The maximum capacity of Node 3 (User 3) is 1 information bit/sec.

 Six transmissions are needed to complete communication. The total number of

information bits received at all nodes is six. That is 1 information bit/sec.

Now let’s consider capacity of the system when using network coding. The transmission and

decoding flow is represented in Figure 32. Each receiver receives , and upon

reception, subtracts its message to have a modulo-2 mixed signal that requires a rate of at least

1.5 to be decoded successfully. If we assume that the rate at Node 1 and Node 2 is 1 and 0.5

respectively. Then:

 At Node 3, will be decoded successfully.

 At Node 2, must have a rate that is at least 1.5. Hence, the maximum rate for

Node 3 should be at least 0.5 to guarantee successful decoding.

 At Node 1, will be decoded successfully since each has a rate 0.5. is decoded

first using the rate 0.5 code. After that, is decoded.

46

Figure 32: Transmission and decoding in Three-Sender Y-Channel-Relay scenario

Hence, when digital network coding is used:

 The maximum capacity of Node 1 (User 1) is 1 information bit/sec.

 The maximum capacity of Node 2 (User 2) is 0.5 information bits/sec.

 The maximum capacity of Node 3 (User 3) is 0.5 information bits/sec.

 Four transmissions are required to complete communication. Thus, we have 4/4

information bits = 1 information bit/sec

When analog (physical) network coding is used, the number of transmissions is reduced to only

2. Thus, the capacity of the system increases to 2 information bits/sec.

Table 8 summarizes the capacity for Two-Way-Relay scenarios.

Table 8: Capacity of Two-Way-Relay Scenario

Scenario

Capacity & Rate

Routing and multiple

access

Digital Network Coding Analog (Physical) Network

Coding

Example:

12 & 21

0.5 Info Bits/Sec

0.667 Info Bits/Sec

1 Info Bit/Sec

47

Table 9 summarizes the capacity for different Two-Sender Y-Channel-Relay scenarios.

Table 9: Capacity of Two-Sender Y-Channel-Relay Scenarios

Scenario

Capacity & Rate

Routing and multiple

access

Digital Network Coding Analog (Physical) Network

Coding

Example:

13 & 23

RNode 1=1 Bit/Sec

RNode 2=1 Bit/Sec

0.5 Info Bits/Sec

RNode 1=1 Bit/Sec

RNode 2=0.5 Bit/Sec

0.5 Info Bits/Sec

RNode 1=1 Bit/Sec

RNode 2=0.5 Bit/Sec

0.75 Info Bits/Sec

Example:

13 & 32

RNode 1=1 Bit/Sec

RNode 3=1 Bit/Sec

0.5 Info Bits/Sec

RNode 1=1 Bit/Sec

RNode 3=0.5 Bit/Sec

0.5 Info Bits/Sec

RNode 1=1 Bit/Sec

RNode 3=0.5 Bit/Sec

0.75 Info Bits/Sec

Example:

12 & 13

21 & 23

RNode 1=1 Bit/Sec

RNode 2=1 Bit/Sec

1 Info Bit/Sec

RNode 1=1 Bit/Sec

RNode 2=0.5 Bit/Sec

1 Info Bit/Sec

RNode 1=1 Bit/Sec

RNode 2=0.5 Bit/Sec

1.5 Info Bit/Sec

48

Table 10 summarizes the capacity of different Three-Sender Y-Channel-Relay scenarios.

Table 10: Capacity of Three-Sender Y-Channel-Relay Scenarios

Capacity & Rate

Routing and multiple

access

Digital Network Coding Analog (Physical) Network

Coding

Example:

21 & 23

13

31

RNode 1=1 Bit/Sec

RNode 2=1 Bit/Sec

RNode 3=1 Bit/Sec

0.667 Info Bit/Sec

RNode 1=0.5 Bit/Sec

RNode 2=1 Bit/Sec

RNode 3=0.5 Bit/Sec

0.75 Info Bit/Sec

RNode 1=0.5 Bit/Sec

RNode 2=1 Bit/Sec

RNode 3=0.5 Bit/Sec

1.5 Info Bit/Sec

Example:

12 & 23 & 31

RNode 1=1 Bit/Sec

RNode 2=1 Bit/Sec

RNode 3=1 Bit/Sec

0.5 Info Bit/Sec

RNode 1=1 Bit/Sec

RNode 2=0.5 Bit/Sec

RNode 3=0.5 Bit/Sec

0.5 Info Bit/Sec

RNode 1=1 Bit/Sec

RNode 2=0.5 Bit/Sec

RNode 3=0.5 Bit/Sec

1 Info Bit/Sec

Example:

12 & 13

21 & 23

31 & 32

RNode 1=1 Bit/Sec

RNode 2=1 Bit/Sec

RNode 3=1 Bit/Sec

1 Info Bit/Sec

RNode 1=1 Bit/Sec

RNode 2=0.5 Bit/Sec

RNode 3=0.5 Bit/Sec

1 Info Bit/Sec

RNode 1=1 Bit/Sec

RNode 2=0.5 Bit/Sec

RNode 3=0.5 Bit/Sec

2 Info Bit/Sec

In section 2.4.4, we will analyze the Y-Channel bound on performance without any type of

coding.

49

2.4.4. Y-Channel-Relay Analysis without Coding

In the Y-Channel-Relay problem, in order to separate the signal at the receiver without using any

coding schemes, each sender has to send with a certain energy level in such a way that the relay

can separate the signal sent by each terminal using eight decision regions. Consequently, each

node in this system is viewed as a binary source where Node 1, Node 2, and Node 3 transmit

using a BPSK modulation scheme at energy levels , , and respectively:

 Node 1 can be looked at as a binary source; { }

 Node 2 can be looked at as a binary source; { }

 Node 3 can be looked at as a binary source; { }

The relay will receive a combined analog signal over the air that is equal to the following:

 (2.7)

The energy levels are selected in a certain way so that any combination of , and

produces a unique level at the relay (and subsequently at the receiver) so that the signal can be

separated based on a decision region. The following diagram shows such energy level scheme

along with the decision regions at the receiver.

50

Figure 33: Decision regions on the receiver side

The latter un-coded example is very similar to a three-bit point-to-point amplitude modulation

scheme. While amplitude modulation schemes usually use grey coded mappings to maximize the

possible performance of the system, such mapping is not possible in the Y-Channel-Relay with

analog network coding problem. The reason for that is because cannot be chosen in a

way that allow equi-probable mapping of decision regions for the mixed signal.

As an example, let’s assume that Node 1, Node 2 and Node 3 want to send [01010101, 11100001

and 11000110] respectively. The transmitted levels are shown below:

Table 11: Message of node 1

Message bits 0 1 0 1 0 1 0 1

Transmitted level

Table 12: Message of node 2

Message bits 1 1 1 0 0 0 0 1

Transmitted level

Table 13: Message of node 3

Message bits 1 1 0 0 0 1 1 0

Transmitted level

51

Based on that, at the end of timeslot 1 of the transmission, the relay will have received a

combined signal that is equal to the following:

Table 14: Received signal at relay

Bit 1 2 3 4 5 6 7 8

Received

level

Once the relay receives the signal, it can either decode it based on the eight decision regions

shown in Figure 33, or simply amplify it and transmit it back to all nodes in the second

transmission time slot. Each receiver, in turn, decodes the signal based on the received signal and

the eight decision regions.

2.4.4.1. Calculating The Upper Bound of BER For The Un-Coded Solution

In this section, the upper bound of BER for the un-coded solution will be derived. We will use

the example in the previous section as a basis for the derivation. The following assumptions are

taken into consideration:

 We have three nodes and a relay in the middle. Each node has a continuous stream of bits

that needs to be multi-casted to the other two nodes.

 The nodes are distant from each other, and direct communication between the nodes is

not possible. Communication is only possible through the relay. The relay receives,

amplifies, and forwards an analog mixed signal without trying to perform any kind of

decoding or demodulation.

 Reception is synchronized. That means the relay receives bits from the three nodes at

exactly the same time.

 Noise in phase 1 of the transmission (from the nodes to the relay) is assumed to be white

Gaussian noise (). Noise in phase 2 is assumed to be white Gaussian noise

 ().

52

 It is assumed that an amplify-and-forward approach is used by the relay to forward the

mixed signal. This means that noise can be treated as (

) ().

 Fading is not taken into consideration during the derivation of the upper bound. It is

assumed that the destination knows the fading of the channel, and accounts for that.

 The relay doesn’t do any decoding. Noise is taken end to end.

 The nodes transmit with the following level:

o Node 1 transmits with levels { } where { √
 √

}

o Node 2 transmits with levels { } where { √
 √

}

o Node 3 transmits with levels { } where { √
 √

}

When decoding the received message at node 1, we have the following bit error probabilities for

node 1’s message in the eight decision regions:

 (|)

(

√

)

 (2.8)

 (|)

(

√

)

 (2.9)

 (|)

(

√

)

 (2.10)

 (|)

(

√

)

 (2.11)

53

 (|)

(

√

)

 (2.12)

 (|)

(

√

)

 (2.13)

 (|)

(

√

)

 (2.14)

 (|)

(

√

)

 (2.15)

From the previous equations, the probability of bit error rate for Node 1’s packet will be:

 ()

 (

)

(

√

)

 (

)

(

√

)

 (

)

(

√

)

 (

)

(

√

)

(2.16)

Similarly, the probability of error for Node 2’s bit is:

 () (

)

(

√

)

 (

)

(

√

)

 (2.17)

And for Node 3:

54

 ()

(

√

)

 (2.18)

The overall average bit error rate will be:

(() ()

 ())
(2.19)

 (

)

(

√

)

 (

)

(

√

)

 (

)

(

√

)

(

√

)

 (2.20)

The theoretical BER performance curve is shown below:

Figure 34: Theoretical BER performance curve of the uncoded solution

The previous equations don’t take into consideration that the receiver already knows its own

message, and thus, it can deduct its message before decoding the signal itself. This can be

utilized to get a tighter bound.

55

2.4.4.2. Simulation

The uncoded solution to the three-node with relay communication problem was simulated using

a decode and forward approach. Three equi-probable binary sources generate an endless stream

of bits. Each node is assigned a BPSK modulator with certain energy level(). The initial

energy level is chosen to give an SINR of 0 dB. Once a predetermined confidence value for is

earned from the simulating at that SINR level, is changed to obtain a higher SINR, and the

process is repeated to get the curve.

For each SINR level, the following is done to obtain the :

 Produce a continuous stream of bits from the three binary sources.

 Modulate the bits as per each node’s modulator.

 Combine the relative output from each node, and add AWGN to it based on the chosen

 and to get the desired SINR. This simulates mixing the signals in the air at the

relay.

 The received signal is then demodulated at the receiver.

Here is the curve for the when simulating the uncoded solution at node 3:

56

Figure 35: The simulated BER curve for the uncoded solution

The simulated curve is identical to the calculated theoretical curve.

At first glance, one might observe that the uncoded solution for the Y-Channel-Relay problem

with ANC has worse performance than point-to-point BPSK. However, when looking from a

higher layer perspective, using ANC reduces the number of packet transfers in a wireless mesh

network from six transmissions down to two.

2.5. Existing Coding Techniques for The Y-Channel-Relay Problem

Physical network coding has been a hot topic in recent research. In this section, we will look at

existing solutions to the Y-Channel-Relay problem in the literature.

2.5.1. Nested Codes

Nested codes were first proposed in [1] as a new approach to channel code design in networks

where Analog (Physical) network coding is considered. In these codes, packets can be decoded

in multiple ways at the receiver depending on how much prior information it knows. If a receiver

has information for one or more of the received XORed packets, then those known packets can

be subtracted by regarding them as “scrambling” patterns. Thus, the receiver decodes the

57

unknown packets at a lower effective rate. On the other hand, if the receiver has no prior

information of any of the received XORed packets, it considers those codewords to be produced

by a higher-rate “nested” code. With this in mind, each receiver can decode the received packets

differently based on his prior knowledge of one or more of the XORed codewords. In this thesis,

the worst case scenario is considered, where none of the recipients has a priori knowledge of the

received message from the relay, except for its information sequence.

2.5.1.1. Encoding

If we assume we have users that want to communicate through a relay using Physical (Analog)

Network coding, each sender encodes its information vector using a separate low rate

 () that would be XORed in the air. I.e. when excluding noise and fading, codeword

received at the relay would be:

 [] [

]

(2.21)

where are generator matrices of rate (), and are information

vectors for Nodes .

It is worth noting here that using different linearly independent generator matrices at each sender

is crucial for getting the maximum performance out of the system. A consequence of having two

or more identical generator matrices will cause the coding to be noninvertible at the decoder.

This is called matrix rank deficiency.

58

2.5.1.2. Decoding

 ⨁

 ⏟

 ⨁

 ⏟

(2.22)

where is a collection of unknown codewords, is a collection of known codewords at the -

th receiver, is the generator matrix of the -th user, and represents the indices of known

information packets to the receiver. Since the receiver already knows , it can subtract that

signal and decode The Log-Liklihood-Ratio of the -th bit is calculated as follows:

 ()
 [()]

 [()]

{

 ()

 [()]

 [()]
 ()

 ()
 [()]

 [()]
 ()

(2.23)

The previous LLR operation is referred to as the “flipping” operation.

The “Broadcast Infrastructure Aided Multicasting” example described in [1] is identical to the

Two-Sender Y-Channel-Relay scenario where two senders are sending to a common receiver

Figure 15. In it, Node 1 uses a 64-state rate 1/3 convolutional code with []

and Node 2 uses another 64-state 1/3 convolutional code with [] [31]. The

overall received codeword at the receiver can be considered as a “stacked” 2/3 convolutional

code with [

]

. The decoder uses the flipping operation to decode the

messages simultaneously and flips the LLR for each erased bit. The following is simulation

results for an AWGN channel. It is assumed that the receiver doesn’t have any a priori

information of the received packets.

59

Figure 36: Packet Error Rate when using nested codes in Two-Sender Network with two senders and a common receiver

Since each sender sends with rate 1/3, the maximum throughput of the system in information

bits/sec would be 0.667 information bits in two seconds (0.333 information bits/sec) as seen in

Figure 37.

Figure 37: Throughput (information bits/sec) when using Nested Codes in Two-Sender Y-Channel-Relay problem with

two senders and one common receiver.

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 1 2 3 4 5 6

P
a

ck
e

r
E

rr
o

r
P

ro
b

a
b

il
it

y

Eb/No per information bit transmitted

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6S
y

st
e

m
 t

h
ro

u
g

h
p

u
t

(i
n

fo
rm

a
ti

o
n

b

it
s/

se
c)

Eb/No per information bit transmitted

60

We can adapt the upper solution to work with a Three-Sender Y-Channel-Relay networks and

analog network coding by adding a third generator polynomial to the mix [] .

Each node still sends using a rate 1/3 convolutional encoder and the effective rate will still be 2/3

at each receiver after omitting its own message. The overall system throughput will increase to 1

info bit/sec when each node wants to send the same packet to the other two nodes.

Figure 38: Throughput (information bits/sec) when using Nested Codes in Three-Sender Y-Channel-Relay problem and

each sender needs to send the same packet to the other two users.

2.5.2. Combined Network Channel (CNC) Coding

B. Khoueiry, H. Khoshneviss and M. R. Soleymani proposed in [6] a coding scheme and a

communication protocol [28] for Physical Network Coding in Y-Channel-Relay topologies. In

this approach, each sender transmits with the same power, and only two users are allowed to

transmit new messages at full rate (rate one) while the third user at a rate that is equal to half that

of the erased bits from a previous transmission. To harness the full potential of this scheme, the

buffers of the each sender need to be full so that the transmission is continuous. Table 15 shows

the transmission cycle of this scheme.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7

S
y

st
e

m
 t

h
ro

u
g

h
p

u
t

(i
n

fo
rm

a
ti

o
n

 b
it

s/
se

c)

Eb/No per information bit transmitted

61

Table 15: Transmission Flow Diagram in an Three-Sender Y-Channel-Relay network using Combined Network Channel

(CNC) coding

Time Slot Transmission

0

1

62

2

3

63

64

 denote Node 1, Node 2, and Node 3 packets respectively that are coded at full rate (rate

1). contains erased bits from previous transmission and is

transmitted at rate ½. Upon reception, each user subtracts its own message, then attempts to

decode. There are two possibilities for the codeword that remains after omitting one’s own

message; either an XORed signal that consists of two rate one codewords, and in this case, the

messages are not yet decodable and the user waits for a rate ½ word to decode. Or, an XORed

signal that consists of one rate ½ codword and one full rate codeword. In this case, the decoder

decodes the lower rate message first, then decodes the full rate message using successive

decoding (SD).

The system above was simulated using a raptor code. A block length = 65536 of information

bits was used. The block is pre-coded with LDPC code rate 0.98 before generating encoded

symbols to the optimized distribution in [32]. Figure 39 shows the simulation results. The system

throughput maxes out at 1.94 bits/sec.

Figure 39: System throughput (info bits/sec) for full transmission scheme in an Three-Sender Network using CNC

0

0.5

1

1.5

2

2.5

0 5 10 15 20

S
y

st
e

m
 t

h
ro

u
g

h
p

u
t

(i
n

fo
rm

a
ti

o
n

 b
it

s/
se

c

Eb/No per information bit transmitted

65

The problem with this transmission protocol is that it is tailored to a network that has three

terminals communicating constantly through a relay. I.e. the system is less efficient when each

node transmit sporadically. To demonstrate this, let’s take the simple example when each node

needs to send one and only one packet to the other two nodes. In this case, four transmissions

rather than two are required; Node 1 and Node 2 transmit at full rate in the first time slot. The

relay broadcasts the received signal to the users in the second time slot. In the third time slot,

Node 3 sends at full rate and Node 1 re-transmits the erased bits using rate half code. In the

fourth time slot the relay broadcasts the received signal. In this case, we have transferred six

packets in four transmissions (DoF=1.5 and not 2). In addition to this, the system is practically

more complex since each node transmits at different rates in each transmission slot.

Chapter 3: Proposed Coding Techniques for the Y-Channel-

Relay Network

In this chapter, various collaborative coding schemes are proposed to solve the Y-Channel-Relay

problem. First, a solution using long RSC Nested Codes is presented. Then, a Nested Codes

solution based on Turbo Codes is proposed. After that, an intuitive solution based on Algebraic

Linear Block Codes is explored in detail. At the end of the chapter, a comparison is made

between all the different solutions discussed in this thesis.

3.1. Nested Recursive Convolutional Codes Solution

In this section, we will look at a solution to the Y-Channel-Relay problem using nested codes

based on long RSC codes. This section describes, in detail the encoding and decoding sequence,

and sets the fundamentals for nesting Turbo Codes, which will be discussed in section 3.2.

3.1.1. Encoding

In this solution, each node uses an RSC encoder with a unique and independent transfer function.

The performance here is governed by the constraint length, rate, and minimum distance of the

chosen RSC codes, as well as how different the state transition function used at each sender is.

Figure 40 shows the transmission flow of this solution. Each terminal encodes its message bits

using its RSC encoder, and transmits to the relay. All terminals transmit at relatively the same

time, and it is assumed that the relay receives combined bits that are in sync. In other words, if

the received message in relay is { }, then , where , , and

 are the i
th

 codeword of Node A, Node B, and Node C respectively. After that, the relay

amplifies the received signal and broadcasts it to the receiving nodes. Each recipient subtracts its

message from the received message, then, attempts to decode the remainder.

67

Figure 40: Recursive Convolutional Codes based solution to the Y-Channel-Relay with ANC problem

Let’s consider an example using rate 1/3 RSC codes with constraint length equal to seven. Figure

41, Figure 42, and Figure 43 show the codes used at Node 1, Node 2, and Node 3 respectively.

For the sake of simplicity, the codes used here have registers with unity length ()

Figure 41: Recursive Convolutional Encoder of Node 1

Figure 42: Recursive Convolutional Encoder of Node 2

68

Figure 43: Recursive Convolutional Encoder of Node 3

The transform domain generator matrices for the encoders above are as follows:

() [

] (3.1)

() [

] (3.2)

() [

] (3.3)

3.1.2. Decoding

The decoder used to separate the combined signal is an evolution of the iterative modified BCJR-

decoder of turbo codes. The soft decoder of the RSC codes solution relies on the simple fact that

if the received bit is erased, then that means the relative bits from the first and second senders are

not equal (one is equal to 1, and the other is equal to 0). On the other hand, if the received bit is

not erased, then the relative bits from the first and second senders are equal (both are 1, or both

are 0). Assuming we are decoding at node C and we a noiseless channel with equal bit energy

levels, where √ , we will have one of the three following scenarios:

  erasure

o Then, or

  high-bits

o Then,

69

  low-bits

o Then,

When the channel is noisy, the info bits can by determined using the decision regions described

in Figure 45.

As with turbo decoders, the RSC based decoder for Y-Channel-Relay not only solves for

erasures, but also corrects bit errors caused by white noise. The derived decoder is shown in the

figure below.

Figure 44: Iterative Decoder for the Recursive Convolutional Codes based solution

 and represent the combined noisy systematic and parity signal sequences found at the

receiver after deducting its message. At node C, this would be:

 (3.4)

 (3.5)

Similar to turbo decoders, the decoder represented here relies on iterative use of Log-APP or

max-Log-APP decoding algorithms. The following subsections describe the decoding process in

details.

70

3.1.2.1. Creating the erasure table

After subtracting the recipient’s message from the received combined signal, the decoder starts

creating an erasure table. The erasure table is a binary table of a length equal to the input

sequence length. For each received symbol, the erasure table holds a value of either 1 when the

decoder initially thinks that the symbol was erased, or 0 for when it thinks the symbol was not

erased, based on the combined received signal after deducting the receiver’s own symbol.

Initially, the erasure table is filled based only on the received analog signal. Assuming that all

sources transmit at the same power level, the decision regions will be as follows:

Figure 45: The Decision Regions for estimating erasures

The erasure table can be updated after each decoding iteration for better erasure estimation based

on the latest soft outputs of the decoder. In addition, one can use a soft erasure table with soft

values representing the likelihood of a bit being erased, rather than having hard binary erasure

table.

71

3.1.2.2. Soft-Input Soft-Output Decoder

There are two SISO decoders used in the overall iterative design. Each SISO decoder is a BCJR

soft output decoder tailored for each sender. At node C, for example, SISO-1 decoder is based on

Node A’s encoder while SISO-2 decoder is based on Node B’s encoder.

In every iteration, the SISO decoder accepts the input signals () as well as the a posteriori

soft values taken from previous iterations. The a posteriori values can be evaluated by the

following sum:

 ()
 ()() ()() (3.6)

where;

 √

 (3.7)

 ()()
 ()

 ()
 (3.8)

 ()()
()

{ ̃ ()

 ̃ ()}

()

{ ̃ ()

 ̃ ()}

(3.9)

 is defined as

√ .

There are three terms of interest in the previous equations:


 indicates the effects of the channel output (decoder input) corresponding to the

systematic symbols.

 ()() is the a priori probabilities of the sequence.

72

 ()() is the extrinsic information. It is the part of the a posteriori value that doesn’t

depend on the channel output of the calculated a priori values.

The latter equations give a sub optimal method for MAP calculations. It is called the Max-Log-

APP algorithm.

3.1.2.3. Iterative Decoding

As discussed before, the overall decoder is comprised of two SISO decoders. Once the soft

output sequence of SISO 1 is evaluated, it is passed to a process that converts it to A priori

values that are used as inputs to the second SISO. This process relies on the fact that if we have

an erasure on a certain bit, its soft a priori input for SISO 2 will be of opposite sign from the

output of SISO 1. This is called the “flipping” operation. On the contrary, if we don’t have an

erasure for a bit, its A priori value in SISO 2 will be equal to its soft output value of SISO 1.

SISO 2 will calculate soft outputs that are going to be used as inputs for the first SISO. This

iterative approach can be repeated several times until we reach high confidence for decoding. It

is important to note here that in the first iteration, the decoder assumes that the a priori values for

the sequence are zeros (since we have equiprobable inputs). The soft output passed between the

decoders is the new extrinsic information that we get from subtracting the channel values from

the calculated posteriori values. Calculating newer extrinsic information by relying on previously

calculated extrinsic information and the difference/orthogonality in the state functions of the two

SISO decoders is what make this a powerful iterative decoding solution.

After a few decoding iterations, the soft output values can be used to revise the erasure table.

Since the erasure table was initially built using raw input, it is probable that we might have

symbol errors building it. Using the soft outputs after every iteration to re-build the erasure table

enhances the performance of the decoder.

73

3.1.3. Simulation

The example discussed in the previous section was simulated using a decode and forward

approach. Three equi-probable binary sources generate an endless stream of bits, and the

recursive convolutional encoders of constraint length K=7 shown in Section 3.1.1 were used at

Nodes 1, 2 and 3.

After encoding, the bits are passed into a BPSK modulator with levels { √ √ }. The

initial energy level is chosen to give an SINR of 0 dB. Once a predetermined confidence value

for is earned from the simulating at that SINR level, is changed to obtain a higher SINR,

and the process is repeated to get the curve.

For each SINR level, the following is done to obtain the :

 Produce a continuous stream of bits from the three binary sources.

 Encode the bits and modulate them.

 Combine the relative output from each node, and add AWGN to it based on the chosen

 and to get the desired SINR. This simulates mixing the signals in the air at the

relay.

 The received signal is then decoded in the received node.

Here is the curve for the when simulating the collaborative recursive convolutional codes

based solution at node 3 when compared to the uncoded solution:

74

Figure 46: Simulated BER performance of the RSC based solution example with K=7

The curve shows that using there is a maximum of approximately 8 dB better performance than

the uncoded solution. It also shows that the error floor is below . In the following sub-

section, the effects of the constraint length on performance and error floor are studied

3.1.3.1. Effect of the constraint length

In order to study the effect of the used constraint length on the performance of the recursive

convolutional codes solution, another solution with constraint length of K=5 was simulated, and

the results were compared with the previous example. Figure 47, Figure 48, and Figure 49 show

the encoders used at Node1, Node 2, and Node 3 respectively.

75

Figure 47: RSC encoder of Node 1 with K=5

Figure 48: RSC encoder of Node 2 with K=5

Figure 49: RSC encoder of Node 3 with K=5

The following plot shows the BER results when using the K=5 encoders described above

compared to the K=7 encoder combination shown in the previous sub-section:

76

Figure 50: Effect of used RSC constraint length on BER performance

From the performance plot, it can be noted the performance is slightly better when using a

combination of codes with larger constraint length. This makes sense due to the fact that larger

constraint lengths give longer codes. In addition, the error floor drops significantly when using

higher constraint lengths. In theory, increasing the constraint length can virtually eliminate the

error floor problem. That being said, increasing the constraint length increases the decoding

complexity exponentially.

It is good to mention that not only the constraint length affects the performance, but also the

combination of the used encoder polynomials. Variations of encoders with K=5 and K=7 were

picked by trial and error and used to obtain good results. More research can go into choosing the

optimum combinations for each constraint length to maximize the distance between each node’s

encoder.

In the following section, the idea presented for recursive convolutional codes is expanded to

accommodate the use of turbo codes.

77

3.2. Nested Turbo Codes Based Solution

The collaborative RSC Nested Codes based solution for the Y-Channel-Relay with ANC

problem can be extended to use turbo codes. Turbo codes have performance that is near-Shannon

bound. Using Turbo-codes allows for more code diversity due to the use of interleaving. This

leads to lower error floors and better BER in the low SNR conditions.

3.2.1. Encoding

In this solution, each terminal has its own unique turbo encoder that consists of two different

recursive systematic convolutional encoders and a unique interleaver. The encoder can use a

puncturing process to get a higher code rate. Having different interleavers and different RSC

encoders in each turbo encoder creates more linear relationships that may be harnessed for better

decoding at the receiver.

To describe this solution, an example is considered using a unique Turbo Code of constraint

length of four (K=4). Figure 51, Figure 52, and Figure 53 show the turbo encoder used at Nodes

1, 2 and 3 respectively.

78

Figure 51: Turbo encoder of node 1

Figure 52: Turbo encoder of node 2

79

Figure 53: Turbo encoder of node 3

3.2.2. Decoding

The decoder for the turbo-codes solution can be realized in two ways. On a high level, the

decoder can be built with two turbo decoders that iteratively pass information to each other using

modified BCJR algorithms until a certain confidence in the decoding decision is reached. Figure

54 shows a high level block diagram of the decoder.

80

Figure 54: High-level Turbo based solution decoder

We can dissect the decoder further. It can be implemented using four soft-input soft-output

decoders. In this case, each SISO decoder passes soft-output values that result from modified

BCJR algorithm to the following SISO decoder. The process is repeated iteratively until a

decision with high confidence is made. It can be noticed here that the turbo-based solution is a

natural extension of the convolutional codes based solution. Figure 55 shows the low-level block

diagram of the decoder.

Figure 55: Low level turbo-codes based solution decoder

 , and represent the combined noisy systematic and parity signal sequences found at the

receiver after deducting its message. At node C, this would be:

81

 (3.10)

 (3.11)

 (3.12)

Similar to regular turbo decoders, this decoder relies on iterative use of Log-APP or max-Log-

APP decoding algorithms. The following subsections describe the decoding process in details.

3.2.2.1. Creating the erasure table

The process for creating the erasure table for the turbo-based nested codes solution is identical to

the convolutional codes based solution. After subtracting its message from the received signal,

the recipient starts creating an erasure table. The erasure table is a binary table of a length equal

to the input sequence length. For each received symbol, the erasure table holds a value of either 1

when the decoder initially thinks that the symbol was erased, or 0 for when it thinks the symbol

was not erased, based on the combined received signal after deducting the receiver’s own

symbol. Initially, the erasure table is filled based only on the received analog signal. Assuming

that all sources transmit at the same power level, the decision regions are as shown in Figure 56.

Figure 56: Decision Region used to estimate erasures in Turbo based Nested Codes solution

The erasure table can be updated after each decoding iteration for better erasure estimation based

on the latest soft outputs of the decoder.

82

3.2.2.2. Iterative Decoding

There are four SISO decoders used in the overall iterative design. Each SISO decoder is a BCJR

soft output decoder tailored for each encoder in a sender. At node C, for example, SISO-A1

decoder is based on node A’s first RSC encoder, SISO-A2 decoder is based on node A’s second

RSC encoder, while SISO-B1 decoder is based on node B’s first RSC encoder and SISO-B2

decoder is based on node B’s second RSC encoder.

In each iteration, the SISO decoder accepts the input signals () or () as well as the a

posteriori soft values taken from previous iterations. The a posteriori values can be evaluated

by the following sum:

 ()
 ()() ()() (3.13)

where;

 √

 (3.14)

 ()()
 ()

 ()
 (3.15)

 ()()
()

{ ̃ ()

 ̃ ()}

()

{ ̃ ()

 ̃ ()}

(3.16)

 is defined as

√ .

There are three terms of interest in the previous equations;

83


 indicates the effects of the channel output (decoder input) corresponding to the

systematic symbols.

 ()() is the a priori probabilities of the sequence.

 ()() is the extrinsic information. It is the part of the a posteriori value that doesn’t

depend on the channel output of the calculated a priori values.

The latter equations give a sub optimal method for MAP calculations. It is called the Max-Log-

APP algorithm. Once the soft values are calculated based on the first turbo decoder (SISO 1), the

soft output values are treated via a flipping operation based on whether a bit is erased or not. If

the bit is erased, the sign of the soft output value is flipped, if it is not, the soft output value is

kept as is. After that, the a posteriori values are passed to the second turbo decoder. SISO 2

calculates soft outputs that are going to be used as inputs for the first SISO. This iterative process

is repeated several times until we reach high confidence for decoding.

It is important to note here that in the first iteration, the decoder assumes that the a priori values

for the sequence are zeros (since we have equiprobable inputs). Calculating newer extrinsic

information by relying on previously calculated values in previous iterations and the

difference/orthogonality in the state functions of the two SISO decoders is what make this a

powerful iterative decoding solution.

After a few decoding iterations, the soft output values can be used to revise the erasure table.

Since the erasure table was initially built using raw input, it is probable that we might have

symbol errors building it. The soft outputs from each iteration can be used to re-build the erasure

table and, thereby, enhance the performance of the decoder.

3.2.3. Simulation Results

The turbo based collaborative scheme was simulated using a decode and forward approach.

Three equi-probable binary sources generate an endless stream of bits. The encoders for Node 1,

Node 2, and Node 3 are shown in Figure 51, Figure 52, and Figure 53 respectively. After

84

encoding, the bits are passed into a BPSK modulator with levels { √ √ }. The initial

energy level is chosen to give an SINR of 0 dB. Once a predetermined confidence value for is

earned from the simulating at that SINR level, is changed to obtain a higher SINR, and the

process is repeated to get the curve.

For each SINR level, the following is done to obtain the :

 Produce a continuous stream of bits from the three binary sources.

 Encode the bits and modulate them.

 Combine the relative output from each node, and add AWGN to it based on the chosen

 and to get the desired SINR. This simulates mixing the signals in the air at the

relay.

 The received signal is then decoded in the received node. A decoding length of 900 bits is

used which means that a batch of 900 bits is decoded at a time. The iterative decoding

algorithm is run 20 times before making a decoding decision.

Figure 57 shows the curve for the when simulating the collaborative turbo based solution at

node 3 when compared to the uncoded solution:

85

Figure 57: Simulated BER performance of Turbo based solution

The error floor obtained are lower than 10
-5

, which is significantly lower than that of the RSC

based solution explored in the previous section. That is even more impressive considering the

fact that the turbo solution uses codes of constraint length of 4, which is lower than that used in

the simulation of the RSC code. Figure 58 compares the performance of the RSC code with

constraint length 7, and the turbo code with constraint length 4.

86

Figure 58: Comparison in BER performance between Turbo and RSC based solutions

From the plot above, it is observed that the performance of the RSC solution is ever slightly

better at low SNR due to the fact that it is using a significantly higher constraint length.

However, the turbo solution with constraint length of only 4 is far superior at high SNR with its

significantly lower error floor. It is worth mentioning here that the exact error floor of the turbo

solution couldn’t be shown in the plots due to a limitation of the simulation itself.

In conclusion, nesting turbo codes to solve the Y-Channel-Relay with ANC is superior than

using RSC codes. A hardware decoder would be able to handle lengthier turbo encoders with

larger constraint lengths, and puncturing to obtain a practical solution that virtually eliminates

the error floor problem, and at the same time provides very good performance at low SNR.

87

3.3. Collaborative Algebraic Linear Block Codes Solution

While the proposed solutions based on nested codes in sections 3.1 and 3.2 are practical, they use

low rate codes. Thus, making them inferior to solutions based on raptor codes [6] and lattice

codes [4].

The Y-Channel-Relay problem can be looked at algebraically using linear codes. Linear block

codes such as Hamming Codes, BCH codes, and LDPC codes encode a block of information bits

by adding parity bits that can be looked at as simple linear algebraic relationships. On the other

hand, erasures introduced from network coding can also be looked at as linear correlation

between the bit of the first and second senders. If we assume we have two binary sources

 { } and

 { }, and that

 . The outcome of will be one of the

following:

 

 

 

In this section, we will introduce a novel algebraic solution to the Y-Channel-Relay problem that

harness the power of linear correlation by using linearly independent block codes at each sender.

To explain this idea, let’s consider a simple example. Assume that:

 Each sender in the Y-Channel-Relay problem system shown in Figure 14 uses a unique

linearly independent (7,4) Hamming code (Figure 59).

 Node 1’s message bits are denoted with , where are Node 1’s

information bits, and are Node 1’s parity bits. Similarly, Node 2’s bits are

denoted with , and Node 3’s bits are denoted with .

 Node 1, Node 2, and Node 3 transmit at the same power, and are equi-probable binary

sources. They transmit at the following levels respectively:

o
 { }

88

o
 { }

o
 { }

 The signal received at the relay when fading is not taken into consideration and assuming

we have an AWGN channel would be:

o

Figure 59: Bubble notation for the Collaborative Hamming Code encoder used in each terminal

Figure 59 shows the bubble notation [24] for the encoders used at each terminal. They translate

to the following linear relations:

 (3.17)

 (3.18)

 (3.19)

 (3.20)

 (3.21)

 (3.22)

89

 (3.23)

 (3.24)

 (3.25)

The table below shows the mapping between the 16 possible inputs at each sender, and their

corresponding codeword.

Table 16: Encoding table for collaborative linear block code solution example

Info bits (k=4) Node 1 message Node 2 message Node 3 message

0000 0000 000 0000 000 0000 000

0001 0001 011 0001 101 0001 101

0010 0010 101 0010 111 0010 110

0011 0011 110 0011 010 0011 011

0100 0100 111 0100 110 0100 011

0101 0101 100 0101 011 0101 110

0110 0110 010 0110 001 0110 101

0111 0111 001 0111 100 0111 000

1000 1000 110 1000 011 1000 111

1001 1001 101 1001 110 1001 010

1010 1010 011 1010 100 1010 001

1011 1011 000 1011 001 1011 100

1100 1100 001 1100 101 1100 100

1101 1101 010 1101 000 1101 001

1110 1110 100 1110 010 1110 010

1111 1111 111 1111 111 1111 111

The following can be concluded from the latter codebook; the used block code, without taking

into consideration noise in the channel, can separate the combined signal successfully given that

the number of erasures in the received codeword is less or equal to 6 erasures. That is because

the number of linearly independent parity bits, and hence the number of orthogonal linear

relationships, is equal to six at each receiving node, the code can solve for up to six variables (six

erasures).

3.3.1. The Decoding Process

Having linearly independent BCH/linear block codes when using ANC in Y-Channel-Relay

problems lead to more redundancy and better error correction capability since the code won’t

90

only identify erasure bit positions and guess the original bit values, but also detect and correct bit

errors.

To give a better understanding of how this coding scheme helps in signal separation, a concrete

example is given without taking noise into consideration. Assume that each node sends the

following:

Table 17: Node 1 message

 Info bits Parity bits

Node 1 msg (binary) 0 0 1 1 1 1 0

Node 1 msg (sent signal)

Table 18: Node 2 message

 Info bits Parity bits

Node 2 msg (binary) 1 1 0 0 1 0 1

Node 2 msg (sent signal)

Table 19: Node 3 message

 Info bits Parity bits

Node 3 msg (binary) 1 0 0 0 1 1 1

Node 3 msg (sent signal)

The relay will receive the following mixed signal:

Table 20: Received mixed signal at relay

 Info bits Parity bits

Received signal at relay

Since fading and noise are not taken into consideration in this example, each node will receive

the same mixed signal when the relay forwards the signal. In the following sub-sections, the

decoding and signal separation process for erasures.

3.3.1.1. Signal Separation at Node 1

After receiving the mixed signal, Node 1 will deduct its message and end up with a combined

signal that is equal to with the following:

91

Table 21: Received mixed signal at Node 1 after deducting its message

 Info bits Parity bits

Combined signal () 0

We can simply show that:

When ()  we have an erasure

When () 

When () 

Thus, can be reduced as follows:

Table 22: Initial estimation of Node 2 message at Node 1

 Info bits Parity bits

 (signal) 0
 (binary) 1 e 0 0 1 e 1

Table 23: Initial estimation of Node 3 message at Node 1

 Info bits Parity bits

 (signal) 0
 (binary) 1 e 0 0 1 e 1

Where e stands for erasure.

We can note that the total number of erased bits is four bits (two bits per node). Thus, we need 4

orthogonal/independent linear equations to find the original values of the erased bits. The

following are binary linear equations that we can conclude from the combined signal:

 (3.26)

92

 (3.27)

 (3.28)

 (3.29)

 (3.30)

 (3.31)

 (3.32)

 (3.33)

 (3.34)

 (3.35)

 (3.36)

 (3.37)

 (3.38)

It is good to mention that the first six equations are taken from the code itself, the next two

equations are based on the fact that an erased bit means that the original combined binary bits are

different. The equations can be reduced further to the following:

 (3.39)

 (3.40)

 (3.41)

 (3.42)

And thus:

 (3.43)

 (3.44)

 (3.45)

 (3.46)

And the decoded messages at Node 1 are:

93

Table 24: Node 2 decoded message at Node 1

 Info bits Parity bits

 (decoded-binary) 1 1 0 0 1 0 1

Table 25: Node 3 decoded message at Node 1

 Info bits Parity bits

 (decoded-binary) 1 0 0 0 1 1 1

3.3.1.2. Signal Separation at Node 2

After receiving the mixed signal, Node 2 will deduct its message and end up with a combined

signal that is equal to with the following:

Table 26: Received mixed signal at Node 2 after deducting its message

 Info bits Parity bits

Combined signal () 0

We can simply show that:

When ()  we have an erasure

When () 

When () 

Thus, can be reduced as follows:

Table 27: Initial estimation of Node 1 message at Node 2

 Info bits Parity bits

 (signal) 0
 (binary) e 0 e e 1 1 e

94

Table 28: Initial estimation of Node 3 message at Node 2

 Info bits Parity bits

 (signal) 0
 (binary) e 0 e e 1 1 e

Where e stands for erasure.

We can note that the total number of erased bits is eight bits (four bits per node). Thus, we need

8 orthogonal/independent linear equations to find the original values of the erased bits. The

following are binary linear equations that we can conclude from the combined signal:

 (3.47)

 (3.48)

 (3.49)

 (3.50)

 (3.51)

 (3.52)

 (3.53)

 (3.54)

 (3.55)

 (3.56)

 (3.57)

 (3.58)

 (3.59)

It is good to mention that the first six equations are taken from the code itself, the next four

equations are based on the fact that an erased bit means that the original combined binary bits are

different. The equations can be reduced further to the following:

 (3.60)

 (3.61)

95

 (3.62)

 (3.63)

 (3.64)

 (3.65)

 (3.66)

 (3.67)

 (3.68)

 (3.69)

And by substituting (7-10) in (4-6), we will end up with:

 (3.70)

 (3.71)

 (3.72)

 (3.73)

 (3.74)

 (3.75)

The latter equations can be easily solved to reach the following result:

 (3.76)

 (3.77)

 (3.78)

 (3.79)

 (3.80)

 (3.81)

 (3.82)

 (3.83)

And the decoded messages at Node 2 are:

96

Table 29: Node 1 decoded message at Node 2

 Info bits Parity bits

 (decoded-binary) 0 0 1 1 1 1 0

Table 30: Node 3 decoded message at Node 2

 Info bits Parity bits

 (decoded-binary) 1 0 0 0 1 1 1

3.3.1.3. Signal Separation at Node 3

After receiving the mixed signal, Node 3 will deduct its message and end up with a combined

signal that is equal to with the following:

Table 31: The recieved mixed signal at node 3 after deducting its message

 Info bits Parity bits

Combined signal () 0

We can simply show that:

When ()  we have an erasure

When () 

When () 

Thus, can be reduced as follows:

Table 32: Initial estimation of Node 1 message at Node 3

 Info bits Parity bits

 (signal) 0
 (binary) e e e e 1 e e

97

Table 33: Initial estimation of Node 2 message at Node 3

 Info bits Parity bits

 (signal) 0
 (binary) e e e e 1 e e

Where e stands for erasure.

We can note that the total number of erased bits is twelve bits (six bits per node). Thus, we need

12 orthogonal/independent linear equations to find the original values of the erased bits. The

following are binary linear equations that we can conclude from the combined signal:

 (3.84)

 (3.85)

 (3.86)

 (3.87)

 (3.88)

 (3.89)

 (3.90)

 (3.91)

 (3.92)

 (3.93)

 (3.94)

 (3.95)

 (3.96)

It is good to mention that the first six equations are taken from the code itself, the next seven

equations are based on the fact that an erased bit means that the original combined binary bits are

different. The equations can be reduced further to the following:

98

 (3.97)

 (3.98)

 (3.99)

 (3.100)

 (3.101)

 (3.102)

 (3.103)

 (3.104)

 (3.105)

 (3.106)

 (3.107)

 (3.108)

And by substituting (7-12) in (4-6), we will end up with:

 (3.109)

 (3.110)

 (3.111)

 (3.112)

 (3.113)

 (3.114)

The latter equations can be easily solved to reach the following result:

 (3.115)

 (3.116)

 (3.117)

 (3.118)

 (3.119)

 (3.120)

99

 (3.121)

 (3.122)

 (3.123)

 (3.124)

 (3.125)

 (3.126)

And the decoded messages at Node 3 are:

Table 34: Node 1 decoded message at Node 3

 Info bits Parity bits

 (decoded-binary) 0 0 1 1 1 1 0

Table 35: Node 2 decoded message at Node 3

 Info bits Parity bits

 (decoded-binary) 1 1 0 0 1 0 1

As seen from this example, we successfully retrieved the messages from the other two senders by

solving the linear system of equations that consists of parity relationships that correlate the bits

of one sender and erasure relations that correlate bits of one sender with the others. The

performance at decoder 1 is slightly lower than that of decoder 2 and 3, and is only able to

decode up to 5 erasures. The encoders used in this example were chosen for the simplicity of

their visual representation using bubble notation. In the following section, we will use optimal

encoder/decoder design that guarantees optimal performance for solving erasures all nodes.

3.3.2. Algorithm for Decoding Using Array Manipulation

In this section, we will look at how we can decode using simple matrix manipulation and

algebraic method to decoder at each receiver. Computer simulation results presented later on in

100

this chapter use this algorithm. Let’s first look at the generator matrices uses at each sender used

in this example:

 [

] (3.127)

 [

] (3.128)

 [

] (3.129)

To encode, each sender uses its generator matrix to produce a codeword as follows:

 ⃗⃗ (3.130)

Let’s consider the same example discussed in the previous section where that the same

codewords were generated. I.e. [], [] and

 [].

3.3.2.1. Decoding at Node 1

From the generator matrices in the previous section, the decoder knows the following:

 (3.131)

 (3.132)

 (3.133)

This is translated to the following matrix notation:

101

 [

]

[

]

 [

] (3.134)

And,

 (3.135)

 (3.136)

 (3.137)

Which translates to the following matrix notation:

 [

]

[

]

 [

] (3.138)

Since
 , after demodulating the signal, and subtracting its own message, Node

1 ends up with the following erasure pattern:

 [] (3.139)

From this, the decoder knows that:

 (3.140)

 (3.141)

 (3.142)

 (3.143)

102

 (3.144)

 (3.145)

 (3.146)

And thereby, we can rewrite the matrix relation in equation (3.138) can be rewritten as follows:

 [

]

[

]

 [

] (3.147)

Then the decoder merges the matrices in (3.134) & (3.147):

[

]

[

]

[

]

 (3.148)

The decoder, then, solves the system of equations of linear equations using matrix manipulation

by first getting the upper triangle conversion:

[

]

[

]

[

]

 (3.149)

103

After that, the decoder manipulates the matrix to get a mostly diagonal matrix:

[

]

[

]

[

]

 (3.150)

Then, the decoder traverses the rows of the matrix twice; in the first, it looks for rows that has

only one unknown, solves for it, and stores the guessed bit in the erasure pattern. In our example,

we can see that row three has one unknown (). After solving for , the error pattern will be

 [] Now we have at most one unknown in each row of the matrix. The decoder

traverses the matrix once more and solves for all the unknowns, and gets

[]. Finally, the decoder uses this information to get [].

3.3.2.1. Decoding at Node 2

The same procedure is followed in Node 2. The decoder knows the following:

 (3.151)

 (3.152)

 (3.153)

This is translated to the following matrix notation:

 [

]

[

]

 [

] (3.154)

104

And,

 (3.155)

 (3.156)

 (3.157)

Which translates to the following matrix notation:

 [

]

[

]

 [

] (3.158)

Since
 , after demodulating the signal, and subtracting its own message, Node

1 ends up with the following erasure pattern:

 [] (3.159)

And thereby, we can rewrite the matrix relation in equation (3.158) can be rewritten as follows:

 [

]

[

]

 [

] (3.160)

Then the decoder merges the matrices in (3.154) & (3.160):

105

[

]

[

]

[

]

 (3.161)

The decoder, then, solves the system of equations of linear equations using matrix manipulation

by getting mostly diagonal matrix:

[

]

[

]

[

]

 (3.162)

Then, the decoder traverses the rows of the matrix twice and solves for erasures to get

 []. Finally, the decoder uses this information to get [].

3.3.2.1. Decoding at Node 3

The same procedure is followed at Node 3. The decoder knows the following:

 (3.163)

 (3.164)

 (3.165)

This is translated to the following matrix notation:

106

 [

]

[

]

 [

] (3.166)

And,

 (3.167)

 (3.168)

 (3.169)

This is translated to the following matrix notation:

 [

]

[

]

 [

] (3.170)

Since
 , after demodulating the signal, and subtracting its own message, Node

1 ends up with the following erasure pattern:

 [] (3.171)

And thereby, we can rewrite the matrix relation in equation (3.171) can be rewritten as follows:

107

 [

]

[

]

 [

] (3.172)

Then the decoder merges the matrices in (3.166) & (3.172):

[

]

[

]

[

]

 (3.173)

The decoder, then, solves the system of equations of linear equations using matrix manipulation

by getting mostly diagonal matrix:

[

]

[

]

[

]

 (3.174)

Then, the decoder traverses the rows of the matrix twice and solves for erasures to get

 []. Finally, the decoder uses this information to get [].

3.3.3. Algorithm for Decoding Using Table Lookup

Since there is a one to one relationship between the received erasure pattern at each receiver and

the sent codewords, we can decode using lookup tables. The lookup tables are shown in Table

36, Table 37 and Table 38 for Node 1, Node 2 and Node 3 respectively. If we consider the same

example in section 3.3.2, the decoded codwords at each receiver would be:

108

 Node 1: Erasure pattern is []:

o Decoded Node 2 message: 1000001

o Decoded Node 3 message: 0101110

 Node 2: Erasure pattern is []:

o Decoded Node 1 message: 0011110

o Decoded Node 3 message: 0101110

 Node 3: Erasure pattern is []:

o Decoded Node 1 message: 0011110

o Decoded Node 2 message: 1000001

Table 36: Decoding lookup table at Node 1
Node 2 Info.

Seq.

Node 3 Info.

Seq.

Erasure

Pattern

Node 2

Codeword

Node 3

Codeword

Num of erased

bits

Decodable

Sequences with number of erasures equal to 0

0 (0000) 0 (0000) _______ 0000000 0000000 0 yes

15 (1111) 15 (1111) _______ 1111111 1111111 0 yes

Sequences with number of erasures equal to 1

1 (0001) 1 (0001) _____e_ 0001111 0001101 1 yes

2 (0010) 2 (0010) ______e 0010111 0010110 1 yes

3 (0011) 7 (0111) _e_____ 0011000 0111000 1 yes

4 (0100) 5 (0101) ___e___ 0100110 0101110 1 yes

5 (0101) 13 (1101) e______ 0101001 1101001 1 yes

6 (0110) 6 (0110) ____e__ 0110001 0110101 1 yes

7 (0111) 5 (0101) __e____ 0111110 0101110 1 yes

8 (1000) 10 (1010) __e____ 1000001 1010001 1 yes

9 (1001) 9 (1001) ____e__ 1001110 1001010 1 yes

10 (1010) 2 (0010) e______ 1010110 0010110 1 yes

11 (1011) 10 (1010) ___e___ 1011001 1010001 1 yes

12 (1100) 8 (1000) _e_____ 1100111 1000111 1 yes

13 (1101) 13 (1101) ______e 1101000 1101001 1 yes

14 (1110) 14 (1110) _____e_ 1110000 1110010 1 yes

Sequences with number of erasures equal to 2

1 (0001) 3 (0011) __e_e__ 0001111 0011011 2 yes

1 (0001) 5 (0101) _e____e 0001111 0101110 2 yes

1 (0001) 8 (1000) e__e___ 0001111 1000111 2 yes

2 (0010) 3 (0011) ___ee__ 0010111 0011011 2 yes

2 (0010) 6 (0110) _e___e_ 0010111 0110101 2 yes

2 (0010) 8 (1000) e_e____ 0010111 1000111 2 yes

3 (0011) 0 (0000) __ee___ 0011000 0000000 2 yes

3 (0011) 3 (0011) _____ee 0011000 0011011 2 yes

3 (0011) 11 (1011) e___e__ 0011000 1011100 2 yes

4 (0100) 2 (0010) _ee____ 0100110 0010110 2 yes

4 (0100) 4 (0100) ____e_e 0100110 0100011 2 yes

4 (0100) 12 (1100) e____e_ 0100110 1100100 2 yes

5 (0101) 1 (0001) _e__e__ 0101001 0001101 2 yes

5 (0101) 4 (0100) ___e_e_ 0101001 0100011 2 yes

5 (0101) 7 (0111) __e___e 0101001 0111000 2 yes

6 (0110) 4 (0100) __e__e_ 0110001 0100011 2 yes

6 (0110) 7 (0111) ___e__e 0110001 0111000 2 yes

6 (0110) 10 (1010) ee_____ 0110001 1010001 2 yes

7 (0111) 2 (0010) _e_e___ 0111110 0010110 2 yes

7 (0111) 7 (0111) ____ee_ 0111110 0111000 2 yes

7 (0111) 15 (1111) e_____e 0111110 1111111 2 yes

8 (1000) 0 (0000) e_____e 1000001 0000000 2 yes

8 (1000) 8 (1000) ____ee_ 1000001 1000111 2 yes

109

8 (1000) 13 (1101) _e_e___ 1000001 1101001 2 yes

9 (1001) 5 (0101) ee_____ 1001110 0101110 2 yes

9 (1001) 8 (1000) ___e__e 1001110 1000111 2 yes

9 (1001) 11 (1011) __e__e_ 1001110 1011100 2 yes

10 (1010) 8 (1000) __e___e 1010110 1000111 2 yes

10 (1010) 11 (1011) ___e_e_ 1010110 1011100 2 yes

10 (1010) 14 (1110) _e__e__ 1010110 1110010 2 yes

11 (1011) 3 (0011) e____e_ 1011001 0011011 2 yes

11 (1011) 11 (1011) ____e_e 1011001 1011100 2 yes

11 (1011) 13 (1101) _ee____ 1011001 1101001 2 yes

12 (1100) 4 (0100) e___e__ 1100111 0100011 2 yes

12 (1100) 12 (1100) _____ee 1100111 1100100 2 yes

12 (1100) 15 (1111) __ee___ 1100111 1111111 2 yes

13 (1101) 7 (0111) e_e____ 1101000 0111000 2 yes

13 (1101) 9 (1001) _e___e_ 1101000 1001010 2 yes

13 (1101) 12 (1100) ___ee__ 1101000 1100100 2 yes

14 (1110) 7 (0111) e__e___ 1110000 0111000 2 yes

14 (1110) 10 (1010) _e____e 1110000 1010001 2 yes

14 (1110) 12 (1100) __e_e__ 1110000 1100100 2 yes

Sequences with number of erasures equal to 3

0 (0000) 1 (0001) ___ee_e 0000000 0001101 3 yes

0 (0000) 2 (0010) __e_ee_ 0000000 0010110 3 yes

0 (0000) 4 (0100) _e___ee 0000000 0100011 3 yes

0 (0000) 7 (0111) _eee___ 0000000 0111000 3 yes

0 (0000) 9 (1001) e__e_e_ 0000000 1001010 3 yes

0 (0000) 10 (1010) e_e___e 0000000 1010001 3 yes

0 (0000) 12 (1100) ee__e__ 0000000 1100100 3 yes

1 (0001) 2 (0010) __ee__e 0001111 0010110 3 yes

1 (0001) 4 (0100) _e_ee__ 0001111 0100011 3 yes

1 (0001) 9 (1001) e___e_e 0001111 1001010 3 yes

1 (0001) 15 (1111) eee____ 0001111 1111111 3 yes

2 (0010) 1 (0001) __ee_e_ 0010111 0001101 3 yes

2 (0010) 4 (0100) _ee_e__ 0010111 0100011 3 yes

2 (0010) 10 (1010) e___ee_ 0010111 1010001 3 yes

2 (0010) 15 (1111) ee_e___ 0010111 1111111 3 yes

3 (0011) 1 (0001) __e_e_e 0011000 0001101 3 yes

3 (0011) 2 (0010) ___eee_ 0011000 0010110 3 yes

3 (0011) 9 (1001) e_e__e_ 0011000 1001010 3 yes

3 (0011) 10 (1010) e__e__e 0011000 1010001 3 yes

4 (0100) 0 (0000) _e__ee_ 0100110 0000000 3 yes

4 (0100) 6 (0110) __e__ee 0100110 0110101 3 yes

4 (0100) 8 (1000) ee____e 0100110 1000111 3 yes

4 (0100) 14 (1110) e_e_e__ 0100110 1110010 3 yes

5 (0101) 0 (0000) _e_e__e 0101001 0000000 3 yes

5 (0101) 3 (0011) _ee__e_ 0101001 0011011 3 yes

5 (0101) 5 (0101) ____eee 0101001 0101110 3 yes

5 (0101) 6 (0110) __eee__ 0101001 0110101 3 yes

6 (0110) 0 (0000) _ee___e 0110001 0000000 3 yes

6 (0110) 3 (0011) _e_e_e_ 0110001 0011011 3 yes

6 (0110) 13 (1101) e_ee___ 0110001 1101001 3 yes

6 (0110) 14 (1110) e____ee 0110001 1110010 3 yes

7 (0111) 3 (0011) _e__e_e 0111110 0011011 3 yes

7 (0111) 6 (0110) ___e_ee 0111110 0110101 3 yes

7 (0111) 11 (1011) ee___e_ 0111110 1011100 3 yes

7 (0111) 14 (1110) e__ee__ 0111110 1110010 3 yes

8 (1000) 1 (0001) e__ee__ 1000001 0001101 3 yes

8 (1000) 4 (0100) ee___e_ 1000001 0100011 3 yes

8 (1000) 9 (1001) ___e_ee 1000001 1001010 3 yes

8 (1000) 12 (1100) _e__e_e 1000001 1100100 3 yes

9 (1001) 1 (0001) e____ee 1001110 0001101 3 yes

9 (1001) 2 (0010) e_ee___ 1001110 0010110 3 yes

9 (1001) 12 (1100) _e_e_e_ 1001110 1100100 3 yes

9 (1001) 15 (1111) _ee___e 1001110 1111111 3 yes

10 (1010) 9 (1001) __eee__ 1010110 1001010 3 yes

10 (1010) 10 (1010) ____eee 1010110 1010001 3 yes

10 (1010) 12 (1100) _ee__e_ 1010110 1100100 3 yes

10 (1010) 15 (1111) _e_e__e 1010110 1111111 3 yes

11 (1011) 1 (0001) e_e_e__ 1011001 0001101 3 yes

110

11 (1011) 7 (0111) ee____e 1011001 0111000 3 yes

11 (1011) 9 (1001) __e__ee 1011001 1001010 3 yes

11 (1011) 15 (1111) _e__ee_ 1011001 1111111 3 yes

12 (1100) 5 (0101) e__e__e 1100111 0101110 3 yes

12 (1100) 6 (0110) e_e__e_ 1100111 0110101 3 yes

12 (1100) 13 (1101) ___eee_ 1100111 1101001 3 yes

12 (1100) 14 (1110) __e_e_e 1100111 1110010 3 yes

13 (1101) 0 (0000) ee_e___ 1101000 0000000 3 yes

13 (1101) 5 (0101) e___ee_ 1101000 0101110 3 yes

13 (1101) 11 (1011) _ee_e__ 1101000 1011100 3 yes

13 (1101) 14 (1110) __ee_e_ 1101000 1110010 3 yes

14 (1110) 0 (0000) eee____ 1110000 0000000 3 yes

14 (1110) 6 (0110) e___e_e 1110000 0110101 3 yes

14 (1110) 11 (1011) _e_ee__ 1110000 1011100 3 yes

14 (1110) 13 (1101) __ee__e 1110000 1101001 3 yes

15 (1111) 3 (0011) ee__e__ 1111111 0011011 3 yes

15 (1111) 5 (0101) e_e___e 1111111 0101110 3 yes

15 (1111) 6 (0110) e__e_e_ 1111111 0110101 3 yes

15 (1111) 8 (1000) _eee___ 1111111 1000111 3 yes

15 (1111) 11 (1011) _e___ee 1111111 1011100 3 yes

15 (1111) 13 (1101) __e_ee_ 1111111 1101001 3 yes

15 (1111) 14 (1110) ___ee_e 1111111 1110010 3 yes

Sequences with number of erasures equal to 4

0 (0000) 3 (0011) __ee_ee 0000000 0011011 4 yes

0 (0000) 5 (0101) _e_eee_ 0000000 0101110 4 yes

0 (0000) 6 (0110) _ee_e_e 0000000 0110101 4 yes

0 (0000) 8 (1000) e___eee 0000000 1000111 4 yes

0 (0000) 11 (1011) e_eee__ 0000000 1011100 4 yes

0 (0000) 13 (1101) ee_e__e 0000000 1101001 4 yes

0 (0000) 14 (1110) eee__e_ 0000000 1110010 4 yes

1 (0001) 0 (0000) ___eeee 0001111 0000000 4 yes

1 (0001) 6 (0110) _eee_e_ 0001111 0110101 4 yes

1 (0001) 11 (1011) e_e__ee 0001111 1011100 4 yes

1 (0001) 13 (1101) ee__ee_ 0001111 1101001 4 yes

2 (0010) 0 (0000) __e_eee 0010111 0000000 4 yes

2 (0010) 5 (0101) _eee__e 0010111 0101110 4 yes

2 (0010) 11 (1011) e__e_ee 0010111 1011100 4 yes

2 (0010) 14 (1110) ee__e_e 0010111 1110010 4 yes

3 (0011) 5 (0101) _ee_ee_ 0011000 0101110 4 yes

3 (0011) 6 (0110) _e_ee_e 0011000 0110101 4 yes

3 (0011) 13 (1101) eee___e 0011000 1101001 4 yes

3 (0011) 14 (1110) ee_e_e_ 0011000 1110010 4 yes

4 (0100) 1 (0001) _e_e_ee 0100110 0001101 4 yes

4 (0100) 7 (0111) __eeee_ 0100110 0111000 4 yes

4 (0100) 9 (1001) ee_ee__ 0100110 1001010 4 yes

4 (0100) 15 (1111) e_ee__e 0100110 1111111 4 yes

5 (0101) 9 (1001) ee___ee 0101001 1001010 4 yes

5 (0101) 10 (1010) eeee___ 0101001 1010001 4 yes

5 (0101) 12 (1100) e__ee_e 0101001 1100100 4 yes

5 (0101) 15 (1111) e_e_ee_ 0101001 1111111 4 yes

6 (0110) 1 (0001) _eeee__ 0110001 0001101 4 yes

6 (0110) 2 (0010) _e__eee 0110001 0010110 4 yes

6 (0110) 12 (1100) e_e_e_e 0110001 1100100 4 yes

6 (0110) 15 (1111) e__eee_ 0110001 1111111 4 yes

7 (0111) 1 (0001) _ee__ee 0111110 0001101 4 yes

7 (0111) 4 (0100) __eee_e 0111110 0100011 4 yes

7 (0111) 9 (1001) eee_e__ 0111110 1001010 4 yes

7 (0111) 12 (1100) e_ee_e_ 0111110 1100100 4 yes

8 (1000) 3 (0011) e_ee_e_ 1000001 0011011 4 yes

8 (1000) 6 (0110) eee_e__ 1000001 0110101 4 yes

8 (1000) 11 (1011) __eee_e 1000001 1011100 4 yes

8 (1000) 14 (1110) _ee__ee 1000001 1110010 4 yes

9 (1001) 0 (0000) e__eee_ 1001110 0000000 4 yes

9 (1001) 3 (0011) e_e_e_e 1001110 0011011 4 yes

9 (1001) 13 (1101) _e__eee 1001110 1101001 4 yes

9 (1001) 14 (1110) _eeee__ 1001110 1110010 4 yes

10 (1010) 0 (0000) e_e_ee_ 1010110 0000000 4 yes

10 (1010) 3 (0011) e__ee_e 1010110 0011011 4 yes

111

10 (1010) 5 (0101) eeee___ 1010110 0101110 4 yes

10 (1010) 6 (0110) ee___ee 1010110 0110101 4 yes

11 (1011) 0 (0000) e_ee__e 1011001 0000000 4 yes

11 (1011) 6 (0110) ee_ee__ 1011001 0110101 4 yes

11 (1011) 8 (1000) __eeee_ 1011001 1000111 4 yes

11 (1011) 14 (1110) _e_e_ee 1011001 1110010 4 yes

12 (1100) 1 (0001) ee_e_e_ 1100111 0001101 4 yes

12 (1100) 2 (0010) eee___e 1100111 0010110 4 yes

12 (1100) 9 (1001) _e_ee_e 1100111 1001010 4 yes

12 (1100) 10 (1010) _ee_ee_ 1100111 1010001 4 yes

13 (1101) 1 (0001) ee__e_e 1101000 0001101 4 yes

13 (1101) 4 (0100) e__e_ee 1101000 0100011 4 yes

13 (1101) 10 (1010) _eee__e 1101000 1010001 4 yes

13 (1101) 15 (1111) __e_eee 1101000 1111111 4 yes

14 (1110) 2 (0010) ee__ee_ 1110000 0010110 4 yes

14 (1110) 4 (0100) e_e__ee 1110000 0100011 4 yes

14 (1110) 9 (1001) _eee_e_ 1110000 1001010 4 yes

14 (1110) 15 (1111) ___eeee 1110000 1111111 4 yes

15 (1111) 1 (0001) eee__e_ 1111111 0001101 4 yes

15 (1111) 2 (0010) ee_e__e 1111111 0010110 4 yes

15 (1111) 4 (0100) e_eee__ 1111111 0100011 4 yes

15 (1111) 7 (0111) e___eee 1111111 0111000 4 yes

15 (1111) 9 (1001) _ee_e_e 1111111 1001010 4 yes

15 (1111) 10 (1010) _e_eee_ 1111111 1010001 4 yes

15 (1111) 12 (1100) __ee_ee 1111111 1100100 4 yes

Sequences with number of erasures equal to 5

1 (0001) 7 (0111) _ee_eee 0001111 0111000 5 yes

1 (0001) 10 (1010) e_eeee_ 0001111 1010001 5 yes

1 (0001) 12 (1100) ee_e_ee 0001111 1100100 5 yes

2 (0010) 7 (0111) _e_eeee 0010111 0111000 5 yes

2 (0010) 9 (1001) e_eee_e 0010111 1001010 5 yes

2 (0010) 12 (1100) eee__ee 0010111 1100100 5 yes

3 (0011) 4 (0100) _eee_ee 0011000 0100011 5 yes

3 (0011) 12 (1100) eeeee__ 0011000 1100100 5 yes

3 (0011) 15 (1111) ee__eee 0011000 1111111 5 yes

4 (0100) 3 (0011) _eeee_e 0100110 0011011 5 yes

4 (0100) 11 (1011) eeee_e_ 0100110 1011100 5 yes

4 (0100) 13 (1101) e__eeee 0100110 1101001 5 yes

5 (0101) 8 (1000) ee_eee_ 0101001 1000111 5 yes

5 (0101) 11 (1011) eee_e_e 0101001 1011100 5 yes

5 (0101) 14 (1110) e_ee_ee 0101001 1110010 5 yes

6 (0110) 5 (0101) __eeeee 0110001 0101110 5 yes

6 (0110) 8 (1000) eee_ee_ 0110001 1000111 5 yes

6 (0110) 11 (1011) ee_ee_e 0110001 1011100 5 yes

7 (0111) 0 (0000) _eeeee_ 0111110 0000000 5 yes

7 (0111) 8 (1000) eeee__e 0111110 1000111 5 yes

7 (0111) 13 (1101) e_e_eee 0111110 1101001 5 yes

8 (1000) 2 (0010) e_e_eee 1000001 0010110 5 yes

8 (1000) 7 (0111) eeee__e 1000001 0111000 5 yes

8 (1000) 15 (1111) _eeeee_ 1000001 1111111 5 yes

9 (1001) 4 (0100) ee_ee_e 1001110 0100011 5 yes

9 (1001) 7 (0111) eee_ee_ 1001110 0111000 5 yes

9 (1001) 10 (1010) __eeeee 1001110 1010001 5 yes

10 (1010) 1 (0001) e_ee_ee 1010110 0001101 5 yes

10 (1010) 4 (0100) eee_e_e 1010110 0100011 5 yes

10 (1010) 7 (0111) ee_eee_ 1010110 0111000 5 yes

11 (1011) 2 (0010) e__eeee 1011001 0010110 5 yes

11 (1011) 4 (0100) eeee_e_ 1011001 0100011 5 yes

11 (1011) 12 (1100) _eeee_e 1011001 1100100 5 yes

12 (1100) 0 (0000) ee__eee 1100111 0000000 5 yes

12 (1100) 3 (0011) eeeee__ 1100111 0011011 5 yes

12 (1100) 11 (1011) _eee_ee 1100111 1011100 5 yes

13 (1101) 3 (0011) eee__ee 1101000 0011011 5 yes

13 (1101) 6 (0110) e_eee_e 1101000 0110101 5 yes

13 (1101) 8 (1000) _e_eeee 1101000 1000111 5 yes

14 (1110) 3 (0011) ee_e_ee 1110000 0011011 5 yes

14 (1110) 5 (0101) e_eeee_ 1110000 0101110 5 yes

14 (1110) 8 (1000) _ee_eee 1110000 1000111 5 yes

112

Sequences with number of erasures equal to 6

1 (0001) 14 (1110) eeeee_e 0001111 1110010 6 yes

2 (0010) 13 (1101) eeeeee_ 0010111 1101001 6 yes

3 (0011) 8 (1000) e_eeeee 0011000 1000111 6 yes

4 (0100) 10 (1010) eee_eee 0100110 1010001 6 yes

5 (0101) 2 (0010) _eeeeee 0101001 0010110 6 yes

6 (0110) 9 (1001) eeee_ee 0110001 1001010 6 yes

7 (0111) 10 (1010) ee_eeee 0111110 1010001 6 yes

8 (1000) 5 (0101) ee_eeee 1000001 0101110 6 yes

9 (1001) 6 (0110) eeee_ee 1001110 0110101 6 yes

10 (1010) 13 (1101) _eeeeee 1010110 1101001 6 yes

11 (1011) 5 (0101) eee_eee 1011001 0101110 6 yes

12 (1100) 7 (0111) e_eeeee 1100111 0111000 6 yes

13 (1101) 2 (0010) eeeeee_ 1101000 0010110 6 yes

14 (1110) 1 (0001) eeeee_e 1110000 0001101 6 yes

Sequences with number of erasures equal to 7

0 (0000) 15 (1111) eeeeeee 0000000 1111111 7 no

15 (1111) 0 (0000) eeeeeee 1111111 0000000 7 no

Table 37: Decoding lookup table at Node 2
Node 1 Info.

Seq.

Node 3 Info.

Seq.

Erasure

Pattern

Node 1

Codeword

Node 3

Codeword

Num of

erased bits Decodable

Sequences with number of erasures equal to 0

0 (0000) 0 (0000) _______ 0000000 0000000 0 yes

15 (1111) 15 (1111) _______ 1111111 1111111 0 yes

Sequences with number of erasures equal to 1

1 (0001) 3 (0011) __e____ 0001011 0011011 1 yes

2 (0010) 6 (0110) _e_____ 0010101 0110101 1 yes

3 (0011) 2 (0010) ___e___ 0011110 0010110 1 yes

4 (0100) 4 (0100) ____e__ 0100111 0100011 1 yes

5 (0101) 5 (0101) _____e_ 0101100 0101110 1 yes

6 (0110) 14 (1110) e______ 0110010 1110010 1 yes

7 (0111) 7 (0111) ______e 0111001 0111000 1 yes

8 (1000) 8 (1000) ______e 1000110 1000111 1 yes

9 (1001) 1 (0001) e______ 1001101 0001101 1 yes

10 (1010) 10 (1010) _____e_ 1010011 1010001 1 yes

11 (1011) 11 (1011) ____e__ 1011000 1011100 1 yes

12 (1100) 13 (1101) ___e___ 1100001 1101001 1 yes

13 (1101) 9 (1001) _e_____ 1101010 1001010 1 yes

14 (1110) 12 (1100) __e____ 1110100 1100100 1 yes

Sequences with number of erasures equal to 2

1 (0001) 1 (0001) ____ee_ 0001011 0001101 2 yes

1 (0001) 4 (0100) _e_e___ 0001011 0100011 2 yes

1 (0001) 9 (1001) e_____e 0001011 1001010 2 yes

2 (0010) 1 (0001) __ee___ 0010101 0001101 2 yes

2 (0010) 2 (0010) _____ee 0010101 0010110 2 yes

2 (0010) 10 (1010) e___e__ 0010101 1010001 2 yes

3 (0011) 3 (0011) ____e_e 0011110 0011011 2 yes

3 (0011) 5 (0101) _ee____ 0011110 0101110 2 yes

3 (0011) 11 (1011) e____e_ 0011110 1011100 2 yes

4 (0100) 5 (0101) ___e__e 0100111 0101110 2 yes

4 (0100) 6 (0110) __e__e_ 0100111 0110101 2 yes

4 (0100) 8 (1000) ee_____ 0100111 1000111 2 yes

5 (0101) 1 (0001) _e____e 0101100 0001101 2 yes

5 (0101) 7 (0111) __e_e__ 0101100 0111000 2 yes

5 (0101) 12 (1100) e__e___ 0101100 1100100 2 yes

6 (0110) 2 (0010) _e__e__ 0110010 0010110 2 yes

6 (0110) 4 (0100) __e___e 0110010 0100011 2 yes

6 (0110) 7 (0111) ___e_e_ 0110010 0111000 2 yes

7 (0111) 3 (0011) _e___e_ 0111001 0011011 2 yes

113

7 (0111) 6 (0110) ___ee__ 0111001 0110101 2 yes

7 (0111) 13 (1101) e_e____ 0111001 1101001 2 yes

8 (1000) 2 (0010) e_e____ 1000110 0010110 2 yes

8 (1000) 9 (1001) ___ee__ 1000110 1001010 2 yes

8 (1000) 12 (1100) _e___e_ 1000110 1100100 2 yes

9 (1001) 8 (1000) ___e_e_ 1001101 1000111 2 yes

9 (1001) 11 (1011) __e___e 1001101 1011100 2 yes

9 (1001) 13 (1101) _e__e__ 1001101 1101001 2 yes

10 (1010) 3 (0011) e__e___ 1010011 0011011 2 yes

10 (1010) 8 (1000) __e_e__ 1010011 1000111 2 yes

10 (1010) 14 (1110) _e____e 1010011 1110010 2 yes

11 (1011) 7 (0111) ee_____ 1011000 0111000 2 yes

11 (1011) 9 (1001) __e__e_ 1011000 1001010 2 yes

11 (1011) 10 (1010) ___e__e 1011000 1010001 2 yes

12 (1100) 4 (0100) e____e_ 1100001 0100011 2 yes

12 (1100) 10 (1010) _ee____ 1100001 1010001 2 yes

12 (1100) 12 (1100) ____e_e 1100001 1100100 2 yes

13 (1101) 5 (0101) e___e__ 1101010 0101110 2 yes

13 (1101) 13 (1101) _____ee 1101010 1101001 2 yes

13 (1101) 14 (1110) __ee___ 1101010 1110010 2 yes

14 (1110) 6 (0110) e_____e 1110100 0110101 2 yes

14 (1110) 11 (1011) _e_e___ 1110100 1011100 2 yes

14 (1110) 14 (1110) ____ee_ 1110100 1110010 2 yes

Sequences with number of erasures equal to 3

0 (0000) 1 (0001) ___ee_e 0000000 0001101 3 yes

0 (0000) 2 (0010) __e_ee_ 0000000 0010110 3 yes

0 (0000) 4 (0100) _e___ee 0000000 0100011 3 yes

0 (0000) 7 (0111) _eee___ 0000000 0111000 3 yes

0 (0000) 9 (1001) e__e_e_ 0000000 1001010 3 yes

0 (0000) 10 (1010) e_e___e 0000000 1010001 3 yes

0 (0000) 12 (1100) ee__e__ 0000000 1100100 3 yes

1 (0001) 0 (0000) ___e_ee 0001011 0000000 3 yes

1 (0001) 5 (0101) _e__e_e 0001011 0101110 3 yes

1 (0001) 8 (1000) e__ee__ 0001011 1000111 3 yes

1 (0001) 13 (1101) ee___e_ 0001011 1101001 3 yes

2 (0010) 0 (0000) __e_e_e 0010101 0000000 3 yes

2 (0010) 3 (0011) ___eee_ 0010101 0011011 3 yes

2 (0010) 8 (1000) e_e__e_ 0010101 1000111 3 yes

2 (0010) 11 (1011) e__e__e 0010101 1011100 3 yes

3 (0011) 1 (0001) __e__ee 0011110 0001101 3 yes

3 (0011) 7 (0111) _e__ee_ 0011110 0111000 3 yes

3 (0011) 9 (1001) e_e_e__ 0011110 1001010 3 yes

3 (0011) 15 (1111) ee____e 0011110 1111111 3 yes

4 (0100) 1 (0001) _e_e_e_ 0100111 0001101 3 yes

4 (0100) 2 (0010) _ee___e 0100111 0010110 3 yes

4 (0100) 12 (1100) e____ee 0100111 1100100 3 yes

4 (0100) 15 (1111) e_ee___ 0100111 1111111 3 yes

5 (0101) 0 (0000) _e_ee__ 0101100 0000000 3 yes

5 (0101) 6 (0110) __ee__e 0101100 0110101 3 yes

5 (0101) 11 (1011) eee____ 0101100 1011100 3 yes

5 (0101) 13 (1101) e___e_e 0101100 1101001 3 yes

6 (0110) 0 (0000) _ee__e_ 0110010 0000000 3 yes

6 (0110) 3 (0011) _e_e__e 0110010 0011011 3 yes

6 (0110) 5 (0101) __eee__ 0110010 0101110 3 yes

6 (0110) 6 (0110) ____eee 0110010 0110101 3 yes

7 (0111) 1 (0001) _ee_e__ 0111001 0001101 3 yes

7 (0111) 4 (0100) __ee_e_ 0111001 0100011 3 yes

7 (0111) 10 (1010) ee_e___ 0111001 1010001 3 yes

7 (0111) 15 (1111) e___ee_ 0111001 1111111 3 yes

8 (1000) 0 (0000) e___ee_ 1000110 0000000 3 yes

8 (1000) 5 (0101) ee_e___ 1000110 0101110 3 yes

8 (1000) 11 (1011) __ee_e_ 1000110 1011100 3 yes

8 (1000) 14 (1110) _ee_e__ 1000110 1110010 3 yes

9 (1001) 9 (1001) ____eee 1001101 1001010 3 yes

114

9 (1001) 10 (1010) __eee__ 1001101 1010001 3 yes

9 (1001) 12 (1100) _e_e__e 1001101 1100100 3 yes

9 (1001) 15 (1111) _ee__e_ 1001101 1111111 3 yes

10 (1010) 2 (0010) e___e_e 1010011 0010110 3 yes

10 (1010) 4 (0100) eee____ 1010011 0100011 3 yes

10 (1010) 9 (1001) __ee__e 1010011 1001010 3 yes

10 (1010) 15 (1111) _e_ee__ 1010011 1111111 3 yes

11 (1011) 0 (0000) e_ee___ 1011000 0000000 3 yes

11 (1011) 3 (0011) e____ee 1011000 0011011 3 yes

11 (1011) 13 (1101) _ee___e 1011000 1101001 3 yes

11 (1011) 14 (1110) _e_e_e_ 1011000 1110010 3 yes

12 (1100) 0 (0000) ee____e 1100001 0000000 3 yes

12 (1100) 6 (0110) e_e_e__ 1100001 0110101 3 yes

12 (1100) 8 (1000) _e__ee_ 1100001 1000111 3 yes

12 (1100) 14 (1110) __e__ee 1100001 1110010 3 yes

13 (1101) 4 (0100) e__e__e 1101010 0100011 3 yes

13 (1101) 7 (0111) e_e__e_ 1101010 0111000 3 yes

13 (1101) 12 (1100) ___eee_ 1101010 1100100 3 yes

13 (1101) 15 (1111) __e_e_e 1101010 1111111 3 yes

14 (1110) 2 (0010) ee___e_ 1110100 0010110 3 yes

14 (1110) 7 (0111) e__ee__ 1110100 0111000 3 yes

14 (1110) 10 (1010) _e__e_e 1110100 1010001 3 yes

14 (1110) 15 (1111) ___e_ee 1110100 1111111 3 yes

15 (1111) 3 (0011) ee__e__ 1111111 0011011 3 yes

15 (1111) 5 (0101) e_e___e 1111111 0101110 3 yes

15 (1111) 6 (0110) e__e_e_ 1111111 0110101 3 yes

15 (1111) 8 (1000) _eee___ 1111111 1000111 3 yes

15 (1111) 11 (1011) _e___ee 1111111 1011100 3 yes

15 (1111) 13 (1101) __e_ee_ 1111111 1101001 3 yes

15 (1111) 14 (1110) ___ee_e 1111111 1110010 3 yes

Sequences with number of erasures equal to 4

0 (0000) 3 (0011) __ee_ee 0000000 0011011 4 yes

0 (0000) 5 (0101) _e_eee_ 0000000 0101110 4 yes

0 (0000) 6 (0110) _ee_e_e 0000000 0110101 4 yes

0 (0000) 8 (1000) e___eee 0000000 1000111 4 yes

0 (0000) 11 (1011) e_eee__ 0000000 1011100 4 yes

0 (0000) 13 (1101) ee_e__e 0000000 1101001 4 yes

0 (0000) 14 (1110) eee__e_ 0000000 1110010 4 yes

1 (0001) 2 (0010) __eee_e 0001011 0010110 4 yes

1 (0001) 7 (0111) _ee__ee 0001011 0111000 4 yes

1 (0001) 10 (1010) e_ee_e_ 0001011 1010001 4 yes

1 (0001) 15 (1111) eee_e__ 0001011 1111111 4 yes

2 (0010) 4 (0100) _ee_ee_ 0010101 0100011 4 yes

2 (0010) 7 (0111) _e_ee_e 0010101 0111000 4 yes

2 (0010) 12 (1100) eee___e 0010101 1100100 4 yes

2 (0010) 15 (1111) ee_e_e_ 0010101 1111111 4 yes

3 (0011) 0 (0000) __eeee_ 0011110 0000000 4 yes

3 (0011) 6 (0110) _e_e_ee 0011110 0110101 4 yes

3 (0011) 8 (1000) e_ee__e 0011110 1000111 4 yes

3 (0011) 14 (1110) ee_ee__ 0011110 1110010 4 yes

4 (0100) 0 (0000) _e__eee 0100111 0000000 4 yes

4 (0100) 3 (0011) _eeee__ 0100111 0011011 4 yes

4 (0100) 13 (1101) e__eee_ 0100111 1101001 4 yes

4 (0100) 14 (1110) e_e_e_e 0100111 1110010 4 yes

5 (0101) 2 (0010) _eee_e_ 0101100 0010110 4 yes

5 (0101) 4 (0100) ___eeee 0101100 0100011 4 yes

5 (0101) 9 (1001) ee__ee_ 0101100 1001010 4 yes

5 (0101) 15 (1111) e_e__ee 0101100 1111111 4 yes

6 (0110) 9 (1001) eeee___ 0110010 1001010 4 yes

6 (0110) 10 (1010) ee___ee 0110010 1010001 4 yes

6 (0110) 12 (1100) e_e_ee_ 0110010 1100100 4 yes

6 (0110) 15 (1111) e__ee_e 0110010 1111111 4 yes

7 (0111) 0 (0000) _eee__e 0111001 0000000 4 yes

7 (0111) 5 (0101) __e_eee 0111001 0101110 4 yes

115

7 (0111) 11 (1011) ee__e_e 0111001 1011100 4 yes

7 (0111) 14 (1110) e__e_ee 0111001 1110010 4 yes

8 (1000) 1 (0001) e__e_ee 1000110 0001101 4 yes

8 (1000) 4 (0100) ee__e_e 1000110 0100011 4 yes

8 (1000) 10 (1010) __e_eee 1000110 1010001 4 yes

8 (1000) 15 (1111) _eee__e 1000110 1111111 4 yes

9 (1001) 0 (0000) e__ee_e 1001101 0000000 4 yes

9 (1001) 3 (0011) e_e_ee_ 1001101 0011011 4 yes

9 (1001) 5 (0101) ee___ee 1001101 0101110 4 yes

9 (1001) 6 (0110) eeee___ 1001101 0110101 4 yes

10 (1010) 0 (0000) e_e__ee 1010011 0000000 4 yes

10 (1010) 6 (0110) ee__ee_ 1010011 0110101 4 yes

10 (1010) 11 (1011) ___eeee 1010011 1011100 4 yes

10 (1010) 13 (1101) _eee_e_ 1010011 1101001 4 yes

11 (1011) 1 (0001) e_e_e_e 1011000 0001101 4 yes

11 (1011) 2 (0010) e__eee_ 1011000 0010110 4 yes

11 (1011) 12 (1100) _eeee__ 1011000 1100100 4 yes

11 (1011) 15 (1111) _e__eee 1011000 1111111 4 yes

12 (1100) 1 (0001) ee_ee__ 1100001 0001101 4 yes

12 (1100) 7 (0111) e_ee__e 1100001 0111000 4 yes

12 (1100) 9 (1001) _e_e_ee 1100001 1001010 4 yes

12 (1100) 15 (1111) __eeee_ 1100001 1111111 4 yes

13 (1101) 0 (0000) ee_e_e_ 1101010 0000000 4 yes

13 (1101) 3 (0011) eee___e 1101010 0011011 4 yes

13 (1101) 8 (1000) _e_ee_e 1101010 1000111 4 yes

13 (1101) 11 (1011) _ee_ee_ 1101010 1011100 4 yes

14 (1110) 0 (0000) eee_e__ 1110100 0000000 4 yes

14 (1110) 5 (0101) e_ee_e_ 1110100 0101110 4 yes

14 (1110) 8 (1000) _ee__ee 1110100 1000111 4 yes

14 (1110) 13 (1101) __eee_e 1110100 1101001 4 yes

15 (1111) 1 (0001) eee__e_ 1111111 0001101 4 yes

15 (1111) 2 (0010) ee_e__e 1111111 0010110 4 yes

15 (1111) 4 (0100) e_eee__ 1111111 0100011 4 yes

15 (1111) 7 (0111) e___eee 1111111 0111000 4 yes

15 (1111) 9 (1001) _ee_e_e 1111111 1001010 4 yes

15 (1111) 10 (1010) _e_eee_ 1111111 1010001 4 yes

15 (1111) 12 (1100) __ee_ee 1111111 1100100 4 yes

Sequences with number of erasures equal to 5

1 (0001) 6 (0110) _eeeee_ 0001011 0110101 5 yes

1 (0001) 11 (1011) e_e_eee 0001011 1011100 5 yes

1 (0001) 14 (1110) eeee__e 0001011 1110010 5 yes

2 (0010) 5 (0101) _eee_ee 0010101 0101110 5 yes

2 (0010) 13 (1101) eeeee__ 0010101 1101001 5 yes

2 (0010) 14 (1110) ee__eee 0010101 1110010 5 yes

3 (0011) 4 (0100) _eeee_e 0011110 0100011 5 yes

3 (0011) 10 (1010) e__eeee 0011110 1010001 5 yes

3 (0011) 12 (1100) eeee_e_ 0011110 1100100 5 yes

4 (0100) 7 (0111) __eeeee 0100111 0111000 5 yes

4 (0100) 9 (1001) ee_ee_e 0100111 1001010 5 yes

4 (0100) 10 (1010) eee_ee_ 0100111 1010001 5 yes

5 (0101) 3 (0011) _ee_eee 0101100 0011011 5 yes

5 (0101) 8 (1000) ee_e_ee 0101100 1000111 5 yes

5 (0101) 14 (1110) e_eeee_ 0101100 1110010 5 yes

6 (0110) 8 (1000) eee_e_e 0110010 1000111 5 yes

6 (0110) 11 (1011) ee_eee_ 0110010 1011100 5 yes

6 (0110) 13 (1101) e_ee_ee 0110010 1101001 5 yes

7 (0111) 2 (0010) _e_eeee 0111001 0010110 5 yes

7 (0111) 9 (1001) eee__ee 0111001 1001010 5 yes

7 (0111) 12 (1100) e_eee_e 0111001 1100100 5 yes

8 (1000) 3 (0011) e_eee_e 1000110 0011011 5 yes

8 (1000) 6 (0110) eee__ee 1000110 0110101 5 yes

8 (1000) 13 (1101) _e_eeee 1000110 1101001 5 yes

9 (1001) 2 (0010) e_ee_ee 1001101 0010110 5 yes

9 (1001) 4 (0100) ee_eee_ 1001101 0100011 5 yes

116

9 (1001) 7 (0111) eee_e_e 1001101 0111000 5 yes

10 (1010) 1 (0001) e_eeee_ 1010011 0001101 5 yes

10 (1010) 7 (0111) ee_e_ee 1010011 0111000 5 yes

10 (1010) 12 (1100) _ee_eee 1010011 1100100 5 yes

11 (1011) 5 (0101) eee_ee_ 1011000 0101110 5 yes

11 (1011) 6 (0110) ee_ee_e 1011000 0110101 5 yes

11 (1011) 8 (1000) __eeeee 1011000 1000111 5 yes

12 (1100) 3 (0011) eeee_e_ 1100001 0011011 5 yes

12 (1100) 5 (0101) e__eeee 1100001 0101110 5 yes

12 (1100) 11 (1011) _eeee_e 1100001 1011100 5 yes

13 (1101) 1 (0001) ee__eee 1101010 0001101 5 yes

13 (1101) 2 (0010) eeeee__ 1101010 0010110 5 yes

13 (1101) 10 (1010) _eee_ee 1101010 1010001 5 yes

14 (1110) 1 (0001) eeee__e 1110100 0001101 5 yes

14 (1110) 4 (0100) e_e_eee 1110100 0100011 5 yes

14 (1110) 9 (1001) _eeeee_ 1110100 1001010 5 yes

Sequences with number of erasures equal to 6

1 (0001) 12 (1100) ee_eeee 0001011 1100100 6 yes

2 (0010) 9 (1001) e_eeeee 0010101 1001010 6 yes

3 (0011) 13 (1101) eee_eee 0011110 1101001 6 yes

4 (0100) 11 (1011) eeee_ee 0100111 1011100 6 yes

5 (0101) 10 (1010) eeeee_e 0101100 1010001 6 yes

6 (0110) 1 (0001) _eeeeee 0110010 0001101 6 yes

7 (0111) 8 (1000) eeeeee_ 0111001 1000111 6 yes

8 (1000) 7 (0111) eeeeee_ 1000110 0111000 6 yes

9 (1001) 14 (1110) _eeeeee 1001101 1110010 6 yes

10 (1010) 5 (0101) eeeee_e 1010011 0101110 6 yes

11 (1011) 4 (0100) eeee_ee 1011000 0100011 6 yes

12 (1100) 2 (0010) eee_eee 1100001 0010110 6 yes

13 (1101) 6 (0110) e_eeeee 1101010 0110101 6 yes

14 (1110) 3 (0011) ee_eeee 1110100 0011011 6 yes

Sequences with number of erasures equal to 7

0 (0000) 15 (1111) eeeeeee 0000000 1111111 7 no

15 (1111) 0 (0000) eeeeeee 1111111 0000000 7 no

Table 38: Decoding lookup table at Node 3
Node 1 Info.

Seq. Node 2 Info. Seq.

Erasure

Pattern

Node 1

Codeword

Node 2

Codeword

Num of

erased bits Decodable

Sequences with number of erasures equal to 0

0 (0000) 0 (0000) _______ 0000000 0000000 0 yes

15 (1111) 15 (1111) _______ 1111111 1111111 0 yes

Sequences with number of erasures equal to 1

1 (0001) 1 (0001) ____e__ 0001011 0001111 1 yes

2 (0010) 2 (0010) _____e_ 0010101 0010111 1 yes

3 (0011) 7 (0111) _e_____ 0011110 0111110 1 yes

4 (0100) 4 (0100) ______e 0100111 0100110 1 yes

4 (0100) 12 (1100) e______ 0100111 1100111 1 yes

7 (0111) 5 (0101) __e____ 0111001 0101001 1 yes

7 (0111) 6 (0110) ___e___ 0111001 0110001 1 yes

8 (1000) 9 (1001) ___e___ 1000110 1001110 1 yes

8 (1000) 10 (1010) __e____ 1000110 1010110 1 yes

11 (1011) 3 (0011) e______ 1011000 0011000 1 yes

11 (1011) 11 (1011) ______e 1011000 1011001 1 yes

12 (1100) 8 (1000) _e_____ 1100001 1000001 1 yes

13 (1101) 13 (1101) _____e_ 1101010 1101000 1 yes

14 (1110) 14 (1110) ____e__ 1110100 1110000 1 yes

Sequences with number of erasures equal to 2

0 (0000) 3 (0011) __ee___ 0000000 0011000 2 yes

0 (0000) 8 (1000) e_____e 0000000 1000001 2 yes

117

1 (0001) 5 (0101) _e___e_ 0001011 0101001 2 yes

2 (0010) 6 (0110) _e__e__ 0010101 0110001 2 yes

3 (0011) 1 (0001) __e___e 0011110 0001111 2 yes

3 (0011) 2 (0010) ___e__e 0011110 0010111 2 yes

3 (0011) 3 (0011) ____ee_ 0011110 0011000 2 yes

3 (0011) 9 (1001) e_e____ 0011110 1001110 2 yes

3 (0011) 10 (1010) e__e___ 0011110 1010110 2 yes

4 (0100) 1 (0001) _e_e___ 0100111 0001111 2 yes

4 (0100) 2 (0010) _ee____ 0100111 0010111 2 yes

5 (0101) 4 (0100) ___e_e_ 0101100 0100110 2 yes

5 (0101) 5 (0101) ____e_e 0101100 0101001 2 yes

5 (0101) 7 (0111) __e__e_ 0101100 0111110 2 yes

5 (0101) 13 (1101) e___e__ 0101100 1101000 2 yes

6 (0110) 4 (0100) __e_e__ 0110010 0100110 2 yes

6 (0110) 6 (0110) _____ee 0110010 0110001 2 yes

6 (0110) 7 (0111) ___ee__ 0110010 0111110 2 yes

6 (0110) 14 (1110) e____e_ 0110010 1110000 2 yes

7 (0111) 3 (0011) _e____e 0111001 0011000 2 yes

7 (0111) 11 (1011) ee_____ 0111001 1011001 2 yes

8 (1000) 4 (0100) ee_____ 1000110 0100110 2 yes

8 (1000) 12 (1100) _e____e 1000110 1100111 2 yes

9 (1001) 1 (0001) e____e_ 1001101 0001111 2 yes

9 (1001) 8 (1000) ___ee__ 1001101 1000001 2 yes

9 (1001) 9 (1001) _____ee 1001101 1001110 2 yes

9 (1001) 11 (1011) __e_e__ 1001101 1011001 2 yes

10 (1010) 2 (0010) e___e__ 1010011 0010111 2 yes

10 (1010) 8 (1000) __e__e_ 1010011 1000001 2 yes

10 (1010) 10 (1010) ____e_e 1010011 1010110 2 yes

10 (1010) 11 (1011) ___e_e_ 1010011 1011001 2 yes

11 (1011) 13 (1101) _ee____ 1011000 1101000 2 yes

11 (1011) 14 (1110) _e_e___ 1011000 1110000 2 yes

12 (1100) 5 (0101) e__e___ 1100001 0101001 2 yes

12 (1100) 6 (0110) e_e____ 1100001 0110001 2 yes

12 (1100) 12 (1100) ____ee_ 1100001 1100111 2 yes

12 (1100) 13 (1101) ___e__e 1100001 1101000 2 yes

12 (1100) 14 (1110) __e___e 1100001 1110000 2 yes

13 (1101) 9 (1001) _e__e__ 1101010 1001110 2 yes

14 (1110) 10 (1010) _e___e_ 1110100 1010110 2 yes

15 (1111) 7 (0111) e_____e 1111111 0111110 2 yes

15 (1111) 12 (1100) __ee___ 1111111 1100111 2 yes

Sequences with number of erasures equal to 3

0 (0000) 4 (0100) _e__ee_ 0000000 0100110 3 yes

0 (0000) 5 (0101) _e_e__e 0000000 0101001 3 yes

0 (0000) 6 (0110) _ee___e 0000000 0110001 3 yes

0 (0000) 13 (1101) ee_e___ 0000000 1101000 3 yes

0 (0000) 14 (1110) eee____ 0000000 1110000 3 yes

1 (0001) 0 (0000) ___e_ee 0001011 0000000 3 yes

1 (0001) 2 (0010) __eee__ 0001011 0010111 3 yes

1 (0001) 3 (0011) __e__ee 0001011 0011000 3 yes

1 (0001) 8 (1000) e__e_e_ 0001011 1000001 3 yes

1 (0001) 9 (1001) e___e_e 0001011 1001110 3 yes

1 (0001) 11 (1011) e_e__e_ 0001011 1011001 3 yes

2 (0010) 0 (0000) __e_e_e 0010101 0000000 3 yes

2 (0010) 1 (0001) __ee_e_ 0010101 0001111 3 yes

2 (0010) 3 (0011) ___ee_e 0010101 0011000 3 yes

2 (0010) 8 (1000) e_e_e__ 0010101 1000001 3 yes

2 (0010) 10 (1010) e____ee 0010101 1010110 3 yes

2 (0010) 11 (1011) e__ee__ 0010101 1011001 3 yes

3 (0011) 4 (0100) _eee___ 0011110 0100110 3 yes

3 (0011) 15 (1111) ee____e 0011110 1111111 3 yes

4 (0100) 5 (0101) ___eee_ 0100111 0101001 3 yes

4 (0100) 6 (0110) __e_ee_ 0100111 0110001 3 yes

4 (0100) 7 (0111) __ee__e 0100111 0111110 3 yes

4 (0100) 15 (1111) e_ee___ 0100111 1111111 3 yes

118

5 (0101) 0 (0000) _e_ee__ 0101100 0000000 3 yes

5 (0101) 1 (0001) _e___ee 0101100 0001111 3 yes

5 (0101) 3 (0011) _ee_e__ 0101100 0011000 3 yes

5 (0101) 9 (1001) ee___e_ 0101100 1001110 3 yes

6 (0110) 0 (0000) _ee__e_ 0110010 0000000 3 yes

6 (0110) 2 (0010) _e__e_e 0110010 0010111 3 yes

6 (0110) 3 (0011) _e_e_e_ 0110010 0011000 3 yes

6 (0110) 10 (1010) ee__e__ 0110010 1010110 3 yes

7 (0111) 7 (0111) ____eee 0111001 0111110 3 yes

7 (0111) 13 (1101) e_e___e 0111001 1101000 3 yes

7 (0111) 14 (1110) e__e__e 0111001 1110000 3 yes

7 (0111) 15 (1111) e___ee_ 0111001 1111111 3 yes

8 (1000) 0 (0000) e___ee_ 1000110 0000000 3 yes

8 (1000) 1 (0001) e__e__e 1000110 0001111 3 yes

8 (1000) 2 (0010) e_e___e 1000110 0010111 3 yes

8 (1000) 8 (1000) ____eee 1000110 1000001 3 yes

9 (1001) 5 (0101) ee__e__ 1001101 0101001 3 yes

9 (1001) 12 (1100) _e_e_e_ 1001101 1100111 3 yes

9 (1001) 13 (1101) _e__e_e 1001101 1101000 3 yes

9 (1001) 15 (1111) _ee__e_ 1001101 1111111 3 yes

10 (1010) 6 (0110) ee___e_ 1010011 0110001 3 yes

10 (1010) 12 (1100) _ee_e__ 1010011 1100111 3 yes

10 (1010) 14 (1110) _e___ee 1010011 1110000 3 yes

10 (1010) 15 (1111) _e_ee__ 1010011 1111111 3 yes

11 (1011) 0 (0000) e_ee___ 1011000 0000000 3 yes

11 (1011) 8 (1000) __ee__e 1011000 1000001 3 yes

11 (1011) 9 (1001) __e_ee_ 1011000 1001110 3 yes

11 (1011) 10 (1010) ___eee_ 1011000 1010110 3 yes

12 (1100) 0 (0000) ee____e 1100001 0000000 3 yes

12 (1100) 11 (1011) _eee___ 1100001 1011001 3 yes

13 (1101) 4 (0100) e__ee__ 1101010 0100110 3 yes

13 (1101) 5 (0101) e____ee 1101010 0101001 3 yes

13 (1101) 7 (0111) e_e_e__ 1101010 0111110 3 yes

13 (1101) 12 (1100) ___ee_e 1101010 1100111 3 yes

13 (1101) 14 (1110) __ee_e_ 1101010 1110000 3 yes

13 (1101) 15 (1111) __e_e_e 1101010 1111111 3 yes

14 (1110) 4 (0100) e_e__e_ 1110100 0100110 3 yes

14 (1110) 6 (0110) e___e_e 1110100 0110001 3 yes

14 (1110) 7 (0111) e__e_e_ 1110100 0111110 3 yes

14 (1110) 12 (1100) __e__ee 1110100 1100111 3 yes

14 (1110) 13 (1101) __eee__ 1110100 1101000 3 yes

14 (1110) 15 (1111) ___e_ee 1110100 1111111 3 yes

15 (1111) 1 (0001) eee____ 1111111 0001111 3 yes

15 (1111) 2 (0010) ee_e___ 1111111 0010111 3 yes

15 (1111) 9 (1001) _ee___e 1111111 1001110 3 yes

15 (1111) 10 (1010) _e_e__e 1111111 1010110 3 yes

15 (1111) 11 (1011) _e__ee_ 1111111 1011001 3 yes

Sequences with number of erasures equal to 4

0 (0000) 1 (0001) ___eeee 0000000 0001111 4 yes

0 (0000) 2 (0010) __e_eee 0000000 0010111 4 yes

0 (0000) 9 (1001) e__eee_ 0000000 1001110 4 yes

0 (0000) 10 (1010) e_e_ee_ 0000000 1010110 4 yes

0 (0000) 11 (1011) e_ee__e 0000000 1011001 4 yes

1 (0001) 4 (0100) _e_ee_e 0001011 0100110 4 yes

1 (0001) 6 (0110) _eee_e_ 0001011 0110001 4 yes

1 (0001) 7 (0111) _ee_e_e 0001011 0111110 4 yes

1 (0001) 12 (1100) ee_ee__ 0001011 1100111 4 yes

1 (0001) 13 (1101) ee___ee 0001011 1101000 4 yes

1 (0001) 15 (1111) eee_e__ 0001011 1111111 4 yes

2 (0010) 4 (0100) _ee__ee 0010101 0100110 4 yes

2 (0010) 5 (0101) _eeee__ 0010101 0101001 4 yes

2 (0010) 7 (0111) _e_e_ee 0010101 0111110 4 yes

2 (0010) 12 (1100) eee__e_ 0010101 1100111 4 yes

2 (0010) 14 (1110) ee__e_e 0010101 1110000 4 yes

119

2 (0010) 15 (1111) ee_e_e_ 0010101 1111111 4 yes

3 (0011) 0 (0000) __eeee_ 0011110 0000000 4 yes

3 (0011) 11 (1011) e___eee 0011110 1011001 4 yes

4 (0100) 0 (0000) _e__eee 0100111 0000000 4 yes

4 (0100) 8 (1000) ee__ee_ 0100111 1000001 4 yes

4 (0100) 9 (1001) ee_e__e 0100111 1001110 4 yes

4 (0100) 10 (1010) eee___e 0100111 1010110 4 yes

5 (0101) 6 (0110) __eee_e 0101100 0110001 4 yes

5 (0101) 12 (1100) e__e_ee 0101100 1100111 4 yes

5 (0101) 14 (1110) e_eee__ 0101100 1110000 4 yes

5 (0101) 15 (1111) e_e__ee 0101100 1111111 4 yes

6 (0110) 5 (0101) __ee_ee 0110010 0101001 4 yes

6 (0110) 12 (1100) e_e_e_e 0110010 1100111 4 yes

6 (0110) 13 (1101) e_ee_e_ 0110010 1101000 4 yes

6 (0110) 15 (1111) e__ee_e 0110010 1111111 4 yes

7 (0111) 0 (0000) _eee__e 0111001 0000000 4 yes

7 (0111) 1 (0001) _ee_ee_ 0111001 0001111 4 yes

7 (0111) 2 (0010) _e_eee_ 0111001 0010111 4 yes

7 (0111) 8 (1000) eeee___ 0111001 1000001 4 yes

8 (1000) 7 (0111) eeee___ 1000110 0111110 4 yes

8 (1000) 13 (1101) _e_eee_ 1000110 1101000 4 yes

8 (1000) 14 (1110) _ee_ee_ 1000110 1110000 4 yes

8 (1000) 15 (1111) _eee__e 1000110 1111111 4 yes

9 (1001) 0 (0000) e__ee_e 1001101 0000000 4 yes

9 (1001) 2 (0010) e_ee_e_ 1001101 0010111 4 yes

9 (1001) 3 (0011) e_e_e_e 1001101 0011000 4 yes

9 (1001) 10 (1010) __ee_ee 1001101 1010110 4 yes

10 (1010) 0 (0000) e_e__ee 1010011 0000000 4 yes

10 (1010) 1 (0001) e_eee__ 1010011 0001111 4 yes

10 (1010) 3 (0011) e__e_ee 1010011 0011000 4 yes

10 (1010) 9 (1001) __eee_e 1010011 1001110 4 yes

11 (1011) 5 (0101) eee___e 1011000 0101001 4 yes

11 (1011) 6 (0110) ee_e__e 1011000 0110001 4 yes

11 (1011) 7 (0111) ee__ee_ 1011000 0111110 4 yes

11 (1011) 15 (1111) _e__eee 1011000 1111111 4 yes

12 (1100) 4 (0100) e___eee 1100001 0100110 4 yes

12 (1100) 15 (1111) __eeee_ 1100001 1111111 4 yes

13 (1101) 0 (0000) ee_e_e_ 1101010 0000000 4 yes

13 (1101) 1 (0001) ee__e_e 1101010 0001111 4 yes

13 (1101) 3 (0011) eee__e_ 1101010 0011000 4 yes

13 (1101) 8 (1000) _e_e_ee 1101010 1000001 4 yes

13 (1101) 10 (1010) _eeee__ 1101010 1010110 4 yes

13 (1101) 11 (1011) _ee__ee 1101010 1011001 4 yes

14 (1110) 0 (0000) eee_e__ 1110100 0000000 4 yes

14 (1110) 2 (0010) ee___ee 1110100 0010111 4 yes

14 (1110) 3 (0011) ee_ee__ 1110100 0011000 4 yes

14 (1110) 8 (1000) _ee_e_e 1110100 1000001 4 yes

14 (1110) 9 (1001) _eee_e_ 1110100 1001110 4 yes

14 (1110) 11 (1011) _e_ee_e 1110100 1011001 4 yes

15 (1111) 4 (0100) e_ee__e 1111111 0100110 4 yes

15 (1111) 5 (0101) e_e_ee_ 1111111 0101001 4 yes

15 (1111) 6 (0110) e__eee_ 1111111 0110001 4 yes

15 (1111) 13 (1101) __e_eee 1111111 1101000 4 yes

15 (1111) 14 (1110) ___eeee 1111111 1110000 4 yes

Sequences with number of erasures equal to 5

0 (0000) 7 (0111) _eeeee_ 0000000 0111110 5 yes

0 (0000) 12 (1100) ee__eee 0000000 1100111 5 yes

1 (0001) 10 (1010) e_eee_e 0001011 1010110 5 yes

2 (0010) 9 (1001) e_ee_ee 0010101 1001110 5 yes

3 (0011) 5 (0101) _ee_eee 0011110 0101001 5 yes

3 (0011) 6 (0110) _e_eeee 0011110 0110001 5 yes

3 (0011) 12 (1100) eeee__e 0011110 1100111 5 yes

3 (0011) 13 (1101) eee_ee_ 0011110 1101000 5 yes

3 (0011) 14 (1110) ee_eee_ 0011110 1110000 5 yes

120

4 (0100) 13 (1101) e__eeee 0100111 1101000 5 yes

4 (0100) 14 (1110) e_e_eee 0100111 1110000 5 yes

5 (0101) 2 (0010) _eee_ee 0101100 0010111 5 yes

5 (0101) 8 (1000) ee_ee_e 0101100 1000001 5 yes

5 (0101) 10 (1010) eeee_e_ 0101100 1010110 5 yes

5 (0101) 11 (1011) eee_e_e 0101100 1011001 5 yes

6 (0110) 1 (0001) _eeee_e 0110010 0001111 5 yes

6 (0110) 8 (1000) eee__ee 0110010 1000001 5 yes

6 (0110) 9 (1001) eeeee__ 0110010 1001110 5 yes

6 (0110) 11 (1011) ee_e_ee 0110010 1011001 5 yes

7 (0111) 4 (0100) __eeeee 0111001 0100110 5 yes

7 (0111) 12 (1100) e_eeee_ 0111001 1100111 5 yes

8 (1000) 3 (0011) e_eeee_ 1000110 0011000 5 yes

8 (1000) 11 (1011) __eeeee 1000110 1011001 5 yes

9 (1001) 4 (0100) ee_e_ee 1001101 0100110 5 yes

9 (1001) 6 (0110) eeeee__ 1001101 0110001 5 yes

9 (1001) 7 (0111) eee__ee 1001101 0111110 5 yes

9 (1001) 14 (1110) _eeee_e 1001101 1110000 5 yes

10 (1010) 4 (0100) eee_e_e 1010011 0100110 5 yes

10 (1010) 5 (0101) eeee_e_ 1010011 0101001 5 yes

10 (1010) 7 (0111) ee_ee_e 1010011 0111110 5 yes

10 (1010) 13 (1101) _eee_ee 1010011 1101000 5 yes

11 (1011) 1 (0001) e_e_eee 1011000 0001111 5 yes

11 (1011) 2 (0010) e__eeee 1011000 0010111 5 yes

12 (1100) 1 (0001) ee_eee_ 1100001 0001111 5 yes

12 (1100) 2 (0010) eee_ee_ 1100001 0010111 5 yes

12 (1100) 3 (0011) eeee__e 1100001 0011000 5 yes

12 (1100) 9 (1001) _e_eeee 1100001 1001110 5 yes

12 (1100) 10 (1010) _ee_eee 1100001 1010110 5 yes

13 (1101) 6 (0110) e_ee_ee 1101010 0110001 5 yes

14 (1110) 5 (0101) e_eee_e 1110100 0101001 5 yes

15 (1111) 3 (0011) ee__eee 1111111 0011000 5 yes

15 (1111) 8 (1000) _eeeee_ 1111111 1000001 5 yes

Sequences with number of erasures equal to 6

1 (0001) 14 (1110) eeee_ee 0001011 1110000 6 yes

2 (0010) 13 (1101) eeeee_e 0010101 1101000 6 yes

3 (0011) 8 (1000) e_eeeee 0011110 1000001 6 yes

4 (0100) 3 (0011) _eeeeee 0100111 0011000 6 yes

4 (0100) 11 (1011) eeeeee_ 0100111 1011001 6 yes

7 (0111) 9 (1001) eee_eee 0111001 1001110 6 yes

7 (0111) 10 (1010) ee_eeee 0111001 1010110 6 yes

8 (1000) 5 (0101) ee_eeee 1000110 0101001 6 yes

8 (1000) 6 (0110) eee_eee 1000110 0110001 6 yes

11 (1011) 4 (0100) eeeeee_ 1011000 0100110 6 yes

11 (1011) 12 (1100) _eeeeee 1011000 1100111 6 yes

12 (1100) 7 (0111) e_eeeee 1100001 0111110 6 yes

13 (1101) 2 (0010) eeeee_e 1101010 0010111 6 yes

14 (1110) 1 (0001) eeee_ee 1110100 0001111 6 yes

Sequences with number of erasures equal to 7

0 (0000) 15 (1111) eeeeeee 0000000 1111111 7 no

15 (1111) 0 (0000) eeeeeee 1111111 0000000 7 no

As can be seen in the lookup tables above, a received erasure pattern is decodable if and only if

there is a one-to-one relationship between that received erasure sequence and the possible sent

codewords from two senders. It is interesting to note that the size of the lookup table increases

exponentially with the increase of the size of the packet. Thus, it is not the preferred method of

decoding.

121

3.3.4. Theoretical Limit of Performance of Algebraic Linear Block Codes in a

Noiseless Channel (Erasures-Only)

As seen from the example above, the used block code, without taking into consideration noise in

the channel, can separate the combined signal successfully given that the number of erasures in

the received codeword is less or equal to 6 erasures. Since the number of parity bits, and hence

the number of orthogonal linear relationships, is equal to six at each receiving node, the code can

solve for up to six variables (six erasures).

 ()

 ()

 ()

(3.175)

The previous equation holds true if all the parity bit linear relationships are orthogonal. For the

(7,4) hamming code and three communicating nodes seen in the example above, the equation

reduces to:

 () (3.176)

This leads us to examining the worst-case scenario where 7 bits are erased at a recipient.

Decoding is not possible at the receiver in this case. At the third node (Node 3), for example, this

occurs when . The probability of such event is equal to:

 () (() ()) (3.177)

By looking at the code-books for Node 1 and Node 2. We can conclude that this is possible

when:

(() ())

 (() ())
(3.178)

122

The probability of these combinations is equal to:

 ()

 () ()

 () ()

(3.179)

 ()

 (3.180)

With that in mind, we can build the decoder in a smart way so that it detects if all the bits are

erased in a code-word, and decodes the messages of and as all ones or all zeros. This will

guarantee that one of the decoded messages is good. Consequently, the probability of erasures

will be halved.

 ()

 (3.181)

Now, let’s derive the theoretical bound for minimum packet error rate when using () block

codes. In this case, there are () parity bits, and thereby, () linear relationships per

encoder, and () collaborative linear relationships at the recipient. If we assume that all

of these are linearly independent/orthogonal, then, the collaborative algebraic code may decode

() erasures in a combined codeword of length . Hence, the packet error probability is:

 ()

 (())
∑ (

)

(3.182)

Where is the number of possible erasure patterns, and is the number of erasures in a

received pattern. From (3.174),Another metric we can look at, is the effective bit rate of the

overall system, assuming BPSK modulation, and 1 bit/channel use, then the maximum effective

bit rate of a Two-Sender Y-Channel-Network when using algebraic linear block codes is:

123

 ()

 (

∑ (

)

)

(3.183)

And the maximum effective throughput in a Three-Sender Y-Channel-Relay, when every

terminal is multicasting to the other two, is:

 ()

 (

∑ (

)

)

(3.184)

The equations above where modeled using a computer program for an information sequence of

length 200 (), and different coding rate per sender. Figure 60 shows the results. It can be

seen that the maximum effective theoretical rate 2 bits/sec in the Three-Sender Y-Channel-Relay

problem. That is better than the CNC solution discussed in the previous chapter. In addition, we

can achieve zero packet error rate (PER < 10
-5

) when using rate 2/3 linear block code at each

receiver or lower. In the next section, a few linear block codes with different rates are simulated.

It is worth noting that getting good performance from a relatively high rate algebraic linear block

code solution is not an easy task. The code should be constructed in such a way that pertain one-

to-one mapping between each two senders’ codewords, and their erasure pattern.

124

Figure 60: Theoretical performance limits of an algebraic linear block codes solution with (n=200)

Table 39 shows theoretical limits for different information bit sequence lengths, and code rates.

In the next section, a few of algebraic linear block codes are simulated. The results of the

simulation reflect the data represented by the model below.

Table 39: Theorectical limits for different information bit sequence lengths, and different algebraic linear block code rate

Information

Bit Sequence

Length (k)

Number

of Parity

Bits (n-k)

Rate of Code

(k/n)

Number of

possible

erasure

patterns

Minimum theoretical

number of unsolvable

erasure patterns

Minimum

theotetical Packet

Error Probability

Maximum theoretical effective rate of

the Three-Sender Y-Channel-Relay

using Algebraic Linear Block Codes

every one second

20 14 0.588235 1.72E+10 3.31E+05 1.93E-05 1.76467

12 11 0.521739 8.39E+06 1.00E+00 1.19E-07 1.56522

13 12 0.52 3.36E+07 1.00E+00 2.98E-08 1.56

20 19 0.512821 5.50E+11 1.00E+00 1.82E-12 1.53846

150 70 0.681818 1.69E+66 2.95E+61 1.75E-05 2.05E+00

200 91 0.68728 3.98E+8 2.58E+82 6.48E-06 2.06184

125

3.3.5. Simulation of the (7,4) Algebraic Linear Block Code Example

The linear block codes based collaborative scheme described in section 3.3.2 was simulated

using a decode-and-forward approach. Three equi-probable binary sources generate an endless

stream of bits, and the following linear block code encoders were used for each source:

After encoding, the bits are passed into a BPSK modulator with levels { √ √ }. An

AWGN channel was used for the simulation, and we assume that none of the nodes receive any

partial data from the other two nodes’ transmissions. The initial energy level is chosen to give an

SINR of 0 dB. Once a predetermined confidence value for is earned from the simulating at

that SINR level, is changed to obtain a higher SINR, and the process is repeated to get the

curve.

For each SINR level, the following is done to obtain the :

 Produce a continuous stream of bits from the three binary sources.

 Encode the bits and modulate them.

 Combine the relative output from each node, and add AWGN to it based on the chosen

 and to get the desired SINR. This simulates mixing the signals in the air at the

relay.

 The received signal is then decoded in the received node.

Here is the curve for the when simulating the collaborative linear block based solution at node

3 when compared to the uncoded solution:

126

Figure 61: The simulated BER curve of the (7,4) Hamming code solution

The following can be noted from the curves above; the linear block codes solution performs way

better than the uncoded method. The enhancement reaches a maximum 7 dBs when using (7, 4)

Hamming Codes. The error floor is identical to the theoretical limit calculate in the previous

section. The error floor can be lowered significantly by increasing the length of the used codes.

One way to increase the length of the code is to increase the number of parity bits and info bits

either by selecting a longer block code or BCH code as seen in Figure 60 and Table 39, or by

cascading the used code with another code (LDPC code for example).

3.3.6. Effect of Increasing Rate of the Code

 As demonstrated in the previous section, it is possible to construct linearly independent block

codes at each node to collaboratively decode at the destination in a Y-Channel-Relay with ANC

problem. Figure 62 shows simulation results showing different code rate. We can see that

increasing the rate of the code at each sender, lowers the error floor significantly.

127

Figure 62: Increasing the length of the code lowers the error floor of guessing erasures

In this section, longer linear block codes will be used with rates close to 0.6 per node to reduce

the floor line of decoding errors. For the sake of simplicity, the analysis in this section will

exclude the noise and focus only on erasures. A (34, 20) linear block codes are used in this

example. The polynomial generator matrices of Node 1, Node 2, and Node 3 are shown in

(3.185), (3.186), and (3.187) used are as follows:

(3.185)

128

(3.186)

(3.187)

The following diagram summarizes the throughput in information bits/s versus SNR.

129

Figure 63: SNR versus Information Bit Throughput in Y-Channel-Relay Scenario

As expected, we can notice in the SNR versus information bit throughput results that in the low

SNR region, uncoded performance is better than the collaborative linear block code solution.

This is due to the fact that in that region, BER related to noise in the channel is dominant.

However as noise subsidizes in the mid to high SNR region, we can see that the solution

presented in this thesis is far more superior than any point to point un-collaborative system since

our system is good at guessing erasures.

It is interesting to note that we can construct longer block codes simply by duplicating the matrix

above to create multiples of 34 and 14. The same generator matrix, and hence, the same

decoding table can be used to construct a (34, 14) code, a (68, 28) code, a (340, 140), a (3400,

1400) code…etc. In other words, increasing the block size of the code in this case won’t increase

the complexity of the decoder.

130

3.4. Comparison of The Different Coding Techniques

The following diagram compares the maximum throughput we get from the existing solutions

that we explored as well as the solutions that we have proposed as part of this research.

Maximum throughput can only be achieved when each node in a Y-Channel-Relay scenario

wants to broadcast its packet to the other two.

Figure 64: System throughput performance proposed solutions and existing solutions

We can see that in the high SNR (above 12 dB), the CNC solution (proposed by B. W. Khoueiry,

H. Khoshneviss, and M. R. Soleymani) has better system throughput than any of the proposed

solutions. However, the novel method that they have developed requires the users to send at

different rates (a maximum of two users send at rate one at any time). Thus, making the system

more complicated, especially in Wireless Mesh Network deployments. In addition, the practical

system that they have proposed relies on the assumption that all users have data to send at all

times, which is not always the case in a Wireless Mesh Network topology with bursty traffic.

131

Let’s demonstrate this degredation with an example; if only two users want to sent to one user

for example (Two-Sender Scenario), the throughput of the system degrades. The reason for this

is because in the first time slot, the two users send at rate 1 to the relay. In the second time slot,

the relay broadcasts a mixed signal. Upon reception of this signal, the third user (receiver) cannot

decode the messages, and has to wait for an additional transmission of at least rate 0.5, which he

would receive in two transmission slots. I.e. four time slots would be required.

However, when using the linear block codes solution proposed in this thesis, users always send

using codes of equal rate, and hence, making this scenario suitable for any

centralized/decentralized wireless systems. Also, the throughput gains of CNC are minimal

when compared with linear block codes solution of rate 0.588. The generality, flexibility and

simplicity we gain from using algebraic linear block codes outweighs the benefits of the slight

improvement of system thoughput . Moreover, the linear block codes solution requires only two

time slots to complete communication for any transmission scenario (Two-Sender and Three-

Sender). In most real life scenarios, users send data in bursts. The linear block codes solution

outperforms the CNC solution in these scenarios.

In the SNR region between 4 and 8 dB, the linear block codes based solution outperforms the

CNC solution. In low SNR regions, CNC is superior. Last but not least, the theoretical limits

derived for the algebraic linear block codes solution show that there is still room to use codes

with rate 2/3, and thereby, achieve throughput higher than CNC even in streaming multicast

applications, where all terminals have data to be sent at all times.

132

Chapter 4: Applications to Modern Wireless Networks

4.1. LTE Multimedia Broadcast/Multicast Service (eMBMS)

LTE Multimedia Broadcast/Multicast Service is a specification for broadcast services over LTE.

[33] It supports audio and video streams, and was first deployed by Verizon in 2013. Currently,

it is used to broadcast live sporting events from within sports venues. Any number of cells that

transmit on the same frequency band can be chosen to transmit a common eMBMS service. With

eMBMS, the provider dedicates a fixed portion of its carrier for broadcasting purposes, thus,

affecting the capacity of data services in the cell. From a UE perspective, the eMBMS signal

from multiple cells is combined, and therefore, the SINR for the eMBMS portion of the carrier in

overlapping cell coverage is relatively higher than the SINR for the data portion of that carrier.

The bandwidth requirement here depends on the number of services/channels (video streams),

and the quality of video (HD/SD).

Let’s assume that we have an LTE deployment based on a 15MHz carrier using two cells, and a

UE positioned in an overlapping coverage area as seen in Figure 65. Having relatively close cells

broadcasting on the same frequency is common in high capacity urban deployments such as in a

stadium since the provider would sacrifice a bit of data-user experience in favor of increasing the

number of connected users. Let’s also assume that the provider has dedicated 5MHz of its carrier

for an eMBMS service. In this case, the UE will be receiving synchronized eMBMS signals from

both cells while it will only be connected to the data service of only one of those cells. The

neighbor cell data portion of the carrier is considered interference to the data portion of the

serving cell.

133

Figure 65: eMBMS deployment example

It is interesting to note here that the UE receives a combined synchronized signal of both cells

for eMBMS. This is very similar to a relay receiving signals from two users simultaneously

when using the analog network techniques we discussed earlier in this thesis, expect in the case

of eMBMS, the transmitted signal from both users is exactly the same. This led us to think of a

modification to the eMBMS system that uses the algebraic linear block code introduced in this

thesis. In this proposal, the serving cell transmits half of the MBMS bits while the neighboring

cell transmits the other half. Each cell will use the rate 0.588 algebraic linear block code scheme

we introduced earlier. The result is a theoretical reduction of 15% in bandwidth requirement for

eMBMS. This bandwidth can go back to support data traffic in the cell, and therefore, enhancing

cell data throughput with eMBMS service turned on. Figure 66 describes this solution by

showing the carrier content of each cell. Upon reception of the combined signal of the eMBMS-1

and eMBMS-2 blocks, it is possible for the UE to separate the data.

134

Figure 66: Example of a carrier configuration when ANC and algebraic linear block codes are used

4.2. Use in Wireless Mesh Network

The proposed solution can be used to enhance the performance of wireless mesh network by up

to three times! There are already practical proposed systems for WMN that rely on a

combination of analog and digital network coding along with more traditional opportunistic

routing techniques (like MIXIT). However, the methods presented are limited to two-node relay

opportunities, and don’t discuss three-node to N-node communication with relay.

Figure 67: A Mesh Network

The collaborative coding schemes are meant to complement other existing/proposed analog

network coding schemes. The relay itself can detect when an opportunity for three nodes to

135

communicate with each other through it, and dynamically allocate a combination of turbo

encoders to the three nodes.

In summary, a practical system with the solutions presented here would require the following:

 The ability of a relay to sense an opportunity where three nodes can communicate

through it.

 Once that is established, the relay should be able to dynamically allocate an optimum

combination of turbo encoders to three nodes. More research should go into choosing

optimum encoders/decoders that take into consideration known RF conditions to choose

efficient encoders.

 The ability of the nodes to synchronize their transmission so that the relay receives

respective bits from each node at relatively the same time.

These practical systems for wireless mesh networks really exploits the physical aspects of the

wireless medium, and blur the lines between the lower three layers of the OSI model to provide

significant efficiency improvements.

4.3. In Backbone of Wireless Networks

Using all the previous ideas, a practical VoIP solution using ANC for backbone network and

digital network coding with opportunistic routing in local wireless mesh networks is proposed.

136

Figure 68: The proposed practical system for VOIP applications using Network Coding

Each local mesh network is connected to a gateway. The gateways are connected to a central

relay, and provide two-way to N-way communication using ANC. Each local mesh network, on

the other hand, can have practical solutions that make use of both analog and digital network

coding for efficient opportunity routing.

137

Chapter 5: The Mesh Network Simulator

Wireless mesh networks are extremely difficult to analyze and simulate due to the fact that there

is no static geographical topology for the network itself. Thus, defining the network using text

files, and analyzing the data using Command Line Interface (CLI) makes examining the

simulated network a tedious task.

In order to streamline the simulation of wireless mesh networks in general, and two-way/three-

way communication with relay problems in particular, an intuitive easy to use GUI-based

simulator was necessary. This was realized early on in this research, and the IF Wireless Mesh

Network Simulator was born.

Figure 69: The IF-Mesh network simulation app

The screenshot above shows the GUI simulator in action. In the following sections, the

objectives of this application as well as philosophy of its architectural design are discussed.

138

5.1. Design Objectives

Developing the simulator was based on the following design objectives:

 Fast, Stable & Reliable; the simulator had to be fast and reliable especially given the

fact that complex multi-step encoding/decoding schemes are used. It also had to manage

memory usage responsibly especially when performing soft-input soft-output decoding.

Moreover, extra care should be taken when creating and destroying dynamic structures to

ensure iterative decoding schemes are stable and reliable.

 Flexible; the simulator should support a wide range of encoders/decoders, different types

of noise and relay fading, multi-step multi-hop communication to support analog and

digital network coding. In addition, the simulator should support various mesh network

layouts with the ability to change system parameters on the fly before repeating the

simulator.

 Extensile & Expandable; additional features, encoding/decoding schemes, different

kinds of random number generators could be easily added not only by me, but also by

other developers and researchers in the future. An Object-Oriented architecture is key in

this aspect.

 Cross Platform; the codebase should be easily compiled on any operating system. Using

cross platform APIs is essential.

5.2. Software Architecture

The following diagram shows the high-level software architecture of the IF Mesh Simulator.

139

Figure 70: High-Level Software Architecture of the IF Mesh Network Simulator

The high-level architecture is explained as follows:

 Operating System; the simulator is written in a platform independent fashion.

Development started in Linux, and was moved to Mac OS X in the middle of the

development cycle. In addition, later versions of the code were compiled and tested in

Windows.

 IF_UI Dynamic Human Interface; this API is the foundation for the GUI. It was

written in an Object-Oriented fashion using C++ on top of OpenGL graphics library to

enable hardware accelerated rendering of the UI. It also incorporates an animation

framework, a UI widget library that includes buttons, sliders, dialogs…etc. a

sophisticated dynamic Model-View-Control system to connect widgets to actions on the

fly (for example, clicking a button triggers an action), and a fast and reliable data

structure library. I had solely written this API to be the foundation of the natural user-

interface of the award-winning Multi-User Multi-Touch Interactive Surface Using

Computer Vision. [34]

 IF Coding Library; the coding library was written in object-oriented fashion in C++ to

provide random number generators, encoders and decoders, modulators and

demodulators, noise and fading support, binary sources, different interleavers…etc. In

other words, this library is the heart and soul of the simulator. It is important to note that

it was written in a way to facilitate inheriting from base classes to provided expanded

functionality or features.

140

 IF Network Simulator; the mesh network simulator itself is built on top of the pillars

discussed above. It not only has an intuitive GUI to enable building specific network

configurations easily and fast, but it also enables the user to save/load configurations on

the fly. In addition, network and simulation parameters can be changed at any point

before starting a simulation. This flexibility was key throughout the period of the research

conducted for this thesis; mainly due to the fact that a wide range of encoding and

decoding algorithms with different complexities and configurations were simulated.

As of this writing, the simulator has the following features implemented and working reliably:

 A suite of random number generators including an equi-probable bit generator, a

Gaussian number generator, and a Rayleigh number generator. The efficient random

process is 64-bit allowing for true randomness in the simulation.

 Encoding/Decoding tuples include linear block codes, recursive convolution codes, turbo

codes, and all the collaborative coding schemes discussed in this thesis. The user can

easily modify the generator matrix of a code, thus, allowing him or her to experiment

with different encoders and decoders.

 AWGN channel support: dynamically generate noise given a certain signal to noise ratio.

 Random interleavers for a sequence of numbers of any length.

 An extremely efficient simulation engine that is easily configured specifying the channel

(Y-Channel for example), and the encoder used in each node. The simulator takes care of

the rest.

The interface of the simulator is described in detail in Appendix B.

Chapter 6: Conclusions

Analog network coding was utilized as a mean to exploit the physical aspect of the medium in

modern wireless network deployments such as wireless mesh networks and certain multicast

applications (like LTE eMBMS) to achieve better performance on network level. In a Y-

Channel-Relay scenario, the number of transmissions is reduced to only two time slots (a

maximum reduction of three folds) when ANC is used. Several practical solutions that embed

this opportunistic efficiency in wireless mesh networks were proposed in recent years.

The problem with exploiting analog network coding in the Three-Node-problem is the

introduction of erasures at the receiver end. In this thesis, we looked in depth into those

scenarios, and calculated the maximum theoretical capacity for different transmission cases. We

also looked at existing solutions in literature that depends on Nested Codes and CNC. Then, we

proposed two new solutions to the problem; the first is a Nested Codes based solution using

Turbo Codes. The other is a novel algebraic linear block codes solution.

Upon studying the existing and proposed solution, we found that the maximum theoretical

system throughput on CNC outperforms the linear block codes solution by a slight margin. To

achieve this maximum, all three nodes have to be streaming data at all times. However, in most

scenarios, data traffic is bursty in nature. The linear block codes solution outperforms the CNC

solution both in the number of required transmissions as well as the overall system throughput.

Thus, making the linear block codes solution a favorable solution in this case.

When going in depth into the study of analog (physical) network coding, we saw how the line

between the physical layer of the OSI model and higher levels can be blurred to bring about

better efficiency when looking at overall network performance. In other words, zooming out and

looking at the big picture, optimizing the physical layer to work in harmony with the data-link

and network layers can significantly reduce the overall number of required time-slots

(transmissions) and thereby enhance the performance of wireless networks.

142

In the last few sections of this thesis, we propose practical areas where Analog Network Coding

can be used. That being said, research is still in its beginnings in this area, and there are many

practical hurdles that need to be overcome before Analog (Physical) Network Coding can be

deployed in live wireless networks.

6.1. Future Research

There are many ways the solutions proposed in this thesis can be extended or further analyzed. A

few proposals for future research are discussed here:

 The proposed solutions for the Y-Channel-Relay with relay problem can be generalized

to include communication between four or more terminals through a common relay.

 A solution based on Low-Density Parity-Check (LDPC) codes [35]can be easily derived

and implemented. LDPC are a class of linear error correcting codes that use a sparse

parity-check matrix. They can offer performance near the Shannon limit.

 The turbo code solution provided in this thesis can be further enhanced and optimized.

The simulated decoding algorithm, and the erasure guessing procedure algorithm could

be optimized to gain relatively better performance with lower number of iterations.

 Research can go in the direction of developing higher-layer protocols to support ANC for

Two-Way-Relay and Y-Channel-Relay problems.

 As discussed earlier, for ANC solutions to be practically viable, corresponding bits from

different terminals should be received in synchronization at the relay, regardless of the

distance between any of the nodes and the relay. In addition, most users are mobile in

wireless scenarios. More research and effort can go into solving this problem and

proposing feasible practical solutions.

 Enhancing the MIXIT system proposed by MIT to include Y-Channel-Relay scenarios;

this requires defining methods and procedures in the relay to recognize an opportunity

where Y-Channel-Relay communication with ANC is viable. This is a complex problem

that can be solved by the use of metaheuristics for example.

 Examples for higher rate algebraic linear block codes can be explored.

143

 The discussion in this thesis was limited to the binary domain. Research can go into

extending the proposed solution to include m-ary systems to achieve higher throughput.

References

[1] L. Xiao, T. Fuja, J. Kliewer and D. Costello, "Nested Codes with Multiple Interpretations,"

in Information Sciences and Systems, 2006 40th Annual Conference, March 2006.

[2] S. Katti, D. Kattabi, H. Balakrishnan and M. Medrad, "Symbol-Level Network Coding for

Wireless Mesh Networks," in SIGCOMM, Seattle, 2008.

[3] S. Katti and D. Katabi, "MIXIT: The Network Meets the Wireless Channel," in Proc. of the

Sixth ACM Workshop on Hot Topics in Networks (HotNets-VI), 2007.

[4] B. Nazer and M. Gastpar, "Reliable Physical Layer Network Coding," in Proceedings of the

IEEE, 2011.

[5] S. Katti, S. Gollakota and D. Kattabi, "Embracing Wireless Interference: Analog Network

Coding," in SIGCOMM, Kyoto, 2007.

[6] B. W. Khoueiry, H. Khoshneviss and M. R. Soleymani, "A novel coding strategy for the Y

channel," in submitted to the 2014 IEEE International Symposium on Information Theory

(ISIT), 2013.

145

[7] J. Jun and M. L. Sichitiu, "The Nominal Capacity of Wireless Mesh Networks," IEEE

Wireless Communications, vol. 10, no. 5, pp. 8-14, October 2003.

[8] S. Chen, P. Lin, D.-W. Huang and S.-R. Yang, "A study on distributed/centralized

scheduling for wireless mesh network," in International Conference on Wireless

Communications and Mobile Computing, Vancouver, 2006.

[9] "IEEE standard for local and metropolitan area networks part 16: Air interface for fixed

broadband wireless access systems," May 2004.

[10] J. Zhang, Y. P. Chang and I. Marsic, "Network Coding Via Opportunistic Forwarding in

Wireless Mesh Networks," Wireless Communications and Networking Conference, pp.

1775-1780, 2008.

[11] T. M. Cover and A. E. Gamal, "Capacity theorems for the relay channel," IEEE Trans.

Inform. Theory, vol. 25, pp. 572-584, September 1979.

[12] H. Sato, "Information transmission through a channel with relay (Aloha system technical

report)," University of HAWAII, Honolulu, 1976.

[13] S. Borade, L. Zheng and R. Gallager, "Amplify-and-forward in wireless relay networks:

Rate, diversity, and network size," IEEE Trans. Inform. Theory, vol. 53, no. 10, pp. 3302-

3318, October 2007.

146

[14] R. F. Wyrembelski, T. J. Oechtering and H. Boche, "Decode-and-forward strategies for

bidirectional relaying," in Proc. of IEEE-PIMRC, Cannes, France, 2008.

[15] R. Ahlswede, N. Cai, S. R. Li and R. W. Yeung, "Network Information Flow," IEEE

Transactions on Information Theory, vol. 46, no. 4, pp. 1204-1216, July 2000.

[16] R. Ahlswede, N. Cai, S. R. Li and R. W. Yeung, "Network Information Flow," IEEE Trans.

on Info. Theory, pp. 1204-1216, July 2000.

[17] C. Gkantsidis and P. R. Rodriguez, "Network Coding for Large Scale Content Distribution,"

in IEEE Infocom, 2005.

[18] H. Gacanin and F. Adachi, "Channel Capacity of Analog Network Coding in a Wireless

Channel," 2009.

[19] S. Katti, H. Rahul, W. Hu, D. Kattabi, M. Merard and J. Crowcroft, "XORs in The Air:

Practical Wireless Network Coding," IEEE/ACM Transactions on Networking, vol. 16, no.

3, pp. 497-510, September 2008.

[20] P. Popovski and H. Yomo, "Wireless network coding by amplify-andforward for bi-

directional traffic flows," IEEE Commun. Lett., vol. 11, no. 1, pp. 16-18, January 2007.

147

[21] A. Maaref, R. Annavajjala and J. Zhang, "Comparison of Analog and Digital Network

Coding Approaches for Bidirectional Relaying with Private Messages to the Relay," in The

8th Annual IEEE Consumer Communications and Networking Conference, 2011.

[22] D. Gundez, A. Yener, A. Goldsmith and H. V. Poor, "The Multiway Relay Channel," in

Proc. IEEE Int. Symp. Inf. Theory, Seoul, Korea, Jun.–Jul. 2009.

[23] M. Park and S. K. Oh, "An Iterative Network Code Optimization for Three-Way Relay

Channels," in Proc. IEEE VTC ’09, September 2009.

[24] J. G. Proakis and M. Salehi, Digital Communications, 5th ed., McGraw Hill, 1995.

[25] T. Cover and J. Thomas, Elements of information theory, 1st Edition ed., New York: Wiley-

Interscience, 1991.

[26] R. K. a. M. Medard, "An algebraic approach to Network Coding," in IEEE/ACM Trans.

Netw., Oct. 2003.

[27] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi and B. Leong, "A random

linear network coding approach to multicast," in IEEE Trans. Inf. Theory, Oct. 2006.

[28] B. W. Khoueiry, H. Khoshneviss and M. R. Soleymani, "Mobile and Base Station Assisted

Cooperative Communications in LTE Advanced Networks: An Overview and Recent

148

Advances," 2013.

[29] C.-H. Liu and A. Arapostathis, "Joint network coding and superposition coding for multi-

user information exchange in wireless relaying networks," IEEE-Globecom, 2008.

[30] P. Popovski and H. Yomo, "The anti-packets can increase the achievable throughput of a

wireless multi-hop network," in Proc. IEEE Int. Conf. Commun., Istanbul, Turkey, Jun.

2006.

[31] S. Lin and D. J. C. Jr., Error Control Coding: Fundamentals and Applications, 2nd ed ed.,

New Jersey: Pearson Prentice Hall, 2004.

[32] O. Etesami and A. Shokrollahi, "Raptor codes on binary memoryless symmetric channels,"

in IEEE Trans. Inf. Theory, May 2006.

[33] "3GPP TS 36.440: Evolved Universal Terrestrial Radio Access Network (E-UTRAN);

General aspects and principles for interfaces supporting Multimedia Broadcast Multicast

Service (MBMS) within E-UTRAN".

[34] I. Al-Fanek, S. Sadighi and E. Louis, "Multi-User Interactive Surface Using Computer

Vision," IEEE Canadian Review, no. 62, pp. 20-21, 2010.

[35] R. G. Gallager, "Low Density Parity Check Codes," Monograph, 1963.

149

[36] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, "Optimal Decoding of Linear Codes for

Minimizing Symbol Error Rate," Vols. IT-20, pp. 284-287, March 1974.

[37] P. Robertson, E. Villebrun and P. Hoeher, "A comparison of optimal and sub-optimal MAP

decoding algorithms operating in the log domain," in ICC 95, Gateway to Globalization,

Seattle, June 1995.

[38] J. H. a. P. Hoeher, "A Viterbi algorithm with soft decision outputs and its applications," in

IEEE GLOBECOM, Dallas, TX, November 1989.

[39] C. Berrou, Î. Glavieux and P. Thitimajshima, "Near Shannon limit error-correcting coding

and decoding: Turbo-codes," in IEEE International Conference on Communication (ICC),

Geneva, Switzerland, 1993.

[40] C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon limit error-correcting coding

and decoding: Turbo-Codes," in ICC '93, May 1993.

[41] C. E. Shannon, "A mathematical theory of communication," Bell System Technical Journal,

vol. 27, pp. 379-423, 1948.

Appendix A: Channel Coding Techniques

In this section, channel coding techniques that were looked at and used as part of this research

are described and explained.

A.1. Linear block codes

A block code (n,k) adds a constant number of parity bits to a message of certain length (k) to

give an output of length (n). [24]

A block code takes n-information bits and adds to them a certain number of parity bits to create a

coded word of length n. The minimum distance between codewords in the block code code-book

governs the detection and correction capability of the code.

Assuming that a block code is used strictly to correct errors in a binary symmetric channel, a t-

error-correcting (n,k) linear code can correct a total of error patterns.

The relation between the minimum distance between any two codewords in the codebook and the

number of bits the code can correct in a message is ruled by the following equation:

 ⌊

⌋ (6.1)

Where is the number of bits the code can correct, and is the minimum distance between

any two codewords in the codebook of the linear block code.

Based on that, the probability that a received message is decoded incorrectly will be less than or

equal to the probability that we receive a message more than bits in error:

151

 () ∑ (

) ()

 (6.2)

From that, we can get an approximation for the decoded bit error probability:

∑

(

) () (6.3)

The decoding is done by choosing the closest codeword to the received vector based on hard or

soft distances.

A.1.1. Hamming codes

Hamming codes are the simplest form of linear block codes. The have the capability of

correcting one bit error at least in an encoded message. Hamming codes will be used later on in

this thesis to derive a solution to digital network coding for three-way communication through a

relay. [24]The probability of error reduces to the following:

 () ∑(

) ()

 (6.4)

And thus, the probability of bit error:

∑

(

) () (6.5)

A.1.2. Bose-Chaudhuri-Hocquenghem (BCH) codes

BCH codes are a set of linear block codes that can be efficiently decoded using simple algebraic

algorithms. They are known to perform really well for low to moderate block lengths. In

addition, they have a various rates and block code lengths that are well established and tabulated.

152

The design parameters for BCH codes are defined by the following equations:

 (6.6)

 (6.7)

 (6.8)

 Where is the block length, is the info-message length, is, is the least number of bit

errors the code can correct, and is the minimum distance between any two codewords in the

codebook of the BCH code.

Usually well known BCH codes are tabulated in triplet format ().

A.2. Convolutional (Trellis) Codes

A.2.1. Description

Convolutional codes are a class of codes that is generated by passing a sequence of bits into a

finite state register. Thus, they can be conveniently described using a state graph or trellis. Each

bit of the output of the encoder is the result of adding (XORing) pre-determined bits from the

registers.

A.2.2. Recursive Convolutional Codes

Recursive convolutional codes are a special breed of convolutional codes. They are realized by

having a feedback shift register. Hence, they are mathematically represented using a transform

domain generator matrix that is comprised of ratios of polynomials. The recursive nature of these

codes causes them to have infinite-length impulse responses.

153

A.2.3. Encoding

Assuming that we have binary information, data are passed in groups of -bits shifted -times

every time through registers of size -bits. Hence, the total number of stages is equal to .

After each shift, adders determine the encoded sequence. [24] is called the “Constraint

Length”. The following diagram shows a (n, k, K) convolutional encoder.

Figure 71: Convolutional Encoder example

Throughout this thesis, for the sake of simplicity, registers of one-bit size are used. i.e. is

assumed to be equal to 1.

Since the encoder can be thought of as a finite state machine, it can be represented graphically

using a state transition diagram or a trellis, or mathematically using its impulse response as a

function. In general, a rate

 encoder with constraint length () has (). In addition, the code

can be represented using the transform domain generator matrix. The code-word is a result of

multiplying the info bit sequence by the transform domain generator matrix . The generator

matrix for an RSC is given, in general, in the following form:

 () [| ()] (6.9)

154

One of the factors that determine the performance of the convolutional code is the minimum free

distance that can be expressed by the following upper bound:

⌊

() ⌋ (6.10)

A.2.4. Decoding

There are many decoding algorithms for convolutional codes. Some rely on hard-output, hard-

decision decoding, and others on soft-output iterative algorithms.

In this research, the interest is in iterative soft-output algorithms. The reason for that is because

in the collaborative recursive code that is introduced later on in this thesis acts as a concatenated

code; the soft output of one decoder can be used as input for the other decoder. Hence, allowing

for intuitive iterative decoding algorithms.

The best metric to use for soft-output algorithms is the a posteriori probability of the detected

symbol conditioned on the received signal. Assuming we have a binary PSK modulation that

passes through an AWGN channel, the received signal vector can be expressed as follows:

 ()√ (6.11)

Decoding decisions are based on the following maximum a posteriori probability (MAP) of an

info bit in a sequence:

 (|) (|) (6.12)

The algorithm makes a decision on each received symbol by selecting the info bit that

corresponds to the maximum MAP value. The smaller the difference between two MAP values

for an info bit, the less reliable the decoding decision. This criterion minimizes the probability of

symbol error, and hence, MAP is the optimum soft output metric for decoding decisions.

155

The BCJR algorithm is a recursive-decoding algorithm that produces a hard decision on an info

bit, and a soft output value for the reliability of that hard decision based on MAP calculations.

This algorithm is used in subsequent sections to derive a collaborative solution for solving the

three-node with relay using recursive convolutional codes. The coding gain of convolutional

code over an un-coded binary PSK system is as follows:

 () (6.13)

A.2.4.1. The BCJR soft decoding algorithm

The BCJR algorithm is a symbol-by-symbol recursive soft decoding algorithm that is based on

MAP calculations rather than searching for the most probable input sequence. [36]

As discussed before, convolutional codes can be represented as finite state machines, and

therefore, they can be expressed mathematically by finite states as outputs that rely on the current

state of the decoder and the new input.

The probability of error using a BCJR soft decoder and BPSK modulation is given by the

following formula (Proakis page 514):

 ()| () (6.14)

Where:

 () is the transfer function of the convolutional code.

 is the rate of the code.

 is the signal to noise ratio per bit or SNR per bit:

156

 (6.15)

The BCJR algorithm is a soft input soft output algorithm that not only gives a decision for each

symbol, but also a soft value that represents the confidence in the decoder decision for each

decoded symbol. Let’s assume we have an RSC with , and binary input bit { }, the

following mathematical functions will govern the encoder:

 (), where is the codeword based on the previous state of the encoder and

the input bit

 (), where is the current state of the encoder based on the previous state

and the input bit .

If we receive the sequence (), the maximum symbol by symbol a posteriori will

decode the input based on:

 ̂
 { }

 (|)

 { }

∑ ()

()

(6.16)

Where () corresponds to all the state pairs based on an input bit { }

The probability in the last equation can be reduced to the following:

 () (
()

) (|) (
()

|) (6.17)

The probability is the result of multiplying three terms together. The first term depends on the

past (the previous state of the decoder and the last received bit), the second term depends on the

157

present (the current decoder state and the current received bit given a past state), and the last

term depends on the future (the next received bit given the current state of the decoder). We can

define the following to simplify the formula above:

 () (
()

) (6.18)

 () (
()

|) (6.19)

 () (|) (6.20)

The probability above reduces to:

 () () () () (6.21)

Hence, the i-th bit estimation is equivalent to:

 ̂
 { }

∑ () () ()

()

(6.22)

The beauty of the last equation is that alpha, beta, and gamma values can be computed

recursively:

Forward Recursion for ():

 () ∑ () ()

(6.23)

Where corresponds to all possible previous states. We can assume that the initial state

of the decoder is all zeros, and hence the initial condition of the decoder is:

 () () {

 (6.24)

158

From the previous two equations, we can calculate all the equations for () recursively.

Backward Recursion for ():

 () ∑ () ()

(6.25)

Where corresponds to all possible previous states. We can assume that the final state of

the decoder is all zeros, and hence the final condition of the decoder for a sequence length of

is:

 () {

 (6.26)

From the previous two equations, we can calculate all the equations for () recursively.

Calculation of ():

In the calculation of gamma, we are going to assume that we have equiprobable sources ((

) ()

), and that the transition between state and is possible.

As a soft output algorithm, the BCJR algorithm provides a value for the level of certainty for the

decision made per bit (or symbol) in the form of (|). The likelihood ratio is given as:

 ()
 (|)

 (|)

∑ () () ()()

∑ () () ()()

(6.27)

159

Unfortunately, the following equations can’t be numerically stable when computed using a

computer program. The solution to that is using the Log-APP algorithm.

A.2.4.2. The log-APP algorithm

The log-APP algorithm [37] is a modification to the original BCJR algorithm to make it

numerically stable. [38] We define the following term by using the logarithms of BCJR terms:

 ̃ () (()) [∑ () ()

] (6.28)

 ̃ () (()) [∑ () ()

] (6.29)

 ̃ () (()) (6.30)

The a posteriori can be calculated after modifying the initial conditions to go with the updated

equations:

 ()
()

{ ̃ () ̃ () ̃ ()}

()

{ ̃ () ̃ () ̃ ()}

(6.31)

Some approximations can be used to simplify the latter term further.

A.3. Turbo Codes

A.3.1. Encoding

Turbo encoders are built using two or more recursive systematic convolutional encoders. Each

one of those encoders is fed with a differently interleaved version of the input sequence. That

160

parallel concatenation and interleaving process is what gives turbo codes its high performance

attributes. [39]

The choice of the used RSC components has an effect on the performance of the code. For a

well-designed turbo code, RSC with high free distance should be used.

The following diagram shows a turbo encoder (This is the same turbo encoder used in the

simulation):

Figure 72: Turbo Encoder

As seen in the diagram, this turbo encoder consists of two RSC encoders concatenated in

parallel. The first RSC encoder produces the first parity bit. The second RSC encoder, on the

other hand, receives an interleaved version of the input sequence, and produces the second parity

bit. It is interesting to note here that all turbo encoders are systematic. Thus, the input bit itself is

part of the codeword. Optional puncturing can be used in the output to reduce the rate from 1:3

161

to 1:2 (other puncturing schemes can be used as well). In addition, the two RSC encoders

shouldn’t necessarily be identical.

A.3.1.1. Interleaving

Interleaving is the process of shuffling the input bits before feeding them to the different RSC

encoders that constitute the turbo encoder. This mechanism helps avoid producing low weight

codes from both RSC encoders at the same time. In other words, if one RSC encoder produces a

low weight codeword, interleaving will minimize the probability of having a low codeword

produced by the second RSC.

There are many types of interweavers that can be used. One way is to use a look up table in

which the interleaving pattern is defined. Another way is to use a row-column interleaver in

which data is written row wise but read column wise.

The following is a short diagram that explains how the row-column interleaver works (This is the

same concept used in the simulation for interleaving.

Table 40: Interleaver Input

X1 X2 X3 X4

X5 X6 X7 X8

X9 X10 X11 X12

X13 X14 X15 X16

Table 41: Interleaver Output

X1 X5 X9 X13 X2 X6 X10 X14 X3 X7 X11 X15 X4 X8 X12 X16

We can see that the table in the bottom is an interleaved version of the input sequence.

162

A.3.2. Iterative Decoding

Turbo decoders are built using Soft Input/Soft Output (SISO) components and use an iterative

approach to decode a sequence. Basically, a SISO decoder produces a soft output that decides

not only whether a received bit originally a high or low bit, but also how probable that decision

is. An APP (A Posteriori Probability) algorithm for soft outputs was first proposed by Bahl, but

later modified by Berrou & others. [40]The algorithm is now known as the BCJR algorithm.

The APP states that a decoded data bit is equal to a high bit or a low bit is obtained by the

summing the joint probability over all states. i.e.:

 P{dk = i|R1
N
} = ∑

 Where i = 0, 1 (6.32)

Then, the log-likelihood ratio (LLR) is the logarithm of the ratio of APPs

 ()
∑

∑

 Logarithm of the likelihood that the bit is 1 over the likelihood that the bit is zero

 LLR represents a soft output. We decide that the received bit was originally one if he

LLR is positive, and zero if it was negative.

dk = 1 if L(dk) > 0

dk = 0 if L(dk) < 0

The basic idea of a feedback turbo decoder is to communicate messages between two (or more)

SISO decoders iteratively. During iteration, SISO2 receives a message from SISO1. SISO2 uses

it as priory data (pre-known data), appends it to its likelihood ratio of the original input bit, and

then passes an extrinsic piece of information back to the first SISO decoder who will in turn use

that extrinsic data as priory data, and so on so forth until we reach a pre determined condition on

the likelihood ratio, or do a known number of iterations. It is important to note the extrinsic data

has to be interleaved (or de-interleaved) before being fed from one SISO to another.

Decoding with a feedback loop

163

 () () () [
 (|)

 (|)
] () (6.33)

Where () is the soft output of the decoder, () is the LLR channel measurements (has

only to do with the channel). () is the redundant (extrinsic) information supplied by the

decoder, and it doesn’t depend on the decoder input () . The following diagram shows a turbo

decoder.

Figure 73: Turbo Decoder

A.4. Concatenated Codes

Concatenating codes are used to get better performance out of a communication system by

having two codes, one binary and one non-binary in a way where the binary code codewords are

seen as symbols to the non-binary code. The binary code () is usually called the inner code,

and the non-binary code () is called the outer code. The overall communication system

would look as follows:

164

Figure 74: A communication system with concatenated codes

The system above is equivalent to a () long binary code with information bits and

overall length. The minimum distance of the code will be where is the minimum

distance of the inner code and is the minimum distance of the outer code. Concatenation is

one of the methods where codes can be combined to achieve longer codes, and thus, better

performance out of a communication system.

A.5. LDPC Codes

Low-Density Parity-Check (LDPC) codes are a class of linear block codes with performance

close to the Shannon limit. As the name suggests, those codes are constructed from a sparse

parity-check matrix. [35]

Encoding in LDPC requires constructing a low-density (sparse) polynomial generator. Usually

the sparse polynomial is constructed based on specific constraints that govern the number of 1’s

in a column, and in a row of the matrix.

To decode an LDPC practically, an iterative belief-propagation algorithm can be used. This is

done by treating each parity bit as an independent single parity check code, decoding it

separately using SISO techniques (similar to decoding turbo codes). The soft decision

information from each SISO decoder is crosschecked and updated with other redundant SISO

decoders that use the same information bit as input. This is repeated for a number of iterations

before making a final decoding decision. LDPC codes have exceptional performance that rivals

turbo codes.

165

Appendix B: The Mesh Network Simulator Interface

In this section, the main elements of the interface of the simulator are described and discussed. It

is important to note that the discussion here is based on the current features and implementation

as of the date of this writing. However, the code of the simulator is still under development, and

the final implementation of the interface might be different than the one described here.

B.1. The Home Menu

Figure 75: The Home Menu (Hub) of the IF Mesh Network Simulator

The Home Menu is the first dialog that greets the user when he starts the simulator. It serves as

the hub to general main interface as well as the different saved pre-configuration.

B.2. The Main Interface

The main interface is shown after selecting a configuration from the Main Menu.

166

Figure 76: The Main Interface of IF Mesh Network Simulator

The main interface consists of the following:

 The Grid; the grid is the canvas in which you can freely add and drag wireless mesh

networks. The distance between nodes is measured in points, but can conveniently be

transformed to the metric system using a scaling factor.

 Wireless Node; this widget represents a wireless node in a wireless mesh network. Nodes

can be dragged and placed on the grid. They can also be added and deleted dynamically.

Clicking on a Node opens its properties dialog in which you can change the node’s

modulator, encoder and other options.

 The Link; the link represents the wireless medium and embodies underneath the noise

and fading characteristics of the channel. It is displayed on the grid as a line between two

wireless nodes, and the distance in points is represented on the line.

167

 Sliding Menu (Drawer); this feature is what sets apart this human interface than other

simulators in the market. It intuitively reveals itself with a smooth sliding animation

when the mouse pointer goes to the bottom of the window to show more functionality,

and disappears when the user is done with it so that it is out of the way when he or she is

working on the layout of the network. The drawer includes an “Add” button that adds a

new wireless node to the layout, a “Simulate” button that starts the simulation, and an

“Options” button that shows the options dialog box when clicked. The following figure

shows the two states of the sliding drawer.

Figure 77: The Sliding Menu (Drawer)

B.3. The Options Dialog

The Options Dialog includes a number of buttons to govern the general look and feel of the Grid.

In addition, it has a “Channel Options” button that takes the user to the wireless medium options

dialog.

168

Figure 78: Options Dialog

B.4. Link (Channel) Options Dialog

The Link (Channel) Options dialog includes a number of buttons that sliders that control the

properties of the wireless medium. From here, one can set the Noise type and the mean of Noise

as well as the channel fading type and the alpha of the channel.

169

Figure 79: Link (Channel) Options Dialog

B.5. The Node Properties Dialog

The Node Properties dialog is displayed when one clicks on any of the wireless nodes in the grid.

From this view, one can control several aspects of the node like the used coding and modulation

schemes, whether the node sends or receives data, and to whom it should send or receive from.

170

Figure 80: Node Properties Dialog

The included functionality in the simulator and the GUI were limited to the intents and purposes

of this research. However, the final goal for this project is to have a versatile, intuitive and

powerful interface to simulate any complex wireless mesh network in a fast and reliable fashion.

For this reason, the code that I have developed for this project will be released at the end of this

research for others to tinker with, expand and enhance.

	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1: Introduction
	1.1. The problem statement
	1.2. Organization of the thesis

	Chapter 2: Background and Literature Review
	2.1. Wireless Mesh Networks
	2.1.1. Properties of Wireless Mesh Networks
	2.1.2. Applications of Wireless Mesh Networks
	2.1.3. Opportunistic Routing in Wireless Mesh Networks

	2.2. Relaying & Network Coding
	2.2.1. Two-Way-Relay communication
	2.2.1.1. Amplify & Forward approach
	2.2.1.2. Decode & Forward approach

	2.2.2. Digital Network Coding
	2.2.2.1. Practical Use of Network Coding in Modern Networks
	2.2.2.2. Two-Way-Relay Communication with Digital Network Coding

	2.2.3. Analog (Physical) Network Coding

	2.3. Y-Channel-Relay Communication
	2.3.1. Y-Channel Two-Sender Topology
	2.3.2. Y-Channel Three-Sender Topology

	2.4. The Hybrid Error-Erasure Binary Channel
	2.4.1. Capacity in Two-Way-Relay Scenario
	2.4.2. Capacity in Two-Sender Y-Channel-Relay Scenario with One Common Receiver
	2.4.3. Capacity in Three-Sender Y-Channel-Relay Scenarios
	2.4.4. Y-Channel-Relay Analysis without Coding
	2.4.4.1. Calculating The Upper Bound of BER For The Un-Coded Solution
	2.4.4.2. Simulation

	2.5. Existing Coding Techniques for The Y-Channel-Relay Problem
	2.5.1. Nested Codes
	2.5.1.1. Encoding
	2.5.1.2. Decoding

	2.5.2. Combined Network Channel (CNC) Coding

	Chapter 3: Proposed Coding Techniques for the Y-Channel-Relay Network
	3.1. Nested Recursive Convolutional Codes Solution
	3.1.1. Encoding
	3.1.2. Decoding
	3.1.2.1. Creating the erasure table
	3.1.2.2. Soft-Input Soft-Output Decoder
	3.1.2.3. Iterative Decoding

	3.1.3. Simulation
	3.1.3.1. Effect of the constraint length

	3.2. Nested Turbo Codes Based Solution
	3.2.1. Encoding
	3.2.2. Decoding
	3.2.2.1. Creating the erasure table
	3.2.2.2. Iterative Decoding

	3.2.3. Simulation Results

	3.3. Collaborative Algebraic Linear Block Codes Solution
	3.3.1. The Decoding Process
	3.3.1.1. Signal Separation at Node 1
	3.3.1.2. Signal Separation at Node 2
	3.3.1.3. Signal Separation at Node 3

	3.3.2. Algorithm for Decoding Using Array Manipulation
	3.3.2.1. Decoding at Node 1
	3.3.2.1. Decoding at Node 2
	3.3.2.1. Decoding at Node 3

	3.3.3. Algorithm for Decoding Using Table Lookup
	3.3.4. Theoretical Limit of Performance of Algebraic Linear Block Codes in a Noiseless Channel (Erasures-Only)
	3.3.5. Simulation of the (7,4) Algebraic Linear Block Code Example
	3.3.6. Effect of Increasing Rate of the Code

	3.4. Comparison of The Different Coding Techniques

	Chapter 4: Applications to Modern Wireless Networks
	4.1. LTE Multimedia Broadcast/Multicast Service (eMBMS)
	4.2. Use in Wireless Mesh Network
	4.3. In Backbone of Wireless Networks

	Chapter 5: The Mesh Network Simulator
	5.1. Design Objectives
	5.2. Software Architecture

	Chapter 6: Conclusions
	6.1. Future Research

	Appendix A: Channel Coding Techniques
	A.1. Linear block codes
	A.1.1. Hamming codes
	A.1.2. Bose-Chaudhuri-Hocquenghem (BCH) codes

	A.2. Convolutional (Trellis) Codes
	A.2.1. Description
	A.2.2. Recursive Convolutional Codes
	A.2.3. Encoding
	A.2.4. Decoding
	A.2.4.1. The BCJR soft decoding algorithm
	A.2.4.2. The log-APP algorithm

	A.3. Turbo Codes
	A.3.1. Encoding
	A.3.1.1. Interleaving

	A.3.2. Iterative Decoding

	A.4. Concatenated Codes
	A.5. LDPC Codes

	Appendix B: The Mesh Network Simulator Interface
	B.1. The Home Menu
	B.2. The Main Interface
	B.3. The Options Dialog
	B.4. Link (Channel) Options Dialog
	B.5. The Node Properties Dialog

