
Linking HOL Light to Mathematica using

OpenMath

Ons Seddiki

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Electrical & Computer Engineering)

at

Concordia University

Montréal, Québec, Canada

August 2014

c© Ons Seddiki, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211517579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ons Seddiki

Entitled: Linking HOL Light to Mathematica using OpenMath

and submitted in partial fulfilment of the requirements for the degree of

Master of Applied Science (Electrical & Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final Examining Committee:

Dr. M. Z. Kabir
Chair

Chair’s name

Dr. J. Bentahar
Examiner

Examiner’s name

Dr. A. Hamou-Lhadj
Examiner

Examiner’s name

Dr. S. Tahar
Supervisor

Supervisor’s name

Approved by

Chair of Department or Graduate Program Director

2014

Dean of Faculty

ABSTRACT

Linking HOL Light to Mathematica using OpenMath

Ons Seddiki

One of the most important benefits of using a theorem prover system is the

absolute accuracy of the obtained result. However, solving mathematical problems

often requires both deductive reasoning and algebraic computation. This issue is due

to the fact that many real-life problems can be described with equations for which

we cannot find easily symbolic (or closed-form) solutions and therefore we are not

able to formalize them using the theorem prover. In other cases, some applications

require well developed libraries and a deep knowledge of the theories to formalize

simple expressions. A straightforward way to overcome these issues is the use of

computer algebra systems or numerical approaches which are known to be the most

efficient tools in symbolic computation. However, to preserve the soundness of the

computation, the results of these systems should be formally verified. In this thesis,

we present a general architecture to connect HOL Light, a higher-order logic theorem

prover, to any mechanized mathematical system that supports the mathematical

standard OpenMath. We implemented a prototype, called HolMatica, which links

HOL Light to the computer algebra system Mathematica through OpenMath. We

describe our implementation of a HOL Light translator which converts HOL Light

statements into OpenMath object and vice-versa.

iii

To My loving Parents

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank the almighty ALLAH.

Throughout these two years I had bad and good moments; however, at the end we

usually forget about the bad and remember only the good ones and specially the

best among them. For that, it would not be possible with having special persons

in my life. So I would like to thank them through this little note which never can

express my gratitude toward them.

I owe my deepest gratitude and thanks to the Tunisian Government and the

University Mission of Tunisia in Montreal for their support that allowed me to carry

out my studies in comfortable conditions.

Second, I sincerely thank my supervisor, Dr. Sofiène Tahar for giving me the

opportunity to work on this project. He was very motivating, supportive and guided

me efficiently throughout my Master’s thesis. I have learned a lot from him with

respect to research, academic and life in general. I consider him not only as my

supervisor but also as my second father. I also would like to thank Dr. Cvetan

Dunchev for his time and support. I express my heartfelt gratitude to him.

Third, I sincerely thank my colleagues at the Hardware Verification Group

(HVG) at Concordia University for their timely suggestions during my research.

Without their guidance, expert advice, support and continual encouragements, this

thesis would not have been possible.

Then, my friends in Canada and in Tunisia gave me their constant support,

love and encouragement, I can never thank them enough.

Last but not least, I thank my mom, dad, brother and Ahmed, for their

constant support and their prayers. Their support was invaluable in completing this

thesis. I could not do it without having them in my life.

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ACRONYMS . xii

1 Introduction 1

1.1 Motivation . 1

1.2 Mechanized Mathematical Systems 3

1.2.1 Theorem Prover Systems . 3

1.2.2 Computer Algebra System . 4

1.3 Related Work . 6

1.3.1 CAS inside a TPS . 6

1.3.2 TPS inside a CAS . 8

1.3.3 Bridge between a CAS and a TPS 9

1.3.4 Connecting CASs and TPSs using a Mathematical Standard . 11

1.4 Proposed Methodology . 12

1.5 Thesis Contribution . 14

1.6 Thesis Outline . 15

2 Preliminaries 16

2.1 HOL Light . 16

2.1.1 Term . 17

2.1.2 Theorem . 17

2.1.3 Proof Mechanism . 18

2.1.4 HOL Light Symbols . 18

2.2 Mathematica . 20

2.2.1 Simplify . 21

2.2.2 FullSimplify . 21

vi

2.2.3 Factor . 22

2.2.4 FindRoot . 22

2.2.5 Solve . 23

2.3 OpenMath . 23

2.3.1 OpenMath Definition . 23

2.3.2 OpenMath Architecture . 24

2.3.3 Summary . 28

3 Linkage Methodology 29

3.1 Methodology Overview . 29

3.2 OCaml Unit . 31

3.2.1 HOL Light Input Statement 32

3.2.2 HOL Light Output Statement 32

3.2.3 Parser & Splitter . 32

3.2.4 Parser & Collector . 33

3.3 JAVA Application Unit . 34

3.3.1 Mathematica Input/Output Statements 34

3.3.2 OpenMath-Mathematica Phrasebook 34

3.4 Mathematica Functions . 36

3.4.1 Solving Equations . 36

3.4.2 Factoring polynomials . 37

3.4.3 Find Root Equations . 38

3.4.4 Simplifying Equations . 38

3.5 Summary . 43

4 Tool Implementation 44

4.1 Implementation Overview . 44

4.1.1 Common Data Type Structure 45

4.1.2 Parser & Splitter . 48

vii

4.1.3 OpenMath-Mathematica Phrasebook 51

4.1.4 Connecting OCaml and OpenMath-Mathematica Phrasebook 52

4.1.5 The Parser & Collector . 53

4.2 Applications . 56

4.2.1 Matrix Operations . 57

4.2.2 Boundary Condition of an Optical Interface 60

4.3 Summary . 64

5 Conclusion and Future work 66

5.1 Conclusion . 66

5.2 Future Work . 67

A 69

A.1 Required Software . 69

A.2 Tool Installation . 70

viii

LIST OF TABLES

2.1 HOL Light Symbols . 19

4.1 Parser & Splitter Internal Functions 49

4.2 Parser & Collector Internal Functions 54

A.1 The Required Software for the Implementation 69

ix

LIST OF FIGURES

1.1 Architecture of the KeYmaera Prover [55] 7

1.2 Bridge between HOL and Maple [49] 9

1.3 Connecting Different MMS using OpenMath 12

1.4 Proposed Methodology Linking HOL Light to Mathematica 13

2.1 Representation of a Term . 17

2.2 Representation of the Operation of Substitution 17

2.3 Representation of a Theorem . 17

2.4 Representation of a Goal . 18

2.5 The FullForm Function . 21

2.6 The Simplify Function . 21

2.7 The FullSimplify Function . 22

2.8 The Factor Function . 22

2.9 The FindRoot Function . 23

2.10 The Solve Function . 23

2.11 Architecture of OpenMath [43] . 25

3.1 Flow of Connecting HOL Light to Mathematica 30

3.2 Execution Window for Solving an Equation 37

3.3 Execution Window for Factorizing an Equation 38

3.4 Execution Window for Finding the Root of an Equation 38

3.5 Execution Window for Evaluating a Relational Equation 41

3.6 Execution Window for Evaluating a Bounded Integral Equation . . . 42

3.7 Definition of a Goal in HOL Light . 42

3.8 Execution Window for Simplifying a goal from Mathematica 43

4.1 Methodology . 45

x

4.2 Lexical Grammar . 50

4.3 Mathematica Service . 52

4.4 Multiplication of Two 2x2 Matrices 58

4.5 Multiplication of a 2x2 Matrix and a Vector 59

4.6 Determinant of a Matrix 2x2 . 59

4.7 Eigenvalues of a Matrix 2x2 . 60

4.8 Eigenvectors of a Matrix 2x2 . 60

4.9 The System of Interface . 61

4.10 Goal of the Boundary Conditions of the System of Interface in Figure

4.9 [56]. 62

4.11 The Expression Sent to Mathematica to be Simplified/Verified [56]. . 63

A.1 HOL Light Session . 70

A.2 Main Program Function . 70

A.3 HOL Light Expression of Computing Real Integral 70

A.4 Mathematica Service . 71

A.5 HOL Light Result after Computation by Mathematica 71

xi

LIST OF ACRONYMS

API Application Programming Interface

CAS Computer Algebra System

CD Content Dictionary

GUI Graphical User Interface

HOL Higher-Order Logic

LK Logistischer Klassischer

ML Meta Language

MMS Mechanized Mathematical Systems

OM OpenMath

PA Proof Assistant

PVS Specification and Verification System

TCP/IP Transmission Control Protocol/Internet Protocol

TPS Theorem Prover System

XML Extensible Markup Language

xii

Functionality Description

1 Parser & Splitter Functionality . 33

2 Parser & Collector Functionality . 34

3 Mathematica-OpenMath Phrasebook Functionality 35

4 Simplification Program . 40

xiii

Chapter 1

Introduction

1.1 Motivation

In the last decades, Theorem Prover Systems (TPSs) [34] have been used in the

modeling and analyzing of many hardware and software systems. Recently, TPSs

are employed in new areas such as optics, probabilistic and hybrid systems. The use

of TPSs in analyzing complex systems is advantageous over conventional methods

such as Computer Algebra Systems (CASs) [44] thanks to their inherent soundness

and completeness. In addition, TPSs are more reliable and precise than CASs, but

CASs are easier to use and more popular. However, in many cases the modeling and

analysis of optical systems, for example, involves combining symbolic computation

and logic reasoning.

The complementarity of TPSs and CASs lies in the fact that both of them are

used to help people perform formal symbolic manipulation. In fact, CASs are mostly

used to evaluate or compute complex mathematical expressions such as arithmetic

computations, matrix operations or polynomial expressions. Similarly, TPSs are

used to formally verify mathematical models driven by a system of logical inference

rules with the respect to a given specification.

The integration of procedural algebraic knowledge and deductive knowledge is

1

useful in many situations. The first situation is where the mathematical equations

have non-closed-form solution. Often because of the physical nature of hardware

systems, one cannot find a closed form solution for the system to be formalized

in TPSs. Second, such an analysis requires the use of well developed libraries of

the TPSs such as the simplification of complex mathematical expressions involving

multivariate calculus.

The first problem can be addressed by using well-known numerical techniques

which are readily integrated in computational tools such as MATLAB [15]. On the

other hand, the latter can be addressed using CASs (e.g., Mathematica [12] and

Maple [10]) which are considered to be most efficient tools for computing symbolic

solutions automatically. Both of these techniques have some known limitations of

incompleteness and unreliability in case of numerical techniques and CASs, respec-

tively.

In this thesis, our main idea is to leverage upon the expressive nature and

soundness of the higher-order logic theorem prover as much as possible, but at the

same time we want to make use of the advantages of the CASs. In order to handle

these situations, we propose to provide a bridge connecting the HOL Light theorem

prover [26] with Mechanized Mathematical Systems [58] (MMSs) such as symbolic

and numerical techniques based tools.

In this bridge, the given equation is first transferred to CAS in order to be

simplified symbolically. If it is successfully simplified, then we transfer it to the

theorem prover (ideally by first certifying the simplification) in order to pursue the

proof process. In case the equation cannot be simplified symbolically, we have no

option but to switch to numerical approaches.

In the following we will present two categories of MMSs which are TPS and

CAS. Then, we will give an overview about the related work regarding the integration

of symbolic computation and logic reasoning. We will describe also our proposed

methodology linking HOL Light to Mathematica. In addition, we will outline the

2

contributions of our work. Finally, we will conclude this chapter by presenting the

outline of the rest of this thesis.

1.2 Mechanized Mathematical Systems

A mechanized mathematics system (MMS) is a computer system that supports and

improves mathematical processing by applying deductive reasoning or performing

symbolic/numeric computation [58]. There are presently two major types of MMSs:

TPS and CAS.

1.2.1 Theorem Prover Systems

Theorem proving is a formal verification technique used to prove the correctness of a

system. It consists of formalizing the system model and its properties (specifications)

using mathematical logic [47]. Theorem proving is more efficient and provides a

rich formalism compared to other verification methods such as model checking and

equivalence checking [45]. Often a limitation of the model checking systems is the

combinatorial blow up of the state-space which is known as the state explosion

problem. Most real life problems have models which belong to the latter. However,

a possible solution to this limitation is the use of a TPS.

A theorem prover system is a software tool which formally verifies any hard-

ware or software system that can be described mathematically. A TPS proves that a

system model satisfies its specification which is formalized in a logical system. The

core of a TPS consists of a collection of basic theories and inference rules. The use

of these formal notions help users to define and formalize any system that can be

described theoretically. The most common deductive systems which are integrated

in TPSs are the Natural Deduction and the Sequent LK Calculus. For example,

the first calculus is used by TPSs such as HOL Light and Isabelle [7]. An extended

3

version of the second calculus is used by KeYmaera [8]. Both calculus are iso-

morphic and sound and complete for the first-order logic. Since the propositional

logic is decidable, TPSs for it are fully automated. However, first-order logic is semi-

decidable and therefore the TPSs need a guidance through the proof steps, although

there are some first-order theories which are decidable and for them there are ef-

fective procedures. Higher-order logic TPSs such as HOL Light are sound, but the

logic is incomplete. The last limitation does not affect the verification process and

therefore the interactive TPSs remain very strong tools for verifying properties of

complex real life systems [47]. The soundness of the TPS is assured by the fact that

each new theorem is derived from a small set of basic axioms and inference rules,

and theorems that have been already proved. Moreover, the use of TPS requires

a certain knowledge of its internal functions because the formalization is a difficult

process. In fact, to prove a theorem already done by paper and pencil, one needs to

add many steps which consist of choosing and applying the appropriate tactics to

the list of assumptions. Besides, one needs not only to formalize the mathematical

model of a hardware or software system or different mathematical theories but also

its properties as well as the whole context that is needed to run the intended system

[50, 49]. Examples of theorem proving systems are HOL [5] , HOL Light, Coq [25],

Isabelle, PVS [23], etc.

1.2.2 Computer Algebra System

Computer Algebra System (CAS) is a software program for simplifying mathemat-

ical expressions. It is also known under other names such as symbolic calculations

or analytic calculations [44]. Examples of CASs are Maple, Mathematica, Axiom

[1], Reduce [24], etc. CASs are mostly used by mathematicians and scientists to

evaluate mathematical expressions such as arithmetic manipulations, polynomials

operation and matrix operations, for example the evaluation of eigenvalues for lin-

ear equations. Moreover, a CAS provides a user-friendly interface, a syntax which

4

is similar to traditional manual computations and a fully automated system. For

all these reasons, CASs are more popular and easier to use rather than using TPSs.

In addition, CAS usually works faster than TPS since it is optimized for computing

very complex mathematical expressions [49].

Similar to TPS, CAS provides formal symbolic mathematical manipulation.

However, the result might not be accurate since the CAS evaluation does not take

into consideration side conditions. For instance, given “x/x” to Mathematica, it

returns 1, but “x/x = 1” holds only when “x �= 0”. This, however, will not hold in

a TPS.

A special remark should be made regarding the soundness of the approach.

Since a CAS does not implement any logical deductive system, its results must be

verified by the theorem prover always when it is possible. Therefore, with the help of

Mathematica, for example, we can reduce the process of finding a proof of a sub-goal

which is in a sense non-deterministic, to a deterministic one. That means that we

just have to verify the result, not to find it. The analogy with a deterministic Turning

machine and a non-deterministic one, respectively, is straightforward. However,

there are cases where the result of the CAS cannot be verified directly due to the

lack of some theory, for example in cases of approximations. In these cases we might

have some local inaccuracy, but still the results could be useful for analysis.

Solving mathematical problem often requires the application of both algebraic

knowledge and deductive knowledge. In the following section, we will present the

related work regarding the combining of the symbolic computation and the analytic

reasoning.

5

1.3 Related Work

Verifying mathematical statements by TPS often requires algebraic computation. In

the literature, many researchers have addressed the issue of combining symbolic/nu-

meric computation with logical reasoning. In general, there are four approaches.

One solution is building a CAS inside a TPS. The second one is building a TPS

inside a CAS. The third approach implements a bridge between a TPS and a CAS.

The fourth approach is to define a framework using a standard for mathematical

information that can be exchanged between TPSs and CASs. In this section, we will

give an overview of the state-of-the-art in connecting theorem prover and computer

algebra.

1.3.1 CAS inside a TPS

Integrating a CAS inside a TPS is often required in situations where a user needs

to calculate some operations such as the addition of fractions or the calculation

of a derivative of a polynomial. In these cases, using TPS is non-trivial because

it involves a good knowledge of the TPS libraries while using CAS is easier and

simpler.

In [51], Kaliszyk et al proposed a user interface of a CAS that is built on top of

HOL Light. This work is a prototype implemented in HOL Light. Its architecture

is based on three independent parts. The first one is the user interface where a

user can write the mathematical expression that needs to be simplified. The second

part is the CAS conversion which is responsible of computing or evaluating the

expression. The third part represents the knowledge to the specific CAS. This part

is separate a form the system and contains methods that match the term to one

rule among a list of the corresponding rewriting rules. In this work, HOL Light

is used to prove the correctness of the simplified output result by CAS. Given an

expression that needs simplification within HOL Light, the user writes it in the user

6

interface. Then, the CAS conversion checks whether the given term matches with

one of the rewrite rules existing in the knowledge base specific to the CAS which

represents the set of theorems and conversion understandable by the CAS. Once

the computation is complete, if the returned result is correct the CAS conversion

returns a theorem which represents the certification of the input term. Otherwise,

it returns an instance of a reflexivity theorem where the input is the same as the

output. This prototype uses mathematical expressions with a precise semantic and

according to this semantic HOL Light checks the soundness of the input statement.

The advantage of this work is that all calculations done by HOL Light are certified

by the architecture itself. However, as this system generates the results and their

certifications, this application has lower performance than using traditional CAS in

terms of execution time. In addition, the integrated CAS is used only for HOL Light

and cannot be accommodated to other TPSs such as HOL or Isabelle.

In [8], Platzer et al proposed an automated and interactive theorem prover

based on first-order logic for hybrid programs. KeYmaera combines deductive rea-

soning based on the theorem prover KeY [30] and algebraic algorithms using the

computer algebra system Mathematica. It is fully automated and it includes also a

user interface written in JAVA. Figure 1.1 describes the architecture of this hybrid

theorem prover. It includes the proof rules bases that is used to prove the correct-

ness of an expression. Moreover, the automatic proof strategies is used in order to

simplify the proof steps of complex mathematical expressions.

Figure 1.1: Architecture of the KeYmaera Prover [55]

7

1.3.2 TPS inside a CAS

This approach is to build a TPS inside CAS. This implementation represents usu-

ally an extension of the CAS to be able to prove the correctness of the simplified

result. Theorema [36], for example, is a framework which uses advanced features

of the kernel and the front end of Mathematica. Theorema allows users to prove,

solve and compute mathematical expression. The use of Theorema is similar to the

use of Mathematica. knowing the syntax of Theorema, the user has to define the

mathematical expressions in the notebook (front end) of Mathematica in order to

prove or compute them [37].

In [31], Clarke et al proposed automated theorem provers for theorems in basic

analysis. It is called Analytica and it is written in Mathematica language and run

in the Mathematica environment [42]. The process of verifying an expression using

Analytica is based on three steps: simplification, inference and rewriting. Given a

formula that needs to be proved, first it is passed to the simplification process in order

to be reduced by applying a number of algebraic and logical transformation rules.

Then, if the simplified result is true, the proof process is terminated. Otherwise the

theorem prover matches the formula with the conclusion of some inference rule.

Another project of building a TPS inside CAS is RedLog [32], which is a TPS

based on first-order logic built on top of the CAS Reduce. This work extends the

Reduce’s system by adding a set of symbolic computation methods which provide a

lot of rules written in first-order logic. This work is used mainly to simplify Mathe-

matica expression by eliminating the free quantifier of first order logic formulas.

In this approach of building a TPS inside a CAS, TPS is used to guarantee the

correctness of certain steps during the simplification process such as the division by

a symbolic expression that could be zero. Therefore, in this case, the use of the TPS

can prevent common errors done by the symbolic computation system. However,

the limitation of this work is that we rely mainly on the CAS and specially Math-

ematica to check the correctness of the simplification process but not to formally

8

verify a complex hardware system. In addition, similarly to the approach mentioned

previously, these approaches are specific to a certain software system and it is a hard

task to accommodate or extend them to other systems. Moreover, RedLog relies on

a TPS that is based on first-order logic formal system which is undecidable.

1.3.3 Bridge between a CAS and a TPS

This approach is mainly based on the implementation of a protocol of communication

between a CAS and a TPS. In many cases, it involves a master-slave relation, in

which the TPS is usually considered as a master and the CAS as a slave, with the

assumption that there is no trust in the CAS.

In [49], Harrison et al propose a bridge between HOL and Maple. This link

considers HOL as a master and Maple as a slave. In this work, every result given by

Maple will be rigorously certified by HOL. In the cases where we cannot check the

correctness of the CAS result, Gordon proposed an intermediate level of trust [16].

It consists of adding a tag to the generated theorem emphasizing that Maple is used.

The implementation of this work is decomposed on three components : HOL, Maple

and a bridge.

Figure 1.2: Bridge between HOL and Maple [49]

As described in Figure 1.2, HOL and Maple send and receive messages through

the Bridge. This Bridge receives and translates the HOL formulas expressed as string

into the corresponding Maple encoding and then sends it to Maple. Once the result

is ready, it translates and sends it back to HOL. The limitation of this work is the

data integration. For example, integrating the CAS AXIOM which has a different

9

structure in Maple is a very difficult procedure because one needs to implement

another bridge specific to the syntax of AXIOM.

In [33], Adams et al present an interface that connects the Maple (version

6) to PVS. This approach assumes that PVS is used as a slave and Maple as a

master. This work allows Maple users to check the correctness of the results during

the simplification process by calling PVS as a black box system. It takes advantage

of the verification done by PVS without losing the speed and the power of Maple.

This approach involves a tightly coupled system where Maple controls PVS. This

work is implemented using C programming language and Maple code. First,the

user sends a command from the console of Maple to establish the communication

between Maple and PVS. Then, the user send the proof command where he specifies

the PVS session identify, , the formula that needs verification in PVS syntax, the

PVS library and the PVS proof control. Finally, this bridge confirms whether the

proof is correct or not.

In [35], Ballarin et al propose a bridge connecting Isabelle to Maple. This ap-

proach implements an interface between Maple as a slave and Isabelle as a master.

This interface consists on extending the Isabelle simplifier by adding new simplifi-

cation rules in order to call specific operations of Maple. These new simplification

rules are written in Isabelle. This implementation does not involve modifying the

core of Maple but it should specify its concrete syntax. However, this approach does

not allow to access easily Isabelle by another theorem prover or another CAS.

The limitation of these approaches is that they represent a one-to-one connec-

tion. Thus, to be able to implement an integration of multiple CASs and TPSs ,

one needs to adopt another network topology to be able to connect them which may

not be an easy task.

10

1.3.4 Connecting CASs and TPSs using a Mathematical

Standard

A mathematical standard is an XML representation of a mathematical expression.

The approach of connecting multiple MMSs consists of building a framework that

integrates TPSs and CASs. It can be divided into two groups.

The first approach is to build an integrated framework or an MMS (e.g. Math-

scheme [52]) that provides the functionalities of both CASs and TPSs without calling

any external MMS and without using any intermediate language. This framework

is able to play a role as a CAS in order to simplify or evaluate the mathematical

expression or as a TPS to proof the correctness of the result. Unfortunately, the

implementation of such an MMS requires a lot of effort because it is a creation of

two different systems in one. In [41] the authors developed a formal grammar for

the MathScheme language where it defines both the algebraic functions and the

deductive ones.

The second approach is to build an integrated framework that uses a mathe-

matical standard that can be exchanged between different MMS (such as MathML

[14] and OpenMath [22]). Both MathML and OpenMath are standards for repre-

senting mathematical expressions, but unlike MathML, OpenMath deals not only

with the syntax but also with the semantics of the mathematical object.

In [38] the authors present a JAVA applet which takes a Maple expression

as input and returns a Lego [9] theorem prover expression through a translation

into OpenMath. The flow of the implementation of this work is represented a fol-

lows : first, in the JAVA applet between Lego and OpenMath, the user writes the

input statement in Maple syntax. This statement is passed to the Maple Phrase-

book which converts it into an OpenMath object. Then, the JAVA applet takes

the OpenMath object and returns its corresponding term in Lego syntax using the

encodeing/decoding methods existing in the Lego Phrasebook. Finally, Lego proves

11

this statement and sends it back to the JAVA applet.

Our proposed work has been directly inspired by this approach as well as

the approach described in Subsection 1.3.3. We propose to combine the access to

external tools using an intermediate standard such as OpenMath. In the following

section, we describe our proposed methodology.

1.4 Proposed Methodology

We combine the advantages of HOL Light as a TPS and Mathematica as a CAS to

create a complete framework that is able to simplify mathematical expressions in a

short time and provides a sound result. The architecture of our framework can be

generalized in order to connect multiple MMSs together in a way to have access to

their kernels. We aim at providing a general architecture to build a heterogeneous

problem-solving environment connecting HOL Light, a higher-order logic theorem

prover, to any MMS which supports the OpenMath standard.

Figure 1.3: Connecting Different MMS using OpenMath

Figure 1.3 illustrates our approach which provides us with a variety of different

MMSs that support Open-Math such as the theorem provers Lego [9] and Coq [25],

12

the CASs Maple, Gap [4] and Mathematica [12], or the numerical solver MuPAD

[17] with the intention of solving and reasoning over larger sets of problems. We

have implemented a prototype tool of the above approach that links HOL Light to

Mathematica as described in Figure 1.4.

Figure 1.4: Proposed Methodology Linking HOL Light to Mathematica

Figure 1.4 describes the flow of our prototype connecting HOL Light to Math-

ematica using OpenMath as a middle-ware. Given a HOL Light expression that

needs to be simplified, first we pass it to the HOL Light translator and particularly

the first module responsible of converting HOL Light expression to OpenMath en-

coding. Then, we send this OpenMath description to the JAVA application called

OpenMath-Mathematica Phrasebook proposed by Caprotti [38]. This Phrasebook is

an interface which is compromised of a set of methods converting OpenMath object

to/from the internal representation of Mathematica. Once we get the Mathematica

input statement, we pass it to the Mathematica kernel in order to be evaluated.

After the computation, we translate back the output Mathematica statement to the

13

OpenMath encoding. This encoding is sent back to the HOL Light translator in or-

der to convert it back to HOL Light syntax. Unlike [38] which implements a JAVA

applet where a user should provide a Maple expression in order to be checked by

calling Lego through OpenMath, our work offers HOL Light users an easy access to

Mathematica. This access involves the connection of these two external tools using

the Mathematical standard OpenMath.

1.5 Thesis Contribution

The contributions of this thesis can be summarized as follows:

– We proposed a general approach to combine algebraic computation and deduc-

tive reasoning. The use of OpenMath as a middle-ware in our implementation

enables a flexible, open and easily extendable architecture. Both CASs and

TPSs are connected via an independent mathematical standard language. In-

stead of the prototype linking HOL Light and Mathematica, we could have

chosen any other MMS, different from Mathematica, that supports OpenMath.

– The proposed interface between HOL Light and Mathematica is designed by

implementing a HOL Light translator without any modification of the internal

implementation of HOL Light. We develop a parser in HOL Light that converts

HOL Light syntax to OpenMath encoding. It uses a grammar that can be

easily extended to handle more complex mathematical expressions.

– Our methodology combines the soundness of the result proved by TPS, HOL

Light and the facility of the simplification of the CAS, Mathematica and builds

an integrated environment. In fact, one can call CAS directly in the current

running HOL Light session. Then, in a few seconds, the user gets the result

simplified by Mathematica and ready to be used for further proofs instead of

doing it manually.

14

– The implemented prototype tool linking HOL Light to Mathematica, called

HolMatica, is in a perpetual state of improvement as it can be easily extended

to tackle more complex mathematical expressions. Our tool is an Open Source

software and is publicly available for download from the web site

http://hvg.ece.concordia.ca/research/tools/holmatica/.

1.6 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we present the Pre-

liminaries. We give an introduction to the theorem prover HOL Light. Then, we

discuss the computer algebra Mathematica. Finally, we introduce the notions re-

lated to OpenMath and its architecture. Chapter 3 gives a detailed description of

the proposed methodology linking HOL Light to Mathematica by showing the func-

tionalities of each modules. We conclude this chapter by presenting the different

Mathematica functions that we use in this thesis. Chapter 4 presents the imple-

mentation of our tool by describing the important functions of the main parts of

our system. Then, we show the usefulness of our tool by presenting several appli-

cations and running examples. Chapter 5 provides the conclusion and some future

directions to our work.

15

Chapter 2

Preliminaries

This chapter focuses on the preliminaries needed to set the ground for this thesis.

We first give a brief introduction to the theorem prover system HOL Light. Then

we describe the computer algebra system Mathematica. Finally, we present the

mathematical standard OpenMath and its architecture.

2.1 HOL Light

The HOL Light system is a TPS software that is implemented in Objective Caml

(OCaml) [21]. It unifies functional, imperative, and object-oriented programming.

OCaml is the main implementation of the Caml programming language. It is derived

from the ML programming language family [46]. HOL Light is able to prove math-

ematical theorems formally expressed in Higher Order Logic (abbreviated as HOL).

HOL is a symbolic formal system used in mathematics, philosophy, linguistics, and

computer science [57]. It is more expressive than the first-order logic because it has

a strong semantic and uses quantifiers over predicate and function symbols. Be-

sides existing basic types in OCaml such as string and integer, HOL Light evaluates

expressions involving terms and theorems.

16

2.1.1 Term

A term is the representation of a mathematical expression or a logical assertion.

Unlike strings which are evaluated as symbolic expressions, terms are represented

as structures of an abstract syntax tree. Figure 2.1 shows an example of the term

1 + x in HOL Light:

Figure 2.1: Representation of a Term

HOL Light provides a number of operations for manipulating terms. For exam-

ple the operation subst replaces one term by another at all its occurrences. Figure

2.2 shows an example of the function subst where we replace the number ′1′ by the

number ′2′ in the term ′x+ 1′ :

Figure 2.2: Representation of the Operation of Substitution

2.1.2 Theorem

A theorem represents only true formulas. A formula is a term of Boolean type

that may be true or false with respect to given theories. A theorem describes the

statements that have been proved by the application of basic axioms and inferences

rules on a given formula. The function ASSUME, for example, returns a theorem that

is deduced from itself. Figure 2.3 shows an example of this function, given a formula

1 + 1 = 2, it returns the theorem 1 + 1 = 2 � 1 + 1 = 2.

Figure 2.3: Representation of a Theorem

17

2.1.3 Proof Mechanism

In HOL Light the proof derivation can be done in a top-down (forward) mechanism,

starting from the axioms, or in a bottom-up (backwards) mechanism, starting from

the statement which we want to prove. The second approach is more natural because

it decomposes a formula into its sub-formulas. However, it requires the application

of inference rules in a reversed way, i.e., from conclusion to the premises. For

this reason a special mechanism, called tactics, is integrated in HOL Light. For

example, if we want to have as a goal the formula A(x) ∧ B(x), we can call the

tactic CONJ TAC that splits our subgoal to two subgoals, namely A(x) and B(x),

which will be proved under the same assumptions. The other mechanism, called

tactical, allows HOL Light users to compose tactics. For example, ARITH TAC is

a tactical which performs a simplification of arithmetical expressions. The tactics

and tacticals in HOL Light are implemented as OCaml functions. These tactics are

applied on goals which are expressions that the user wants to prove. Figure 2.4

shows an example of a goal which consists of the equality 1 + 1 = 2:

Figure 2.4: Representation of a Goal

2.1.4 HOL Light Symbols

Table 2.1 provides the mathematical interpretations of some frequently used HOL

Light symbols and functions, which are used in this work.

18

Table 2.1: HOL Light Symbols

HOL Light Symbol Meaning

∧ Logical and

∨ Logical or

∼ Logical negation

& Cast from Integer to Real

pow Power Function

λ x. f(x) Function that maps x to f(x)

real integral Integral Function

mat2x2 Matrix of order 2

In this work, we use HOL Light as a TPS because it offers very rich libraries

(e.g. real and complex analysis, vector analysis and multivariate calculus). In

addition, HOL Light is built on top of OCaml which can be called by external

systems, thus it is easier to be combined with other tools, compared to other TPSs

such as Isabelle and HOL.

Despite all the advantages of HOL Light, only computer specialists in the

theorem proving domain are mostly using it, while mathematicians and scientists

often use CAS. This is due to the fact that sometimes formalizing basic theories

might require substantial time, knowledge and skills while in these cases, using

CAS is simpler. Moreover, sometimes we can encounter mathematical problems

that need to solve non-closed form equations. In that case, we need a CAS to

simplify or compute the intend equations. Then, we transfer them either manually

or automatically to HOL Light to continue further proofs.

19

2.2 Mathematica

Mathematica is a product of Wolfram Research, Inc [12]. It is a general computer

software system and language that can handle symbolic, numerical and graphical

computation. It is under perpetual development (now we find available Mathematica

version 9). Compared to other CAS, Mathematica is popular among users [44]. It is

used in a large number of solutions in different fields such as Engineering, Finance,

Statistics, Business, Biotechnology and Medicine, and other kinds of sciences [2]. In

addition, Mathematica can communicate with external programs at a high level and

exchange structured data with them using MathLink [6].

MathLink provides a general interface allowing the connection between Mathe-

matica and external tools. The MathLink library consists of a collection of routines

that allow external programs either to call Mathematica, and/or to be called by

Mathematica by using programming languages such as C/C++ or JAVA. This link

can either be on a single computer, or it can be over a network which groups many

terminals together. The transparency of the MathLink library makes the link more

flexible and independent from any computer. In fact, it emphasizes one of the most

important features of MathLink which is interpretability [13].

Mathematica is mainly composed of two parts, the kernel and the front end.

The kernel interprets expressions and returns result expressions. The front end

provides a GUI, which allows the creation and editing of Notebook documents.

Mathematica handles different kinds of mathematical representations such as math-

ematical formulas, lists and graphics. Although they have a different structure, all

these mathematical representations are rendered by Mathematica in one uniform

way which is a full form of expression, with no special syntax. This procedure is

represented by a function called FullForm.

20

Figure 2.5 shows an example of a FullForm representation of the mathematical

expression a ∗ b+ c:

Figure 2.5: The FullForm Function

In addition, Mathematica uses algebraic formulas and functions to perform

symbolic computation,as well as numbers to perform numerical calculations. In the

following, we present the different Mathematica functions that we use in this thesis.

2.2.1 Simplify

Mathematica Syntax:

Simplify[expression]

The function Simplify performs a sequence of algebraic transformations on the

input expression and returns the simplest form it finds. Figure 2.6 shows the result

of the simplification of the function cos2x+ sin2x:

Figure 2.6: The Simplify Function

2.2.2 FullSimplify

Mathematica Syntax:

FullSimplify[expression]

21

The function FullSimplify applies elementary and special functions to transform

the input expression in order to return the simplest form it finds. Figure 2.7 shows

the simplification of the polynomial x3−6∗x2+11∗x−6, which returns its simplest

form (−3+x)(−2+x)(−1+x) after applying the different algebraic transformation:

Figure 2.7: The FullSimplify Function

2.2.3 Factor

Mathematica Syntax:

Factor[polynomial]

The function Factor factors a polynomial over the integers. Figure 2.8 shows the

factorization of the polynomial x10 − 1 :

Figure 2.8: The Factor Function

2.2.4 FindRoot

Mathematica Syntax:

FindRoot[f, x, x0]

The function FindRoot searches for a numerical root of a function f, starting from

the point x = x0. Figure 2.9 finds the approximate values for the function cosx = x

for the value close to 0:

22

Figure 2.9: The FindRoot Function

2.2.5 Solve

Mathematica Syntax:

Solve[expression, vars]

The function Solve attempts to solve the expression based on equations or inequal-

ities for the variables vars. Figure 2.10 solve the polynomial x2 + ax+ 1 = 0 :

Figure 2.10: The Solve Function

2.3 OpenMath

2.3.1 OpenMath Definition

OpenMath is a standard that represents mathematical objects with their semantics.

It can be used in many applications such as exchanging mathematical information

between computer programs. Moreover, it can be stored in databases or published

on the worldwide web [22]. In fact, OpenMath can be used not only to express usual

mathematical expressions for CASs, but it can also be used to express formulas, the-

orems and logic expressions that can be exchanged and understood by TPSs.

23

In the next section, we will present the architecture of OpenMath which con-

sists of OpenMath object, XML encoding, Content Dictionaries and OpenMath

Phrasebook.

2.3.2 OpenMath Architecture

Figure 2.11 represents the communication model of how a mathematical expression

can be exchanged through OpenMath standard. This architecture is based on three

layers. The first layer consists of the internal representation of a specific program.

This layer does not concern OpenMath. The second layer is the representation

of the first layer as an OpenMath object. In fact, the correspondence between

a mathematical object expressed in its internal representation and its OpenMath

object is performed via OpenMath Phrasebook [40]. The OpenMath Phrasebook is

an interface that converts an OpenMath object to/from the internal representation

in a software application. This conversion is governed by the corresponding content

dictionaries (CDs) [18]. These CDs contain the definitions of symbols occurring in

the OpenMath objects. The third layer is a representation of the corresponding

OpenMath object as a byte stream that can be used to communicate with external

systems [54].

24

Figure 2.11: Architecture of OpenMath [43]

2.3.2.1 OpenMath Object

OpenMath object is the representation of both the syntax and the semantics of a

mathematical expression that can be exchanged between several software systems

[43]. OpenMath provides two categories of OpenMath objects. The first is the basic

object that describes integers, symbols, floating-point numbers, character strings,

byte arrays and variables. The second one is the compound objects [53]. Compound

objects are described using:

– Application objects: can represent either a functional application such as

application(cos, x) or a constructor application(Rational, 1,2).

– Binding objects are represented as

Binding (lambda, x , application(times, 1, x)).

25

– Error objects can occur during the manipulation of the OpenMath such as

error(damaged encoding).

– Attribution objects are represented as attribution (A, type t) which ex-

presses that the object A has a type t.

2.3.2.2 OpenMath XML Encoding

The XML encoding of an OpenMath object describes its representation in stream

bytes that can be exchanged easily between external systems or stored and extracted

from files [54]. For instance, the encoding of:

Binding(lambda, x , application(times, 1, x)) is described as follows:

<OMOBJ><OMBIND><OMS name="lambda" cd="fns"/>

<OMBVAR><OMV name= "x"/></OMBVAR>

<OMA> <OMS name="times" cd="arith1"/>

<OMI> 1 </OMI>

<OMV name= "x"/>

</OMA>

</OMBIND></OMOBJ>

This encoding describes that the symbols lambda and times (tagged by OMS) are

defined by the CDs fns and arith1, respectively. In addition, the elements OMA,

OMBIND, OMI and OMV identify application, binding, integer, and variable, re-

spectively. [39]

2.3.2.3 Content Dictionaries

A Content Dictionary (CD) represents the semantics of a mathematical expression

independently of the application. It contains several details about the CD itself

such as name, status (official, experimental, private or obsolete) and an optional list

26

of the CDs that it may depend on. A CD describes also a collection of symbols,

their designations, their descriptions in natural language and rules which define the

use of appropriate symbols in the correct order. In addition, we can add optional

information related to the specific symbol such as the signature, the proprieties and

the example explaining the use of this specific symbol [48].

The following example represents the CD of the transcendental "sin" function :

<CDDefinition>

<Name> sin </Name>

<Description>

The sin function as described in Abramowitz and Stegun, section 4.3

</Description>

</CDDefinition>

This definition allows the mapping implementation of the OpenMath object <OMS

name="sin" cd="transc"/> to its internal representation via Phrasebook in the

correct order.

2.3.2.4 OpenMath Phrasebooks

Phrasebook is an interface which converts OpenMath object to/from the internal

representation of a program as decoded by the related CDs [38]. Since the emergence

of OpenMath, several Phrasebooks have been implemented. Mostly those Phrase-

books are used to exchange OpenMath object using CASs such as GAP, Axiom,

Mathematica, Maple, etc. Moreover, we can find other Phrasebooks for exchanging

OpenMath objects using proof checkers such as Lego and Coq or numerical approach

such as MuPAD. In our work we use OpenMath-Mathematica Phrasebook proposed

by Caprotti et al. [40].

27

2.3.3 Summary

In this chapter we provided an introduction to HOL Light theorem prover. We

presented an overview of Mathematica. Then, we described the OpenMath standard

and its architecture. The intent was to introduce basic notions that are going to

be used in the rest of the thesis. In the next chapter, we present our methodology

linking HOL Light to Mathematica through OpenMath.

28

Chapter 3

Linkage Methodology

In this chapter, we present a detailed description of the proposed methodology

linking HOL Light as a TPS to Mathematica as a CAS. Then, we describe the

functionalities of each module. Finally, we conclude this chapter by giving some

examples of the different Mathematica operations supported in our work.

3.1 Methodology Overview

Figure 3.1 depicts our methodology to connect HOL Light and Mathematica. This is

comprised of two modules: the OCaml units and the JAVA application. It includes

also the XML objects which represent the OpenMath objects that are exchanged

between the two modules. It can be observed in Figure 3.1 that the connection

between each pair of modules is bidirectional. This makes the connection between

HOL Light and Mathematica complete.

The steps of our methodology are described as follows. First, we pass the HOL

Light expression that needs to be simplified to the “Parser & Splitter”.

29

Figure 3.1: Flow of Connecting HOL Light to Mathematica

At this stage, we use the “Parser & Splitter” unit in order to transform the

HOL Light term into a corresponding OpenMath object. This conversion is gov-

erned by the relevant CDs. Then, we store the OpenMath XML encoding which

represents the input of the second module that contains the JAVA application. This

JAVA application contains the OpenMath-Mathematica Phrasebook [40], which is

an interface responsible for three tasks. First, it reads the OpenMath XML en-

coding and translates it into Mathematica syntax as understood by means to the

corresponding CDs. Second, it passes the Mathematica statement to Mathematica

kernel using MathLink in order to evaluate the statement. Finally, after the com-

putation of the intended equation, the Mathematica output statement is translated

back to OpenMath and an XML representation is generated.

30

The same process takes place in the reverse direction until we reach the “Parser

& Collector” module which translates back the OpenMath object into the HOL Light

statement according to the corresponding CDs.

Our methodology takes the HOL Light input expression as one string and the

Mathematica expression as another string. By default the returned value is a HOL

Light theorem tagged with the name of the CAS, in our case Mathematica. As an

example, let’s assume that the returned result is Ψ. The tag is then represented

as : Mathematica � Ψ. This tag intends that “what we get from Mathematica

is sound”. Moreover, each theorem derived from this returned theorem inherent

the tag Mathematica. This procedure helps HOL Light users to easily trace the

theorems created by the help of the external tool. In addition, we can generate

a sub-goal as a returned result. In this way, after the computation, the returned

result is represented as a sub-goal and added to the assumptions of the main goal.

One needs to prove this sub-goal in order to pursue further proofs. In this case the

soundness of our result is preserved as we are using HOL Light to prove it.

In the next section, we describe the functionalities of the different modules

presented in the methodology.

3.2 OCaml Unit

This module is responsible of the translation from HOL Light to OpenMath and vice-

versa. It consists of two OCaml units : “Parser & Splitter” which translates HOL

Light to OpenMath XML encoding and the “Parser & Collector” which translates

OpenMath objects into HOL Light statement. It contains also the HOL Light input

and output statements.

31

3.2.1 HOL Light Input Statement

The HOL Light input statement has two arguments, i.e., the HOL Light expres-

sion needed to be simplified as a string and the specific Mathematica function e.g.,

Simplify as a string.

3.2.2 HOL Light Output Statement

The HOL Light output Statement can be either a theorem or a sub-goal. Once the

returned result described in XML OpenMath encoding is translated back in HOL

Light, by default a theorem tagged with the name of Mathematica is generated. In

case we need to integrate the result in a main goal, it generates a sub-goal.

3.2.3 Parser & Splitter

The “Parser & Splitter” module first parses and decomposes the HOL Light input

statement into a list of operators and operands using the function lexical analyzer,

as described below. This function takes the HOL Light input statement and returns

the list of the used symbols. Then, the procedure map symbols maps each element

of the list with the corresponding OpenMath symbol as decoded by means of the

related CDs. Finally, using the function write object, the “Parser & Splitter” stores

the OpenMath XML encoding. This representation can be exchanged among several

systems. The XML description is used as an input for the second module, as we

mentioned previously. In addition, the “Parser & Splitter” unit saves the tag of the

specific Mathematica function in order to be passed to the JAVA application.

32

Parser & Splitter Functionality

Input: hol light expr= HOL Light expression as a string

// Represents the equation to be computed

Output: OpenMath Input object = OpenMath XML encoding object

begin

list of tockens ←− lexical analyzer(hol light expr);

// Decomposes the input into a list of lexical items

OpenMath objects ←− map symbols(list of tockens);

// Maps HOL Light symbols with OpenMath objects

OpenMath Input object ←− write object(OpenMath objects);

3.2.4 Parser & Collector

The “Parser & Collector” module, first reads the OpenMath XML encoding object

of the returned result from Mathematica and extracts the OpenMath symbols, using

the function extract OM Obj, as described below. This function takes the Open-

Math XML encoding and returns the list of the OpenMath used symbols. Then, the

“Parser & Collector” translates these OpenMath symbols into a HOL Light state-

ment as understood by the relevant CDs. This step is performed using the function

map HL symbol which maps the OpenMath symbols to the specific corresponding

HOL Light symbols. Then, it collects all the HOL Light symbols using the function

collect HL symbols. Finally, it returns the HOL Light output statement.

33

Parser & Collector Functionality

Input: OpenMath Output object = OpenMath XML encoding object of

Mathematica output expression

Output: hol light res= HOL Light expression as a string

begin

list OM obj ←− extract OM Obj(OpenMath Output object);

// Reads the OpenMath XML encoding input object

List HLL symbols ←− map HL symbols(list OM obj);

// Maps OpenMath objects with HOL Light symbols

hol light res ←− collect HL symbols(List HL symbols);

// Collects the HOL Light Symbols

return hol light res

3.3 JAVA Application Unit

The JAVA application unit is composed of the Mathematica input and output state-

ments and the OpenMath-Mathematica Phrasebook.

3.3.1 Mathematica Input/Output Statements

The Mathematica input/output statements represent the statement in Mathemat-

ica language in a full form description which are sent back and forth from the

OpenMath-Mathematica Phrasebook to the Mathematica kernel.

3.3.2 OpenMath-Mathematica Phrasebook

In this work, we use the concept of the Phrasebook between OpenMath and Math-

ematica which was introduced by Caprotti et al. [40].

This Phrasebook defines a collection of JAVA classes. It provides a collection

34

of encoding and decoding methods between OpenMath and Mathematica based on

the declaration of the corresponding CDs. This Phrasebook includes also a set of

methods that handle the Mathematica calling function that the user specifies in the

HOL Light input statement.

Mathematica-OpenMath Phrasebook Functionality

Input: OpenMath input object = OpenMath XML encoding object of

HOL Light input expression

Output: OpenMath Output object = OpenMath XML encoding object

of Mathematica output expression

begin
Mathematica input ←−
translate OM Mathematica(OpenMath Output object);

// Translates Mathematica statement into OpenMath objects

Mathematica output ←− call Mathe kernel(Mathematica input);

// Evaluates the equation by calling Mathematica kernel

OM result ←− translate Mathe OM(List HL symbols);

// Translates back OpenMath object to Mathematica

OpenMath Output object ←− write object(OM result);

// Writes the output OpemMath XML encoding object

We first translate the XML encoding that describes the OpenMath input object

into a Mathematica statement, as described above. This step is performed using

the function translate OM Mathematica which takes as input the OpenMath XML

encoding and returns the corresponding Mathematica statement. Then, we evaluate

it through a connection with the MathLink link which opens the Mathematica kernel.

In fact, the function call Mathe kernel, which takes as input the Mathematica

input statement and returns its simplification, establishes a connection between this

JAVA application with the Mathematica kernel in order to use Mathematica as

35

a computation engine. Once the computation is complete, we translate back the

Mathematica Output to OpenMath object, using the function translate Mathe OM.

Finally, we store its XML Encoding which will be read by the module OCaml Units

“Parser & Collector”, using the last function called write object.

In the following section, we present the main program of our work with a

detailed explanation of the different Mathematica functions that we are using in our

work.

3.4 Mathematica Functions

In this section, we present the Mathematica functions supported in our framework.

These functions, which are specified by the user in the HOL Light input statement

contain the same structure, but the way of displaying the returned result is different.

In the following subsections, we present details of the Mathematica functions we use

in our work, illustrated by some examples.

3.4.1 Solving Equations

Solving equations is the process of finding values that respect a specific algebraic

system. Given the equation x2 − 1 = 0, we solve it in our work as follows:

Input:

#call mathematica “x pow 2 - &1 = &0” “Solve”;;

Output:

val it : thm = Mathematica � x pow 2 - &1 = &0 ==> x = – &1 \/ x = &1

Figure 3.2 describes the different steps to solve the above equation. First, in the

HOL Light session, we call the main function of our tool, call mathematica, given

the arguments the HOL Light expression x pow 2 - &1 = &0 where &1 and &0 are

36

type casted 1 and 0 to reals , x is a variable, 2 is an integer and pow is the power

function, and the specific Mathematica function Solve. Second, we specify the vari-

able that we want to solve, in our case it is x. Then, this statement is translated to

a Mathematica statement, expressed as

FullForm[Solve[Equal[Subtract[Power[x,2],1],0],x]], which represents the

full form of x2 − 1 = 0. Once the computation is finished, the returned Mathemat-

ica statement is represented as

List[List[Rule[x,-1],List[Rule[x,1]]]] which describes the set of the two so-

lution as follows : {{ x -> 1 },{ x-> -1}}. Finally, the returned theorem exposes

the disjunction of the possible values that x can take.

Figure 3.2: Execution Window for Solving an Equation

3.4.2 Factoring polynomials

Factoring a polynomial represents the product in its irreducible factors. An example

where we can factorize the expression x3 + 2x2 + x is as follows :

Input:

#call mathematica “x pow 3 + &2 * (x pow 2) + x” “Factor”;;

Output:

val it : thm = Mathematica � x pow 3 + &2 * x pow 2 + x = x * (&1 + x) pow 2

Figure 3.3 describes the different steps to conduct factoring a polynomial.

37

Figure 3.3: Execution Window for Factorizing an Equation

3.4.3 Find Root Equations

The numerical method FindRoot represents finding a value x such that f(x) = 0

where f is the given function and x is the root of the function f. For example, we

can find a root of the following equation (if it exists) cos x = x:

Input:

#call mathematica “(cos x) = x” “FindRoot”;;

Output:

val it : thm = Mathematica � cos x = x ==> x = #0.739085133215

Figure 3.4: Execution Window for Finding the Root of an Equation

As it can be observed in Figure 3.4 this computation means that we want to

search for a numerical root of the equation cos x = x, starting from the point x = 0.

3.4.4 Simplifying Equations

The simplification of mathematical equations consists of applying a sequence of al-

gebraic transformations to obtain a simpler result. The different steps to simplify

an equation sent by HOL Light to Mathematica are described in the sequel.

The simplification program takes as input the HOL Light expression and returns

38

a HOL Light theorem (or a sub-goal). It starts by calling the “Parser & Splitter”

module to translate the HOL Light input into OpenMath object. Then, it calls the

OpenMath-Mathematica Phrasebook from the evaluation. It returns the result as a

string by calling the “Parser & Collector” module. Finally, it generates a theorem

based on the returned result, i.e., if the result is true, it returns the HOL Light input

statement as a theorem (axiom), otherwise it returns its negation. In case the HOL

Light input statement is not a relational equation, we create the implication of the

input and output and return it as a theorem.

39

Simplification Program

Input: hol light expr= HOL Light expression as a string

// Represents the equation to be computed

Output: HOL Light theorem

begin

OpenMath Input object ←− call Parser Splitter(hol light expr);

// Generates the OpenMath XML encoding of hol light expr

OpenMath Output object ←−
call Phrasebook(OpenMath Input object);

// Evaluation by Mathematica

hol light res ←− call Parser Collector(OpenMath Output object);

// HOL Light expression of the result

if hol light expr is a relation then

if hol light res = true then

return new axiom(hol light expr);

// Returns the expression as a theorem

else

return new axiom(¬ (hol light epxr));

// Returns its negation as a theorem

else

HOLLight final result ←− hol light expr <=> hol light res ;

return new axiom(HOLLight final result);

// Returns the final evaluation

So far, we are able to implement different functions such as simplifying in-

tegrals, transcendental functions, computing eigenvectors, finding roots and factor-

ization of complex polynomials. The Mathematica functions for the simplification

are Simplify or FullSimplify. They apply a sequence of mathematical rules that

40

reduce the complexity of a given equation. Unlike Simplify, FullSimplify tackles

a wide set of complex mathematical expressions and returns the simplest result [3].

For example, we can simplify the following expression x2 + x+ 1 > x2 + x+ 2:

Input:

#call mathematica “(x pow 2) + x + &1 > (x pow 2) + x + &2 ” “Simplify”;;

Output:

val it : thm = Mathematica � ∼(x pow 2 + x + &1 > x pow 2 + x + &2)

Figure 3.5 describes the different steps for evaluating a relational equation.

Figure 3.5: Execution Window for Evaluating a Relational Equation

We can also compute the bounded integral of the mathematical expression x + 1

using FullSimplify as follows
∫ 1

0
(x+ 1) dx.:

Input:

#call mathematica “ real integral (real interval [&1,&10]) (\ x. x + &1) ” “Full-

Simplify”;;

Output:

val it : thm = Mathematica � real integral (real interval [&1,&10]) (\ x. x + &1)

= &117 / &2

Figure 3.6 describes the different steps for simplifying above bounded integral

equation.

41

Figure 3.6: Execution Window for Evaluating a Bounded Integral Equation

An example where we define a goal with a complex arithmetics in HOL Light is

given below.

Goal:

g ‘ a pow 2 + b * &2 + c + &3 * a pow 2 + b / &2 + d + x * y * &2 * a = k‘ ;;

This goal represents a mathematical expression with a large number of arithmetic

operations a2 + b ∗ 2 + c+ 3 ∗ a2 + b/2 + d+ x ∗ y ∗ 2 ∗ a = k. Figure 3.7 shows the

definition of a goal in HOL Light.

Figure 3.7: Definition of a Goal in HOL Light

Solving this equation in HOL Light may take a substantial time and huge ef-

fort. Therefore, we propose to evaluate the sub-term (a2+ b ∗ 2+ c+3 ∗ a2+ b/2) in

Mathematica and get the returned result as a sub-goal. We evaluate this expression

as follows:

Input:

call mathematica goal “a pow 2 + b * &2 + c + &3 * a pow 2 + b / &2” “Full-

Simplify”;;

42

Figure 3.8 shows that the result a2+b∗2+c+3∗a2+b/2 = c+5/2∗b+10∗a2

is added in the assumptions of the main goal. Thus, the HOL Light user needs

to prove this returned sub-goal in order to prove the main goal. In this case, we

do not trust the results from Mathematica. In fact, Mathematica is used only as a

computation engine and we rely on HOL Light to prove the correctness of the result.

Figure 3.8: Execution Window for Simplifying a goal from Mathematica

3.5 Summary

In this chapter, we presented our methodology by explaining in detail its modules.

Then, we gave an overview about the Mathematica function supported in our frame-

work. In the following chapter, we will present the technical aspects of our tool by

describing our implementation.

43

Chapter 4

Tool Implementation

In this chapter, we first present an overview of the implementation of our tool. Sec-

ond, we describe the common data types that we defined. Then, we give details

about the implementation of the “Parser & Splitter”. We describe also the con-

nection between HOL Light translator and OpenMath-Mathematica Phrasebook.

Then, we present the “Parser & Collector” implementation. Finally, we conclude

this chapter by presenting some running examples of our tool.

4.1 Implementation Overview

Figure 4.1 depicts our process implementing the link between HOL Light to Mathe-

matica. This is comprised of three modules:“Parser & Splitter”, OpenMath-Mathematica

Phrasebook and “Parser & Collector”.

The flow of our implementation is described as follows: First, it translates

the HOL Light statement into OpenMath object based on the parsing and mapping

functions, described in Section 4.1.2. Second, the JAVA Phrasebook reads the XML

file which contains the OpenMath object and converts it to Mathematica expression.

The latter is passed to Mathematica with specifying the calling Mathematica func-

tion. The computation of Mathematica is translated back to OpenMath object using

44

again the JAVA Phrasebook, presented in Chapter 3. Finally, the returned result

from Mathematica is parsed by our tool and converted to a HOL Light theorem.

Figure 4.1: Methodology

In the following sections, we describe details of the tool implementation.

4.1.1 Common Data Type Structure

The HOL Light translator converts HOL Light expressions into OpenMath XML

encoding and vice-versa. In the implementation of both the“Parser & Splitter”

and the “Parser & Collector”, we used the basic and the compound OCaml data

types. Examples of basic types are string, float and int (represents integer). For the

compound type, we defined two types: type lexeme and type expression as described

in the following subsection.

45

4.1.1.1 Type Lexeme

The type lexeme includes “real” tokens such as numbers with type int or float,

variables with the type string and function and predicate symbols with the type

string which represent mathematical operations. Also it includes a list of tokens and

a special symbol Nil as an end of a list (used in the recognition of a bracket). As an

example, the expression List[Num 1; Symb ’+’; Num 2; Nil] corresponds to

the mathematical expression (1+2).

type lexeme =

| Nil

| Numf of float

| Num of int

| Str of string

| Symb of string

| List of lexeme list

4.1.1.2 Type Expression

Type expression is a recursive type representing a mathematical expression in a form

of a tree. As an example, we consider the mathematical expression : 1 + 2 * 8.

Its tree representation is : +

*

8 2

1

46

type expression =

| Nbf of float

| Nb of int

| Stri of string

| Eigenvect of expression

| Eigenval of expression

| Gt of expression * expression

| Egt of expression * expression

| Ls of expression * expression

| Els of expression * expression

| Eq of expression * expression

| Neq of expression * expression

| Add of expression * expression

| Sub of expression * expression

| Mul of expression * expression

| Div of expression * expression

| Pow of expression * expression

| Sin of expression

| Cos of expression

| Tan of expression

| Abs of expression

| Sqrt of expression

| Det of expression

| Integrate_finite of expression * expression

| Intervale of expression * expression

| Lambda of expression * expression

47

In the next subsection, we present the implementation of the OCaml “Parser

& Splitter”.

4.1.2 Parser & Splitter

The “Parser & Splitter” transforms the HOL Light statement into a corresponding

OpenMath object as understood by means of the CD.

let res =

openmath_expr (syntax (unaries (purge (split (lex str))))) in

let r= "<OMOBJ>"^res^"</OMOBJ>" in write_file r

The first step of this “Parser & Splitter” is to parse the string HOL Light

expression according to the grammar presented in Figure 4.2. Second, we perform

the lexical analysis and generate the lexical items (tokens). This grammar handles

many arithmetical terms in HOL Light expressed as statements in higher-order logic,

however it is not complete. The“Parser & Splitter” decomposes the HOL Light input

statement into lexical items. For example, the list of lexical items for the HOL Light

expression 5 + 7 which contains the integers 5 and 7 and the binary function + is

lexeme list = [Num 5; Symb ’+’; Num 7; Nil]. The type of these lexemes is

already explained above (cf. Section 4.1.1.2). After that, the “Parser & Splitter”

maps each lexeme of the list to the OpenMath corresponding symbol as understood

by means of the related CD. Finally, it stores the description of the OpenMath

object in an XML file.

48

Table 4.1, which describes details of the internally used functions in the“Parser

& Splitter” module.

Table 4.1: Parser & Splitter Internal Functions

49

Figure 4.2: Lexical Grammar

50

4.1.3 OpenMath-Mathematica Phrasebook

The OpenMath-Mathematica Phrasebook (available from the MathdoxWeb site [11])

is responsible for three tasks. First, it translates the OpenMath input XML En-

coding into Mathematica statement. Second, it calls the Mathematica kernel via

MathLink and passes the Mathematica input statement to the Mathematica kernel.

Finally, it translates back the Mathematica output statement into OpenMath XML

encoding file.

This Phrasebook is written in JAVA. It works under the latest version of Math-

ematica (Mathematica 9.0 [12]). It includes a collection of JAVA classes of encoding

and decoding methods between OpenMath and Mathematica based on the decla-

ration of the corresponding CDs, respectively. In addition, we implemented JAVA

methods that define the Mathematica calling functions with the string already speci-

fied by the user. As an example we assume that the user needs Mathematica to com-

pute the addition of 1 and 2 such as "1 + 2" "FullSimplify". "FullSimplify"

in this example is the specific Mathematica function that a user calls from Mathe-

matica. Moreover, this JAVA application includes a JAR file called “om-lib.jar”

[27].

This JAR file represents the library of OpenMath. It is an Application Pro-

gramming Interface (API) for reading, writing and creating OpenMath objects. This

library comprises a set of packages that implement the basic OpenMath standard

such as basic OpenMath Objects (e.g. integer, float and variable) and compound

OpenMath objects (e.g application, binding, attribution and errors).

This phrasebook includes also the Mathematica service [11] which allows users

to call remotely Mathematica kernel as a computational engine. This connection

is established using J/Link library via TCP/IP protocol. The J/Link library is a

developer’s kit for JAVA used as a Wolfram Research’s protocol for sending data and

commands between JAVA programs and Mathematica kernel. The core of J/Link

is just such a translation layer of the MathLink library which is implemented as a

51

library of C-language. Figure A.4 shows the interface of the Mathematica service.

The user needs to specify the host machine that contains Mathematica and the

Mathematica path. For example, as described in Figure A.4, the host machine

name is: cosmic.encs.concordia.ca and the path to Mathematica is: C:\Program
Files\Wolfram Research\Mathematica\8.0.

Figure 4.3: Mathematica Service

The OpenMath-Mathematica Phrasebook comprises of a large set of useful

official and experimental CDs such as: arith1, arith2, relation1, etc. [18]. It

does not include the recent ones such as linalg4 [19] and linalgeig1 [20] which

describe the useful functions related to eigenvalues and eigenvectors functions. Thus,

we added the implementation of the encoding/decoding methods of those CDs.

In the next subsection, we describe how we connect the OpenMath-Mathematica

Phrasebook to the OCaml unit.

4.1.4 Connecting OCaml and OpenMath-Mathematica Phrase-

book

In order to connect our OCaml part to the OpenMath-Mathematica Phrasebook,

we generate a JAR file of the Phrasebook. Then, we launch it as a background

process from OCaml file called “MathematicaPhrasebook.ml”.The code below

starts by loading the “unix.cma” [28] library which is the Unix library written in

OCaml that allows the communications between processes. Then, this file reads and

52

prints line by line the returned result from Mathematica. Once the returned result

is printed we stop the launched process.

#load "unix.cma";;

let call_mathematicaPhrasebook () =

let oc_in, oc_out = Unix.open_process " java -jar

MathematicaPhrasebook.jar"

in print_string (input_line oc_in) ;

print_string (input_line oc_in) ;

flush stdout ;

flush oc_out ;

Unix.close_process (oc_in, oc_out)

4.1.5 The Parser & Collector

The “Parser & Collector” translates the OpenMath object into the correspond-

ing HOL Light expression in the relevant CDs, using the function extract. First,

it reads OpenMath XML encoding file returned from the OpenMath-Mathematica

Phrasebook. Second it loads the XML-Light library to extract the data from the

XML tags. Then, it generates a preliminary lexeme list which is passed to the

function change list in order to check and match the correct type to each existing

mathematical functions. This updated list is translated to the corresponding math-

ematical expression by the function syntax. Finally, the function calc returns the

HOL Light output statment.

let call_collector() =

calc(syntax(change_list(extract file)))

53

Table 4.2 describes the different functionalities of the “Parser & Collector”

module.

Table 4.2: Parser & Collector Internal Functions

The XML-Light library [29] parses and prints OCaml statments to/from XML

description. It provides functions that convert an XML document into an OCaml

data structure, manipulates it, for example by modifying its content, and prints it

back to an XML document.

54

The use of the XML-Light library is to extract data from the XML encoding

OpenMath file as described below :

let rec extract_data acc = function

| Xml.Element ("OMA",_, children) -> List (List.fold_left

extract_data [] children) :: acc

| Xml.Element ("OMBIND", _, children) -> List (List.fold_left

extract_data [] children) :: acc

| Xml.Element ("OMBVAR", _, children) -> acc

| Xml.Element ("OMS", attr, _) -> let name = List.assoc "name"

attr in (match name with

"pi" -> Str name :: acc

| "e" -> Str name :: acc

| "lambda" -> acc

| _ -> Symb name :: acc)

| Xml.Element ("OMV", attr, _) -> Str (List.assoc "name" attr) ::

acc

| Xml.Element ("OMF", attr, _) -> Numf (float_of_string (List.

assoc "dec" attr)) :: acc

| Xml.Element ("OMI", _, [child]) -> Num (Xml.pcdata child) :: acc

| _ -> acc

The code above explains how we extract the data of the mathematical ex-

pression from the XML OpenMath file. We distinguish two types of XML data

structures: XML.Element and XML.PCData. Both of them denote an XML node

which can be either Element (tag-name, attributes, children) or PCData

text, which are the smallest entity of valid structures in an XML document.

55

For example, assume that we have the OpenMath XML encoding:

<OMA>

<OMS name="abs" cd="arith1"/>

<OMI> - 4 </OMI>

</OMA>

The XML data structure corresponding to the above encoding is given as:

Element(OMA,[], [Element ("OMS", [["name";"abs"]; ["cd";"arith1"

]],[]); Element ("OMI",[], [PCDATA "-4"])])

This encoding defines that the Element of the tag OMA does not have any

attribute, but it has two children. The first child is the Element tagged by OMS and

the attributes name="abs" and cd="arith1" without any children (empty list).

The second child is tagged by OMI with a PCDATA as a child defined by "-4", but

without any attributes (empty list). In addition, we define the extraction of the

elements of each existing tag in the OpenMath XML encoding. As a result, we get

a list of lexical items existing in the returned result. These tokens correspond to

the same grammar that we define in the Parser & Splitter (explained previously in

Section 4.1.1.2). Once we get the OpenMath Object, we collect all the OpenMath

objects and translate them into the HOL Light expression as understood in the

corresponding CDs.

4.2 Applications

Our current implementation handles a large set of mathematical operations such

as polynomial roots, factorization, evaluating and solving arithmetic expressions

and matrix operations. In our experiments, we conducted 20 applications and the

average execution time is around 3 seconds. In the following subsection, we will

56

show some of the running applications such as the evaluating and solving of matrix

operations. We conclude this section by presenting an application which verifies the

boundary condition of an optical interface using Mathematica.

4.2.1 Matrix Operations

In this subsection, first we give a brief description how to define a matrix 2x2 in

HOL Light. Then, we show some running examples such as arithmetic operations

of matrices 2x2, evaluating the determinant or computation of the eigenvalues and

the eigenvectors of a matrix 2x2.

4.2.1.1 Structure of Matrix 2x2

We define a matrix 2x2 in HOL Light syntax as follows : HOL Light Symbol

mat2x2 a b c d

4.2.1.2 Arithmetic Operation of Matrices 2x2

Our implementation handles arithmetic operations between matrices such as addi-

tion, subtraction, multiplication, division and power functions. As an example, we

show the addition of two matrices below :

Consider the mathematical expression :
⎛
⎝a b

c d

⎞
⎠+

⎛
⎝x y

z t

⎞
⎠

We call Mathematica with the following HOL Light statement :

The Mathematica input statement is :

57

After Computation, we get the following result in Mathematica syntax :

Finally, the returned theorem is represented as follows in HOL Light :

which represents the following mathematical expression :

⎛
⎝a b

c d

⎞
⎠+

⎛
⎝x y

z t

⎞
⎠ =

⎛
⎝a+ x b+ y

c+ z d+ t

⎞
⎠

The same process is applied for the multiplication between two matrices as

described in Figure 4.4 :

⎛
⎝a b

c d

⎞
⎠ ∗

⎛
⎝x y

z t

⎞
⎠ =

⎛
⎝a ∗ x+ b ∗ z b ∗ t+ a ∗ y
c ∗ x+ d ∗ z d ∗ t+ c ∗ y

⎞
⎠

Figure 4.4: Multiplication of Two 2x2 Matrices

Another example shows the multiplication of a matrix and a vector defined by

the symbol ** in HOL Light, as described in Figure 4.5 :

58

⎛
⎝a b

c d

⎞
⎠ ∗

⎛
⎝x

y

⎞
⎠ =

⎛
⎝a ∗ x+ b ∗ y
c ∗ x+ d ∗ y

⎞
⎠

Figure 4.5: Multiplication of a 2x2 Matrix and a Vector

4.2.1.3 Determinant

The computation of the determinant of a matrix 2x2 is described in Figure 4.6. A

determinant is a function of a square matrix that reduces it to a real number. The

determinant of a matrix A is denoted by |A| or det(A). If A consists of one element

a, then |A|=a. If A is a 2x2 matrix, then

|A| =
∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣
= ad− bc

Figure 4.6: Determinant of a Matrix 2x2

The execution time of the computation of the determinant of a matrix 2x2 took 2.1

seconds.

4.2.1.4 Eigenvectors and Eigenvalues

Our implementation also handles the computation of the eigenvalues and eigenvec-

tors of a matrix 2x2 as described in Figures 4.6 and 4.8, respectively.

59

An eigenvector is a nonzero vector that satisfies the equation

A�v = λ�v

where A is a square matrix, λ is a scalar, and �v is the eigenvector. λ is called an

eigenvalue.

Figure 4.7: Eigenvalues of a Matrix 2x2

The execution time of the computation of eigenvalues took 2.3 seconds.

Figure 4.8: Eigenvectors of a Matrix 2x2

The execution time of the computation of eigenvalues took 2.6 seconds.

4.2.2 Boundary Condition of an Optical Interface

To show the effectiveness of our approach and implementation to connect HOL Light

and Mathematica, we present in this section the example of a boundary condition

60

computing of an optical interface [56] described with electromagnetic field. Figure

4.9 shows the system of interface that includes the interface i and electromagnetic

fields EMF (i), EMF (r), and EMF (t).

�

��

��

�

�
�

����

��

�� ��
��

Figure 4.9: The System of Interface

Figure 4.9 is the yz-plane; our objective is to validate that the electromagnetic

fields EMF (i), EMF (r), and EMF (t) satisfy the boundary conditions. This can be

formally described as follows:

61

Figure 4.10: Goal of the Boundary Conditions of the System of Interface in Figure

4.9 [56].

After simplifying the goal in Figure 4.10, we derive the expression shown in

the Figure 4.11, which we send to Mathematica.

62

Figure 4.11: The Expression Sent to Mathematica to be Simplified/Verified [56].

In the Goal of Figure 4.11, the predicate boundary conditions is reduced to

the cross product between the normal to the interface (i.e., [1 0 0]) and summation

of electric fields or magnetic fields at the interface. Now, we can validate the Goal

of Figure 4.11 by calling Mathematica which returns the following theorem:

63

Input:

#call mathematica Statement of Goal of the Figure 4.11 “FullSimplify”

Output:

The total verification time for this proof on a computer (Intel i7, 2.8GHz

CPU with 32GB RAM) running OS Oracle Linux 6.3 was about 2.87 seconds,

which includes the time to invoke Mathematica and get its feedback. This example

illustrates the usefulness of the CAS link that greatly facilitates the interactive

theorem proving process by automatically verifying some of the proof goals that

would have required hours of user guidance if verified by theorem proving alone.

4.3 Summary

In this chapter, we first presented an overview of the implementation of our tool.

Second, we described the common data types that we defined. Then, we gave details

about the implementation of the “Parser & Splitter” and the “Parser & Collector”

modules. We described also the connection between the HOL Light translator and

OpenMath-Mathematica Phrasebook. Finally, we showed the effectiveness of our

64

tool by presenting some running examples and applications. In Appendix A, we

will describe the installation guide of our tool. Then, we present the process of a

running example.

65

Chapter 5

Conclusion and Future work

5.1 Conclusion

In this thesis we presented a link between HOL Light and Mathematica through

OpenMath. This link is a prototype aiming at building a general framework that

allows the integration of algebraic computation and deductive reasoning in solving

mathematical problems. In this linkage, OpenMath represents a common mathe-

matical knowledge representation that can be exchanged between CASs and TPSs.

Moreover, our work sharpen the complementarity of the use of the algebraic compu-

tation and the deductive reasoning in solving sophisticated mathematical problems.

Although both of TPSs and CASs perform symbolic computation, each system has

it own singularity. TPSs provide an accurate result while CASs are efficient for

computation.

Our implementation mainly consists on developing a HOL Light translator

which converts HOL Light expressions into OpenMath encoding and vice-versa. Our

HOL Light translator relies on its own grammar that is implemented without modify-

ing the internal structure of HOL Light. Thanks to this translator, HOL Light users

can access Mathematica’s kernel using the Phrasebook OpenMath-Mathematica pro-

posed by Caprotti [40]. We implemented an OCaml unit which transforms the HOL

66

Light statement into a corresponding OpenMath object as understood by means

of the CD. In addition, we implemented an OCaml unit which translates back the

OpenMath object into the specification HOL Light symbols in the relevant CDs.

In addition, we illustrate the usefulness of our approach by presenting sev-

eral running examples such as calling Mathematica in order to solve or evaluate

a non-closed form solution such as arithmetic or polynomial manipulations or ma-

trix operations. These examples emphasize not only the benefits of computing such

mathematica expressions within HOL Light but also the efficient performance of our

tool in terms of execution time. In fact, running those examples such as computing

the eigenvalues of general 2x2 matrix takes only few seconds to call Mathematica

and get its feedback.

Finally, our experimental prototype called HolMatica is implemented in a way

that we can easily adapt it to any other CAS or TPS that supports OpenMath. All

our codes and files can be downloaded on the web site

http://hvg.ece.concordia.ca/research/tools/holmatica/. The installation

guide and a description of a running example are described in Appendix A.

5.2 Future Work

The linkage between Mathematica as a computer algebra system and HOL Light

as a theorem prover system, presented in this thesis, is an experimental prototype.

Diverse future work directions can be performed building upon this work.

• Currently, we can handle some useful operations such as eigenvalues compu-

tation, evaluating and solving arithmetic expressions, polynomial roots and

factorization. We can extend our work to target more complex operations

such as complex polynomial expression, partial differentiation, etc. Moreover,

our current implementation handles only real numbers, we can extend it to

67

handle complex field numbers and implement the mathematical operations re-

lated to this field such as the argument of the conjugate of a complex number.

In this case, we should check the CD related to these mathematical expression

and add them in the parsing and mapping function in the Parser & Splitter.

Also we should add the encoding/decoding JAVA methods in the Phrasebook

if they are not included.

• One of the limitations of the proposed methodology is that we work with the

Mathematica service. This service allows users to access remotely to Mathe-

matica via TCP/IP protocol. The limitation of this service is that the user

need to specify the host name and the path to Mathematica which may be not

available in sometimes. To overcome these issues, we propose in the future to

implement a web service which allows the user to access directly Mathematica

via Internet which specify any additional configurations.

• In our current system, we implement a procedure that automates the proof

steps of the returned result from Mathematica. The returned result from

Mathematica is represented as HOL Light theorem or a sub-goal. However,

this automatization works only when the returned result is a sub-goal and

when the sub-goal includes only simple arithmetic operations such as addition,

subtraction and multiplication. As a future direction for this problem, we can

develop HOL Light function that proves the simplified result to ensure the

soundness of the Mathematica returned expression. To do so, we can record

the simplification algorithm that Mathematica applied on the mathematical

expression and build the proof steps based on that.

68

Appendix A

A.1 Required Software

The setup of our tool involves installing the following required software tools and

libraries described below in Table A.1.

Table A.1: The Required Software for the Implementation

Before we start the tool, we must first set up our development environment.

The connection that we implemented involves that we access to HOL Light, which

is a library built on top of OCaml, and Mathematica. In addition, for the internal

implementation we need to install the XML-Light library which manipulates XML

files. In the next section, we will see how to install the tool.

69

A.2 Tool Installation

The setting up of the tool involves the installation of the required software mentioned

in Section A.1. All of our code and files are public and can be downloaded from

the web site http://hvg.ece.concordia.ca/research/tools/holmatica/. In the

following we present the steps to install and run an example :

– First, extract the compressed file : ”HolLight-Mathematica.zip” in the HOL

Light directory.

– Second, load the HOL Light library by calling the “hol.ml” file as described

in Figure A.1.

Figure A.1: HOL Light Session

– Then, load the principle OCaml library of the tool by calling the “main.ml”

file as described in Figure A.2.

Figure A.2: Main Program Function

– Type the HOL Light input statement which calls the main function “call mathematica”

that accepts the HOL Light expression and the Mathematica function.

Figure A.3: HOL Light Expression of Computing Real Integral

70

– The Mathematica service dialogue window appears and the user specifies the

name of the host machine where Mathematica is installed and the path to the

Mathematica kernel as shown in Figure A.4 shows this step:

Figure A.4: Mathematica Service

– After launching the Mathematica service, we get the computed result in the

console as described in Figure A.5

Figure A.5: HOL Light Result after Computation by Mathematica

71

Bibliography

[1] Axiom The Scientific Computation System . http://www.axiom-developer.

org/, 2014.

[2] Domains of Use of Mathematica. http://www.wolfram.com/solutions/,

2014.

[3] FullSimplify. http://reference.wolfram.com/mathematica/ref/

FullSimplify.html, 2014.

[4] GAP System for Computational Discrete Algebra. http://www.gap-system.

org/, 2014.

[5] HOL4. http://hol.sourceforge.net/, 2014.

[6] Introduction to MathLink . http://reference.wolfram.com/mathematica/

tutorial/IntroductionToMathLink.html, 2014.

[7] Isabelle. http://isabelle.in.tum.de/, 2014.

[8] KeYmaera: A Hybrid Theorem Prover for Hybrid Systems. http://

symbolaris.com/info/KeYmaera.html, 2014.

[9] LEGO Proof Development System. http://www.lfcs.inf.ed.ac.uk/

reports/92/ECS-LFCS-92-211/, 2014.

[10] Maple. http://www.maplesoft.com/, 2014.

72

[11] MathDox. http://mathdox.org/new-web/index.html, 2014.

[12] Mathematica. http://www.wolfram.com/, 2014.

[13] MathLink API. http://reference.wolfram.com/mathematica/guide/

MathLinkAPI.html, 2014.

[14] MathML - World Wide Web Consortium. http://www.w3.org/Math/, 2014.

[15] MATLAB. http://www.mathworks.com/products/matlab/, 2014.

[16] Message to info-HOL Mailing List. ftp://ftp.cl.cam.ac.uk/hvg/

info-hol-archive/09xx/0972, 2014.

[17] MuPAD. http://www.mathworks.com/discovery/mupad.html, 2014.

[18] OpenMath Content Dictionaries. http://www.openmath.org/cd/index.html,

2014.

[19] OpenMath Content Dictionary: linalg4. http://www.openmath.org/cd/

linalg4.xhtml, 2014.

[20] OpenMath Content Dictionary: linalgeig1. http://www.win.tue.nl/~amc/

oz/om/cds/linalgeig1.xml, 2014.

[21] Oriented Object Caml. http://ocaml.org/index.fr.html, 2014.

[22] Overview of OpenMath. http://www.openmath.org/overview/index.html,

2014.

[23] PVS Specification and Verification System. http://pvs.csl.sri.com/, 2014.

[24] REDUCE Computer Algebra System. http://reduce-algebra.com/, 2014.

[25] The Coq Proof Assistant. http://coq.inria.fr/, 2014.

73

[26] The HOL Light Theorem Prover. http://www.cl.cam.ac.uk/\~jrh13/

hol-light/, 2014.

[27] The JAVA OpenMath Library. http://team.polylab.sfu.ca/openmath0.5/

lib/, 2014.

[28] The Unix Library: Unix System Calls Available to OCaml Programs. http:

//caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html, 2014.

[29] The XML-LIGHT Library. http://tech.motion-twin.com/xmllight.html,

2014.

[30] Verification of Object-Oriented Software: The KeY Approach. http://www.

key-project.org/thebook/, 2014.

[31] A. Bauer and E. Clarke and X. Zhao. Analytica - An Experiment in Com-

bining Theorem Proving and Symbolic Computation. Journal of Automated

Reasoning, 21(3):295–325, 1998.

[32] A. Dolzmann and T. Sturm. REDLOG: Computer Algebra Meets Computer

Logic. Association for Computing Machinery Special Interest Group on Sym-

bolic and Algebraic Manipulation Bulletin, 31(2):2–9, 1997.

[33] A. Adams, M. Dunstan, H. Gottliebsen, T. Kelsey, U. Martin, and S. Owre.

Computer Algebra Meets Automated Theorem Proving: Integrating Maple and

PVS. In Theorem Proving in Higher Order Logics, volume 2152 of Lecture Notes

in Computer Science, pages 27–42. Springer-Verlag, 2001.

[34] P. B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS:

An Interactive and Automatic Tool for Proving Theorems of Type Theory.

In HUG, volume 780 of Lecture Notes in Computer Science, pages 366–370.

Springer, 1993.

74

[35] C. Ballarin, K. Homann, and J. Calmet. Theorems and Algorithms: An Inter-

face between Isabelle and Maple. In International Symposium on Symbolic and

Algebraic Computation, pages 150–157. ACM, 1995.

[36] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa,

F. Piroi, N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger. Theorema:

Towards Computer-Aided Mathematical Theory Exploration. Journal of Ap-

plied Logic, 4(4):470–504, 2006.

[37] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru.

A Survey of the Theorema project. In International Symposium on Symbolic

and Algebraic Computation, pages 384–391. Association for Computing Ma-

chinery Press, 1997.

[38] O. Caprotti and A. M. Cohen. Connecting Proof Checkers and Computer

Algebra Using Openmath. In Theorem Proving in Higher Order Logics, volume

1690 of Lecture Notes in Computer Science, pages 109–112. Springer, 1999.

[39] O. Caprotti and A. M. Cohen. Integrating computational and deduction sys-

tems using OpenMath. Electronic Notes in Theoretical Computer Science,

23(3):469–480, 1999.

[40] O. Caprotti, A. M. Cohen, and M. Riem. JAVA Phrasebooks for Computer

Algebra and Automated Deduction. Special Interest Group on Symbolic and

Algebraic Manipulation Bulltin, 34:33–37, 2000.

[41] J. Carette, W. M.Farmer, F. Jeremic, V. Maccio, R. O’Connor, and Q. M.

Tran. The MathScheme Library: Some Preliminary Experiments. Computing

Research Repository, abs/1106.1862, 2011.

[42] E. Clarke and X. Zhao. Analytica - A Theorem Prover for Mathematica. In

The Mathematica Journal, pages 761–765. Springer-Verlag, 1993.

75

[43] S. Dalmas, M. Gatano, and S. M. Watt. An OpenMath 1.0 Implementation.

In International Symposium on Symbolic and Algebraic Computation, pages

241–248. ACM, 1997.

[44] A. Grozin. Computer Algebra Systems. Springer, 2014.

[45] J. Y. Halpern and M. Y. Vardi. Model Checking vs. Theorem Proving: A

Manifesto. In Knowledge Representation, pages 325–334. Morgan Kaufmann,

1991.

[46] R. Harper. Programming in Standard ML. 1998.

[47] J. Harrison. Theorem Proving for Verification (Invited Tutorial). In Computer-

Aided Verification, volume 5123 of Lecture Notes in Computer Science, pages

11–18. Springer, 2008.

[48] J. Davenport. On Writing OpenMath Content Dictionaries. OpenMath Esprit,

2002.

[49] J. Harrison and L. Théry. A Skeptic’s Approach to Combining HOL and Maple.

Journal of Automated Reasoning, 21:279–294, 1998.

[50] C. Kaliszyk. Correctness and Availability. Building Computer Algebra on top

of Proof Assistants and Making Proof Assistants available over the Web. PhD

thesis, Radboud University Nijmegen, Netherlands, 2009.

[51] C. Kaliszyk and F. Wiedijk. Certified Computer Algebra on Top of an Inter-

active Theorem Prover. In Calculemus/Mathematical Knowledge Management,

pages 94–105, 2007.

[52] Mathscheme. http://www.cas.mcmaster.ca/research/mathscheme/, 2014.

[53] O. Caprotti and A. M. Cohen. On the Role of OpenMath in Interactive Math-

ematical Documents. Journal of Symbolic Computation, 32(4):351–364, 2001.

76

[54] O. Caprotti and D. Carlisle. OpenMath and MathML: Semantic Markup for

Mathematics. Crossroads, 6(2):11–14, 1999.

[55] A. Platzer and J. D. Quesel. KeYmaera: A Hybrid Theorem Prover for Hybrid

Systems. In International Journal of Computing Academic Research, volume

5195 of Lecture Notes in Computer Science, pages 171–178. Springer, 2008.

[56] S. K. Afshar and U. Siddique and M. Y. Mahmoud and V. Aravantinos and

O. Seddiki and O. Hasan and S. Tahar. Formal Analysis of Optical Systems.

Mathematics in Computer Science, 8(1):39–70, 2014.

[57] J. van Benthem and K. Doets. Higher-order logic. Springer, 2001.

[58] J. Xu. Mei : A Module System for Mechanized Mathematics Systems. PhD

thesis, 2008.

77

