
EVALUATING IP MULTIMEDIA SUBSYSTEM PERFORMANCE

Minh Nhat Bui

A thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science

Concordia University

Montréal, Québec, Canada

September 2014

c© Minh Nhat Bui, 2014

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Minh Nhat Bui

Entitled: Evaluating IP Multimedia Subsystem Performance

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining commitee:

Chair
Dr. M. Zahangir Kabir

Examiner
Dr. Abdelwahab Hamou-Lhadj

Examiner
Dr. Roch Glitho

Co-supervisor
Dr. Anjali Agarwal

Co-supervisor
Dr. J. William Atwood

Approved
Chair of Department or Graduate Program Director

20

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Evaluating IP Multimedia Subsystem Performance

Minh Nhat Bui

The IP Multimedia Subsystem has seen increasing deployment over the past few years.

This also means that the number of subscribers has significantly increased. Thus IMS

performance analysis becomes a critical area to be researched. There are various methods

to conduct the system evaluation. Most of the previous work has concentrated solely on

methodology models or physical system measurements. This thesis proposes a new model

combining a queueing network model and physical system measurements to achieve a precise

and realistic evaluation result.

The proposed model uses the concept of an open multi-class queueing network with

heterogeneous requests. The requests enter IMS system at a Poisson distribution rate and

are grouped into different classes. They travel within the queueing network with or without

changing classes depending on which nodes are being processed. After passing through the

required nodes, the requests exit the network. The serving time at each node is measured

and the final system response time can then be derived using our formula. Our model can

also predict the IMS saturation point over which the system becomes unstable. In addition,

the CPU utilizations for each IMS component are derived. Based on these values, multiple

IMS components can be efficiently grouped onto one machine to save system resource.

The proposed model is verified for the IMS registration, call setup and termination

procedures in an IMS test-bed system. The measured and calculated performance results

match precisely. In addition, the model can group multiple IMS components or can sep-

arate one IMS component into multiple logical components. This scalability is crucial in

production systems where the number of components grows continuously. Service providers

can use this model to study the message flows in their IMS network and see how the system

responds when the traffic load changes.

iii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisors Professor

J. William Atwood and Professor Anjali Agarwal for their continuous support throughout

the process. Without their assistance and dedicated involvement, this thesis would have

never been accomplished.

Besides, I would like to thank Dr. Mama Nsangou Mouchili for his valuable suggestions.

His extensive academic and practical knowledge helped me overcome many obstacles I

encountered throughout the process.

Achieving up to this point requires more than academic support; I would like to thank

my parents who supported and listened to me during the past two years. I also would like

to thank my grandmother, my uncle Bon Tran and my aunt Anh Huynh who opened both

their home and heart to me when I first arrived in the city. For many memorable evenings

out and in, I must thank my cousins Susan and Viviane.

Last but not least, I would like to thank my friend Chloe Luc who is always there cheering

me up and standing by me through good and bad. She has been kind and supportive to me

over the time. Every time I was ready to quit, she did not let me and I am forever grateful.

Once again, thank you everyone. This thesis stands as a statement to your love and

encouragement.

iv

Contents

List of Figures viii

List of Tables x

List of Acronyms xi

1 Introduction 1

2 Background 4

2.1 IP Multimedia Subsystem (IMS) Architecture 4

2.1.1 Call Session Control Function (CSCF) 7

2.1.2 Home Subscriber Server (HSS) . 10

2.1.3 User Identity . 10

2.2 Protocols in IMS . 12

2.2.1 Session Initiation Protocol (SIP) . 12

2.2.2 Diameter Protocol . 15

2.3 Registration Procedure in IMS . 15

2.4 Queueing Network . 20

2.4.1 Queue Definition . 20

2.4.2 Queueing Network . 23

3 Analysis 26

3.1 Related Work . 26

3.2 Proposed Analysis . 31

3.2.1 Registration Procedure Analysis Model 31

3.2.2 Mathematical Analysis . 35

3.2.3 Call Setup and Termination Analysis 38

v

4 Testing and Evaluating 40

4.1 Introduction to Test-bed Environment . 40

4.2 OpenIMS Implementation . 42

4.3 IMS Functional Test . 42

4.4 IMS Bench SIPp Implementation . 43

4.4.1 Component Structure . 43

4.4.2 Installation . 45

4.4.3 Test Cases . 46

4.5 Measured Performance Results . 50

4.6 Response Time Evaluation . 51

4.6.1 Test Case 1: Registration Procedure Only 51

4.6.2 Test Case 2: Registration, Call Setup and Termination Procedure . 60

4.7 System Performance Evaluation . 66

4.7.1 System Saturation Point . 66

4.7.2 System CPU Utilization . 73

5 Conclusion and Future Work 76

Appendix 78

A Scripts to Start IMS Components . 78

B Call Setup and Termination Procedure . 81

C Open Source IMS Implementation Steps . 83

C.1 Prerequisite Packages . 83

C.2 OpenIMS Core Source Code . 84

C.3 Configure DNS Server . 85

C.4 Configure DNS Core Components 90

C.5 Start IMS Components . 95

D IMS Bench SIPp Implementation Steps . 98

E Database Structure . 101

F myMONSTER Installation . 103

G Adjust Ubuntu Kernel Timer Frequency . 104

H Script to Generate User List . 106

I XML Configuration For SIPp Manager . 108

J Scripts to Add Users to FHoSS . 112

K Test-bed Specific Configurations and Scenarios 117

L How to Collect IMS Bench SIPp Results . 121

vi

M Matlab Code to Calculate Arrival Rate . 122

N Matlab Code to Calculate Saturation Points 123

O Matlab Code to Calculate CPU Utilization 126

P Matlab Code to Calculate Confidence Interval 127

References 127

vii

List of Figures

1 IMS Core Components. 6

2 P-CSCF Discovery . 8

3 Subscription Information in HSS. 10

4 IP Multimedia Private Identity in HSS. 11

5 IP Multimedia Public Identity in HSS. 12

6 SDP example. 13

7 IMS Protocol Interfaces. 16

8 Unauthorized Registration Attempt. 18

9 IPsec Association and Authorized Attempt. 19

10 Single Service Center. 20

11 Single Service Center. 21

12 Queue Model for One IMS Component. 24

13 Queueing Network Model for IMS System. 25

14 The Testbed Architecture as A Queueing System Network with Feedback. [1] 29

15 Measured Response Time of SIP 200 and ACK at S-CSCF. [1] 30

16 Response Time of SIP 200 and ACK at S-CSCF Drawn from Derived Functions. 30

17 Message Classes Functionality of First Attempt Registration. 33

18 Open Source IMS Core Playground.[2] . 41

19 Alice Profile Configuration. 43

20 myMonster Messaging Test. 44

21 myMONSTER Call Test. 44

22 IMS Bench SIPp Components.[3] . 46

23 IMS Bench SIPp Example. 48

24 SIPp Registration Procedure. 49

25 Response Time for IMS Test-bed with 30cps. 50

26 State Flow for Registration Procedure. 52

27 Request flow with associated ports. 54

viii

28 Serving Time at P-CSCF for Registration Procedure. 55

29 Serving Time at I-CSCF for Registration Procedure. 57

30 Serving Time at S-CSCF for Registration Procedure. 57

31 Serving Time at FHoSS for Registration Procedure. 58

32 Serving Time of MySQL for Registration Procedure. 58

33 Call Setup Flow. 60

34 Call Termination Flow. 62

35 Transition Probability. 67

36 Saturation Points of P-CSCF and S-CSCF in All-in-One Machine. 69

37 Saturation Points of I-CSCF and FHoSS in All-in-One Machine. 70

38 Saturation Points of P-CSCF and S-CSCF in 4 Machines. 71

39 Saturation Points of I-CSCF and FHoSS in 4 Machines. 72

40 Unstable System When The Call Rate Is Over The Saturation Point. 73

41 CPU Utilization Curves. 75

42 Start IMS Components With Scripts. 80

43 Call Setup Procedure. 81

44 Call Termination Procedure. 82

45 P-CSCF Module of Open Source IMS System.[4] 93

46 I-CSCF Module of Open Source IMS System.[4] 93

47 S-CSCF Module of Open Source IMS System.[4] 94

48 FHoSS Module of Open Source IMS System.[4] 94

49 FHoSS Management Console. 97

50 FHoSS Database Structure. 101

51 I-CSCF Database Structure. 102

52 myMONSTER Login Screen. 103

53 Kernel Timer Frequency Adjustment. 105

ix

List of Tables

1 3GPP Releases with IMS Features. 5

2 SDP Description Type. [5] . 14

3 SIP Request Methods. [6] . 15

4 Queue Notations . 22

5 IMS Request Classifications. 32

6 Number of Requests in Each IMS Node. 38

7 Call Setup Procedure Steps. 38

8 Average Serving Time (ms) for Registration Procedure. 56

9 Confidence Interval for P-CSCF Serving Time at 98% Confidence. 56

10 Comparison between Measured and Calculated Response time (ms). 59

11 Call Setup Message Type. 61

12 Average Request Serving Time (ms) for 3-procedure Test Case. 63

13 The Calculated Time (ms) for Each Procedure at IMS Nodes. 64

14 Comparison between Measured and Calculated time (ms) for 3 Procedures. 65

15 Service Time of Four IMS Components in All-in-One Machine. 68

16 Service Time of Four IMS Components in 4 Machines. 68

17 CPU Utilization of 4 IMS Components. 73

x

List of Acronyms

3GPP Third Generation Partnership Project

AAA Authentication, Authorization and Accounting

AS Application Server

CDR Charging Data Records

CPS Calls Per Second

CSCF Call Session Control Function

E-CSCF Emergency CSCF

FCFS First Come First Serve

FHoSS FOKUS Home Subscriber Server

FIFO First In First Out

FQDN Fully Qualified Domain Name

HLR Home Location Register

HSS Home Subscriber Server

I-CSCF Interrogating CSCF

IBCF Interconnection Border Control Function

IETF Internet Engineering Task Force

iFC Initial Filter Criteria

IHS Inadequately Handled Scenarios

IMPI IP Multimedia Private Identity

xi

IMPU IP Multimedia Public Identity

IMS IP Multimedia Subsystem

IPsec IP Security

LCFS Last Come First Server

LIFO First in First Out

MAA Multimedia Authentication Answer

MONSTER Multimedia Open InterNet Services and Telecommunication Environment

NAI Network Access Identifier

NAT Network Address Translation

NGN Next Generation Network

P-CSCF Proxy CSCF

PCRF Policy and Charging Rules Function

PPP Point-to-Point Protocol

PSTN Public Switched Telephone Network

QoS Quality of Service

RTCP RTP Control Protocol

RTP Realtime Transport Protocol

SAA Server Assignment Answer

S-CSCF Serving CSCF

SCP Secured CoPy

SDP Session Description Protocol

SIP Session Initiation Protocol

SUT System Under Test

THIG Topology Hiding Internetworking Gateway

xii

UAC User Agent Client

UAS User Agent Server

UE User Equipment

VLR Visitor Location Register

VM Virtual Machine

XML Extensible Markup Language

xiii

Chapter 1

Introduction

The IP Multimedia Subsystem (IMS) is a collaborative work between the 3rd Generation

Partnership Project (3GPP) and the Internet Engineering Task Force (IETF) to provide

multimedia services over various access technologies. Nowadays it becomes a trend in most

mobile operators. They deploy IMS along with the Long Term Evolution (LTE) network

to provide subscribers with feature-rich services especially in voice, video and data. At the

time of writing, there are more than 70 countries on six continents, of which more than

140 IMS networks have already gone live commercially [7]. This adds up to hundreds of

millions of users around the world. The number of subscribers will grow substantially in

the near future as the smart phone market gets saturated and new application services are

introduced into the IMS. Besides having a robust network, we must evaluate the system

performance and foresee future situations in order to serve this number of customers.

There are many methods used to evaluate IMS performance. We can group them into

two classes: theoretical evaluation and experimental evaluation. Theoretical evaluation

introduces methodology models to get the mathematical results while experimental eval-

uation uses equipment to measure real-time traffic and then deduces the current system

performance. The most recent method [1] combines a queueing model with measurements

to produce system performance evaluations. However, the result in this paper is an esti-

mation that only considers two IMS core nodes and neglects the outside impacts on IMS

system. Furthermore, this model is specific for the author’s test-bed. It is difficult to apply

to other complicated IMS networks to achieve reasonable results.

1

European Telecommunications Standards Institute (ETSI) developed Technical Stan-

dard 186-008 for IMS performance evaluation. It provides a framework to test the per-

formance of IMS by collecting success/fail rate, response time and round-trip delays. In

this thesis, we propose a new model to evaluate IMS system performance focusing on the

response time. Our model considers the IMS network as a queueing network where each

IMS node acts as a queue with a processing server. The incoming messages are considered

as requests and are classified into different classes. They enter the IMS system by arriving

at the queue of the Proxy Call Session Control Function (P-CSCF). After being processed,

they are forwarded to other queues. The same process continues until the requests exit the

IMS system. Our model will consider all IMS core nodes for the evaluation. In addition,

when the IMS system expands, which is the case of a production network, our model can

also accommodate the changes. We then build a test-bed system to verify our proposed

model. It is built on the Open Source IMS Core System developed by Fraunhofer Institute

FOKUS. In order to simulate the procedure, we use IMS Bench SIPp tool to generate the

traffic. This is a SIP client running user-created test cases (XML files) to produce mass

subscribers’ traffic. We verify our model with the IMS registration, call setup and termi-

nation procedures. The average response times of requests passing through the queues are

measured and fed into our equation to obtain the overall IMS response time.

The thesis is structured as:

• Chapter 2 - Background.

This chapter will provide the basic concepts to understand our proposed model and

analysis. The IMS system consists of many different components but we only review

four of them in our project. They are three Call Session Control Function (P-CSCF,

I-CSCF and S-CSCF) and Home Subscriber Server (HSS). They are the main com-

ponents that we will build for our test-bed. We also present the protocols (SIP and

Diameter) used for these components. Some basic concepts of queues and queueing

networks are introduced for our methodology model.

• Chapter 3 - Analysis.

In this chapter, we review previous work relating to IMS performance evaluation.

We then point out their drawbacks. Finally we introduce a new queueing model to

overcome these problems.

• Chapter 4 - Testing and Evaluating

We build our IMS test-bed system to verify the proposed model. Some basic functional

2

tests are done. We then use the IMS Bench SIPp to generate traffic for our system.

The performance results are collected and verified against our model.

• Chapter 5 - Conclusion and Future Work

The chapter will review and give conclusion for our work. We then introduce some

possible future work.

3

Chapter 2

Background

In this chapter, we review the architecture and the underlying technologies of the IP Multi-

media Subsystem. These are the basic concepts and architectures that we are going to use

in our analysis and evaluation.

2.1 IP Multimedia Subsystem (IMS) Architecture

The Internet and Cellular world have been enormously evolving for many years. They pro-

vide lots of useful services such as messaging, voice, video and data transportation on various

medium. The access technologies can be either wire or wireless. The transport technologies

vary between the Internet and the Cellular network. The Next Generation Network (NGN)

was introduced as an important change to the telecommunication network. The idea of

NGN is to use one network to transport all the services by encapsulating data into packets.

The traditional circuit-switched networks are replaced by packet-based networks. Besides,

NGN also offers the advantages in Quality of Service (QoS), multimedia charging and many

other integrated services. The NGN architecture contains many different components but

IMS plays a significant role in the core of NGN.

IMS standards have been developed by 3GPP since 1999. The first specification was

introduced in 3GPP Release 5. This release provides a general description for IMS compo-

nents along with QoS specifications which is one of the key IMS features inheriting from

the IP-based network. The QoS can be defined based on many factors such as the state of

network or the maximum bandwidth allocation for subscribers. Release 6 and 7 define the

IMS interworking between the wire and wireless network. Interworking with the old circuit-

switch network such as Public Switched Telephone Network (PSTN) is also mentioned. The

following releases (starting from Release 8) focus on functionality enhancements for IMS

4

such as service continuity, restoration procedure, interoperability and roaming for voice. In

the latest release (Release 12), the extended securities in media plane and peer-to-peer ser-

vices are concerned. All of these IMS standard developments can be tracked on the 3GPP

website [8]. The summary of 3GPP Releases with IMS features is shown in Table 1.

IMS defines three functional layers for the system. They are Transport, Session Control

and Application layer. Each layer consists of multiple components with their standard

specifications. These collections of components are linked by the standardized interfaces as

shown in Figure 1. Being divided into three different functional layers, IMS can achieve

efficiency and integrity in providing customer services.

• Transport layer provides subscribers with the connectivity to the upper layers of

IMS. The subscribers can access IMS using wire (e.g., cable, Ethernet) or wireless

(e.g., 3G/LTE, WiMAX, WLAN) technologies. Other legacy systems such as PSTN

and non-IMS compatible systems have to go through gateways to reach IMS. This

layer has a wide range of network devices and user equipment (UE).

• Session Control layer is the core of the IMS system. This layer provides the

Release Year Features

Rel-5 2002 Q1 - First release of IMS.

Rel-6 2004 Q4
- Interoperability of IMS.

- Security enhancements.

Rel-7 2007 Q4
- Conferencing support.

- Multimedia Telephony Service.

Rel-8 2008 Q4

- Centralize Service control.

- Service continuity and restoration procedure.

- Application Server descriptions.

Rel-9 2009 Q4
- Emergency call.

- Enhancements for service restoration and protection.

Rel-10 2011 Q1 - Enhancements for interoperability.

Rel-11 2012 Q3
- Roaming for voice.

- Overload control.

Rel-12 2014 Q2
- Peer-to-Peer Content Distribution Services.

- Extended security in media plane.

Table 1. 3GPP Releases with IMS Features.

5

IMS Core

I-CSCF

P-CSCF

S-CSCF

SIP Application Server

HSS

Mw Mw

Cx Cx

ISC

Media Resource Function
Controller/Processor

ISC

Sh Sh

Tr
an

sp
or

t L
ay

er
Se

ss
io

n
Co

nt
ro

l L
ay

er
Ap

pl
ica

tio
n

La
ye

r

SIP
Diameter
Media Stream (RTP)

Figure 1. IMS Core Components.

control of communication sessions for subscribers. The Session Initiation Protocol

(SIP) is used to establish, maintain and terminate the sessions. In addition, the

Diameter protocol is used to retrieve subscription information for Authentication,

Authorization and Accounting (AAA). The main components in this layer are the

Call Session Control Function (CSCF) and Home Subscriber Server (HSS), which will

6

be described in Section 2.1.1 and 2.1.2. The media gateways connecting to PSTN and

other networks are located in this layer.

• Application layer is where all the services reside. This layer includes the SIP Ap-

plication Server (AS), Media Server, etc. It performs many functions such as security,

billing, conference call and messaging. These functionalities can be provisioned on

centralised or distributed ASs.

2.1.1 Call Session Control Function (CSCF)

The CSCFs reside in the Session Control Layer which is responsible for signalling control

between UEs and IMS services, allocating application servers, establishing emergency con-

nection and controlling communication with other networks. They play an important role in

the IMS core network. They are a collection of functionalities acting as the entry for every

service. The IMS system defines logical functions that do not necessarily have one-on-one

corresponding physical components [9]. This means that one function can be implemented

on more physical devices or many functions can be mapped on one physical device. Thus,

CSCF is normally separated into three logical groups of functions corresponding to three

physical devices. They are Proxy, Serving and Interrogating CSCF.

Proxy CSCF (P-CSCF)

The P-CSCF acts as the proxy between the subscribers and the IMS services. All the SIP

messages coming from UEs or the IMS network pass through P-CSCF. The UE first per-

forms the P-CSCF discovery process. Then it attaches to a P-CSCF (either at home or

visiting network) to register and query for the services. This procedure is shown in Figure 2.

The P-CSCF discovery process can be summarized into three steps:

• Step 1: The UE first establishes connectivity with the network. Then it sends a

DHCP query asking for the IP address of P-CSCF.

• Step 2: After receiving DHCP reply, the UE sends DNS query for the FQDN of

P-CSCF.

• Step 3: When receiving DNS reply, the UE has the IP address of P-CSCF. It can start

the 2-way registration procedure (REGISTER-401-REGISTER-200). The details are

explained in Section 2.3.

7

Besides acting as a proxy for the IMS network, P-CSCF also has other functionalities

such as:

• Establishing IPsec Security Association with UEs: The registration procedure has

two phases. The UE first sends a Register SIP message to the P-CSCF. The message

is then forwarded to HSS where the subscriber’s information is queried. The 401

Unauthorized message including Cipher Key (CK) and Integration Key (IK) is sent

back to challenge the UE. When P-CSCF receives the 401 Unauthorized message,

it uses the CK and IK to establish a security tunnel to UE. From now on, all the

communication transits through this tunnel.

• Compressing and decompressing SIP messages : When the UE is a mobile device,

the interface to P-CSCF is air interface and it is bandwidth-limited. The P-CSCF

implements compression protocol SigComp to decrease the message size and improve

the performance.

• Charging and policy controlling : When IMS system generates Charging Data Records

(CDRs) and delivers them to the billing system, the P-CSCF can act as a forwarder

P-CSCFDNS

DHCP Query

REGISTER

401 Unauthorized

REGISTER

200 OK

2

1

Re
gi

st
er

 P
ro

ce
ss

Di
sc

ov
er

y
Pr

oc
es

s

DHCP Reply

DNS Reply

Figure 2. P-CSCF Discovery

8

for CDRs to the Policy and Charging Rules Function (PCRF). It also can extract

information from SIP messages and send them to the PCRF to create policy rules for

the call.

• Identifying emergency calls: When the P-CSCF receives emergency calls, it forwards

them with their locations to the Emergency CSCF (E-CSCF). The E-CSCF will then

route them to the 911 Center.

Interrogating CSCF (I-CSCF)

The I-CSCF is located in the home network of the subscribers. The P-CSCF must know

the IP address of I-CSCF to forward SIP messages. In order to do that, the P-CSCF

extracts the home domain in the SIP Register or the SIP Invite message and consults the

DNS server for the IP address results. When the I-CSCF receives the Register or the Invite

SIP message, it uses Diameter to contact HSS to find the appropriate S-CSCF. The HSS

replies with a list of available S-CSCFs. The I-CSCF then chooses the S-CSCF based on the

criteria of the call and the capabilities of the S-CSCF. In the previous 3GPP releases (5 and

6), I-CSCF also has the function of Topology Hiding Internetworking Gateway (THIG). But

starting from Release 7, this is moved to Interconnection Border Control Function (IBCF)

which performs NAT (Network Address Translation) and firewall functionality.

Serving CSCF (S-CSCF)

The S-CSCF is the main component of an IMS system. It is located at the subscriber’s home

network. The S-CSCF mainly provides registration service, maintains the user sessions and

links the services of Application Servers with UEs. Some other functions of S-CSCF are:

• Retrieving information from HSS : User information and subscription data are fetched

from HSS during the first registration attempt to challenge a UE. In the second reg-

istration attempt the information is compared to the UE‘s info. If they are matched,

the registration is successful.

• Authenticating users: When S-CSCF asks for subscription information, HSS also

replies with Random Number (RAND), Authentication Token (AUTN), Sign Result

(XRES), Cipher Key (CK) and Integrity Key (IK). These are used for the user au-

thentication process.

• Providing media policing : Another security feature of S-CSCF is inspecting message

payload. It can examine to find if unauthorized media types or codecs are used. If the

9

types and codecs don’t match to the subscription data of operator’s policy, S-CSCF

will reject the messages.

• Maintain timers: S-CSCF maintains session timer to efficiently detect and release

sessions if they are hung.

• Translate User Identity : A UE often uses E.164 number as an identity instead of SIP

Uniform Resource Identifier (URI). Because the IMS uses only SIP URI for signalling,

E.164 must be translated to URI. This can be done by the DNS translation mechanism

as defined in RFC2916 [10].

2.1.2 Home Subscriber Server (HSS)

Similar to the Home Location Register (HLR) and Visitor Location Register (VLR) in mo-

bile networks, HSS is a user database containing user profiles, authentication, authorization

data and the physical location of users. The components communicating with HSS are

Application Servers (ASs) and CSCFs. IMS network can have many HSSs but data of one

specific user is stored in one HSS only. An example of subscription data is shown in Figure

3. This is a screenshot taken from our test-bed when Open Source IMS Core system is

implemented.

2.1.3 User Identity

In an IMS system, there are various user identities. The two main identities are Private

and Public Identity.

• The private identity is usually called IP Multimedia Private Identity (IMPI). It is

globally unique and is assigned by the operator. It has the format of Network Access

Identifier (NAI) defined in RFC 2486 [11]. The IMPI is not used for user commu-

nication but for registration, authorization, administration and accounting purposes.

Figure 3. Subscription Information in HSS.

10

Each IMS user has only one IMPI in the form of user@operator.com. An example

of how IMPI is linked to the Public Identity and authentication schemes is shown in

Figure 4.

• The public identity is usually called IP Multimedia Public Identity (IMPU). It is an

ID that is used for communicating with other users. Multiple IMPUs can be linked

to one IMPI. An IMPU can have two alternatives. One of them is SIP URI defined

in RFC 3261 and the other is TEL URI defined in RFC 3966. SIP URI is used to

communicate inside an IMS network and has the form of sip:user@operator.com or

sip:+1-234-567-8900@:operator.com. TEL URI is used to communicate from IMS to

PSTN and has the form of URITEL:+1-234-567-8900. An example of how IMPU is

linked to the IMPI and its charging info is shown in Figure 5.

Figure 4. IP Multimedia Private Identity in HSS.

11

Figure 5. IP Multimedia Public Identity in HSS.

2.2 Protocols in IMS

There are many protocols being used for IMS system such as Session Initiation Protocol

(SIP), Diameter, SigComp, Realtime Transport Protocol (RTP), RTP Control Protocol

(RTCP) and IP Security (IPsec). In this section we present the SIP and Diameter protocols

which are used the most in our test-bed for evaluation.

2.2.1 Session Initiation Protocol (SIP)

From the UE’s point of view, SIP is an important protocol used to create, maintain and

terminate user session. It is independent of TCP, UDP and IPv4/6. SIP is a text-based

protocol for a client/server model. The protocol is developed and defined by IETF under

RFC 3261. It was initially developed for session control in media services. Skype and

Facetime are two well-known examples of its use. When SIP was adopted to the ISM sys-

tem, it became so widely known that SIP was thought to be specific for only IMS. Three

main SIP concepts are Session Description Protocol (SDP), SIP Request and SIP Response.

12

Figure 6. SDP example.

Session Description Protocol

As the name speaks for itself, SDP describes a session between users. It is defined in RFC

2327 and RFC 3264. Minimum information of SDP includes session name, active time of

session and network information in order to establish a session. SDP description types are

shown in Table 2. Figure 6 shows an example of SDP. This is a functional test in our

test-bed demonstrating the call procedure between users Alice and Bob. SDP contains the

IP address of Alice 127.0.0.1 (because we built IMS system on the loopback interface, all

the components have the same IP but different port numbers), she wants to have an audio

call on port 6600 and a video call on port 6602. The codec used for audio is G711 (m=0)

and for video is H261 (m=31).

SIP Request

A SIP Request is used to perform a SIP action that is included in the request start line of

the message. It has the form: “Method + Request-URI + SIP-Version”. The Request-URI

is the user to whom the request is sent. The SIP-version can be either “SIP” or “SIP/2.0”.

The Method specifies what the request wants to do. Some examples of Method are shown

in Table 3.

SIP Response

A SIP Response is the reply of the SIP server to a SIP Request. It is distinguished by the

start line of the message. It has the form: “SIP-Version + Status-Code + Reason-Phrase”.

The Status-Code is a 3-digit number indicating the response type of certain requests. The

Reason-Phase is a short description for Status-Code. There are six categories of response

[6]:

• 1xx: Provisional – The request has been received and the server continues to process

13

the request.

• 2xx: Success – The action was successfully received, understood and accepted.

• 3xx: Redirection – Further action needs to be taken in order to complete the request.

• 4xx: Client Error – The request contains bad syntax or cannot be fulfilled at this

server.

• 5xx: Server Error – The server failed to fulfill an apparently valid request.

Type Description

Session Description

v protocol version

o owner/creator and session identifier

s session name

i session information

u URI of description

e email address

p phone number

c connection information - not required if included in all media

b bandwidth information

z time zone adjustments

k encryption key

a zero or more session attribute lines

Time Description

t time the session is active

r zero or more repeat times

Media Description

m media name and transport address

i media title

c connection information - optional if included at session-level

b bandwidth information

k encryption key

a zero or more media attribute lines

Table 2. SDP Description Type. [5]

14

Method Description

INVITE The user is invited to a call session.

ACK Confirmation when INVITE message is received.

BYE Terminate a call session.

CANCEL Terminate pending requests.

OPTIONS Asking for server capabilities.

REGISTER Register the client to the system.

Table 3. SIP Request Methods. [6]

• 6xx: Global Failure – The request cannot be fulfilled at any server.

2.2.2 Diameter Protocol

The Diameter protocol is an advanced evolution of Authentication, Authorization and Ac-

counting (AAA) protocols such as RADIUS, TACACS, Kerberos and COPS. RADIUS was

originally designed for Point-to-Point Protocol (PPP) networks. It lacks scalability, and

thus it cannot be deployed in large networks. Furthermore, it does not support roaming

which is the main requirement of mobile networks. RADIUS and TACACS have their own

advantages but they are not suitable for today’s networks. Diameter was developed to ful-

fill these requirements. In addition, Diameter supports Extensible Authentication Protocol

(EAP) which is commonly used as a security mechanism to prevent fraudulent authenti-

cation. Diameter also offers credit control, identity validation, access policy and charging

function for clients on the network [12]. A summary of Diameter and SIP interfaces between

IMS components is shown in Figure 7.

2.3 Registration Procedure in IMS

We will present the registration procedure in this section. The general registration proce-

dure has three phases: Unauthorized Registration, IPsec Association and Authorization.

These phases involve three CSCF types and HSS. They use SIP and Diameter through the

protocol interfaces as shown in Figure 7.

The Unauthorized Registration Attempt is shown in Figure 8 with the following

steps:

1 UE sends a REGISTER message to P-CSCF. It is sent on the standard SIP port

15

Figure 7. IMS Protocol Interfaces.

5060.

2 3 P-CSCF receives the REGISTER message. Then it translates the Home

Network Domain to an IP address.

4 The REGISTER message is forwarded to the IP Address of I-CSCF (resolved from

the DNS query of step 3).

5 I-CSCF queries HSS for the S-CSCF.

6 HSS replies with the names and capabilities of S-CSCF.

7 I-CSCF selects the S-CSCF based on the S-CSCF capabilities.

8 I-CSCF forwards the REGISTER message to the S-CSCF.

9 S-CSCF queries HSS for the Authentication of this UE.

10 HSS replies with Random Number (RAND), Authentication Token (AUTN), Sign

Result (XRES), Cipher Key (CK) and Integrity Key (IK.)

16

11 The UE is currently unauthorized. S-CSCF sends 401 Unauthorized message to

I-CSCF with RAND, AUTN, CK and IK.

12 I-CSCF forwards 401 Unauthorized message to P-CSCF with RAND, AUTN,

CK and IK.

13 P-CSCF saves CK and IK which are used to established IPsec tunnel to UE.

14 P-CSCF selects connection ports for both P-CSCF and UE.

15 P-CSCF forwards 401 Unauthorized to UE with the allocated ports, RAND and

AUTN (removed CK, IK).

16 UE verifies to the AUTN and computes RES which will be sent back to HSS for

user authentication.

Figure 9 shows the IPsec Security Association Establishment and the Authorized

Registration Attempt with the following steps:

17 18 19 20 IPsec tunnel is established between UE and P-CSCF using the

allocated port, CK and IK.

21 UE now sends a REGISTER message (including the computing RES value) over

IPsec tunnel to P-CSCF.

22 P-CSCF forwards the RESGISTER message to I-CSCF.

23 I-CSCF queries HSS for the S-CSCF.

24 HSS replies with the S-CSCF names and capabilities.

25 I-CSCF selects the S-CSCF based on the S-CSCF capabilities.

26 I-CSCF forwards the REGISTER message to S-CSCF.

27 S-CSCF requests UE subscription information from HSS.

28 HSS replies with the subscription info.

29 S-CSCF compares the RES value with the XRES value (computed in step 10.)

30 Assuming the values match, P-CSCF sends a 200 OK message to I-CSCF.

17

I-CSCFP-CSCF S-CSCF HSSDNS
Visited Network

DNDNSS
Internet Home Network

Unauthenticated Registration Attempt

REGISTER

DNS Query

DNS Response

REGISTER

User Authentication Request

User Authentication Answer

Select S-CSCF

REGISTER
Multimedia Authentication Request

Multimedia Authentication Answer

401 Unauthorized

Save CK and IK

Allocate ports

401 Unauthorized

Verify AUTN and
Compute RES

1

3

5

7

9

2

4

6

8

10

12

14

16

11

13

15

Figure 8. Unauthorized Registration Attempt.

31 I-CSCF forwards the 200 OK message to P-CSCF.

32 P-CSCF forwards the 200 OK message to UE. The registration is completed.

18

I-CSCFP-CSCF S-CSCF HSSDNS
Visited Network

DNDNSS
Internet Home Network

IPsec Security Association Establishment

IPsec SA for UE Initiated Requests

IPsec SA for Responses to UE

IPsec SA for Responses to P-CSCF

IPsec SA for P-CSCF Initiated Requests

Authenticated Registration

REGISTER

REGISTER

User Authentication Request

Select S-CSCF

REGISTER

Server Assignment Answer

Compare RES and XRES

200 OK

200 OK

17

18

19

21

22

20

23

25

26

28

29

30

32

27

24

31

Figure 9. IPsec Association and Authorized Attempt.

19

2.4 Queueing Network

Because the way IMS components interact with each other is random, we will use stochastic

models to evaluate IMS performance and probability theory to analyze its unpredictable

events. Specifically the system performance analysis will be conducted using queueing

theory to study the interaction between CSCFs and HSS.

2.4.1 Queue Definition

Each IMS component is considered to be a single queue (or service center) with a single

processing server. The incoming messages are called customers or requests. A typical single

service center is shown in Figure 10. A request has to be processed by the server before

leaving the service center. If the server is busy, it must wait in the buffer until the service

is available. A queue (or service center) is described by:

• Arrival Pattern. The service ability of a system first depends on the average request

arrival rate λ. If the arrival rate is greater than the service rate, the requests have

to stay in the queue and wait for their turn. The pattern of how requests arrive

(distribution function) is also important. It tells how the traffic is distributed during

a specific time interval. The three common types of distribution for arrival rate are

Exponential, Deterministic and General distribution. In our analysis we will consider

our queues with exponential arrival rate.

• Service Pattern. This factor has the same characteristics as Arrival Pattern (service

time and distribution). We will use exponential distribution with the average duration

of 1/µ where µ is the service rate.

• Numbers of Servers. A queue can have more than one processing server. Each

server can serve the requests individually and concurrently. There are three types of

server: single, multiple and infinite. In a single server, the requests are served one

by one. The incoming requests must wait for the previous one to be finished before

Arriving Customers Departing Customers

ServerQueue

Figure 10. Single Service Center.

20

entering the server. In a multiple server queue, there is a fixed number of servers that

can process the requests concurrently. In an infinite server, there are as many servers

as the incoming requests. As soon as the requests arrive, they are served. There are

no queues in this case.

• Queue Capacity. In the case of single server or multiple servers, there are situation

when requests cannot be processed and have to wait in the queue for their turns.

The number of requests grows and fills up the queue. The service center might either

notify the source to suspend the requests or ignore and drop the requests until the

resource is available.

• Request Population. This has the same characteristics as the Queue Capacity. The

source can have a finite or infinite number of requests. The request population can

also be divided into classes. Each class has its own characteristics. Different classes

can have different arrival rates or can be served differently in the server.

• Service Discipline. This is one of the important features of a service center. It

defines how the requests are served when they enter the queue. It can be classified as:

– First Come First Serve (FCFS) or First In First Out (FIFO).

– Last Come First Serve (LCFS) or Last In First Out (LIFO).

– Random Selection for Service (RSS).

– Priority (PRI). Requests having different priorities are served in different orders.

The above descriptions are expressed in notations that are shown in Figure 11. This is

called Kendall’s notation. The descriptions are shown in Table 4. The following examples

clarify the usage for notations in queueing network:

A/S/c/m/N/SD

Service Center with
Service Rate S

Server cQueue m, SD

Arrival Rate A DepartingCustomer
Population

N

Figure 11. Single Service Center.

21

M − Markov (Exponential Distribution).

G − General Distribution.A Arrival Rate.

D − Deterministic Distribution.

M − Markov (Exponential Distribution).

G − General Distribution.S Service Rate.

D − Deterministic Distribution.

c Number of Servers.

m Queue Capacity/Length. Infinite by default.

N Customer Population. Infinite by default

FCFS − First Come First Serve (default)

LCFS − Last Come First Serve

RSS − Random Selection for Service
SD Service Discipline.

PRI − Priority

Table 4. Queue Notations

• When we specify a queue as “M/M/3/6/∞/FCFS” it means:

– Arrival Rate M follows Markov Distribution.

– Service Rate M follows Markov Distribution.

– There are 3 servers.

– Queue length is 6.

– Infinite ∞ Customer Population.

– Service Distribution is FCFS.

⇒ Fields with default values can be omitted. It is then reduced to: M/M/3/6.

• When we specify a queue as “M/G/1/∞/∞/FCFS” it means:

– Arrival Rate M follows Markov Distribution.

– Service Rate G follows General Distribution.

– There is 1 server.

– Queue length is ∞.

– Infinite ∞ Customer Population.

– Service Distribution is FCFS.

⇒ Fields with default values can be omitted. It is then reduced to: M/G/1.

22

Besides the arrival rate λ and the service rate µ we also use traffic intensity ρ to

describe a queue. A system is said to be stable when ρ < 1. It is commonly used in the

final evaluation formula of a system and is defined as:

ρ =
λ

c× µ

2.4.2 Queueing Network

Each IMS component will be modelled as a queue (Figure 12) in our analysis with the

following definitions:

T The length of time we observe the system.

A The number of request arrivals we observe.

C The number of request completions we observe.

V The average number of jobs in the system.

B The total amount of time during which the system is busy. (B ≤ T)

U The percentage of time during which the system is in use.

S Service Time - The average time the system serves a job.

W Residence Time - The average time a job spends in the system.

R Response Time - Is equal to the residence time minus the think time.

Z Think Time - The time a job spends before entering the system.

X Throughput - The number of completions during a time length.

This queue follows Little’s law [13] which states that the average number of requests

in a system is equal to the product of the throughput of the system and the average time

spent in that system by a request:

N = XW

In addition, these definitions also have the following relationships:

• X = C
T

• U = B
T

• S = B
C

• R = W − Z

We then build a corresponding queueing network to the IMS network as in Figure

13. Each queue has its own parameters as defined. They are connected to each other to

represent an IMS system. The requests coming into the system are forwarded to the first

23

Think Time Z

Observe During Time Length T

Job JobThroughput X

Number of jobs N
Busy Time B
Utilization U
Service Time S (per job)
Residence Time W (per job)
Response Time R (per job)# Arrivals A # Completions C

System

Figure 12. Queue Model for One IMS Component.

queue. They are processed and forwarded to the next queue with a certain probability. The

process continues until the jobs are done and the requests exit the system.

24

Throughput X

Sy
st

em

O
bs

er
ve

 D
ur

in
g

Ti
m

e
Le

ng
th

 T

Th
in

k
Ti

m
e

Z

Jo
b

Jo
b

1st
 R

es
ou

rc
e

2nd
 R

es
ou

rc
e

yth
 R

es
ou

rc
e

zth
 R

es
ou

rc
e

Th
ro

ug
hp

ut
 X

i

U
til

iza
tio

n
Ti

m
e

U
i

Se
rv

ic
e

Ti
m

e
S i

(p
er

 jo
b)

Re
sid

en
ce

 T
im

e
W

i (
pe

r j
ob

)
Vi

sit
 C

ou
nt

V i
 (p

er
 jo

b)
Se

rv
ic

e
De

m
an

d
D i

 (p
er

 jo
b)

Ar

riv
al

s A
i

Co

m
pl

et
io

ns
 C

i

ith
 R

es
ou

rc
e

Ar

riv
al

s A

Co
m

pl
et

io
ns

 C

Ti
m

e
U

i
m

e
S i

(p
er

 jo

F
ig
u
re

1
3
.
Q
u
eu
ei
n
g
N
et
w
o
rk

M
o
d
el

fo
r
IM

S
S
y
st
em

.

25

Chapter 3

Analysis

In IMS system the user registration is crucial. An unsuccessful registration will prevent

subscribers from accessing the services. A proper analysis and evaluation of registration

procedure has to be performed. By doing that, we will have a full understanding of the

whole system and have appropriate provision, expansion, restoring and backup plans. In

the following section we review previous work and propose our new method to evaluate the

registration time in IMS. In addition, our model is also expanded to evaluate the call setup

and termination procedure.

3.1 Related Work

The number of IMS underlying technologies is so large that we need to have common ground

rules for service evaluation. The ETSI TISPAN group developed IMS/NGN performance

benchmark standards for this purpose. It provides a framework to test the performance

characteristics of IMS under realistic conditions by collecting success/fail rate, response

time and round-trip delays. The specifications are mentioned in ETSI TS 186 008 [14]

which includes four parts. The first part explains the descriptions, processes, architectures

for the IMS benchmark model. The second part contains the benchmarking scenarios with

metrics and design objectives. It also describes the IMS configuration parameters. The

third part defines test procedure benchmark, traffic set and traffic-time profile that will

be fed into the IMS system. The fourth part specifies the reference load parameters for

user-cases in part two. Generally, a benchmark test consists of multiple Test Systems (TSs)

and a System Under Test (SUT). The TS generates and injects the traffic into the SUT.

According to the specification, TS must be able to execute various scenarios with defined

ratios in the traffic profile. It must have the ability to pass information to the SUT or other

TSs for synchronization purposes. When the SUT receives the traffic, it reacts accordingly

26

and generates performance statistics. These results are collected during the test and are

sent back to TSs after the test to generate a performance report. There are various IMS

performance analysis papers that implement and use the ETSI benchmark standards. The

queueing methodological approach was used in only a few of them. We will review these

papers in the following paragraphs.

In paper [15], the author’s purpose is to implement several ETSI benchmarking sce-

narios and run them on an Open IMS Core system. It is named “workload model”. It

is composed of three elements: scenarios (including IMS registration, re-registration, de-

registration, voice call and messaging), benchmark tests (including the running ratio of

each scenarios) and test report (including performance results). This paper presents the

first implementation of the ETSI standard. The performance results are shown through

the graph of call creation/error rate, CPU, memory consumption and the average response

time for the INVITE message though IMS core network.

The papers [16] and [17] also use the same ETSI specifications to evaluate the IMS per-

formance benchmark on the open source IMS system. The authors perform system stress

tests using SIPp generator and obtain the results for Inadequately Handled Scenarios (IHS),

retransmission rate and CPU utilization. These results are projected on the graph with the

call rates and execution time. It is found that most of the issues are related to the configu-

ration of the Open IMS Core components. In addition, the HSS is the failure point for the

whole system.

The paper [18] proposes three methods to evaluate the call rate and IMS behaviours by

using SIPp, PROTOS and Spectra 2 SE tools. The author first studies the IMS performance

by using the SIPp traffic generator. The tool operates with a User Agent Server (UAS) and

a User Agent Client (UAC). The UAC sends the traffic through an IMS system to reach

the UAS. The purpose of this test is to measure the IMS capacity in term of maximum call

rate and corresponding load of the system. The second method which uses the PROTOS

tool [19] focuses on the robustness and security of IMS system when it receives malformed

INVITE requests. The test suite contains 4527 SIP INVITE tests which can be classified

into 54 categories. Some common categories are malformed SIP version, content/type, SIP-

URI, SIP-tag. The test fails when the IMS system stops running, hangs up, restarts or

consumes all CPU or memory. In the third method, the author uses the Spectra2 SE tool

to observe the behaviours and the responses of the IMS system to the standard SIP requests.

27

In paper [20], the purpose is to study the end-to-end signalling delay between user agents

and IMS nodes. The author implements SIP Stack Seagull software as the test-bed and

measures the delays. Then he compares them with the performance results from the Net-

work Simulator NS2. The conclusion is that the maximum delay lies at S-CSCF therefore

an efficient IMS design must focus on the bottleneck at S-CSCF.

While most papers focus only on the practical aspects by using an IMS test-bed along

with various testing tools to collect measurements according to the ETSI benchmark stan-

dards, there are only a few papers using queueing theory and measurement results to achieve

a better IMS evaluation. In the paper [21], the author presents an IMS model based on an

M/M/1 queueing system with feedback having the same IMS entities, signalling and ser-

vices. He proposes this model for simulation of data and voice services on IMS architecture.

It consists of two P-CSCFs, five S-CSCFs, one I-CSCF and one HSS. In this model, no

specific mathematical formulas are given to evaluate the performance, only the algorithm

for the S-CSCF assignment is emphasized. Three designs of the S-CSCF assignment are

evaluated based on parameters such as the number of messages in the queue or the server

utilization or the combination of the two parameters. It is shown through the simulation

results that the best algorithm is based on the actual number of messages in the queue.

The method based on the combination of messages in the queue and server utilization is

best for a high system load only.

In a later paper [1], the author focuses on the performance evaluation of response time

of signalling through each IMS nodes. Compared to the proposed model in [21] which uses

an M/M/1 queue, this paper uses an M/G/1 queue which corresponds more with the real

IMS network. The author introduces a test-bed with the queueing network as shown in

Figure 14. This consists of one P-CSCF, one S-CSCF, one I-CSCF and one HSS. These

four IMS components are implemented using Open IMS core software. The input traffic is

defined by the Poisson arrival process and is generated using the IxLoad application. The

IMS test-bed is run though a range of load intensities from 25cps to 500cps. The measure-

ment results are graphed for each message type. From the measured data, we can see that

the response time is linearly increased and saturated at a certain call rate. An example of

measured time of the SIP 200 and SIP ACK message at P-CSCF is shown in Figure 15.

The measured time for the SIP 200 and SIP ACK increases linearly from 25cps to 100cps

and saturates at around 0.52s for call rate over 100cps. The measured time for the MAA

and SAA message also increases linearly from 25cps to 500cps. However, the author defines

the response time with the exponential or logarithm functions and derives trend-lines based

28

Figure 14. The Testbed Architecture as A Queueing System Network with Feedback. [1]

on these obtained measurements. For example, the SIP 200 for INVITE request has the

function of f(x) = −277.9 × x−1.952 + 0.536 or the SIP ACK message has the function of

f(x) = −115.9 × x−1.711 − 0.5348. The parameter x is the load generated by the IxLoad

application. These derived functions are graphed in Figure 16. Messages with measured

service time less than 1ms are omitted. This evaluation method does not provide general

functions to evaluate an extended IMS system where the number of CSCFs can be over

a few hundreds. The given functions are derived from the small data set of the author’s

test-bed. In addition, the IMS components can be combined or separated in the production

network. These functions can not evaluate this change. Thus, the model does not deal

properly with the IMS scalability issue.

In the delay evaluation, the author neglects the effects of lower signalling and the impact

of delays outside the IMS system. The response time for a registration is estimated as [1]:

DREG ≈ DMAA→401 +DSAA→200

DMAA→401 is the delay from the time when S-CSCF receives the Multimedia Authenti-

cation Answer (MAA) message to the time when S-CSCF sends a 401 Unauthorized message

in the first registration attempt. DSAA→200 is the delay from the time when S-CSCF re-

ceives a Server Assignment Answer (SAA) message to the time when S-CSCF sends a 401

Unauthorized message in the second registration attempt. As we can see from this equation,

the response time depends on only the S-CSCF while neglecting other CSCFs and HSS. This

might be only the case in the author’s test-bed where less traffic load is generated. However,

29

Figure 15. Measured Response Time of SIP 200 and ACK at S-CSCF. [1]

Figure 16. Response Time of SIP 200 and ACK at S-CSCF Drawn from Derived Functions.

30

this is not relevant in the production IMS network. From the perspective of queueing net-

work, we can consider an IMS node as a finite buffer queue and a processing server. If the

arrival rate (or traffic intensity) is higher than the server’s processing rate, the queue buffer

is saturated. This affects the response time of a message. Thus we can say that under a

real-time condition with heavy usage the response time depends on all network components.

In order to overcome these issues, we propose a new analysis model where we also

consider each IMS network as an M/G/1 queueing network. Compared to the previous

methods where the response time for each SIP message type is measured at every IMS

node, we measure the response time for messages (in general) for each node. This will

take less effort and less time. Our model would solve the issue of scalability and provides

general functions that can adapt to the production network. When more nodes are added,

which is the case of a production network, our model can be expanded to accommodate

this. Because we consider all IMS nodes, our calculations are more precise. The proposed

model is introduced in Section 3.2. We then evaluate the response time at P-CSCF, I-CSCF,

S-CSCF and HSS in our test-bed using this model in Section 4.6. Furthermore, our model

can also evaluate the IMS saturation point and CPU utilization for each IMS component

in Section 4.7.

3.2 Proposed Analysis

In this section we introduce a method to classify SIP and Diameter messages into different

classes. The requests of a specific class are processed differently from other classes in each

IMS node. Then we will use queueing theory with the well-known Pollaczek-Khinchine

formula to evaluate the response time for each IMS node.

3.2.1 Registration Procedure Analysis Model

The IMS registration procedure was introduced in Section 2.3. This procedure contains

many stages of receiving and forwarding messages between CSCFs and HSS. Instead of

considering each message separately, we group them into classes. Each class has its own

characteristics as shown in Table 5. They will help the the measurements of request routing

independent from the node. Then we make some assumptions for our analysis model. We

assume that the traffic flow follows a Poisson probability distribution which describes the

average rate occurring in a fixed interval and timely independent of the previous event. For

example, the average rate is 30 calls per second on average. However, it might fluctuate:

sometimes greater than 30, sometimes smaller than 30 and once in a while to be 0. Given

31

an average rate and a specific period of time, the Poisson distribution specifies how likely

the rate would be. We also assume that the message processing time does not depend on

the message type, which means that all messages are treated equally, and no priority is

given for any certain message class. In our model, we neglect the probability of message

loss. Message retransmission will not be considered.

The operation of message classes is shown in Figure 17 for the first registration at-

tempt from the subscriber. Each IMS component is represented by a buffer and a server.

Messages of a certain class enter the queue and wait for the server to process it. After be-

ing processed, the message can either remain in its class or get transformed to another class.

In the implementation of IMS system, HSS uses MySQL to manage the subscriber

Class

Nomination
Description

1 Class 1 corresponds to the processing and transmitting

REGISTER Request.

2 Class 2 corresponds to the processing and transmitting

User Authentication Request (UAR).

3 Class 3 corresponds to the processing and transmitting

HSS query to MySQL Database.

4 Class 4 corresponds to the processing and transmitting

MySQL Responses to HSS.

5 Class 5 corresponds to the processing and transmitting

User Authentication Answer (UAA).

6 Class 6 corresponds to the processing and transmitting

Multimedia Authentication Request (MAR).

7 Class 7 corresponds to the processing and transmitting

Multimedia Authentication Answer (MAA).

8 Class 3 corresponds to the processing and transmitting

401 Unauthorized message.

9 Class 3 corresponds to the processing and transmitting

200 OK message.

Table 5. IMS Request Classifications.

32

1

P-CSCF

I-CSCF

S-CSCF

HSS

MySQL

1

2

3
4

5

1

6

34

7

8

8

8

Figure 17. Message Classes Functionality of First Attempt Registration.

database. So we add MySQL as a component to our IMS performance analysis. An illus-

tration describing the procedure in Figure 17 is shown below:

• A request of class 1, which corresponds to the REGISTER SIP message sent from a

User Equipment, enters the network at a P-CSCF node.

• This class 1 request arrives at P-CSCF queue and is processed by the server. It still

remains in class 1 after processing. P-CSCF then forwards it to I-CSCF.

33

• I-CSCF processes the received request and changes it to class 2 before sending to HSS.

• At HSS, class 2 query is transformed into class 3 which is MySQL database query. It

is then forwarded to MySQL.

• After querying the database, the query is sent out with class 4 back to HSS.

• HSS transforms the class 4 request to class 5, and then sends to I-CSCF.

• Receiving class 5 request, ICSCF now knows which S-CSCF is used to serve the

subscriber. Thus it transforms this class 5 to class 1 again and sends to S-CSCF for

the registration.

• S-CSCF asks the HSS for the Authentication Information Request (MAR) by sending

out class 6 request.

• The HSS again performs database query using class 3 and receives response of class

4.

• Once obtaining the results, the HSS transforms class 4 to class 7 to reply to the

S-CSCF with Authentication Information Answer (MAA).

• The S-CSCF finally transforms the request to class 8 which is 401 Unauthorized, and

sends it to I-CSCF.

• This class 8 request goes all the way through P-CSCF to the User Equipment.

In the general registration procedure described in Section 2.3, there are actually three

phases: Unauthenticated Registration Attempt, IPsec Security Association Establishment

and Authenticated Registration Attempt. However, in the test-bed that we built for this

model, we only consider two registration attempts because the IPsec Association procedure

accounts for a really short amount of time compared to the whole system delay time and

it happens only once when the UE first registers. The first attempt is Unauthenticated

Registration in which the IMS challenges the UE for the right authentication info, and the

second one is Authenticated Registration in which the UE responds to the challenge. The

class flow of the first attempt is described in detail as above. The second attempt is similar,

with the class 8 request being replaced with class 9 which is 200 OK.

34

3.2.2 Mathematical Analysis

Before proceeding to the analysis, we have to decide what type of queueing network model

we would use. The decision is important because the selected model must have the charac-

teristics of the IMS system. According to our assumption, the incoming traffic is exponential

distribution. However, the service time is not exponentially distributed. Therefore we would

analyze the behaviours of the nodes using an M/G/1 queuing system.

We now use the concept of Open Queue Network with Different Classes of Customer as

mentioned in [22] to build our model. The model contains an arbitrary but finite number

of nodes and customer classes. We denote the set of IMS nodes as M = {1, ...,m}. In the

production IMS system where the size of network grows enormously, the value of m can be

more than 100. In our test-bed, only four nodes are built for the evaluation. Including the

MySQL we have m = 5. The value of m does not necessarily correspond to the number of

physical nodes. It is more linked to the functional blocks of the system. We then denote

the set of system procedures as P = {1, ..., p}. A system procedure is defined as a process

starting from the time a request enters the system until the time an expected response is

received by the sender. For example, the live IMS network has many concurrent procedures

such as registration, re-registration, de-registration, messaging, audio/video call, data re-

trieval, etc. Each of them will be counted in the set of procedures P . Last but not least,

we denote the set of request class as Rk = {1, ..., Rk}. We have 9 classes as shown in Table

5, which means k = 9.

In a procedure p ∈ P , a request of class r ∈ Rk at node i ∈M will be named {i, r}p. Or

we can say that the request is of state {i, r}p. The set of all types of request for a certain

procedure is written as:

Sp =
{

(i, r)p | i = 1,m and r = 1, Rk
}

(1)

In our open queueing model, the request arrives at the network according to the Poisson

distribution. Let λp0 be the external arrival rate of procedure p ∈ P . The external request

might arrive in a state {i, r}p with the probability of qpir such that
∑

i∈M
∑

r∈Rk q
p
ir = 1.

We form a row-vector consisting all of these probabilities which is defined as:

Qp = (qpir) | i = 1,m and r = 1, Rk (2)

From the above external arrival rate and probabilities (2) we can find the external flux

as:

λp0 ×Q
p (3)

35

In the following part we will find the internal flux for the network. A request travels

through the IMS network and changes its class with a transition probability. Let us say the

request {j, s}p after being processed is sent to node i and is transformed to class r. The

request becomes {i, r}p with the transition probability of θpjs,ir. Then if we put all these

transition probabilities together we can obtain the routing matrix for the procedure p ∈ P
as:

Θp = (θpjs,ir) | i, j = 1,m and r, s = 1, Rk (4)

We denote λpir as the internal arrival rate to state {i, r}p. We can form another row-

vector:

λp = (λpir) | i = 1,m and r = 1, Rk (5)

In the long-run when the system is stable, the queue length does not grow infinite. Every

request entering a state will leave it eventually. Thus the long-run departure rate from state

{i, r}p must be the same as its long-run arrival rate. We then can find the internal flux

from the internal transition probabilities (4) and internal arrival rate (5) as:

λp ×Θp (6)

From the Equation (3) and (6) we can find the traffic rate at a node by summing the

external and internal flux:

λp = λp0Q
p + λpΘp (7)

Given the rates for all classes and procedures as shown in the matrix of (7) we can

calculate the arrival rate of requests for a certain node i by summing all of them:

λi =

p∑
p=1

Rk∑
r=1

λpir (8)

Let us consider IMS as an open domain with multiple subsystems (each IMS component

is considered a subsystem). Figure 17 depicts a situation where a stream of equivalent

requests comes into a subsystem, remains inside the subsystem and then leaves after a

finite time. If we consider one request, it moves in and out of one subsystem many times.

Each results in a transit time which is the time between the entrance and the exit. The

sum of these transit time is sojourn time of the subsystem for that particular request. The

significance of sojourn time can be seen in the following explanation. If the stream of request

coming to the IMS system is constant, it will reach the steady state. It can be shown that

the number of requests on the subsystem is equal to the stream of requests into the system

time the mean sojourn time of the subsystem. According to Little’s theory [13] , it is called

the occupancy principle:

requests in subsystem = (requests into system)× (sojourn time of subsystem)

36

Since the requests are processed in their arriving order, the sojourn time is the sum of

two stages: waiting time and service time. If the system is empty when the request comes,

the waiting time is zero. Thus the sojourn time is equal to the service time. The sojourn

time at node i can be calculated by the Pollaczek-Khinchine formula for M/G/1 queueing

system as [13]:

νi = xi +
λix

(2)
i

2(1− ρi)
(9)

where νi is the sojourn time at the node, xi is the average serving time for each request at

the node i, x
(2)
i is the second moment of distribution function of the request serving time

at node i and ρi is the traffic intensity which is defined as:

ρi =
λi
µi

= λixi (10)

The second moment of the request service time x
(2)
i is [13]:

x
(2)
i =

1

µ2
= x2 (11)

By substituting Equation (10) and (11) into Equation (9) we finally have the sojourn

time expressed in terms of serving time (xi) and arrival rate (λi):

νi = xi +
λix

2
i

2(1− λixi)
(12)

Now considering the IMS nodes function independently from each other, we can calculate

the average processing time for each procedure as the sum of the sojourn time of the requests

at the nodes. The general formula is:

ν = nνP−CSCF + n′νI−CSCF + n′′νS−CSCF + n(3)νHSS + n(4)νMySQL (13)

where n, n′, n′′, n(3) and n(4) is the number of messages processed by each IMS node.

Referring to Figure 17 we can deduce the value for the first registration attempt. The

second registration attempt follows the same process and has the same number of requests.

Thus we have to add up messages at each IMS node as shown in Table 6.

We are evaluating only the registration procedure, which means that p = 1. Thus the

response time for registration can now we rewritten from Equation (13) as:

νreg = 4νP−CSCF + 6νI−CSCF + 4νS−CSCF + 8νHSS + 4νMySQL (14)

37

P-CSCF I-CSCF S-CSCF HSS MySQL

1st attempt 2 3 2 4 2

2nd attempt 2 3 2 4 2

Total 4 6 4 8 4

Table 6. Number of Requests in Each IMS Node.

3.2.3 Call Setup and Termination Analysis

Figure 43 in Appendix B shows the call setup procedure for two subscribers. This is

summarized in Table 7. At each step, there are two messages passing through the P-CSCF,

one message for the I-CSCF and two for the S-CSCF. We have a total of six steps, thus the

response time for the call setup is:

νsetup = 12νP−CSCF + 6νI−CSCF + 12νS−CSCF (15)

Figure 44 in Appendix B shows the IMS call termination procedure. There are two steps

in this procedure. The first step is to send the BYE message from UE1 to UE2 and the

second step is to send the 200 OK from UE2 to UE1. When the UE1 receives the 200 OK

message the call is terminated. The total number of messages passing through the P-CSCF

is four and through the S-CSCF is two. Thus, the response time for the call termination is:

νterminate = 4νP−CSCF + 2νS−CSCF (16)

For a simple IMS system with only the registration, call setup and call termination

procedure we can have the system response time as:

ν = νreg + νsetup + νterminate

Step Message Type Direction

1 INVITE UE1 TO UE2

2 180 Ringing UE2 TO UE1

3 PRACK UE1 TO UE2

4 200 OK UE2 TO UE1 for User Ringing

5 200 OK UE2 to UE1 for User Answer

6 ACK UE1 to UE2

Table 7. Call Setup Procedure Steps.

38

In this chapter, we have analyzed the previous work and presented their drawbacks.

We then proposed our model which uses a queueing network to evaluate response time for

registration, call setup and termination procedure. The obtained functions will be used in

Chapter 4 with measured service time to calculate the response time for each procedure.

Furthermore, this model can also be extended to include other services such as media

retrieval, presentation, etc. Each procedure can be evaluated separately to see how the IMS

system reacts for a certain service. The results can also be added together to obtain the

total performance.

39

Chapter 4

Testing and Evaluating

In this chapter, we implement the IMS system for our test-bed. Then we will use the IMS

Bench SIPp application to generate traffic and feed into the IMS system. The performance

results will be compared to the numerical analysis in our proposed model.

4.1 Introduction to Test-bed Environment

At the time this document is written, Open Source IMS Core System is the only open

source testing environment available. Quite many R&D projects have been using this sys-

tem for functional and performance evaluations. This IMS Core System is developed by

Fraunhofer Institute FOKUS with the purpose of implementing IMS with a flexible and

extensible solution. It will help building initial concepts about IMS components. Based

upon the conditions mentioned above, future research concepts can be developed.

The Open Source IMS core (Figure 18) contains three CSCFs (including P-CSCF, I-

CSCF and S-CSCF) and one HSS. These CSCFs are built upon the SIP Express Router

(SER) which is an open-source SIP server supporting many features of RFC 3261. These

features include various subscription database backends (MySQL, Oracle, PostgreSQL),

management features (remote management via XML-RPC, load-balancing), NAT traver-

sal, telephony features (LCR, speeddial), multidomain hosting, ENUM, presence, etc. [23].

The Home Subscriber Server (HSS) is built upon MySQL to manage subscription profiles

and policies. These open-source components can be implemented on either separate phys-

ical/virtual machines or together on one physical/virtual machine. Normally in an R&D

testing environment, each component is located on different powerful servers having dedi-

cated IP addresses. Because of resource limitation we have installed them on one PC using

the loop-back address 127.0.0.1 and different port numbers for each component. The IMS

40

Figure 18. Open Source IMS Core Playground.[2]

core can be installed on different Linux distributions such as Redhat, Debian, CentOS, etc.

We choose Ubuntu distribution as it is more user-oriented and suitable for our small test-

bed. Our test-bed uses Ubuntu version 14.04 Long Term Support (LTS) because it is the

most stable at the current time.

In order to test the basic functionality of IMS, we use the SIP client called myMONSTER

(Multimedia Open InterNet Services and Telecommunication EnviRonment)[24]. This client

is also developed by Fraunhofer FOKUS. One advantage when using this client is that it is

compatible very well with the Open Source IMS Core as it is from the same creator. my-

MONSTER has two versions: desktop and mobile. This means that the Service Provider

can test their IMS solutions with both their wire and wireless networks. Most other clients

lack this feature. Furthermore, the author also provides development tool-kits which will

help to create extensive widgets and add-ons to test IMS features.

To evaluate system performance we have to create multiple requests and feed them to

the IMS test-bed. This can be achieved by using IMS Bench SIPp. This is a traffic generator

41

providing an open source implementation of the IMS/NGN Performance Benchmark, ETSI

specification TS 186 008 [3]. The application includes one SIPp manager and many SIPp

clients. The SIPp manager will control the SIPp clients to run the multiple test cases

specified in XML-format files. The performance results are saved at SIPp clients. The SIPp

manager collects the results only after the running phases. The reports can be generated

from these results.

4.2 OpenIMS Implementation

Before implementing the Open Source IMS Core system, we would like to explain the two

installation flavours that we can use for our test-bed system. The first one is the installation

of the components on physical and fixed servers. This is the method most researchers

use to build their systems. We also use this approach in our test-bed. The second one

is the installation on Virtual Machines (VM). We believe that VM will become a major

trend in the near future. Even though physical installation provides efficiency in processing

speed, the provisioning takes more time than it does on a VM. In the VM environment,

the image clone capability provides an easier installation and faster provision. We have

tried to install P-CSCF with VMWare Workstation in our test-bed. We then managed to

clone P-CSCF to I-CSCF, S-CSCF and HSS. These four components run as four separate

servers under VMWare Controller. But due to the resource limitations of our workstation,

high performance could not be made in this system. In the R&D testing environment, many

telecommunication equipment manufacturers such as Alcatel-Lucent, Juniper and especially

Cisco can provide the best solutions combining VMware and Data Center Infrastructure

suitable for IMS provisioning. However, the performance of IMS in virtual environment still

remains as an open question for future research. The IMS installation steps for physical

machine are shown in Appendix C.

4.3 IMS Functional Test

Before starting the IMS performance evaluation, we have to make sure that our IMS test-

bed is working as expected. We use the SIP client myMONSTER as mentioned in the

introduction for basic messaging, audio and video call. The installation is shown in Ap-

pendix F. The FHoSS database comes with two sample users named Alice and Bob. We

will use these users for our testing purpose. A profile configuration for Alice is shown in

Figure 19. The messaging and call tests are shown in Figure 20 and Figure 21 .

42

Figure 19. Alice Profile Configuration.

4.4 IMS Bench SIPp Implementation

In this section, we explain the general structure and installation steps of IMS Bench SIPp

tool. Then we will perform the registration test using the XML-scenario test cases.

4.4.1 Component Structure

Originally, SIPp is a SIP client for simple User Agent Client (UAC) and User Agent Server

(UAS) testing. However, as the need for an IMS performance evaluation increases, more

complicated test scenarios are needed. SIPp has evolved into a separate branch for IMS

testing. It is IMS Bench SIPp. The tool includes one SIPp Manager and one or more SIPp

Instances (Figure 22). Each SIPp component (Manager or Instances) can run on different

physical machines or on one machine. The SIPp Manager contains all scenarios and the

ratio of each scenario to test. It communicates with SIPp Instance over TCP. The SIPp

43

Figure 20. myMonster Messaging Test.

Figure 21. myMONSTER Call Test.

44

Instance receives the full set of scenarios from the SIPp Manager and executes them with its

own set of users. The SIPp Instances communicate with each other over TCP to exchange

user reservations and timing data.

The working principle for IMS Bench SIPp is explained below:

• SIPp Manager is launched first. It is loaded with testing scenarios along with the ratio

of each scenario. This is a nice feature of this tool. We can specify this ratio according

to the ratio in the production network for a better evaluation. SIPp manager is now

waiting for connections from SIPp Instances.

• SIPp Instances are launched and connect to the SIPp Manager. SIPp Manager then

sends the full set of scenarios including scenario ratio to SIPp Instances.

• SIPp Instances execute the scenarios with its own set of users. In order not to affect the

performance results, all the measurements are stored locally where SIPp Instances run.

Only selected management and summary information is sent back to SIPp Manager.

• SIPp Manager displays the real-time summary received from SIPp Instances.

• After the run, a post-processing tool (at SIPp Manager) fetches all generated data

from SIPp Instances and generates a report.

• A monitoring agent called CpuMem can also be run on the SUT to collect system

statistics. It communicates and provides the statistics to the SIPp Manager over

TCP.

4.4.2 Installation

The installation process can be divided into two steps. First we need to install all the pre-

requisites required for the tool. Because we will run test cases randomly with many open

network connections, we have to adjust the system limit for these requirements. Further-

more, we adjust the kernel Timer Frequency to 1000Hz in order to achieve approximately

millisecond precision (the current frequency for Ubuntu is 250Hz.) When having all the

prerequisites we can proceed to install IMS Bench SIPp. The installation steps are shown

in Appendix D.

45

Figure 22. IMS Bench SIPp Components.[3]

4.4.3 Test Cases

General Concepts

The most important feature of IMS Bench SIPp is multiple scenario support. The scenarios

are stored at the SIPp Manager. When the SIPp Instances connect to the Manager, they

download the scenarios and run them according to the XML set-up configuration. There

are two types of scenarios, client-side and server-side. The client-side scenario starts when

the SIPp Instance executes its command. In one test case, their might be more than

one client-side scenario. Each of them has its own distribution and ratio. The Instance

will select them randomly. The server-side scenarios are activated only when receiving

a preparation signal from the SIPp Instance. So we can say that client-side scenario is

active and server-side is passive. An example of IMS Bench Setup is shown in Figure

23. The SIPp Instances communicate with the SIPp Manager (192.168.2.2) through port

5000. They communicate and monitor SUT (192.168.2.4) through port 4060. Each SIPp

Instance has its own user set (ims user 1.inf and ims user 2.inf) to execute the scenarios.

The SIPp Instances communicate with each other using non-SIP message to negotiate user

46

reservations and timing parameters. We assume that user Alice wants to call user Bob in

this example. SIPp Instance 1 initiates a client-side scenario and generates the traffic to

System Under Test (SUT). We expect that the INVITE message will go through SUT and

get to SIPp Instance 2. Instance 1 sends a preparation signal to Instance 2 and asks it

to start server-side scenario which will receive and respond to the INVITE message. The

following steps will explain how to start the test case for Figure 23.

• SIPp Manager

1 user@ubuntu# ./manager -f manager.xml

The Manager starts with the configuration described in file manager.xml. Details are

explained in Appendix I.

• SIPp Instance 1

1 user@ubuntu# ./sipp 127.0.0.1:4060

2 -id 1

3 -i 192.168.2.21

4 -user_inf ./ims_users_1.inf

5 -rmctrl 192.168.2.2:5000

6 -trace_err -trace_cpumem -trace_scen -trace_retrans

• SIPp Instance 2

1 user@ubuntu# ./sipp 127.0.0.1:4060

2 -id 2 -i 192.168.2.22

3 -user_inf ./ims_users_2.inf

4 -rmctrl 192.168.2.2:5000

5 -trace_err -trace_cpumem -trace_scen -trace_retrans

where

-id The ID of the SIPp Instance.

-i The IP of the SIPp Instance.

-user inf The user set that the SIPp instance will use for testing. Each

instance has its own set. This set can be generated using the

script /opt/ims bench/user gen.pl which is explained in Ap-

pendix H .

-rmctrl The IP and port of the SIPp Manger. Port is 5000.

-trace err Save all unexpected messages in <scenario file name> <pid>

errors.log.

47

SIPp Manager
192.168.2.2:5000

SIPp Instance 1
192.168.2.21

SIPp Instance 2
192.168.2.22

SUT
192.168.2.4:4060

Figure 23. IMS Bench SIPp Example.

-trace cpumen Save the CPU/MEM per second in sipp <pid> cpumem.csv.

-trace scen Save scenario execution, result and response time in sipp <pid

> scen.csv.

-trace retrans Save number of retransmission per second in <scenario name>

<pid> retrans.csv.

• SUT

1 user@ubuntu# ./cpum 192.168.2.2:5000

Test Case for our IMS test-bed

Before starting IMS Bench we need to have enough users in FHoSS. We created a script

named multiusers.sh (see Appendix J) to add multiple users and their subscription infor-

mation to the database. For the purpose of testing registration procedure, we add 6000 users

to FHoSS. We then can use the script user gen.pl to generate a user list ims users 1.inf

for IMS Bench. In our test-bed, all the IMS components and IMS Bench SIPp are running

on the one machine using the loopback interface 127.0.0.1. Thus to start the performance

testing we use different parameters:

• SIPp Manager

1 user@ubuntu# ./manager -f manager_reg.xml

• SIPp Instance

1 user@ubuntu# ./sipp 127.0.0.1:4060

2 -id 1

3 -i 127.0.0.1

4 -user_inf ./ims_users_1.inf

48

5 -rmctrl 127.0.0.1:5000

6 -trace_err -trace_scen -trace_retrans

After launching the SIPp instance, go back to the SIPp Manager, we can see that the

instance is connected. Press “e” to start the testing.

In the above command, besides different IP parameters, we also use our own manager

configuration file (manager reg.xml) and test scenario (test reg.xml). These are specif-

ically for the registration procedure evaluation. Due to resource limitations, our test-bed

can only handle maximum 30 calls per second (CPS). If the arrival rate is over 30 CPS,

the Inadequately Handled Scenarios (IHS) ratio is really high and the measurement results

are not precise. Appendix K describes the configuration and scenario XML files for our

test-bed. The general registration procedure using the SIPp Instance is shown in Figure

24. The SIPp Instance will run with the users defined in the list imsuser 1.inf. Initially

the users are assigned to the unregistered pool (number 0). When the instance picks a user

for the registration, it moves the user to the pending pool (number 1). The instance then

generates a REGISTER message and feeds it to the IMS test-bed. It expects to receive the

401 Unauthorized message from the IMS system. If it fails to receives the 401 message, the

registration is considered unsuccessful. The user is moved back to the unregistered pool.

The IHS ratio also increases due to this unsuccessful event. The procedure continues until

the SIPp Instance receives the 200 OK message. The registration is now successful and the

user is moved to registered pool (number 3).

IMS Test-bed
SIPp Registration

Instance

Pick A User

Send REGISTER

Receive 401

Send REGISTER

Receive 200

User Registered

Figure 24. SIPp Registration Procedure.

49

4.5 Measured Performance Results

Following the instructions in Appendix L, we get the average response time for the first

and second registration attempt. Then we can calculate the average time for IMS regis-

tration procedure as the sum of these two attempts. We measure the response time with

different call rates for multiple times. An example for the response time of 30cps is shown

in Figure 25. At the first few seconds of the measurement, the call rate increases from

Test Execution Time (s)

cp
s

m
s

Time of First Register Attempt

Test Execution Time (s)

cp
s

m
s

Time of Second Register Attempt

Response Time
Call Rate

g

Response Time Call Rate

Figure 25. Response Time for IMS Test-bed with 30cps.

50

0 to approximately 30. This is the time for the requests to fill up the queue and is not

considered in our evaluation. Then the response time fluctuates when the system warms up

and the requests start circulating in the IMS system. After the warm up, the response time

becomes more stable. At the end of the measurement, the call rate eventually drops to 0.

The response time starts to fluctuate and to drop down. This time is not considered for the

evaluation either. The average response time for the first and second attempt are 218.58ms

and 193.14ms. Thus the average response time for the whole process is 411.72ms. As we

mentioned in Appendix G, our test-bed has been adjusted with Ubuntu kernel frequency

of 1000Hz to achieve around millisecond precision in scenario attempt scheduling and in

timing measurements.

4.6 Response Time Evaluation

In this section, we will evaluate two test cases. In the first test case, only the registration

scenario is specified. The measured and calculated response time will be compared. This

test case will prove that our model can evaluate separate procedures. The second test case

includes three scenarios: registration, call setup and call termination. The measured and

calculated response time for each procedure are compared. This test case will prove that our

model can adapt and include multiple procedures. In this second test case, we only consider

the controlling traffic (SIP and Diameter). The media data (voice call) is transferred in the

data plane and is not considered in our evaluation. Because of resource limitation, we did

not implement media servers for video services. We only evaluate the registration and voice

call services.

4.6.1 Test Case 1: Registration Procedure Only

Based on the classifications in Table 5 and the request flow in Figure 17, we defined the

flow for all the states {i, r} (because there is only registration procedure in our test case,

p = 1) as in Figure 26. We number the CSCFs, FHoSS and MySQL with node number

from 1 to 5. The REGISTER request (class 1) first comes to P-CSCF (node 1), which is

state {1, 1}. Then it moves to I-CSCF (node 2), which is state {2, 1}. When it gets to

FHoSS (node 4), the request changes to UAR (class 2) which is state {4, 2}. The procedure

continues until state {3, 7} where there are two possibilities. If it is the first registration

attempt, the request changes to 401 Unauthorized (class 8) and the state is {2, 8}. If it is

the second registration attempt, the request changes to 200 OK (class 9) and the state is

{2, 9}. We now can form the transition probability matrix Θ for the 15 states in Figure 26.

All the transition probabilities are 1 except the transition from state {3, 7} to state {2, 8}

51

and {2, 9} are 0.5.

From the Equation (7) we can get the arrival rate matrix as:

λ = λ0Q+ λΘ

λ− λΘ = λ0Q

λ(I −Θ) = λ0Q

⇒ λ = (λ0Q)(I −Θ)−1 (17)

P-CSCF I-CSCF S-CSCF FHoSS MySQL

1,1
2,1

4,2 5,3

4,4
2,5

3,1
4,6

5,3

4,4
3,7

2,8
1,8

1,9
2,9

1st

2nd

Figure 26. State Flow for Registration Procedure.

52

The transition probability matrix Θ is

Θ =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0.5 0 0.5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(18)

The external arrival rate is

λ0 = 30 cps (19)

The external arrival probabilities are

Q =
[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
(20)

Substituting Equation (18), (19) and (20) into Equation (17), we get the transition rate

matrix between the states as:

λ =
[
30 30 30 30 30 30 30 30 30 30 30 15 15 15 15

]
We then can get the arrival rate for each node as (using the Matlab code ims eval.m

in Appendix M):

λP−CSCF = 60 cps

λI−CSCF = 90 cps

λS−CSCF = 60 cps

λFHoSS = 120 cps

λMySQL = 60 cps

53

Besides the arrival rate (λi) we need the serving time (xi) to calculate the sojourn time

at each node as in Equation (12). Because we run our IMS system on the loopback in-

terface (127.0.0.1) we can use Wireshark to monitor the transmitted packets among the

components. Figure 27 shows the associated ports with message flows between the IMS

component in our test-bed. There are five ports that we need to pay attention to. For SIP

message communication, they are 4060, 5060 and 6060 respectively for P-CSCF, I-CSCF

and S-CSCF. For Diameter query, they are 3869 and 3870 respectively for I-CSCF and

S-CSCF. In addition, the FHoSS queries the MySQL database using port 3306. The ports

with XXX notation are random port numbers available in the IMS test-bed system. They

are usually greater than 20000.

UE P-CSCF I-CSCF S-CSCF FHoSS MySQL

4060

4060 5060

XXX

3869

3870

60605060

XXX

XXX 3306

XXX 3306

3869 XXX

XXX

XXX 3306

XXX 3306

3870 XXX

60605060

4060 5060

4060XXX

UDP

UDP

TCP

TCP/SQL

TCP/SQL

TCP

UDP

TCP

TCP/SQL

TCP/SQL

TCP

UDP

UDP

UDP

Figure 27. Request flow with associated ports.

54

The average request serving time in each node are recorded in Table 8. We perform

the five measurements at four call rates: 30cps, 25cps, 20cps and 15cps. In each node, the

request serving time is measured and in the last column the sojourn time is calculated using

Equation (12). From these results, we can see that our test-bed system is not quite stable

at 30cps rate, the sojourn time fluctuates in a wide range. However, when we decrease the

call rate to lower values, the variance is little. This is illustrated in Figures 28, 29, 30, 31

and 32. Using the Matlab code in the Appendix P, we can calculate the confidence interval

for each data set at each IMS node. At higher call rates, with the confidence of 98% we

obtain a wider interval. For example, the results for P-CSCF are shown in Table 9. At

15cps, we are 98% confident that the measured results fall between 32.088ms and 32.956ms.

At 30cps, we are 98% confident that the measured results fall in a wider range between

39.030ms and 47.933ms.

Figure 28. Serving Time at P-CSCF for Registration Procedure.

Besides measuring the request serving time at each IMS node, we also measure the

average total response time for the registration procedure. The results are shown in the

third column of Table 10. The second column is the calculated sojourn time extracted

from Table 8. In the last column, we calculate the differences between the measured and

calculated results. The differences are mostly over 1ms for 30cps rate, while they are less

than 0.7 ms for lower call rate. In order to understand the differences between measured

55

Call Rate xP−CSCF xI−CSCF xS−CSCF xFHoSS xMySQL νcalculated

39.198 22.841 70.817 21.462 0.582 375.347

44.691 28.102 69.079 22.243 0.602 401.804

43.986 26.531 69.264 23.787 0.594 402.211

46.326 29.763 73.498 28.688 0.611 438.693

30cps

43.207 28.352 69.836 24.872 0.593 411.598

38.644 22.213 67.876 22.152 0.495 369.059

39.124 25.452 63.268 22.813 0.516 373.206

40.227 26.574 62.673 22.615 0.506 376.776

39.782 25.113 60.552 22.791 0.488 367.927

25cps

40.728 26.685 68.754 22.328 0.497 389.107

36.124 24.047 58.492 21.421 0.557 347.953

36.312 24.127 58.145 21.073 0.623 346.623

36.870 24.784 58.342 21.234 0.531 350.556

36.295 24.341 58.470 21.514 0.485 349.361

20cps

36.742 24.615 57.948 21.863 0.524 351.501

32.546 22.231 51.752 19.987 0.483 316.005

32.129 21.827 51.421 20.262 0.492 314.397

32.476 22.375 51.936 20.193 0.434 317.431

32.842 22.634 51.048 20.117 0.539 317.006

15cps

32.617 22.268 51.524 20.952 0.518 319.712

Table 8. Average Serving Time (ms) for Registration Procedure.

Call Rate Mean (ms) CI Interval (ms)

30cps 43.482 39.030 - 47.933

25cps 39.701 38.302 - 41.100

20cps 36.469 35.933 - 37.005

15cps 32.522 32.088 - 32.956

Table 9. Confidence Interval for P-CSCF Serving Time at 98% Confidence.

56

Figure 29. Serving Time at I-CSCF for Registration Procedure.

Figure 30. Serving Time at S-CSCF for Registration Procedure.

57

Figure 31. Serving Time at FHoSS for Registration Procedure.

Figure 32. Serving Time of MySQL for Registration Procedure.

and calculated response time we will explain how the request serving time is collected in our

test-bed system. As mentioned earlier, we measure the time based on Wireshark capture.

However it cannot capture all transmitting packets. There are some packets missing. This

58

Call Rate νcalculated xmeasured Difference

375.347 377.950 2.603

401.804 403.720 1.916

402.211 403.726 1.515

438.693 439.715 1.022

30cps

411.598 412.985 1.387

369.059 369.727 0.668

373.206 373.992 0.786

376.776 377.217 0.441

367.927 368.571 0.644

25cps

389.107 389.283 0.176

347.953 348.246 0.293

346.623 347.339 0.716

350.556 350.659 0.103

349.361 349.978 0.617

20cps

351.501 351.877 0.376

316.005 316.550 0.545

314.397 314.756 0.359

317.431 318.046 0.615

317.006 317.368 0.362

15cps

319.712 320.393 0.681

Table 10. Comparison between Measured and Calculated Response time (ms).

is the main cause for the difference. Let us define a packet flow as a procedure with a sent

and a received packet. There are also some other conversational packets between these. In

Wireshark capture, some procedures miss the expected sent or expected received packets

for some subscribers. Or some procedures miss both of them and have only middle packets.

These packet flow will be omitted from our calculation because there is no start time or stop

time or both to calculate the time difference. Thus the measured and calculated responses

do not match exactly. Furthermore, the system is not stable enough at 30cps, in which the

retransmitted and drop packets are higher than other call rate. Therefore the difference

between measured and calculated is wider.

59

4.6.2 Test Case 2: Registration, Call Setup and Termination Procedure

In the previous section, our test case has only registration procedure. We now run a

test scenario that includes three procedures: registration, call set-up and call termination.

According to the Equation (12), we need the arrival rate and the serving time at each

node to calculate the sojourn time. We already calculated the arrival rate for registration

procedure so in this section we will perform the calculation for the call set-up and call

termination. Then we measure the average message processing time at each node. The

total measured and calculated response time is compared at the end.

Arrival Rate for Call Setup Procedure

We classify the message types as in Table 11. The P-CSCF, I-CSCF and S-CSCF are

classified as node number 1,2 and 3. From the Figure 43 in Appendix B, we derive the state

flow for call setup procedure as in Figure 33.

P-CSCF S-CSCF I-CSCF

1,1 3,1 2,1

1,2 3,2 2,2

1,3 3,3 2,3

1,4 3,4 2,4

1,5 3,5 2,5

INVITE

180 Ringing

PRACK

200 OK
Ring USer

ACK

200 OK
User Answer

Figure 33. Call Setup Flow.

60

Message Type Number

INVITE 1

180 Ringing 2

PRACK 3

200 OK 4

ACK 5

Table 11. Call Setup Message Type.

The transition probability matrix Θ is

Θ =



0 0.5 0 0.5 0 0 0 0 0 0 0 0 0 0 0

0.5 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.5 0 0.5 0 0 0 0 0 0 0 0

0 0 0 0.5 0 0.5 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.5 0 0.5 0 0 0 0 0

0 0 0 0 0 0 0.5 0 0.5 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1/3 1/3 0 1/3 0 0

0 0 0 0 0 0 0 0 0 0.5 0 0.5 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0

0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0.5

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



(21)

We get the transition rate matrix between the states as:

λ =
[
60 60 30 60 60 30 60 60 30 90 60 30 60 60 30

]
We then can obtain the arrival rate for each node as:

λP−CSCF = 330 cps

λI−CSCF = 150 cps

λS−CSCF = 300 cps

61

Arrival Rate for Call Termination Procedure

From Figure 44 in Appendix B we derive that state flow for the termination process as in

Figure 34. The BYE message is classified as type 1 and 200 OK messages as type 2.

P-CSCF S-CSCF

2,11,1

2,21,2

Figure 34. Call Termination Flow.

The transition probability matrix Θ is

Θ =

⎡
⎢⎢⎢⎢⎢⎣

0 0.5 0.5 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

(22)

We get the transition rate matrix between the states as:

λ =
[
60 30 60 60

]

We then can obtain the arrival rate for each node as:

λP−CSCF = 120 cps

λS−CSCF = 90 cps

The average serving time at each node is shown in Table 12. These values have the same

characteristics as values in test case 1. The confidence interval is wider at the higher rates

than at the lower rates with the confidence of 98%. Using the arrival rates and the measured

serving time we can calculate the sojourn time as in Equation (12) at each IMS node for

each procedure. The calculated results for each procedure and the total calculated time are

shown in Table 13. In Table 14, we compare the measured and calculated results. As we

explained earlier, at the call rate of 30cps our test-bed is not stable, thus the differences are

wider than at the lower rates. For lower rate, we can achieve the precision at around 1ms.

62

Call Rate xP−CSCF xI−CSCF xS−CSCF xFHoSS xMySQL

51.341 27.931 78.614 26.230 0.694

51.694 29.455 79.119 27.574 0.631

51.585 29.799 80.453 27.099 0.673

52.088 30.462 80.087 28.847 0.682

30cps

50.102 31.837 81.630 27.002 0.705

49.484 25.730 76.318 24.850 0.612

50.289 26.971 75.370 24.554 0.614

49.867 27.545 76.511 25.276 0.656

50.95 25.914 77.198 26.473 0.683

25cps

50.637 26.514 77.567 25.002 0.675

47.216 23.791 73.317 22.635 0.593

46.448 23.639 74.324 21.543 0.605

46.947 21.799 72.532 20.269 0.582

48.912 22.898 73.387 21.075 0.565

20cps

48.214 21.236 74.861 20.274 0.568

41.742 20.064 70.615 19.935 0.523

41.417 18.211 71.546 20.372 0.497

39.628 17.707 70.417 21.241 0.569

40.017 17.932 70.606 20.754 0.518

15cps

40.151 18.547 69.938 19.775 0.553

Table 12. Average Request Serving Time (ms) for 3-procedure Test Case.

63

Call Rate Registration Call Setup Call Termination Total Time

449.793 863.478 181.271 1494.542

461.331 873.198 182.482 1517.011

462.997 881.580 183.598 1528.175

472.270 884.391 184.238 1540.899

30cps

468.175 885.858 181.809 1535.842

429.200 831.957 175.261 1436.418

431.457 834.822 175.923 1442.202

435.989 836.058 174.620 1446.667

441.078 846.585 179.073 1466.736

25cps

437.090 848.721 178.816 1464.627

403.947 794.526 167.724 1366.197

399.625 795.504 167.195 1362.324

386.377 782.226 166.401 1335.004

398.504 802.443 171.186 1372.133

20cps

395.252 812.253 174.644 1382.149

367.474 740.289 156.074 1263.837

362.823 732.366 154.355 1249.544

359.095 713.346 149.648 1222.089

358.876 717.489 150.615 1226.980

15cps

355.807 716.130 150.215 1222.152

Table 13. The Calculated Time (ms) for Each Procedure at IMS Nodes.

64

Call Rate νcalculated xmeasured Difference

30cps

1494.542 1499.334 4.792

1517.011 1519.449 2.438

1528.175 1531.246 3.071

1540.899 1543.685 2.786

1535.842 1540.060 4.218

25cps

1436.418 1437.740 1.322

1442.202 1443.412 1.210

1446.667 1448.270 1.603

1466.736 1468.311 1.575

1464.627 1465.801 1.174

20cps

1366.197 1367.109 0.912

1362.324 1363.357 1.033

1335.004 1336.287 1.283

1372.133 1373.268 1.135

1382.149 1383.490 1.341

15cps

1263.837 1264.802 0.965

1249.544 1250.828 1.284

1222.089 1223.389 1.300

1226.980 1228.302 1.322

1222.152 1223.119 0.967

Table 14. Comparison between Measured and Calculated time (ms) for 3 Procedures.

In the previous papers, the performance evaluations were done mostly using various

measuring tools. These papers focus on the standard functionalities of IMS components

or only measure the delay and response time of the IMS system. There has not been

any methodological model to evaluate the system. Recently in the paper [21], the author

proposes a queueing model using M/M/1 queue but does not explain how to use it for the

system evaluation. The author focuses on the selection algorithm for S-CSCF. Lately, in the

paper [1], the author builds a test-bed system and collects the delay time. Then he derives

trend lines for these data. There are no verifications for the work to see if it can adapt to a

more complicated IMS system. Understanding these drawbacks, we propose a model that

65

makes use of both experiment results and a queueing network to evaluate the response time

for various scenarios. Our model takes the measured request serving time and the calculated

arrival rate (using our mathematical formula) to evaluate the sojourn time at each node.

With these results and the number of messages passing though each node, we can deduce the

total response time for one or many procedures. Compared to a production network where

there may be hundreds of nodes, our model is limited to a bounded number of nodes. We

focus on the main four component types of an IMS: HSS, S-CSCF, P-CSCF and I-CSCF.

Each of these component type is implemented on one node in our model. We can obtain

an excellent correlation between the modelled results and the experimental results. Our

model has been evaluated with two test cases. The first test case includes the registration

procedure only. The second test case includes three procedures: registration, call setup

and call termination. If the system implements more services and has more procedures,

our model can adapt to these change as well. Furthermore, in our analysis we separate

the FHoSS into two entities and manage to achieve the precise evaluation results. This

proves that our model is flexible. Either the IMS components are separated or combined,

our model can be contracted or extended to accommodate. In the two following sections,

we introduce two new features of our model to evaluate the saturation point of the system

and the CPU utilization of each IMS component. The saturation point of the system is the

point over which the system becomes unstable. The CPU utilization is helpful when we

can predict the CPU usage of each component and combine the components on the same

machine to save resources.

4.7 System Performance Evaluation

In the previous section, we observe the system instability at the call rate of 30cps for an all-

in-one IMS machine. Our question is: what is the maximum call rate for a specific system

where all IMS components are running on different machines? This will be a critical system

parameter when we consider the system capacity. Thus we will build a model to predict the

system maximum call rate. In addition, the CPU usages for each IMS component are also

derived so that we can combine several IMS components on one machine without wasting

CPU resource.

4.7.1 System Saturation Point

In our queueing model, each of the IMS components is represented by a queue and a

processing server. According to [25], the server utilization is the fraction of the time in

66

which the server is occupied and is given by:

ρ =
λ

μ
(23)

where λ is the arrival rate and μ is the service rate. The condition for a stable system is

ρ < 1. This means that the maximum arrival rate must be equal to or less than the service

rate.

The arrival rate for each of the IMS components is given by [25]:

λi = λ0i +

4∑
j=1

λjpji i = 1...4 (24)

where λ0i is the external arrival rate to each IMS component and λjpji is the transition

probability between nodes. These probabilities are shown in Figure 35.

P-CSCF
1

I-CSCF
2

S-CSCF
3

FHoSS
4

1/3

0.5

0.5

1/3
1/3

1/3

1/3

1/3

1/3

1/31/3

1/3

Figure 35. Transition Probability.

Thus we have four equations:

λ1 = λ01 + λ1p11 + λ2p21 + λ3p31 + λ4p41

λ2 = λ02 + λ1p12 + λ2p22 + λ3p32 + λ4p42

λ3 = λ03 + λ1p13 + λ2p23 + λ3p33 + λ4p43

λ4 = λ04 + λ1p14 + λ2p24 + λ3p34 + λ4p44

Solving the system of equations we get the results:

λ1(PCSCF) = 0.0013λ

λ2(ICSCF) = 0.00066λ

λ3(SCSCF) = 0.0023λ

λ4(FHoSS) = 0.00059λ

67

The service time of four IMS components are measured at the arrival rate from 5cps to

30cps. The results are shown in Table 15. We then use the Matlab polyfit() function to get

the fitting curve for the data (see Appendix N). The intersection points between the service

and arrival rate are the saturation points over which the system becomes unstable. Figure

36 and 37 show that S-CSCF has the lowest saturation point at around 30cps. If it is over

30cps S-CSCF is not stable, which leads to an unstable IMS system. This is an expected

value that we already observed in the previous measurement.

Rate P-CSCF I-CSCF S-CSCF FHoSS

5 0.0241 0.0167 0.0378 0.0146

10 0.0286 0.0196 0.0437 0.0177

15 0.0324 0.0221 0.0517 0.0200

20 0.0365 0.0243 0.0584 0.0219

25 0.0408 0.0265 0.0642 0.0236

30 0.0447 0.0287 0.0689 0.0254

Table 15. Service Time of Four IMS Components in All-in-One Machine.

We will verify our model against an IMS system where all four components are separated

in four different physical machines. The measured service time is shown in Table 16. Figure

38 and 39 show that S-CSCF has the lowest saturation point at around 91cps. When we

run the simulation with over 91cps, the system is not stable and the IHS rate increases over

the acceptance limit, which causes the simulation to stop (Figure 40).

Rate P-CSCF I-CSCF S-CSCF FHoSS

5 0.0134 0.0078 0.0203 0.0069

10 0.0193 0.0109 0.0300 0.0097

15 0.0261 0.0135 0.0413 0.0127

20 0.0328 0.0171 0.0532 0.0156

25 0.0387 0.0206 0.0641 0.0183

30 0.0448 0.023 0.0749 0.0213

Table 16. Service Time of Four IMS Components in 4 Machines.

68

Figure 36. Saturation Points of P-CSCF and S-CSCF in All-in-One Machine.

69

Figure 37. Saturation Points of I-CSCF and FHoSS in All-in-One Machine.

70

Figure 38. Saturation Points of P-CSCF and S-CSCF in 4 Machines.

71

Figure 39. Saturation Points of I-CSCF and FHoSS in 4 Machines.

72

Figure 40. Unstable System When The Call Rate Is Over The Saturation Point.

4.7.2 System CPU Utilization

In this section, we will explore the CPU utilization for each IMS component. In our test-

bed, we implement the three CSCFs and FHoSS on four separate machines with identical

CPU. We fed into the system with the call rate from 5cps to 40cps and measured the CPU

usage. The results are shown in Table 17.

Rate P-CSCF I-CSCF S-CSCF FHoSS

5 4.98 5.67 3.24 2.66

10 9.87 11.23 6.58 5.62

15 14.76 16.38 9.72 8.28

20 19.94 22.69 12.76 11.44

25 24.73 27.83 16.60 13.80

30 29.13 33.36 19.94 16.46

35 34.30 38.46 22.68 19.32

40 39.84 44.92 25.72 22.38

Table 17. CPU Utilization of 4 IMS Components.

We then use the Matlab polyfit() function to get the fitting curve for the CPU utilization

73

(see Appendix O and Figure 41). We can get their functions as:

UP−CSCF = 0.9859λ

UI−CSCF = 0.6485λ

US−CSCF = 1.1119λ

UFHoSS = 0.5558λ

At the call rate of 90cps, we have the CPU utilization at each IMS component as:

UP−CSCF = 88.73%

UI−CSCF = 58.37%

US−CSCF = 100.07%

UFHoSS = 50.02%

S-CSCF has the highest load following by P-CSCF. This reflects exactly the saturation

point that we discovered in the previous section. At the call rate of 30cps, we have

UP−CSCF = 29.58%

UI−CSCF = 19.46%

US−CSCF = 33.36%

UFHoSS = 16.67%

This is the case of all-on-one machine in which we have the total CPU utilization of

nearly 100%. By manipulating the above equations, we can combine the IMS components

so that we can efficiently use the CPU resource. For example, at the call rate of 80cps, the

CPU utilization of I-CSCF and FHoSS are nearly 50%. Thus we can integrate them on one

machine and P-CSCF and S-CSCF on other two machines.

In this chapter, we have introduced our test-bed environment which is installed on

Ubuntu using the Open Source IMS Core software. The test-bed can be implemented on

one machine or multiple machines. We then used the SIPp generator to inject traffic into

the IMS system. The response time is measured at each IMS node. The obtained functions

in Chapter 3 are used to calculate the total response time of registration, call setup and call

termination procedure. We compared these calculated results with the measured results.

We can obtain around millisecond precision. In addition, we also used our model to calculate

the system saturation point and the CPU usage of each IMS component.

74

Figure 41. CPU Utilization Curves.

75

Chapter 5

Conclusion and Future Work

The importance of the IP Multimedia Subsystem increases as more and more service

providers integrate such systems into their networks recently. The IMS performance is

the main concern when the number of subscribers dramatically multiplies. This thesis ex-

plores a methodological model to effectively evaluate the performance of IMS. The model

covers all the main IMS components and is expandable to include new nodes as the mod-

elled network grows.

After presenting the fundamental aspects of four IMS components (P-CSCF, I-CSCF,

S-CSCF and HSS) and basic queueing concepts, we build up our model as a queueing net-

work in which each transmitted message is considered as a request. Potential components

of a request are modelled as classes. The requests travel from one queue to another with

or without changing classes. Our model has precisely classified requests into many different

classes so that all the transition states are included. In addition, we also form a transition

probability matrix to describe the characteristics of request flows inside the IMS system.

With a specified IMS call rate, we easily obtain the arrival rate for every node in the net-

work. Our model is not simply a mathematical equation with predefined constants. We

measure the average response time of every node to provide a reliable evaluation result.

We verify the proposed model with the Open Source IMS Core System. We obtain around

millisecond precision in our test-cases for registration, call setup and termination proce-

dures. The model expandability is verified when we break down the physical HSS into two

logical components: one to process requests and another to query the subscriber database.

Using this concept, we also add multiple nodes into an existing network evaluation without

losing precision. Our model also finds the saturation point and the CPU utilization of an

IMS system. The saturation point is the maximum limit over which the system becomes

76

unstable and unpredictable. This limit helps us to prepare for an increasing number of

subscribers. We also calculate the CPU usage of each IMS component and combine them

in one machine so that the CPU resource can be used efficiently. This is really useful in a

production network where the server resources are really expensive.

The proposed model has achieved our goal to effectively evaluate the IMS performance.

Because of its scalability, this model can be applied to a live production network to study

the request flow behaviours and thus deduce the system performance. Furthermore, when

the service providers gradually use virtualization or cloud technologies for an IMS system,

our model can adapt to the new environment as well. An extension to our work can be

done with the request priority. In the real-time IMS network, the service providers might

give processing priority for certain request types. Our model can adapt to this requirement

as we already had the requests classified. A modification to our evaluation model is also

possible.

77

Appendix

A Scripts to Start IMS Components

For the ease of provisioning, we created two scripts to start IMS (one script without logging

and another script with logging.) The content of the scripts are shown below.

• startIMS.sh script is used to start all IMS components including xCSCF and FHoSS

in separate terminal tabs (Figure 42).

1 #!/bin/bash

2 # This Program start all components of IMS including xCSCF and FHoSS.

3 # Each component runs on a separate terminal tab.

4

5 clear

6 read -p "About to launch IMS Component. Press Enter to continue... "

7

8 # Set DNS resolver

9 cp /etc/resolv.conf.ims /etc/resolv.conf

10 cp /etc/hosts.ims /etc/hosts

11

12 # Set $JAVA_HOME

13 cd /opt/OpenIMSCore

14 echo -e "\n\nSetting JAVA_HOME location:"

15 echo -e "\tCurrent: $JAVA_HOME"

16 _JLocation=$(readlink -f /usr/bin/java | sed "s:jre/bin/java::")

17 export JAVA_HOME=$_JLocation

18 echo -e "\tSet to: $JAVA_HOME"

19

20 # Launch IMS components in separate terminal tabs

21 _cmd_P="./pcscf.sh"

22 _cmd_I="./icscf.sh"

23 _cmd_S="./scscf.sh"

24 _cmd_H="cd FHoSS/deploy/;./startup.sh"

25

26 echo -e "\n\nIMS is running... "

78

27 gnome-terminal --tab -t PCSCF -e $_cmd_P --tab -t ICSCF -e $_cmd_I --tab -t

SCSCF -e $_cmd_S --tab -t FHoSS -e "bash -c ’$_cmd_H’;bash"

• startIMS log.sh script is the same as startIMS.sh but with logging capability.

1 #!/bin/bash

2 # This Program start all components of IMS including xCSCF and FHoSS.

3 # Each component runs on a seperate terminal tab. Logging is enabled

4 # and save in ./logs/

5

6 clear

7 read -p "About to launch IMS Component. Press Enter to continue... "

8

9 # Set DNS resolver

10 cp /etc/resolv.conf.ims /etc/resolv.conf

11 cp /etc/hosts.ims /etc/hosts

12

13 # Set $JAVA_HOME

14 cd /opt/OpenIMSCore

15 echo -e "\n\nSetting JAVA_HOME location:"

16 echo -e "\tCurrent: $JAVA_HOME"

17 _JLocation=$(readlink -f /usr/bin/java | sed "s:jre/bin/java::")

18 export JAVA_HOME=$_JLocation

19 echo -e "\tSet to: $JAVA_HOME"

20

21 # Launch IMS components in seperate terminal tabs.

22 echo -e "\n\nIMS is running... "

23 gnome-terminal --tab -t PCSCF -e ’bash -c "./pcscf.sh 2>&1 | tee ./logs/

pcscf.log.tmp"’ --tab -t ICSCF -e ’bash -c "./icscf.sh 2>&1 | tee ./

logs/icscf.log.tmp"’ --tab -t SCSCF -e ’bash -c "./scscf.sh 2>&1 | tee

./logs/scscf.log.tmp"’ --tab -t FHoSS -e ’bash -c "cd FHoSS/deploy/;./

startup.sh"’

24

25 # Remove color code for easy reading.

26 cd /opt/OpenIMSCore/logs

27 cat pcscf.log.tmp | sed -r "s/\x1B\[([0-9]{1,3}((;[0-9]{1,3})*)?)?[m|K]//g"

> pcscf.log

28 rm pcscf.log.tmp

29 cat icscf.log.tmp | sed -r "s/\x1B\[([0-9]{1,3}((;[0-9]{1,3})*)?)?[m|K]//g"

> icscf.log

30 rm icscf.log.tmp

31 cat scscf.log.tmp | sed -r "s/\x1B\[([0-9]{1,3}((;[0-9]{1,3})*)?)?[m|K]//g"

> scscf.log

32 rm scscf.log.tmp

79

How to use the sripts?

Copy the scripts to /opt/OpenIMSCore then execute:

1 user@ubuntu# cd /opt/OpenIMSCore/

2 user@ubuntu# sudo ./startIMS.sh

This will start four IMS components (PCSCF, ICSCF, SCSCF and HSS) in 4 separate

terminal tabs. If we want to log the output of each session, use the other script:

1 user@ubuntu# cd /opt/OpenIMSCore/

2 user@ubuntu# sudo ./startIMS_log.sh

This script records the terminal tabs’ output of P-CSCF, I-CSCF and S-CSCF. These logs

are stored in /opt/OpenIMSCore/logs. Log of FHoSS is located in /opt/OpenIM-

SCore/FHoSS/deploy/logs.

Figure 42. Start IMS Components With Scripts.

80

B Call Setup and Termination Procedure

The call setup procedure between two user equipments is shown below:

UE1 UE2P-CSCF I-CSCF S-CSCF

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

Resource
Ready

180 Ringing

180 Ringing

180 Ringing

180 Ringing

180 Ringing

180 Ringing

PRACK

200 OK

Ring User

User Answer

200 OK

ACK

Conversation

INVITE

180
Ringing

Figure 43. Call Setup Procedure.

81

The call termination procedure is shown below:

UE1 UE2P-CSCF I-CSCF S-CSCF

Call
Terminated

Conversation

BYE

BYE

BYE

BYE

200 OK

200 OK

200 OK

200 OK

Figure 44. Call Termination Procedure.

82

C Open Source IMS Implementation Steps

C.1 Prerequisite Packages

In order to compile the IMS source codes and run application for core system, we need to

have the following packages installed on Ubuntu:

• subversion - To download the IMS source codes.

1 user@ubuntu# sudo apt-get install subversion

• gcc, make - To compile CSCFs source codes.

1 user@ubuntu# sudo apt-get install gcc

2 user@ubuntu# sudo apt-get install make

• openjdk-7-jdk, openjdk-7-jre-headless, openjdk-7-jre-lib - To run HSS.

1 user@ubuntu# sudo apt-get install openjdk-7-jdk

2 user@ubuntu# sudo apt-get install openjdk-7-jre-headless

3 user@ubuntu# sudo apt-get install openjdk-7-jre-lib

• ant - To compile HSS source code

1 user@ubuntu# sudo apt-get install ant

• mysql-server-5.5 - MySQL database to store IMS subscription information. During

installation it will ask for database root password. Choose an appropriate password.

1 user@ubuntu# sudo apt-get install mysql-server-5.5

• mysql-client-5.5 - MySQL client to retrieve IMS subscriptions.

1 user@ubuntu# sudo apt-get install mysql-client-5.5

• libmysqlclient-dev - MySQL development libraries and header files.

1 user@ubuntu# sudo apt-get install libmysqlclient-dev

• bison - C parser for CSCF source code.

1 user@ubuntu# sudo apt-get install bison

• flex

83

1 user@ubuntu# sudo apt-get install flex

• libxml2-dev

1 user@ubuntu# sudo apt-get install libxml2-dev

• ipsec-tools - For IP Security Association

1 user@ubuntu# sudo apt-get install ipsec-tools

• curl

1 user@ubuntu# sudo apt-get install curl

• libcurl4-gnutls-dev

1 user@ubuntu# sudo apt-get install libcurl4-gnutls-dev

• bind9 - DNS server to resolve IMS domain.

1 user@ubuntu# sudo apt-get install bind9

While most of us prefer to run one command e.g. “sudo apt-get install subversion gcc

make . . . ” to install all packages in one attempt, we suggest to install packages one by one

so that any errors can be spotted and corrected.

C.2 OpenIMS Core Source Code

As we mentioned in the introduction, the IMS CSCF components are built upon open

source SER software. The author implemented them using C programming language. The

source codes are hosted on Berlin Open Source (Berlios) website. It is a project created by

Fraunhofer Institute from Berlin to coordinate different open source softwares. In addition

to the CSCF, FOKUS developed his own prototype of HSS. It is called FOKUS Home

Subscriber Server (FHoSS) which is completely written in Java. From this point of view,

we can separate source codes of CSCF and HSS to implement on different servers. We can

also provision each type of CSCF (P, I, S) on one or many servers. The following steps

show how to download the IMS source code on Ubuntu.

• Create “/opt/OpenIMSCore” and go inside the directory:

84

1 user@ubuntu# mkdir /opt/OpenIMSCore

2 user@ubuntu# cd /opt/OpenIMSCore

• Create “ser ims” directory and get SER source code:

1 user@ubuntu# mkdir ser_ims

2 user@ubuntu# svn checkout http://svn.berlios.de/svnroot/repos/

openimscore/ser_ims/trunk ser_ims

• Create “FHoSS” directory and get HSS source code:

1 user@ubuntu# mkdir FHoSS

2 user@ubuntu# svn checkout http://svn.berlios.de/svnroot/repos/

openimscore/FHoSS/trunk FHoSS

C.3 Configure DNS Server

DNS plays an important role for IMS system. It helps resolves the home or visit domain

or subscribers. In IMS core system, we can point UEs directly to the IP of CSCFs or HSS

but it is not scalable when the number of components increases. Most small test-beds use

this approach. Even though the DNS server implementation is complex and requires some

extensive knowledges, we prefer to use DNS for scalability. The most common DNS server is

BIND9. In the following steps we will setup DNS server for the domain open-ims.test on

the loop-back interface 127.0.0.1 . Because we install all components on one workstation,

all of them will have the same IP address but different port numbers.

Configure DNS Client Side

The Client Side represents the CSCFs and HSS where the DNS queries originating. It

includes /etc/hosts and /etc/resolv.conf file.

• Configure /etc/hosts file

1 user@ubuntu# sudo gedit /etc/hosts

2

3 127.0.0.1 localhost

4 127.0.0.1 localhost.open-ims.test localhost

5 127.0.0.1 hss.open-ims.test hss

6 127.0.0.1 pcscf.open-ims.test pcscf

7 127.0.0.1 scscf.open-ims.test scscf

8 127.0.0.1 icscf.open-ims.test icscf

85

• Configure the resolver /etc/resolv.conf . This file is controlled by the host resolver

and is reset when the workstation restarts.

1 user@ubuntu# sudo gedit /etc/resolv.conf

2

3 nameserver 127.0.0.1

4 domain open-ims.test

5 search open-ims.test

Configure DNS Server Side

• Configure /etc/bind/named.conf

1 user@ubuntu# sudo gedit /etc/bind/named.conf

2

3 include "/etc/bind/named.conf.options";

4 include "/etc/bind/named.conf.local";

5 include "/etc/bind/named.conf.default-zones";

• Configure /etc/bind/named.conf.options

1 user@ubuntu# sudo gedit /etc/bind/named.conf.options

2

3 options {

4 directory "/var/cache/bind";

5

6 forwarders {

7 127.0.0.1;

8 };

9

10 dnssec-validation auto;

11

12 auth-nxdomain no; # conform to RFC1035

13 listen-on-v6 { any; };

14 };

• Configure /etc/bind/named.conf.local . This is the main configuration for DNS

server. It is linked to the Forward Zone (/etc/bind/open-ims.dnszone) and Reverse

Zone (/etc/bind/open-ims-rev.dnszone) file. In the Forward Zone, we define how to

translate from the domain name open-ims.test to the IP address 127.0.0.1. In the

Reverse Zone, we define the reverse translation from IP to domain name.

1 user@ubuntu# sudo gedit /etc/bind/named.conf.local

2

86

3 include "/etc/bind/rndc.key";

4 include "/etc/bind/zones.rfc1918";

5

6 controls {

7 inet 127.0.0.1 port 953

8 allow{127.0.0.1;}keys{"rndc-key";};

9 };

10

11 zone "open-ims.test" {

12 type master;

13 file "/etc/bind/open-ims.dnszone";

14 };

15

16 zone "0.0.127.in-addr.arpa" {

17 type master;

18 file "/etc/bind/open-ims-rev.dnszone";

19 };

• Create /etc/bind/open-ims.dnszone file as mentioned in the previous step. The

original file is provided in the source code of IMS which is /opt/OpenIMSCore/ser

ims/cfg/open-ims.dnszone . We make few modifications to adapt for our IMS

test-bed system.

1 user@ubuntu# sudo gedit /etc/bind/open-ims.dnszone

2

3 $TTL 1W

4

5 @ 1D IN SOA localhost.open-ims.test. root.localhost.open-ims.test. (

6 2006101001 ; serial

7 3H ; refresh

8 15M ; retry

9 1W ; expiry

10 1D) ; minimum

11

12 open-ims.test. 1D IN NS localhost.open-ims.test.

13 open-ims.test. 1D IN A 127.0.0.1

14 localhost 1D IN A 127.0.0.1

15

16 pcscf 1D IN A 127.0.0.1

17 _sip.pcscf 1D SRV 0 0 4060 pcscf

18 _sip._udp.pcscf 1D SRV 0 0 4060 pcscf

19 _sip._tcp.pcscf 1D SRV 0 0 4060 pcscf

20

21 icscf 1D IN A 127.0.0.1

87

22 _sip 1D SRV 0 0 5060 icscf

23 _sip._udp 1D SRV 0 0 5060 icscf

24 _sip._tcp 1D SRV 0 0 5060 icscf

25

26 open-ims.test. 1D IN A 127.0.0.1

27 open-ims.test. 1D IN NAPTR 10 50 "s" "SIP+D2U" "" _sip._udp

28 open-ims.test. 1D IN NAPTR 20 50 "s" "SIP+D2T" "" _sip._tcp

29

30 scscf 1D IN A 127.0.0.1

31 _sip.scscf 1D SRV 0 0 6060 scscf

32 _sip._udp.scscf 1D SRV 0 0 6060 scscf

33 _sip._tcp.scscf 1D SRV 0 0 6060 scscf

34

35 trcf 1D IN A 127.0.0.1

36 _sip.trcf 1D SRV 0 0 3060 trcf

37 _sip._udp.trcf 1D SRV 0 0 3060 trcf

38 _sip._tcp.trcf 1D SRV 0 0 3060 trcf

39

40 bgcf 1D IN A 127.0.0.1

41 _sip.bgcf 1D SRV 0 0 7060 bgcf

42 _sip._udp.bgcf 1D SRV 0 0 7060 bgcf

43 _sip._tcp.bgcf 1D SRV 0 0 7060 bgcf

44

45 mgcf 1D IN A 127.0.0.1

46 _sip.mgcf 1D SRV 0 0 8060 mgcf

47 _sip._udp.mgcf 1D SRV 0 0 8060 mgcf

48 _sip._tcp.mgcf 1D SRV 0 0 8060 mgcf

49

50 hss 1D IN A 127.0.0.1

51 ue 1D IN A 127.0.0.1

52 presence 1D IN A 127.0.0.1

53 pcrf 1D IN A 127.0.0.1

54 clf 1D IN A 127.0.0.1

• Create /etc/bind/open-ims-rev.dnszone

1 user@ubuntu# sudo gedit /etc/bind/open-ims-rev.dnszone

2

3 $TTL 1W

4

5 @ IN SOA localhost.open-ims.test. root.localhost.open-ims.test. (

6 2006101001 ; serial

7 3H ; refresh

8 15M ; retry

88

9 1W ; expiry

10 1D) ; minimum

11

12 IN NS localhost.

13

14 1 IN PTR pcscf.open-ims.test.

15 1 IN PTR icscf.open-ims.test.

16 1 IN PTR scscf.open-ims.test.

17 1 IN PTR trcf.open-ims.test.

18 1 IN PTR bgcf.open-ims.test.

19 1 IN PTR mgcf.open-ims.test.

20 1 IN PTR hss.open-ims.test.

21 1 IN PTR ue.open-ims.test.

22 1 IN PTR presence.open-ims.test.

23 1 IN PTR pcrf.open-ims.test.

24 1 IN PTR clf.open-ims.test.

Note that 1 is the last octet of the IP address 127.0.0.1 .

Start DNS Server

After configuring the DNS server, we need to restart the BIND9 service so that the config-

uration can take effect.

1 user@ubuntu# sudo service bind9 restart

Usually when we cannot start BIND9 service, we have mistyped the configuration in

the three files named.conf , named.conf.options and named.conf.local . The structure

of those files must follow certain formats as mention in [26]. To view more specific error

details we can examine the system log. In most cases, the error will indicate exactly what

components go wrong.

1 user@ubuntu# tail -f /var/log/syslog

Having the DNS service up and running we can check if the resolution between domain

name and IP address is working as expected. The following results are extracted from a

correctly working DNS resolution.

• Resolving domain name:

1 user@ubuntu# nslookup open-ims.test

2

3 Server: 127.0.0.1

4 Address: 127.0.0.1#53

89

5

6 Name: open-ims.test

7 Address: 127.0.0.1

• Resolving IP address:

1 user@ubuntu# nslookup 127.0.0.1

2

3 Server: 127.0.0.1

4 Address: 127.0.0.1#53

5

6 1.0.0.127.in-addr.arpa name = clf.open-ims.test.

7 1.0.0.127.in-addr.arpa name = hss.open-ims.test.

8 1.0.0.127.in-addr.arpa name = bgcf.open-ims.test.

9 1.0.0.127.in-addr.arpa name = mgcf.open-ims.test.

10 1.0.0.127.in-addr.arpa name = pcrf.open-ims.test.

11 1.0.0.127.in-addr.arpa name = trcf.open-ims.test.

12 1.0.0.127.in-addr.arpa name = icscf.open-ims.test.

13 1.0.0.127.in-addr.arpa name = pcscf.open-ims.test.

14 1.0.0.127.in-addr.arpa name = scscf.open-ims.test.

15 1.0.0.127.in-addr.arpa name = presence.open-ims.test.

16 1.0.0.127.in-addr.arpa name = ue.open-ims.test.

• Testing CSCFs and HSS connectivity by PING. They should be reachable:

1 user@ubuntu# ping pcscf.open-ims.test

2 user@ubuntu# ping icscf.open-ims.test

3 user@ubuntu# ping scscf.open-ims.test

4 user@ubuntu# ping hss.open-ims.test

We rarely have problems with forward resolving because our forward zone file is based on

the sample IMS zone file. We sometimes have problems with reverse resolving. When the

reverse resolution errors are SERFAIL and NXDOMAIN, our reverse zone file open-ims-

rev.dnszone is not correctly defined. We should check the BIND9 manual [26].

C.4 Configure DNS Core Components

Up to this point we already have all the prerequisites for IMS components. Before proceeding

to the following sections, we must make sure that MySQL and BIND9 service are running.

1 user@ubuntu# sudo service bind9 status

2 * bind9 is running

3

90

4 user@ubuntu# sudo service mysql status

5 mysql start/running, process 1579

Change IP Address and Domain for IMS configuration files

• Go to directory opt/OpenIMSCore/ser ims/cfg and run script configurator.sh

1 user@ubuntu# cd /opt/OpenIMSCore/ser_ims/cfg

2 user@ubuntu# sh ./configurator.sh

3

4 Domain Name: open-ims.test

5 IP Address: 127.0.0.1

These replace all the default IP Address and Domain Name by the specified values for

the following files: icscf.cfg, icscf pg.sql, icscf.sql, icscf.thig.cfg, icscf.xml,

pcscf.cfg, pcscf.xml, persist my.sql, persist pg.sql, scscf.cfg, scscf.xml .

• Go to directory /opt/OpenIMSCore/FHoSS/config/ and change IP address and

Domain Name in file DiameterPeerHSS.xml to our values. This file contains the

configuration for FHoSS to connect to other peers.

1 user@ubuntu# cd /opt/OpenIMSCore/FHoSS/config

2 user@ubuntu# sudo gedit DiameterPeerHSS.xml

3

4 <?xml version="1.0" encoding="UTF-8"?>

5 <!-- HSS Server config -->

6 <DiameterPeer

7 FQDN="hss.open-ims.test"

8 Realm="open-ims.test"

9 Vendor_Id="10415"

10 Product_Name="JavaDiameterPeer"

11 AcceptUnknownPeers="1"

12 DropUnknownOnDisconnect="1"

13 Tc="30"

14 Workers="4"

15 QueueLength="32"

16 >

17 <Peer FQDN="icscf.open-ims.test" Realm="open-ims.test" port="3869"

/>

18 <Peer FQDN="scscf.open-ims.test" Realm="open-ims.test" port="3870"

/>

19

20 <Acceptor port="3868" bind="127.0.0.1" />

21

91

22 <Auth id="16777216" vendor="10415"/><!-- 3GPP Cx -->

23 <Auth id="16777216" vendor="4491"/><!-- CableLabs Cx -->

24 <Auth id="16777216" vendor="13019"/><!-- ETSI/TISPAN Cx -->

25 <Auth id="16777216" vendor="0"/><!-- ETSI/TISPAN Cx -->

26 <Auth id="16777217" vendor="10415"/><!-- 3GPP Sh -->

27 <Auth id="16777221" vendor="10415"/>

28

29 </DiameterPeer>

Compile CSCFs source code

There are five main modules in the source code. Three are the CSCF functionality modules

and two are the interface modules for CSCFs to commute with each other and FHoSS.

• P-CSCF Module (Figure 45) provides many functions such as signalling firewall,

service-route verification, IPsec association and Network Address Translation.

• I-CSCF Module (Figure 46) has full Cx interface support, topology hiding and

network domain security capability.

• S-CSCF Module (Figure 47) has many features such as authentication (though

AKAv1-MD5, AKAv2-MD5 and MD5), service-router and path header support.

• CDiamterPeer (CDP) Module is the interface for CSCFs to communicate with

each other using Diameter protocol.

• IMS Service Control (ISC) Module provides the interface to communicate with

Application Server (Asterisk and auSystems).

The source codes of CSCFs can be compiled with the following commands:

1 user@ubuntu# cd /opt/OpenIMSCore/ser_ims

2 user@ubuntu# make install-libs all

Compile FHoSS source code and Create User Database

FHoSS is written completely in Java. It communicates with I-CSCF and S-CSCF though Cx

and Dx interface of CDP module. The Diameter commands are implemented upon FOKUS

own Java based Diameter stack (Figure 48). The subscription information is stored in

MySQL database and can be managed though web-pages. The following steps are used to

compile FHoSS.

92

• Find and set JAVA HOME location.

1 user@ubuntu# readlink -f /usr/bin/java | sed "s:jre/bin/java::"

2 /usr/lib/jvm/java-7-openjdk-i386/

3 user@ubuntu# export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-i386/

Figure 45. P-CSCF Module of Open Source IMS System.[4]

Figure 46. I-CSCF Module of Open Source IMS System.[4]

93

Figure 47. S-CSCF Module of Open Source IMS System.[4]

Figure 48. FHoSS Module of Open Source IMS System.[4]

• Compile FHoSS source code:

1 user@ubuntu# cd /opt/OpenIMSCore/FHoSS

2 user@ubuntu# ant compile deploy

94

• Create Databases for FHoSS and I-CSCF:

1 user@ubuntu# cd /opt/OpenIMSCore

2 user@ubuntu# mysql -u root -p < ser_ims/cfg/icscf.sql

3 user@ubuntu# mysql -u root -p < FHoSS/scripts/hss_db.sql

4 user@ubuntu# mysql -u root -p < FHoSS/scripts/userdata.sql

• Check if the database named hss db and icscf are created:

1 user@ubuntu# mysql -u root -p

2 Enter password:

3

4 mysql> show databases;

5 +--------------------+

6 | Database |

7 +--------------------+

8 | information_schema |

9 | hss_db |

10 | icscf |

11 | mysql |

12 | performance_schema |

13 +--------------------+

14 5 rows in set (0.01 sec)

The structure of hss db and icscf are shown in Appendix E.

C.5 Start IMS Components

Up to this point, all CSCFs were successfully compiled. FHoSS were compiled and databases

are created with two sample users named Alice and Bob. The following steps will help to

start each component separately.

• Copy the configuration files .cfg, .xml and script files .sh to /opt/OpenIMSCore/

1 user@ubuntu# cp ser_ims/cfg/*.cfg /opt/OpenIMSCore/

2 user@ubuntu# cp ser_ims/cfg/*.xml /opt/OpenIMSCore/

3 user@ubuntu# cp ser_ims/cfg/*.sh /opt/OpenIMSCore/

• Start CSCFs in 3 separate terminals

– Terminal 1: Start P-CSCF

1 user@ubuntu# cd /opt/OpenIMSCore/

2 user@ubuntu#./pcscf.sh

95

– Terminal 2: Start I-CSCF

1 user@ubuntu# cd /opt/OpenIMSCore/

2 user@ubuntu#./icscf.sh

– Terminal 3: Start S-CSCF

1 user@ubuntu# cd /opt/OpenIMSCore/

2 user@ubuntu#./scscf.sh

• Start HSS in a separate terminal - The original command on [2] instructs to run

FHoSS/deploy/startup.sh. But if we run this command when we are at /op-

t/OpenIMSCore/ the script will fail to start.

1 user@ubuntu# cd /opt/OpenIMSCore/

2 user@ubuntu# sudo FHoSS/deploy/startup.sh

3

4 Classpath is lib/*.jar::log4j.properties:..

5

6 Could not find the main class: de.fhg.fokus.hss.main.HSSContainer.

Program will exit.

The script tries to build the CLASSPATH which is used by JAVA to run the pro-

gram but it fails to locate the directory. The script looks into the current location for

Lib directory. Under this location, it looks for all .jar files and then reads their names

to append to the CLASSPATH . Because the current locations is /opt/OpenIM-

SCore/ , there are no Lib directory and .jar files. It fails to build the CLASS-

PATH , which leads to de.fhg.fokus.hss.main.HSSContainer class could not be

found. Thus we have to run the script in a different location.

1 user@ubuntu# cd /opt/OpenIMSCore/FHoSS/deploy/

2 user@ubuntu# ./startup.sh

3

4 Classpath is lib/xml-apis.jar:........:log4j.properties:..

5

6 Type "exit" to stop FHoSS!

• After all the components manage to start up, we can connect to the FHoSS to perform

the provisioning through address http://localhost:8080/ (Figure 49). The credential

are:

Username: hssAdmin

Password: hss

96

Figure 49. FHoSS Management Console.

After connecting to the FHoSS Management Console, we can see three main func-

tionality tabs. The User Identities tab is for IMS subscription, private and public

identity configuration. The Services tab is for Service Profiles, Application Servers,

Initial Filter Criteria. The Network Configuration tab is for Visited Networks,

Charging, Capability Sets and Preferred S-CSCF Sets.

To start IMS components easier, we create two scripts named startIMS.sh and star-

tIMS log.sh. They can start each IMS component in separate terminal tabs with logging

capability. The Appendix A explains their details and usages.

97

D IMS Bench SIPp Implementation Steps

Install Prerequisites

• Adjust the kernel Timer Frequency from 250Hz to 1000Hz. The procedure is shown

in Appendix G.

• Install GNU Scientific Library. This is required for random number generation

for the statistical distribution.

– Get the source code and compile

1 user@ubuntu# cd /opt

2 user@ubuntu# wget ftp://ftp.gnu.org/gnu/gsl/gsl-1.16.tar.gz

3 user@ubuntu# tar -xzvf gsl-1.16.tar.gz

4 user@ubuntu# cd gsl-1.16

5 user@ubuntu# ./configure

6 user@ubuntu# make

7 user@ubuntu# make install

– Add the path to the library to the /etc/ld.so.conf file

1 user@ubuntu# echo /usr/local/lib/ >>/etc/ld.so.conf

2 user@ubuntu# ldconfig

• Install menu-driven benchmark configuration tool. This is required for report

generation.

– Install Perl XML::Simple module

∗ Install expat package

1 user@ubuntu# apt-get install expat

2 user@ubuntu# apt-get install libexpat1-dev

∗ Install XML::Parser, XML::SAX::Expat and XML::Simple module.

1 user@ubuntu# perl -MCPAN -e shell

2 {reply with default answers... just select the local ftp

server}

3 cpan> install XML::Parser

4 cpan> install XML::SAX::Expat

5 cpan> install XML::Simple

6 cpan> quit

– Install Gnuplot 4.2

98

1 user@ubuntu# sudo apt-get install libgd2-xpm-dev

2 user@ubuntu# cd /opt

3 user@ubuntu# wget ftp://ftp.dante.de/pub/tex/graphics/gnuplot

/4.6.5/gnuplot-4.6.5.tar.gz

4 user@ubuntu# tar -xzvf gnuplot-4.6.5.tar.gz

5 user@ubuntu# cd gnuplot-4.6.5

6 user@ubuntu# ./configure --without-x

7 user@ubuntu# make

8 user@ubuntu# make install

• Adjust the system limits to accommodate large number of sockets. These steps must

be done as root user.

– In /etc/security/limits.conf add:

1 root@ubuntu# sudo gedit /etc/security/limits.conf

2 * soft nofile 102400

3 * hard nofile 409600

– In /etc/pam.d/login add:

1 root@ubuntu# sudo gedit /etc/pam.d/login

2 session required /lib/security/pam_limits.so

– In /etc/sysctl.conf add:

1 root@ubuntu# sudo gedit /etc/sysctl.conf

2 fs.file-max = 102400

3 fs.inode-max = 409600

– In /root/.bashrc add:

1 root@ubuntu# sudo gedit /root/.bashrc

2 ulimit -n 409600

– Reboot the workstation for the modifications to take effect.

Install IMS Bench

• Download the source code.

1 user@ubuntu# cd /opt

2 user@ubuntu# svn co https://svn.code.sf.net/p/sipp/code/sipp/branches

/ims_bench ims_bench

99

• Make sure to have both gcc and gcc++ compiler installed.

1 user@ubuntu# apt-get install gcc

2 user@ubuntu# apt-get install g++

• Edit file /opt/ims bench/rmt/RmtDefs.hpp

1 user@ubuntu# sudo gedit rmt/RmtDefs.hpp# apt-get install g++

2 include <cstddef>

• Install required packages to compile the program.

1 user@ubuntu# apt-get install libssl-dev

2 user@ubuntu# apt-get install libncurses5-dev

3 user@ubuntu# apt-get install libgsl0-dev

• Compile the program.

1 user@ubuntu# make rmtl

2 user@ubuntu# make ossl

3 user@ubuntu# make mgr

100

E Database Structure

The database structure of FHoSS and I-CSCF is shown below.

aliases_repository_data

id INT(11)

sqn INT(11)

id_implicit_set INT(11)

service_indication VARCHAR(255)

rep_data BLOB

Indexes

application_server

id INT(11)

name VARCHAR(255)

server_name VARCHAR(255)

default_handling INT(11)

service_info VARCHAR(255)

diameter_address VARCHAR(255)

rep_data_size_limit INT(11)

udr TINYINT(4)

pur TINYINT(4)

snr TINYINT(4)

udr_rep_data TINYINT(4)

udr_impu TINYINT(4)

udr_ims_user_state TINYINT(4)

udr_scscf_name TINYINT(4)

udr_ifc TINYINT(4)

udr_location TINYINT(4)

udr_user_state TINYINT(4)

udr_charging_info TINYINT(4)

udr_msisdn TINYINT(4)

udr_psi_activation TINYINT(4)

udr_dsai TINYINT(4)

udr_aliases_rep_data TINYINT(4)

pur_rep_data TINYINT(4)

pur_psi_activation TINYINT(4)

pur_dsai TINYINT(4)

pur_aliases_rep_data TINYINT(4)

snr_rep_data TINYINT(4)

snr_impu TINYINT(4)

snr_ims_user_state TINYINT(4)

snr_scscf_name TINYINT(4)

4 more...

Indexes

capabilities_set

id INT(11)

id_set INT(11)

name VARCHAR(255)

id_capability INT(11)

is_mandatory INT(11)

Indexes

capability

id INT(11)

name VARCHAR(255)

Indexes

charging_info

id INT(11)

name VARCHAR(255)

pri_ecf VARCHAR(255)

sec_ecf VARCHAR(255)

pri_ccf VARCHAR(255)

sec_ccf VARCHAR(255)

Indexes

cx_events

id INT(11)

hopbyhop BIGINT(20)

endtoend BIGINT(20)

id_impu INT(11)

id_impi INT(11)

id_implicit_set INT(11)

type TINYINT(1)

subtype TINYINT(4)

grp INT(11)

reason_info VARCHAR(255)

trials_cnt INT(11)

diameter_name VARCHAR(255)

Indexes

dsai

id INT(11)

dsai_tag VARCHAR(255)

Indexes

dsai_ifc

id INT(11)

id_dsai INT(11)

id_ifc INT(11)

Indexes
dsai_impu

id INT(11)

id_dsai INT(11)

id_impu INT(11)

dsai_value INT(11)

Indexes

ifc

id INT(11)

name VARCHAR(255)

id_application_server INT(11)

id_tp INT(11)

profile_part_ind INT(11)

Indexes

impi

id INT(11)

id_imsu INT(11)

identity VARCHAR(255)

k TINYBLOB

auth_scheme INT(11)

default_auth_scheme INT(11)

amf TINYBLOB

op TINYBLOB

sqn VARCHAR(64)

ip VARCHAR(64)

line_identifier VARCHAR(64)

zh_uicc_type INT(11)

zh_key_life_time INT(11)

zh_default_auth_scheme INT(11)

Indexes

impi_impu

id INT(11)

id_impi INT(11)

id_impu INT(11)

user_state TINYINT(4)

Indexes

impu

id INT(11)

identity VARCHAR(255)

type TINYINT(4)

barring TINYINT(4)

user_state TINYINT(4)

id_sp INT(11)

id_implicit_set INT(11)

id_charging_info INT(11)

wildcard_psi VARCHAR(255)

display_name VARCHAR(255)

psi_activation TINYINT(4)

can_register TINYINT(4)

Indexes

impu_visited_network

id INT(11)

id_impu INT(11)

id_visited_network INT(11)

Indexes

imsu

id INT(11)

name VARCHAR(255)

scscf_name VARCHAR(255)

diameter_name VARCHAR(255)

id_capabilities_set INT(11)

id_preferred_scscf_set INT(11)

Indexes

preferred_scscf_set

id INT(11)

id_set INT(11)

name VARCHAR(255)

scscf_name VARCHAR(255)

priority INT(11)

Indexes

repository_data

id INT(11)

sqn INT(11)

id_impu INT(11)

service_indication VARCHAR(255)

rep_data BLOB

Indexes

sh_notification

id INT(11)

id_impu INT(11)

id_application_server INT(11)

data_ref INT(11)

rep_data BLOB

sqn INT(11)

service_indication VARCHAR(255)

id_ifc INT(11)

server_name VARCHAR(255)

scscf_name VARCHAR(255)

reg_state INT(11)

psi_activation INT(11)

dsai_tag VARCHAR(255)

dsai_value INT(11)

hopbyhop BIGINT(20)

endtoend BIGINT(20)

grp INT(11)

Indexes

sh_subscription

id INT(11)

id_application_server INT(11)

id_impu INT(11)

data_ref INT(11)

service_indication VARCHAR(255)

dsai_tag VARCHAR(255)

server_name VARCHAR(255)

expires BIGINT(20)

Indexes

shared_ifc_set

id INT(11)

id_set INT(11)

name VARCHAR(255)

id_ifc INT(11)

priority INT(11)

Indexes

sp

id INT(11)

name VARCHAR(16)

cn_service_auth INT(11)

Indexes

sp_ifc

id INT(11)

id_sp INT(11)

id_ifc INT(11)

priority INT(11)

Indexes

sp_shared_ifc_set

id INT(11)

id_sp INT(11)

id_shared_ifc_set INT(11)

Indexes

spt

id INT(11)

id_tp INT(11)

condition_negated INT(11)

grp INT(11)

type INT(11)

requesturi VARCHAR(255)

method VARCHAR(255)

header VARCHAR(255)

header_content VARCHAR(255)

session_case INT(11)

sdp_line VARCHAR(255)

sdp_line_content VARCHAR(255)

registration_type INT(11)

Indexes

tp

id INT(11)

name VARCHAR(255)

condition_type_cnf INT(11)

Indexes

visited_network

id INT(11)

identity VARCHAR(255)

Indexes

zh_uss

id INT(11)

id_impi INT(11)

type INT(11)

flags INT(11)

naf_group VARCHAR(255)

Indexes

Figure 50. FHoSS Database Structure.

101

nds_trusted_domains

id INT(11)

trusted_domain VARCHAR(83)

Indexes

s_cscf

id INT(11)

name VARCHAR(83)

s_cscf_uri VARCHAR(83)

Indexes

s_cscf_capabilities

id INT(11)

id_s_cscf INT(11)

capability INT(11)

Indexes

Figure 51. I-CSCF Database Structure.

102

F myMONSTER Installation

• Install the dependencies

1 user@ubuntu# sudo apt-get gstreamer0.10-plugins-bad

2 user@ubuntu# sudo apt-get libgstreamer0.10-dev

• Download myMONSTER

1 user@ubuntu# wget http://www.monster-the-client.org/downloads/

download_TCS/_monster_downloads/myMONSTER-TCS_Linux32_v0_9_25_tar.

gz

2 user@ubuntu# tar -xzvf myMONSTER-TCS_Linux32_v0_9_25_tar.gz

• Launch myMONSTER

1 user@ubuntu# cd ./monster-0.9.25

2 user@ubuntu# sudo ./monster

We launch another instance with the above process. We need two clients to test the

basic communication.

Figure 52. myMONSTER Login Screen.

103

G Adjust Ubuntu Kernel Timer Frequency

• Check the current Timer Frequency

1 user@ubuntu# cat /boot/config-‘uname -r‘ | grep HZ

2

3 # CONFIG_HZ_100 is not set

4 CONFIG_HZ_250=y

5 # CONFIG_HZ_300 is not set

6 # CONFIG_HZ_1000 is not set

7 CONFIG_HZ=250

8

• Install required packages for kernel compilation.

1 user@ubuntu# su

2 user@ubuntu# apt-get update

3 user@ubuntu# apt-get install kernel-package libncurses5-dev fakeroot

wget bzip2

• Download the kernel sources.

1 user@ubuntu# cd /usr/src

2 user@ubuntu# wget https://www.kernel.org/pub/linux/kernel/v3.x/linux

-3.13.11.tar.gz

• Unpack the kernel and create a link to the kernel source directory.

1 user@ubuntu# tar -xzvf linux-3.13.11.tar.gz

2 user@ubuntu# ln -s linux-3.13.11 linux

• Adjust the kernel timer frequency.

1 user@ubuntu# cp /boot/config-‘uname -r‘ ./.config

2 user@ubuntu# make menuconfig

This brings up Kernel Configuration Menu (Figure 53). Navigate to Process

type and features, then Timer frequency. Check the frequency 1000Hz. Finally

Save and Exit the Menu.

• Build the kernel.

1 user@ubuntu# make-kpkg clean

2 user@ubuntu# fakeroot make-kpkg --initrd --append-to-version=-custom

kernel_image kernel_headers

104

Figure 53. Kernel Timer Frequency Adjustment.

After this there are two .deb files

1 # cd /usr/src

2 # ls -l

3 linux-headers-3.13.11.deb

4 linux-image-3.13.11.deb

• Install the kernel.

1 # sudo dpkg -i linux-headers-3.13.11.deb linux-image-3.13.11.deb

Restart the workstation to complete the kernel installation.

105

H Script to Generate User List

The original user gen.pl script is located in /opt/ims bench. It is modified to use with

our IMS test-bed. This script does not create users for FHoSS. It only generates a list of

usernames with few subscription information for IMS Bench SIPp.

1 #!/usr/bin/perl

2

3 if (@ARGV < 2) {

4 die("Required arguments: <start_counter> <nbUsers>");

5 }

6

7 $start = $ARGV[0];

8 $nbUsers = $ARGV[1];

9 $domain = "open-ims.test";

10 $realm = "open-ims.test";

11 $user_prefix = "subs";

12 $usim_prefix = "subs";

13 $initial_pool = 0;

14

15 for($i=$start; $i<($start+$nbUsers); ++$i) {

16 printf("%d;%s%06d;%s;%s%06d;%s;%s%06d;data%d_1\n", $initial_pool,

$user_prefix, $i, $domain, $usim_prefix, $i, $realm, $user_prefix, $i, $i);

17 }

How to use the script?

1 user@ubuntu# ./user_gen.pl 1 1000 > ims_users_1.inf

A file named ims users 1.inf with user info are created with the content

1 0;subs000001;open-ims.test;subs000001;open-ims.test;subs000001;data1_1

2 0;subs000002;open-ims.test;subs000002;open-ims.test;subs000002;data2_1

3 0;subs000003;open-ims.test;subs000003;open-ims.test;subs000003;data3_1

4 0;subs000004;open-ims.test;subs000004;open-ims.test;subs000004;data4_1

5 0;subs000005;open-ims.test;subs000005;open-ims.test;subs000005;data5_1

6

It has 7 data columns separated by semicolon.

• Column 1 → User Pool

• Column 2 → User Public ID

106

• Column 3 → Domain

• Column 4 → User Private ID

• Column 5 → Realm

• Column 6 → Password

• Column 7 → Extra Data (not use in our case)

107

I XML Configuration For SIPp Manager

The file manager.xml is the configuration specifying what scenarios the test case uses.

1 <?xml version="1.0" encoding="ISO-8859-1" ?>

2 <configuration>

3

4 <!-- Test System Parameters -->

5 <param name="number_test_systems" value="0"/>

6 <param name="prep_offset" value="2000"/>

7 <param name="rand_seed" value="0"/>

8 <param name="report" value="1"/>

9 <param name="log" value="1"/>

10 <param name="transient_time" value="1"/>

11 <param name="max_time_offset" value="250"/>

12

13 <!-- Scenario Parameters -->

14 <scen_param name="HoldTime" value="30000"/>

15 <scen_param name="RingTime" value="5000"/>

16 <scen_param name="RegistrationExpire" value="1000000"/>

17

18 <!-- List all the scenario that needs to be loaded -->

19 <param name="scenario_path" value="scen"/>

20 <scenario name="ims_uac" max_ihs="0.1"/>

21 <scenario name="ims_uas"/>

22 <scenario name="ims_reg" max_ihs="0.1"/>

23 <scenario name="ims_dereg" max_ihs="0.1"/>

24 <scenario name="ims_rereg" max_ihs="0.1"/>

25 <scenario name="ims_msgc" max_ihs="0.1"/>

26 <scenario name="ims_msgs"/>

27

28 <!-- Pre-Registration phase - Default is "single step" -->

29 <run cps="100" max_calls="1600" distribution="constant" sync_mode="off"

use_scen_max_ihs="no" max_global_ihs="1" stats="1000">

30 <scenario name="ims_reg" ratio="100"/>

31 </run>

32

33 <!-- Sleep -->

34 <run cps="0" duration="3"/>

35

36 <!-- Stir phase to warm up the SUT -->

37 <run cps="40" duration="75" step_increase="20" num_steps="3" distribution="

poisson" use_scen_max_ihs="no" max_global_ihs="1" stats="2000" report="no">

108

38 <scenario name="ims_reg" ratio="2.5"/>

39 <scenario name="ims_uac" ratio="50"/>

40 <scenario name="ims_dereg" ratio="2.5"/>

41 <scenario name="ims_msgc" ratio="30"/>

42 <scenario name="ims_rereg" ratio="15"/>

43 </run>

44

45 <!-- Actual benchmark phase -->

46 <run cps="100" duration="60" step_increase="10" num_steps="0" distribution="

poisson" stats="2000">

47 </run>

48

49 <!-- Done... Sleep for some more time -->

50 <run cps="0" duration="3"/>

51

52 </configuration>

What do the parameter mean?

Test System Parameters

number test systems Manager waits until this many connecting instances to start

generating load. 0 means any.

prep offset Time (in seconds) allocated for the preparation portion.

rand seed Seed value that is used for number generator. 0 means ran-

dom.

report Use to generate report. 1 = generate; 0 = do not generate.

log Use to generate Manager logging (manager.log file). 1 =

enable; 0 = disable.

transient time Time (in seconds) that HIS is ignored.

max time offset Maximum offset (in microseconds) allowed between each TS

and the Manager.

Scenario Parameters

We define the value of global generic parameters so that the scenarios can refer to. For

example, in a pause command:

109

1 <pause poisson="true" mean="%RingTime"/>

Scenario List

scenario path Location of scenario files .xml.

max ihs Maximum percentage of IHS allowed for this scenario (in client side).

The scenario names must match with files names (.xml) in the scenario file folder

Pre-Registration Phase

This phase registers some users to use for the later phases.

cps Call rate. Use 0 for Pause phase.

max calls Number of call to generate for this step.

distribution Distribution type: “constant” or “poisson”.

use scen max ihs Specify how to use the IHS values.

• “yes” = use the scenarios max ihs value defined in CON-

FIGURATION section.

• “no” = use the max global ihs that is defined following.

max global ihs Maximum allowed percentage of IHS for the run.

stats Interval (in milliseconds)that the Manager queries SIPp instances

for information to display.

ratio A run includes many scenarios. Each scenario has a ratio of

occur.

• The total of the ratio of all scenarios must be 100.

• If one scenario is included. It stays for the following runs.

Only its ratio in the following runs can be changes.

Sleep

The test case will be paused for some times.

110

Stir Phase

This phase do a warmup before running the real test.

duration Duration a a single step of a run.

step increase The increase load (call rate) when moving to a next step of a run.

num steps How many steps a run includes.

report Specify what to include in the report.

• “yes” = include this step to the report.

• “no” = not include this step to the report.

Actual Benchmark Phase

Even though the scenarios are not defined, this phase will run with the scenarios (with

ratio) specified in the Stir Phase.

111

J Scripts to Add Users to FHoSS

Script to Add One User

The original script to add a user is located at /opt/OpenIMSCore/ser ims/cfg/add-

imscore-user newdb.sh. We modify the script with the following changes such that we

can reuse it to add multiple users.

1

2

3 # Add MySQL password so that the process won’t ask for every DB transaction

4 DBPASS=123456

5

6

7

8 # Add user subscription information

9 CREATE_SCRIPT_TEMPLATE="

10

11

12 insert into hss_db.imsu(

13 name,

14 scscf_name,

15 diameter_name,

16 id_capabilities_set,

17 id_preferred_scscf_set)

18 values (’<USER>’,

19 ’’,

20 ’’,

21 1,

22 1);

23

24 insert into hss_db.impi(

25 identity,

26 id_imsu,

27 k,

28 auth_scheme,

29 default_auth_scheme,

30 amf,

31 op)

32 values(’$IMPI’,

33 (select id from hss_db.imsu where hss_db.imsu.name=’<USER>’),

34 ’$PASSWORD’,

35 127,

36 1,

112

37 ’\0\0’,

38 ’\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0’);

39

40 insert into hss_db.impu(identity,id_sp,id_charging_info) values (’$IMPU’, (

select id from hss_db.sp order by id limit 1), 1);

41 update hss_db.impu set id_implicit_set=id where hss_db.impu.identity=’$IMPU’;

42

43 insert into hss_db.impi_impu(id_impi,id_impu) values ((select id from hss_db.

impi where hss_db.impi.identity=’$IMPI’), (select id from hss_db.impu where

hss_db.impu.identity=’$IMPU’));

44

45 insert into hss_db.impu_visited_network(id_impu, id_visited_network) values((

select id from hss_db.impu where hss_db.impu.identity=’$IMPU’), (select id

from hss_db.visited_network where hss_db.visited_network.identity=’$REALM’))

;

46 "

47

48 CREATE_TELURI_IMPU_TEMPLATE="

49

50 insert into hss_db.impu(identity,id_sp,id_charging_info) values (’$TELURI’, (

select id from hss_db.sp order by id limit 1), 1);

51 select @id:=id from hss_db.impu where hss_db.impu.identity=’$IMPU’;

52 update hss_db.impu set id_implicit_set=@id where hss_db.impu.identity=’$TELURI’;

53

54 insert into hss_db.impi_impu(id_impi,id_impu) values ((select id from hss_db.

impi where hss_db.impi.identity=’$IMPI’), (select id from hss_db.impu where

hss_db.impu.identity=’$TELURI’));

55

56 insert into hss_db.impu_visited_network(id_impu, id_visited_network) values((

select id from hss_db.impu where hss_db.impu.identity=’$TELURI’), (select id

from hss_db.visited_network where hss_db.visited_network.identity=’$REALM’)

);

57 "

58

59 DELETE_SCRIPT_TEMPLATE="

60 delete from hss_db.impu_visited_network where id_impu = (select id from hss_db.

impu where hss_db.impu.identity=’$IMPU’);

61 delete from hss_db.impi_impu where id_impi = (select id from hss_db.impi where

hss_db.impi.identity=’$IMPI’);

62 delete from hss_db.impu where identity = ’$IMPU’;

63 delete from hss_db.imsu where name = ’<USER>’;

64

65

66

113

67 # The DB transaction will not ask for password anymore.

68 if [$OPTION_ADD -eq 1]; then

69 echo Apply $CREATE_SCRIPT as user $DBUSER...

70 mysql -u$DBUSER -p$DBPASS < $CREATE_SCRIPT > /dev/null

71 EXIT_CODE=$?

72 SCRIPT=$CREATE_SCRIPT

73 elif [$OPTION_DELETE -eq 1]; then

74 echo Apply $DELETE_SCRIPT as user $DBUSER...

75 mysql -u$DBUSER -p$DBPASS < $DELETE_SCRIPT

76 EXIT_CODE=$?

77 SCRIPT=$DELETE_SCRIPT

78 fi

79

80

How to use the script?

1 user@ubuntu# ./add-imscore-user_newdb.sh -u <username> [-a|-d]

where

-u Username.

-p Password. If not specified, it is set to be the same as Username.

-r Realm. If not specified, it is set to be open-ims.test

-a Add User.

-d Delete User.

-c Clean the .sql file which is used for adding/deleting user.

When the script runs, it creates two SQL scripts named add-user-<Username>.sql

and delete-user-<Username>.sql. Then according to the specified option -a or -d, it

will run the add or delete script only. If -c option is specified, the SQL scripts will be

deleted after running.

Script to Add Multiples User

We created a script named multiusers.sh to add a batch of users into the database. It is

based on the original script /opt/OpenIMSCore/ser ims/cfg/add-imscore-user new

db.sh. We have to put these scripts in the same directory.

114

1 #!/bin/bash

2

3 Usage()

4 {

5 echo "ERROR: Invalid parameters"

6 echo "add-multiuser.sh -s <start_index> -e <stop_index> [-a|-d]"

7 echo " -s <start_index>: User Index to start."

8 echo " -e <stop_index>: User Index to end."

9 echo " -a: Add users."

10 echo " -d: Delete users."

11 exit 1

12 }

13

14 ADD=0

15 DELETE=0

16 USER_PREFIX="subs"

17

18 while getopts s:e:ad?:? option;

19 do

20 case $option in

21 s) START=$OPTARG;;

22 e) END=$OPTARG;;

23 a) ADD=1;;

24 d) DELETE=1;;

25 esac

26 done

27

28 # Check if there are START and END index.

29 [-z "$START"] || [-z "$END"] && Usage;

30

31 # Check if ONLY ADD or DELETE is enable.

32 [$ADD -eq 1] && [$DELETE -eq 1] && Usage;

33

34 if [$ADD -eq 1]; then

35 while [$START -le $END]

36 do

37 USER_NAME=$(printf %s%06d $USER_PREFIX $START);

38 ./add-imscore-user_newdb.sh -u $USER_NAME -a -c

39 ((START++))

40 done;

41

42 elif [$DELETE -eq 1]; then

43 while [$START -le $END]

115

44 do

45 USER_NAME=$(printf %s%06d $USER_PREFIX $START);

46 ./add-imscore-user_newdb.sh -u $USER_NAME -d -c

47 ((START++))

48 done;

49 fi

How to use the script?

1 user@ubuntu# ./multiuser.sh -s <start_index> -e <start_index> [-a|-d]

where

-s Start index of Username.

-e End index of Username.

-a Add User.

-d Delete User.

Example

• This will add 900 users (1000-100) from the name subs000100 to subs001000.

1 user@ubuntu## ./multiuser.sh -s 100 -e 1000 -a

• This will delete 200 user (400-200) from the name subs000200 to subs000400.

1 user@ubuntu## ./multiuser.sh -s 200 -e 400 -a

116

K Test-bed Specific Configurations and Scenarios

The following configuration (manager reg.xml) shows how we configure the SIPp Man-

ager for the registration procedure.

1 <?xml version="1.0" encoding="ISO-8859-1" ?>

2

3 <configuration>

4 <!-- Test System Parameters -->

5 <param name="number_test_systems" value="0"/>

6 <param name="prep_offset" value="2000"/>

7 <param name="rand_seed" value="0"/>

8 <param name="report" value="1"/>

9 <param name="log" value="1"/>

10 <param name="transient_time" value="1"/>

11

12 <!-- Scenario Parameters -->

13 <scen_param name="HoldTime" value="30000"/>

14 <scen_param name="RingTime" value="5000"/>

15 <scen_param name="RegistrationExpire" value="1000000"/>

16

17 <!-- Registration Scenario -->

18 <param name="scenario_path" value="scen"/>

19 <scenario name="test_reg" max_ihs="0.1"/>

20

21 </configuration>

22

23 <!-- Actual Running -->

24 <run cps="30" duration="60" step_increase="10" num_steps="0" distribution="

poisson" use_scen_max_ihs="no" max_global_ihs="1" stats="2000">

25 <scenario name="test_reg" ratio="100"/>

26 </run>

117

The registration scenario (test reg.xml) used for our SIPp Instance are modified from

the sample registration scenario provided by IMS Bench SIPp.

1 <?xml version="1.0" encoding="ISO-8859-1" ?>

2 <!DOCTYPE scenario SYSTEM "sipp.dtd">

3

4 <scenario name="test_reg" on_unexpected="9" default_behavior="false">

5 <info>

6 <metric ref="PX_TRT-REG1" rtd="1" max="2000"/>

7 <metric ref="PX_TRT-REG2" rtd="2" max="2000"/>

8 </info>

9 <!-- *** Pick Users to Testing *** -->

10 <nop>

11 <action>

12 <assign_user pool="0" scheme="rand_uni"/>

13 <move_user pool="1"/>

14 </action>

15 </nop>

16

17 <!-- *** Start Timer *** -->

18 <sync crlf="true">

19 <action>

20 <exec int_cmd="set_start_time"/>

21 </action>

22 </sync>

23

24 <!-- *** STEP 3 *** -->

25 <send retrans="500" start_rtd="1">

26 <![CDATA[

27 REGISTER sip:[field1] SIP/2.0

28 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]

29 From: "[field0]" <sip:[field0]@[field1]>;tag=[call_number]

30 To: "[field0]" <sip:[field0]@[field1]>

31 Call-ID: [call_id]

32 CSeq: 1 REGISTER

33 Contact: <sip:[field0]@[local_ip]:[local_port]>;expires=[%

RegistrationExpire]

34 Expires: [%RegistrationExpire]

35 Content-Length: 0

36 Authorization: Digest username="[field2]@[field3]", realm="[field3]"

37 Supported: path

38]]>

39 </send>

118

40

41 <recv response="401" auth="true" auth_assign_to="u2" rtd="1">

42 </recv>

43

44 <send retrans="500" start_rtd="2">

45 <![CDATA[

46 REGISTER sip:[field1] SIP/2.0

47 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]

48 From: "[field0]" <sip:[field0]@[field1]>;tag=[call_number]

49 To: "[field0]" <sip:[field0]@[field1]>

50 Call-ID: [call_id]

51 CSeq: 2 REGISTER

52 Contact: <sip:[field0]@[local_ip]:[local_port]>;expires=[%

RegistrationExpire]

53 Expires: [%RegistrationExpire]

54 Content-Length: 0

55 [authentication username=[field2]@[field3] password=[field4]]

56 Supported: path

57]]>

58 </send>

59

60 <recv response="200" rtd="2" crlf="true" next="10">

61 <action>

62 <ereg regexp=".*" search_in="hdr" header="Service-Route:" check_it="true"

assign_to="u1" />

63 <move_user pool="2"/>

64 </action>

65 </recv>

66

67 <!-- *** If testting fails, jump here *** -->

68 <label id="9"/>

69

70 <nop>

71 <action>

72 <move_user pool="0"/>

73 </action>

74 </nop>

75

76 <label id="10"/>

77

78 <!-- *** Scale to display timer results *** -->

79 <ResponseTimeRepartition value="10, 20, 30, 40, 50, 100, 150, 200"/>

80 <CallLengthRepartition value="10, 50, 100, 500, 1000, 5000, 10000"/>

81 </scenario>

119

A few important concepts for IMS Bench SIPp are:

• It reserves users from the initial pool (by select users from the pool and move them

to other pool).

• It sends a SIP message (<send>...</send>) with the timer on (start rtd=“...”)

• It receives a SIP message (<recv>...</recv>) with timer off (rtd=“...”). The

received SIP message can be either optional (<recv ... optional=“true”>) or

must (no optional field). An optional message means that the SIPp instance does not

care about this message.

• The trip time is calculated and store in the RTD variable.

• SIPp instances communicate with each other using non-SIP message: they send mes-

sages by (<sendRmt>...</sendRmt>) and receive messages by (<recvRmt>...

</recvRmt>). These are used to exchange timing info, user reservations and espe-

cially important in the case of client and server scenario (one user calls another user).

The parameter of <sendRmt> will trigger the correct scenario for the server side.

120

L How to Collect IMS Bench SIPp Results

Gathering the Results

After running the test cases, the SIPp manager generates a report file report.xml con-

taining start time, scenario attempt rates, etc. Then we copy this file to directory /op-

t/ims bench/scripts. Each SIPp Instance dumps the results locally where it is running

(if SIPp instances run on many different machines, the results are located on many different

physical machines). They are .csv files: sipp TS<ts id> scen.csv and sipp TS<ts id> retr

ans.csv. There are 2 ways to collect them:

• Manually collect all of CSV files and put them into directory /opt/ims bench/scripts

of the Manager. Then merge the results.

1 user@ubuntu# cd /opt/ims_bench/scripts

2 user@ubuntu# sudo ./getResults.pl -merge

3 user@ubuntu# sudo ./getResults.pl -clean

This generates sipp.csv and sipp retrans.csv. We clean the partial result files after

this operation.

• Automatically collect and merge the result.

1 user@ubuntu# cd /opt/ims_bench/scripts

2 user@ubuntu# sudo ./getResults.pl

This reads the manager report file to learn the IP addresses of the test systems and

the PID or TS ID of their SIPp Instances. Then it collects the corresponding files

using SCP and merges them to make the final reports: sipp.csv and sipp retrans.csv.

Generating Report

• Copy all the scenarios for our test case into /opt/ims bench/scripts.

• Generate the reports.

1 user@ubuntu# sudo ./doReport.pl

This generates report.mht, report.html (including many images .PNG) and data file

.DAT. The file report.mht (which includes everything) can be opened with Internet

Explorer. The file report.html (with its images) can be open with any browsers.

121

M Matlab Code to Calculate Arrival Rate

The following Matlab code named ims eval.m is used to calculate the arrival rate for our

IMS test-bed.

1 % External Arrival Rate

2 lambda0 = 30;

3

4 % Transition Probability from External

5 Q = zeros(1,15);

6 Q(1,1) = 1;

7

8 % Identity Martix

9 I = eye(15);

10

11 % Transtion Probability Matrix

12 theta = zeros(15);

13 for i = 1:10

14 theta(i,i+1) = 1;

15 end

16 theta(11,12) = 0.5;

17 theta(11,14) = 0.5;

18 theta(12,13) = 1;

19 theta(14,15) = 1;

20

21 % Arrival rate matrix

22 lambda = mrdivide(lambda0*Q,I-theta);

23 % Node P-CSCF

24 lambda_P = lambda(1) + lambda(13) + lambda(15);

25 % Node I-CSCF

26 lambda_I = lambda(2) + lambda(6) + lambda(12) + lambda(14);

27 % Node S-CSCF

28 lambda_S = lambda(7) + lambda(11);

29 % Node FHoSS

30 lambda_F = lambda(3) + lambda(5) + lambda(8) + lambda(10);

31 % Node MySQL

32 lambda_MySQL = lambda(4) + lambda(9);

122

N Matlab Code to Calculate Saturation Points

The following Matlab code named servtime 1 machine.m is used to get the saturation

point at four IMS node components.

1 clc;

2 clear;

3 close all;

4

5 %################### P-CSCF ####################%

6 lambda = [5 10 15 20 25 30];

7 lambda_P = [0.0066 0.0132 0.0199 0.0265 0.0331 0.0397];

8 mu_P = [0.0241 0.0286 0.0324 0.0365 0.0408 0.0447];

9

10 %fit linear polynomial

11 p1 = polyfit(lambda,lambda_P,1); display(p1);

12 p2 = polyfit(lambda,mu_P,1);

13

14 %calculate intersection

15 x_intersect = fzero(@(x) polyval(p1-p2,x),3);

16 y_intersect = polyval(p1,x_intersect);

17

18 subplot(2,2,1);

19 line(lambda,lambda_P);

20 hold on;

21 line(lambda,mu_P,’LineStyle’,’:’);

22 legend(’\lambda_P’,’\mu_P’);

23 plot(x_intersect,y_intersect,’r*’)

24 xlabel(’\lambda’);

25 ylabel(’sˆ-ˆ1’);

26 title(’P-CSCF’);

27

28 %################### I-CSCF ####################%

29 lambda = [5 10 15 20 25 30];

30 lambda_I = [0.0033 0.0066 0.0099 0.0132 0.0165 0.0198];

31 mu_I = [0.0167 0.0196 0.0221 0.0243 0.0265 0.0287];

32

33 %fit linear polynomial

34 p1 = polyfit(lambda,lambda_I,1); display(p1);

35 p2 = polyfit(lambda,mu_I,1);

36

37 %calculate intersection

38 x_intersect = fzero(@(x) polyval(p1-p2,x),3);

123

39 y_intersect = polyval(p1,x_intersect);

40

41 subplot(2,2,2);

42 line(lambda,lambda_I);

43 hold on;

44 line(lambda,mu_I,’LineStyle’,’:’);

45 legend(’\lambda_I’,’\mu_I’);

46 plot(x_intersect,y_intersect,’r*’)

47 xlabel(’\lambda’);

48 ylabel(’sˆ-ˆ1’);

49 title(’I-CSCF’);

50

51 %################### S-CSCF ####################%

52 lambda = [5 10 15 20 25 30];

53 lambda_S = [0.0115 0.0231 0.0346 0.0461 0.0577 0.0692];

54 mu_S = [0.0378 0.0437 0.0517 0.0584 0.0642 0.0689];

55

56 %fit linear polynomial

57 p1 = polyfit(lambda,lambda_S,1); display(p1);

58 p2 = polyfit(lambda,mu_S,1);

59

60 %calculate intersection

61 x_intersect = fzero(@(x) polyval(p1-p2,x),3);

62 y_intersect = polyval(p1,x_intersect);

63

64 subplot(2,2,3);

65 line(lambda,lambda_S);

66 hold on;

67 line(lambda,mu_S,’LineStyle’,’:’);

68 legend(’\lambda_S’,’\mu_S’);

69 plot(x_intersect,y_intersect,’r*’)

70 xlabel(’\lambda’);

71 ylabel(’sˆ-ˆ1’);

72 title(’S-CSCF’);

73

74 %################### FHoSS ####################%

75 lambda = [5 10 15 20 25 30];

76 lambda_F = [0.0030 0.0059 0.0089 0.0119 0.0148 0.0178];

77 mu_F = [0.0146 0.0177 0.0200 0.0219 0.0236 0.0254];

78

79 %fit linear polynomial

80 p1 = polyfit(lambda,lambda_F,1); display(p1);

81 p2 = polyfit(lambda,mu_F,1);

82

124

83 %calculate intersection

84 x_intersect = fzero(@(x) polyval(p1-p2,x),3);

85 y_intersect = polyval(p1,x_intersect);

86

87 subplot(2,2,4);

88 line(lambda,lambda_F);

89 hold on;

90 line(lambda,mu_F,’LineStyle’,’:’);

91 legend(’\lambda_F’,’\mu_F’);

92 plot(x_intersect,y_intersect,’r*’)

93 xlabel(’\lambda’);

94 ylabel(’sˆ-ˆ1’);

95 title(’FHoSS’);

125

O Matlab Code to Calculate CPU Utilization

The following Matlab code named cpu.m is used to get the CPU utilization for four IMS

node components.

1 clc;

2 clear;

3 close all;

4

5 % Component Utilization

6 lambda = [5 10 15 20 25 30 35 40];

7 U_P = [4.98 9.87 14.76 19.94 24.73 29.13 34.30 39.84];

8 U_S = [5.67 11.23 16.38 22.69 27.83 33.36 38.46 44.92];

9 U_I = [3.24 6.58 9.72 12.76 16.60 19.94 22.68 25.72];

10 U_F = [2.66 5.62 8.28 11.44 13.8 16.46 19.32 22.38];

11

12 % Fit linear polynomial

13 m_P = polyfit(lambda,U_P,1);

14 m_S = polyfit(lambda,U_S,1);

15 m_I = polyfit(lambda,U_I,1);

16 m_F = polyfit(lambda,U_F,1);

17

18 hold on;

19 line(lambda,U_P,’LineStyle’,’-’,’Color’,’r’);

20 line(lambda,U_S,’LineStyle’,’--’,’Color’,’g’);

21 line(lambda,U_I,’LineStyle’,’:’,’Color’,’b’);

22 line(lambda,U_F,’LineStyle’,’-.’,’Color’,’m’);

23 legend(’P-CSCF’,’S-CSCF’,’I-CSCF’,’F-CSCF’);

24 xlabel(’\lambda’);

25 ylabel(’%CPU’);

126

P Matlab Code to Calculate Confidence Interval

The following Matlab code named confidence interval.m is used to calculate the confi-

dence interval of the recorded serving time at the IMS nodes. The given code is applied for

P-CSCF only but we can change the input data for the appropriate IMS nodes.

1 clc;

2 clear all;

3

4 % The data

5 y = [39.198 44.691 43.986 46.326 43.207];

6 % y = [38.644 39.124 40.227 39.782 40.728];

7 % y = [36.124 36.312 36.870 36.295 36.742];

8 % y = [32.546 32.129 32.476 32.842 32.617];

9

10 % The average and Standard deviation

11 ybar = mean(y);

12 s = std(y);

13

14 % The Confidence Interval

15 ci = 0.98;

16 alpha = 1 - ci;

17

18 n = length (y);

19 T_multi = tinv(1-alpha/2, n-1);

20 ci_range = T_multi*s/sqrt(n);

21

22 sprintf(’The confidence interval is between %1.3f and %1.3f’, ybar - ci_range,

ybar + ci_range)

127

References

[1] L. Nagy, J. Hosek, P. Vajsar, and V. Novotny, “Impact of signalling load on response

times for signalling over IMS core,” in Computer Science and Information Systems

(FedCSIS), 2013 Federated Conference on, pp. 663–666, IEEE, 2013.

[2] “Open Source IMS Core System.” http://www.openimscore.org/.

[3] “IMS Bench SIPp.” http://sipp.sourceforge.net/ims bench/.

[4] “Open IMS Playround.” http://www.fokus.fraunhofer.de.

[5] M. Handley and V. Jacobson, “RFC 2327,” SDP: session description protocol, vol. 10,

1998.

[6] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler, “RFC 3261: SIP: Session Initiation Protocol,” 2003.

[7] “SingTel and Ericsson unveil worlds first nationwide full featured voice over

LTE.” http://www.ericsson.com/news/140521-singtel-and-ericsson-unveil-worlds-first-

nationwide-full-featured-voice-over-lte.

[8] “3GPP Features and Study Items.” http://www.3gpp.org/DynaReport/Feature-

ListFrameSet.htm.

[9] IP Multimedia Subsystem (IMS); Stage 2, 12 2013. TS 23.228 version 11.10.0 Release

11.

[10] P. Faltstrom, “RFC 2916 - E. 164 number and DNS,” 2000.

[11] B. Aboba and M. Beadles, “RFC 2486: The Network Access Identifier,” Network

Working Group, 1999.

[12] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko, “RFC 3588-Diameter

Base Protocol,” Network Working Group, p. 48, 2003.

128

[13] L. Kleinrock, “Queueing systems. volume 1: Theory,” 1975.

[14] “IMS/NGN Performance Benchmark, Technical Standard,” ETSI TS, vol. 186, no. 008,

2012.

[15] G. Din, R. Petre, and I. Schieferdecker, “A Workload Model for Benchmarking IMS

Core Networks,” in GLOBECOM, pp. 2623–2627, 2007.

[16] R. Herpertz and J. M. E. Carlin, “A Performance Benchmark of a Multimedia Ser-

vice Delivery Framework,” in Computer Science (ENC), 2009 Mexican International

Conference on, pp. 137–141, IEEE, 2009.

[17] D. Thißen, J. M. E. Carĺın, and R. Herpertz, “Evaluating the Performance of an

IMS/NGN Deployment,” in GI Jahrestagung, pp. 2561–2573, 2009.

[18] W. A. Aziz, S. H. El-Ramly, and M. M. Ibrahim, “IP–Multimedia Subsystem (IMS)

performance evaluation and benchmarking,” in Computational Technologies in Elec-

trical and Electronics Engineering (SIBIRCON), 2010 IEEE Region 8 International

Conference on, pp. 209–214, IEEE, 2010.

[19] O. University, “Protos security testing of protocol implementations.”

https://www.ee.oulu.fi/research/ouspg/PROTOS Test-Suite c07-sip.

[20] S. Pandey, V. Jain, D. Das, V. Planat, and R. Periannan, “Performance study of

IMS signaling plane,” in IP Multimedia Subsystem Architecture and Applications, 2007

International Conference on, pp. 1–5, IEEE, 2007.

[21] L. Nagy, J. Tombal, and V. Novotny, “Proposal of a queueing model for simulation of

advanced telecommunication services over IMS architecture,” in Telecommunications

and Signal Processing (TSP), 2013 36th International Conference on, pp. 326–330,

IEEE, 2013.

[22] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open, closed, and mixed

networks of queues with different classes of customers,” Journal of the ACM (JACM),

vol. 22, no. 2, pp. 248–260, 1975.

[23] “SIP Express Router.” http://www.iptel.org/ser/features/.

[24] “myMONSTER SIP client.” http://www.monster-the-client.org/.

[25] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing networks and Markov

chains: modeling and performance evaluation with computer science applications. John

Wiley & Sons, 2006.

129

[26] “BIND Manual Pages.” http://www.bind9.net/manuals.

130

