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Abstract 
 

Linguistic Approaches for Early Measurement of Functional Size from 
Software Requirements 
 
H M Ishrar Hussain, Ph.D. 
Concordia University, 2014 
 

The importance of early effort estimation, resource allocation and overall quality control in a 

software project has led the industry to formulate several functional size measurement (FSM) 

methods that are based on the knowledge gathered from software requirements documents. 

The main objective of this research is to develop a comprehensive methodology to facilitate 

and automate early measurement of a software’s functional size from its requirements 

document written in unrestricted natural language. For the purpose of this research, we have 

chosen to use the FSM method developed by the Common Software Measurement 

International Consortium (COSMIC) and adopted as an international standard by the 

International Standardization Organization (ISO). This thesis presents a methodology to 

measure the COSMIC size objectively from various textual forms of functional requirements 

and also builds conceptual measurement models to establish traceability links between the 

output measurements and the input requirements. Our research investigates the feasibility of 

automating every major phase of this methodology with natural language processing and 

machine learning approaches.  The thesis provides a step-by-step validation and 

demonstration of the implementation of this innovative methodology. It describes the details 

of empirical experiments conducted to validate the methodology with practical samples of 

textual requirements collected from both the industry and academia. Analysis of the results 

show that each phase of our methodology can successfully be automated and, in most cases, 

leads to an accurate measurement of functional size. 

Keywords 

Functional Size Measurement, Software Requirements Specification, Effort Estimation, 

Natural Language Processing, Text Mining. 
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Chapter 1 
 

Introduction 
 
 

“Adding manpower to a late software project makes it later.” 
— Frederick P. Brooks, Jr. 

1.1 Introduction 
Functional size is a fundamental characteristic of a software that indicates how big it is in 

terms of the amount of business level functionalities it provides. The size information can be 

used to perform various quality analyses about a software. However, functional size is 

primarily used to determine the development effort of the software, as the required effort to 

develop a software cannot be estimated without knowledge of its size. This thesis attempts to 

solve the problem of determining the functional size objectively from textual requirements. 

Today’s software industry produces highly complex systems on competitive budget and 

schedule. Every commercial software project, therefore, begins with the step of determining 

the size of the software and its related effort, before starting the development process. 

However, a meta-study performed by (Molkken & Jørgensen, 2003) on 10 different surveys, 

shows that most (60-80%) of the industrial software projects face inevitable overruns in both 

the budget and/or the schedule because of inaccuracy in software effort estimation. The 

recent CHAOS manifesto, published by The Standish Group, shows an overall increase in the 

failure rate of software projects in the year 2012, with overruns in the budget and/or schedule 

still being a primary problem (The Standish Group, 2013). This shows that the task of effort 

estimation is very difficult to do accurately at the early stages of development. The reason is 

that the total effort depends on parameters, e.g. the software size, that cannot be objectively 

measured until later in the development process. This leads to the common phenomenon 

known as the “Cone of uncertainty”, shown in Figure 1, as presented in (McConnell, 2006), 
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that shows that the estimated effort is more likely to vary by a large extent at an early stage of 

development. 

 
Figure 1: Cone of Uncertainty (McConnell, 2006) 

 

To minimise costly errors in effort estimation, the industry needs for the size of software to 

be estimated effectively at an early development phase. Measuring the physical size of 

software, in terms of its Source Lines Of Code (SLOC), for example, can only be objectively 

possible after starting its development work. Functional size, on the other hand, indicates the 

logical size information about a software that can be measured before starting the 

development work by counting the units of functionalities that the software should provide 

(Albrecht & Gaffney, 1983). This functional size can then be used to estimate different 

aspects of the software project, including the effort required to develop the software. The 

software requirements document, one of the earliest deliverables produced in the software 

development life-cycle, usually holds enough details about the software for the experts to use 

in predicting the functional size of the software and its related development effort. A typical 

workflow of measuring functional size and estimating effort from textual software 

requirements is shown in Figure 2. 
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Figure 2: Workflow of Early Estimation of Effort from Software Requirements 

Functional Size Measurement (FSM) standards, e.g. IFPUG (ISO/IEC 20926, 2003), Mark II 

(ISO/IEC 20968, 2002), NESMA (ISO/IEC 24570, 2005), FiSMA (ISO/IEC 29881, 2010) 

and COSMIC (ISO/IEC 19761, 2011), provide formal ISO-certified ways of measuring the 

functional size of the software. However, the available FSM methods do not provide specific 

guidelines for extracting the size information from the initial and informally written textual 

software requirements. The information about a software’s functional size is encoded in its 

requirements document and an expert needs to read and decode it using his/her experience 

gained over time through trial-and-error-like manual processes. Hence, none of the FSM 

methods can be carried out early without waiting for the requirements to be highly formalized 

or without the costly, yet subjective, insights of expert measurers. 

The FSM methods measure the functional size of a software by first identifying some of its 

conceptual artifacts that are referred to as the Base Functional Components (BFC) (ISO/IEC 

14143-1, 1998). Each of these artifacts represents an elementary unit of a functional 

requirement, the types of which are to be aggregated and counted in a way defined by the 

FSM method in order to measure the size of the software. COSMIC1 is an FSM method that 

claims to be objective in counting the types of BFCs (ISO/IEC 19761, 2011). COSMIC's 

method of measurement is also demonstrated to be compatible with the requirements that are 

strictly formalized and well-decomposed. For example, the work of Condori-Fernàndez, 

Abrahão, & Pastor (Condori-Fernàndez, Abrahão, & Pastor, 2007) showed that all modeling 

artifacts of COSMIC can be mapped to UML-based conceptual modeling artifacts that are 

extracted manually by human experts from software requirements documents. 

                                                 
1 COSMIC is named after its developer organization COmmon Software Measurement International 
Consortium. 
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However, during the early phases of software development, software requirements are 

informally produced and documented in textual form in plain natural language without any 

formalization. Natural language textual requirements also inherently contain different 

requirements defects (Meyer, 1985; IEEE, 1998). Thus, the conceptual modeling artifacts 

that are required to be identified during functional size measurement are not clearly visible to 

the measurers when using textual requirements without formalization. This makes the task of 

functional size measurement, even following the COSMIC standard, rather subjective and 

highly dependent on the measurers’ judgments and levels of experience. The COSMIC 

manual (ISO/IEC 19761, 2011) identifies these problems as defects of un-formalized 

software requirements that are left for the measurer to solve with his/her subjective 

assessment. Thus, like all other FSM standards, COSMIC also avoids providing specific 

guidelines for dealing with textual requirements in measuring the functional size of the 

software. 

1.2 Motivation 
Crucial management decisions made during software development depend on the initial 

estimations. With an early knowledge of well-estimated functional size and the related 

development effort, a project manager can confidently plan future courses of action. Thus, 

there has always been a demand from the industrial point of view for better estimations of 

size and effort, so that project managers can determine the competitive cost of a project, 

improve process monitoring, and negotiate contracts from a position of knowledge. 

The motivation of our research originates from the industrial demand of the functional size 

and its related development effort to be estimated effectively at an early development phase, 

so that costly errors in planning and possibility of mismanagement of projects can be 

minimized. Functional Size Measurement (FSM) methods (Albrecht A. J., 1979; ISO/IEC 

20968, 2002; ISO/IEC 19761, 2003; ISO/IEC 29881, 2010) were presented with the aim to 

reduce subjectivity in the estimation of software size and its related effort by measuring only 

the logical size of software represented by the amount of functionalities described in its 

requirements. However, FSM methods also rely on the subjective judgments of human 

experts, especially when extracting the size information from textual requirements produced 

during the early stages of software development life-cycle. 
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Current state-of-the-art FSM approaches do not investigate the details of performing 

functional size measurement using unrestricted textual requirements, which, however, is the 

form of requirements produced during the earliest phases of the software development life-

cycle. Thus, current studies on FSM do not explore the linguistic aspects of textual 

requirements related to functional size measurement. This leads to the following open 

research problem: 

Open Problem #1: “To our knowledge, no research to date has attempted to discover how 

the linguistic elements of the textual requirements of a software influence its functional size.” 

Addressing this research problem can aid in emulating an expert's way of interpreting the 

functional size of a software from the linguistic elements of informally-written textual 

requirements. This linguistic knowledge can therefore be used to approximate functional size 

at a very early stage when textual requirements are not fully developed. 

Furthermore, classifying software requirements onto the various dimensions of requirements 

taxonomy is one of the primary tasks performed in the requirements analysis processes 

(SWEBOK, 2004). Functional Size Measurement (FSM) involves a requirements analysis 

process where the functional size is measured by analyzing only those requirements that are 

functional. Therefore, before carrying the process of FSM, the functional requirements need 

to be identified first from within the requirements documents in case they appear interleaved 

together with non-functional requirements. Thus, the task of classifying textual requirements 

into functional and non-functional requirements is a pre-requisite for performing functional 

size measurement. This task is commonly performed by a human requirements analyst in 

practice, while some recent studies (Rashwan, Ormandjieva, & Witte, 2013; Hussain, 

Kosseim, & Ormandjieva, 2008; Cleland-Huang, Settimi, Zou, & Solc, 2006) have addressed 

the use of discriminating keywords along with statistical learning-based text mining 

approaches for requirements classification. However, no other research, to our knowledge, 

has so far evaluated the accuracy of using richer linguistic knowledge, such as the syntactic 

information of the textual requirements, for these text mining approaches. Using 

discriminating syntactic information for aggregating the keywords, not only helps to reduce 

the feature space of the text mining approaches, but can also help to generalize the 
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classification model to classify textual requirements with unseen words with better accuracy. 

Thus, this leads to a second open research problem, presented as follows: 

Open Problem #2: “To our knowledge, no research to date has attempted to explore the use 

of syntactic features of textual requirements for distinguishing functional and non-functional 

requirements.” 

Addressing this research problem can help improve the current state-of-the-art by improving 

the accuracy of automatic requirements classification. This can in turn provide feasible 

means of automating the task of extracting functional requirements prior to conducting 

functional size measurement that is otherwise performed manually by requirements analysts. 

Human measurers build their experiences in Functional Size Measurement (FSM) tasks by 

learning to extract FSM modeling artifacts through interpreting the functional requirements 

that are well-decomposed. However, their practice of FSM involves a trial-and-error-based 

process of interpreting these textual requirements. To our knowledge, the literature does not 

investigate how a human measurer perceives different parts of the textual requirements to 

extract the objects of interest in an FSM model. These FSM approaches, therefore, cannot 

eliminate the need of applying subjective judgments of human measurers in identifying these 

FSM modeling artifacts from textual requirements. This leads to our last open research 

problem: 

Open Problem #3: To our knowledge, no research has attempted to discover the 

relationship between the objects of interest in a Functional Size Measurement (FSM) model 

and the linguistic elements of textual requirements. 

Addressing this problem can explain the tasks of FSM objectively by building traceability 

links between linguistic elements of well-decomposed textual requirements and the outcomes 

of FSM and its related objects of interests. Identifying these relations can aid us to develop 

linguistic guidelines of conducting FSM from textual requirements that can be used to train 

non-experts or an automated system for an early automation of FSM tasks. 

The three open research problems presented above entail several practical issues: 
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(1) Human bias, with varied levels of expertise: Subjective judgments during functional size 

measurement involve wide-ranging bias of human measurers that can produce inconsistent 

results. The correctness of measurement involving subjective judgments also depends on the 

levels of expertise of human measurers. Therefore, when measurers lack experience on a 

particular problem domain, they often produce erroneous measurements. 

(2) Costly execution: Experts in FSM methods and certain problem domains attain their 

knowledge and experience over time of conducting FSM activities successfully over 

unrestricted textual requirements related to those problem domains. Having experienced 

human experts available for each software project belonging to many different problem 

domains can introduce additional costs for the respective projects. Manipulating large 

amounts of textual requirements can also be costly, affecting the overall productivity of a 

software project. Thus, functional size measurement processes are in practice, often avoided 

for Agile-based projects, where strong constraints are imposed on the time of completing an 

iteration. 

(3) Lack of traceability: The subjective process of measurements entails that there exists no 

formal method of recording the justification for the outcome of a measurement task. Thus, 

subjective judgments during functional size measurement does not record the reasoning of 

how the size was measured and where this knowledge of size originated from, i.e. which 

parts of the textual software requirements provided the size information, which conceptual 

modeling artifacts were discovered by the measurers to deduce the size, and which parts of 

the textual requirements indicated the presence of these conceptual modeling artifacts. 

Without such traceability information, the final outcome of the functional size measurement 

cannot be justified, and any error in the outcome, therefore, cannot be traced back to its 

original source for an effective fix. 

In the next section we present our research objectives along with an overview of our research 

methodology. 
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1.3 Objectives & Research Methodology 
Based on the open problems described in Section 1.2, we set the aim of our research 

presented in this thesis as follows: 

“To develop an objective procedure that does not depend on human expertise to effectively 

measure functional size from textual requirement.” 

Our aim leads us to perform an applied research that explores a feasible solution to the 

following key question: 

“What methodology that does not depend on human expertise can be applied objectively to 

measure functional size from textual requirements with minimal errors (i.e. within an 

acceptable rate of errors)?” 

Our work attempts to solve the above key question by decomposing it into several supporting 

research objectives, each having a set of strictly defined research questions to be addressed: 

Objective #1: “To investigate if the process of functional size measurement (FSM) can be 

executed effectively by non-experts.” 

Objective #2: “To improve the overall process of FSM-related requirements annotation by 

attaining accurate annotations with non-experts having minimal training.” 

Objective #3: “To determine the most discriminating linguistic features of informally written 

textual requirements for approximating functional size.” (This addresses the open problem #1, 

as presented in Section 1.2) 

Objective #4: “To explore the most discriminating syntactic features of textual requirements 

for classifying them into functional and non-functional requirements.” (This directly 

addresses the open problem #2, as presented in Section 1.2) 

Objective #5: “To identify how experts deduce the relationship between the linguistic 

elements of unrestricted textual requirements and the objects of interest in a functional size 

measurement model.” (This addresses the open problem #3, as presented in Section 1.2) 
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Objective #6: “To evaluate the feasibility of automating functional size measurement from 

textual requirements.” 

Objectives #3, #4 and #5 directly address the open research problems described in Section 

1.2; while our objectives #1, #2 and #6 extend the scope of our research to make its outcomes 

applicable in practice. In addition, each of the above objectives is associated with a set of 

strictly defined research questions, for which we developed measurable hypotheses. A 

detailed discussion on each of our objectives, along with the related research questions and 

hypotheses are presented in Chapter 4. 

To accomplish the above objectives, we conducted several empirical studies in different 

phases of our research: 

Phase I: FSM by Non-Experts 

Phase II: Size Approximation 

Phase III: Requirements Classification 

Phase IV: FSM Model Extraction 

Phase V: Evaluation of FSM Automation 

The details of each of these phases are described in Chapter 3 along with the methodology 

used in this thesis.  

 Open Research 
Problem #1 

Open Research 
Problem #2 

Open Research 
Problem #3 

Extending Scope 
for Practical 
Application 

Phase I: 
FSM by Non-Experts    Objective #1 & 

Objective #2 
Phase II: 
Size Approximation Objective #3    

Phase III: 
Requirements Classification  Objective #4   

Phase IV: 
FSM Model Extraction   Objective #5  

Phase V: 
Evaluation of FSM 
Automation 

   Objective #6 

Table 1: Mapping of the Open Research Problems, Research Phases and Research Objectives 
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 Open Research 
Problem #1 

Open Research 
Problem #2 

Open Research 
Problem #3 

Extending Scope 
for Practical 
Application 

Phase I: 
FSM by Non-Experts    Objective #1 & 

Objective #2 
Phase II: 
Size Approximation Objective #3    

Phase III: 
Requirements Classification  Objective #4   

Phase IV: 
FSM Model Extraction   Objective #5  

Phase V: 
Evaluation of FSM 
Automation 

   Objective #6 

Table 1 shows how each of these phases maps to address the open research problems, 

presented in Section 1.2 along with the six objectives of our research. 

Each of the open problems of Section 1.2 can be viewed as a problem of text mining that 

targets specific requirements analysis activities related to functional size measurement. We 

therefore designed the conceptual framework of our research methodology as illustrated in 

Figure 3. 
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i. Survey Related Work
ii. Consult Industrial 

Experts
iii. Define Problem
iv. Assess Existing Solutions

Outcome:
Our Motivation

i. Define Our Scope & 
Objectives

ii. Identify Research 
Questions

iii. Design Experiments

Outcome:
Our Approaches & Design of 
Our Experiments

i. Gather Historical Data
ii. Build Requirements 

Corpora for Annotation
iii. Lead Experts/Non-

experts To Annotate

Outcome:
Our Annotated Corpora & 
Annotation-related Data

i. Build Feature Extractor
ii. Develop Supervised or      

Rule-based Text Miner
iii. Run Training & Testing 

Experiments

Outcome:
Automation of Our Approaches
& Results of Our Experiments

i. Analyze Results of Our 
Experiments

ii. Compare Results To 
Baselines

iii. Prepare Report

Outcome:
Validation of Our Approaches
& Our Publications

Research
Methodology

Open
Problem

Our
Objectives

Our
Methodology

Annotation
Data

Results Of
Experiments

 

Figure 3: The Conceptual Framework of the Research Methodology 

As shown in Figure 3, the phases of our research start with investigating the open research 

problems through a literature review. This allows us to set our motivation for the research, 

along with the related research questions, and design our methodology and experiments to 

validate the methodology. We then continue with the tasks of data-collection and building the 

necessary tools for executing the experiments. Finally, we analyze the results of our 

experiments and publish our findings. 

Our overall aim with this research is to address the open problems described in Section 1.2 

by developing a comprehensive methodology for measuring functional size from textual 

software requirements written in unrestricted natural language, and, thus, facilitate early 

estimation of software development effort. We name our methodology: Linguistic 

Introspection of Size Measurement Activities (LISMA), and present its details in this thesis. 
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Figure 4 briefly shows the input-output of our methodology, along with the intermediate 

tasks performed. 

FSM Model

Capture 
Requirements

Capture 
Requirements

Estimate
Effort

Estimate
Effort

Textual
Requirements

Effort Estimation
ReportFunctional

Size

Analyze Requirements
Quality/Defects

Classify Requirements

Measure Functional Size

LISMA

Traceability
Mapping

FSM Model

Capture 
Requirements

Capture 
Requirements

Estimate
Effort

Estimate
Effort

Textual
Requirements

Effort Estimation
ReportFunctional

Size
Functional

Size

Analyze Requirements
Quality/Defects

Classify Requirements

Measure Functional Size

LISMA

Traceability
Mapping

 
Figure 4: Simple Input-Output and the Intermediate Steps of LISMA Supporting Early Effort Estimation 

 

As shown in Figure 4, LISMA can be incorporated within the existing workflow of 

measuring functional size that is presented earlier in Figure 2. LISMA starts by taking textual 

requirements as input and produces the functional size for effort estimation. It implements 

three intermediate steps that aim to achieve three practical goals: 

(1) To analyze the quality and/or defects of software requirements, using the approach 

presented in (Hussain, 2007). 

(2) To classify textual requirements into any prescribed standard of requirements taxonomy 

based on its linguistic features, and distinguish functional from non-functional requirements. 

(3) To measure the functional size using the textual form of the functional requirements, and 

output the size information along with a functional size measurement (FSM) model that 

includes a traceability mapping between the linguistic elements of textual requirements and 

the objects of interest in the FSM model. 

Thus, we intend to build natural language processing applications, powered by different 

supervised machine learning techniques, to demonstrate the possible automation of our 
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methodology, LISMA, and emulate the COSMIC standard (ISO/IEC 19761, 2003) as our 

preferred FSM method for this research. 

 

1.4 Overview of Contributions 
The following sections list the contributions that this research makes to the fields of software 

measurement, software requirements engineering and natural language processing in general. 

1.4.1 Theoretical Contributions 

The theoretical contributions of this research, in relation to our research objectives, as listed 

in Section 1.3, are listed below: 

(1) Our work, through our research objective #1, presents and verifies the feasibility of 

an innovative approach of functional size measurement through manual annotation of 

textual requirements. The details are presented in Section 4.2.2, and then in Chapter 5. 

 Publication: The details of this work and the results of the experiments 

verifying the feasibility of our model is published in (Hussain, Ormandjieva, 

& Kosseim, 2012). 

(2) Our work, through our research objective #2, presents our dynamic annotation 

adjustment model that can help non-experts to perform requirements annotation tasks 

related to functional size measurement and achieve an acceptable level of agreement 

with the annotations of an expert. The details of this work are presented in Section 

4.2.2, and in Chapter 5. 

 Publication: The description of this work, along with an empirical evaluation 

can be found in (Hussain, Ormandjieva, & Kosseim, 2012). 

(3) Our work, through our research objective #3, determines the most discriminating 

linguistic features of informally written textual requirements for approximating 

functional size. The details of this work are presented in Section 4.2.3 and Chapter 6. 
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 Publication: Details of this work and the experimental results have been 

published in (Hussain, Ormandjieva, & Kosseim, 2010; Hussain, Kosseim, & 

Ormandjieva, 2013). 

(4) Our work, through our research objective #4, determines the most discriminating 

syntactic features of textual requirements for distinguishing the functional and non-

functional requirements automatically. An overview of this work is presented in 

Section 4.4.2. 

Publication: The complete details of this work was published in (Hussain, 

Kosseim, & Ormandjieva, 2008). 

(5) Through our research objective #5, our work determines a pool of linguistic features 

that can help identify which base noun-phrases2 are related to specific artifacts of a 

functional size measurement model. The details of this work and the results of the 

experiments are presented in Section 4.2.5, and then, in Chapters 7. 

(6) Our work through our research objective #5, also presents heuristics to build traceable 

relationships between linguistic elements of textual requirements and the artifacts of 

functional size measurement model. The accuracy of using these heuristics was 

compared to our supervised learning-based solution to evaluate its feasibility. The 

details of this work and the results of our experiments are presented in Section 4.2.6, 

and then in Chapter 7. 

(7) Through our research objective #6, we developed a complete methodology for 

measuring functional size automatically from textual requirements. The details of this 

methodology are presented in Section 4.4. 

                                                 
2 A base noun-phrase is a noun-phrase that does not contain any other noun-phrase within its scope, but 
itself (Sang, et al., 2000). For our work, however, we use the term “base noun phrase” to refer to a noun or 
a noun compound or a personal pronoun. Thus, in our case, it actually refers the smallest part of the base 
noun phrase that does not contain any part-of-speech class of words, other than the nouns or a personal 
pronoun. It therefore represents the smallest segment of textual requirement that can independently express 
the mention of an artifact of a functional size measurement model. 
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Publication: The details of this methodology are also published in (Hussain, 

Ormandjieva, & Kosseim, 2009). 

(8) In relation to our research objective #6, we evaluated the accuracy of automatically 

measuring functional size from textual requirements using our approach. Details of 

our experiments and their results are presented in Chapter 7. 

To demonstrate the applicability of our research, we also presented an innovative approach of 

effort estimation using functional size measurement that takes into account the impacts of 

different types of Non-Functional Requirements and different types of problem domains. The 

details of our approach and the results of the experiments verifying the accuracy of our 

approach is published in (Abdukalykov, Hussain, Kassab, & Ormandjieva, 2011). 

 

1.4.2 Developed Tools 

We present below the list of tools which we have developed as part of our practical 

contributions of this research: 

(1) We developed a prototype for an online annotation tool, called Live Annotation of 

Software Requirements (LASR), that allows requirements engineers to remotely 

contribute software requirements documents and to collaboratively annotate textual 

requirements in a secured environment. 

(2) We also developed a text mining application in Java that can automatically classify 

textual requirements sentences as functional and non-functional requirements. 

(3) Moreover, we implemented our approach of approximating functional size by 

developing a text miner in Java that can automatically approximate the functional size 

of a system based on its informally-written unrestricted textual requirements. 

(4) Furthermore, we developed supervised learning-based text mining applications that 

altogether can automatically extract the modeling artifacts of a functional size 

measurement model from textual requirements. 
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(5) Finally, we also implemented algorithms for measuring functional size by developing 

a heuristic-based text miner in GATE (Cunningham H., et al., 2011) that can 

automatically extract the modeling artifacts of a functional size measurement model 

from textual requirements and calculate the functional size of a system. 

 

1.5 Overview of the Thesis 
This chapter introduced the open problems that we addressed with our research. It presented 

how the early application of any functional size measurement standard prescribes costly 

manipulation of  human experts and how their process of measurement lacks objectivity and 

traceability. It then presented our motivations for this research, along with our research 

objectives and major contributions in the related fields. 

The next chapter, that is Chapter 2, introduces the necessary background knowledge on the 

topics related to this research. Then, Chapter 3 presents a detailed survey of the current 

literatures, while Chapter 4 describes our research methodology in details. Chapter 4 also 

discusses our formalization of a conventional function size measurement process and a 

detailed overview on how the process can be automated. Then, Chapters 5, 6 and 7 present 

the implementation details of three different approaches for functional size measurement that 

are proposed in this thesis: (i) measuring functional size manually by non-experts, (ii) 

approximating functional size automatically based on linguistic traits, and (iii) measuring 

functional size by automatically extracting the conceptual artifacts of the measurement model, 

respectively. Each of these chapters describes the proposed approach and the experimental 

work to validate each of these solutions, along with an analysis of the experimental results. 

We then summarize the findings of our research and propose the future avenues of research 

in Chapter 8. The attached appendices include supporting details in relation to the topics 

discussed in the body of this thesis. 
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Chapter 2 
 

Background 
 
 

“Be the measure great or small… 
let it be honest in every part.” 

— John Bright 

2.1 Introduction 
Before discussing the details of the various approaches proposed in the current literature for 

addressing the research problems, described in Section 1.2, we present in this chapter the 

details of the background topics related to this research. 

 

2.2 Software Requirements 
Software requirements (SR) document is the medium used to communicate user’s 

requirements to technical people responsible for developing the software. It is one of the 

earliest artifacts produced in a software development life cycle that not only provides the 

development team the knowledge about the required behavior and quality characteristics of 

the system to be developed, but also gives the estimators the notion of its size and the 

development effort that it is going to require. (Leffingwell & Widrig, 2003) defined a 

software requirement in their book as follows: 

- A software capability needed by the user to solve a problem to achieve an objective 

- A software capability that must be met or possessed by a system or system component 

to satisfy a contract, standard, specification, or other formally imposed documentation. 
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This indicates that the task of writing requirements as a two-way process, where both the 

users (and/or clients) and the technical people (analysts, developers, managers and others) are 

involved. Thus, the common practice is to write the requirements document without any 

formalization, i.e. in plain natural language (NL), so that it can be easily conveyable between 

the two parties. 

Software requirements provide a high-level baseline from which project progress can be 

compared and scope can be controlled. Understanding all features specified in a requirements 

document is a key factor for improving software project planning and gaining agreement with 

the client on scope, cost, and schedule. A requirements document thus acts as a primary 

source of information that can aid the estimation of the software functional size and its 

development effort at an early phase in software development life cycle. 

 

2.3 Requirements Analysis using Textual Annotation  
The annotation of requirements documents is a common practice of extracting information 

from informally written requirements (Ko, Park, Seo, & Choi, 2007). Requirements analysts 

annotate different parts of the software requirements document to indicate what classes of 

software requirements they contain (such as functional or non-functional), or, which software 

engineering artifacts are present (e.g. domain entities, data attributes, etc.), or, any other class 

of information vital to identifying the base functional components that pertain to a chosen 

FSM method. 

In the context of software project management, FSM needs to be performed at an early phase 

of the software development lifecycle (Meli, 1997), when the textual requirements are 

immature and are essentially captured in unrestricted natural language without any 

formalization, so that they can easily be conveyable between the clients (and/or the potential 

users) and the technical people (analysts, developers, managers and others) (Leffingwell & 

Widrig, 2003). Being written in unrestricted natural language, these textual requirements are 

often corrupted with ambiguity that an expert has to first manually identify and resolve 

(Meyer, 1985). The documents containing these textual requirements can also be either 
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unstructured or of varied levels of structure which demands additional effort from an expert 

to manually extract crucial knowledge about the software to be developed. For example, 

sentences describing non-functional requirements are often found embedded in paragraphs 

containing functional requirements that an expert often has to manually organize by 

identifying the non-functional requirements from the functional ones (Hussain, Kosseim, & 

Ormandjieva, 2008). For example, Figure 5 shows an extract from a requirements document, 

and how an expert has chosen to classify its requirement sentences with different annotation 

labels. 

Extract from a requirements document   

...The following use case describes approving a budget. First, the user navigates to the budget overview page. The 
system then displays the budget overview with editable budget attributes. System presets some of the budget 
attributes. User edits the budget attributes and sets the status as "Approved". All the mandatory attributes cannot 
be empty and the budget amounts cannot be negative. User finally saves the budget. ... 
 

Requirement Sentence Annotation Label 
The following use case describes approving a budget. Noise 
First, the user navigates to the budget overview page. Functional 
The system then displays the budget overview with editable budget attributes. Functional 
System presets some of the budget attributes. Functional 
User edits the budget attributes and sets the status as "Approved". Functional 
All the mandatory attributes cannot be empty and the budget amounts cannot be negative. Non-Functional 
User finally saves the budget. Functional 

Figure 5: Example of Sentence-level Annotation of Software Requirements 

The requirements sentences in this example (shown in Figure 5) are to be annotated into four 

classes: 

i. Functional Requirement: A software requirement that expresses the required 

behavior of the system. 

ii. Non-Functional Requirement: A software requirement that expresses the quality 

requirements and the constraints over the related 

behavior of the system. 

iii. Ambiguous Requirement: A software requirement that can be interpreted in 

more than one way by the annotator (i.e. the 

requirements analyst). 
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iv. Noise: Any sentence that does not express any of the above 

types of software requirement. 

In practice, software requirements can be further classified according to different standards of 

requirements taxonomy. A software development organization usually adapts to one such 

standard and chooses the classes of requirements that are to be annotated during the 

requirements analysis phase. Reuse of requirements documents also require annotating its 

parts following a standard of requirements taxonomy (Eriksson, Börstlerb, & Borga, 2009). 

Software measurement experts can also annotate well-decomposed textual requirements to 

extract crucial information about the functional size of the software to be developed. This 

allows early measurement of functional size from software requirements that can be used to 

estimate the development of effort. 

2.4 Problem of Estimating Effort from Requirements 
Since software requirements documents are most commonly written in natural language, 

they are susceptible to many defects. Bertrand Mayer lists them as the “Seven Sins of 

Specifier” (Meyer, 1985) (details on these defects will be discussed in Section 3.4.1). These 

defects degrade the quality of an SR document by introducing misunderstanding of 

requirements, which can lead to many severe problems, including erroneous estimation of 

development effort, if not detected earlier in the software development lifecycle.  

Also, the IEEE Standard 830-1998 (IEEE, 1998) describes the practices recommended by 

IEEE to write an SR document, and defines the quality characteristics of a “good” SR 

document: (1) Correct, (2) Unambiguous, (3) Complete, (4) Consistent, (5) Ranked for 

importance, (6) Verifiable, (7) Modifiable and (8) Traceable. An SR document needs to be 

carefully written with the goal of maintaining these good quality characteristics, so that the 

developers can clearly visualize the problem that the requirements state before starting the 

process of developing the actual system. As the SR document also acts as a contract between 

the potential users and the developers, it imposes additional emphasis on its text to be clear 

and accurate when describing user needs. 
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One of the common reasons of failing to provide accurate effort estimation is regarded to be 

ill-developed requirements documents (Grimstad & Jorgensen, 2007). An SR document often 

obstructs the estimator with its many defects to foresee the system clearly and to perform the 

tasks of accurate early effort estimation. Since our research intends to deal with requirements 

documents written in any level of quality, one of our sub-goals in this work is to explicitly 

define and improve the quality of SR documents as we proceed on to do the estimate of the 

development effort. 

2.5 Effort Estimation in Theory 
There exists a large body of research in the field of effort estimation. Magne Jørgensen, one 

of the leading researchers in the field, is currently maintaining a website called, BESTweb 

(Jørgensen & Shepperd, 2007), listing a large number of research papers, journal articles, 

editorials, and books — all related to  software development effort estimation. Although the 

website does not contain an exhaustive list of publications in this area, it already holds 1,242 

publications at time of writing this thesis. 

Numerous parametric models of estimating software effort have been proposed, like 

COCOMO (Boehm B., 1984), COCOMO II (Boehm, et al., 2000), SLIM (Putnam, 1981), 

ESTIMACS (Rubin, 1983), all of which depend on some FSM methods for early estimation 

of effort from the software functional size. It should be noted that none of these effort 

estimation models are inherently compatible with COSMIC, which objectively measures the 

functional size of software. This make the inputs to these models biased by the subjective 

judgment of the functional size measurers to begin with. Again, models like COCOMO and 

SLIM depend on the number of SLOC (Source Lines of Code) to be estimated before starting 

the process of estimating effort, where it can degrade the quality of their input data even 

more to begin with, as the estimation process of SLOC includes parameters that depend on 

subjective judgment of the human estimators. This problem was evident in the study of 

(Kemerer, 1987) where SLOC-based estimation models performed poorly compared to non-

SLOC-based estimation models. Others (Shepperd & Schofield, 1997; Idri, Abran, & 

Khoshgoftaar, 2002; Angelis & Stamelos, 2000) introduced the approach of effort estimation 

by analogy (EBA) that simply extends the idea of Case-Based Reasoning (Aamodt & Plaza, 
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1994), relying extensively on historical data. They claimed that EBA performed better than 

parametric methods. However, some studies also show contradictory or inconclusive results 

that were obtained when different models were applied (Myrtveit, Stensrud, & Shepperd, 

2005; Menzies, Zhihao, Hihn, & Lum, 2006). 

The work of (Lewis, 2001) showed that the problem lies in having parameters or features on 

the estimation that are subjectively computed, which induces serious flaws in calibrating a 

model. The author suggests that many of the previous studies presented overly exaggerated 

results because of this bias involved in their work. Again, most of the results of all these 

studies in software effort estimation are presented with the statistically unreliable measure of 

MMRE and PRED (Conte, Dunsmore, & Shen, 1986), which many studies thoroughly 

criticize, like (Kitchenham, Pickard, MacDonell, & Shepperd, 2001; Foss, Stensrud, 

Kitchenham, & Myrtveit, 2003; Port & Korte, 2008). 

After decades of repetitive research, Mike Ross, CEO of r2Estimating (r2estimating.com), 

stated in a panel discussion that there have not been a single study or research that can prove 

“superiority” over the other research; while Barry Boehm, founder of COCOMO, the most 

widely researched open model in the last three decades, stated at the panel that industries 

should build project plans in a way that recognizes the fact that “people and models will 

never be perfect” (Fraser, Boehm, Erdogmus, Jorgensen, Rifkin, & Ross, 2009). 

Although all solutions proposed in the literature emphasize, directly or indirectly, on early 

effort estimation by using functional size as the primary independent variable, the existing 

literature, to the best of our knowledge,  does not report on automation of any of the existing 

size measurement processes (discussed in Section 2.7) that receives textual requirements as 

input to begin the task of estimation at the requirements specification phase. 

2.6 Effort Estimation in Practice 
In practice, the most popular method of software effort estimation in the industry is to use 

expert judgment (Shepperd & Cartwright, 2001). The process of expert judgment is mostly 

conducted by individuals, seldom by groups, which comprises of often informal ways of 

intuitive judgment of estimation, based on the expertise of the estimators. Studies of (Lederer 
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& Prasad, 1992; Jørgensen M., 2004a) report that effort estimation done by expert judgment, 

on average, were at least as accurate as those done on estimation models. But, the results of 

expert judgment cannot be consistent, as the level of expertise varies from one person to the 

other; and, much of this fact is reflected by the increased number of project failure rates in 

the industry, where the principal reason is inaccurate estimation of software development 

effort (Molkken & Jørgensen, 2003). 

2.7 Functional Size Measurement 
Software development effort is directly proportional to its functional size. For better 

estimation of effort and deeper understanding on the functional size variable, the industry 

formulated several methods for Functional Size Measurement (FSM). In 1979, Allan 

Albrecht first proposed FSM in his work on Function Point Analysis (FPA) (Albrecht A. J., 

1979), where he named the unit of functional size as “Function Point (FP)”. His idea of 

effort estimation was then validated by many studies, like (Albrecht & Gaffney, 1983; 

Kitchenham & Taylor, 1984) and, thus, measuring the functional size of the software became 

an integral part of effort estimation. 

2.7.1 ISO Standards for FSM 

Over the years, many standards have been developed by different organizations on FSM 

methods, following the concepts presented in Albrecht's FPA method. Four of these standards 

have been accepted as ISO standards: they are IFPUG (ISO/IEC 20926, 2003), Mark II 

(ISO/IEC 20968, 2002), NESMA (ISO/IEC 24570, 2005), FiSMA (ISO/IEC 29881, 2010) 

and COSMIC (ISO/IEC 19761, 2011). 

2.7.2 COSMIC 

For the purpose of this research, we have chosen to use the COSMIC FSM method developed 

by the Common Software Measurement International Consortium (COSMIC) and now 

adopted as an international standard (ISO/IEC 19761, 2011). We chose this method in 

particular, because it conforms to all ISO requirements (ISO/IEC 14143-1, 1998) for FSM, 

focuses on the “user view” of functional requirements, and is applicable throughout the agile 

development life cycle. Its potential of being applied accurately in the requirements 
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specification phase compared to the other FSM methods is demonstrated by the study of 

(Gencel, Demirors, & Yuceer, 2005). Also, COSMIC does not rely on subjective decisions 

by the functional size measurer during the measurement process (ISO/IEC 19761, 2011). 

Thus, its measurements, taken from well-specified requirements, tend to be same among 

multiple measurers. This is particularly important for validating the performance of our 

automatic size measurements. 

COSMIC measures functional size of a software in terms of the number of Data-movements, 

which accounts for the movement of one or more data-attributes belonging to a single Data-

group. A data-group is an aggregated set of data-attributes. A Functional Process, in 

COSMIC, is an independently executable set of data-movements that is triggered by one or 

more triggering events. A triggering event is initiated by an actor (a functional user or an 

external component) that occurs outside the boundary of the software to be measured. Thus, a 

functional process holds the similar scope of a use case scenario, starting with the triggering 

event and ending with the completion of the scenario. Figure 6 illustrates the generic flow of 

data-groups from a functional perspective, presented in the COSMIC standard (ISO/IEC 

19761, 2011). 

Functional Users
(and/or External Components)

Boundary

Persistent Storage

Entry
1 Data Group

Read
1 Data Group

Exit
1 Data Group

Write
1 Data Group

Functional
Process

 

Figure 6: Generic Flow of Data-Groups in COSMIC 
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As shown in Figure 6, the data-movements can be of four types: Entry, Exit, Read and Write. 

An Entry moves a data-group from a user across the boundary into the functional process, 

while an Exit moves a data group from a functional process across the boundary to the user 

requiring it. A Write moves a data group lying inside the functional process to persistent 

storage, and a Read moves a data group from persistent storage to the functional process. 

The types of these data-movements constitute the base functional component types (ISO/IEC 

14143-1, 2007) of the COSMIC FSM method. Thus, COSMIC counts each of these data-

movements as one CFP (COSMIC Function Point) of functional size, and measures the size 

of each of the functional processes separately. It then adds the sizes of all the functional 

processes to compute the total size of the system to be measured. 

Thus, the requirements annotation tasks that can realize a functional size measurement 

method like COSMIC are relatively more complex than the straight forward annotation tasks 

presented earlier in Section 2.3. Here, we find that both the sentences (implicitly) and the 

base noun-phrases or base-NP3 (explicitly) of a requirements document represent information 

about the actors, the data-groups, the data attributes etc. of the system to be developed, and, 

thus, need to be annotated to measure the functional size in COSMIC. 

COSMIC FSM requires the base-NP’s in each functional requirement sentences to be 

annotated by an expert in the domain and measurement processes to specify if the base-NP’s 

indicate the presence of different data-attributes. And, if they do, the expert must also 

indicate which data-group each of the data-attributes belongs to and which types of data-

movements they participate in. Figure 7 shows a similar example, where a domain expert  

annotated an extract of the requirements document to identify the COSMIC modeling 

artifacts in order to measure the COSMIC size. 

 

 

                                                 
3 As mentioned in Chapter 1, we use the term “base noun phrase” or “base NP” to refer to a noun or a noun 
compound or a personal pronoun. Thus, in our case, it refers the smallest part of the base noun phrase 
(Sang, et al., 2000) that includes only nouns or a personal pronoun. It therefore represents the smallest 
segment of textual requirement that can independently express the mention of a COSMIC modeling artifact. 
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Extract from a requirements document  

...The following use case describes creating a new budget. First, the user navigates to the budget creation page. He 
then enters the budget attributes. All the mandatory attributes cannot be empty and the budget amounts cannot be 
negative. User saves the budget. ... 
 

Requirement Sentence 
Annotation 
Label for 
Sentence 

Base 
Noun-Phrases 

Annotation 
Label for 
Data-
attribute 
(Yes/No) 

Annotation 
Label for 
Data-group 

Annotation 
Label for 
Data-
movement 

The following use case 
describes creating a new 
budget. 

Noise n/a n/a n/a n/a 

First, the user navigates to 
the budget creation page. Functional 

user No n/a n/a 
budget creation page No n/a n/a 

(not mentioned) Yes (triggering 
event) Entry 

He then enters the budget 
attributes. Functional 

He No n/a n/a 
budget attributes Yes Budget Data Entry 
(not mentioned) No n/a n/a 

All the mandatory 
attributes cannot be empty 
and the budget amounts 
cannot be negative. 

Non-
Functional n/a n/a n/a n/a 

User saves the budget. Functional 
User No n/a n/a 
budget Yes Budget data Write 
(not mentioned) No n/a n/a 

Figure 7: Example of Noun-Phrase-Level Annotation of Software Requirements (for COSMIC FSM). 

Figure 7 shows that the expert first extracted the base noun-phrases from the sentences that 

he/she annotated as functional requirements. Then, the expert annotated each base noun-

phrase, indicating if it was a data-attribute. In some cases, the data-attributes may not be 

mentioned explicitly as the base noun-phrases, and the expert took that into consideration as 

well. For each data-attribute that the expert identifies, he/she then annotates it with the data-

group name that it belongs to and the type of data-movement that it participates in. 

Here, we find that the annotation labels are hierarchically dependant on each other (i.e. the 

annotation labels of data-attributes, data-groups and data-movements are assigned to the base 

noun-phrases, if and only if the sentence containing those base noun-phrases is annotated 

with the label: “Functional”). Also, data-group annotation requires the availability of a list of 

data-group names as annotation labels that should dynamically build up over time with the 

accumulation of domain knowledge. Thus, such annotation tasks are more complex than 

straight-forward natural language annotation tasks. To our knowledge, the existing annotation 
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tools do not provide the necessary support to aid these complex annotation tasks that are 

required for a functional size measurement process, like COSMIC. In Section 3.5, we 

discussed some of the current annotation tools. It should be noted here that the above features 

are all supported by our annotation tool, LASR. The tool also includes some additional 

features to support the functional size measurement tasks that are not supported by any of the 

tools discussed above. Section 5.2 describes LASR and how it supports the tasks of 

functional size measurement. 

Thus, by extracting the conceptual modeling artifacts from textual requirements and 

measuring the functional size by simply counting their frequencies, the COSMIC standard 

offers an objective method of FSM. It is designed to be applied in the traditional processes of 

software development, where documentation of requirements using formalisms and templates 

is required. However, over the years, the IT industry has recognized the traditional processes 

to cause many problems including delays and is now increasingly moving towards agile 

development processes, such as Scrum (Martin, 2003), an agile approach that does not 

impose documentation templates or formalisms on requirements. 

2.8 Size Measurement in Agile Development Processes 
Agile development processes are driven by the motto of delivering releases as quickly as 

possible (Larman, 2003). Planning an iteration in an agile project involves estimating the size 

of the required features as the first step. Figure 8 shows the steps of iteration planning in agile. 

Desired
Features

Estimate
Size

Estimate
Duration Schedule

 
Figure 8: Steps of Iteration Planning in Agile [as presented in (Cohn, 2005)] 

The size of every agile iteration is subjectively estimated by means of user requirements that 

are written less formally than use case descriptions. These textual requirements, which are 

mostly available in the form of smart use cases (Hoogendoorn, 2009) or user-stories (Martin, 

2003), although, do not provide detailed description of the scenarios like those found in use 
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cases, they must hold “enough details” to perform the size estimation (Martin, 2003). Size 

measurement methods in agile development processes include story-points (Cohn, 2005) and 

smart estimation (Hoogendoorn, 2009), and depend on the subjective judgment of human 

experts, and, therefore, are prone to biases and errors (Cohn, 2005). 

In an agile development process, the lack of formalism in requirements restricts FSM 

methods, like COSMIC, to be applied for measuring the functional size of an iteration. For 

example, from the discussion in Section 2.7.1, it can be understood that the number of data-

groups, which is necessary to be known to carry out COSMIC FSM, cannot be identified by 

the measurer from a set of requirements statements alone unless he/she is supplied with a 

complete list of available data-groups that requires formalizing the requirements with 

conceptual model (e.g. a domain model). 

Our work, on the other hand, presents an alternative solution to estimate the COSMIC 

functional size in agile that does not require the use of formalism in requirements; instead, it 

proposes an objective way of approximating the COSMIC functional size of a functional 

process (i.e. a use case) that is described by an informally written set of textual requirements, 

in forms likely to be used in agile size estimation. 

In the next chapter, we discuss the current literature and state-of-the-art tools that are 

introduced in the different fields related to our research. 
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Chapter 3 
 

Literature Survey 
 
 

“The most reliable way to forecast the future is to 
try to understand the present.” 

— John Naisbitt 

3.1 Introduction 
Our research encompasses many fields of studies to deal with the problem of early effort 

estimation. Since we intend to estimate the development effort from requirements documents 

(of any quality), we first need to use natural language processing (NLP) techniques to extract 

the functional size of the software. We will then devise a solution for estimating the effort 

using the functional size as the primary variable and different cost drivers as other variables 

in a machine learning environment to perform various regression analyses. Thus, we will 

present here the work of different fields that relate to the scope of our research. 

 

3.2 Automated COSMIC Functional Size Measurement 
As discussed in Section 2.7, many standards were proposed by different organizations on 

functional size measurements of software, after Allan Albrecht had first proposed his 

function point analysis (FPA) (Albrecht A. J., 1979): such as IFPUG (ISO/IEC 20926, 2003), 

Mark II (ISO/IEC 20968, 2002), NESMA (ISO/IEC 24570, 2005), FiSMA (ISO/IEC 29881, 

2010) and COSMIC (ISO/IEC 19761, 2011; COSMIC, 2014). Although, like every FSM 

method, COSMIC has some disadvantages (e.g. until now, the standard does not take into 

account non-functional requirements to its size measurement), we have chosen to automate 

this standard for the following reasons: 
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(1) COSMIC is currently the only ISO recognized FSM method that does not rely on 

subjective decisions by the functional size measurer during measurement process 

(ISO/IEC 19761, 2011). Thus, its measurements, taken from well-specified 

requirements, tend to be same among multiple measures. This is particularly 

important for validating the performance of the automatic size measurements that 

would be yielded by our solution. 

(2) Compared to other ISO recognized FSM Methods, COSMIC only demonstrates the 

prospect to be applied at the earliest phase of software development lifecycle, that is, 

in the requirements specification phase (Gencel, Demirors, & Yuceer, 2005).  

There have been many different approaches proposed by in recent years (Sneed, 2001; Diab 

H., Koukane, Frappier, & St-Denis, 2005; Condori-Fernàndez, Abrahão, & Pastor, 2007) 

where researchers attempted to automate different functional size measurement processes. 

However, to our knowledge, no previous work has addressed the problem where textual 

requirements are taken as input to start the measurement process. Instead, they all relied on 

conceptual models to be manually built from the requirements, so that their automated 

approach can be adopted. In the following sections, we will only be focusing on notable 

approaches towards automating COSMIC FSM processes. 

3.2.1 μcROSE 

One of the leading work done in the area of automating COSMIC FSM is by (Diab H., 

Koukane, Frappier, & St-Denis, 2005), where the authors developed a comprehensive system 

called, μcROSE, which accepts state charts as inputs to measure the functional size of real-

time systems only. Their work heavily depends on a set of hard-coded rules for mapping 

different objects of interest to different COSMIC components, and also require C++ code 

segments to be attached with the state transitions and supplied as inputs too, so that data-

movements can be identified. They presented a very brief validation of their work by an 

expert, testing their system against only one case study, where it performed poorly in 

detecting the data groups, resulting in some erroneous measurement outputs. 
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3.2.2 Work of Candori-Fernández et al. 

(Condori-Fernàndez, Abrahão, & Pastor, 2007), on the other hand, performed another study, 

where they presented step by step guidelines to first derive manually the UML modeling 

artifacts, e.g. the use case models and system sequence diagrams from the requirements, and 

then, apply their set of rules for measuring the COSMIC functional size of the system from 

the UML models. Their approach was validated on 33 different observations, showing 

reproducible results with 95% confidence.  

3.3 Approximation of Functional Size 
Most of the related work in this field attempted to perform a precise measurement of 

COSMIC functional size that rely on tedious manual processing to extract conceptual 

modeling artifacts, require formalization of the requirements, and, therefore, are not 

applicable to agile development processes. On the other hand, the work of (Meli, 1997) 

presents a fully manual approach of quick approximation of COSMIC size from textual 

requirements without extracting COSMIC modeling artifacts. It first classifies past projects 

into fuzzy size classes (e.g. Small, Medium, Large, Very Large,...), finds the common traits 

within the concepts used in software of belonging to the same size class, and, finally, allows 

a human measurer to discover similar traits in the new software component, so that the 

measurer can estimate its COSMIC size by drawing analogy to the past projects. We find a 

good potential of this work to be applied in the environment of agile processes that demand 

quicker estimation of software size. 

The goal of our thesis is to develop a fully automated tool that would do quicker estimation 

of COSMIC size using informally written textual requirements of any quality as input, 

making it favorable for agile processes. We extend the idea of (Santillo, Conte, & Meli, 2005) 

by finding common traits, or 'features', among software projects of the same size classes, but 

looking for linguistic features within the textual requirements, and use supervised text mining 

methods to automate the process. 
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3.4 Preparing Textual Requirements for FSM 
As our work of extracting functional size information starts from requirements documents 

written in any quality, our first concern is improving the quality of textual requirements so 

that the FSM process could be carried out. There have been numerous studies on 

automatically detecting defects in textual requirement, classifying requirements into various 

classes of requirements taxonomy, extracting conceptual models etc. — all of which provided 

vital guidance on the formulation of our research.  Many of these studies are described in the 

following sections.  

3.4.1 On Detection of Requirements Defects 

Several research projects have addressed the problem of detecting deficiencies in natural 

language requirements specification. These studies typically use a small number of 

approaches, which are, although often similar in the types of tools they use, radically 

different in the way they try to detect ambiguities in requirements documents. In the 

following sections, we will review a few noteworthy studies by categorizing them according 

to their approaches. 

A. Manual Detection Process 
Manual detection is the most popular approach to detect and resolve the ambiguities of NL 

requirements specification. One of the early leading studies in this field was conducted by 

Bertrand Meyer in (Meyer, 1985), showing the areas of a natural language requirements 

specification, where the specifier is more prone to make mistakes (see Table 2). Meyer 

stressed the point that natural language requirements specification are inherently ambiguous, 

and for resolving these ambiguities, use of formal specifications are absolutely necessary. 

However, for detecting such ambiguities, he explains the process of manually going though 

each word, phrase and sentence of the NL requirements specification text of his case study, 

and checking if they reflect any of the seven sins of the specifier. 
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Noise The presence in the text of an element that does not 
carry information relevant to any feature of the 
problem. 

Silence The existence of a feature of the problem that is not 
covered by any element of the text. 

Over-
specification 

The presence in the text of an element that 
corresponds to a feature of the problem but to 
features of a possible solution. 

Contradiction The presence in the text of two or more elements that 
define a feature of the system in an incompatible way. 

Ambiguity The presence in the text of an element that makes it 
possible to interpret a feature of the problem in at 
least two different ways. 

Forward 
Reference 

The presence in the text of an element that uses 
features of the problem not defined until later in the 
text. 

Wishful 
Thinking 

The presence in the text of an element that defines a 
feature of a problem in such a way that a candidate 
solution cannot realistically be validated with respect 
to this feature. 

Table 2:  Meyer’s “The seven sins of the specifier” (Meyer, 1985) 

Another study worth mentioning here is the one done by (Kamsties, Berry, & Paech, 2001), 

who introduced five classes of different ambiguity problems of NL requirements 

specifications — each well-defined with practical examples, and used as items of a checklist 

for validating a requirements document. They are: Lexical Ambiguity, Systematic Ambiguity, 

Referential Ambiguity, Discourse Ambiguity and Domain Ambiguity. Table 3 describes 

these items briefly. 
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Table 3: Ambiguity in NL Requirements (Kamsties, Berry, & Paech, 2001) 

 

By describing the steps for ambiguity detection using this checklist, they argued in favor of 

manual inspection and stated that current NLP tools are not apt for proper disambiguation of 

NL requirements; rather, they are misleading. Their work also demonstrated dependence on 

formal specifications, e.g. UML models, especially for detecting domain ambiguities. Their 

suggested heuristics for detecting ambiguities involve attempting to develop UML models, 

and finding the points of contradiction and lack of information in the requirements 

specification. They recommended this process to be carried out by manual manipulation only. 

Their study concludes with the statement “one cannot expect to find all ambiguities in a 

requirements document with realistic resources” – even with such complete human 

involvement (Kamsties, Berry, & Paech, 2001). 

Manual detection is typically the most accurate approach; however, it is also the most 

expensive. Again, use of formalization is not well-understood by non-technical users as well. 

We also find (Letier, Kramer, Magee, & Uchitel, 2005; Cyre, 1995) proposing the use of 

formal specifications to validate requirements. 
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B. Restricting Natural Language 
Many other studies attempt to reduce the problems associated with unrestricted NL by 

limiting the scope of the language. Some use a new NL-like sublanguage, which severely 

limits the expressiveness of the requirements specifiers. Others propose to restrict the 

grammar to consider only a subset of NL while writing requirements document (Denger, 

Berry, & Kamsties, 2003; Fantechi, Gnesi, Ristori, Carenini, Vanocchi, & Moreschini, 1994; 

Rolland & Proix, 1992; Tjong, Hallam, & Hartley, 2006). Using a restricted language does 

simplify the task of maintaining the quality of textual requirements and keep them free of 

ambiguities, but imposes severe constraints on the requirements specifier’s expression. 

We will first look into the details of the study carried out by (Heinrich, Kemp, & Patrick, 

1999), where they proposed the use of a restricted language, called “Flexible Structured 

Coding Language (FSCL)”, thoroughly defined by a fixed set of grammatical rules. The 

advantage of FSCL is that it has an unrestricted vocabulary, and it claims to be unambiguous 

enough to be translated into programming code automatically. Though the paper never 

defined the process of translation, the grammar it used has the potential to be unambiguous 

because of its strictness. 

(Fantechi, Gnesi, Ristori, Carenini, Vanocchi, & Moreschini, 1994) suggested the use of a set 

of grammatical rules for aiding the translation from NL requirements specification to the 

formulae of “action-based temporal logic”, called ACTL. They also have a domain-specific 

dictionary that helps the translation process. The grammar they defined can only deal with 

the possible structures of those NL sentences, which describes an expression of ACTL. This 

makes their grammar very limited for parsing a real requirements specification document. 

The ambiguities they could detect in their case study using this process were due to lack of 

information in the time and the quantification of an expression only. 

A study conducted by (Rolland & Proix, 1992) translated natural language requirements 

specification to a form of semantic net, allowing a broad logical representation in conceptual 

schema. This required the use of a dictionary grouping verbs in six major categories: 

Agentive, Instrumental, Dative, Factitive, Locative and Objective. Each such category led to 

define a fixed set of grammar rules for parsing NL requirements statements into case 
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notations. Their rules, thus, restrict the grammar of natural language used in specification.  

After translation, their system then follows a “paraphrasing process”, using Chomsky’s 

transformational grammar (Chomsky, 1965), to translate the conceptual schema of case 

notations back to NL-based statements. This allows the requirements elicitor to compare the 

natural language requirements specification given as input to the system, and with the one 

received as output from the system, and detect ambiguities. The work thoroughly relies on a 

fixed set of grammar rules and, although, claims to work with requirements written in NL, 

the case study they presented worked with an example requirements document that contained 

sentences of a very simple structure, targeted to be caught by their fixed set of rules. 

C. Using NLP Tools on Unrestricted Language for Requirements 
NLP techniques have advanced at tremendous speed during the past few years. For over a 

decade now, researchers in the fields of both NLP and software engineering, have been trying 

to merge NLP techniques with the tasks of requirements engineering. We know that 

requirements elicitation and validation is one of the key-phases of software’s lifecycle that 

often takes considerably long time to finish with manual manipulation of information. A real-

life requirements document can be lengthy and contain numerous words, phrases and 

sentences, where each of them becomes a candidate for possible ambiguities of different 

kinds. All these reasons made way for NLP techniques to come into the picture for tackling 

this problem. Researchers have introduced NLP in many different ways to detect ambiguity 

in requirements specification. The next sections present a brief survey on some of the most 

important research work in this area. 

QuARS 

(Fabbrini, Fusani, Gnesi, & Lami, 2001) and (Gnesi, Lami, & Trentanni, 2005) addressed the 

issue by trying to measure the quality of a problem description, written in unrestricted NL. 

They initially made a survey on the contemporary studies revealing a number of defects that 

can exist in an NL requirements specification and listed those defects as “indicators” of poor-

quality requirements specification. These are shown in Table 4 [extracted from (Gnesi, Lami, 

& Trentanni, 2005)]. 
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Characteristic Indicators 
Vagueness The occurrence of Vagueness-revealing wordings (as for example: clear, 

easy, strong, good, bad, useful, significant, adequate, recent, ....) is 
considered a vagueness Indicator 

Subjectivity The occurrence of Subjectivity-revealing wordings (as for example: similar, 
similarly, having in mind, take into account, as [adjective] as possible, ...) 
is considered a subjectivity Indicator 

Optionality The occurrence of Optionality-revealing words (as for example: possibly, 
eventually, if case, if possible, if appropriate, if needed, …) is considered a 
optionality Indicator  

Implicity The occurrence of: 
- Subject or complements expressed by means of: Demonstrative adjective 
(this, these, that, those) or Pronouns (it, they…)or 
- Terms having the determiner expressed by a demonstrative adjective (this, 
these, that, those) or implicit adjective (as for example previous, next, 
following, last...) or preposition (as for example above, below...) 
Is considered an implicity Indicator 

Weakness The occurrence of Weak verbs is considered a weakness Indicator 
Under-
specification 

The occurrence of words needing to be instantiated (for example: flow 
instead of data flow, control flow, .. , access instead of write access, remote 
access, authorized access, ... , testing instead of functional testing, 
structural testing, unit testing, .., etc. ) is considered an under-specification 
Indicator. 

Multiplicity The occurrence of sentences having multiple subject or verb is considered a 
multiplicity Indicator 

Table 4: Different Quality Indicators of NL Requirements (Gnesi, Lami, & Trentanni, 2005) 

 

Their studies proposed the use of their tool, called “QuARS: Quality Analyzer for 

Requirements Specification”, for detecting sentences exhibiting different kinds of ambiguity 

in a problem description. Their tool first performs a lexical analysis over a problem 

description using a POS tagger. It also syntactically parses the sentences using the MINIPAR 

parser (Lin, 2003), and finally, it combines both results for detecting the indicators of poor-

quality requirement specification. It also contains an interface, called “View”, for the 

requirements engineer to view the requirements statements by “clusters” having all the 

requirements regarding a specific function or property together. At every stage of processing, 

their tool requires the use of a different “modifiable” dictionary, which is specially created 

and modified for a particular stage of processing and for a specific problem domain by the 

requirements engineer. Their idea heavily depends on using a set of such special dictionaries, 
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whose relevance and practical usage is uncertain. They developed their tool as a prototype for 

their idea, and it is said to produce a quality metrics of NL requirements specification. Again, 

in our view, their quality metrics are not well-defined to classify a problem description as 

ambiguous. 

ARM 

An automated tool for measuring the quality statistics of NL requirements documents, called 

“ARM: Automated Requirements Measurement”, was developed by Software Assurance 

Technology Center (SATC) of NASA. Its developers, (Wilson, Rosenberg, & Hyatt, 1996), 

presented nine categories of quality indicators for requirements specification in detail. They 

are: Imperatives, Continuances, Directives, Options, Weak Phrases, Size, Specification 
Depth, Readability and Text Structure. The first five of these categories are based on 

frequencies of specific words occurring in ambiguity raising contexts. The remaining four are 

related to the organization of the entire requirements specification document. The results, 

derived from using the ARM tool, appeared to be more effective than others at detecting the 

level of ambiguity, but they ignored the use of more advanced NLP methods, e.g. 

morphological analysis and syntactic analysis, which could have pointed out more ambiguity 

issues. 

Newspeak 

(Osborne & MacNish, 1996) used an NLP parser to derive all possible parse trees of each 

sentences in a requirements specification document. Their system, called “Newspeak”, then 

tries to detect ambiguity, if multiple parse tree exists for a particular sentence. Thus, their 

work only focuses on detecting ambiguous syntactic structure of sentences only, and do not 

deal with semantics or even individual ambiguous keywords. 

Circe 

The work of (Ambriola & Gervasi, 1997) attempts to validate NL Specification with the aid 

of the user after deriving a conceptual model automatically from the requirements documents 

by their tool called Circe. Although their tool being funded by IBM is now available as a 

plug-in for Eclipse and is used in practical fields, it still does not consider the existence of 
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ambiguities, which can corrupt their conceptual model, making the errors tough for a user to 

detect from the model later on.  

Our Work on Ambiguity Detection 
Our own work (Hussain, Ormandjieva, & Kosseim, 2007) addressed the problem of detecting 

ambiguities in textual requirements documents. Acknowledging the fact that none of the 

previous work has tested the applicability or performance of using a text classification system 

to automate such detection process, this work demonstrated that the approach of using a text 

classifier is applicable in the practical fields for detecting ambiguous passages in 

requirements documents. The work also encompassed some related important topics, e.g. 

how difficult it is to detect ambiguity manually from requirements documents and how the 

automatic tools developed can compare to human performance. 

To prove our concept, we developed a text classification system that can detect ambiguity in 

a requirements document by classifying its passages as ambiguous or unambiguous.  The 

system yielded high accuracy in performance demonstrating impressive results with 86.67% 

accuracy using 10-fold-crossvalidation technique. Comparing its results of how it agrees with 

the decisions of an expert, it outperformed human annotators with average expertise in 

detecting ambiguities. It can also be affirmed that the system will perform better in practical 

fields with the inclusion of new training data. We also built a prototype of this system, called 

Requirements Specification Ambiguity Checker (ReqSAC), to demonstrate its use. We 

strongly believe that this system, with the potential to clean up ambiguities will not only 

serve our current research, but also be useful as a standalone application working in 

conjunction with the requirements specification writing tools. The prototype of this system is, 

therefore, implemented to run both as a standalone application and from within Eclipse 

and/or Rational XDE environment. 
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Figure 9: Requirements Specification Ambiguity Checker (ReqSAC) 

Although our system established the idea of using a text miner successfully in detecting 

ambiguity from requirements documents, our future work should still focus on introducing 

more training data to improve its efficiency in dealing with unseen textual requirements. 

3.4.2 On Extracting Functional & Non-Functional Requirements 

Functional Size Measurement (FSM) approaches manipulate functional requirements only 

(ISO/IEC 14143-1, 2007), ignoring all the different classes of non-functional requirements 

completely in the initial phrases of measurement. However, in recent years, studies have tried 

to outline processes of quantifying non-functional requirements along with the functional size. 

(Kassab, Ormandjieva, Daneva, & Abran, 2008), for example, suggested to first use the NFR 

ontology (Kassab M., 2009) to realize different types of non-functional requirements into 

functional ones, and determine their weights of development complexity on effort estimation 

by regression over historical data. On the other hand, IFPUG recently proposed their SNAP 

framework (IFPUG, 2013) for assessing different types of non-functional requirements in 

terms of different SNAP categories of functionalities, which is then subjectively weighted by 
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human experts based on previous experiences of their complexities. Thus, to our knowledge, 

measuring the impact of non-functional size can still not be performed early from textual 

description of software requirements, we also suggest the impact NFR size to be considered 

along with effort estimation by means of performing regression analysis over historical data. 

Therefore, in relation to our work of automating the functional size measurement process in 

terms of the COSMIC standard (COSMIC, 2014), as mentioned in Section 1.3, we focus here 

on the related studies on automatic extraction of functional requirements (FR), to separate 

them from the non-functional requirements (NFR), from a collection textual requirements. 

The current processes to extract non-functional requirements (NFR) from requirements 

documents mostly rely on manual inspection, where an analyst reads the texts to identify a 

sentence manually as FR or NFR following different approaches, e.g. (Chung & Sapakkul, 

2006; Cysneiros & Leite, 2002; Hill, Wang, & Nahrstedt, 2004). Research in this field to 

automate the process of separating NFRs from requirements documents has been scarce. 

A study by (Cleland-Huang, Settimi, Zou, & Solc, 2006) explored the use of text 

classification as an attempt to classify requirements statements into ten different classes, one 

class of FR and nine classes of NFR. As reported in their paper, their work attained a recall 

measure of 0.767 and a precision measure of 0.248 with their corpus, on average of the 10-

class classification. The authors used a stemmer to stem the words of the documents, and 

then selected keywords based on their high probability of occurrences in NFR statements. 

Their system then classified a statement as NFR, if the density of those selected keywords in 

that statement exceeds a particular threshold, else, otherwise. 

Some of the latest research work in classifying textual form of non-functional requirements 

into various classes were presented by (Rashwan, Ormandjieva, & Witte, 2013; Casamayor, 

Godoy, & Campo, 2009). (Rashwan, Ormandjieva, & Witte, 2013) presents a simple 

supervised learning-based text classification technique that uses word-level features and an 

SVN classifier to identify functional and different types of non-functional requirements. On 

the other hand, (Casamayor, Godoy, & Campo, 2009) uses a semi-supervised learning-based 

text classifier that uses a probabilistic classifier over word frequency to identify different 

types of non-functional requirements. 
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Our Work on FR-NFR Classification 
Our work presented in (Hussain, Kosseim, & Ormandjieva, 2008) uses a text miner to 

classify textual requirements into functional requirements (FR) and non-functional 

requirements (NFR). It used the same corpus that was used by (Cleland-Huang, Settimi, Zou, 

& Solc, 2006), extracted linguistic features, e.g. the frequency of discriminating syntactic 

features (like cardinals, adjectives etc.) and the frequency of discriminating keywords 

belonging to different Parts-of-Speech (POS) categories in requirements sentences, and 

showed that using a decision tree-based text classifier trained and tested with linguistic 

features attain a high accuracy of 98.56% in classifying textual requirements into FR and 

NFR, and that is when 10-folds-cross-validation is performed over the data used by (Cleland-

Huang, Settimi, Zou, & Solc, 2006). 

3.4.3 On Identifying Domain Concepts & Their Attributes 

COSMIC functional size measurement standard requires the knowledge of the domain 

concepts or conceptual entities as “data-groups” for a particular problem domain, and a 

human measurer is required to identify their attributes from textual requirements and 

associate them with the data-groups that they belong to. Many work(Yue, Briand, & Labiche, 

2011) in the fields of databases and requirements engineering have addressed the tasks on 

automating the process of identifying the domain concepts and their attributes from 

unrestricted textual requirements by means of different natural language processing 

techniques. The work of (Harmain & Gaizauskas, 2000; Samarasinghe & S., 2005) apply 

rule-based approaches where predefined grammars are used over unrestricted textual 

requirements to identify the domain concepts and their attributes. On the other hand, the work 

of (Gelhausen & Tichy, 2007; Körner & Landhäußer, 2010; Landhäußer, Körner, & Tichy, 

2014) extends the rule-based approaches by first extracting the thematic relationships 

between the agents and the patients of actions to distinguish between domain entities and 

their attributes. All of these studies mentioned here go further by extracting the relationships 

among these domain entities to derive static models, which however is not relevant for our 

work of identifying COSMIC’s conceptual artifacts only, i.e. the data-groups and data-

attributes. 
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3.5 Tools for Requirements Annotation 
Software requirements annotation is often performed manually on paper without any tool 

support. However, managing and executing any annotation work with multiple experts 

working as annotators on large sets of software requirements is a tedious process that 

involves several activities, including: 

1. Pre-processing the requirements documents to extract structured instances ready for 

annotation. 

2. Training and/or recruitment of human experts as annotators based on their levels of 

skill. 

3. Running and administering the annotation tasks in a collaborative environment, 

where annotators can share domain knowledge. 

4. Aggregating annotation data (preferably, in digital form) for computer-aided analysis. 

5. Evaluating the gold standard annotation for each instance. 

6. Analyzing the annotation data to study the performance of the annotation work. 

The above steps would require enormous effort for any type of annotation work, if done 

manually without any tool support. Thus, many annotation tools have been released [e.g. 

(Bontcheva et al., 2013; Amazon.com Inc., 2012; Ogren, 2006; Widlöcher & Mathet, 2009; 

Bertran, Borrega, Recasens, & Soriano, 2008)] to automate/semi-automate some of the steps 

mentioned above. Using an annotation tool helps reduce time for the collection of annotation 

data and the conversion of the annotation data to digital format. Also, web-based annotation 

tools provide a collaborative environment where annotation data collected from multiple 

experts can efficiently be synchronized to ensure the robustness of the data. 

However, to our knowledge, none of the current textual annotation tools are tailored 

specifically to aid the requirements annotation tasks. Several natural language annotation 

tools have been proposed over the years, e.g. (Bontcheva et al., 2013; Amazon.com Inc., 

2012), some are open-sourced, while others are not, some targeted to be used for specific 

fields, while others are intended for general linguistic annotation purposes. We briefly 

discuss a notable few in the following sections. 
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3.5.1 GATE TeamWare 

Among all the annotation systems that we analyzed, we consider GATE TeamWare 

(Bontcheva et al., 2013) to be one of the most powerful and versatile annotation tools 

available that can be used for any linguistic annotation projects. The advantages of GATE 

TeamWare over most other annotation systems are: 

i. GATE TeamWare allows seamless integration with powerful pipelines of the GATE 

platform, for pre- and post-processing of the natural language documents. 

ii. GATE TeamWare supports both open-ended and closed-ended forms of annotation. It 

allows customization of the annotation schema, so that annotators can either choose from 

a predetermined static set of annotations, or define a new annotation type while annotating 

an instance. 

iii. GATE TeamWare supports customization of multiple projects with different sets of pre- 

and post-processing pipelines and annotation schema. 

iv. GATE TeamWare allows reporting of different status information of the annotation 

projects to the project curators for monitoring of the annotation work. 

v. Integration of GATE TeamWare with GATE also helps in analyzing the annotations and 

measuring the degree of annotators' agreement over the GATE platform. 

The above advantages make TeamWare, in our opinion, to be one of the best annotation 

systems available for linguistic annotation tasks. However, the annotation schema of 

TeamWare cannot represent hierarchical dependencies among annotation types (e.g. when 

TypeA → TypeB, i.e. an annotation type TypeA is functionally dependant on another 

annotation type TypeB). Also, TeamWare does not provide options for computing gold-

standard annotations automatically. 

3.5.2 Amazon Mechanical Turk 

Amazon Mechanical Turk (AMT) (Amazon.com Inc., 2012) is a web application that is 

designed by Amazon to support any kind of Human Intelligence Task, and, therefore, can 
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also be used for linguistic annotation work. However, annotation work on AMT is inherently 

open to public access, where any annotator with or without necessary skills can contribute 

his/her annotation. AMT also provides a highly customizable interface through its API. The 

API allows integrating AMT's functionality to any custom-built web application. It also 

includes an option for publishing the annotation work privately that restricts annotators 

without required qualification from participating. 

3.5.3 Knowtator 

Knowtator (Ogren, 2006) is an annotation tool that integrates with Protégé (Stanford Center 

for Biomedical Informatics Research, 2014) to store complex relational annotation data over 

well-organized ontologies. The tool supports complex annotation tasks by recording 

hierarchical dependency among annotation types. However, it does not support any form of 

pre-processing over textual documents and the annotators always have to manually select the 

span of an annotation instance before annotating it. The tool works offline, providing 

minimal support for multiple annotators working concurrently. 

3.5.4 Glozz 

Glozz (Widlöcher & Mathet, 2009) is another annotation tool that allows an annotator to set 

the span of each annotation and annotate it according to a set model. Its strength is its 

WYSIWYG graphical presentation of relational annotation, where one annotated instance is 

related to another annotated instance (e.g. for co-reference annotation). It also implements a 

query language to search through the graphs of relational annotations. However, Glozz runs 

locally on one annotator's machine offline; and there is no support for managing the work of 

multiple annotators, nor for reviewing their annotations. 

3.5.5 AnCoraPipe 

AnCoraPipe (Bertran, Borrega, Recasens, & Soriano, 2008) is a simple annotation tool that 

provides support for linguistic annotation at multiple levels. Although the tool is locally 

installed restricting administration of multiple annotators' recruitment, it can compare 

annotation data collected from multiple annotators via remote repositories. However, it 

cannot pre-process documents for corpus creation. 
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3.6 Necessary Features of Annotation Tools 
In this section, we discuss the features of an annotation tool that are necessary to adequately 

support the complex requirements annotation processes in practical scenarios. Practical usage 

of an annotation tool for complex requirements annotation tasks, like functional size 

measurement, as discussed in Section 2.7.2, demands some important features to be available 

with an annotation tool. Table 5 summarizes a comparison of these features that the 

annotation tools, described in Section 3.5, provide. 

Features 
(Support for …) 

GATE 
TeamWare 

Amazon 
Mechanical 
Turk 

Knowtator Glozz AnCoraPipe 

(1) Document Acquisition Yes Yes No No Yes 

(2) Document Pre-processing 
(e.g. automatic segmentation) Yes 

Limited 
(Yes, via API & 
external tools 
only) 

No No No 

(3) Administration on 
Annotators' Recruitment Yes Limited (Yes, 

via API only) No No No 

(4) Customization of 
Annotation Interface No Limited (Yes, 

via API only) No No No 

(5) Relational Annotation Yes Limited (Yes, 
via API only) Yes Yes Yes 

(6) Hierarchical Dependency 
Among Annotation Labels No No Yes No No 

(7) Aggregating Annotation 
Data of Multiple Annotators Yes Yes Yes No Yes 

(8) Computation of Gold-
standard Annotations No Limited (Yes, 

via API only) No No No 

Table 5: Comparison of Features Provided by Current Annotation Tools 

We discuss below the features listed in Table 5 in relation to their necessities in functional 

size measurement activities. 

3.6.1 Document Acquisition 

The document acquisition feature represents the existence of a functionality in the annotation 

tools that facilitates secured interfaces to collect the requirements documents and maintain a 

document repository over a distributed work environment. The feature is not mandatory in 

supporting the annotation tasks related to functional size measurement. However, it helps to 

support large-scale annotation tasks over distributed environments, which are now 
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increasingly common for large software development projects in the industries. As shown in 

Table 5, most of the annotation tools that we tested support this feature. 

3.6.2 Document Pre-processing 

Here, document pre-processing refers to the features of an annotation tool that prepare the 

requirements instances for annotation. In case of functional size measurement, we need the 

annotation tool to extract the sentences and the noun-phrases from the requirements 

documents automatically before commencing the annotation tasks. As shown in Table 5, only 

GATE TeamWare and Amazon Mechanical Turk amongst the other annotation tools that we 

tested, support automatic segmentation of documents allowing extraction of the sentences 

and the noun-phrases. 

3.6.3 Administration of Annotators' Recruitment 

The feature of administering annotators’ recruitment allows an annotation tool to restrict 

unauthorized access to the annotation tasks and allows the curator to recruit of a person as an 

annotator based on his/her background. In case of functional size measurement, the 

annotation tasks usually require persons with certain backgrounds (e.g. software engineers, 

requirements analysts, measurement experts etc.) to be recruited for the tasks. Also, most of 

the industrial software projects in practice are private projects that demands secured access to 

its requirements documents limited to only authorized users. As shown in Table 5, only 

GATE TeamWare and Amazon Mechanical Turk amongst the other annotation tools that we 

tested support administration of annotators' recruitment. 

3.6.4 Customization of Annotation Interface 

This feature of customizing annotation interface allows its annotation interface to be 

customized by the curator of the annotation tasks. Now, functional size measurement requires 

a specialized annotation interface that can guide the annotators to annotate the sentences first 

and then annotate its corresponding noun-phrases. The required interface should also be 

allowed to be customizable for different annotation tasks to facilitate different methods of 

functional size measurement. Moreover, the annotation interface needs to provide specialized 

feedbacks to the annotators about the computed functional size after the completion of the 
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annotation tasks. As shown in Table 5, only Amazon Mechanical Turk amongst the other 

annotation tools that we tested support this level of customization of its annotation interface 

via its API. 

3.6.5 Relational Annotations 

The feature of an annotation tool for assigning relational annotations allows an annotator to 

relate one annotation type with another while performing an annotation task. In case of 

functional size measurement, if an annotator annotates a base noun-phrase as a data-attribute, 

then the annotator needs to relate that annotation to the sentence that he/she annotated as a 

functional requirement. As shown in Table 5, all of the annotation tools that we tested 

support this feature. 

3.6.6 Hierarchical Dependency Among Annotation Labels 

Ensuring hierarchical dependency among annotation labels by an annotation tool dynamically 

limits the choices of annotation labels for an annotator based on an annotation label that 

he/she has chosen earlier for another instance. In case of functional size measurement, this 

feature allows an annotator to annotate the base noun-phrases with the data-attribute 

annotation labels, only when he/she has already annotated their root sentence as a functional 

requirement. As shown in Table 5, only Knowtator amongst the other annotation tools that 

we tested support this feature. 

3.6.7 Aggregating Annotation Data of Multiple Annotators 

Aggregating annotation data of multiple annotators allows an annotation tool to organize 

annotation data in such a way that multiple annotators can provide their annotations for the 

same requirement instance. The annotation tool equipped with this feature can aggregate the 

annotation data of multiple annotators on demand for the curator to analyze the data and 

generate performance evaluations. This feature is not mandatory for the annotation tasks 

related to functional size measurement, as the measurement work can be carried out by one 

expert only. However, it is recommended size measurement should be performed in groups 

(i.e. involving more than one annotators), when the experts are not available (Aiello, Alessi, 

Cossentino, Urso, & Vella, 2007), or when the requirements are informally written (Cohn, 
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2005). In addition, when the requirements annotation data is used for research, multiple 

annotators need to be involved in the annotation tasks to control bias. Also, large scale 

annotation tasks require multiple annotators to reduce the workload per annotator. Thus, for 

all these cases, an annotation tool needs to be capable of organizing and aggregating 

annotation data of multiple annotators. As shown in Table 5, most of the annotation tools that 

we tested support this feature. 

3.6.8 Computation of Gold-standard Annotations 

When multiple annotators annotate the same requirement instances, the computation of gold-

standard annotations allows an annotation tool to use different statistical measures to 

automatically compute the gold-standard annotations for each instance. In case of functional 

size measurement with multiple annotators, as described in the previous paragraph, an 

annotation tool is required to have this feature, so that it can automatically determine the 

gold-standard annotations first, and then compute the functional size based on the gold-

standards. As shown in Table 5, only one of the annotation tools that we tested, i.e. the 

Amazon Mechanical Turk, provides minimal support for this feature; that is only when this 

feature is programmed via its API. Most of the annotation tools we tested supports manual 

computation of the gold-standard annotations. 

It should be noted here that the above study of the required features of a requirements 

annotation tool, guided us to develop a unique annotation tool, called LASR, which supports 

all of the features listed in this section. The tool also includes some additional features to 

specifically aid the functional size measurement tasks that are not supported by any of the 

tools discussed above. Section 5.2 describes the additional features of LASR and how they 

support the tasks of functional size measurement. 

 

3.7 Effort Estimation Techniques 
As discussed in Section 2.5, there have been an overwhelming number of studies performed, 

[for example, BESTweb (Jørgensen & Shepperd, 2007) lists of 1,242 related studies at the 

time of writing this thesis] that are often repetitive (Fraser, Boehm, Erdogmus, Jorgensen, 
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Rifkin, & Ross, 2009), all in attempts of introducing and validating different approaches of 

estimating software development effort. Although, all the solutions proposed in the literature 

acknowledge software size to be the primary factor driving effort and depend, directly or 

indirectly, on some FSM techniques for early effort estimation, the existing literature, to the 

best of our knowledge, does not report on automation of any of the existing FSM processes 

that receives textual requirements as input to begin the task of estimation at the requirements 

specification phase. We continue the discussion from what is discussed in Sections 2.5 and 

2.6, and present some of the most crucial work in this field in following Sections. 

 

3.7.1 Using Parametric Models for Effort Estimation 

Many parametric models of estimating software development effort have been proposed in 

the literature. We will be discussing some of the popular parametric models used in context 

of estimating software development effort in this Section. 

(1) COCOMO & COCOMO II 
The Constructive Cost Model, widely referred to as COCOMO, is the most popular and 

extensively studied open parametric model for software effort estimation. It was first put 

fourth by Barry Boehm in (Boehm B., 1984), and, later, as COCOMO II in (Boehm, et al., 

2000). 

The estimated effort in COCOMO is counted in person-months or person-hours, and the 

equation of its model (COCOMO II) is as follows: 

∏
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The input variables of this model are software size, 17 effort multipliers and 5 exponential 

scaling factors that are presented in the following section. 

Input Variables (or Cost Drivers) in COCOMO II 

The primary variable in COCOMO models is software size that is measured in KSLOC 

(thousand source lines of code). The other variables that are considered as scaling factors and 

effort multipliers in COCOMO II are shown in Figure 10. 

 
Figure 10: Cost Drivers in COCOMO II 

In addition to the primary variable of size, Figure 10 shows the five exponential scaling 

factors to software size, under the group “Related Economies/Disecomonies”. They are: 

Precedentedness (PREC), Development Flexibility (FLEX), Risk Resolution (RESL), Team 

Cohesion (TEAM) and Process Maturity (PMAT). All these factors, except PMAT, can be 

set to the nominal values: Very Low, Low, Nominal, High, Very High and Extra High, while 

PMAT takes the weighted average of “Yes” answers to a questionnaire on Capability 
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Maturity Model (CMM) level of a an institute. The rest seventeen factors are effort 

multipliers that also take the nominal values, similar to the exponential scaling factors. The 

values are — Very Low, Low, Nominal, High, Very High and Extra High — which are 

manually set by human estimators. 

Critical Discussion 

The COCOMO and the COCOMO II models consider software size as its primary variable, 

where size is to be estimated in number of SLOC (Source Lines of Code) before starting the 

estimation process. The use of SLOC in estimation is thoroughly criticized by (Jones, 1997), 

pointing out that the use of SLOC estimate as software size degrades the quality of the input 

data, as the estimation process of SLOC includes parameters that depend on the subjective 

judgment by the estimators. This problem was evident in the study of (Kemerer, 1987) where 

SLOC-based estimation models performed poorly compared to non-SLOC-based estimation 

models. 

Also, each of the other input variables (scaling factors and effort multipliers) to the 

COCOMO II model are manually set to one of the six different subjective nominal values 

(Very Low, Low, Nominal, High, Very High and Extra High) by the estimators, which can 

often become inconsistent being affected by the estimators’ biases and different stakeholders 

influences on the estimators. For example, a scenario is depicted in (McConnell, 2006), 

naming it as Estimation Politics, where an estimator gets forced by the executive to 

unjustifiably tweak the values of the COCOMO II variables of “Programmer Capability 

(PCAP)” and “Analyst Capability (ACAP)” from below nominal to nominal category. Author 

notes that this irrational change results in a 39% reduction to the estimated effort, when using 

the COCOMO II model. Similar problems are mentioned in (Jørgensen & Molokken-Ostvold, 

2004; Lederer & Prasad, 1991). 

(2) SLIM 
SLIM (Software LIfecycle Management) is another popular model developed using the 

theories presented in (Putnam, 1981; Putnam & Meyers, 1992). It is now incorporated in the 

commercial tool, called SLIM-Estimate, produced by Quantitative Software Management, Inc. 

(QSM). 
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The equation of the SLIM model to estimate the effort is as follows: 
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Here, effort is usually estimated in person-months or person-years. 

Input Variables in SLIM 

Similar to COCOMO, the primary variable in SLIM is software size that is measured in the 

number of SLOC (source lines of code), and needs to be estimated beforehand as an input to 

estimate the effort. 

Process Productivity is a non-linear (often, exponential) variable that denotes the capability 

of an organization to produce a certain amount of source code with a given amount of effort 

and within an available time-frame. Its value is recommended to be chosen by calibrating the 

following equation with historical data: 
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B is a multiplicative constant, which is usually selected from values in a lookup table that 

increases with the software size and usually accounts for the effort in system integration 

testing. 

When historical data is not available, the tool, SLIM-Estimate, developed by QSM, uses an 

expert system-based approach to select the value of Process Productivity considering many 

factors, such as the type of the system, the environmental factors (e.g. the programming 

language, the tools, methods, practices, database usage, use of standards etc.), the experience 

of the personnel, the management constraints (e.g. maximum allowable time, maximum cost, 

maximum and minimum staff size, required reliability), the economic factors (e.g. labor rates) 

etc. Most of the values of these variables can be objectively counted. When historical data is 

available within an organization, the non-linear Process Productivity value is converted to 
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linear Productivity Index (ranging from 1 to 40) to rate the productivity of different teams 

and scenarios within the organization. 

Critical Discussion 

Like the COCOMO models, the effort estimation model of SLIM also considers software size 

as its primary variable, where size is to be estimated in number of SLOC (Source Lines of 

Code) before starting the estimation process. Like the SLOC-based size measures, the SLIM 

model also suffers from the same problems as COCOMO, which was shown in the study of 

(Kemerer, 1987) where both COCOMO and SLIM models performed poorly compared to 

non-SLOC-based estimation models. 

Also, when the historical data is absent, the model relies on the expert system-based approach 

that collects the estimator’s answers to a series of 22 different questions to recommend a 

value of Process Productivity variable that was shown by (Kemerer, 1987) to failing to 

capture the essence of productivity in their study. 

(3) Other Models 
Other notable, but commercial, parametric estimation models include: ESTIMACS (Rubin, 

1983) and SEER-SEM (Galorath, 2008). Both of these models use software size as their 

primary variables, but ESTIMACS uses Function Points (discussed in Section 2.7) as its only 

measure for software size, while SEER-SEM requires an SLOC-like measure, called 

Effective Size for its model (it includes formulas to convert function points and SLOC 

measures of software size to effective size). Since these models are commercially available, 

details on them have not been published. 

3.7.2 Estimation by Analogy (EBA) 

Authors of studies like (Shepperd & Schofield, 1997; Idri, Abran, & Khoshgoftaar, 2002; 

Angelis & Stamelos, 2000) presented the approach of effort estimation by analogy (EBA) 

that extends the idea of Case-Based Reasoning (Aamodt & Plaza, 1994). The approach relies 

extensively on the historical database of the past completed projects. 

The idea is — first, to extract enough possible information on different attributes of the 

software project, the effort of which is to be estimated; then, to select projects from the 
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historical database similar to the target project; then, to compare the attributes of the target 

project to those of the similar project to find the multiplicative factors associated with each of 

the attributes; and, finally, to estimate the size and the corresponding effort for each of the 

attributes by multiplying the multiplicative factor to the size and the required effort of the 

attributes of the similar projects respectively. 

Studies, advocating EBA claimed that EBA performed better than parametric methods. 

Moreover, several studies show that contradictory or inconclusive results were obtained when 

different parametric models and EBA method were applied on the same datasets (Myrtveit, 

Stensrud, & Shepperd, 2005; Menzies, Zhihao, Hihn, & Lum, 2006). Also, EBA cannot be 

performed very early in the requirements specification phase, as it is usually dependant on 

many of the design attributes of the target software to be known beforehand. 

3.7.3 Delta Estimation 

(Boehm B., 2000) introduced the concept of delta estimation, which attempts to estimate 

effort of a new project, by taking into account only the small changes (delta) to the cost 

drivers of the previous project. The author describes it as a “safe” method to be used in 

conjunction with the COCOMO I and II models. 

However, (Menzies, Chen, Port, & Hihn, 2005) experimented with the COCOMO’81 dataset 

(Boehm B., 1981) and COCOMO NASA datasets of 60 software projects at NASA, both of 

which are available at the PROMISE repository (Sayyad Shirabad & Menzies, 2005), and 

showed that considering the changes to all the COCOMO cost drivers of the model can result 

in erroneous estimates. 

3.7.4 Calibration and Use of Machine Learning Algorithms 

All the parametric estimation models, described in Section 3.7.1, require to be calibrated by 

data from previous projects. For example, the COCOMO II equation for effort estimation 

requires its multiplicative constant, A, to be determined by calibration of the model with past 

completed projects. Similarly, it is recommended that the value of the Process Productivity 

variable in the SLIM model be determined by calibration of the model. It is assumed that a 
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large number of past projects used for calibration can yield better accuracy of the estimation 

models. 

There have been uses of many different machine learning algorithms in recent studies for 

calibrating the effort estimation models. Also, these algorithms have been used to determine 

the multiplicative factors in support of estimation by analogy. The algorithms that were used 

in some of the important studies in software effort estimation are listed below: 

(1) Regression Algorithms: Used in (Heiat, 2002; Jørgensen M., 2004b; Levine & 

Hunter, 1983; Miyazaki, Terakado, Ozaki, & Nozaki, 1994) 

(2) Bayesian Algorithms: Used in (Chulani, Boehm, & Steece, 1999; Mendes & Mosley, 

2008; Pendharkar, Subramanian, & Rodger, 2005; Stamelos, Angelis, Dimou, & 

Sakellaris, 2003) 

(3) Neural Network Algorithms: Used in (Dawson, 1996; Flitman, 2000; Hakkarainen, 

Laamanen, & Rask, 1993; Idri, Khoshgoftaar, & Abran, Can neural networks be 

easily interpreted in software cost estimation?, 2002; Park & Baek, 2008; Zhang, 

Patuwo, & Hu, 1998) 

(4) Genetic Algorithms: Used in (Shukla, 2000; Burgess & Lefley, 2001; Chang, 

Christensen, & Tao, 2001; Huang & Chiu, 2006; Shan, McKay, Lokan, & Essam, 

2002; Braga, Oliveira, & Meira, 2008) 

Although, in our view, the publicly available datasets often used in these studies, are 

inconsistent because of the differing quality of data corrupted with estimators’ biases and the 

differing sources of data originating in differing environmental constraints from one 

company to the other. This inconsistency of datasets led these studies to attain average or 

below average results. Thus, many studies, for example (Mendes, Martino, Ferrucci, & 

Gravino, 2007; Kemerer, 1987), have shown that local calibration within a single company 

performs better than global cross-company calibration. Thus, it is recommended by most 

researchers to calibrate the parametric models of effort estimation using historical data of 

local projects (Fraser, Boehm, Erdogmus, Jorgensen, Rifkin, & Ross, 2009). 
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3.8 Conclusion 
Despite so many studies carried out and so many methods introduced in the last three decades 

on software effort estimation, expert judgment remains the most popular and most used effort 

estimation method in the industry (Shepperd & Cartwright, 2001). Again, despite so many 

sophisticated algorithms used to attain better results in using effort estimation models, the 

studies of (Lederer & Prasad, 1992; Jørgensen M., 2004a) report that effort estimations done 

by expert judgment, on average, were at least as accurate as those done with estimation 

models. The work of (Lewis, 2001) showed that the main source of the problem is with the 

parameters or features of the estimation models that are subjectively computed inducing 

inconsistencies in the calibration data of the model. The author suggests that many of the 

previous studies presented overly exaggerated results because of the estimation biases. Also, 

most of the results of all these studies in software effort estimation are presented with the 

statistically unreliable measure of PRED (Conte, Dunsmore, & Shen, 1986), which many 

studies have criticized, like (Port & Korte, 2008; Foss, Stensrud, Kitchenham, & Myrtveit, 

2003; Kitchenham, Pickard, MacDonell, & Shepperd, 2001). 

Although all solutions proposed in the literature emphasize, directly or indirectly, on early 

effort estimation by the use of FSM, the existing literature, to the best of our knowledge,  

does not report on the automation of any of the existing FSM processes that receives textual 

requirements as input to begin the task of estimation at the requirements specification phase. 

All these indicate that the research area of early effort estimation is still open, with much 

prospects in automating an FSM method like COSMIC that can objectively measure the size 

of the software. 
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Chapter 4 
 

Methodology 
 
 

“All things are difficult before they are easy.” 
— Thomas Fuller 

 

4.1 Introduction 
The objectives of this research were introduced in Section 1.3. In this chapter, we will 

elaborate on these objectives setting a strictly defined set of research questions. We will then 

explain our related hypotheses and our methodology in details.  The chapter will then present 

a brief overview of the metrics and tools used in our research. 

4.2 Phases of Our Methodology 
We conducted several empirical studies in this research in five different phases, as mentioned 

in Section 1.3. The phases were: 

Phase I: FSM by Non-Experts 

Phase II: Size Approximation 

Phase III: Requirements Classification 

Phase IV: FSM Model Extraction 

Phase V: Evaluation of FSM Automation 

The sequence of these phases, their inputs and outputs and their outcomes are illustrated in 

Figure 11. 
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- Validation of our approach 
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Figure 11: Phases of Our Methodology 
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The phases of our methodology, along with the initial inception phase, are described in 

details in the following sections. 

4.2.1 Inception 

We start our methodology with the aim to understand the problem of measuring functional 

size of a software from its requirements documents. Our target in this inception phase was to 

choose some of the leading work related to functional size measurement and to critically 

review their approaches to identify their strengths and weaknesses. This allowed us to select 

COSMIC as the FSM method that we would be experimenting with in this research, for its 

qualities of being objectively computed and applied early at the requirements specification 

phase. Thus, our study, in this phase, helped us formulate the objectives and the scope of our 

research, and also pointed out the lack of evaluative research to address the problem of 

measuring functional size early in the requirements specification phase. 

4.2.2 Phase I: FSM by Non-Experts 

The high costs induced by an expert in Functional Size Measurement (FSM), as discussed in 

Section 1.2, led us to choose the following objective for our research: 

Objective #1: To investigate if the process of functional size measurement can be executed 

effectively with non-expert. 

We first addressed this research objective in this phase. In this research, we intend to 

investigate if the task of functional size measurement can be done without engaging experts. 

The work of experts are costly and time-consuming. They have varying levels of expertise 

and use biased judgments that can introduce inconsistency in the outcome of the FSM tasks. 

Therefore, we extend our research with this objective by exploring if the task of FSM can be 

performed by non-experts. Fulfilling this objective can also help us in understanding the 

feasibility of achieving our objective #5, presented in Section 1.3. 

Our Approach: Following this research objective, we first designed the FSM activities as 

annotation tasks to be performed on textual requirements. The details about our annotation 

task design are presented in Section 5.3 of Chapter 5. 
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We then ran experiments where an expert and a group of well-trained non-experts performed 

the FSM activities by annotating the same set of textual requirements. 

Metrics: In the above experiments, we measured the accuracy of non-experts’ annotation by 

their level of agreement with the expert’s annotation in terms of Cohen’s Kappa (Cohen, 

1960) and set the baseline as moderate level of agreement following the evaluation scale of 

(Landis & Koch, 1977). 

The research question that we targeted by our above experiments in relation to our objective 

is presented below, along our related null and alternative hypotheses: 

Research Question, Q1: “Can well-trained non-experts attain at least a moderate level of 

agreement with the expert for annotation tasks related to FSM?” 

Null Hypothesis, H1,0: Well-trained non-experts can never attain at least a moderate level of 

agreement with the expert for annotation tasks related to FSM. 

Alternative Hypothesis, H1,a: Well-trained non-experts can attain at least a moderate level 

of agreement with the expert for annotation tasks related to FSM. 

The formalization of the above hypotheses, along with a detailed discussion on the related 

variables and metrics, are presented in Section 5.3, where we also discuss the details of our 

experiments and analyze our results. 

During the above experiments, the annotation work of the non-experts required a two-week-

long training and costly adjudication session afterwards to resolve the points of 

disagreements amongst the non-experts. Thus, in this phase, we extended our scope with an 

additional research objective as follows: 

Objective #2: To improve the overall process of FSM-related requirements annotation by 

attaining accurate annotations with non-experts having minimal training. 

Our Approach: Following this research objective, we developed a computer-aided manual 

annotation approach, along with a dynamic annotation adjustment model, that can help a 
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group of non-experts to perform the FSM related annotation tasks and achieve an acceptable 

level of agreement with an expert. We then implemented an online annotation tool, called 

Live Annotation of Software Requirements (LASR) to test out our annotation approaches. 

The implementation of LASR is briefly discussed in Section 5.8. 

We then ran controlled annotation experiments using LASR to compare the accuracy of both 

well-trained and minimally-trained groups of non-experts for these FSM related tasks. 

Metrics: In the above experiments, we measured the accuracy of non-experts’ annotation by 

their degrees of agreement with the expert’s annotation in terms of Cohen’s Kappa (Cohen, 

1960). 

The first research question, which we targeted by our above experiments in relation to our 

objective #2, is presented below, along our related null and alternative hypotheses: 

Research Question, Q2: “Which type of FSM-related manual annotation tasks performed by 

non-experts attains a higher accuracy: the manual annotation task performed by well-trained 

non-experts, or the LASR-aided annotation task performed by minimally trained non-

experts?” 

Null Hypothesis, H2,0: The FSM-related manual annotation tasks performed without LASR, 

but by well-trained non-experts and with disagreements resolved through the adjudication 

session, always attain a higher accuracy than the LASR-aided manual annotation tasks 

performed by minimally trained non-experts and with no adjudication process. 

Alternative Hypothesis, H2,a: The LASR-aided manual annotation tasks related to FSM that 

are performed by minimally-trained non-experts with no adjudication process, can attain an 

equal or higher accuracy than the manual annotation tasks performed by well-trained non-

experts without LASR, but with disagreements resolved through the adjudication session. 

The next research question, which we targeted by our above experiments in relation to our 

objective #2, is presented below, along our related null and alternative hypotheses: 
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Research Question, Q3: “Which type of FSM-related manual annotation tasks performed by 

non-experts finishes quicker: the manual annotation task performed by well-trained non-

experts, or the LASR-aided annotation task performed by minimally trained non-experts?” 

Null Hypothesis, H3,0: The FSM-related manual annotation tasks performed without LASR, 

but by well-trained non-experts, always finish quicker than the LASR-aided manual 

annotation tasks performed by minimally trained non-experts and with no adjudication 

process. 

Alternative Hypothesis, H3,a: The LASR-aided manual annotation tasks related to FSM that 

are performed by minimally-trained non-experts, can finish at the same time as or quicker 

than the manual annotation tasks performed by well-trained non-experts without LASR. 

The formalization of the above hypotheses, along with a detailed discussion on the related 

variables and metrics, are presented in Sections 5.3 to 5.7, where we also discuss the details 

of our experiments and analyze our results. 

4.2.3 Phase II: Size Approximation 

In phase II, we addressed the open research problem #1, as presented in Section 1.2, by 

formulating the following research objective: 

Objective #3: To determine the most discriminating linguistic features of informally written 

textual requirements for approximating functional size. 

Our objective aims to use informally specified software requirements for Functional Size 

Measurement so that the size can be measured at the earliest phase of software development 

lifecycle. Formalization of software requirements gradually improves requirements from its 

initial informal narration in textual form. The process is costly, requires expert intervention, 

delays the development and is often mistakenly avoided by the industry in practice to reduce 

cost and meet tight schedule. Although our intention is not against requirements 

formalization, we, however, want to investigate if functional size can be approximated 

without requirements formalization. Approximating FSM on informally written textual 
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requirements can allow effort estimation to be performed very early in the life cycle of a 

software project. 

Our Approach: Following this objective, we first used statistical quartiles to label our sets 

of textual requirements by a discrete number of nominal classes based on their functional size 

measured by experts. We use these labels as gold-standards representing the approximated 

functional sizes for the respective sets of textual requirements. We then devised a text mining 

approach utilizing natural language processing tools, e.g. a part-of-speech tagger and a 

syntactic parser, to extract the linguistic features from our sets of textual requirements. Our 

approach then applies machine learning techniques to select the linguistic features that 

discriminate our sets of textual requirements the most, based on the nominal classes 

representing their approximated functional size. The details about our approach for the 

approximation of functional size are presented in Section 6.2. 

We then ran our experiments to check if our text mining approach can predict the nominal 

classes representing the approximated functional size of unseen textual requirements and 

moderately agree with their gold-standard classifications. 

Metrics: In the above experiments, we measured the level of agreement of the predicted 

class labels with the gold-standard labels in terms of Cohen’s Kappa (Cohen, 1960) and set 

the baseline as moderate level of agreement following the evaluation scale of (Landis & 

Koch, 1977). 

The research question, which we targeted by our above experiments in relation to our 

objective #3, is presented below, along with the related null and alternative hypotheses: 

Research Question, Q4: “Can our text mining approach utilizing an automatically chosen set 

of discriminating linguistic features predict the nominal classes representing the 

approximated functional size of unseen textual requirements and at least moderately agree 

with their gold-standard classifications?” 
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Null Hypothesis, H4,0: Our text mining approach utilizing the discriminating linguistic 

features cannot predict the approximated functional size classes of unseen textual 

requirements that at least moderately agrees with their gold-standard classifications. 

Alternative Hypothesis, H4,a: Our text mining approach utilizing the discriminating 

linguistic features can predict the approximated functional size classes of unseen textual 

requirements that at least moderately agrees with their gold-standard classifications. 

A detailed discussion on our experiments to validate the above hypotheses, are presented in 

Section 6.3, where we also analyze our results. 

4.2.4 Phase III: Requirements Classification 

In phase III, we addressed the open research problem #2, as presented in Section 1.2, by 

formulating the following research objective: 

Objective #4: To explore the most discriminating syntactic features of textual requirements 

for classifying them into functional and non-functional requirements. 

Our objective here is to attain higher accuracy of classifying functional and non-functional 

requirements than the contemporary approaches by using the most discriminating syntactic 

features of textual requirements. We will be discussing the contemporary approaches in 

details in Section 3.4.2. 

Our Approach: Following this objective, we first collected textual samples of functional 

requirements (FR) and non-functional requirements (NFR) that the contemporary studies 

used to report on the accuracies of their approaches. We assumed the labels (FR and NFR) 

for these already classified requirements as the gold-standards for our study. We then devised 

a text mining approach utilizing natural language processing tools, e.g. a parts-of-speech 

tagger and a syntactic parser, to extract the linguistic features from our textual samples of FR 

and NFR. Our approach then applies machine learning techniques to select the linguistic 

features that discriminate the most between our training sets of FR and NFR. The details 

about our approach for classifying textual requirements into functional and non-functional 
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requirements were presented in (Hussain, Kosseim, & Ormandjieva, 2008). We also include 

details about this approach in Section 4.4.2. 

We then ran our experiments to check if our text mining approach can identify FR and NFR 

from unseen textual requirements and moderately agree with their gold-standard labels. 

Metrics: In the above experiments, we again measured the level of agreement of the 

predicted class labels with the gold-standard labels in terms of Cohen’s Kappa (Cohen, 1960) 

and set the baseline as moderate level of agreement following the evaluation scale of (Landis 

& Koch, 1977). 

The research question, which we targeted by the above experiments in relation to our 

objective #4, is presented below, together with the related null and alternative hypotheses: 

Research Question, Q5: “Can our text mining approach utilizing an automatically chosen set 

of discriminating linguistic features identify functional and non-functional requirements from 

unseen textual requirements and at least moderately agree with their gold-standard 

classifications?” 

Null Hypothesis, H5,0: Our text mining approach utilizing the discriminating linguistic 

features cannot identify functional and non-functional requirements from unseen textual 

requirements and at least moderately agree with their gold-standard classifications. 

Alternative Hypothesis, H5,a: Our text mining approach utilizing the discriminating 

linguistic features can identify functional and non-functional requirements from unseen 

textual requirements and at least moderately agree with their gold-standard classifications. 

A detailed discussion on our experiments to validate the above hypothesis, were presented in 

(Hussain, Kosseim, & Ormandjieva, 2008), where we also present our analysis of the results. 

The summary of the outcomes of these experiments are also included in Section 4.4.2. 

4.2.5 Phase IV: FSM Model Extraction 

In phase IV, we intended to build traceability of a functional size measurement (FSM) model 

by relating the elements of textual requirements with the artifacts of the model. We, thus, 
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addressed the open research problem #3, as presented in Section 1.2, by choosing the 

following research objective: 

Objective #5: To identify how the experts deduce the relationship between the linguistic 

elements of unrestricted textual requirements and the objects of interest in a functional size 

measurement model. 

This relates to our primary objective for this research that aims to learn the process of at least 

one functional size measurement (FSM) method in a way so that it can be applied over 

unrestricted textual software requirements. We intend to understand how a human expert 

measures functional size when he reads software requirements document. The conventional 

methods of FSM only records the numbers that leads to count the functional size of the 

software. Our goal is to make the process of measuring functional size transparent enough to 

provide traceable reasoning for all the decisions taken by an expert during functional size 

measurement. Capturing this knowledge and making FSM traceable do not only help during 

investigating the causes of any incorrect measurement, but also reduces the chances of 

introducing subjective judgments, as each of the judgments of the measurers would then be 

supported by detailed reasoning. 

We found in our literature survey that the measurement task in COSMIC (ISO/IEC 19761, 

2003; COSMIC, 2014), unlike the other FSM standards, can be performed without requiring 

the subjective judgment of human experts, but only when the software requirements are 

formalized and well-decomposed. Thus, we chose to emulate the COSMIC standard for our 

research, as it brings the manipulation of software requirements closer to be mapped on to the 

process of functional size measurement. Its manual lists the objects of interest of its FSM 

model that are to be extracted by an expert measurer through analyzing functional 

requirements. These objects are comprised of data-attributes belonging to data-groups and 

four different types of movements of the data-attributes. Thus, it is still dependent on the 

expertise of human measurers to analyze the functional requirements, prepare the COSMIC 

model and determine the COSMIC functional size. 

Our approach: To learn which linguistic elements indicate the presence of which FSM 

modeling artifacts to the experts, we first devised a process of requirements annotation that 
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assigned a human expert to derive FSM modeling artifacts by carefully annotating different 

linguistic elements of the textual requirements. For example, in case of our studies using the 

COSMIC standard, the expert had to annotate the base noun-phrases in the functional 

requirement sentences as mentions of moving data-attributes belonging to certain data-

groups, which are artifacts of the COSMIC FSM model. In their annotation, they also had to 

indicate what the types of movements these data-attributes are participating in. This 

associated the annotated noun-phrases with another kinds of COSMIC modeling artifacts, 

called the data-movement types. A detailed discussion on these COSMIC modeling artifacts 

are presented in Section 2.7.2 of Chapter 2. 

We hold these expert annotations as the gold-standards representing the correct traceability 

links between the FSM modeling artifacts and the textual requirements. We then devised two 

different text mining approaches, both of which utilize natural language processing tools, e.g. 

a parts-of-speech tagger, a syntactic parser, gazetteers, syntactic rules etc., to first extract a 

pool of linguistic features from our textual samples of base noun-phrases belonging to the 

functional requirement sentences. Our first approach then applies a rule-based text mining 

technique that follows a series of our custom-developed heuristics to identify base noun-

phrases that are linked to the FSM modeling artifacts using our pool of linguistic features. 

And, our second approach applies a supervised learning based text mining technique to 

dynamically select the linguistic features and rules that discriminate the most between the 

collection of base noun-phrases in our training dataset that can be linked to the FSM 

modeling artifacts, and the collection of base noun-phrases that cannot be linked. The details 

about both of our text mining approaches for classifying base noun-phrases as linked to 

different FSM modeling artifacts are presented in Chapter 7. 

We then ran our experiments to check if our text mining approaches can better identify the 

base noun-phrases that are linked to the FSM modeling artifacts by agreeing more with the 

gold-standards. 

Metrics: In the above experiments, we compared the accuracy of our two approaches by 

measuring their precision, recall, f-measure and their level of agreement with the gold-

standard in terms of Cohen’s Kappa (Cohen, 1960). We also set the baseline for both of our 



 

 
69 

approaches as moderate level of agreement following the Kappa-based evaluation scale of 

(Landis & Koch, 1977). 

The first research question, which we targeted by the above experiments in relation to our 

objective #5, is presented below, along our related null and alternative hypotheses: 

Research Question, Q6: “Can our supervised learning-based text mining approach utilizing 

our pool of linguistic features identify from unseen textual requirements the base noun-

phrases4 as being related to specific artifacts of a functional size measurement model and at 

least moderately agree with the gold-standards?” 

Null Hypothesis, H6,0: Our supervised learning-based text mining approach utilizing our 

pool of linguistic features cannot identify from unseen textual requirements the base noun-

phrases as being related to specific artifacts of a functional size measurement model and at 

least moderately agree with the gold-standards. 

Alternative Hypothesis, H6,a: Our supervised learning-based text mining approach utilizing 

our pool of linguistic features can identify from unseen textual requirements the base noun-

phrases as being related to specific artifacts of a functional size measurement model and at 

least moderately agree with the gold-standards. 

 

The next research question, which we targeted by our aforementioned experiments in relation 

to our objective #2, is presented below, along our related null and alternative hypotheses: 

Research Question, Q7: “Can our heuristics-based text mining approach utilizing our pool of 

linguistic features identify the base noun-phrases as being related to specific artifacts of a 

functional size measurement model and at least moderately agree with the gold-standards?” 

                                                 
4 As mentioned earlier in Chapters 1 and 2, we use the term “base noun phrase” to refer to a noun or a noun 
compound or a personal pronoun. Thus, in our case, it actually refers the smallest part of the base noun 
phrase (Samarasinghe & S., 2005) that do not contain any part-of-speech class of word, other than nouns or 
a personal pronoun. It therefore represents the smallest segment of textual requirement that can 
independently express the mention of an artifact of a functional size measurement model. 
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Null Hypothesis, H7,0: Our heuristics-based text mining approach utilizing our pool of 

linguistic features cannot identify the base noun-phrases as being related to specific artifacts 

of a functional size measurement model and at least moderately agree with the gold-

standards. 

Alternative Hypothesis, H7,a: Our heuristics-based text mining approach utilizing our pool 

of linguistic features can identify the base noun-phrases as being related to specific artifacts 

of a functional size measurement model and at least moderately agree with the gold-

standards. 

The final research question, which we targeted by our aforementioned experiments in relation 

to our objective #2, is presented below, along our related null and alternative hypotheses: 

Research Question, Q8: “Which text mining approach utilizing our pool of linguistic 

features can identify with higher accuracy the base noun-phrases compounds as being related 

to specific artifacts of a functional size measurement model: our supervised leaning-based 

approach, or the heuristics-based approach?” 

Null Hypothesis, H8,0: There is no difference in accuracy between our supervised leaning-

based text mining approach and our heuristics-based text mining approach when utilizing our 

pool of linguistic features to identify with higher accuracy the base noun-phrases as being 

related to specific artifacts of a functional size measurement model. 

Alternative Hypothesis, H8,a1: Our supervised leaning-based text mining approach attains a 

higher accuracy than our heuristics-based text mining approach when utilizing our pool of 

linguistic features to identify with higher accuracy the base noun-phrases as being related to 

specific artifacts of a functional size measurement model. 

Alternative Hypothesis, H8,a2: Our heuristics-based text mining approach attains a higher 

accuracy than our supervised leaning-based text mining approach when utilizing our pool of 

linguistic features to identify with higher accuracy the base noun-phrases as being related to 

specific artifacts of a functional size measurement model. 
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A detailed discussion on our experiments to validate the above hypotheses, is presented in 

Section 7.9 of Chapter 7, where we also analyze our results. 

4.2.6 Phase V: Evaluation of FSM Automation 

Finally, in phase V, we used our knowledge gathered from our research to implement the 

automation of our approaches of performing functional size measurement (FSM) from textual 

requirements. We intended to evaluate the feasibility of automating FSM by comparing its 

accuracy and its time-related efficiency to the manual process of FSM. We, thus, chose the 

following research objective: 

Objective #6: To evaluate the feasibility of automating functional size measurement from 

textual requirements. 

Fulfilling this objective can verify the rationale of implementing our approach of measuring 

functional size from textual requirements in practice.  

Our approach: To address this objective, we first assigned a human expert to measure the 

functional sizes of different systems from their textual requirements. We identified these 

measurements as our gold-standard. We then implemented the automation of our text mining 

approaches, presented in Chapter 7, and extracted the FSM modeling artifacts automatically. 

Our implementation then calculated the functional size automatically based on the extracted 

FSM model. The brief details about our implementation are presented in Section 7.7. 

We then ran our experiments to check if the automation of our text mining approaches 

measure the functional size within an acceptable margin of error and quicker than manually 

performed tasks of FSM over the same textual requirements. 

Metrics: In the above experiments, we calculated the error in measurement through Mean 

Magnitude of Relative Error (MMRE). We also preset the acceptable margin of error in terms 

of MMRE. 

The first research question, which we targeted by our above experiments in relation to our 

objective #6, is presented below, along our related null and alternative hypotheses: 
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Research Question, Q9: “Can the automation of our approaches measure functional size 

within the acceptable margin of error, when compared to the measurements of an expert?” 

Null Hypothesis, H9,0: The automation of our approaches measures functional size with 

errors higher than the acceptable margin of error, when compared to the measurements of an 

expert. 

Alternative Hypothesis, H9,a: The automation of our approaches measures functional size 

with errors equal to or lower than the acceptable margin of error, when compared to the 

measurements of an expert. 

The next research question, which we targeted by our aforementioned experiments in relation 

to our objective #6, is presented below, along our related null and alternative hypotheses: 

Research Question, Q10: “Can the automation of our approaches measure functional size 

quicker than the time of an expert to measure functional size manually?” 

Null Hypothesis, H10,0: The automation of our approaches measures functional size slower 

than the time of an expert to measure functional size manually. 

Alternative Hypothesis, H10,a: The automation of our approaches measures functional size 

at the same time as or quicker than the time of an expert to measure functional size manually. 

A detailed discussion on our experiments to validate the above hypotheses is presented in 

Section 7.8, where we also analyze our results. 

 

Table 6 shows how all of our above research questions map to our research phases to address 

our research objectives. 
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 Objective #1 Objective #2 Objective #3 Objective #4 Objective #5 Objective #6 
Phase I: 
FSM by 
Non-Experts 

Research 
Question, 

Q1 

Research 
Questions, 

Q2 & Q3 
    

Phase II: 
Size Approximation   

Research 
Question, 

Q4 
   

Phase III: 
Requirements 
Classification 

   
Research 
Question, 

Q5 
  

Phase IV: 
FSM Model 
Extraction 

    
Research 
Questions, 
Q6 , Q7 & Q8 

 

Phase V: 
Evaluation of FSM 
Automation 

     
Research 
Questions, 

Q9 & Q10 

Table 6: Mapping of Research Questions over the Reseach Phases in Relation to the Objectives   

Thus, to sum up our six research objectives that were targeted during the span of our five 

research phases, our overall aim with this research is to address the open problems mentioned 

in Section 1.2 by developing a comprehensive methodology for measuring functional size 

from textual software requirements written in unrestricted natural language, and, thus, 

facilitate early estimation of software development effort. 

In the next section, we will be discussing our formalization of functional size measurement 

process and its approach of quantifying the size. 

 

4.3 Formalization of FSM Model and Quantification 
In this section, we describe how we formalized the conventional quantification process of 

functional size measurement (FSM). We related the conceptual artifacts of FSM to specific 

textual segments of software requirement by modeling an ontology. We then present the 

formulas, which not only can be applied over the instances of this model to calculate the 

numerical value of the functional size, but also fully complies with the standard process of 

FSM, described in (ISO/IEC 14143-1, 2007). Thus, this formalization can be implemented 

algorithmically to automate the computation of numerical value of the functional size of a 

software.   
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Extraction of functional size from software requirements documents require human experts to 

thoroughly understand the textual requirements, then follow a complex evaluation process 

and use experienced judgment to extract the conceptual artifacts that pertain to the functional 

size measurement standard. Various FSM standards prescribe different evaluation processes 

that often depend on subjective judgment of the experts in extracting the conceptual artifacts. 

We therefore chose the latest iteration of the COSMIC FSM standard for our experiments 

that promises an objective measurement approach when well-decomposed and formalized 

functional requirements are used (COSMIC, 2014). However, the standard depends on 

experts’ contribution in extracting its conceptual modeling artifacts, as discussed in Section 

2.7.2. They are the COSMIC Data-movements and the COSMIC data-groups. The COSMIC 

data-movements are of four types: Entry, Exit, Read and Write. 

Thus, as discussed in Section 2.7.2, the measurement process of COSMIC functional size 

requires identifying the presence of any or some of the four types of data-movements in one 

segment of functional requirement, and then mapping one or more data-groups to each of the 

data-movements. We therefore built an ontology (in OWS format), as shown in Figure 12, 

that relates the conceptual artifacts of COSMIC FSM into a formal model when instantiated 

from textual requirements. It also builds traceable mapping between the segments of a 

requirements document and the artifacts of an FSM model. 
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Figure 12: Ontology of COMIC FSM Model 

We know that a numerical value of functional size is first assigned to each of the functional 

processes of a requirements document and then summed up to measure the size of the whole 

document, as discussed in Section 2.7.2.  We formalize this counting process by first 

assuming that a requirements document, DOCUMENTp , belonging to the problem domain p, 

contains the following set of n functional processes— 

{FPROC1, FPROC2, FPROC3, …. , FPROCn} 
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Thus, the functional size of the software as represented by DOCUMENTp is— 


=

=
n

i
ip FPROCSizeFunctionalDOCUMENTSizeFunctional

1
)()(  (1)

We also know, according to the COSMIC standard, that the set of all possible types of data-

movements— 

DM = {Entry, Exit, Read, Write} 

And, let the set of all possible data-groups that can appear in the problem domain p be— 

DGp = {data-group1 , data-group2 , …. , data-groupm} 

—where data-group1 , data-group2 , …. , data-groupm are data-group names or domain entity 

names that belong to a specific problem domain x, as discussed in Section 5.9.3 of Chapter 5. 

According to the COSMIC standard, whenever a data-group participates in any type of data-

movement, we need to identify this incidence as one object that is later to be aggregated by 

functional process for counting its functional size. Thus, this object can be represented as a 

pair as follows: 

(data-group name , data-movement type) 

For our process of formalizing of the FSM counting process, we identify such pair as an FSM 

object. 

Thus, the set of all possible FSM objects for the problem domain x is {(data-group1 , Entry), 

(data-group1 , Exit), (data-group1 , Read), (data-group1 , Write), (data-group2 , Entry), … 

(data-groupm , Entry), (data-groupm , Exit), (data-groupm , Read), (data-groupm , Write)}. 

This can also be written as— 

   DMDG p ×  

We define FSMObjects(y) as a function that returns a set of our FSM objects that represent 

distinct types of data-movements of different data-groups that appear within the functional 

process, y. 
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Therefore, ( ) DMDGFPROCFSMObjects pi ×⊂  

That is, our objective of FSM automation would to realize this function such that 

FSMObjects(FPROCi) would return the set of elements that are only some of the following 

pairs and appear within FPROCi: 

(data-group1 , Entry), (data-group1 , Exit), (data-group1 , Read), (data-group1 , Write), (data-

group2 , Entry), … (data-groupm , Entry), (data-groupm , Exit), (data-groupm , Read), (data-

groupm , Write)  

Thus, due to the nature of sets (i.e. having no duplication of elements in a set leads to no 

duplication of our FSM objects counted within a functional process), the aggregated measure 

of functional size of FPROCi would simply be— 

)()( ii FPROCFSMObjectsFPROCSizeFunctional =  (2)

And, therefore, by equations (1) and (2) — 


=

=
n

i
ip FPROCFSMObjectsDOCUMENTSizeFunctional

1
)()(  (3)

Here, in accordance with the COSMIC standard, the COSMIC functional size, measured in 

units of COSMIC Function Points (CFP), is equal to the sum of the frequencies of all these 

FSM objects that belong to each of the functional processes. Therefore, with such modeling 

approach, we can generate a traceable report to show the breakdown of the total CFP for each 

different type of data-movement and for each functional process, while linking each of these 

artifacts to its source segment of textual requirements. 

Thus, in this section, our application of the ontology-based modeling techniques provided 

traceability links from the input textual requirements to the output functional size. We also 

described our method of formalizing the CFP counting process through our formulas that 

followed the COSMIC standard accordingly. We later used this idea into building our novel 

extension of the CFP counting process by defining the ranges of CFP automatically, as 

described in Section 7.8. 
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4.4 Linguistic Introspection of Size Measurement Analysis 
(LISMA) 

In the introduction chapter of this thesis, the methodology of our solution for automated 

functional measurement was briefly introduced (see Section 1.3). We name this methodology 

as Linguistic Introspection of Size Measurement Analysis (LISMA), and our research 

discussed in this thesis evaluates feasibility of each of its steps with controlled experiments. 

Our plan for these experiments were distributed over several phases, which have been 

presented previously in Section 4.2. 

In this section, the major intermediate steps of LISMA and their intermediate inputs and 

outputs are discussed.  With LISMA, we integrated all of our linguistic analysis approaches 

used in the phases mentioned in the Section 4.2, to devise a comprehensive and innovative 

approach that takes textual software requirements written in unrestricted natural language as 

input and outputs the functional size of the software as reflected by the input requirements. It 

also outputs the corresponding functional size measurement (FSM) model and builds 

traceability links between the segments of the original textual requirements and the 

conceptual artifacts of the FSM model.  The details of LISMA along with experiments that 

evaluate its feasibility are presented throughout the chapters of this thesis. Figure 13 briefly 

shows the intermediate tasks performed in LISMA. 
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Figure 13: Inputs, Outputs and the Intermediate Steps of LISMA Supporting Early Effort Estimation 

As shown in Figure 13, LISMA can be incorporated with the existing workflow of measuring 

functional size that is presented earlier in Figure 2 in Section 1.2, and introduces more details 
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in comparison. Thus, Figure 13, shows how LISMA starts by taking the captured textual 

requirements as input, passes the text through three intermediate steps and finishes by 

outputting the functional size for effort estimation and the corresponding Functional Size 

Measurement (FSM) model with traceability links. These three intermediate steps are: 

i. Analysis of Requirements Quality/Defects 

ii. Classification by Requirements Taxonomy 

iii. Measurement of Functional Size 

LISMA integrates the above three intermediate steps in such way that they can be executed 

both manually and automatically. LISMA allows both of our manual and automated 

approaches of these steps to be executed in parallel, independent of each other. The brief 

implementation details of our automated approaches for the above three steps are presented 

in Sections 4.4.1, 4.4.2 and 4.4.3 respectively. On the other hand, we designed all of the 

manual approaches related to the above three steps as collaborative annotation tasks, that are 

assisted by our uniquely designed annotation tool, called Live Annotation of Software 

Requirements (LASR), which is described in details in Chapter 5. 

The software development effort estimation step, shown in Figure 13, is kept outside of the 

scope of LISMA. It reflects our innovative approach to effort estimation using functional size 

measurement that takes into account the impacts of different types of Non-Functional 

Requirements and different types of problem domains, published in (Abdukalykov, Hussain, 

Kassab, & Ormandjieva, 2011). 

4.4.1 Analysis of Requirements Quality/Defects 

To measure functional size from unrestricted textual requirements, a measurer first faces the 

challenge of cleaning up the text from all its ambiguities. Our manual approach of detecting 

ambiguities involve the task of manually annotating textual requirements, based on a quality 

model (Hussain, Ormandjieva, & Kosseim, 2007; Ormandjieva, Hussain, & Kosseim, 2007) 

that can discriminate between ambiguous and unambiguous requirements at lexical level. Our 

annotation tool, LASR, is equipped with text pre-processing modules that can extract 



 

 
81 

sentences from requirements documents and guide a human annotator to manually perform 

requirements annotation tasks. 

However, the task of detecting ambiguity from text can be monotonous and error-prone for 

long requirements documents when done manually, resulting in the usage of poor quality 

requirements for functional size measurement, that eventually can contribute to poor quality 

results in the measurement. 

To face this challenge, our previous work (Hussain, Ormandjieva, & Kosseim, 2007; 

Ormandjieva, Hussain, & Kosseim, 2007) showed that using a trained text-mining system we 

can successfully classify requirements text into ambiguous and unambiguous sentences. As 

requirements development process is iterative in nature (IEEE, 2004), such text mining 

system can aid the requirements analyst to extract the ambiguous sentences so that they can 

be elaborated upon or rephrased or dropped by the specifier and then reanalyzed by the 

system. Thus, the iteration continues until no ambiguous statements are left in the document, 

providing a better quality requirements document, ready for any FSM methods to be applied. 

Thus, in this step, we use the Ambiguity Checker tool, described in (Hussain, Ormandjieva, 

& Kosseim, 2007; Ormandjieva, Hussain, & Kosseim, 2007) to facilitate a semi-automated 

environment to detect and resolve ambiguity in the textual requirements. The tool outputs a 

collection of sentences in the document as unambiguous, and the rest, classified as 

ambiguous, are fixed manually by the requirements specifier. Thus, the document moves to 

the next iteration resolving ambiguity on the way, and the process ends when all the 

sentences in the document are classified as Unambiguous. The accuracy of this classifier in 

detecting ambiguity, when 10-fold-Crossvalidation performed on 472 instances, was 88.56%, 

as recorded in our work presented in (Hussain, Ormandjieva, & Kosseim, 2007; Ormandjieva, 

Hussain, & Kosseim, 2007). 

4.4.2 Classification by Requirements Taxonomy 

The taxonomy of requirements categorizes requirements into many classes. However, since 

the functional size measurement methods work primarily on functional requirements (FR) 

only, the next challenge that a measurer faces is to extract the functional requirements 
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manually from the requirements document, where both functional and non-functional 

requirements can be mixed together in the same paragraphs. Again, the manual counterpart of 

our approach in LISMA prescribes this task to be performed as collaborative annotation over 

unambiguous textual requirements to classify them as either functional or non-functional 

requirements. Our annotation tool, LASR, as described in Chapter 5, supports executing and 

monitoring such requirements classification tasks over large repositories of textual 

requirements. 

Moreover, our previous work (Hussain, Kosseim, & Ormandjieva, 2008) showed that, again, 

a text miner can effectively classify the requirements text into different classes of 

requirements taxonomy, e.g. functional and non-functional requirements, with a high 

accuracy of 98.56%, when 10-fold-Crossvalidation performed on 765 instances. It can 

therefore help the measurer extract the functional requirements automatically, so that the 

FSM methods can be applied. 

Thus, in this step, we take the unambiguous textual requirements that we received from the 

previous step as input to this step, and we use the text miner, presented in (Hussain, Kosseim, 

& Ormandjieva,2008) to classify textual requirements into functional requirements (FR) and 

non-functional requirements (NFR). Thus, the set of FR sentences are extracted fully 

automatically and its performance are shown to attain a very high accuracy in the results. The 

NFR’s extracted in this step are left to be used for further processing in the later on steps. 

4.4.3 Measurement of Functional Size 

Measuring Functional Size is the final and the most complex step of LISMA. Here, we use 

the unambiguous functional requirements, as extracted from the previous two steps, 

described in Sections 4.4.1 and 4.4.2 respectively; and, for our research, we choose to 

measure the functional size, in the units of COSMIC Function Points (CFP), that is entailed 

by these requirements. The overview of the approach for measuring functional size using the 

unambiguous functional requirements is illustrated in Figure 14. 
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Figure 14: Our Approach for Measuring the Functional Size from Functional Requirements 

As shown in Figure 14, our approach follows three initialization steps before starting to 

measure functional size. These steps: 

(1) Collection of Archived Resources: Our approach first starts with collecting the 

historical datasets and textual requirements from the archived projects belong to a specific 

problem domain. We try to gather as much resources as possible to describe the problem 

domain, its common conceptual entity names, the actor names and the common verbs used to 

express the four types of data-movement. 

(2) Building Lexical Database: After the collection of resources from archived projects, we 

start the process of building a lexical database for the specific problem domain. The database 

contains words and phrases of different categories. They are: 

i. Domain Entity Names / Data-group Names 
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ii. Attribute Names 

iii. Actor Names 

iv. Data-Movement Verbs 

v. Stative Verbs 

The domain entity names or the data-group names are collected straight from the domain 

analysis of archived projects within the same problem domain (mostly by analyzing their 

static models, e.g. the domain model). Also, the collaborative environment of our annotation 

tool supports building the list of data-group names from the collective knowledge of the 

annotators, as shown in Section 5.2.1. We thus use both the approaches to build this 

vocabulary. 

Then, our vocabulary of attributes contained words that can be used to represent members or 

properties or measurable attributes of any entity (i.e. data-group, for our work). We not only 

use the static models of our archived projects in this respect, but also manually selected a 

slice of nouns from WordNet (Miller, 1995; Princeton University, 2010) that belong to the 

super classes Property, Relation and Communication via their hypernym paths. We then 

manually modified some of the words to create new forms that may appear in textual 

requirements. 

We select our vocabulary of actor names as mentions of people or their roles or their 

professions or their positions in an organization. We suggest including names of human 

actors to this vocabulary based on our historical knowledge of the archived projects from the 

same problem domains. 

The data-movement verbs commonly appear to express the action of different types of data-

movements and are not specific to any problem domain. These verbs are further grouped into 

four sets: Entry Verbs, Exit Verbs, Read Verbs and Write Verbs, based on the type of data 

movements they participate in.  

We develop the vocabulary of Stative Verbs that are mostly used to describe the states of 

objects instead of describing actions over them. The usage of these verbs is also not specific 

to any problem domain. These verbs in most cases describe the state being or having or 
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spatial relations amongst objects. We again used WordNet (Miller, 1995; Princeton 

University, 2010) to manually extract our vocabulary of stative verbs. 

Figure 15 shows our approach of building the lexical database. We first use the available 

resources from the archived projects to determine seed words for each of the aforesaid 

categories. We then expand the vocabulary of each category by using the synsets of WordNet 

(Miller, 1995; Princeton University, 2010) and adding new synonyms that are common to 

each pair of the seeded words in that category until no new synonym exists. 

Build Dictionaries

Data Group
Names

Actor
Names

Attribute
Names

Data-Movement
Verbs

WordNet

Select Seed Words 
Related To 

Problem Domain

Build Lexical Database

Stative
Verbs  

Figure 15: Our Approach for Building The Lexical Databases 

These databases are later on used by our linguistic feature extractor to extract different lexical 

features from textual requirements for our automated FSM approach that implements text 

mining process (discussed in Section 7.4.1). However, these databases do not need to be a 

complete collection of names and verbs for a problem domain, as the text miners used in this 

research relies on many other syntactic features too (presented in Section 7.4.2) that also 

helps to generalize its classification approach across different less-familiar problem domains. 

All the lexical databases that we used during our experiments are presented in Appendix A. 

(3) Clustering of Textual Requirements: The COSMIC measurement standard (ISO/IEC 

19761, 2011; COSMIC, 2014) prescribes to measure the size of a software by pieces, each of 

which is called a “functional process”. The COSMIC standard defines the functional process 
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as a set of data-movements that can stand alone to represent an individual functionality of a 

software and is triggered by an external event. Thus, a functional process corresponds to the 

use cases of the software requirements document (Jenner, 2011; Condori-Fernàndez, Abrahão, 

& Pastor, 2007). However, the functional requirement sentences, within a requirements 

document, may not appear together in groups that correspond to individual use cases or 

functional processes. 

Thus, the FSM process in COSMIC starts by grouping these requirements sentences 

manually, where each group corresponds to one functional process. Our approach of 

measuring functional size in LISMA assumes the groups of functional requirements 

indicating the functional processes to have already been identified, either manually or by 

using an unsupervised text clustering technique as developed by our research group (Moradi-

Seresht, Ormandjieva, & Sabra, 2008) for the Requirements Engineering Assistance 

Diagnostic (READ) project. This text clusterer can automatically group sentences in a 

requirements document into sets of sentences that correspond to individual use cases. Since 

COSMIC functional processes are analogous to use cases (Jenner, 2011; Condori-Fernàndez, 

Abrahão, & Pastor, 2007), our approach recommends using such text clustering technique, in 

case the sentences of functional requirements are not already tagged to indicate the functional 

processes that they belong to. 

After finishing all of the above initialization steps, LISMA in parallel follows on with a 

manual process and an automatic process to measure the functional size, as earlier shown in 

Figure 14. The manual process allows human annotators of different expertise to 

collaboratively measure the functional size following a unique approach. On the other hand, 

the automatic process can either approximate the functional size, if the textual requirements 

to measure are not formally written (e.g. user stories); or it measures the functional size 

precisely by extracting the functional size measurement (FSM) model, if the textual 

requirements are written formally (e.g. fully-dressed use cases).  
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4.5 Conclusion 
This chapter explained the details of the phases of our research methodology. It then 

introduced our formalization of the COSMIC functional size measurement process and its 

quantification by modeling an ontology. We then briefly described the steps of our 

methodology for automating functional size measurement. 

The next chapter (Chapter 5) investigates the feasibility of performing the FSM activities 

with non-experts.  It describes the details of the functional size measurement by manual 

annotation with non-experts  and discusses how a linguistic annotation tool  can effectively 

aid the complex  tasks of functional size measurement from software requirements. 
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Chapter 5 
 

Functional Size Measurement 
By Non-Experts 
 
 

“The measure of a man is what he does with power.” 
— Plato 

 

5.1 Introduction 
Manual measurement of functional size by analyzing textual requirements conventionally 

requires human experts for the task. Thus, it can be a very costly activity to perform in large-

scale software projects or research work by engaging the human experts in time-intensive 

manipulation of textual requirements. 

To address these issues, Phase I of this research investigates the possible means of reducing 

functional size measurement cost through requirements annotation work performed by non-

experts. The related research objectives, research questions and our hypothesis have been 

presented in Section 4.2.2, while our tools, and the design and the results of our experiments 

are discussed in this chapter. 

Our research in this phase led us to develop an annotation tool, called “LASR” (Hussain, 

Ormandjieva, & Kosseim, 2012), that assists software measurers and requirements analysts 

with collecting annotation data by supporting different types of requirements annotation tasks. 

It combines not only the common features of annotation tools (as presented in Section 3.6), 

but also some unique additional features, that are presented  in this chapter in Section 5.2.2, 

making it specifically suitable for performing functional size measurement. The chapter also 

includes a brief discussion on LASR’s design and implementation. 
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LASR helps building large pools of annotated corpora for statistical data collection and 

improves the overall process of FSM by attaining more accurate annotations with less time 

spent by the annotators. Figure 16 presents a brief workflow diagram showing how LASR 

works. 
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Figure 16: An Overview Workflow Diagram of LASR 

As shown briefly in Figure 16, LASR not only aids the annotation tasks related to functional 

size measurement, but also provides a comprehensive environment that helps to pre-process 

and extract requirements instances, design and administer annotation projects, determine 

gold-standard annotations and compute the functional size measurement reports 

automatically. Here, in this chapter, we test the effectiveness of these additional features of 

LASR by executing different annotation experiments in relation to our research questions Q1 , 

Q2 and Q3 , as presented in Section 4.2.2. 

The chapter is organized as follows: we present brief details on the annotation interface and 

the unique features of our annotation tool LASR in Section 5.2, describe the overview of our 

annotation experiments in Section 5.3, present the details of our experiments and the analysis 

of their results in Sections 5.4 to 5.7, discuss the implementation details of LASR briefly in 

Sections 5.8, 5.9 and 5.10, and, finally, add our concluding remarks in Section 5.11. 
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5.2 LASR: Live Annotation of Software Requirements 
As the available annotation tools did not provide the features required for our work, we 

developed LASR (Live Annotation of Software Requirements). LASR aids the collection of 

annotated corpora and the generation of training/testing datasets required by the supervised 

learning systems related to our work (Hussain, Ormandjieva, & Kosseim, 2009). It can be 

customized for use with both private and public annotation projects. All data of the private 

software projects can be kept protected from unauthorized access. Thus, software 

organizations can use LASR to manage their requirements documents, setup any kind of 

annotation tasks and share their data securely with designated users only. 

5.2.1 Annotation Interface for Functional Size Measurement 

LASR provides a rich graphical user interface that allows quick navigation and control 

during the annotation tasks. The frontend interface is implemented using PHP and jQuery 

libraries, making it dependant only on the JavaScript engine of an internet browser at the 

client-side. This makes LASR accessible from a wide-range of client-side platforms (e.g. PCs, 

smartphones, tablets etc.). 

It also allows customization of its user interface for annotation via editable XML-based 

templates to support any types of requirements annotation tasks, that includes the annotation 

tasks related to functional size measurement as well. For example, Figure 17 shows its 

annotation interface for COSMIC functional size measurement. 
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Figure 17: First Screenshot of LASR's Customized Annotation Interface for COSMIC Annotation. 

Figure 17 shows that the customized annotation interface of LASR includes several key 

attributes that help to complete the COSMIC annotation tasks successfully. We describe 

these attributes of the annotation interface in details below: 

(1) View of the requirement instance 
As shown in Figure 17, the requirement instance to be annotated (a requirement sentence, in 

this example) is presented by default in the middle of LASR's annotation interface with 

comparatively larger typeface in an attempt to draw the focus of the annotators to the 

instance and allowing them to read it with ease. Here, in this example, the annotation 

interface shows one requirement sentence at a time to the annotator. Thus, hiding the context 

of the requirement sentence by default allows an annotator to consider one sentence at a time 

for annotation, minimizing the risk for an annotator to skip the annotation tasks necessary for 

a sentence due to losing his/her focus to its context. 

(2) Navigation between requirement instances 
There are also three navigation buttons at the bottom of the annotation interface, shown in 

Figure 17. Here, the left and the right buttons allow an annotator to navigate to the previous 

or the next requirements sentence respectively for performing new annotations, or reviewing 

and re-annotating his/her previous annotations. LASR auto-saves all the annotation work 
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during navigation. The middle button allows the annotator to save the annotation work that 

he/she performed so far on the currently viewing requirements sentence. This realizes the 

feature of LASR that allows an annotator to start, stop and resume the annotation tasks at a 

time of his/her convenience. The feature helps to eliminate the fatigue effects (Galesic & 

Bosnjak, 2009) of the annotators during large-scale requirements annotation work. 

(3) View of the summary of the task 
The left pane of the annotation interface, as shown in Figure 17, presents by default a quick 

summary of the annotation tasks including a graphical representation of the portions of the 

tasks completed versus the portions of that is remaining in terms of a pie chart. It also allows 

the annotators to take a quick glance at the related context of the requirement sentence, if 

necessary. 

(4) View of the related data-groups 
In Figure 17, we also find that the customized annotation interface is configured to include a 

widget at the right pane that collaboratively builds a list of the names (or, dictionary) of the 

related domain concepts (i.e. data-groups, in COSMIC) belonging to a specific problem 

domain. This widget allows the annotators to participate collaboratively in building this 

domain-based dictionary of data-groups, and thus, describe the problem domain to LASR as 

they encounter new data-groups by reading new requirements instances from the problem 

domain during the annotation tasks. Here, an annotator can view the collection of the data-

group names that have been added so far to the specific domain-based dictionary by all the 

annotators participating in these annotation tasks. In case the annotator encounters a new 

domain concept, i.e. a new data-group name, while reading the current requirements instance 

he/she can add it to the dictionary using this widget. 

(5) View of the elapsed time 
LASR records the time spent by an annotator in completing the annotation tasks for each of 

the instances. This recorded time represents all the time spent over the viewing an instance 

and entering the annotations, including the time spent later on the same instance, if the 

annotator chooses to come back and re-annotate the instance. Figure 17 shows that the 

annotation interface at its bottom right corner includes a real-time display of this time with a 
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much smaller typeface in an attempt to be not too distracting for the annotators. The interface 

allows this display of the elapsed time, counting up in real-time, to be turned on optionally by 

the annotator to persuade him/herself to annotate faster. The annotator can also turn off the 

display anytime if it becomes too distracting during the annotation work. 

(6) Annotation input fields 
As shown in Figure 17, a set of input fields appear below the requirement sentence 

containing the choices of annotation. Here, following the process of functional size 

measurement in COSMIC, the customized annotation interface first asks the annotators to 

classify each requirements sentence into any of the four categories: 

i. Functional Requirement 

ii. Non-Functional Requirement 

iii. Ambiguous Requirement 

iv. Noise 

The interface also requires the annotators to indicate their levels of confidence5 to their 

annotations. The annotators can also choose to add comments to their annotations. 

If an annotator chooses to annotate a requirement sentence as a “Functional Requirements”, 

the customized annotation interface displays additional input fields that allow the annotator to 

annotate the base noun-phrases of the sentence to indicate their roles as COSMIC artifacts 

(e.g. data-attributes, data-groups, and data-movements), as shown in Figure 18. Thus, the 

annotator needs to check if any of these base noun-phrases represent any data-attribute that 

participate in COSMIC data-movement, based on what is stated in the respective functional 

requirement sentence. If so, the annotator annotates these noun-phrases as data-attributes by 

indicating what data-groups they belong to and what kinds of data-movements they 

participate in. 

                                                 
5 The level of confidence is a four-valued attribute in LASR that is associated with each annotation label 
submitted by an annotator. Its discrete values are {0.1, 0.4, 0.7, 1.0}. The annotation interface shows these 
values nominally as “I have no idea about this”, “Maybe, I'm not sure”, “Most likely”, and “Highly 
Confident” respectively. The value 0 is attached to all those annotation labels, which are not submitted by 
the annotator. 
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Figure 18: Second Screenshot of LASR's Customized Annotation Interface for COSMIC Annotation 

 
 

5.2.2 Additional Features of LASR 

In addition to the features discussed in Section 3.6, LASR includes a set of unconventional 

features that make it a unique annotation tool in comparison to the contemporary linguistic 

annotation tools, presented in Section 3.5. Practical usage of an annotation tool for the tasks 

functional size measurement demands some of these features as services to be available. Thus, 

these additional features are targeted to improve the overall experience of using an annotation 

tool for the functional size measurement tasks. We discuss these additional sets of features in 

the following sections. 

(1) Features For Usability 
We chose a unique set of features to be additionally included in LASR with an aim to 

improve its usability and support the tasks of functional size measurement. They are: 
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The Annotation Interface 

The fully customizable annotation interface of LASR allows using some unique web-widgets 

that are especially designed to enhance the annotation experience during functional size 

measurement tasks. As discussed in Sections 1.2 and 2.7.2, functional size measurement 

activities in practice demands large scale annotation work that are costly in terms of the 

amount of time spent by the annotators during annotation. With an objective to reduce this 

annotation time, we unconventionally designed LASR's default annotation interface for 

functional size measurement, which is discussed in Section 2.7. For example, LASR's 

annotation interface by default shows only the instance to be annotated at one time, hiding its 

surrounding context, in an attempt of holding the focus of the annotator solely on the instance 

to annotate. Thus, the interface also predefines the scope of the instance to be annotated and 

relieves the annotator from the task of defining the scope of each requirements instance. Our 

target with this feature is not only to reduce the annotation time and effort, but also to 

minimize the chances of annotation errors and, thus, achieve a higher degree of agreement 

among the annotators during complex requirements annotation tasks, e.g. functional size 

measurement.  

Collaborative Acquisition of Domain Knowledge 

The web-based interface of LASR allows collaborative participation of the annotators, during 

the requirements annotation process, to build domain-based dictionaries containing probable 

annotation labels for data-group annotation. The feature of building these domain-based 

dictionaries is realized in LASR by a special widget that is presented earlier in Section 5.2.1. 

This feature is specifically added to support the requirements annotation tasks related to 

COSMIC functional size measurement, and, to our knowledge, no other annotation tool to 

date offers a similar feature. Thus, LASR holds a separate dictionary for each problem 

domain and allows the annotation of data-groups to be performed with ease, reducing the 

effort of an annotator to inspect a large set of requirements every time to identify the name of 

one data-group. Also, the feature imposes restrictions on the choices and scopes of data-

group annotation tasks resulting in less annotation errors and higher agreement among the 

annotators. 
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(2) Feature For Efficiency 
Here we list the features that are additionally included in LASR with the aim of attaining 

more accurate annotations over software requirements from non-experts. 

When using an annotation tool for the tasks of functional size measurement, the accuracy of 

the measurements relies on the correctness of the gold-standard annotation label chosen for 

each of the requirements instances. Now, if non-experts are involved with the annotation 

tasks, their levels of skill in functional size measurement affects the correctness of their 

annotations. Thus, annotation tools may automatically compute wrong labels as gold-

standard annotations by normalizing the annotations of the non-experts. This phenomenon is 

resolved in practice by avoiding automatic computation of gold-standard, and by manually 

reviewing and adjudicating the annotations collectively in group meetings to select the 

correct gold-standard annotation label for each instance. However, the process can be 

extremely costly and time-consuming for large scale requirements annotation tasks that are 

related to functional size measurement. 

Thus, LASR includes the features of tracking the levels of skill of the annotators and their 

levels confidence in choosing the annotation labels. This allows LASR to logically infer 

gold-standard annotations for each instance following different statistical measures to weight 

the annotations of the non-experts based on their levels of skill and confidence. It, thus, 

eliminates the need of manual processing the annotation data to maintain the correctness of 

gold-standard annotations, and can generate annotated corpora automatically for 

training/testing different text mining systems that are intended for use in different areas of 

requirements engineering and functional size measurement. To address this, LASR includes a 

feature to track the levels of skill of the annotators and their levels of confidence when 

choosing the annotation labels. This allows LASR to logically infer gold-standard 

annotations for each instance following different statistical measures to weigh the annotations 

of the non-experts based on their levels of skill and confidence. It, thus, eliminates the need 

of manual processing the annotation data to maintain the correctness of gold-standard 

annotations, and can generate annotated corpora automatically for training/testing different 

text mining systems that are intended for use in different areas of requirements engineering. 
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LASR provides two different options to compute the gold-standard annotations automatically. 

They are: 

i. Using Annotators’ Confidence Level Only 

ii. Using Annotators’ Confidence and Skill Levels 

We describe them below. 

i. Using Annotators’ Confidence Level Only 

The first option LASR introduces is to compute the gold-standard annotations automatically 

using the level of confidence entered by the annotators. Here, LASR tries to compute the 

gold-standard annotation for each of the annotated instances, by first assigning a custom 

score to each of the annotation labels based on the level of confidence submitted by the 

annotators. Thus, the annotation label with the highest score, and that is also greater than 0.56, 

is selected as the gold-standard annotation. LASR uses the formula below to calculate the 

probability score. It shows that if mi annotators have annotated an instance i, and the class c is 

one of the possible class labels for annotating the instance i, then the probability score of 

class c for the instance i is — 
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Thus, the final probability score of an annotation class c for an instance, i, is the arithmetic 

average of all the confx,c,i values submitted by each annotator, x. The confidence of an 

annotator x, denoted by confx,c,i in the formula (1), is equal to one of values of {0.1, 0.4, 0.7, 

1.0} that is according to the level of confidence chosen by the annotator x, while annotating 

the instance i as class c. And, for all those classes, c', that are not chosen the annotator x for 

the instance i, confx,c',i will be equal to 0. Thus, 0 ≤ confx,c,i ≤ 1. 

                                                 
6 LASR requires the annotators to attach fuzzy levels of their confidence to each of their annotations. The 
level of annotator's confidence is collected as a 4-value ordinal nominal variable, instead of a continuous 
numerical variable. The 4-value ratings are then translated into fuzzy numeric values that are chosen as 
positive real numbers ≤ 1, all having equal intervals, and none being 0.5 or 0. This is because we wanted no 
annotation to be ignored because of a zero weight or be indecisive because of a 0.5 weight on the 
confidence level. 
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ii. Using Annotators’ Confidence and Skill Levels 

LASR also provides another option to compute gold-standard annotation automatically. This 

option requires the expert, who designs an annotation work, to seed the annotation data 

beforehand by setting true gold-standard annotations for at least a small portion of the un-

annotated corpora. LASR recommends seeding by annotating at least 10% 7  of the un-

annotated instances randomly. The seeded annotations are regarded as the true gold-standard 

annotations; and LASR then measures the skill level, Sx, of each annotator, x, as the 

probability of his/her annotations agreeing with the true gold-standard annotations. For 

example, if the annotations of an annotator, x, agrees with the portion of the true gold-

standard annotations seeded by the expert 60% of the times, then the skill level, Sx, measured 

by LASR would be 0.6. Thus, LASR uses a modified version of the formula (1) as below to 

calculate the score for selecting the gold-standard annotation labels for each instance— 

 
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Thus, the annotation label c that achieves the highest score in terms of the formula (2) is 

selected as the gold-standard annotation for an instance i. 

Unlike the previous option of using annotator's confidence level only, this option is 

dependent on an expert seeding the annotation data by annotating with a small portion of the 

unannotated corpus. Thus, to make the process of expert seeding optional, LASR provides 

both of these options to compute gold-standard automatically. Our experiment#2a presented 

in Section 5.5 compared the effectiveness of both features. 

5.3 Experiments Overview 
In this section, we will present the details of our experiments following the reporting 

guidelines of (Wohlin, Runeson, Höst, Ohlsson, Regnell, & Wesslén, 2012; Jedlitschka, 

Ciolkowski, & Pfahl, 2008). We will specifically discuss the evaluation of our research 

questions, Q1, Q2 and Q3 , and hypotheses H1,0 , H1,a , H2,0 , H2,a , H3,0 and H3,a , presented 

                                                 
7 In our experiment, for example, we used seeding by annotating 11.67% of the un-annotated instances 
randomly that yielded good results, as presented in 5.5.2. 
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earlier in Section 4.2.2. We carried out a number of controlled annotation experiments in 

order to validate our design choices of LASR's features, especially its features for efficiency, 

as presented in Section 5.2.2. In relation to our research questions, Q1, Q2 and Q3 , we had 

non-experts in our experiments performing annotation tasks using LASR over textual 

software requirements (similar to the task shown in Section 2.7.2) and compared its accuracy 

to that obtained with manual annotation, without any tool support. 

5.3.1 Participants: The Annotators 

Two groups of annotators and one expert (in the field of software requirements engineering 

and functional size measurement) participated for each case in the experiments. A total of 

two different experts worked on six different cases — one on two academic cases and the 

other on the remaining four industrial cases. The experts were graduate students, who were 

experts in the original problem domain and were actively involved with the development of 

these projects represented by the cases. They also had a year of measurement experience. 

The first group of annotators (NEft 8), consisting of four people, all graduate students of the 

Master of Computer Science program, were trained for requirements annotation and 

functional size measurement. They could distinguish between functional, non-functional, and 

ambiguous requirements and sentences in requirements documents that are none of those, or 

“noise”. They can also measure functional size from a given set of textual requirements. All 

annotators first participated in preliminary tests to perform requirements annotation on test 

documents. The expert leaded the two-week-long training of the annotators, and also 

participated with them in all of our annotation experiments. 

The other group (NEmt 9) consisted of 26 people, all third-year students of the undergraduate 

software engineering program. They were introduced to the COSMIC standard (through a 

one-hour lecture and reference books), but were not thoroughly trained. Before the 

experiments were performed, no prior tests were conducted to verify their knowledge. 

However, they were all trained via a one-hour-long tutorial to work on LASR's annotation 

interface for requirements annotation. 

                                                 
8 NEft is the name for the group of “Non-Experts, with full training” 
9 NEmt is the name for the group of “Non-Experts, with minimal training” 
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5.3.2 Experimental Materials 

The Corpus 

Our corpus (sample set of requirements documents) used in these experiments was composed 

of six requirements documents belonging to six different software projects respectively. Four 

of these projects are of the same problem domain, while the remaining two are from different 

problem domains. The requirements documents have been collected from both the industry 

and academia. Some of these documents were complete, while others were “change 

requirements” describing only small required modifications to an existing system. Some 

statistics about these documents are presented in Table 7. 

Doc. 
ID Doc. Title Source Problem 

Domain 
Extracted After Pre-processing 

Total Sentences Total Noun-
Phrases

C1  (undisclosed) SAP Labs, Montreal, 
Canada Business 91 314

C2  (undisclosed) SAP Labs, Montreal, 
Canada Business 15 59

C3  Course Registration 
System Concordia University Academic 

(Private) 179 711

C4  IEEE Montreal 
Website Concordia University Web (Public) 467 1318

C5  (undisclosed) SAP Labs, Montreal, 
Canada Business 7 27

C6  (undisclosed) SAP Labs, Montreal, 
Canada Business 106 383

Table 7: Documents in the Corpus, Used in the Experiments 

 

Table 7 shows the number of sentences extracted after pre-processing only those sections of 

the requirements documents that held textual user requirements. 

 

Setups for Manual Annotation 

All the sentences in our corpus were used to populate a spreadsheet in Microsoft Excel that 

served as the interface for the manual annotation task of our experiment. A macro-script in 

Excel guided the annotators through our experiment and also measured in the background the 

time spent by each annotators during their respective annotation tasks. 
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Setups for Annotation on LASR 

A new annotation project was created in LASR by compiling the annotation templates in 

XML and loading our corpus. The annotators who were part of this experiment were already 

registered in LASR and were then assigned to their respective annotation tasks via LASR. 

5.3.3 Experiment Execution 

As presented in Section 5.3.1, we had two different groups of non-expert annotators, NEft and 

NEmt, where we purposefully chose NEft to be more advantaged than NEmt. Here, NEft 

received full training by the expert (with multiple practice sessions) to perform requirements 

annotation. On the other hand, NEmt, our other non-expert group of annotators, received only 

minimal training for requirements annotation. 

We designed our experiments, so that the fully-trained non-expert annotators of NEft 

annotated the requirements documents of our corpus manually, without the support of LASR, 

and the minimally-trained non-expert annotators from NEmt use LASR to annotate the same 

documents. Also, we had our only expert annotate all of these documents manually. In the 

analyses of our experiments, we compared the performances of each of the non-expert groups 

NEft and NEmt to that of the expert. The tasks performed by all our annotators during these 

experiments are summarized in Table 8. 

Doc 
ID 

Total Sent. 
To Annotate 

Total Noun-
Phrases

To Annotate 

Annotators Participating 
via LASR 

Annotators Participating 
Manually 

Minimally Trained 
Non-Experts (NEmt) 

Fully Trained 
Non-Experts (NEft) Expert 

C1 91 314 14  1 
C2 15 59 14  1 
C3 179 711 14 4 1 
C4 467 1318 12 4 1 
C5 7 27 12 2 1 
C6 106 383 14 4 1 

Table 8: Task of the Annotators 

It should be mentioned that all the annotators of the groups did not participate in annotating 

sentences from all the documents. This was consciously done to reduce the average workload 

of annotators, and also due to some of their absences (e.g. the document, C5, was manually 

annotated by the expert and only two annotators from NEft, instead of four; and the 

documents, C1 and C2, were annotated by the expert only). 
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Simple Annotation Experiments over Sentences 

In this set of experiments, the annotators performed simple sentence-level requirements 

annotation, where they had to annotate sentences into one of the following four classes: 

i. Functional Requirement 

ii. Non-Functional Requirement 

iii. Ambiguous Requirement 

iv. Noise 

A total of 858 sentences from six documents were annotated using this experiment. The 

details of these experiments and along with the results and their analyses are presented in 

(Hussain, Ormandjieva, & Kosseim, 2012), where it successfully demonstrated that LASR 

annotation interface, as presented in Section 5.2.1, along with its other features, help multiple 

non-expert annotators to attain a high degree of inter-annotator agreement with an expert for 

the tasks of annotating software requirements. 

Complex Annotation Experiments over Noun Phrases 

These set of experiments aim to explore the answers to our research questions related to 

functional size measurement by manual annotation of non-experts, as presented in Section 

4.2.2. In these experiments, our annotators performed relatively complex requirements 

annotation tasks at the noun-phrase-level, related to COSMIC functional size measurement. 

A total of 2812 base noun-phrases that were extracted from the functional requirement 

sentences of all of the six documents, were annotated during this experiment. To relate with 

our targeted research question, we selected this requirements annotation work that is complex 

and is comprised of three different annotation tasks, i.e. to identify: 

i. if a base noun-phrase is a data-attribute or not; 

ii. what the data-group, which a data-attribute belongs to, is called; and  

iii. what kind of data-movement a data-attribute participates in. 

In the following paragraphs, we will be analyzing the results of the above annotation tasks 

that our annotators performed during this experiment. In this section, we refer to the tasks— 
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(i) as “Data-Attribute Annotation” or DA, (ii) as “Data-Group Annotation” or DG, and (iii) as 

“Data-Movement Annotation” or DM —respectively. 

For the data-attribute annotation (DA) task, the expert annotated 314 noun-phrases out of 

2812 as data-attributes that participate in data-movements. And, for the data-group 

annotation (DG) task, the expert identified a total of 22 different data-groups from the 

requirements documents that belong to the three different problem domains, as presented in 

Section 5.3.2. 

The data-movement annotation (DM) task involves annotating these data-attributes into one 

or more types of data-movements that they participate in. It is a multi-class annotation task 

where a data-attribute can be annotated in all of the following four ways: 

i. As a data-attribute that participate in an Entry data-movement, or as one that does 

not do so; 

ii. As a data-attribute that participate in an Exit data-movement, or as one that does not 

do so; 

iii. As a data-attribute that participate in a Read data-movement, or as one that does not 

do so; and 

iv. As a data-attribute that participate in a Write data-movement, or as one that does not 

do so. 

Therefore, for the data-movement annotation (DM) task, the expert annotated each of the 742 

data-attributes into one or more of the above four types of data-movements that they 

participate in based on the description presented by their source requirements. We identified 

the expert's annotation as the true gold-standard to compare all other annotations made during 

this experiment, both manually and by LASR. The distribution of the true gold-standard 

annotations for data-attributes and data-movements, as annotated by the expert, is shown in 

Figure 19. 
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Figure 19: Distribution of the True Gold-Standards (As Annotated by the Expert) in Our Corpus 

5.4 Experiment #1: Expert vs. Multiple Non-Experts 
In this section, we present the details of our experiment #1 that addresses our research 

question Q1. 

5.4.1 Hypotheses and Variables 

Firstly, we formalize our hypothesis, the related variables and metrics. As presented in 

Section 4.2.2, our research question, Q1, and our corresponding null hypothesis H1,0 ,are as 

follows: 

Research Question, Q1: “Can well-trained non-experts attain at least a moderate level of 

agreement with the expert for annotation tasks related to FSM?” 

Null Hypothesis, H1,0: Well-trained non-experts can never attain at least a moderate level of 

agreement with the expert for annotation tasks related to FSM. 
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Thus, we formalized our null hypothesis H1,0 as follows: 

   moderateft ENEAGREEMENTH KAPPA),(1,0 <=  (1) 

—where, 

  AGREEMENT(A, E) = Average of the pair-wise inter-annotator agreement 

[measured in Cohen’s Kappa(Cohen, 1960)] between each 

annotator of group A and an expert annotator E. 

   NEft = Group of non-expert annotators, fully-trained (i.e. they 

participated in our two-week-long training) 

   E = An Expert Annotator (i.e. he/she has more than a year of 

FSM experience) 

   KAPPAmoderate = The constant value of Kappa for moderate level of 

agreement, as determined by the evaluation scale of 

(Landis & Koch, 1977). 

Therefore, based on our null hypothesis, H1,0 , we now form an alternative hypothesis H1,a as 

follows: 

   moderateft ENEAGREEMENTH KAPPA),(1,0 ≥=  (2) 

Here, the Independent Variables are the “types of trained annotators (based on expertise)”, 

which are of nominal scale with binary values { NEft , E }. Additionally, the Dependent 

Variable here is the “average of the pair-wise inter-annotator agreements”, which is of ratio 

scale with values [0,1]. We measure this average of the pair-wise inter-annotator agreements, 

AGREEMENT(A, E), as the mean of the degrees of inter-annotator agreement between sets of 

annotation labels chosen by each annotator of group A for some given set of instances, and 

the set of the annotation labels chosen by an expert for the same set of instances. This can 

shown in the equation below: 

   
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—where, 

  AGREEMENT(A, E) = Average of the pair-wise inter-annotator agreement 

[measured in Cohen’s Kappa(Cohen, 1960)] between each 

annotator of group A and an expert annotator E. 

   A = a group of n annotators {a1,a2,a3,…an} 

   n = Total number of annotators in group A 

   E = An Expert Annotator (i.e. he/she has more than a year of 

FSM experience) 

   IA[P,Q] = The degree of inter-annotator agreement between two sets 

of annotation labels, P and Q. 

   E(I) = A set of annotation labels chosen by an expert for a given 

set of instances, I 

   aj(I) = A set of annotation labels chosen by an annotaor aj for a 

given set of instances, I 

Here, we used Cohen’s Kappa (Cohen, 1960) to measure the degree of inter-annotator 

agreement, IA[P,Q], between two sets of annotation labels, e.g. P and Q. 

 

5.4.2 Results and Analysis 

In this section, we discuss the results of our experiment #1. As shown earlier in Table 8, the 

fully-trained non-expert annotators of NEft performed annotation manually on four 

documents only, instead of the six, for a total of 2425 noun-phrases. They used Microsoft 

Excel to manually annotate these noun-phrases. A macro-script on Excel measured the time 

spent by the annotators in the background. The distribution of the pair-wise agreement in 

terms of Cohen’s Kappa (Cohen, 1960) of all the annotation labels chosen by each of the four 

annotators of the NEft group with the true gold-standard labels chosen by the expert is shown 

in Figure 20. 
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Figure 20: Pair-wise Agreements between the Four Annotators of NEft and the Expert 

As shown in  Figure 20, the average of the pair-wise agreements of all four annotators of NEft 

with the expert for all annotations is 0.7023, which indicates a moderate level of agreements 

according to the Kappa evaluation scale of (Landis & Koch, 1977). 

The gold-standard annotations were computed by following the majority voting model. 

Whenever gold-standard annotation could not be resolved, adjudication was performed by the 

participation of all the annotators of NEft. 

The distribution of the gold-standard annotations that resulted from the manual annotation 

work by the non-expert annotators of NEft is shown in Figure 21. 
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Figure 21: Distribution of the Gold-standard Annotations (As Annotated by NEft) 

 

We found a high degree of inter-annotator agreement in terms of Cohen’s Kappa (Cohen, 

1960) between these gold-standard labels and the true gold-standard annotations, which are 

set by the expert. For example, the confusion matrix comparing these gold-standard labels to 

the true gold-standard annotations is shown in Table 9. The gold-standard annotations 

resulted from the manual annotation of the non-expert annotators of NEft show a very high 

degree of inter-annotator agreement, based on Cohen’s Kappa (Cohen, 1960), (i.e. Kappa = 

0.9748), with the annotations of the expert (the true-gold-standards). This result however 

represents the best-case scenario, where all four annotators of NEft were properly trained and 

the gold-standard annotations were computed after holding meticulous adjudication sessions 

with their participation to resolve their points of disagreements. 
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  Annotated by NEft 

  Data-Attribute Not Data-Attribute 

Annotated by Expert 
Data-Attribute 237 5 

Not Data-Attribute 6 2191 

Table 9: Confusion Matrix for the Moving Data-Attribute Annotation by NEft 

Thus, our results support our alternative hypothesis H1,1 to be true, rendering our null 

hypothesis H0,1  to be false. This satisfies our research objective#1 showing that the process 

of functional size measurement can be executed effectively with non-experts through 

requirements annotation. 

5.5 Experiment #2a: Annotation Accuracy using LASR 
We performed two experiments, #2a and #2b, that address our research question Q2. In this 

section, we present the details of our experiment #2a. 

5.5.1 Hypotheses and Variables 

Firstly, we formalize our hypothesis, the related variables and metrics. As presented in 

Section 4.2.2, our research question, Q2, and its corresponding null hypothesis H2,0 , are as 

follows: 

Research Question, Q2: “Which type of FSM-related manual annotation tasks performed by 

non-experts attains a higher accuracy: the manual annotation task performed by well-trained 

non-experts, or the LASR-aided annotation task performed by minimally trained non-

experts?” 

Null Hypothesis, H2,0: The FSM-related manual annotation tasks performed without LASR, 

but by well-trained non-experts and with disagreements resolved through the adjudication 

session, always attain a higher accuracy than the LASR-aided manual annotation tasks 

performed by minimally trained non-experts and with no adjudication process. 
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Thus, we formalized our null hypothesis H2,0 as follows: 

   ),(),(0,2 mtft NELAACCNEMAACCH >=  (4) 

—where, 

   ACC(X, Y) = The accuracy of X type of requirements annotation task, 

performed by Y type of annotators. 

   MA = Manual annotation task 

   LA = LASR-aided annotation task 

   NEft = Group of non-expert annotators, fully-trained (i.e. they 

participated in our two-week-long training) 

   NEmt = Group of non-expert annotators, minimally-trained (i.e. 

they participated in an hour-long training) 

Therefore, based on our null hypothesis, H2,0, we now form an alternative hypothesis H2,a as 

follows: 

   ),(),(,2 mtfta NELAACCNEMAACCH ≤=  (5) 

Here, the Independent Variables are “type of annotation task” and “type of non-expert 

annotator (based on training level)”, both of which are of nominal scale with values {MA, LA} 

and {NEft , NEmt} respectively. Additionally, the Dependent Variable is the “accuracy of 

annotation”, which is of ratio scale with values [0,1]. 

For the experiment #2a, we measure this accuracy of annotation, ACC(X,Y), as the degree of 

inter-annotator agreement between a set of gold-standard annotation labels generated from X 

type of annotation task, which is performed by Y type of annotators over some set of 

instances, and the set of the annotation labels chosen by an expert for the same set of 

instances. This is shown in the equation below: 

   )](),,([),( IEYIGSIAYXACC X=  (6) 
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—where, 

   ACC(X, Y) = The accuracy of X type of requirements annotation task, 

performed by Y type of annotators. 

   IA[P,Q] = The degree of inter-annotator agreement between two sets 

of annotation labels, P and Q. 

   GX(I,Y) = A set of gold-standard annotation labels generated from X 

type of annotation task, which is performed by Y type of 

annotators over a given set of instances, I 

   E(I) = A set of annotation labels chosen by an expert for a given 

set of instances, I 

Here, we used Cohen’s Kappa(Cohen, 1960) to measure the degree of inter-annotator 

agreement, IA[P,Q], between two sets of annotation labels, e.g. P and Q. 

5.5.2 Results and Analysis 

Here, we discuss the results of experiment #2. The 26 minimally-trained non-expert 

annotators of NEmt performed annotation on all the six documents for a total of 2408 noun-

phrases. They used LASR to annotate these documents, and LASR, by default, kept account 

of the time they spent during annotation. 

Before testing out the feature of LASR that auto-computes the gold-standard annotations 

(discussed in Section 5.2.2), we compute the gold-standard annotations manually using the 

simple majority voting rule (we refer to this method as MV). We find that the computed gold-

standard annotations this way agree quite highly with those submitted by the expert. For 

example, the Kappa measure for the data-attribute annotations (DA) here was 0.91376. 

However, we find the method, MV, could not also resolve the gold-standard annotations for 

the 263 of the noun-phrases, indicating high degree of disagreements for those instances. A 

typical solution to resolve this issue would be to run adjudication sessions for all the 263 

instances with the participation of all the 26 annotators. It indicates that the process can, 

therefore, be very costly with real annotation tasks performed over larger corpora. 
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To address this problem, we first test out the feature of LASR that computes the gold-

standard annotations automatically using the level of confidence entered by the annotators, as 

presented in Section 5.2.2. Here, we name this method of computing gold-standard 

annotations with LASR as CL for our experiment. 

When using LASR to compute the gold-standard annotation labels according to CL, the 

computed gold-standard annotations demonstrate an even higher agreement with those 

submitted by the expert. For example, the Kappa measure for the data-attribute annotations 

(DA) here was 0.94881. However, there still remain 89 instances for which the gold-standard 

annotations could not be resolved. 

We then applied the next option computing gold-standard with LASR, as presented in 

Section 5.2.2, that uses the annotators' levels of confidence, along with their levels of skill 

together. As described earlier in Section 5.2.2, LASR measures the annotators' levels of skill 

automatically during the execution of the annotation tasks by using seeded annotations from 

the expert for 100 randomly chosen instances (i.e. 11.67% of the size of our corpus). 

We name this method of computing gold-standard annotations with LASR as CL+SL for our 

experiment. Thus, we finally used LASR to compute the gold-standard annotation labels 

automatically according to CL+SL. Their final distribution is shown in Figure 22. 
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Figure 22: Distribution of the Gold-Standard Annotations (As Annotated by NEmt) 

The computed gold-standard annotations now have the highest degree of inter-annotator 

agreement with those submitted by the expert. For example, the Kappa measure for the data-

attribute annotations (DA) here was 0.98014. Moreover, there remained no instances, where 

their gold-standard annotation labels are unresolved, eliminating the need for conducting 

costly adjudication sessions. 

The confusion matrices presented in Table 10 and Table 11 show the detailed results of this 

experiment. 

  Annotated by NEmt 

  Data-Attribute Not Data-Attribute 

Annotated by Expert 
Data-Attribute 306 8 

Not Data-Attribute 3 2495 

Table 10: Confusion Matrix for Data-Attribute Annotation by NEmt 
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  Annotated by NEmt 

  Entry Not 
Entry 

Annotated 
by Expert 

Entry 109 9 

Not 
Entry 3 2691 

 

  Annotated by NEmt 

  Exit Not Exit 

Annotated 
by Expert 

Exit 91 1 

Not Exit 7 2713 

 

  Annotated by NEmt 

  Read Not 
Read 

Annotated 
by Expert 

Read 103 6 

Not 
Read 2 2701 

 

  Annotated by NEmt 

  Write Not 
Write 

Annotated 
by Expert 

Write 94 5 

Not 
Write 4 2709 

Table 11: Confusion Matrices for Data-Movement Annotation by NEmt 

Figure 23 summarizes the results of the sentence annotation experiments, showing the quality 

of the computed gold-standard annotations (based on the annotations submitted by NEmt) for 

MV, CL and CL+SL, in terms of their degrees of agreement (in Kappa) with the true gold-

standard annotations chosen by the expert. It also compares these results to that of the gold-

standard annotations after NEft performed the task manually. 
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Figure 23: Quality of the Different Gold-Standard Annotations in Terms of Their Agreements (in Kappa) 
with the True Gold-Standard Annotations. 
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Here, it should be noted that the 26 annotators of the group NEmt were not as well-trained for 

the COSMIC annotation tasks, as the group NEft. Their average level of skill were 

comparatively much lower  than that of the trained annotators of NEft (e.g. the average degree 

of the pair-wise agreement between the annotations of each annotator of NEmt and the true 

gold-standard annotations of the expert, in Kappa, was only 0.57392). However, our 

experiment with CL+SL shows that LASR was able to weight the probability scores of 

formula (2) accordingly, based on the levels of skill of the annotators of NEmt, and, thus, 

selected the gold-standard annotation labels that agreed the most with the true gold-standard 

annotations, as shown in Figure 23. This indicates that LASR can automatically extract gold-

standard annotations that can be reliable enough, even when the group of annotators are not 

fully trained. 

It should also be noted here that LASR's annotation interface allowed minimally-trained non-

experts of NEmt to always attain at least moderate level of agreement with the expert's true 

gold-standard annotations. This partially indicates the effectiveness of the additional usability 

features of LASR, listed in Section 5.2.2. 

Thus, our results support our alternative hypothesis H2,a to be true, rendering our null 

hypothesis H2,0, as presented earlier in Section 5.5.1, to be false. This satisfies our research 

objective#2, presented in Section 4.2.2, and indicates that LASR can automatically extract 

gold-standard annotations that can be reliable enough, even when the group of annotators are 

not fully trained. 

 

5.6 Experiment #2b: Size Measurement Accuracy with LASR 
Similarly to our previous experiment, #2a, this experiment, #2b, also addresses our research 

question Q2. In this section, we present the details of this experiment. 

Here, our experiment uses the same formalization of our hypothesis, the related variables and 

metrics, as discussed in Section 5.5.1. Thus, our null and alternative hypotheses for this 

experiment are same as equation (4) and (5), as presented in Section 5.5.1. 
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However, for this experiment #2b, we define, ACC(X,Y), as the “accuracy of functional size 

measurement”, which we measured in terms of Mean Magnitude of Relative Error or MMRE. 

In this experiment, we used the same materials (the corpus and the participants) that were 

used in our previous experiment #2a, and investigate if LASR aided the minimally-trained 

group of non-expert annotators (NEmt) to accurately measure COSMIC functional size. 

During the tasks of data-attribute annotation (DA) and data-group identification (DG) in 

experiment #1, the expert has annotated 314 noun-phrases out of 2812 as data-attributes. He 

also identified 10 unique data-group labels (i.e. entity names) in the “Business” problem 

domain, 3 in “Academic”, and 9 in “Web”, and associated the data-attributes with the data-

group labels. We identify them as the true gold-standard annotations for the tasks DA and DG. 

Table 12 summarizes what the other annotators of group NEft and NEmt extracted in 

comparison for the same tasks. 

Doc. 
ID 

Noun-
Phrases 

Problem 
Domain 

Manually Annotated Annotated Using 
LASR 

Expert Annotator Annotators of NEft Annotators of NEmt
Data 

Attrib. 
Data 

Groups 
Data 

Attrib. 
Data 

Groups 
Data 

Attrib. 
Data 

Groups 
C1 314 

Business 

64 

10 

- 

6 10 

63 

11 C2 59 8 - 7 
C5 27 4 4 4 
C6 383 96 97 95 
C3 711 Academic 68 3 67 4 67 3 
C4 1317 Web 74 9 75 11 73 9 

Total 2812  314 22 243 21 309 23 

Table 12: Frequency of Data-Attributes & Data-groups 

By associating the annotated data-attributes with the extracted data-groups, we aggregate 

multiple movements of data-attributes into one data-movement. Thus, it reduces the total 

number of data-movement annotations applied over the data-attributes during our experiment 

#2a, and rightly follows the COSMIC standard to measure the functional size by counting the 

movement of the associated data-groups. 

                                                 
10 The annotators of group NEft did not annotate two of the four documents, belonging to the “Business” 
problem domain (as mentioned in section 5.3.1); hence, they could identify only 16 data-groups from the 
rest of the documents. 
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Table 13 shows the new aggregated frequencies of the four types of data-movements- Entry 

(E), Exit (X), Read (R) and Write (W) -that are extracted based on the gold-standard 

annotations of our previous experiment #2a. These are the actual COSMIC data-movements, 

the total count of which equals to the COSMIC functional size, measured by the unit CFP 

(COSMIC Function Point). 

Doc. 
ID 

Manually Annotated Annotated Using LASR 

Expert Annotator Annotators of NEft Annotators of NEmt 

E X R W E X R W E X R W 

C1 19 26 15 5    18 23 17 5
C2 7 6 2 1    7 6 3 2

C3 26 25 14 15 27 26 16 16 25 22 15 15
C4 55 43 12 23 51 39 13 22 54 41 13 22
C5 4 4 2 0 4 4 3 0 4 4 2 0

C6 16 16 9 8 15 12 10 7 15 13 9 8

Table 13: Aggregated Frequencies of Data-Movements 

Thus, using the results from Table 13, we can compute the total CFP values and the 

magnitude of relative error (MRE) of all the documents in our corpus, as measured during the 

experiment #2a by the expert and our annotators of the groups NEft and NEmt. These results 

and the mean magnitude of relative errors for both the groups are shown in Table 14. 

Doc. 
ID 

Total CFP MRE 

Expert Annotators of Annotators of 
NEft NEmt NEft NEmt 

C1 65 63 0.031 
C2 16 18 0.125 
C3 80 85 77 0.062 0.037 
C4 133 125 130 0.060 0.022 
C5 10 11 10 0.100 0 
C6 49 44 45 0.102 0.082 

MMRE = 0.081 0.049 

Table 14: Total Measured  CFP and MMRE Results 
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Considering the annotations of the expert as the true gold-standard, we find that the results of 

Table 13 and Table 14 indicate that LASR helped the minimally-trained non-expert 

annotators of the group NEmt to achieve near accurate results (MMRE 11  = 0.049) in 

measuring the functional size in terms of COSMIC FSM, even though the annotators were 

not as well-trained as the annotators of NEft. The results of Table 12 also show that using the 

annotation interface of LASR helped to limit the number of data-group labels during the DG 

annotation task for the annotators of NEmt, while the annotators of NEft working manually 

introduced more unnecessary data-group labels during the same task. 

Thus, the experiment successfully investigated our research question #2, presented in 

Sections 4.2.2 and 5.5.1, by demonstrating that LASR's efficiency feature, mentioned in 

Section 5.2.2, can help multiple non-experts to attain accurate measurements of COSMIC 

functional size. 

5.7 Experiment #3: Record of Annotation Time 
Finally, experiment #3 aims to explore the answer to our research question #3, presented in 

Section 4.2.2. In this experiment, we used the time data collected during our experiments #2a 

and #2b to investigate if LASR's usability features, presented in Section 5.2.2, can reduce the 

time spent in annotation. 

We measured the time spent by each annotator from both groups, NEft and NEmt, to perform 

the annotation tasks over each sentence, where they first annotated the sentence as Functional, 

Non-Functional, Ambiguous or Noise. Then, if an annotator annotated a sentence as a 

Functional requirement, he/she then had to perform the data-attribute (DA), data-group (DG) 

and data-movement (DM) annotation tasks (as mentioned in Section 5.5) for each of the 

noun-phrases that belonged to the sentence. In case of annotating by LASR, the annotators of 

NEmt also had to include their levels of confidence for each of their annotations. 

We found that to complete all these tasks manually, an annotator from the group NEft spent 

on average 2.441 minutes per sentence. On the other hand. to do the same annotation task on 

LASR over the same set of sentences, an  annotator from the group NEmt spent on average 

                                                 
11 MMRE stands for Mean Magnitude of Relative Error. 
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1.769 minutes per sentence. This shows that LASR can help quicken the annotation tasks 

related to COSMIC FSM by a large extent, especially when annotating large sets of corpora. 

Thus, our experiment showed that LASR helped minimally-trained non-expert annotators to 

complete the complex annotation tasks related to COSMIC functional size measurement 

faster than fully-trained non-expert annotators, while retaining comparable accuracy. 

 

5.8 Design & Implementation of LASR 
We followed a highly modular approach when implementing LASR's architecture. LASR 

uses a client-server architecture at the highest-level of the logical view. On the server-side, it 

implements a three-tier-architecture, comprising of the Presentation, Application and 

Services layers. The application layer then further implements the model-view-controller 

architecture, via the CakePHP framework (Cake Software Foundation, 2014). Figure 24 

shows LASR's architecture in details. 
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Figure 24: Architecture of LASR 

Here, the Requirements Repository at the backend holds the requirements documents 

contributed by its users.  The Instance Extractor module of LASR is equipped with 

lightweight NLP-based tools, e.g. a sentence delimiter and a noun or noun compound 

chunker, that can automatically extract requirements instances at the levels of passages, 

sentences and noun instances from the requirements documents and save them to the backend. 

Annotation Templates define the annotation work to be performed at a particular level of 

requirements instance (e.g. at the passage level, or sentence level or base noun-phrase level). 

The templates are stored as XML files at the backend file-system, and contains configuration 

details on the annotation interface as well, making the interface customizable by the curator. 
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5.9 Domain Model of LASR 
LASR addresses the complex domain of managing requirements annotation projects, where 

annotation can be performed at various levels (document, section, sub-section, sentence and 

noun-phrase). It integrates concepts related to different fields, e.g. software project 

management, software requirements, measurement and linguistic annotation, to interact with 

each other. Figure 25 presents the visualization of the domain, via the UML domain model, 

showing different domain entities and their relationships, as realized by LASR. 
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Figure 25: Domain Model of LASR 

Some of the important conceptual entities of LASR, as shown in Figure 25, are described in 

the following. 
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5.9.1 Project 

LASR identifies a Project as a concept analogous to a software project, coordinated by a 

team of people. A project in LASR is managed by one special user, called Manager, and 

contains a group of special users, called Members, who accepts/rejects the requests of 

Annotators to contribute to a project. These user roles are discussed in Section 5.10. 

5.9.2 Annotation Work 

The Annotation Work is the most important concept of LASR. A project in LASR is 

comprised of several annotation tasks that address different types of requirements analysis 

tasks. The manager defines an annotation work by associating the requirements documents to 

it and designing its interface via the Templates. The Documents (requirements documents) 

associated with an annotation work are uploaded by the manager. LASR also allows the 

manager to keep the documents private, and, thus, limit the permissions of viewing and 

annotating of the documents to a selected groups of annotators only. This helps applying the 

constraints of signing to non-disclosure agreements by the annotators before contributing to 

private annotation work. 

The interface of an annotation work is described by two templates in LASR: (i) 

Questionnaire Template, and (ii) Summary Template. Both templates are stored as XML files 

at the backend. The questionnaire templates contain details on: 

• What type of requirements Instances are to be annotated by the annotators: “Noun-

Phrases”, or “Sentences”, or “Sub-sections”, or “Sections”, or the whole “Document”. 

• What Questions to ask the annotators. 

• What possible choices of Answers to provide to the annotators, for each question 

(here, the answers contain the annotation labels. 

• And, what additional related questions to ask the annotators, only when they choose 

specific answer(s) to certain question(s) earlier (this helps to implement the 

hierarchical dependency among the annotation labels). 
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The summary template, on the other hand, contains details on what results to show to an 

annotator, after he/she completes the annotation work. The template also provides options to 

include simple arithmetic computations (i.e. count, sum, average, +, -, *,/) over given 

answers. This is important for defining some annotation work performed during requirements 

analysis phase that demand instant feedback with additional calculations on the given 

annotations (e.g. COSMIC FSM). 

5.9.3 Problem Domain 

A requirements document that is uploaded to LASR must belong to one specific Problem 

Domain. A problem domain describes the domain of a group of software problems. The 

classification of problem domains varies from one organization to another based on their 

internal needs. For example, Microsoft Corporation (Microsoft Corp., 2011) prescribes 40 

different classes of problem domains for software products. LASR, therefore, allows the 

decomposition of problem domains into open categories that can be customized to have an 

organization-specific classification. The following attributes describe a problem domain in 

LASR, 

 id:  

 name: STRING 

 application_type: { “desktop”, “web”, “plug-in”, “real-time”, “developer”, 

“publisher”, “embedded”, “business”, “utility”, “game”, 

“academic”, “communication”, “system”, “portable”, 

“graphics”, “multimedia”, “driver”, “framework”, 

“research”, “prototype”, “component”, “other” } 

 deployment_type: { “private”, “public-open”, “public-closed” } 

— where id allows us identify each problem domain uniquely, and application_type and 

deployment_type provide additional nominal features for  higher level classification of the 

problem domains in LASR. 
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Other concepts in the domain model include the Data-group that is analogous to domain 

entity, which is an aggregation of data-attributes, and belongs to a specific problem domain. 

Each data-group name associated with a problem domain is created by an annotator during 

the annotation of a requirements document belonging to the same problem domain. 

5.10 User Roles of LASR 
The collaborative environment of LASR is targeted to serve users with different goals 

securely. It provides a hierarchical arrangement of its access levels, each supporting the roles 

of its users having different sets of permissions. The five different user roles in LASR are: (i) 

the unregistered users (guests), (ii) the registered users (annotators), (iii) the project members, 

(iv) the project managers, and (v) the administrator. Table 15 presents the user roles, their 

respective access levels and the activities permitted to the users by LASR. 

Access Level Anonymous Low Medium High Administrator

User Role(s)  Unregistered 
Users 

Registered 
Users 

Project 
Members 

Project 
Managers Administrator

Learn about LASR / View 
brief description of all 
annotation work / Register 
an account   

x x X x x 

View results of all 
annotation work / Request 
to annotate / Perform 
annotation / Submit 
requirements document / 
Apply to be a project 
manager   

 x X x x 

Accept or reject requests 
to annotate / Create & 
publish detailed profile   X x x 

Setup a project / Define 
annotation work / Create 
annotation templates     x x 

Have super user 
permissions for backend 
maintenance / Accept 
application to be a project 
manager  

    x 

Table 15: Activities Permitted to Different User Roles in LASR 
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5.11 Conclusion 
In this chapter, we discussed how a linguistic annotation tool with the addition of a few key 

features, listed in Section 5.2.2, can effectively aid the complex tasks of functional size 

measurement from software requirements. We presented our annotation tool, LASR, that 

includes these features, and showed how it helped a group of annotators with minimum 

training to measure the functional size following the COSMIC FSM standard accurately. 

The unique feature set of LASR not only helped in attaining size measurements of higher 

accuracy, but also helped eliminating the need of running adjudication sessions to resolve 

disagreement of the annotators, and, thus, reducing the cost of large scale annotation. It 

improved the idea of crowd-sourcing by introducing the method of expert seeding of the true 

gold-standard annotations for a portion of the corpora, and thus, allowing real-time 

evaluation of the skills of annotators.  The interface of LASR also helped minimizing the 

time for the annotation tasks related to COSMIC FSM. 

In the next chapter (Chapter 6), we investigate if functional size can be approximated without 

requirements formalization. We use a supervised learning-based approach to determine the 

most discriminating linguistic features of informally written textual requirements for 

approximating functional size. We then ran our experiments to check if a text mining 

approach can predict the nominal functional size classes of textual requirements and 

moderately agree with the gold-standard size classifications. 
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Chapter 6 
 

Automated Approximation of 
Functional Size 
 
 

“Simplicity and repose are the qualities that measure 
the true value of any work of art.” 

— Frank Lloyd Wright 
 

6.1 Introduction 
This chapter describes our approach of automated approximation of functional size. It 

extends the idea presented in the Estimation by Analogy approach (Shepperd & Cartwright, 

2001) and the Easy and Quick (E&Q) measurement approach (Meli, 1997), that was 

originated in the IFPUG standard (ISO/IEC 20926, 2003). The applicability of this approach 

in COSMIC was manually demonstrated by (Santillo et al., 2005). Our approach automates 

the process by using the historical data of an organization that needs to be stored for the 

purpose of generating the datasets for training and testing our classifier. The required 

historical data must contain sets of textual user requirements of any quality, where each set 

corresponds to a unique functional process and is measured in terms  of COSMIC function 

points (CFP) by human measurers. 

6.2 Overview of Our Approach 
Our approach uses these sets of textual requirements and their recorded CFP measurements 

from all the achieved projects to automatically select and extract the linguistic features that 

discriminate the functional processes by their CFP sizes and train our text classifier to 

automatically classify new sets of textual requirements into a predefined number of size 
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classes. The output size classes indicate the approximated range of functional size. Our 

approach also outputs a linguistic model for classifying by functional size classes that 

provides traceability links between the outputs functional size and the input textual 

requirements. Figure 26 illustrates an overview of this workflow showing the inputs and 

outputs of our approach. 

Automated 
Approximation of 

Functional Size

Functional Requirements
(Clustered by

Functional Processes)

Approximated Range of
Functional Size

Size Classification
Model

Traceability Mapping

Historical Datasets
From Archived Projects

 

Figure 26: Inputs and Outputs of Our Approach for Automated Approximation of Functional Size 

We present the details of our approach in the following sections. 

6.2.1 CFP Measurement 

In case the historical database of an organization is not available or is not in the form 

required by our approach, our first step would be to build the historical dataset by manually 

measuring the COSMIC size of the functional processes in units of CFP (COSMIC Function 

Point). The available textual description of the user requirements corresponding to each 

functional process is used for this purpose. Here, for each requirements statement belonging 

to a functional process, the human measurer first identifies how many different types of data-

movements are expressed by the statement, and then, how many data-groups participate in 

each of the types of data-movements present in the statement. Following COSMIC, the sum 

of number of data-groups for each type of data-movements indicates the total CFP size of one 

requirements statement. The measurer repeats this step for the rest of the requirements 

statements within the functional process to measure their sizes in CFP. Summing up their 

sizes results in the CFP count for the whole functional process. The measurer then again adds 
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the CFP sizes of all of the functional processes together to obtain the respective CFP count of 

the whole system. Table 16 illustrates the CFP counting process with a hypothetical example 

of a system consisting of two functional processes. 

Functional 
processes User requirements 

Types of Data-
movements 
expressed by 
the statement: 

Number of Data-
groups involved 
a data-movement 

Size in CFP 

FPROC1 

1.1 User requests to view the 
detailed information of 
one item. 

Entry 2 2 

Read 1 1 

Size of statement 1.1 = 3 

1.2 System displays detailed 
item information. 

Exit 1 1 

Size of statement 1.2 = 1 

Total size of FPROC1 =  3+1 = 4 

FPROC2 

2.1 When user requests to add 
the item to the shopping 
cart, system adds it and 
displays the cart. 

Entry 2 2 

Write 1 1 

Exit 1 1 

Size of statement 2.1 = 4 

Total size of FPROC2 =  4 
Total size of the whole system =  4 + 4   =   8 

Table 16: A Hypothetical Example of CFP Calculation 

Our approach requires these measurement data to be saved in the historical database for the 

past completed projects. For this work, we will need the CFP count for each of the functional 

processes that have been measured, along with the textual requirements associated to a 

functional process. Figure 27 illustrates the steps of building a historical database, when a 

historical database is not already available. 

Cluster Textual
Requirements by
Functional
Process

Measure Size 
in CFP

Textual
Requirements

Clustered by
Functional
Processes

Historical
Database

Archived
Projects

 
Figure 27: Building a Historical Database 
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6.2.2 Class Annotation of Functional Processes 

Once we have gathered the historical dataset, we need to define classes of functional 

processes, based on their sizes in CFP, to be used later in the automatic classification task. To 

do this, we performed a box-plot analysis on the CFP size values from our historical dataset, 

to produce four different classes of functional processes, based on their sizes in CFP. Table 

17 shows the defined ranges of these classes. 

Size Classes Ranges 

Small [0, Lower Quartile) 

Medium [Lower Quartile, Median) 

Large [Median, Upper Quartile) 

Complex [Upper Quartile, ∞ ) 

Table 17: Ranges of CFP Values to Define the Classes 

Here, the lower quartile would cut off the lowest 25% of all the recorded CFP size data from 

the historical database. The median would divide the dataset by 50%, and the upper quartile 

cuts off the highest 25% of the dataset. 

These four sets of ranges allow us to annotate the textual requirements of the functional 

processes automatically into four fuzzy size classes. In our class ranges, we keep the 

minimum and the maximum values as 0 and ∞ , respectively, instead of the sample minimum 

or the sample maximum, like in an actual box-plot analysis; so that, if the new unseen sample 

is an outlier compared to the historical dataset, it would still get classified into a class. 

After defining the class boundaries automatically, we then calculate the mean, the minimum 

and the maximum for each of the classes, to designate the range of the approximate size for 

each of the classes. Figure 28 illustrates the process of automatic class annotation described 

in this section. 

Calculate
Class Median &
Class Range

Median & Min/Max
Size (in CFP)

For Each Class

Box-plot Analysis 
with predefined 
class boundaries

Historical
Database

Small Medium

Large Complex

Annotated
Functional Processes

 
Figure 28: Class Annotation by Box-Plot Analysis 
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6.2.3 Text Mining 

Our next step consists of extracting linguistic features from the textual requirements 

belonging to each of the functional processes from our training dataset, to train a text 

classification algorithm that can automatically classify a new set of textual requirements 

belonging to a functional process into one of the classes defined above (i.e. Small, Medium, 

Large or Complex). The classifier will then simply approximate the size of the functional 

processes by outputting its size as the calculated mean value of the class it belongs to, along 

with the minimum and the maximum seen CFP value for that class to indicate possible 

variation in the approximation; and, thus, provide the quickest possible approximation of the 

COSMIC functional size from textual requirements that are not formalized and can be written 

in any quality. Figure 29 shows the steps of this process. 

Small Medium

Large Complex

Annotated
Functional Processes

Extract Linguistic
Features

Training
Data File

Training

S

M L

C

COSMIC Size
Classifier

Unmeasured
Functional
Processes

 
Figure 29: Text Mining for Fast Approximation of COSMIC Functional Size 

6.3 Experiments 
As a proof of concept of our approach, we addressed our research question Q4, as presented 

in Section 4.2.3, by performing a preliminary experiment with four different case studies: two 

industrial projects from SAP Labs, Canada, and two university projects. They are all 

completed projects and are from different domains. Their requirements documents vary in 

size (from about 2,000 words to 11,000 words) and contain from 3 to 32 distinct functional 

processes. Table 18 shows some characteristics of these case studies. 
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ID Source Title Type of 
Application 

Size of 
Requirements 
Document 

Functional 
Processes 
extracted 

C3 University 
Course 
Registration 
System 

Academic 3,072 words 14 

C4 University IEEE Montreal 
Website Web (Public) 5,611 words 32 

C5 Industry 
(SAP) (undisclosed) Business 11,371 words 12 

C6 Industry 
(SAP) (undisclosed) Business 1,955 words 3 

Total number of functional processes extracted = 61 

Table 18: Summary of the Case Studies 

We manually pre-processed these requirements to extract sets of requirements sentences each 

of which belong to a distinct functional process. This mimics the available set of user 

requirements before an iteration starts in an agile development process. From all four 

requirements documents, we were able to extract 61 sets of textual requirements, each 

belonging to a distinct functional process. 

We used five human measurers, all graduate students skilled to perform COSMIC FSM from 

requirements documents, to measure the CFP of these 61 functional processes, similarly to 

what is shown in Table 1. The CFP values and the textual requirements of the 61 functional 

processes built our historical dataset. The frequency distribution of the CFP values in our 

historical database is shown in Figure 30. The figure shows that most functional processes 

(17 of them) were of size 6 CFP. The box-plot on top of the histogram points out the lower 

quartile, the upper quartile, the sample minimum and the sample maximum, and also 

indicates that the median size is 6 CFP in our historical database. 
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Figure 30: Distribution (with a box plot) of CFP Values in Our Historical Database 

6.3.1 Corpus Annotation 

As mentioned in Section 6.2.2, in order to define the ranges of our four size classes, we 

performed a box-plot analysis on the CFP values of our historical database. The resulting 

boundary points are: 

Median  = 6 CFP 

Lower Quartile = 5 CFP 

Upper Quartile = 8 CFP 

Sample Minimum = 2 CFP 

Sample Maximum = 19 CFP 

Therefore, according to the ranges defined in Table 17 in Section 6.2.2, the actual CFP 

ranges for the four size classes for our historical database are: 

Small:  [0,5) 

Medium: [5,6) 

Large:  [6,8) 

Complex: [8, ∞ ) 
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We then followed these ranges to automatically annotate the sets of textual requirements 

belonging to the 61 functional processes into the four size classes -  where 9 (15%) functional 

processes were annotated as Small, 15 (25%) were Medium, 21 (34%) were Large, and 16 

(26%) were annotated as Complex.  

We then collected from our historical database the class data, i.e. the mean, the minimum and 

the maximum sizes for each of these classes, so that the size of a newly classified functional 

process belonging to any of these four classes can be approximated by its class data. The 

resultant class data is shown in Table 19. 

Class Median Size Minimum Size Maximum Size Approximation 
Error 

Small 3 CFP 2 CFP 4 CFP [-1,1] CFP 

Medium 5 CFP 5 CFP 5 CFP 0 CFP 

Large 6 CFP 6 CFP 7 CFP [0,1] CFP 

Complex 11 CFP 8 CFP 19 CFP [-3,8] CFP 

Table 19: Data to be Associated with a Functional Process to Approximate Its Size 

It should be noted that due to the small number of functional processes that we currently have 

collected in our historical database, Table 19 does not show much variation of size among the 

classes, especially between the classes Medium and Large. This drastically reduces the error 

margin of our approximation and, therefore, a correctly approximated size will be more 

precise in the current case. For example, when a functional process will be correctly 

classified as Medium by our text miner, our system will indicate, according to the class data, 

shown in Table 19, that its approximate (i.e. the mean) size is 5 CFP, which actually is the 

precise size value of the functional process instead of an approximation. This is because only 

the functional processes of size 5 CFP are set to the Medium class by our box-plot analysis. 

As CFP size values are always integer numbers, it allows zero margin of error in our 

approximation of the size of a functional process that belongs to the Medium class. Similarly, 

the error margin of the Small and the Large classes are also very small. This will also make 

the task of discriminating between the close classes harder than discriminating between 

widely-varying classes. 
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6.3.2 Syntactic Feature Selection 

To perform the classification task, we considered a large pool of linguistic features that can 

be extracted by a syntactic parser. In this regards, we used the Stanford Parser (Klein & 

Manning, 2003) (equipped with Brill's POS tagger (Brill, 1992) and a morphological 

stemmer) to morphologically stem the words and extract many linguistic features, e.g. the 

frequency of words appearing in different parts-of-speech categories. As we have the actual 

CFP values in our historical dataset, we sorted the linguistic features based on their 

correlation with the CFP values. The ten highest correlated features are listed in Table 20. 

ID Features (Frequency of..) Correlation with 
CFP 

1 Noun Phrases 0.4640 
2 Parentheses 0.4408 
3 Active Verbs 0.4036 
4 Tokens in Parentheses 0.4001 
5 Conjunctions 0.3990 
6 Pronouns 0.3697 
7 Verb Phrases 0.3605 
8 Words 0.3595 
9 Sentences 0.3586 
10 Uniques (hapax legomena) 0.3317 

Table 20: Ten Linguistic Features Most Highly Correlated with CFP 

The correlation shows the ten syntactic features that influence COSMIC functional size the 

most. The intuitive reasons for them are explained below. 

Frequency of Noun Phrases (#1): No matter how poorly a requirement is described, the 

involvement of a data-group in a particular data-movement is typically indicated by the 

presence of a noun phase. Therefore, if a functional process contains more noun phrases, the 

chances are that its data-movements involve more data-groups and its size is larger. 

Frequency of Parentheses (#2) & Number of tokens inside parentheses (#4): When 

complex functional processes are described in textual requirements, parentheses are often 

used to provide brief explanations in a limited scope. Thus, a higher number of 

parentheses/Number of tokens inside parentheses can sometimes indicate a complex 

functional process. 
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Frequency of Active Verbs(#3) & Verb Phrases(#7): Verbs in active form are frequently 

used to describe actions and, hence, are often used in larger numbers in textual requirements 

to explain data-movements, as data-movements result from actions carried out by the user or 

the system or an external system. 

Frequency of Pronouns(#6): A longer description in textual requirements for a functional 

process often indicates its complexity, and requires the use of more pronouns and other 

refering expressions within the functional process to maintain cohesion. 

Number of Words(#8), Conjunctions(#5), Sentences(#9) and Uniques(#10): In general, 

lengthy descriptions of the requirements (hence, a higher frequency of words, sentences and 

unique words) often indicate a more complex functional process. 

In addition to the above syntactic features, we also looked at possible keywords that can be 

used in our classification task. 

6.3.3 Lexical Feature Selection 

Studies [e.g. (Hussain, Kosseim, & Ormandjieva, 2008; Wiebe, Wilson, Bruce, Bell, & 

Martin, 2004)] have shown that using keywords grouped into particular part-of-speech 

categories can help to obtain good results in various text mining problems. For our work, we 

have, therefore, considered lists of keywords, where each list belongs to a given part-of-

speech category. We chose three open-class part-of-speech groups for these keywords to be 

selected. They are: Noun-keywords (coded as: NN_keyword), Verb-keywords (coded as: 

VB_keyword), and Adjective-keywords (coded as: JJ_keyword). 

We generate finite lists of these keywords based on two different probabilistic measures, as 

described in (Hussain, Kosseim, & Ormandjieva, 2008), that take into account how many 

more times the keywords occur in one class of the training set than the other class. A cut-off 

threshold is then used to reduce the list to keep only the top most discriminating words. For 

example, the three lists that were automatically generated by this process from our training 

set during a single fold of 10-fold cross-validation are shown in Table 21. 
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NN_keyword VB_keyword JJ_keyword 
user ensure supplied 

category get current 
quota choose previous 

content start available 
default restart  
chart fill  

… …  

Table 21: Some of the Keywords of POS Category: Noun, Verb and Adjective 

These three lists constituted three additional features for our classification task. Thus, when 

we extract the features, we counted one of the keyword feature, for example, as how many 

times words from its keyword-list appears in the set of requirements of a functional process, 

and appearing in the same part-of-speech class. 

6.3.4 Feature Extraction and Classification 

To classify the sets of textual requirements belonging to different functional processes, we 

developed a Java-based feature extraction program that uses the Stanford Parser (Klein & 

Manning, 2003) to extract the values of all the syntactic and keyword features mentioned 

above, and uses Weka (Witten & Frank, 2005) to train and test the C4.5 decision tree 

learning algorithm (Quinlan, 1993). We used the implementation of the C4.5 (revision 8) that 

comes with Weka (as J48), setting its parameter for the minimum number of instances 

allowed in a leaf to 6 to counter possible chances of over-fitting. The results are discussed in 

the next section. We also trained/tested with a Naïve Bayes classifier (John & Langley, 1995), 

and a logistic classifier (le Cessie & van Houwelingen, 1992). The C4.5 decision tree-based 

classifier performed the best in comparison to the other classifiers with more consistent 

results during 10-fold cross-validation. 

6.4 Results and Analysis 
The results of the classification were very moderate when using the whole dataset for training 

and testing. Since the dataset was not very large, we could not use a separate dataset for 

testing, and we could only use cross-validation, which can be very harsh on the performance, 

when the number of instances is very low. Yet, the classifier results did not drop significantly. 

Table 22 shows a summary of the results. 
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 Scheme 
Correctly 
Classified 
Sentences 

Incorrectly 
Classified 
Sentences 

Kappa Comment 

Corpus Size = 61 
(sets of textual 
requirements, 
each set 
representing a 
functional 
process) 

Training + 
Testing on 
same set 

45 
(73.77%) 

16 
(26.23%) 0.6414 

Tree is of 
desirable 
characteristics, 
not sparse, and 
also not flat. None 
of the branches 
are wrongly 
directed. 

Cross-
validation 
(10 Folds) 

41 (67.21%) 20 
(32.79%) 0.5485 

Table 22: Summary of the Results 

The resultant decision tree after training on the complete dataset is shown in Figure 31. As 

the figure shows, the tree came out well-formed and of desirable characteristics — not sparse, 

and also not flat. Also, none of its branches are wrongly directed. 

sentences

Small

≤ 9

Complex

NN_keywords

> 9

VB_phrases

LargeMedium

≤ 4 > 4

≤ 23 > 23

 
Figure 31: The Resultant C4.5 Decision Tree after Training with the Complete Dataset 

Although the Kappa results of Table 22 shows stable and moderate results in terms of 

performance with the 10-fold-crossvalidation, the confusion matrix of Table 23 shows that 

the classifier struggled to classify functional processes of size Medium into the correct class; 

classifying only 47% of them (7 out of 15) correctly. We can also see that the mistakes the 

classifier made with the Medium sized functional processes are mostly because it confused 

them as Large (for example, it classified another 7 out of the 15 Medium functional processes 

incorrectly into the size class Large). The reason for this can be understood by the fact 

discussed in Section 6.3.1, where, in Table 19, we see that our box-plot analysis 

automatically chose zero approximation error for the class Medium. It, therefore, became the 

hardest class to classify among the other classes, carrying very minute differences from its 

adjacent class Large, which also has a smaller margin of approximation error. Thus, when 

our classifier correctly classifies a functional process as Medium, it does not really 
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approximates its size; rather it accurately identifies its precise size value, which is 5 CFP. 

Again, when the classifier mistakenly classified a Medium functional process as Large, the 

error in size approximation that it made is of only 1 CFP value. If we had a larger number of 

instances, there would have been wider variation of size values in our historical database. We 

believe that this would make the classification task easier for our classifier allowing the 

learning algorithm to find the threshold values for the other unused linguistic features and, 

thus, utilize them in making fine-grained distinction and render better results. 

By analyzing Table 23, we can see that the classifier had difficulty in identifying the 

functional processes of size Small. Although it classified 7 out of 9 Small functional 

processes correctly as Small, it misclassified some Medium, Large, and even Complex 

functional processes as Small (see the 1st column of Table 23). Here, again, we believe that 

the small size of our dataset (e.g. we had only 9 instances of size Small) may be the cause. It 

should be noted that these results were extracted during cross-validation of 10 random folds, 

which can significantly reduce the number of training instances for a particular class during a 

single fold in a skewed corpus. In our case, for example, during one fold, the number of 

training instances for the Small class went minimum of only 2 instances, which were 

inadequate for the learning algorithm to discover the thresholds of most of the discriminating 

linguistic features that we selected for this work. We, therefore, believe that these results 

would improve with the introduction of more instances in our dataset. 

 Classified as 

 Small Medium Large Complex 

Small 7 0 1 1 

Medium 1 7 7 0 

Large 2 1 16 2 

Complex 2 0 3 11 

Table 23: Confusion Matrix When Using 10-fold Cross-Validation 

These phenomena are also reflected in the precision and recall values shown in Table 24. 

Moreover, it also shows that a good performance on average attained by the classifier with 

such a small dataset. 
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Size Class Precision Recall F-Measure 

Small 0.583 0.778 0.667 

Medium 0.875 0.467 0.609 

Large 0.593 0.762 0.667 

Complex 0.786 0.688 0.733 

Mean 0.709 0.673 0.669 

Table 24: Precision, Recall and F-Measure, When Using 10-fold Cross-Validation 

We can also demonstrate by showing that if we had less number of classes, i.e. two or three 

size classes, the available number of instances would have been enough for a more realistic 

classification task. To show that, we developed both a two-class size classifier (classifying 

functional processes into Small and Large classes), and a three-class size classifier 

(classifying functional processes into Small, Medium and Large classes) using the same 

principles and the same sets of features described earlier in this chapter. The results were 

significantly better, attaining mean f-measures of 0.802 and 0.746 for the 2-class and the 3-

class classifiers respectively. The summary of using 10-fold cross-validation with both 

classifiers is shown in Table 25. 
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Classifier Kappa Size 
Classes Precision Recall Tree 

2-class 
Classifier 0.606 

Small 0.895 0.829 

Large 0.696 0.8 

3-class 
Classifier 0.575 

Small 0.677 0.875 

Medium 0.794 0.721 

Large 0.9 0.73 

Table 25: 10-fold Cross-Validation Results of Using a 2-Class and 3-Class Classifier 

 

6.5 Conclusion 
In this chapter, we have presented our research activities that shows that the classification of 

textual requirements in terms of their functional size is plausible using linguistic features. 

Since our work uses a supervised text mining approach, where we need experts to build the 

historical database by manually measuring the COSMIC functional size from textual 

requirements, we could not train and test our system with a large number of samples. Yet, the 

results that we were able to gather by cross-validating on such small number of samples show 

a promising behavior of the classifier in terms of its performance. We have been able to 

identify automatically a set of highly discriminating linguistic features that can effectively 

classify textual requirements in terms of functional size. 
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It should be mentioned that we have not yet tested our approach as to be used with 

requirements written in variable level of quality. We believe that this approach would be 

organization-specific, where textual requirements saved in the historical dataset should all be 

written in the same format or writing style having similar quality. This would allow our 

classifier to pick the best set of features and set the best thresholds that would classify new 

requirements written in similar style and quality. 

This chapter has described our approach of exploring linguistic features for extracting the 

conceptual artifacts of the COSMIC functional size measurement standard from textual 

software requirements. Here, we used the annotated corpus, presented in the previous chapter 

in Section 5.3.2, to identify discriminating features at different syntactic and lexical levels. 

We then used the gold-standard annotation labels of the corpus to devise a large number of 

training and testing datasets to experiment our supervised learning-based and rule-based 

approaches for functional size measurement (FSM). 

In the next chapter (Chapter 7), we experiment with the linguistic features in a heuristic-

based and supervised learning-based approaches for extracting the artifacts of an FSM model. 

The accuracy and usability of the manual process of FSM are then compared with our 

automated FSM approach. 
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Chapter 7 
 

Automated FSM Modeling 
 
 

“The only place success comes before work is in the dictionary.” 
— Vince Lombardi 

 

7.1 Introduction 
This chapter describes our approach of exploring linguistic features for automatically 

extracting the conceptual artifacts of the COSMIC functional size measurement (FSM) 

standard from textual software requirements. In this phase, we used our annotated corpus, as 

presented in Section 5.3.2, to identify discriminating features at different syntactic and lexical 

levels. We then used the gold-standard annotation labels of the corpus to devise a large 

number of training and testing datasets to experiment our supervised learning-based and rule-

based approaches for functional size measurement (FSM). 

Studies (Saadaoui, Majchrowski, & Ponsard, 2009; COSMIC, 2011; Habela, Głowacki, 

Serafiński, & Subieta, 2005; Rule & Rule, 2011) show that when the requirements are 

formalized and decomposed enough to make the FSM modeling artifacts clearly identifiable 

to the expert measurers, COSMIC FSM can be applied objectively to achieve one correct 

measurement across multiple measurers. Thus, (Condori-Fernàndez, Abrahão, & Pastor, 2007) 

also demonstrated that a static set of rules can be applied to extract COSMIC functional size 

from requirements that have been highly formalized to UML System Sequence diagrams. 

However, when dealing with software requirements written in natural language, the work 

depends on the expertise of human measurers to presume the conceptual models that can be 

realized from these requirements and use this idea to base their judgment on identifying the 

COSMIC modeling artifacts from the requirements. 
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Our automation approaches discussed in this chapter take as inputs the functional 

requirements of a software in textual form clustered by functional processes and the lexical 

resources related to the problem domain of the same software. The outputs of our approaches 

are the range of functional size of the software and a measurement model for tracing the 

output of functional size to its originating textual requirements. Figure 32 illustrates an 

overview of the workflow of our approach. 

Automated FSM 
Modeling & Standard 

Measurement

Functional Requirements
(Clustered by

Functional Processes)

Range of
Functional

Size

FSM Model

Traceability Mapping

Available Lexical Resources
of the Problem Domain

 
Figure 32: Inputs and Outputs of Our Approach for Automated FSM Modelling 

 

 

7.2 Our Approach 
Our approach aims to learn the linguistic aspects of textual software requirements that will 

guide us in automatically extracting the conceptual artifacts of our formalization of COSMIC 

FSM model, as presented in Section 4.3. In particular, we would be extracting COSMIC data-

movements and the COSMIC data-groups from our input functional requirements that have 

already been clustered into functional processes. Our approach thus not only outputs the 

range of functional size of the functional process in CFP, but also helps us to provide 

traceability on output CFP values to textual requirements. 

In our observation of applying COSMIC FSM over textual requirements, we noticed that the 

semantics of the COSMIC data-movements can be realized from textual requirements by 

using both the syntactical and the lexical information embedded in the requirements, as 
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reflected by our FSM model, as discussed in Section 4.3. Figure 33 illustrates the pipeline of 

our approach showing the workflow of the major steps for automated FSM modeling and 

measuring the functional size in COSMIC Function Points (CFP). 
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Figure 33: Major Steps of Our Approach for Automated FSM Modeling 

We discuss the details of each of these steps, as illustrated in Figure 33, in the following 

sections. 

 

7.3 Preprocessing 
In the preprocessing step, we use lightweight natural language processing techniques to 

perform sentence segmentation and parts-of-speech tagging over our input textual instances 

of functional requirements, which had already been clustered into functional processes by the 

steps mentioned in Section 4.4.3. The workflow of our preprocessing step is shown in Figure 

34. 
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Figure 34: Workflow of the Preprocessing Step 

As shown in Figure 34, we first tokenize the textual instances by words and punctuations, use 

our custom rules for sentence segmentation, use a custom-trained transformational tagger like 

the Brill tagger (Brill, 1992) to compute the part-of-speech (POS) class of the word tokens 

from the sentences, and, finally, identify both the pronoun-type words (i.e. with POS tags 

PRP) and the longest chunks of consecutive noun-type words (i.e. with POS tags NN, NNS, 

NNP, NNPS etc.) as individual instances of base noun-phrases that are to be used in our next 

step. We also identify their heads (rightmost noun-type word, if an instance is a noun 

compound, or the word itself, if the instance is noun of single word, or a pronoun). Moreover, 

we use a morphological stemmer to find the roots and affixes of all words in the sentence. 

We then use the extracted sentences and noun-phrases for collaborative manual annotation 

with LASR, as discussed in Chapter 5, and also, in parallel, move on to perform our next step 

of feature extraction. 

7.4 Extraction of Linguistic Features 
The step of extracting the linguistic features first takes the tokenized sentences the previous 

step and extract the syntactical dependencies between each pair of tokens using a syntactic 

parser, e.g. the Stanford Parser (Klein & Manning, 2003). We then evaluate a set of syntactic 

features from our extracted noun-phrases based on the dependency relationships, and use the 

lexical database built from one of our previous steps, as discussed in Section 4.4.3, to identify 

a set of their lexical features. We then also compute a set of complex semantic features 
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combining both the extracted syntactic and lexical features. Finally, we compose the feature 

values into a data file that is to be used for training/testing our classifiers. The workflow of 

our feature extraction step is presented in Figure 35. 
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Build Dictionaries
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Figure 35: Workflow of the Feature Extraction Step 

 

As shown in Figure 35, we extracted three different sets of features that are presented below. 

7.4.1 Lexical Feature Set 

We select our lexical database, as described in Section 4.4.3, corresponding to the problem 

domain of our input requirements to identify discriminating lexical features that take into 

account the domain-specific keywords used in requirements text (the keywords, used for our 

experiments, are listed in Appendix A). We then extract these features from our input noun-

phrases and verb-type word tokens. Some lexical features, e.g. “the noun-phrase is an 
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actor12” attached to the noun-phrases and “the verb is a data-movement verb13” attached to 

the verb-type words, are only used to derive our set of combined features, as presented in 

Section 7.4.3. 

On the other hand, the two lexical features, which are extracted from the noun-phrases and 

retained in our final pool of features, are listed below: 

• F1: “The noun-phrase partly contains an attribute name (possible value: true, or 

false)” 

• F2: “The noun-phrase partly contains a data-group name (possible value: true, or 

false)” 

Here, the attribute and data-group names are matched from our selected lexical database. We 

enriched the content of our lexical database using WordNet (Miller, 1995; Princeton 

University, 2010), as described in Section 4.4.3. 

 

7.4.2 Syntactic Feature Set 

We extracted our syntactic features from our input noun-phrases based on its syntactic 

relation with other words of the tokenized sentences as derived by using a syntactic parser. 

We used the Stanford Parser (Klein & Manning, 2003), together with our custom linguistic 

rules that were written in the JAPE scripting language of the GATE environment 

(Cunningham H., et al., 2011), for building our syntactic feature extractor. Our custom rules 

extended the scope of the syntactic parser to consider the subjects and the objects of a verb 

like agents and patients of an action respectively, even when the verb is in passive form. 

These rules also take into account of conjunctions and co-references caused by the uses of 

                                                 
12 If the stemmed head of a noun instance contains a substring that exists in the vocabulary of actor names 
from our lexical database, we identify that the noun is an actor. Here, the head of our noun instance is 
selected as follows: (i) if the instance consists of only one noun token, then its head is the noun token itself; 
(ii) if the instance is noun compound or consists of multiple noun tokens, then its head is the rightmost 
noun token; and (iii) if the instance is a pronoun, then its head is the pronoun itself. 
 
13 If a stemmed verb token exists in the vocabulary of a certain type (Entry, Exit, Read, or Write) of data-
movement verbs from our lexical database, we then identify that the verb is a data-movement and of the 
respective type. 
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personal pronouns and relative pronouns, and find the appropriate subject and object relations 

between verbs and noun-phrases to attach the feature value accordingly. Moreover, our rules 

also identify the presence of the negation modifiers in various syntactic relations within a 

sentence to denote a noun-phrase (and also a verb) as part of a negative expression14. 

Our final syntactic features are listed below: 

• F3: “The noun-phrase is a direct object (possible value: true, or false)” 

• F4: “The noun-phrase is in an object-like15 position (possible value: true, or false)” 

• F5: “The noun-phrase is a subject (possible value: true, or false)” 

• F6: “The noun-phrase is part of a dependent clause (possible value: true, or false)” 

• F7: “Type of dependent clause that contains the noun-phrase (possible value:  

adverbial clause, or clausal complement, or open clausal complement, or none)” 

• F8: “The noun-phrase is part of negative expression (possible value: true, or false)” 

 

7.4.3 Combined Feature Set 

We extracted these features by combining some of the lexical features of the noun-phrases 

and the verb-type words with the syntactic features of our input noun-phrases to derive some 

complex semantic attributes of the noun-phrases by applying a set of custom rules. There are 

also written in the JAPE scripting language of the GATE environment (Cunningham H., et 

al., 2011). We added the combined features to our final pool of features in two groups: i) 

General Combined Features, and ii) Data-movement Verb-related Combined Features. All 

these features are listed below: 

 

                                                 
14 Our rules consider, along with negation modifiers, some negative implicative verbs (Karttunen, 1971), 
e.g. fail, stop, refuse, reject, ignore, deny, cancel, forbid, dismiss, refrain, decline, disapprove, disallow etc., 
to identify negative expressions in a sentence (see Appendix C.15 for details). 
   
15 If a noun appears as a direct or indirect object to a verb (or as a syntactic nominal subject to a verb in 
passive form), or as a prepositional object to a direct/indirect object of a verb (or to a syntactic nominal 
subject to a verb in passive form), or in a chain of prepositional objects linked to a direct/indirect object of 
a verb (or to a syntactic nominal subject to a verb in passive form), then we identify that the noun appears 
in an object-like position. 
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i. General Combined Features: 

• F9:  “The noun-phrase owns an attribute16 (possible value: true, or false)” 

• F10: “The noun-phrase belongs to a data-group17 (possible value: true, or false)” 

• F11: “The noun-phrase is a subject of a Stative verb (possible value: true, or false)” 

• F12: “The noun-phrase is related to an attribute name by a chain18  of prepositional 

objects (possible value: true, or false)” 

• F13: “The noun-phrase is related to a data-group name by a chain of prepositional 

objects (possible value: true, or false)” 

• F14: “Type of the subject of the verb, which has the noun-phrase in its object-like 

position (possible value: actor subject, or non-actor subject, or none/no 

subject)” 

• F15: “Type of the subject of the verb, which has the noun-phrase in its dependent 

clause (possible value: actor subject, or non-actor subject, or none/no subject)” 

ii. Data-Movement Verb-related Combined Features: 

Our set of combined features that are related to data-movement verbs can further be grouped 

into five categories, based on the types of data-movement verbs, as per their corresponding 

vocabularies from our lexical database, as described in Section 4.4.3. 

                                                 
16 If an attribute name appears as a possessive determiner of the head of a noun, we then identify that the 
noun owns an attribute. For example, in “Device User’s address”, the attribute name “address” appears as a 
possessive determiner of the head “User” of the noun compound “Device User”. Therefore, we identify that 
the noun compound “Device User” owns an attribute. Again, if a noun appears as a prepositional object of 
an attribute name with an associated preposition “of”, we then also identify that the noun owns an attribute. 
For example, in “address of the Device User”, the noun compound “Device User” appears as a 
prepositional object of the attribute name “address” with an associated preposition “of”. Therefore, we 
identify here also that the noun compound “Device User” owns an attribute. 
 
17 If a noun appears as a possessive determiner of a data-group name, then we identify that the noun 
belongs to a data-group. For example, in “Item’s price”, the noun-phrase “price” appears as a possessive 
determiner of the mention of the data-group “Item”. Therefore, we identify that the noun “price” belongs to 
a data-group. Again, if a data-group name appears as a prepositional object of the noun-phrase with an 
associated preposition “of”, we then also identify that the noun belongs to a data-group. For example, in 
“price of the Item”, the data-group name “Item” appears as a prepositional object of the noun “price” with 
an associated preposition “of”. Thus, we identify here also that the noun “price” belongs to a data-group. 
 
18 When a noun appears as a prepositional object to another noun which may be a prepositional object to 
another noun and so on, we then define the boundary, starting from the first character of the first noun and 
ending at the last character of the last noun, as a chain of prepositional objects. 
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 (a) For Any Type of Data-movement Verb 

• F16: “The noun-phrase is in an object-like position to a Data-Movement verb 

(possible value: true, or false)” 

• F17: “Type of the dependent clause of a data-movement verb that contains 

the noun-phrase (possible value: adverbial clause, or clausal 

complement, or open clausal complement, or none)” 

 (b) For Entry Verb 

• F18: “The noun-phrase is in an object-like position to an Entry verb (possible 

value: true, or false)” 

• F19: “Type of the dependent clause of an Entry verb that contains the noun-

phrase (possible value: adverbial clause, or clausal complement, or 

open clausal complement, or none)” 

 (c) For Exit Verb 

• F20: “The noun-phrase is in an object-like position to an Exit verb (possible 

value: true, or false)” 

• F21: “Type of the dependent clause of an Exit verb that contains the noun-

phrase (possible value: adverbial clause, or clausal complement, or 

open clausal complement, or none)” 

 (d) For Read Verb 

• F22: “The noun-phrase is in an object-like position to a Read verb (possible 

value: true, or false)” 

• F23: “Type of the dependent clause of a Read verb that contains the noun-

phrase  (possible value: adverbial clause, or clausal complement, or 

open clausal complement, or none)” 

 (e) For Write Verb 

• F24: “The noun-phrase is in an object-like position to a Write verb (possible 

value: true, or false)” 

• F25: “Type of the dependent clause of a Write verb that contains the noun-

phrase  (possible value: adverbial clause, or clausal complement, or 

open clausal complement, or none)” 
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Although we have extracted more linguistic features than the 25 features mentioned here, all 

of the these 25 features were chosen to be included in our final pool of features based on their 

relevance in expressing the actions of data-movements in textual requirements. More details 

about many of these features, their significance and our associated rules for extracting them 

is presented in Appendix C. In our feature extraction step, we record these feature values in 

our training/testing data file for our corpus of functional processes. 

7.5 Heuristic-based Classification 
We consulted with the expert measurers, who participated in our annotation experiments, as 

mentioned earlier in Section 5.3.1, about their experiences of interpreting different syntactic 

patterns of textual requirements as indications of the occurrence of data-attributes, data-

groups and data-movements. We led them to try out different linguistic forms of textual 

requirements and found, for example, that noun-phrases that are parts of negative senses of 

actions within a sentence (as also determined by our feature F8 mentioned in Section 7.4.2) 

do not usually convey the sense of a moving data-group. Again, in relation to the COSMIC 

data-movement, the noun-phrases in functional requirement that express the meaning of 

owning attributes, are often mentions of data-group names. Then, the noun-phrases that 

indicate the mentions of moving data-attributes/data-groups, tend to appear in object-like 

positions to data-movement verbs (as determined by our features F16, F18, F20, F22 and F24 

mentioned in Section 7.4.3). Moreover, the noun-phrases that indicate the mentions of data-

attributes/data-groups participating in Entry-type data-movements, tend to appear in object-

like positions to verbs that have actor subjects (as also determined by our features F14 

mentioned in Section 7.4.2). 

By devising our heuristic-based classification approach, we generalized the experts’ process 

of interpreting these complex linguistic cues of textual requirements into the COSMIC 

modeling artifacts. These heuristics are static rules applied over the linguistic features, that 

are extracted from using our previous step, as mentioned in Section 7.4. Thus, with the 

inclusion of new requirements instances to our corpus over time, only the (lexical) features 

gets enriched and evolves, but not these heuristics. However, this heuristic-based 

classification approach can be necessary to implement our methodology in practice, 



 

 
152 

especially when we do not have sufficient data for training our supervised learning-based 

classification approach, presented later in Section 7.6. 

Our heuristics thus use the same linguistic features, which are extracted from using our 

previous step, as mentioned in Section 7.4, to classify noun-phrases and sentences from 

textual requirements into classes that represent COSMIC’s modeling artifacts, e.g. the data-

attributes, the data-groups and the data-movements. We present the details of these heuristics 

for each type of classifications, in the following sections. 

7.5.1 Data-Attribute Classification 

During the data attribute classification step, we identify the noun-phrases that appear in 

functional requirements sentences to represent the data-attributes. The lexical feature F1, as 

mentioned in Section 7.4, already indicate noun-phrases that contain the attribute names as 

their substrings. Additionally, we apply the following algorithm to classify a noun-phrase as 

a data-attribute: 

Step 1. For each noun-phrase instance x in the input functional process d : 

1.1. If x.F1 = true and the root of the head of x exists in our vocabulary of 

attribute names, then: 

1.1.1. Set x.isADataAttribute = true ; 

Step 2. For each noun-phrase instance x in the input functional process: 

2.1. If x is a Personal Pronoun (i.e. x.POS=PRP) and x (lowercased) is “he”, 

“she”, “it” or “they”, then: 

2.1.1. If x is not pleonastic [which is detected using Gate’s ANNIE tool 

(Cunningham H., Maynard, Bontcheva, & Tablan, 2002)], then: 

Resolve pronominal anaphoric references for x, by identifying the 

nearest matching antecedent y (i.e. that matches the number and the 

gender of x) and copying all the feature values of the antecedent y 

to x ; (Thus, if y.isADataAttribute = true, then also, 

x.isADataAttribute = true.) 

Step 3. For each Wh-determiner y in the input functional process d : 

3.1. Set y (temporarily) as a noun-phrase instance ; 

3.2. Identify the nearest matching antecedent x (i.e. that matches the number and 

the gender of y) and copy all the feature values of the antecedent x to 

y ;(Thus, if x.isADataAttribute = true then also, y.isADataAttribute = true.) 

We used the JAPE scripting language of the GATE environment (Cunningham H., et al., 

2011) to implement our above heuristic. 
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7.5.2 Data-Movement Classification 

During the data-movement classification step, we identify the noun-phrases that appear in 

functional requirements sentences to represent the data-attributes participating in one or more 

type of data-movements. Our combination of lexical and syntactic features, as mentioned in 

Section 7.4, already identify verbs within functional requirement sentences that express the 

senses of Entry, Exit, Read and Write types of data-movements, and also the relationships of 

the noun-phrases to those verbs. We therefore apply the following algorithm that uses these 

features to classify the type of data-movement that a data-attribute (expressed by a noun-

phrase) is involved with: 

Step 1. For each noun-phrase instance x in the input functional process d : 

1.1.   If x.F8 = true, then: 

1.1.1. Skip and continue to the next iteration with a new x; 

1.2. If x.F18 = true, then: 

1.2.1. If x.F14 = “actor subject”, then: 

Set x.isRelatedToEntryVerb = true ; 

1.2.2. Else If x.F14 = “none/no subject”, then: 

Set x.isRelatedToEntryVerb = true ; 

1.3.  Else If x.F20 = true, then: 

Set x.isRelatedToExitVerb = true ; 

1.4.  Else If x.F22 = true, then: 

Set x.isRelatedToReadVerb = true ; 

1.5.  Else If x.F24 = true, then: 

Set x.isRelatedToWriteVerb = true ; 

Step 2. For each noun-phrase instance x in the input functional process d : 

2.1.  If the head of x is connected to another head of a noun-phrase y with a 

coordinating conjunction, causing a conjunct relation [which is detected 

using the Stanford Dependency Parser (Cer, de Marneffe, Jurafsky, & Manning, 

2010), then: 

2.1.1. Copy all the feature values of x to y ; (Thus, if x.isRelatedToEntryVerb 

= true and/or x.isRelatedToExitVerb = true and/or x.isRelatedToReadVerb = 

true and/or x.isRelatedToWriteVerb = true, then also, 

y.isRelatedToEntryVerb = true and/or y.isRelatedToExitVerb = true and/or 

y.isRelatedToReadVerb = true and/or y.isRelatedToWriteVerb = true 

respectively.) 

2.2.  If x is a Wh-determiner, and y is its antecedent, then: 

2.2.1. Copy all the feature values of x to y ; (Thus, if x.isRelatedToEntryVerb 

= true and/or x.isRelatedToExitVerb = true and/or x.isRelatedToReadVerb = 

true and/or x.isRelatedToWriteVerb = true, then also, 

y.isRelatedToEntryVerb = true and/or y.isRelatedToExitVerb = true and/or 
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y.isRelatedToReadVerb = true and/or y.isRelatedToWriteVerb = true 

respectively.) 

2.2.2.  Remove x from the collection of noun-phrase instances. 

Here, where a noun-phrase instance is tagged with the feature value indicating that it is 

related to a type of data-movement verb, it means that the noun-phrase may potentially be 

counted as a data-movement of a data-attribute based on the semantics of the sentence. 

However, as the COSMIC standard suggests that a data-movement occurs only at the level of 

data-groups, the actual classification of data-movement is finalized when the noun-phrases 

are associated with data-groups using our heuristics, presented in Section 7.7. 

Moreover, we found that the measurers often detect implicitly specified occurrences of two 

special types of data-movements while reading functional requirement sentences with certain 

verbs. They are: (1) the Entry-type data-movements of the triggering events of functional 

processes, and (2) the Exit-type data-movements of System Message data-group. These two 

data-groups usually do not appear in the list of possible domain entities of a problem domain, 

and they cannot also be associated to any noun-phrase of a functional requirement sentence, 

as no data-attribute can belong to them. Hence, the data-movements can only be tagged to the 

sentences that express the senses of these data-movements implicitly, as shown in our 

example in Section 2.7.2. 

To detect these two special cases of implicitly specified data-movements, we first built two 

more vocabularies of verbs19: the ones that convey the idea of the implicit occurrence of the 

Entry-type data-movements of the triggering events, and the others that do the same for the 

Exit-type data-movement of the System Messages data-group. We then used the following 

additional algorithm to identify these implicitly specified data-movements: 
Step 1. For each sentence x in the input functional process d : 

1.1.   For each verb y in x: 

1.1.1. If the root of y exists in our vocabulary of “Triggering-Entry” verbs 

(i.e. the verbs that convey the idea of the implicit occurrence of the 

Entry-type data-movements of the triggering events), then: 

1.1.1.1. For each noun-phrase instance p, which appears as a subject of y 

in the sentence: 

1.1.1.1.1. If the root of the head of p exists in our vocabulary of 

“actor names”, then: 

                                                 
19 These two additional vocabularies that we built during our tests are presented in Appendices A.6 and A.7. 
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  Set x.classified_TriggeringEntryDataMovement = true ; 

1.1.1.1.2. Else if head of p (lowercased and with non-alphabet 

characters removed) contains a substring that is equal to any 

of the strings of in the set {“case”, “usecase”, “procedure”, 

“process”, “function”, “method”, “service”, “task”}, then: 

  Set x.classified_TriggeringEntryDataMovement = true ; 

1.1.1.2. If y has no subject, then: 

 Set x.classified_TriggeringEntryDataMovement = true ; 

1.1.2. If the root of y exists in our vocabulary of “System-Message-Exit” verbs 

(i.e. the verbs that convey the idea of the implicit occurrence of the 

Exit-type data-movements of the System Message data-group), then: 

1.1.2.1. For each noun-phrase instance p, which appears as a subject of y 

in the sentence: 

1.1.2.1.1. If the root of the head of p does not exist in our 

vocabulary of “actor names”, then: 

  Set x.classified_SystemMessageExitDataMovement = true ; 

1.1.2.2. If y has no subject, then: 

 Set x.classified_SystemMessageExitDataMovement = true ; 

We again used the JAPE scripting language of the GATE environment (Cunningham H., et 

al., 2011) to implement all of our above heuristics. It should be mentioned that our feature 

values that indicated the nominal subjects and the direct objects of verbs were distributed (or 

copied) amongst the noun-phrase instances and the verbs accordingly, whenever there are 

conjunctions joining the noun-phrase instances together or the verbs together that result from 

the occurrences of commas and coordinating conjunction-type words (i.e. and, or, either, 

neither, nor etc.) between them, as mentioned in Section 7.4.2. 

Our above data-movement classification approach depends on many features from our final 

pool of features. However, we designed our heuristics to use a minimum number of features 

from our feature pool to keep the rules generalized enough to work with new textual 

requirements from unseen problem domains and fail gracefully in case of the less-frequent 

exceptions due to unrestricted natural language are encountered. We, therefore, also included 

a supervised learning-based data-movement classification approach that can evolve with new 

training instances and fine tune its learnt models by introducing additional unused features 

from our feature pool. For example, it may utilize the unused features, like the ones that deal 

with different kinds of dependent clauses within the sentences (i.e. features F17, F19, F21, 

F23 and F25, as presented in Section 7.4.3), or the one that detects the Stative verbs and that 
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subjects within the sentences (i.e. feature F11, as presented in Section 7.4.2) etc, to tackle the 

exceptions of unrestricted natural language. 

In the next section, we discuss our supervised learning-based data-movement classification 

approach in details. 

 

7.6 Supervised Learning-based Classification 
During the supervised learning-based classification step, we take the datasets generated by 

the feature extraction step (discussed in Section 7.4) as input. Here, to use them as training 

datasets, we also need noun-phrase instances to be annotated by expert measurers, either 

manually or using our annotation tool LASR. Our supervised learning-based classification 

approach then applies these datasets to train four different binary classifiers: (1) Entry Data-

Movement Classifier, (2) Exit Data-Movement Classifier, (3) Write Data-Movement 

Classifier, and (4) Write Data-Movement Classifier. 

7.6.1 Feature Selection 

We trained each of our data-movement classifiers with a total of nineteen different features 

from our feature pool. They are: 

• For Entry Data-Movement Classification: The chosen linguistic features are F1-

F19, as described in Section 7.4. 

• For Exit Data-Movement Classification: The chosen linguistic features are F1-F17, 

F20 and F21, as described in Section 7.4. 

• For Read Data-Movement Classification: The chosen linguistic features are F1-F17, 

F22 and F23, as described in Section 7.4. 

• For Write Data-Movement Classification: The chosen linguistic features are F1-

F17, F24 and F25, as described in Section 7.4. 
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7.6.2 Choice of Learning Algorithms 

We built all four data-movement classifiers (i.e. the Entry classifier, the Exit classifier, the 

Read classifier and the Write classifier) based on Weka’s (Hall, Frank, Holmes, Pfahringer, 

Reutemann, & Witten, 2009) implementation of the C4.5 decision tree learning algorithm 

(Quinlan, 1993). The C4.5 decision tree learning algorithm not only attained some of the best 

results compared to other learning algorithms (e.g. Naïve Bayes or Neural Network) in our 

preliminary tests, but also generated rules, whose semantics could also be verified for 

correctness. We fine-tuned its parameters to first build an un-pruned decision tree, and then 

prune it by applying the restriction of classifying at least 5 instances in each leaf of the final 

decision tree. 

For our experiments with these supervised learning-based data-movement classifiers, we 

used the annotated corpus, which was generated by the annotation experiments discussed in 

Section 5.3.3, and built our training/testing datasets by extracting the features, mentioned in 

Section 7.6.1. After training, these classifiers can take each unlabeled noun-phrase from the 

textual requirements of a functional process as input, extract the feature values from the 

noun-phrase and classify it either as the one participating in a corresponding type of data-

movement, or as the one not doing so. For example, training our Entry data-movement 

classifier with the dataset extracted from the whole Entry corpus, generates a decision tree as 

shown in Figure 36. 
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Figure 36: Example Decision Tree to Classify Entry Data-Movement (when the whole dataset is used to 

train the C4.5 algorithm) 

In Figure 36, the feature nodes are labelled with descriptive names instead of using F1, F2, 

F3 etc. to improve readability. This auto-generated decision tree shows semantically 

agreeable rules for Entry classification, where none of its branches are misdirected. 
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Although the tree, shown in Figure 36, is generated by using the complete dataset for training 

our classifier, we only used portions of our datasets for training, while the rest used for 

testing, when running our experiments in this phase. The details on how we used these 

datasets in our experiments for training and testing each of our data-movement classifiers are 

presented in Section 7.9. 

7.7 Data-Group Association 
In the data-group association step, we associate the data-group names accordingly to the base 

noun-phrase instances (i.e. to the nouns, the noun compounds and pronouns) that appear in 

the functional requirement sentences of our input functional process. This step also finalizes 

the output classification of the data-movements, as discussed in Sections 7.5.2 and 7.6. Here, 

we use the following algorithm to associate the data-group names to the noun-phrase 

instances and also finalize their data-movement classification labels based on the associated 

data-groups: 

Step 1. For each noun-phrase instance x in the input functional process d : 

1.1. If x.F2 = true and x matches fully/partially to any y of all the data-group 

names, then: 

1.1.1. If x.isRelatedToEntryVerb = true or x.isRelatedToExitVerb = true or 

x.isRelatedToReadVerb = true or x.isRelatedToWriteVerb = true, then: 

1.1.1.1. Set foundMovingDataAttributes = false ; 

1.1.1.2. Set x.classified_AssociatedToDataGroup = y ; 

1.1.1.3. Set d.lastMostLikelyKnownDataGroup = y ; 

1.1.1.4. If x.isADataAttribute = true, then: 

1.1.1.4.1. Set x.classified_DataAttribute = true ; 

1.1.1.4.2. Set foundMovingDataAttributes = true ; 

1.1.1.5. Else: 

1.1.1.5.1. Set x.classified_DataAttribute = false ; 

1.1.1.5.2. Set foundMovingDataAttributes = false ; 

1.1.1.6. If x.F9 = true and x owns a noun-phrase instance z (the feature of 

owning a noun-phrase instance is presented in F9 in Section 7.5.2) 

and z.isADataAttribute = true and foundMovingDataAttributes = false, 

then: 

1.1.1.6.1. Set foundMovingDataAttributes = true ; 

1.1.1.6.2. Set z.classified_AssociatedToDataGroup = y ; 

1.1.1.6.3. Set z.classified_DataAttribute = true ; 

1.1.1.7. If x.F12 = true and foundMovingDataAttributes = false and x is 

related to z by a chain of prepositional objects (the feature of 

being related to a noun-phrase instance by a chain of prepositional 
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objects is presented in F12 in Section 7.5.2), such that 

z.isADataAttribute = true, then: 

1.1.1.7.1. Set foundMovingDataAttributes = true ; 

1.1.1.7.2. Set z.classified_AssociatedToDataGroup = y ; 

1.1.1.7.3. Set z.classified_DataAttribute = true ; 

1.1.1.8. If foundMovingDataAttributes = false, then: 

1.1.1.8.1. Set x.classified_DataAttribute = true ; 

1.1.1.8.2. Set foundMovingDataAttributes = true ; 

1.1.2. Else: 

1.1.2.1. If x is not a subject to a data-movement verb, then: 

1.1.2.1.1. Set d.lastMostLikelyKnownDataGroup = y ; 

1.1.2.2. Else: 

1.1.2.2.1. Set d.lastLessLikelyKnownDataGroup = y ; 

1.2. Else: 

1.2.1. If x.isRelatedToEntryVerb = true or x.isRelatedToExitVerb = true or 

x.isRelatedToReadVerb = true or x.isRelatedToWriteVerb = true, then: 

1.2.1.1. Set foundMovingDataAttributes = false ; 

1.2.1.2. Set foundDataGroupName = false ; 

1.2.1.3. If x.isADataAttribute = true, then: 

1.2.1.3.1. Set x.classified_DataAttribute = true ; 

1.2.1.3.2. Set foundMovingDataAttributes = true ; 

1.2.1.3.3. Set mostLikelyNewDataGroup = null ; 

1.2.1.3.4. Set lessLikelyNewDataGroup = null ; 

1.2.1.3.5. If x.F10 = true and x belongs to a noun-phrase instance z 

(the feature of belonging to a noun-phrase instance is 

presented in F10 in Section 7.5.2), then: 

1.2.1.3.5.1. Set mostLikelyNewDataGroup = headOf(z) ; 

1.2.1.3.5.2. If z matches fully/partially to any y of all the names 

in our vocabulary of data-group names and 

foundDataGroupName = false, then: 

1.2.1.3.5.2.1. Set x.classified_DataAttribute = true ; 

1.2.1.3.5.2.2. Set x.classified_AssociatedToDataGroup = y ; 

1.2.1.3.5.2.3. Set d.lastMostLikelyKnownDataGroup = y ; 

1.2.1.3.5.2.4. Set foundDataGroupName = true ; 

1.2.1.3.6. If x.F13 = true and foundDataGroupName = false, then: 

1.2.1.3.6.1. For each noun-phrase instance z that is related to x 

by a chain of prepositional objects (the feature of being 

related to a noun-phrase instance by a chain of 

prepositional objects is presented in F13 in Section 

7.5.2): 

1.2.1.3.6.1.1. Set lessLikelyNewDataGroup = headOf(z) ; 

1.2.1.3.6.1.2. If z matches fully/partially to any y of all the 

names in our vocabulary of data-group names, then: 

1.2.1.3.6.1.2.1. Set x.classified_DataAttribute = true ; 

1.2.1.3.6.1.2.2. Set x.classified_AssociatedToDataGroup = y ; 

1.2.1.3.6.1.2.3. Set d.lastMostLikelyKnownDataGroup = y ; 
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1.2.1.3.6.1.2.4. Set foundDataGroupName = true ; 

1.2.1.3.6.1.2.5. Break out of the for loop; 

1.2.1.3.6.1.2.6. Set foundDataGroupName = true ; 

1.2.1.3.7. If foundMovingDataAttributes = false, then: 

1.2.1.3.7.1. If d.lastMostLikelyKnownDataGroup is not null, then: 

1.2.1.3.7.1.1. Set y = d.lastMostLikelyKnownDataGroup ; 

1.2.1.3.7.1.2. Set x.classified_DataAttribute = true ; 

1.2.1.3.7.1.3. Set x.classified_AssociatedToDataGroup = y ; 

1.2.1.3.7.1.4. Set foundDataGroupName = true ; 

1.2.1.3.7.2. Else If mostLikelyNewDataGroup is not null, then: 

1.2.1.3.7.2.1. Set y = mostLikelyNewDataGroup ; 

1.2.1.3.7.2.2. Set x.classified_DataAttribute = true ; 

1.2.1.3.7.2.3. Set x.classified_AssociatedToDataGroup = y ; 

1.2.1.3.7.2.4. Set foundDataGroupName = true ; 

1.2.1.3.7.3. Else If lessLikelyNewDataGroup is not null, then: 

1.2.1.3.7.3.1. Set y = lessLikelyNewDataGroup ; 

1.2.1.3.7.3.2. Set x.classified_DataAttribute = true ; 

1.2.1.3.7.3.3. Set x.classified_AssociatedToDataGroup = y ; 

1.2.1.3.7.3.4. Set foundDataGroupName = true ; 

1.2.1.3.7.4. Else: 

1.2.1.3.7.4.1. Set x.classified_AssociatedToDataGroup = unknown ; 

1.2.1.3.7.4.2. Set x.classified_DataAttribute = true ; 

All of our above heuristics were implemented using the Jape scripting language of the GATE 

environment (Cunningham H., et al., 2011). Our heuristics to associate data-group names to 

noun-phrases (as discussed in details in Section 7.7), uses multiple passes of loops that are 

sequentially executed, and the loops depend on the outcomes of their previous passes. Based 

on these heuristics, we also find that process of data-group association is strictly an 

algorithmic approach that do not fully depend on our pool of features, but on the outputs 

generated by our previous step of data-movement classification (as discussed in Sections 

7.5.2 and 7.6). Thus, the rules we set are complete enough deal with any problem domain, 

and do not need to evolve over time with the inclusion of new textual instances of software 

requirements from unseen problem domains. 

7.8 Extending COSMIC by CFP Range Measurement 
In Section 4.3, we presented our formalization of the COSMIC functional size measurement 

process (COSMIC, 2014) by modeling of the ontology for the COSMIC FSM artifacts and 

the formulas for assigning the numeric value of functional size to a piece of software. Our 
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approaches discussed in this chapter automates the extraction of the COSMIC FSM modeling 

artifacts from the textual requirements, and thus maintains the traceability of the FSM 

process (i.e. from input textual requirements to the output measurement) by instantiating the 

classes of our ontology. 

Now, using our approaches as described in Sections 7.5, 7.6 and 7.7, we can automatically 

identify the following sets of classification labels for the noun-phrases and sentences from 

the textual requirements that describe a functional process, FPROCi : 

- Set A containing labels for noun-phrases, that identify them as mentions of Data-

Attributes, which participate in at least one of the four specific types 

of Data-Movements, and that most likely belong to some already 

known Data-Group(s). 

- Set B containing labels for noun-phrases, that identify them as mentions of Data-

Attributes, which participate in at least one of the four specific types 

of Data-Movements, and that less likely belong to some already 

known Data-Group(s). 

- Set C containing labels for noun-phrases, that identify them as mentions of Data-

Attributes, which participate in at least one of the four specific types 

of Data-Movements, and that most likely belong to some new and 

previously unknown Data-Group(s). 

- Set D containing labels for noun-phrases, that identify them as mentions of Data-

Attributes, which participate in at least one of the four specific types 

of Data-Movements, and that less likely belong to some new and 

previously unknown Data-Group(s). 

- Set E containing labels for noun-phrases, that identify them as mentions of Data-

Attributes, which participate in at least one of the four specific types 

of Data-Movements, and that belong to some unknown Data-

Group(s). 
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- Set F containing labels for sentences, that identify them as implicit expressions of the 

Entry-type data-movement of the Triggering Events. 

- Set G containing labels for sentences, that identify them as implicit expressions of the 

Exit-type data-movement of the System Messages Data Group. 

Thus, each classification label as an element of the sets A, B, C, D and E can be designated as 

the following pair: 

( data-groupx , data-movement-typey ) 

where, data-groupx  ∈  Set of m possible data-groups in the input problem domain, p 

  data-movement-typey  ∈  { Entry , Exit , Read , Write } 

And, the classification labels as elements of the sets F and G can be designated as the pairs 

( TriggeringEvent , Entry ) and ( SystemMessage , Exit ) respectively. 

Thus, each element of the sets A, B, C, D, E, F and G is actually an FSM object, as defined in 

Section 4.3, and therefore can be any of the following pairs: 

(data-group1 , Entry), (data-group1 , Exit), (data-group1 , Read), (data-group1 , Write), (data-

group2 , Entry), … (data-groupm , Entry), (data-groupm , Exit), (data-groupm , Read), (data-

groupm , Write) 

Our experiments that are described later in Sections 7.9, 7.10 and 7.11, produced 

classification labels similar to the above FSM Objects, and thus can also be considered as 

elements of the sets A, B, C, D, E, F and G. 

Now, according to the equation (2) presented in Section 4.3 of Chapter 4, we know that the 

aggregated measure of functional size in CFP of FPROCi is—— 

)()( ii FPROCFSMObjectsFPROCSizeFunctional =  

We now use the above formula to extend CFP measurement process into measuring the range 

of CFP, by defining the minimum, maximum and most-likely functional size. These 

definitions are shown by the following formulas: 

  ),2max()(min AFPROCSizeFunctional i =  

  ),2max()(likely-most GFCAFPROCSizeFunctional i =  
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  ),2max()(max GFEDCBAFPROCSizeFunctional i =  

Theses formulas ensure the ranges of functional size in CFP for a functional process, such 

that, 2 ≤ FunctionalSizemin(FROCi) ≤ FunctionalSizemost-likely(FROCi) ≤ 

FunctionalSizemax(FROCi), and thus, retain the rule of COSMIC FSM standard (COSMIC, 

2014), which states that the minimum possible size of a functional process is 2 CFP. Also, 

the set F is optionally considered in these formulas; i.e. it can be omitted from these formulas, 

in case triggering events are not to be counted as additional Entry-type data-movements.  

Thus, using the above formulas for FunctionalSizemin(FROCi),  FunctionalSizemost-likely(FROCi) 

and FunctionalSizemax(FROCi), we can extend the equation (3), presented in Section 4.3, to 

measure the CFP range of a requirements document, DOCUMENTp, as follows: 


=

=
n

i
ixpx FPROCFSMObjectsDOCUMENTSizeFunctional

1
)()(  

where x can be either “min” or “most-likely” or “max”, referring to the minimum, most-

likely and maximum functional sizes respectively defining the limits of the CFP ranges. The 

measured CFP ranges of the input requirements documents can thus be used to estimate the 

development effort in range too. We thus used the above formulas to derive the CFP ranges 

from the classification labels produced by our experiments, which are described next in 

Sections 7.9, 7.10 and 7.11. We then analyzed the results in Section 7.12. 

7.9 Overview of the Classification Experiments 
As described in Sections 7.5 and 7.6, we developed two different approaches for identifying 

the types of data-movements that a noun-phrase participates in: (1) a heuristic-based 

approach, that is to be applied in absence of an annotated dataset, and (2) a supervised 

learning-based approach, that is to be applied to dynamically adapt itself to evolving 

environments by training it with annotated datasets. In this section, we present an overview 

of the experiments that we conducted to validate both of our classification approaches. 

7.9.1 The Corpora 

The true gold-standard annotation labels of each base noun-phrase instance, as discussed in 

Section 5.3.3, formed our annotated corpora that are to be used for our experiments. Thus, we 
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experimented with our data-movement classification approaches with highly skewed corpora, 

as presented by the distributions of the gold-standard class labels shown in Figure 37. 
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Entry
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Figure 37: Distribution of the Gold-Standard Class Labels for Data-Movement Classification  

Table 26 shows further details of the corpora distribution by presenting the number of 

instances, their sources and their corresponding class labels, which are: Entry (E+), Not Entry 

(E-), Exit(X+), Not Exit (X-), Read (R+), Not Read (R-), Write (W+) and Not Write (W-). 

Doc 
Id 

Document 
Name 

Source 
Extracted 
Base NP’s 

Entry 
Classification 

Exit 
Classification 

Read 
Classification 

Write 
Classification 

E+ E- X+ X- R+ R- W+ W-

C1 (undisclosed) Industry (SAP) 314 14 300 32 282 27 287 6 308 

C2 (undisclosed) Industry (SAP) 59 4 55 3 56 2 57 1 58 

C3 
Course 
Registration 
System 

Concordia 
University 

711 22 689 16 695 19 692 24 687 

C4 
IEEE Montreal 
Website 

Concordia 
University 

1318 31 1287 16 1302 17 1301 26 1292 

C5 (undisclosed) Industry (SAP) 27 2 25 3 24 4 23 0 27 

C6 (undisclosed) Industry (SAP) 383 45 338 22 361 40 343 42 341 

Total 2812 118 2694 92 2720 109 2703 99 2713 

Table 26: Frequency of Data-movement Class Labels in the Corpora 

The corpora held multi-class annotation data, i.e. the same noun-phrase instance could be 

annotated for Entry classification (as E+ or E-), Exit classification (as X+ or X-), Read 

classification (as R+ or R-), and Write classification (as W+ or W-). We therefore divided the 

corpora into four different binary corpora: (1) the Entry classification corpus, (2) the Exit 

classification corpus, (3) the Read classification corpus, and (4) the Write classification 
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corpus. We used these annotated corpora to experiment with all of our classification 

approaches. 

7.9.2 Testing Methods 

Since we have a very small number of positive instances in our corpora, we applied three 

different types of testing methods to perform detailed and conclusive analyses for our 

experiments over our classification approaches. These three types of testing methods are: 

(1) Using the Complete Dataset for Testing 
We used the complete dataset to test our heuristic-based classification approach, presented in 

Section 7.5. Since we use a heuristic in this approach to identify the noun-phrases that does 

not depend on the availability of the training set, we could use our complete dataset here for 

testing. 

(2) Batch Testing for Incremental Learning 
We applied batch testing method to test our supervised learning-based classification approach, 

presented in Section 7.6. Since our classifiers here need to be trained first with an almost 

evenly distributed training dataset before testing, we ran five different batches of training-

testing trials, where, in each batch, we gradually increased the number of documents used for 

training our classifiers, while the rest of the documents are used for testing. Our testing 

algorithm carefully constructed each trial within a batch so that none of the documents used 

for training a classifier in one trail, is not used for testing the classifier in the same trial. The 

trials are then composed of all possible combinations of documents that we could use from 

our corpus for training and testing each of our classifier. Our testing algorithm here also 

made sure that the extracted training dataset for each trial within a batch contains equal 

number of positive and negative instances. Finally, we then average the test results of all the 

trials in each batch to analyze the results across all the batches. 

As shown earlier in Table 26, the documents of our corpora has variable numbers of noun-

phrase instances. Therefore, the number of training and testing instances in each trial of our 

batches also varied. Thus, Table 27 shows, for example, the total number of noun-phrase 

instances from our Entry corpus and their source documents that are used for training and 
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testing our Entry classifier during each trail of batch #1. A total of 6 trials are executed in this 

batch, each using one different document for training our classifier, and a different 

combination of the remaining five documents for testing our classifier. 

Batch 
no. 

Trial 
no. 

Training 
Document(s) 

Testing 
Document(s) 

Total 
Training 

Instances 

Total Testing 
Instances 

1 

1.1 C1 C2,C3,C4,C5,C6 28 2498 

1.2 C2 C1,C3,C4,C5,C6 8 2753 

1.3 C3 C1,C2,C4,C5,C6 44 2101 

1.4 C4 C1,C2,C3,C5,C6 62 1494 

1.5 C5 C1,C2,C3,C4,C6 4 2785 

1.6 C6 C1,C2,C3,C4,C5 90 2429 

Table 27: Training and Testing Instances in Batch Test #1 for the Entry Classifier 

Similarly, Table 28 shows, for example, the total number of noun-phrase instances and their 

source documents that are used for training and testing our Entry classifier during each trail 

of batch #2. A total of 15 trials are executed in this batch, each using a different combination 

of two documents for training our classifier, and a different combination of the remaining 

four documents for testing our classifier. 

Batch 
no. 

Trial 
no. 

Training 
Document(s) 

Testing 
Document(s) 

Total 
Training 

Instances 

Total Testing 
Instances 

2 

2.1 C1,C2 C3,C4,C5,C6 36 2439 

2.2 C1,C3 C2,C4,C5,C6 72 1787 

2.3 C1,C4 C2,C3,C5,C6 90 1180 

2.4 C1,C5 C2,C3,C4,C6 32 2471 

2.5 C1,C6 C2,C3,C4,C5 118 2115 

2.6 C2,C3 C1,C4,C5,C6 52 2042 

2.7 C2,C4 C1,C3,C5,C6 70 1435 

2.8 C2,C5 C1,C3,C4,C6 12 2726 

2.9 C2,C6 C1,C3,C4,C5 98 2370 

2.10 C3,C4 C1,C2,C5,C6 106 783 

2.11 C3,C5 C1,C2,C4,C6 48 2074 

2.12 C3,C6 C1,C2,C4,C5 134 1718 

2.13 C4,C5 C1,C2,C3,C6 66 1467 

2.14 C4,C6 C1,C2,C3,C5 152 1111 

2.15 C5,C6 C1,C2,C3,C4 94 2402 

Table 28: Training and Testing Instances in Batch Test #2 for the Entry Classifier 
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Again, Table 29 shows, for example, the total number of noun-phrase instances and their 

source documents that are used for training and testing our Entry classifier during each trail 

of batch #3. A total of 20 trials are executed in this batch, each using a different combination 

of three documents for training our classifier, and a different combination of the remaining 

three documents for testing our classifier. 

Batch 
no. 

Trial 
no. 

Training 
Document(s) 

Testing 
Document(s) 

Total 
Training 

Instances 

Total Testing 
Instances 

3 

3.1 C1,C2,C3 C4,C5,C6 80 1728 

3.2 C1,C2,C4 C3,C5,C6 98 1121 

3.3 C1,C2,C5 C3,C4,C6 40 2412 

3.4 C1,C2,C6 C3,C4,C5 126 2056 

3.5 C1,C3,C4 C2,C5,C6 134 469 

3.6 C1,C3,C5 C2,C4,C6 76 1760 

3.7 C1,C3,C6 C2,C4,C5 162 1404 

3.8 C1,C4,C5 C2,C3,C6 94 1153 

3.9 C1,C4,C6 C2,C3,C5 180 797 

3.10 C1,C5,C6 C2,C3,C4 122 2088 

3.11 C2,C3,C4 C1,C5,C6 114 724 

3.12 C2,C3,C5 C1,C4,C6 56 2015 

3.13 C2,C3,C6 C1,C4,C5 142 1659 

3.14 C2,C4,C5 C1,C3,C6 74 1408 

3.15 C2,C4,C6 C1,C3,C5 160 1052 

3.16 C2,C5,C6 C1,C3,C4 102 2343 

3.17 C3,C4,C5 C1,C2,C6 110 756 

3.18 C3,C4,C6 C1,C2,C5 196 400 

3.19 C3,C5,C6 C1,C2,C4 138 1691 

3.20 C4,C5,C6 C1,C2,C3 156 1084 

Table 29: Training and Testing Instances in Batch Test #3 for the Entry Classifier 

Then, Table 30 shows, for example, the total number of noun-phrase instances and their 

source documents that are used for training and testing our Entry classifier during each trail 

of batch #4. A total of 15 trials are executed in this batch, each using a different combination 

of four documents for training our classifier, and a different combination of the remaining 

two documents for testing our classifier. 

 



 

 
169 

Batch 
no. 

Trial 
no. 

Training 
Document(s) 

Testing 
Document(s) 

Total 
Training 
Instances 

Total Testing 
Instances 

4 

4.1 C1,C2,C3,C4 C5,C6 142 410 

4.2 C1,C2,C3,C5 C4,C6 84 1701 

4.3 C1,C2,C3,C6 C4,C5 170 1345 

4.4 C1,C2,C4,C5 C3,C6 102 1094 

4.5 C1,C2,C4,C6 C3,C5 188 738 

4.6 C1,C2,C5,C6 C3,C4 130 2029 

4.7 C1,C3,C4,C5 C2,C6 138 442 

4.8 C1,C3,C4,C6 C2,C5 224 86 

4.9 C1,C3,C5,C6 C2,C4 166 1377 

4.10 C1,C4,C5,C6 C2,C3 184 770 

4.11 C2,C3,C4,C5 C1,C6 118 697 

4.12 C2,C3,C4,C6 C1,C5 204 341 

4.13 C2,C3,C5,C6 C1,C4 146 1632 

4.14 C2,C4,C5,C6 C1,C3 164 1025 

4.15 C3,C4,C5,C6 C1,C2 200 373 

Table 30: Training and Testing Instances in Batch Test #4 for the Entry Classifier 

Table 31 shows, for example, the total number of noun-phrase instances and their source 

documents that are used for training and testing our Entry classifier during each trail of batch 

#2. A total of 6 trials are executed in this batch, each using a different combination of five 

documents for training and the remaining one document for testing our classifier. 

Batch 
no. 

Trial 
no. 

Training 
Document(s) 

Testing 
Document(s) 

Total 
Training 
Instances 

Total Testing 
Instances 

5 

5.1 C1,C2,C3,C4,C5 C6 146 383 

5.2 C1,C2,C3,C4,C6 C5 232 27 

5.3 C1,C2,C3,C5,C6 C4 174 1318 

5.4 C1,C2,C4,C5,C6 C3 192 711 

5.5 C1,C3,C4,C5,C6 C2 228 59 

5.6 C2,C3,C4,C5,C6 C1 208 314 

Table 31: Training and Testing Instances in Batch Test #5 for the Entry Classifier 

These tables show that a large number of negative instances are randomly removed from the 

training dataset of each trial so that the number of positive and negative instances in the 

training datasets remain equal. However, the total number of training instances increases on 

average across every subsequent batch. This is result is shown in Figure 38. 
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Figure 38: Number of Training Instances Used in Each Batch Test for the Entry Classifier 

Through our batch testing experiments, we have shown that our data-movement classifier is 

feasible for practical implementation (i.e. where sufficient number of training instances is 

available), if its average accuracy results also improve across each subsequent batch. 

(3) Using 10-fold Cross-Validation 
We also apply 10-fold cross-validation to test our supervised learning-based classification 

approach, presented in Section 7.6. Since our classifiers need to be trained with almost 

evenly distributed datasets before testing, we first randomly removed a portion negative 

instances in each of our datasets, so that the number of positive and negative instances are 

equal. We then performed 10-fold cross-validation tests that divides the dataset into 10 equal 

sized parts (i.e. almost equal number of instances), and then take the average results of 10 

different trials, where each trial uses each combination of nine different parts of the dataset to 

train our classifier and uses the remaining one part to test the classifier. 

 

7.9.3 Types of Classification Experiments 

Based on the testing methods we used, as discussed in Section 7.9.2, all of the experiments in 

this phase of the research can be classified into the types, as shown in Figure 39. 
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Classification

Test over the 
whole set

Read Data-
Movement 

Classification

Supervised 
Learning-based  
Classification

10-fold cross-
validation

Incremental 
Batches

Heuristic-based 
Classification

Test over the 
whole set

Write Data-
Movement 

Classification

Supervised 
Learning-based  
Classification

10-fold cross-
validation

Incremental 
Batches

Heuristic-based 
Classification

Test over the 
whole set

 

Figure 39: Types of Experiments to Validate the Different Data-Movement Classification Approaches 

As we conducted these different types of experiments, shown in Figure 39, we gathered 

various types of results. We will be discussing these results of our experiment and analyze 

them in details in the following sections. 
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7.10 Heuristic-based Classification Results 
In this section, we discuss and analyze the results of the experiments that we executed to 

verify our heuristic-based approach, presented in Section 7.5, to classify the noun-phrase 

instances of different types of data-movements.  Table 32 shows the resultant confusion 

matrices when we tested our heuristic-based classification approach over all instances of our 

corpora, which is described in Section 7.9.1. 

 

  Classified As 

  Entry Not 
Entry 

Gold-
Standard 

Entry 96 22 

Not 
Entry 37 2657 

 

  Classified As 

  Exit Not Exit 

Gold-
Standard 

Exit 78 14 

Not Exit 27 2693 

 

  Classified As 

  Read Not 
Read 

Gold-
Standard 

Read 76 33 

Not 
Read 41 2662 

 

  Classified As 

  Write Not 
Write 

Gold-
Standard 

Write 82 17 

Not 
Write 39 2674 

Table 32: Confusion Matrices for Heuristic-based Data-Movement Classification 

Using the confusion matrices in Table 32, we can compute the results for this experiment, as 

shown in Table 33.  

(For Positive Class of) 
Data-Movement Type 

Accuracy
(Ratio of 
Correct) 

Kappa Precision Recall F-Measure

Entry 0.979 0.754 0.722 0.813 0.765
Exit 0.985 0.784 0.743 0.848 0.792
Read 0.974 0.659 0.650 0.697 0.672
Write 0.980 0.735 0.678 0.828 0.745

Average = 0.979 0.733 0.698 0.797 0.744

Table 33: Results of Heuristic-based Data-Movement Classification 
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Thus, we find in this experiment, as shown in Table 33, that the average accuracy of our 

heuristic-based approach is very high and is comparable to human performance and the 

average agreement of its classifications with the true gold-standard labels set by the expert 

[shown in terms of Cohen’s Kappa (Cohen, 1960) in Table 33] is better than the average pair-

wise agreement of fully-trained human annotators with the same expert, as recorded by the 

results of our experiments, presented in Section 5.4.2. This shows that our heuristic-based 

approach can feasibly be applied in practice to identify data-movement types from textual 

requirements, especially when annotated datasets are not available for training the supervised 

learning-based classifiers. 

 

7.11 Supervised Learning-based Classification Results 
The supervised learning-based data-movement classification approach uses four different 

classifiers, as mentioned in Section 7.6. Now, to experiment with each of these classifiers, we 

applied two different testing methods: (1) incremental learning and testing by batches, and (2) 

10-fold cross-validation, as described in Section 7.9.2. In the following sections, we discuss 

and analyze the results of these experiments. 

7.11.1 Results of Batch Testing for Incremental Learning 
We used our batch testing wrapper scripts, to automate a large number of trials that are 

grouped into five different batches. Each subsequent batch gradually adds a document from 

our corpus to the training dataset and uses the rest of the documents for testing. The trials in a 

batch uses all possible combination of the documents, while never using a document for 

testing which is already used for training. The training datasets for all trials are also 

automatically down-sampled, by randomly removing a portion of negative instances, so that 

the number of the positive and the negative instances are equal in each of these datasets. The 

procedure of the batch testing experiment is described with examples in Section 7.9.2. 

We ran the batch testing experiments individually over each of our data-movement classifiers, 

described in Section 7.6, using their respective datasets. All these tests were run using our 

wrapper script over Weka’s training and testing modules. The detailed outputs produced by 
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our script for these batch testing experiments are included in Appendix B.2. We present the 

summary of these results in Figures 40, 41, 42 and 43. 
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Figure 40: Results of Running Batch Tests for Incremental Learning Over the Entry Classifier 

 

 



 

 
175 

0

50

100

150

200

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Training Instances

Average Minimum

Maximum Standard Deviation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Kappa

Average Minimum

Maximum Standard Deviation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

F-Measure (Class: “Exit”)

Average Minimum

Maximum Standard Deviation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Precision (Class: “Exit”)

Average Minimum

Maximum Standard Deviation

0

0.2

0.4

0.6

0.8

1

1.2

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Recall (Class: “Exit”)

Average Minimum

Maximum Standard Deviation
 

Figure 41: Results of Running Batch Tests for Incremental Learning Over the Exit Classifier 

 

 



 

 
176 

0

50

100

150

200

250

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Training Instances

Average Minimum

Maximum Standard Deviation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Kappa

Average Minimum

Maximum Standard Deviation

0

0.2

0.4

0.6

0.8

1

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

F-Measure (Class: “Read”)

Average Minimum

Maximum Standard Deviation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Precision (Class: “Read”)

Average Minimum

Maximum Standard Deviation

0

0.2

0.4

0.6

0.8

1

1.2

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Recall (Class: “Read”)

Average Minimum

Maximum Standard Deviation
 

Figure 42: Results of Running Batch Tests for Incremental Learning Over the Read Classifier 
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Figure 43: Results of Running Batch Tests for Incremental Learning Over the Write Classifier 

 

The results shown in Figures 40, 41, 42 and 43 demonstrate that, along with the steady 

increase of the average number of training instances in each batch, the most of the accuracy 

statistics of all of our classifiers also improved steadily. However, the overall accuracy often 

stayed low in average, which is also understandable given the number of training instances 
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versus the testing instances, and also, each batch always had a few trials, which included one 

or more documents in the test set that belong to a problem domain or a source, which were 

never related to the documents used for training in those trials. Thus, there existed one or 

more trials in every batch where the accuracy statistics were very low, as reflected by the 

minimum curve on the charts of the figures, bringing the overall average down. However, it 

should be mentioned that there also exist trials in each batch where all the accuracy statistics 

were  comparatively very high. This is an important success, as all of the trials in all batches 

had document(s) in the test set that were unseen in the training set. We also should mention 

that we reported in these figures only the critical statistical attributes over the positive 

instances, which are much “rare” in number in comparison to the negative instances, where 

the statistical measures (e.g. the precision, the recall and the f-mesaure) are relatively very 

high. We also did not report here the percentage of correctly classified instances, which also 

were about 90% or more on average for all the classifiers. Detailed results of our batch 

testing are included in Appendix B.2. 

Finally, the charts in Figures 40, 41, 42 and 43 show that all of our classifiers can attain very 

promising results when used in practice the number of training instances are increased to a 

sufficient level (which may be determined by continuing to test in future with more training 

data for each problem domain). This statement is evident by the continual rise of the average 

of statistical measures across the batches, as demonstrated by these figures. Although the 

total number of trails per batch went down over subsequent batches after Batch #3, the 

standard deviation still often went down for some statistical measures, showing that the 

results tending to converge at high and more stable values. All these results indicate that the 

application of our supervised-learning based is feasible only with the availability of sufficient 

training data. 
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7.11.2 Results of 10-fold Cross-Validation 
We discuss in this section the results of running 10-fold cross-validation over each of the 

classifiers for our supervised learning-based approach. These results would indicate by 

simulating how much accuracy we can realistically achieve by using these classifier with the 

availability of sufficient training data. 

Here, we first extracted the feature values to build four different datasets from all the 

documents of our four different corpora, as described in Section 7.9.1. We then randomly 

removed portions of the negative instances so that we have an equal number of the positive 

and negative instances in each of the datasets. Then, we ran the 10-fold cross-validation tests 

individually over each of our data-movement classifiers, described in Section 7.6, using their 

respective datasets. All these tests were run using Weka’s 10-fold cross-validation testing 

module. The detailed outputs produced by Weka our 10-fold cross-validation experiments are 

included in Appendix B.1. 

Each of our binary corpora that we used in our experiments is highly imbalanced with only 

about 104 instances (or 3.7% of all the instances) on average belonging to the positive classes 

and about 2708 instances (or 96.3% of all the instances) on average belonging to the 

negatives, as represented by the distribution of our corpora presented in Section 7.9.1. This 

high difference between the classes and the relatively low number of positive instances could 

lead to biased learning for our classifiers where they would emphasize on the negative 

instances more than the  positive ones, when selecting the most discriminative features or 

determining their thresholds (Estabrooks, Jo, & Japkowicz, 2004). We therefore down-

sampled our extracted datasets by randomly removing about 2604 negative instances (or 

about 92.6% of all the instances) from each of the datasets. This, for example, led the dataset 

used in our 10-fold cross-validation experiment over our Entry classifier to have a total of 

236 instances (i.e. 118 “Entry” and 118 “Not Entry” instances). 

The results of our execution of 10-fold cross-validation on all four of our classifiers using 

their respective datasets are shown in Table 34 and Table 35. 
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  Classified As 

  Entry Not 
Entry 

Gold-
Standard 

Entry 97 21 

Not 
Entry 15 103 

 

  Classified As 

  Exit Not Exit 

Gold-
Standard 

Exit 77 15 

Not Exit 10 82 

 

  Classified As 

  Read Not 
Read 

Gold-
Standard 

Read 93 16 

Not 
Read 21 88 

 

  Classified As 

  Write Not 
Write 

Gold-
Standard 

Write 83 16 

Not 
Write 2 97 

Table 34: Confusion Matrices for 10-fold Cross Validation on Supervised Learning-based Data-Movement 
Classification 

Using the confusion matrices in Table 34, we can compute the accuracy results for this 

experiment, as shown in Table 35. 

(For Positive Class of) 
Data-Movement Type 

Accuracy
(Ratio of 
Correct) 

Kappa Precision Recall F-Measure

Entry 0.847 0.695 0.866 0.822 0.843
Exit 0.864 0.728 0.885 0.837 0.860
Read 0.830 0.661 0.816 0.853 0.834
Write 0.909 0.818 0.976 0.838 0.902

Average = 0.862 0.725 0.886 0.837 0.860

Table 35: Results of 10-fold Cross Validation on Supervised Learning-based Data-Movement 
Classification 

The 10-fold cross-validation results, as presented in Table 35, show that our supervised 

learning-based classification approach can almost be as good as our heuristics-based 

classification approach, where the average agreement of its classifications with the true gold-

standard labels set by the expert [shown in terms of Cohen’s Kappa (Cohen, 1960) in Table 

33] is also better than the average pair-wise agreement of fully-trained human annotators 

with the same expert, as recorded by the results of our experiments, presented in Section 

5.4.2. 
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7.12 CFP Range Measurement Results 
We finally analyse the accuracy of the CFP range measurements for all the requirements 

documents of our corpus that are computed using the formulas presented in Section 7.8 over 

the automatically classified instances of noun-phrases and sentences following one of our 

classification approaches. In this experiment, we used the classification labels produced by 

our heuristic-based classification approach over our corpus. Our analysis involves comparing 

the CFP measurement accuracy of this approach to that of our trained human annotators in 

measuring the CFP manually for the same set of documents. We measured the accuracies in 

terms of the magnitudes of relative error (MRE) and the mean magnitude of relative error 

(MMRE). Table 36 presents the MRE and MMRE results of measuring CFP ranges for the all 

documents of our corpus, based on the classification labels of the noun-phrases and sentences 

of the documents, where the frequencies of the identified data-movement labels are 

aggregated by data-groups and functional processes following the formulas in Section 7.8. 

Doc. 
ID 

Total CFP MRE 

Based on 
Expert’s 

Annotation 
Labels 

Based on Heuristic-based 
Classification Labels 

Based on Heuristic-based 
Classification Labels 

Minimum Most-
Likely Maximum Minimum Most-

Likely Maximum 

C1 65 51 69 75 0.216 0.061 0.154
C2 16 14 18 23 0.125 0.125 0.437
C3 80 66 84 87 0.175 0.050 0.087
C4 133 83 141 147 0.376 0.060 0.105
C5 10 8 13 15 0.200 0.300 0.500
C6 49 44 58 62 0.102 0.184 0.265

MMRE = 0.199 0.130 0.258

Table 36: CFP Range Measurements Results Based on the Heuristic-based Classification Labels 

The results presented in Table 36 show that the most-likely total CFP’s of all the documents 

of our corpus, as calculated from the classification labels that are automatically produced by 

our heuristic-based classification approach, are nearly accurate (i.e. MMRE is only 0.13, and 

the MRE’s are less than 20% for about 83.33% of all the documents), when matched with the 

total CFP’s calculated from the true gold standard annotation labels chosen by the expert. 

Here, we find that the MMRE result of the most-likely total CFP’s, calculated from our 

automatically produced classification labels, is still not as good as what the fully-trained 
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human annotators achieved manually (as presented in Table 14 of Section 5.6), but only 

when their collective gold-standard annotation labels, which were settled by multiple 

adjudication sessions, were considered. The most-likely total CFP’s for our automated 

approach still achieved better MMRE results than what our four trained measurers on average 

could achieve individually (that is, their average individual MMRE = 0.165). Finally, we also 

find in Table 36 that the CFP ranges (i.e. from the minimum to the maximum total CFP) of 

all the documents of our corpus, as calculated from the our automated approach always 

included their actual CFP’s within the limits of the calculated ranges. Thus, we can affirm 

that these CFP ranges produced from our automated approaches can successfully be used in 

practice, wherever COSMIC functional size measurement process is applied. Defining the 

correct limits of the CFP ranges ensure that any further estimation performed using the CFP 

values, e.g. the early estimation of the development effort, would also result in a range of 

estimation, and thus provide safety by allowing a concise margin of error. 

 

7.13 Conclusion 
In this chapter, we presented in details our approaches of automating the process of COSMIC 

functional size measurement. We introduced a heuristic-based and a supervised learning-

based text classification approaches to extract the modeling artifacts of COSMIC FSM, e.g. 

the data-attributes, the data-groups and the data-movement. We then extended our 

formalization to COSMIC’s method of counting the numeric value of CFP, by presenting the 

idea of measuring CFP in ranges. We finally analyzed the results of our experiments to 

validate each of our approaches. The results of the experiments showed that our automated 

approaches achieved good enough results to be applied in practice. 

The next chapter ends the thesis with a summary of the contributions we made with this 

research in the fields of functional size measurement and requirements engineering and 

presents avenues of future work. 
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Chapter 8 
 

Conclusions and Future Work 
 
 

“The best way to predict the future is to create it.” 
— Peter Drucker 

 

This final chapter summarizes the major contributions of this thesis. We then end with a 

review of our conclusive remarks and a discussion on future research. 

 

8.1 Major Contributions 
Our research investigated different techniques of linguistic analyses that can be utilized to 

measure functional size early from textual requirements, without depending on human 

experts. New approaches were developed and validated through experiments. All of these 

approaches were adapted to the COSMIC method (COSMIC, 2014), as the preferred standard 

of functional size measurement (FSM). The major contributions made by this thesis are 

discussed in the following sections. 

8.1.1 Methodology for Practical Application of FSM 

The thesis proposed a unique comprehensive methodology, called LISMA, that integrates 

multiple novel approaches for performing functional size measurement (FSM) in different 

practical scenarios (as presented in Section 4.4). To validate the methodology, we conducted 

several controlled experiments with real project documents, experts and well-trained 

measurers. The experimental results show that our approaches can (i) attain high quality 

manual measurements of functional size in absence of an expert or a well-trained measurer or 

a costly adjudication process, (ii) approximate functional size with minimal errors from 
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informally written textual requirements, and (iii) extract the conceptual artifacts of an FSM 

standard from textual requirements and quantify their functional size with a good enough 

accuracy in comparison to that of well-trained human measurers. The results presented in this 

thesis also showed that the approaches used in LISMA can successfully automate the 

execution of functional size measurement process by applying different natural language 

processing and machine learning technologies. The details of these results were presented in 

Chapters 5, 6 and 7. We thus accomplished the overall aim of this research, presented in 

Section 1.3: which was “to determine an objective procedure that does not depend on human 

expertise to be applied for effectively measuring functional size from textual requirement”. 

8.1.2 Formalization of an FSM Model for Traceability 

In Chapter 4, we formalized the FSM process by modeling a new ontology that relates the 

conceptual artifacts of FSM to the specific textual segments of the software requirements 

document to build traceability links over process of FSM. Thus, every step of the approaches 

in LISMA is devised towards measuring a traceable output of functional size, where all the 

traceability links resulting from the population of the ontology justify the output 

measurements by referring them to their originating segments of textual requirements. This 

satisfied our research objective #5 (see Section 1.3), which was “to identify how experts 

deduce the relationship between the linguistic elements of unrestricted textual requirements 

and the objects of interest in a functional size measurement model”. 

8.1.3 Extension to FSM Quantification 

In Chapter 4, we also devised novel formulas to formalize the conventional quantification 

process of FSM. These formulas cannot only be applied over the instances of this ontology to 

calculate the numerical value of the functional size, but also fully complies with the standard 

process of FSM, described in (ISO/IEC 14143-1, 2007). Thus, this formalization can be 

implemented algorithmically to automate the computation of a numerical value of the 

functional size of a software. Then, in Chapter 7, we extended this formalization by deriving 

new additional formulas that quantify the upper and lower limits of the functional size as well. 

Our results show that the upper and lower limits provide added safety in FSM, as the 

outputted error margins in our experiments always included the correct result within its range. 
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8.1.4 Syntactic Features for Requirements Classification 

In Section 4.4.2, we presented an overview of our work to determine the most discriminating 

syntactic features of textual requirements for classifying requirements into the two classes of 

functional and non-functional requirements. The full details of the work and the experimental 

results, as published in (Hussain, Kosseim, & Ormandjieva, 2008),  verifies the feasibility of 

using these features for requirements classification. Thus, we fulfilled our research objective 

#4: “to explore the most discriminating syntactic features of textual requirements for 

classifying them into functional and non-functional requirements”. 

8.1.5 Improving the Annotation Quality for Non-Experts 

In Chapter 5, we presented the details of our requirements annotation tool, LASR, that 

implements a novel feature to improve the quality of the computed gold-standard annotations 

for multiple annotators. The feature automatically applies the formulas that we developed to 

compute the gold-standard annotations using the annotators’ levels of confidence and their 

levels of skill. The analyses of the results of our experiments showed that this feature 

improved the quality of the gold-standard annotations for a controlled group of non-expert 

annotators with minimal training. The experiments also showed that these higher quality 

gold-standards helped in measuring the functional size more accurately. LASR’s other 

features, such as its graphical interface, allowed the annotators to finish their functional size 

measurement tasks faster than the other group working manually. Thus, we fulfilled our 

research objective #1: “to investigate if the process of functional size measurement (FSM) 

can be executed effectively with non-expert”, and objective #2, which was “to improve the 

overall process of FSM-related requirements annotation by attaining accurate annotations 

with non-experts having minimal training”. 

8.1.6 Automatic and Traceable Approximation of FSM 

In Chapter 6, we presented a novel approach to approximate functional size automatically 

from textual requirements using text classification techniques. The approach first classifies 

the software instances of a historical dataset by the quartiles of their functional size, and uses 

that information to build a corpus of textual requirements, which are annotated by 

approximated size classes. It then applies a supervised learning-based text classifier to 
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approximate the functional size and achieved moderate results in our experiments with a very 

small dataset of 61 instances. Since our approach uses a decision tree-based classification 

model, the reasoning of the output approximations are also traceable, back to its originating 

textual requirements. Our approach also identifies the most discriminating linguistic features 

that correlate with the approximated functional size, and thus addressed our research 

objective #3: “to determine the most discriminating linguistic features of informally written 

textual requirements for approximating functional size”. 

8.1.7 Linguistic Features of COSMIC FSM 

In Chapter 7 (and also, in Appendix C), we presented an original list of lexical, syntactic and 

combined sets of features that can discriminate base noun-phrases on whether they express a 

certain type of COSMIC data-movement, which is a conceptual artifact of the COSMIC FSM 

model. We identified these features by analyzing the experts’ process of identifying these 

artifacts from textual requirements. We used these features in data-movement classification 

experiments, and our supervised learning-based approach automatically ranked these features 

by building decision trees using our supplied dataset. The analysis of our results showed that 

these features were discriminating enough for our supervised learning-based approach to 

attain promising results. 

8.1.8 Heuristics for COSMIC FSM 

In Chapter 7, we also presented a detailed heuristic-based approach, which is unique in this 

field of research, to identify various conceptual artifacts of the COSMIC FSM model. The 

results of our experiments showed that this heuristic-based approach attains good results 

overall, and the accuracy of the functional size measurements that used the automatically 

generated outputs of this heuristic-based approach attains even better results than individual 

manual annotations of the fully-trained annotators. Thus, we addressed our research objective 

#6 (see Section 1.3): “to evaluate the feasibility of automating functional size measurement 

from textual requirements”. 
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8.1.9 Annotated Corpora for Data-Movement Classification 

As described in Chapters 5 and 7, we generated a set of fairly large annotated corpora, each 

containing a total of 2812 instances of base noun-phrases. All these instances were annotated 

by the expert as the true gold-standard annotation labels, and thus can be used to train or test 

any supervised learning-based approach in the field of COSMIC data-movement 

classification, although we have only small portions of it annotated with positive class-labels.  

The details of the corpora were described in Section 7.9.1. 

 

8.2 Future Research Directions 
The functional size measurement (FSM) method provides an effective means of assessing the 

software size at the early stages of the software development lifecycle. However, its 

application over textual requirements poses many costly challenges thus is not widely 

adopted by the industry. 

In this thesis, we addressed these challenges by devising a comprehensive methodology that 

not only facilitates a collaborative annotation environment to improve the quality of manual 

measurement of functional size, but also utilizes different natural language processing 

techniques to either automatically approximate the functional size from informally-written 

textual requirements, or automatically extract the FSM model from well-decomposed textual 

requirements and thus, measure the functional size objectively by using a formalized model 

of quantifying the functional size. This novel modeling approach for FSM also creates 

traceability links between the originating parts of the textual requirements and the resulting 

FSM modeling artifacts that are counted to quantify the functional size. 

The approaches that are integrated in our methodology were all validated through controlled 

experiments employing industrial and academic projects’ data and fully-trained human 

measurers. The promising results of these experiments thus confirm that our methodology 

can successfully be applied in practice. 
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For our future research work, we intend to continue collecting more datasets for training 

and/or testing our automated approaches. Having more datasets would not only help our 

supervised learning-based classifier to utilize more discriminating features, but also allow us 

to experiment with enough varieties of problem domains and study the effects of varying the 

problem domains. Acquiring more datasets would also help us investigate how the quality of 

textual requirements affects our functional size measurement approaches. 

In relation to the prototype of LASR, the requirements annotation tool that we developed 

during this research, we also intend to release its complete version, further experiment on its 

usability and study if it can help minimize the annotators’ effort for different requirements 

annotation tasks. 

Finally, we plan to integrate our automated approaches of functional size measurement with 

our implementation of estimating the development effort, which is presented in 

(Abdukalykov, Hussain, Kassab, & Ormandjieva, 2011) to deploy a comprehensive 

workbench that can estimate the development effort directly from textual requirements. 
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Appendix A 
 

Lexical Databases 
 
 

In our observation of our corpus, we deduced that the semantics of the COSMIC data-

movements can be realized from textual requirements by using both the syntactical and the 

lexical information embedded in the requirements. We, therefore, used a set of vocabularies 

(or dictionaries, or gazetteers) to build our source of lexical knowledge. We applied these 

vocabularies in all of our classification tasks to enrich our approaches with the necessary 

lexical knowledge. We describe these vocabularies below: 

A.1 Data-movement Verbs 
These verbs commonly appear to express the sense of different types of data-movements and 

are not specific to any problem domain. We build different vocabularies of data-movement 

verbs by the different types of possible data-movements. For each of these vocabularies that 

is related to a particular type of data-movement, we first seed it with some of the commonly 

used verbs to express the action of that specific type of data-movements. We then expand the 

vocabulary with the synsets of WordNet (Miller, 1995; Princeton University, 2010), that is by 

adding new synonyms that are common to each pair of verbs in our vocabulary until no new 

synonym exists for all possible pairs. Thus, the following sections list the words in the 

vocabularies that we ended up building, each related to a particular type of data-movement. 

A.1.1 Entry Verbs 

These verbs commonly appear to express the action of Entry data-movements and are not 

specific to any problem domain. The following are the list of Entry verbs that we ended up 

building for our experiments: 
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assign 
authenticate 
change 
choose 

click 
create 
define 
edit 

Enter 
fill 
give 
inform 

input 
mention 
modify 
point 

post 
provide 
re-enter 
search 

select 
set 
specify 
submit 

substitute 
tap 
tell 
touch 

type 
update 

 

A.1.2 Exit Verbs 

These verbs commonly appear to express the action of Exit data-movements and are not 

specific to any problem domain. The following are the list of Exit verbs that we ended up 

building for our experiments: 

default 
display 
edit 

list 
mail 
mark 

output 
post 
present 

preset 
print 
retrieve 

return 
search 
send 

Show 
update 
view 

  

 

A.1.3 Read Verbs 

These verbs commonly appear to express the action of Read data-movements and are not 

specific to any problem domain. The following are the list of Read verbs that we ended up 

building for our experiments: 

authenticate 
check 
display 

edit 
find 
get 

obtain 
post 
preset 

read 
recognize 
retrieve 

return 
search 
update 

Validate 
Verify 

  

 

A.1.4 Write Verbs 

These verbs commonly appear to express the action of Write data-movements and are not 

specific to any problem domain. The following are the list of Write verbs that we ended up 

building for our experiments: 

add 
archive 
book 

change 
copy 
create 

define 
delete 
edit 

erase 
insert 
record 

register 
remove 
save 

set 
store 
submit 

Update  
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A.1.5 Triggering-Entry Verbs 

When these verbs appear within the sentences, especially in presence of an actor name as a 

subject, they often implicitly indicate the sense of Entry data-movement of triggering events 

of functional processes. The following are the list of Triggering-Entry verbs that we ended up 

building for our experiments: 

check 
navigate 

click 
initiate 

request 
ask 

begin 
start 

want    

 

A.1.6 System-Message-Exit Verbs 

When these verbs appear within the sentences, they often implicitly indicate the sense of Exit 

data-movement of a special data-group, called “System Message”. The following are the list 

of System-Message-Exit verbs that we ended up building for our experiments: 

check 
validate 

confirm 
prompt 

inform 
signal 

refuse 
show 

notify 
acknowledge 

   

 

A.2 Stative Verbs 
We develop the vocabulary of stative verbs that are mostly used to describe the states of 

objects instead of describing actions over them. The usage of these verbs is also not specific 

to any problem domain. These verbs in most cases describe the state being or having or 

spatial relations amongst objects. We again used WordNet (Miller, 1995; Princeton 

University, 2010) to manually extract our vocabulary of stative verbs. Thus, we end up 

building the following vocabulary of stative verbs: 

be 
have 
consist 
own 
possess 
contain 

belong 
agree 
appear 
believe 
concern 
depend 

deserve 
disagree 
dislike 
doubt 
feel 
fit 

hate 
hear 
imagine 
impress 
include 
involve 

know 
like 
love 
matter 
mean 
measure 

mind 
need 
owe 
prefer 
promise 
realise 

realize 
recognise 
recognize 
remember 
seem 
suppose 

surprise 
understand 
want 
weigh 
wish 
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A.3 Attribute Names 
We developed this vocabulary of attributes containing words that can be used to represent 

members or properties or measurable attributes of any entity (i.e. data-group, for our work). 

We manually selected a slice of noun-phrases from WordNet (Miller, 1995; Princeton 

University, 2010) that belong to the super classes Property, Relation and Communication via 

their hypernym paths. We then manually modified some of the words to create new forms 

that may appear in textual requirements. We list the base of forms of these words that 

generated our vocabulary below: 

# 
acceleration 
address 
advantage 
age 
aid 
allowance 
altitude 
amount 
angle 
aperture 
area 
attribute 
badge 
badge# 
batch 
batch# 
benefit 
birthdate 
birthday 
bitrate 
body 
bonus 
brightness 
capacity 
caption 
carat 
category 
charge 

choice 
circumference 
citation 
city 
clarity 
class 
code 
color 
colour 
comment 
commission 
compensation 
concentration 
condition 
conductivity 
conductance 
consistency 
constraint 
consumption 
contrast 
cost 
count 
country 
criterion 
date 
datum 
day 
debt 
deduction 

definition 
degree 
depth 
density 
description 
diameter 
dimension 
discount 
distance 
duration 
duty 
earning 
elasticity 
email 
ethnicity 
expanse 
expenditure 
expense 
expertise 
experience 
exposure 
extent 
extension 
factor 
fee 
filename 
firstname 
flux 
footer 

footnote 
force 
frequency 
function 
gender 
genre 
grade 
gravity 
group 
growth 
head 
header 
heading 
headline 
heartrate 
height 
hour 
humidity 
hue 
i.d. 
id 
id# 
id's 
ident 
illumination 
image 
income 
info 
information 

inductance 
intensity 
interval 
language 
lastname 
latitude 
length 
level 
limit 
limitation 
location 
longitude 
loss 
luminance 
magnitude 
mass 
message 
measure 
measurement 
mileage 
minute 
month 
momentum 
money 
name 
no. 
number 
occupation 
opacity 

operand 
option 
p.i.n. 
payment 
payoff 
parameter 
path 
password 
percentage 
period 
ph# 
phone 
photo 
photograph 
picture 
pin 
population 
portion 
position 
post 
power 
pressure 
premium 
profit 
proportion 
price 
pulse 
quantity 
quota 

race 
radius 
radiation 
raise 
range 
rank 
rate 
ratio 
rebate 
reference 
remuneration 
reply 
resilience 
resistance 
resistivity 
response 
responsibility 
restriction 
resolution 
revenue 
reward 
role 
salary 
saturation 
second 
selection 
serial# 
sex 
situation 

size 
specification 
speed 
spot 
status 
stipend 
strength 
string 
telephone 
temperature 
text 
title 
time 
torque 
transparency 
type 
username 
value 
velocity 
viscosity 
voltage 
volume 
wage 
watt 
wavelength 
weight 
width 
year 
zip 

 
 

A.4 Data-group Names 
According to our approach, as discussed in Section 4.4.3, the names of the data-groups 

belonging to the problem domains of our corpus were already available to us. For our corpus, 

these names formed out a vocabulary of data-group names. These are listed below:  

budget 
chart 
content 

course 
event 
filter 

fund 
invitation 
news 

opportunity 
page 
performance 

product 
professor 
revenue 

role 
search 
student 

subscription 
user 
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A.5 Actor Names 
The Entry data-movements in most cases are caused by primary actors who are human. The 

mentions of these actors appear in software requirements documents as base noun-phrases 

that indicate names of people or their roles or their professions or their positions in an 

organization. Thus, we used a dictionary to identify the candidates for such noun-phrases. We 

suggest including more names of human actors to this dictionary based on our knowledge of 

the problem domains and the human actors they involve. It should be mentioned that the 

mentions of non-human actors, e.g. the systems, subsystems, modules, features, functions etc., 

that are named with “helper”, “assistant”, “expert”, “client”, “publisher”, “presenter”, 

“holder”, “sender”, “reader”, “collector”, “master”, “resident”, “viewer”, “receiver”, 

“worker”, “operator”, “builder”, “manager”, “learner”, “trainer” etc., may be mistakenly be 

identified as candidates for human actors because of the use of this dictionary. We, therefore, 

consider the identified noun-phrases as candidates only, a subset of which can then finally 

indicate human actors only when they are combined with other syntactic features leading to 

the deduction. The vocabulary that we used in our tests is presented below: 

acc-holder 
accountant 
account-holder 
actor 
actress 
adjunct 
administrator 
advisor 
advocate 
agent 
ally 
amateur 
ambassador 
anthropologist 
apprentice 
archeologist 
artisan 
artist 
assistant 
associate 
athlete 
attendant 
attorney 
auditor 
aunt 
author 
banker 
barrister 
bartender 
beginner 

biologist 
bloke 
bookkeeper 
borrower 
boss 
botanist 
boy 
brigadier 
broker 
brother 
buddy 
builder 
buyer 
c.e.o. 
c.o.o. 
campaigner 
captain 
cardholder 
card-holder 
cashier 
ceo 
chairman 
challenger 
chap 
chef 
chemist 
chief 
classmate 
clerk 
client 

coach 
collector 
colonel 
commander 
commissioner 
competitor 
consumer 
contender 
contestant 
contributor 
coo 
cook 
councilor 
counsellor 
counselor 
critic 
customer 
defendant 
delegate 
demonstrator 
dentist 
deputy 
designer 
detective 
digger 
director 
disciple 
doctor 
dude 
editor 

employee 
employer 
engineer 
examiner 
expert 
father 
fellow 
female 
follower 
friend 
gamer 
general 
girl 
governor 
graduate 
grandfather 
grandmother 
guy 
helper 
historian 
holder 
householder 
husband 
individual 
inspector 
instructor 
instrumentalist 
judge 
jury 
laborer 

landlady 
landlord 
lawyer 
leader 
learner 
lender 
lessee 
lessor 
lieutenant 
magistrate 
male 
man 
manager 
marketer 
master 
mate 
mayor 
mechanic 
member 
mentor 
merchandiser 
mineworker 
minister 
mother 
musician 
nurse 
officer 
official 
operator 
opponent 

participant 
partner 
patient 
patron 
person 
personnel 
physician 
physicist 
pianist 
pilot 
player 
poet 
poetess 
policeman 
politician 
practitioner 
presenter 
president 
principal 
proctor 
professional 
professor 
programer 
programmer 
promoter 
psychologist 
publisher 
purchaser 
reader 
receiver 

receptionist 
recipient 
recruit 
referee 
registrar 
rep 
representative 
resident 
resider 
scholar 
scientist 
secretary 
seller 
senator 
sender 
senior 
servant 
shareholder 
shopper 
shopper 
sister 
soldier 
solicitor 
somebody 
someone 
sophomore 
speaker 
specialist 
spokesperson 
sportsman 

spouse 
staff 
stenographer 
student 
subscriber 
supporter 
taker 
teacher 
technician 
teller 
tenant 
trader 
trainee 
trainer 
trainer 
tutor 
uncle 
user 
v.i.p. 
viewer 
violinist 
vip 
voter 
waiter 
wife 
witness 
woman 
worker 
writer 
zoologist 

 



 

 
216 

 

Appendix B 
 

Raw Test Results: Outputs from WEKA 
 

In this appendix, we present the detailed raw outputs generated by Weka (Witten & Frank, 

2005) during the 10-fold cross-validation tests and the batch tests with incremental learning, 

all of which were with our supervised learning-based data-movement classifiers. 

B.1 10-fold Cross-Validation Results 
Weka’s outputs for our 10-fold cross validation tests are presented in the following sections. 

B.1.1 For Entry Classifier 
 
=== Run information === 
 
Scheme:weka.classifiers.trees.J48 -U -M 5 
Relation:     Entry_nounPhrase_Classification-
weka.filters.supervised.instance.SpreadSubsample-M1.0-X0.0-S1 
Instances:    236 
Attributes:   19 
              isDirectObject 
              isInObjectLikePosition 
              isPartOfDependantClause 
              isPartOfDependantClauseType 
              isObjectOfDataMovementVerb 
              isObjectOfVerbWithSubjectType 
              mainVerbIsDataMovementVerb 
              mainVerbHasSubjectType 
              isSubjectOfStativeVerb 
              isPartOfNegativeSense 
              isAttribute 
              ownsAttribute 
              isDataGroup 
              belongsToDataGroup 
              isRelatedToAttribute 
              isRelatedToDataGroup 
              isObjectOfEntryVerb 
              mainVerbIsEntryVerb 
              class 
Test mode:10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
J48 unpruned tree 
------------------ 
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isObjectOfEntryVerb = true 
|   isObjectOfVerbWithSubjectType = actor: Entry (84.0/4.0) 
|   isObjectOfVerbWithSubjectType = nonactor: Entry (0.0) 
|   isObjectOfVerbWithSubjectType = nosubject 
|   |   isDataGroup = true: Entry (13.0/4.0) 
|   |   isDataGroup = false 
|   |   |   isDirectObject = true: Entry (7.0/3.0) 
|   |   |   isDirectObject = false: NotEntry (5.0) 
isObjectOfEntryVerb = false 
|   isDataGroup = true 
|   |   isPartOfDependantClause = true: Entry (5.0/1.0) 
|   |   isPartOfDependantClause = false 
|   |   |   isAttribute = true: Entry (10.0/3.0) 
|   |   |   isAttribute = false 
|   |   |   |   isObjectOfVerbWithSubjectType = actor: Entry (5.0/2.0) 
|   |   |   |   isObjectOfVerbWithSubjectType = nonactor: NotEntry (0.0) 
|   |   |   |   isObjectOfVerbWithSubjectType = nosubject: NotEntry (41.0/11.0) 
|   isDataGroup = false: NotEntry (66.0) 
 
Number of Leaves  :  11 
 
Size of the tree :  19 
 
 
Time taken to build model: 0.02 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances         200               84.7458 % 
Incorrectly Classified Instances        36               15.2542 % 
Kappa statistic                          0.6949 
Mean absolute error                      0.2014 
Root mean squared error                  0.3303 
Relative absolute error                 40.2736 % 
Root relative squared error             66.0592 % 
Total Number of Instances              236      
 
=== Detailed Accuracy By Class === 
 
               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
                 0.822     0.127      0.866     0.822     0.843      0.904    Entry 
                 0.873     0.178      0.831     0.873     0.851      0.904    NotEntry 
Weighted Avg.    0.847     0.153      0.848     0.847     0.847      0.904 
 
=== Confusion Matrix === 
 
   a   b   <-- classified as 
  97  21 |   a = Entry 
  15 103 |   b = NotEntry 

 

B.1.2 For Exit Classifier 
 
=== Run information === 
 
Scheme:weka.classifiers.trees.J48 -U -M 5 
Relation:     Exit_nounPhrase_Classification-
weka.filters.supervised.instance.SpreadSubsample-M1.0-X0.0-S1 
Instances:    184 
Attributes:   19 
              isDirectObject 
              isInObjectLikePosition 
              isPartOfDependantClause 
              isPartOfDependantClauseType 
              isObjectOfDataMovementVerb 
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              isObjectOfVerbWithSubjectType 
              mainVerbIsDataMovementVerb 
              mainVerbHasSubjectType 
              isSubjectOfStativeVerb 
              isPartOfNegativeSense 
              isAttribute 
              ownsAttribute 
              isDataGroup 
              belongsToDataGroup 
              isRelatedToAttribute 
              isRelatedToDataGroup 
              isObjectOfExitVerb 
              mainVerbIsExitVerb 
              class 
Test mode:10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
J48 unpruned tree 
------------------ 
 
isObjectOfExitVerb = true: Exit (84.0/7.0) 
isObjectOfExitVerb = false: NotExit (100.0/15.0) 
 
Number of Leaves  :  2 
 
Size of the tree :  3 
 
 
Time taken to build model: 0 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances         159               86.413  % 
Incorrectly Classified Instances        25               13.587  % 
Kappa statistic                          0.7283 
Mean absolute error                      0.2142 
Root mean squared error                  0.3344 
Relative absolute error                 42.838  % 
Root relative squared error             66.8727 % 
Total Number of Instances              184      
 
=== Detailed Accuracy By Class === 
 
               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
                 0.837     0.109      0.885     0.837     0.86       0.835    Exit 
                 0.891     0.163      0.845     0.891     0.868      0.835    NotExit 
Weighted Avg.    0.864     0.136      0.865     0.864     0.864      0.835 
 
=== Confusion Matrix === 
 
  a  b   <-- classified as 
 77 15 |  a = Exit 
 10 82 |  b = NotExit 

B.1.3 For Read Classifier 
 
=== Run information === 
 
Scheme:weka.classifiers.trees.J48 -U -M 5 
Relation:     Read_nounPhrase_Classification-
weka.filters.supervised.instance.SpreadSubsample-M1.0-X0.0-S1 
Instances:    218 
Attributes:   19 
              isDirectObject 
              isInObjectLikePosition 
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              isPartOfDependantClause 
              isPartOfDependantClauseType 
              isObjectOfDataMovementVerb 
              isObjectOfVerbWithSubjectType 
              mainVerbIsDataMovementVerb 
              mainVerbHasSubjectType 
              isSubjectOfStativeVerb 
              isPartOfNegativeSense 
              isAttribute 
              ownsAttribute 
              isDataGroup 
              belongsToDataGroup 
              isRelatedToAttribute 
              isRelatedToDataGroup 
              isObjectOfReadVerb 
              mainVerbIsReadVerb 
              class 
Test mode:10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
J48 unpruned tree 
------------------ 
 
isObjectOfReadVerb = true 
|   isDirectObject = true: Read (53.0/3.0) 
|   isDirectObject = false 
|   |   isAttribute = true: NotRead (5.0/2.0) 
|   |   isAttribute = false: Read (21.0/3.0) 
isObjectOfReadVerb = false 
|   isAttribute = true 
|   |   isObjectOfVerbWithSubjectType = actor: NotRead (6.0) 
|   |   isObjectOfVerbWithSubjectType = nonactor: Read (0.0) 
|   |   isObjectOfVerbWithSubjectType = nosubject: Read (28.0/7.0) 
|   isAttribute = false 
|   |   isObjectOfDataMovementVerb = true 
|   |   |   isPartOfDependantClause = true: Read (5.0/1.0) 
|   |   |   isPartOfDependantClause = false 
|   |   |   |   isDataGroup = true: NotRead (6.0/1.0) 
|   |   |   |   isDataGroup = false: Read (7.0/3.0) 
|   |   isObjectOfDataMovementVerb = false: NotRead (87.0/9.0) 
 
Number of Leaves  :  10 
 
Size of the tree :  18 
 
 
Time taken to build model: 0.02 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances         181               83.0275 % 
Incorrectly Classified Instances        37               16.9725 % 
Kappa statistic                          0.6606 
Mean absolute error                      0.2427 
Root mean squared error                  0.3698 
Relative absolute error                 48.5411 % 
Root relative squared error             73.9563 % 
Total Number of Instances              218      
 
=== Detailed Accuracy By Class === 
 
               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
                 0.853     0.193      0.816     0.853     0.834      0.845    Read 
                 0.807     0.147      0.846     0.807     0.826      0.845    NotRead 
Weighted Avg.    0.83      0.17       0.831     0.83      0.83       0.845 
 



 

 
220 

=== Confusion Matrix === 
 
  a  b   <-- classified as 
 93 16 |  a = Read 
 21 88 |  b = NotRead 

 

B.1.4 For Write Classifier 
 
=== Run information === 
 
Scheme:weka.classifiers.trees.J48 -U -M 5 
Relation:     Write_nounPhrase_Classification-
weka.filters.supervised.instance.SpreadSubsample-M1.0-X0.0-S1 
Instances:    198 
Attributes:   19 
              isDirectObject 
              isInObjectLikePosition 
              isPartOfDependantClause 
              isPartOfDependantClauseType 
              isObjectOfDataMovementVerb 
              isObjectOfVerbWithSubjectType 
              mainVerbIsDataMovementVerb 
              mainVerbHasSubjectType 
              isSubjectOfStativeVerb 
              isPartOfNegativeSense 
              isAttribute 
              ownsAttribute 
              isDataGroup 
              belongsToDataGroup 
              isRelatedToAttribute 
              isRelatedToDataGroup 
              isObjectOfWriteVerb 
              mainVerbIsWriteVerb 
              class 
Test mode:10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
J48 unpruned tree 
------------------ 
 
isObjectOfWriteVerb = true: Write (82.0/1.0) 
isObjectOfWriteVerb = false 
|   isPartOfDependantClauseType = advcl: NotWrite (1.0) 
|   isPartOfDependantClauseType = ccomp: NotWrite (6.0/2.0) 
|   isPartOfDependantClauseType = xcomp: NotWrite (3.0) 
|   isPartOfDependantClauseType = none 
|   |   isAttribute = true 
|   |   |   isInObjectLikePosition = true: NotWrite (22.0/3.0) 
|   |   |   isInObjectLikePosition = false: Write (5.0) 
|   |   isAttribute = false: NotWrite (79.0/8.0) 
 
Number of Leaves  :  7 
 
Size of the tree :  11 
 
 
Time taken to build model: 0.02 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances         180               90.9091 % 
Incorrectly Classified Instances        18                9.0909 % 
Kappa statistic                          0.8182 
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Mean absolute error                      0.1467 
Root mean squared error                  0.2891 
Relative absolute error                 29.3285 % 
Root relative squared error             57.8204 % 
Total Number of Instances              198      
 
=== Detailed Accuracy By Class === 
 
               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
                 0.838     0.02       0.976     0.838     0.902      0.877    Write 
                 0.98      0.162      0.858     0.98      0.915      0.877    NotWrite 
Weighted Avg.    0.909     0.091      0.917     0.909     0.909      0.877 
 
=== Confusion Matrix === 
 
  a  b   <-- classified as 
 83 16 |  a = Write 
  2 97 |  b = NotWrite 

 
 
 
 

B.2 Batch Test Results for Incremental Learning 
The output of the Weka wrapper that we coded using Java for batch testing with incremental 

learning are Comma-Separated Value (CSV) files containing different performance results. 

The contents of these files are shown as tables in the following sections. 
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B.2.1 For Entry Classifier 
Training 
Document(s) 

Testing 
Document(s) 

Total 
Training 
Instances 

Total 
Testing 
Instances 

Total 
Correct 

Correct(%) Kappa 
Mean 
Absolute 
Error 

RMS FP Rate 
(+) 

Precision 
(+) 

Recall 
(+) 

F-
Measure 
(+) 

C1 C2,C3,C4,C5,C6 28 2498 2152 86.14892 0.250313 0.188668 0.316892 0.131997 0.189744 0.711538 0.299595 

C2 C1,C3,C4,C5,C6 8 2753 114 4.140937 0 0.5 0.5 1 0.041409 1 0.079526 

C3 C1,C2,C4,C5,C6 44 2101 1232 58.63874 0.106715 0.297001 0.463037 0.433416 0.099482 1 0.180961 

C4 C1,C2,C3,C5,C6 62 1494 1037 69.41098 0.16637 0.334147 0.478422 0.316986 0.145594 0.873563 0.249589 

C5 C1,C2,C3,C4,C6 4 2785 116 4.165171 0 0.5 0.5 1 0.041652 1 0.079972 

C6 C1,C2,C3,C4,C5 90 2429 2117 87.15521 0.229215 0.142681 0.319004 0.125637 0.161473 0.780822 0.267606 

C1,C2 C3,C4,C5,C6 36 2439 2105 86.30586 0.249721 0.217621 0.344754 0.130398 0.18883 0.71 0.298319 

C1,C3 C2,C4,C5,C6 72 1787 1258 70.39731 0.132331 0.250831 0.413288 0.301466 0.115318 0.817073 0.202112 

C1,C4 C2,C3,C5,C6 90 1180 1092 92.54237 0.410328 0.196221 0.282449 0.04607 0.413793 0.493151 0.45 

C1,C5 C2,C3,C4,C6 32 2471 2129 86.15945 0.24719 0.181059 0.30864 0.131701 0.1875 0.705882 0.296296 

C1,C6 C2,C3,C4,C5 118 2115 1856 87.75414 0.217362 0.127849 0.273874 0.118677 0.152778 0.745763 0.253602 

C2,C3 C1,C4,C5,C6 52 2042 1351 66.16063 0.127203 0.289809 0.4717 0.350769 0.110533 0.923913 0.197445 

C2,C4 C1,C3,C5,C6 70 1435 1009 70.31359 0.170664 0.299274 0.463125 0.306953 0.147844 0.86747 0.252632 

C2,C5 C1,C3,C4,C6 12 2726 2387 87.5642 0.293822 0.112462 0.307326 0.120122 0.216958 0.776786 0.339181 

C2,C6 C1,C3,C4,C5 98 2370 2016 85.06329 0.183327 0.129942 0.323904 0.146023 0.131783 0.73913 0.223684 

C3,C4 C1,C2,C5,C6 106 783 597 76.24521 0.263785 0.368602 0.506207 0.240947 0.231111 0.8 0.358621 

C3,C5 C1,C2,C4,C6 48 2074 1494 72.03472 0.157855 0.252813 0.437747 0.287879 0.12844 0.893617 0.224599 

C3,C6 C1,C2,C4,C5 134 1718 1394 81.14086 0.182253 0.202416 0.362153 0.191962 0.128065 0.921569 0.22488 

C4,C5 C1,C2,C3,C6 66 1467 1351 92.09271 0.46478 0.200885 0.301215 0.065123 0.395973 0.694118 0.504274 

C4,C6 C1,C2,C3,C5 152 1111 1007 90.63906 0.328061 0.168406 0.308701 0.086062 0.245902 0.714286 0.365854 

C5,C6 C1,C2,C3,C4 94 2402 1961 81.6403 0.15006 0.157831 0.339211 0.181467 0.111345 0.746479 0.193784 

C1,C2,C3 C4,C5,C6 80 1728 1428 82.63889 0.239704 0.231679 0.407152 0.172727 0.181034 0.807692 0.295775 

C1,C2,C4 C3,C5,C6 98 1121 905 80.73149 0.26621 0.202954 0.342397 0.192015 0.214008 0.797101 0.337423 

C1,C2,C5 C3,C4,C6 40 2412 2116 87.72803 0.294497 0.231848 0.367267 0.11841 0.217143 0.77551 0.339286 

C1,C2,C6 C3,C4,C5 126 2056 1719 83.60895 0.144336 0.190317 0.339276 0.15992 0.106145 0.690909 0.184019 

C1,C3,C4 C2,C5,C6 134 469 394 84.00853 0.419736 0.267584 0.363564 0.148325 0.38 0.745098 0.503311 

C1,C3,C5 C2,C4,C6 76 1760 1490 84.65909 0.296209 0.223971 0.365727 0.155952 0.215569 0.9 0.347826 

C1,C3,C6 C2,C4,C5 162 1404 1148 81.76638 0.11702 0.266789 0.399497 0.177762 0.089888 0.648649 0.157895 

C1,C4,C5 C2,C3,C6 94 1153 1066 92.45447 0.474952 0.18298 0.279302 0.057301 0.425926 0.647887 0.513966 

C1,C4,C6 C2,C3,C5 180 797 641 80.4266 0.135623 0.184088 0.331635 0.189857 0.109756 0.642857 0.1875 

C1,C5,C6 C2,C3,C4 122 2088 1851 88.64943 0.212399 0.203732 0.307297 0.107829 0.151163 0.684211 0.247619 

C2,C3,C4 C1,C5,C6 114 724 340 46.96133 0.109077 0.37483 0.511995 0.579186 0.137079 1 0.241107 

C2,C3,C5 C1,C4,C6 56 2015 1190 59.05707 0.099323 0.30366 0.478169 0.426494 0.094818 0.955556 0.172518 

C2,C3,C6 C1,C4,C5 142 1659 1510 91.01869 0.287948 0.258177 0.326622 0.084988 0.203488 0.744681 0.319635 

C2,C4,C5 C1,C3,C6 74 1408 1294 91.90341 0.455371 0.213207 0.325116 0.067069 0.386207 0.691358 0.495575 

C2,C4,C6 C1,C3,C5 160 1052 941 89.44867 0.279078 0.197705 0.346925 0.097633 0.208 0.684211 0.319018 

C2,C5,C6 C1,C3,C4 102 2343 1989 84.89117 0.183866 0.117798 0.310267 0.148506 0.131105 0.761194 0.223684 

C3,C4,C5 C1,C2,C6 110 756 562 74.33862 0.220362 0.290643 0.423834 0.255411 0.206278 0.730159 0.321678 

C3,C4,C6 C1,C2,C5 196 400 273 68.25 0.156146 0.316705 0.472695 0.331579 0.131034 0.95 0.230303 

C3,C5,C6 C1,C2,C4 138 1691 1591 94.08634 0.400321 0.233975 0.313693 0.053593 0.296 0.755102 0.425287 

C4,C5,C6 C1,C2,C3 156 1084 880 81.18081 0.169436 0.225094 0.394238 0.184866 0.130631 0.725 0.221374 

C1,C2,C3,C4 C5,C6 142 410 363 88.53659 0.534429 0.26696 0.386172 0.096419 0.5 0.744681 0.598291 

C1,C2,C3,C5 C4,C6 84 1701 1406 82.65726 0.236796 0.238055 0.407226 0.172308 0.178886 0.802632 0.292566 

C1,C2,C3,C6 C4,C5 170 1345 1211 90.03717 0.249267 0.161093 0.319831 0.096799 0.169935 0.787879 0.27957 

C1,C2,C4,C5 C3,C6 102 1094 838 76.59963 0.214402 0.254604 0.395759 0.235638 0.179661 0.791045 0.292818 

C1,C2,C4,C6 C3,C5 188 738 667 90.3794 0.230369 0.1857 0.31891 0.084034 0.178082 0.541667 0.268041 

C1,C2,C5,C6 C3,C4 130 2029 1790 88.2208 0.142035 0.168699 0.318826 0.107287 0.109244 0.490566 0.178694 

C1,C3,C4,C5 C2,C6 138 442 321 72.62443 0.248785 0.288158 0.427459 0.274809 0.25 0.734694 0.373057 

C1,C3,C4,C6 C2,C5 224 86 65 75.5814 0.127536 0.268521 0.38969 0.225 0.142857 0.5 0.222222 

C1,C3,C5,C6 C2,C4 166 1377 1239 89.97821 0.293788 0.153998 0.294249 0.101341 0.195266 0.942857 0.323529 

C1,C4,C5,C6 C2,C3 184 770 673 87.4026 0.192872 0.17654 0.326352 0.115591 0.148515 0.576923 0.23622 

C2,C3,C4,C5 C1,C6 118 697 487 69.87088 0.189813 0.304709 0.43355 0.30721 0.186722 0.762712 0.3 

C2,C3,C4,C6 C1,C5 204 341 244 71.55425 0.167979 0.291944 0.42484 0.295385 0.135135 0.9375 0.23622 

C2,C3,C5,C6 C1,C4 146 1632 1540 94.36275 0.408542 0.245898 0.294319 0.05167 0.299145 0.777778 0.432099 

C2,C4,C5,C6 C1,C3 164 1025 831 81.07317 0.154276 0.236017 0.399141 0.185035 0.120192 0.694444 0.204918 

C3,C4,C5,C6 C1,C2 200 373 273 73.19035 0.185696 0.310324 0.447603 0.278873 0.146552 0.944444 0.253731 

C1,C2,C3,C4,C5 C6 146 383 330 86.16188 0.514923 0.263387 0.378492 0.136095 0.452381 0.844444 0.589147 

C1,C2,C3,C4,C6 C5 232 27 20 74.07407 0.275862 0.294698 0.391835 0.28 0.222222 1 0.363636 

C1,C2,C3,C5,C6 C4 174 1318 1121 85.05311 0.187819 0.17848 0.351135 0.150738 0.126126 0.903226 0.221344 

C1,C2,C4,C5,C6 C3 192 711 626 88.04501 0.164535 0.179171 0.321497 0.107402 0.129412 0.5 0.205607 

C1,C3,C4,C5,C6 C2 228 59 52 88.13559 0.405755 0.259129 0.330261 0.109091 0.333333 0.75 0.461538 

C2,C3,C4,C5,C6 C1 208 314 237 75.47771 0.190017 0.267623 0.400004 0.253333 0.146067 0.928571 0.252427 
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B.2.2 For Exit Classifier 
Training 
Document(s) 

Testing 
Document(s) 

Total 
Training 
Instances 

Total 
Testing 
Instances 

Total 
Correct 

Correct(%) Kappa 
Mean 
Absolute 
Error 

RMS FP Rate 
(+) 

Precision 
(+) 

Recall 
(+) 

F-
Measure 
(+) 

C1 C2,C3,C4,C5,C6 64 2498 1535 61.44916 0.051061 0.346505 0.511907 0.390894 0.04985 0.833333 0.094073 

C2 C1,C3,C4,C5,C6 6 2753 89 3.232837 0 0.5 0.5 1 0.032328 1 0.062632 

C3 C1,C2,C4,C5,C6 32 2101 1987 94.57401 0.496199 0.116215 0.210459 4.94E-02 0.382716 0.815789 0.521008 

C4 C1,C2,C3,C5,C6 32 1494 1356 90.76305 0.432277 0.143323 0.291083 0.087447 0.333333 0.815789 0.473282 

C5 C1,C2,C3,C4,C6 6 2785 89 3.195691 0 0.5 0.5 1 0.031957 1 0.061935 

C6 C1,C2,C3,C4,C5 44 2429 2257 92.9189 0.375534 0.184251 0.270695 0.067825 0.266055 0.828571 0.402778 

C1,C2 C3,C4,C5,C6 70 2439 2247 92.12792 0.325911 0.249637 0.316696 0.078505 0.217573 0.912281 0.351351 

C1,C3 C2,C4,C5,C6 96 1787 1660 92.89312 0.361723 0.179005 0.26333 0.070568 0.245399 0.909091 0.386473 

C1,C4 C2,C3,C5,C6 96 1180 1070 90.67797 0.385859 0.250795 0.378421 0.09331 0.273973 0.909091 0.421053 

C1,C5 C2,C3,C4,C6 70 2471 2263 91.58236 0.307211 0.185939 0.291888 0.084093 0.203922 0.912281 0.333333 

C1,C6 C2,C3,C4,C5 108 2115 1940 91.72577 0.26928 0.201342 0.321202 0.083293 0.172249 0.947368 0.291498 

C2,C3 C1,C4,C5,C6 38 2042 1932 94.61312 0.492895 0.104832 0.210658 0.048756 0.380645 0.808219 0.517544 

C2,C4 C1,C3,C5,C6 38 1435 1301 90.66202 0.426832 0.136182 0.293803 0.088106 0.329609 0.808219 0.468254 

C2,C5 C1,C3,C4,C6 12 2726 2545 93.36023 0.412426 0.061419 0.225329 0.062879 0.299578 0.825581 0.439628 

C2,C6 C1,C3,C4,C5 50 2370 2202 92.91139 0.368587 0.169127 0.274685 0.067738 0.260664 0.820896 0.395683 

C3,C4 C1,C2,C5,C6 64 783 718 91.6986 0.54807 0.138287 0.266095 0.071923 0.474747 0.783333 0.591195 

C3,C5 C1,C2,C4,C6 38 2074 1962 94.59981 0.488463 0.102722 0.217741 0.048976 0.375796 0.808219 0.513043 

C3,C6 C1,C2,C4,C5 76 1718 1619 94.23749 0.439934 0.148931 0.241296 0.052885 0.328244 0.796296 0.464865 

C4,C5 C1,C2,C3,C6 38 1467 1331 90.72938 0.423696 0.135579 0.292776 0.087518 0.325967 0.808219 0.464567 

C4,C6 C1,C2,C3,C5 76 1111 988 88.92889 0.365759 0.190776 0.341511 0.10596 0.277419 0.796296 0.411483 

C5,C6 C1,C2,C3,C4 50 2402 2232 92.92256 0.365949 0.169058 0.274523 0.067666 0.258216 0.820896 0.392857 

C1,C2,C3 C4,C5,C6 102 1728 1671 96.70139 0.505632 0.193589 0.228418 0.02786 0.397436 0.756098 0.521008 

C1,C2,C4 C3,C5,C6 102 1121 1018 90.81178 0.383425 0.234058 0.352665 0.091667 0.272059 0.902439 0.418079 

C1,C2,C5 C3,C4,C6 40 2412 2116 87.72803 0.294497 0.231848 0.367267 0.11841 0.217143 0.77551 0.339286 

C1,C2,C6 C3,C4,C5 114 2056 1871 91.00195 0.240701 0.219381 0.294435 0.090549 0.152778 0.942857 0.262948 

C1,C3,C4 C2,C5,C6 128 469 448 95.52239 0.681169 0.190549 0.252725 0.040816 0.581395 0.892857 0.704225 

C1,C3,C5 C2,C4,C6 102 1760 1609 91.42045 0.302306 0.151236 0.247754 0.085515 0.201087 0.902439 0.328889 

C1,C3,C6 C2,C4,C5 140 1404 1349 96.08262 0.418909 0.206543 0.249938 0.039074 0.28 0.954545 0.43299 

C1,C4,C5 C2,C3,C6 94 1153 1066 92.45447 0.474952 0.18298 0.279302 0.057301 0.425926 0.647887 0.513966 

C1,C4,C6 C2,C3,C5 140 797 673 84.44166 0.215439 0.24803 0.352431 0.15871 0.145833 0.954545 0.253012 

C1,C5,C6 C2,C3,C4 122 2088 1834 87.83525 0.212789 0.140532 0.297882 0.117676 0.149466 0.736842 0.248521 

C2,C3,C4 C1,C5,C6 70 724 663 91.57459 0.546515 0.131768 0.279089 0.071964 0.478261 0.77193 0.590604 

C2,C3,C5 C1,C4,C6 44 2015 1907 94.6402 0.484679 0.09418 0.22537 0.048329 0.373333 0.8 0.509091 

C2,C3,C6 C1,C4,C5 82 1659 1564 94.27366 0.432416 0.139474 0.247167 0.052239 0.322581 0.784314 0.457143 

C2,C4,C5 C1,C3,C6 44 1408 1276 90.625 0.41773 0.130991 0.307477 0.088191 0.321839 0.8 0.459016 

C2,C4,C6 C1,C3,C5 82 1052 933 88.68821 0.355538 0.188607 0.317119 0.107892 0.27027 0.784314 0.40201 

C2,C5,C6 C1,C3,C4 56 2343 2177 92.91507 0.358444 0.158124 0.28 0.067573 0.252427 0.8125 0.385185 

C3,C4,C5 C1,C2,C6 70 756 693 91.66667 0.539559 0.132158 0.272362 0.071531 0.468085 0.77193 0.582781 

C3,C4,C6 C1,C2,C5 108 400 350 87.5 0.462828 0.191641 0.350608 0.110497 0.411765 0.736842 0.528302 

C3,C5,C6 C1,C2,C4 82 1691 1594 94.26375 0.42739 0.142225 0.239392 0.052439 0.31746 0.784314 0.451977 

C4,C5,C6 C1,C2,C3 82 1084 963 88.83764 0.352545 0.186409 0.334147 0.106486 0.266667 0.784314 0.39801 

C1,C2,C3,C4 C5,C6 134 410 300 73.17073 0.204445 0.284518 0.377077 0.277922 0.170543 0.88 0.285714 

C1,C2,C3,C5 C4,C6 108 1701 1609 94.59142 0.40472 0.184769 0.234941 0.052916 0.278689 0.894737 0.425 

C1,C2,C3,C6 C4,C5 146 1344 1289 95.90774 0.394991 0.090238 0.200752 0.041509 0.256757 1 0.408602 

C1,C2,C4,C5 C3,C6 108 1094 994 90.85923 0.370946 0.226542 0.356313 0.090909 0.261538 0.894737 0.404762 

C1,C2,C4,C6 C3,C5 188 738 667 90.3794 0.230369 0.185961 0.319183 0.084034 0.178082 0.541667 0.268041 

C1,C2,C5,C6 C3,C4 120 2028 1844 90.92702 0.230919 0.12995 0.27404 0.091683 0.14486 0.96875 0.252033 

C1,C3,C4,C5 C2,C6 134 442 419 94.79638 0.630515 0.201252 0.279779 0.047962 0.52381 0.88 0.656716 

C1,C3,C4,C6 C2,C5 172 86 80 93.02326 0.632479 0.183235 0.275961 0.075 0.5 1 0.666667 

C1,C3,C5,C6 C2,C4 146 1377 1269 92.15686 0.231593 0.16136 0.257608 0.078792 0.144 0.947368 0.25 

C1,C4,C5,C6 C2,C3 148 770 720 93.50649 0.417108 0.203101 0.282066 0.060403 0.307692 0.8 0.444444 

C2,C3,C4,C5 C1,C6 76 697 638 91.53515 0.537325 0.126542 0.291498 0.07154 0.471264 0.759259 0.58156 

C2,C3,C4,C6 C1,C5 114 341 295 86.51026 0.448957 0.197241 0.357963 0.117647 0.409836 0.714286 0.520833 

C2,C3,C5,C6 C1,C4 88 1632 1539 94.30147 0.41875 0.140399 0.228568 0.051768 0.310924 0.770833 0.443114 

C2,C4,C5,C6 C1,C3 88 1025 908 88.58537 0.341242 0.183911 0.337032 0.108495 0.258741 0.770833 0.387435 

C3,C4,C5,C6 C1,C2 114 373 325 87.13137 0.443006 0.192673 0.345687 0.112426 0.396825 0.714286 0.510204 

C1,C2,C3,C4,C5 C6 140 383 343 89.55614 0.454571 0.220948 0.36266 0.105263 0.344828 0.909091 0.5 

C1,C2,C3,C4,C6 C5 178 27 25 92.59259 0.709677 0.203277 0.286599 0.083333 0.6 1 0.75 

C1,C2,C3,C5,C6 C4 152 1318 1269 96.28225 0.3675 0.167342 0.2222 0.036866 0.238095 0.9375 0.379747 

C1,C2,C4,C5,C6 C3 152 711 593 83.40366 0.16936 0.245811 0.361451 0.168345 0.113636 0.9375 0.202703 

C1,C3,C4,C5,C6 C2 178 59 52 88.13559 0.415842 0.246369 0.348376 0.125 0.3 1 0.461538 

C2,C3,C4,C5,C6 C1 120 314 270 85.98726 0.425482 0.200602 0.34793 0.120567 0.392857 0.6875 0.5 
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B.2.3 For Read Classifier 
Training 
Document(s) 

Testing 
Document(s) 

Total 
Training 
Instances 

Total 
Testing 
Instances 

Total 
Correct 

Correct(%) Kappa 
Mean 
Absolute 
Error 

RMS FP Rate 
(+) 

Precision 
(+) 

Recall 
(+) 

F-
Measure 
(+) 

C1 C2,C3,C4,C5,C6 54 2498 1677 67.13371 0.049822 0.433803 0.489753 0.326159 0.058542 0.597561 0.106638 

C2 C1,C3,C4,C5,C6 4 2753 107 3.886669 0 0.5 0.5 1 0.038867 1 0.074825 

C3 C1,C2,C4,C5,C6 38 2101 1383 65.8258 0.11611 0.25809 0.429888 0.352561 0.102532 0.9 0.184091 

C4 C1,C2,C3,C5,C6 34 1494 1302 87.14859 0.317691 0.312584 0.402933 0.112696 0.268519 0.630435 0.376623 

C5 C1,C2,C3,C4,C6 8 2785 105 3.770197 0 0.5 0.5 1 0.037702 1 0.072664 

C6 C1,C2,C3,C4,C5 80 2429 1846 75.99835 0.125911 0.248198 0.396659 0.24322 0.094637 0.869565 0.170697 

C1,C2 C3,C4,C5,C6 58 2439 1607 65.88766 0.050346 0.414613 0.514019 0.339975 0.058685 0.625 0.107296 

C1,C3 C2,C4,C5,C6 92 1787 1474 82.48461 0.201612 0.256977 0.342263 1.75E-01 0.146893 0.825397 0.2494 

C1,C4 C2,C3,C5,C6 88 1180 991 83.98305 0.312727 0.303005 0.392628 0.161435 0.237288 0.861538 0.372093 

C1,C5 C2,C3,C4,C6 62 2471 1603 64.87252 0.046089 0.321873 0.458689 0.350606 0.05518 0.628205 0.101449 

C1,C6 C2,C3,C4,C5 134 2115 1851 87.51773 0.19079 0.269209 0.349857 0.12494 0.125 0.880952 0.218935 

C2,C3 C1,C4,C5,C6 42 2042 1617 79.18707 0.188757 0.182664 0.399534 0.208291 0.146751 0.795455 0.247788 

C2,C4 C1,C3,C5,C6 38 1435 975 67.94425 0.136198 0.258676 0.440862 0.325651 0.134387 0.755556 0.228188 

C2,C5 C1,C3,C4,C6 12 2726 2484 91.12252 0.308222 0.08149 0.263623 0.077392 0.2397 0.621359 0.345946 

C2,C6 C1,C3,C4,C5 84 2370 1811 76.4135 0.122242 0.249035 0.433212 0.23795 0.092715 0.835821 0.166915 

C3,C4 C1,C2,C5,C6 72 783 592 75.60664 0.27027 0.242537 0.370877 0.246479 0.24569 0.780822 0.37377 

C3,C5 C1,C2,C4,C6 46 2074 1642 79.17068 0.18186 0.162212 0.350291 0.208249 0.141079 0.790698 0.239437 

C3,C6 C1,C2,C4,C5 118 1718 1400 81.4901 0.132196 0.236199 0.385342 0.181055 0.10119 0.68 0.176166 

C4,C5 C1,C2,C3,C6 42 1467 1218 83.02658 0.253435 0.213848 0.40931 0.159536 0.21147 0.670455 0.321526 

C4,C6 C1,C2,C3,C5 114 1111 835 75.15752 0.180052 0.317487 0.458843 0.254013 0.143312 0.865385 0.245902 

C5,C6 C1,C2,C3,C4 88 2402 1758 73.18901 0.106169 0.292619 0.401908 0.272144 0.082251 0.876923 0.150396 

C1,C2,C3 C4,C5,C6 96 1728 1454 84.14352 0.177951 0.25578 0.315936 1.52E-01 0.136519 0.655738 0.225989 

C1,C2,C4 C3,C5,C6 92 1121 535 47.72525 0.051397 0.395926 0.530219 0.542533 0.0816 0.809524 0.148256 

C1,C2,C5 C3,C4,C6 66 2412 1560 64.67662 0.047962 0.306146 0.43215 0.353168 0.056064 0.644737 0.103158 

C1,C2,C6 C3,C4,C5 138 2056 1580 76.84825 0.105394 0.309269 0.402549 0.235119 0.074219 0.95 0.137681 

C1,C3,C4 C2,C5,C6 126 469 377 80.3838 0.290119 0.232493 0.377532 0.177305 0.278846 0.630435 0.386667 

C1,C3,C5 C2,C4,C6 100 1760 1578 89.65909 0.250387 0.26135 0.331814 0.094062 0.187817 0.627119 0.289063 

C1,C3,C6 C2,C4,C5 172 1404 1176 83.76068 0.109737 0.253689 0.336385 0.161477 0.074689 0.782609 0.136364 

C1,C4,C5 C2,C3,C6 96 1153 796 69.03729 0.124883 0.360423 0.474503 0.313187 0.118557 0.754098 0.2049 

C1,C4,C6 C2,C3,C5 168 797 573 71.8946 0.133056 0.352034 0.479897 0.290155 0.100402 1 0.182482 

C1,C5,C6 C2,C3,C4 142 2088 1799 86.159 0.153819 0.292178 0.373428 0.138049 0.101587 0.842105 0.181303 

C2,C3,C4 C1,C5,C6 76 724 461 63.67403 0.148715 0.379737 0.545948 0.37366 0.175676 0.732394 0.283379 

C2,C3,C5 C1,C4,C6 50 2015 1592 79.00744 0.179804 0.162117 0.346616 0.209736 0.140127 0.785714 0.237838 

C2,C3,C6 C1,C4,C5 122 1659 1291 77.81796 0.12996 0.255898 0.394623 0.222843 0.09799 0.8125 0.174888 

C2,C4,C5 C1,C3,C6 46 1408 954 67.75568 0.129283 0.268368 0.458872 0.326778 0.129032 0.744186 0.219931 

C2,C4,C6 C1,C3,C5 118 1052 802 76.23574 0.180849 0.31068 0.461305 0.240519 0.14539 0.82 0.246988 

C2,C5,C6 C1,C3,C4 92 2343 1703 72.68459 0.09525 0.297852 0.423045 0.275877 0.076358 0.825397 0.139785 

C3,C4,C5 C1,C2,C6 80 756 567 75 0.255161 0.247232 0.417931 0.25182 0.234513 0.768116 0.359322 

C3,C4,C6 C1,C2,C5 152 400 294 73.5 0.188951 0.334865 0.454507 0.258856 0.188034 0.666667 0.293333 

C3,C5,C6 C1,C2,C4 126 1691 1378 81.49024 0.118829 0.210055 0.329522 0.180547 0.091743 0.652174 0.160858 

C4,C5,C6 C1,C2,C3 122 1084 746 68.81919 0.109973 0.363498 0.494935 0.315637 0.101648 0.770833 0.179612 

C1,C2,C3,C4 C5,C6 130 410 349 85.12195 0.456942 0.245249 0.339832 0.142077 0.402299 0.795455 0.534351 

C1,C2,C3,C5 C4,C6 104 1701 1399 82.24574 0.186892 0.242964 0.328195 0.177007 0.136499 0.807018 0.233503 

C1,C2,C3,C6 C4,C5 176 1345 1181 87.80669 0.139267 0.267191 0.321964 0.120091 0.091429 0.761905 0.163265 

C1,C2,C4,C5 C3,C6 100 1094 761 69.56124 0.128168 0.367166 0.488641 0.307246 0.121547 0.745763 0.209026 

C1,C2,C4,C6 C3,C5 172 738 533 72.22222 0.134249 0.330773 0.439355 0.286713 0.100877 1 0.183267 

C1,C2,C5,C6 C3,C4 146 2029 1737 85.60867 0.143159 0.275457 0.361235 0.143502 0.094937 0.833333 0.170455 

C1,C3,C4,C5 C2,C6 134 442 389 88.00905 0.420177 0.223467 0.351403 0.09 0.409836 0.595238 0.485437 

C1,C3,C4,C6 C2,C5 206 86 76 88.37209 0.494118 0.228553 0.323817 0.125 0.375 1 0.545455 

C1,C3,C5,C6 C2,C4 180 1377 1284 93.24619 0.213099 0.272433 0.338716 0.064801 0.137255 0.736842 0.231405 

C1,C4,C5,C6 C2,C3 176 770 548 71.16883 0.11464 0.336848 0.448786 0.296395 0.08642 1 0.159091 

C2,C3,C4,C5 C1,C6 84 697 559 80.20086 0.275915 0.277366 0.392459 0.177778 0.267974 0.61194 0.372727 

C2,C3,C4,C6 C1,C5 156 341 226 66.27566 0.172662 0.351864 0.500787 0.348387 0.181818 0.774194 0.294479 

C2,C3,C5,C6 C1,C4 130 1632 1206 73.89706 0.096745 0.224066 0.381905 0.262594 0.077434 0.795455 0.141129 

C2,C4,C5,C6 C1,C3 126 1025 776 75.70732 0.14923 0.307657 0.459037 0.242084 0.125461 0.73913 0.214511 

C3,C4,C5,C6 C1,C2 160 373 242 64.87936 0.099913 0.36697 0.500627 0.348837 0.130435 0.62069 0.215569 

C1,C2,C3,C4,C5 C6 138 383 325 84.8564 0.360048 0.321738 0.409762 0.119534 0.359375 0.575 0.442308 

C1,C2,C3,C4,C6 C5 210 27 25 92.59259 0.756757 0.195489 0.274415 0.086957 0.666667 1 0.8 

C1,C2,C3,C5,C6 C4 184 1318 1033 78.37633 0.072606 0.223317 0.323427 0.217525 0.050336 0.882353 0.095238 

C1,C2,C4,C5,C6 C3 180 711 508 71.44866 0.114059 0.325144 0.441657 0.293353 0.085586 1 0.157676 

C1,C3,C4,C5,C6 C2 214 59 49 83.05085 0.241645 0.257313 0.347377 0.175439 0.166667 1 0.285714 

C2,C3,C4,C5,C6 C1 164 314 225 71.65605 0.151042 0.351281 0.49272 0.271777 0.170213 0.592593 0.264463 
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B.2.4 For Write Classifier 
Training 
Document(s) 

Testing 
Document(s) 

Total 
Training 
Instances 

Total 
Testing 
Instances 

Total 
Correct 

Correct(%) Kappa 
Mean 
Absolute 
Error 

RMS FP Rate 
(+) 

Precision 
(+) 

Recall 
(+) 

F-
Measure 
(+) 

C1 C2,C3,C4,C5,C6 12 2498 1728 69.17534 0.112573 0.40175 0.565977 0.314761 0.095579 0.860215 0.172043 

C2 C1,C3,C4,C5,C6 2 2753 98 3.559753 0 0.5 0.5 1 0.035598 1 0.068748 

C3 C1,C2,C4,C5,C6 48 2101 1990 94.7168 0.503526 0.209982 0.279573 0.048371 0.3875 0.826667 0.52766 

C4 C1,C2,C3,C5,C6 52 1494 797 53.34672 0.074757 0.352843 0.482178 0.48487 0.086207 0.890411 0.157195 

C5 C1,C2,C3,C4,C6 27 2785 2686 96.44524 0 0.035548 0.188541 0 0 0 0 

C6 C1,C2,C3,C4,C5 84 2429 2288 94.19514 0.344823 0.100139 0.234068 0.052698 0.246988 0.719298 0.367713 

C1,C2 C3,C4,C5,C6 14 2439 1831 75.07175 0.154206 0.392271 0.467209 0.254367 0.119469 0.880435 0.21039 

C1,C3 C2,C4,C5,C6 60 1787 1702 95.24342 0.562976 0.274902 0.305529 0.044237 0.441176 0.869565 0.585366 

C1,C4 C2,C3,C5,C6 64 1180 1111 94.15254 0.606042 0.290117 0.335122 0.055705 0.491803 0.895522 0.634921 

C1,C5 C2,C3,C4,C6 12 2471 1707 69.08134 0.113121 0.402498 0.56677 0.315812 0.09627 0.860215 0.17316 

C1,C6 C2,C3,C4,C5 96 2115 2000 94.56265 0.382225 0.157992 0.25063 0.049903 0.274648 0.764706 0.404145 

C2,C3 C1,C4,C5,C6 50 2042 1932 94.61312 0.501243 0.214747 0.270219 0.049289 0.386076 0.824324 0.525862 

C2,C4 C1,C3,C5,C6 54 1435 989 68.91986 0.154059 0.433941 0.556556 0.322817 0.130435 0.916667 0.228374 

C2,C5 C1,C3,C4,C6 2 2726 98 3.595011 0 0.5 0.5 1 0.03595 1 0.069405 

C2,C6 C1,C3,C4,C5 86 2370 2230 94.09283 0.3404 0.100088 0.236093 0.053587 0.243902 0.714286 0.363636 

C3,C4 C1,C2,C5,C6 100 783 700 89.39974 0.47295 0.22926 0.316097 0.107629 0.362903 0.918367 0.520231 

C3,C5 C1,C2,C4,C6 48 2074 1382 66.63452 0.098928 0.267676 0.422104 0.341171 0.087015 0.866667 0.158151 

C3,C6 C1,C2,C4,C5 132 1718 1467 85.38999 0.13658 0.157017 0.294044 0.144214 0.093284 0.757576 0.166113 

C4,C5 C1,C2,C3,C6 52 1467 1064 72.52897 0.163582 0.258197 0.425879 0.281205 0.136564 0.849315 0.235294 

C4,C6 C1,C2,C3,C5 136 1111 965 86.85869 0.193935 0.165185 0.335186 0.126852 0.138365 0.709677 0.231579 

C5,C6 C1,C2,C3,C4 84 2402 2261 94.12989 0.344557 0.100526 0.239996 0.053305 0.246988 0.719298 0.367713 

C1,C2,C3 C4,C5,C6 62 1728 1435 83.04398 0.236988 0.218854 0.31135 0.171084 0.172012 0.867647 0.287105 

C1,C2,C4 C3,C5,C6 66 1121 1053 93.93399 0.604352 0.285817 0.333724 0.05782 0.491667 0.893939 0.634409 

C1,C2,C5 C3,C4,C6 14 2412 1666 69.07131 0.114074 0.363776 0.491251 0.315948 0.097291 0.858696 0.174779 

C1,C2,C6 C3,C4,C5 98 2056 1942 94.45525 0.377698 0.156988 0.251864 0.050847 0.271429 0.76 0.4 

C1,C3,C4 C2,C5,C6 112 469 442 94.24307 0.721355 0.241985 0.290693 0.058685 0.621212 0.953488 0.752294 

C1,C3,C5 C2,C4,C6 60 1760 1234 70.11364 0.116306 0.346541 0.485183 0.303962 0.099825 0.826087 0.178125 

C1,C3,C6 C2,C4,C5 144 1404 1338 95.29915 0.358984 0.174099 0.244262 0.042847 0.253165 0.740741 0.377358 

C1,C4,C5 C2,C3,C6 64 1153 1084 94.01561 0.605311 0.290777 0.336645 0.05709 0.491803 0.895522 0.634921 

C1,C4,C6 C2,C3,C5 148 797 705 88.45671 0.265688 0.203102 0.322404 0.112694 0.186916 0.8 0.30303 

C1,C5,C6 C2,C3,C4 96 2088 1973 94.49234 0.381931 0.161327 0.24566 0.050565 0.274648 0.764706 0.404145 

C2,C3,C4 C1,C5,C6 102 724 627 86.60221 0.406236 0.254318 0.341096 0.134615 0.315789 0.875 0.464088 

C2,C3,C5 C1,C4,C6 50 2015 1905 94.54094 0.500896 0.21041 0.274508 0.049974 0.386076 0.824324 0.525862 

C2,C3,C6 C1,C4,C5 134 1659 1376 82.94153 0.103351 0.16524 0.330901 0.167793 0.074576 0.6875 0.134557 

C2,C4,C5 C1,C3,C6 54 1408 1020 72.44318 0.165958 0.239268 0.403365 0.282186 0.139269 0.847222 0.239216 

C2,C4,C6 C1,C3,C5 138 1052 907 86.21673 0.185602 0.18881 0.371105 0.133072 0.133758 0.7 0.224599 

C2,C5,C6 C1,C3,C4 86 2343 2203 94.02475 0.340122 0.100479 0.246946 0.05422 0.243902 0.714286 0.363636 

C3,C4,C5 C1,C2,C6 100 756 656 86.77249 0.405614 0.243493 0.350778 0.132956 0.313869 0.877551 0.462366 

C3,C4,C6 C1,C2,C5 184 400 300 75 0.024723 0.251991 0.393017 0.244275 0.030303 0.428571 0.056604 

C3,C5,C6 C1,C2,C4 132 1691 1599 94.55943 0.302924 0.145325 0.240837 0.048854 0.213592 0.666667 0.323529 

C4,C5,C6 C1,C2,C3 136 1084 938 86.53137 0.192951 0.185708 0.362672 0.130104 0.138365 0.709677 0.231579 

C1,C2,C3,C4 C5,C6 114 410 377 91.95122 0.675306 0.221165 0.29616 0.089674 0.56 1 0.717949 

C1,C2,C3,C5 C4,C6 62 1701 1599 94.00353 0.509255 0.260553 0.315943 0.05695 0.388158 0.867647 0.536364 

C1,C2,C3,C6 C4,C5 146 1345 1166 86.69145 0.146056 0.19464 0.297622 0.130402 0.099476 0.730769 0.175115 

C1,C2,C4,C5 C3,C6 66 1094 1026 93.78428 0.603547 0.281536 0.33853 0.059339 0.491667 0.893939 0.634409 

C1,C2,C4,C6 C3,C5 150 738 645 87.39837 0.250246 0.204112 0.310483 0.123249 0.17757 0.791667 0.290076 

C1,C2,C5,C6 C3,C4 98 2029 1915 94.38147 0.37739 0.158841 0.249891 0.051541 0.271429 0.76 0.4 

C1,C3,C4,C5 C2,C6 112 442 400 90.49774 0.623188 0.219168 0.292351 0.105263 0.505882 1 0.671875 

C1,C3,C4,C6 C2,C5 196 86 85 98.83721 0.661417 0.13194 0.159723 0.011765 0.5 1 0.666667 

C1,C3,C5,C6 C2,C4 144 1377 1112 80.75527 0.09894 0.212521 0.320099 0.191111 0.071942 0.740741 0.131148 

C1,C4,C5,C6 C2,C3 148 770 720 93.50649 0.417108 0.203101 0.282066 0.060403 0.307692 0.8 0.444444 

C2,C3,C4,C5 C1,C6 102 697 520 74.60545 0.235959 0.272459 0.379555 0.263482 0.197183 0.875 0.321839 

C2,C3,C4,C6 C1,C5 186 341 266 78.00587 0.018724 0.27464 0.416357 0.21194 0.027397 0.333333 0.050633 

C2,C3,C5,C6 C1,C4 134 1632 1541 94.42402 0.294788 0.147656 0.236457 0.05 0.207921 0.65625 0.315789 

C2,C4,C5,C6 C1,C3 138 1025 880 85.85366 0.184522 0.186161 0.34857 0.136683 0.133758 0.7 0.224599 

C3,C4,C5,C6 C1,C2 184 373 295 79.08847 0.038342 0.244969 0.368247 0.202186 0.038961 0.428571 0.071429 

C1,C2,C3,C4,C5 C6 114 383 364 95.03916 0.780344 0.249898 0.293666 0.049853 0.701754 0.952381 0.808081 

C1,C2,C3,C4,C6 C5 198 27 27 100 1 0.157895 0.157895 0 0 0 0 

C1,C2,C3,C5,C6 C4 146 1318 1253 95.06829 0.349753 0.172227 0.251128 0.044892 0.246753 0.730769 0.368932 

C1,C2,C4,C5,C6 C3 150 711 678 95.35865 0.499712 0.195552 0.259056 0.039301 0.4 0.75 0.521739 

C1,C3,C4,C5,C6 C2 196 59 58 98.30508 0.65896 0.138092 0.17199 0.017241 0.5 1 0.666667 

C2,C3,C4,C5,C6 C1 186 314 262 83.43949 0.038625 0.241409 0.359185 0.155844 0.04 0.333333 0.071429 

 



 

 
226 

 

Appendix C 
 

Significance of  Linguistic Features 
 

In this appendix, we present some of the important key features of the noun phrases resulting 

from their syntactic relationships with other words in the software requirements sentences 

that often help to express data-movements in terms of the COSMIC FSM. Our automated 

data-movement classification approaches determine many of these features by using syntactic 

parsers and our lexical databases, as discussed in Section 7.4. 

 

C.1 “Noun Phrase is a Direct Object” 
This is a binary feature indicating if the noun-phrase appears as a direct object to any verb. 

That is, if the head of a noun phrase (i.e. the head of a compound noun or a pronoun itself) 

appears as a direct object to any verb in the sentence, we record the value of this feature as 

“true”, or “false” otherwise. Moreover, if the head of a noun phrase appears as a syntactic 

nominal subject to a verb in passive form, we record the value of this feature for that noun 

phrase as “true”, or “false” otherwise. 

For example, in the sentence shown in Figure 44, the noun-phrase “course offering” is a 

direct object. Thus, the value of this feature here for the noun-phrase “course offering” would 

be “true”. 
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The        Professor      selects a      course offering .

Noun Phrase
(Noun) Verb

Noun Phrase
(Compound Noun)

is direct object of  

Figure 44: Example of the Feature: “Noun Phrase is a Direct Object”. 

In relation to COSMIC data-movements, the noun-phrases that indicate moving data-

attributes/data-groups often appear as direct object to the verb that expresses the action of the 

data-movement. In the above example, the verb “selects” expresses the data-movement of 

Entry type has occurred on the noun-phrase “course offering”, which appeared as a direct 

object to the verb “selects”. 

 

C.2 “Noun Phrase is in an Object-Like Position” 
This is a binary feature indicating if the noun-phrase appears as a direct or indirect object to 

any verb, or as a prepositional object to a direct/indirect object of any verb, or in “a chain of 

prepositional objects” linked to a direct/indirect object of any verb. 

In our work, we identify a noun-phase to appear as a prepositional object to any verb or 

another noun phrase, when the first noun-phrase follows a preposition and that preposition 

serves to modify (or complement) the meaning of the verb or the second noun-phrase. For 

example, in Figure 45, the noun-phrase “Fund Usage” is a prepositional object to the noun-

phrase “overview page”. 
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The       system       displays     the

overview page of the     Fund Usage .

Noun Phrase
(Noun) Verb

Noun Phrase
(Compound Noun)

is prepositional object of

Noun Phrase
(Compound Noun) Preposition

 

Figure 45: Example of a Prepositional Object. 

Here, in Figure 45, the noun phrase “Fund Usage” follows the preposition “of” and modifies 

the meaning of the noun phrase “overview page”. 

Also, when a noun-phrase appears as a prepositional object to another noun-phrase which 

may be a prepositional object to another noun phrase and so on, we then define the boundary, 

starting from the start of the first noun phrase and ending at the end of the last noun phrase, 

as a chain of prepositional objects. In such a chain, there are more than one prepositional 

objects linked to one another. For example, in the sentence shown in Figure 46, we call the 

segment “list of names of all students in the class” as a chain of prepositional objects. 

The    system     outputs     the

list         of          names         of    all   students      in   the  class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

a chain of prepositional objects

Noun Phrase
(Noun) PrepositionPreposition

Noun Phrase
(Noun)

Noun Phrase
(Noun)Preposition

 

Figure 46: Example of a Chain of Prepositional Objects. 
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Thus, for our work, we identify a noun-phrase to appear in an object like position, if the 

head20 of a noun phrase appears either: 

(i) As a direct or indirect object to any verb, 

(ii) Or, as a prepositional object to a direct/indirect object of any verb, 

(iii) Or, in a “chain of prepositional objects” linked to a direct/indirect object of any verb 

(iv) Or, a syntactic nominal subject to a verb in passive form 

(v) Or, as a prepositional object to a noun phrase that appears as a syntactic nominal 

subject to a verb in passive form 

(vi) Or, in a chain of prepositional objects linked to a noun phrase that appears as a 

syntactic nominal subject to a verb in passive form 

Therefore, if the noun-phrase appears in an object like position we record the value of the 

feature, described in Appendix C.2, as “true”, or “false” otherwise. 

For example, in the sentence shown in Figure 47, the underlined noun-phrases “list”, 

“names”, “students” and “class” are all in object-like positions to the verb “outputs”. Here, 

the noun phrase “list” is the direct object to the verb “outputs”; then the noun phrase “names” 

is a prepositional object to the noun phrase “list”; and finally, the noun phrases “list”, 

“names”, “students” and “class” are all in a chain of prepositional objects that are linked to 

the noun phrase “list”. Thus, by the rules (i), (ii) and (iii) listed above, the value of this 

feature here for each of the noun phrases would be “true”. 

                                                 
20 The head of a noun-phrase is selected as follows: (i) if the noun-phrase consists of only one noun, then 
the head is the noun itself; (ii) if the noun-phrase consists of a compound noun, then the head is the 
rightmost noun; and (iii) if the noun-phrase consists of only one pronoun, then the head is the pronoun itself. 
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The    system     outputs the

list         of names         of    all   students      in   the  class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

a chain of prepositional objects

PrepositionPreposition
Noun Phrase

(Noun) Preposition

is in an
object-like       

position            
of                 

is in an   
object-like   

position  
of    

is in an                    
object-like position of 

is in an object-like
position of 

Noun Phrase
(Noun)

Noun Phrase
(Noun)

 

Figure 47: Example of the Feature: “Noun Phrase is in an Object-Like Position”. 

In relation to the COSMIC data-movements, the noun-phrases that indicate moving data-

attributes or data-groups cannot only appear as direct/indirect object to the verb that 

expresses the action of the data-movement, but also as a prepositional object or in a chain of 

prepositional objects linked to a direct/indirect object of such verb. In the second sentence of 

the above example, shown in Figure 47, the verb “outputs” expresses that the data-movement 

of Exit type has occurred on the noun-phrase “names”, which did not appear as its direct 

object, but as a prepositional object to the direct object of the verb. 

 

C.3 “Noun Phrase is a Subject” 
This is a binary feature indicating if the noun-phrase appears as a subject to any verb. That is, 

if the head of a noun phrase (i.e. the head of a compound noun or a pronoun itself) appears as 

subject to any verb in the sentence, we record the value of this feature as “true”, or “false” 

otherwise. Moreover, if the head of a noun phrase appears as a prepositional object with “by” 

preposition to a verb in passive form, we record the value of this feature for that noun phrase 

as “true”, or “false” otherwise. 

For example, in the sentence shown in Figure 48, the noun-phrase “Professor” is a subject. 

Thus, the value of this feature here for the noun phrase “Professor” would be “true”. 
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The        Professor selects a      course offering    .

Noun Phrase
(Noun) Verb

Noun Phrase
(Compound Noun)

is subject of  

Figure 48: Example of the Feature: “Noun Phrase is a Subject”. 

In relation to the COSMIC data-movements, the noun-phrases that indicate moving data-

attributes/data-groups rarely appear as subjects to the verbs that express the action of the 

data-movement. In the above example, the verb “selects” expresses the data-movement of 

Entry type has occurred, but the moving data-attribute/data-group is not the noun-phrase 

“Professor”, which appeared as a subject to the verb “selects”. 

 

C.4 “Noun Phrase is in an Object-Like Position to a Verb 
with No Subject” 
This is a binary feature indicating if the noun-phrase appears as a direct or indirect object, or 

as a prepositional object to a direct/indirect object, or in a chain of prepositional objects 

linked to a direct/indirect object of any verb that has no subject. This feature is similar to the 

feature described in Appendix C.2. However, it adds an additional constraint that the 

associated verb cannot have a subject of its own. 

Thus, if a noun phrase appears in an object-like position (Appendix C.2 describes the details 

on how we define the object-like position in our work) to any verb that has no subject, we 

record the value of this feature as “true”, or “false” otherwise. 

Moreover, if a noun-phrase the head of a noun phrase appears in an object-like position to a 

verb in passive form and the verb does not have as a prepositional object with “by” 

preposition, we record the value of this feature as “true”, or “false” otherwise. 
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For example, in the sentence: “System logs the action of modifying the course information.”, 

the noun-phrase “course information” appears in an object-like position to the verb “modify” 

that has no subject. Hence, the value of this feature here would be “true”. 

In relation to the COSMIC data-movements, this feature suggests insufficiency of 

information. That is, the noun-phrases that indicate moving data-attributes or data-groups 

should appear in object-like positions to verbs that have subjects clearly specified. This is 

because the subject in most cases acts as an agent to the action that a verb refers to and, thus, 

a clearly specified subject helps to deduce a specific kind of data-movement action that may 

be indicated by the verb. For example, the human actors often appear as subjects to Entry 

data-movements, while the non-human actors often appear as subjects to Exit, Read and 

Write data-movements. Thus, when a subject is absent for a verb, as in the case of the above 

example sentence, it usually implies the dependency on other features in identifying the kind 

of movement of the data-attribute or data-group that may be referred to by the noun-phrase in 

the object-like position of the verb. 

 

C.5 “Noun Phrase is in an Object-Like Position to a Verb 
with an Actor Subject” 
This is a binary feature indicating if the noun-phrase appears as a direct or indirect object, or 

as a prepositional object, or in a chain of prepositional objects linked to a direct/indirect 

object of any verb that has a subject, which is identified as a mention of a potential Actor. 

The feature is similar to the feature described in Appendix C.2. However, it adds an 

additional constraint that the associated verb must have a subject that is identified as a 

mention of a potential Actor. This feature, therefore, requires the use of the lexical 

knowledge stored in our vocabulary of actors, as presented in Appendix A.5. 

We identify a noun-phrase as an Actor subject, if the noun-phrase appears: 

(i) As a subject to a verb and the stemmed head of the noun-phrase contains a sub-string 

that exists in our vocabulary of actors. 
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(ii) Or, as a prepositional object with “by” preposition to a verb in passive form and the 

stemmed head of the noun-phrase contains a sub-string that exists in our vocabulary 

of actors. 

Therefore, if a noun phrase appears in an object-like position (please see Appendix C.2) for 

details on how we define the object-like position in our work) to any verb that has an Actor 

subject, we record the value of the feature, described in Appendix C.5, as “true”, or “false” 

otherwise. 

For example, in the sentence shown in Figure 49, the noun-phrase “course offering” appears 

in an object-like position to the verb “select” with an Actor subject “Professor”. Thus, the 

value of this feature here would be “true”. 

The        Professor selects a      course offering .

Noun Phrase
(Noun) Verb

Noun Phrase
(Compound Noun)

has actor subject

is in an object-like
position of  

Figure 49: Example of the Feature: “Noun Phrase is in an Object-Like Position of a Verb with an Actor 
Subject”. 

In relation to the COSMIC data-movements, the noun-phrases that indicate data-

attributes/data-groups participating in Entry data-movements tend to appear in object-like 

positions to verbs that have actor subjects. Thus, when the subject is an actor, as in the case 

of the above example shown in Figure 49, some of the noun-phrases that appear in object-like 

positions, e.g. the noun phrase “course offering” in the above example, often indicate data-

attributes or data-groups participating in Entry data-movements. 
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C.6 “Noun Phrase is in an Object-Like Position to a Verb 
with a Non-Actor Subject” 
This is a binary feature indicating if the noun-phrase appears as a direct or indirect object, or 

as a prepositional object, or in a chain of prepositional objects linked to a direct/indirect 

object of any verb that has a subject, which is identified as a mention of a potential Non-

Actor. The feature is similar to the feature described in Appendix C.2. However, it adds an 

additional constraint that the associated verb must have a subject that is identified as a 

mention of a potential Non-Actor. This feature, therefore, requires the use of the lexical 

knowledge stored in our vocabulary of actors, as presented in Appendix A.5. 

We identify a noun-phrase as a Non-Actor subject, if the noun-phrase appears: 

(i) As a subject to a verb and the stemmed head of the noun-phrase does not contain a 

sub-string that exists in our vocabulary of actors. 

(ii) Or, as a prepositional object with “by” preposition to a verb in passive form and the 

stemmed head of the noun-phrase does not contain a sub-string that exists in our 

vocabulary of actors. 

Therefore, if a noun phrase appears in an object-like position (please see Appendix C.2 for 

details on how we define the object-like position in our work) to any verb that has a Non-

Actor subject, we record the value of the feature, described in Appendix C.6, as “true”, or 

“false” otherwise. 

For example, in the sentence shown in Figure 50, the noun-phrases “list”, “names”, 

“students” and “class” appear in object-like positions to the verb “output” with a Non-Actor 

subject “system”. Thus, the value of this feature here for each of the noun-phrases would be 

“true”. 
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The    system     outputs the

list         of names         of    all   students      in   the  class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)PrepositionPreposition

Noun Phrase
(Noun) Preposition

is in an
object-like       

position            
of                 

is in an   
object-like   

position  
of    

is in an                    
object-like position of 

is in an object-like
position of 

Noun Phrase
(Noun)

Noun Phrase
(Noun)

has non-actor subject

 

Figure 50: Example of the Feature: “Noun Phrase is in an Object-Like Position of a Verb with Non-Actor 
Subject”. 

In relation to the COSMIC data-movements, the noun-phrases that indicate data-

attributes/data-groups participating in Exit, Read or Write data-movements tend to appear in 

object-like positions to verbs that have non-actor subjects. Thus, when the subject is a non-

actor, as in the case of the above example, shown in Figure 50, some of the noun-phrases that 

appear in object-like positions, e.g. the noun phrase “names”, “students” and “class” in the 

example, often indicate data-attributes or data-groups participating in Exit, Read or Write 

data-movements. In this example, it indicates an Exit data-movement. 

 

C.7 “Noun Phrase is a Subject of a Stative verb” 
This is a binary feature indicating if the noun-phrase appears as a subject to any Stative verb. 

Thus, it requires the use of our vocabulary of Stative verbs, as presented in Appendix A.2. 

Therefore, if the head of a noun phrase (i.e. the head of a compound noun or a pronoun itself) 

appears as subject to a verb, and the morphologically stemmed form of the verb exists in our 

vocabulary of Stative verbs, we record the value of this feature as “true”, or “false” otherwise. 
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For example, in the sentence: “Student checks if the credit card number is valid.”, the noun-

phrase “credit card number” is a subject of the Stative verb “is” (i.e. “be”). Hence, the value 

of this feature here would be “true”. 

In relation to the COSMIC data-movements, the noun-phrases that indicate moving data-

attributes/data-groups may appear as subjects to the Stative verbs, if they are part of clausal 

complements to verbs that express the action of data-movements.  Thus, in the case of the 

above example sentence, the noun-phrase “credit card number” appears as a subject of a 

Stative verb and is part of the clausal complement to a data-movement verb “check”. 

Therefore, it indicates the movement of a data-attribute/data-group. 

 

C.8 “Noun Phrase is in an Object-Like Position to a Data-
Movement Verb” 
This is a binary feature indicating if the noun-phrase appears as a direct or indirect object, or 

as a prepositional object, or in a chain of prepositional objects linked to a direct/indirect 

object of a Data-Movement verb. The feature is similar to the feature described in Appendix 

C.2. However, it adds an additional constraint that the associated verb must be a Data-

Movement verb. This feature, therefore, requires the use of the lexical knowledge stored in 

our vocabulary of data-movement verbs, as presented in Appendix A.1. 

Therefore, if a noun phrase appears in an object-like position (please see Appendix C.2 for 

details on how we define the object-like position in our work) to a verb, and the 

morphologically stemmed form of the verb exists in our vocabulary of data-movement verbs, 

we record the value of feature#8 as “true”, or “false” otherwise. 

For example, in the sentence shown in Figure 51, the noun-phrase “course offering” appears 

in an object-like position to a data-movement verb “selects”. Thus, the value of this feature 

here would be “true”. 
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The        Professor selects a      course offering .

Noun Phrase
(Noun) Verb

Noun Phrase
(Compound Noun)

is in an object-like
position of  

Figure 51: Example of the feature: "Noun Phrase is in an Object-Like Position of a Data-Movement Verb". 

In relation to the COSMIC data-movements, the noun-phrases that indicate moving data-

attributes/data-groups tend to appear in object-like positions to data-movement verbs. Thus, 

when the verb is a data-movement verb, as in the case of the above example, shown in Figure 

51, the noun-phrases, e.g. “course offering” in the example, often indicate moving data-

attributes/data-groups. 

 

C.9 “Noun Phrase Partly Contains an Attribute Name” 
We identify a noun-phrase as a potential mention of an attribute, if the stemmed head of the 

noun-phrase (i.e. the head of the compound noun, in our case) exists in our vocabulary of 

data-attributes, as presented in Appendix A.3. Thus, if the noun-phrase is a potential mention 

of a data-attribute, we record this feature for the noun-phrase as “true”, or “false” otherwise. 

For example, in the sentence shown in Figure 52, the noun-phrase “names” refers to a 

mention of an attribute, as the lexicon “name”, and its stemmed head exists in our vocabulary 

of data-attributes, as presented in Appendix A.3. Therefore, this feature for the noun phrase 

“names” will be “true”. 
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The    system     outputs     the

list         of          names         of    all   students      in   the  class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

Noun Phrase
(Noun) PrepositionPreposition

Noun Phrase
(Noun)

Noun Phrase
(Noun)Preposition

 

Figure 52: Example of the Feature: "Noun Phrase is a Mention of an Attribute". 

In relation to the COSMIC data-movements, functional requirements, when they are well-

decomposed, tend to describe the movements of the members, or the properties, or the 

attributes of the data-groups by using mentions of the data-attributes that belong to the 

moving data-groups. In requirement sentences, where mentions of both data-groups and data-

attributes are present, the mentions of data-attributes are usually attached to the semantics of 

movement, while the mentions of data-groups help to convey the indication of the owners of 

the attributes. Thus, in the example shown in Figure 52, the noun-phrase “names” indicates 

the moving data-attribute, while the noun-phrase “students” is the data-group that contains 

the moving data-attribute. 

 

C.10 “Noun Phrase Partly Contains a Data-Group Name” 
We identify a noun-phrase as a mention of a data-group, if the noun-phrase is not an attribute 

(see the feature description, presented in Appendix C.2) and the noun-phrase contains a sub-

string that exists in our vocabulary of data-groups, as presented in Appendix A.4. Thus, if the 

noun-phrase is a mention of a data-group, we record this feature for the noun-phrase as “true”, 

or “false” otherwise. 
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For example, in the sentence shown in 

The    system     outputs     the

list         of          names         of    all   students      in   the  class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

Noun Phrase
(Noun) PrepositionPreposition

Noun Phrase
(Noun)

Noun Phrase
(Noun)Preposition

 
Figure 53, the noun-phrases “students” and “class” refer to the data-groups “Student” and 

“Class” respectively. Therefore, the values of this feature for both the noun-phrases will be 

“true”. 

The    system     outputs     the

list         of          names         of    all   students      in   the  class .

Noun Phrase
(Noun)

Verb

Noun Phrase
(Noun)

Noun Phrase
(Noun) PrepositionPreposition

Noun Phrase
(Noun)

Noun Phrase
(Noun)Preposition

 

Figure 53: Example of the Feature: "Noun Phrase is a Mention of a Data-Group". 

 

In relation to the COSMIC data-movements, functional requirements, usually when they are 

not well-decomposed, often describe the movements of the data-groups by using the 

mentions of the data-groups directly, without mentioning which specific attributes are to 

move. In such cases, for example, in the sentence shown in 

The    system     outputs     the

list         of          names         of    all   students      in   the  class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

Noun Phrase
(Noun) PrepositionPreposition

Noun Phrase
(Noun)

Noun Phrase
(Noun)Preposition

 
Figure 53, a noun-phrase, e.g. “class” in the example, can indicate a moving data-group 

without explicitly mentioning which attribute(s) belonging to the data-group participate in the 

data-movement. 
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C.11 “Noun Phrase is Related to an Attribute Name by a 
Chain of Prepositional Objects” 
Here, by our explanations presented in Appendices C.2 and C.9 about the chain of 

prepositional objects and the mentions of attributes respectively, this feature name is self-

explanatory. 

For example, in the sentence shown in 

The    system     outputs the

list         of names         of    all   students      in   the  class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

a chain of prepositional objects

PrepositionPreposition
Noun Phrase

(Noun) Preposition

is in an
object-like       

position            
of                 

is in an   
object-like   

position  
of    

is in an                    
object-like position of 

is in an object-like
position of 

Noun Phrase
(Noun)

Noun Phrase
(Noun)

 
Figure 54, the noun-phrases “list”, “students”, and “class” are all related to the attribute 

“names” by a chain of prepositional objects. Therefore, the values of this feature for the 

noun-phrases “list”, “students”, and “class” will all be “true”. 

The    system     outputs the

list         of names         of    all   students      in   the  class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

a chain of prepositional objects

PrepositionPreposition
Noun Phrase

(Noun) Preposition

is in an
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Figure 54: Example of the Feature: "Noun Phrase is Related to an Attribute Name by a Chain of 

Prepositional Objects". 
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In relation to the COSMIC data-movements, the mentions of data-attributes in a functional 

requirement sentence often carry the sense of the moving data-groups. In such cases, noun-

phrases that are related to the data-attributes by chains of prepositional objects may not not 

indicate moving data-groups, even though they contain other feature values leading to 

conclude otherwise. Thus, although the noun-phrases “list” and “students” in the example 

shown in 

The    system     outputs the

list         of names         of    all   students      in   the  class .
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Figure 54 are in object-like positions to the data-movement verb “outputs”, none of them are 

indicating any moving data-group as they are related to the mention of the data-attribute 

“names” by a chain of prepositional objects. 

 

C.12 “Noun Phrase is Related to a Data-Group Name by a 
Chain of Prepositional Objects” 
The feature is similar to the feature, described in Appendix C.11, where we however consider 

data-groups instead of the attributes. 

 

C.13 “Noun Phrase Owns an Attribute” 
In Appendix C.9, we described how we identify an attribute. 

We record the feature “Noun Phrase Owns an Attribute” as “true”, if: 
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(i) The attribute appears as a possessive determiner of the head of the noun-phrase. For 

example, in “Device User’s address”, the attribute “address” appears as a possessive 

determiner of the head “User” of the noun-phrase “Device User”. Therefore, this 

feature for the noun-phrase “Device User” will be “true”. 

(ii) The noun-phrase appears as a prepositional object of the attribute with an associated 

preposition “of”. For example, in “address of the Device User”, the noun-phrase 

“Device User” appears as a prepositional object of the attribute “address” with an 

associated preposition “of”. Therefore, this feature for the noun-phrase “Device User” 

will be “true”. 

In relation to the COSMIC data-movement, the noun-phrases in functional requirements that 

owns attribute are often mentions of moving data-groups. 

 

C.14 “Noun Phrase Belongs To A Data-Group” 
In Appendix C.10, we described how we identify a data-group. 

We record the feature “Noun Phrase Belongs To Data-Group” as “true”, if: 

(i) The noun-phrase appears as a possessive determiner of the mention of the data-group. 

For example, in “Item’s price”, the noun-phrase “price” appears as a possessive 

determiner of the mention of the data-group “Item”. Therefore, this feature for the 

noun-phrase “price” will be “true”. 

(ii) The mention of the data-group appears as a prepositional object of the noun-phrase 

with an associated preposition “of”. For example, in “price of the Item”, the mention 

of the data-group “Item” appears as a prepositional object of the noun-phrase “price” 

with an associated preposition “of”. Therefore, this feature for the noun-phrase 

“price” will be “true”. 

In relation to the COSMIC data-movement, the noun-phrases in functional requirement that 

belong to data-groups are often attributes. 
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C.15 “Noun Phrase is Part of a Negative Expression” 
We identify a noun-phrase as part of a negative expression, if: 

(i) The noun-phrase is “none”. 

(ii) Or, the noun-phrase appears in a chain of prepositional objects that is linked to 

“none”. 

(iii) Or, a negation modifier modifies the noun-phrase. 

(iv) Or, a negation modifier modifies a verb, and the noun-phrase appears as the subject 

of the verb. 

(v) Or, a negation modifier modifies a verb, and the noun-phrase appears in a chain of 

prepositional objects linked to the verb. 

(vi) Or, a negation modifier modifies a verb, and the noun-phrase appears in a chain of 

prepositional objects linked to the subject of the verb. 

(vii) Or, a negation modifier modifies a verb, and the noun-phrase appears in an object-

like position to the verb. 

(viii) Or, the noun-phrase appears in the same clause as the negation modifiers: “no”, 

“not”, “n’t”, “neither”, “nor”, or “never”. 

(ix) Or, the noun-phrase appears as a subject to the negative implicative verbs 

(Karttunen, 1971), e.g. “fail”, “reject”, “refuse”, “deny”, “cancel” etc. 

(x) Or, the noun-phrase appears in a chain of prepositional objects to a subject to the 

negative implicative verbs (Karttunen, 1971), e.g. “fail”, “reject”, “refuse”, “deny”, 

“cancel” etc. 
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(xi) Or, the noun-phrase appears in an object-like position to a verb, which appears in 

open clausal complement of the negative implicative verbs (Karttunen, 1971), e.g. 

“fail”, “reject”, “refuse”, “deny”, “cancel” etc. 

In any of the above cases, we record the value of this feature as “true”, or “false” otherwise. 

In relation to the COSMIC data-movements, the noun-phrases that are part of negative 

expressions do not usually convey the sense of a moving data-attribute/data-group. 

 

Additionally, we also extract features indicating different types of clausal dependencies 

between noun phrases and other words of the requirements sentences. Some of these features 

are included to our selection pool of features (e.g. F6, F7, F15, F17, F19, F21, F23 and F25, 

as presented in Sections 7.4.2 and 7.4.3), so that our supervised learning-based data-

movement classification approach can determine the discriminating complex rules involving 

these complex features.  
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Appendix D 
 

An Example of  Automated FSM 
 

In this appendix, we present some screenshots of the GATE environment  (Cunningham H., 

et al., 2011) executing our pipelines that implement our approaches, as presented in Chapter 

7, to automate the extraction of the artifacts of COSMIC FSM model, and quantify the 

functional size using the formulas, presented in Section 7.8. The details of the execution is 

shown in the following steps. 

Step 1: We first load the textual requirements belonging to a functional process as GATE 

document, as shown in Figure 55. 

 
Figure 55: Screenshot (1) of GATE, Loaded with the Textual Requirements of a Functional Process 
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Step 2: We then create a corpus (named “TestCorpus”, as shown in the figure) and add the 

newly loaded GATE document to the corpus, as shown in Figure 56. 

 
Figure 56: Screenshot (2) of GATE, Creating a Corpus 

We can add more documents to execute the pipelines on a batch of multiple functional 

processes. 

 

Step 3: We then run our pipeline called “TestDGExtraction” over the corpus, that pre-

processes and extracts all feature values from the document(s) of the corpus. We run the 

pipeline as shown in Figure 57. 
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Figure 57: Screenshot (3) of GATE, Loading a Pipeline for Preprocessing and Feature Extraction 

 

This GATE pipeline processes each document in the corpus and extracts all the Sentences, 

the Noun Phrases and the values of all their features, as presented in Section 7.4.  

 
Figure 58: Screenshot (4) of GATE, Showing the Output of Running the Preprocessing & Feature 

Extraction Pipeline 
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Thus, the extracted feature values of any Noun Phrase can be viewed as shown in Figure 59. 

 
Figure 59: Screenshot (5) of GATE, Showing Feature Values Extracted from a Noun-Phrase 

 

Step 4: We now run our pipeline called “COSMICTagger” over the corpus, that implements 

our heuristic-based approaches of Data-Movement classification, Data-Group identification 

and CFP quantification, as presented in Sections 7.5, 7.7 and 7.8. The interface of running 

this pipeline is as shown in Figure 60. 
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Figure 60: Screenshot (6) of GATE, Loading a Pipeline for COSMIC FSM Model Extraction & 

Quantification 

 

This GATE pipeline again processes each document in the corpus and extracts the artifacts of 

the COSMIC FSM standard, e.g. the Data-Groups and their types of Data-Movements, as 

shown in Figure 61 and Figure 62. 

 
Figure 61: Screenshot (7) of GATE, Showing the Output Annotations of Noun-Phrases & Sentences 

Classified into Data-Movement Types 
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Figure 62: Screenshot (8) of GATE, Showing the Identified Data-Group That is Associated with an Output 

Annotation of Noun-Phrase 

 

And it also outputs the quantification of functional size for each functional process by 

showing the minimum, most-likely and maximum CFP and lists the Data-Groups and their 

corresponding types of Data-Movements — all as features to the corresponding GATE 

document, as shown in Figure 63. 

 
Figure 63: Screenshot (9) of GATE, Showing the Output CFP and the List of Extracted Artifacts of 

COSMIC FSM Standard 

 


