

LINGUISTIC APPROACHES FOR EARLY MEASUREMENT

OF FUNCTIONAL SIZE

FROM SOFTWARE REQUIREMENTS

H M ISHRAR HUSSAIN

A DOCTORAL THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE &

SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

AUGUST 2014

© H M ISHRAR HUSSAIN, 2014

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: H M Ishrar Hussain

Entitled: Linguistic Approaches for Early Measurement of Functional Size from
Software Requirements

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of the University and meets the accepted standards
with respect to originality and quality.

Signed by the final Examining Committee:

 Chair
 Dr Rachida Dssouli

 Examiner
 Dr Jean-Marc Desharnais

 Examiner
 Dr Yong Zeng

 Examiner
 Dr Constantinos Constantinides

 Examiner
 Dr René Witte

 Supervisor
 Dr Olga Ormandjieva

 Supervisor
 Dr Leila Kosseim

Approved by
 Chair of Department or Graduate Program Director

 2014

Dean of Faculty

iii

Abstract

Linguistic Approaches for Early Measurement of Functional Size from
Software Requirements

H M Ishrar Hussain, Ph.D.
Concordia University, 2014

The importance of early effort estimation, resource allocation and overall quality control in a

software project has led the industry to formulate several functional size measurement (FSM)

methods that are based on the knowledge gathered from software requirements documents.

The main objective of this research is to develop a comprehensive methodology to facilitate

and automate early measurement of a software’s functional size from its requirements

document written in unrestricted natural language. For the purpose of this research, we have

chosen to use the FSM method developed by the Common Software Measurement

International Consortium (COSMIC) and adopted as an international standard by the

International Standardization Organization (ISO). This thesis presents a methodology to

measure the COSMIC size objectively from various textual forms of functional requirements

and also builds conceptual measurement models to establish traceability links between the

output measurements and the input requirements. Our research investigates the feasibility of

automating every major phase of this methodology with natural language processing and

machine learning approaches. The thesis provides a step-by-step validation and

demonstration of the implementation of this innovative methodology. It describes the details

of empirical experiments conducted to validate the methodology with practical samples of

textual requirements collected from both the industry and academia. Analysis of the results

show that each phase of our methodology can successfully be automated and, in most cases,

leads to an accurate measurement of functional size.

Keywords

Functional Size Measurement, Software Requirements Specification, Effort Estimation,

Natural Language Processing, Text Mining.

iv

Acknowledgements

I would like to express my most sincere gratitude to all the people who made this thesis

possible. First and foremost, much of my appreciation goes to my dearest supervisors: Dr.

Olga Ormandjieva and Dr. Leila Kosseim, for their continuous and invaluable guidance.

They have been my mentors at every step of this extensive research, helped me tremendously

in the write-up of this thesis, and no matter what the problems I faced, they always came

across as my strongest support.

It was also a great honor for me to have many constructive feedback from Dr. Jean-Marc

Desharnais, one of the co-founders of the original COSMIC measurement standard.

I would also like to sincerely thank Dr. René Witte for his very knowledgeable insights and

time-to-time suggestions that were always extremely helpful. My deep appreciation also goes

to my two other thesis committee members: Dr. Constantinides Constantinos and Dr. Yong

Zeng for their insightful reviews and questions that guided this research.

My special thanks go to the current and previous members of the NLP-SE research group for

providing their valuable efforts in the annotation and the measurement experiments;

especially to Rolan Abdukalykov, for collecting the industrial project documents used in

these experiments.

Finally, on a personal note, I would like to convey my deepest appreciation to my loving wife,

my father and my parents-in-law, for their continuous inspirations and encouragements to

complete this research.

I dedicate this thesis to my mother, whose heavenly blessings surround me at my every step.

v

Contents

List of Figures ...xiii

List of Tables .. xvii

1. Introduction .. 1

1.1 Introduction ... 1

1.2 Motivation ... 4

1.3 Objectives & Research Methodology ... 8

1.4 Overview of Contributions ... 13

1.4.1 Theoretical Contributions ... 13

1.4.2 Developed Tools ... 15

1.5 Overview of the Thesis ... 16

2. Background ... 17

2.1 Introduction ... 17

2.2 Software Requirements ... 17

2.3 Requirements Analysis using Textual Annotation ... 18

2.4 Problem of Estimating Effort from Requirements .. 20

2.5 Effort Estimation in Theory .. 21

2.6 Effort Estimation in Practice ... 22

2.7 Functional Size Measurement ... 23

2.7.1 ISO Standards for FSM .. 23

vi

2.7.2 COSMIC ... 23

2.8 Size Measurement in Agile Development Processes .. 27

3. Literature Survey ... 29

3.1 Introduction ... 29

3.2 Automated COSMIC Functional Size Measurement .. 29

3.2.1 μcROSE .. 30

3.2.2 Work of Candori-Fernández et al. .. 31

3.3 Approximation of Functional Size .. 31

3.4 Preparing Textual Requirements for FSM .. 32

3.4.1 On Detection of Requirements Defects .. 32

3.4.2 On Extracting Functional & Non-Functional Requirements 40

3.4.3 On Identifying Domain Concepts & Their Attributes .. 42

3.5 Tools for Requirements Annotation ... 43

3.5.1 GATE TeamWare ... 44

3.5.2 Amazon Mechanical Turk .. 44

3.5.3 Knowtator ... 45

3.5.4 Glozz ... 45

3.5.5 AnCoraPipe .. 45

3.6 Necessary Features of Annotation Tools .. 46

3.6.1 Document Acquisition .. 46

3.6.2 Document Pre-processing ... 47

3.6.3 Administration of Annotators' Recruitment ... 47

3.6.4 Customization of Annotation Interface .. 47

vii

3.6.5 Relational Annotations ... 48

3.6.6 Hierarchical Dependency Among Annotation Labels .. 48

3.6.7 Aggregating Annotation Data of Multiple Annotators 48

3.6.8 Computation of Gold-standard Annotations ... 49

3.7 Effort Estimation Techniques ... 49

3.7.1 Using Parametric Models for Effort Estimation ... 50

3.7.2 Estimation by Analogy (EBA) ... 54

3.7.3 Delta Estimation ... 55

3.7.4 Calibration and Use of Machine Learning Algorithms 55

3.8 Conclusion .. 57

4. Methodology ... 58

4.1 Introduction ... 58

4.2 Phases of Our Methodology ... 58

4.2.1 Inception ... 60

4.2.2 Phase I: FSM by Non-Experts .. 60

4.2.3 Phase II: Size Approximation ... 63

4.2.4 Phase III: Requirements Classification ... 65

4.2.5 Phase IV: FSM Model Extraction .. 66

4.2.6 Phase V: Evaluation of FSM Automation .. 71

4.3 Formalization of FSM Model and Quantification .. 73

4.4 Linguistic Introspection of Size Measurement Analysis (LISMA) 78

4.4.1 Analysis of Requirements Quality/Defects .. 80

4.4.2 Classification by Requirements Taxonomy .. 81

viii

4.4.3 Measurement of Functional Size .. 82

4.5 Conclusion .. 87

5. Functional Size Measurement By Non-Experts .. 88

5.1 Introduction ... 88

5.2 LASR: Live Annotation of Software Requirements ... 90

5.2.1 Annotation Interface for Functional Size Measurement 90

5.2.2 Additional Features of LASR ... 94

5.3 Experiments Overview ... 98

5.3.1 Participants: The Annotators .. 99

5.3.2 Experimental Materials ... 100

5.3.3 Experiment Execution .. 101

5.4 Experiment #1: Expert vs. Multiple Non-Experts .. 104

5.4.1 Hypotheses and Variables .. 104

5.4.2 Results and Analysis ... 106

5.5 Experiment #2a: Annotation Accuracy using LASR .. 109

5.5.1 Hypotheses and Variables .. 109

5.5.2 Results and Analysis ... 111

5.6 Experiment #2b: Size Measurement Accuracy with LASR 115

5.7 Experiment #3: Record of Annotation Time .. 118

5.8 Design & Implementation of LASR ... 119

5.9 Domain Model of LASR ... 121

5.9.1 Project ... 122

5.9.2 Annotation Work .. 122

ix

5.9.3 Problem Domain ... 123

5.10 User Roles of LASR ... 124

5.11 Conclusion .. 125

6. Automated Approximation of Functional Size .. 126

6.1 Introduction ... 126

6.2 Overview of Our Approach .. 126

6.2.1 CFP Measurement .. 127

6.2.2 Class Annotation of Functional Processes .. 129

6.2.3 Text Mining .. 130

6.3 Experiments .. 130

6.3.1 Corpus Annotation .. 132

6.3.2 Syntactic Feature Selection .. 134

6.3.3 Lexical Feature Selection ... 135

6.3.4 Feature Extraction and Classification ... 136

6.4 Results and Analysis ... 136

6.5 Conclusion .. 140

7. Automated FSM Modeling .. 142

7.1 Introduction ... 142

7.2 Our Approach ... 143

7.3 Preprocessing .. 144

7.4 Extraction of Linguistic Features .. 145

7.4.1 Lexical Feature Set ... 146

7.4.2 Syntactic Feature Set .. 147

x

7.4.3 Combined Feature Set .. 148

7.5 Heuristic-based Classification .. 151

7.5.1 Data-Attribute Classification .. 152

7.5.2 Data-Movement Classification ... 153

7.6 Supervised Learning-based Classification .. 156

7.6.1 Feature Selection .. 156

7.6.2 Choice of Learning Algorithms .. 157

7.7 Data-Group Association ... 159

7.8 Extending COSMIC by CFP Range Measurement ... 161

7.9 Overview of the Classification Experiments .. 164

7.9.1 The Corpora .. 164

7.9.2 Testing Methods ... 166

7.9.3 Types of Classification Experiments .. 170

7.10 Heuristic-based Classification Results .. 172

7.11 Supervised Learning-based Classification Results ... 173

7.11.1 Results of Batch Testing for Incremental Learning...................................... 173

7.11.2 Results of 10-fold Cross-Validation ... 179

7.12 CFP Range Measurement Results ... 181

7.13 Conclusion .. 182

8. Conclusions and Future Work .. 183

8.1 Major Contributions .. 183

8.1.1 Methodology for Practical Application of FSM ... 183

8.1.2 Formalization of an FSM Model for Traceability .. 184

xi

8.1.3 Extension to FSM Quantification ... 184

8.1.4 Syntactic Features for Requirements Classification ... 185

8.1.5 Improving the Annotation Quality for Non-Experts .. 185

8.1.6 Automatic and Traceable Approximation of FSM ... 185

8.1.7 Linguistic Features of COSMIC FSM .. 186

8.1.8 Heuristics for COSMIC FSM ... 186

8.1.9 Annotated Corpora for Data-Movement Classification 187

8.2 Future Research Directions ... 187

Bibliography ... 189

Appendix A: Lexical Databases ... 211

A.1 Data-movement Verbs .. 211

A.1.1 Entry Verbs ... 211

A.1.2 Exit Verbs ... 212

A.1.3 Read Verbs ... 212

A.1.4 Write Verbs .. 212

A.1.5 Triggering-Entry Verbs .. 213

A.1.6 System-Message-Exit Verbs .. 213

A.2 Stative Verbs ... 213

A.3 Attribute Names .. 214

A.4 Data-group Names .. 214

A.5 Actor Names ... 215

xii

Appendix B: Raw Test Results: Outputs from WEKA ... 216

B.1 10-fold Cross-Validation Results .. 216

B.1.1 For Entry Classifier .. 216

B.1.2 For Exit Classifier ... 217

B.1.3 For Read Classifier ... 218

B.1.4 For Write Classifier .. 220

B.2 Batch Test Results for Incremental Learning ... 221

B.2.1 For Entry Classifier .. 222

B.2.2 For Exit Classifier ... 223

B.2.3 For Read Classifier ... 224

B.2.4 For Write Classifier .. 225

Appendix C: Significance of Linguistic Features ... 226

Appendix D: An Example of Automated FSM ... 245

xiii

List of Figures

1. Cone of Uncertainty (McConnell, 2006) .. 2

2. Workflow of Early Estimation of Effort from Software Requirements 3

3. The Conceptual Framework of the Research Methodology .. 11

4. Simple Input-Output and the Intermediate Steps of LISMA Supporting Early Effort

Estimation ... 12

5. Example of Sentence-level Annotation of Software Requirements 19

6. Generic Flow of Data-Groups in COSMIC .. 24

7. Example of Noun-Phrase-Level Annotation of Software Requirements (for COSMIC

FSM). .. 26

8. Steps of Iteration Planning in Agile [as presented in (Cohn, 2005)] 27

9. Requirements Specification Ambiguity Checker (ReqSAC) 40

10. Cost Drivers in COCOMO II .. 51

11. Phases of Our Methodology .. 59

12. Ontology of COMIC FSM Model ... 75

13. Inputs, Outputs and the Intermediate Steps of LISMA Supporting Early Effort

Estimation ... 79

14. Our Approach for Measuring the Functional Size from Functional Requirements 83

15. Our Approach for Building The Lexical Databases .. 85

16. An Overview Workflow Diagram of LASR ... 89

17. First Screenshot of LASR's Customized Annotation Interface for COSMIC

Annotation. .. 91

xiv

18. Second Screenshot of LASR's Customized Annotation Interface for COSMIC

Annotation ... 94

19. Distribution of the True Gold-Standards (As Annotated by the Expert) in Our Corpus

... 104

20. Pair-wise Agreements between the Four Annotators of NEft and the Expert 107

21. Distribution of the Gold-standard Annotations (As Annotated by NEft) 108

22. Distribution of the Gold-Standard Annotations (As Annotated by NEmt) 113

23. Quality of the Different Gold-Standard Annotations in Terms of Their Agreements

(in Kappa) with the True Gold-Standard Annotations. ... 114

24. Architecture of LASR ... 120

25. Domain Model of LASR ... 121

26. Inputs and Outputs of Our Approach for Automated Approximation of Functional

Size .. 127

27. Building a Historical Database .. 128

28. Class Annotation by Box-Plot Analysis .. 129

29. Text Mining for Fast Approximation of COSMIC Functional Size 130

30. Distribution (with a box plot) of CFP Values in Our Historical Database 132

31. The Resultant C4.5 Decision Tree after Training with the Complete Dataset 137

32. Inputs and Outputs of Our Approach for Automated FSM Modelling 143

33. Major Steps of Our Approach for Automated FSM Modeling 144

34. Workflow of the Preprocessing Step ... 145

35. Workflow of the Feature Extraction Step ... 146

36. Example Decision Tree to Classify Entry Data-Movement (when the whole dataset is

used to train the C4.5 algorithm) .. 158

37. Distribution of the Gold-Standard Class Labels for Data-Movement Classification 165

xv

38. Number of Training Instances Used in Each Batch Test for the Entry Classifier 170

39. Types of Experiments to Validate the Different Data-Movement Classification

Approaches ... 171

40. Results of Running Batch Tests for Incremental Learning Over the Entry Classifier

... 174

41. Results of Running Batch Tests for Incremental Learning Over the Exit Classifier 175

42. Results of Running Batch Tests for Incremental Learning Over the Read Classifier

... 176

43. Results of Running Batch Tests for Incremental Learning Over the Write Classifier

... 177

44. Example of the Feature: “Noun Phrase is a Direct Object”. 227

45. Example of a Prepositional Object. ... 228

46. Example of a Chain of Prepositional Objects. .. 228

47. Example of the Feature: “Noun Phrase is in an Object-Like Position”. 230

48. Example of the Feature: “Noun Phrase is a Subject”. ... 231

49. Example of the Feature: “Noun Phrase is in an Object-Like Position of a Verb with an

Actor Subject”. .. 233

50. Example of the Feature: “Noun Phrase is in an Object-Like Position of a Verb with

Non-Actor Subject”. ... 235

51. Example of the feature: "Noun Phrase is in an Object-Like Position of a Data-

Movement Verb". .. 237

52. Example of the Feature: "Noun Phrase is a Mention of an Attribute". 238

53. Example of the Feature: "Noun Phrase is a Mention of a Data-Group". 239

54. Example of the Feature: "Noun Phrase is Related to an Attribute Name by a Chain of

Prepositional Objects". .. 240

xvi

55. Screenshot (1) of GATE, Loaded with the Textual Requirements of a Functional

Process .. 245

56. Screenshot (2) of GATE, Creating a Corpus .. 246

57. Screenshot (3) of GATE, Loading a Pipeline for Preprocessing and Feature

Extraction .. 247

58. Screenshot (4) of GATE, Showing the Output of Running the Preprocessing &

Feature Extraction Pipeline ... 247

59. Screenshot (5) of GATE, Showing Feature Values Extracted from a Noun-Phrase . 248

60. Screenshot (6) of GATE, Loading a Pipeline for COSMIC FSM Model Extraction &

Quantification ... 249

61. Screenshot (7) of GATE, Showing the Output Annotations of Noun-Phrases &

Sentences Classified into Data-Movement Types .. 249

62. Screenshot (8) of GATE, Showing the Identified Data-Group That is Associated with

an Output Annotation Noun-Phrase .. 250

63. Screenshot (9) of GATE, Showing the Output CFP and the List of Extracted Artifacts

of COSMIC FSM Standard ... 250

xvii

List of Tables

1. Mapping of the Open Research Problems, Research Phases and Research Objectives

... 9

2. Meyer’s “The seven sins of the specifier” (Meyer, 1985) .. 33

3. Ambiguity in NL Requirements (Kamsties, Berry, & Paech, 2001) 34

4. Different Quality Indicators of NL Requirements (Gnesi, Lami, & Trentanni, 2005) ...

... 37

5. Comparison of Features Provided by Current Annotation Tools 46

6. Mapping of Research Questions over the Reseach Phases in Relation to the

Objectives ... 73

7. Documents in the Corpus, Used in the Experiments ... 100

8. Task of the Annotators .. 101

9. Confusion Matrix for Moving Data-Attribute Annotation by NEft 109

10. Confusion Matrix for Data-Attribute Annotation by NEmt .. 113

11. Confusion Matrices for Data-Movement Annotation by NEmt 114

12. Frequency of Data-Attributes & Data-groups ... 116

13. Aggregated Frequencies of Data-Movements ... 117

14. Total Measured CFP and MMRE Results .. 117

15. Activities Permitted to Different User Roles in LASR ... 124

16. A Hypothetical Example of CFP Calculation ... 128

17. Ranges of CFP Values to Define the Classes .. 129

18. Summary of the Case Studies ... 131

xviii

19. Data to be Associated with a Functional Process to Approximate Its Size 133

20. Ten Linguistic Features Most Highly Correlated with CFP 134

21. Some of the Keywords of POS Category: Noun, Verb and Adjective 136

22. Summary of the Results .. 137

23. Confusion Matrix When Using 10-fold Cross-Validation .. 138

24. Precision, Recall and F-Measure, When Using 10-fold Cross-Validation 139

25. 10-fold Cross-Validation Results of Using a 2-Class and 3-Class Classifier 140

26. Frequency of Data-movement Class Labels in the Corpora 165

27. Training and Testing Instances in Batch Test #1 for the Entry Classifier 167

28. Training and Testing Instances in Batch Test #2 for the Entry Classifier 167

29. Training and Testing Instances in Batch Test #3 for the Entry Classifier 168

30. Training and Testing Instances in Batch Test #4 for the Entry Classifier 169

31. Training and Testing Instances in Batch Test #5 for the Entry Classifier 169

32. Confusion Matrices for Heuristic-based Data-Movement Classification 172

33. Results of Heuristic-based Data-Movement Classification 172

34. Confusion Matrices for 10-fold Cross Validation on Supervised Learning-based Data-

Movement Classification .. 180

35. Results of 10-fold Cross Validation on Supervised Learning-based Data-Movement

Classification ... 180

36. CFP Range Measurements Results Based on the Heuristic-based Classification Labels

... 181

1

Chapter 1

Introduction

“Adding manpower to a late software project makes it later.”
— Frederick P. Brooks, Jr.

1.1 Introduction
Functional size is a fundamental characteristic of a software that indicates how big it is in

terms of the amount of business level functionalities it provides. The size information can be

used to perform various quality analyses about a software. However, functional size is

primarily used to determine the development effort of the software, as the required effort to

develop a software cannot be estimated without knowledge of its size. This thesis attempts to

solve the problem of determining the functional size objectively from textual requirements.

Today’s software industry produces highly complex systems on competitive budget and

schedule. Every commercial software project, therefore, begins with the step of determining

the size of the software and its related effort, before starting the development process.

However, a meta-study performed by (Molkken & Jørgensen, 2003) on 10 different surveys,

shows that most (60-80%) of the industrial software projects face inevitable overruns in both

the budget and/or the schedule because of inaccuracy in software effort estimation. The

recent CHAOS manifesto, published by The Standish Group, shows an overall increase in the

failure rate of software projects in the year 2012, with overruns in the budget and/or schedule

still being a primary problem (The Standish Group, 2013). This shows that the task of effort

estimation is very difficult to do accurately at the early stages of development. The reason is

that the total effort depends on parameters, e.g. the software size, that cannot be objectively

measured until later in the development process. This leads to the common phenomenon

known as the “Cone of uncertainty”, shown in Figure 1, as presented in (McConnell, 2006),

2

that shows that the estimated effort is more likely to vary by a large extent at an early stage of

development.

Figure 1: Cone of Uncertainty (McConnell, 2006)

To minimise costly errors in effort estimation, the industry needs for the size of software to

be estimated effectively at an early development phase. Measuring the physical size of

software, in terms of its Source Lines Of Code (SLOC), for example, can only be objectively

possible after starting its development work. Functional size, on the other hand, indicates the

logical size information about a software that can be measured before starting the

development work by counting the units of functionalities that the software should provide

(Albrecht & Gaffney, 1983). This functional size can then be used to estimate different

aspects of the software project, including the effort required to develop the software. The

software requirements document, one of the earliest deliverables produced in the software

development life-cycle, usually holds enough details about the software for the experts to use

in predicting the functional size of the software and its related development effort. A typical

workflow of measuring functional size and estimating effort from textual software

requirements is shown in Figure 2.

3

Capture
Requirements

Estimate
Effort

Textual
Requirements

Effort Estimation
Report

Functional
Size

Determine
Functional Size

Figure 2: Workflow of Early Estimation of Effort from Software Requirements

Functional Size Measurement (FSM) standards, e.g. IFPUG (ISO/IEC 20926, 2003), Mark II

(ISO/IEC 20968, 2002), NESMA (ISO/IEC 24570, 2005), FiSMA (ISO/IEC 29881, 2010)

and COSMIC (ISO/IEC 19761, 2011), provide formal ISO-certified ways of measuring the

functional size of the software. However, the available FSM methods do not provide specific

guidelines for extracting the size information from the initial and informally written textual

software requirements. The information about a software’s functional size is encoded in its

requirements document and an expert needs to read and decode it using his/her experience

gained over time through trial-and-error-like manual processes. Hence, none of the FSM

methods can be carried out early without waiting for the requirements to be highly formalized

or without the costly, yet subjective, insights of expert measurers.

The FSM methods measure the functional size of a software by first identifying some of its

conceptual artifacts that are referred to as the Base Functional Components (BFC) (ISO/IEC

14143-1, 1998). Each of these artifacts represents an elementary unit of a functional

requirement, the types of which are to be aggregated and counted in a way defined by the

FSM method in order to measure the size of the software. COSMIC1 is an FSM method that

claims to be objective in counting the types of BFCs (ISO/IEC 19761, 2011). COSMIC's

method of measurement is also demonstrated to be compatible with the requirements that are

strictly formalized and well-decomposed. For example, the work of Condori-Fernàndez,

Abrahão, & Pastor (Condori-Fernàndez, Abrahão, & Pastor, 2007) showed that all modeling

artifacts of COSMIC can be mapped to UML-based conceptual modeling artifacts that are

extracted manually by human experts from software requirements documents.

1 COSMIC is named after its developer organization COmmon Software Measurement International
Consortium.

4

However, during the early phases of software development, software requirements are

informally produced and documented in textual form in plain natural language without any

formalization. Natural language textual requirements also inherently contain different

requirements defects (Meyer, 1985; IEEE, 1998). Thus, the conceptual modeling artifacts

that are required to be identified during functional size measurement are not clearly visible to

the measurers when using textual requirements without formalization. This makes the task of

functional size measurement, even following the COSMIC standard, rather subjective and

highly dependent on the measurers’ judgments and levels of experience. The COSMIC

manual (ISO/IEC 19761, 2011) identifies these problems as defects of un-formalized

software requirements that are left for the measurer to solve with his/her subjective

assessment. Thus, like all other FSM standards, COSMIC also avoids providing specific

guidelines for dealing with textual requirements in measuring the functional size of the

software.

1.2 Motivation
Crucial management decisions made during software development depend on the initial

estimations. With an early knowledge of well-estimated functional size and the related

development effort, a project manager can confidently plan future courses of action. Thus,

there has always been a demand from the industrial point of view for better estimations of

size and effort, so that project managers can determine the competitive cost of a project,

improve process monitoring, and negotiate contracts from a position of knowledge.

The motivation of our research originates from the industrial demand of the functional size

and its related development effort to be estimated effectively at an early development phase,

so that costly errors in planning and possibility of mismanagement of projects can be

minimized. Functional Size Measurement (FSM) methods (Albrecht A. J., 1979; ISO/IEC

20968, 2002; ISO/IEC 19761, 2003; ISO/IEC 29881, 2010) were presented with the aim to

reduce subjectivity in the estimation of software size and its related effort by measuring only

the logical size of software represented by the amount of functionalities described in its

requirements. However, FSM methods also rely on the subjective judgments of human

experts, especially when extracting the size information from textual requirements produced

during the early stages of software development life-cycle.

5

Current state-of-the-art FSM approaches do not investigate the details of performing

functional size measurement using unrestricted textual requirements, which, however, is the

form of requirements produced during the earliest phases of the software development life-

cycle. Thus, current studies on FSM do not explore the linguistic aspects of textual

requirements related to functional size measurement. This leads to the following open

research problem:

Open Problem #1: “To our knowledge, no research to date has attempted to discover how

the linguistic elements of the textual requirements of a software influence its functional size.”

Addressing this research problem can aid in emulating an expert's way of interpreting the

functional size of a software from the linguistic elements of informally-written textual

requirements. This linguistic knowledge can therefore be used to approximate functional size

at a very early stage when textual requirements are not fully developed.

Furthermore, classifying software requirements onto the various dimensions of requirements

taxonomy is one of the primary tasks performed in the requirements analysis processes

(SWEBOK, 2004). Functional Size Measurement (FSM) involves a requirements analysis

process where the functional size is measured by analyzing only those requirements that are

functional. Therefore, before carrying the process of FSM, the functional requirements need

to be identified first from within the requirements documents in case they appear interleaved

together with non-functional requirements. Thus, the task of classifying textual requirements

into functional and non-functional requirements is a pre-requisite for performing functional

size measurement. This task is commonly performed by a human requirements analyst in

practice, while some recent studies (Rashwan, Ormandjieva, & Witte, 2013; Hussain,

Kosseim, & Ormandjieva, 2008; Cleland-Huang, Settimi, Zou, & Solc, 2006) have addressed

the use of discriminating keywords along with statistical learning-based text mining

approaches for requirements classification. However, no other research, to our knowledge,

has so far evaluated the accuracy of using richer linguistic knowledge, such as the syntactic

information of the textual requirements, for these text mining approaches. Using

discriminating syntactic information for aggregating the keywords, not only helps to reduce

the feature space of the text mining approaches, but can also help to generalize the

6

classification model to classify textual requirements with unseen words with better accuracy.

Thus, this leads to a second open research problem, presented as follows:

Open Problem #2: “To our knowledge, no research to date has attempted to explore the use

of syntactic features of textual requirements for distinguishing functional and non-functional

requirements.”

Addressing this research problem can help improve the current state-of-the-art by improving

the accuracy of automatic requirements classification. This can in turn provide feasible

means of automating the task of extracting functional requirements prior to conducting

functional size measurement that is otherwise performed manually by requirements analysts.

Human measurers build their experiences in Functional Size Measurement (FSM) tasks by

learning to extract FSM modeling artifacts through interpreting the functional requirements

that are well-decomposed. However, their practice of FSM involves a trial-and-error-based

process of interpreting these textual requirements. To our knowledge, the literature does not

investigate how a human measurer perceives different parts of the textual requirements to

extract the objects of interest in an FSM model. These FSM approaches, therefore, cannot

eliminate the need of applying subjective judgments of human measurers in identifying these

FSM modeling artifacts from textual requirements. This leads to our last open research

problem:

Open Problem #3: To our knowledge, no research has attempted to discover the

relationship between the objects of interest in a Functional Size Measurement (FSM) model

and the linguistic elements of textual requirements.

Addressing this problem can explain the tasks of FSM objectively by building traceability

links between linguistic elements of well-decomposed textual requirements and the outcomes

of FSM and its related objects of interests. Identifying these relations can aid us to develop

linguistic guidelines of conducting FSM from textual requirements that can be used to train

non-experts or an automated system for an early automation of FSM tasks.

The three open research problems presented above entail several practical issues:

7

(1) Human bias, with varied levels of expertise: Subjective judgments during functional size

measurement involve wide-ranging bias of human measurers that can produce inconsistent

results. The correctness of measurement involving subjective judgments also depends on the

levels of expertise of human measurers. Therefore, when measurers lack experience on a

particular problem domain, they often produce erroneous measurements.

(2) Costly execution: Experts in FSM methods and certain problem domains attain their

knowledge and experience over time of conducting FSM activities successfully over

unrestricted textual requirements related to those problem domains. Having experienced

human experts available for each software project belonging to many different problem

domains can introduce additional costs for the respective projects. Manipulating large

amounts of textual requirements can also be costly, affecting the overall productivity of a

software project. Thus, functional size measurement processes are in practice, often avoided

for Agile-based projects, where strong constraints are imposed on the time of completing an

iteration.

(3) Lack of traceability: The subjective process of measurements entails that there exists no

formal method of recording the justification for the outcome of a measurement task. Thus,

subjective judgments during functional size measurement does not record the reasoning of

how the size was measured and where this knowledge of size originated from, i.e. which

parts of the textual software requirements provided the size information, which conceptual

modeling artifacts were discovered by the measurers to deduce the size, and which parts of

the textual requirements indicated the presence of these conceptual modeling artifacts.

Without such traceability information, the final outcome of the functional size measurement

cannot be justified, and any error in the outcome, therefore, cannot be traced back to its

original source for an effective fix.

In the next section we present our research objectives along with an overview of our research

methodology.

8

1.3 Objectives & Research Methodology
Based on the open problems described in Section 1.2, we set the aim of our research

presented in this thesis as follows:

“To develop an objective procedure that does not depend on human expertise to effectively

measure functional size from textual requirement.”

Our aim leads us to perform an applied research that explores a feasible solution to the

following key question:

“What methodology that does not depend on human expertise can be applied objectively to

measure functional size from textual requirements with minimal errors (i.e. within an

acceptable rate of errors)?”

Our work attempts to solve the above key question by decomposing it into several supporting

research objectives, each having a set of strictly defined research questions to be addressed:

Objective #1: “To investigate if the process of functional size measurement (FSM) can be

executed effectively by non-experts.”

Objective #2: “To improve the overall process of FSM-related requirements annotation by

attaining accurate annotations with non-experts having minimal training.”

Objective #3: “To determine the most discriminating linguistic features of informally written

textual requirements for approximating functional size.” (This addresses the open problem #1,

as presented in Section 1.2)

Objective #4: “To explore the most discriminating syntactic features of textual requirements

for classifying them into functional and non-functional requirements.” (This directly

addresses the open problem #2, as presented in Section 1.2)

Objective #5: “To identify how experts deduce the relationship between the linguistic

elements of unrestricted textual requirements and the objects of interest in a functional size

measurement model.” (This addresses the open problem #3, as presented in Section 1.2)

9

Objective #6: “To evaluate the feasibility of automating functional size measurement from

textual requirements.”

Objectives #3, #4 and #5 directly address the open research problems described in Section

1.2; while our objectives #1, #2 and #6 extend the scope of our research to make its outcomes

applicable in practice. In addition, each of the above objectives is associated with a set of

strictly defined research questions, for which we developed measurable hypotheses. A

detailed discussion on each of our objectives, along with the related research questions and

hypotheses are presented in Chapter 4.

To accomplish the above objectives, we conducted several empirical studies in different

phases of our research:

Phase I: FSM by Non-Experts

Phase II: Size Approximation

Phase III: Requirements Classification

Phase IV: FSM Model Extraction

Phase V: Evaluation of FSM Automation

The details of each of these phases are described in Chapter 3 along with the methodology

used in this thesis.

 Open Research
Problem #1

Open Research
Problem #2

Open Research
Problem #3

Extending Scope
for Practical
Application

Phase I:
FSM by Non-Experts Objective #1 &

Objective #2
Phase II:
Size Approximation Objective #3

Phase III:
Requirements Classification Objective #4

Phase IV:
FSM Model Extraction Objective #5

Phase V:
Evaluation of FSM
Automation

 Objective #6

Table 1: Mapping of the Open Research Problems, Research Phases and Research Objectives

10

 Open Research
Problem #1

Open Research
Problem #2

Open Research
Problem #3

Extending Scope
for Practical
Application

Phase I:
FSM by Non-Experts Objective #1 &

Objective #2
Phase II:
Size Approximation Objective #3

Phase III:
Requirements Classification Objective #4

Phase IV:
FSM Model Extraction Objective #5

Phase V:
Evaluation of FSM
Automation

 Objective #6

Table 1 shows how each of these phases maps to address the open research problems,

presented in Section 1.2 along with the six objectives of our research.

Each of the open problems of Section 1.2 can be viewed as a problem of text mining that

targets specific requirements analysis activities related to functional size measurement. We

therefore designed the conceptual framework of our research methodology as illustrated in

Figure 3.

11

i. Survey Related Work
ii. Consult Industrial

Experts
iii. Define Problem
iv. Assess Existing Solutions

Outcome:
Our Motivation

i. Define Our Scope &
Objectives

ii. Identify Research
Questions

iii. Design Experiments

Outcome:
Our Approaches & Design of
Our Experiments

i. Gather Historical Data
ii. Build Requirements

Corpora for Annotation
iii. Lead Experts/Non-

experts To Annotate

Outcome:
Our Annotated Corpora &
Annotation-related Data

i. Build Feature Extractor
ii. Develop Supervised or

Rule-based Text Miner
iii. Run Training & Testing

Experiments

Outcome:
Automation of Our Approaches
& Results of Our Experiments

i. Analyze Results of Our
Experiments

ii. Compare Results To
Baselines

iii. Prepare Report

Outcome:
Validation of Our Approaches
& Our Publications

Research
Methodology

Open
Problem

Our
Objectives

Our
Methodology

Annotation
Data

Results Of
Experiments

Figure 3: The Conceptual Framework of the Research Methodology

As shown in Figure 3, the phases of our research start with investigating the open research

problems through a literature review. This allows us to set our motivation for the research,

along with the related research questions, and design our methodology and experiments to

validate the methodology. We then continue with the tasks of data-collection and building the

necessary tools for executing the experiments. Finally, we analyze the results of our

experiments and publish our findings.

Our overall aim with this research is to address the open problems described in Section 1.2

by developing a comprehensive methodology for measuring functional size from textual

software requirements written in unrestricted natural language, and, thus, facilitate early

estimation of software development effort. We name our methodology: Linguistic

Introspection of Size Measurement Activities (LISMA), and present its details in this thesis.

12

Figure 4 briefly shows the input-output of our methodology, along with the intermediate

tasks performed.

FSM Model

Capture
Requirements

Capture
Requirements

Estimate
Effort

Estimate
Effort

Textual
Requirements

Effort Estimation
ReportFunctional

Size

Analyze Requirements
Quality/Defects

Classify Requirements

Measure Functional Size

LISMA

Traceability
Mapping

FSM Model

Capture
Requirements

Capture
Requirements

Estimate
Effort

Estimate
Effort

Textual
Requirements

Effort Estimation
ReportFunctional

Size
Functional

Size

Analyze Requirements
Quality/Defects

Classify Requirements

Measure Functional Size

LISMA

Traceability
Mapping

Figure 4: Simple Input-Output and the Intermediate Steps of LISMA Supporting Early Effort Estimation

As shown in Figure 4, LISMA can be incorporated within the existing workflow of

measuring functional size that is presented earlier in Figure 2. LISMA starts by taking textual

requirements as input and produces the functional size for effort estimation. It implements

three intermediate steps that aim to achieve three practical goals:

(1) To analyze the quality and/or defects of software requirements, using the approach

presented in (Hussain, 2007).

(2) To classify textual requirements into any prescribed standard of requirements taxonomy

based on its linguistic features, and distinguish functional from non-functional requirements.

(3) To measure the functional size using the textual form of the functional requirements, and

output the size information along with a functional size measurement (FSM) model that

includes a traceability mapping between the linguistic elements of textual requirements and

the objects of interest in the FSM model.

Thus, we intend to build natural language processing applications, powered by different

supervised machine learning techniques, to demonstrate the possible automation of our

13

methodology, LISMA, and emulate the COSMIC standard (ISO/IEC 19761, 2003) as our

preferred FSM method for this research.

1.4 Overview of Contributions
The following sections list the contributions that this research makes to the fields of software

measurement, software requirements engineering and natural language processing in general.

1.4.1 Theoretical Contributions

The theoretical contributions of this research, in relation to our research objectives, as listed

in Section 1.3, are listed below:

(1) Our work, through our research objective #1, presents and verifies the feasibility of

an innovative approach of functional size measurement through manual annotation of

textual requirements. The details are presented in Section 4.2.2, and then in Chapter 5.

 Publication: The details of this work and the results of the experiments

verifying the feasibility of our model is published in (Hussain, Ormandjieva,

& Kosseim, 2012).

(2) Our work, through our research objective #2, presents our dynamic annotation

adjustment model that can help non-experts to perform requirements annotation tasks

related to functional size measurement and achieve an acceptable level of agreement

with the annotations of an expert. The details of this work are presented in Section

4.2.2, and in Chapter 5.

 Publication: The description of this work, along with an empirical evaluation

can be found in (Hussain, Ormandjieva, & Kosseim, 2012).

(3) Our work, through our research objective #3, determines the most discriminating

linguistic features of informally written textual requirements for approximating

functional size. The details of this work are presented in Section 4.2.3 and Chapter 6.

14

 Publication: Details of this work and the experimental results have been

published in (Hussain, Ormandjieva, & Kosseim, 2010; Hussain, Kosseim, &

Ormandjieva, 2013).

(4) Our work, through our research objective #4, determines the most discriminating

syntactic features of textual requirements for distinguishing the functional and non-

functional requirements automatically. An overview of this work is presented in

Section 4.4.2.

Publication: The complete details of this work was published in (Hussain,

Kosseim, & Ormandjieva, 2008).

(5) Through our research objective #5, our work determines a pool of linguistic features

that can help identify which base noun-phrases2 are related to specific artifacts of a

functional size measurement model. The details of this work and the results of the

experiments are presented in Section 4.2.5, and then, in Chapters 7.

(6) Our work through our research objective #5, also presents heuristics to build traceable

relationships between linguistic elements of textual requirements and the artifacts of

functional size measurement model. The accuracy of using these heuristics was

compared to our supervised learning-based solution to evaluate its feasibility. The

details of this work and the results of our experiments are presented in Section 4.2.6,

and then in Chapter 7.

(7) Through our research objective #6, we developed a complete methodology for

measuring functional size automatically from textual requirements. The details of this

methodology are presented in Section 4.4.

2 A base noun-phrase is a noun-phrase that does not contain any other noun-phrase within its scope, but
itself (Sang, et al., 2000). For our work, however, we use the term “base noun phrase” to refer to a noun or
a noun compound or a personal pronoun. Thus, in our case, it actually refers the smallest part of the base
noun phrase that does not contain any part-of-speech class of words, other than the nouns or a personal
pronoun. It therefore represents the smallest segment of textual requirement that can independently express
the mention of an artifact of a functional size measurement model.

15

Publication: The details of this methodology are also published in (Hussain,

Ormandjieva, & Kosseim, 2009).

(8) In relation to our research objective #6, we evaluated the accuracy of automatically

measuring functional size from textual requirements using our approach. Details of

our experiments and their results are presented in Chapter 7.

To demonstrate the applicability of our research, we also presented an innovative approach of

effort estimation using functional size measurement that takes into account the impacts of

different types of Non-Functional Requirements and different types of problem domains. The

details of our approach and the results of the experiments verifying the accuracy of our

approach is published in (Abdukalykov, Hussain, Kassab, & Ormandjieva, 2011).

1.4.2 Developed Tools

We present below the list of tools which we have developed as part of our practical

contributions of this research:

(1) We developed a prototype for an online annotation tool, called Live Annotation of

Software Requirements (LASR), that allows requirements engineers to remotely

contribute software requirements documents and to collaboratively annotate textual

requirements in a secured environment.

(2) We also developed a text mining application in Java that can automatically classify

textual requirements sentences as functional and non-functional requirements.

(3) Moreover, we implemented our approach of approximating functional size by

developing a text miner in Java that can automatically approximate the functional size

of a system based on its informally-written unrestricted textual requirements.

(4) Furthermore, we developed supervised learning-based text mining applications that

altogether can automatically extract the modeling artifacts of a functional size

measurement model from textual requirements.

16

(5) Finally, we also implemented algorithms for measuring functional size by developing

a heuristic-based text miner in GATE (Cunningham H., et al., 2011) that can

automatically extract the modeling artifacts of a functional size measurement model

from textual requirements and calculate the functional size of a system.

1.5 Overview of the Thesis
This chapter introduced the open problems that we addressed with our research. It presented

how the early application of any functional size measurement standard prescribes costly

manipulation of human experts and how their process of measurement lacks objectivity and

traceability. It then presented our motivations for this research, along with our research

objectives and major contributions in the related fields.

The next chapter, that is Chapter 2, introduces the necessary background knowledge on the

topics related to this research. Then, Chapter 3 presents a detailed survey of the current

literatures, while Chapter 4 describes our research methodology in details. Chapter 4 also

discusses our formalization of a conventional function size measurement process and a

detailed overview on how the process can be automated. Then, Chapters 5, 6 and 7 present

the implementation details of three different approaches for functional size measurement that

are proposed in this thesis: (i) measuring functional size manually by non-experts, (ii)

approximating functional size automatically based on linguistic traits, and (iii) measuring

functional size by automatically extracting the conceptual artifacts of the measurement model,

respectively. Each of these chapters describes the proposed approach and the experimental

work to validate each of these solutions, along with an analysis of the experimental results.

We then summarize the findings of our research and propose the future avenues of research

in Chapter 8. The attached appendices include supporting details in relation to the topics

discussed in the body of this thesis.

17

Chapter 2

Background

“Be the measure great or small…
let it be honest in every part.”

— John Bright

2.1 Introduction
Before discussing the details of the various approaches proposed in the current literature for

addressing the research problems, described in Section 1.2, we present in this chapter the

details of the background topics related to this research.

2.2 Software Requirements
Software requirements (SR) document is the medium used to communicate user’s

requirements to technical people responsible for developing the software. It is one of the

earliest artifacts produced in a software development life cycle that not only provides the

development team the knowledge about the required behavior and quality characteristics of

the system to be developed, but also gives the estimators the notion of its size and the

development effort that it is going to require. (Leffingwell & Widrig, 2003) defined a

software requirement in their book as follows:

- A software capability needed by the user to solve a problem to achieve an objective

- A software capability that must be met or possessed by a system or system component

to satisfy a contract, standard, specification, or other formally imposed documentation.

18

This indicates that the task of writing requirements as a two-way process, where both the

users (and/or clients) and the technical people (analysts, developers, managers and others) are

involved. Thus, the common practice is to write the requirements document without any

formalization, i.e. in plain natural language (NL), so that it can be easily conveyable between

the two parties.

Software requirements provide a high-level baseline from which project progress can be

compared and scope can be controlled. Understanding all features specified in a requirements

document is a key factor for improving software project planning and gaining agreement with

the client on scope, cost, and schedule. A requirements document thus acts as a primary

source of information that can aid the estimation of the software functional size and its

development effort at an early phase in software development life cycle.

2.3 Requirements Analysis using Textual Annotation
The annotation of requirements documents is a common practice of extracting information

from informally written requirements (Ko, Park, Seo, & Choi, 2007). Requirements analysts

annotate different parts of the software requirements document to indicate what classes of

software requirements they contain (such as functional or non-functional), or, which software

engineering artifacts are present (e.g. domain entities, data attributes, etc.), or, any other class

of information vital to identifying the base functional components that pertain to a chosen

FSM method.

In the context of software project management, FSM needs to be performed at an early phase

of the software development lifecycle (Meli, 1997), when the textual requirements are

immature and are essentially captured in unrestricted natural language without any

formalization, so that they can easily be conveyable between the clients (and/or the potential

users) and the technical people (analysts, developers, managers and others) (Leffingwell &

Widrig, 2003). Being written in unrestricted natural language, these textual requirements are

often corrupted with ambiguity that an expert has to first manually identify and resolve

(Meyer, 1985). The documents containing these textual requirements can also be either

19

unstructured or of varied levels of structure which demands additional effort from an expert

to manually extract crucial knowledge about the software to be developed. For example,

sentences describing non-functional requirements are often found embedded in paragraphs

containing functional requirements that an expert often has to manually organize by

identifying the non-functional requirements from the functional ones (Hussain, Kosseim, &

Ormandjieva, 2008). For example, Figure 5 shows an extract from a requirements document,

and how an expert has chosen to classify its requirement sentences with different annotation

labels.

Extract from a requirements document

...The following use case describes approving a budget. First, the user navigates to the budget overview page. The
system then displays the budget overview with editable budget attributes. System presets some of the budget
attributes. User edits the budget attributes and sets the status as "Approved". All the mandatory attributes cannot
be empty and the budget amounts cannot be negative. User finally saves the budget. ...

Requirement Sentence Annotation Label
The following use case describes approving a budget. Noise
First, the user navigates to the budget overview page. Functional
The system then displays the budget overview with editable budget attributes. Functional
System presets some of the budget attributes. Functional
User edits the budget attributes and sets the status as "Approved". Functional
All the mandatory attributes cannot be empty and the budget amounts cannot be negative. Non-Functional
User finally saves the budget. Functional

Figure 5: Example of Sentence-level Annotation of Software Requirements

The requirements sentences in this example (shown in Figure 5) are to be annotated into four

classes:

i. Functional Requirement: A software requirement that expresses the required

behavior of the system.

ii. Non-Functional Requirement: A software requirement that expresses the quality

requirements and the constraints over the related

behavior of the system.

iii. Ambiguous Requirement: A software requirement that can be interpreted in

more than one way by the annotator (i.e. the

requirements analyst).

20

iv. Noise: Any sentence that does not express any of the above

types of software requirement.

In practice, software requirements can be further classified according to different standards of

requirements taxonomy. A software development organization usually adapts to one such

standard and chooses the classes of requirements that are to be annotated during the

requirements analysis phase. Reuse of requirements documents also require annotating its

parts following a standard of requirements taxonomy (Eriksson, Börstlerb, & Borga, 2009).

Software measurement experts can also annotate well-decomposed textual requirements to

extract crucial information about the functional size of the software to be developed. This

allows early measurement of functional size from software requirements that can be used to

estimate the development of effort.

2.4 Problem of Estimating Effort from Requirements
Since software requirements documents are most commonly written in natural language,

they are susceptible to many defects. Bertrand Mayer lists them as the “Seven Sins of

Specifier” (Meyer, 1985) (details on these defects will be discussed in Section 3.4.1). These

defects degrade the quality of an SR document by introducing misunderstanding of

requirements, which can lead to many severe problems, including erroneous estimation of

development effort, if not detected earlier in the software development lifecycle.

Also, the IEEE Standard 830-1998 (IEEE, 1998) describes the practices recommended by

IEEE to write an SR document, and defines the quality characteristics of a “good” SR

document: (1) Correct, (2) Unambiguous, (3) Complete, (4) Consistent, (5) Ranked for

importance, (6) Verifiable, (7) Modifiable and (8) Traceable. An SR document needs to be

carefully written with the goal of maintaining these good quality characteristics, so that the

developers can clearly visualize the problem that the requirements state before starting the

process of developing the actual system. As the SR document also acts as a contract between

the potential users and the developers, it imposes additional emphasis on its text to be clear

and accurate when describing user needs.

21

One of the common reasons of failing to provide accurate effort estimation is regarded to be

ill-developed requirements documents (Grimstad & Jorgensen, 2007). An SR document often

obstructs the estimator with its many defects to foresee the system clearly and to perform the

tasks of accurate early effort estimation. Since our research intends to deal with requirements

documents written in any level of quality, one of our sub-goals in this work is to explicitly

define and improve the quality of SR documents as we proceed on to do the estimate of the

development effort.

2.5 Effort Estimation in Theory
There exists a large body of research in the field of effort estimation. Magne Jørgensen, one

of the leading researchers in the field, is currently maintaining a website called, BESTweb

(Jørgensen & Shepperd, 2007), listing a large number of research papers, journal articles,

editorials, and books — all related to software development effort estimation. Although the

website does not contain an exhaustive list of publications in this area, it already holds 1,242

publications at time of writing this thesis.

Numerous parametric models of estimating software effort have been proposed, like

COCOMO (Boehm B., 1984), COCOMO II (Boehm, et al., 2000), SLIM (Putnam, 1981),

ESTIMACS (Rubin, 1983), all of which depend on some FSM methods for early estimation

of effort from the software functional size. It should be noted that none of these effort

estimation models are inherently compatible with COSMIC, which objectively measures the

functional size of software. This make the inputs to these models biased by the subjective

judgment of the functional size measurers to begin with. Again, models like COCOMO and

SLIM depend on the number of SLOC (Source Lines of Code) to be estimated before starting

the process of estimating effort, where it can degrade the quality of their input data even

more to begin with, as the estimation process of SLOC includes parameters that depend on

subjective judgment of the human estimators. This problem was evident in the study of

(Kemerer, 1987) where SLOC-based estimation models performed poorly compared to non-

SLOC-based estimation models. Others (Shepperd & Schofield, 1997; Idri, Abran, &

Khoshgoftaar, 2002; Angelis & Stamelos, 2000) introduced the approach of effort estimation

by analogy (EBA) that simply extends the idea of Case-Based Reasoning (Aamodt & Plaza,

22

1994), relying extensively on historical data. They claimed that EBA performed better than

parametric methods. However, some studies also show contradictory or inconclusive results

that were obtained when different models were applied (Myrtveit, Stensrud, & Shepperd,

2005; Menzies, Zhihao, Hihn, & Lum, 2006).

The work of (Lewis, 2001) showed that the problem lies in having parameters or features on

the estimation that are subjectively computed, which induces serious flaws in calibrating a

model. The author suggests that many of the previous studies presented overly exaggerated

results because of this bias involved in their work. Again, most of the results of all these

studies in software effort estimation are presented with the statistically unreliable measure of

MMRE and PRED (Conte, Dunsmore, & Shen, 1986), which many studies thoroughly

criticize, like (Kitchenham, Pickard, MacDonell, & Shepperd, 2001; Foss, Stensrud,

Kitchenham, & Myrtveit, 2003; Port & Korte, 2008).

After decades of repetitive research, Mike Ross, CEO of r2Estimating (r2estimating.com),

stated in a panel discussion that there have not been a single study or research that can prove

“superiority” over the other research; while Barry Boehm, founder of COCOMO, the most

widely researched open model in the last three decades, stated at the panel that industries

should build project plans in a way that recognizes the fact that “people and models will

never be perfect” (Fraser, Boehm, Erdogmus, Jorgensen, Rifkin, & Ross, 2009).

Although all solutions proposed in the literature emphasize, directly or indirectly, on early

effort estimation by using functional size as the primary independent variable, the existing

literature, to the best of our knowledge, does not report on automation of any of the existing

size measurement processes (discussed in Section 2.7) that receives textual requirements as

input to begin the task of estimation at the requirements specification phase.

2.6 Effort Estimation in Practice
In practice, the most popular method of software effort estimation in the industry is to use

expert judgment (Shepperd & Cartwright, 2001). The process of expert judgment is mostly

conducted by individuals, seldom by groups, which comprises of often informal ways of

intuitive judgment of estimation, based on the expertise of the estimators. Studies of (Lederer

23

& Prasad, 1992; Jørgensen M., 2004a) report that effort estimation done by expert judgment,

on average, were at least as accurate as those done on estimation models. But, the results of

expert judgment cannot be consistent, as the level of expertise varies from one person to the

other; and, much of this fact is reflected by the increased number of project failure rates in

the industry, where the principal reason is inaccurate estimation of software development

effort (Molkken & Jørgensen, 2003).

2.7 Functional Size Measurement
Software development effort is directly proportional to its functional size. For better

estimation of effort and deeper understanding on the functional size variable, the industry

formulated several methods for Functional Size Measurement (FSM). In 1979, Allan

Albrecht first proposed FSM in his work on Function Point Analysis (FPA) (Albrecht A. J.,

1979), where he named the unit of functional size as “Function Point (FP)”. His idea of

effort estimation was then validated by many studies, like (Albrecht & Gaffney, 1983;

Kitchenham & Taylor, 1984) and, thus, measuring the functional size of the software became

an integral part of effort estimation.

2.7.1 ISO Standards for FSM

Over the years, many standards have been developed by different organizations on FSM

methods, following the concepts presented in Albrecht's FPA method. Four of these standards

have been accepted as ISO standards: they are IFPUG (ISO/IEC 20926, 2003), Mark II

(ISO/IEC 20968, 2002), NESMA (ISO/IEC 24570, 2005), FiSMA (ISO/IEC 29881, 2010)

and COSMIC (ISO/IEC 19761, 2011).

2.7.2 COSMIC

For the purpose of this research, we have chosen to use the COSMIC FSM method developed

by the Common Software Measurement International Consortium (COSMIC) and now

adopted as an international standard (ISO/IEC 19761, 2011). We chose this method in

particular, because it conforms to all ISO requirements (ISO/IEC 14143-1, 1998) for FSM,

focuses on the “user view” of functional requirements, and is applicable throughout the agile

development life cycle. Its potential of being applied accurately in the requirements

24

specification phase compared to the other FSM methods is demonstrated by the study of

(Gencel, Demirors, & Yuceer, 2005). Also, COSMIC does not rely on subjective decisions

by the functional size measurer during the measurement process (ISO/IEC 19761, 2011).

Thus, its measurements, taken from well-specified requirements, tend to be same among

multiple measurers. This is particularly important for validating the performance of our

automatic size measurements.

COSMIC measures functional size of a software in terms of the number of Data-movements,

which accounts for the movement of one or more data-attributes belonging to a single Data-

group. A data-group is an aggregated set of data-attributes. A Functional Process, in

COSMIC, is an independently executable set of data-movements that is triggered by one or

more triggering events. A triggering event is initiated by an actor (a functional user or an

external component) that occurs outside the boundary of the software to be measured. Thus, a

functional process holds the similar scope of a use case scenario, starting with the triggering

event and ending with the completion of the scenario. Figure 6 illustrates the generic flow of

data-groups from a functional perspective, presented in the COSMIC standard (ISO/IEC

19761, 2011).

Functional Users
(and/or External Components)

Boundary

Persistent Storage

Entry
1 Data Group

Read
1 Data Group

Exit
1 Data Group

Write
1 Data Group

Functional
Process

Figure 6: Generic Flow of Data-Groups in COSMIC

25

As shown in Figure 6, the data-movements can be of four types: Entry, Exit, Read and Write.

An Entry moves a data-group from a user across the boundary into the functional process,

while an Exit moves a data group from a functional process across the boundary to the user

requiring it. A Write moves a data group lying inside the functional process to persistent

storage, and a Read moves a data group from persistent storage to the functional process.

The types of these data-movements constitute the base functional component types (ISO/IEC

14143-1, 2007) of the COSMIC FSM method. Thus, COSMIC counts each of these data-

movements as one CFP (COSMIC Function Point) of functional size, and measures the size

of each of the functional processes separately. It then adds the sizes of all the functional

processes to compute the total size of the system to be measured.

Thus, the requirements annotation tasks that can realize a functional size measurement

method like COSMIC are relatively more complex than the straight forward annotation tasks

presented earlier in Section 2.3. Here, we find that both the sentences (implicitly) and the

base noun-phrases or base-NP3 (explicitly) of a requirements document represent information

about the actors, the data-groups, the data attributes etc. of the system to be developed, and,

thus, need to be annotated to measure the functional size in COSMIC.

COSMIC FSM requires the base-NP’s in each functional requirement sentences to be

annotated by an expert in the domain and measurement processes to specify if the base-NP’s

indicate the presence of different data-attributes. And, if they do, the expert must also

indicate which data-group each of the data-attributes belongs to and which types of data-

movements they participate in. Figure 7 shows a similar example, where a domain expert

annotated an extract of the requirements document to identify the COSMIC modeling

artifacts in order to measure the COSMIC size.

3 As mentioned in Chapter 1, we use the term “base noun phrase” or “base NP” to refer to a noun or a noun
compound or a personal pronoun. Thus, in our case, it refers the smallest part of the base noun phrase
(Sang, et al., 2000) that includes only nouns or a personal pronoun. It therefore represents the smallest
segment of textual requirement that can independently express the mention of a COSMIC modeling artifact.

26

Extract from a requirements document

...The following use case describes creating a new budget. First, the user navigates to the budget creation page. He
then enters the budget attributes. All the mandatory attributes cannot be empty and the budget amounts cannot be
negative. User saves the budget. ...

Requirement Sentence
Annotation
Label for
Sentence

Base
Noun-Phrases

Annotation
Label for
Data-
attribute
(Yes/No)

Annotation
Label for
Data-group

Annotation
Label for
Data-
movement

The following use case
describes creating a new
budget.

Noise n/a n/a n/a n/a

First, the user navigates to
the budget creation page. Functional

user No n/a n/a
budget creation page No n/a n/a

(not mentioned) Yes (triggering
event) Entry

He then enters the budget
attributes. Functional

He No n/a n/a
budget attributes Yes Budget Data Entry
(not mentioned) No n/a n/a

All the mandatory
attributes cannot be empty
and the budget amounts
cannot be negative.

Non-
Functional n/a n/a n/a n/a

User saves the budget. Functional
User No n/a n/a
budget Yes Budget data Write
(not mentioned) No n/a n/a

Figure 7: Example of Noun-Phrase-Level Annotation of Software Requirements (for COSMIC FSM).

Figure 7 shows that the expert first extracted the base noun-phrases from the sentences that

he/she annotated as functional requirements. Then, the expert annotated each base noun-

phrase, indicating if it was a data-attribute. In some cases, the data-attributes may not be

mentioned explicitly as the base noun-phrases, and the expert took that into consideration as

well. For each data-attribute that the expert identifies, he/she then annotates it with the data-

group name that it belongs to and the type of data-movement that it participates in.

Here, we find that the annotation labels are hierarchically dependant on each other (i.e. the

annotation labels of data-attributes, data-groups and data-movements are assigned to the base

noun-phrases, if and only if the sentence containing those base noun-phrases is annotated

with the label: “Functional”). Also, data-group annotation requires the availability of a list of

data-group names as annotation labels that should dynamically build up over time with the

accumulation of domain knowledge. Thus, such annotation tasks are more complex than

straight-forward natural language annotation tasks. To our knowledge, the existing annotation

27

tools do not provide the necessary support to aid these complex annotation tasks that are

required for a functional size measurement process, like COSMIC. In Section 3.5, we

discussed some of the current annotation tools. It should be noted here that the above features

are all supported by our annotation tool, LASR. The tool also includes some additional

features to support the functional size measurement tasks that are not supported by any of the

tools discussed above. Section 5.2 describes LASR and how it supports the tasks of

functional size measurement.

Thus, by extracting the conceptual modeling artifacts from textual requirements and

measuring the functional size by simply counting their frequencies, the COSMIC standard

offers an objective method of FSM. It is designed to be applied in the traditional processes of

software development, where documentation of requirements using formalisms and templates

is required. However, over the years, the IT industry has recognized the traditional processes

to cause many problems including delays and is now increasingly moving towards agile

development processes, such as Scrum (Martin, 2003), an agile approach that does not

impose documentation templates or formalisms on requirements.

2.8 Size Measurement in Agile Development Processes
Agile development processes are driven by the motto of delivering releases as quickly as

possible (Larman, 2003). Planning an iteration in an agile project involves estimating the size

of the required features as the first step. Figure 8 shows the steps of iteration planning in agile.

Desired
Features

Estimate
Size

Estimate
Duration Schedule

Figure 8: Steps of Iteration Planning in Agile [as presented in (Cohn, 2005)]

The size of every agile iteration is subjectively estimated by means of user requirements that

are written less formally than use case descriptions. These textual requirements, which are

mostly available in the form of smart use cases (Hoogendoorn, 2009) or user-stories (Martin,

2003), although, do not provide detailed description of the scenarios like those found in use

28

cases, they must hold “enough details” to perform the size estimation (Martin, 2003). Size

measurement methods in agile development processes include story-points (Cohn, 2005) and

smart estimation (Hoogendoorn, 2009), and depend on the subjective judgment of human

experts, and, therefore, are prone to biases and errors (Cohn, 2005).

In an agile development process, the lack of formalism in requirements restricts FSM

methods, like COSMIC, to be applied for measuring the functional size of an iteration. For

example, from the discussion in Section 2.7.1, it can be understood that the number of data-

groups, which is necessary to be known to carry out COSMIC FSM, cannot be identified by

the measurer from a set of requirements statements alone unless he/she is supplied with a

complete list of available data-groups that requires formalizing the requirements with

conceptual model (e.g. a domain model).

Our work, on the other hand, presents an alternative solution to estimate the COSMIC

functional size in agile that does not require the use of formalism in requirements; instead, it

proposes an objective way of approximating the COSMIC functional size of a functional

process (i.e. a use case) that is described by an informally written set of textual requirements,

in forms likely to be used in agile size estimation.

In the next chapter, we discuss the current literature and state-of-the-art tools that are

introduced in the different fields related to our research.

29

Chapter 3

Literature Survey

“The most reliable way to forecast the future is to
try to understand the present.”

— John Naisbitt

3.1 Introduction
Our research encompasses many fields of studies to deal with the problem of early effort

estimation. Since we intend to estimate the development effort from requirements documents

(of any quality), we first need to use natural language processing (NLP) techniques to extract

the functional size of the software. We will then devise a solution for estimating the effort

using the functional size as the primary variable and different cost drivers as other variables

in a machine learning environment to perform various regression analyses. Thus, we will

present here the work of different fields that relate to the scope of our research.

3.2 Automated COSMIC Functional Size Measurement
As discussed in Section 2.7, many standards were proposed by different organizations on

functional size measurements of software, after Allan Albrecht had first proposed his

function point analysis (FPA) (Albrecht A. J., 1979): such as IFPUG (ISO/IEC 20926, 2003),

Mark II (ISO/IEC 20968, 2002), NESMA (ISO/IEC 24570, 2005), FiSMA (ISO/IEC 29881,

2010) and COSMIC (ISO/IEC 19761, 2011; COSMIC, 2014). Although, like every FSM

method, COSMIC has some disadvantages (e.g. until now, the standard does not take into

account non-functional requirements to its size measurement), we have chosen to automate

this standard for the following reasons:

30

(1) COSMIC is currently the only ISO recognized FSM method that does not rely on

subjective decisions by the functional size measurer during measurement process

(ISO/IEC 19761, 2011). Thus, its measurements, taken from well-specified

requirements, tend to be same among multiple measures. This is particularly

important for validating the performance of the automatic size measurements that

would be yielded by our solution.

(2) Compared to other ISO recognized FSM Methods, COSMIC only demonstrates the

prospect to be applied at the earliest phase of software development lifecycle, that is,

in the requirements specification phase (Gencel, Demirors, & Yuceer, 2005).

There have been many different approaches proposed by in recent years (Sneed, 2001; Diab

H., Koukane, Frappier, & St-Denis, 2005; Condori-Fernàndez, Abrahão, & Pastor, 2007)

where researchers attempted to automate different functional size measurement processes.

However, to our knowledge, no previous work has addressed the problem where textual

requirements are taken as input to start the measurement process. Instead, they all relied on

conceptual models to be manually built from the requirements, so that their automated

approach can be adopted. In the following sections, we will only be focusing on notable

approaches towards automating COSMIC FSM processes.

3.2.1 μcROSE

One of the leading work done in the area of automating COSMIC FSM is by (Diab H.,

Koukane, Frappier, & St-Denis, 2005), where the authors developed a comprehensive system

called, μcROSE, which accepts state charts as inputs to measure the functional size of real-

time systems only. Their work heavily depends on a set of hard-coded rules for mapping

different objects of interest to different COSMIC components, and also require C++ code

segments to be attached with the state transitions and supplied as inputs too, so that data-

movements can be identified. They presented a very brief validation of their work by an

expert, testing their system against only one case study, where it performed poorly in

detecting the data groups, resulting in some erroneous measurement outputs.

31

3.2.2 Work of Candori-Fernández et al.

(Condori-Fernàndez, Abrahão, & Pastor, 2007), on the other hand, performed another study,

where they presented step by step guidelines to first derive manually the UML modeling

artifacts, e.g. the use case models and system sequence diagrams from the requirements, and

then, apply their set of rules for measuring the COSMIC functional size of the system from

the UML models. Their approach was validated on 33 different observations, showing

reproducible results with 95% confidence.

3.3 Approximation of Functional Size
Most of the related work in this field attempted to perform a precise measurement of

COSMIC functional size that rely on tedious manual processing to extract conceptual

modeling artifacts, require formalization of the requirements, and, therefore, are not

applicable to agile development processes. On the other hand, the work of (Meli, 1997)

presents a fully manual approach of quick approximation of COSMIC size from textual

requirements without extracting COSMIC modeling artifacts. It first classifies past projects

into fuzzy size classes (e.g. Small, Medium, Large, Very Large,...), finds the common traits

within the concepts used in software of belonging to the same size class, and, finally, allows

a human measurer to discover similar traits in the new software component, so that the

measurer can estimate its COSMIC size by drawing analogy to the past projects. We find a

good potential of this work to be applied in the environment of agile processes that demand

quicker estimation of software size.

The goal of our thesis is to develop a fully automated tool that would do quicker estimation

of COSMIC size using informally written textual requirements of any quality as input,

making it favorable for agile processes. We extend the idea of (Santillo, Conte, & Meli, 2005)

by finding common traits, or 'features', among software projects of the same size classes, but

looking for linguistic features within the textual requirements, and use supervised text mining

methods to automate the process.

32

3.4 Preparing Textual Requirements for FSM
As our work of extracting functional size information starts from requirements documents

written in any quality, our first concern is improving the quality of textual requirements so

that the FSM process could be carried out. There have been numerous studies on

automatically detecting defects in textual requirement, classifying requirements into various

classes of requirements taxonomy, extracting conceptual models etc. — all of which provided

vital guidance on the formulation of our research. Many of these studies are described in the

following sections.

3.4.1 On Detection of Requirements Defects

Several research projects have addressed the problem of detecting deficiencies in natural

language requirements specification. These studies typically use a small number of

approaches, which are, although often similar in the types of tools they use, radically

different in the way they try to detect ambiguities in requirements documents. In the

following sections, we will review a few noteworthy studies by categorizing them according

to their approaches.

A. Manual Detection Process
Manual detection is the most popular approach to detect and resolve the ambiguities of NL

requirements specification. One of the early leading studies in this field was conducted by

Bertrand Meyer in (Meyer, 1985), showing the areas of a natural language requirements

specification, where the specifier is more prone to make mistakes (see Table 2). Meyer

stressed the point that natural language requirements specification are inherently ambiguous,

and for resolving these ambiguities, use of formal specifications are absolutely necessary.

However, for detecting such ambiguities, he explains the process of manually going though

each word, phrase and sentence of the NL requirements specification text of his case study,

and checking if they reflect any of the seven sins of the specifier.

33

Noise The presence in the text of an element that does not
carry information relevant to any feature of the
problem.

Silence The existence of a feature of the problem that is not
covered by any element of the text.

Over-
specification

The presence in the text of an element that
corresponds to a feature of the problem but to
features of a possible solution.

Contradiction The presence in the text of two or more elements that
define a feature of the system in an incompatible way.

Ambiguity The presence in the text of an element that makes it
possible to interpret a feature of the problem in at
least two different ways.

Forward
Reference

The presence in the text of an element that uses
features of the problem not defined until later in the
text.

Wishful
Thinking

The presence in the text of an element that defines a
feature of a problem in such a way that a candidate
solution cannot realistically be validated with respect
to this feature.

Table 2: Meyer’s “The seven sins of the specifier” (Meyer, 1985)

Another study worth mentioning here is the one done by (Kamsties, Berry, & Paech, 2001),

who introduced five classes of different ambiguity problems of NL requirements

specifications — each well-defined with practical examples, and used as items of a checklist

for validating a requirements document. They are: Lexical Ambiguity, Systematic Ambiguity,

Referential Ambiguity, Discourse Ambiguity and Domain Ambiguity. Table 3 describes

these items briefly.

34

Table 3: Ambiguity in NL Requirements (Kamsties, Berry, & Paech, 2001)

By describing the steps for ambiguity detection using this checklist, they argued in favor of

manual inspection and stated that current NLP tools are not apt for proper disambiguation of

NL requirements; rather, they are misleading. Their work also demonstrated dependence on

formal specifications, e.g. UML models, especially for detecting domain ambiguities. Their

suggested heuristics for detecting ambiguities involve attempting to develop UML models,

and finding the points of contradiction and lack of information in the requirements

specification. They recommended this process to be carried out by manual manipulation only.

Their study concludes with the statement “one cannot expect to find all ambiguities in a

requirements document with realistic resources” – even with such complete human

involvement (Kamsties, Berry, & Paech, 2001).

Manual detection is typically the most accurate approach; however, it is also the most

expensive. Again, use of formalization is not well-understood by non-technical users as well.

We also find (Letier, Kramer, Magee, & Uchitel, 2005; Cyre, 1995) proposing the use of

formal specifications to validate requirements.

35

B. Restricting Natural Language
Many other studies attempt to reduce the problems associated with unrestricted NL by

limiting the scope of the language. Some use a new NL-like sublanguage, which severely

limits the expressiveness of the requirements specifiers. Others propose to restrict the

grammar to consider only a subset of NL while writing requirements document (Denger,

Berry, & Kamsties, 2003; Fantechi, Gnesi, Ristori, Carenini, Vanocchi, & Moreschini, 1994;

Rolland & Proix, 1992; Tjong, Hallam, & Hartley, 2006). Using a restricted language does

simplify the task of maintaining the quality of textual requirements and keep them free of

ambiguities, but imposes severe constraints on the requirements specifier’s expression.

We will first look into the details of the study carried out by (Heinrich, Kemp, & Patrick,

1999), where they proposed the use of a restricted language, called “Flexible Structured

Coding Language (FSCL)”, thoroughly defined by a fixed set of grammatical rules. The

advantage of FSCL is that it has an unrestricted vocabulary, and it claims to be unambiguous

enough to be translated into programming code automatically. Though the paper never

defined the process of translation, the grammar it used has the potential to be unambiguous

because of its strictness.

(Fantechi, Gnesi, Ristori, Carenini, Vanocchi, & Moreschini, 1994) suggested the use of a set

of grammatical rules for aiding the translation from NL requirements specification to the

formulae of “action-based temporal logic”, called ACTL. They also have a domain-specific

dictionary that helps the translation process. The grammar they defined can only deal with

the possible structures of those NL sentences, which describes an expression of ACTL. This

makes their grammar very limited for parsing a real requirements specification document.

The ambiguities they could detect in their case study using this process were due to lack of

information in the time and the quantification of an expression only.

A study conducted by (Rolland & Proix, 1992) translated natural language requirements

specification to a form of semantic net, allowing a broad logical representation in conceptual

schema. This required the use of a dictionary grouping verbs in six major categories:

Agentive, Instrumental, Dative, Factitive, Locative and Objective. Each such category led to

define a fixed set of grammar rules for parsing NL requirements statements into case

36

notations. Their rules, thus, restrict the grammar of natural language used in specification.

After translation, their system then follows a “paraphrasing process”, using Chomsky’s

transformational grammar (Chomsky, 1965), to translate the conceptual schema of case

notations back to NL-based statements. This allows the requirements elicitor to compare the

natural language requirements specification given as input to the system, and with the one

received as output from the system, and detect ambiguities. The work thoroughly relies on a

fixed set of grammar rules and, although, claims to work with requirements written in NL,

the case study they presented worked with an example requirements document that contained

sentences of a very simple structure, targeted to be caught by their fixed set of rules.

C. Using NLP Tools on Unrestricted Language for Requirements
NLP techniques have advanced at tremendous speed during the past few years. For over a

decade now, researchers in the fields of both NLP and software engineering, have been trying

to merge NLP techniques with the tasks of requirements engineering. We know that

requirements elicitation and validation is one of the key-phases of software’s lifecycle that

often takes considerably long time to finish with manual manipulation of information. A real-

life requirements document can be lengthy and contain numerous words, phrases and

sentences, where each of them becomes a candidate for possible ambiguities of different

kinds. All these reasons made way for NLP techniques to come into the picture for tackling

this problem. Researchers have introduced NLP in many different ways to detect ambiguity

in requirements specification. The next sections present a brief survey on some of the most

important research work in this area.

QuARS

(Fabbrini, Fusani, Gnesi, & Lami, 2001) and (Gnesi, Lami, & Trentanni, 2005) addressed the

issue by trying to measure the quality of a problem description, written in unrestricted NL.

They initially made a survey on the contemporary studies revealing a number of defects that

can exist in an NL requirements specification and listed those defects as “indicators” of poor-

quality requirements specification. These are shown in Table 4 [extracted from (Gnesi, Lami,

& Trentanni, 2005)].

37

Characteristic Indicators
Vagueness The occurrence of Vagueness-revealing wordings (as for example: clear,

easy, strong, good, bad, useful, significant, adequate, recent,) is
considered a vagueness Indicator

Subjectivity The occurrence of Subjectivity-revealing wordings (as for example: similar,
similarly, having in mind, take into account, as [adjective] as possible, ...)
is considered a subjectivity Indicator

Optionality The occurrence of Optionality-revealing words (as for example: possibly,
eventually, if case, if possible, if appropriate, if needed, …) is considered a
optionality Indicator

Implicity The occurrence of:
- Subject or complements expressed by means of: Demonstrative adjective
(this, these, that, those) or Pronouns (it, they…)or
- Terms having the determiner expressed by a demonstrative adjective (this,
these, that, those) or implicit adjective (as for example previous, next,
following, last...) or preposition (as for example above, below...)
Is considered an implicity Indicator

Weakness The occurrence of Weak verbs is considered a weakness Indicator
Under-
specification

The occurrence of words needing to be instantiated (for example: flow
instead of data flow, control flow, .. , access instead of write access, remote
access, authorized access, ... , testing instead of functional testing,
structural testing, unit testing, .., etc.) is considered an under-specification
Indicator.

Multiplicity The occurrence of sentences having multiple subject or verb is considered a
multiplicity Indicator

Table 4: Different Quality Indicators of NL Requirements (Gnesi, Lami, & Trentanni, 2005)

Their studies proposed the use of their tool, called “QuARS: Quality Analyzer for

Requirements Specification”, for detecting sentences exhibiting different kinds of ambiguity

in a problem description. Their tool first performs a lexical analysis over a problem

description using a POS tagger. It also syntactically parses the sentences using the MINIPAR

parser (Lin, 2003), and finally, it combines both results for detecting the indicators of poor-

quality requirement specification. It also contains an interface, called “View”, for the

requirements engineer to view the requirements statements by “clusters” having all the

requirements regarding a specific function or property together. At every stage of processing,

their tool requires the use of a different “modifiable” dictionary, which is specially created

and modified for a particular stage of processing and for a specific problem domain by the

requirements engineer. Their idea heavily depends on using a set of such special dictionaries,

38

whose relevance and practical usage is uncertain. They developed their tool as a prototype for

their idea, and it is said to produce a quality metrics of NL requirements specification. Again,

in our view, their quality metrics are not well-defined to classify a problem description as

ambiguous.

ARM

An automated tool for measuring the quality statistics of NL requirements documents, called

“ARM: Automated Requirements Measurement”, was developed by Software Assurance

Technology Center (SATC) of NASA. Its developers, (Wilson, Rosenberg, & Hyatt, 1996),

presented nine categories of quality indicators for requirements specification in detail. They

are: Imperatives, Continuances, Directives, Options, Weak Phrases, Size, Specification
Depth, Readability and Text Structure. The first five of these categories are based on

frequencies of specific words occurring in ambiguity raising contexts. The remaining four are

related to the organization of the entire requirements specification document. The results,

derived from using the ARM tool, appeared to be more effective than others at detecting the

level of ambiguity, but they ignored the use of more advanced NLP methods, e.g.

morphological analysis and syntactic analysis, which could have pointed out more ambiguity

issues.

Newspeak

(Osborne & MacNish, 1996) used an NLP parser to derive all possible parse trees of each

sentences in a requirements specification document. Their system, called “Newspeak”, then

tries to detect ambiguity, if multiple parse tree exists for a particular sentence. Thus, their

work only focuses on detecting ambiguous syntactic structure of sentences only, and do not

deal with semantics or even individual ambiguous keywords.

Circe

The work of (Ambriola & Gervasi, 1997) attempts to validate NL Specification with the aid

of the user after deriving a conceptual model automatically from the requirements documents

by their tool called Circe. Although their tool being funded by IBM is now available as a

plug-in for Eclipse and is used in practical fields, it still does not consider the existence of

39

ambiguities, which can corrupt their conceptual model, making the errors tough for a user to

detect from the model later on.

Our Work on Ambiguity Detection
Our own work (Hussain, Ormandjieva, & Kosseim, 2007) addressed the problem of detecting

ambiguities in textual requirements documents. Acknowledging the fact that none of the

previous work has tested the applicability or performance of using a text classification system

to automate such detection process, this work demonstrated that the approach of using a text

classifier is applicable in the practical fields for detecting ambiguous passages in

requirements documents. The work also encompassed some related important topics, e.g.

how difficult it is to detect ambiguity manually from requirements documents and how the

automatic tools developed can compare to human performance.

To prove our concept, we developed a text classification system that can detect ambiguity in

a requirements document by classifying its passages as ambiguous or unambiguous. The

system yielded high accuracy in performance demonstrating impressive results with 86.67%

accuracy using 10-fold-crossvalidation technique. Comparing its results of how it agrees with

the decisions of an expert, it outperformed human annotators with average expertise in

detecting ambiguities. It can also be affirmed that the system will perform better in practical

fields with the inclusion of new training data. We also built a prototype of this system, called

Requirements Specification Ambiguity Checker (ReqSAC), to demonstrate its use. We

strongly believe that this system, with the potential to clean up ambiguities will not only

serve our current research, but also be useful as a standalone application working in

conjunction with the requirements specification writing tools. The prototype of this system is,

therefore, implemented to run both as a standalone application and from within Eclipse

and/or Rational XDE environment.

40

Figure 9: Requirements Specification Ambiguity Checker (ReqSAC)

Although our system established the idea of using a text miner successfully in detecting

ambiguity from requirements documents, our future work should still focus on introducing

more training data to improve its efficiency in dealing with unseen textual requirements.

3.4.2 On Extracting Functional & Non-Functional Requirements

Functional Size Measurement (FSM) approaches manipulate functional requirements only

(ISO/IEC 14143-1, 2007), ignoring all the different classes of non-functional requirements

completely in the initial phrases of measurement. However, in recent years, studies have tried

to outline processes of quantifying non-functional requirements along with the functional size.

(Kassab, Ormandjieva, Daneva, & Abran, 2008), for example, suggested to first use the NFR

ontology (Kassab M., 2009) to realize different types of non-functional requirements into

functional ones, and determine their weights of development complexity on effort estimation

by regression over historical data. On the other hand, IFPUG recently proposed their SNAP

framework (IFPUG, 2013) for assessing different types of non-functional requirements in

terms of different SNAP categories of functionalities, which is then subjectively weighted by

41

human experts based on previous experiences of their complexities. Thus, to our knowledge,

measuring the impact of non-functional size can still not be performed early from textual

description of software requirements, we also suggest the impact NFR size to be considered

along with effort estimation by means of performing regression analysis over historical data.

Therefore, in relation to our work of automating the functional size measurement process in

terms of the COSMIC standard (COSMIC, 2014), as mentioned in Section 1.3, we focus here

on the related studies on automatic extraction of functional requirements (FR), to separate

them from the non-functional requirements (NFR), from a collection textual requirements.

The current processes to extract non-functional requirements (NFR) from requirements

documents mostly rely on manual inspection, where an analyst reads the texts to identify a

sentence manually as FR or NFR following different approaches, e.g. (Chung & Sapakkul,

2006; Cysneiros & Leite, 2002; Hill, Wang, & Nahrstedt, 2004). Research in this field to

automate the process of separating NFRs from requirements documents has been scarce.

A study by (Cleland-Huang, Settimi, Zou, & Solc, 2006) explored the use of text

classification as an attempt to classify requirements statements into ten different classes, one

class of FR and nine classes of NFR. As reported in their paper, their work attained a recall

measure of 0.767 and a precision measure of 0.248 with their corpus, on average of the 10-

class classification. The authors used a stemmer to stem the words of the documents, and

then selected keywords based on their high probability of occurrences in NFR statements.

Their system then classified a statement as NFR, if the density of those selected keywords in

that statement exceeds a particular threshold, else, otherwise.

Some of the latest research work in classifying textual form of non-functional requirements

into various classes were presented by (Rashwan, Ormandjieva, & Witte, 2013; Casamayor,

Godoy, & Campo, 2009). (Rashwan, Ormandjieva, & Witte, 2013) presents a simple

supervised learning-based text classification technique that uses word-level features and an

SVN classifier to identify functional and different types of non-functional requirements. On

the other hand, (Casamayor, Godoy, & Campo, 2009) uses a semi-supervised learning-based

text classifier that uses a probabilistic classifier over word frequency to identify different

types of non-functional requirements.

42

Our Work on FR-NFR Classification
Our work presented in (Hussain, Kosseim, & Ormandjieva, 2008) uses a text miner to

classify textual requirements into functional requirements (FR) and non-functional

requirements (NFR). It used the same corpus that was used by (Cleland-Huang, Settimi, Zou,

& Solc, 2006), extracted linguistic features, e.g. the frequency of discriminating syntactic

features (like cardinals, adjectives etc.) and the frequency of discriminating keywords

belonging to different Parts-of-Speech (POS) categories in requirements sentences, and

showed that using a decision tree-based text classifier trained and tested with linguistic

features attain a high accuracy of 98.56% in classifying textual requirements into FR and

NFR, and that is when 10-folds-cross-validation is performed over the data used by (Cleland-

Huang, Settimi, Zou, & Solc, 2006).

3.4.3 On Identifying Domain Concepts & Their Attributes

COSMIC functional size measurement standard requires the knowledge of the domain

concepts or conceptual entities as “data-groups” for a particular problem domain, and a

human measurer is required to identify their attributes from textual requirements and

associate them with the data-groups that they belong to. Many work(Yue, Briand, & Labiche,

2011) in the fields of databases and requirements engineering have addressed the tasks on

automating the process of identifying the domain concepts and their attributes from

unrestricted textual requirements by means of different natural language processing

techniques. The work of (Harmain & Gaizauskas, 2000; Samarasinghe & S., 2005) apply

rule-based approaches where predefined grammars are used over unrestricted textual

requirements to identify the domain concepts and their attributes. On the other hand, the work

of (Gelhausen & Tichy, 2007; Körner & Landhäußer, 2010; Landhäußer, Körner, & Tichy,

2014) extends the rule-based approaches by first extracting the thematic relationships

between the agents and the patients of actions to distinguish between domain entities and

their attributes. All of these studies mentioned here go further by extracting the relationships

among these domain entities to derive static models, which however is not relevant for our

work of identifying COSMIC’s conceptual artifacts only, i.e. the data-groups and data-

attributes.

43

3.5 Tools for Requirements Annotation
Software requirements annotation is often performed manually on paper without any tool

support. However, managing and executing any annotation work with multiple experts

working as annotators on large sets of software requirements is a tedious process that

involves several activities, including:

1. Pre-processing the requirements documents to extract structured instances ready for

annotation.

2. Training and/or recruitment of human experts as annotators based on their levels of

skill.

3. Running and administering the annotation tasks in a collaborative environment,

where annotators can share domain knowledge.

4. Aggregating annotation data (preferably, in digital form) for computer-aided analysis.

5. Evaluating the gold standard annotation for each instance.

6. Analyzing the annotation data to study the performance of the annotation work.

The above steps would require enormous effort for any type of annotation work, if done

manually without any tool support. Thus, many annotation tools have been released [e.g.

(Bontcheva et al., 2013; Amazon.com Inc., 2012; Ogren, 2006; Widlöcher & Mathet, 2009;

Bertran, Borrega, Recasens, & Soriano, 2008)] to automate/semi-automate some of the steps

mentioned above. Using an annotation tool helps reduce time for the collection of annotation

data and the conversion of the annotation data to digital format. Also, web-based annotation

tools provide a collaborative environment where annotation data collected from multiple

experts can efficiently be synchronized to ensure the robustness of the data.

However, to our knowledge, none of the current textual annotation tools are tailored

specifically to aid the requirements annotation tasks. Several natural language annotation

tools have been proposed over the years, e.g. (Bontcheva et al., 2013; Amazon.com Inc.,

2012), some are open-sourced, while others are not, some targeted to be used for specific

fields, while others are intended for general linguistic annotation purposes. We briefly

discuss a notable few in the following sections.

44

3.5.1 GATE TeamWare

Among all the annotation systems that we analyzed, we consider GATE TeamWare

(Bontcheva et al., 2013) to be one of the most powerful and versatile annotation tools

available that can be used for any linguistic annotation projects. The advantages of GATE

TeamWare over most other annotation systems are:

i. GATE TeamWare allows seamless integration with powerful pipelines of the GATE

platform, for pre- and post-processing of the natural language documents.

ii. GATE TeamWare supports both open-ended and closed-ended forms of annotation. It

allows customization of the annotation schema, so that annotators can either choose from

a predetermined static set of annotations, or define a new annotation type while annotating

an instance.

iii. GATE TeamWare supports customization of multiple projects with different sets of pre-

and post-processing pipelines and annotation schema.

iv. GATE TeamWare allows reporting of different status information of the annotation

projects to the project curators for monitoring of the annotation work.

v. Integration of GATE TeamWare with GATE also helps in analyzing the annotations and

measuring the degree of annotators' agreement over the GATE platform.

The above advantages make TeamWare, in our opinion, to be one of the best annotation

systems available for linguistic annotation tasks. However, the annotation schema of

TeamWare cannot represent hierarchical dependencies among annotation types (e.g. when

TypeA → TypeB, i.e. an annotation type TypeA is functionally dependant on another

annotation type TypeB). Also, TeamWare does not provide options for computing gold-

standard annotations automatically.

3.5.2 Amazon Mechanical Turk

Amazon Mechanical Turk (AMT) (Amazon.com Inc., 2012) is a web application that is

designed by Amazon to support any kind of Human Intelligence Task, and, therefore, can

45

also be used for linguistic annotation work. However, annotation work on AMT is inherently

open to public access, where any annotator with or without necessary skills can contribute

his/her annotation. AMT also provides a highly customizable interface through its API. The

API allows integrating AMT's functionality to any custom-built web application. It also

includes an option for publishing the annotation work privately that restricts annotators

without required qualification from participating.

3.5.3 Knowtator

Knowtator (Ogren, 2006) is an annotation tool that integrates with Protégé (Stanford Center

for Biomedical Informatics Research, 2014) to store complex relational annotation data over

well-organized ontologies. The tool supports complex annotation tasks by recording

hierarchical dependency among annotation types. However, it does not support any form of

pre-processing over textual documents and the annotators always have to manually select the

span of an annotation instance before annotating it. The tool works offline, providing

minimal support for multiple annotators working concurrently.

3.5.4 Glozz

Glozz (Widlöcher & Mathet, 2009) is another annotation tool that allows an annotator to set

the span of each annotation and annotate it according to a set model. Its strength is its

WYSIWYG graphical presentation of relational annotation, where one annotated instance is

related to another annotated instance (e.g. for co-reference annotation). It also implements a

query language to search through the graphs of relational annotations. However, Glozz runs

locally on one annotator's machine offline; and there is no support for managing the work of

multiple annotators, nor for reviewing their annotations.

3.5.5 AnCoraPipe

AnCoraPipe (Bertran, Borrega, Recasens, & Soriano, 2008) is a simple annotation tool that

provides support for linguistic annotation at multiple levels. Although the tool is locally

installed restricting administration of multiple annotators' recruitment, it can compare

annotation data collected from multiple annotators via remote repositories. However, it

cannot pre-process documents for corpus creation.

46

3.6 Necessary Features of Annotation Tools
In this section, we discuss the features of an annotation tool that are necessary to adequately

support the complex requirements annotation processes in practical scenarios. Practical usage

of an annotation tool for complex requirements annotation tasks, like functional size

measurement, as discussed in Section 2.7.2, demands some important features to be available

with an annotation tool. Table 5 summarizes a comparison of these features that the

annotation tools, described in Section 3.5, provide.

Features
(Support for …)

GATE
TeamWare

Amazon
Mechanical
Turk

Knowtator Glozz AnCoraPipe

(1) Document Acquisition Yes Yes No No Yes

(2) Document Pre-processing
(e.g. automatic segmentation) Yes

Limited
(Yes, via API &
external tools
only)

No No No

(3) Administration on
Annotators' Recruitment Yes Limited (Yes,

via API only) No No No

(4) Customization of
Annotation Interface No Limited (Yes,

via API only) No No No

(5) Relational Annotation Yes Limited (Yes,
via API only) Yes Yes Yes

(6) Hierarchical Dependency
Among Annotation Labels No No Yes No No

(7) Aggregating Annotation
Data of Multiple Annotators Yes Yes Yes No Yes

(8) Computation of Gold-
standard Annotations No Limited (Yes,

via API only) No No No

Table 5: Comparison of Features Provided by Current Annotation Tools

We discuss below the features listed in Table 5 in relation to their necessities in functional

size measurement activities.

3.6.1 Document Acquisition

The document acquisition feature represents the existence of a functionality in the annotation

tools that facilitates secured interfaces to collect the requirements documents and maintain a

document repository over a distributed work environment. The feature is not mandatory in

supporting the annotation tasks related to functional size measurement. However, it helps to

support large-scale annotation tasks over distributed environments, which are now

47

increasingly common for large software development projects in the industries. As shown in

Table 5, most of the annotation tools that we tested support this feature.

3.6.2 Document Pre-processing

Here, document pre-processing refers to the features of an annotation tool that prepare the

requirements instances for annotation. In case of functional size measurement, we need the

annotation tool to extract the sentences and the noun-phrases from the requirements

documents automatically before commencing the annotation tasks. As shown in Table 5, only

GATE TeamWare and Amazon Mechanical Turk amongst the other annotation tools that we

tested, support automatic segmentation of documents allowing extraction of the sentences

and the noun-phrases.

3.6.3 Administration of Annotators' Recruitment

The feature of administering annotators’ recruitment allows an annotation tool to restrict

unauthorized access to the annotation tasks and allows the curator to recruit of a person as an

annotator based on his/her background. In case of functional size measurement, the

annotation tasks usually require persons with certain backgrounds (e.g. software engineers,

requirements analysts, measurement experts etc.) to be recruited for the tasks. Also, most of

the industrial software projects in practice are private projects that demands secured access to

its requirements documents limited to only authorized users. As shown in Table 5, only

GATE TeamWare and Amazon Mechanical Turk amongst the other annotation tools that we

tested support administration of annotators' recruitment.

3.6.4 Customization of Annotation Interface

This feature of customizing annotation interface allows its annotation interface to be

customized by the curator of the annotation tasks. Now, functional size measurement requires

a specialized annotation interface that can guide the annotators to annotate the sentences first

and then annotate its corresponding noun-phrases. The required interface should also be

allowed to be customizable for different annotation tasks to facilitate different methods of

functional size measurement. Moreover, the annotation interface needs to provide specialized

feedbacks to the annotators about the computed functional size after the completion of the

48

annotation tasks. As shown in Table 5, only Amazon Mechanical Turk amongst the other

annotation tools that we tested support this level of customization of its annotation interface

via its API.

3.6.5 Relational Annotations

The feature of an annotation tool for assigning relational annotations allows an annotator to

relate one annotation type with another while performing an annotation task. In case of

functional size measurement, if an annotator annotates a base noun-phrase as a data-attribute,

then the annotator needs to relate that annotation to the sentence that he/she annotated as a

functional requirement. As shown in Table 5, all of the annotation tools that we tested

support this feature.

3.6.6 Hierarchical Dependency Among Annotation Labels

Ensuring hierarchical dependency among annotation labels by an annotation tool dynamically

limits the choices of annotation labels for an annotator based on an annotation label that

he/she has chosen earlier for another instance. In case of functional size measurement, this

feature allows an annotator to annotate the base noun-phrases with the data-attribute

annotation labels, only when he/she has already annotated their root sentence as a functional

requirement. As shown in Table 5, only Knowtator amongst the other annotation tools that

we tested support this feature.

3.6.7 Aggregating Annotation Data of Multiple Annotators

Aggregating annotation data of multiple annotators allows an annotation tool to organize

annotation data in such a way that multiple annotators can provide their annotations for the

same requirement instance. The annotation tool equipped with this feature can aggregate the

annotation data of multiple annotators on demand for the curator to analyze the data and

generate performance evaluations. This feature is not mandatory for the annotation tasks

related to functional size measurement, as the measurement work can be carried out by one

expert only. However, it is recommended size measurement should be performed in groups

(i.e. involving more than one annotators), when the experts are not available (Aiello, Alessi,

Cossentino, Urso, & Vella, 2007), or when the requirements are informally written (Cohn,

49

2005). In addition, when the requirements annotation data is used for research, multiple

annotators need to be involved in the annotation tasks to control bias. Also, large scale

annotation tasks require multiple annotators to reduce the workload per annotator. Thus, for

all these cases, an annotation tool needs to be capable of organizing and aggregating

annotation data of multiple annotators. As shown in Table 5, most of the annotation tools that

we tested support this feature.

3.6.8 Computation of Gold-standard Annotations

When multiple annotators annotate the same requirement instances, the computation of gold-

standard annotations allows an annotation tool to use different statistical measures to

automatically compute the gold-standard annotations for each instance. In case of functional

size measurement with multiple annotators, as described in the previous paragraph, an

annotation tool is required to have this feature, so that it can automatically determine the

gold-standard annotations first, and then compute the functional size based on the gold-

standards. As shown in Table 5, only one of the annotation tools that we tested, i.e. the

Amazon Mechanical Turk, provides minimal support for this feature; that is only when this

feature is programmed via its API. Most of the annotation tools we tested supports manual

computation of the gold-standard annotations.

It should be noted here that the above study of the required features of a requirements

annotation tool, guided us to develop a unique annotation tool, called LASR, which supports

all of the features listed in this section. The tool also includes some additional features to

specifically aid the functional size measurement tasks that are not supported by any of the

tools discussed above. Section 5.2 describes the additional features of LASR and how they

support the tasks of functional size measurement.

3.7 Effort Estimation Techniques
As discussed in Section 2.5, there have been an overwhelming number of studies performed,

[for example, BESTweb (Jørgensen & Shepperd, 2007) lists of 1,242 related studies at the

time of writing this thesis] that are often repetitive (Fraser, Boehm, Erdogmus, Jorgensen,

50

Rifkin, & Ross, 2009), all in attempts of introducing and validating different approaches of

estimating software development effort. Although, all the solutions proposed in the literature

acknowledge software size to be the primary factor driving effort and depend, directly or

indirectly, on some FSM techniques for early effort estimation, the existing literature, to the

best of our knowledge, does not report on automation of any of the existing FSM processes

that receives textual requirements as input to begin the task of estimation at the requirements

specification phase. We continue the discussion from what is discussed in Sections 2.5 and

2.6, and present some of the most crucial work in this field in following Sections.

3.7.1 Using Parametric Models for Effort Estimation

Many parametric models of estimating software development effort have been proposed in

the literature. We will be discussing some of the popular parametric models used in context

of estimating software development effort in this Section.

(1) COCOMO & COCOMO II
The Constructive Cost Model, widely referred to as COCOMO, is the most popular and

extensively studied open parametric model for software effort estimation. It was first put

fourth by Barry Boehm in (Boehm B., 1984), and, later, as COCOMO II in (Boehm, et al.,

2000).

The estimated effort in COCOMO is counted in person-months or person-hours, and the

equation of its model (COCOMO II) is as follows:

∏
=

××=
17

1
)(

i
i

B iplierEffortMultSizeAEffort

Here, A = A Multiplicative Constant
 B =  =

×+ 5

1
01.001.1

j jtorScalingFac

51

The input variables of this model are software size, 17 effort multipliers and 5 exponential

scaling factors that are presented in the following section.

Input Variables (or Cost Drivers) in COCOMO II

The primary variable in COCOMO models is software size that is measured in KSLOC

(thousand source lines of code). The other variables that are considered as scaling factors and

effort multipliers in COCOMO II are shown in Figure 10.

Figure 10: Cost Drivers in COCOMO II

In addition to the primary variable of size, Figure 10 shows the five exponential scaling

factors to software size, under the group “Related Economies/Disecomonies”. They are:

Precedentedness (PREC), Development Flexibility (FLEX), Risk Resolution (RESL), Team

Cohesion (TEAM) and Process Maturity (PMAT). All these factors, except PMAT, can be

set to the nominal values: Very Low, Low, Nominal, High, Very High and Extra High, while

PMAT takes the weighted average of “Yes” answers to a questionnaire on Capability

52

Maturity Model (CMM) level of a an institute. The rest seventeen factors are effort

multipliers that also take the nominal values, similar to the exponential scaling factors. The

values are — Very Low, Low, Nominal, High, Very High and Extra High — which are

manually set by human estimators.

Critical Discussion

The COCOMO and the COCOMO II models consider software size as its primary variable,

where size is to be estimated in number of SLOC (Source Lines of Code) before starting the

estimation process. The use of SLOC in estimation is thoroughly criticized by (Jones, 1997),

pointing out that the use of SLOC estimate as software size degrades the quality of the input

data, as the estimation process of SLOC includes parameters that depend on the subjective

judgment by the estimators. This problem was evident in the study of (Kemerer, 1987) where

SLOC-based estimation models performed poorly compared to non-SLOC-based estimation

models.

Also, each of the other input variables (scaling factors and effort multipliers) to the

COCOMO II model are manually set to one of the six different subjective nominal values

(Very Low, Low, Nominal, High, Very High and Extra High) by the estimators, which can

often become inconsistent being affected by the estimators’ biases and different stakeholders

influences on the estimators. For example, a scenario is depicted in (McConnell, 2006),

naming it as Estimation Politics, where an estimator gets forced by the executive to

unjustifiably tweak the values of the COCOMO II variables of “Programmer Capability

(PCAP)” and “Analyst Capability (ACAP)” from below nominal to nominal category. Author

notes that this irrational change results in a 39% reduction to the estimated effort, when using

the COCOMO II model. Similar problems are mentioned in (Jørgensen & Molokken-Ostvold,

2004; Lederer & Prasad, 1991).

(2) SLIM
SLIM (Software LIfecycle Management) is another popular model developed using the

theories presented in (Putnam, 1981; Putnam & Meyers, 1992). It is now incorporated in the

commercial tool, called SLIM-Estimate, produced by Quantitative Software Management, Inc.

(QSM).

53

The equation of the SLIM model to estimate the effort is as follows:

B
TimeductivityProcessPro

SizeEffort ×
















×
=

3

3
4

)(

Here, effort is usually estimated in person-months or person-years.

Input Variables in SLIM

Similar to COCOMO, the primary variable in SLIM is software size that is measured in the

number of SLOC (source lines of code), and needs to be estimated beforehand as an input to

estimate the effort.

Process Productivity is a non-linear (often, exponential) variable that denotes the capability

of an organization to produce a certain amount of source code with a given amount of effort

and within an available time-frame. Its value is recommended to be chosen by calibrating the

following equation with historical data:

3
43

1

)(Time
B

Effort

SizeductivityProcessPro

×







=

B is a multiplicative constant, which is usually selected from values in a lookup table that

increases with the software size and usually accounts for the effort in system integration

testing.

When historical data is not available, the tool, SLIM-Estimate, developed by QSM, uses an

expert system-based approach to select the value of Process Productivity considering many

factors, such as the type of the system, the environmental factors (e.g. the programming

language, the tools, methods, practices, database usage, use of standards etc.), the experience

of the personnel, the management constraints (e.g. maximum allowable time, maximum cost,

maximum and minimum staff size, required reliability), the economic factors (e.g. labor rates)

etc. Most of the values of these variables can be objectively counted. When historical data is

available within an organization, the non-linear Process Productivity value is converted to

54

linear Productivity Index (ranging from 1 to 40) to rate the productivity of different teams

and scenarios within the organization.

Critical Discussion

Like the COCOMO models, the effort estimation model of SLIM also considers software size

as its primary variable, where size is to be estimated in number of SLOC (Source Lines of

Code) before starting the estimation process. Like the SLOC-based size measures, the SLIM

model also suffers from the same problems as COCOMO, which was shown in the study of

(Kemerer, 1987) where both COCOMO and SLIM models performed poorly compared to

non-SLOC-based estimation models.

Also, when the historical data is absent, the model relies on the expert system-based approach

that collects the estimator’s answers to a series of 22 different questions to recommend a

value of Process Productivity variable that was shown by (Kemerer, 1987) to failing to

capture the essence of productivity in their study.

(3) Other Models
Other notable, but commercial, parametric estimation models include: ESTIMACS (Rubin,

1983) and SEER-SEM (Galorath, 2008). Both of these models use software size as their

primary variables, but ESTIMACS uses Function Points (discussed in Section 2.7) as its only

measure for software size, while SEER-SEM requires an SLOC-like measure, called

Effective Size for its model (it includes formulas to convert function points and SLOC

measures of software size to effective size). Since these models are commercially available,

details on them have not been published.

3.7.2 Estimation by Analogy (EBA)

Authors of studies like (Shepperd & Schofield, 1997; Idri, Abran, & Khoshgoftaar, 2002;

Angelis & Stamelos, 2000) presented the approach of effort estimation by analogy (EBA)

that extends the idea of Case-Based Reasoning (Aamodt & Plaza, 1994). The approach relies

extensively on the historical database of the past completed projects.

The idea is — first, to extract enough possible information on different attributes of the

software project, the effort of which is to be estimated; then, to select projects from the

55

historical database similar to the target project; then, to compare the attributes of the target

project to those of the similar project to find the multiplicative factors associated with each of

the attributes; and, finally, to estimate the size and the corresponding effort for each of the

attributes by multiplying the multiplicative factor to the size and the required effort of the

attributes of the similar projects respectively.

Studies, advocating EBA claimed that EBA performed better than parametric methods.

Moreover, several studies show that contradictory or inconclusive results were obtained when

different parametric models and EBA method were applied on the same datasets (Myrtveit,

Stensrud, & Shepperd, 2005; Menzies, Zhihao, Hihn, & Lum, 2006). Also, EBA cannot be

performed very early in the requirements specification phase, as it is usually dependant on

many of the design attributes of the target software to be known beforehand.

3.7.3 Delta Estimation

(Boehm B., 2000) introduced the concept of delta estimation, which attempts to estimate

effort of a new project, by taking into account only the small changes (delta) to the cost

drivers of the previous project. The author describes it as a “safe” method to be used in

conjunction with the COCOMO I and II models.

However, (Menzies, Chen, Port, & Hihn, 2005) experimented with the COCOMO’81 dataset

(Boehm B., 1981) and COCOMO NASA datasets of 60 software projects at NASA, both of

which are available at the PROMISE repository (Sayyad Shirabad & Menzies, 2005), and

showed that considering the changes to all the COCOMO cost drivers of the model can result

in erroneous estimates.

3.7.4 Calibration and Use of Machine Learning Algorithms

All the parametric estimation models, described in Section 3.7.1, require to be calibrated by

data from previous projects. For example, the COCOMO II equation for effort estimation

requires its multiplicative constant, A, to be determined by calibration of the model with past

completed projects. Similarly, it is recommended that the value of the Process Productivity

variable in the SLIM model be determined by calibration of the model. It is assumed that a

56

large number of past projects used for calibration can yield better accuracy of the estimation

models.

There have been uses of many different machine learning algorithms in recent studies for

calibrating the effort estimation models. Also, these algorithms have been used to determine

the multiplicative factors in support of estimation by analogy. The algorithms that were used

in some of the important studies in software effort estimation are listed below:

(1) Regression Algorithms: Used in (Heiat, 2002; Jørgensen M., 2004b; Levine &

Hunter, 1983; Miyazaki, Terakado, Ozaki, & Nozaki, 1994)

(2) Bayesian Algorithms: Used in (Chulani, Boehm, & Steece, 1999; Mendes & Mosley,

2008; Pendharkar, Subramanian, & Rodger, 2005; Stamelos, Angelis, Dimou, &

Sakellaris, 2003)

(3) Neural Network Algorithms: Used in (Dawson, 1996; Flitman, 2000; Hakkarainen,

Laamanen, & Rask, 1993; Idri, Khoshgoftaar, & Abran, Can neural networks be

easily interpreted in software cost estimation?, 2002; Park & Baek, 2008; Zhang,

Patuwo, & Hu, 1998)

(4) Genetic Algorithms: Used in (Shukla, 2000; Burgess & Lefley, 2001; Chang,

Christensen, & Tao, 2001; Huang & Chiu, 2006; Shan, McKay, Lokan, & Essam,

2002; Braga, Oliveira, & Meira, 2008)

Although, in our view, the publicly available datasets often used in these studies, are

inconsistent because of the differing quality of data corrupted with estimators’ biases and the

differing sources of data originating in differing environmental constraints from one

company to the other. This inconsistency of datasets led these studies to attain average or

below average results. Thus, many studies, for example (Mendes, Martino, Ferrucci, &

Gravino, 2007; Kemerer, 1987), have shown that local calibration within a single company

performs better than global cross-company calibration. Thus, it is recommended by most

researchers to calibrate the parametric models of effort estimation using historical data of

local projects (Fraser, Boehm, Erdogmus, Jorgensen, Rifkin, & Ross, 2009).

57

3.8 Conclusion
Despite so many studies carried out and so many methods introduced in the last three decades

on software effort estimation, expert judgment remains the most popular and most used effort

estimation method in the industry (Shepperd & Cartwright, 2001). Again, despite so many

sophisticated algorithms used to attain better results in using effort estimation models, the

studies of (Lederer & Prasad, 1992; Jørgensen M., 2004a) report that effort estimations done

by expert judgment, on average, were at least as accurate as those done with estimation

models. The work of (Lewis, 2001) showed that the main source of the problem is with the

parameters or features of the estimation models that are subjectively computed inducing

inconsistencies in the calibration data of the model. The author suggests that many of the

previous studies presented overly exaggerated results because of the estimation biases. Also,

most of the results of all these studies in software effort estimation are presented with the

statistically unreliable measure of PRED (Conte, Dunsmore, & Shen, 1986), which many

studies have criticized, like (Port & Korte, 2008; Foss, Stensrud, Kitchenham, & Myrtveit,

2003; Kitchenham, Pickard, MacDonell, & Shepperd, 2001).

Although all solutions proposed in the literature emphasize, directly or indirectly, on early

effort estimation by the use of FSM, the existing literature, to the best of our knowledge,

does not report on the automation of any of the existing FSM processes that receives textual

requirements as input to begin the task of estimation at the requirements specification phase.

All these indicate that the research area of early effort estimation is still open, with much

prospects in automating an FSM method like COSMIC that can objectively measure the size

of the software.

58

Chapter 4

Methodology

“All things are difficult before they are easy.”
— Thomas Fuller

4.1 Introduction
The objectives of this research were introduced in Section 1.3. In this chapter, we will

elaborate on these objectives setting a strictly defined set of research questions. We will then

explain our related hypotheses and our methodology in details. The chapter will then present

a brief overview of the metrics and tools used in our research.

4.2 Phases of Our Methodology
We conducted several empirical studies in this research in five different phases, as mentioned

in Section 1.3. The phases were:

Phase I: FSM by Non-Experts

Phase II: Size Approximation

Phase III: Requirements Classification

Phase IV: FSM Model Extraction

Phase V: Evaluation of FSM Automation

The sequence of these phases, their inputs and outputs and their outcomes are illustrated in

Figure 11.

59

- Our Motivation
- Research Objectives
- Our choice of COSMIC Standard
(COSMIC, 2014) for FSM

Related
Literature

Expert Opinion

Expert
Measurers

Unannotated
Textual
Requirements

Non-Expert
Measurers

Inception:
Understand Problem of FSM from
Textual Requirements & Review
Existing Solutions

Phase I:
FSM by Non-Experts
- Devise and experiment with our
manual requirements annotation
approach to measure functional size
with non-experts

- Analysis of our results
- Validation of our approach in
improving non-experts’ annotation
quality (in Sections 5.4, 5.5 & 5.6)
- Validation of the usability of our
annotation tool (in section 5.6)
- Annotated Corpora for Training/
Testing our Text Miners

Implementation of our
manual annotation tool

Results of the experiments

Open Research Problems

Scopes of Practical
Application

FSM Standards

Informally-
Written
Requirements

Phase II:
Size Approximation
- Apply statistical quartiles to
approximate the functional size to a
limited number of size classes.
- Experiment with linguistic features
to use our text mining approach for
size approximation.

- Validation of our approach,
discussed in Section 6.4
- Detailed analysis of our results
- List of discriminating linguistic
features that help approximate
functional size.

Auto-approximated
functional size

Results of the experiments

Functional &
Non-Functional
Requirements

Phase III:
Requirements Classification
- Experiment with linguistic features
to use our machine learning-based
approach for classifying
requirements as functional and
non-functional.

- Validation of our approach,
presented in (Hussain, et al, 2008)
- Detailed analysis of our results
- List of discriminating linguistic
features that identify classes of
requirements.

Classified (Functional &
Non-Functional)
Requirements

Results of the experiments

Implementation of our size
approximation tool

Implementation of our
requirements classifier

Unannotated
Requirements

Textual requirements with
various gold-standard

annotations

Annotated
Sentences &
Nouns from
Functional
Requirements

Phase IV:
FSM Model Extraction
- Experiment with linguistic features
to use our rule-based and machine
learning-based approaches for
extracting the artifacts of an FSM
model (the COSMIC FSM model is
chosen for this research).

- Validation of our approach
(presented in Sections 7.10 & 7.11)
- Detailed analysis of our results
- List of discriminating linguistic
features that identify the artifacts
of an FSM model.

Extracted artifacts of the
COSMIC FSM Model

Results of the experiments

Implementation of our
COSMIC Model Extractor

Unannotated
Requirements

Annotated
Requirements Phase V:

Evaluation of FSM Automation
- Compare the accuracy and
usability of the manual process of
FSM with our automated approach
of FSM from textual requirements.

- Validation of the accuracy of our
approach in automating FSM
(presented in section 7.12)
- Detailed analysis of our results

Automatically measured
functional size

Results of the experiments

Unannotated
Requirements

Expert Measured
Functional Size

Expert Measured
Functional Size

Annotation Data

Inputs Phases Outputs Outcomes

Figure 11: Phases of Our Methodology

60

The phases of our methodology, along with the initial inception phase, are described in

details in the following sections.

4.2.1 Inception

We start our methodology with the aim to understand the problem of measuring functional

size of a software from its requirements documents. Our target in this inception phase was to

choose some of the leading work related to functional size measurement and to critically

review their approaches to identify their strengths and weaknesses. This allowed us to select

COSMIC as the FSM method that we would be experimenting with in this research, for its

qualities of being objectively computed and applied early at the requirements specification

phase. Thus, our study, in this phase, helped us formulate the objectives and the scope of our

research, and also pointed out the lack of evaluative research to address the problem of

measuring functional size early in the requirements specification phase.

4.2.2 Phase I: FSM by Non-Experts

The high costs induced by an expert in Functional Size Measurement (FSM), as discussed in

Section 1.2, led us to choose the following objective for our research:

Objective #1: To investigate if the process of functional size measurement can be executed

effectively with non-expert.

We first addressed this research objective in this phase. In this research, we intend to

investigate if the task of functional size measurement can be done without engaging experts.

The work of experts are costly and time-consuming. They have varying levels of expertise

and use biased judgments that can introduce inconsistency in the outcome of the FSM tasks.

Therefore, we extend our research with this objective by exploring if the task of FSM can be

performed by non-experts. Fulfilling this objective can also help us in understanding the

feasibility of achieving our objective #5, presented in Section 1.3.

Our Approach: Following this research objective, we first designed the FSM activities as

annotation tasks to be performed on textual requirements. The details about our annotation

task design are presented in Section 5.3 of Chapter 5.

61

We then ran experiments where an expert and a group of well-trained non-experts performed

the FSM activities by annotating the same set of textual requirements.

Metrics: In the above experiments, we measured the accuracy of non-experts’ annotation by

their level of agreement with the expert’s annotation in terms of Cohen’s Kappa (Cohen,

1960) and set the baseline as moderate level of agreement following the evaluation scale of

(Landis & Koch, 1977).

The research question that we targeted by our above experiments in relation to our objective

is presented below, along our related null and alternative hypotheses:

Research Question, Q1: “Can well-trained non-experts attain at least a moderate level of

agreement with the expert for annotation tasks related to FSM?”

Null Hypothesis, H1,0: Well-trained non-experts can never attain at least a moderate level of

agreement with the expert for annotation tasks related to FSM.

Alternative Hypothesis, H1,a: Well-trained non-experts can attain at least a moderate level

of agreement with the expert for annotation tasks related to FSM.

The formalization of the above hypotheses, along with a detailed discussion on the related

variables and metrics, are presented in Section 5.3, where we also discuss the details of our

experiments and analyze our results.

During the above experiments, the annotation work of the non-experts required a two-week-

long training and costly adjudication session afterwards to resolve the points of

disagreements amongst the non-experts. Thus, in this phase, we extended our scope with an

additional research objective as follows:

Objective #2: To improve the overall process of FSM-related requirements annotation by

attaining accurate annotations with non-experts having minimal training.

Our Approach: Following this research objective, we developed a computer-aided manual

annotation approach, along with a dynamic annotation adjustment model, that can help a

62

group of non-experts to perform the FSM related annotation tasks and achieve an acceptable

level of agreement with an expert. We then implemented an online annotation tool, called

Live Annotation of Software Requirements (LASR) to test out our annotation approaches.

The implementation of LASR is briefly discussed in Section 5.8.

We then ran controlled annotation experiments using LASR to compare the accuracy of both

well-trained and minimally-trained groups of non-experts for these FSM related tasks.

Metrics: In the above experiments, we measured the accuracy of non-experts’ annotation by

their degrees of agreement with the expert’s annotation in terms of Cohen’s Kappa (Cohen,

1960).

The first research question, which we targeted by our above experiments in relation to our

objective #2, is presented below, along our related null and alternative hypotheses:

Research Question, Q2: “Which type of FSM-related manual annotation tasks performed by

non-experts attains a higher accuracy: the manual annotation task performed by well-trained

non-experts, or the LASR-aided annotation task performed by minimally trained non-

experts?”

Null Hypothesis, H2,0: The FSM-related manual annotation tasks performed without LASR,

but by well-trained non-experts and with disagreements resolved through the adjudication

session, always attain a higher accuracy than the LASR-aided manual annotation tasks

performed by minimally trained non-experts and with no adjudication process.

Alternative Hypothesis, H2,a: The LASR-aided manual annotation tasks related to FSM that

are performed by minimally-trained non-experts with no adjudication process, can attain an

equal or higher accuracy than the manual annotation tasks performed by well-trained non-

experts without LASR, but with disagreements resolved through the adjudication session.

The next research question, which we targeted by our above experiments in relation to our

objective #2, is presented below, along our related null and alternative hypotheses:

63

Research Question, Q3: “Which type of FSM-related manual annotation tasks performed by

non-experts finishes quicker: the manual annotation task performed by well-trained non-

experts, or the LASR-aided annotation task performed by minimally trained non-experts?”

Null Hypothesis, H3,0: The FSM-related manual annotation tasks performed without LASR,

but by well-trained non-experts, always finish quicker than the LASR-aided manual

annotation tasks performed by minimally trained non-experts and with no adjudication

process.

Alternative Hypothesis, H3,a: The LASR-aided manual annotation tasks related to FSM that

are performed by minimally-trained non-experts, can finish at the same time as or quicker

than the manual annotation tasks performed by well-trained non-experts without LASR.

The formalization of the above hypotheses, along with a detailed discussion on the related

variables and metrics, are presented in Sections 5.3 to 5.7, where we also discuss the details

of our experiments and analyze our results.

4.2.3 Phase II: Size Approximation

In phase II, we addressed the open research problem #1, as presented in Section 1.2, by

formulating the following research objective:

Objective #3: To determine the most discriminating linguistic features of informally written

textual requirements for approximating functional size.

Our objective aims to use informally specified software requirements for Functional Size

Measurement so that the size can be measured at the earliest phase of software development

lifecycle. Formalization of software requirements gradually improves requirements from its

initial informal narration in textual form. The process is costly, requires expert intervention,

delays the development and is often mistakenly avoided by the industry in practice to reduce

cost and meet tight schedule. Although our intention is not against requirements

formalization, we, however, want to investigate if functional size can be approximated

without requirements formalization. Approximating FSM on informally written textual

64

requirements can allow effort estimation to be performed very early in the life cycle of a

software project.

Our Approach: Following this objective, we first used statistical quartiles to label our sets

of textual requirements by a discrete number of nominal classes based on their functional size

measured by experts. We use these labels as gold-standards representing the approximated

functional sizes for the respective sets of textual requirements. We then devised a text mining

approach utilizing natural language processing tools, e.g. a part-of-speech tagger and a

syntactic parser, to extract the linguistic features from our sets of textual requirements. Our

approach then applies machine learning techniques to select the linguistic features that

discriminate our sets of textual requirements the most, based on the nominal classes

representing their approximated functional size. The details about our approach for the

approximation of functional size are presented in Section 6.2.

We then ran our experiments to check if our text mining approach can predict the nominal

classes representing the approximated functional size of unseen textual requirements and

moderately agree with their gold-standard classifications.

Metrics: In the above experiments, we measured the level of agreement of the predicted

class labels with the gold-standard labels in terms of Cohen’s Kappa (Cohen, 1960) and set

the baseline as moderate level of agreement following the evaluation scale of (Landis &

Koch, 1977).

The research question, which we targeted by our above experiments in relation to our

objective #3, is presented below, along with the related null and alternative hypotheses:

Research Question, Q4: “Can our text mining approach utilizing an automatically chosen set

of discriminating linguistic features predict the nominal classes representing the

approximated functional size of unseen textual requirements and at least moderately agree

with their gold-standard classifications?”

65

Null Hypothesis, H4,0: Our text mining approach utilizing the discriminating linguistic

features cannot predict the approximated functional size classes of unseen textual

requirements that at least moderately agrees with their gold-standard classifications.

Alternative Hypothesis, H4,a: Our text mining approach utilizing the discriminating

linguistic features can predict the approximated functional size classes of unseen textual

requirements that at least moderately agrees with their gold-standard classifications.

A detailed discussion on our experiments to validate the above hypotheses, are presented in

Section 6.3, where we also analyze our results.

4.2.4 Phase III: Requirements Classification

In phase III, we addressed the open research problem #2, as presented in Section 1.2, by

formulating the following research objective:

Objective #4: To explore the most discriminating syntactic features of textual requirements

for classifying them into functional and non-functional requirements.

Our objective here is to attain higher accuracy of classifying functional and non-functional

requirements than the contemporary approaches by using the most discriminating syntactic

features of textual requirements. We will be discussing the contemporary approaches in

details in Section 3.4.2.

Our Approach: Following this objective, we first collected textual samples of functional

requirements (FR) and non-functional requirements (NFR) that the contemporary studies

used to report on the accuracies of their approaches. We assumed the labels (FR and NFR)

for these already classified requirements as the gold-standards for our study. We then devised

a text mining approach utilizing natural language processing tools, e.g. a parts-of-speech

tagger and a syntactic parser, to extract the linguistic features from our textual samples of FR

and NFR. Our approach then applies machine learning techniques to select the linguistic

features that discriminate the most between our training sets of FR and NFR. The details

about our approach for classifying textual requirements into functional and non-functional

66

requirements were presented in (Hussain, Kosseim, & Ormandjieva, 2008). We also include

details about this approach in Section 4.4.2.

We then ran our experiments to check if our text mining approach can identify FR and NFR

from unseen textual requirements and moderately agree with their gold-standard labels.

Metrics: In the above experiments, we again measured the level of agreement of the

predicted class labels with the gold-standard labels in terms of Cohen’s Kappa (Cohen, 1960)

and set the baseline as moderate level of agreement following the evaluation scale of (Landis

& Koch, 1977).

The research question, which we targeted by the above experiments in relation to our

objective #4, is presented below, together with the related null and alternative hypotheses:

Research Question, Q5: “Can our text mining approach utilizing an automatically chosen set

of discriminating linguistic features identify functional and non-functional requirements from

unseen textual requirements and at least moderately agree with their gold-standard

classifications?”

Null Hypothesis, H5,0: Our text mining approach utilizing the discriminating linguistic

features cannot identify functional and non-functional requirements from unseen textual

requirements and at least moderately agree with their gold-standard classifications.

Alternative Hypothesis, H5,a: Our text mining approach utilizing the discriminating

linguistic features can identify functional and non-functional requirements from unseen

textual requirements and at least moderately agree with their gold-standard classifications.

A detailed discussion on our experiments to validate the above hypothesis, were presented in

(Hussain, Kosseim, & Ormandjieva, 2008), where we also present our analysis of the results.

The summary of the outcomes of these experiments are also included in Section 4.4.2.

4.2.5 Phase IV: FSM Model Extraction

In phase IV, we intended to build traceability of a functional size measurement (FSM) model

by relating the elements of textual requirements with the artifacts of the model. We, thus,

67

addressed the open research problem #3, as presented in Section 1.2, by choosing the

following research objective:

Objective #5: To identify how the experts deduce the relationship between the linguistic

elements of unrestricted textual requirements and the objects of interest in a functional size

measurement model.

This relates to our primary objective for this research that aims to learn the process of at least

one functional size measurement (FSM) method in a way so that it can be applied over

unrestricted textual software requirements. We intend to understand how a human expert

measures functional size when he reads software requirements document. The conventional

methods of FSM only records the numbers that leads to count the functional size of the

software. Our goal is to make the process of measuring functional size transparent enough to

provide traceable reasoning for all the decisions taken by an expert during functional size

measurement. Capturing this knowledge and making FSM traceable do not only help during

investigating the causes of any incorrect measurement, but also reduces the chances of

introducing subjective judgments, as each of the judgments of the measurers would then be

supported by detailed reasoning.

We found in our literature survey that the measurement task in COSMIC (ISO/IEC 19761,

2003; COSMIC, 2014), unlike the other FSM standards, can be performed without requiring

the subjective judgment of human experts, but only when the software requirements are

formalized and well-decomposed. Thus, we chose to emulate the COSMIC standard for our

research, as it brings the manipulation of software requirements closer to be mapped on to the

process of functional size measurement. Its manual lists the objects of interest of its FSM

model that are to be extracted by an expert measurer through analyzing functional

requirements. These objects are comprised of data-attributes belonging to data-groups and

four different types of movements of the data-attributes. Thus, it is still dependent on the

expertise of human measurers to analyze the functional requirements, prepare the COSMIC

model and determine the COSMIC functional size.

Our approach: To learn which linguistic elements indicate the presence of which FSM

modeling artifacts to the experts, we first devised a process of requirements annotation that

68

assigned a human expert to derive FSM modeling artifacts by carefully annotating different

linguistic elements of the textual requirements. For example, in case of our studies using the

COSMIC standard, the expert had to annotate the base noun-phrases in the functional

requirement sentences as mentions of moving data-attributes belonging to certain data-

groups, which are artifacts of the COSMIC FSM model. In their annotation, they also had to

indicate what the types of movements these data-attributes are participating in. This

associated the annotated noun-phrases with another kinds of COSMIC modeling artifacts,

called the data-movement types. A detailed discussion on these COSMIC modeling artifacts

are presented in Section 2.7.2 of Chapter 2.

We hold these expert annotations as the gold-standards representing the correct traceability

links between the FSM modeling artifacts and the textual requirements. We then devised two

different text mining approaches, both of which utilize natural language processing tools, e.g.

a parts-of-speech tagger, a syntactic parser, gazetteers, syntactic rules etc., to first extract a

pool of linguistic features from our textual samples of base noun-phrases belonging to the

functional requirement sentences. Our first approach then applies a rule-based text mining

technique that follows a series of our custom-developed heuristics to identify base noun-

phrases that are linked to the FSM modeling artifacts using our pool of linguistic features.

And, our second approach applies a supervised learning based text mining technique to

dynamically select the linguistic features and rules that discriminate the most between the

collection of base noun-phrases in our training dataset that can be linked to the FSM

modeling artifacts, and the collection of base noun-phrases that cannot be linked. The details

about both of our text mining approaches for classifying base noun-phrases as linked to

different FSM modeling artifacts are presented in Chapter 7.

We then ran our experiments to check if our text mining approaches can better identify the

base noun-phrases that are linked to the FSM modeling artifacts by agreeing more with the

gold-standards.

Metrics: In the above experiments, we compared the accuracy of our two approaches by

measuring their precision, recall, f-measure and their level of agreement with the gold-

standard in terms of Cohen’s Kappa (Cohen, 1960). We also set the baseline for both of our

69

approaches as moderate level of agreement following the Kappa-based evaluation scale of

(Landis & Koch, 1977).

The first research question, which we targeted by the above experiments in relation to our

objective #5, is presented below, along our related null and alternative hypotheses:

Research Question, Q6: “Can our supervised learning-based text mining approach utilizing

our pool of linguistic features identify from unseen textual requirements the base noun-

phrases4 as being related to specific artifacts of a functional size measurement model and at

least moderately agree with the gold-standards?”

Null Hypothesis, H6,0: Our supervised learning-based text mining approach utilizing our

pool of linguistic features cannot identify from unseen textual requirements the base noun-

phrases as being related to specific artifacts of a functional size measurement model and at

least moderately agree with the gold-standards.

Alternative Hypothesis, H6,a: Our supervised learning-based text mining approach utilizing

our pool of linguistic features can identify from unseen textual requirements the base noun-

phrases as being related to specific artifacts of a functional size measurement model and at

least moderately agree with the gold-standards.

The next research question, which we targeted by our aforementioned experiments in relation

to our objective #2, is presented below, along our related null and alternative hypotheses:

Research Question, Q7: “Can our heuristics-based text mining approach utilizing our pool of

linguistic features identify the base noun-phrases as being related to specific artifacts of a

functional size measurement model and at least moderately agree with the gold-standards?”

4 As mentioned earlier in Chapters 1 and 2, we use the term “base noun phrase” to refer to a noun or a noun
compound or a personal pronoun. Thus, in our case, it actually refers the smallest part of the base noun
phrase (Samarasinghe & S., 2005) that do not contain any part-of-speech class of word, other than nouns or
a personal pronoun. It therefore represents the smallest segment of textual requirement that can
independently express the mention of an artifact of a functional size measurement model.

70

Null Hypothesis, H7,0: Our heuristics-based text mining approach utilizing our pool of

linguistic features cannot identify the base noun-phrases as being related to specific artifacts

of a functional size measurement model and at least moderately agree with the gold-

standards.

Alternative Hypothesis, H7,a: Our heuristics-based text mining approach utilizing our pool

of linguistic features can identify the base noun-phrases as being related to specific artifacts

of a functional size measurement model and at least moderately agree with the gold-

standards.

The final research question, which we targeted by our aforementioned experiments in relation

to our objective #2, is presented below, along our related null and alternative hypotheses:

Research Question, Q8: “Which text mining approach utilizing our pool of linguistic

features can identify with higher accuracy the base noun-phrases compounds as being related

to specific artifacts of a functional size measurement model: our supervised leaning-based

approach, or the heuristics-based approach?”

Null Hypothesis, H8,0: There is no difference in accuracy between our supervised leaning-

based text mining approach and our heuristics-based text mining approach when utilizing our

pool of linguistic features to identify with higher accuracy the base noun-phrases as being

related to specific artifacts of a functional size measurement model.

Alternative Hypothesis, H8,a1: Our supervised leaning-based text mining approach attains a

higher accuracy than our heuristics-based text mining approach when utilizing our pool of

linguistic features to identify with higher accuracy the base noun-phrases as being related to

specific artifacts of a functional size measurement model.

Alternative Hypothesis, H8,a2: Our heuristics-based text mining approach attains a higher

accuracy than our supervised leaning-based text mining approach when utilizing our pool of

linguistic features to identify with higher accuracy the base noun-phrases as being related to

specific artifacts of a functional size measurement model.

71

A detailed discussion on our experiments to validate the above hypotheses, is presented in

Section 7.9 of Chapter 7, where we also analyze our results.

4.2.6 Phase V: Evaluation of FSM Automation

Finally, in phase V, we used our knowledge gathered from our research to implement the

automation of our approaches of performing functional size measurement (FSM) from textual

requirements. We intended to evaluate the feasibility of automating FSM by comparing its

accuracy and its time-related efficiency to the manual process of FSM. We, thus, chose the

following research objective:

Objective #6: To evaluate the feasibility of automating functional size measurement from

textual requirements.

Fulfilling this objective can verify the rationale of implementing our approach of measuring

functional size from textual requirements in practice.

Our approach: To address this objective, we first assigned a human expert to measure the

functional sizes of different systems from their textual requirements. We identified these

measurements as our gold-standard. We then implemented the automation of our text mining

approaches, presented in Chapter 7, and extracted the FSM modeling artifacts automatically.

Our implementation then calculated the functional size automatically based on the extracted

FSM model. The brief details about our implementation are presented in Section 7.7.

We then ran our experiments to check if the automation of our text mining approaches

measure the functional size within an acceptable margin of error and quicker than manually

performed tasks of FSM over the same textual requirements.

Metrics: In the above experiments, we calculated the error in measurement through Mean

Magnitude of Relative Error (MMRE). We also preset the acceptable margin of error in terms

of MMRE.

The first research question, which we targeted by our above experiments in relation to our

objective #6, is presented below, along our related null and alternative hypotheses:

72

Research Question, Q9: “Can the automation of our approaches measure functional size

within the acceptable margin of error, when compared to the measurements of an expert?”

Null Hypothesis, H9,0: The automation of our approaches measures functional size with

errors higher than the acceptable margin of error, when compared to the measurements of an

expert.

Alternative Hypothesis, H9,a: The automation of our approaches measures functional size

with errors equal to or lower than the acceptable margin of error, when compared to the

measurements of an expert.

The next research question, which we targeted by our aforementioned experiments in relation

to our objective #6, is presented below, along our related null and alternative hypotheses:

Research Question, Q10: “Can the automation of our approaches measure functional size

quicker than the time of an expert to measure functional size manually?”

Null Hypothesis, H10,0: The automation of our approaches measures functional size slower

than the time of an expert to measure functional size manually.

Alternative Hypothesis, H10,a: The automation of our approaches measures functional size

at the same time as or quicker than the time of an expert to measure functional size manually.

A detailed discussion on our experiments to validate the above hypotheses is presented in

Section 7.8, where we also analyze our results.

Table 6 shows how all of our above research questions map to our research phases to address

our research objectives.

73

 Objective #1 Objective #2 Objective #3 Objective #4 Objective #5 Objective #6
Phase I:
FSM by
Non-Experts

Research
Question,

Q1

Research
Questions,

Q2 & Q3

Phase II:
Size Approximation

Research
Question,

Q4

Phase III:
Requirements
Classification

Research
Question,

Q5

Phase IV:
FSM Model
Extraction

Research
Questions,
Q6 , Q7 & Q8

Phase V:
Evaluation of FSM
Automation

Research
Questions,

Q9 & Q10

Table 6: Mapping of Research Questions over the Reseach Phases in Relation to the Objectives

Thus, to sum up our six research objectives that were targeted during the span of our five

research phases, our overall aim with this research is to address the open problems mentioned

in Section 1.2 by developing a comprehensive methodology for measuring functional size

from textual software requirements written in unrestricted natural language, and, thus,

facilitate early estimation of software development effort.

In the next section, we will be discussing our formalization of functional size measurement

process and its approach of quantifying the size.

4.3 Formalization of FSM Model and Quantification
In this section, we describe how we formalized the conventional quantification process of

functional size measurement (FSM). We related the conceptual artifacts of FSM to specific

textual segments of software requirement by modeling an ontology. We then present the

formulas, which not only can be applied over the instances of this model to calculate the

numerical value of the functional size, but also fully complies with the standard process of

FSM, described in (ISO/IEC 14143-1, 2007). Thus, this formalization can be implemented

algorithmically to automate the computation of numerical value of the functional size of a

software.

74

Extraction of functional size from software requirements documents require human experts to

thoroughly understand the textual requirements, then follow a complex evaluation process

and use experienced judgment to extract the conceptual artifacts that pertain to the functional

size measurement standard. Various FSM standards prescribe different evaluation processes

that often depend on subjective judgment of the experts in extracting the conceptual artifacts.

We therefore chose the latest iteration of the COSMIC FSM standard for our experiments

that promises an objective measurement approach when well-decomposed and formalized

functional requirements are used (COSMIC, 2014). However, the standard depends on

experts’ contribution in extracting its conceptual modeling artifacts, as discussed in Section

2.7.2. They are the COSMIC Data-movements and the COSMIC data-groups. The COSMIC

data-movements are of four types: Entry, Exit, Read and Write.

Thus, as discussed in Section 2.7.2, the measurement process of COSMIC functional size

requires identifying the presence of any or some of the four types of data-movements in one

segment of functional requirement, and then mapping one or more data-groups to each of the

data-movements. We therefore built an ontology (in OWS format), as shown in Figure 12,

that relates the conceptual artifacts of COSMIC FSM into a formal model when instantiated

from textual requirements. It also builds traceable mapping between the segments of a

requirements document and the artifacts of an FSM model.

75

SoftwareModule RequirementsDocument

FunctionalProcess Section

Noun

DataAttribute

DataGroup

DataMovement

Entry Exit Read Write

isRelatedTo

belongsTo

belongsTo

FunctionalRequirementSentence

SubProcess

ActionExpression

SubSection

isP
ar

tO
f

isP
ar

tO
f

isRelatedTo

belongsTo
describedBy

ProblemDomain

be
lo

ng
sT

o

belongsTo

belongsTo

isPartOf

Figure 12: Ontology of COMIC FSM Model

We know that a numerical value of functional size is first assigned to each of the functional

processes of a requirements document and then summed up to measure the size of the whole

document, as discussed in Section 2.7.2. We formalize this counting process by first

assuming that a requirements document, DOCUMENTp , belonging to the problem domain p,

contains the following set of n functional processes—

{FPROC1, FPROC2, FPROC3, …. , FPROCn}

76

Thus, the functional size of the software as represented by DOCUMENTp is—


=

=
n

i
ip FPROCSizeFunctionalDOCUMENTSizeFunctional

1
)()((1)

We also know, according to the COSMIC standard, that the set of all possible types of data-

movements—

DM = {Entry, Exit, Read, Write}

And, let the set of all possible data-groups that can appear in the problem domain p be—

DGp = {data-group1 , data-group2 , …. , data-groupm}

—where data-group1 , data-group2 , …. , data-groupm are data-group names or domain entity

names that belong to a specific problem domain x, as discussed in Section 5.9.3 of Chapter 5.

According to the COSMIC standard, whenever a data-group participates in any type of data-

movement, we need to identify this incidence as one object that is later to be aggregated by

functional process for counting its functional size. Thus, this object can be represented as a

pair as follows:

(data-group name , data-movement type)

For our process of formalizing of the FSM counting process, we identify such pair as an FSM

object.

Thus, the set of all possible FSM objects for the problem domain x is {(data-group1 , Entry),

(data-group1 , Exit), (data-group1 , Read), (data-group1 , Write), (data-group2 , Entry), …

(data-groupm , Entry), (data-groupm , Exit), (data-groupm , Read), (data-groupm , Write)}.

This can also be written as—

 DMDG p ×

We define FSMObjects(y) as a function that returns a set of our FSM objects that represent

distinct types of data-movements of different data-groups that appear within the functional

process, y.

77

Therefore, () DMDGFPROCFSMObjects pi ×⊂

That is, our objective of FSM automation would to realize this function such that

FSMObjects(FPROCi) would return the set of elements that are only some of the following

pairs and appear within FPROCi:

(data-group1 , Entry), (data-group1 , Exit), (data-group1 , Read), (data-group1 , Write), (data-

group2 , Entry), … (data-groupm , Entry), (data-groupm , Exit), (data-groupm , Read), (data-

groupm , Write)

Thus, due to the nature of sets (i.e. having no duplication of elements in a set leads to no

duplication of our FSM objects counted within a functional process), the aggregated measure

of functional size of FPROCi would simply be—

)()(ii FPROCFSMObjectsFPROCSizeFunctional = (2)

And, therefore, by equations (1) and (2) —


=

=
n

i
ip FPROCFSMObjectsDOCUMENTSizeFunctional

1
)()((3)

Here, in accordance with the COSMIC standard, the COSMIC functional size, measured in

units of COSMIC Function Points (CFP), is equal to the sum of the frequencies of all these

FSM objects that belong to each of the functional processes. Therefore, with such modeling

approach, we can generate a traceable report to show the breakdown of the total CFP for each

different type of data-movement and for each functional process, while linking each of these

artifacts to its source segment of textual requirements.

Thus, in this section, our application of the ontology-based modeling techniques provided

traceability links from the input textual requirements to the output functional size. We also

described our method of formalizing the CFP counting process through our formulas that

followed the COSMIC standard accordingly. We later used this idea into building our novel

extension of the CFP counting process by defining the ranges of CFP automatically, as

described in Section 7.8.

78

4.4 Linguistic Introspection of Size Measurement Analysis
(LISMA)

In the introduction chapter of this thesis, the methodology of our solution for automated

functional measurement was briefly introduced (see Section 1.3). We name this methodology

as Linguistic Introspection of Size Measurement Analysis (LISMA), and our research

discussed in this thesis evaluates feasibility of each of its steps with controlled experiments.

Our plan for these experiments were distributed over several phases, which have been

presented previously in Section 4.2.

In this section, the major intermediate steps of LISMA and their intermediate inputs and

outputs are discussed. With LISMA, we integrated all of our linguistic analysis approaches

used in the phases mentioned in the Section 4.2, to devise a comprehensive and innovative

approach that takes textual software requirements written in unrestricted natural language as

input and outputs the functional size of the software as reflected by the input requirements. It

also outputs the corresponding functional size measurement (FSM) model and builds

traceability links between the segments of the original textual requirements and the

conceptual artifacts of the FSM model. The details of LISMA along with experiments that

evaluate its feasibility are presented throughout the chapters of this thesis. Figure 13 briefly

shows the intermediate tasks performed in LISMA.

79

LASR
Capture

Requirements

[Datasets for Training/Testing
are available]

[Datasets for Training/Testing
are necessary]

Automated Analysis of
Requirements Quality/Defects

Collaborative Analysis of
Requirements Quality/Defects

Analyze Requirements Quality/Defects

[Datasets for Training/Testing
are available]

[Datasets for Training/Testing
are necessary]

Automated Classification by
Requirements Taxonomy

Collaborative Classification by
Requirements Taxonomy

Classify Requirements

Automated Measurement of
Functional Size

Collaborative Measurement of
Functional Size

Measure Functional Size

Textual
Requirements

Unambiguous
Requirements

Non-Functional
Requirements

Functional
Requirements

Range of
Functional Size

Compute Effort
by Regression

Calculate Non-Functional
Adjustments To Functional Size

Estimate Effort

Effort
Estimation

Report

[No Ambiguous Requirements Found]

[Ambiguous Requirement(s) Exist]

Tr
ac

ea
bi

lit
y

M
ap

pi
ng

FSM Model

Tr
ac

ea
bi

lit
y

M
ap

pi
ng

Figure 13: Inputs, Outputs and the Intermediate Steps of LISMA Supporting Early Effort Estimation

As shown in Figure 13, LISMA can be incorporated with the existing workflow of measuring

functional size that is presented earlier in Figure 2 in Section 1.2, and introduces more details

80

in comparison. Thus, Figure 13, shows how LISMA starts by taking the captured textual

requirements as input, passes the text through three intermediate steps and finishes by

outputting the functional size for effort estimation and the corresponding Functional Size

Measurement (FSM) model with traceability links. These three intermediate steps are:

i. Analysis of Requirements Quality/Defects

ii. Classification by Requirements Taxonomy

iii. Measurement of Functional Size

LISMA integrates the above three intermediate steps in such way that they can be executed

both manually and automatically. LISMA allows both of our manual and automated

approaches of these steps to be executed in parallel, independent of each other. The brief

implementation details of our automated approaches for the above three steps are presented

in Sections 4.4.1, 4.4.2 and 4.4.3 respectively. On the other hand, we designed all of the

manual approaches related to the above three steps as collaborative annotation tasks, that are

assisted by our uniquely designed annotation tool, called Live Annotation of Software

Requirements (LASR), which is described in details in Chapter 5.

The software development effort estimation step, shown in Figure 13, is kept outside of the

scope of LISMA. It reflects our innovative approach to effort estimation using functional size

measurement that takes into account the impacts of different types of Non-Functional

Requirements and different types of problem domains, published in (Abdukalykov, Hussain,

Kassab, & Ormandjieva, 2011).

4.4.1 Analysis of Requirements Quality/Defects

To measure functional size from unrestricted textual requirements, a measurer first faces the

challenge of cleaning up the text from all its ambiguities. Our manual approach of detecting

ambiguities involve the task of manually annotating textual requirements, based on a quality

model (Hussain, Ormandjieva, & Kosseim, 2007; Ormandjieva, Hussain, & Kosseim, 2007)

that can discriminate between ambiguous and unambiguous requirements at lexical level. Our

annotation tool, LASR, is equipped with text pre-processing modules that can extract

81

sentences from requirements documents and guide a human annotator to manually perform

requirements annotation tasks.

However, the task of detecting ambiguity from text can be monotonous and error-prone for

long requirements documents when done manually, resulting in the usage of poor quality

requirements for functional size measurement, that eventually can contribute to poor quality

results in the measurement.

To face this challenge, our previous work (Hussain, Ormandjieva, & Kosseim, 2007;

Ormandjieva, Hussain, & Kosseim, 2007) showed that using a trained text-mining system we

can successfully classify requirements text into ambiguous and unambiguous sentences. As

requirements development process is iterative in nature (IEEE, 2004), such text mining

system can aid the requirements analyst to extract the ambiguous sentences so that they can

be elaborated upon or rephrased or dropped by the specifier and then reanalyzed by the

system. Thus, the iteration continues until no ambiguous statements are left in the document,

providing a better quality requirements document, ready for any FSM methods to be applied.

Thus, in this step, we use the Ambiguity Checker tool, described in (Hussain, Ormandjieva,

& Kosseim, 2007; Ormandjieva, Hussain, & Kosseim, 2007) to facilitate a semi-automated

environment to detect and resolve ambiguity in the textual requirements. The tool outputs a

collection of sentences in the document as unambiguous, and the rest, classified as

ambiguous, are fixed manually by the requirements specifier. Thus, the document moves to

the next iteration resolving ambiguity on the way, and the process ends when all the

sentences in the document are classified as Unambiguous. The accuracy of this classifier in

detecting ambiguity, when 10-fold-Crossvalidation performed on 472 instances, was 88.56%,

as recorded in our work presented in (Hussain, Ormandjieva, & Kosseim, 2007; Ormandjieva,

Hussain, & Kosseim, 2007).

4.4.2 Classification by Requirements Taxonomy

The taxonomy of requirements categorizes requirements into many classes. However, since

the functional size measurement methods work primarily on functional requirements (FR)

only, the next challenge that a measurer faces is to extract the functional requirements

82

manually from the requirements document, where both functional and non-functional

requirements can be mixed together in the same paragraphs. Again, the manual counterpart of

our approach in LISMA prescribes this task to be performed as collaborative annotation over

unambiguous textual requirements to classify them as either functional or non-functional

requirements. Our annotation tool, LASR, as described in Chapter 5, supports executing and

monitoring such requirements classification tasks over large repositories of textual

requirements.

Moreover, our previous work (Hussain, Kosseim, & Ormandjieva, 2008) showed that, again,

a text miner can effectively classify the requirements text into different classes of

requirements taxonomy, e.g. functional and non-functional requirements, with a high

accuracy of 98.56%, when 10-fold-Crossvalidation performed on 765 instances. It can

therefore help the measurer extract the functional requirements automatically, so that the

FSM methods can be applied.

Thus, in this step, we take the unambiguous textual requirements that we received from the

previous step as input to this step, and we use the text miner, presented in (Hussain, Kosseim,

& Ormandjieva,2008) to classify textual requirements into functional requirements (FR) and

non-functional requirements (NFR). Thus, the set of FR sentences are extracted fully

automatically and its performance are shown to attain a very high accuracy in the results. The

NFR’s extracted in this step are left to be used for further processing in the later on steps.

4.4.3 Measurement of Functional Size

Measuring Functional Size is the final and the most complex step of LISMA. Here, we use

the unambiguous functional requirements, as extracted from the previous two steps,

described in Sections 4.4.1 and 4.4.2 respectively; and, for our research, we choose to

measure the functional size, in the units of COSMIC Function Points (CFP), that is entailed

by these requirements. The overview of the approach for measuring functional size using the

unambiguous functional requirements is illustrated in Figure 14.

83

Solution Work Flow Of Automated Functional Size Measurement

M
an

ua
l /

 U
sin

g
Ex

te
rn

al
 T

oo
ls

Au
to

 F
SM

LA
SR

FS
M

Ap

pr
ox

im
at

io
n

Cluster Requirements
by Functional Processes

Collect Historical
Datasets & Resources

Related To The Problem
Domain

Build Lexial Database

Approximate
Functional Size

Automated FSM
Modeling & Standard

Measurement

Collaborative
Measurement of
Functional Size

[User Stories,
Use Case Briefs]

[Fully
Decomposed

Use Case
Descriptions]

Figure 14: Our Approach for Measuring the Functional Size from Functional Requirements

As shown in Figure 14, our approach follows three initialization steps before starting to

measure functional size. These steps:

(1) Collection of Archived Resources: Our approach first starts with collecting the

historical datasets and textual requirements from the archived projects belong to a specific

problem domain. We try to gather as much resources as possible to describe the problem

domain, its common conceptual entity names, the actor names and the common verbs used to

express the four types of data-movement.

(2) Building Lexical Database: After the collection of resources from archived projects, we

start the process of building a lexical database for the specific problem domain. The database

contains words and phrases of different categories. They are:

i. Domain Entity Names / Data-group Names

84

ii. Attribute Names

iii. Actor Names

iv. Data-Movement Verbs

v. Stative Verbs

The domain entity names or the data-group names are collected straight from the domain

analysis of archived projects within the same problem domain (mostly by analyzing their

static models, e.g. the domain model). Also, the collaborative environment of our annotation

tool supports building the list of data-group names from the collective knowledge of the

annotators, as shown in Section 5.2.1. We thus use both the approaches to build this

vocabulary.

Then, our vocabulary of attributes contained words that can be used to represent members or

properties or measurable attributes of any entity (i.e. data-group, for our work). We not only

use the static models of our archived projects in this respect, but also manually selected a

slice of nouns from WordNet (Miller, 1995; Princeton University, 2010) that belong to the

super classes Property, Relation and Communication via their hypernym paths. We then

manually modified some of the words to create new forms that may appear in textual

requirements.

We select our vocabulary of actor names as mentions of people or their roles or their

professions or their positions in an organization. We suggest including names of human

actors to this vocabulary based on our historical knowledge of the archived projects from the

same problem domains.

The data-movement verbs commonly appear to express the action of different types of data-

movements and are not specific to any problem domain. These verbs are further grouped into

four sets: Entry Verbs, Exit Verbs, Read Verbs and Write Verbs, based on the type of data

movements they participate in.

We develop the vocabulary of Stative Verbs that are mostly used to describe the states of

objects instead of describing actions over them. The usage of these verbs is also not specific

to any problem domain. These verbs in most cases describe the state being or having or

85

spatial relations amongst objects. We again used WordNet (Miller, 1995; Princeton

University, 2010) to manually extract our vocabulary of stative verbs.

Figure 15 shows our approach of building the lexical database. We first use the available

resources from the archived projects to determine seed words for each of the aforesaid

categories. We then expand the vocabulary of each category by using the synsets of WordNet

(Miller, 1995; Princeton University, 2010) and adding new synonyms that are common to

each pair of the seeded words in that category until no new synonym exists.

Build Dictionaries

Data Group
Names

Actor
Names

Attribute
Names

Data-Movement
Verbs

WordNet

Select Seed Words
Related To

Problem Domain

Build Lexical Database

Stative
Verbs

Figure 15: Our Approach for Building The Lexical Databases

These databases are later on used by our linguistic feature extractor to extract different lexical

features from textual requirements for our automated FSM approach that implements text

mining process (discussed in Section 7.4.1). However, these databases do not need to be a

complete collection of names and verbs for a problem domain, as the text miners used in this

research relies on many other syntactic features too (presented in Section 7.4.2) that also

helps to generalize its classification approach across different less-familiar problem domains.

All the lexical databases that we used during our experiments are presented in Appendix A.

(3) Clustering of Textual Requirements: The COSMIC measurement standard (ISO/IEC

19761, 2011; COSMIC, 2014) prescribes to measure the size of a software by pieces, each of

which is called a “functional process”. The COSMIC standard defines the functional process

86

as a set of data-movements that can stand alone to represent an individual functionality of a

software and is triggered by an external event. Thus, a functional process corresponds to the

use cases of the software requirements document (Jenner, 2011; Condori-Fernàndez, Abrahão,

& Pastor, 2007). However, the functional requirement sentences, within a requirements

document, may not appear together in groups that correspond to individual use cases or

functional processes.

Thus, the FSM process in COSMIC starts by grouping these requirements sentences

manually, where each group corresponds to one functional process. Our approach of

measuring functional size in LISMA assumes the groups of functional requirements

indicating the functional processes to have already been identified, either manually or by

using an unsupervised text clustering technique as developed by our research group (Moradi-

Seresht, Ormandjieva, & Sabra, 2008) for the Requirements Engineering Assistance

Diagnostic (READ) project. This text clusterer can automatically group sentences in a

requirements document into sets of sentences that correspond to individual use cases. Since

COSMIC functional processes are analogous to use cases (Jenner, 2011; Condori-Fernàndez,

Abrahão, & Pastor, 2007), our approach recommends using such text clustering technique, in

case the sentences of functional requirements are not already tagged to indicate the functional

processes that they belong to.

After finishing all of the above initialization steps, LISMA in parallel follows on with a

manual process and an automatic process to measure the functional size, as earlier shown in

Figure 14. The manual process allows human annotators of different expertise to

collaboratively measure the functional size following a unique approach. On the other hand,

the automatic process can either approximate the functional size, if the textual requirements

to measure are not formally written (e.g. user stories); or it measures the functional size

precisely by extracting the functional size measurement (FSM) model, if the textual

requirements are written formally (e.g. fully-dressed use cases).

87

4.5 Conclusion
This chapter explained the details of the phases of our research methodology. It then

introduced our formalization of the COSMIC functional size measurement process and its

quantification by modeling an ontology. We then briefly described the steps of our

methodology for automating functional size measurement.

The next chapter (Chapter 5) investigates the feasibility of performing the FSM activities

with non-experts. It describes the details of the functional size measurement by manual

annotation with non-experts and discusses how a linguistic annotation tool can effectively

aid the complex tasks of functional size measurement from software requirements.

88

Chapter 5

Functional Size Measurement
By Non-Experts

“The measure of a man is what he does with power.”
— Plato

5.1 Introduction
Manual measurement of functional size by analyzing textual requirements conventionally

requires human experts for the task. Thus, it can be a very costly activity to perform in large-

scale software projects or research work by engaging the human experts in time-intensive

manipulation of textual requirements.

To address these issues, Phase I of this research investigates the possible means of reducing

functional size measurement cost through requirements annotation work performed by non-

experts. The related research objectives, research questions and our hypothesis have been

presented in Section 4.2.2, while our tools, and the design and the results of our experiments

are discussed in this chapter.

Our research in this phase led us to develop an annotation tool, called “LASR” (Hussain,

Ormandjieva, & Kosseim, 2012), that assists software measurers and requirements analysts

with collecting annotation data by supporting different types of requirements annotation tasks.

It combines not only the common features of annotation tools (as presented in Section 3.6),

but also some unique additional features, that are presented in this chapter in Section 5.2.2,

making it specifically suitable for performing functional size measurement. The chapter also

includes a brief discussion on LASR’s design and implementation.

89

LASR helps building large pools of annotated corpora for statistical data collection and

improves the overall process of FSM by attaining more accurate annotations with less time

spent by the annotators. Figure 16 presents a brief workflow diagram showing how LASR

works.

Annotators

Software
Requirements

Document

Functional Size
Measurement

Report

(Un-annotated)
Requirements

Instances

(Annotated)
Requirements

Instances

(Un-annotated)
Requirements

Instances

Annotation
Interface

Upload /
Compose

Extract Instances
For Annotation

Annotate

Project
Manager

Design
Annotation Project

& Templates

Evaluate Gold-Standard
Annotations & Performance

Compute
Functional Size

LASR

Render Annotation Templates

Figure 16: An Overview Workflow Diagram of LASR

As shown briefly in Figure 16, LASR not only aids the annotation tasks related to functional

size measurement, but also provides a comprehensive environment that helps to pre-process

and extract requirements instances, design and administer annotation projects, determine

gold-standard annotations and compute the functional size measurement reports

automatically. Here, in this chapter, we test the effectiveness of these additional features of

LASR by executing different annotation experiments in relation to our research questions Q1 ,

Q2 and Q3 , as presented in Section 4.2.2.

The chapter is organized as follows: we present brief details on the annotation interface and

the unique features of our annotation tool LASR in Section 5.2, describe the overview of our

annotation experiments in Section 5.3, present the details of our experiments and the analysis

of their results in Sections 5.4 to 5.7, discuss the implementation details of LASR briefly in

Sections 5.8, 5.9 and 5.10, and, finally, add our concluding remarks in Section 5.11.

90

5.2 LASR: Live Annotation of Software Requirements
As the available annotation tools did not provide the features required for our work, we

developed LASR (Live Annotation of Software Requirements). LASR aids the collection of

annotated corpora and the generation of training/testing datasets required by the supervised

learning systems related to our work (Hussain, Ormandjieva, & Kosseim, 2009). It can be

customized for use with both private and public annotation projects. All data of the private

software projects can be kept protected from unauthorized access. Thus, software

organizations can use LASR to manage their requirements documents, setup any kind of

annotation tasks and share their data securely with designated users only.

5.2.1 Annotation Interface for Functional Size Measurement

LASR provides a rich graphical user interface that allows quick navigation and control

during the annotation tasks. The frontend interface is implemented using PHP and jQuery

libraries, making it dependant only on the JavaScript engine of an internet browser at the

client-side. This makes LASR accessible from a wide-range of client-side platforms (e.g. PCs,

smartphones, tablets etc.).

It also allows customization of its user interface for annotation via editable XML-based

templates to support any types of requirements annotation tasks, that includes the annotation

tasks related to functional size measurement as well. For example, Figure 17 shows its

annotation interface for COSMIC functional size measurement.

91

Figure 17: First Screenshot of LASR's Customized Annotation Interface for COSMIC Annotation.

Figure 17 shows that the customized annotation interface of LASR includes several key

attributes that help to complete the COSMIC annotation tasks successfully. We describe

these attributes of the annotation interface in details below:

(1) View of the requirement instance
As shown in Figure 17, the requirement instance to be annotated (a requirement sentence, in

this example) is presented by default in the middle of LASR's annotation interface with

comparatively larger typeface in an attempt to draw the focus of the annotators to the

instance and allowing them to read it with ease. Here, in this example, the annotation

interface shows one requirement sentence at a time to the annotator. Thus, hiding the context

of the requirement sentence by default allows an annotator to consider one sentence at a time

for annotation, minimizing the risk for an annotator to skip the annotation tasks necessary for

a sentence due to losing his/her focus to its context.

(2) Navigation between requirement instances
There are also three navigation buttons at the bottom of the annotation interface, shown in

Figure 17. Here, the left and the right buttons allow an annotator to navigate to the previous

or the next requirements sentence respectively for performing new annotations, or reviewing

and re-annotating his/her previous annotations. LASR auto-saves all the annotation work

92

during navigation. The middle button allows the annotator to save the annotation work that

he/she performed so far on the currently viewing requirements sentence. This realizes the

feature of LASR that allows an annotator to start, stop and resume the annotation tasks at a

time of his/her convenience. The feature helps to eliminate the fatigue effects (Galesic &

Bosnjak, 2009) of the annotators during large-scale requirements annotation work.

(3) View of the summary of the task
The left pane of the annotation interface, as shown in Figure 17, presents by default a quick

summary of the annotation tasks including a graphical representation of the portions of the

tasks completed versus the portions of that is remaining in terms of a pie chart. It also allows

the annotators to take a quick glance at the related context of the requirement sentence, if

necessary.

(4) View of the related data-groups
In Figure 17, we also find that the customized annotation interface is configured to include a

widget at the right pane that collaboratively builds a list of the names (or, dictionary) of the

related domain concepts (i.e. data-groups, in COSMIC) belonging to a specific problem

domain. This widget allows the annotators to participate collaboratively in building this

domain-based dictionary of data-groups, and thus, describe the problem domain to LASR as

they encounter new data-groups by reading new requirements instances from the problem

domain during the annotation tasks. Here, an annotator can view the collection of the data-

group names that have been added so far to the specific domain-based dictionary by all the

annotators participating in these annotation tasks. In case the annotator encounters a new

domain concept, i.e. a new data-group name, while reading the current requirements instance

he/she can add it to the dictionary using this widget.

(5) View of the elapsed time
LASR records the time spent by an annotator in completing the annotation tasks for each of

the instances. This recorded time represents all the time spent over the viewing an instance

and entering the annotations, including the time spent later on the same instance, if the

annotator chooses to come back and re-annotate the instance. Figure 17 shows that the

annotation interface at its bottom right corner includes a real-time display of this time with a

93

much smaller typeface in an attempt to be not too distracting for the annotators. The interface

allows this display of the elapsed time, counting up in real-time, to be turned on optionally by

the annotator to persuade him/herself to annotate faster. The annotator can also turn off the

display anytime if it becomes too distracting during the annotation work.

(6) Annotation input fields
As shown in Figure 17, a set of input fields appear below the requirement sentence

containing the choices of annotation. Here, following the process of functional size

measurement in COSMIC, the customized annotation interface first asks the annotators to

classify each requirements sentence into any of the four categories:

i. Functional Requirement

ii. Non-Functional Requirement

iii. Ambiguous Requirement

iv. Noise

The interface also requires the annotators to indicate their levels of confidence5 to their

annotations. The annotators can also choose to add comments to their annotations.

If an annotator chooses to annotate a requirement sentence as a “Functional Requirements”,

the customized annotation interface displays additional input fields that allow the annotator to

annotate the base noun-phrases of the sentence to indicate their roles as COSMIC artifacts

(e.g. data-attributes, data-groups, and data-movements), as shown in Figure 18. Thus, the

annotator needs to check if any of these base noun-phrases represent any data-attribute that

participate in COSMIC data-movement, based on what is stated in the respective functional

requirement sentence. If so, the annotator annotates these noun-phrases as data-attributes by

indicating what data-groups they belong to and what kinds of data-movements they

participate in.

5 The level of confidence is a four-valued attribute in LASR that is associated with each annotation label
submitted by an annotator. Its discrete values are {0.1, 0.4, 0.7, 1.0}. The annotation interface shows these
values nominally as “I have no idea about this”, “Maybe, I'm not sure”, “Most likely”, and “Highly
Confident” respectively. The value 0 is attached to all those annotation labels, which are not submitted by
the annotator.

94

Figure 18: Second Screenshot of LASR's Customized Annotation Interface for COSMIC Annotation

5.2.2 Additional Features of LASR

In addition to the features discussed in Section 3.6, LASR includes a set of unconventional

features that make it a unique annotation tool in comparison to the contemporary linguistic

annotation tools, presented in Section 3.5. Practical usage of an annotation tool for the tasks

functional size measurement demands some of these features as services to be available. Thus,

these additional features are targeted to improve the overall experience of using an annotation

tool for the functional size measurement tasks. We discuss these additional sets of features in

the following sections.

(1) Features For Usability
We chose a unique set of features to be additionally included in LASR with an aim to

improve its usability and support the tasks of functional size measurement. They are:

95

The Annotation Interface

The fully customizable annotation interface of LASR allows using some unique web-widgets

that are especially designed to enhance the annotation experience during functional size

measurement tasks. As discussed in Sections 1.2 and 2.7.2, functional size measurement

activities in practice demands large scale annotation work that are costly in terms of the

amount of time spent by the annotators during annotation. With an objective to reduce this

annotation time, we unconventionally designed LASR's default annotation interface for

functional size measurement, which is discussed in Section 2.7. For example, LASR's

annotation interface by default shows only the instance to be annotated at one time, hiding its

surrounding context, in an attempt of holding the focus of the annotator solely on the instance

to annotate. Thus, the interface also predefines the scope of the instance to be annotated and

relieves the annotator from the task of defining the scope of each requirements instance. Our

target with this feature is not only to reduce the annotation time and effort, but also to

minimize the chances of annotation errors and, thus, achieve a higher degree of agreement

among the annotators during complex requirements annotation tasks, e.g. functional size

measurement.

Collaborative Acquisition of Domain Knowledge

The web-based interface of LASR allows collaborative participation of the annotators, during

the requirements annotation process, to build domain-based dictionaries containing probable

annotation labels for data-group annotation. The feature of building these domain-based

dictionaries is realized in LASR by a special widget that is presented earlier in Section 5.2.1.

This feature is specifically added to support the requirements annotation tasks related to

COSMIC functional size measurement, and, to our knowledge, no other annotation tool to

date offers a similar feature. Thus, LASR holds a separate dictionary for each problem

domain and allows the annotation of data-groups to be performed with ease, reducing the

effort of an annotator to inspect a large set of requirements every time to identify the name of

one data-group. Also, the feature imposes restrictions on the choices and scopes of data-

group annotation tasks resulting in less annotation errors and higher agreement among the

annotators.

96

(2) Feature For Efficiency
Here we list the features that are additionally included in LASR with the aim of attaining

more accurate annotations over software requirements from non-experts.

When using an annotation tool for the tasks of functional size measurement, the accuracy of

the measurements relies on the correctness of the gold-standard annotation label chosen for

each of the requirements instances. Now, if non-experts are involved with the annotation

tasks, their levels of skill in functional size measurement affects the correctness of their

annotations. Thus, annotation tools may automatically compute wrong labels as gold-

standard annotations by normalizing the annotations of the non-experts. This phenomenon is

resolved in practice by avoiding automatic computation of gold-standard, and by manually

reviewing and adjudicating the annotations collectively in group meetings to select the

correct gold-standard annotation label for each instance. However, the process can be

extremely costly and time-consuming for large scale requirements annotation tasks that are

related to functional size measurement.

Thus, LASR includes the features of tracking the levels of skill of the annotators and their

levels confidence in choosing the annotation labels. This allows LASR to logically infer

gold-standard annotations for each instance following different statistical measures to weight

the annotations of the non-experts based on their levels of skill and confidence. It, thus,

eliminates the need of manual processing the annotation data to maintain the correctness of

gold-standard annotations, and can generate annotated corpora automatically for

training/testing different text mining systems that are intended for use in different areas of

requirements engineering and functional size measurement. To address this, LASR includes a

feature to track the levels of skill of the annotators and their levels of confidence when

choosing the annotation labels. This allows LASR to logically infer gold-standard

annotations for each instance following different statistical measures to weigh the annotations

of the non-experts based on their levels of skill and confidence. It, thus, eliminates the need

of manual processing the annotation data to maintain the correctness of gold-standard

annotations, and can generate annotated corpora automatically for training/testing different

text mining systems that are intended for use in different areas of requirements engineering.

97

LASR provides two different options to compute the gold-standard annotations automatically.

They are:

i. Using Annotators’ Confidence Level Only

ii. Using Annotators’ Confidence and Skill Levels

We describe them below.

i. Using Annotators’ Confidence Level Only

The first option LASR introduces is to compute the gold-standard annotations automatically

using the level of confidence entered by the annotators. Here, LASR tries to compute the

gold-standard annotation for each of the annotated instances, by first assigning a custom

score to each of the annotation labels based on the level of confidence submitted by the

annotators. Thus, the annotation label with the highest score, and that is also greater than 0.56,

is selected as the gold-standard annotation. LASR uses the formula below to calculate the

probability score. It shows that if mi annotators have annotated an instance i, and the class c is

one of the possible class labels for annotating the instance i, then the probability score of

class c for the instance i is —

 
=

×=
im

x
icx

i

conf
m

icScore
1

,,)(1)|((1)

Thus, the final probability score of an annotation class c for an instance, i, is the arithmetic

average of all the confx,c,i values submitted by each annotator, x. The confidence of an

annotator x, denoted by confx,c,i in the formula (1), is equal to one of values of {0.1, 0.4, 0.7,

1.0} that is according to the level of confidence chosen by the annotator x, while annotating

the instance i as class c. And, for all those classes, c', that are not chosen the annotator x for

the instance i, confx,c',i will be equal to 0. Thus, 0 ≤ confx,c,i ≤ 1.

6 LASR requires the annotators to attach fuzzy levels of their confidence to each of their annotations. The
level of annotator's confidence is collected as a 4-value ordinal nominal variable, instead of a continuous
numerical variable. The 4-value ratings are then translated into fuzzy numeric values that are chosen as
positive real numbers ≤ 1, all having equal intervals, and none being 0.5 or 0. This is because we wanted no
annotation to be ignored because of a zero weight or be indecisive because of a 0.5 weight on the
confidence level.

98

ii. Using Annotators’ Confidence and Skill Levels

LASR also provides another option to compute gold-standard annotation automatically. This

option requires the expert, who designs an annotation work, to seed the annotation data

beforehand by setting true gold-standard annotations for at least a small portion of the un-

annotated corpora. LASR recommends seeding by annotating at least 10% 7 of the un-

annotated instances randomly. The seeded annotations are regarded as the true gold-standard

annotations; and LASR then measures the skill level, Sx, of each annotator, x, as the

probability of his/her annotations agreeing with the true gold-standard annotations. For

example, if the annotations of an annotator, x, agrees with the portion of the true gold-

standard annotations seeded by the expert 60% of the times, then the skill level, Sx, measured

by LASR would be 0.6. Thus, LASR uses a modified version of the formula (1) as below to

calculate the score for selecting the gold-standard annotation labels for each instance—

 
=

×=
im

x
xicx SconficScore

1
,,)()|((2)

Thus, the annotation label c that achieves the highest score in terms of the formula (2) is

selected as the gold-standard annotation for an instance i.

Unlike the previous option of using annotator's confidence level only, this option is

dependent on an expert seeding the annotation data by annotating with a small portion of the

unannotated corpus. Thus, to make the process of expert seeding optional, LASR provides

both of these options to compute gold-standard automatically. Our experiment#2a presented

in Section 5.5 compared the effectiveness of both features.

5.3 Experiments Overview
In this section, we will present the details of our experiments following the reporting

guidelines of (Wohlin, Runeson, Höst, Ohlsson, Regnell, & Wesslén, 2012; Jedlitschka,

Ciolkowski, & Pfahl, 2008). We will specifically discuss the evaluation of our research

questions, Q1, Q2 and Q3 , and hypotheses H1,0 , H1,a , H2,0 , H2,a , H3,0 and H3,a , presented

7 In our experiment, for example, we used seeding by annotating 11.67% of the un-annotated instances
randomly that yielded good results, as presented in 5.5.2.

99

earlier in Section 4.2.2. We carried out a number of controlled annotation experiments in

order to validate our design choices of LASR's features, especially its features for efficiency,

as presented in Section 5.2.2. In relation to our research questions, Q1, Q2 and Q3 , we had

non-experts in our experiments performing annotation tasks using LASR over textual

software requirements (similar to the task shown in Section 2.7.2) and compared its accuracy

to that obtained with manual annotation, without any tool support.

5.3.1 Participants: The Annotators

Two groups of annotators and one expert (in the field of software requirements engineering

and functional size measurement) participated for each case in the experiments. A total of

two different experts worked on six different cases — one on two academic cases and the

other on the remaining four industrial cases. The experts were graduate students, who were

experts in the original problem domain and were actively involved with the development of

these projects represented by the cases. They also had a year of measurement experience.

The first group of annotators (NEft 8), consisting of four people, all graduate students of the

Master of Computer Science program, were trained for requirements annotation and

functional size measurement. They could distinguish between functional, non-functional, and

ambiguous requirements and sentences in requirements documents that are none of those, or

“noise”. They can also measure functional size from a given set of textual requirements. All

annotators first participated in preliminary tests to perform requirements annotation on test

documents. The expert leaded the two-week-long training of the annotators, and also

participated with them in all of our annotation experiments.

The other group (NEmt 9) consisted of 26 people, all third-year students of the undergraduate

software engineering program. They were introduced to the COSMIC standard (through a

one-hour lecture and reference books), but were not thoroughly trained. Before the

experiments were performed, no prior tests were conducted to verify their knowledge.

However, they were all trained via a one-hour-long tutorial to work on LASR's annotation

interface for requirements annotation.

8 NEft is the name for the group of “Non-Experts, with full training”
9 NEmt is the name for the group of “Non-Experts, with minimal training”

100

5.3.2 Experimental Materials

The Corpus

Our corpus (sample set of requirements documents) used in these experiments was composed

of six requirements documents belonging to six different software projects respectively. Four

of these projects are of the same problem domain, while the remaining two are from different

problem domains. The requirements documents have been collected from both the industry

and academia. Some of these documents were complete, while others were “change

requirements” describing only small required modifications to an existing system. Some

statistics about these documents are presented in Table 7.

Doc.
ID Doc. Title Source Problem

Domain
Extracted After Pre-processing

Total Sentences Total Noun-
Phrases

C1 (undisclosed) SAP Labs, Montreal,
Canada Business 91 314

C2 (undisclosed) SAP Labs, Montreal,
Canada Business 15 59

C3 Course Registration
System Concordia University Academic

(Private) 179 711

C4 IEEE Montreal
Website Concordia University Web (Public) 467 1318

C5 (undisclosed) SAP Labs, Montreal,
Canada Business 7 27

C6 (undisclosed) SAP Labs, Montreal,
Canada Business 106 383

Table 7: Documents in the Corpus, Used in the Experiments

Table 7 shows the number of sentences extracted after pre-processing only those sections of

the requirements documents that held textual user requirements.

Setups for Manual Annotation

All the sentences in our corpus were used to populate a spreadsheet in Microsoft Excel that

served as the interface for the manual annotation task of our experiment. A macro-script in

Excel guided the annotators through our experiment and also measured in the background the

time spent by each annotators during their respective annotation tasks.

101

Setups for Annotation on LASR

A new annotation project was created in LASR by compiling the annotation templates in

XML and loading our corpus. The annotators who were part of this experiment were already

registered in LASR and were then assigned to their respective annotation tasks via LASR.

5.3.3 Experiment Execution

As presented in Section 5.3.1, we had two different groups of non-expert annotators, NEft and

NEmt, where we purposefully chose NEft to be more advantaged than NEmt. Here, NEft

received full training by the expert (with multiple practice sessions) to perform requirements

annotation. On the other hand, NEmt, our other non-expert group of annotators, received only

minimal training for requirements annotation.

We designed our experiments, so that the fully-trained non-expert annotators of NEft

annotated the requirements documents of our corpus manually, without the support of LASR,

and the minimally-trained non-expert annotators from NEmt use LASR to annotate the same

documents. Also, we had our only expert annotate all of these documents manually. In the

analyses of our experiments, we compared the performances of each of the non-expert groups

NEft and NEmt to that of the expert. The tasks performed by all our annotators during these

experiments are summarized in Table 8.

Doc
ID

Total Sent.
To Annotate

Total Noun-
Phrases

To Annotate

Annotators Participating
via LASR

Annotators Participating
Manually

Minimally Trained
Non-Experts (NEmt)

Fully Trained
Non-Experts (NEft) Expert

C1 91 314 14 1
C2 15 59 14 1
C3 179 711 14 4 1
C4 467 1318 12 4 1
C5 7 27 12 2 1
C6 106 383 14 4 1

Table 8: Task of the Annotators

It should be mentioned that all the annotators of the groups did not participate in annotating

sentences from all the documents. This was consciously done to reduce the average workload

of annotators, and also due to some of their absences (e.g. the document, C5, was manually

annotated by the expert and only two annotators from NEft, instead of four; and the

documents, C1 and C2, were annotated by the expert only).

102

Simple Annotation Experiments over Sentences

In this set of experiments, the annotators performed simple sentence-level requirements

annotation, where they had to annotate sentences into one of the following four classes:

i. Functional Requirement

ii. Non-Functional Requirement

iii. Ambiguous Requirement

iv. Noise

A total of 858 sentences from six documents were annotated using this experiment. The

details of these experiments and along with the results and their analyses are presented in

(Hussain, Ormandjieva, & Kosseim, 2012), where it successfully demonstrated that LASR

annotation interface, as presented in Section 5.2.1, along with its other features, help multiple

non-expert annotators to attain a high degree of inter-annotator agreement with an expert for

the tasks of annotating software requirements.

Complex Annotation Experiments over Noun Phrases

These set of experiments aim to explore the answers to our research questions related to

functional size measurement by manual annotation of non-experts, as presented in Section

4.2.2. In these experiments, our annotators performed relatively complex requirements

annotation tasks at the noun-phrase-level, related to COSMIC functional size measurement.

A total of 2812 base noun-phrases that were extracted from the functional requirement

sentences of all of the six documents, were annotated during this experiment. To relate with

our targeted research question, we selected this requirements annotation work that is complex

and is comprised of three different annotation tasks, i.e. to identify:

i. if a base noun-phrase is a data-attribute or not;

ii. what the data-group, which a data-attribute belongs to, is called; and

iii. what kind of data-movement a data-attribute participates in.

In the following paragraphs, we will be analyzing the results of the above annotation tasks

that our annotators performed during this experiment. In this section, we refer to the tasks—

103

(i) as “Data-Attribute Annotation” or DA, (ii) as “Data-Group Annotation” or DG, and (iii) as

“Data-Movement Annotation” or DM —respectively.

For the data-attribute annotation (DA) task, the expert annotated 314 noun-phrases out of

2812 as data-attributes that participate in data-movements. And, for the data-group

annotation (DG) task, the expert identified a total of 22 different data-groups from the

requirements documents that belong to the three different problem domains, as presented in

Section 5.3.2.

The data-movement annotation (DM) task involves annotating these data-attributes into one

or more types of data-movements that they participate in. It is a multi-class annotation task

where a data-attribute can be annotated in all of the following four ways:

i. As a data-attribute that participate in an Entry data-movement, or as one that does

not do so;

ii. As a data-attribute that participate in an Exit data-movement, or as one that does not

do so;

iii. As a data-attribute that participate in a Read data-movement, or as one that does not

do so; and

iv. As a data-attribute that participate in a Write data-movement, or as one that does not

do so.

Therefore, for the data-movement annotation (DM) task, the expert annotated each of the 742

data-attributes into one or more of the above four types of data-movements that they

participate in based on the description presented by their source requirements. We identified

the expert's annotation as the true gold-standard to compare all other annotations made during

this experiment, both manually and by LASR. The distribution of the true gold-standard

annotations for data-attributes and data-movements, as annotated by the expert, is shown in

Figure 19.

104

314

2498

Distribution of Moving Data-Attributes
As Per The Annotation of The Expert

Moving Data-Attributes

Not Moving Data-Attaributes

118
196

Entry Data-Movements Distribution

Entry
Not Entry

92
222

Exit Data-Movements Distribution

Exit
Not Exit

109
205

Read Data-Movements Distribution

Read
Not Read

99

215

Write Data-Movements Distribution

Write
Not Write

Figure 19: Distribution of the True Gold-Standards (As Annotated by the Expert) in Our Corpus

5.4 Experiment #1: Expert vs. Multiple Non-Experts
In this section, we present the details of our experiment #1 that addresses our research

question Q1.

5.4.1 Hypotheses and Variables

Firstly, we formalize our hypothesis, the related variables and metrics. As presented in

Section 4.2.2, our research question, Q1, and our corresponding null hypothesis H1,0 ,are as

follows:

Research Question, Q1: “Can well-trained non-experts attain at least a moderate level of

agreement with the expert for annotation tasks related to FSM?”

Null Hypothesis, H1,0: Well-trained non-experts can never attain at least a moderate level of

agreement with the expert for annotation tasks related to FSM.

105

Thus, we formalized our null hypothesis H1,0 as follows:

 moderateft ENEAGREEMENTH KAPPA),(1,0 <= (1)

—where,

 AGREEMENT(A, E) = Average of the pair-wise inter-annotator agreement

[measured in Cohen’s Kappa(Cohen, 1960)] between each

annotator of group A and an expert annotator E.

 NEft = Group of non-expert annotators, fully-trained (i.e. they

participated in our two-week-long training)

 E = An Expert Annotator (i.e. he/she has more than a year of

FSM experience)

 KAPPAmoderate = The constant value of Kappa for moderate level of

agreement, as determined by the evaluation scale of

(Landis & Koch, 1977).

Therefore, based on our null hypothesis, H1,0 , we now form an alternative hypothesis H1,a as

follows:

 moderateft ENEAGREEMENTH KAPPA),(1,0 ≥= (2)

Here, the Independent Variables are the “types of trained annotators (based on expertise)”,

which are of nominal scale with binary values { NEft , E }. Additionally, the Dependent

Variable here is the “average of the pair-wise inter-annotator agreements”, which is of ratio

scale with values [0,1]. We measure this average of the pair-wise inter-annotator agreements,

AGREEMENT(A, E), as the mean of the degrees of inter-annotator agreement between sets of

annotation labels chosen by each annotator of group A for some given set of instances, and

the set of the annotation labels chosen by an expert for the same set of instances. This can

shown in the equation below:

 
=

×=
n

j
j IEIaIA

n
EAAGREEMENT

1
)](),([1),((3)

106

—where,

 AGREEMENT(A, E) = Average of the pair-wise inter-annotator agreement

[measured in Cohen’s Kappa(Cohen, 1960)] between each

annotator of group A and an expert annotator E.

 A = a group of n annotators {a1,a2,a3,…an}

 n = Total number of annotators in group A

 E = An Expert Annotator (i.e. he/she has more than a year of

FSM experience)

 IA[P,Q] = The degree of inter-annotator agreement between two sets

of annotation labels, P and Q.

 E(I) = A set of annotation labels chosen by an expert for a given

set of instances, I

 aj(I) = A set of annotation labels chosen by an annotaor aj for a

given set of instances, I

Here, we used Cohen’s Kappa (Cohen, 1960) to measure the degree of inter-annotator

agreement, IA[P,Q], between two sets of annotation labels, e.g. P and Q.

5.4.2 Results and Analysis

In this section, we discuss the results of our experiment #1. As shown earlier in Table 8, the

fully-trained non-expert annotators of NEft performed annotation manually on four

documents only, instead of the six, for a total of 2425 noun-phrases. They used Microsoft

Excel to manually annotate these noun-phrases. A macro-script on Excel measured the time

spent by the annotators in the background. The distribution of the pair-wise agreement in

terms of Cohen’s Kappa (Cohen, 1960) of all the annotation labels chosen by each of the four

annotators of the NEft group with the true gold-standard labels chosen by the expert is shown

in Figure 20.

107

0

0.2

0.4

0.6

0.8

1

Ka
pp

a
(κ

)

Annotators of NEft

Pair-wise Agreement in Kappa (κ)
Between the Expert and the Four Annotators of NEft

Figure 20: Pair-wise Agreements between the Four Annotators of NEft and the Expert

As shown in Figure 20, the average of the pair-wise agreements of all four annotators of NEft

with the expert for all annotations is 0.7023, which indicates a moderate level of agreements

according to the Kappa evaluation scale of (Landis & Koch, 1977).

The gold-standard annotations were computed by following the majority voting model.

Whenever gold-standard annotation could not be resolved, adjudication was performed by the

participation of all the annotators of NEft.

The distribution of the gold-standard annotations that resulted from the manual annotation

work by the non-expert annotators of NEft is shown in Figure 21.

108

243

2196

Distribution of Moving Data-Attributes
As Per The Annotation of The NEft Group of Non-Expert Annotators

Moving Data-Attributes

Not Moving Data-Attaributes

98
145

Entry Data-Movements Distribution

Entry
Not Entry

60

183

Exit Data-Movements Distribution

Exit
Not Exit

77

166

Read Data-Movements Distribution

Read
Not Read

87
156

Write Data-Movements Distribution

Write
Not Write

Figure 21: Distribution of the Gold-standard Annotations (As Annotated by NEft)

We found a high degree of inter-annotator agreement in terms of Cohen’s Kappa (Cohen,

1960) between these gold-standard labels and the true gold-standard annotations, which are

set by the expert. For example, the confusion matrix comparing these gold-standard labels to

the true gold-standard annotations is shown in Table 9. The gold-standard annotations

resulted from the manual annotation of the non-expert annotators of NEft show a very high

degree of inter-annotator agreement, based on Cohen’s Kappa (Cohen, 1960), (i.e. Kappa =

0.9748), with the annotations of the expert (the true-gold-standards). This result however

represents the best-case scenario, where all four annotators of NEft were properly trained and

the gold-standard annotations were computed after holding meticulous adjudication sessions

with their participation to resolve their points of disagreements.

109

 Annotated by NEft

 Data-Attribute Not Data-Attribute

Annotated by Expert
Data-Attribute 237 5

Not Data-Attribute 6 2191

Table 9: Confusion Matrix for the Moving Data-Attribute Annotation by NEft

Thus, our results support our alternative hypothesis H1,1 to be true, rendering our null

hypothesis H0,1 to be false. This satisfies our research objective#1 showing that the process

of functional size measurement can be executed effectively with non-experts through

requirements annotation.

5.5 Experiment #2a: Annotation Accuracy using LASR
We performed two experiments, #2a and #2b, that address our research question Q2. In this

section, we present the details of our experiment #2a.

5.5.1 Hypotheses and Variables

Firstly, we formalize our hypothesis, the related variables and metrics. As presented in

Section 4.2.2, our research question, Q2, and its corresponding null hypothesis H2,0 , are as

follows:

Research Question, Q2: “Which type of FSM-related manual annotation tasks performed by

non-experts attains a higher accuracy: the manual annotation task performed by well-trained

non-experts, or the LASR-aided annotation task performed by minimally trained non-

experts?”

Null Hypothesis, H2,0: The FSM-related manual annotation tasks performed without LASR,

but by well-trained non-experts and with disagreements resolved through the adjudication

session, always attain a higher accuracy than the LASR-aided manual annotation tasks

performed by minimally trained non-experts and with no adjudication process.

110

Thus, we formalized our null hypothesis H2,0 as follows:

),(),(0,2 mtft NELAACCNEMAACCH >= (4)

—where,

 ACC(X, Y) = The accuracy of X type of requirements annotation task,

performed by Y type of annotators.

 MA = Manual annotation task

 LA = LASR-aided annotation task

 NEft = Group of non-expert annotators, fully-trained (i.e. they

participated in our two-week-long training)

 NEmt = Group of non-expert annotators, minimally-trained (i.e.

they participated in an hour-long training)

Therefore, based on our null hypothesis, H2,0, we now form an alternative hypothesis H2,a as

follows:

),(),(,2 mtfta NELAACCNEMAACCH ≤= (5)

Here, the Independent Variables are “type of annotation task” and “type of non-expert

annotator (based on training level)”, both of which are of nominal scale with values {MA, LA}

and {NEft , NEmt} respectively. Additionally, the Dependent Variable is the “accuracy of

annotation”, which is of ratio scale with values [0,1].

For the experiment #2a, we measure this accuracy of annotation, ACC(X,Y), as the degree of

inter-annotator agreement between a set of gold-standard annotation labels generated from X

type of annotation task, which is performed by Y type of annotators over some set of

instances, and the set of the annotation labels chosen by an expert for the same set of

instances. This is shown in the equation below:

)](),,([),(IEYIGSIAYXACC X= (6)

111

—where,

 ACC(X, Y) = The accuracy of X type of requirements annotation task,

performed by Y type of annotators.

 IA[P,Q] = The degree of inter-annotator agreement between two sets

of annotation labels, P and Q.

 GX(I,Y) = A set of gold-standard annotation labels generated from X

type of annotation task, which is performed by Y type of

annotators over a given set of instances, I

 E(I) = A set of annotation labels chosen by an expert for a given

set of instances, I

Here, we used Cohen’s Kappa(Cohen, 1960) to measure the degree of inter-annotator

agreement, IA[P,Q], between two sets of annotation labels, e.g. P and Q.

5.5.2 Results and Analysis

Here, we discuss the results of experiment #2. The 26 minimally-trained non-expert

annotators of NEmt performed annotation on all the six documents for a total of 2408 noun-

phrases. They used LASR to annotate these documents, and LASR, by default, kept account

of the time they spent during annotation.

Before testing out the feature of LASR that auto-computes the gold-standard annotations

(discussed in Section 5.2.2), we compute the gold-standard annotations manually using the

simple majority voting rule (we refer to this method as MV). We find that the computed gold-

standard annotations this way agree quite highly with those submitted by the expert. For

example, the Kappa measure for the data-attribute annotations (DA) here was 0.91376.

However, we find the method, MV, could not also resolve the gold-standard annotations for

the 263 of the noun-phrases, indicating high degree of disagreements for those instances. A

typical solution to resolve this issue would be to run adjudication sessions for all the 263

instances with the participation of all the 26 annotators. It indicates that the process can,

therefore, be very costly with real annotation tasks performed over larger corpora.

112

To address this problem, we first test out the feature of LASR that computes the gold-

standard annotations automatically using the level of confidence entered by the annotators, as

presented in Section 5.2.2. Here, we name this method of computing gold-standard

annotations with LASR as CL for our experiment.

When using LASR to compute the gold-standard annotation labels according to CL, the

computed gold-standard annotations demonstrate an even higher agreement with those

submitted by the expert. For example, the Kappa measure for the data-attribute annotations

(DA) here was 0.94881. However, there still remain 89 instances for which the gold-standard

annotations could not be resolved.

We then applied the next option computing gold-standard with LASR, as presented in

Section 5.2.2, that uses the annotators' levels of confidence, along with their levels of skill

together. As described earlier in Section 5.2.2, LASR measures the annotators' levels of skill

automatically during the execution of the annotation tasks by using seeded annotations from

the expert for 100 randomly chosen instances (i.e. 11.67% of the size of our corpus).

We name this method of computing gold-standard annotations with LASR as CL+SL for our

experiment. Thus, we finally used LASR to compute the gold-standard annotation labels

automatically according to CL+SL. Their final distribution is shown in Figure 22.

113

309

2503

Distribution of Moving Data-Attributes
As Per The Annotation of The NEmt Group of Non-Expert Annotators

Moving Data-Attributes

Not Moving Data-Attaributes

112
197

Entry Data-Movements Distribution

Entry
Not Entry

98
211

Exit Data-Movements Distribution

Exit
Not Exit

105
204

Read Data-Movements Distribution

Read
Not Read

98
211

Write Data-Movements Distribution

Write
Not Write

Figure 22: Distribution of the Gold-Standard Annotations (As Annotated by NEmt)

The computed gold-standard annotations now have the highest degree of inter-annotator

agreement with those submitted by the expert. For example, the Kappa measure for the data-

attribute annotations (DA) here was 0.98014. Moreover, there remained no instances, where

their gold-standard annotation labels are unresolved, eliminating the need for conducting

costly adjudication sessions.

The confusion matrices presented in Table 10 and Table 11 show the detailed results of this

experiment.

 Annotated by NEmt

 Data-Attribute Not Data-Attribute

Annotated by Expert
Data-Attribute 306 8

Not Data-Attribute 3 2495

Table 10: Confusion Matrix for Data-Attribute Annotation by NEmt

114

 Annotated by NEmt

 Entry Not
Entry

Annotated
by Expert

Entry 109 9

Not
Entry 3 2691

 Annotated by NEmt

 Exit Not Exit

Annotated
by Expert

Exit 91 1

Not Exit 7 2713

 Annotated by NEmt

 Read Not
Read

Annotated
by Expert

Read 103 6

Not
Read 2 2701

 Annotated by NEmt

 Write Not
Write

Annotated
by Expert

Write 94 5

Not
Write 4 2709

Table 11: Confusion Matrices for Data-Movement Annotation by NEmt

Figure 23 summarizes the results of the sentence annotation experiments, showing the quality

of the computed gold-standard annotations (based on the annotations submitted by NEmt) for

MV, CL and CL+SL, in terms of their degrees of agreement (in Kappa) with the true gold-

standard annotations chosen by the expert. It also compares these results to that of the gold-

standard annotations after NEft performed the task manually.

0.8

0.84

0.88

0.92

0.96

1

Majority
Voting (MV)

Confidence
Level (CL)

Confidence +
Skill Level

(CL+SL)

Methods To Compute Gold-Standard

Ka
pp

a Using LASR: Data-Attribute
Annotation
Using LASR: Data-Movement
Annotation
Manual: Data-Attribute
Annotation
Manual: Data-Movement
Annotation

Figure 23: Quality of the Different Gold-Standard Annotations in Terms of Their Agreements (in Kappa)
with the True Gold-Standard Annotations.

115

Here, it should be noted that the 26 annotators of the group NEmt were not as well-trained for

the COSMIC annotation tasks, as the group NEft. Their average level of skill were

comparatively much lower than that of the trained annotators of NEft (e.g. the average degree

of the pair-wise agreement between the annotations of each annotator of NEmt and the true

gold-standard annotations of the expert, in Kappa, was only 0.57392). However, our

experiment with CL+SL shows that LASR was able to weight the probability scores of

formula (2) accordingly, based on the levels of skill of the annotators of NEmt, and, thus,

selected the gold-standard annotation labels that agreed the most with the true gold-standard

annotations, as shown in Figure 23. This indicates that LASR can automatically extract gold-

standard annotations that can be reliable enough, even when the group of annotators are not

fully trained.

It should also be noted here that LASR's annotation interface allowed minimally-trained non-

experts of NEmt to always attain at least moderate level of agreement with the expert's true

gold-standard annotations. This partially indicates the effectiveness of the additional usability

features of LASR, listed in Section 5.2.2.

Thus, our results support our alternative hypothesis H2,a to be true, rendering our null

hypothesis H2,0, as presented earlier in Section 5.5.1, to be false. This satisfies our research

objective#2, presented in Section 4.2.2, and indicates that LASR can automatically extract

gold-standard annotations that can be reliable enough, even when the group of annotators are

not fully trained.

5.6 Experiment #2b: Size Measurement Accuracy with LASR
Similarly to our previous experiment, #2a, this experiment, #2b, also addresses our research

question Q2. In this section, we present the details of this experiment.

Here, our experiment uses the same formalization of our hypothesis, the related variables and

metrics, as discussed in Section 5.5.1. Thus, our null and alternative hypotheses for this

experiment are same as equation (4) and (5), as presented in Section 5.5.1.

116

However, for this experiment #2b, we define, ACC(X,Y), as the “accuracy of functional size

measurement”, which we measured in terms of Mean Magnitude of Relative Error or MMRE.

In this experiment, we used the same materials (the corpus and the participants) that were

used in our previous experiment #2a, and investigate if LASR aided the minimally-trained

group of non-expert annotators (NEmt) to accurately measure COSMIC functional size.

During the tasks of data-attribute annotation (DA) and data-group identification (DG) in

experiment #1, the expert has annotated 314 noun-phrases out of 2812 as data-attributes. He

also identified 10 unique data-group labels (i.e. entity names) in the “Business” problem

domain, 3 in “Academic”, and 9 in “Web”, and associated the data-attributes with the data-

group labels. We identify them as the true gold-standard annotations for the tasks DA and DG.

Table 12 summarizes what the other annotators of group NEft and NEmt extracted in

comparison for the same tasks.

Doc.
ID

Noun-
Phrases

Problem
Domain

Manually Annotated Annotated Using
LASR

Expert Annotator Annotators of NEft Annotators of NEmt
Data

Attrib.
Data

Groups
Data

Attrib.
Data

Groups
Data

Attrib.
Data

Groups
C1 314

Business

64

10

-

6 10

63

11 C2 59 8 - 7
C5 27 4 4 4
C6 383 96 97 95
C3 711 Academic 68 3 67 4 67 3
C4 1317 Web 74 9 75 11 73 9

Total 2812 314 22 243 21 309 23

Table 12: Frequency of Data-Attributes & Data-groups

By associating the annotated data-attributes with the extracted data-groups, we aggregate

multiple movements of data-attributes into one data-movement. Thus, it reduces the total

number of data-movement annotations applied over the data-attributes during our experiment

#2a, and rightly follows the COSMIC standard to measure the functional size by counting the

movement of the associated data-groups.

10 The annotators of group NEft did not annotate two of the four documents, belonging to the “Business”
problem domain (as mentioned in section 5.3.1); hence, they could identify only 16 data-groups from the
rest of the documents.

117

Table 13 shows the new aggregated frequencies of the four types of data-movements- Entry

(E), Exit (X), Read (R) and Write (W) -that are extracted based on the gold-standard

annotations of our previous experiment #2a. These are the actual COSMIC data-movements,

the total count of which equals to the COSMIC functional size, measured by the unit CFP

(COSMIC Function Point).

Doc.
ID

Manually Annotated Annotated Using LASR

Expert Annotator Annotators of NEft Annotators of NEmt

E X R W E X R W E X R W

C1 19 26 15 5 18 23 17 5
C2 7 6 2 1 7 6 3 2

C3 26 25 14 15 27 26 16 16 25 22 15 15
C4 55 43 12 23 51 39 13 22 54 41 13 22
C5 4 4 2 0 4 4 3 0 4 4 2 0

C6 16 16 9 8 15 12 10 7 15 13 9 8

Table 13: Aggregated Frequencies of Data-Movements

Thus, using the results from Table 13, we can compute the total CFP values and the

magnitude of relative error (MRE) of all the documents in our corpus, as measured during the

experiment #2a by the expert and our annotators of the groups NEft and NEmt. These results

and the mean magnitude of relative errors for both the groups are shown in Table 14.

Doc.
ID

Total CFP MRE

Expert Annotators of Annotators of
NEft NEmt NEft NEmt

C1 65 63 0.031
C2 16 18 0.125
C3 80 85 77 0.062 0.037
C4 133 125 130 0.060 0.022
C5 10 11 10 0.100 0
C6 49 44 45 0.102 0.082

MMRE = 0.081 0.049

Table 14: Total Measured CFP and MMRE Results

118

Considering the annotations of the expert as the true gold-standard, we find that the results of

Table 13 and Table 14 indicate that LASR helped the minimally-trained non-expert

annotators of the group NEmt to achieve near accurate results (MMRE 11 = 0.049) in

measuring the functional size in terms of COSMIC FSM, even though the annotators were

not as well-trained as the annotators of NEft. The results of Table 12 also show that using the

annotation interface of LASR helped to limit the number of data-group labels during the DG

annotation task for the annotators of NEmt, while the annotators of NEft working manually

introduced more unnecessary data-group labels during the same task.

Thus, the experiment successfully investigated our research question #2, presented in

Sections 4.2.2 and 5.5.1, by demonstrating that LASR's efficiency feature, mentioned in

Section 5.2.2, can help multiple non-experts to attain accurate measurements of COSMIC

functional size.

5.7 Experiment #3: Record of Annotation Time
Finally, experiment #3 aims to explore the answer to our research question #3, presented in

Section 4.2.2. In this experiment, we used the time data collected during our experiments #2a

and #2b to investigate if LASR's usability features, presented in Section 5.2.2, can reduce the

time spent in annotation.

We measured the time spent by each annotator from both groups, NEft and NEmt, to perform

the annotation tasks over each sentence, where they first annotated the sentence as Functional,

Non-Functional, Ambiguous or Noise. Then, if an annotator annotated a sentence as a

Functional requirement, he/she then had to perform the data-attribute (DA), data-group (DG)

and data-movement (DM) annotation tasks (as mentioned in Section 5.5) for each of the

noun-phrases that belonged to the sentence. In case of annotating by LASR, the annotators of

NEmt also had to include their levels of confidence for each of their annotations.

We found that to complete all these tasks manually, an annotator from the group NEft spent

on average 2.441 minutes per sentence. On the other hand. to do the same annotation task on

LASR over the same set of sentences, an annotator from the group NEmt spent on average

11 MMRE stands for Mean Magnitude of Relative Error.

119

1.769 minutes per sentence. This shows that LASR can help quicken the annotation tasks

related to COSMIC FSM by a large extent, especially when annotating large sets of corpora.

Thus, our experiment showed that LASR helped minimally-trained non-expert annotators to

complete the complex annotation tasks related to COSMIC functional size measurement

faster than fully-trained non-expert annotators, while retaining comparable accuracy.

5.8 Design & Implementation of LASR
We followed a highly modular approach when implementing LASR's architecture. LASR

uses a client-server architecture at the highest-level of the logical view. On the server-side, it

implements a three-tier-architecture, comprising of the Presentation, Application and

Services layers. The application layer then further implements the model-view-controller

architecture, via the CakePHP framework (Cake Software Foundation, 2014). Figure 24

shows LASR's architecture in details.

120

Instance
Extractor

Annotation
Evaluator

LASR
Pr

es
en

ta
tio

n
La

ye
r

A
pp

lic
at

io
n

La
ye

r

Se
rv

ic
es

 L
ay

er

Annotator
Profiles

Annotation
Templates

Requirements
Repository

Annotation
Data

Annotated
Corpora

Data
Services

C
on

tr
ol

le
r

M
od

el
s

Vi
ew

s

G
U

I

Requirements
Instances

Figure 24: Architecture of LASR

Here, the Requirements Repository at the backend holds the requirements documents

contributed by its users. The Instance Extractor module of LASR is equipped with

lightweight NLP-based tools, e.g. a sentence delimiter and a noun or noun compound

chunker, that can automatically extract requirements instances at the levels of passages,

sentences and noun instances from the requirements documents and save them to the backend.

Annotation Templates define the annotation work to be performed at a particular level of

requirements instance (e.g. at the passage level, or sentence level or base noun-phrase level).

The templates are stored as XML files at the backend file-system, and contains configuration

details on the annotation interface as well, making the interface customizable by the curator.

121

5.9 Domain Model of LASR
LASR addresses the complex domain of managing requirements annotation projects, where

annotation can be performed at various levels (document, section, sub-section, sentence and

noun-phrase). It integrates concepts related to different fields, e.g. software project

management, software requirements, measurement and linguistic annotation, to interact with

each other. Figure 25 presents the visualization of the domain, via the UML domain model,

showing different domain entities and their relationships, as realized by LASR.

AnnotationWork Member

Project

Template Manager

Annotator

SummaryLayoutQuestionnaireLayoutAnswerInstanceTypeAnnotationPoint

ProblemDomain

Instance Question

DataGroup

Document

Section Sub-section NounPhrase

◄
co

nt
ai

ns

de
sc

rib
es

 ►

works_on ►

◄ annotates

◄ receives

◄ names

be
lo

ng
s_

to
 ►

◄ uses

◄
de

fin
es

ha
s

►

◄
le

ad
s_

to

◄
co

nt
ai

ns

1..

1
1

1

1..*

1

1

1

1

1..*

1 1 1..*0..1

1

1..*

1

1 1

1..*

1..*

1..*

1..*

1

1

**

**

**

**

*

*

*
*

*

◄
ch

oo
se

s

*

◄
be

lo
ng

s_
to

ba
se

d_
on

 ►

be
lo

ng
s_

to
►

contains ► Sentence
1..*1

contains ►
1..*1

contains ►

ap
pl

ie
s_

to
►

m
an

ag
es

 ► ◄
ha

s

Figure 25: Domain Model of LASR

Some of the important conceptual entities of LASR, as shown in Figure 25, are described in

the following.

122

5.9.1 Project

LASR identifies a Project as a concept analogous to a software project, coordinated by a

team of people. A project in LASR is managed by one special user, called Manager, and

contains a group of special users, called Members, who accepts/rejects the requests of

Annotators to contribute to a project. These user roles are discussed in Section 5.10.

5.9.2 Annotation Work

The Annotation Work is the most important concept of LASR. A project in LASR is

comprised of several annotation tasks that address different types of requirements analysis

tasks. The manager defines an annotation work by associating the requirements documents to

it and designing its interface via the Templates. The Documents (requirements documents)

associated with an annotation work are uploaded by the manager. LASR also allows the

manager to keep the documents private, and, thus, limit the permissions of viewing and

annotating of the documents to a selected groups of annotators only. This helps applying the

constraints of signing to non-disclosure agreements by the annotators before contributing to

private annotation work.

The interface of an annotation work is described by two templates in LASR: (i)

Questionnaire Template, and (ii) Summary Template. Both templates are stored as XML files

at the backend. The questionnaire templates contain details on:

• What type of requirements Instances are to be annotated by the annotators: “Noun-

Phrases”, or “Sentences”, or “Sub-sections”, or “Sections”, or the whole “Document”.

• What Questions to ask the annotators.

• What possible choices of Answers to provide to the annotators, for each question

(here, the answers contain the annotation labels.

• And, what additional related questions to ask the annotators, only when they choose

specific answer(s) to certain question(s) earlier (this helps to implement the

hierarchical dependency among the annotation labels).

123

The summary template, on the other hand, contains details on what results to show to an

annotator, after he/she completes the annotation work. The template also provides options to

include simple arithmetic computations (i.e. count, sum, average, +, -, *,/) over given

answers. This is important for defining some annotation work performed during requirements

analysis phase that demand instant feedback with additional calculations on the given

annotations (e.g. COSMIC FSM).

5.9.3 Problem Domain

A requirements document that is uploaded to LASR must belong to one specific Problem

Domain. A problem domain describes the domain of a group of software problems. The

classification of problem domains varies from one organization to another based on their

internal needs. For example, Microsoft Corporation (Microsoft Corp., 2011) prescribes 40

different classes of problem domains for software products. LASR, therefore, allows the

decomposition of problem domains into open categories that can be customized to have an

organization-specific classification. The following attributes describe a problem domain in

LASR,

 id:

 name: STRING

 application_type: { “desktop”, “web”, “plug-in”, “real-time”, “developer”,

“publisher”, “embedded”, “business”, “utility”, “game”,

“academic”, “communication”, “system”, “portable”,

“graphics”, “multimedia”, “driver”, “framework”,

“research”, “prototype”, “component”, “other” }

 deployment_type: { “private”, “public-open”, “public-closed” }

— where id allows us identify each problem domain uniquely, and application_type and

deployment_type provide additional nominal features for higher level classification of the

problem domains in LASR.

124

Other concepts in the domain model include the Data-group that is analogous to domain

entity, which is an aggregation of data-attributes, and belongs to a specific problem domain.

Each data-group name associated with a problem domain is created by an annotator during

the annotation of a requirements document belonging to the same problem domain.

5.10 User Roles of LASR
The collaborative environment of LASR is targeted to serve users with different goals

securely. It provides a hierarchical arrangement of its access levels, each supporting the roles

of its users having different sets of permissions. The five different user roles in LASR are: (i)

the unregistered users (guests), (ii) the registered users (annotators), (iii) the project members,

(iv) the project managers, and (v) the administrator. Table 15 presents the user roles, their

respective access levels and the activities permitted to the users by LASR.

Access Level Anonymous Low Medium High Administrator

User Role(s) Unregistered
Users

Registered
Users

Project
Members

Project
Managers Administrator

Learn about LASR / View
brief description of all
annotation work / Register
an account

x x X x x

View results of all
annotation work / Request
to annotate / Perform
annotation / Submit
requirements document /
Apply to be a project
manager

 x X x x

Accept or reject requests
to annotate / Create &
publish detailed profile X x x

Setup a project / Define
annotation work / Create
annotation templates x x

Have super user
permissions for backend
maintenance / Accept
application to be a project
manager

 x

Table 15: Activities Permitted to Different User Roles in LASR

125

5.11 Conclusion
In this chapter, we discussed how a linguistic annotation tool with the addition of a few key

features, listed in Section 5.2.2, can effectively aid the complex tasks of functional size

measurement from software requirements. We presented our annotation tool, LASR, that

includes these features, and showed how it helped a group of annotators with minimum

training to measure the functional size following the COSMIC FSM standard accurately.

The unique feature set of LASR not only helped in attaining size measurements of higher

accuracy, but also helped eliminating the need of running adjudication sessions to resolve

disagreement of the annotators, and, thus, reducing the cost of large scale annotation. It

improved the idea of crowd-sourcing by introducing the method of expert seeding of the true

gold-standard annotations for a portion of the corpora, and thus, allowing real-time

evaluation of the skills of annotators. The interface of LASR also helped minimizing the

time for the annotation tasks related to COSMIC FSM.

In the next chapter (Chapter 6), we investigate if functional size can be approximated without

requirements formalization. We use a supervised learning-based approach to determine the

most discriminating linguistic features of informally written textual requirements for

approximating functional size. We then ran our experiments to check if a text mining

approach can predict the nominal functional size classes of textual requirements and

moderately agree with the gold-standard size classifications.

126

Chapter 6

Automated Approximation of
Functional Size

“Simplicity and repose are the qualities that measure
the true value of any work of art.”

— Frank Lloyd Wright

6.1 Introduction
This chapter describes our approach of automated approximation of functional size. It

extends the idea presented in the Estimation by Analogy approach (Shepperd & Cartwright,

2001) and the Easy and Quick (E&Q) measurement approach (Meli, 1997), that was

originated in the IFPUG standard (ISO/IEC 20926, 2003). The applicability of this approach

in COSMIC was manually demonstrated by (Santillo et al., 2005). Our approach automates

the process by using the historical data of an organization that needs to be stored for the

purpose of generating the datasets for training and testing our classifier. The required

historical data must contain sets of textual user requirements of any quality, where each set

corresponds to a unique functional process and is measured in terms of COSMIC function

points (CFP) by human measurers.

6.2 Overview of Our Approach
Our approach uses these sets of textual requirements and their recorded CFP measurements

from all the achieved projects to automatically select and extract the linguistic features that

discriminate the functional processes by their CFP sizes and train our text classifier to

automatically classify new sets of textual requirements into a predefined number of size

127

classes. The output size classes indicate the approximated range of functional size. Our

approach also outputs a linguistic model for classifying by functional size classes that

provides traceability links between the outputs functional size and the input textual

requirements. Figure 26 illustrates an overview of this workflow showing the inputs and

outputs of our approach.

Automated
Approximation of

Functional Size

Functional Requirements
(Clustered by

Functional Processes)

Approximated Range of
Functional Size

Size Classification
Model

Traceability Mapping

Historical Datasets
From Archived Projects

Figure 26: Inputs and Outputs of Our Approach for Automated Approximation of Functional Size

We present the details of our approach in the following sections.

6.2.1 CFP Measurement

In case the historical database of an organization is not available or is not in the form

required by our approach, our first step would be to build the historical dataset by manually

measuring the COSMIC size of the functional processes in units of CFP (COSMIC Function

Point). The available textual description of the user requirements corresponding to each

functional process is used for this purpose. Here, for each requirements statement belonging

to a functional process, the human measurer first identifies how many different types of data-

movements are expressed by the statement, and then, how many data-groups participate in

each of the types of data-movements present in the statement. Following COSMIC, the sum

of number of data-groups for each type of data-movements indicates the total CFP size of one

requirements statement. The measurer repeats this step for the rest of the requirements

statements within the functional process to measure their sizes in CFP. Summing up their

sizes results in the CFP count for the whole functional process. The measurer then again adds

128

the CFP sizes of all of the functional processes together to obtain the respective CFP count of

the whole system. Table 16 illustrates the CFP counting process with a hypothetical example

of a system consisting of two functional processes.

Functional
processes User requirements

Types of Data-
movements
expressed by
the statement:

Number of Data-
groups involved
a data-movement

Size in CFP

FPROC1

1.1 User requests to view the
detailed information of
one item.

Entry 2 2

Read 1 1

Size of statement 1.1 = 3

1.2 System displays detailed
item information.

Exit 1 1

Size of statement 1.2 = 1

Total size of FPROC1 = 3+1 = 4

FPROC2

2.1 When user requests to add
the item to the shopping
cart, system adds it and
displays the cart.

Entry 2 2

Write 1 1

Exit 1 1

Size of statement 2.1 = 4

Total size of FPROC2 = 4
Total size of the whole system = 4 + 4 = 8

Table 16: A Hypothetical Example of CFP Calculation

Our approach requires these measurement data to be saved in the historical database for the

past completed projects. For this work, we will need the CFP count for each of the functional

processes that have been measured, along with the textual requirements associated to a

functional process. Figure 27 illustrates the steps of building a historical database, when a

historical database is not already available.

Cluster Textual
Requirements by
Functional
Process

Measure Size
in CFP

Textual
Requirements

Clustered by
Functional
Processes

Historical
Database

Archived
Projects

Figure 27: Building a Historical Database

129

6.2.2 Class Annotation of Functional Processes

Once we have gathered the historical dataset, we need to define classes of functional

processes, based on their sizes in CFP, to be used later in the automatic classification task. To

do this, we performed a box-plot analysis on the CFP size values from our historical dataset,

to produce four different classes of functional processes, based on their sizes in CFP. Table

17 shows the defined ranges of these classes.

Size Classes Ranges

Small [0, Lower Quartile)

Medium [Lower Quartile, Median)

Large [Median, Upper Quartile)

Complex [Upper Quartile, ∞)

Table 17: Ranges of CFP Values to Define the Classes

Here, the lower quartile would cut off the lowest 25% of all the recorded CFP size data from

the historical database. The median would divide the dataset by 50%, and the upper quartile

cuts off the highest 25% of the dataset.

These four sets of ranges allow us to annotate the textual requirements of the functional

processes automatically into four fuzzy size classes. In our class ranges, we keep the

minimum and the maximum values as 0 and ∞ , respectively, instead of the sample minimum

or the sample maximum, like in an actual box-plot analysis; so that, if the new unseen sample

is an outlier compared to the historical dataset, it would still get classified into a class.

After defining the class boundaries automatically, we then calculate the mean, the minimum

and the maximum for each of the classes, to designate the range of the approximate size for

each of the classes. Figure 28 illustrates the process of automatic class annotation described

in this section.

Calculate
Class Median &
Class Range

Median & Min/Max
Size (in CFP)

For Each Class

Box-plot Analysis
with predefined
class boundaries

Historical
Database

Small Medium

Large Complex

Annotated
Functional Processes

Figure 28: Class Annotation by Box-Plot Analysis

130

6.2.3 Text Mining

Our next step consists of extracting linguistic features from the textual requirements

belonging to each of the functional processes from our training dataset, to train a text

classification algorithm that can automatically classify a new set of textual requirements

belonging to a functional process into one of the classes defined above (i.e. Small, Medium,

Large or Complex). The classifier will then simply approximate the size of the functional

processes by outputting its size as the calculated mean value of the class it belongs to, along

with the minimum and the maximum seen CFP value for that class to indicate possible

variation in the approximation; and, thus, provide the quickest possible approximation of the

COSMIC functional size from textual requirements that are not formalized and can be written

in any quality. Figure 29 shows the steps of this process.

Small Medium

Large Complex

Annotated
Functional Processes

Extract Linguistic
Features

Training
Data File

Training

S

M L

C

COSMIC Size
Classifier

Unmeasured
Functional
Processes

Figure 29: Text Mining for Fast Approximation of COSMIC Functional Size

6.3 Experiments
As a proof of concept of our approach, we addressed our research question Q4, as presented

in Section 4.2.3, by performing a preliminary experiment with four different case studies: two

industrial projects from SAP Labs, Canada, and two university projects. They are all

completed projects and are from different domains. Their requirements documents vary in

size (from about 2,000 words to 11,000 words) and contain from 3 to 32 distinct functional

processes. Table 18 shows some characteristics of these case studies.

131

ID Source Title Type of
Application

Size of
Requirements
Document

Functional
Processes
extracted

C3 University
Course
Registration
System

Academic 3,072 words 14

C4 University IEEE Montreal
Website Web (Public) 5,611 words 32

C5 Industry
(SAP) (undisclosed) Business 11,371 words 12

C6 Industry
(SAP) (undisclosed) Business 1,955 words 3

Total number of functional processes extracted = 61

Table 18: Summary of the Case Studies

We manually pre-processed these requirements to extract sets of requirements sentences each

of which belong to a distinct functional process. This mimics the available set of user

requirements before an iteration starts in an agile development process. From all four

requirements documents, we were able to extract 61 sets of textual requirements, each

belonging to a distinct functional process.

We used five human measurers, all graduate students skilled to perform COSMIC FSM from

requirements documents, to measure the CFP of these 61 functional processes, similarly to

what is shown in Table 1. The CFP values and the textual requirements of the 61 functional

processes built our historical dataset. The frequency distribution of the CFP values in our

historical database is shown in Figure 30. The figure shows that most functional processes

(17 of them) were of size 6 CFP. The box-plot on top of the histogram points out the lower

quartile, the upper quartile, the sample minimum and the sample maximum, and also

indicates that the median size is 6 CFP in our historical database.

132

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
um

be
r o

f F
un

ct
io

na
l P

ro
ce

ss
es

Size of Functional Processes (in CFP)

Distribution of CFP Values

Median = 6

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
um

be
r o

f F
un

ct
io

na
l P

ro
ce

ss
es

Size of Functional Processes (in CFP)

Distribution of CFP Values

Median = 6

Figure 30: Distribution (with a box plot) of CFP Values in Our Historical Database

6.3.1 Corpus Annotation

As mentioned in Section 6.2.2, in order to define the ranges of our four size classes, we

performed a box-plot analysis on the CFP values of our historical database. The resulting

boundary points are:

Median = 6 CFP

Lower Quartile = 5 CFP

Upper Quartile = 8 CFP

Sample Minimum = 2 CFP

Sample Maximum = 19 CFP

Therefore, according to the ranges defined in Table 17 in Section 6.2.2, the actual CFP

ranges for the four size classes for our historical database are:

Small: [0,5)

Medium: [5,6)

Large: [6,8)

Complex: [8, ∞)

133

We then followed these ranges to automatically annotate the sets of textual requirements

belonging to the 61 functional processes into the four size classes - where 9 (15%) functional

processes were annotated as Small, 15 (25%) were Medium, 21 (34%) were Large, and 16

(26%) were annotated as Complex.

We then collected from our historical database the class data, i.e. the mean, the minimum and

the maximum sizes for each of these classes, so that the size of a newly classified functional

process belonging to any of these four classes can be approximated by its class data. The

resultant class data is shown in Table 19.

Class Median Size Minimum Size Maximum Size Approximation
Error

Small 3 CFP 2 CFP 4 CFP [-1,1] CFP

Medium 5 CFP 5 CFP 5 CFP 0 CFP

Large 6 CFP 6 CFP 7 CFP [0,1] CFP

Complex 11 CFP 8 CFP 19 CFP [-3,8] CFP

Table 19: Data to be Associated with a Functional Process to Approximate Its Size

It should be noted that due to the small number of functional processes that we currently have

collected in our historical database, Table 19 does not show much variation of size among the

classes, especially between the classes Medium and Large. This drastically reduces the error

margin of our approximation and, therefore, a correctly approximated size will be more

precise in the current case. For example, when a functional process will be correctly

classified as Medium by our text miner, our system will indicate, according to the class data,

shown in Table 19, that its approximate (i.e. the mean) size is 5 CFP, which actually is the

precise size value of the functional process instead of an approximation. This is because only

the functional processes of size 5 CFP are set to the Medium class by our box-plot analysis.

As CFP size values are always integer numbers, it allows zero margin of error in our

approximation of the size of a functional process that belongs to the Medium class. Similarly,

the error margin of the Small and the Large classes are also very small. This will also make

the task of discriminating between the close classes harder than discriminating between

widely-varying classes.

134

6.3.2 Syntactic Feature Selection

To perform the classification task, we considered a large pool of linguistic features that can

be extracted by a syntactic parser. In this regards, we used the Stanford Parser (Klein &

Manning, 2003) (equipped with Brill's POS tagger (Brill, 1992) and a morphological

stemmer) to morphologically stem the words and extract many linguistic features, e.g. the

frequency of words appearing in different parts-of-speech categories. As we have the actual

CFP values in our historical dataset, we sorted the linguistic features based on their

correlation with the CFP values. The ten highest correlated features are listed in Table 20.

ID Features (Frequency of..) Correlation with
CFP

1 Noun Phrases 0.4640
2 Parentheses 0.4408
3 Active Verbs 0.4036
4 Tokens in Parentheses 0.4001
5 Conjunctions 0.3990
6 Pronouns 0.3697
7 Verb Phrases 0.3605
8 Words 0.3595
9 Sentences 0.3586
10 Uniques (hapax legomena) 0.3317

Table 20: Ten Linguistic Features Most Highly Correlated with CFP

The correlation shows the ten syntactic features that influence COSMIC functional size the

most. The intuitive reasons for them are explained below.

Frequency of Noun Phrases (#1): No matter how poorly a requirement is described, the

involvement of a data-group in a particular data-movement is typically indicated by the

presence of a noun phase. Therefore, if a functional process contains more noun phrases, the

chances are that its data-movements involve more data-groups and its size is larger.

Frequency of Parentheses (#2) & Number of tokens inside parentheses (#4): When

complex functional processes are described in textual requirements, parentheses are often

used to provide brief explanations in a limited scope. Thus, a higher number of

parentheses/Number of tokens inside parentheses can sometimes indicate a complex

functional process.

135

Frequency of Active Verbs(#3) & Verb Phrases(#7): Verbs in active form are frequently

used to describe actions and, hence, are often used in larger numbers in textual requirements

to explain data-movements, as data-movements result from actions carried out by the user or

the system or an external system.

Frequency of Pronouns(#6): A longer description in textual requirements for a functional

process often indicates its complexity, and requires the use of more pronouns and other

refering expressions within the functional process to maintain cohesion.

Number of Words(#8), Conjunctions(#5), Sentences(#9) and Uniques(#10): In general,

lengthy descriptions of the requirements (hence, a higher frequency of words, sentences and

unique words) often indicate a more complex functional process.

In addition to the above syntactic features, we also looked at possible keywords that can be

used in our classification task.

6.3.3 Lexical Feature Selection

Studies [e.g. (Hussain, Kosseim, & Ormandjieva, 2008; Wiebe, Wilson, Bruce, Bell, &

Martin, 2004)] have shown that using keywords grouped into particular part-of-speech

categories can help to obtain good results in various text mining problems. For our work, we

have, therefore, considered lists of keywords, where each list belongs to a given part-of-

speech category. We chose three open-class part-of-speech groups for these keywords to be

selected. They are: Noun-keywords (coded as: NN_keyword), Verb-keywords (coded as:

VB_keyword), and Adjective-keywords (coded as: JJ_keyword).

We generate finite lists of these keywords based on two different probabilistic measures, as

described in (Hussain, Kosseim, & Ormandjieva, 2008), that take into account how many

more times the keywords occur in one class of the training set than the other class. A cut-off

threshold is then used to reduce the list to keep only the top most discriminating words. For

example, the three lists that were automatically generated by this process from our training

set during a single fold of 10-fold cross-validation are shown in Table 21.

136

NN_keyword VB_keyword JJ_keyword
user ensure supplied

category get current
quota choose previous

content start available
default restart
chart fill

… …

Table 21: Some of the Keywords of POS Category: Noun, Verb and Adjective

These three lists constituted three additional features for our classification task. Thus, when

we extract the features, we counted one of the keyword feature, for example, as how many

times words from its keyword-list appears in the set of requirements of a functional process,

and appearing in the same part-of-speech class.

6.3.4 Feature Extraction and Classification

To classify the sets of textual requirements belonging to different functional processes, we

developed a Java-based feature extraction program that uses the Stanford Parser (Klein &

Manning, 2003) to extract the values of all the syntactic and keyword features mentioned

above, and uses Weka (Witten & Frank, 2005) to train and test the C4.5 decision tree

learning algorithm (Quinlan, 1993). We used the implementation of the C4.5 (revision 8) that

comes with Weka (as J48), setting its parameter for the minimum number of instances

allowed in a leaf to 6 to counter possible chances of over-fitting. The results are discussed in

the next section. We also trained/tested with a Naïve Bayes classifier (John & Langley, 1995),

and a logistic classifier (le Cessie & van Houwelingen, 1992). The C4.5 decision tree-based

classifier performed the best in comparison to the other classifiers with more consistent

results during 10-fold cross-validation.

6.4 Results and Analysis
The results of the classification were very moderate when using the whole dataset for training

and testing. Since the dataset was not very large, we could not use a separate dataset for

testing, and we could only use cross-validation, which can be very harsh on the performance,

when the number of instances is very low. Yet, the classifier results did not drop significantly.

Table 22 shows a summary of the results.

137

 Scheme
Correctly
Classified
Sentences

Incorrectly
Classified
Sentences

Kappa Comment

Corpus Size = 61
(sets of textual
requirements,
each set
representing a
functional
process)

Training +
Testing on
same set

45
(73.77%)

16
(26.23%) 0.6414

Tree is of
desirable
characteristics,
not sparse, and
also not flat. None
of the branches
are wrongly
directed.

Cross-
validation
(10 Folds)

41 (67.21%) 20
(32.79%) 0.5485

Table 22: Summary of the Results

The resultant decision tree after training on the complete dataset is shown in Figure 31. As

the figure shows, the tree came out well-formed and of desirable characteristics — not sparse,

and also not flat. Also, none of its branches are wrongly directed.

sentences

Small

≤ 9

Complex

NN_keywords

> 9

VB_phrases

LargeMedium

≤ 4 > 4

≤ 23 > 23

Figure 31: The Resultant C4.5 Decision Tree after Training with the Complete Dataset

Although the Kappa results of Table 22 shows stable and moderate results in terms of

performance with the 10-fold-crossvalidation, the confusion matrix of Table 23 shows that

the classifier struggled to classify functional processes of size Medium into the correct class;

classifying only 47% of them (7 out of 15) correctly. We can also see that the mistakes the

classifier made with the Medium sized functional processes are mostly because it confused

them as Large (for example, it classified another 7 out of the 15 Medium functional processes

incorrectly into the size class Large). The reason for this can be understood by the fact

discussed in Section 6.3.1, where, in Table 19, we see that our box-plot analysis

automatically chose zero approximation error for the class Medium. It, therefore, became the

hardest class to classify among the other classes, carrying very minute differences from its

adjacent class Large, which also has a smaller margin of approximation error. Thus, when

our classifier correctly classifies a functional process as Medium, it does not really

138

approximates its size; rather it accurately identifies its precise size value, which is 5 CFP.

Again, when the classifier mistakenly classified a Medium functional process as Large, the

error in size approximation that it made is of only 1 CFP value. If we had a larger number of

instances, there would have been wider variation of size values in our historical database. We

believe that this would make the classification task easier for our classifier allowing the

learning algorithm to find the threshold values for the other unused linguistic features and,

thus, utilize them in making fine-grained distinction and render better results.

By analyzing Table 23, we can see that the classifier had difficulty in identifying the

functional processes of size Small. Although it classified 7 out of 9 Small functional

processes correctly as Small, it misclassified some Medium, Large, and even Complex

functional processes as Small (see the 1st column of Table 23). Here, again, we believe that

the small size of our dataset (e.g. we had only 9 instances of size Small) may be the cause. It

should be noted that these results were extracted during cross-validation of 10 random folds,

which can significantly reduce the number of training instances for a particular class during a

single fold in a skewed corpus. In our case, for example, during one fold, the number of

training instances for the Small class went minimum of only 2 instances, which were

inadequate for the learning algorithm to discover the thresholds of most of the discriminating

linguistic features that we selected for this work. We, therefore, believe that these results

would improve with the introduction of more instances in our dataset.

 Classified as

 Small Medium Large Complex

Small 7 0 1 1

Medium 1 7 7 0

Large 2 1 16 2

Complex 2 0 3 11

Table 23: Confusion Matrix When Using 10-fold Cross-Validation

These phenomena are also reflected in the precision and recall values shown in Table 24.

Moreover, it also shows that a good performance on average attained by the classifier with

such a small dataset.

139

Size Class Precision Recall F-Measure

Small 0.583 0.778 0.667

Medium 0.875 0.467 0.609

Large 0.593 0.762 0.667

Complex 0.786 0.688 0.733

Mean 0.709 0.673 0.669

Table 24: Precision, Recall and F-Measure, When Using 10-fold Cross-Validation

We can also demonstrate by showing that if we had less number of classes, i.e. two or three

size classes, the available number of instances would have been enough for a more realistic

classification task. To show that, we developed both a two-class size classifier (classifying

functional processes into Small and Large classes), and a three-class size classifier

(classifying functional processes into Small, Medium and Large classes) using the same

principles and the same sets of features described earlier in this chapter. The results were

significantly better, attaining mean f-measures of 0.802 and 0.746 for the 2-class and the 3-

class classifiers respectively. The summary of using 10-fold cross-validation with both

classifiers is shown in Table 25.

140

Classifier Kappa Size
Classes Precision Recall Tree

2-class
Classifier 0.606

Small 0.895 0.829

Large 0.696 0.8

3-class
Classifier 0.575

Small 0.677 0.875

Medium 0.794 0.721

Large 0.9 0.73

Table 25: 10-fold Cross-Validation Results of Using a 2-Class and 3-Class Classifier

6.5 Conclusion
In this chapter, we have presented our research activities that shows that the classification of

textual requirements in terms of their functional size is plausible using linguistic features.

Since our work uses a supervised text mining approach, where we need experts to build the

historical database by manually measuring the COSMIC functional size from textual

requirements, we could not train and test our system with a large number of samples. Yet, the

results that we were able to gather by cross-validating on such small number of samples show

a promising behavior of the classifier in terms of its performance. We have been able to

identify automatically a set of highly discriminating linguistic features that can effectively

classify textual requirements in terms of functional size.

141

It should be mentioned that we have not yet tested our approach as to be used with

requirements written in variable level of quality. We believe that this approach would be

organization-specific, where textual requirements saved in the historical dataset should all be

written in the same format or writing style having similar quality. This would allow our

classifier to pick the best set of features and set the best thresholds that would classify new

requirements written in similar style and quality.

This chapter has described our approach of exploring linguistic features for extracting the

conceptual artifacts of the COSMIC functional size measurement standard from textual

software requirements. Here, we used the annotated corpus, presented in the previous chapter

in Section 5.3.2, to identify discriminating features at different syntactic and lexical levels.

We then used the gold-standard annotation labels of the corpus to devise a large number of

training and testing datasets to experiment our supervised learning-based and rule-based

approaches for functional size measurement (FSM).

In the next chapter (Chapter 7), we experiment with the linguistic features in a heuristic-

based and supervised learning-based approaches for extracting the artifacts of an FSM model.

The accuracy and usability of the manual process of FSM are then compared with our

automated FSM approach.

142

Chapter 7

Automated FSM Modeling

“The only place success comes before work is in the dictionary.”
— Vince Lombardi

7.1 Introduction
This chapter describes our approach of exploring linguistic features for automatically

extracting the conceptual artifacts of the COSMIC functional size measurement (FSM)

standard from textual software requirements. In this phase, we used our annotated corpus, as

presented in Section 5.3.2, to identify discriminating features at different syntactic and lexical

levels. We then used the gold-standard annotation labels of the corpus to devise a large

number of training and testing datasets to experiment our supervised learning-based and rule-

based approaches for functional size measurement (FSM).

Studies (Saadaoui, Majchrowski, & Ponsard, 2009; COSMIC, 2011; Habela, Głowacki,

Serafiński, & Subieta, 2005; Rule & Rule, 2011) show that when the requirements are

formalized and decomposed enough to make the FSM modeling artifacts clearly identifiable

to the expert measurers, COSMIC FSM can be applied objectively to achieve one correct

measurement across multiple measurers. Thus, (Condori-Fernàndez, Abrahão, & Pastor, 2007)

also demonstrated that a static set of rules can be applied to extract COSMIC functional size

from requirements that have been highly formalized to UML System Sequence diagrams.

However, when dealing with software requirements written in natural language, the work

depends on the expertise of human measurers to presume the conceptual models that can be

realized from these requirements and use this idea to base their judgment on identifying the

COSMIC modeling artifacts from the requirements.

143

Our automation approaches discussed in this chapter take as inputs the functional

requirements of a software in textual form clustered by functional processes and the lexical

resources related to the problem domain of the same software. The outputs of our approaches

are the range of functional size of the software and a measurement model for tracing the

output of functional size to its originating textual requirements. Figure 32 illustrates an

overview of the workflow of our approach.

Automated FSM
Modeling & Standard

Measurement

Functional Requirements
(Clustered by

Functional Processes)

Range of
Functional

Size

FSM Model

Traceability Mapping

Available Lexical Resources
of the Problem Domain

Figure 32: Inputs and Outputs of Our Approach for Automated FSM Modelling

7.2 Our Approach
Our approach aims to learn the linguistic aspects of textual software requirements that will

guide us in automatically extracting the conceptual artifacts of our formalization of COSMIC

FSM model, as presented in Section 4.3. In particular, we would be extracting COSMIC data-

movements and the COSMIC data-groups from our input functional requirements that have

already been clustered into functional processes. Our approach thus not only outputs the

range of functional size of the functional process in CFP, but also helps us to provide

traceability on output CFP values to textual requirements.

In our observation of applying COSMIC FSM over textual requirements, we noticed that the

semantics of the COSMIC data-movements can be realized from textual requirements by

using both the syntactical and the lexical information embedded in the requirements, as

144

reflected by our FSM model, as discussed in Section 4.3. Figure 33 illustrates the pipeline of

our approach showing the workflow of the major steps for automated FSM modeling and

measuring the functional size in COSMIC Function Points (CFP).

Pipeline for Automated FSM Modeling

Au
to

 FS
M

LA
SR

Measuring COSMIC Function Points (CFP) Automatically

Preprocessing:
Extract Textual
Instances For
Classification

Feature Extraction:
Extract Linguistic

Features

Heuristic-based
Data-Attribute
Classification

Heuristic-based
Data-Group
Association
Extraction

Heuristic-based
Data-Movement

Classification
(for Base-NP)

Training of
Data-Movement

Classifiers
(for Base-NP)

Supervised
Learning-based

Data-Movement
Classification
(for Base-NP)

Heuristic-based
Data-Movement

Classification
(for Sentences)

Tag Textual
Instances with

Classification Labels

Generalize Counts of
Positive Tags by

Functional Process

Collaborative
Annotation &

CFP Measurement

Determine CFP
Range for Each

Functional Process
[S

uf
fic

ie
nt

Tr

ai
ni

ng
]

[N
ee

d
M

or
e

Tr
ai

ni
ng

]

Figure 33: Major Steps of Our Approach for Automated FSM Modeling

We discuss the details of each of these steps, as illustrated in Figure 33, in the following

sections.

7.3 Preprocessing
In the preprocessing step, we use lightweight natural language processing techniques to

perform sentence segmentation and parts-of-speech tagging over our input textual instances

of functional requirements, which had already been clustered into functional processes by the

steps mentioned in Section 4.4.3. The workflow of our preprocessing step is shown in Figure

34.

145

Functional Requirements
(Clustered by

Functional Processes)
Sentence
Delimiter

POS
Tagger

Noun
Extractor

Tokenized
Sentences

Nouns

Tokenizer

Figure 34: Workflow of the Preprocessing Step

As shown in Figure 34, we first tokenize the textual instances by words and punctuations, use

our custom rules for sentence segmentation, use a custom-trained transformational tagger like

the Brill tagger (Brill, 1992) to compute the part-of-speech (POS) class of the word tokens

from the sentences, and, finally, identify both the pronoun-type words (i.e. with POS tags

PRP) and the longest chunks of consecutive noun-type words (i.e. with POS tags NN, NNS,

NNP, NNPS etc.) as individual instances of base noun-phrases that are to be used in our next

step. We also identify their heads (rightmost noun-type word, if an instance is a noun

compound, or the word itself, if the instance is noun of single word, or a pronoun). Moreover,

we use a morphological stemmer to find the roots and affixes of all words in the sentence.

We then use the extracted sentences and noun-phrases for collaborative manual annotation

with LASR, as discussed in Chapter 5, and also, in parallel, move on to perform our next step

of feature extraction.

7.4 Extraction of Linguistic Features
The step of extracting the linguistic features first takes the tokenized sentences the previous

step and extract the syntactical dependencies between each pair of tokens using a syntactic

parser, e.g. the Stanford Parser (Klein & Manning, 2003). We then evaluate a set of syntactic

features from our extracted noun-phrases based on the dependency relationships, and use the

lexical database built from one of our previous steps, as discussed in Section 4.4.3, to identify

a set of their lexical features. We then also compute a set of complex semantic features

146

combining both the extracted syntactic and lexical features. Finally, we compose the feature

values into a data file that is to be used for training/testing our classifiers. The workflow of

our feature extraction step is presented in Figure 35.

Extract Syntactic
Feature Set

Tokenized
Sentences

Nouns

Build Dictionaries

Extract Lexical
Feature Set

Combine
Features

Data Group
Names

Actor
Names

Attribute
Names

Data-Movement
Verbs

Generate Training/
Testing Data File

Training/Testing
Data File

WordNet

Select Seed Words
Related To

Problem Domain

Build Lexical Database

Extract Linguistic
Feature Set

Noun

-Syntactic Feature Set
-Lexical Feature Set
-Combined Feature Set

Stative
Verbs

Figure 35: Workflow of the Feature Extraction Step

As shown in Figure 35, we extracted three different sets of features that are presented below.

7.4.1 Lexical Feature Set

We select our lexical database, as described in Section 4.4.3, corresponding to the problem

domain of our input requirements to identify discriminating lexical features that take into

account the domain-specific keywords used in requirements text (the keywords, used for our

experiments, are listed in Appendix A). We then extract these features from our input noun-

phrases and verb-type word tokens. Some lexical features, e.g. “the noun-phrase is an

147

actor12” attached to the noun-phrases and “the verb is a data-movement verb13” attached to

the verb-type words, are only used to derive our set of combined features, as presented in

Section 7.4.3.

On the other hand, the two lexical features, which are extracted from the noun-phrases and

retained in our final pool of features, are listed below:

• F1: “The noun-phrase partly contains an attribute name (possible value: true, or

false)”

• F2: “The noun-phrase partly contains a data-group name (possible value: true, or

false)”

Here, the attribute and data-group names are matched from our selected lexical database. We

enriched the content of our lexical database using WordNet (Miller, 1995; Princeton

University, 2010), as described in Section 4.4.3.

7.4.2 Syntactic Feature Set

We extracted our syntactic features from our input noun-phrases based on its syntactic

relation with other words of the tokenized sentences as derived by using a syntactic parser.

We used the Stanford Parser (Klein & Manning, 2003), together with our custom linguistic

rules that were written in the JAPE scripting language of the GATE environment

(Cunningham H., et al., 2011), for building our syntactic feature extractor. Our custom rules

extended the scope of the syntactic parser to consider the subjects and the objects of a verb

like agents and patients of an action respectively, even when the verb is in passive form.

These rules also take into account of conjunctions and co-references caused by the uses of

12 If the stemmed head of a noun instance contains a substring that exists in the vocabulary of actor names
from our lexical database, we identify that the noun is an actor. Here, the head of our noun instance is
selected as follows: (i) if the instance consists of only one noun token, then its head is the noun token itself;
(ii) if the instance is noun compound or consists of multiple noun tokens, then its head is the rightmost
noun token; and (iii) if the instance is a pronoun, then its head is the pronoun itself.

13 If a stemmed verb token exists in the vocabulary of a certain type (Entry, Exit, Read, or Write) of data-
movement verbs from our lexical database, we then identify that the verb is a data-movement and of the
respective type.

148

personal pronouns and relative pronouns, and find the appropriate subject and object relations

between verbs and noun-phrases to attach the feature value accordingly. Moreover, our rules

also identify the presence of the negation modifiers in various syntactic relations within a

sentence to denote a noun-phrase (and also a verb) as part of a negative expression14.

Our final syntactic features are listed below:

• F3: “The noun-phrase is a direct object (possible value: true, or false)”

• F4: “The noun-phrase is in an object-like15 position (possible value: true, or false)”

• F5: “The noun-phrase is a subject (possible value: true, or false)”

• F6: “The noun-phrase is part of a dependent clause (possible value: true, or false)”

• F7: “Type of dependent clause that contains the noun-phrase (possible value:

adverbial clause, or clausal complement, or open clausal complement, or none)”

• F8: “The noun-phrase is part of negative expression (possible value: true, or false)”

7.4.3 Combined Feature Set

We extracted these features by combining some of the lexical features of the noun-phrases

and the verb-type words with the syntactic features of our input noun-phrases to derive some

complex semantic attributes of the noun-phrases by applying a set of custom rules. There are

also written in the JAPE scripting language of the GATE environment (Cunningham H., et

al., 2011). We added the combined features to our final pool of features in two groups: i)

General Combined Features, and ii) Data-movement Verb-related Combined Features. All

these features are listed below:

14 Our rules consider, along with negation modifiers, some negative implicative verbs (Karttunen, 1971),
e.g. fail, stop, refuse, reject, ignore, deny, cancel, forbid, dismiss, refrain, decline, disapprove, disallow etc.,
to identify negative expressions in a sentence (see Appendix C.15 for details).

15 If a noun appears as a direct or indirect object to a verb (or as a syntactic nominal subject to a verb in
passive form), or as a prepositional object to a direct/indirect object of a verb (or to a syntactic nominal
subject to a verb in passive form), or in a chain of prepositional objects linked to a direct/indirect object of
a verb (or to a syntactic nominal subject to a verb in passive form), then we identify that the noun appears
in an object-like position.

149

i. General Combined Features:

• F9: “The noun-phrase owns an attribute16 (possible value: true, or false)”

• F10: “The noun-phrase belongs to a data-group17 (possible value: true, or false)”

• F11: “The noun-phrase is a subject of a Stative verb (possible value: true, or false)”

• F12: “The noun-phrase is related to an attribute name by a chain18 of prepositional

objects (possible value: true, or false)”

• F13: “The noun-phrase is related to a data-group name by a chain of prepositional

objects (possible value: true, or false)”

• F14: “Type of the subject of the verb, which has the noun-phrase in its object-like

position (possible value: actor subject, or non-actor subject, or none/no

subject)”

• F15: “Type of the subject of the verb, which has the noun-phrase in its dependent

clause (possible value: actor subject, or non-actor subject, or none/no subject)”

ii. Data-Movement Verb-related Combined Features:

Our set of combined features that are related to data-movement verbs can further be grouped

into five categories, based on the types of data-movement verbs, as per their corresponding

vocabularies from our lexical database, as described in Section 4.4.3.

16 If an attribute name appears as a possessive determiner of the head of a noun, we then identify that the
noun owns an attribute. For example, in “Device User’s address”, the attribute name “address” appears as a
possessive determiner of the head “User” of the noun compound “Device User”. Therefore, we identify that
the noun compound “Device User” owns an attribute. Again, if a noun appears as a prepositional object of
an attribute name with an associated preposition “of”, we then also identify that the noun owns an attribute.
For example, in “address of the Device User”, the noun compound “Device User” appears as a
prepositional object of the attribute name “address” with an associated preposition “of”. Therefore, we
identify here also that the noun compound “Device User” owns an attribute.

17 If a noun appears as a possessive determiner of a data-group name, then we identify that the noun
belongs to a data-group. For example, in “Item’s price”, the noun-phrase “price” appears as a possessive
determiner of the mention of the data-group “Item”. Therefore, we identify that the noun “price” belongs to
a data-group. Again, if a data-group name appears as a prepositional object of the noun-phrase with an
associated preposition “of”, we then also identify that the noun belongs to a data-group. For example, in
“price of the Item”, the data-group name “Item” appears as a prepositional object of the noun “price” with
an associated preposition “of”. Thus, we identify here also that the noun “price” belongs to a data-group.

18 When a noun appears as a prepositional object to another noun which may be a prepositional object to
another noun and so on, we then define the boundary, starting from the first character of the first noun and
ending at the last character of the last noun, as a chain of prepositional objects.

150

 (a) For Any Type of Data-movement Verb

• F16: “The noun-phrase is in an object-like position to a Data-Movement verb

(possible value: true, or false)”

• F17: “Type of the dependent clause of a data-movement verb that contains

the noun-phrase (possible value: adverbial clause, or clausal

complement, or open clausal complement, or none)”

 (b) For Entry Verb

• F18: “The noun-phrase is in an object-like position to an Entry verb (possible

value: true, or false)”

• F19: “Type of the dependent clause of an Entry verb that contains the noun-

phrase (possible value: adverbial clause, or clausal complement, or

open clausal complement, or none)”

 (c) For Exit Verb

• F20: “The noun-phrase is in an object-like position to an Exit verb (possible

value: true, or false)”

• F21: “Type of the dependent clause of an Exit verb that contains the noun-

phrase (possible value: adverbial clause, or clausal complement, or

open clausal complement, or none)”

 (d) For Read Verb

• F22: “The noun-phrase is in an object-like position to a Read verb (possible

value: true, or false)”

• F23: “Type of the dependent clause of a Read verb that contains the noun-

phrase (possible value: adverbial clause, or clausal complement, or

open clausal complement, or none)”

 (e) For Write Verb

• F24: “The noun-phrase is in an object-like position to a Write verb (possible

value: true, or false)”

• F25: “Type of the dependent clause of a Write verb that contains the noun-

phrase (possible value: adverbial clause, or clausal complement, or

open clausal complement, or none)”

151

Although we have extracted more linguistic features than the 25 features mentioned here, all

of the these 25 features were chosen to be included in our final pool of features based on their

relevance in expressing the actions of data-movements in textual requirements. More details

about many of these features, their significance and our associated rules for extracting them

is presented in Appendix C. In our feature extraction step, we record these feature values in

our training/testing data file for our corpus of functional processes.

7.5 Heuristic-based Classification
We consulted with the expert measurers, who participated in our annotation experiments, as

mentioned earlier in Section 5.3.1, about their experiences of interpreting different syntactic

patterns of textual requirements as indications of the occurrence of data-attributes, data-

groups and data-movements. We led them to try out different linguistic forms of textual

requirements and found, for example, that noun-phrases that are parts of negative senses of

actions within a sentence (as also determined by our feature F8 mentioned in Section 7.4.2)

do not usually convey the sense of a moving data-group. Again, in relation to the COSMIC

data-movement, the noun-phrases in functional requirement that express the meaning of

owning attributes, are often mentions of data-group names. Then, the noun-phrases that

indicate the mentions of moving data-attributes/data-groups, tend to appear in object-like

positions to data-movement verbs (as determined by our features F16, F18, F20, F22 and F24

mentioned in Section 7.4.3). Moreover, the noun-phrases that indicate the mentions of data-

attributes/data-groups participating in Entry-type data-movements, tend to appear in object-

like positions to verbs that have actor subjects (as also determined by our features F14

mentioned in Section 7.4.2).

By devising our heuristic-based classification approach, we generalized the experts’ process

of interpreting these complex linguistic cues of textual requirements into the COSMIC

modeling artifacts. These heuristics are static rules applied over the linguistic features, that

are extracted from using our previous step, as mentioned in Section 7.4. Thus, with the

inclusion of new requirements instances to our corpus over time, only the (lexical) features

gets enriched and evolves, but not these heuristics. However, this heuristic-based

classification approach can be necessary to implement our methodology in practice,

152

especially when we do not have sufficient data for training our supervised learning-based

classification approach, presented later in Section 7.6.

Our heuristics thus use the same linguistic features, which are extracted from using our

previous step, as mentioned in Section 7.4, to classify noun-phrases and sentences from

textual requirements into classes that represent COSMIC’s modeling artifacts, e.g. the data-

attributes, the data-groups and the data-movements. We present the details of these heuristics

for each type of classifications, in the following sections.

7.5.1 Data-Attribute Classification

During the data attribute classification step, we identify the noun-phrases that appear in

functional requirements sentences to represent the data-attributes. The lexical feature F1, as

mentioned in Section 7.4, already indicate noun-phrases that contain the attribute names as

their substrings. Additionally, we apply the following algorithm to classify a noun-phrase as

a data-attribute:

Step 1. For each noun-phrase instance x in the input functional process d :

1.1. If x.F1 = true and the root of the head of x exists in our vocabulary of

attribute names, then:

1.1.1. Set x.isADataAttribute = true ;

Step 2. For each noun-phrase instance x in the input functional process:

2.1. If x is a Personal Pronoun (i.e. x.POS=PRP) and x (lowercased) is “he”,

“she”, “it” or “they”, then:

2.1.1. If x is not pleonastic [which is detected using Gate’s ANNIE tool

(Cunningham H., Maynard, Bontcheva, & Tablan, 2002)], then:

Resolve pronominal anaphoric references for x, by identifying the

nearest matching antecedent y (i.e. that matches the number and the

gender of x) and copying all the feature values of the antecedent y

to x ; (Thus, if y.isADataAttribute = true, then also,

x.isADataAttribute = true.)

Step 3. For each Wh-determiner y in the input functional process d :

3.1. Set y (temporarily) as a noun-phrase instance ;

3.2. Identify the nearest matching antecedent x (i.e. that matches the number and

the gender of y) and copy all the feature values of the antecedent x to

y ;(Thus, if x.isADataAttribute = true then also, y.isADataAttribute = true.)

We used the JAPE scripting language of the GATE environment (Cunningham H., et al.,

2011) to implement our above heuristic.

153

7.5.2 Data-Movement Classification

During the data-movement classification step, we identify the noun-phrases that appear in

functional requirements sentences to represent the data-attributes participating in one or more

type of data-movements. Our combination of lexical and syntactic features, as mentioned in

Section 7.4, already identify verbs within functional requirement sentences that express the

senses of Entry, Exit, Read and Write types of data-movements, and also the relationships of

the noun-phrases to those verbs. We therefore apply the following algorithm that uses these

features to classify the type of data-movement that a data-attribute (expressed by a noun-

phrase) is involved with:

Step 1. For each noun-phrase instance x in the input functional process d :

1.1. If x.F8 = true, then:

1.1.1. Skip and continue to the next iteration with a new x;

1.2. If x.F18 = true, then:

1.2.1. If x.F14 = “actor subject”, then:

Set x.isRelatedToEntryVerb = true ;

1.2.2. Else If x.F14 = “none/no subject”, then:

Set x.isRelatedToEntryVerb = true ;

1.3. Else If x.F20 = true, then:

Set x.isRelatedToExitVerb = true ;

1.4. Else If x.F22 = true, then:

Set x.isRelatedToReadVerb = true ;

1.5. Else If x.F24 = true, then:

Set x.isRelatedToWriteVerb = true ;

Step 2. For each noun-phrase instance x in the input functional process d :

2.1. If the head of x is connected to another head of a noun-phrase y with a

coordinating conjunction, causing a conjunct relation [which is detected

using the Stanford Dependency Parser (Cer, de Marneffe, Jurafsky, & Manning,

2010), then:

2.1.1. Copy all the feature values of x to y ; (Thus, if x.isRelatedToEntryVerb

= true and/or x.isRelatedToExitVerb = true and/or x.isRelatedToReadVerb =

true and/or x.isRelatedToWriteVerb = true, then also,

y.isRelatedToEntryVerb = true and/or y.isRelatedToExitVerb = true and/or

y.isRelatedToReadVerb = true and/or y.isRelatedToWriteVerb = true

respectively.)

2.2. If x is a Wh-determiner, and y is its antecedent, then:

2.2.1. Copy all the feature values of x to y ; (Thus, if x.isRelatedToEntryVerb

= true and/or x.isRelatedToExitVerb = true and/or x.isRelatedToReadVerb =

true and/or x.isRelatedToWriteVerb = true, then also,

y.isRelatedToEntryVerb = true and/or y.isRelatedToExitVerb = true and/or

154

y.isRelatedToReadVerb = true and/or y.isRelatedToWriteVerb = true

respectively.)

2.2.2. Remove x from the collection of noun-phrase instances.

Here, where a noun-phrase instance is tagged with the feature value indicating that it is

related to a type of data-movement verb, it means that the noun-phrase may potentially be

counted as a data-movement of a data-attribute based on the semantics of the sentence.

However, as the COSMIC standard suggests that a data-movement occurs only at the level of

data-groups, the actual classification of data-movement is finalized when the noun-phrases

are associated with data-groups using our heuristics, presented in Section 7.7.

Moreover, we found that the measurers often detect implicitly specified occurrences of two

special types of data-movements while reading functional requirement sentences with certain

verbs. They are: (1) the Entry-type data-movements of the triggering events of functional

processes, and (2) the Exit-type data-movements of System Message data-group. These two

data-groups usually do not appear in the list of possible domain entities of a problem domain,

and they cannot also be associated to any noun-phrase of a functional requirement sentence,

as no data-attribute can belong to them. Hence, the data-movements can only be tagged to the

sentences that express the senses of these data-movements implicitly, as shown in our

example in Section 2.7.2.

To detect these two special cases of implicitly specified data-movements, we first built two

more vocabularies of verbs19: the ones that convey the idea of the implicit occurrence of the

Entry-type data-movements of the triggering events, and the others that do the same for the

Exit-type data-movement of the System Messages data-group. We then used the following

additional algorithm to identify these implicitly specified data-movements:
Step 1. For each sentence x in the input functional process d :

1.1. For each verb y in x:

1.1.1. If the root of y exists in our vocabulary of “Triggering-Entry” verbs

(i.e. the verbs that convey the idea of the implicit occurrence of the

Entry-type data-movements of the triggering events), then:

1.1.1.1. For each noun-phrase instance p, which appears as a subject of y

in the sentence:

1.1.1.1.1. If the root of the head of p exists in our vocabulary of

“actor names”, then:

19 These two additional vocabularies that we built during our tests are presented in Appendices A.6 and A.7.

155

 Set x.classified_TriggeringEntryDataMovement = true ;

1.1.1.1.2. Else if head of p (lowercased and with non-alphabet

characters removed) contains a substring that is equal to any

of the strings of in the set {“case”, “usecase”, “procedure”,

“process”, “function”, “method”, “service”, “task”}, then:

 Set x.classified_TriggeringEntryDataMovement = true ;

1.1.1.2. If y has no subject, then:

 Set x.classified_TriggeringEntryDataMovement = true ;

1.1.2. If the root of y exists in our vocabulary of “System-Message-Exit” verbs

(i.e. the verbs that convey the idea of the implicit occurrence of the

Exit-type data-movements of the System Message data-group), then:

1.1.2.1. For each noun-phrase instance p, which appears as a subject of y

in the sentence:

1.1.2.1.1. If the root of the head of p does not exist in our

vocabulary of “actor names”, then:

 Set x.classified_SystemMessageExitDataMovement = true ;

1.1.2.2. If y has no subject, then:

 Set x.classified_SystemMessageExitDataMovement = true ;

We again used the JAPE scripting language of the GATE environment (Cunningham H., et

al., 2011) to implement all of our above heuristics. It should be mentioned that our feature

values that indicated the nominal subjects and the direct objects of verbs were distributed (or

copied) amongst the noun-phrase instances and the verbs accordingly, whenever there are

conjunctions joining the noun-phrase instances together or the verbs together that result from

the occurrences of commas and coordinating conjunction-type words (i.e. and, or, either,

neither, nor etc.) between them, as mentioned in Section 7.4.2.

Our above data-movement classification approach depends on many features from our final

pool of features. However, we designed our heuristics to use a minimum number of features

from our feature pool to keep the rules generalized enough to work with new textual

requirements from unseen problem domains and fail gracefully in case of the less-frequent

exceptions due to unrestricted natural language are encountered. We, therefore, also included

a supervised learning-based data-movement classification approach that can evolve with new

training instances and fine tune its learnt models by introducing additional unused features

from our feature pool. For example, it may utilize the unused features, like the ones that deal

with different kinds of dependent clauses within the sentences (i.e. features F17, F19, F21,

F23 and F25, as presented in Section 7.4.3), or the one that detects the Stative verbs and that

156

subjects within the sentences (i.e. feature F11, as presented in Section 7.4.2) etc, to tackle the

exceptions of unrestricted natural language.

In the next section, we discuss our supervised learning-based data-movement classification

approach in details.

7.6 Supervised Learning-based Classification
During the supervised learning-based classification step, we take the datasets generated by

the feature extraction step (discussed in Section 7.4) as input. Here, to use them as training

datasets, we also need noun-phrase instances to be annotated by expert measurers, either

manually or using our annotation tool LASR. Our supervised learning-based classification

approach then applies these datasets to train four different binary classifiers: (1) Entry Data-

Movement Classifier, (2) Exit Data-Movement Classifier, (3) Write Data-Movement

Classifier, and (4) Write Data-Movement Classifier.

7.6.1 Feature Selection

We trained each of our data-movement classifiers with a total of nineteen different features

from our feature pool. They are:

• For Entry Data-Movement Classification: The chosen linguistic features are F1-

F19, as described in Section 7.4.

• For Exit Data-Movement Classification: The chosen linguistic features are F1-F17,

F20 and F21, as described in Section 7.4.

• For Read Data-Movement Classification: The chosen linguistic features are F1-F17,

F22 and F23, as described in Section 7.4.

• For Write Data-Movement Classification: The chosen linguistic features are F1-

F17, F24 and F25, as described in Section 7.4.

157

7.6.2 Choice of Learning Algorithms

We built all four data-movement classifiers (i.e. the Entry classifier, the Exit classifier, the

Read classifier and the Write classifier) based on Weka’s (Hall, Frank, Holmes, Pfahringer,

Reutemann, & Witten, 2009) implementation of the C4.5 decision tree learning algorithm

(Quinlan, 1993). The C4.5 decision tree learning algorithm not only attained some of the best

results compared to other learning algorithms (e.g. Naïve Bayes or Neural Network) in our

preliminary tests, but also generated rules, whose semantics could also be verified for

correctness. We fine-tuned its parameters to first build an un-pruned decision tree, and then

prune it by applying the restriction of classifying at least 5 instances in each leaf of the final

decision tree.

For our experiments with these supervised learning-based data-movement classifiers, we

used the annotated corpus, which was generated by the annotation experiments discussed in

Section 5.3.3, and built our training/testing datasets by extracting the features, mentioned in

Section 7.6.1. After training, these classifiers can take each unlabeled noun-phrase from the

textual requirements of a functional process as input, extract the feature values from the

noun-phrase and classify it either as the one participating in a corresponding type of data-

movement, or as the one not doing so. For example, training our Entry data-movement

classifier with the dataset extracted from the whole Entry corpus, generates a decision tree as

shown in Figure 36.

158

Figure 36: Example Decision Tree to Classify Entry Data-Movement (when the whole dataset is used to

train the C4.5 algorithm)

In Figure 36, the feature nodes are labelled with descriptive names instead of using F1, F2,

F3 etc. to improve readability. This auto-generated decision tree shows semantically

agreeable rules for Entry classification, where none of its branches are misdirected.

159

Although the tree, shown in Figure 36, is generated by using the complete dataset for training

our classifier, we only used portions of our datasets for training, while the rest used for

testing, when running our experiments in this phase. The details on how we used these

datasets in our experiments for training and testing each of our data-movement classifiers are

presented in Section 7.9.

7.7 Data-Group Association
In the data-group association step, we associate the data-group names accordingly to the base

noun-phrase instances (i.e. to the nouns, the noun compounds and pronouns) that appear in

the functional requirement sentences of our input functional process. This step also finalizes

the output classification of the data-movements, as discussed in Sections 7.5.2 and 7.6. Here,

we use the following algorithm to associate the data-group names to the noun-phrase

instances and also finalize their data-movement classification labels based on the associated

data-groups:

Step 1. For each noun-phrase instance x in the input functional process d :

1.1. If x.F2 = true and x matches fully/partially to any y of all the data-group

names, then:

1.1.1. If x.isRelatedToEntryVerb = true or x.isRelatedToExitVerb = true or

x.isRelatedToReadVerb = true or x.isRelatedToWriteVerb = true, then:

1.1.1.1. Set foundMovingDataAttributes = false ;

1.1.1.2. Set x.classified_AssociatedToDataGroup = y ;

1.1.1.3. Set d.lastMostLikelyKnownDataGroup = y ;

1.1.1.4. If x.isADataAttribute = true, then:

1.1.1.4.1. Set x.classified_DataAttribute = true ;

1.1.1.4.2. Set foundMovingDataAttributes = true ;

1.1.1.5. Else:

1.1.1.5.1. Set x.classified_DataAttribute = false ;

1.1.1.5.2. Set foundMovingDataAttributes = false ;

1.1.1.6. If x.F9 = true and x owns a noun-phrase instance z (the feature of

owning a noun-phrase instance is presented in F9 in Section 7.5.2)

and z.isADataAttribute = true and foundMovingDataAttributes = false,

then:

1.1.1.6.1. Set foundMovingDataAttributes = true ;

1.1.1.6.2. Set z.classified_AssociatedToDataGroup = y ;

1.1.1.6.3. Set z.classified_DataAttribute = true ;

1.1.1.7. If x.F12 = true and foundMovingDataAttributes = false and x is

related to z by a chain of prepositional objects (the feature of

being related to a noun-phrase instance by a chain of prepositional

160

objects is presented in F12 in Section 7.5.2), such that

z.isADataAttribute = true, then:

1.1.1.7.1. Set foundMovingDataAttributes = true ;

1.1.1.7.2. Set z.classified_AssociatedToDataGroup = y ;

1.1.1.7.3. Set z.classified_DataAttribute = true ;

1.1.1.8. If foundMovingDataAttributes = false, then:

1.1.1.8.1. Set x.classified_DataAttribute = true ;

1.1.1.8.2. Set foundMovingDataAttributes = true ;

1.1.2. Else:

1.1.2.1. If x is not a subject to a data-movement verb, then:

1.1.2.1.1. Set d.lastMostLikelyKnownDataGroup = y ;

1.1.2.2. Else:

1.1.2.2.1. Set d.lastLessLikelyKnownDataGroup = y ;

1.2. Else:

1.2.1. If x.isRelatedToEntryVerb = true or x.isRelatedToExitVerb = true or

x.isRelatedToReadVerb = true or x.isRelatedToWriteVerb = true, then:

1.2.1.1. Set foundMovingDataAttributes = false ;

1.2.1.2. Set foundDataGroupName = false ;

1.2.1.3. If x.isADataAttribute = true, then:

1.2.1.3.1. Set x.classified_DataAttribute = true ;

1.2.1.3.2. Set foundMovingDataAttributes = true ;

1.2.1.3.3. Set mostLikelyNewDataGroup = null ;

1.2.1.3.4. Set lessLikelyNewDataGroup = null ;

1.2.1.3.5. If x.F10 = true and x belongs to a noun-phrase instance z

(the feature of belonging to a noun-phrase instance is

presented in F10 in Section 7.5.2), then:

1.2.1.3.5.1. Set mostLikelyNewDataGroup = headOf(z) ;

1.2.1.3.5.2. If z matches fully/partially to any y of all the names

in our vocabulary of data-group names and

foundDataGroupName = false, then:

1.2.1.3.5.2.1. Set x.classified_DataAttribute = true ;

1.2.1.3.5.2.2. Set x.classified_AssociatedToDataGroup = y ;

1.2.1.3.5.2.3. Set d.lastMostLikelyKnownDataGroup = y ;

1.2.1.3.5.2.4. Set foundDataGroupName = true ;

1.2.1.3.6. If x.F13 = true and foundDataGroupName = false, then:

1.2.1.3.6.1. For each noun-phrase instance z that is related to x

by a chain of prepositional objects (the feature of being

related to a noun-phrase instance by a chain of

prepositional objects is presented in F13 in Section

7.5.2):

1.2.1.3.6.1.1. Set lessLikelyNewDataGroup = headOf(z) ;

1.2.1.3.6.1.2. If z matches fully/partially to any y of all the

names in our vocabulary of data-group names, then:

1.2.1.3.6.1.2.1. Set x.classified_DataAttribute = true ;

1.2.1.3.6.1.2.2. Set x.classified_AssociatedToDataGroup = y ;

1.2.1.3.6.1.2.3. Set d.lastMostLikelyKnownDataGroup = y ;

161

1.2.1.3.6.1.2.4. Set foundDataGroupName = true ;

1.2.1.3.6.1.2.5. Break out of the for loop;

1.2.1.3.6.1.2.6. Set foundDataGroupName = true ;

1.2.1.3.7. If foundMovingDataAttributes = false, then:

1.2.1.3.7.1. If d.lastMostLikelyKnownDataGroup is not null, then:

1.2.1.3.7.1.1. Set y = d.lastMostLikelyKnownDataGroup ;

1.2.1.3.7.1.2. Set x.classified_DataAttribute = true ;

1.2.1.3.7.1.3. Set x.classified_AssociatedToDataGroup = y ;

1.2.1.3.7.1.4. Set foundDataGroupName = true ;

1.2.1.3.7.2. Else If mostLikelyNewDataGroup is not null, then:

1.2.1.3.7.2.1. Set y = mostLikelyNewDataGroup ;

1.2.1.3.7.2.2. Set x.classified_DataAttribute = true ;

1.2.1.3.7.2.3. Set x.classified_AssociatedToDataGroup = y ;

1.2.1.3.7.2.4. Set foundDataGroupName = true ;

1.2.1.3.7.3. Else If lessLikelyNewDataGroup is not null, then:

1.2.1.3.7.3.1. Set y = lessLikelyNewDataGroup ;

1.2.1.3.7.3.2. Set x.classified_DataAttribute = true ;

1.2.1.3.7.3.3. Set x.classified_AssociatedToDataGroup = y ;

1.2.1.3.7.3.4. Set foundDataGroupName = true ;

1.2.1.3.7.4. Else:

1.2.1.3.7.4.1. Set x.classified_AssociatedToDataGroup = unknown ;

1.2.1.3.7.4.2. Set x.classified_DataAttribute = true ;

All of our above heuristics were implemented using the Jape scripting language of the GATE

environment (Cunningham H., et al., 2011). Our heuristics to associate data-group names to

noun-phrases (as discussed in details in Section 7.7), uses multiple passes of loops that are

sequentially executed, and the loops depend on the outcomes of their previous passes. Based

on these heuristics, we also find that process of data-group association is strictly an

algorithmic approach that do not fully depend on our pool of features, but on the outputs

generated by our previous step of data-movement classification (as discussed in Sections

7.5.2 and 7.6). Thus, the rules we set are complete enough deal with any problem domain,

and do not need to evolve over time with the inclusion of new textual instances of software

requirements from unseen problem domains.

7.8 Extending COSMIC by CFP Range Measurement
In Section 4.3, we presented our formalization of the COSMIC functional size measurement

process (COSMIC, 2014) by modeling of the ontology for the COSMIC FSM artifacts and

the formulas for assigning the numeric value of functional size to a piece of software. Our

162

approaches discussed in this chapter automates the extraction of the COSMIC FSM modeling

artifacts from the textual requirements, and thus maintains the traceability of the FSM

process (i.e. from input textual requirements to the output measurement) by instantiating the

classes of our ontology.

Now, using our approaches as described in Sections 7.5, 7.6 and 7.7, we can automatically

identify the following sets of classification labels for the noun-phrases and sentences from

the textual requirements that describe a functional process, FPROCi :

- Set A containing labels for noun-phrases, that identify them as mentions of Data-

Attributes, which participate in at least one of the four specific types

of Data-Movements, and that most likely belong to some already

known Data-Group(s).

- Set B containing labels for noun-phrases, that identify them as mentions of Data-

Attributes, which participate in at least one of the four specific types

of Data-Movements, and that less likely belong to some already

known Data-Group(s).

- Set C containing labels for noun-phrases, that identify them as mentions of Data-

Attributes, which participate in at least one of the four specific types

of Data-Movements, and that most likely belong to some new and

previously unknown Data-Group(s).

- Set D containing labels for noun-phrases, that identify them as mentions of Data-

Attributes, which participate in at least one of the four specific types

of Data-Movements, and that less likely belong to some new and

previously unknown Data-Group(s).

- Set E containing labels for noun-phrases, that identify them as mentions of Data-

Attributes, which participate in at least one of the four specific types

of Data-Movements, and that belong to some unknown Data-

Group(s).

163

- Set F containing labels for sentences, that identify them as implicit expressions of the

Entry-type data-movement of the Triggering Events.

- Set G containing labels for sentences, that identify them as implicit expressions of the

Exit-type data-movement of the System Messages Data Group.

Thus, each classification label as an element of the sets A, B, C, D and E can be designated as

the following pair:

(data-groupx , data-movement-typey)

where, data-groupx ∈ Set of m possible data-groups in the input problem domain, p

 data-movement-typey ∈ { Entry , Exit , Read , Write }

And, the classification labels as elements of the sets F and G can be designated as the pairs

(TriggeringEvent , Entry) and (SystemMessage , Exit) respectively.

Thus, each element of the sets A, B, C, D, E, F and G is actually an FSM object, as defined in

Section 4.3, and therefore can be any of the following pairs:

(data-group1 , Entry), (data-group1 , Exit), (data-group1 , Read), (data-group1 , Write), (data-

group2 , Entry), … (data-groupm , Entry), (data-groupm , Exit), (data-groupm , Read), (data-

groupm , Write)

Our experiments that are described later in Sections 7.9, 7.10 and 7.11, produced

classification labels similar to the above FSM Objects, and thus can also be considered as

elements of the sets A, B, C, D, E, F and G.

Now, according to the equation (2) presented in Section 4.3 of Chapter 4, we know that the

aggregated measure of functional size in CFP of FPROCi is——

)()(ii FPROCFSMObjectsFPROCSizeFunctional =

We now use the above formula to extend CFP measurement process into measuring the range

of CFP, by defining the minimum, maximum and most-likely functional size. These

definitions are shown by the following formulas:

),2max()(min AFPROCSizeFunctional i =

),2max()(likely-most GFCAFPROCSizeFunctional i =

164

),2max()(max GFEDCBAFPROCSizeFunctional i =

Theses formulas ensure the ranges of functional size in CFP for a functional process, such

that, 2 ≤ FunctionalSizemin(FROCi) ≤ FunctionalSizemost-likely(FROCi) ≤

FunctionalSizemax(FROCi), and thus, retain the rule of COSMIC FSM standard (COSMIC,

2014), which states that the minimum possible size of a functional process is 2 CFP. Also,

the set F is optionally considered in these formulas; i.e. it can be omitted from these formulas,

in case triggering events are not to be counted as additional Entry-type data-movements.

Thus, using the above formulas for FunctionalSizemin(FROCi), FunctionalSizemost-likely(FROCi)

and FunctionalSizemax(FROCi), we can extend the equation (3), presented in Section 4.3, to

measure the CFP range of a requirements document, DOCUMENTp, as follows:


=

=
n

i
ixpx FPROCFSMObjectsDOCUMENTSizeFunctional

1
)()(

where x can be either “min” or “most-likely” or “max”, referring to the minimum, most-

likely and maximum functional sizes respectively defining the limits of the CFP ranges. The

measured CFP ranges of the input requirements documents can thus be used to estimate the

development effort in range too. We thus used the above formulas to derive the CFP ranges

from the classification labels produced by our experiments, which are described next in

Sections 7.9, 7.10 and 7.11. We then analyzed the results in Section 7.12.

7.9 Overview of the Classification Experiments
As described in Sections 7.5 and 7.6, we developed two different approaches for identifying

the types of data-movements that a noun-phrase participates in: (1) a heuristic-based

approach, that is to be applied in absence of an annotated dataset, and (2) a supervised

learning-based approach, that is to be applied to dynamically adapt itself to evolving

environments by training it with annotated datasets. In this section, we present an overview

of the experiments that we conducted to validate both of our classification approaches.

7.9.1 The Corpora

The true gold-standard annotation labels of each base noun-phrase instance, as discussed in

Section 5.3.3, formed our annotated corpora that are to be used for our experiments. Thus, we

165

experimented with our data-movement classification approaches with highly skewed corpora,

as presented by the distributions of the gold-standard class labels shown in Figure 37.

118

2694

Entry Data-Movements Distribution

Entry
Not Entry

92

2720

Exit Data-Movements Distribution

Exit
Not Exit

109

2703

Read Data-Movements Distribution

Read
Not Read

99

2713

Write Data-Movements Distribution

Write
Not Write

Figure 37: Distribution of the Gold-Standard Class Labels for Data-Movement Classification

Table 26 shows further details of the corpora distribution by presenting the number of

instances, their sources and their corresponding class labels, which are: Entry (E+), Not Entry

(E-), Exit(X+), Not Exit (X-), Read (R+), Not Read (R-), Write (W+) and Not Write (W-).

Doc
Id

Document
Name

Source
Extracted
Base NP’s

Entry
Classification

Exit
Classification

Read
Classification

Write
Classification

E+ E- X+ X- R+ R- W+ W-

C1 (undisclosed) Industry (SAP) 314 14 300 32 282 27 287 6 308

C2 (undisclosed) Industry (SAP) 59 4 55 3 56 2 57 1 58

C3
Course
Registration
System

Concordia
University

711 22 689 16 695 19 692 24 687

C4
IEEE Montreal
Website

Concordia
University

1318 31 1287 16 1302 17 1301 26 1292

C5 (undisclosed) Industry (SAP) 27 2 25 3 24 4 23 0 27

C6 (undisclosed) Industry (SAP) 383 45 338 22 361 40 343 42 341

Total 2812 118 2694 92 2720 109 2703 99 2713

Table 26: Frequency of Data-movement Class Labels in the Corpora

The corpora held multi-class annotation data, i.e. the same noun-phrase instance could be

annotated for Entry classification (as E+ or E-), Exit classification (as X+ or X-), Read

classification (as R+ or R-), and Write classification (as W+ or W-). We therefore divided the

corpora into four different binary corpora: (1) the Entry classification corpus, (2) the Exit

classification corpus, (3) the Read classification corpus, and (4) the Write classification

166

corpus. We used these annotated corpora to experiment with all of our classification

approaches.

7.9.2 Testing Methods

Since we have a very small number of positive instances in our corpora, we applied three

different types of testing methods to perform detailed and conclusive analyses for our

experiments over our classification approaches. These three types of testing methods are:

(1) Using the Complete Dataset for Testing
We used the complete dataset to test our heuristic-based classification approach, presented in

Section 7.5. Since we use a heuristic in this approach to identify the noun-phrases that does

not depend on the availability of the training set, we could use our complete dataset here for

testing.

(2) Batch Testing for Incremental Learning
We applied batch testing method to test our supervised learning-based classification approach,

presented in Section 7.6. Since our classifiers here need to be trained first with an almost

evenly distributed training dataset before testing, we ran five different batches of training-

testing trials, where, in each batch, we gradually increased the number of documents used for

training our classifiers, while the rest of the documents are used for testing. Our testing

algorithm carefully constructed each trial within a batch so that none of the documents used

for training a classifier in one trail, is not used for testing the classifier in the same trial. The

trials are then composed of all possible combinations of documents that we could use from

our corpus for training and testing each of our classifier. Our testing algorithm here also

made sure that the extracted training dataset for each trial within a batch contains equal

number of positive and negative instances. Finally, we then average the test results of all the

trials in each batch to analyze the results across all the batches.

As shown earlier in Table 26, the documents of our corpora has variable numbers of noun-

phrase instances. Therefore, the number of training and testing instances in each trial of our

batches also varied. Thus, Table 27 shows, for example, the total number of noun-phrase

instances from our Entry corpus and their source documents that are used for training and

167

testing our Entry classifier during each trail of batch #1. A total of 6 trials are executed in this

batch, each using one different document for training our classifier, and a different

combination of the remaining five documents for testing our classifier.

Batch
no.

Trial
no.

Training
Document(s)

Testing
Document(s)

Total
Training

Instances

Total Testing
Instances

1

1.1 C1 C2,C3,C4,C5,C6 28 2498

1.2 C2 C1,C3,C4,C5,C6 8 2753

1.3 C3 C1,C2,C4,C5,C6 44 2101

1.4 C4 C1,C2,C3,C5,C6 62 1494

1.5 C5 C1,C2,C3,C4,C6 4 2785

1.6 C6 C1,C2,C3,C4,C5 90 2429

Table 27: Training and Testing Instances in Batch Test #1 for the Entry Classifier

Similarly, Table 28 shows, for example, the total number of noun-phrase instances and their

source documents that are used for training and testing our Entry classifier during each trail

of batch #2. A total of 15 trials are executed in this batch, each using a different combination

of two documents for training our classifier, and a different combination of the remaining

four documents for testing our classifier.

Batch
no.

Trial
no.

Training
Document(s)

Testing
Document(s)

Total
Training

Instances

Total Testing
Instances

2

2.1 C1,C2 C3,C4,C5,C6 36 2439

2.2 C1,C3 C2,C4,C5,C6 72 1787

2.3 C1,C4 C2,C3,C5,C6 90 1180

2.4 C1,C5 C2,C3,C4,C6 32 2471

2.5 C1,C6 C2,C3,C4,C5 118 2115

2.6 C2,C3 C1,C4,C5,C6 52 2042

2.7 C2,C4 C1,C3,C5,C6 70 1435

2.8 C2,C5 C1,C3,C4,C6 12 2726

2.9 C2,C6 C1,C3,C4,C5 98 2370

2.10 C3,C4 C1,C2,C5,C6 106 783

2.11 C3,C5 C1,C2,C4,C6 48 2074

2.12 C3,C6 C1,C2,C4,C5 134 1718

2.13 C4,C5 C1,C2,C3,C6 66 1467

2.14 C4,C6 C1,C2,C3,C5 152 1111

2.15 C5,C6 C1,C2,C3,C4 94 2402

Table 28: Training and Testing Instances in Batch Test #2 for the Entry Classifier

168

Again, Table 29 shows, for example, the total number of noun-phrase instances and their

source documents that are used for training and testing our Entry classifier during each trail

of batch #3. A total of 20 trials are executed in this batch, each using a different combination

of three documents for training our classifier, and a different combination of the remaining

three documents for testing our classifier.

Batch
no.

Trial
no.

Training
Document(s)

Testing
Document(s)

Total
Training

Instances

Total Testing
Instances

3

3.1 C1,C2,C3 C4,C5,C6 80 1728

3.2 C1,C2,C4 C3,C5,C6 98 1121

3.3 C1,C2,C5 C3,C4,C6 40 2412

3.4 C1,C2,C6 C3,C4,C5 126 2056

3.5 C1,C3,C4 C2,C5,C6 134 469

3.6 C1,C3,C5 C2,C4,C6 76 1760

3.7 C1,C3,C6 C2,C4,C5 162 1404

3.8 C1,C4,C5 C2,C3,C6 94 1153

3.9 C1,C4,C6 C2,C3,C5 180 797

3.10 C1,C5,C6 C2,C3,C4 122 2088

3.11 C2,C3,C4 C1,C5,C6 114 724

3.12 C2,C3,C5 C1,C4,C6 56 2015

3.13 C2,C3,C6 C1,C4,C5 142 1659

3.14 C2,C4,C5 C1,C3,C6 74 1408

3.15 C2,C4,C6 C1,C3,C5 160 1052

3.16 C2,C5,C6 C1,C3,C4 102 2343

3.17 C3,C4,C5 C1,C2,C6 110 756

3.18 C3,C4,C6 C1,C2,C5 196 400

3.19 C3,C5,C6 C1,C2,C4 138 1691

3.20 C4,C5,C6 C1,C2,C3 156 1084

Table 29: Training and Testing Instances in Batch Test #3 for the Entry Classifier

Then, Table 30 shows, for example, the total number of noun-phrase instances and their

source documents that are used for training and testing our Entry classifier during each trail

of batch #4. A total of 15 trials are executed in this batch, each using a different combination

of four documents for training our classifier, and a different combination of the remaining

two documents for testing our classifier.

169

Batch
no.

Trial
no.

Training
Document(s)

Testing
Document(s)

Total
Training
Instances

Total Testing
Instances

4

4.1 C1,C2,C3,C4 C5,C6 142 410

4.2 C1,C2,C3,C5 C4,C6 84 1701

4.3 C1,C2,C3,C6 C4,C5 170 1345

4.4 C1,C2,C4,C5 C3,C6 102 1094

4.5 C1,C2,C4,C6 C3,C5 188 738

4.6 C1,C2,C5,C6 C3,C4 130 2029

4.7 C1,C3,C4,C5 C2,C6 138 442

4.8 C1,C3,C4,C6 C2,C5 224 86

4.9 C1,C3,C5,C6 C2,C4 166 1377

4.10 C1,C4,C5,C6 C2,C3 184 770

4.11 C2,C3,C4,C5 C1,C6 118 697

4.12 C2,C3,C4,C6 C1,C5 204 341

4.13 C2,C3,C5,C6 C1,C4 146 1632

4.14 C2,C4,C5,C6 C1,C3 164 1025

4.15 C3,C4,C5,C6 C1,C2 200 373

Table 30: Training and Testing Instances in Batch Test #4 for the Entry Classifier

Table 31 shows, for example, the total number of noun-phrase instances and their source

documents that are used for training and testing our Entry classifier during each trail of batch

#2. A total of 6 trials are executed in this batch, each using a different combination of five

documents for training and the remaining one document for testing our classifier.

Batch
no.

Trial
no.

Training
Document(s)

Testing
Document(s)

Total
Training
Instances

Total Testing
Instances

5

5.1 C1,C2,C3,C4,C5 C6 146 383

5.2 C1,C2,C3,C4,C6 C5 232 27

5.3 C1,C2,C3,C5,C6 C4 174 1318

5.4 C1,C2,C4,C5,C6 C3 192 711

5.5 C1,C3,C4,C5,C6 C2 228 59

5.6 C2,C3,C4,C5,C6 C1 208 314

Table 31: Training and Testing Instances in Batch Test #5 for the Entry Classifier

These tables show that a large number of negative instances are randomly removed from the

training dataset of each trial so that the number of positive and negative instances in the

training datasets remain equal. However, the total number of training instances increases on

average across every subsequent batch. This is result is shown in Figure 38.

170

0

50

100

150

200

250

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Training Instances

Average Minimum

Maximum Standard Deviation

Figure 38: Number of Training Instances Used in Each Batch Test for the Entry Classifier

Through our batch testing experiments, we have shown that our data-movement classifier is

feasible for practical implementation (i.e. where sufficient number of training instances is

available), if its average accuracy results also improve across each subsequent batch.

(3) Using 10-fold Cross-Validation
We also apply 10-fold cross-validation to test our supervised learning-based classification

approach, presented in Section 7.6. Since our classifiers need to be trained with almost

evenly distributed datasets before testing, we first randomly removed a portion negative

instances in each of our datasets, so that the number of positive and negative instances are

equal. We then performed 10-fold cross-validation tests that divides the dataset into 10 equal

sized parts (i.e. almost equal number of instances), and then take the average results of 10

different trials, where each trial uses each combination of nine different parts of the dataset to

train our classifier and uses the remaining one part to test the classifier.

7.9.3 Types of Classification Experiments

Based on the testing methods we used, as discussed in Section 7.9.2, all of the experiments in

this phase of the research can be classified into the types, as shown in Figure 39.

171

Experiments on:

Entry Data-
Movement

Classification

Supervised
Learning-based
Classification

10-fold cross-
validation

Incremental
Batches

Heuristic-based
Classification

Test over the
whole set

Exit Data-
Movement

Classification

Supervised
Learning-based
Classification

10-fold cross-
validation

Incremental
Batches

Heuristic-based
Classification

Test over the
whole set

Read Data-
Movement

Classification

Supervised
Learning-based
Classification

10-fold cross-
validation

Incremental
Batches

Heuristic-based
Classification

Test over the
whole set

Write Data-
Movement

Classification

Supervised
Learning-based
Classification

10-fold cross-
validation

Incremental
Batches

Heuristic-based
Classification

Test over the
whole set

Figure 39: Types of Experiments to Validate the Different Data-Movement Classification Approaches

As we conducted these different types of experiments, shown in Figure 39, we gathered

various types of results. We will be discussing these results of our experiment and analyze

them in details in the following sections.

172

7.10 Heuristic-based Classification Results
In this section, we discuss and analyze the results of the experiments that we executed to

verify our heuristic-based approach, presented in Section 7.5, to classify the noun-phrase

instances of different types of data-movements. Table 32 shows the resultant confusion

matrices when we tested our heuristic-based classification approach over all instances of our

corpora, which is described in Section 7.9.1.

 Classified As

 Entry Not
Entry

Gold-
Standard

Entry 96 22

Not
Entry 37 2657

 Classified As

 Exit Not Exit

Gold-
Standard

Exit 78 14

Not Exit 27 2693

 Classified As

 Read Not
Read

Gold-
Standard

Read 76 33

Not
Read 41 2662

 Classified As

 Write Not
Write

Gold-
Standard

Write 82 17

Not
Write 39 2674

Table 32: Confusion Matrices for Heuristic-based Data-Movement Classification

Using the confusion matrices in Table 32, we can compute the results for this experiment, as

shown in Table 33.

(For Positive Class of)
Data-Movement Type

Accuracy
(Ratio of
Correct)

Kappa Precision Recall F-Measure

Entry 0.979 0.754 0.722 0.813 0.765
Exit 0.985 0.784 0.743 0.848 0.792
Read 0.974 0.659 0.650 0.697 0.672
Write 0.980 0.735 0.678 0.828 0.745

Average = 0.979 0.733 0.698 0.797 0.744

Table 33: Results of Heuristic-based Data-Movement Classification

173

Thus, we find in this experiment, as shown in Table 33, that the average accuracy of our

heuristic-based approach is very high and is comparable to human performance and the

average agreement of its classifications with the true gold-standard labels set by the expert

[shown in terms of Cohen’s Kappa (Cohen, 1960) in Table 33] is better than the average pair-

wise agreement of fully-trained human annotators with the same expert, as recorded by the

results of our experiments, presented in Section 5.4.2. This shows that our heuristic-based

approach can feasibly be applied in practice to identify data-movement types from textual

requirements, especially when annotated datasets are not available for training the supervised

learning-based classifiers.

7.11 Supervised Learning-based Classification Results
The supervised learning-based data-movement classification approach uses four different

classifiers, as mentioned in Section 7.6. Now, to experiment with each of these classifiers, we

applied two different testing methods: (1) incremental learning and testing by batches, and (2)

10-fold cross-validation, as described in Section 7.9.2. In the following sections, we discuss

and analyze the results of these experiments.

7.11.1 Results of Batch Testing for Incremental Learning
We used our batch testing wrapper scripts, to automate a large number of trials that are

grouped into five different batches. Each subsequent batch gradually adds a document from

our corpus to the training dataset and uses the rest of the documents for testing. The trials in a

batch uses all possible combination of the documents, while never using a document for

testing which is already used for training. The training datasets for all trials are also

automatically down-sampled, by randomly removing a portion of negative instances, so that

the number of the positive and the negative instances are equal in each of these datasets. The

procedure of the batch testing experiment is described with examples in Section 7.9.2.

We ran the batch testing experiments individually over each of our data-movement classifiers,

described in Section 7.6, using their respective datasets. All these tests were run using our

wrapper script over Weka’s training and testing modules. The detailed outputs produced by

174

our script for these batch testing experiments are included in Appendix B.2. We present the

summary of these results in Figures 40, 41, 42 and 43.

0

50

100

150

200

250

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Training Instances

Average Minimum

Maximum Standard Deviation

0

0.1

0.2

0.3

0.4

0.5

0.6

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Kappa

Average Minimum

Maximum Standard Deviation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

F-Measure (Class: “Entry”)

Average Minimum

Maximum Standard Deviation

0

0.1

0.2

0.3

0.4

0.5

0.6

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Precision (Class: “Entry”)

Average Minimum

Maximum Standard Deviation

0

0.2

0.4

0.6

0.8

1

1.2

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Recall (Class: “Entry”)

Average Minimum

Maximum Standard Deviation

Figure 40: Results of Running Batch Tests for Incremental Learning Over the Entry Classifier

175

0

50

100

150

200

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Training Instances

Average Minimum

Maximum Standard Deviation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Kappa

Average Minimum

Maximum Standard Deviation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

F-Measure (Class: “Exit”)

Average Minimum

Maximum Standard Deviation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Precision (Class: “Exit”)

Average Minimum

Maximum Standard Deviation

0

0.2

0.4

0.6

0.8

1

1.2

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Recall (Class: “Exit”)

Average Minimum

Maximum Standard Deviation

Figure 41: Results of Running Batch Tests for Incremental Learning Over the Exit Classifier

176

0

50

100

150

200

250

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Training Instances

Average Minimum

Maximum Standard Deviation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Kappa

Average Minimum

Maximum Standard Deviation

0

0.2

0.4

0.6

0.8

1

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

F-Measure (Class: “Read”)

Average Minimum

Maximum Standard Deviation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Precision (Class: “Read”)

Average Minimum

Maximum Standard Deviation

0

0.2

0.4

0.6

0.8

1

1.2

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Recall (Class: “Read”)

Average Minimum

Maximum Standard Deviation

Figure 42: Results of Running Batch Tests for Incremental Learning Over the Read Classifier

177

0

50

100

150

200

250

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Training Instances

Average Minimum

Maximum Standard Deviation

0

0.2

0.4

0.6

0.8

1

1.2

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Kappa

Average Minimum

Maximum Standard Deviation

0

0.2

0.4

0.6

0.8

1

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

F-Measure (Class: “Write”)

Average Minimum

Maximum Standard Deviation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Precision (Class: “Write”)

Average Minimum

Maximum Standard Deviation

0

0.2

0.4

0.6

0.8

1

1.2

Batch #1 Batch #2 Batch #3 Batch #4 Batch #5

Recall (Class: “Write”)

Average Minimum

Maximum Standard Deviation

Figure 43: Results of Running Batch Tests for Incremental Learning Over the Write Classifier

The results shown in Figures 40, 41, 42 and 43 demonstrate that, along with the steady

increase of the average number of training instances in each batch, the most of the accuracy

statistics of all of our classifiers also improved steadily. However, the overall accuracy often

stayed low in average, which is also understandable given the number of training instances

178

versus the testing instances, and also, each batch always had a few trials, which included one

or more documents in the test set that belong to a problem domain or a source, which were

never related to the documents used for training in those trials. Thus, there existed one or

more trials in every batch where the accuracy statistics were very low, as reflected by the

minimum curve on the charts of the figures, bringing the overall average down. However, it

should be mentioned that there also exist trials in each batch where all the accuracy statistics

were comparatively very high. This is an important success, as all of the trials in all batches

had document(s) in the test set that were unseen in the training set. We also should mention

that we reported in these figures only the critical statistical attributes over the positive

instances, which are much “rare” in number in comparison to the negative instances, where

the statistical measures (e.g. the precision, the recall and the f-mesaure) are relatively very

high. We also did not report here the percentage of correctly classified instances, which also

were about 90% or more on average for all the classifiers. Detailed results of our batch

testing are included in Appendix B.2.

Finally, the charts in Figures 40, 41, 42 and 43 show that all of our classifiers can attain very

promising results when used in practice the number of training instances are increased to a

sufficient level (which may be determined by continuing to test in future with more training

data for each problem domain). This statement is evident by the continual rise of the average

of statistical measures across the batches, as demonstrated by these figures. Although the

total number of trails per batch went down over subsequent batches after Batch #3, the

standard deviation still often went down for some statistical measures, showing that the

results tending to converge at high and more stable values. All these results indicate that the

application of our supervised-learning based is feasible only with the availability of sufficient

training data.

179

7.11.2 Results of 10-fold Cross-Validation
We discuss in this section the results of running 10-fold cross-validation over each of the

classifiers for our supervised learning-based approach. These results would indicate by

simulating how much accuracy we can realistically achieve by using these classifier with the

availability of sufficient training data.

Here, we first extracted the feature values to build four different datasets from all the

documents of our four different corpora, as described in Section 7.9.1. We then randomly

removed portions of the negative instances so that we have an equal number of the positive

and negative instances in each of the datasets. Then, we ran the 10-fold cross-validation tests

individually over each of our data-movement classifiers, described in Section 7.6, using their

respective datasets. All these tests were run using Weka’s 10-fold cross-validation testing

module. The detailed outputs produced by Weka our 10-fold cross-validation experiments are

included in Appendix B.1.

Each of our binary corpora that we used in our experiments is highly imbalanced with only

about 104 instances (or 3.7% of all the instances) on average belonging to the positive classes

and about 2708 instances (or 96.3% of all the instances) on average belonging to the

negatives, as represented by the distribution of our corpora presented in Section 7.9.1. This

high difference between the classes and the relatively low number of positive instances could

lead to biased learning for our classifiers where they would emphasize on the negative

instances more than the positive ones, when selecting the most discriminative features or

determining their thresholds (Estabrooks, Jo, & Japkowicz, 2004). We therefore down-

sampled our extracted datasets by randomly removing about 2604 negative instances (or

about 92.6% of all the instances) from each of the datasets. This, for example, led the dataset

used in our 10-fold cross-validation experiment over our Entry classifier to have a total of

236 instances (i.e. 118 “Entry” and 118 “Not Entry” instances).

The results of our execution of 10-fold cross-validation on all four of our classifiers using

their respective datasets are shown in Table 34 and Table 35.

180

 Classified As

 Entry Not
Entry

Gold-
Standard

Entry 97 21

Not
Entry 15 103

 Classified As

 Exit Not Exit

Gold-
Standard

Exit 77 15

Not Exit 10 82

 Classified As

 Read Not
Read

Gold-
Standard

Read 93 16

Not
Read 21 88

 Classified As

 Write Not
Write

Gold-
Standard

Write 83 16

Not
Write 2 97

Table 34: Confusion Matrices for 10-fold Cross Validation on Supervised Learning-based Data-Movement
Classification

Using the confusion matrices in Table 34, we can compute the accuracy results for this

experiment, as shown in Table 35.

(For Positive Class of)
Data-Movement Type

Accuracy
(Ratio of
Correct)

Kappa Precision Recall F-Measure

Entry 0.847 0.695 0.866 0.822 0.843
Exit 0.864 0.728 0.885 0.837 0.860
Read 0.830 0.661 0.816 0.853 0.834
Write 0.909 0.818 0.976 0.838 0.902

Average = 0.862 0.725 0.886 0.837 0.860

Table 35: Results of 10-fold Cross Validation on Supervised Learning-based Data-Movement
Classification

The 10-fold cross-validation results, as presented in Table 35, show that our supervised

learning-based classification approach can almost be as good as our heuristics-based

classification approach, where the average agreement of its classifications with the true gold-

standard labels set by the expert [shown in terms of Cohen’s Kappa (Cohen, 1960) in Table

33] is also better than the average pair-wise agreement of fully-trained human annotators

with the same expert, as recorded by the results of our experiments, presented in Section

5.4.2.

181

7.12 CFP Range Measurement Results
We finally analyse the accuracy of the CFP range measurements for all the requirements

documents of our corpus that are computed using the formulas presented in Section 7.8 over

the automatically classified instances of noun-phrases and sentences following one of our

classification approaches. In this experiment, we used the classification labels produced by

our heuristic-based classification approach over our corpus. Our analysis involves comparing

the CFP measurement accuracy of this approach to that of our trained human annotators in

measuring the CFP manually for the same set of documents. We measured the accuracies in

terms of the magnitudes of relative error (MRE) and the mean magnitude of relative error

(MMRE). Table 36 presents the MRE and MMRE results of measuring CFP ranges for the all

documents of our corpus, based on the classification labels of the noun-phrases and sentences

of the documents, where the frequencies of the identified data-movement labels are

aggregated by data-groups and functional processes following the formulas in Section 7.8.

Doc.
ID

Total CFP MRE

Based on
Expert’s

Annotation
Labels

Based on Heuristic-based
Classification Labels

Based on Heuristic-based
Classification Labels

Minimum Most-
Likely Maximum Minimum Most-

Likely Maximum

C1 65 51 69 75 0.216 0.061 0.154
C2 16 14 18 23 0.125 0.125 0.437
C3 80 66 84 87 0.175 0.050 0.087
C4 133 83 141 147 0.376 0.060 0.105
C5 10 8 13 15 0.200 0.300 0.500
C6 49 44 58 62 0.102 0.184 0.265

MMRE = 0.199 0.130 0.258

Table 36: CFP Range Measurements Results Based on the Heuristic-based Classification Labels

The results presented in Table 36 show that the most-likely total CFP’s of all the documents

of our corpus, as calculated from the classification labels that are automatically produced by

our heuristic-based classification approach, are nearly accurate (i.e. MMRE is only 0.13, and

the MRE’s are less than 20% for about 83.33% of all the documents), when matched with the

total CFP’s calculated from the true gold standard annotation labels chosen by the expert.

Here, we find that the MMRE result of the most-likely total CFP’s, calculated from our

automatically produced classification labels, is still not as good as what the fully-trained

182

human annotators achieved manually (as presented in Table 14 of Section 5.6), but only

when their collective gold-standard annotation labels, which were settled by multiple

adjudication sessions, were considered. The most-likely total CFP’s for our automated

approach still achieved better MMRE results than what our four trained measurers on average

could achieve individually (that is, their average individual MMRE = 0.165). Finally, we also

find in Table 36 that the CFP ranges (i.e. from the minimum to the maximum total CFP) of

all the documents of our corpus, as calculated from the our automated approach always

included their actual CFP’s within the limits of the calculated ranges. Thus, we can affirm

that these CFP ranges produced from our automated approaches can successfully be used in

practice, wherever COSMIC functional size measurement process is applied. Defining the

correct limits of the CFP ranges ensure that any further estimation performed using the CFP

values, e.g. the early estimation of the development effort, would also result in a range of

estimation, and thus provide safety by allowing a concise margin of error.

7.13 Conclusion
In this chapter, we presented in details our approaches of automating the process of COSMIC

functional size measurement. We introduced a heuristic-based and a supervised learning-

based text classification approaches to extract the modeling artifacts of COSMIC FSM, e.g.

the data-attributes, the data-groups and the data-movement. We then extended our

formalization to COSMIC’s method of counting the numeric value of CFP, by presenting the

idea of measuring CFP in ranges. We finally analyzed the results of our experiments to

validate each of our approaches. The results of the experiments showed that our automated

approaches achieved good enough results to be applied in practice.

The next chapter ends the thesis with a summary of the contributions we made with this

research in the fields of functional size measurement and requirements engineering and

presents avenues of future work.

183

Chapter 8

Conclusions and Future Work

“The best way to predict the future is to create it.”
— Peter Drucker

This final chapter summarizes the major contributions of this thesis. We then end with a

review of our conclusive remarks and a discussion on future research.

8.1 Major Contributions
Our research investigated different techniques of linguistic analyses that can be utilized to

measure functional size early from textual requirements, without depending on human

experts. New approaches were developed and validated through experiments. All of these

approaches were adapted to the COSMIC method (COSMIC, 2014), as the preferred standard

of functional size measurement (FSM). The major contributions made by this thesis are

discussed in the following sections.

8.1.1 Methodology for Practical Application of FSM

The thesis proposed a unique comprehensive methodology, called LISMA, that integrates

multiple novel approaches for performing functional size measurement (FSM) in different

practical scenarios (as presented in Section 4.4). To validate the methodology, we conducted

several controlled experiments with real project documents, experts and well-trained

measurers. The experimental results show that our approaches can (i) attain high quality

manual measurements of functional size in absence of an expert or a well-trained measurer or

a costly adjudication process, (ii) approximate functional size with minimal errors from

184

informally written textual requirements, and (iii) extract the conceptual artifacts of an FSM

standard from textual requirements and quantify their functional size with a good enough

accuracy in comparison to that of well-trained human measurers. The results presented in this

thesis also showed that the approaches used in LISMA can successfully automate the

execution of functional size measurement process by applying different natural language

processing and machine learning technologies. The details of these results were presented in

Chapters 5, 6 and 7. We thus accomplished the overall aim of this research, presented in

Section 1.3: which was “to determine an objective procedure that does not depend on human

expertise to be applied for effectively measuring functional size from textual requirement”.

8.1.2 Formalization of an FSM Model for Traceability

In Chapter 4, we formalized the FSM process by modeling a new ontology that relates the

conceptual artifacts of FSM to the specific textual segments of the software requirements

document to build traceability links over process of FSM. Thus, every step of the approaches

in LISMA is devised towards measuring a traceable output of functional size, where all the

traceability links resulting from the population of the ontology justify the output

measurements by referring them to their originating segments of textual requirements. This

satisfied our research objective #5 (see Section 1.3), which was “to identify how experts

deduce the relationship between the linguistic elements of unrestricted textual requirements

and the objects of interest in a functional size measurement model”.

8.1.3 Extension to FSM Quantification

In Chapter 4, we also devised novel formulas to formalize the conventional quantification

process of FSM. These formulas cannot only be applied over the instances of this ontology to

calculate the numerical value of the functional size, but also fully complies with the standard

process of FSM, described in (ISO/IEC 14143-1, 2007). Thus, this formalization can be

implemented algorithmically to automate the computation of a numerical value of the

functional size of a software. Then, in Chapter 7, we extended this formalization by deriving

new additional formulas that quantify the upper and lower limits of the functional size as well.

Our results show that the upper and lower limits provide added safety in FSM, as the

outputted error margins in our experiments always included the correct result within its range.

185

8.1.4 Syntactic Features for Requirements Classification

In Section 4.4.2, we presented an overview of our work to determine the most discriminating

syntactic features of textual requirements for classifying requirements into the two classes of

functional and non-functional requirements. The full details of the work and the experimental

results, as published in (Hussain, Kosseim, & Ormandjieva, 2008), verifies the feasibility of

using these features for requirements classification. Thus, we fulfilled our research objective

#4: “to explore the most discriminating syntactic features of textual requirements for

classifying them into functional and non-functional requirements”.

8.1.5 Improving the Annotation Quality for Non-Experts

In Chapter 5, we presented the details of our requirements annotation tool, LASR, that

implements a novel feature to improve the quality of the computed gold-standard annotations

for multiple annotators. The feature automatically applies the formulas that we developed to

compute the gold-standard annotations using the annotators’ levels of confidence and their

levels of skill. The analyses of the results of our experiments showed that this feature

improved the quality of the gold-standard annotations for a controlled group of non-expert

annotators with minimal training. The experiments also showed that these higher quality

gold-standards helped in measuring the functional size more accurately. LASR’s other

features, such as its graphical interface, allowed the annotators to finish their functional size

measurement tasks faster than the other group working manually. Thus, we fulfilled our

research objective #1: “to investigate if the process of functional size measurement (FSM)

can be executed effectively with non-expert”, and objective #2, which was “to improve the

overall process of FSM-related requirements annotation by attaining accurate annotations

with non-experts having minimal training”.

8.1.6 Automatic and Traceable Approximation of FSM

In Chapter 6, we presented a novel approach to approximate functional size automatically

from textual requirements using text classification techniques. The approach first classifies

the software instances of a historical dataset by the quartiles of their functional size, and uses

that information to build a corpus of textual requirements, which are annotated by

approximated size classes. It then applies a supervised learning-based text classifier to

186

approximate the functional size and achieved moderate results in our experiments with a very

small dataset of 61 instances. Since our approach uses a decision tree-based classification

model, the reasoning of the output approximations are also traceable, back to its originating

textual requirements. Our approach also identifies the most discriminating linguistic features

that correlate with the approximated functional size, and thus addressed our research

objective #3: “to determine the most discriminating linguistic features of informally written

textual requirements for approximating functional size”.

8.1.7 Linguistic Features of COSMIC FSM

In Chapter 7 (and also, in Appendix C), we presented an original list of lexical, syntactic and

combined sets of features that can discriminate base noun-phrases on whether they express a

certain type of COSMIC data-movement, which is a conceptual artifact of the COSMIC FSM

model. We identified these features by analyzing the experts’ process of identifying these

artifacts from textual requirements. We used these features in data-movement classification

experiments, and our supervised learning-based approach automatically ranked these features

by building decision trees using our supplied dataset. The analysis of our results showed that

these features were discriminating enough for our supervised learning-based approach to

attain promising results.

8.1.8 Heuristics for COSMIC FSM

In Chapter 7, we also presented a detailed heuristic-based approach, which is unique in this

field of research, to identify various conceptual artifacts of the COSMIC FSM model. The

results of our experiments showed that this heuristic-based approach attains good results

overall, and the accuracy of the functional size measurements that used the automatically

generated outputs of this heuristic-based approach attains even better results than individual

manual annotations of the fully-trained annotators. Thus, we addressed our research objective

#6 (see Section 1.3): “to evaluate the feasibility of automating functional size measurement

from textual requirements”.

187

8.1.9 Annotated Corpora for Data-Movement Classification

As described in Chapters 5 and 7, we generated a set of fairly large annotated corpora, each

containing a total of 2812 instances of base noun-phrases. All these instances were annotated

by the expert as the true gold-standard annotation labels, and thus can be used to train or test

any supervised learning-based approach in the field of COSMIC data-movement

classification, although we have only small portions of it annotated with positive class-labels.

The details of the corpora were described in Section 7.9.1.

8.2 Future Research Directions
The functional size measurement (FSM) method provides an effective means of assessing the

software size at the early stages of the software development lifecycle. However, its

application over textual requirements poses many costly challenges thus is not widely

adopted by the industry.

In this thesis, we addressed these challenges by devising a comprehensive methodology that

not only facilitates a collaborative annotation environment to improve the quality of manual

measurement of functional size, but also utilizes different natural language processing

techniques to either automatically approximate the functional size from informally-written

textual requirements, or automatically extract the FSM model from well-decomposed textual

requirements and thus, measure the functional size objectively by using a formalized model

of quantifying the functional size. This novel modeling approach for FSM also creates

traceability links between the originating parts of the textual requirements and the resulting

FSM modeling artifacts that are counted to quantify the functional size.

The approaches that are integrated in our methodology were all validated through controlled

experiments employing industrial and academic projects’ data and fully-trained human

measurers. The promising results of these experiments thus confirm that our methodology

can successfully be applied in practice.

188

For our future research work, we intend to continue collecting more datasets for training

and/or testing our automated approaches. Having more datasets would not only help our

supervised learning-based classifier to utilize more discriminating features, but also allow us

to experiment with enough varieties of problem domains and study the effects of varying the

problem domains. Acquiring more datasets would also help us investigate how the quality of

textual requirements affects our functional size measurement approaches.

In relation to the prototype of LASR, the requirements annotation tool that we developed

during this research, we also intend to release its complete version, further experiment on its

usability and study if it can help minimize the annotators’ effort for different requirements

annotation tasks.

Finally, we plan to integrate our automated approaches of functional size measurement with

our implementation of estimating the development effort, which is presented in

(Abdukalykov, Hussain, Kassab, & Ormandjieva, 2011) to deploy a comprehensive

workbench that can estimate the development effort directly from textual requirements.

189

Bibliography

Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches. AI Communications, 7 (1), 39-

59.

Abbott, R. J. (1983). Program design by informal English descriptions. Communications of

the ACM, 26 (11), 882-894.

Abdukalykov, R., Hussain, I., Kassab, M., & Ormandjieva, O. (2011). Quantifying the

Impact of Different Non-functional Requirements and Problem Domains on Software

Effort Estimation. Proceedings of 9th International Conference on Software

Engineering Research, Management and Applications (SERA) (pp. 158-165).

Washington, DC: IEEE Computer Society.

Aiello, G., Alessi, M., Cossentino, M., Urso, A., & Vella, G. (2007). RTDWD: Real-Time

Distributed Wideband-Delphi for User Stories Estimation. Proceedings of the 3rd

International Conference on Rapid Integration of Software Engineering Techniques

(pp. 35-50). Springer-Verlag.

Albrecht, A. J. (1979). Measuring Application Development Productivity. Proceedings of

IBM Application Development Symp. (pp. 83-92). Monterey, Calif.: Press I.B.M.

Albrecht, A. J., & Gaffney, J. E. (1983). Software function, source lines of code, and

development effort prediction: A software science validation. IEEE Transactions on

Software Engineering, 9, 639-648.

Amazon.com Inc. (2012). Amazon Mechanical Turk. Amazon Mechanical Turk:

https://www.mturk.com/mturk/welcome

190

Ambriola, V., & Gervasi, V. (2006). On the Systematic Analysis of Natural Language

Requirements with CIRCE. Automated Software Engineering, Automated Software

Engineering, 13 (1), 107-167.

Ambriola, V., & Gervasi, V. (1997). Processing natural language requirements. Proceedings

of Automated Software Engineering (ASE'97): 12th IEEE International Conference,

November 1–5 (pp. 36-45). IEEE Computer Society.

Angelis, L., & Stamelos, I. (2000). A simulation tool for efficient analogy based cost

estimation. Empirical Software Engineering, 5, 35-68.

Azzeh, M., Neagu, D., & Cowling, P. (2008). Improving analogy software effort estimation

using fuzzy feature subset selection algorithm. Proceedings of the 4th International

Workshop on Predictor Models in Software Engineering (pp. 71-78). Leipzig,

Germany: ACM.

Beck, K., & Fowler, M. (2000). Planning Extreme Programming. Addison-Wesley.

Bertran, M., Borrega, O., Recasens, M., & Soriano, B. (2008). AnCoraPipe: A tool for

multilevel annotation. Procesamiento del Lenguaje Natural, 41, 291-292.

Bevo, V. (2005). Analyse et formalisation ontologique des procédures de mesure associées

aux méthodes de mesure de la taille fonctionnelle des logiciels: de nouvelles

perspectives pour la mesure. Doctoral thesis, Montréal: Université du Québec à

Montréal - UQAM.

Boehm, B. (2000). Safe and Simple Software Cost Analysis. IEEE Software, 17 (5), 14-17.

Boehm, B. (1981). Software engineering economics. Prentice-Hall.

Boehm, B. (1984). Software engineering economics. IEEE Transactions on Software

Engineering, 10, 1, 4-21.

Boehm, B., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, E., Madachy, R. &

Reifer, D.. (2000). Software cost estimation with Cocomo II. Prentice-Hall.

191

Bontcheva, K., Cunningham, H., Roberts, I., Roberts, A., Tablan, V., Aswani, N., & Gorrell,

G. (2013). Teamware: A Web-based, Collaborative Text Annotation Framework.

Language Resources and Evaluation. 47 (4), 1007-1029.

Braga, P. L., Oliveira, A. L., & Meira, S. R. (2008). A GA-based feature selection and

parameters optimization for support vector regression applied to software effort

estimation. Proceedings of the 2008 ACM Symposium on Applied Computing (pp.

1788-1792). Fortaleza, Ceara, Brazil: ACM.

Brill, E. (1992). A Simple Rule-Based Part of Speech Tagger. Proceedings of the Third

Conference on Applied Natural Language Processing (pp. 152-155). Trento, Italy:

Association for Computational Linguistics.

Burgess, C. J., & Lefley, M. (2001). Can genetic programming improve software effort

estimation? A comparative evaluation. Information and Software Technology, 43,

863-873.

Cake Software Foundation. (2014, May 1). CakePHP Cookbook Documentation: Release 2.x.

Retrieved May 3, 2014, from CakePHP:

 http://book.cakephp.org/2.0/_downloads/en/CakePHPCookbook.pdf

Carletta, J. (1996). Assessing Agreement on Classification Tasks: The Kappa Statistic.

Computational Linguistics, 22, 249-255.

Casamayor, A., Godoy, D., & Campo, M. (2009). Semi-Supervised Classification of Non-

Functional Requirements: An Empirical Analysis. Inteligencia Artificial, 44, 35-45.

Cer, D., de Marneffe, M.-C., Jurafsky, D., & Manning, C. D. (2010). Parsing to Stanford

Dependencies: Trade-offs between speed and accuracy. Proceedings of 7th

International Conference on Language Resources and Evaluation (LREC 2010) (pp.

1628–1632). European Language Resources Association (ELRA).

Chang, C. K., Christensen, M. J., & Tao, Z. (2001). Genetic algorithms for project

management. Annals of Software Engineering, 11, 107-139.

192

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.

Chulani, S., Boehm, B., & Steece, B. (1999). Bayesian analysis of empirical software

engineering cost models. IEEE Transactions on Software Engineering, 25, 573-583.

Chung, L., & Sapakkul, S. (2006). Capturing and Reusing Functional and Non-functional

Requirements Knowledge: A Goal-Object Pattern Approach. Proceedings of the 2006

IEEE International Conference on Information Reuse and Integration, September (pp.

539-544). Waikoloa, Hawaii, USA: IEEE Press.

Cicchetti, D. V., & Feinstein, A. R. (1990). High agreement but low kappa: II. Resolving the

paradoxes. Journal of Clinical Epidemiology, 43 (6), 551-558.

Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2006). The Detection and Classification

of Non-Functional Requirements with Application to Early Aspects. Proceedings of

the 14th IEEE International Requirements Engineering Conference 2006 (RE'06),

September 11-15 (pp. 36-45). Minneapolis, MN: IEEE Press.

Cochran, W. G. (1977). Sampling techniques (3rd ed.). John Wiley & Sons.

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Journal of Educational

and Psychological Measurement, 20, 37-46.

Cohn, M. (2005). Agile Estimating and Planning. Prentice Hall.

Condori-Fernández, N., Abrahão, S., & Pastor, O. (2007). On the estimation of the functional

size of software from requirements specifications. Journal of Computer Science and

Technology, 22 (3), 358-370.

Conte, S. D., Dunsmore, H. E., & Shen, V. Y. (1986). Software engineering metrics and

models. Redwood City, CA: Benjamin Cummings Publishing.

COSMIC. (2014). The COSMIC Functional Size Measurement Method Version 4.0:

Measurement Manual. Retrieved May 05, 2014, from COSMIC:

 http://www.cosmicon.com/dl_manager4.asp?id=464

193

COSMIC. (2011). Why COSMIC is the best method for measuring Agile ‘User Stories’.

COSMIC News, 7 (1), 3.

Cunningham, H., Maynard, D., Bontcheva, K., & Tablan, V. (2002). GATE: A Framework

and Graphical Development Environment for Robust NLP Tools and Applications.

Proceedings of the 40th Anniversary Meeting of the Association for Computational

Linguistics (ACL'02) (pp. 168-175). PA, USA: Association for Computational

Linguistics.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., et al.

(2011). Text Processing with GATE (Version 6). Sheffield, UK: Department of

Computer Science, University of Sheffield.

Cyre, W. (1995). A Requirements Sublanguage for Automated Analysis. Interational Journal

of Intelligent Systems, 10 (7), 665-689.

Cysneiros, L. M., & Leite, J. C. (2002). Non-functional requirements: from elicitation to

modelling languages. Proceedings of the International Conference on Software

Engineering, 2002 (ICSE 2002), May (pp. 699-700). Orlando, Florida, USA: IEEE

Press.

Dawson, C. W. (1996). A neural network approach to software project effort estimation. In R.

A. Adey, G. Rzevski, & A. K. Sunol (Ed.), Proceedings of International Conference

on Artificial Intelligence in Engineering (p. 37). School of Mathematics &

Computing, Derby University, UK.

Delobel, C. (1978). Normalization and Hierarchical Dependencies in the Relational Data

Model. ACM Trans. Database Syst., 3 (3), 201-222.

Demirors, O., & Gencel, C. (2004). A Comparison of Size Estimation Techniques Applied

Early in the Life Cycle. Software Process Improvement, Lecture Notes in Computer

Science, vol. 3281 (pp. 184-194), Berlin, Heidelberg: Springer -Verlag.

194

Denger, C., Berry, D. M., & Kamsties, E. (2003). Higher Quality Requirements

Specifications through Natural Language Patterns. Proceedings of the IEEE

International Conference on Software Science, Technology and Engineering (p. 80).

Washington, DC: IEEE Computer Society.

Diab, H., Koukane, F., Frappier, M., & St-Denis, R. (2005). μcROSE: Automated

Measurement of COSMIC-FFP for Rational Rose Real Time. Information and

Software Technology, 47 (3), 151-166.

Drazan, J., & Mencl, V. (2007). Improved processing of textual use cases: Deriving behavior

specifications. Lecture Notes in Computer Science-SOFSEM 2007: Theory and

Practice of Computer Science, Proceedings of 33rd Conference on Current Trends in

Theory and Practice of Computer Science, 4362, 856–868.

Eriksson, M., Börstlerb, J., & Borga, K. (2009). Managing requirements specifications for

productlines – An approach and industry case study. Journal of Systems and Software,

82 (3), 435-447.

Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A Multiple Resampling Method for Learning

from Imbalanced Data Sets. Computational Intelligence, 20 (1), 18-39.

Eye, A. v., & Eye, M. v. (2008). On the Marginal Dependency of Cohen's κ. European

Psychologist, 13 (4), 305-315.

Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2001). An Automatic Quality Evaluation for

Natural Language Requirements. Proceedings of the Seventh International Workshop

on RE: Foundation for Software Quality (REFSQ’2001), June 4-5. Interlaken,

Switzerland.

Fantechi, A., Gnesi, S., Ristori, G., Carenini, M., Vanocchi, M., & Moreschini, P. (1994).

Assisting requirement formalization by means of natural language translation. Form.

Methods Syst. Des., 4 (3), 243-263.

195

Flitman, A. M. (2000). A neural network DEA meta-model to facilitate software

development time and cost estimation. Proceedings of Artificial Neural Networks in

Engineering Conference. 10, (pp. 941-946). New York, NY, USA: ASME.

Foss, T., Stensrud, E., Kitchenham, B., & Myrtveit, I. (2003). A simulation study of the

model evaluation criterion MMRE. IEEE Transactions on Software Engineering, 29,

985-995.

Fraser, S., Boehm, B., Erdogmus, H., Jorgensen, M., Rifkin, S., & Ross, M. (2009). The role

of judgment in software estimation. Proceedings of 31st International Conference on

Software Engineering, ICSE 2009, May 16-24, (pp. 13-17). Vancouver, Canada.

Gaffney, J. E., & Werling, R. (1991). Estimating Software Size from Counts of Externals, A

Generalization of Function Points. Analytical Methods in Software Engineering

Economics (pp. 193-203). Berlin, Heidelberg: Springer.

Galesic, M., & Bosnjak, M. (2009). Effects of Questionnaire Length on Participation and

Indicators of Response Quality in a Web Survey. Public Opinion Quarterly, 73 (2),

349-360.

Galorath. (2008). SEER for Software Development: Estimating Software Projects. Retrieved

November 6, 2007, from SEER by Galorath:

http://www.galorath.com/index.php/products/software/C5

Gelhausen, T., & Tichy, W. F. (2007). Thematic Role Based Generation of UML Models

from Real World Requirements. Proceeding of The First International Conference on

Semantic Computing (ICSC 2007) (pp. 282-289). Los Alamitos: IEEE Computer

Society.

Gencel, C., & Demirors, O. (2008). Functional size measurement revisited. Transactions on

Software Engineering and Methodology (TOSEM), 17 (3), 15:1-15:36.

196

Gencel, C., Demirors, O., & Yuceer, E. (2005). A Case Study on Using Functional Size

Measurement Methods for Real Time Systems. Proceedings of the 15th. International

Workshop on Software Measurement (IWSM) (pp. 159-178). Shaker-Verlag.

Gencel, C., Demirors, O., & Yuceer, E. (2005). Utilizing Functional Size Measurement

Methods for Real Time Software Systems. 11th IEEE International Software Metrics

Symposium (METRICS 2005). Como, Italy. Retrieved May 05, 2014, from:

 http://metrics2005.di.uniba.it/IndustryTrack/Gencel_Utilizingms.pdf

Gnesi, S., Lami, G., & Trentanni, G. (2005). An automatic tool for the analysis of natural

language requirements. International Journal of Computer Systems Science and

Engineering, Special issue on Automated Tools for Requirements Engineering, 20,

53-62.

Grimstad, S., & Jorgensen, M. (2007). The Impact of Irrelevant Information on Estimates of

Software Development Effort. Proceedings of the 2007 Australian Software

Engineering Conference, ASWEC '07 (pp. 359-368). IEEE Computer Society.

Habela, P., Głowacki, E., Serafiński, T., & Subieta, K. (2005). Adapting Use Case Model for

COSMIC-FFP Based Measurement. Proceedings of 15th International Workshop on

Software Measurement (IWSM-2005), (pp. 195-207). Montreal.

Hakkarainen, J., Laamanen, P., & Rask, R. (1993). Neural networks in specification level

software size estimation. Proceeding of the Twenty-Sixth Hawaii International

Conference on System Sciences, 4, (pp. 626-634). IEEE Press.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The

WEKA Data Mining Software: An Update. SIGKDD Explorations, 11 (1), 10-18.

Harmain, H., & Gaizauskas, R. (2000). CM-Builder: An automated NL-based CASE tool.

Proceedings of the Fifteenth IEEE International Conference on Automated Software

Engineering, September 11-15 (pp. 45-53). Grenoble, France: IEEE Press.

197

Heiat, A. (2002). Comparison of artificial neural network and regression models for

estimating software development effort. Information and Software Technology, 44,

911-922.

Heinrich, E., Kemp, E., & Patrick, J. (1999). A Natural Language Like Description Language.

Proceedings of the 10th Australasian Conference on Information Systems (ACIS), (pp.

375–386). Wellington, New Zealand.

Hill, R., Wang, J., & Nahrstedt, K. (2004). Quantifying Non-functional Requirements: A

Process Oriented Approach. Proceedings of the 12th IEEE International

Requirements Engineering Conference (RE'04), September (pp. 352-353). Kyoto,

Japan: IEEE Press.

Hoehler, F. K. (2000). Bias and prevalence effects on kappa viewed in terms of sensitivity

and specificity. Journal of Clinical Epidemiology, 53 (5), 499-503.

Hoogendoorn, S. (2009). Measuring agile progress in smart use case points. Retrieved May

05, 2014, from Sander Hoogendoorn:

 http://sanderhoogendoorn.com/blog/index.php/measuring-agile-progress-in-smart-

use-case-points/

Huang, S.-J., & Chiu, N.-H. (2006). Optimization of analogy weights by genetic algorithm

for software effort estimation. Information and Software Technology, 48, 1034-1045.

Huang, X., Ho, D., Ren, J., & Capretz, L. (2004). A neuro-fuzzy tool for software estimation.

Proceedings of the 20th IEEE International Conference on Software Maintenance, (p.

520). IEEE Press.

Hussain, I. (2007). Automated Ambiguity Detection in Natural Language Software

Requirements. Master’s Thesis, Department of Computer Science and Software

Engineering, Concordia University.

198

Hussain, I., Kosseim, L., & Ormandjieva, O. (2013). Approximation of COSMIC functional

size to support early effort estimation in Agile. Data & Knowledge Engineering, 85,

2-14.

Hussain, I., Kosseim, L., & Ormandjieva, O. (2008). Using Linguistic Knowledge to Classify

Non-functional Requirements in SRS documents. In LNCS: Natural Language and

Information Systems, vol. 5039/2008 (pp. 287-298). Germany: Springer-Verlag.

Hussain, I., Ormandjieva, O., & Kosseim, L. (2007). Automatic Quality Assessment of SRS

Text by Means of a Decision-Tree-Based Text Classifier. Proceedings of the Seventh

International Conference on Quality Software (QSIC 2007) (pp. 209-218). Portland,

USA: IEEE Computer Society.

Hussain, I., Ormandjieva, O., & Kosseim, L. (2012). LASR: A Tool For Large Scale

Annotation of Software Requirements. Proceedings of EmpiRE 2012, the

International Workshop on Empirical Requirements Engineering, (pp. 57-60).

Chicago, IL: IEEE.

Hussain, I., Ormandjieva, O., & Kosseim, L. (2009). Mining and Clustering Textual

Requirements to Measure Functional Size of Software with COSMIC. Proceedings of

the International Conference on Software Engineering Research and Practice (SERP

2009) (pp. 599-605). CSREA Press.

Hussain, I., Ormandjieva, O., & Kosseim, L. (2010). Towards Approximating COSMIC

Functional Size from User Requirements in Agile Development Processes Using Text

Mining. In LNCS: Natural Language Processing and Information Systems, vol.

6177/2010 (pp. 80-91).

Idri, A., Abran, A., & Khoshgoftaar, T. M. (2002). Estimating software project effort by

analogy based on linguistic values. Proceedings of International Software Metrics

Symposium (pp. 21-30). Ottawa, Canada: IEEE Press.

199

Idri, A., Khoshgoftaar, T. M., & Abran, A. (2002). Can neural networks be easily interpreted

in software cost estimation? Proceedings of the 2002 IEEE International Conference

on Fuzzy Systems, 2 (pp. 1162-1167). IEEE Press.

IEEE. (2004). A. Abran, & P. Bourque (Eds.) Guide to the Software Engineering Body of

Knowledge. IEEE Computer Society Press.

IEEE. (1998). IEEE recommended practice for software requirements specifications. IEEE

Std 830-1998.

IFPUG. (2013). Software Non-functional Assessment Process (SNAP): Assessment Practices

Manual - Release 2.1. International Function Point Users Group (IFPUG).

ISO/IEC 14143-1. (1998). Functional Size Measurment - Definition of Concepts.

International Organization for Standardization.

ISO/IEC 14143-1. (2007). Functional Size Measurment - Definition of Concepts.

International Organization for Standardization.

ISO/IEC 19761. (2003). COSMIC Full Function Points Measurement Manual v2.2.

International Organization for Standardization.

ISO/IEC 19761. (2011). COSMIC Full Function Points Measurement Method. International

Organization for Standardization.

ISO/IEC 20926. (2003). Software engineering — IFPUG 4.1 Unadjusted functional size

measurement method — Counting Practices Manual. International Organization for

Standardization.

ISO/IEC 20968. (2002). Software Engineering — Mk II Function Point Analysis — Counting

Practices Manual. International Organization for Standardization.

ISO/IEC 24570. (2005). Software engineering — NESMA functional size measurement

method version 2.1 — Definitions and counting guidelines for the application of

Function Points Analysis. International Organization for Standardization.

200

ISO/IEC 29881. (2010). Information technology — Systems and software engineering —

FiSMA 1.1 functional size measurement method. International Organization for

Standardization.

Jedlitschka, A., Ciolkowski, M., & Pfahl, D. (2008). Reporting Experiments in Software

Engineering. In F. Shull, J. Singer, & D. Sjøberg (Eds.), Guide to Advanced

Empirical Software Engineering (pp. 201-228). London, UK: Springer.

Jenner, M. S. (2011). Automation of Counting of Functional Size Using COSMIC FFP in

UML. In R. R. Dumke, & A. Abran (Eds.), COSMIC Functional Points: Theory and

Advanced Practices (pp. 276-283). Boca Raton, FL: Auerbach Publications.

John, G. H., & Langley, P. (1995). Estimating Continuous Distributions in Bayesian

Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial

Intelligence (pp. 338-345). Morgan Kaufmann.

Jones, C. (1997). Applied Software Measurement: Assuring Productivity and Quality (2nd

ed.). New York, NY: McGraw-Hill.

Jongmoon, B., Boehm, B., & Steece, B. M. (2002). Disaggregating and calibrating the CASE

tool variable in COCOMO II. IEEE Transactions on Software Engineering, 28, 1009-

1022.

Jørgensen, M. (2004a). A review of studies on expert estimation of software development

effort. Journal of Systems and Software, 70, 37-60.

Jørgensen, M. (2004b). Regression Models of Software Development Effort Estimation

Accuracy and Bias. Empirical Software Engineering, 9, 297-314.

Jørgensen, M., & Molokken-Ostvold, K. (2004). Reasons for software effort estimation error:

impact of respondent role, information collection approach, and data analysis method.

IEEE Transactions on Software Engineering, 30, 993-1007.

Jørgensen, M., & Shepperd, M. (2007). A Systematic Review of Software Development Cost

Estimation Studies. IEEE Transactions on Software Engineering, 33, 33-53.

201

Kamsties, E., Berry, D. M., & Paech, B. (2001). Detecting Ambiguities in Requirements

Documents Using Inspections. Proceedings of the First Workshop on Inspection in

Software Engineering (WISE'01), (pp. 68-80).

Karttunen, L. (1971). Implicative Verbs. Language, 47 (2), 340-358.

Kassab, M. (2009). Non-Functional Requirements: Modeling and Assessment. VDM Verlag.

Kassab, M., Ormandjieva, O., Daneva, M., & Abran, A. (2008). Non-Functional

Requirements: Size Measurement and Testing with COSMIC-FFP. In J. J. Cuadrado-

Gallego, R. Braungarten, R. R. Dumke, & A. Abran (Eds.), Software Process and

Product Measurement (pp. 168-182). Berlin, Heidelberg: Springer-Verlag.

Kemerer, C. F. (1987). An empirical validation of software cost estimation models.

Communications of the ACM, 30, 416-429.

Kitchenham, B. A., & Taylor, N. R. (1984). Software cost models. ICL Technical Journal, 4,

73-102.

Kitchenham, B., Pickard, L., MacDonell, S., & Shepperd, M. (2001). What accuracy statistics

really measure [software estimation]. Proceedings of IEEE Software, 148 (2), 81-85.

Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. Proceedings of the 41st

Meeting of the Association for Computational Linguistics (pp. 423-430). Stroudsburg,

PA: Association for Computational Linguistics.

Ko, Y., Park, S., Seo, J., & Choi, S. (2007). Using classification techniques for informal

requirements in the requirements analysis-supporting system. Information and

Software Technology, 49, 1128-1140.

Körner, S. J., & Landhäußer, M. (2010). Semantic Enriching of Natural Language Texts with

Automatic Thematic Role Annotation. Natural Language Processing and Information

Systems, vol. 6177 (pp. 92-99). Berlin, Heidelberg: Springer Verlag.

202

Kraemer, H. C., Periyakoil, V. S., & Noda, A. (2004). Kappa coeffcients in medical research.

Tutorials in Biostatistics Volume 1: Statistical Methods in Clinical Studies. John

Wiley & Sons, Ltd.

Krenn, B., Evert, S., & Zinsmeister, H. (2004). Determining Intercoder Agreement for a

Collocation Identification Task. Proceedings of Konvens'04, September, (pp. 89–96).

Vienna, Austria.

Landhäußer, M., Körner, S. J., & Tichy, W. F. (2014). From requirements to UML models

and back: how automatic processing of text can support requirements engineering.

Software Quality Journal, 22 (1), 121-149.

Landis, R. J., & Koch, G. G. (1977). The Measurement of Observer Agreement for

Categorical Data. Biometrics, 33, 159-174.

Larman, C. (2003). Agile and Iterative Development: A Manager's Guide. Pearson Education.

le Cessie, S., & van Houwelingen, J. (1992). Ridge Estimators in Logistic Regression.

Applied Statistics, 41 (1), 191-201.

Lederer, A. L., & Prasad, J. (1992). Nine management guidelines for better cost estimating.

Communications of the ACM, 35, 51-59.

Lederer, A. L., & Prasad, J. (1991). The validation of a political model of information

systems development cost estimating. ACM Transactions on Computer Personnel, 13,

47-57.

Leffingwell, D., & Widrig, D. (2003). Managing Software Requirements: A Use Case

Approach. Pearson Education.

Letier, E., Kramer, J., Magee, J., & Uchitel, S. (2005). Monitoring and control in scenario-

based requirements analysis. Proceedings of the 27th International Conference on

Software Engineering (pp. 382-391). Louis, Missouri, USA: ACM Press.

203

Levine, R. L., & Hunter, J. E. (1983). Regression methodology: Correlation, meta-analysis,

confidence intervals, and reliability. Journal of Leisure Research, 15, 323-343.

Lewis, J. P. (2001). Limits to software estimation. Software Engineering Notes, 26, 54-59.

Lin, D. (2003). Dependency-Based Evaluation of Minipar. In Text, Speech and Language

Technology: Treebanks, 20 (pp. 317-329), Netherlands: Springer.

Liu, D. (2003). Automating Transition from Use Cases to Class Model, Master’s Thesis, Dept.

of Electr. & Comput. Eng., University of Calgary. Calgary, AB.

Marín, B., Pastor, O., & Giachetti, G. (2008). Automating the Measurement of Functional

Size of Conceptual Models in an MDA Environment. Proceedings of the 9th

international conference on Product-Focused Software Process Improvement (pp.

215-229). Berlin, Heidelberg: Springer-Verlag.

Martin, R. C. (2003). Agile Software Development: Principles, Patterns and Practices.

Prentice Hall.

McConnell, S. (2006). Software Estimation—Demystifying the Black Art. Microsoft Press.

Meli, R. (1997). Early and Extended Function Point: a new method for Function Points

estimation. Proceedings of IFPUG - Fall Conference, September 15-19. Scottsdale,

AZ.

Mendes, E., & Mosley, N. (2008). Bayesian Network Models for Web Effort Prediction: A

Comparative Study. IEEE Transactions on Software Engineering, 34, 723-737.

Mendes, E., Martino, S. D., Ferrucci, F., & Gravino, C. (2007). Effort estimation: how

valuable is it for a web company to use a cross-company data set, compared to using

its own single-company data set? Proceedings of the 16th international conference on

World Wide Web (pp. 963-972). ACM.

204

Menzies, T., Chen, Z., Port, D., & Hihn, J. (2005). Simple Software Cost Estimation: Safe or

Unsafe? Proceedings of PROMISE 2005, International Workshop on Predictor

Models in Software Engineering (pp. 1-6) New York, NY: ACM.

Menzies, T., Zhihao, C., Hihn, J., & Lum, K. (2006). Selecting Best Practices for Effort

Estimation. IEEE Transactions on Software Engineering, 32, 883-895.

Meyer, B. (1985). On Formalism in Specifications. IEEE Software, 2, 6-26.

Mich, L., & Garigliano, R. (2002). NL-OOPS: A Requirements Analysis tool based on

Natural Language Processing. Proceedings of the 3rd International Conference On

Data Mining, September 25-27 (pp. 321-330). Bologna.

Microsoft Corp. (2011). Windows Intune: Software Categories. Retrieved June 02, 2012,

from Windows Intune:

http://onlinehelp.microsoft.com/en-us/windowsintune/ff399004.aspx

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the

ACM, 38 (11), 39-41.

Minfang, Z., Woye, L., & Jiansi, C. (2012). Cost Estimation of Equipment Software in

Earlier Period Based on Wideband Delphi and Function Resolve. In LNEE:

Information Engineering and Application, vol. 154 (pp. 1304-1309). Springer.

Miranda, E., Bourque, P., & Abran, A. (2009). Sizing user stories using paired comparisons.

Information and Software Technology, 51, 1327–1337.

Miyazaki, Y., Terakado, M., Ozaki, K., & Nozaki, H. (1994). Robust regression for

developing software estimation models. Journal of Systems and Software, 27, 42430.

Molkken, K., & Jørgensen, M. (2003). A Review of Surveys on Software Effort Estimation.

Proceedings of the 2003 International Symposium on Empirical Software

Engineering (p. 223). Washington, DC: IEEE Computer Society.

205

Moradi-Seresht, S., Ormandjieva, O., & Sabra, S. (2008). Automatic Conceptual Analysis of

User Requirements with the Requirements Engineering Assistance Diagnostic

(READ) Tool. Proceedings of 6th International Conference on Software Engineering

Research, Management and Applications (SERA 2008) (pp. 133-142). Prague: IEEE.

Moreira, A., Araujo, J., & Brito, I. (2002). Crosscutting Quality Attributes for Requirements

Engineering. Proceedings of 14th International Conference on Software Engineering

and Knowledge Engineering, (pp. 167–174). Ischia, Italy.

Musilek, P., Pedrycs, W., Succi, G., & Reformat, M. (2000). Software cost estimation with

fuzzy models. Applied Computing Review, 8, 24-29.

Mylopoulos, J., Chung, L., & Nixon, B. (1992). Representing and Using Nonfunctional

Requirements: A process Oriented Approach. IEEE Trans. S.E,, 18, 483-497.

Myrtveit, I., Stensrud, E., & Shepperd, M. (2005). Reliability and validity in comparative

studies of software prediction models. IEEE Transactions on Software Engineering,

31, 380-391.

Ogren, P. V. (2006). Knowtator: A Protégé plug-in for annotated corpus construction.

Proceedings of the 2006 Conference of the North American Chapter of the

Association for Computational Linguistics on Human Language Technology (pp.

273-275). Morristown, NJ: Association for Computational Linguistics.

Ormandjieva, O., Hussain, I., & Kosseim, L. (2007). Toward a text classification system for

the quality assessment of software requirements written in natural language.

Proceedings of SOQUA '07: Fourth international workshop on Software quality

assurance (pp. 39-45). ACM.

Osborne, M., & MacNish, C. K. (1996). Processing Natural Language Software Requirement

Specifications. Proceedings of ICRE '96, the 2nd International Conference on

Requirements Engineering (p. 229). IEEE Computer Society.

206

Park, H., & Baek, S. (2008). An empirical validation of a neural network model for software

effort estimation. Expert Systems with Applications, 35, 929-937.

Pendharkar, P. C., Subramanian, G. H., & Rodger, J. A. (2005). A probabilistic model for

predicting software development effort. IEEE Transactions on Software Engineering,

31, 615-624.

Pfleeger, S. L., Wu, F., & Lewis, R. (2005). Software Cost Estimation and Sizing Methods,

Issues and Guidelines. RAND Corporation.

Port, D., & Korte, M. (2008). Comparative studies of the model evaluation criterions MMRE

and PRED in software cost estimation research. Proceedings of the Second ACM-

IEEE international symposium on Empirical software engineering and measurement

(pp. 51-60). ACM.

Princeton University. (2010). About WordNet. Retrieved May 05, 2014, from WordNet:

http://wordnet.princeton.edu

Putnam, L. H. (1981). SLIM: a quantitative tool for software cost and schedule estimation.

Proceedings of NBS/IEEE/ACM Software Tool Fair (pp. 49-57). McLean, VA:

Quantitative Software Management Inc.

Putnam, L. H., & Meyers, W. (1992). Measures for Excellence: Reliable Software, on Time,

Within Budget. Prentice Hall.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning (Morgan Kaufmann Series in

Machine Learning) (1 ed.). Morgan Kaufmann.

Rashwan, A., Ormandjieva, O., & Witte, R. (2013). Ontology-Based Classification of Non-

functional Requirements in Software Specifications: A New Corpus and SVM-Based

Classifier. Proceedings of COMPSAC 2013, the 37th Annual International Computer

Software & Applications Conference (pp. 381-386). Kyoto, Japan: IEEE.

Regolin, E., Souza, G. d., Pozo, A., & Vergilio, S. (2003). Exploring machine learning

techniques for software size estimation. Proceedings of SCCC 2003, the 23rd

207

International Conference of the Chilean Computer Science Society (pp. 130-136).

Los Alamitos, CA, USA.

Rolland, C., & Proix, C. (1992). A Natural Language Approach For Requirements

Engineering. Proceedings of the Fourth International Conference CAiSE'92 on

Advanced Information Systems Engineering, vol. 593 of Lecture Notes in Computer

Science (pp. 257–277). Manchester, UK.

Rubin, H. A. (1983). Macroestimation of software development parameters: The Estimacs

System. Proceedings of SOFTFAIR Conference on Software Development Tools,

Techniques and Alternatives (pp. 109-118). Arlington, Va: IEEE Press.

Rule, S., & Rule, P. G. (2011). Everything You Always Wanted to Know About Software

Measurement. Methods and Tools, 19 (2), 13-24.

Saadaoui, S., Majchrowski, A., & Ponsard, C. (2009). Experiment with COSMIC V3.0: Case

Studies in Business Applications. Proceedings of the 16th European Systems &

Software Process Improvement and Innovation (EuroSPI'09) Conference,. Spain:

University of Alcala. Retrieved May 20, 2014, from:

https://www.cetic.be/IMG/pdf/cetic-eurospi09-applying-cosmic-final.pdf

Samarasinghe, N., & S., S. (2005). Generating a Domain Model from a Use Case Model.

Proceedings of the ISCA 14th International Conference on Intelligent and Adaptive

Systems and Software Engineering (pp. 23-29). Toronto, Canada.

Sang, E. F., Daelemans, W., Déjean, H., Koeling, R., Krymolowski, Y., Punyakanok, V., et

al. (2000). Applying System Combination to Base Noun Phrase Identification.

Proceedings of the 18th Conference on Computational Linguistics. vol. 2 (pp. 857-

863). Stroudsburg, PA: Association for Computational Linguistics.

Santillo, L., Conte, M., & Meli, R. (2005). E&Q: An Early & Quick Approach to Functional

Size. Proceedings of IEEE International Symposium on Software Metrics (p. 41). Los

Alamitos, CA, USA: IEEE Computer Society.

208

Sayyad Shirabad, J., & Menzies, T. (2005). The PROMISE Repository of Software

Engineering Databases. (School of Information Technology and Engineering,

University of Ottawa, Canada) Retrieved November 6, 2009, from:

 http://promise.site.uottawa.ca/SERepository

Shan, Y., McKay, R. I., Lokan, C. J., & Essam, D. L. (2002). Software project effort

estimation using genetic programming. Proceedings of International Conference on

Communications (pp. 1108-1112). Canberra, ACT, Australia: IEEE Computer

Society.

Shepperd, M., & Cartwright, M. (2001). Predicting with sparse data. IEEE Transactions on

Software Engineering, 27, 987-998.

Shepperd, M., & Schofield, C. (1997). Estimating software project effort using analogies.

IEEE Transactions on Software Engineering, 23, 736-743.

Shukla, K. K. (2000). Neuro-genetic prediction of software development effort. Information

and Software Technology, 42, 701-713.

Sneed, H. M. (2001). Extraction of function points from source-code. Proceedings of New

Approaches in Software Measurement, 10th International Workshop, IWSM (pp. 135-

146). Berlin, Germany: Springer-Verlag.

Some, S. (2006). Supporting use case based requirements engineering. Journal of

Information and Software Technology, 48, 43–58.

Srinivasan, L., & Stefan, S. S. (2010). Patent No. US 7,743,369 B1. United States of America.

Stamelos, I., Angelis, L., Dimou, P., & Sakellaris, E. (2003). On the use of Bayesian belief

networks for the prediction of software productivity. Information and Software

Technology, 45, 51-60.

Stanford Center for Biomedical Informatics Research. (2014). The Protégé Ontology Editor

and Knowledge Acquisition System. Retrieved May 20, 2014, from:

 http://protege.stanford.edu

209

SWEBOK. (2004). Guide to the Sotware Engineering Body of Knowledge (2004 Version). (A.

Abran, J. W. Moore, P. Bourque, & R. Dupuis, Eds.) CA, US: IEEE Computer

Society.

The Standish Group. (2013). CHAOS Manifesto 2013: Think Big, Act Small. Boston, MA:

The Standish Group International Inc.

Tjong, S. F., Hallam, N., & Hartley, M. (2006). Improving the Quality of Natural Language

Requirements Specifications through Natural Language Requirements Patterns.

Proceedings of the Sixth IEEE International Conference on Computer and

Information Technology (pp. 199-204). IEEE Press.

Total Metrics. (2007, August). Methods for Software Sizing: How To Decide Which Method

To Use. Retrieved May 19, 2014, from totalmetrics.com:

 http://www.totalmetrics.com/function-point-resources/downloads/R185_Why-use-

Function-Points.pdf

Trudel, S., & Abran, A. (2009). Functional Size Measurement Quality Challenges for

Inexperienced Measurers. Proceedings of the International Conferences on Software

Process and Product Measurement (pp. 157-169). Berlin, Heidelberg: Springer-

Verlag.

Trudel, S., & Abran, A. (2008). Improving quality of functional requirements by measuring

their functional size. Proceedings of the International Conferences on Software

Process and Product Measurement (pp. 287-301). Berlin, Heidelberg: Springer-

Verlag.

Vogelezang, F., Symons, C., Lesterhuis, A., Meli, R., & Daneva, M. (2013). Approximate

COSMIC Functional Size — Guideline for Approximate COSMIC Functional Size

Measurement. Proceedings of The Joint Conference of the 23rd International

Workshop on Software Measurement and the 2013 Eighth International Conference

on Software Process and Product Measurement (IWSM-MENSURA) (pp. 27-32).

IEEE Press.

210

Weiss, S. M., Indurkhya, N., & Zhang, T. (2004). Text Mining. Predictive Methods for

Analyzing Unstructured Information. Springer, Berlin.

Widlöcher, A., & Mathet, Y. (2009). La plate-forme Glozz: Environnement d'annotation et

d'exploration de corpus. Retrieved May 19, 2014, from:

 http://lipn.univ-paris13.fr/taln09/pdf/TALN_120.pdf

Wiebe, J., Wilson, T., Bruce, R., Bell, M., & Martin, M. (2004). Learning Subjective

Language. Computational Linguistics, 30 (3), 277-308.

Wilson, W. M., Rosenberg, L. H., & Hyatt, L. E. (1996). Automated quality analysis of

Natural Language requirement specifications. Proceedings of 14th Annual Pacific

Northwest Software Quality Conference, (pp. 140-151).

Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and

techniques (2nd ed.). Morgan Kaufmann.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012).

Experimentation in Software Engineering. Berlin, Heidelberg: Springer-Verlag.

Yue, T., Briand, L. C., & Labiche, Y. (2011). A systematic review of transformation

approaches between user requirements and analysis models. Requirements

Engineering, 16 (2), 75-99.

Zhang, G., Patuwo, E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The

state of the art. International Journal of Forecasting, 14, 35-62.

211

Appendix A

Lexical Databases

In our observation of our corpus, we deduced that the semantics of the COSMIC data-

movements can be realized from textual requirements by using both the syntactical and the

lexical information embedded in the requirements. We, therefore, used a set of vocabularies

(or dictionaries, or gazetteers) to build our source of lexical knowledge. We applied these

vocabularies in all of our classification tasks to enrich our approaches with the necessary

lexical knowledge. We describe these vocabularies below:

A.1 Data-movement Verbs
These verbs commonly appear to express the sense of different types of data-movements and

are not specific to any problem domain. We build different vocabularies of data-movement

verbs by the different types of possible data-movements. For each of these vocabularies that

is related to a particular type of data-movement, we first seed it with some of the commonly

used verbs to express the action of that specific type of data-movements. We then expand the

vocabulary with the synsets of WordNet (Miller, 1995; Princeton University, 2010), that is by

adding new synonyms that are common to each pair of verbs in our vocabulary until no new

synonym exists for all possible pairs. Thus, the following sections list the words in the

vocabularies that we ended up building, each related to a particular type of data-movement.

A.1.1 Entry Verbs

These verbs commonly appear to express the action of Entry data-movements and are not

specific to any problem domain. The following are the list of Entry verbs that we ended up

building for our experiments:

212

assign
authenticate
change
choose

click
create
define
edit

Enter
fill
give
inform

input
mention
modify
point

post
provide
re-enter
search

select
set
specify
submit

substitute
tap
tell
touch

type
update

A.1.2 Exit Verbs

These verbs commonly appear to express the action of Exit data-movements and are not

specific to any problem domain. The following are the list of Exit verbs that we ended up

building for our experiments:

default
display
edit

list
mail
mark

output
post
present

preset
print
retrieve

return
search
send

Show
update
view

A.1.3 Read Verbs

These verbs commonly appear to express the action of Read data-movements and are not

specific to any problem domain. The following are the list of Read verbs that we ended up

building for our experiments:

authenticate
check
display

edit
find
get

obtain
post
preset

read
recognize
retrieve

return
search
update

Validate
Verify

A.1.4 Write Verbs

These verbs commonly appear to express the action of Write data-movements and are not

specific to any problem domain. The following are the list of Write verbs that we ended up

building for our experiments:

add
archive
book

change
copy
create

define
delete
edit

erase
insert
record

register
remove
save

set
store
submit

Update

213

A.1.5 Triggering-Entry Verbs

When these verbs appear within the sentences, especially in presence of an actor name as a

subject, they often implicitly indicate the sense of Entry data-movement of triggering events

of functional processes. The following are the list of Triggering-Entry verbs that we ended up

building for our experiments:

check
navigate

click
initiate

request
ask

begin
start

want

A.1.6 System-Message-Exit Verbs

When these verbs appear within the sentences, they often implicitly indicate the sense of Exit

data-movement of a special data-group, called “System Message”. The following are the list

of System-Message-Exit verbs that we ended up building for our experiments:

check
validate

confirm
prompt

inform
signal

refuse
show

notify
acknowledge

A.2 Stative Verbs
We develop the vocabulary of stative verbs that are mostly used to describe the states of

objects instead of describing actions over them. The usage of these verbs is also not specific

to any problem domain. These verbs in most cases describe the state being or having or

spatial relations amongst objects. We again used WordNet (Miller, 1995; Princeton

University, 2010) to manually extract our vocabulary of stative verbs. Thus, we end up

building the following vocabulary of stative verbs:

be
have
consist
own
possess
contain

belong
agree
appear
believe
concern
depend

deserve
disagree
dislike
doubt
feel
fit

hate
hear
imagine
impress
include
involve

know
like
love
matter
mean
measure

mind
need
owe
prefer
promise
realise

realize
recognise
recognize
remember
seem
suppose

surprise
understand
want
weigh
wish

214

A.3 Attribute Names
We developed this vocabulary of attributes containing words that can be used to represent

members or properties or measurable attributes of any entity (i.e. data-group, for our work).

We manually selected a slice of noun-phrases from WordNet (Miller, 1995; Princeton

University, 2010) that belong to the super classes Property, Relation and Communication via

their hypernym paths. We then manually modified some of the words to create new forms

that may appear in textual requirements. We list the base of forms of these words that

generated our vocabulary below:

acceleration
address
advantage
age
aid
allowance
altitude
amount
angle
aperture
area
attribute
badge
badge#
batch
batch#
benefit
birthdate
birthday
bitrate
body
bonus
brightness
capacity
caption
carat
category
charge

choice
circumference
citation
city
clarity
class
code
color
colour
comment
commission
compensation
concentration
condition
conductivity
conductance
consistency
constraint
consumption
contrast
cost
count
country
criterion
date
datum
day
debt
deduction

definition
degree
depth
density
description
diameter
dimension
discount
distance
duration
duty
earning
elasticity
email
ethnicity
expanse
expenditure
expense
expertise
experience
exposure
extent
extension
factor
fee
filename
firstname
flux
footer

footnote
force
frequency
function
gender
genre
grade
gravity
group
growth
head
header
heading
headline
heartrate
height
hour
humidity
hue
i.d.
id
id#
id's
ident
illumination
image
income
info
information

inductance
intensity
interval
language
lastname
latitude
length
level
limit
limitation
location
longitude
loss
luminance
magnitude
mass
message
measure
measurement
mileage
minute
month
momentum
money
name
no.
number
occupation
opacity

operand
option
p.i.n.
payment
payoff
parameter
path
password
percentage
period
ph#
phone
photo
photograph
picture
pin
population
portion
position
post
power
pressure
premium
profit
proportion
price
pulse
quantity
quota

race
radius
radiation
raise
range
rank
rate
ratio
rebate
reference
remuneration
reply
resilience
resistance
resistivity
response
responsibility
restriction
resolution
revenue
reward
role
salary
saturation
second
selection
serial#
sex
situation

size
specification
speed
spot
status
stipend
strength
string
telephone
temperature
text
title
time
torque
transparency
type
username
value
velocity
viscosity
voltage
volume
wage
watt
wavelength
weight
width
year
zip

A.4 Data-group Names
According to our approach, as discussed in Section 4.4.3, the names of the data-groups

belonging to the problem domains of our corpus were already available to us. For our corpus,

these names formed out a vocabulary of data-group names. These are listed below:

budget
chart
content

course
event
filter

fund
invitation
news

opportunity
page
performance

product
professor
revenue

role
search
student

subscription
user

215

A.5 Actor Names
The Entry data-movements in most cases are caused by primary actors who are human. The

mentions of these actors appear in software requirements documents as base noun-phrases

that indicate names of people or their roles or their professions or their positions in an

organization. Thus, we used a dictionary to identify the candidates for such noun-phrases. We

suggest including more names of human actors to this dictionary based on our knowledge of

the problem domains and the human actors they involve. It should be mentioned that the

mentions of non-human actors, e.g. the systems, subsystems, modules, features, functions etc.,

that are named with “helper”, “assistant”, “expert”, “client”, “publisher”, “presenter”,

“holder”, “sender”, “reader”, “collector”, “master”, “resident”, “viewer”, “receiver”,

“worker”, “operator”, “builder”, “manager”, “learner”, “trainer” etc., may be mistakenly be

identified as candidates for human actors because of the use of this dictionary. We, therefore,

consider the identified noun-phrases as candidates only, a subset of which can then finally

indicate human actors only when they are combined with other syntactic features leading to

the deduction. The vocabulary that we used in our tests is presented below:

acc-holder
accountant
account-holder
actor
actress
adjunct
administrator
advisor
advocate
agent
ally
amateur
ambassador
anthropologist
apprentice
archeologist
artisan
artist
assistant
associate
athlete
attendant
attorney
auditor
aunt
author
banker
barrister
bartender
beginner

biologist
bloke
bookkeeper
borrower
boss
botanist
boy
brigadier
broker
brother
buddy
builder
buyer
c.e.o.
c.o.o.
campaigner
captain
cardholder
card-holder
cashier
ceo
chairman
challenger
chap
chef
chemist
chief
classmate
clerk
client

coach
collector
colonel
commander
commissioner
competitor
consumer
contender
contestant
contributor
coo
cook
councilor
counsellor
counselor
critic
customer
defendant
delegate
demonstrator
dentist
deputy
designer
detective
digger
director
disciple
doctor
dude
editor

employee
employer
engineer
examiner
expert
father
fellow
female
follower
friend
gamer
general
girl
governor
graduate
grandfather
grandmother
guy
helper
historian
holder
householder
husband
individual
inspector
instructor
instrumentalist
judge
jury
laborer

landlady
landlord
lawyer
leader
learner
lender
lessee
lessor
lieutenant
magistrate
male
man
manager
marketer
master
mate
mayor
mechanic
member
mentor
merchandiser
mineworker
minister
mother
musician
nurse
officer
official
operator
opponent

participant
partner
patient
patron
person
personnel
physician
physicist
pianist
pilot
player
poet
poetess
policeman
politician
practitioner
presenter
president
principal
proctor
professional
professor
programer
programmer
promoter
psychologist
publisher
purchaser
reader
receiver

receptionist
recipient
recruit
referee
registrar
rep
representative
resident
resider
scholar
scientist
secretary
seller
senator
sender
senior
servant
shareholder
shopper
shopper
sister
soldier
solicitor
somebody
someone
sophomore
speaker
specialist
spokesperson
sportsman

spouse
staff
stenographer
student
subscriber
supporter
taker
teacher
technician
teller
tenant
trader
trainee
trainer
trainer
tutor
uncle
user
v.i.p.
viewer
violinist
vip
voter
waiter
wife
witness
woman
worker
writer
zoologist

216

Appendix B

Raw Test Results: Outputs from WEKA

In this appendix, we present the detailed raw outputs generated by Weka (Witten & Frank,

2005) during the 10-fold cross-validation tests and the batch tests with incremental learning,

all of which were with our supervised learning-based data-movement classifiers.

B.1 10-fold Cross-Validation Results
Weka’s outputs for our 10-fold cross validation tests are presented in the following sections.

B.1.1 For Entry Classifier

=== Run information ===

Scheme:weka.classifiers.trees.J48 -U -M 5
Relation: Entry_nounPhrase_Classification-
weka.filters.supervised.instance.SpreadSubsample-M1.0-X0.0-S1
Instances: 236
Attributes: 19
 isDirectObject
 isInObjectLikePosition
 isPartOfDependantClause
 isPartOfDependantClauseType
 isObjectOfDataMovementVerb
 isObjectOfVerbWithSubjectType
 mainVerbIsDataMovementVerb
 mainVerbHasSubjectType
 isSubjectOfStativeVerb
 isPartOfNegativeSense
 isAttribute
 ownsAttribute
 isDataGroup
 belongsToDataGroup
 isRelatedToAttribute
 isRelatedToDataGroup
 isObjectOfEntryVerb
 mainVerbIsEntryVerb
 class
Test mode:10-fold cross-validation

=== Classifier model (full training set) ===

J48 unpruned tree

217

isObjectOfEntryVerb = true
| isObjectOfVerbWithSubjectType = actor: Entry (84.0/4.0)
| isObjectOfVerbWithSubjectType = nonactor: Entry (0.0)
| isObjectOfVerbWithSubjectType = nosubject
| | isDataGroup = true: Entry (13.0/4.0)
| | isDataGroup = false
| | | isDirectObject = true: Entry (7.0/3.0)
| | | isDirectObject = false: NotEntry (5.0)
isObjectOfEntryVerb = false
| isDataGroup = true
| | isPartOfDependantClause = true: Entry (5.0/1.0)
| | isPartOfDependantClause = false
| | | isAttribute = true: Entry (10.0/3.0)
| | | isAttribute = false
| | | | isObjectOfVerbWithSubjectType = actor: Entry (5.0/2.0)
| | | | isObjectOfVerbWithSubjectType = nonactor: NotEntry (0.0)
| | | | isObjectOfVerbWithSubjectType = nosubject: NotEntry (41.0/11.0)
| isDataGroup = false: NotEntry (66.0)

Number of Leaves : 11

Size of the tree : 19

Time taken to build model: 0.02 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 200 84.7458 %
Incorrectly Classified Instances 36 15.2542 %
Kappa statistic 0.6949
Mean absolute error 0.2014
Root mean squared error 0.3303
Relative absolute error 40.2736 %
Root relative squared error 66.0592 %
Total Number of Instances 236

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class
 0.822 0.127 0.866 0.822 0.843 0.904 Entry
 0.873 0.178 0.831 0.873 0.851 0.904 NotEntry
Weighted Avg. 0.847 0.153 0.848 0.847 0.847 0.904

=== Confusion Matrix ===

 a b <-- classified as
 97 21 | a = Entry
 15 103 | b = NotEntry

B.1.2 For Exit Classifier

=== Run information ===

Scheme:weka.classifiers.trees.J48 -U -M 5
Relation: Exit_nounPhrase_Classification-
weka.filters.supervised.instance.SpreadSubsample-M1.0-X0.0-S1
Instances: 184
Attributes: 19
 isDirectObject
 isInObjectLikePosition
 isPartOfDependantClause
 isPartOfDependantClauseType
 isObjectOfDataMovementVerb

218

 isObjectOfVerbWithSubjectType
 mainVerbIsDataMovementVerb
 mainVerbHasSubjectType
 isSubjectOfStativeVerb
 isPartOfNegativeSense
 isAttribute
 ownsAttribute
 isDataGroup
 belongsToDataGroup
 isRelatedToAttribute
 isRelatedToDataGroup
 isObjectOfExitVerb
 mainVerbIsExitVerb
 class
Test mode:10-fold cross-validation

=== Classifier model (full training set) ===

J48 unpruned tree

isObjectOfExitVerb = true: Exit (84.0/7.0)
isObjectOfExitVerb = false: NotExit (100.0/15.0)

Number of Leaves : 2

Size of the tree : 3

Time taken to build model: 0 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 159 86.413 %
Incorrectly Classified Instances 25 13.587 %
Kappa statistic 0.7283
Mean absolute error 0.2142
Root mean squared error 0.3344
Relative absolute error 42.838 %
Root relative squared error 66.8727 %
Total Number of Instances 184

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class
 0.837 0.109 0.885 0.837 0.86 0.835 Exit
 0.891 0.163 0.845 0.891 0.868 0.835 NotExit
Weighted Avg. 0.864 0.136 0.865 0.864 0.864 0.835

=== Confusion Matrix ===

 a b <-- classified as
 77 15 | a = Exit
 10 82 | b = NotExit

B.1.3 For Read Classifier

=== Run information ===

Scheme:weka.classifiers.trees.J48 -U -M 5
Relation: Read_nounPhrase_Classification-
weka.filters.supervised.instance.SpreadSubsample-M1.0-X0.0-S1
Instances: 218
Attributes: 19
 isDirectObject
 isInObjectLikePosition

219

 isPartOfDependantClause
 isPartOfDependantClauseType
 isObjectOfDataMovementVerb
 isObjectOfVerbWithSubjectType
 mainVerbIsDataMovementVerb
 mainVerbHasSubjectType
 isSubjectOfStativeVerb
 isPartOfNegativeSense
 isAttribute
 ownsAttribute
 isDataGroup
 belongsToDataGroup
 isRelatedToAttribute
 isRelatedToDataGroup
 isObjectOfReadVerb
 mainVerbIsReadVerb
 class
Test mode:10-fold cross-validation

=== Classifier model (full training set) ===

J48 unpruned tree

isObjectOfReadVerb = true
| isDirectObject = true: Read (53.0/3.0)
| isDirectObject = false
| | isAttribute = true: NotRead (5.0/2.0)
| | isAttribute = false: Read (21.0/3.0)
isObjectOfReadVerb = false
| isAttribute = true
| | isObjectOfVerbWithSubjectType = actor: NotRead (6.0)
| | isObjectOfVerbWithSubjectType = nonactor: Read (0.0)
| | isObjectOfVerbWithSubjectType = nosubject: Read (28.0/7.0)
| isAttribute = false
| | isObjectOfDataMovementVerb = true
| | | isPartOfDependantClause = true: Read (5.0/1.0)
| | | isPartOfDependantClause = false
| | | | isDataGroup = true: NotRead (6.0/1.0)
| | | | isDataGroup = false: Read (7.0/3.0)
| | isObjectOfDataMovementVerb = false: NotRead (87.0/9.0)

Number of Leaves : 10

Size of the tree : 18

Time taken to build model: 0.02 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 181 83.0275 %
Incorrectly Classified Instances 37 16.9725 %
Kappa statistic 0.6606
Mean absolute error 0.2427
Root mean squared error 0.3698
Relative absolute error 48.5411 %
Root relative squared error 73.9563 %
Total Number of Instances 218

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class
 0.853 0.193 0.816 0.853 0.834 0.845 Read
 0.807 0.147 0.846 0.807 0.826 0.845 NotRead
Weighted Avg. 0.83 0.17 0.831 0.83 0.83 0.845

220

=== Confusion Matrix ===

 a b <-- classified as
 93 16 | a = Read
 21 88 | b = NotRead

B.1.4 For Write Classifier

=== Run information ===

Scheme:weka.classifiers.trees.J48 -U -M 5
Relation: Write_nounPhrase_Classification-
weka.filters.supervised.instance.SpreadSubsample-M1.0-X0.0-S1
Instances: 198
Attributes: 19
 isDirectObject
 isInObjectLikePosition
 isPartOfDependantClause
 isPartOfDependantClauseType
 isObjectOfDataMovementVerb
 isObjectOfVerbWithSubjectType
 mainVerbIsDataMovementVerb
 mainVerbHasSubjectType
 isSubjectOfStativeVerb
 isPartOfNegativeSense
 isAttribute
 ownsAttribute
 isDataGroup
 belongsToDataGroup
 isRelatedToAttribute
 isRelatedToDataGroup
 isObjectOfWriteVerb
 mainVerbIsWriteVerb
 class
Test mode:10-fold cross-validation

=== Classifier model (full training set) ===

J48 unpruned tree

isObjectOfWriteVerb = true: Write (82.0/1.0)
isObjectOfWriteVerb = false
| isPartOfDependantClauseType = advcl: NotWrite (1.0)
| isPartOfDependantClauseType = ccomp: NotWrite (6.0/2.0)
| isPartOfDependantClauseType = xcomp: NotWrite (3.0)
| isPartOfDependantClauseType = none
| | isAttribute = true
| | | isInObjectLikePosition = true: NotWrite (22.0/3.0)
| | | isInObjectLikePosition = false: Write (5.0)
| | isAttribute = false: NotWrite (79.0/8.0)

Number of Leaves : 7

Size of the tree : 11

Time taken to build model: 0.02 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 180 90.9091 %
Incorrectly Classified Instances 18 9.0909 %
Kappa statistic 0.8182

221

Mean absolute error 0.1467
Root mean squared error 0.2891
Relative absolute error 29.3285 %
Root relative squared error 57.8204 %
Total Number of Instances 198

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class
 0.838 0.02 0.976 0.838 0.902 0.877 Write
 0.98 0.162 0.858 0.98 0.915 0.877 NotWrite
Weighted Avg. 0.909 0.091 0.917 0.909 0.909 0.877

=== Confusion Matrix ===

 a b <-- classified as
 83 16 | a = Write
 2 97 | b = NotWrite

B.2 Batch Test Results for Incremental Learning
The output of the Weka wrapper that we coded using Java for batch testing with incremental

learning are Comma-Separated Value (CSV) files containing different performance results.

The contents of these files are shown as tables in the following sections.

222

B.2.1 For Entry Classifier
Training
Document(s)

Testing
Document(s)

Total
Training
Instances

Total
Testing
Instances

Total
Correct

Correct(%) Kappa
Mean
Absolute
Error

RMS FP Rate
(+)

Precision
(+)

Recall
(+)

F-
Measure
(+)

C1 C2,C3,C4,C5,C6 28 2498 2152 86.14892 0.250313 0.188668 0.316892 0.131997 0.189744 0.711538 0.299595

C2 C1,C3,C4,C5,C6 8 2753 114 4.140937 0 0.5 0.5 1 0.041409 1 0.079526

C3 C1,C2,C4,C5,C6 44 2101 1232 58.63874 0.106715 0.297001 0.463037 0.433416 0.099482 1 0.180961

C4 C1,C2,C3,C5,C6 62 1494 1037 69.41098 0.16637 0.334147 0.478422 0.316986 0.145594 0.873563 0.249589

C5 C1,C2,C3,C4,C6 4 2785 116 4.165171 0 0.5 0.5 1 0.041652 1 0.079972

C6 C1,C2,C3,C4,C5 90 2429 2117 87.15521 0.229215 0.142681 0.319004 0.125637 0.161473 0.780822 0.267606

C1,C2 C3,C4,C5,C6 36 2439 2105 86.30586 0.249721 0.217621 0.344754 0.130398 0.18883 0.71 0.298319

C1,C3 C2,C4,C5,C6 72 1787 1258 70.39731 0.132331 0.250831 0.413288 0.301466 0.115318 0.817073 0.202112

C1,C4 C2,C3,C5,C6 90 1180 1092 92.54237 0.410328 0.196221 0.282449 0.04607 0.413793 0.493151 0.45

C1,C5 C2,C3,C4,C6 32 2471 2129 86.15945 0.24719 0.181059 0.30864 0.131701 0.1875 0.705882 0.296296

C1,C6 C2,C3,C4,C5 118 2115 1856 87.75414 0.217362 0.127849 0.273874 0.118677 0.152778 0.745763 0.253602

C2,C3 C1,C4,C5,C6 52 2042 1351 66.16063 0.127203 0.289809 0.4717 0.350769 0.110533 0.923913 0.197445

C2,C4 C1,C3,C5,C6 70 1435 1009 70.31359 0.170664 0.299274 0.463125 0.306953 0.147844 0.86747 0.252632

C2,C5 C1,C3,C4,C6 12 2726 2387 87.5642 0.293822 0.112462 0.307326 0.120122 0.216958 0.776786 0.339181

C2,C6 C1,C3,C4,C5 98 2370 2016 85.06329 0.183327 0.129942 0.323904 0.146023 0.131783 0.73913 0.223684

C3,C4 C1,C2,C5,C6 106 783 597 76.24521 0.263785 0.368602 0.506207 0.240947 0.231111 0.8 0.358621

C3,C5 C1,C2,C4,C6 48 2074 1494 72.03472 0.157855 0.252813 0.437747 0.287879 0.12844 0.893617 0.224599

C3,C6 C1,C2,C4,C5 134 1718 1394 81.14086 0.182253 0.202416 0.362153 0.191962 0.128065 0.921569 0.22488

C4,C5 C1,C2,C3,C6 66 1467 1351 92.09271 0.46478 0.200885 0.301215 0.065123 0.395973 0.694118 0.504274

C4,C6 C1,C2,C3,C5 152 1111 1007 90.63906 0.328061 0.168406 0.308701 0.086062 0.245902 0.714286 0.365854

C5,C6 C1,C2,C3,C4 94 2402 1961 81.6403 0.15006 0.157831 0.339211 0.181467 0.111345 0.746479 0.193784

C1,C2,C3 C4,C5,C6 80 1728 1428 82.63889 0.239704 0.231679 0.407152 0.172727 0.181034 0.807692 0.295775

C1,C2,C4 C3,C5,C6 98 1121 905 80.73149 0.26621 0.202954 0.342397 0.192015 0.214008 0.797101 0.337423

C1,C2,C5 C3,C4,C6 40 2412 2116 87.72803 0.294497 0.231848 0.367267 0.11841 0.217143 0.77551 0.339286

C1,C2,C6 C3,C4,C5 126 2056 1719 83.60895 0.144336 0.190317 0.339276 0.15992 0.106145 0.690909 0.184019

C1,C3,C4 C2,C5,C6 134 469 394 84.00853 0.419736 0.267584 0.363564 0.148325 0.38 0.745098 0.503311

C1,C3,C5 C2,C4,C6 76 1760 1490 84.65909 0.296209 0.223971 0.365727 0.155952 0.215569 0.9 0.347826

C1,C3,C6 C2,C4,C5 162 1404 1148 81.76638 0.11702 0.266789 0.399497 0.177762 0.089888 0.648649 0.157895

C1,C4,C5 C2,C3,C6 94 1153 1066 92.45447 0.474952 0.18298 0.279302 0.057301 0.425926 0.647887 0.513966

C1,C4,C6 C2,C3,C5 180 797 641 80.4266 0.135623 0.184088 0.331635 0.189857 0.109756 0.642857 0.1875

C1,C5,C6 C2,C3,C4 122 2088 1851 88.64943 0.212399 0.203732 0.307297 0.107829 0.151163 0.684211 0.247619

C2,C3,C4 C1,C5,C6 114 724 340 46.96133 0.109077 0.37483 0.511995 0.579186 0.137079 1 0.241107

C2,C3,C5 C1,C4,C6 56 2015 1190 59.05707 0.099323 0.30366 0.478169 0.426494 0.094818 0.955556 0.172518

C2,C3,C6 C1,C4,C5 142 1659 1510 91.01869 0.287948 0.258177 0.326622 0.084988 0.203488 0.744681 0.319635

C2,C4,C5 C1,C3,C6 74 1408 1294 91.90341 0.455371 0.213207 0.325116 0.067069 0.386207 0.691358 0.495575

C2,C4,C6 C1,C3,C5 160 1052 941 89.44867 0.279078 0.197705 0.346925 0.097633 0.208 0.684211 0.319018

C2,C5,C6 C1,C3,C4 102 2343 1989 84.89117 0.183866 0.117798 0.310267 0.148506 0.131105 0.761194 0.223684

C3,C4,C5 C1,C2,C6 110 756 562 74.33862 0.220362 0.290643 0.423834 0.255411 0.206278 0.730159 0.321678

C3,C4,C6 C1,C2,C5 196 400 273 68.25 0.156146 0.316705 0.472695 0.331579 0.131034 0.95 0.230303

C3,C5,C6 C1,C2,C4 138 1691 1591 94.08634 0.400321 0.233975 0.313693 0.053593 0.296 0.755102 0.425287

C4,C5,C6 C1,C2,C3 156 1084 880 81.18081 0.169436 0.225094 0.394238 0.184866 0.130631 0.725 0.221374

C1,C2,C3,C4 C5,C6 142 410 363 88.53659 0.534429 0.26696 0.386172 0.096419 0.5 0.744681 0.598291

C1,C2,C3,C5 C4,C6 84 1701 1406 82.65726 0.236796 0.238055 0.407226 0.172308 0.178886 0.802632 0.292566

C1,C2,C3,C6 C4,C5 170 1345 1211 90.03717 0.249267 0.161093 0.319831 0.096799 0.169935 0.787879 0.27957

C1,C2,C4,C5 C3,C6 102 1094 838 76.59963 0.214402 0.254604 0.395759 0.235638 0.179661 0.791045 0.292818

C1,C2,C4,C6 C3,C5 188 738 667 90.3794 0.230369 0.1857 0.31891 0.084034 0.178082 0.541667 0.268041

C1,C2,C5,C6 C3,C4 130 2029 1790 88.2208 0.142035 0.168699 0.318826 0.107287 0.109244 0.490566 0.178694

C1,C3,C4,C5 C2,C6 138 442 321 72.62443 0.248785 0.288158 0.427459 0.274809 0.25 0.734694 0.373057

C1,C3,C4,C6 C2,C5 224 86 65 75.5814 0.127536 0.268521 0.38969 0.225 0.142857 0.5 0.222222

C1,C3,C5,C6 C2,C4 166 1377 1239 89.97821 0.293788 0.153998 0.294249 0.101341 0.195266 0.942857 0.323529

C1,C4,C5,C6 C2,C3 184 770 673 87.4026 0.192872 0.17654 0.326352 0.115591 0.148515 0.576923 0.23622

C2,C3,C4,C5 C1,C6 118 697 487 69.87088 0.189813 0.304709 0.43355 0.30721 0.186722 0.762712 0.3

C2,C3,C4,C6 C1,C5 204 341 244 71.55425 0.167979 0.291944 0.42484 0.295385 0.135135 0.9375 0.23622

C2,C3,C5,C6 C1,C4 146 1632 1540 94.36275 0.408542 0.245898 0.294319 0.05167 0.299145 0.777778 0.432099

C2,C4,C5,C6 C1,C3 164 1025 831 81.07317 0.154276 0.236017 0.399141 0.185035 0.120192 0.694444 0.204918

C3,C4,C5,C6 C1,C2 200 373 273 73.19035 0.185696 0.310324 0.447603 0.278873 0.146552 0.944444 0.253731

C1,C2,C3,C4,C5 C6 146 383 330 86.16188 0.514923 0.263387 0.378492 0.136095 0.452381 0.844444 0.589147

C1,C2,C3,C4,C6 C5 232 27 20 74.07407 0.275862 0.294698 0.391835 0.28 0.222222 1 0.363636

C1,C2,C3,C5,C6 C4 174 1318 1121 85.05311 0.187819 0.17848 0.351135 0.150738 0.126126 0.903226 0.221344

C1,C2,C4,C5,C6 C3 192 711 626 88.04501 0.164535 0.179171 0.321497 0.107402 0.129412 0.5 0.205607

C1,C3,C4,C5,C6 C2 228 59 52 88.13559 0.405755 0.259129 0.330261 0.109091 0.333333 0.75 0.461538

C2,C3,C4,C5,C6 C1 208 314 237 75.47771 0.190017 0.267623 0.400004 0.253333 0.146067 0.928571 0.252427

223

B.2.2 For Exit Classifier
Training
Document(s)

Testing
Document(s)

Total
Training
Instances

Total
Testing
Instances

Total
Correct

Correct(%) Kappa
Mean
Absolute
Error

RMS FP Rate
(+)

Precision
(+)

Recall
(+)

F-
Measure
(+)

C1 C2,C3,C4,C5,C6 64 2498 1535 61.44916 0.051061 0.346505 0.511907 0.390894 0.04985 0.833333 0.094073

C2 C1,C3,C4,C5,C6 6 2753 89 3.232837 0 0.5 0.5 1 0.032328 1 0.062632

C3 C1,C2,C4,C5,C6 32 2101 1987 94.57401 0.496199 0.116215 0.210459 4.94E-02 0.382716 0.815789 0.521008

C4 C1,C2,C3,C5,C6 32 1494 1356 90.76305 0.432277 0.143323 0.291083 0.087447 0.333333 0.815789 0.473282

C5 C1,C2,C3,C4,C6 6 2785 89 3.195691 0 0.5 0.5 1 0.031957 1 0.061935

C6 C1,C2,C3,C4,C5 44 2429 2257 92.9189 0.375534 0.184251 0.270695 0.067825 0.266055 0.828571 0.402778

C1,C2 C3,C4,C5,C6 70 2439 2247 92.12792 0.325911 0.249637 0.316696 0.078505 0.217573 0.912281 0.351351

C1,C3 C2,C4,C5,C6 96 1787 1660 92.89312 0.361723 0.179005 0.26333 0.070568 0.245399 0.909091 0.386473

C1,C4 C2,C3,C5,C6 96 1180 1070 90.67797 0.385859 0.250795 0.378421 0.09331 0.273973 0.909091 0.421053

C1,C5 C2,C3,C4,C6 70 2471 2263 91.58236 0.307211 0.185939 0.291888 0.084093 0.203922 0.912281 0.333333

C1,C6 C2,C3,C4,C5 108 2115 1940 91.72577 0.26928 0.201342 0.321202 0.083293 0.172249 0.947368 0.291498

C2,C3 C1,C4,C5,C6 38 2042 1932 94.61312 0.492895 0.104832 0.210658 0.048756 0.380645 0.808219 0.517544

C2,C4 C1,C3,C5,C6 38 1435 1301 90.66202 0.426832 0.136182 0.293803 0.088106 0.329609 0.808219 0.468254

C2,C5 C1,C3,C4,C6 12 2726 2545 93.36023 0.412426 0.061419 0.225329 0.062879 0.299578 0.825581 0.439628

C2,C6 C1,C3,C4,C5 50 2370 2202 92.91139 0.368587 0.169127 0.274685 0.067738 0.260664 0.820896 0.395683

C3,C4 C1,C2,C5,C6 64 783 718 91.6986 0.54807 0.138287 0.266095 0.071923 0.474747 0.783333 0.591195

C3,C5 C1,C2,C4,C6 38 2074 1962 94.59981 0.488463 0.102722 0.217741 0.048976 0.375796 0.808219 0.513043

C3,C6 C1,C2,C4,C5 76 1718 1619 94.23749 0.439934 0.148931 0.241296 0.052885 0.328244 0.796296 0.464865

C4,C5 C1,C2,C3,C6 38 1467 1331 90.72938 0.423696 0.135579 0.292776 0.087518 0.325967 0.808219 0.464567

C4,C6 C1,C2,C3,C5 76 1111 988 88.92889 0.365759 0.190776 0.341511 0.10596 0.277419 0.796296 0.411483

C5,C6 C1,C2,C3,C4 50 2402 2232 92.92256 0.365949 0.169058 0.274523 0.067666 0.258216 0.820896 0.392857

C1,C2,C3 C4,C5,C6 102 1728 1671 96.70139 0.505632 0.193589 0.228418 0.02786 0.397436 0.756098 0.521008

C1,C2,C4 C3,C5,C6 102 1121 1018 90.81178 0.383425 0.234058 0.352665 0.091667 0.272059 0.902439 0.418079

C1,C2,C5 C3,C4,C6 40 2412 2116 87.72803 0.294497 0.231848 0.367267 0.11841 0.217143 0.77551 0.339286

C1,C2,C6 C3,C4,C5 114 2056 1871 91.00195 0.240701 0.219381 0.294435 0.090549 0.152778 0.942857 0.262948

C1,C3,C4 C2,C5,C6 128 469 448 95.52239 0.681169 0.190549 0.252725 0.040816 0.581395 0.892857 0.704225

C1,C3,C5 C2,C4,C6 102 1760 1609 91.42045 0.302306 0.151236 0.247754 0.085515 0.201087 0.902439 0.328889

C1,C3,C6 C2,C4,C5 140 1404 1349 96.08262 0.418909 0.206543 0.249938 0.039074 0.28 0.954545 0.43299

C1,C4,C5 C2,C3,C6 94 1153 1066 92.45447 0.474952 0.18298 0.279302 0.057301 0.425926 0.647887 0.513966

C1,C4,C6 C2,C3,C5 140 797 673 84.44166 0.215439 0.24803 0.352431 0.15871 0.145833 0.954545 0.253012

C1,C5,C6 C2,C3,C4 122 2088 1834 87.83525 0.212789 0.140532 0.297882 0.117676 0.149466 0.736842 0.248521

C2,C3,C4 C1,C5,C6 70 724 663 91.57459 0.546515 0.131768 0.279089 0.071964 0.478261 0.77193 0.590604

C2,C3,C5 C1,C4,C6 44 2015 1907 94.6402 0.484679 0.09418 0.22537 0.048329 0.373333 0.8 0.509091

C2,C3,C6 C1,C4,C5 82 1659 1564 94.27366 0.432416 0.139474 0.247167 0.052239 0.322581 0.784314 0.457143

C2,C4,C5 C1,C3,C6 44 1408 1276 90.625 0.41773 0.130991 0.307477 0.088191 0.321839 0.8 0.459016

C2,C4,C6 C1,C3,C5 82 1052 933 88.68821 0.355538 0.188607 0.317119 0.107892 0.27027 0.784314 0.40201

C2,C5,C6 C1,C3,C4 56 2343 2177 92.91507 0.358444 0.158124 0.28 0.067573 0.252427 0.8125 0.385185

C3,C4,C5 C1,C2,C6 70 756 693 91.66667 0.539559 0.132158 0.272362 0.071531 0.468085 0.77193 0.582781

C3,C4,C6 C1,C2,C5 108 400 350 87.5 0.462828 0.191641 0.350608 0.110497 0.411765 0.736842 0.528302

C3,C5,C6 C1,C2,C4 82 1691 1594 94.26375 0.42739 0.142225 0.239392 0.052439 0.31746 0.784314 0.451977

C4,C5,C6 C1,C2,C3 82 1084 963 88.83764 0.352545 0.186409 0.334147 0.106486 0.266667 0.784314 0.39801

C1,C2,C3,C4 C5,C6 134 410 300 73.17073 0.204445 0.284518 0.377077 0.277922 0.170543 0.88 0.285714

C1,C2,C3,C5 C4,C6 108 1701 1609 94.59142 0.40472 0.184769 0.234941 0.052916 0.278689 0.894737 0.425

C1,C2,C3,C6 C4,C5 146 1344 1289 95.90774 0.394991 0.090238 0.200752 0.041509 0.256757 1 0.408602

C1,C2,C4,C5 C3,C6 108 1094 994 90.85923 0.370946 0.226542 0.356313 0.090909 0.261538 0.894737 0.404762

C1,C2,C4,C6 C3,C5 188 738 667 90.3794 0.230369 0.185961 0.319183 0.084034 0.178082 0.541667 0.268041

C1,C2,C5,C6 C3,C4 120 2028 1844 90.92702 0.230919 0.12995 0.27404 0.091683 0.14486 0.96875 0.252033

C1,C3,C4,C5 C2,C6 134 442 419 94.79638 0.630515 0.201252 0.279779 0.047962 0.52381 0.88 0.656716

C1,C3,C4,C6 C2,C5 172 86 80 93.02326 0.632479 0.183235 0.275961 0.075 0.5 1 0.666667

C1,C3,C5,C6 C2,C4 146 1377 1269 92.15686 0.231593 0.16136 0.257608 0.078792 0.144 0.947368 0.25

C1,C4,C5,C6 C2,C3 148 770 720 93.50649 0.417108 0.203101 0.282066 0.060403 0.307692 0.8 0.444444

C2,C3,C4,C5 C1,C6 76 697 638 91.53515 0.537325 0.126542 0.291498 0.07154 0.471264 0.759259 0.58156

C2,C3,C4,C6 C1,C5 114 341 295 86.51026 0.448957 0.197241 0.357963 0.117647 0.409836 0.714286 0.520833

C2,C3,C5,C6 C1,C4 88 1632 1539 94.30147 0.41875 0.140399 0.228568 0.051768 0.310924 0.770833 0.443114

C2,C4,C5,C6 C1,C3 88 1025 908 88.58537 0.341242 0.183911 0.337032 0.108495 0.258741 0.770833 0.387435

C3,C4,C5,C6 C1,C2 114 373 325 87.13137 0.443006 0.192673 0.345687 0.112426 0.396825 0.714286 0.510204

C1,C2,C3,C4,C5 C6 140 383 343 89.55614 0.454571 0.220948 0.36266 0.105263 0.344828 0.909091 0.5

C1,C2,C3,C4,C6 C5 178 27 25 92.59259 0.709677 0.203277 0.286599 0.083333 0.6 1 0.75

C1,C2,C3,C5,C6 C4 152 1318 1269 96.28225 0.3675 0.167342 0.2222 0.036866 0.238095 0.9375 0.379747

C1,C2,C4,C5,C6 C3 152 711 593 83.40366 0.16936 0.245811 0.361451 0.168345 0.113636 0.9375 0.202703

C1,C3,C4,C5,C6 C2 178 59 52 88.13559 0.415842 0.246369 0.348376 0.125 0.3 1 0.461538

C2,C3,C4,C5,C6 C1 120 314 270 85.98726 0.425482 0.200602 0.34793 0.120567 0.392857 0.6875 0.5

224

B.2.3 For Read Classifier
Training
Document(s)

Testing
Document(s)

Total
Training
Instances

Total
Testing
Instances

Total
Correct

Correct(%) Kappa
Mean
Absolute
Error

RMS FP Rate
(+)

Precision
(+)

Recall
(+)

F-
Measure
(+)

C1 C2,C3,C4,C5,C6 54 2498 1677 67.13371 0.049822 0.433803 0.489753 0.326159 0.058542 0.597561 0.106638

C2 C1,C3,C4,C5,C6 4 2753 107 3.886669 0 0.5 0.5 1 0.038867 1 0.074825

C3 C1,C2,C4,C5,C6 38 2101 1383 65.8258 0.11611 0.25809 0.429888 0.352561 0.102532 0.9 0.184091

C4 C1,C2,C3,C5,C6 34 1494 1302 87.14859 0.317691 0.312584 0.402933 0.112696 0.268519 0.630435 0.376623

C5 C1,C2,C3,C4,C6 8 2785 105 3.770197 0 0.5 0.5 1 0.037702 1 0.072664

C6 C1,C2,C3,C4,C5 80 2429 1846 75.99835 0.125911 0.248198 0.396659 0.24322 0.094637 0.869565 0.170697

C1,C2 C3,C4,C5,C6 58 2439 1607 65.88766 0.050346 0.414613 0.514019 0.339975 0.058685 0.625 0.107296

C1,C3 C2,C4,C5,C6 92 1787 1474 82.48461 0.201612 0.256977 0.342263 1.75E-01 0.146893 0.825397 0.2494

C1,C4 C2,C3,C5,C6 88 1180 991 83.98305 0.312727 0.303005 0.392628 0.161435 0.237288 0.861538 0.372093

C1,C5 C2,C3,C4,C6 62 2471 1603 64.87252 0.046089 0.321873 0.458689 0.350606 0.05518 0.628205 0.101449

C1,C6 C2,C3,C4,C5 134 2115 1851 87.51773 0.19079 0.269209 0.349857 0.12494 0.125 0.880952 0.218935

C2,C3 C1,C4,C5,C6 42 2042 1617 79.18707 0.188757 0.182664 0.399534 0.208291 0.146751 0.795455 0.247788

C2,C4 C1,C3,C5,C6 38 1435 975 67.94425 0.136198 0.258676 0.440862 0.325651 0.134387 0.755556 0.228188

C2,C5 C1,C3,C4,C6 12 2726 2484 91.12252 0.308222 0.08149 0.263623 0.077392 0.2397 0.621359 0.345946

C2,C6 C1,C3,C4,C5 84 2370 1811 76.4135 0.122242 0.249035 0.433212 0.23795 0.092715 0.835821 0.166915

C3,C4 C1,C2,C5,C6 72 783 592 75.60664 0.27027 0.242537 0.370877 0.246479 0.24569 0.780822 0.37377

C3,C5 C1,C2,C4,C6 46 2074 1642 79.17068 0.18186 0.162212 0.350291 0.208249 0.141079 0.790698 0.239437

C3,C6 C1,C2,C4,C5 118 1718 1400 81.4901 0.132196 0.236199 0.385342 0.181055 0.10119 0.68 0.176166

C4,C5 C1,C2,C3,C6 42 1467 1218 83.02658 0.253435 0.213848 0.40931 0.159536 0.21147 0.670455 0.321526

C4,C6 C1,C2,C3,C5 114 1111 835 75.15752 0.180052 0.317487 0.458843 0.254013 0.143312 0.865385 0.245902

C5,C6 C1,C2,C3,C4 88 2402 1758 73.18901 0.106169 0.292619 0.401908 0.272144 0.082251 0.876923 0.150396

C1,C2,C3 C4,C5,C6 96 1728 1454 84.14352 0.177951 0.25578 0.315936 1.52E-01 0.136519 0.655738 0.225989

C1,C2,C4 C3,C5,C6 92 1121 535 47.72525 0.051397 0.395926 0.530219 0.542533 0.0816 0.809524 0.148256

C1,C2,C5 C3,C4,C6 66 2412 1560 64.67662 0.047962 0.306146 0.43215 0.353168 0.056064 0.644737 0.103158

C1,C2,C6 C3,C4,C5 138 2056 1580 76.84825 0.105394 0.309269 0.402549 0.235119 0.074219 0.95 0.137681

C1,C3,C4 C2,C5,C6 126 469 377 80.3838 0.290119 0.232493 0.377532 0.177305 0.278846 0.630435 0.386667

C1,C3,C5 C2,C4,C6 100 1760 1578 89.65909 0.250387 0.26135 0.331814 0.094062 0.187817 0.627119 0.289063

C1,C3,C6 C2,C4,C5 172 1404 1176 83.76068 0.109737 0.253689 0.336385 0.161477 0.074689 0.782609 0.136364

C1,C4,C5 C2,C3,C6 96 1153 796 69.03729 0.124883 0.360423 0.474503 0.313187 0.118557 0.754098 0.2049

C1,C4,C6 C2,C3,C5 168 797 573 71.8946 0.133056 0.352034 0.479897 0.290155 0.100402 1 0.182482

C1,C5,C6 C2,C3,C4 142 2088 1799 86.159 0.153819 0.292178 0.373428 0.138049 0.101587 0.842105 0.181303

C2,C3,C4 C1,C5,C6 76 724 461 63.67403 0.148715 0.379737 0.545948 0.37366 0.175676 0.732394 0.283379

C2,C3,C5 C1,C4,C6 50 2015 1592 79.00744 0.179804 0.162117 0.346616 0.209736 0.140127 0.785714 0.237838

C2,C3,C6 C1,C4,C5 122 1659 1291 77.81796 0.12996 0.255898 0.394623 0.222843 0.09799 0.8125 0.174888

C2,C4,C5 C1,C3,C6 46 1408 954 67.75568 0.129283 0.268368 0.458872 0.326778 0.129032 0.744186 0.219931

C2,C4,C6 C1,C3,C5 118 1052 802 76.23574 0.180849 0.31068 0.461305 0.240519 0.14539 0.82 0.246988

C2,C5,C6 C1,C3,C4 92 2343 1703 72.68459 0.09525 0.297852 0.423045 0.275877 0.076358 0.825397 0.139785

C3,C4,C5 C1,C2,C6 80 756 567 75 0.255161 0.247232 0.417931 0.25182 0.234513 0.768116 0.359322

C3,C4,C6 C1,C2,C5 152 400 294 73.5 0.188951 0.334865 0.454507 0.258856 0.188034 0.666667 0.293333

C3,C5,C6 C1,C2,C4 126 1691 1378 81.49024 0.118829 0.210055 0.329522 0.180547 0.091743 0.652174 0.160858

C4,C5,C6 C1,C2,C3 122 1084 746 68.81919 0.109973 0.363498 0.494935 0.315637 0.101648 0.770833 0.179612

C1,C2,C3,C4 C5,C6 130 410 349 85.12195 0.456942 0.245249 0.339832 0.142077 0.402299 0.795455 0.534351

C1,C2,C3,C5 C4,C6 104 1701 1399 82.24574 0.186892 0.242964 0.328195 0.177007 0.136499 0.807018 0.233503

C1,C2,C3,C6 C4,C5 176 1345 1181 87.80669 0.139267 0.267191 0.321964 0.120091 0.091429 0.761905 0.163265

C1,C2,C4,C5 C3,C6 100 1094 761 69.56124 0.128168 0.367166 0.488641 0.307246 0.121547 0.745763 0.209026

C1,C2,C4,C6 C3,C5 172 738 533 72.22222 0.134249 0.330773 0.439355 0.286713 0.100877 1 0.183267

C1,C2,C5,C6 C3,C4 146 2029 1737 85.60867 0.143159 0.275457 0.361235 0.143502 0.094937 0.833333 0.170455

C1,C3,C4,C5 C2,C6 134 442 389 88.00905 0.420177 0.223467 0.351403 0.09 0.409836 0.595238 0.485437

C1,C3,C4,C6 C2,C5 206 86 76 88.37209 0.494118 0.228553 0.323817 0.125 0.375 1 0.545455

C1,C3,C5,C6 C2,C4 180 1377 1284 93.24619 0.213099 0.272433 0.338716 0.064801 0.137255 0.736842 0.231405

C1,C4,C5,C6 C2,C3 176 770 548 71.16883 0.11464 0.336848 0.448786 0.296395 0.08642 1 0.159091

C2,C3,C4,C5 C1,C6 84 697 559 80.20086 0.275915 0.277366 0.392459 0.177778 0.267974 0.61194 0.372727

C2,C3,C4,C6 C1,C5 156 341 226 66.27566 0.172662 0.351864 0.500787 0.348387 0.181818 0.774194 0.294479

C2,C3,C5,C6 C1,C4 130 1632 1206 73.89706 0.096745 0.224066 0.381905 0.262594 0.077434 0.795455 0.141129

C2,C4,C5,C6 C1,C3 126 1025 776 75.70732 0.14923 0.307657 0.459037 0.242084 0.125461 0.73913 0.214511

C3,C4,C5,C6 C1,C2 160 373 242 64.87936 0.099913 0.36697 0.500627 0.348837 0.130435 0.62069 0.215569

C1,C2,C3,C4,C5 C6 138 383 325 84.8564 0.360048 0.321738 0.409762 0.119534 0.359375 0.575 0.442308

C1,C2,C3,C4,C6 C5 210 27 25 92.59259 0.756757 0.195489 0.274415 0.086957 0.666667 1 0.8

C1,C2,C3,C5,C6 C4 184 1318 1033 78.37633 0.072606 0.223317 0.323427 0.217525 0.050336 0.882353 0.095238

C1,C2,C4,C5,C6 C3 180 711 508 71.44866 0.114059 0.325144 0.441657 0.293353 0.085586 1 0.157676

C1,C3,C4,C5,C6 C2 214 59 49 83.05085 0.241645 0.257313 0.347377 0.175439 0.166667 1 0.285714

C2,C3,C4,C5,C6 C1 164 314 225 71.65605 0.151042 0.351281 0.49272 0.271777 0.170213 0.592593 0.264463

225

B.2.4 For Write Classifier
Training
Document(s)

Testing
Document(s)

Total
Training
Instances

Total
Testing
Instances

Total
Correct

Correct(%) Kappa
Mean
Absolute
Error

RMS FP Rate
(+)

Precision
(+)

Recall
(+)

F-
Measure
(+)

C1 C2,C3,C4,C5,C6 12 2498 1728 69.17534 0.112573 0.40175 0.565977 0.314761 0.095579 0.860215 0.172043

C2 C1,C3,C4,C5,C6 2 2753 98 3.559753 0 0.5 0.5 1 0.035598 1 0.068748

C3 C1,C2,C4,C5,C6 48 2101 1990 94.7168 0.503526 0.209982 0.279573 0.048371 0.3875 0.826667 0.52766

C4 C1,C2,C3,C5,C6 52 1494 797 53.34672 0.074757 0.352843 0.482178 0.48487 0.086207 0.890411 0.157195

C5 C1,C2,C3,C4,C6 27 2785 2686 96.44524 0 0.035548 0.188541 0 0 0 0

C6 C1,C2,C3,C4,C5 84 2429 2288 94.19514 0.344823 0.100139 0.234068 0.052698 0.246988 0.719298 0.367713

C1,C2 C3,C4,C5,C6 14 2439 1831 75.07175 0.154206 0.392271 0.467209 0.254367 0.119469 0.880435 0.21039

C1,C3 C2,C4,C5,C6 60 1787 1702 95.24342 0.562976 0.274902 0.305529 0.044237 0.441176 0.869565 0.585366

C1,C4 C2,C3,C5,C6 64 1180 1111 94.15254 0.606042 0.290117 0.335122 0.055705 0.491803 0.895522 0.634921

C1,C5 C2,C3,C4,C6 12 2471 1707 69.08134 0.113121 0.402498 0.56677 0.315812 0.09627 0.860215 0.17316

C1,C6 C2,C3,C4,C5 96 2115 2000 94.56265 0.382225 0.157992 0.25063 0.049903 0.274648 0.764706 0.404145

C2,C3 C1,C4,C5,C6 50 2042 1932 94.61312 0.501243 0.214747 0.270219 0.049289 0.386076 0.824324 0.525862

C2,C4 C1,C3,C5,C6 54 1435 989 68.91986 0.154059 0.433941 0.556556 0.322817 0.130435 0.916667 0.228374

C2,C5 C1,C3,C4,C6 2 2726 98 3.595011 0 0.5 0.5 1 0.03595 1 0.069405

C2,C6 C1,C3,C4,C5 86 2370 2230 94.09283 0.3404 0.100088 0.236093 0.053587 0.243902 0.714286 0.363636

C3,C4 C1,C2,C5,C6 100 783 700 89.39974 0.47295 0.22926 0.316097 0.107629 0.362903 0.918367 0.520231

C3,C5 C1,C2,C4,C6 48 2074 1382 66.63452 0.098928 0.267676 0.422104 0.341171 0.087015 0.866667 0.158151

C3,C6 C1,C2,C4,C5 132 1718 1467 85.38999 0.13658 0.157017 0.294044 0.144214 0.093284 0.757576 0.166113

C4,C5 C1,C2,C3,C6 52 1467 1064 72.52897 0.163582 0.258197 0.425879 0.281205 0.136564 0.849315 0.235294

C4,C6 C1,C2,C3,C5 136 1111 965 86.85869 0.193935 0.165185 0.335186 0.126852 0.138365 0.709677 0.231579

C5,C6 C1,C2,C3,C4 84 2402 2261 94.12989 0.344557 0.100526 0.239996 0.053305 0.246988 0.719298 0.367713

C1,C2,C3 C4,C5,C6 62 1728 1435 83.04398 0.236988 0.218854 0.31135 0.171084 0.172012 0.867647 0.287105

C1,C2,C4 C3,C5,C6 66 1121 1053 93.93399 0.604352 0.285817 0.333724 0.05782 0.491667 0.893939 0.634409

C1,C2,C5 C3,C4,C6 14 2412 1666 69.07131 0.114074 0.363776 0.491251 0.315948 0.097291 0.858696 0.174779

C1,C2,C6 C3,C4,C5 98 2056 1942 94.45525 0.377698 0.156988 0.251864 0.050847 0.271429 0.76 0.4

C1,C3,C4 C2,C5,C6 112 469 442 94.24307 0.721355 0.241985 0.290693 0.058685 0.621212 0.953488 0.752294

C1,C3,C5 C2,C4,C6 60 1760 1234 70.11364 0.116306 0.346541 0.485183 0.303962 0.099825 0.826087 0.178125

C1,C3,C6 C2,C4,C5 144 1404 1338 95.29915 0.358984 0.174099 0.244262 0.042847 0.253165 0.740741 0.377358

C1,C4,C5 C2,C3,C6 64 1153 1084 94.01561 0.605311 0.290777 0.336645 0.05709 0.491803 0.895522 0.634921

C1,C4,C6 C2,C3,C5 148 797 705 88.45671 0.265688 0.203102 0.322404 0.112694 0.186916 0.8 0.30303

C1,C5,C6 C2,C3,C4 96 2088 1973 94.49234 0.381931 0.161327 0.24566 0.050565 0.274648 0.764706 0.404145

C2,C3,C4 C1,C5,C6 102 724 627 86.60221 0.406236 0.254318 0.341096 0.134615 0.315789 0.875 0.464088

C2,C3,C5 C1,C4,C6 50 2015 1905 94.54094 0.500896 0.21041 0.274508 0.049974 0.386076 0.824324 0.525862

C2,C3,C6 C1,C4,C5 134 1659 1376 82.94153 0.103351 0.16524 0.330901 0.167793 0.074576 0.6875 0.134557

C2,C4,C5 C1,C3,C6 54 1408 1020 72.44318 0.165958 0.239268 0.403365 0.282186 0.139269 0.847222 0.239216

C2,C4,C6 C1,C3,C5 138 1052 907 86.21673 0.185602 0.18881 0.371105 0.133072 0.133758 0.7 0.224599

C2,C5,C6 C1,C3,C4 86 2343 2203 94.02475 0.340122 0.100479 0.246946 0.05422 0.243902 0.714286 0.363636

C3,C4,C5 C1,C2,C6 100 756 656 86.77249 0.405614 0.243493 0.350778 0.132956 0.313869 0.877551 0.462366

C3,C4,C6 C1,C2,C5 184 400 300 75 0.024723 0.251991 0.393017 0.244275 0.030303 0.428571 0.056604

C3,C5,C6 C1,C2,C4 132 1691 1599 94.55943 0.302924 0.145325 0.240837 0.048854 0.213592 0.666667 0.323529

C4,C5,C6 C1,C2,C3 136 1084 938 86.53137 0.192951 0.185708 0.362672 0.130104 0.138365 0.709677 0.231579

C1,C2,C3,C4 C5,C6 114 410 377 91.95122 0.675306 0.221165 0.29616 0.089674 0.56 1 0.717949

C1,C2,C3,C5 C4,C6 62 1701 1599 94.00353 0.509255 0.260553 0.315943 0.05695 0.388158 0.867647 0.536364

C1,C2,C3,C6 C4,C5 146 1345 1166 86.69145 0.146056 0.19464 0.297622 0.130402 0.099476 0.730769 0.175115

C1,C2,C4,C5 C3,C6 66 1094 1026 93.78428 0.603547 0.281536 0.33853 0.059339 0.491667 0.893939 0.634409

C1,C2,C4,C6 C3,C5 150 738 645 87.39837 0.250246 0.204112 0.310483 0.123249 0.17757 0.791667 0.290076

C1,C2,C5,C6 C3,C4 98 2029 1915 94.38147 0.37739 0.158841 0.249891 0.051541 0.271429 0.76 0.4

C1,C3,C4,C5 C2,C6 112 442 400 90.49774 0.623188 0.219168 0.292351 0.105263 0.505882 1 0.671875

C1,C3,C4,C6 C2,C5 196 86 85 98.83721 0.661417 0.13194 0.159723 0.011765 0.5 1 0.666667

C1,C3,C5,C6 C2,C4 144 1377 1112 80.75527 0.09894 0.212521 0.320099 0.191111 0.071942 0.740741 0.131148

C1,C4,C5,C6 C2,C3 148 770 720 93.50649 0.417108 0.203101 0.282066 0.060403 0.307692 0.8 0.444444

C2,C3,C4,C5 C1,C6 102 697 520 74.60545 0.235959 0.272459 0.379555 0.263482 0.197183 0.875 0.321839

C2,C3,C4,C6 C1,C5 186 341 266 78.00587 0.018724 0.27464 0.416357 0.21194 0.027397 0.333333 0.050633

C2,C3,C5,C6 C1,C4 134 1632 1541 94.42402 0.294788 0.147656 0.236457 0.05 0.207921 0.65625 0.315789

C2,C4,C5,C6 C1,C3 138 1025 880 85.85366 0.184522 0.186161 0.34857 0.136683 0.133758 0.7 0.224599

C3,C4,C5,C6 C1,C2 184 373 295 79.08847 0.038342 0.244969 0.368247 0.202186 0.038961 0.428571 0.071429

C1,C2,C3,C4,C5 C6 114 383 364 95.03916 0.780344 0.249898 0.293666 0.049853 0.701754 0.952381 0.808081

C1,C2,C3,C4,C6 C5 198 27 27 100 1 0.157895 0.157895 0 0 0 0

C1,C2,C3,C5,C6 C4 146 1318 1253 95.06829 0.349753 0.172227 0.251128 0.044892 0.246753 0.730769 0.368932

C1,C2,C4,C5,C6 C3 150 711 678 95.35865 0.499712 0.195552 0.259056 0.039301 0.4 0.75 0.521739

C1,C3,C4,C5,C6 C2 196 59 58 98.30508 0.65896 0.138092 0.17199 0.017241 0.5 1 0.666667

C2,C3,C4,C5,C6 C1 186 314 262 83.43949 0.038625 0.241409 0.359185 0.155844 0.04 0.333333 0.071429

226

Appendix C

Significance of Linguistic Features

In this appendix, we present some of the important key features of the noun phrases resulting

from their syntactic relationships with other words in the software requirements sentences

that often help to express data-movements in terms of the COSMIC FSM. Our automated

data-movement classification approaches determine many of these features by using syntactic

parsers and our lexical databases, as discussed in Section 7.4.

C.1 “Noun Phrase is a Direct Object”
This is a binary feature indicating if the noun-phrase appears as a direct object to any verb.

That is, if the head of a noun phrase (i.e. the head of a compound noun or a pronoun itself)

appears as a direct object to any verb in the sentence, we record the value of this feature as

“true”, or “false” otherwise. Moreover, if the head of a noun phrase appears as a syntactic

nominal subject to a verb in passive form, we record the value of this feature for that noun

phrase as “true”, or “false” otherwise.

For example, in the sentence shown in Figure 44, the noun-phrase “course offering” is a

direct object. Thus, the value of this feature here for the noun-phrase “course offering” would

be “true”.

227

The Professor selects a course offering .

Noun Phrase
(Noun) Verb

Noun Phrase
(Compound Noun)

is direct object of

Figure 44: Example of the Feature: “Noun Phrase is a Direct Object”.

In relation to COSMIC data-movements, the noun-phrases that indicate moving data-

attributes/data-groups often appear as direct object to the verb that expresses the action of the

data-movement. In the above example, the verb “selects” expresses the data-movement of

Entry type has occurred on the noun-phrase “course offering”, which appeared as a direct

object to the verb “selects”.

C.2 “Noun Phrase is in an Object-Like Position”
This is a binary feature indicating if the noun-phrase appears as a direct or indirect object to

any verb, or as a prepositional object to a direct/indirect object of any verb, or in “a chain of

prepositional objects” linked to a direct/indirect object of any verb.

In our work, we identify a noun-phase to appear as a prepositional object to any verb or

another noun phrase, when the first noun-phrase follows a preposition and that preposition

serves to modify (or complement) the meaning of the verb or the second noun-phrase. For

example, in Figure 45, the noun-phrase “Fund Usage” is a prepositional object to the noun-

phrase “overview page”.

228

The system displays the

overview page of the Fund Usage .

Noun Phrase
(Noun) Verb

Noun Phrase
(Compound Noun)

is prepositional object of

Noun Phrase
(Compound Noun) Preposition

Figure 45: Example of a Prepositional Object.

Here, in Figure 45, the noun phrase “Fund Usage” follows the preposition “of” and modifies

the meaning of the noun phrase “overview page”.

Also, when a noun-phrase appears as a prepositional object to another noun-phrase which

may be a prepositional object to another noun phrase and so on, we then define the boundary,

starting from the start of the first noun phrase and ending at the end of the last noun phrase,

as a chain of prepositional objects. In such a chain, there are more than one prepositional

objects linked to one another. For example, in the sentence shown in Figure 46, we call the

segment “list of names of all students in the class” as a chain of prepositional objects.

The system outputs the

list of names of all students in the class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

a chain of prepositional objects

Noun Phrase
(Noun) PrepositionPreposition

Noun Phrase
(Noun)

Noun Phrase
(Noun)Preposition

Figure 46: Example of a Chain of Prepositional Objects.

229

Thus, for our work, we identify a noun-phrase to appear in an object like position, if the

head20 of a noun phrase appears either:

(i) As a direct or indirect object to any verb,

(ii) Or, as a prepositional object to a direct/indirect object of any verb,

(iii) Or, in a “chain of prepositional objects” linked to a direct/indirect object of any verb

(iv) Or, a syntactic nominal subject to a verb in passive form

(v) Or, as a prepositional object to a noun phrase that appears as a syntactic nominal

subject to a verb in passive form

(vi) Or, in a chain of prepositional objects linked to a noun phrase that appears as a

syntactic nominal subject to a verb in passive form

Therefore, if the noun-phrase appears in an object like position we record the value of the

feature, described in Appendix C.2, as “true”, or “false” otherwise.

For example, in the sentence shown in Figure 47, the underlined noun-phrases “list”,

“names”, “students” and “class” are all in object-like positions to the verb “outputs”. Here,

the noun phrase “list” is the direct object to the verb “outputs”; then the noun phrase “names”

is a prepositional object to the noun phrase “list”; and finally, the noun phrases “list”,

“names”, “students” and “class” are all in a chain of prepositional objects that are linked to

the noun phrase “list”. Thus, by the rules (i), (ii) and (iii) listed above, the value of this

feature here for each of the noun phrases would be “true”.

20 The head of a noun-phrase is selected as follows: (i) if the noun-phrase consists of only one noun, then
the head is the noun itself; (ii) if the noun-phrase consists of a compound noun, then the head is the
rightmost noun; and (iii) if the noun-phrase consists of only one pronoun, then the head is the pronoun itself.

230

The system outputs the

list of names of all students in the class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

a chain of prepositional objects

PrepositionPreposition
Noun Phrase

(Noun) Preposition

is in an
object-like

position
of

is in an
object-like

position
of

is in an
object-like position of

is in an object-like
position of

Noun Phrase
(Noun)

Noun Phrase
(Noun)

Figure 47: Example of the Feature: “Noun Phrase is in an Object-Like Position”.

In relation to the COSMIC data-movements, the noun-phrases that indicate moving data-

attributes or data-groups cannot only appear as direct/indirect object to the verb that

expresses the action of the data-movement, but also as a prepositional object or in a chain of

prepositional objects linked to a direct/indirect object of such verb. In the second sentence of

the above example, shown in Figure 47, the verb “outputs” expresses that the data-movement

of Exit type has occurred on the noun-phrase “names”, which did not appear as its direct

object, but as a prepositional object to the direct object of the verb.

C.3 “Noun Phrase is a Subject”
This is a binary feature indicating if the noun-phrase appears as a subject to any verb. That is,

if the head of a noun phrase (i.e. the head of a compound noun or a pronoun itself) appears as

subject to any verb in the sentence, we record the value of this feature as “true”, or “false”

otherwise. Moreover, if the head of a noun phrase appears as a prepositional object with “by”

preposition to a verb in passive form, we record the value of this feature for that noun phrase

as “true”, or “false” otherwise.

For example, in the sentence shown in Figure 48, the noun-phrase “Professor” is a subject.

Thus, the value of this feature here for the noun phrase “Professor” would be “true”.

231

The Professor selects a course offering .

Noun Phrase
(Noun) Verb

Noun Phrase
(Compound Noun)

is subject of

Figure 48: Example of the Feature: “Noun Phrase is a Subject”.

In relation to the COSMIC data-movements, the noun-phrases that indicate moving data-

attributes/data-groups rarely appear as subjects to the verbs that express the action of the

data-movement. In the above example, the verb “selects” expresses the data-movement of

Entry type has occurred, but the moving data-attribute/data-group is not the noun-phrase

“Professor”, which appeared as a subject to the verb “selects”.

C.4 “Noun Phrase is in an Object-Like Position to a Verb
with No Subject”
This is a binary feature indicating if the noun-phrase appears as a direct or indirect object, or

as a prepositional object to a direct/indirect object, or in a chain of prepositional objects

linked to a direct/indirect object of any verb that has no subject. This feature is similar to the

feature described in Appendix C.2. However, it adds an additional constraint that the

associated verb cannot have a subject of its own.

Thus, if a noun phrase appears in an object-like position (Appendix C.2 describes the details

on how we define the object-like position in our work) to any verb that has no subject, we

record the value of this feature as “true”, or “false” otherwise.

Moreover, if a noun-phrase the head of a noun phrase appears in an object-like position to a

verb in passive form and the verb does not have as a prepositional object with “by”

preposition, we record the value of this feature as “true”, or “false” otherwise.

232

For example, in the sentence: “System logs the action of modifying the course information.”,

the noun-phrase “course information” appears in an object-like position to the verb “modify”

that has no subject. Hence, the value of this feature here would be “true”.

In relation to the COSMIC data-movements, this feature suggests insufficiency of

information. That is, the noun-phrases that indicate moving data-attributes or data-groups

should appear in object-like positions to verbs that have subjects clearly specified. This is

because the subject in most cases acts as an agent to the action that a verb refers to and, thus,

a clearly specified subject helps to deduce a specific kind of data-movement action that may

be indicated by the verb. For example, the human actors often appear as subjects to Entry

data-movements, while the non-human actors often appear as subjects to Exit, Read and

Write data-movements. Thus, when a subject is absent for a verb, as in the case of the above

example sentence, it usually implies the dependency on other features in identifying the kind

of movement of the data-attribute or data-group that may be referred to by the noun-phrase in

the object-like position of the verb.

C.5 “Noun Phrase is in an Object-Like Position to a Verb
with an Actor Subject”
This is a binary feature indicating if the noun-phrase appears as a direct or indirect object, or

as a prepositional object, or in a chain of prepositional objects linked to a direct/indirect

object of any verb that has a subject, which is identified as a mention of a potential Actor.

The feature is similar to the feature described in Appendix C.2. However, it adds an

additional constraint that the associated verb must have a subject that is identified as a

mention of a potential Actor. This feature, therefore, requires the use of the lexical

knowledge stored in our vocabulary of actors, as presented in Appendix A.5.

We identify a noun-phrase as an Actor subject, if the noun-phrase appears:

(i) As a subject to a verb and the stemmed head of the noun-phrase contains a sub-string

that exists in our vocabulary of actors.

233

(ii) Or, as a prepositional object with “by” preposition to a verb in passive form and the

stemmed head of the noun-phrase contains a sub-string that exists in our vocabulary

of actors.

Therefore, if a noun phrase appears in an object-like position (please see Appendix C.2) for

details on how we define the object-like position in our work) to any verb that has an Actor

subject, we record the value of the feature, described in Appendix C.5, as “true”, or “false”

otherwise.

For example, in the sentence shown in Figure 49, the noun-phrase “course offering” appears

in an object-like position to the verb “select” with an Actor subject “Professor”. Thus, the

value of this feature here would be “true”.

The Professor selects a course offering .

Noun Phrase
(Noun) Verb

Noun Phrase
(Compound Noun)

has actor subject

is in an object-like
position of

Figure 49: Example of the Feature: “Noun Phrase is in an Object-Like Position of a Verb with an Actor
Subject”.

In relation to the COSMIC data-movements, the noun-phrases that indicate data-

attributes/data-groups participating in Entry data-movements tend to appear in object-like

positions to verbs that have actor subjects. Thus, when the subject is an actor, as in the case

of the above example shown in Figure 49, some of the noun-phrases that appear in object-like

positions, e.g. the noun phrase “course offering” in the above example, often indicate data-

attributes or data-groups participating in Entry data-movements.

234

C.6 “Noun Phrase is in an Object-Like Position to a Verb
with a Non-Actor Subject”
This is a binary feature indicating if the noun-phrase appears as a direct or indirect object, or

as a prepositional object, or in a chain of prepositional objects linked to a direct/indirect

object of any verb that has a subject, which is identified as a mention of a potential Non-

Actor. The feature is similar to the feature described in Appendix C.2. However, it adds an

additional constraint that the associated verb must have a subject that is identified as a

mention of a potential Non-Actor. This feature, therefore, requires the use of the lexical

knowledge stored in our vocabulary of actors, as presented in Appendix A.5.

We identify a noun-phrase as a Non-Actor subject, if the noun-phrase appears:

(i) As a subject to a verb and the stemmed head of the noun-phrase does not contain a

sub-string that exists in our vocabulary of actors.

(ii) Or, as a prepositional object with “by” preposition to a verb in passive form and the

stemmed head of the noun-phrase does not contain a sub-string that exists in our

vocabulary of actors.

Therefore, if a noun phrase appears in an object-like position (please see Appendix C.2 for

details on how we define the object-like position in our work) to any verb that has a Non-

Actor subject, we record the value of the feature, described in Appendix C.6, as “true”, or

“false” otherwise.

For example, in the sentence shown in Figure 50, the noun-phrases “list”, “names”,

“students” and “class” appear in object-like positions to the verb “output” with a Non-Actor

subject “system”. Thus, the value of this feature here for each of the noun-phrases would be

“true”.

235

The system outputs the

list of names of all students in the class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)PrepositionPreposition

Noun Phrase
(Noun) Preposition

is in an
object-like

position
of

is in an
object-like

position
of

is in an
object-like position of

is in an object-like
position of

Noun Phrase
(Noun)

Noun Phrase
(Noun)

has non-actor subject

Figure 50: Example of the Feature: “Noun Phrase is in an Object-Like Position of a Verb with Non-Actor
Subject”.

In relation to the COSMIC data-movements, the noun-phrases that indicate data-

attributes/data-groups participating in Exit, Read or Write data-movements tend to appear in

object-like positions to verbs that have non-actor subjects. Thus, when the subject is a non-

actor, as in the case of the above example, shown in Figure 50, some of the noun-phrases that

appear in object-like positions, e.g. the noun phrase “names”, “students” and “class” in the

example, often indicate data-attributes or data-groups participating in Exit, Read or Write

data-movements. In this example, it indicates an Exit data-movement.

C.7 “Noun Phrase is a Subject of a Stative verb”
This is a binary feature indicating if the noun-phrase appears as a subject to any Stative verb.

Thus, it requires the use of our vocabulary of Stative verbs, as presented in Appendix A.2.

Therefore, if the head of a noun phrase (i.e. the head of a compound noun or a pronoun itself)

appears as subject to a verb, and the morphologically stemmed form of the verb exists in our

vocabulary of Stative verbs, we record the value of this feature as “true”, or “false” otherwise.

236

For example, in the sentence: “Student checks if the credit card number is valid.”, the noun-

phrase “credit card number” is a subject of the Stative verb “is” (i.e. “be”). Hence, the value

of this feature here would be “true”.

In relation to the COSMIC data-movements, the noun-phrases that indicate moving data-

attributes/data-groups may appear as subjects to the Stative verbs, if they are part of clausal

complements to verbs that express the action of data-movements. Thus, in the case of the

above example sentence, the noun-phrase “credit card number” appears as a subject of a

Stative verb and is part of the clausal complement to a data-movement verb “check”.

Therefore, it indicates the movement of a data-attribute/data-group.

C.8 “Noun Phrase is in an Object-Like Position to a Data-
Movement Verb”
This is a binary feature indicating if the noun-phrase appears as a direct or indirect object, or

as a prepositional object, or in a chain of prepositional objects linked to a direct/indirect

object of a Data-Movement verb. The feature is similar to the feature described in Appendix

C.2. However, it adds an additional constraint that the associated verb must be a Data-

Movement verb. This feature, therefore, requires the use of the lexical knowledge stored in

our vocabulary of data-movement verbs, as presented in Appendix A.1.

Therefore, if a noun phrase appears in an object-like position (please see Appendix C.2 for

details on how we define the object-like position in our work) to a verb, and the

morphologically stemmed form of the verb exists in our vocabulary of data-movement verbs,

we record the value of feature#8 as “true”, or “false” otherwise.

For example, in the sentence shown in Figure 51, the noun-phrase “course offering” appears

in an object-like position to a data-movement verb “selects”. Thus, the value of this feature

here would be “true”.

237

The Professor selects a course offering .

Noun Phrase
(Noun) Verb

Noun Phrase
(Compound Noun)

is in an object-like
position of

Figure 51: Example of the feature: "Noun Phrase is in an Object-Like Position of a Data-Movement Verb".

In relation to the COSMIC data-movements, the noun-phrases that indicate moving data-

attributes/data-groups tend to appear in object-like positions to data-movement verbs. Thus,

when the verb is a data-movement verb, as in the case of the above example, shown in Figure

51, the noun-phrases, e.g. “course offering” in the example, often indicate moving data-

attributes/data-groups.

C.9 “Noun Phrase Partly Contains an Attribute Name”
We identify a noun-phrase as a potential mention of an attribute, if the stemmed head of the

noun-phrase (i.e. the head of the compound noun, in our case) exists in our vocabulary of

data-attributes, as presented in Appendix A.3. Thus, if the noun-phrase is a potential mention

of a data-attribute, we record this feature for the noun-phrase as “true”, or “false” otherwise.

For example, in the sentence shown in Figure 52, the noun-phrase “names” refers to a

mention of an attribute, as the lexicon “name”, and its stemmed head exists in our vocabulary

of data-attributes, as presented in Appendix A.3. Therefore, this feature for the noun phrase

“names” will be “true”.

238

The system outputs the

list of names of all students in the class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

Noun Phrase
(Noun) PrepositionPreposition

Noun Phrase
(Noun)

Noun Phrase
(Noun)Preposition

Figure 52: Example of the Feature: "Noun Phrase is a Mention of an Attribute".

In relation to the COSMIC data-movements, functional requirements, when they are well-

decomposed, tend to describe the movements of the members, or the properties, or the

attributes of the data-groups by using mentions of the data-attributes that belong to the

moving data-groups. In requirement sentences, where mentions of both data-groups and data-

attributes are present, the mentions of data-attributes are usually attached to the semantics of

movement, while the mentions of data-groups help to convey the indication of the owners of

the attributes. Thus, in the example shown in Figure 52, the noun-phrase “names” indicates

the moving data-attribute, while the noun-phrase “students” is the data-group that contains

the moving data-attribute.

C.10 “Noun Phrase Partly Contains a Data-Group Name”
We identify a noun-phrase as a mention of a data-group, if the noun-phrase is not an attribute

(see the feature description, presented in Appendix C.2) and the noun-phrase contains a sub-

string that exists in our vocabulary of data-groups, as presented in Appendix A.4. Thus, if the

noun-phrase is a mention of a data-group, we record this feature for the noun-phrase as “true”,

or “false” otherwise.

239

For example, in the sentence shown in

The system outputs the

list of names of all students in the class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

Noun Phrase
(Noun) PrepositionPreposition

Noun Phrase
(Noun)

Noun Phrase
(Noun)Preposition

Figure 53, the noun-phrases “students” and “class” refer to the data-groups “Student” and

“Class” respectively. Therefore, the values of this feature for both the noun-phrases will be

“true”.

The system outputs the

list of names of all students in the class .

Noun Phrase
(Noun)

Verb

Noun Phrase
(Noun)

Noun Phrase
(Noun) PrepositionPreposition

Noun Phrase
(Noun)

Noun Phrase
(Noun)Preposition

Figure 53: Example of the Feature: "Noun Phrase is a Mention of a Data-Group".

In relation to the COSMIC data-movements, functional requirements, usually when they are

not well-decomposed, often describe the movements of the data-groups by using the

mentions of the data-groups directly, without mentioning which specific attributes are to

move. In such cases, for example, in the sentence shown in

The system outputs the

list of names of all students in the class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

Noun Phrase
(Noun) PrepositionPreposition

Noun Phrase
(Noun)

Noun Phrase
(Noun)Preposition

Figure 53, a noun-phrase, e.g. “class” in the example, can indicate a moving data-group

without explicitly mentioning which attribute(s) belonging to the data-group participate in the

data-movement.

240

C.11 “Noun Phrase is Related to an Attribute Name by a
Chain of Prepositional Objects”
Here, by our explanations presented in Appendices C.2 and C.9 about the chain of

prepositional objects and the mentions of attributes respectively, this feature name is self-

explanatory.

For example, in the sentence shown in

The system outputs the

list of names of all students in the class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

a chain of prepositional objects

PrepositionPreposition
Noun Phrase

(Noun) Preposition

is in an
object-like

position
of

is in an
object-like

position
of

is in an
object-like position of

is in an object-like
position of

Noun Phrase
(Noun)

Noun Phrase
(Noun)

Figure 54, the noun-phrases “list”, “students”, and “class” are all related to the attribute

“names” by a chain of prepositional objects. Therefore, the values of this feature for the

noun-phrases “list”, “students”, and “class” will all be “true”.

The system outputs the

list of names of all students in the class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

a chain of prepositional objects

PrepositionPreposition
Noun Phrase

(Noun) Preposition

is in an
object-like

position
of

is in an
object-like

position
of

is in an
object-like position of

is in an object-like
position of

Noun Phrase
(Noun)

Noun Phrase
(Noun)

Figure 54: Example of the Feature: "Noun Phrase is Related to an Attribute Name by a Chain of

Prepositional Objects".

241

In relation to the COSMIC data-movements, the mentions of data-attributes in a functional

requirement sentence often carry the sense of the moving data-groups. In such cases, noun-

phrases that are related to the data-attributes by chains of prepositional objects may not not

indicate moving data-groups, even though they contain other feature values leading to

conclude otherwise. Thus, although the noun-phrases “list” and “students” in the example

shown in

The system outputs the

list of names of all students in the class .

Noun Phrase
(Noun) Verb

Noun Phrase
(Noun)

a chain of prepositional objects

PrepositionPreposition
Noun Phrase

(Noun) Preposition

is in an
object-like

position
of

is in an
object-like

position
of

is in an
object-like position of

is in an object-like
position of

Noun Phrase
(Noun)

Noun Phrase
(Noun)

Figure 54 are in object-like positions to the data-movement verb “outputs”, none of them are

indicating any moving data-group as they are related to the mention of the data-attribute

“names” by a chain of prepositional objects.

C.12 “Noun Phrase is Related to a Data-Group Name by a
Chain of Prepositional Objects”
The feature is similar to the feature, described in Appendix C.11, where we however consider

data-groups instead of the attributes.

C.13 “Noun Phrase Owns an Attribute”
In Appendix C.9, we described how we identify an attribute.

We record the feature “Noun Phrase Owns an Attribute” as “true”, if:

242

(i) The attribute appears as a possessive determiner of the head of the noun-phrase. For

example, in “Device User’s address”, the attribute “address” appears as a possessive

determiner of the head “User” of the noun-phrase “Device User”. Therefore, this

feature for the noun-phrase “Device User” will be “true”.

(ii) The noun-phrase appears as a prepositional object of the attribute with an associated

preposition “of”. For example, in “address of the Device User”, the noun-phrase

“Device User” appears as a prepositional object of the attribute “address” with an

associated preposition “of”. Therefore, this feature for the noun-phrase “Device User”

will be “true”.

In relation to the COSMIC data-movement, the noun-phrases in functional requirements that

owns attribute are often mentions of moving data-groups.

C.14 “Noun Phrase Belongs To A Data-Group”
In Appendix C.10, we described how we identify a data-group.

We record the feature “Noun Phrase Belongs To Data-Group” as “true”, if:

(i) The noun-phrase appears as a possessive determiner of the mention of the data-group.

For example, in “Item’s price”, the noun-phrase “price” appears as a possessive

determiner of the mention of the data-group “Item”. Therefore, this feature for the

noun-phrase “price” will be “true”.

(ii) The mention of the data-group appears as a prepositional object of the noun-phrase

with an associated preposition “of”. For example, in “price of the Item”, the mention

of the data-group “Item” appears as a prepositional object of the noun-phrase “price”

with an associated preposition “of”. Therefore, this feature for the noun-phrase

“price” will be “true”.

In relation to the COSMIC data-movement, the noun-phrases in functional requirement that

belong to data-groups are often attributes.

243

C.15 “Noun Phrase is Part of a Negative Expression”
We identify a noun-phrase as part of a negative expression, if:

(i) The noun-phrase is “none”.

(ii) Or, the noun-phrase appears in a chain of prepositional objects that is linked to

“none”.

(iii) Or, a negation modifier modifies the noun-phrase.

(iv) Or, a negation modifier modifies a verb, and the noun-phrase appears as the subject

of the verb.

(v) Or, a negation modifier modifies a verb, and the noun-phrase appears in a chain of

prepositional objects linked to the verb.

(vi) Or, a negation modifier modifies a verb, and the noun-phrase appears in a chain of

prepositional objects linked to the subject of the verb.

(vii) Or, a negation modifier modifies a verb, and the noun-phrase appears in an object-

like position to the verb.

(viii) Or, the noun-phrase appears in the same clause as the negation modifiers: “no”,

“not”, “n’t”, “neither”, “nor”, or “never”.

(ix) Or, the noun-phrase appears as a subject to the negative implicative verbs

(Karttunen, 1971), e.g. “fail”, “reject”, “refuse”, “deny”, “cancel” etc.

(x) Or, the noun-phrase appears in a chain of prepositional objects to a subject to the

negative implicative verbs (Karttunen, 1971), e.g. “fail”, “reject”, “refuse”, “deny”,

“cancel” etc.

244

(xi) Or, the noun-phrase appears in an object-like position to a verb, which appears in

open clausal complement of the negative implicative verbs (Karttunen, 1971), e.g.

“fail”, “reject”, “refuse”, “deny”, “cancel” etc.

In any of the above cases, we record the value of this feature as “true”, or “false” otherwise.

In relation to the COSMIC data-movements, the noun-phrases that are part of negative

expressions do not usually convey the sense of a moving data-attribute/data-group.

Additionally, we also extract features indicating different types of clausal dependencies

between noun phrases and other words of the requirements sentences. Some of these features

are included to our selection pool of features (e.g. F6, F7, F15, F17, F19, F21, F23 and F25,

as presented in Sections 7.4.2 and 7.4.3), so that our supervised learning-based data-

movement classification approach can determine the discriminating complex rules involving

these complex features.

245

Appendix D

An Example of Automated FSM

In this appendix, we present some screenshots of the GATE environment (Cunningham H.,

et al., 2011) executing our pipelines that implement our approaches, as presented in Chapter

7, to automate the extraction of the artifacts of COSMIC FSM model, and quantify the

functional size using the formulas, presented in Section 7.8. The details of the execution is

shown in the following steps.

Step 1: We first load the textual requirements belonging to a functional process as GATE

document, as shown in Figure 55.

Figure 55: Screenshot (1) of GATE, Loaded with the Textual Requirements of a Functional Process

246

Step 2: We then create a corpus (named “TestCorpus”, as shown in the figure) and add the

newly loaded GATE document to the corpus, as shown in Figure 56.

Figure 56: Screenshot (2) of GATE, Creating a Corpus

We can add more documents to execute the pipelines on a batch of multiple functional

processes.

Step 3: We then run our pipeline called “TestDGExtraction” over the corpus, that pre-

processes and extracts all feature values from the document(s) of the corpus. We run the

pipeline as shown in Figure 57.

247

Figure 57: Screenshot (3) of GATE, Loading a Pipeline for Preprocessing and Feature Extraction

This GATE pipeline processes each document in the corpus and extracts all the Sentences,

the Noun Phrases and the values of all their features, as presented in Section 7.4.

Figure 58: Screenshot (4) of GATE, Showing the Output of Running the Preprocessing & Feature

Extraction Pipeline

248

Thus, the extracted feature values of any Noun Phrase can be viewed as shown in Figure 59.

Figure 59: Screenshot (5) of GATE, Showing Feature Values Extracted from a Noun-Phrase

Step 4: We now run our pipeline called “COSMICTagger” over the corpus, that implements

our heuristic-based approaches of Data-Movement classification, Data-Group identification

and CFP quantification, as presented in Sections 7.5, 7.7 and 7.8. The interface of running

this pipeline is as shown in Figure 60.

249

Figure 60: Screenshot (6) of GATE, Loading a Pipeline for COSMIC FSM Model Extraction &

Quantification

This GATE pipeline again processes each document in the corpus and extracts the artifacts of

the COSMIC FSM standard, e.g. the Data-Groups and their types of Data-Movements, as

shown in Figure 61 and Figure 62.

Figure 61: Screenshot (7) of GATE, Showing the Output Annotations of Noun-Phrases & Sentences

Classified into Data-Movement Types

250

Figure 62: Screenshot (8) of GATE, Showing the Identified Data-Group That is Associated with an Output

Annotation of Noun-Phrase

And it also outputs the quantification of functional size for each functional process by

showing the minimum, most-likely and maximum CFP and lists the Data-Groups and their

corresponding types of Data-Movements — all as features to the corresponding GATE

document, as shown in Figure 63.

Figure 63: Screenshot (9) of GATE, Showing the Output CFP and the List of Extracted Artifacts of

COSMIC FSM Standard

