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ABSTRACT

On the construction and topology of multi-type ancestral trees.

Mariolys Rivas, Ph.D.

Concordia University, 2014

Branching processes or Galton-Watson processes can be used to model the genealogy

of a population of different species, where birth and death events represent speciation and

extinction. In the more general context of multi-type branching processes, species are

classified under phenotypical traits, and the probability of speciation and extinction is

dependent on individual types. Since most accessible biological data concerns surviving

species, it becomes necessary to extract information about the shape of genealogical trees

from the available knowledge on the standing population, and to devise random models

allowing backward reconstruction of ancestry under the rules of a particular branching

process. We present two investigations on the topology of ancestral multi-type branching

trees, generalizing several known results from the single-type case, and obtaining some

new results that can only be formulated in the multi-type setting.

In the first part of the thesis, we present a backward construction algorithm for the

ancestral tree of a planar embedding of a multi-type Galton-Watson tree assumed to be

quasi-stationary, and we derive formulae for the conditional distribution of the time to

the most recent common ancestor of two consecutive individuals at the present time,

and of two individuals of the same type. We specialize these formulae to multi-type

linear-fractional branching processes, and observe some effects of the symmetry of the
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parameters in the two-type case.

In the second part of the thesis, we extend the concepts of cherries and pendant

edges from rooted binary trees to the multi-type setting, and compute expressions and

asymptotic properties for mean numbers and variances of these structures under the

neutral two-type Yule model.

We explain how type mutations appear naturally in ancestral trees of multi-type

birth-death processes, and show that these ancestral trees are Markovian and behave as

pure-birth processes, by giving explicit time-dependent rates. We derive formulae and

asymptotic properties for the mean number of cherries and pendant edges of each type in

a multi-type pure-birth process with mutations. We show that sometimes it is possible

to recover the defining rates of this process from the asymptotic proportion of leaves,

cherries and pendant edges of each type.
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Introduction

Branching processes comprise a popular topic in probability because of their applications

in a wide range of areas, including biology, physics and areas of pure mathematics. A

branching process is a homogeneous Markov chain (Zn)n≥0 describing the size of a popu-

lation in time. The main defining feature of a branching process is that the sub-process

spanned by each individual from the time it was born, is independent of the individual’s

ancestry, and of the processes spanned by the other individuals existing at that time.

Moreover, all of these sub-processes are equally distributed. The time scale of a branch-

ing process is usually discrete, so that individuals exist for a unit of time, after which

they may produce a random number of offsprings. In many applications it is assumed

that branching processes start with a single individual, and thus they may be visualized

as planar rooted trees, where each node represents an individual which gives birth to as

many offsprings as the node’s out-degree. Figure 1.(a) shows part of a branching process’

sample tree, started with a single individual at time 0. The time levels 0, 1, 2 . . . represent

the generations of the process, and the number of individuals at each generation are the

values Z0, Z1, . . . of the process itself.
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Figure 1: (a) Sample tree of a branching process. (b) Sample tree of a birth-death process.

Continuous-time generalizations of branching processes may be defined by allowing

birth and death events to happen at any point in time. The most common extension is

given by the continuous-time birth-death process, described in Section 1.2, where events

occur randomly according to certain finite rates. A birth-death process Zt is indexed by

real numbers t ≥ 0, and may be visualized as a binary tree with vertical edges which

occasionally branch out to produce new offsprings. Figure 1.(b) displays a sample tree of

a birth-death process with ZT = 4, started by a single individual at time 0 (Z0 = 1).

Branching processes may be used to model, for instance, a population of bacteria

which reproduce asexually, since each offspring has a single parent. A crucial application

of branching processes is the modelling of phylogenetic trees. These are trees that display

the genetic ancestry of a population of different species containing information about

their speciation and extinction. In a phylogenetic tree, each node represents a different

species, and nodes may be further classified from phenotypic traits to obtain multi-type

phylogenetic trees. A phylogenetic tree is often estimated from the information of extant

species at the present time. In a branching process, the population at the present time

is called the standing population. Its ancestry forms a subtree of the original branching

tree, from which extinct lineages have been pruned. This subtree is often referred to as

2



the reduced, ancestral or reconstructed tree of the process. Figure 2 shows two examples

of phylogenetic trees with their corresponding reduced trees. One of them is a single-type

tree, in the sense that its nodes are not classified in any way, and the other one is a two-

type phylogenetic tree, whose nodes are classified according to a specific trait (winged

insects versus non-winged ones).

Full tree

O
ne

-t
yp

e
Tw

o-
ty

pe

Reduced tree

Winged Not winged Winged Not winged
Phasmids Phasmids

Bembidions Bembidions

Figure 2: Phylogenetic trees of Bembidions and Phasmids. The first row shows the

phylogenetic tree and the corresponding reduced tree of a genus of beetles known as

Bembidions, and the second one shows a two-type phylogenetic tree of an order of insect

known as Phasmida, classified by the presence of wings. The information used to draw

these trees can be found in [45] and [9] respectively.

From the biological point of view, phylogenetic trees may be inferred backward in

3



time by observing the genetic makeup and phenotypic traits of extant species. For ex-

ample, two very similar species are likely to have a more recent common ancestor than

two very distinct ones. On the other hand, a sample tree of a discrete branching process

may be constructed recursively, forward in time, by allowing each subsequent individual

to produce as many offsprings as an independent instance of a particular random vari-

able described by a probability distribution. From the distribution of a branching process’

sample tree, one may compute formulae for certain statistics relating to the standing pop-

ulation, such as the times to the most recent common ancestors of consecutive individuals

(See [29]). Conversely, from these formulae, it is sometimes possible to reconstruct the

defining probabilities of the branching process by observing the topology of a sufficiently

large sample tree. In the biological context, this means being able to understand the

parameters that give way to a branching process modelling a particular phylogenetic tree

which was inferred from biological features. This highlights the importance of devising

formulae for statistics describing the relationships between individuals of the standing

population in a branching process, which is one of the main motivations of our research.

Furthermore, since current biological data exists only for surviving species, it is pro-

ductive to be able to construct a random branching process backward in time from the

standing population. Typical methods for doing these reconstructions use simulations

approaches, more specifically distance-based methods, maximum parsimony, maximum

likelihood, and Markov chain Monte Carlo (MCMC) methods. For achieving this, it is

necessary to make assumptions about the diversification rates (and their time-dependency

in the continuous case), the root types or the stationarity of the processes (see Maddison

et al. [32] and Igic & Goldberg [17]). Geiger [14], and Lambert & Popovic [29] have

described backward constructions of infinite single-type sample trees. Specifically, Lam-

bert & Popovic [29] use the coalescent point process which is a process describing the

times to the most recent common ancestors of consecutive individuals from the standing
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population. This is not to be confused with the coalescent process used in genetics by

which all alleles of a gene shared by all members of a population are traced to a single

ancestral copy. Recent renewed interest in multi-type branching processes motivates us

to generalize these constructions to the multi-type setting. We tackle this problem in

Chapter 2. These generalizations are not straightforward, mainly because in a multi-type

process, the number and types of the offsprings are dependent on the type of the parent,

and thus a sample tree of a multi-type branching process may not be constructed by

randomly assigning types to a single-type sample tree.

Birth-death processes are often employed as analysis and prediction tools for real

biological systems. They may serve as continuous phylogenetic models, and as discrete

branching processes, their parameters may be deduced or adjusted from empirical biolog-

ical data by observing the relationships between individuals of the standing population.

It turns out that the ancestral tree of a birth-death process is itself a pure-birth process

(see [39]), where the birth rate is dependent on time.

Birth-death processes are intimately related to the Yule model for the construction

of random rooted binary trees. Indeed, the shape of the ancestral tree of a single-type

birth-death process is distributed as a Yule tree (a rooted binary tree constructed under

the Yule model). For a proof of this fact see Aldous [1]. A particularly interesting

statistic on these shapes is the number of cherries (pairs of leaves adjacent to a common

ancestor) in a rooted binary tree. McKenzie & Steel [34] obtained the distribution of

the number of cherries in a Yule tree. Our main motivation for Chapter 3 is to extend

some results from [34] onto the case when the nodes of the random trees have different

types. In particular this means that there are different types of cherries as well. In

the particular setting of the neutral two-type Yule model, we derive some results by

solving classical recurrences on the generating functions of cherry counts of different

types (Sections 3.1.1 and 3.1.2). Additional results on the asymptotics of these counts

5



arise from an extended Pólya urn process (Section 3.1.3). If we restrict ourselves to

asymptotics, the results obtained from the Pólya urn approach are much stronger than

what can be computed from individual generating functions, since from this approach we

also obtain eigenvalues/correlated growth of various quantities in terms of the number n

of leaves. Furthermore, the Pólya urn approach proves convergence in distribution, which

is stronger than simple limits of means and variances. On the other hand the generating

functions approach provides exact results for means and variances for finite values of n.

In Section 3.2 we show that the ancestral tree of a multi-type birth-death process is

itself a pure-birth process with certain time-dependent rates, thus generalizing the single-

type result from [39]. The ancestral tree of a multi-type birth-death process turns out to

be a lot more complex than that of a single-type process, as the former allows individuals

to mutate to different types at certain rates. This motivates the study of multi-type Yule

trees which allow mutations, and where the probability of choosing an individual of type i

at every step is weighted by a parameter which is dependent on i. This weight constraint

makes the generating function and the extended Pólya urn approaches untreatable. We

thus use a different method that considers a continuous model which embeds the discrete

Yule model. We present explicit relations between probabilities and rates of the two

models as a motivation for the asymptotic results we obtain next concerning the mean

numbers of cherries and pendant edges (these are edges which are not part of a cherry) in

the multi-type pure-birth process with mutations. When rates are time-independent, we

illustrate how it is possible to obtain the rates defining the process from those asymptotic

values.

This thesis is organized as follows. In Chapter 1 we present the classical definitions

and terminology we use throughout this document as well as some motivation for our

results. In Chapter 2, Section 2.1 we introduce the multi-type coalescent point process

and describe an explicit and algorithmic way to construct an ancestral tree of the standing
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population of a (quasi-stationary) multi-type branching process in terms of a Markov

chain. We also provide explicit formulae for calculating the basic statistical features

that describe the ancestral tree (the law of coalescence times together with the types

on the ancestral lineages), as well as statistical features that link types in the standing

population with the shape of the tree (the law of same-type coalescence times). In Section

2.2 we consider the special case of a multi-type branching process with linear-fractional

offspring distribution, and we obtain very simple formulae for these two sets of statistical

features. These formulae are then used to assess the differences in the ancestral trees of

two different linear-fractional offspring distributions: one ‘symmetrical’ in its treatment

of different offspring types, and the other completely ‘asymmetrical’ in that sense. In

Chapter 3, Sections 3.1.1 and 3.1.2, we derive explicit formulae for the mean and variance

of the number of two-type cherries in random binary two-type trees under a neutral Yule

model, as well as the asymptotic distribution of those same statistics. In Section 3.2

we present the long time behaviour of the mean number of cherries and pendant edges

of different types in k-type Yule trees allowing mutations, by embedding this multi-type

Yule model in a multi-type pure-birth process. We also examine this contiuous multi-type

pure-birth process under time-dependent rates. At the end of this section we illustrate

some reconstruction properties of these statistics to obtain information about the birth

and death rates of the process.

The results presented in Chapters 2 and 3 may be found in the following two joint

works with Dr. Lea Popovic:

L. Popovic, M. Rivas. The coalescent point process of multi-type branching trees.

Stochastic Processes and Applications, Vol 124(12), 29 pp, 2014

L. Popovic, M. Rivas. Multi-type Yule trees. In Preparation.
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Chapter 1

Background

In this chapter we present some theoretical foundations regarding the theory of branch-

ing processes and birth-death processes. We also summarize some existing results that

motivate our work. We may occasionally refer to branching processes as Galton-Watson

processes or G-W processes, since the formal definition we use below for branching pro-

cesses arose originally from H. W. Watson and F. Galton’s study on the extinction of

families [12].

1.1 Multi-type branching processes

We start by introducing some notation on multi-type branching processes. Let {1, 2, 3, . . .}

denote a countable space of types of a population.

Definition 1.1. A multi-type branching process or multi-type Galton-Watson process

(G-W process) is a discrete-time Markov process Z = (Z(n))n≥0, where Z
(n) = (Z

(n)
1 , Z

(n)
2 , . . .)

is an infinite-dimensional random vector whose �-th coordinate is the number of individ-

uals of type � at generation n in a population. The offspring vector of each individual

of type � follows a fixed distribution (Z(1)|Z(0) = e�) (where e� denotes the unit vector

with a 1 in the �-th coordinate), and this distribution is independent of the individual’s
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ancestors and their siblings.

It is assumed that only a finite number of entries of the vector Z(n) are non-zero.

This may be guaranteed as long as the random vector (Z(1)|Z(0) = e�) has finite sum of

entries for all �. Generations are indexed by n ∈ N0 in the superscript, and types are

indexed by {1, 2, . . .} in the subscript. All the arguments in this Chapter and Chapter 2

are valid as well for a finite number of types.

For any z = (z1, z2 . . .) ∈ N
∞
0 with z1 + z2 + · · · < ∞, the transition probabilities and

the n-th iterations are denoted by

P�(z) = P(Z(1) = z |Z(0) = e�), P
(n)
� (z) = P(Z(n) = z |Z(0) = e�).

For s = (s1, s2, . . .), the probability generating function of the offspring distribution is

denoted by f(s) := (f1, f2 . . .)(s) where

f�(s) = E(sZ
(1) |Z(0) = e�) =

∑
z=(z1,z2,...)∈N∞

0

P�(z)s
z1
1 sz22 · · · , for |s1|, |s2|, . . . ≤ 1,

and the probability generating function of the n-th generation population, the n-fold

composition of f(s), is denoted by f (n)(s) where f
(n)
� (s) = E(sZ

(n) |Z(0) = e�). For

n = 0 let f (0)(s) = s, and note that f (1)(s) = f(s).

We let M = (m��′)1≤�,�′≤∞ be the matrix of the expected number of offspring of each

type from parents of different types:

m��′ = E(Z
(1)
�′ |Z(0) = e�) =

∂f�(s)

∂s�′

∣∣∣∣
s=1

, for �, �′ = 1, 2, . . .

where 1 = (1, 1, . . .) and we assume all m��′ < ∞. This is also called the mean matrix of

the process. It is immediate that the mean matrix of the n-th generation population Zn

is Mn.
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Definition 1.2. A multi-type Galton-Watson process is called positive regular ( or ir-

reducible) if for some n > 0 the mean matrix of its n-th generation population Mn is

positive (all of its entries m
(n)
��′ > 0 are strictly positive entries).

Definition 1.3. A process is called singular if each individual has exactly one offspring.

We assume that the multi-type G-W process is non-singular and irreducible through-

out this work.

Definition 1.4. A matrix M is said to be aperiodic if for all �, the greatest common

divisor of all natural numbers n such that m
(n)
�� > 0, is equal to 1.

Theorem 1.1 (Seneta [43]). All the power series from the entries of M (s) =
∑

n≥0 s
nMn

have a common convergence radius R, for 0 ≤ R < ∞.

Definition 1.5. The matrix M is called R-transient if
∑

n≥0 m
(n)
ii Rn < ∞ for i ≥ 1 and

R-recurrent if
∑

n≥0 m
(n)
ii Rn = ∞ for i ≥ 1, where R is the common convergence ratio

from the previous theorem.

The following theorem follows as an extension of the well known Perron-Frobenius

theorem.

Theorem 1.2 (Seneta [43]). For an R-recurrent matrix M there exist unique (up to

constant multipliers) positive vectors u and v such that

RMvT = vT and RuM = u.

where vT represents the transpose of the vector v.

Definition 1.6. In the R-recurrent case the matrix M is called R-null when uvT = ∞

and R-positive when vuT < ∞.
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Theorem 1.3 (Seneta [43]). For an R-positive matrix M after scaling the vectors u, v

such that v · u = vuT = 1,

RnMn → uTv, as n → ∞.

In our work we assume that M is aperiodic, R-recurrent and R-positive. In this case,

using the previous results we ensure the existence of R, u and v.

We say that a multi-type Galton-Watson process is transient (recurrent, positive) if

the mean matrix M is R-transient (R-recurrent, R-positive).

We scale the vectors u and v so that u · v = 1 and u · 1 = 1.

Definition 1.7. Set ρ = 1/R. The process Z is subcritical, critical or supercritical

when ρ < 1, ρ = 1 or ρ > 1, respectively.

Since ρ = 1/R, equivalently we say that the process is subcritical, critical or supercrit-

ical if R > 1, R = 1 or R < 1, respectively. Thus, the role that ρ plays in the countably

many types setting is similar to the role of μ = E(Z(1)|Z(0) = 1) in the one type case.

The next three definitions involve Markov processes in general.

Definition 1.8. Let Z = (Zt)t≥0 be a Markov process on [0,∞). A quasi-stationary

distribution of Z is a positive measure ν such that

ν(A) = P(Zt ∈ A |Zt �= 0), t ≥ 0.

Definition 1.9. The Yaglom limit Y of a Markov process Z is a random variable whose

law is a quasi-stationary distribution defined by:

P(Y ∈ A) := lim
t→∞

Pz(Zt ∈ A |Zt �= 0) = lim
t→∞

P(Zt ∈ A |Zt �= 0,Z0 = z), z �= 0.

Definition 1.10. The Q-process Ẑ is a Markov process such that for any Θ ∈ Ft, where
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Ft is the sigma algebra generated by Zt′ (0 ≤ t′ ≤ t),

P̂z(Θ) := P(Ẑ ∈ Θ | Ẑ0 = z) = lim
s→∞

Pz(Θ |Zt+s �= 0).

It can be shown (See Dallaporta & Joffe [6]), as in the one-playsdimensional case of

a Galton-Watson process (see [14]), that the transition probabilities of the Q-process are

given by

P̂(Z(n) = z |Z(0) = e�) =
P�(z)

ρ

z · v
e� · v

,

where P�(z) = P(Z(1) = z |Z(0) = e�) represents the transition probability of a Galton-

Watson process at generation n. This representation of the probabilities of the Q-process

plays an important role in Chapter 2 when reconstructing the spine of the process.

Theorem 1.4 (Seneta [43]). Suppose that (Z(n))n≥0 is irreducible, aperiodic, positive

with the mean matrix M being R-positive for some R > 1, and if the left eigenvector of

M satisfies
∑

i ui < ∞, then the limits

lim
n→∞

P�(Z
(n) = z |Z(n) �= 0), and

lim
m→∞

lim
n→∞

P�(Z
(n) = z |Z(n+m) �= 0),

exist and define honest probability distributions, meaning that their sums over all values

of z add up to 1.

The previous theorem ensures the existence of the Yaglom limit, and of the limit of

the Q-process for a multi-type Galton-Watson process in the subcritical case.

The existence of the limit of the first quasi-stationary distribution is needed for the

assumption in Chapter 2 that the infinite embeddings of multi-type trees are quasi-

stationary. The second limit is a key ingredient in a construction of the spine as it is

explained in Remark 2.2.
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1.1.1 Multi-type linear-fractional branching processes

Linear-fractional branching processes form an important family of particular Galton-

Watson processes. They satisfy the convenient property that their iterations are again

linear-fractional.

We use the same notation as [41] for ease of drawing on known results and making

comparisons. LetH be an infinite square sub-stochastic matrix, that is, each row h� ofH

is a non-negative vector with
∑

�′≥1 h��′ ≤ 1, and let h�0 = 1−
∑

�′≥1 h��′ . Let g be a non-

negative vector such that g1T =
∑

�′≥1 g�′ = 1. Letm > 0. For any z = (z1, z2, . . .) ∈ N
∞
0 ,

let |z| =
∑

�≥1 z�.

Definition 1.11. A random vector ξ� taking values in N
∞
0 has a linear-fractional distri-

bution LF (h�, g,m) if for any non-negative integer vector z = (z1, z2, . . .)

P
(
|ξ�| = 0

)
= h�0, P

(
ξ� = e�′ + z

)
= h��′

m|z|

(1 +m)|z|+1

⎛⎜⎝ |z|

z1, z2, . . .

⎞⎟⎠ gz,

where gz = gz11 gz22 · · · . The probability generating function of ξ� has the linear fractional

form

f�(s) = h�0 +

∑
�′≥1 h��′s�′

1 +m−m
∑

�′≥1 g�′s�′
.

One can also represent the random vector ξ� as a sequence of offsprings, where the

first offspring has a type distribution given by h� and the offsprings after the first one

have geometric distribution with mean m and type distribution given by g independently

for each offspring. Moreover, the probability generating function of (ξ�|ξ� �= 0) is that of

a shifted multivariate-geometric distribution

E(sξ� |ξ� �= 0) =
(1− h�0)

−1∑
�′≥1 h��′s�′

1 +m−m
∑

�′≥1 g�′s�′
.
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Definition 1.12. A multi-type linear-fractional branching process LF(H , g,m) is a

Galton-Watson process in which each individual of type � ∈ {1, 2, . . .} reproduces ac-

cording to the LF(h�, g,m) offspring distribution ξ�.

In other words, the probability generating function of the offspring distribution of a

multi-type linear-fractional branching process is f(s) = (f1, f2, . . .)(s) with f� as above.

Its mean matrix is given by M = H +mH1Tg.

The independence of the parameters g and m from the parent’s type ensures that the

population size in each generation of this process also has a linear fractional distribution.

This fact is detailed by the following known result.

Theorem 1.5 (Proposition 3 [22], Theorem 3 [41]). The n-th generation population size

vector Z(n) of a multi-type linear-fractional branching process LF(H , g,m) started with

one individual Z(0) = e� has a linear-fractional distribution LF(h
(n)
� , g(n),m(n)) whose

parameters are given by:

m(n) = mg(I +M + · · ·+Mn−1)1T,

g(n) =
m

m(n)
g(I +M + · · ·+Mn−1), (1.1)

H (n) = Mn − m(n)

1 +m(n)
Mn1Tg(n),

where the vector h
(n)
� is the �-th row of the matrix H(n), and 1T is the transpose of

1 = (1, 1, . . .).

Note that, as a consequence, (Z(n)|Z(n) �= 0,Z(0) = e�) is distributed as a shifted

multivariate-geometric distribution

E(sZ
(n) |Z(n) �= 0,Z(0) = e�) =

(1− h
(n)
�0 )−1

∑
�′≥1 h

(n)
��′ s�′

1 +m(n) −m(n)
∑

�′≥1 g
(n)
�′ s�′

.

This theorem was proved in [22] using an algebraic approach, while [41] provided a
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different proof using the jumping contour representation of the branching process and its

nice Markovian structure.

1.1.2 Single-type Galton-Watson trees

In this section we summarize some of the initial results of Geiger [14], since we aim

to extend them to the multi-type setting in the following chapter. In his work, Geiger

studies planar Galton-Watson trees conditioned on non-extinction at the present time,

having started somewhere in the past. We use the notation from the previous sections

and introduce some new one.

Let T be the a random family tree associated with the Galton Watson process

(Z(n))n≥0 started with one individual. Thus T is a rooted planar tree. According to

our planar embedding (where individuals are located at points of a discrete lattice), we

distinguish the first individual from left to right which has descendants at generation n.

To avoid ambiguity, we sometimes denote the Galton Watson process associated to a

particular tree T by (Z(n)(T ))n≥0. Given a Galton Watson tree T and a fixed value of

Z(1)(T ), denote by T i the subtree founded by the i-th offspring of the root for 1 ≤ i ≤

Z(1)(T ). Let us denote by Rn+1(T ) the position or rank of the leftmost individual of the

root who has descendants at generation n+ 1, i.e,

Rn+1(T ) = min{1 ≤ i ≤ Z(1)(T ) : Z(n)(T i) �= 0}, n ≥ 0,

with min(∅) = ∞. With this notation, we recall the first result from [14].

Lemma 1.1 (Geiger [14]). The subtrees T i, 1 ≤ i ≤ Z(1), for 1 ≤ j ≤ k < ∞ satisfy:

(T i |Rn+1 = j, Z(1) = k)
d
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(T |Z(n) = 0), 1 ≤ i ≤ j − 1,

(T |Z(n) > 0), i = j,

T , j + 1 ≤ i ≤ k,
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where the notation
d
= means “equally distributed” or “with the same law”.

Furthermore, the conditional joint distribution of Rn+1 and Z(1), n ≥ 0, is given by

P(Rn+1 = j, Z(1) = k |Z(n+1) > 0) =
pkP(Z

(n) > 0)P(Z(n) = 0)j−1

P(Z(n+1) > 0)
, (1.2)

where pk = P(Z(1) = k|Z(0) = 1) denotes the probability that an individual has exactly k

offsprings.

This previous result states that the subtrees T i are conditionally independent given

{Rn+1 = j, Z(1) = k}. Geiger observes that Lemma 1.1 may be used to define a reverse

construction of the Galton-Watson tree conditioned on nonextinction at the present time.

1.1.3 Single-type coalescent point processes

The coalescent point process of a branching tree is a process describing the genealogy of

the standing population (the population at the present time) backwards in time, directly

displaying the coalescence times as a sequence running over the current population size.

It constructs a set of points, each corresponding to the most recent common ancestor of

two individuals in the current population, whose depth (or vertical height) corresponds

to the time when the lineages of these two individuals branched off (separated) from each

other. The coalescent point process has a bijective correspondence with the ancestral tree

of the current population, and allows the full ancestral tree to be reconstructed from its

values. It was introduced in [40] for the ancestral tree of a continuous-time single-type

branching process conditioned on its current population size, and called the genealogical

point process. The convenient property of that particular branching model is that its

contour process is Markovian, which implied that the points in this point process are

simple -that is, each branch point has degree two- and that they are independent samples

from the same distribution of depths. This allows one to reconstruct the ancestral tree

of a population of n current individuals based simply on a sample of size n from this
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distribution (see Fig. 2 of [40]). This genealogical point process was used in [2] to obtain

statistical information for the ancestral trees of a critical branching process, was extended

to non-critical binary processes in [16] and to homogeneous binary Crump-Mode-Jagers

processes in [28].

The original construction of the genealogical point process had to be extended to ac-

commodate Galton-Watson branching processes with general offspring distribution when

the contour process of the branching tree is no longer Markovian. In this case depths

of points in the process are no longer sufficient in order to fully reconstruct the ances-

tral tree, as the most recent common ancestors were no longer distinct for every pair of

current individuals. In other words, branch points in the ancestral tree no longer always

have degree exactly equal to two, and it was necessary to keep track of the multiplicity of

these points as given by their branching degree. In [29] a construction was made which,

rather than having all simple points with mass one, has points with (positive) integer

valued masses. Each point again corresponds to a most recent common ancestor of two

individuals in the current population, and its depth records the time when the two in-

dividuals’ lineages separated. The additional mass coordinate of this point records the

number of current individuals with the same most recent common ancestor as these two

which are embedded after (or horizontally to the right) of them. This process was called

the coalescent point process (with multiplicities).

Before we present our multi-type extension of this construction we first recall the

notation from [29].

Consider an arbitrarily large population at the present time from a general quasi-

stationary branching process originating at an unspecified arbitrarily large time in the

past. In the planar embedding of this process, individuals are located at points of a

discrete lattice (n ∈ Z, i ∈ N), where the first coordinate −n denotes the generation and

the second coordinate i denotes the position of the individual in the planar embedding
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from left to right. The number of offspring of individual (n, i) is denoted by ξ(n, i). See

Figure 1.1, the doubly infinite embedding of the tree is shown in the figure on the left.

Its coordinates (n, i) represent its location on the two dimensional grid. The standing

population is the population at the present time (generation n = 0), and its ancestral tree

is the subtree of the branching tree obtained by following only the branches that lead

to an individual present in the standing population. The ancestral tree is more easily

observed in the right figure in Figure 1.1.

Figure 1.1: Planar embedding of a single-type branching process (left), and the coalescent

times along the ancestral lineages Ai (right). Lambert & Popovic [29].

The ancestry of an individual from generation 0 can be traced backwards in time as

follows. Define

ai(n) := index of the ancestor of individual (0, i) at generation − n.

Definition 1.13. The coalescent time Ci,j of individuals (0, i) and (0, j) is the time of
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the most recent common ancestor between these two, that is,

Ci,j := min{n ≥ 1 : ai(n) = aj(n)}, with min(∅) = ∞.

In particular, define Ai := Ci,i+1 which identifies the coalescent time of individuals

(0, i) and (0, i+ 1). It can be easily shown that Ci,j = max{Ai, Ai+1, . . . , Aj−1}.

Definition 1.14. The sequence (Ai)i≥1 is called the coalescent point process.

The genealogy back in time of the present population, that is its ancestral tree, is

then uniquely determined by the process (Ai)i≥1. (This was sufficient information for

the genealogical point process of binary branching processes in [40, 2, 16, 28].) The

coalescent point-process (with multiplicities) can be read off from the right figure (in

Figure 1.1) by observing the depth of the most recent common ancestor (MRCA) between

two individuals and counting the multiplicities of its future appearance, e.g. A1 = 1 with

multiplicity 2, A2 = 1 with multiplicity 1, A3 = 2 with multiplicity 1, etc). Define an

auxiliary process (Di)i≥1 of integer valued sequences Di = {Di(n), n ≥ 1} for each i ≥ 1,

which records future branch degrees along the ancestral lineage of individual (0, i)

Di(n) := number of surviving offsprings of individual (−n, ai(n)) embedded in the

ancestral tree to the right of the lineage of (0, i) itself.

It turns out that the process (Di)i≥1 has all the nice properties needed to identify the

law of the coalescent point-process. See Figure 1.2 for an illustration of these values on

a sample tree.
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A1 = 3 A2 = 2 A3 = 1 A4 = 3 A5 = 3

...... ... ... ... ...

D1(3) = 3

C2,5 = 3

D1(1) = 0

D1(2) = 0

Figure 1.2: Some values of Ai, Ci,j and Di(n) illustrated on a planar embedding of a

branching process.

Theorem 1.6 (Theorem 2.1 of [29]). Ai is a functional of Di given by

Ai = min{n ≥ 1 : Di(n) �= 0},

and the law of the process (Di, i ≥ 1) is determined by the fact that it is a sequence-

valued Markov chain, started at the null sequence D0 = (0, 0, . . .), with transitions given

as follows - for any sequence d. = (dn;n ≥ 0) ∈ N
N

0

(Di+1(n) |Di(·) = d·)
d
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dn for n > Ai,

dAi
− 1 for n = Ai,

ζ ′n for 1 ≤ n < Ai,

where the random variables ζ ′1, ζ
′
2, . . . , ζ

′
Ai−1 are independent random variables.

The distributions of variables {ζ ′n}n≥1 are specified as follows. If ξ is the offspring

distribution of this Galton-Watson branching process with probability generating function

f(s), the random variables ξ(n, j), representing the number of offspring of individual (n, j)
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for any indices n, j ∈ N, are all independent identically distributed as ξ. The survival

probability to generation 0 of each offspring of an individual at generation −n is given

by pn−1 := 1 − f (n−1)(0) where f (n−1) is the (n − 1)-fold composition of f . This, in

particular, holds for the offspring of (n, ai(n)), the ancestor of (0, i) at generation −n. If

we let {ε1n, ε2n, . . .} be an independent sequence of i.i.d. Bernoulli variables with parameter

P(εmn = 1) = pn−1 (we deviate slightly notation from [29] here), and use an independent

variable ξ, we can define the random sum

ζn :=

ξ∑
m=1

εmn ,

and, for each n ≥ 1, the law of ζ ′n is defined by

ζ ′n :
d
=(ζn − 1

∣∣ζn �= 0).

Example 1.1. The previous Theorem shows how to obtain the sequence (Ai)i≥0 from

(Di(n))i≥0. The latter may also be encoded as the graph of the coalescent point process,

where Di(n) is the number of dotted segments at generation n to the right of the point

(n, i) as it is shown in the following figure.



C1,1 = 0 C2,1 = 1 C3,1 = 1 · · · C6,1 = 6 · · ·

C1,2 = 1 C2,2 = 0 C3,2 = 1 · · · C6,2 = 6 · · ·

C1,3 = 1 C2,3 = 1 C3,3 = 0 · · · C6,3 = 6 · · ·

C1,4 = 2 C2,4 = 2 C3,4 = 2 · · · C6,4 = 6 · · ·
...

...
...

...
...

...

A1 = 1 A2 = 1 A3 = 2 A4 = 1 A5 = 6 A6 = 1 A7 = 3 A8 = 1 A9 = 3 · · ·

↑

−0

−1

−2

−3

−4

−5

−6

1 2 3 4 5 6 7 8 9 10 11

↔

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 · · ·

2 1 0 1 0 1 0 1 0 0

1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 2 2 1 1 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 1 1 1 1 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

Remark 1.1. The trees from [29] are closely related to the ones constructed in [14]

(Section 1.1.2). In particular the offspring process of the ascendants of any element at

generation 0 in [29] has the same distribution as the tree constructed in [14]. They are

both planar Galton-Watson processes assuming non-extinction at the present time.

1.2 Birth-death processes

Birth-death processes are used to simulate speciation in biology and other areas of science.

In the next four subsections, some classical continuous-time birth and death processes

are presented for both the single type case and the multi-type case.
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1.2.1 Birth-death processes

A continuous-time birth-death process (Yt)t≥0 is a continuous-time Markov process on

[0,∞) that is defined by parameters b̃(i), d̃(i), where b̃(i) represents the rate at which

one individual is born at time t given that Yt = i and d̃(i) is the rate at which one

individual dies out given that Yt = i. It is assumed that the time interval t → t + Δt

is infinitesimally small so that during this time interval at most one event occurs, either

a birth or a death. Thus, the infinitesimal transition probabilities of a continuous-time

birth-death process satisfy

Pi+j,i(Δt) = P(Yt+Δt = i+ j |Yt = i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b̃(i)Δt+O(Δt), j = 1,

d̃(i)Δt+O(Δt), j = −1,

1− (b̃(i) + d̃(i))Δt+O(Δt), j = 0,

O(Δt), j �= −1, 0, 1.

After summing over these transition probabilities, dividing by Δt and taking limits we

can obtain the forward Kolmogorov differential equation of this process; for Pj,i(t) =

P(Yt = j|Y0 = i), we have

dPj,i(t)

dt
= b̃(j − 1)Pj−1,i(t)−

(
b̃(j) + d̃(j)

)
Pj,i(t) + d̃(j + 1)Pj+1,i(t),

dP0,i(t)

dt
= −b̃(0)P0,i(t) + d̃(1)P1,i(t),

for i ≥ 1 and j ≥ 1.

A simple birth-death process (Yt)t≥0 is a birth-death process where the rates are con-

stant for all individuals. In other words, each individual, independently of all the others,

produces an offspring at a constant b̃ and dies at a constant rate d̃. In this case we have

b̃(i) = ib̃ and d̃(i) = id̃. Assuming that Y0 = 1, the differential equation of the process
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satisfies, for Pi(t) = P(Yt = i |Y0 = 1), is

dPi(t)

dt
= (i− 1)b̃Pi−1(t)− i(b̃+ d̃)Pi(t) + (i+ 1)d̃Pi+1(t),

dP0(t)

dt
= d̃P1(t).

We often refer to the event of an individual producing an offspring as a split, and we

may say that b̃ is the birth rate or splitting rate of the process.

A pure birth process or birth process is a birth-death process whose death rates are

0. A simple pure birth process is a simple birth-death process with d̃ = 0. Notice that

these definitions can be stated on a discrete-time setting where Yn is defined for n ∈

{0, 1, 2, . . .} and where the corresponding transition probabilities will satisfy recurrence

relations instead of differential equations.

Simple birth-death processes may be extended by allowing the birth and death rate

parameters to depend on time; b̃t, d̃t. These time-dependent extensions appear naturally

when considering conditional versions of time-independent birth-death processes. We

also refer to time-independent simple birth-death processes as constant-rate birth-death

processes. Nee et al [39] consider four related processes;

1. A simple birth-death process (Yt)t≥0 with constant rates starting at time 0.

2. The same process conditioned on surviving to time t; (Yt |Yt �= 0).

3. The same process conditioned on non-extinction at the present time T ; (Yt |YT �= 0).

4. The ancestral or reconstructed process, resulting from pruning all progeny which

does not survive to time T , conditioned on non-extinction at time T . The random

tree representing this process is known as the ancestral tree or reconstructed tree.

The authors show that the processes 1, 2 and 4 have a geometric distribution when ob-

served at a fixed time t ∈ [0, T ]. The distribution of the third process is that of the sum
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of two independent geometric distributions. The parameters of these geometric distri-

butions are in terms of t and of the birth and death rates b̃ and d̃. Furthermore, they

cleverly pick a time-dependent parameter and show that the ancestral process (process

4) has the distribution of a time-dependent pure birth process with that parameter. We

aim to generalize this particular result to the multi-type setting as a motivation for our

research on some of the asymptotic properties of multi-type Yule trees (see Chapter 3).

1.2.2 Multi-type birth-death processes

A multi-type birth-death process Yt = (Y1,t, . . . , Yk,t) for t ≥ 0 is a vector-valued Markov

process whose entry Yi,t represents the number of individuals of type i in a population

at time t. Parents produce offsprings at rates which depend only on the parent’s and

offspring’s types. Denote by b̃iji the rate at which individual of type i produces an offspring

of type j, and denote by d̃i the death rate of an individual of type i. Thus b̃i =
∑k

j=1 b̃
ij
i

is the birth rate of a type-i individual. Thus, the infinitesimal transition probabilities

satisfy:

Pi+j,i(Δt)=P(Yt+Δt = i+j |Yt = i)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑
�=1

i�b̃
�a
� Δt+O(Δt), j = ea,

iad̃aΔt+O(Δt), j = −ea,

1−
k∑

a=1

(
k∑

�=1

i�b̃
�a
� + iad̃a

)
Δt+O(Δt), j = 0,

O(Δt), else,

for a ∈ {1, 2, . . . , k}. Hence, it may be shown that these probabilities satisfy the system

of differential equations

dPj,i(t)

dt
=

k∑
a=1

k∑
�=1

i�b̃
�a
� Pj−ea,i(t) +

k∑
a=1

iad̃aPj+ea,i(t)−
k∑

a=1

(
k∑

�=1

i�b̃
�a
� + iad̃a

)
Pj,i(t).
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As in the single-type case, these processes may also be extended to time-dependent

rates. Furthermore, one may allow for mutations, so that an individual of type i may

switch its type to j at time t at a rate b̃ji (t). In this more general setting, the transition

rates become

Pi+j,i(Δt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑
j=1

ij b̃
j�
j (t)Δt+O(Δt), j = e�,

i�d̃�(t)Δt+O(Δt), j = −e�,

i�1 b̃
�2
�1
(t)Δt+O(Δt), j = e�2 − e�1 ,

1−
k∑

�=1

(
k∑

a=1

ij b̃
a�
a (t) + i�d̃�(t) + i�b̃

a
� (t)

)
Δt+O(Δt), j = 0,

O(Δt), else,

for �, �1, �2 ∈ {1, 2, . . . , k}. Multi-type pure birth processes with mutations and time-

dependent rates reappear in Section 3.2 when we consider the ancestral tree of a constant-

rate multi-type birth-death process.

1.2.3 Yule model

The Yule model is a discrete-time branching process where at each step, an individual is

chosen uniformly at random and splits into two individuals (or equivalently, it dies off

and produces two offsprings). Assuming that this process starts with one individual at

time 0, its n-th iteration may be represented as a rooted binary tree with n + 1 leaves

(each step increments the number of leaves by one) and n ordered internal nodes, where

the order is given by the splitting order and is thus consistent with the shape of the tree,

that is, the first node is the root, and all parent nodes precede their offsprings.

A random tree obtained from the Yule model is called a Yule tree. Yule trees appear

naturally from constant-rate birth-death processes as defined in Section 1.2.1, indeed:

Lemma 1.2 (Aldous [1], Lemma 1). Let T be a birth-death tree with constant rates started
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at time 0 with one individual and conditioned on having n + 1 > 0 living individuals at

the present time T . Let Y(T ) be the random rooted binary tree representing the topology

of T , with its n internal nodes ordered according to the time their corresponding splits

occurred in T . Then Y(T ) is distributed as a random rooted binary tree under the Yule

model.

Some statistics on Yule trees are of special importance to our research. A cherry is a

pair of leaves with a common parent (only one edge away from each other), and a pendant

edge is a leaf which does not belong to a cherry.

Equivalently the Yule model may be seen as a process to generate random rooted bi-

nary trees, where leaves are added successively by uniformly choosing a leaf, and splitting

it to form a cherry. We may assume that the tree starts at generation 1 with one single

cherry. A random tree of n leaves formed this way is said to follow the Yule distribution.

McKenzie & Steel [34] investigated some properties of the number of cherries under the

Yule model of tree generation:

Theorem 1.7 ([34]). Under the Yule distribution, let μn denote the mean number of

cherries of a random rooted binary tree on n leaves, and σ2
n the variance of the number

of cherries. We have

μn =
n

3
(n ≥ 3); σ2

n =
2n

45
(n ≥ 5).

Proposition 1.1 ([34]). Let Cn be the number of cherries of a random rooted binary tree

on n leaves. For the Yule model we have;

Cn − n/3√
2n/45

→ N(0, 1) in distribution.

This Proposition is a consequence of regarding the splitting process from the Yule

model as particular extended Pólya urn process, as described by Smythe [44] and Janson

[20]. In the next section we give a brief introduction of these processes. In Section
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3.1.2, we use Pólya urns to extend some of McKenzie & Steel [34]’s results to the neutral

two-type Yule model.

1.3 Extended Pólya urn models

An extended Pólya urn process (Xn)n≥0 is a discrete process where the entry Xni ≥ 0

of the random vector Xn = (Xn1, . . . , Xnl) represents the number of balls of type i (for

i = 1, . . . , l) in an urn at time n. This urn starts with a given vector X0 that may or

may not be random, and at each step, balls of different types are added or removed from

it. Some parameters need to be introduced to understand this step: a positive weight

ai ≥ 0 and a random l-dimensional vector ϑi = (ϑi1, . . . , ϑil) with integer coordinates are

assigned to each type i ∈ {1, . . . , l}. It is assumed that;

ϑij ≥ 0, for j �= i, and ϑii ≥ −1, (1.3)

with E(ϑ2
ij) < ∞. (1.4)

At each step, a ball is randomly selected so that the probability of selecting a ball of type

i is proportional to its weight ai. Subsequently, if a ball of type i was selected, then ϑij

balls of type j are added to the urn for j = 1, . . . , l.

In particular, the condition ϑii ≥ −1 means the selected ball is drawn and may or

may not be replaced. The probability of drawing a ball of type i at time n ≥ 1 is given

by the fraction

aiX(n−1)i∑
j ajX(n−1)j

.
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In the work of Janson [20], it is assumed that the urn never becomes empty, that is

|Xn| =
l∑

i=1

Xn,i > 0 for all n. (1.5)

The author uses the known fact that Pólya urn models are embedded in a multi-type

continuous-time Markov branching process (introduced first by Athreya & Karlin [4])

to obtain asymptotic results associated with the covariances and means of the process

entries. Next we introduce some notation and state some of the results of Janson, which

we use in Section 3.1.2 to generalize Theorem 1.7 and Proposition 1.1 to the two-type

setting. We do not state these results in their original form, but rather specialize them

to a simpler form which still serves our applications.

A type i is said to dominate another type j, denoted i � j, if starting with one single

ball of type i it is possible to eventually obtain at least one ball of type j. This type is

dominating if it dominates every other type. The process is said to be irreducible if all

types are dominating. In a process started with a single ball, we may ignore all types

that never occur and ensure irreducibility by requiring that all types that may appear

dominate each other.

Let A := (ajE(ϑji))
l
i,j=1 be the generating matrix of the Pólya urn model as defined

in Janson [20]. This matrix is said to be irreducible if the process is irreducible. The

eigenvalues of this matrix are ordered according to decreasing real parts: λ1 > Reλ2 ≥

Reλ3 ≥ · · · . In fact, it is known by the standard Perron-Frobenius theory that the largest

eigenvalue λ1 is real and strictly greater than the real part of any of the other eigenvalues.

For our specialized version of Janson’s theorems, we work under the following assump-

tions, which together imply assumptions A1-A6 from Janson [20].

(α1) Conditions 1.3, 1.4 and 1.5 hold.
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(α2) The largest real eigenvalue λ1 of A is positive.

(α3) The model starts with one single ball, and all types that may appear afterwards

dominate each other.

(α4) The eigenvalues λ1 and λ2 are simple, with left and right eigenvectors u1,v1 and

u2,v2 respectively, satisfying

u1 · v1 = u2 · v2 = 1,

a · v1 = 1,

with a = (a1, . . . , al). The following additional assumption allows to simplify Janson’s

results further:

(α5) Reλ2 > Reλ3.

In particular this condition implies that the set ΛII of eigenvectors λ satisfying Reλ =

λ1/2 is either the empty set or the set {λ2}, which simplifies some of Janson’s formulae.

Theorem 1.8 ([20]. Theorem 3.21). Under conditions (α1)-(α5) above, we have

Xn

n
→ λ1v1 a.s as n → ∞.

Theorem 1.9 ([20]. Theorems 3.22 and 3.23). Assume conditions (α1)-(α5) above.

1. Suppose Reλ2 < λ1/2. We have as n → ∞

Xn − nλ1v1√
n

→ N(0,Σ) in distribution,
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where

Σ :=

∫ ∞

0

ψ(s,A)Bψ(s,A)′e −λ1sλ1ds− λ2
1v1v

T
1 ,

B :=
l∑

i=1

v1iaiE(ϑiϑ
T
i ),

ψ(s,A) := e sA − λ1v1a
Tφ(s,A),

φ(s,A) :=

∫ s

0

e tAdt.

2. Suppose Reλ2 = λ1/2. We have as n → ∞

Xn − nλ1v1

n ln(n)
→ N(0,Σ) in distribution,

where the covariance matrix is given by;

Σ = (I − T )ΣII(I − T T),

with T := λ−12 λ1v1a
Tv2u

T
2 , and

ΣII := v2u
T
2B(v2u

T
2 )
∗.

Extended Pólya urn models are useful when obtaining asymptotic information about a

specific discrete Markov process. We use them in Section 3.1.3 to derive some asymptotic

results on the distribution of two-type cherries in neutral two-type binary trees.
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Chapter 2

The coalescent point process of

multi-type branching trees

In this chapter we extend the coalescent point process construction of Section 1.1.3 (see

[29]) to the case of multi-type branching processes. Our goal is to exploit the Markovian

features of the coalescent point process in order to derive features of multi-type phy-

logenetic trees, and identify the statistics in multi-type phylogenetic trees that are not

present in single type trees. We first derive the distribution of the most recent common

ancestor of two species from the standing population. We then derive the time of the

most recent common ancestor of two species of the same type, and its dependence on

the species type. Finally we apply these results to the special case of multi-type linear

fractional branching processes (Section 1.1.1).

2.1 Multi-type coalescent point processes

Our construction of the coalescent point process for a multi-type Galton-Watson branch-

ing tree is a natural generalization of the single-type coalescent point process from the

previous Section 1.1.3. For the sake of completeness, we describe its construction, with-
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out relying on previous concepts. Consider a multi-type Galton-Watson process, as-

sumed to be quasi-stationary. The distribution of the number and types of offsprings of

each individual depends on its type, and for an individual of type � will be denoted by

P(Z(1)|Z(0) = e�). We consider a doubly-infinite embedding of its genealogical tree as in

Figure 2.2 (left), infinite in the number of standing individuals as well as in the number of

past generations. Embedding of the genealogical tree in a two dimensional grid is made

in such a way that empty spaces and intersections between lineages are avoided. We also

specify a convention for the order of embedding an individual’s offspring. We assume that

the order in which they are embedded is chosen uniformly at random from all possible

ways to order them. In a later section we will assume a more specific ordering in the case

where the offspring distribution is linear-fractional.

Unlike the single-type case, a Markov process from which the multi-type coalescent

point process can be reconstructed will have to contain information on the individu-

als’ types as well. This, unfortunately, also makes notation for the multi-type process

lengthier. Throughout this work we reserve boldface symbols for vectors and matrices.

Each individual in the genealogical tree is defined by its location coordinates, where

(n, i) identifies the i-th individual from the left at generation −n. Let

t(n, i) := type of the individual (n, i).

Let

ai(n) := index (from left to right) of the ancestor of individual (0, i) at generation− n.

Recall that coalescence times between individuals (0, i) and (0, i + 1) at generation 0

are defined as Ai := min{n ≥ 1 : ai(n) = ai+1(n)} for i ≥ 1, and by convention

A0 = +∞. Furthermore, the type type-enriched ancestral lineage of individual (0, i + 1)

33



back to its most recent common ancestor with individual (0, i) is, for i ≥ 1, denoted by

Ai ∈ {1, 2, . . .}N0 , and including a special 0-th entry is defined as:

Ai := (t(0, ai+1(0)), t(−1, ai+1(1)), . . . , t(−Ai + 1, ai+1(Ai − 1)), t(−Ai, ai+1(Ai))).

The type-enriched ancestral lineages can be seen in Figure 2.2 (right) the type-enriched

ancestral lineage of individual (0,2) until depth A1 = 1 has two types: A1 = (2, 1); of

individual (0, 3) until depth A2 = 1 has two types: A2 = (2, 1); of individual (0, 4) until

depth A3 = 2 has three types: A3 = (1, 2, 1); of individual (0, 5) until depth A4 = 1 has

two types: A4 = (2, 2), etc.

For a vector v let v[j] denote its j-th entry and ‖v‖ denote its number of entries, with

the convention that ‖v‖ = 0 if v = ∅. Note that Ai = ‖Ai‖ − 1. Since ai+1(0) = i + 1,

the 0-th entry Ai[0] of the vector Ai is the type of the individual (0, i+1). Also A0 = ∞

and the first ancestral lineage A0 consists of types of all individuals on the left most

infinite (back into the past) spine of the ancestral tree. This special left most lineage in

the example in Figure 2.2 (right) has the sequence of types A0 = (2, 1, 1, 2, 2, 1, 2, . . .).

Definition 2.1. We call the process (Ai)i≥1 the multi-type coalescent point process.

We define the process (Di)i≥1 of vector valued sequences Di = {Di(n), n ≥ 1} in

such a way that each Di(n) ∈ {1, 2 . . .}N is a vector of types of offspring of the ancestor

ai(n) at generation −n embedded to the right of the lineage of (0, i) that are ‘survivors’

(meaning that they have progeny that are alive at generation 0):

Di(n) := vector of types of surviving offspring of individual (−n, ai(n)) embedded in the

ancestral tree to the right of and including the lineage of (0, i).

Clearly ‖Di(n)‖ ≥ 1, and note that Di(n) := ‖Di(n)‖ − 1 is the number of surviving

offspring of individual (−n, ai(n)) embedded to the right of (and excluding) the lineage
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of (0, i), as in the single type process of Section 1.1.3. The values of this process for the

tree in Figure 2.2 are given in Figure 2.3, the ancestor of individual (0, 1) at generation

−1 has three surviving offspring all of type 2: D1(1) = (2, 2, 2), the ancestor of individual

(0, 1) at generation −2 has only two offspring with surviving progeny of types 1 and 2:

D1(2) = (1, 2), the ancestor of individual (0, 1) at generation −3 has only one offspring

with surviving progeny of type 1: D1(3) = (1), etc. Note that the labelling of the

sequences is such that Ai−1 and Di are sequences that describe the ancestral lineage of

individual (0, i). In particular, for each i ≥ 1 the value of Ai is equal to the first depth n at

which Di(n) = ‖Di(n)‖− 1 �= 0, and the n-th entry of Ai−1 (which we denote A(i−1)[n−1]

since Ai−1 has a 0-th entry) is equal to the first entry of Di(n) for 1 ≤ n ≤ Ai−1+1. See

Figure 2.1 for an illustration of these values on a sample two-type tree.

A1 = 
(1,2,1,2)

...... ... ... ... ...

D1(3) = (2,1,2,1)

:type 1 :type 2

A2 = 
(1,2,1)

A3 = 
(1,2)

A4 = 
(2,1,2,2)

A5 = 
(2,1,1,2) D1(1) = (2)

D1(2) = (1)

Figure 2.1: Some values of Ai and Di(n) illustrated on a planar embedding of a two-type

branching process.
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Figure 2.2: Planar embedding of a two-type branching process (left), and types along

the ancestral lineages Ai (right): the special left most lineage here has types A0 =

(2, 1, 1, 2, 2, 1, 2, 2, . . .), the coalescent times here are A1 = 1, A2 = 1, A3 = 2, . . . with

types along ancestral lineages A1 = (2, 1), A2 = (2, 1), A3 = (1, 2, 1),A4 = (2, 2), . . ..

In order to describe the law of D we need to provide notation for surviving lineages.

Let ξ� be the offspring distribution of an individual of type � with probability generat-

ing function f�(s). Denote by f(s) the vector with entries f�(s) for � = 1, 2, . . .. For

individual (n, i) the law of the number of its offspring, given that its type is t(n, i) = �,

is that of ξ�. The survival probability of the progeny in generation 0 of an offspring of

some type �′ individual in some generation −n′ is given by pn′−1,�′ := 1− f
(n′−1)
�′ (0, 0, . . .)

where f
(n′−1)
�′ is the �′-th entry of the (n′ − 1)-fold composition of f . We consider all

the survivor progeny of a generation −n ancestor of some individual from the standing

population, and suppose that the type of this generation −n ancestor is �. For different
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�′ ∈ {1, 2, . . .}, let {ε1n,�′ , ε2n,�′ , . . .} be independent sequences of i.i.d. Bernoulli variables

with parameters P(εmn,�′ = 1) = pn−1,�′ . Start with an independent variable ξ�, which takes

values in N
∞
0 and has ξ�,�′ offspring of type �′, and define the vector of random sums:

ζn,� :=
( ξ�,1∑
m=1

εmn,1,

ξ�,2∑
m=1

εmn,2, . . .
)
,

whose �′ coordinate is denoted by ζn,�,�′ .

Figure 2.3: Sequences (Ai, Di(·))i≥1 of surviving offspring types along the lineages of

individuals ((0, i))i≥1 corresponding to the two-type ancestral tree given in Figure 2.2:

note that for each i ≥ 1 and 1 ≤ n ≤ Ai−1 +1 we have Ai−1(n− 1) = Di(n)[1] (including

i = 1 when A0 = +∞).

Then, the law of ζ ′n,�, which represents the number of surviving offspring of different

types at generation −(n− 1) of the initiating generation −n type � ancestor conditioned
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on having at least one surviving offspring, is given by:

ζ ′n,� :
d
=(ζn,�

∣∣ ∞∑
�′=1

ζn,�,�′ �= 0).

Let d(ζ ′n,�) ∈ {1, 2, . . .}N be an ordering of all the offspring counted by ζ ′n,� chosen uni-

formly at random from all possible orderings (or in some specific way, as in the next

section).

Recall that v[i] denotes the i-th coordinate of a vector v ∈ {1, 2, . . .}N0 . Then j :=

d(ζ ′n,�)[1] is the type of the left most surviving offspring at generation −(n−1) of the type

� ancestor from generation −n. Again, for different �′ ∈ {1, 2, . . .}, let {ε1n−1,�′ , ε2n−1,�′ , . . .}

be independent sequences of i.i.d. Bernoulli variables with parameters P(εmn−1,�′ = 1) =

pn−2,�′ (independent of all earlier sequences of Bernoulli variables). Proceed with an

independent variable ξj, and define the vector of random sums:

ζn−1,j :=
( ξj,1∑
m=1

εmn−1,1,

ξj,2∑
m=1

εmn−1,2, . . .
)
, ζ ′n−1,j :

d
=(ζn−1,j

∣∣ ∞∑
�′=1

ζn−1,j,�′ �= 0),

and let d(ζ ′n−1,j) ∈ {1, 2, . . .}N be the ordering of these surviving offspring. Then κ :=

d(ζ ′n−1,j)[1] is the type of the left most surviving progeny at generation −(n − 2) of the

initiating individual from generation −n. Following the left most surviving progeny of

an individual of type 1 can be seen in Figure 2.4, where the ancestor at generation −5 of

the individual (0, 6) is followed.

We proceed in this way recursively until generation −1 when we obtain the set of

offspring d(ζ ′1,ı). In order to collect all types of the left most surviving progeny (and

their siblings) in different generations 0,−1, . . . ,−(n − 2), and −(n − 1) in one vector,

we define an n long sequence of vectors in type space initiated by individual of type � in

generation −n:

ηn,� :=
(
d(ζ ′1,ı), . . . ,d(ζ

′
n−2,κ),d(ζ

′
n−1,j),d(ζ

′
n,�)

)
,
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whose coordinates are then the vectors of surviving offspring types in different generations

ηn,�(1) := d(ζ ′1,ı), ... , ηn,�(n− 1) := d(ζ ′n−1,j), ηn,�(n) := d(ζ ′n,�).

Figure 2.4: Sequences ηAi−1,Di(Ai)[2](n) of surviving subtrees Di+1(n) (1 ≤ n ≤ Ai−1) are

illustrated for the case i = 5 where A5 = 6: the collection of offspring on ancestral lineage

of individual (0, 6) originating from its common ancestor at generation −6 with individual

(0, 5) are marked with either dark edges (surviving to generation 0) or light edges (non-

surviving). Specifically: η5,1(5) = (2, 1, 1), η5,2(4) = (1, 2), η5,1(3) = (2), η5,2(2) =

(2, 2), η5,2(1) = (2, 2).

Having defined the random variables ηn,�, for arbitrary n and �, the reconstruction of

the ancestral tree from the auxiliary process is possible as in the single type case.
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Theorem 2.1. The coalescent times (Ai)i≥1 and types along the ancestral tree (Ai)i≥1

are both functionals of (Di)i≥1 given by

Ai = min{n ≥ 1 : ‖Di(n)‖−1 �= 0}, Ai =
(
Di+1(1)[1], . . . ,Di+1(Ai)[1], Di+1(Ai+1)[1]

)
.

The sequence (Di)i≥1 is a Markov chain with transition probabilities given by:

(Di+1(n) |Di)
d
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Di(n) for n > Ai,

(Di(n)[2],Di(n)[3], . . . ) for n = Ai,

η
Ai−1,Di(Ai)[2]

(n) for 1 ≤ n < Ai,

(2.1)

where the law of the Ai − 1 long sequence of type vectors (Di+1(1), . . . ,Di+1(Ai − 1))

is distributed as the vector η
Ai−1,Di(Ai)[2]

of types of the left most surviving progeny (and

their siblings) at generations −1, . . . ,−(Ai−1) of a generation −n = −(Ai−1) individual

whose type is � = Di(Ai)[2].

Before presenting the proof of Theorem 2.1, we first state a spine decomposition of a

multi-type branching process conditioned on survival to a certain generation, which shows

that, if we consider the infinite (back into the past) lineage of a current individual, at every

generation back in the past the subtrees of siblings of the ancestor in that generation are

independent of the infinite lineage and are distributed as trees of an unconditioned multi-

type branching process. Moreover, knowing the values of their own initial individuals,

these trees are independent from their sibling subtrees, and are independent of their rank

in the planar ordering.

For single-type processes this result first appeared in [31] and [14] (Section 1.1.2).

For multi-type processes a decomposition of a tree relative to a spine that is infinite into

the future is stated in [26], and in [15] for branching in continuous time. We present a

statement in the form of Lemma 1.1 ([14] see Section 1.1.2) for decomposition of trees
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conditioned only to survive to a fixed generation, and give its proof.

Consider a multi-type branching process Z = (Z
(n)
1 ,Z

(n)
2 , . . .)n≥0 which is still non-

extinct at generation n+ 1. Let T (i), 1 ≤ i ≤ |Z(1)| denote the subtrees descending from

the offspring in the first generation, under a uniform ordering d(Z(1)) of all the offspring

in the first generation, and let Rn+1 be the rank of the first offspring whose descendants

survive to generation n+ 1.

Lemma 2.1. The subtrees T (i), 1 ≤ i ≤ |Z(1)|, di ∈ {1, 2, . . .}, are conditionally in-

dependent given {Z(0) = e�,Z
(1) = z,d(Z(1)) = d, Rn+1 = j}, for 1 ≤ j ≤ |z| and

z = (z1, z2, . . .) with d = (d1, . . . , d|z|). Furthermore

(
T (i) |Z(0) = e�,Z

(1) = z,d(Z(1)) = d, Rn+1 = j
)

d
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
T
∣∣Z(n)(T ) = 0,Z(0)(T ) = edi

)
, 1 ≤ i ≤ j − 1,

(
T
∣∣Z(n)(T ) �= 0,Z(0)(T ) = edi

)
, i = j,

(
T
∣∣Z(0)(T ) = edi

)
, j + 1 ≤ i ≤ |z|,

where T denotes the law of a tree of multi-type branching processes with the probability

generating function. of Z. Further, the conditional joint distribution of Rn+1,Z
(1),d(Z(1))

is given by

P(Rn+1 = j,Z(1) = z,d(Z(1)) = d(z)
∣∣Z(n+1) �= 0,Z(0) = e�)

=

P(ξ� = z)P(d(z) = (d1, . . . , d|z|))P(Z
(n) �= 0|Z(0) = edj)

j−1∏
j′=1

P(Z(n) = 0|Z(0) = edj′ )

P(Z(n+1) �= 0|Z(0) = e�)
.

(2.2)

Proof of Lemma 2.1. Let T denote the tree of a branching process with the p.g.f of Z.
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Let z be a sample value of Z(1), and consider j ∈ {1, . . . , |z|} fixed. Let (Ai)1≤i≤|z| be

measurable subsets of the space of multi-type rooted planar trees with roots given by di,

where d(z) = (d1, . . . , d|z|). Assume that for 1 ≤ i ≤ j − 1, we have

Ai ⊆
{
T : Z(n)(T ) = 0, Z(0)(T ) = edi

}
, Aj ⊆

{
T : Z(n)(T ) �= 0, Z(0)(T ) = edj

}
,

and assume no additional condition on Ai for i > j. Since {T (i) ∈ Ai} 1≤i≤j−1 implies

that the first j − 1 subtrees are extinct by generation n, and T (j) ∈ Aj, which implies

that the j-th subtree T (j) has survived to generation n, together imply that Rn+1 = j,

we have { |z|
∩
i=1

{
T (i) ∈ Ai

}
, Z(1) = z, d(Z(1)) = d

}
⊂

{
Rn+1 = j

}
.

So from the independence of offspring trees without condition on their shape:

P
(
{T (i) ∈ Ai} 1≤i≤|z|, Z

(1) = z, d(Z(1)) = d, Rn+1 = j
∣∣Z(0) = e�

)
= P

(
Z(1) = z

∣∣Z(0) = e�

)
P
(
d (z) = d

) |z|∏
i=1

P
(
T (i) ∈ Ai

∣∣Z(0)(T (i)) = edi

)
.

(2.3)

From this equality we have that the subtrees T (i) are conditionally independent given

{Z(0) = e�,Z
(1) = z,d(Z(1)) = d(z), Rn+1 = j}, since the measurable sets Ai are

arbitrary under those conditions.

To prove the equality in distribution, we use the shorthand notation

Ei :=
{
T : Z(n)(T ) = 0, Z(0)(T ) = edi

}
, for 1 ≤ i ≤ j − 1,

Ej :=
{
T : Z(n)(T ) �= 0, Z(0)(T ) = edj

}
,

Ei :=
{
T : Z(0)(T ) = edi

}
, for j < i ≤ |z|.
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We need to show that

(
T (i)

∣∣Z(1) = z, d(Z(1)) = d, Z(0) = e�, Rn+1 = j)
d
= (T

∣∣ T ∈ Ei

)
.

Equivalently, that for every measurable subset Âi ⊂ Ei, we have

P
(
T (i) ∈ Âi

∣∣Z(1) = z, d(Z(1)) = d, Z(0) = e�, Rn+1 = j
)

= P
(
T ∈ Âi

∣∣T ∈ Ei

)
.

(2.4)

The left hand side of the above equality can be rewritten as

P
(
T (i) ∈ Âi, Z

(1) = z, d(Z(1)) = d, Rn+1 = j
∣∣Z(0) = e�

)
P
(
Z(1) = z, d(Z(1)) = d, Rn+1 = j

∣∣Z(0) = e�

) . (2.5)

Using equation (2.3), the numerator of this expression becomes

P
(
T (i) ∈ Âi, {T (r) ∈ Er}r 	=i, Z

(1) = z, d(Z(1)) = d, Rn+1 = j
∣∣Z(0) = e�

)
=

P
(
Z(1) = z

∣∣Z(0) = e�

)
P
(
d(z) = d

)
P
(
T ∈Âi

∣∣Z(0)(T ) = edi

)∏
r 	=i

P
(
T ∈Er

∣∣Z(0)(T ) = edr

)
,

while the denominator is equal to

P
(
Z(1) = z, d(Z(1)) = d, Rn+1 = j

∣∣Z(0) = e�

)
= P

(
Z(1) = z, d(Z(1)) = d, {T (r) ∈ Er}r=1,...,|z|, Rn+1 = j

∣∣Z(0) = e�

)
= P

(
Z(1) = z

∣∣Z(0) = e�

)
P
(
d(z) = d

) |z|∏
r=1

P
(
T ∈ Er

∣∣Z(0)(T ) = edr

)
.

Together the last two equalities show that (2.5) is equal to

P
(
T (i) ∈ Âi

∣∣Rn+1 = j, Z(1) = z, d(Z(1)) = d, Z(0) = e�

)
=

P
(
T ∈ Âi

∣∣Z(0)(T ) = edi

)
P
(
T ∈ Ei

∣∣Z(0)(T ) = edi

) ,
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which is equal to the right hand side of equation (2.4). This proves the statement about

the law of the different subtrees. To prove the statement about the joint law of the index

of the surviving subtree to generation n and the number and types of the offspring at

generation 1, it is sufficient to condition on Z(1) = z and use independence. �

Proof of Theorem 2.1. Observe that

Ai > n ⇔ ∀n′ ≤ n, ai(n
′) �= ai+1(n

′)

⇔ ∀n′ ≤ n, (−n′, ai(n
′)) has no surviving progeny in {(0, i+ 1), (0, i+ 2), . . . }

⇔ ∀n′ ≤ n, ‖Di(n
′)‖ = 1,

so that Ai is the level of the first term of the sequenceDi such thatDi(n) = ‖Di(n)‖−1 �=

0.

In addition, notice that Di+1(n) records the types of the offsprings of the ancestor

of (0, i + 1) at generation −n which have surviving progeny embedded to the right of

(0, i + 1), including the one that is on the lineage of (0, i + 1). Thus Di+1(n)[1] is the

ancestor’s type of (0, i+ 1) at generation −(n− 1), which proves the second equality.

At level Ai we have the most recent common ancestor ai(Ai) = ai+1(Ai) of individuals

(0, i) and (0, i + 1), whose offspring with surviving progeny embedded to the right of

(0, i + 1) do not include the ancestor of (0, i), which is recorded in Di(Ai)[1], but do

include all the others. So,

(
Di+1(Ai)[1],Di+1(Ai)[2],Di+1(Ai)[3], . . .

)
=
(
Di(Ai)[2],Di(Ai)[3], . . .

)
.

At any level n > Ai below the most recent common the ancestors of (0, i) and (0, i+1)

44



are the same since ai(Ai) = ai+1(Ai) implies ai(n) = ai+1(n), so

∀n > Ai, Di(n) = Di+1(n).

For levels n < Ai above the most recent common ancestor, note that by Lemma

2.1 the subtrees descending from different surviving offspring of (−Ai, ai(Ai)) are inde-

pendent copies of multi-type branching processes whose initial individuals are of types

Di(Ai)[1],Di(Ai)[2], . . . and which are conditioned to survive for at least n′ := Ai−1 gener-

ations. In particular, the subtree containing the lineage of (0, i+1) above (−Ai, ai(Ai)) is

independent of the subtree whose lineage is recorded in {Di(n), n < Ai} and is initiated by

an individual of type � := Di(Ai)[2](See Figure 2.4). By definition
(
Di+1(n), 1 ≤ n < Ai

)
records the survivor types (and their siblings) along the left most ancestral lineage of

(0, i+1) above the level Ai. Furthermore, by Lemma 2.1 the distribution of this sequence

of type vectors for a multi-type branching process with initial individual of type � con-

ditioned to survive at least n′ generations is distributed as the sequence of type vectors

ηn′,�. So,

(
Di+1(1), . . . ,Di+1(Ai − 1)

) d
=η

Ai−1,Di(Ai)[2]
⇔ ∀1 ≤ n < Ai, Di+1(n)

d
=η

Ai−1,Di(Ai)[2]
(n).

As in the single type case, the sequence Di+1 = (Di+1(n), n ≥ 1) depends only on Di

and not onDi′ for i
′ < i; and its transition law is determined by values of (Di(n), n ≥ Ai)

and an independent random variable ηn′,� with n′ = Ai − 1 and � = Di(Ai)[2]. �

The Markov chain (Di)i≥1 allows us to calculate some statistical features of the an-

cestral tree. The most relevant are coalescence times (Ai)i≥1 which indicate the shape of

the ancestral tree, and form a non-Markovian process.

We have the following result on the law of the coalescent time A1.
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Corollary 2.1. For a single type value a[n] ∈ {1, 2, . . .} and branching process Z =

(Z(n))n≥0 with infinitely many types

P(A1 > n|A0[n] = a[n]) = P

( ∞∑
�=1

Z
(n)
� = 1

∣∣Z(n) �= 0,Z(0) = ea[n]

)
. (2.6)

Proof. The fact that {A1 �= 1, . . . , A1 �= n} iff the subtree of the ancestor (−n, a1(n)) of

(0, 1) at generation −n has exactly one offspring with surviving progeny, directly implies

that

P(A1 > n|A0[n] = a[n]) = P
(∑

�≥1
Z

(n)
� = 1 |Z(n) �= 0,Z(0) = ea[n]

)
.

�

We next give a more general formula for the joint law of a coalescent time A1 of indi-

viduals (0, 1) and (0, 2) together with the values of types along the whole ancestral lineage

A0 = (t(0, a1(0)), t(−1, a1(1)), . . .) of individual (0, 1). It illustrates the role of ancestral

types when determining branching times in the ancestral tree of the standing population.

For a sequence a ∈ {1, 2, . . . }N0 let a|n′ denote the vector of the first coordinates up to

n′-th one in this sequence a|n′ := (a[0],a[1], . . . ,a[n′]).

Proposition 2.1. For a sequence of types a = (a[0],a[1], . . .) ∈ {1, 2, . . .}N0

P(A1 > n,A0|n−1 = a|n−1|A0[n] = a[n]) =
1

pn,a[n]

n∏
n′=1

(
∂fa[n′](s)

∂sa[n′−1]

∣∣∣
s=1−pn′−1

)
, (2.7)

where 1 − pn′−1 := (1 − pn′−1,1, 1 − pn′−1,2, . . .) = f (n′−1)(0) is the vector of extinction

probabilities by generation n′−1 and f is the probability generating function of the multi-

type branching process.

Proof. Observe that {A1 �= 1, . . . , A1 �= n} iff all the ancestors (−n′, a1(n
′)) of (0, 1) at

generation −n′, 1 ≤ n′ ≤ n have exactly one offspring with surviving progeny. Observe
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also that when types of ancestral individuals are known, by Lemma 2.1 the events of hav-

ing exactly one offspring surviving progeny are independent across different generations.

If a[n′] = A0[n′] denotes the type of the ancestor (−n′, a1(n
′)) of (0, 1) at generation −n′,

furthermore by Lemma 2.1 then those events can be expressed in terms of the random

variable ηn,a[n]
and in terms of the random variables ζ ′n′,a[n′]

, 1 ≤ n′ ≤ n as

P
(
A1 > n,A0|n−1 = a|n−1|A0[n] = a[n]

)

= P
(
ηn,a[n]

= ({a[0]}, {a[1]}, . . . , {a[n−1]})
)

= P
(
∀1 ≤ n′ ≤ n : ζ ′n′,a[n′],a[n′−1]

= 1, ζ ′n′,a[n′],�′
= 0 ∀�′ �= a[n′−1]

)

=
∏n

n′=1 P
(
ζ ′n′,a[n′],a[n′−1]

= 1, ζ ′n′,a[n′],�′
= 0 ∀�′ �= a[n′−1]

)
,

where we can write the above as a product because the subtrees descending from different

offspring are independent. For each product term we have

P
(
ζ ′n′,a[n′],a[n′−1]

= 1, ζ ′n′,a[n′],�′
= 0 ∀�′ �= a[n′−1]

)
=

P(ζn′,a[n′],a[n′−1]
= 1, ζn′,a[n′],�′ = 0 ∀�′ �= a[n′−1])

P(
∑

�′≥1 ζn′,a[n′],�′ �= 0)
.

Conditioning on the value of variable ξa[n′] which, when Bernoulli sampled by the vector

pn′−1 := 1 − f (n′−1)(0, 0, . . .) of survival probabilities of different types by generation

n′− 1 (i.e., each entry i is kept with probability pn′−1,i), gives the distribution of ζn′,a[n′] ,
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we get for the numerator

P
(
ζn′,a[n′],a[n′−1]

= 1, ζn′,a[n′],�′ = 0 ∀ �′ �= a[n′−1]
)

= E

(
P
(
ζn′,a[n′],a[n′−1]

= 1, ζn′,a[n′],�′ = 0 ∀ �′ �= a[n′−1] |ξa[n′]

))

= E

(
ξa[n′],a[n′−1]

pn′−1,a[n′−1]

(1− pn′−1,a[n′−1]
)

∏
�′≥1

(1− pn′−1,�′)
ξa[n′],�′

)
,

= pn′−1,a[n′−1]

∂fa[n′](s)

∂sa[n′−1]

∣∣∣
s=1−pn′−1

,

and for the denominator

P
(∑
�′≥1

ζn′,a[n′],�′ ≥ 1
)
= 1− f (n′)

a[n′]
(0, 0, . . .) = pn′,a[n′] .

Since p0,a[0]
= 1, we have

P(A1 > n,A0|n−1 = a|n−1|A0[n] = a[n]) =
n∏

n′=1

(∂fa[n′](s)

∂sa[n′−1]

∣∣∣
s=1−pn′−1

pn′−1,a[n′−1]

pn′,a[n′]

)
=

1

pn,a[n]

n∏
n′=1

(∂fa[n′](s)

∂sa[n′−1]

∣∣∣
s=1−pn′−1

)
.

Note that for n′ = 1 the evaluation of the derivative is at s = 1− p0 = 0. �

An easy modification of the formula above gives P(A1 = n,A0|n−1 = a|n−1|A0[n] =

a[n]).

Remark 2.1. In terms of applications the joint law of A1 and A0|n−1 is more useful for

reconstructing ancestral trees. Note that the choice of embedding the offspring of each

parent uniformly at random in the tree is not reflected in these formulae at all. This is in

particular evident in (2.6). Moreover, (2.6) can be obtained from (2.7) by summing over
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all the possible values of A0[n′] of types of the 0 ≤ n′ < n generations’ ancestors of the

individual (0, 1) which start with A0[n] = a[n]. In the next section we consider a different

choice of ordering the offspring for a specific offspring distribution, and show consistency

of these two expressions.

A statistical feature which indicates the distribution of types in the ancestral tree are

coalescence times between individuals in the standing population that are of the same

type. Suppose the type of the first individual at generation 0 is A0[0] = �, and define the

sequence i�,0 := 0, i�,1 := min{i′ > 0 : Ai′[0] = �}, . . . , i�,i := min{i′ > i�,i−1 : Ai′[0] =

�}, . . . representing the indices of consecutive individuals of type � from the standing

population.

Definition 2.2. Define the sequence of same-type coalescence times for individuals of

type � by

B�,1 := max{Ai�,1 , . . . , Ai�,2−1}, . . . , B�,i := max{Ai�,i , . . . , Ai�,i+1−1}, . . .

As before, we also have the following result on the law of the same-type coalescent time

B�,1.

Corollary 2.2. For a single type value a[n] ∈ {1, 2, . . .} and a multi-type branching

process Z = (Z(n))n≥0, we have

P(B�,1 > n|A0[n] = a[n],A0[0] = �) = P
(
Z

(n)
� = 1 |Z(n)

� �= 0,Z(0) = ea[n]

)
. (2.8)

Proof. The fact that {B�,1 > n} iff the subtree of the ancestor (−n, a1(n)) of (0, 1) at

generations −n has exactly one descendant of type � after n generations, directly implies
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that

P(B�,1 > n|A0[n] = a[n],A0[0] = �) = P
(
Z

(n)
� = 1 |Z(n)

� �= 0,Z(0) = ea[n]

)
.

�

Using the values of types on the left most infinite spine A0 we can determine the joint

distribution of BA0[0],1 and A0|n−1 as follows.

Proposition 2.2. For a sequence of types a = (a[0],a[1], . . .) ∈ {1, 2, . . .}N0 with a[0] = �,

P(B�,1 > n,A0|n−1 = a|n−1|A0[n] = a[n],A0[0] = �) (2.9)

=
1

p(n,�),a[n−1]

n∏
n′=1

(∂fa[n′](s)

∂sa[n′−1]

∣∣∣
s=1−p(n′−1,�′)

)
,

where 1− p(n′−1,�′) := (1− p(n′−1,�′),1, 1− p(n′−1,�′),2, . . .) = f (n′−1)(ê�′) with ê�′ = 1− e�′,

is the vector of extinction probabilities for lineages with type �′ descendants after n′ − 1

generations.

Proof. Observe that {B�,1 �= 1, . . . , B�,1 �= n} iff all the ancestors (−n′, a1(n
′)) of (0, 1) at

generations −n′, 1 ≤ n′ ≤ n have exactly one descendant in the standing population that

has type �. As before, let a[n′] = A0[n′] denote the type of the ancestor (−n′, a1(n
′)) of

(0, 1) at generation −n′, and note that a[0] = �.

We need to introduce new random variables which will count the number of offspring

with descendants of type � in the standing population. If f (n′−1) = (f
(n′−1)
1 , f

(n′−1)
2 , . . . )

is the probability generating function of the n′ − 1 generation in a multi-type branching

process initiated by individuals of type {1, 2, . . . }, then the probability that a multi-

type process after n′ − 1 generations has no individuals of type � is given by the vector

f (n′−1)(ê�), where ê� := 1 − e�. Let p(n′−1,�) := 1 − f (n′−1)(ê�) denote the probability

of having at least one descendant of type � after n′ − 1 generations, that is, for each
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j′ ∈ {1, 2, . . . }, we have p(n′−1,�),j′ = 1 − f
(n′−1)
j′ (ê�). For all different offspring types

j′ ∈ {1, 2, . . . }, let {ε1(n′,�),j′ , ε
2
(n′,�),j′ , . . . } be independent sequences of Bernoulli variables

with parameters P(εm(n′,�),j′ = 1) = p(n′−1,�),j′ (for m=1,2,. . . ). For an independent offspring

variable ξj with ξj,j′ offspring of type j′ define

ζ(n′,�),j :=
( ξj,1∑

m=1

εm(n′,�),1,

ξj,2∑
m=1

εm(n′,�),2, . . .
)
,

whose j′ coordinate is denoted by ζ(n′,�),j,j′ . Then, ζ(n′,�),j records the number of offspring

(of different types), in the first generation of a multi-type branching process initiated

by an individual of type j, which have at least one descendant of type � after n′ − 1

generations.

Then the law of ζ ′(n′,�),j representing the number of offspring (of different types) at

generation −(n′−1) of a type j ancestor from generation −n′ whose descendants contain

an individual of type � in the standing population, given that there is at least one, is

given by:

ζ ′(n′,�),j
d
:=

(
ζ(n′,�),j

∣∣∑
j′≥1

ζ(n′,�),j,j′ ≥ 1
)
.

The event {B�,1 > n} = {B�,1 �= 1, . . . , B�,1 �= n} can now be expressed in terms of

the newly defined random variables ζ ′(n′,�),a[n′]
, 1 ≤ n′ ≤ n, as

P
(
B�,1 > n,A0|n−1 = a|n−1|A0[n] = a[n],A0[0] = �

)
= P

(
∀1 ≤ n′ ≤ n : ζ ′(n′,�),a[n′],a[n′−1]

= 1, ζ ′(n′,�),a[n′],j′
= 0 ∀j′ �= a[n′−1]

)
=

n∏
n′=1

P
(
ζ ′(n′,�),a[n′],a[n′−1]

= 1, ζ ′(n′,�),a[n′],j′
= 0 ∀j′ �= a[n′−1]

)
,

where the product form follows since, by Lemma 2.1, subtrees of different offspring are
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independent. For each product term we have

P
(
ζ ′(n′,�),a[n′],a[n′−1]

= 1, ζ ′(n′,�),a[n′],j′
= 0 ∀ j′ �= a[n′−1]

)

=
P(ζ(n′,�),a[n′],a[n′−1]

= 1, ζ(n′,�),a[n′],j′ = 0 ∀j′ �= a[n′−1])

P(
∑

j′≥1 ζ(n′,�),j,j′ ≥ 1)
.

A similar calculation to the one in the proof of Proposition 2.1, conditioning on ξa[n′] ,

gives the numerator to be

P(ζ(n′,�),a[n′],a[n′−1]
= 1, ζ(n′,�),a[n′],j′ = 0 ∀ j′ �= a[n′−1])

= E

(
P
(
ζ(n′,�),a[n′],a[n′−1]

= 1, ζ(n′,�),a[n′],j′ = 0 ∀ j′ �= a[n′−1]| ξa[n′]

))

= E

(
ξa[n′],a[n′−1]

p(n′−1,�),a[n′−1]

(1− p(n′−1,�),a[n′−1]
)

∏
j′≥1

(1− p(n′−1,�),j′)
ξa[n′],j′

)

= p(n′−1,�),a[n′−1]

∂fa[n′](s)

∂sa[n′−1]

∣∣∣
s=1−p(n′−1,�)

,

while the denominator is calculated in the same way and equals

P
(∑
�′≥1

ζ(n′,�),a[n′],�′ ≥ 1
)

= 1− E

(∏
�′≥1

(1− p(n′−1,�),�′)
ξa[n′],�′

)
= 1− fa[n′](1− p(n′−1,�)) = 1− f (n′)

a[n′]
(ê�) = p(n′,�),a[n′] .

The cross terms of probabilities of a lineage with descendants of type � cancel, and

P(B�,1 > n,A0|n−1 = a|n−1|A0[n] = a[n],A0[0] = �) =
1

p(n,�),a[n]

n∏
n′=1

∂fa[n′](s)

∂sa[n′−1]

∣∣∣∣
s=1−p(n′−1,�)

.

�
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It might be tempting to provide a formula for the distribution of A2, A3, . . . and

B�,2, B�,3, . . . in a similar vein using the values of the types on the ancestral lineage of the

individuals (0, 2), (0, 3), . . . respectively. The information, analogous to that of types of

individuals on the left most (infinite into the past) spine A0 used in the formulae for A1

and B�,1, which one would need to use for Ai+2 would be the types along the ancestral

lineage of (0, i+ 1). That is, for i ≥ 0 one could define the infinite ancestral lineage A∞
i

of individual (0, i+ 1) as the infinite sequence:

A∞
i := (t(0, ai+1(0)), t(−1, ai+1(1)), t(−2, ai+1(2)), . . .).

Note that the restriction of A∞
i to its first Ai entries equals the sequence Ai called the

ancestral lineage of (0, i + 1), and that A∞
0 = A0. It is easy to see, as a consequence of

Theorem 2.1, that (A∞
i )i≥1 is also a functional of (Di)i≥1 given by:

A∞
i = (Di+1(1)[1],Di+1(2)[1],Di+1(3)[1], . . .).

This follows from the fact that the first 1 ≤ n ≤ Ai entries in this sequence are the same

as in Ai, while for the subsequent n > Ai entries the ancestry of (0, i + 1) is equal to

the ancestry of (0, i) (as their ancestors already coalesced) and we have Di+1(n) = Di(n).

Providing a formula for P(Ai+2 > n|Ai+1[n] = a[n]) for any i ≥ 0 can be done only in

case the branching mechanism is such that in the coalescent point-process all points are

simple (have multiplicities equal to one). This is because, in case of multiple coalescence

points, all ancestral lineages, except for that of (0, 1), in addition to information about

the lineage of individual (0, i) also contains information about the ancestral lineages of

(0, i′), 1 ≤ i′ < i. In other words, the calculation (used in the proofs of the Propositions 2.1

and 2.2) which exploits the equivalence {A1 > n,A0|n−1 = a|n−1} iff {individuals a[n′], 1 ≤
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n′ ≤ n on the ancestral lineage A0 have a single offspring with descendants surviving to

generation 0} is no longer valid in general. This is a clear consequence of the fact that

the process (Ai, i ≥ 0) is itself not Markovian, unless we are in the special case for the

offspring distribution which is of linear-fractional form. In the next section we explore

this special case, and extend the above results for the coalescent times as well as for the

same-type coalescence times.

In case the branching mechanism is such that in the coalescent point-process all points

are simple, the results of Proposition 2.1 can be used to simulate ancestral trees with types

along their lineages. In this case, the same joint law (2.7) applies to each Ai and Ai−1|Ai−1

for i ≥ 1. A modification of formula (2.7) gives P(Ai = n,Ai−1|n−1 = a|n−1|Ai−1[n] =

a[n]). In order to simulate the types along the ancestral tree, one would start by drawing

from this distribution to obtain types along the ancestral lineage of individual (0, 2)

until its MRCA with individual (0, 1). Then, one would draw independently from this

distribution to obtain types along the ancestral lineage of individual (0, 3) until its MRCA

with individual (0, 2), and so on. Notice that, if the value of MRCA for (0, 2) and (0, 1)

drawn is smaller than the MRCA for (0, 3) and (0, 2), then the types on the ancestral

lineage of individual (0, 3) continue below its MRCA with individual (0, 2) and are drawn

along the left most ancestral spine A0 (see the example of i = 3 or i = 5 in Figure

2.2(right)). According to this algorithm one can simulate in a sequential manner the

genealogy of an arbitrary number of individuals in the standing population.

Remark 2.2. The construction of the ancestral tree in case of the most general branching

process is based on the Markovian property of the auxiliary process (Di)i≥1. A simulation

algorithm for ancestral trees in general would require the simulation of the whole process

(Di)i≥1. To initiate this process requires either knowing D1 a priori, or drawing D1 from

η∞,�∞ for some (infinitely old) originating type �∞. One way to draw from this distribution

would be to assume non-extinction and time-reverse the quasi-stationary distribution from
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time 0 for the branching process (Q-process at end of Section 1.1). For the case of a single

type branching process a construction like this was discussed in [14]. The multi-type

extension is straightforward, with the infinitely old originating individual having, in the

ρ ≤ 1 case, the size-biased version of the offspring distribution (a branching distribution

conditioned on never becoming extinct) given by

P̂(Z(1) = z|Z(0) = e�) =
P(Z(1) = z|Z(0) = e�)

ρ

z · v
e� · v

,

where u is the right eigenvector of the mean matrix M obtained under the assumptions

at the end of Section 1.1. Refer to that section (or Seneta [42]) for the existence of

quasi-stationary distributions in the countably many types branching process.

2.2 Special case: Multi-type linear-fractional branch-

ing processes

Many of the complications which arise in calculating the distribution of ancestral trees in

multi-type branching processes simplify a great deal in the special case when the offspring

distribution is of the linear-fractional (LF) type. This type of offspring distribution

leads to a number of particularly nice features involving the memoryless property of

the geometric distribution. The definition of the multi-type linear-fractional offspring

distribution can be found in Section 1.1.1. We next give a series of specific results for the

distribution of the ancestral tree of the standing population, which both illustrate and

extend our general results from the previous Section.
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2.2.1 Coalescent times in linear-fractional ancestral tree

We use the coalescent point-process construction to get simpler results for the distribution

of coalescent times (and same-type coalescent times) for this special class of multi-type

branching processes. For this purpose we make one change in our original construction

pertaining to the embedding of the multi-type tree in the plane. For a general offspring

distribution we made the assumption that the offspring of any parent are embedded in a

left to right order chosen uniformly at random from all possible orderings. For the linear-

fractional offspring distribution we make a particular assumption that the offspring with

distribution given by the vector h· is embedded as the left most individual, followed by

the rest of the offspring according to an arbitrary order.

Proposition 2.3. The coalescence times (Ai)i≥0 in the ancestral tree of a LF(H , g,m)

branching process are independent identically distributed variables with

P(A1 > n) =
n∏

n′=1

1

1 +m−m
∑

�′≥1 g�′h
(n′−1)
�′0

=
1

1 +m(n)
, (2.10)

where h
(n′−1)
�′0 = 1 − h

(n′−1)
�′ 1T, h

(n′−1)
�′ is the �′-th row of the matrix H(n′−1) from (1.1),

h
(0)
�′0 = 0 ∀�′. The law of the coalescent times also satisfies P

(
A1 > n|A0[n] = a[n]

)
=

P(A1 > n).

Proof. The most immediate approach to the proof uses Corollary 2.1 and follows from

the fact that in a multi-type LF branching process, all offspring in the n-th generation

other than the first one (which according to our current convention is the left-most one)

are independent of the type of the parent, and have a multivariate-geometric distribution

with mean m(n) and type distribution given by g(n) (whose formula is given in (1.1)). This

fact was also used in [41] (see Sec 4.1) to establish the formula 1.1 using the jumping

contour representation of the branching process and its nice Markovian structure. Since
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by Corollary 2.1

P(A1 > n|A0[n] = a[n]) = P

(∑
�≥1

Z
(n)
� = 1

∣∣Z(n) �= 0,Z(0) = ea[n]

)
,

by the result of Theorem 1.5 the right-hand side is simply the probability that the geo-

metric variable with mean m(n) is 0, which is equal to 1/(1+m(n)) regardless of the type

of the initial individual Z(0).

In addition to the above approach, we thought it would be instructive to show the

agreement with the formula for the joint law of A1 and A0|n−1 in Proposition 2.1 via a

summation approach. We start from a formula based on (2.7)

P(A1 > n|A0[n] = a[n]) =
∑

a[0],...,a[n−1]

n∏
n′=1

(pn′−1,a[n′−1]

pn′,a[n′]

∂fa[n′](s)

∂sa[n′−1]

∣∣∣
s=1−pn′−1

)
,

in which we perform the summation in a ‘top-down’ order, from possible values for a[0]

down to a[n−1], and observe that since the summations are nested we can write this as

P(A1 > n|A0[n] = a[n]) = c1 · · · cn, where

cn′ ≡ cn′(a[n′]) =
1

pn′,a[n′]

∑
a[n′−1]≥1

pn′−1,a[n′−1]

∂fa[n′](s)

∂sa[n′−1]

∣∣∣
s=1−pn′−1

. (2.11)

It turns out that in the linear fractional case the cn′ are constants which do not depend

on a[n′]. More specifically

cn′(a[n′]) =
1

Un′
,

where Un′ = 1 +m−m
∑

�′≥1 g�′h
(n′−1)
�′0 , so

P(A1 > n) =
n∏

n′=1

1

1 +m−m
∑

�′≥1 g�′h
(n′−1)
�′0

.
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We can rewrite this formula using the parameters defined in (1.1) from Theorem 1.5

according to which

H(n) = Mn− m(n)

1 +m(n)
Mn1Tg(n).

Multiplying by g on the left and by 1T on the right yields gH(n)1T = gMn1T

1+m(n) or∑
�≥1 g�h

(n)
�0 = 1− gMn1T

1+m(n) . Using this equality in the formula for P(A1 > n) we get

P(A1 > n)=
n∏

n′=1

1

1 +m−m
∑

i≥1 gih
(n′−1)
i0

=
n∏

n′=1

1

1 +mgMn′−11T

1+m(n′−1)

=
n∏

n′=1

1 +m(n′−1)

1 +m(n′−1) +mgMn′−11T
=

n∏
n′=1

1 +m(n′−1)

1 +m(n′) =
1

1 +m(n)
,

because m(n′−1) +mgMn′−11T = mg(I +M + · · · +Mn′−2)1T +mgMn′−11T = m(n′),

and m(0) = 0.

�

Proposition 2.4. For any type � ∈ {1, 2, . . . }, the same-type coalescence times (B�,i)i≥0

are independent identically distributed variables with,

P(B�,1 > n|A0[0] = �) =
n∏

n′=1

1

1 +m−m
∑

�′≥1 g�′h̃
(n′−1)
�′0

=
1

1 +m(n)g
(n)
�

, (2.12)

where, for n′ > 1, h̃
(n′−1)
�′0 is given by

h̃
(n′−1)
�′0 = h

(n′−1)
�′0 +

1− h
(n′−1)
�′0 − h

(n′−1)
�′�

1 +m(n′−1)g
(n′−1)
�

,

and h̃
(0)
�′0 = 1 ∀�′ �= �, while h̃

(0)
�0 = 0.

Proof. By Corollary 2.2

P(B�,1 > n|A0[n] = a[n],A0[0] = �) = P(Z
(n)
� = 1 |Z(n)

� �= 0,Z(0) = ea[n]
),
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which is equal to ∂s�f
(n)
a[n]

(ê�)/(1− f
(n)
a[n]

(ê�)), and as a result of Theorem 1.5 and some

simple arithmetic can be shown to be equal to 1/(1 +m(n)g
(n)
� ) regardless of the type of

the initial individual Z(0).

As in the proof of Proposition 2.3 we also show a different approach using (2.9) from

Proposition 2.2, that is

P(B�,1 > n|A0[n] = a[n],A0[0] = �) =
∑

a[0],...,a[n−1]

n∏
n′=1

(p(n′−1,�),a[n′−1]

p(n′,�),a[n′]

∂fa[n′](s)

∂sa[n′−1]

∣∣∣
s=1−p(n′−1,�)

)
.

For each 1 ≤ n′ ≤ n− 1 the sums

c̃n′ ≡ c̃n′(a[n′]) =
1

p(n′,�),a[n′]

∑
a[n′−1]≥1

p(n′−1,�),a[n′−1]

∂fa[n′](s)

∂sa[n′−1]

∣∣∣
s=1−p(n′−1,�)

(2.13)

are independent of the value of a[n′] in the linear fractional case, with

c̃n′ =
1

Ũn′
=

1

1 +m−m
∑

�′≥1 g�′h̃
(n′−1)
�′0

and

h̃
(n′−1)
�′0 = h

(n′−1)
�′0 +

1− h
(n′−1)
�′0 − h

(n′−1)
�′�

1 +m(n′−1)g
(n′−1)
�

,

so P(B�,1 > n|A0[0] = �) =
n∏

n′=1

c̃n′ .

We can rewrite this formula in a similar way as before by noting that the first product

term in (2.12) is equal to 1/(1 +mg�), and using many arithmetic steps established by

the relationship of parameters in (1.1) the rest of the terms for n′ > 1 can be shown to

be equal to

(1 +m(n′−1))(1 +m(n′−1)g
(n′−1)
� )

(1 +m(n′−1))(1 +mgH (n′−1)e�) +m(n′−1)g
(n′−1)
� (1 +m(n′))

=
1 +m(n′−1)g

(n′−1)
�

1 +m(n′)g
(n′)
�

,
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hence

P(B�,1 > n|A0[0] = �) =
1

1 +mg�

n∏
n′=2

1 +m(n′−1)g
(n′−1)
�

1 +m(n′)g
(n′)
�

=
1

1 +m(n)g
(n)
�

.

�

Although the multi-type LF offspring distribution has a seemingly small level of de-

pendence between the offspring and parent type, it still affects the distribution of types in

the ancestral tree. One can also consider a multi-type branching process where offspring

distribution is completely independent of the parent type. In this case the shape of the

tree and the types on the tree can be decoupled, and the distribution of types is only

governed by the frequency of this type in the population.

Consider a special case of a LF distribution whereH := 1Th, for h1T = h1+h2+· · · ≤

1. Then each parent has the same LF(h, g,m) offspring distribution. Further, if we have

no distinction between the first offspring and the rest, then we would have h := (1−h0)g,

for h0 ∈ (0, 1). In this case all parents have the same offspring laws, where their number

of offsprings has a single-type LF(h0,m) distribution with probability generating function

h0+(1−h0)s/(1+m−ms), and given the number of offsprings, the distribution of their

types is multinomial with parameter g. In this case we get the following formulae for the

law of coalescence times and same-type coalescence times.

Corollary 2.3. If the offspring distribution of each parent is independent of the parent’s

type with LF((1− h0)1
Tg, g,m) distribution, then

P(A1 > n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m− h0(1 +m)

m(1 +m)n(1− h0)n − h0(1 +m)
if (1− h0)(1 +m) �= 1,

1− h0

1− h0 + nh0

if (1− h0)(1 +m) = 1,

(2.14)
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and

P(B�,1 > n|A0[0] = �) =
1− P(A1 ≤ n)

1− P(A1 ≤ n)(1− g�)
. (2.15)

Proof. One approach is to use equivalence of offspring laws for different parents. Since

types do not affect the reproduction law, the ancestral tree shape can be decoupled from

the individual types. In other words, we can first construct the branching process using

the single-type LF offspring distribution with parameters (h0,m), and subsequently assign

types to all individuals independently according to probabilities g. As the only factor

affecting the coalescent times of the standing population is the offspring number of each

individual, their law is the same as in the case of the associated single-type LF coalescent

times.

According to Proposition 5.1 from [29] for the single-type LF case, the coalescent

times have distribution (in their notation a �→ h0, b �→ m/(1 + m) and offspring mean

m �→ (1 +m)(1− h0))

P(A1 > n) =
m− h0(1 +m)

m(1 +m)n(1− h0)n − h0(1 +m)
,

if (1 +m)(1− h0) �= 1, while if (1 +m)(1− h0) = 1

P(A1 > n) =
1− h0

1− h0 + nh0

.

To see that this agrees with result (2.10) note that H = (1 − h0)1
Tg, M = H +

mH1Tg implies

M = (1−h0)1
Tg+m(1−h0)1

Tg1Tg = (1−h0)(1+m)1Tg, Mn′
= (1−h0)

n′
(1+m)n

′
1Tg,
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m(n) =mg(I + (1− h0)(1 +m)1Tg + · · ·+ (1− h0)
n−1(1 +m)n−11Tg)1T

=m

n−1∑
n′=0

(1− h0)
n′
(1 +m)n

′
= m

1− (1− h0)
n(1 +m)n

1− (1− h0)(1 +m)
, if (1− h0)(1 +m) �= 1.

On the other hand if (1 − h0)(1 +m) = 1, then Mn′
= M ,m(n) = mn = nh0/(1 − h0).

Using this in (2.10) the formula P(A1 > n) = 1/(1+m(n)) gives the same result as above.

From the result for A1 we can obtain the law of B�,1 using its original definition as the

maximum of all coalescence times until the first next individual in the current population

whose type is �: B�,1 := max{Ai�,1 , . . . , Ai�,2−1}. The only reason why this calculation is

simple is due to the decoupling of the branching tree and the individual types. Since,

given the branching tree, all individuals are assigned types independently according to

probabilities g, the index i�,2 := min{i′ > i�,1 ≡ 1 : Ai′[0] = �} is such that i�,2 − 1 is a

random variable with a shifted geometric distribution with parameter g�. Conditioning

on the value of i�,2 − 1, and using the fact that (Ai)i≥1 is an i.i.d sequence, we get

P(B�,1 ≤ n) = E

(
P
(
max{A1, . . . , Ai�,2−1} ≤ n

∣∣ i�,2 − 1
))

=
∞∑

i′−1=1

P(A1 ≤ n)i
′−1(1− g�)

i′−2g� =
g�P(A1 ≤ n)

1− P(A1 ≤ n)(1− g�)
,

and

P(B�,1 > n) = 1− P(B�,1 ≤ n) =
1− P(A1 ≤ n)

1− P(A1 ≤ n)(1− g�)
.

�

As expected, the distribution of types g has no effect on the law of (Ai)i≥1 and the

shape of the tree, but appears in the distribution of types in the tree as indicated by the

law of (B�,i)i≥1.

We can consider the process of coalescent times (Ai)i≥0 as a simple point-process

A on {1, 2, . . . } × {−1,−2, . . . } with intensity measure νA
[
{i} × {−(n + 1), . . . }

]
=
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P(A1 > n), ∀i ≥ 1. Similarly for each � ∈ {1, 2, . . . }, (B�,i)i≥0 can be regarded as

a simple point-process B� with intensity νB�

[
{i} × {−(n + 1), . . . }

]
= P(B�,1 > n) on

{1, 2, . . . } × {−1,−2, . . . }. Note that for any i ≥ 1, n ≥ 1, (2.15) implies that

νB�

[
{i} × {−1, . . . ,−n}

]
=

νA
[
{i} × {−1, . . . ,−n}

]
g�

νA
[
{i} × {−(n+ 1), . . . }

]
+ νA

[
{i} × {−1, . . . ,−n}

]
g�
,

showing that only a fraction of all coalescent times are candidates for same-type coa-

lescence times for type �. Intuitively, when considering B�,i mark each coalescent time

Ai, Ai+1, . . . with the probability that the next individual in the standing population is

of type �, which is g�. Then, from the filtered view of B�,i, a coalescence time Ai, Ai+1, . . .

either occurs outside the set {1, . . . , n}, or it occurs inside this set and it links to a stand-

ing individual of type �. Note that the intensity measures {νB�
}�∈{1,2,... } do not partition

in full the measure νA, since for any n ≥ 1 such that P(Ai > n) > 0 we have that

∞∑
�=1

νB�

[
{i}×{−1, . . . ,−n}

]
g� <

∞∑
�=1

νA
[
{i} × {−1, . . . ,−n}

]
g� = νA

[
{i} × {−1, . . . ,−n}

]
.

This is a consequence of the fact that not all coalescence times are in fact same-type

coalescence times for some � (for example, in Figure 2.2 the coalescence time A4 = 1 of

(0, 4) and (0, 5) is neither a same-type 1 nor a a same-type 2 coalescence time).

2.2.2 Comparison of ancestral trees in two-type models

We next give an example of using the same-type coalescent times to investigate the

effect of differences in offspring distribution on the distribution of types in the ancestral

trees they produce. One question that motivated our work is the effect of different

diversification rates for different types of individuals (phenotypes). We translate these

questions into a discrete time defining an asymmetrical offspring distribution law.

Specifically, in a population with only two types of individuals, if the transition rates
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of one type to the other are relatively high, while the other type never transitions into the

first, this will be reflected in the distribution of types along the tree. In a discrete time

process this is translated in the probability of a parent of the first type giving birth to

individuals of the second type and vice versa. We consider this difference in the context

of a two-type LF offspring distribution. In order to investigate only the effect on the

distribution of types, we will make the distribution of the shape of the tree the same in

both cases.

We consider the following two LF offspring distributions on k = 2 types of individuals.

Let the parameters g = (g, 1− g), g ∈ [0, 1/2], m > 0 and h1 = 1− h0, h0 ∈ [0, 1] be the

same in both distributions, and for p ∈ (0, 1) let

Hs = h1

⎛⎜⎝ p 1− p

1− p p

⎞⎟⎠ , Ha = h1

⎛⎜⎝ p 1− p

0 1

⎞⎟⎠ ,

be, respectively, associated with the symmetrical and the asymmetrical offspring distri-

bution. In the symmetrical case parents of either type produce the first offspring of their

own type and of the other type. In the asymmetrical case only a parent of type 1 will do

that, while a parent of type 2 can only produce the first offspring of its own type. Since

the number of offspring of each parent depends only on h0 and m, the distribution of the

ancestral tree with types erased will be the same in both cases. However, the distribution

of the two types 1 and 2 are different, as can be seen in the following result.

Remark 2.3. Note that we can assume without loss of generality that g ∈ [0, 1/2], since

in case g ∈ [1/2, 1] we can simply reverse the notation of the two types. For p = 1 there

is no asymmetry, nor are there offspring of different type than the parent - individuals

in the whole tree are all of the same type. For (g, p) = (1/2, 1/2) the symmetric case is

special, and the offspring distribution is independent of the type of the parent, as discussed

in Corollary 2.3.
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Proposition 2.5. The distributions of coalescence times (Ai)i≥1 are the same in both

cases. The distribution of same-type coalescence times (B1,i)i≥1 and (B2,i)i≥1 satisfy the

following stochastic dominance relations: ∀p ∈ [0, 1],

Pa(B1,i > n |A0[0] = 1) ≥ Ps(B1,i > n |A0[0] = 1),

and

Pa(B2,i > n |A0[0] = 2) ≤ Ps(B2,i > n |A0[0] = 2).

Also ∀p ≥ 1/2 the two above inequalities are related by:

Ps(B1,i > n |A0[0] = 1) ≥ Ps(B2,i > n |A0[0] = 2).

Proof. Formulae (1.1) imply (after much arithmetic using Maple) that for x ∈ {a, s}

m(n) = m(n)
x = m

n−1∑
n′=0

hn′
1 (m+ 1)n

′
=

m(hn
1 (1 +m)n − 1)

h1(1 +m)− 1
,

g(n)
s =

((
g − 1

2

)
G(2p− 1) +

1

2
,−

(
g − 1

2

)
G(2p− 1) +

1

2

)
, g(n)

a = (gG(p),−gG(p) + 1),

where G is a rather complicated polynomial

G(x) =
hn−1
1 (h1(1 +m)− 1)

hn
1 (1 +m)n − 1

[ n−2∑
n′=0

(h1m+ 1

hn−n′−1
1

+
n−n′−2∑

i=1

(1 +m)ihi−n+n′+2
1

)
xn′

+ xn−1
]
,

which is increasing on [0, 1] and satisfies G(0) = 0, G(1) = 1. From (2.10) we have the

same formulae for the distribution of coalescent times in the two cases for x ∈ {a, s}:

Px(A1 > n) =
(
1 +m(n)

)−1
,
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and from (2.12) we get the following formulae for same-type coalescent times in the two

cases:

Px(B�,i > n |A0[0] = �) =
(
1 +m(n)g

(n)
x�

)−1
, for � ∈ {1,2},

where the two coordinates of vectors g
(n)
x = (g

(n)
x1 , g

(n)
x2 ) for x ∈ {a, s} are given above.

We next prove that for g ≤ 1/2 we have

1 +m(n)g
(n)
a1 ≤ 1 +m(n)g

(n)
s1 ⇔ g

(n)
a1 ≤ g

(n)
s1 , 1 +m(n)g

(n)
s2 ≤ 1 +m(n)g

(n)
a2 ⇔ g

(n)
s2 ≤ g

(n)
a2 .

Both of these inequalities are equivalent to

gG(p) +
(1
2
− g

)
G(2p− 1)− 1

2
≤ 0,

which holds since all multiplying coefficients of the polynomial G(x) are nonnegative, so

G is increasing and both G(p), G(2p− 1) ≤ G(1) = 1.

For the last comparison we need to show that for g ≤ 1/2 ≤ p

1 +m(n)g
(n)
s1 ≤ 1 +m(n)g

(n)
s2 ⇔ g

(n)
s1 ≤ g

(n)
s2 ,

which is equivalent to

2
(1
2
− g

)
G(2p− 1) ≥ 0,

and holds as long as p ≥ 1/2 so that the polynomial G(x) is evaluated on x ≥ 0. �

We see that the consequence of asymmetry (irrespective of the value of p) is that

the same-type coalescence times are typically shorter for type 2 than in the symmetrical

case, while they are longer for type 1. This intuitively make sense, since subtrees of a

type 2 can only have a first offspring of type 2 and the probability of having subsequent
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offsprings of type 1 is less than 1/2 (g ≤ 1/2).

We can also see the effect that the ‘strength’ p of not transitioning to a different type

plays in the symmetric case. When p ≥ 1/2 having the same type offspring as parent

is more likely. In the symmetric case g ≤ 1/2 further implies that type 1 is overall less

frequent than type 2 in the tree. Hence, one would expect that the same-type coalescence

times are typically going to be longer for type 1 than for type 2.
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Chapter 3

Distribution of k-type cherries

The contents of this chapter are part of ongoing research, and are likely to be expanded

before the final submission of this thesis. We start the chapter by presenting an extension

of some results by McKenzie & Steel [34]. We extend the concept of Yule trees (Section

(1.2.3)) to the multi-type setting. We find exact and asymptotic expressions for the mean

number of cherries in neutral two-type trees under a natural classification by types. To

obtain asymptotic expressions we use an extended Pólya urn representation which implies

that this distribution converges to a multi-dimensional normal with certain parameters.

The main difficulty in using Pólya urns for more general settings is that it is often not

possible to obtain a usable expression for the eigenvalues and eigenvectors of the model’s

matrix. Thus in order to obtain more general results for k-type Yule trees, we use

a continuous model in which the discrete Yule model is embedded. This approach is

presented at the end of this chapter (Section 3.2).
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3.1 Distribution of two-type cherries in neutral two-

type binary trees

We study the distribution of the number of cherries of different types in a neutral two-type

Yule tree. This is a tree generated by the Yule process as described in Section 1.2.3, with

nodes whose types (either 1 or 2) are chosen on every iteration with a distribution which

depends on the parent type. More formally, the process starts with a single node of fixed

or random type 1 or 2. This node is assumed to be a leaf. At each step, a leaf is chosen

uniformly at random. If this leaf is of type i, then two leaves are appended to it. These

two leaves are assigned types {j1, j2} ⊆ {1, 2} with probability qj1j2i (j1 ≤ j2).

In this and other sections we may use the word time or generation to refer to a given

step in the Yule model. We may also refer to the leaves at time n as individuals alive at

time n, and a node’s children as its offspring. We assume that two-type Yule trees start

at time 1 with one individual, so that the number of individuals at time n is equal to

n. We may also disregard the concept of time and refer to the n-th iteration of the Yule

model as a Yule tree on n leaves.

We are interested in finding means and variances of a few statistics for neutral two-

type Yule trees. In particular the number Ni(n) of type-i individuals at time n and the

number of leaves of each type ij1j2, where j1 ≤ j2 are the types of the cherry’s leaves

and i is the type of their common parent. Figure 3.1 shows all 6 types of cherries in a

two-type tree, as well as the 4 types of pendant edges, which we define as leaves which

are not part of a cherry.
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Figure 3.1: Two-type cherries and pendant edges. Individuals of type 1 are denoted by a

blank circle, and individuals of type 2 are denoted by a full circle. There are 6 different

types of cherry, namely (a) (type 111), (b) (type 112), (c) (type 122), (d) (type 211), (e)

(type 212) and (f) (type 222), and there are 4 different types of pendant edges, namely

(g) (type 11), (h) (type 12), (i) (type 21) and (j) (type 22).

Figure 3.2: Example of a two-type tree. A two-type tree on five leaves with two cherries

of types 211 and 212, and one pendant edge of type 22.

We obtain explicit formulae for the means and variances of these random variables

under certain conditions, and then we provide some results on their asymptotic behaviour

using Pólya urn models, under the condition that qiii �= 1 for all i ∈ {1, 2}.
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3.1.1 Probability distribution of two-type cherries

To obtain most of the results that follow we have performed calculations involving gener-

ating functions. In some cases we have used the algebra system Maple to aid us in these

calculations. Most of these results have also been verified for known particular cases, or

matched against results obtained through different methods.

Proposition 3.1. Let νn denote the mean number of leaves of type 1 on a random neutral

two-type binary tree on n leaves. Assume the Yule distribution with parameters qj1j2i

(i, j1, j2 ∈ {1, 2}) satisfying c1− c2 /∈ {−2,−1, 2} for c1 := 2q111 + q121 and c2 := 2q112 + q122 .

Then for n ≥ 2;

νn =
c2n

2− c1 + c2
− (2c2 + ν2c1 − ν2c2 − 2ν2)Γ(n− 1 + c1 − c2)

(2− c1 + c2)Γ(c1 − c2 + 1)Γ(n)
,

where ν2 =

⎧⎪⎨⎪⎩ 2q111 + q121 if root type is 1,

2q112 + q122 if root type is 2,
and Γ(n) represents the classical gamma

function of n.

Proof. The following recurrence is a direct result of the definition of a neutral two-type

binary tree:

P(N1(n) = n1) =

(
n1q

12
1

n− 1
+

(n− n1 − 1)q222
n− 1

)
P(N1(n− 1) = n1)

+

(
(n1 − 1)q111

n− 1
+

(n− n1)q
12
2

n− 1

)
P(N1(n− 1) = n1 − 1)

+

(
(n− n1 + 1)q112

n− 1

)
P(N1(n− 1) = n1 − 2)

+

(
(n1 + 1)q221

n− 1

)
P(N1(n− 1) = n1 + 1).

This recurrence yields a differential equation on the generating functions:
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Gn(x) =
∑
i≥0

P(N1(n) = n1)x
n1 .

From this differential equation we obtain a recurrence for the mean νn which yields

the claimed result. �

Remark 3.1. From Proposition 3.1 above we immediately obtain the mean number of

leaves of type 2 simply by swapping types 1 and 2 on each index of the qj1j2i . The conditions

c1 − c2 �= 2 and c1 − c2 �= −2 rule out some trivial cases such as q111 = q222 = 1 and

q112 = q221 = 1. Observe also that c1 − c2 = 2(q111 + q222 ) + (q121 + q122 )− 2 remains invariant

upon swapping types 1 and 2, and so the condition to obtain each mean is the same for

both types.

Let us denote by Kj1j2
i (n) (j1 ≤ j2) the number of cherries of type ij1j2 (with parent

of type i and children of types j1, j2) in a neutral two-type binary tree at generation n.

We study these quantities for i = 1 (as any result for i = 2 is analogous) using their

bivariate probability generating function (pgf) with the number of leaves of type 1:

F 1j1j2
n (x, y) =

∑
n1≥0,l≥0

P(N1(n) = n1, K
j1j2
1 (n) = l)xn1yl.

Proposition 3.2. Let μ1,n, μ2,n, μ3,n be the mean number of cherries of type 111, 112, 122,

respectively, for a neutral two-type binary tree on n leaves. Under the Yule distribution

with the same conditions of Proposition 3.1, for n ≥ 3:

μ1,n =
3(2− c1 + c2)(2μ1,3 − q111 ν2) + n(n− 1)(n− 2)q111 c2

3(2− c1 + c2)(n− 1)(n− 2)
− q111 Cn,

μ2,n =
3(2− c1 + c2)(2μ2,3 − q121 ν2) + n(n− 1)(n− 2)q121 c2

3(2− c1 + c2)(n− 1)(n− 2)
− q121 Cn,

μ3,n =
3(2− c1 + c2)(2μ3,3 − q221 ν2) + n(n− 1)(n− 2)q221 c2

3(2− c1 + c2)(n− 1)(n− 2)
− q221 Cn,
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where ν2, c1, c2 are as in Proposition 3.1 and

Cn :=
(2c2 + ν2c1 − ν2c2 − 2ν2)Γ(n− 1 + c1 − c2)

(2− c1 + c2)Γ(c1 − c2 + 2)Γ(n)
,

μ1,3 =

⎧⎪⎨⎪⎩ (q111 )2 + q111 q121 /2 if root type is 1

q111 q112 + q111 q122 /2 if root type is 2
, μ2,3 =

⎧⎪⎨⎪⎩ (q121 )2/2 + q111 q121 if root type is 1

q112 q121 + q122 q121 /2 if root type is 2
,

μ3,3 =

⎧⎪⎨⎪⎩ q111 q221 + q121 q221 /2 if root type is 1

q122 q221 /2 + q112 q221 if root type is 2
.

Proof. For simplicity denote

f ij1j2
n (n1, l) := P(N1(n) = n1, K

j1j2
i (n) = l).

The formulae claimed are obtained by using the recurrences below to derive recurrences

for the generating functions F ij1j2
n (x, y). For cherries of type 111 we have:

f 111
n (n1, l) =

(
2lq111
n− 1

+
(n− n1)q

12
2

n− 1

)
f 111
n−1(n1 − 1, l)

+

(
(n1 − 2l)q121

n− 1
+

(n− n1 − 1)q222
n− 1

)
f 111
n−1(n1, l)

+

(
(n− n1 + 1)q112

n− 1

)
f 111
n−1(n1 − 2, l)

+

(
(n1 + 1− 2l)q221

n− 1

)
f 111
n−1(n1 + 1, l)

+

(
(n1 − 1− 2(l − 1))q111

n− 1

)
f 111
n−1(n1 − 1, l − 1)

+

(
2(l + 1)q221

n− 1

)
f 111
n−1(n1 + 1, l + 1)

+

(
2(l + 1)q121

n− 1

)
f 111
n−1(n1, l + 1).
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Similarly, for cherries of type 112:

f 112
n (n1, l) =

(
lq121
n− 1

+
(n− n1 − l − 1)q222

n− 1

)
f 112
n−1(n1, l)

+

(
(n1 − l − 1)q111

n− 1
+

(n− n1 − l)q122
n− 1

)
f 112
n−1(n1 − 1, l)

+

(
(n− n1 − l + 1)q112

n− 1

)
f 112
n−1(n1 − 2, l)

+

(
(l + 1)q112
n− 1

)
f 112
n−1(n1 − 2, l + 1)

+

(
(l + 1)q122
n− 1

+
(l + 1)q111
n− 1

)
f 112
n−1(n1 − 1, l + 1)

+

(
(l + 1)q222
n− 1

)
f 112
n−1(n1, l + 1)

+

(
(n1 − l + 1)q121

n− 1

)
f 112
n−1(n1, l − 1)

+

(
(n1 − l + 1)q221

n− 1

)
f 112
n−1(n1 + 1, l)

+

(
(l + 1)q221
n− 1

)
f 112
n−1(n1 + 1, l + 1).

And for cherries of type 122:

f 122
n (n1, l) =

(
(n− n1 − 2l)q122

n− 1
+

(n1 − 1)q111
n− 1

)
f 122
n−1(n1 − 1, l)

+

(
(n− n1 − 2l − 1)q222

n− 1
+

n1q
12
1

n− 1

)
f 122
n−1(n1, l)

+

(
2(l + 1)q112

n− 1

)
f 122
n−1(n1 − 2, l + 1)

+

(
2(l + 1)q122

n− 1

)
f 122
n−1(n1 − 1, l + 1)

+

(
2(l + 1)q222

n− 1

)
f 122
n−1(n1, l + 1)

+

(
(n1 + 1)q221

n− 1

)
f 122
n−1(n1 + 1, l − 1)

+

(
(n− n1 − 2l + 1)q112

n− 1

)
f 122
n−1(n1 − 2, l).
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All these recurrences can be written in terms of the corresponding bivariate pgfs by

summing over n1 and l. Differentiating these recurrences and evaluating at x = y =

1 yields recurrences for the means μi,n, which may be solved to obtained the desired

expressions. �

Remark 3.2. Notice that, as expected, the sum of all the means from Proposition 3.2,

together with the ones for parents of type 2 (which are obtained by swapping types 1 and

2 on each qj1j2i ) add up to n/3, the mean number of cherries in a single-type Yule model

(see Theorem 1.7).

Particular cases for the probabilities qj1j2i are often useful in applications. The follow-

ing corollary of Proposition 3.2 lists the means for some important particular cases.

Corollary 3.1. Consider a neutral two-type binary tree under the conditions of Propo-

sition 3.2 above. Some particular values for the means μi, n (i = 1, 2, 3) are given by:

Cases Mean

|
|Extreme #1: q111 = 1, q121 = q221 = 0 μ1,n =

n

3
, μ2,b = μ3,n = 0.

|
|Extreme #2: q111 = q112 = 1 μ1,n =

n

3
, μ2,n = μ3,n = 0.

|
|Extreme #3: q121 = q122 = 1 μ2,n =

n

6
, μ1,n = μ3,n = 0.

|
|Neutral: q111 = q112 , q121 = q122 , q221 = q222 μ1,n =

nq111 c1
6

, μ2,n =
nq121 c1

6
, μ3,n =

nq221 c1
6

.

3.1.2 Asymptotics on two-type cherries

More complicated calculations yield formulae for the variances of the number of cherries

of each type. This is achieved by taking the second derivatives of the recurrences for the

pgfs F 111
n (x, y), F 112

n (x, y) and F 122
n (x, y), evaluating them at x = y = 1, and solving the
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resulting system of recurrences. We use Maple to obtain these formulae, and while they

turn out to be quite long and cluttered, a particularly interesting result is their order

with respect to n.

Proposition 3.3. Let σ2
1,n, σ

2
2,n, σ

2
3,n be the variance for the number of cherries of type

111, 112, 122, respectively, for a two-type rooted binary tree on n leaves. Assume that

c1 − c2 /∈ {3/2, 1,−1, 2,−2, 0}, where c1, c2 are as in Proposition 3.1. Under the Yule

distribution with the conditions of Proposition 3.1, for n ≥ 5, each of the variances

σ2
1,n, σ

2
2,n, σ

2
3,n is the sum of three terms with orders, given by

σ2
1,n ∼ O(n) + O (nc1−c2−1) + O (n2(c1−c2−1)),

σ2
2,n ∼ O(n) + O (nc1−c2−1) + O (n2(c1−c2−1)),

σ2
3,n ∼ O(n) + O (nc1−c2−1) + O (n2(c1−c2−1)).

Remark 3.3. Recall that the conditions c1 − c2 �= 2 and c1 − c2 �= −2 rule out some

trivial cases such as q111 = q222 = 1 and q112 = q221 = 1.

Proposition 3.4. Some particular values for the variances of Proposition 3.3 are given

by:
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Cases Variance

|
|Extreme case 1: q111 = 1, q121 = q221 = 0 σ2

n,1 =
2n

45
, σ2

n,2 = σ2
n,3 = 0.

|
|Extreme case 2: q111 = q112 = 1 σ2

n,1 =
2n

45
, σ2

n,2 = σ2
n,3 = 0.

|
|Extreme case 3: q121 = q122 = 1 σ2

n,2 =
7n

90
, σ2

n,1 = σ2
n,3 = 0.

|
|Neutral case: q111 = q112 , q121 = q122 , q221 = q222 σ2

n,1 =
nq111 (6(q111 )2 + 15c1 − 8q111 c21)

90
,

σ2
n,2 =

nq121 (6q111 q121 + 15c1 − 8q121 c21)

90
,

σ2
n,3 =

nq221 (6q111 q221 + 15c1 − 8q221 c21)

90
,

Notice that, as one would expect, the mean and variance in the first two cases coincide

with the mean and variance of (single-type) Yule model in McKenzie & Steel [34]. Anal-

ogous results are obtained for cherries of types 211, 212 and 222, simply by exchanging

indices 1 and 2 in the corresponding formulae.

3.1.3 Pólya urn representation

The Yule process on neutral two-type binary trees can be viewed as a Pólya model (Section

1.3). In this model the balls are all the cherries and pendant edges of the graph at time

n. There are thus 10 types of balls, as shown in Figure 3.1. The types corresponding

to cherries have weight ai = 2, and those corresponding to pendant edges have weight

ai = 1. This is because it is twice as likely to choose a cherry than a pendant edge when

a leaf is picked uniformly at random. The generating 10× 10 matrix A of this Pólya urn
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process (see Section 1.3) is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2(q121 + q221 ) q111 0 0 q111 2q111 q111 0 0 q111

2q121 −(2− q121 ) 0 0 q121 2q121 q121 0 0 q121

2q221 q221 −2 0 q221 2q221 q221 0 0 q221

0 q222 2q222 −2(q112 + q122 ) q222 0 0 q222 q222 0

0 q122 2q122 2q122 −(2− q122 ) 0 0 q122 q122 0

0 q112 2q112 2q112 q112 −2 0 q112 q112 0

2 1 0 0 0 0 −1 0 0 0

0 1 2 0 0 0 0 −1 0 0

0 0 0 2 1 0 0 0 −1 0

0 0 0 0 1 2 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Here the 10 ball types have been ordered as follows: 111, 112, 122, 222, 212, 211,

11, 12, 22, 21. In this process, the entries of the vector Xn count the number of cher-

ries and pendant edges of each of these types in a neutral two-type binary tree on n leaves.

Using Maple we have obtained the eigenvalues of A, namely λ1 = 1, λ2 = c1−c2−1 =

2q111 + q121 − 2q112 − q122 − 1 ≤ λ1, λ3 = λ4 = −1 and λ5 = · · · = λ10 = −2. The maximum
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real eigenvalue is λ1 = 1, whose normalized right and left eigenvectors are:

v1 =
1

3(2− c1 + c2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q111 c2

q121 c2

q221 c2

q222 (2− c1)

q122 (2− c1)

q112 (2− c1)

c1c2/2

(2− c1)c2/2

(2− c1)(2− c2)/2

(2− c1)c2/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

2

2

2

2

2

1

1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Also, λ2 < 1 is a simple eigenvalue. Its normalized right and left eigenvectors are

given by:

v2 =
c2

(2− c1 + c2)(c2 − c1 − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q111

q121

q221

q222

q122

q112

c1/(c1 − c2)

(2− c1)/(c1 − c2)

−(2− c1)/(c1 − c2)

c2/(c1 − c2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u2 =
1

c2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2(2− c1)

c1 + c2 − 2

2

2

c1 + c2 − 2

−2(2− c1)

c1 − 2

1

1

c1 − 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If we assume that qiii �= 1 for i, j1, j2 ∈ {1, 2}, then it is possible to eventually have
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any type ij1j2 of cherry with qj1j2i �= 0 or pendant edge ij with qji �= 0, starting from any

other such type. Hence under this assumption, conditions (α1)− (α5) of Section 1.3 are

satisfied, which allows us to apply Theorems 1.8 and 1.9 to obtain the following results.

Corollary 3.2. Let Xn be the Pólya urn model corresponding to a neutral two-type binary

tree with generating probabilities qj1j2i (i, j1, j2 ∈ {1, 2}) such that qiii �= 1. That is, Xn is

a 10-dimensional random vector whose entries count the number of cherries and pendant

edges of types 111, 112, 122, 222, 212, 211, 11, 12, 22, 21 in a neutral two-type binary

tree on n leaves. Then

Xn

n
→ v1 =

1

3(2− c1 + c2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q111 c2

q121 c2

q221 c2

q112 (2− c1)

q122 (2− c1)

q222 (2− c1)

(c1c2)/2

(2− c1)c2/2

(2− c1)(2− c2)/2

(2− c1)c2/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a.s as n → ∞.

In particular

lim
n→∞

Xn,i

n
= lim

n→∞

μi,n

n
for i = 1, 2, 3,

where the μn,i are as in Proposition 3.2.

Remark 3.4. Notice that if the entries v1,1, v1,2, v1,3, . . . , v1,10 of v1 are known, then we
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can recover all probabilities qjli (i, j, l ∈ {1, 2}, j ≤ l). Indeed

q111 =
v1,1

v1,1 + v1,2 + v1,3
, q121 =

v1,2
v1,1 + v1,2 + v1,3

, q221 =
v1,3

v1,1 + v1,2 + v1,3
,

q222 =
v1,4

v1,4 + v1,5 + v1,6
, q121 =

v1,5
v1,4 + v1,5 + v1,6

, q221 =
v1,6

v1,4 + v1,5 + v1,6
.

The denominators above are non-zero, since c2 = 0 would imply q222 = 1, and c1 = 2

would imply q111 = 1.

Corollary 3.3. Let Xn be the Pólya urn process from Corollary 3.3 above. Suppose that

c1 − c2 = 3/2. Then as n → ∞

Xn − nv1

n ln(n)
→ N(0,Σ) in distribution,

where the covariance matrix is given by

Σ = C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(q111 )2 q111 q121 q111 q221 −q111 q222 −q111 q122 −q111 q112 ∗ ∗ ∗ ∗

� (q121 )2 q121 q221 −q121 q222 −q121 q122 −q121 q112 ∗ ∗ ∗ ∗

� � (q221 )2 −q221 q222 −q221 q122 −q121 q112 ∗ ∗ ∗ ∗

� � � (q222 )2 q222 q122 q222 q112 ∗ ∗ ∗ ∗

� � � � (q122 )2 q122 q112 ∗ ∗ ∗ ∗

� � � � � (q112 )2 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where

C := − 8

25
(9 + 12(q111 )2 + 2q112 q121 + 4q111 q112 + 4(q121 )2 + 14q111 q121 − 4q112 − 12q121 − 21q111 )

The entries ∗ represent the covariances between the number of cherries and the number

of pendant edges, which we have purposefully omitted, and the entries marked with a �

are omitted because of the symmetry of the covariance matrix.

Example 3.1. In Corollary 3.3, we can take for example q121 +q122 = 1/2 and q112 = q221 = 0

and observe that indeed c1 − c2 = 3/2.

Corollary 3.4. Let Xn be the Pólya urn process from Corollary 3.3 above. Suppose that

c1 − c2 < 3/2. We have as n → ∞

Xn − nv1√
n

→ N(0,Σ) in distribution,

for a covariance matrix Σ with constant entries.

The entries of the covariance matrix of corollary 3.4 above have been calculated ex-

plicitly using Maple.

Remark 3.5. Observe that this result is consistent with Proposition 3.3, since when

(c1 − c2) < 3/2, we have (c1 − c2 − 1) < 1/2 and 2(c1 − c2 − 1) < 1. So the orders of the

variances are equal to n.

Remark 3.6. Notice that of all the particular cases considered in Corollary 3.1 and

Proposition 3.4, only the neutral case could satisfy qj1j2i > 0 for all i, j1, j2. In the neutral

case c1 = c2, and so Corollary 3.4 holds.
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3.1.4 Robust solvability of the reconstruction problem for neu-

tral multi-type Yule trees

In this section we use the results of Janson & Mossel [21] to study the solvability of

the neutral multi-type Yule tree under the condition that types of siblings are indepen-

dent amongst each other. The concept of solvability means being able to obtain some

information about the root type of the tree, from the types of its tips (leaves).

Recall that in the neutral k-type Yule model we start with a single node (the root)

of type in {1, . . . , k}, and on each step, a leaf which is chosen uniformly at random, has

two children of types j1 ≤ j2 with probability qj1j2i . This process continues until the tree

has n leaves. Notice that this construction is equivalent to building a single type Yule

tree on n leaves, and then colouring (or propagating the types of) the nodes successively,

where qj1j2i is the probability that the children of a node of type i are j1 and j2 for

i, j1, j2 ∈ {1, 2, . . . , k}. A particular model of propagation appears when the type of each

child is chosen independently (from its siblings) according to a k×k stochastic transition

matrix S = (sij)1≤i,j≤k corresponding to an ergodic (irreducible and positive-recurrent)

Markov chain. More precisely, sij is the conditional probability that a node is of type j,

given that its parent is of type i. The relations below follow;

qj1j2i =

⎧⎪⎨⎪⎩ 2sij1sij2 , j1 < j2.

(sij1)
2, j1 = j2.

Janson & Mossel [21] study the solvability of general (not necessarily binary) trees

under this propagation rule. More specifically they study robust solvability, which con-

siders the leaves of the tree under certain random noise as we explain next. Let T be a

finite rooted binary tree with n leaves. Let αT� denote the probability distribution of the

types of the nodes of T under the propagation rule above, conditioned on the root being
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of type � ∈ {1, . . . , k}. Let N = (Nij) 1≤i≤k
1≤j≤k′

be a k × k′ stochastic matrix for some k′.

Suppose that every tip of T is “perturbed” using N , i.e. with probability Nij, a node of

type i ∈ {1, . . . , k} becomes of type j ∈ {1, . . . , k′}. Let αT� [N ] denote the probability

distribution of the node types in the tree T under this noise. We are interested in the

following cases for N :

• For n1 ≥ 0, set N = Sn1 , and write αT� [n1] = αT� [S
n1 ].

• Given a distribution π on {1, 2, . . . , k}, and a real number ε ∈ [0, 1], consider

Nij = (1− ε)δi=j + επj. In this case we write αT� [π, ε] = αT� [N ].

• Given 0 ≤ ε ≤ 1, let N be the k × (k + 1) matrix with

Nij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− ε, i = j.

ε, j = k + 1.

0, else.

In this case we write αT� [ε] = αT� [N ].

Denote by DV the total variation distance between two distributions α and α′ defined

on the same space Ω,

DV (α, α
′) =

1

2

∑
ω∈Ω

|α(ω)− α′(ω)|.

The original formulation of the following theorem involves graph theoretical notions and

general infinite trees. Here we write in an equivalent specialized form in terms of binary

trees.

Theorem 3.1. (Janson & Mossel [21]) Let S be a stochastic matrix of an ergodic Markov

chain such that 2|λ2|2 > 1, where λ2 is the eigenvalue of S having the second largest real

part. Recall that this matrix defines distributions αTi on the tips of each binary tree T

conditioned on the root being of type i = 1, . . . , k.
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• For each n1 ≥ 0, there exist i, j ∈ {1, 2, . . . , k} so that

inf
T

DV (α
T
i [n1], α

T
j [n1]) > 0,

where the inf is over all finite rooted binary trees.

• For each nondegenerate distribution π, and each ε ∈ [0, 1), there exist types i, j ∈

{1, 2, . . . , k} so that

inf
T

DV (α
T
i [π, ε], α

T
j [π, ε]) > 0.

• For each ε ∈ [0, 1), there exist i, j ∈ {1, 2, . . . , k} so that

inf
T

DV (α
T
i [ε], α

T
j [ε]) > 0.

This theorem means that, depending on the value of the second eigenvalue of S, the

distribution of leave types on a neutral multi-type Yule tree, as it grows to infinity, with

a propagation rule as above, may provide some information on the type of the root.

Remark 3.7. In the two type case, the condition 2|λ2|2 > 1 simply becomes 2(s11+ s22−

1)2 > 1. Furthermore, if the rates s11, s22 are unknown, but the asymptotic proportion

of cherries and pendant edges are known, this condition may be written in terms of these

asymptotic statistics. Using the formulae and notation of Corollary 3.2 and Remark 3.4,

we obtain the following result for the two-type case.

Corollary 3.5. If 2
(√

v1,1/(v1,1 + v1,2 + v1,3) +
√

v1,4/(v1,4 + v1,5 + v1,6)− 1
)2

> 1 in a

particular two-type Yule model, then the results of Theorem 3.1 hold.

The previous Corollary suggests that in the two-type scenario the asymptotic propor-

tion of the number of cherries and pendant edges helps not only in getting information
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about the transition probabilities of the process, but also in the reconstruction of the

root type.

3.2 Distribution of k-type cherries in multi-type Yule

trees

We would like to explore Yule trees where besides the splitting probabilities qj1j2i for

i, j1, j2 ∈ {1, 2, . . . , k}, it is possible for an individual of type i to mutate to a different

type j with probability qji for i, j ∈ {1, 2, . . . , k}, i �= j. In this setting we have for all

i ∈ {1, . . . , k} ∑
j1≤j2

qj1j2i +
∑
j 	=i

qji = 1.

These mutations appear naturally when considering the ancestral tree of a multi-type

birth-death process, that is, the tree resulting from removing all non-surviving progeny

in a birth-death process started at time 0 conditioned on having survived to the present

time T (See Figure 3.3, far right). If an individual dies off after having produced an

offspring of a different type, and this offspring has surviving progeny at time T , then this

may be viewed as the individual having mutated to a different type in the ancestral tree.

The first part of this section is devoted to deriving some properties of these ancestral

trees, as a way of highlighting the motivation for studying processes involving mutations.
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0

t

T

Figure 3.3: Sample trees of birth-death process. From left to right: A sample tree of

a two-type birth-death process. A sample tree of a birth-death process conditioned on

having survived to the present time T . The corresponding ancestral tree.

Consider a constant-rate multi-type birth-death process that is surviving at the present

time T > 0, where b̃iji is the constant rate at which an individual of type i has an offspring

of type j. Also, let

b̃i =
∑
j≥i

b̃iji ,

denote the birth rate of a type-i individual and d̃i its death rate. Thus the probability

that a particular offspring of a type-i individual is of type j is given by;

piji =
b̃iji
b̃i
.

It turns out, as we show next, that the ancestral tree of this birth-death process is

a pure birth process with mutations, whose splitting rates q̃iji,t and mutation rates q̃ji,t

are time-dependent. These rates may be calculated in terms of the rates b̃iji and of the

extinction probabilities p0ei(t, T ) at time T of a birth-death process started at time t by

a single particle of type i.
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We start by proving the following lemma;

Lemma 3.1. Let Yt = (Y1(t), . . . , Yk(t)) denote a continuous-time multi-type birth-death

process starting at time 0 and surviving at the present time T . Its ancestral process

Wt = (W1(t), . . . ,Wk(t)) is also a Markov process.

Proof. For 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ T (n ≥ 1), and a process Yt started at time t0 with

Yt0 = y0, we use the notation

Pt0;t1,...,tn(y0;w1, . . . ,wn) = P
(
Wtj = wj, j = 1, . . . , n

∣∣Yt0 = y0

)
.

We claim that for all n ≥ 2

Pt0;t1,...,tn(y0;w1, . . . ,wn) = Pt0;t1,...,tn−1(y0;w1, . . . ,wn−1)
Pt0;tn−1,tn(y0;wn−1,wn)

Pt0;tn−1(y0;wn−1)
.

(3.1)

This is evident for n = 2. Assume now that n ≥ 3 and that equation (3.1) is true for all

smaller values of n. Notice that

Pt0;t1,...,tn(y0;w1, . . . ,wn) =
∑
y1

P(Yt1 = y1|Yt0 = y0)Pt1;t1,...,tn(y1;w1, . . . ,wn). (3.2)

Let us focus on the probability

Pt1;t1,...,tn(y1;w1, . . . ,wn) = P
(
Wtj = wj, j = 1, . . . , n

∣∣Yt1 = y1

)
.

Since the process spanned by a subset of the individuals at time t1 is independent of the

one spanned by its complement, and since all individuals surviving at time T must be
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descendants of the process W = (Wt)t≥0, then this probability is equal to:

Pt1;t1,...,tn(y1;w1, . . . ,wn) = Cy1,w1P
(
Wtj = wj, j = 1, . . . , n

∣∣Y ′
t1
= w1

)
p0y1−w1

(t1, T ),

= Cy1,w1Pt1;t1,...,tn(w1;w1, . . . ,wn)p
0
y1−w1

(t1, T ),

(3.3)

where Y ′
t1
is another birth-death process starting with w1 individuals, Cy1,w1 is the num-

ber of ways of choosing w1 individuals out of y1, and p0y(t, T ) is the extinction probability

before time T of a process started at time t with Y ′
t = y.

Let us now focus on the probability

Pt1;t1,...,tn(w1;w1, . . . ,wn) = P
(
Wtj = wj, j = 1, . . . , n

∣∣Y ′
t1
= w1

)
.

Observe that under the condition Y ′
t1

= w1, the process (Y ′
t )t≥t1 is the sum of the

processes defined by each of the subtrees T (i) (i = 1, . . . , |w1|) spanned by each of the

|w1| individuals at time t1. We may assume that each T (i) spans from an individual of

type τ (i), where τ (1), . . . , τ (|w1|) is the sequence of types counted by w1 in increasing order,

since the ordering of the trees T (i) does not affect their distribution. The conditions in

the probability above may then be written as

(a)

|w1|∑
i=1

Wtj

(
T (i)

)
= wj (j = 2, . . . , n),

(b) Wtj

(
T (i)

)
�= 0 (j = 2, . . . , n, i = 1, . . . , |w1|),

where Wt(T (i)) counts the individuals of T (i) at time t which survive to time T . Hence,

because these trees are independent,

Pt1;t1,...,tn(w1;w1, . . . ,wn) =
∑
w

(i)
j

(j∈[2,n],
i∈[1,|w1|])

|w1|∏
i=1

Pt1;t2,...,tn(eτ (i) ;w
(i)
2 , . . . ,w(i)

n ), (3.4)
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where eτ (i) denotes the unit vector with 1 in the τ (i)-th coordinate. This sum is over all

nonzero values of the vectors w
(i)
j (j = 2, . . . , n, i = 1, . . . , |w1|) such that

|w1|∑
i=1

w
(i)
j = wj (j = 2, . . . , n).

From the inductive hypothesis (3.1) for n − 1, the argument of the product in equation

(3.4) is equal to

Pt1;t2,...,tn(eτ (i) ;w
(i)
2 , . . . ,w

(i)
n )

= Pt1;t2,...,tn−1(eτ (i) ;w
(i)
2 , . . . ,w

(i)
n−1)

Pt1;tn−1,tn(eτ (i) ;w
(i)
n−1,w

(i)
n )

Pt1;tn−1(eτ (i) ;w
(i)
n−1)

= Pt1;t2,...,tn−1(eτ (i) ;w
(i)
2 , . . . ,w

(i)
n−1)P(Wtn = w

(i)
n |Wtn−1 = Y ′

tn−1
= w

(i)
n−1),

where the last equality results from equations (3.2) and (3.3). The first factor above does

not depend on w
(i)
n (i = 1, . . . , |w1|). Thus the sum of equation (3.4) may be split into

two sums: an outer sum indexed by w
(i)
j (j = 2, . . . , n− 1, i = 1, . . . , |w1|), and an inner

sum, as follows:

∑
w

(i)
j

(j∈[2,n−1],
i∈[1,|w1|])

⎛⎝|w1|∏
i=1

Pt1;t2,...,tn−1(eτ (i) ;w
(i)
2 , . . . ,w

(i)
n−1)

⎞⎠∑
w

(i)
n

(i∈[1,|w1|])

|w1|∏
i=1

P(Wtn = w(i)
n |Wtn−1 =Y ′

tn−1
=w

(i)
n−1).

By the same argument of the subtrees above, but this time splitting the individuals

at time tn−1 into subsets of sizes w
(i)
n−1 (i = 1, . . . , |w1|), the inner sum is equal to

∑
w

(i)
n

(i∈[1,|w1|])

|w1|∏
i=1

P(Wtn = w(i)
n |Wtn−1 = Ytn−1 = w

(i)
n−1) = P(Wtn = wn|Wtn−1 = Y ′

tn−1
= wn−1),

which can be extracted from the outer sum to obtain
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P(Wtn = wn|Wtn−1 = Y ′
tn−1

= wn−1)
∑
w

(i)
j

(j∈[2,n−1],
i∈[1,|w1|])

|w1|∏
i=1

Pt1;t2,...,tn−1(eτ (i) ;w
(i)
2 , . . . ,w

(i)
n−1).

Furthermore, again from equations (3.2) and (3.3), this is equal to:

Pt0;tn−1,tn(y0;wn−1,wn)

Pt0;tn−1(y0;wn−1)

∑
w

(i)
j

(j∈[2,n−1],
i∈[1,|w1|])

|w1|∏
i=1

Pt1;t2,...,tn−1(eτ (i) ;w
(i)
2 , . . . ,w

(i)
n−1).

Hence by reusing equation (3.4), we obtain

Pt1;t1,...,tn(w1;w1, . . . ,wn) = Pt1;t1,...,tn−1(w1;w1, . . . ,wn−1)
Pt0;tn−1,tn(y0;wn−1,wn)

Pt0;tn−1(y0;wn−1)
.

By using once again equations (3.2) and (3.3), this becomes equation (3.1). Equation

(3.1) may be written in terms of conditional probabilities as follows:

P
(
Wtn = wn

∣∣Wtj = wj, j = 1, . . . , n− 1, Yt0 = y0

)
= P

(
Wtn = wn

∣∣Wtn−1 = wn−1, Yt0 = y0

)
,

which is the Markovian property for (Wt)t≥0. �

Next we find the ancestral rates of a constant-rate multi-type birth-death process.

Theorem 3.2. The ancestral process of a continuous multi-type birth-death process with

birth rates b̃iji and death rates d̃i, which is surviving at time T , is a pure birth process

with time-dependent mutation and splitting rates given by

q̃iji,t = b̃iji (1− p0ej(t, T )), q̃ji,t = b̃iji
(1− p0ej(t, T ))p

0
ei
(t, T )

1− p0ei(t, T )
, (3.5)

where p0ei(t, T ) is the probability that a birth-death process started at time t with a single
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type-i individual, goes extinct before time T .

Proof. By Lemma 3.1, we know that the ancestral process (Wt)t≥0 is a Markov process.

It is thus sufficient to show that its transition rates are those of a pure birth process

allowing mutations with the claimed rates. Observe first that |Wt| is increasing and

so P(Wt+Δt = w + y |Wt = w) is equal to 0 or to O((Δt)2) for all y /∈ {ei, i =

1, . . . , k} ∪ {ei − ej, i, j = 1, . . . , k}. Furthermore

P(Wt+Δt = w + ei |Wt = w) =
P(Wt+Δt = w + ei,Wt = w)

P(Wt = w)

=

∑
y

P(Wt+Δt = w + ei,Wt = w,Yt = y)∑
y

P(Wt = w,Yt = y)
.

If only one birth or death event occurs in the time Δt, then the conditions Wt+Δt =

w + ei,Wt = w,Yt = y imply that Yt+Δt = y + ei. Thus

P(Wt+Δt = w + ei |Wt = w),

=

∑
y≥w P(Yt = y)Cy,w

∑k
�=1 w�b

�j
� Δt(1− pt+Δt,T )

w+eipy−w
t+Δt,T +O(Δt)∑

y

P(Yt = y)Cy,w(1− pt,T )
wpy−w

t,T

=
k∑

�=1

w�b̃
�i
� (1− p0ei(t, T ))Δt+O(Δt),

(3.6)

where pw
t,T :=

k∏
i=1

p0ei(t, T )
wi and (1 − pt,T )

w :=
k∏

i=1

(1 − p0ei(t, T ))
wi . Similarly for i �= j,
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we have

P(Wt+Δt = w + ej − ei |Wt = w),

=

∑
y≥w P(Yt = y)Cy,w

∑k
�=1 w�b

�j
� Δt(1− pt+Δt,T )

w+ej−eipy−w+ei
t+Δt,T +O(Δt)∑

y

P(Yt = y)Cy,w(1− pt,T )
wpy−w

t,T

= wj b̃
ij
i

(1− p0ej(t, T ))p
0
ei
(t, T )

1− p0ei(t, T )
Δt+O(Δt).

(3.7)

As claimed, the transition rates (3.6) and (3.7) correspond to the transition rates of

a pure birth process allowing mutations (Section 1.2.2) with the splitting and mutation

rates (3.5).

�

Remark 3.8. Even though the death rates do not appear explicitly in the rates of the

ancestral tree. They are implicitly involved with the probability of extinction, because the

probability of extinction p0ei(t, T ) satisfies the following differential equation (which can

be obtained from the formulae in [37] and [24] by a straightforward calculation)

dp0ei(t, T )

dt
= d̃i − (b̃i + d̃i)p

0
ei
(t, T ) +

k∑
j=1

b̃iji p
0
ei
(t, T )p0ej(t, T ), for i ∈ {1, 2, . . . , k}.

From the rates of Theorem 3.2 we can also obtain the probability that a given split

or mutation of a type-i individual is of a particular type iij or ij;

Corollary 3.6. The mutation and splitting probabilities of the ancestral tree of a contin-

uous birth-death process are as follows:

qiji,t =
piji (1− p0ei(t, T ))(1− p0ej(t, T ))

1−
k∑

j1=1

pij1i p0ej1 (t, T )− piii p
0
ei
(t, T )(1− p0ei(t, T ))

,
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qji,t =
piji (1− p0ej(t, T ))p

0
ei
(t, T )

1−
k∑

j1=1

pij1i p0ej1 (t, T )− piii p
0
ei
(t, T )(1− p0ei(t, T ))

,

where the notation is as in Theorem 3.2.

Figure 3.4: The ancestral tree of Figure 3.3 and the corresponding two-type Yule tree

with mutations. The Yule tree has one cherry of type 222 and a pendant edge of type 22.

3.2.1 Multi-type Yule trees with mutations

The ancestral model above explains the motivation to consider multi-type Yule trees with

mutations. A binary tree with mutations representing the topology of an ancestral multi-

type birth-death tree must be so that one of the offsprings of each type-i individual is of

type i as well (see Figure 3.4 for an example of a multi-type Yule tree with mutations

resulting from the ancestral tree of Figure 3.3). However, in the Yule model we study next

we ignore this restriction and assume that a type-i individual may split into offsprings of

types j1 ≤ j2 for j1, j2 �= i.

Our general multi-type Yule model is as follows. We start at time 1 with one individual

of fixed type. At each step of the multi-type Yule process, an individual is randomly

chosen with weights ŵi for each type i ∈ {1, . . . , k}. With probability qj1j2i (j1 ≤ j2), the
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chosen individual has two children of types j1, j2, and with probability qji , it mutates and

becomes of type j �= i. As we mentioned above, for all i ∈ {1, . . . , k}

∑
j1≤j2

qj1j2i +
∑
j 	=i

qji = 1.

In this k-type scenario we have a total of

k

⎛⎜⎝ k + 1

2

⎞⎟⎠
different k-type cherries. A cherry of type ij1j2 consists of two individuals of types j1 and

j2 (possibly after any number of mutations) with a common parent of type i. A pendant

edge of type ij consists of an individual of type j (possibly after mutations) whose parent

is of type i (see Figure 3.4). Having different weights ŵi for different types makes a

generating function approach inaccessible, since not only derivatives but also integrals

would appear in the resulting differential equations, making them apparently impossible

to solve with traditional methods. Also an extended Pólya urn model approach on all

cherries and pendant edges leads to equations which algebra systems like Maple are not

able to solve, even for particular cases like k = 2. We aim to resolve this issue by working

with a continuous-time multi-type pure birth process where the distribution of cherries is

the same as in the multi-type Yule tree just described. In this continuous time process,

each individual of type i splits into two children of types j1 ≤ j2 at a rate q̃j1j2i or becomes

of type j �= i at a rate q̃ji . Unlike regular birth-death processes, it is possible for j1, j2 to

be both different from i. Assume all of the summation indices in the next formulae range

over the set [k] := {1, 2, . . . , k}. Denote

q̃i =
∑
j≤l

q̃jli +
∑
j 	=i

q̃ji .
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The discrete multi-type Yule process with weights and probabilities satisfying

ŵi =
q̃i∑
i q̃i

, qj1j2i =
q̃j1j2i

q̃i
, qji =

q̃ji
q̃i
,

is embedded in the continuous-time process and has the same distribution for the pro-

portion of cherries of each type at a time when the process first reaches a set number of

leaves. This multi-type birth-death model can be generalized further by assuming that

the rates are continuous functions on the time variable t. The notation for these rates

then becomes q̃j1j2i,t for j1 ≤ j2, and q̃ji,t for j �= i.

We would like to calculate the proportion of the mean number of cherries of each type.

We start by obtaining results on the proportion of leaves of each type then continue to

study the proportion of the mean number of cherries.

Theorem 3.3. Let ν̃t = (ν̃1
t , ν̃

2
t , . . . , ν̃

k
t ) be the vector containing all mean number of

leaves of type 1, 2, . . . , k at time t in the continuous-time pure birth process with mutations

described above, with time-dependent rates, starting at time 0 with a single individual of

type a ∈ [k]. Then

∂tν̃t = Btν̃t, ν̃0 = ea,

where Bt is the k × k matrix with entries;

B�1�2,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̃�1�1�1,t
−

∑
i≤j

i,j 	=�1

q̃ij�1,t −
∑
i 	=�1

q̃i�1,t, when �1 = �2,

2q̃�1�1�2,t
+ q̃�1�2,t +

∑
j<�1

q̃j�1�2,t
+
∑
j>�1

q̃�1j�2,t
, when �1 �= �2.

Proof. This statement is equivalent to the claim that each ν̃�
t satisfies the following dif-
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ferential equation:

∂tν̃
�
t =

∑
i 	=�

(2q̃��i,t + q̃�i,t +
∑
j<�

q̃j�i,t +
∑
j>�

q̃�ji,t)ν̃
i
t + (q̃���,t −

∑
i≤j
i,j 	=�

q̃ij�,t −
∑
i 	=�

q̃i�,t)ν̃
�
t , for 1 ≤ � ≤ k.

Indeed, in a small interval of time, for each � ∈ [k], the mean number ν̃�
t of leaves of

type �, increases by 2 whenever we add a cherry of type i�� for some i �= �. It increases

by 1 if we add a cherry of type ij� for some i, j �= � or for i = j = �, or if we apply a

change of type i� for some i �= �. It decreases by one upon adding cherries of types �ij or

changes of type �i for i, j �= �. �

Corollary 3.7. Let ν̃t and Bt be as in Theorem 3.3 above. If Bt commutes with
∫ t

0
Bτdτ

for all t ≥ 0, then:

ν̃t = exp

(∫ t

0

Bτdτ

)
ea.

Corollary 3.8. Let ν̃t and Bt be as in Theorem 3.3 above. If Bt = B is a constant

(time-independent) matrix, then:

ν̃t = exp(Bt)ea.

By adding up all leave counts we obtain the following.

Corollary 3.9. Let ρt be the mean number of leaves at time t of the continuous-time

pure birth process described above. If Bt commutes with
∫ t

0
Bτdτ for all t ≥ 0, then

ρt = 1T exp

(∫ t

0

Bτdτ

)
ea.

In particular, if Bt = B is time-independent, then

ρt = 1T exp(Bt)ea.
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We now present a theorem on the differential equations satisfied by the mean number

of k-type cherries for fixed parent type �.

Theorem 3.4. Let μ�
t = (μ�11

t , μ�12
t , . . . , μ�kk

t ) be the vector whose entries are the mean

number of k-type cherries of types �ij for 1 ≤ i ≤ j ≤ k, in a continuous-time pure birth

process as described before with time-dependent rates. Then,

∂tμ
�
t = Atμ

�
t + q̃(�),tν̃

�
t ,

where

q̃(�),t := [q̃11�,t, q̃
12
�,t, q̃

13
�,t, . . . , q̃

kk
�,t ]

T,

and At is a

⎛⎜⎝ k + 1

2

⎞⎟⎠×

⎛⎜⎝ k + 1

2

⎞⎟⎠ matrix with entries given by

A�ij,�mn,t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−(q̃i,t + q̃j,t), for (m,n) = (i, j),

δm,iq̃
i
n,t + δn,iq̃

i
m,t, for (m,n) �= (i, j), i = j,

δm,iq̃
j
n,t + δm,j q̃

i
n,t + δn,iq̃

j
m,t + δn,j q̃

i
m,t, for (m,n) �= (i, j), i �= j,

assuming that the vectors μ�
t, q̃(�),t and the entries of the matrix At have a consistent

order.

Proof. We just need to show that each μ�ij
t satisfies the following differential equation:

∂tμ
�ij
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m≤n

(m,n) 	=(i,i)

(δm,iq̃
i
n,t + δn,iq̃

i
m,t)μ

�mn
t − 2q̃i,tμ

�ii
t + q̃ii�,tν

�
t , for i = j,

∑
m≤n

(m,n) 	=(i,j)

(δm,iq̃
j
n,t + δm,j q̃

i
n,t + δn,iq̃

j
m,t + δn,j q̃

i
m,t)μ

�mn
t − (q̃i,t + q̃j,t)μ

�ij
t + q̃ij�,tν

�
t , for i �= j.

98



Indeed, the mean number of cherries of type �ij will increase upon adding a cherry of

type �ij, or by a change of type which produces a cherry of type �ij. Also it will decrease

by mutating or splitting the leaves of cherries of type �ij. �

Remark 3.9. In the previous theorem, the matrix At is diagonally dominant by columns.

This is because in the column �mn, every rate of the form q̃im,t and every rate of the form

q̃in,t appears exactly once (when n = m, each one appears twice), and the sum of these

rates is less than or equal to q̃n,t + q̃m,t. We use this fact in future proofs.

We now give a result regarding the mean number of pendant edges. This statistic

is useful in subsequent theorems where we reconstruct birth and mutation rates from

observed asymptotic means.

Theorem 3.5. Let γt = (γ11
t , γ12

t , . . . , γkk
t ) be the vector whose entries are the mean

number of pendant edges of different types in a continuous pure birth process with time-

dependent rates. Then,

∂tγt = Ctγt +Utμt,

where

C�m,ij,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−q̃m,t for (�,m) = (i, j),

q̃mj,t for � = i, m �= j,

0 otherwise,
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and

U�m,�′ij,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∑
j1≤j2

q̃j1j2m,t for � = �′, m = i = j,

∑
j1≤j2

q̃j1j2i,t for � = �′, m = j > i,

∑
j1≤j2

q̃j1j2j,t for � = �′, m = i < j,

0 otherwise.

Proof. We claim that each γ�m
t satisfies

∂tγ
�m
t =

∑
j 	=m

q̃mj,tγ
�j
t −q̃m,tγ

�m
t +

∑
i<m

(∑
j1≤j2

q̃j1j2i,t

)
μ�im
t +

∑
i>m

(∑
j1≤j2

q̃j1j2i,t

)
μ�mi
t +2

∑
j1≤j2

q̃j1j2m,t μ
�mm
t .

Indeed, the number of pendant edges of type �m will increase by one if a mutation of

type jm is added on a pedant edge of type �j. Also, it will increase if any cherry of type

ij1j2 is added to any cherry of type �im (i �= m), or if a cherry of type mj1j2 is added

to a cherry of type �mm. It will decrease by one if we add any cherry or mutation on a

pendant edge of type �m. �

Notice that the matrix Bt of Theorem 3.3 has nonnegative entries, except possibly

those in the diagonal. Thus by the Perron-Frobenius theorem, if it is irreducible, there

exists a largest simple eigenvalue λt of Bt with right and left eigenvectors ut,vt, respec-

tively. We can assume that 1 · ut = 1. In the case that Bt = B is time independent, we

have the following result.

Theorem 3.6. In the time-independent case, if η�
t =

μ�
t

ρt
, the limt→∞ η�

t exists and B is

irreducible, then

lim
t→∞

η�
t = −u�(A− λI)−1q̃(�),
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where λ if the largest real eigenvalue of B and u = (u1, u2, . . . , uk) is its corresponding

right eigenvector.

Proof. Let us take μ�
t = ρtη

�
t in the differential equation ∂tμ

�
t = Aμ�

t + q̃(�)ν̃
�
t from

Theorem 3.4. We obtain

∂tη
�
t =

(
A− ∂tρt

ρt
I

)
η�
t +

q̃(�)ν̃
�
t

ρt
.

We know that limt→∞ η�
t exists. Taking limit as t → ∞ on both sides and since η�

t is

continuous, we get

0 =

(
A− lim

t→∞

∂tρt
ρt

I

)
lim
t→∞

η�
t + q̃(�) lim

t→∞

ν̃�
t

ρt
. (3.8)

Let us compute limt→∞
∂tρt
ρt

and limt→∞
q̃(�)ν̃

�
t

ρt
. Let J denote the Jordan representation

form of B, so that B = PJP−1 and exp(B) = P exp(J)P−1. By Corollary 3.9,

lim
t→∞

∂tρt
ρt

= lim
t→∞

1TB exp(Bt)ea

1T exp(Bt)ea

=
1TλuvTea

1TuvTea

(since the dominating terms are only those involving eλt)

= λ.

Similarly, using Corollary 3.8,

lim
t→∞

ν̃�
t

ρt
=

eT
� uv

Tea

1TuvTea

= u�.

We now claim that (A − λI) is invertible. This is true because A is diagonally

dominant by columns (see Remark 3.9), and λ ≥ 0 (since ρt is positive and increasing),

which means that (A − λI) is diagonally dominant by columns as well. Hence, from
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Equation (3.8), we obtain

lim
t→∞

η�
t = −u�(A− λI)−1q̃(�).

�

Using similar arguments, and the fact that the matrix C−λI is diagonally dominant,

we obtain the following Theorem.

Theorem 3.7. In the time-independent case, if η�
t =

γt

ρt
, the limt→∞ η�

t exists and B is

irreducible, then

lim
t→∞

η�
t = −(C − λI)−1U lim

t→∞
ηt,

where ηt = (η1
t ,η

2
t , . . . ,η

k
t ).

To obtain time-dependent versions of Theorems 3.6 and 3.7 we need some assumptions

on the matrices involved.

Theorem 3.8. Suppose all of the following assumptions are true.

a) The limits limt→∞ q̃j1j2i,t and limt→∞ q̃ji,t exist for all i, j, j1, j2 ∈ [k] with i �= j and

j1 ≤ j2.

b) The limit limt→∞ η�
t exists for all � ∈ [k].

c) The matrix limt→∞Bt is irreducible and has right and left eigenvectors u,v, re-

spectively, with associated maximum eigenvalue λ.

Then,

lim
t→∞

η�
t = −u� lim

t→∞
(At − λI)−1 lim

t→∞
q̃(�),t.
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Proof. Let us replace μ�
t = ρtη

�
t in the differential equation ∂tμ

�
t = Atμ

�
t + q̃(�),tν̃

�
t from

Theorem 3.4. We obtain,

∂tη
�
t =

(
At −

∂tρt
ρt

I

)
η�
t +

q̃(�),tν̃
�
t

ρt
.

We know that limt→∞ η�
t exists. Taking limit as t → ∞ on both sides and since η�

t is

continuous, we get

0 =

(
lim
t→∞

At − lim
t→∞

∂tρt
ρt

I

)
lim
t→∞

η�
t + lim

t→∞
q̃(�),t lim

t→∞

ν̃�
t

ρt
. (3.9)

We thus need to find expressions for limt→∞
∂tρt
ρt

and limt→∞
ν̃�t
ρt
. From Theorem 3.3, we

know that ∂tν̃t = Btν̃t, and by letting β̃t =
ν̃t

ρt
, we have

∂tβ̃t = Btβ̃t − β̃t
∂tρt
ρt

.

As before by taking limt→∞ on both sides, we obtain

(
lim
t→∞

∂tρt
ρt

)
( lim
t→∞

β̃t) = ( lim
t→∞

Bt)( lim
t→∞

β̃t).

Notice that the matrix limt→∞Bt has all finite entries (by (a)) and from (c) it is irre-

ducible. Since the vector limt→∞ β̃t only has nonnegative entries, the Perron-Frobenious

Theorem implies that this vector is the eigenvector u and that λ = limt→∞
∂tρt
ρt

.

We now claim that (At − λI) is invertible. This is true because At is diagonally

dominant by columns (see Remark 3.9), and λ ≥ 0 (since ρt is positive and increasing),

which means that (At − λI) is diagonally dominant by columns as well. Hence, from

Equation (3.9), we obtain,

lim
t→∞

η�
t = −u� lim

t→∞
(At − λI)−1 lim

t→∞
q̃(�),t.
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�

Remark 3.10. In the particular case where for all t, t′ the matrices Bt,Bt′ are irre-

ducible, mutually diagonalizable, and have the same right and left eigenvectors u,v for

their corresponding maximum eigenvalues λt, λt′, we can drop the assumption that B is

irreducible. In that case we have

lim
t→∞

η�
t = −u� lim

t→∞
(At − λtI)

−1 lim
t→∞

q̃(�),t.

Indeed, from Corollary 3.9

lim
t→∞

∂tρt
ρt

= lim
t→∞

1TBt exp(
∫ t

0
Bτdτ)ea

1T exp(
∫ t

0
Bτdτ)ea

= lim
t→∞

1TPDtP
−1P exp(

∫ t

0
Dτdτ)P

−1ea

1TP exp(
∫ t

0
Dτdτ)P−1ea

= lim
t→∞

1TPDt exp(
∫ t

0
Dτdτ)P

−1ea

1TP exp(
∫ t

0
Dτdτ)P−1ea

= lim
t→∞

λt
1TuvTea

1TuvTea

(since the dominating terms are only those involving e
∫ t
0 λ1,τdτ

with u, v as right and left eigenvectors of Bt, respectively.)

= lim
t→∞

λt,

and as before from Corollary 3.7

lim
t→∞

ν̃�
t

ρt
=

e�uv
Tea

1TuvTea

= u�.

Using similar arguments, we obtain the following result.

Theorem 3.9. If all of the assumptions of Theorem 3.8 are satisfied, and the limit
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limt→∞ η�
t exists, where η�

t =
γt

ρt
, then

lim
t→∞

η�
t = − lim

t→∞
(Ct − λI)−1Ut lim

t→∞
ηt,

with ηt = (η1
t ,η

2
t , . . . ,η

k
t ).

Remark 3.11. In the time-independent case, this pure-birth process depends on a total

of

k

⎛⎜⎝ k + 1

2

⎞⎟⎠+ k(k − 1)

parameters (rates). In the previous result we have obtained the limits of

k

⎛⎜⎝ k + 1

2

⎞⎟⎠+ k2

ratios which satisfy the relation

2
∑
�∈[k]
i≤j

η�ijt +
∑
i,j

η∗ijt = 1.

This plays an important role when we wish to obtain information about the birth and

transition rates of a process, having only some information about the distribution of types

at the present time.

The following results illustrate some particular cases for which it is possible to recon-

struct the birth and transition rates of a multi-type Yule process knowing the behaviour

in the long run of the mean number of cherries and pendant edges.

Proposition 3.5. If
∑

j1≤j2 q̃
j1,j2
i,t = ri,t, ∀i ∈ [k], for some functions ri,t whose limit

when t → ∞ is known, and the maximum real eigenvalue λ of limt→∞Bt is also known,
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then it is possible to compute all the limits of the mutation and birth rates in terms of

the limit vectors w� = limt→∞ η�
t and w� = limt→∞ η�

t (for all � ∈ [k]).

Proof. Notice that:

C�m,ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−rm,t −
∑
i 	=m

q̃im,t for (�,m) = (i, j),

q̃mj,t for � = i, m �= j,

0 otherwise,

and

U�m,�′ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2rm,t for � = �′, m = i = j,

ri,t for � = �′, m = j > i,

rj,t for � = �′, m = i < j,

0 otherwise.

Since λ is known, from Theorem 3.9, we obtain the following system

lim
t→∞

(Ct − λI)w� + lim
t→∞

Utw = 0,

where w = (w1,w2, . . . ,wk). Notice that this system is linear and depends only on the

limits of the mutation rates q̃ji,t for i, j ∈ [k] and i �= j. Hence, there exists a set of

solutions for these limits. For each solution, these limits can be replaced into each of the
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systems, and we have

lim
t→∞

(At − λI)w� + u�q̃(�),t = 0, for all � ∈ [k].

We claim that this is a linear system on the branching rates. This is true because

u� = 2
∑
i

w��
i +

∑
i∈[k]
j<�

wj�
i +

∑
i∈[k]
j>�

w�j
i +

∑
i∈[k]

w�
i .

Therefore it is possible to obtain a set of solutions for each limit limt→∞ q̃j1j2i,t in terms of

the limit vectors w,w∗, as claimed. �

Corollary 3.10. In the time-independent case, if
∑

j1≤j2 q̃
j1,j2
i = ri, ∀i ∈ [k], for some

known constants ri and the maximum real eigenvalue λ of B is also known, then it

is possible to compute all mutation and birth rates in terms of the limit vectors w� =

limt→∞ η�
t and w� = limt→∞ η�

t (for all � ∈ [k]).

Corollary 3.11. Assuming that
∑

j1≤j2 q̃
j1,j2
i = r for some constant r which does not

depend on i, and given the limit vectors w� = limt→∞ η�
t and w� = limt→∞ η�

t (for all

� ∈ [k]), it is possible to compute all mutation and birth rates in terms of those vectors.

Proof. This is a direct result from the previous Proposition by noticing that the maximum

eigenvalue of B is λ = r. Indeed, since r is the birth rate of the total population, we

have:

rρt = ∂tρr

= ∂t(1 · ν̃t)

= 1 · (∂tν̃t)

= 1 · (Bν̃t).
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Thus

r = 1 ·
(
B

ν̃t

ρt

)
.

Taking the limit as t goes to infinity, we have

r = 1 · (λu).

Hence, r = λ and the result follows. �

3.2.2 Predictive accuracy of root type estimation in continuous

neutral two-type Yule models

Consider a time-independent, neutral continuous pure-birth process with mutations,

where offsprings are always of the parent type. In this model the overall splitting rates

are given by r = q̃111 = q̃222 and q̃121 = q̃122 = q̃221 = q̃112 = 0, and the mutation rates are

q̃21 = q̃12.

We further assume that the root type has certain non-trivial distribution. Gascuel &

Steel [13] study the reconstruction of the types of the root and internal nodes of these

trees given the leaves’ types.

For a method M for finding the root type of a random continuous tree given the

leaves’ types at a certain time t ≥ 0, its predictive accuracy is defined as the expected

value over all sample trees of the probability that the predicted root type is correct. The

same concept can be defined for methods to predict the type of an internal node selected

uniformly at random. A well known method is the maximum parsimony method, which

estimates the type at a node to be the one that minimizes the number of substitutions

(type changes from parent to child) needed to explain the evolution of the types observed

at the leaves. This method only takes into account the tree topology, but not its transition

rates or branch lengths. Another common method used is the majority rule method that
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assigns to the root type the most frequent type at the leaves.

In the two-type case, a trivial lower bound that can be set for the predictive accuracy

of any method is 1/2 which results from choosing types uniformly at random.

This particular two-type case is symmetric because q̃j1j2i = q̃
j′1j

′
2

i′ , ∀i, j1, j2 where j′ = 1

if j = 2 and viceversa. Assume further that it is stationary, meaning that the root type

(and thus every other node’s type) follows the stationary distribution of the corresponding

transition matrix.

Using the reconstruction results of Corollary 3.11, we can rewrite Proposition 5 of [13]

as follows,

Corollary 3.12. Consider the time-independent continuous neutral model defined above

starting at time t (from a single lineage) assumed to be symmetric and stationary, then

as t grows;

• The predictive accuracy of the maximum parsimony method for estimating the root

state of the tree converges to the trivial bound 1/2 if and only if the asymptotic

proportion of the mean numbers of cherries and pendant edges satisfy

2w11
1 + w12

1 − w2
1

w1
1 − w2

1

≥ 1

6
.

• The predictive accuracy of any method for estimating the root type converges to

the trivial bound if the asymptotic proportion of the mean numbers of cherries and

pendant edges satisfy

2w11
1 + w12

1 − w2
1

w1
1 − w2

1

≥ 1

4
.

Proof. By Proposition 5 from [13], the first claim is true if and only if the speciation rate

is less than 6 times the substitution rate (q̃21 = q̃12), while the second claim is true if the

speciation rate is less than 4 times the substitution rate. So we just need to show that
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these rates can be written in terms of the asymptotic proportion of cherries and pendant

edges.

The speciation rate is given by q̃111 = q̃222 = r, while the substitution rate is q̃21 = q̃12.

We would like to write q̃21 in terms of the asymptotic proportion of cherries and

pendant edges. With the notation of Corollary 3.11, since q̃21 = q̃12, we have that;

C − rI =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2r − q̃21 q̃21 0 0

q̃21 −2r − q̃21 0 0

0 0 −2r − q̃21 q̃21

0 0 q̃21 −2r − q̃21

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2r r 0 0 0 0

0 r 2r 0 0 0

0 0 0 2r r 0

0 0 0 0 r 2r

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Assuming we know the vectorw� = [w11
� , w12

� , w22
� ] for � ∈ {1, 2} andw� = [w1

1, w
2
1, w

1
2, w

2
2],

we can solve the following system for the rate q̃21,

(C − rI)w� +Uw = 0,

Hence,

q̃21 =
r(2w11

1 + w12
1 − w2

1)

w1
1 − w2

1

.

Therefore the inequalities r < 6q̃21 and r < 4q̃21 become

2w11
1 + w12

1 − w2
1

w1
1 − w2

1

>
1

6
and

2w11
1 + w12

1 − w2
1

w1
1 − w2

1

>
1

4
, respectively.

�
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Mossel & Steel [38] proved the converse implication for the majority rule method,

concluding that its predictive accuracy converges to the trivial bound if and only if

r ≤ q̃21. From that result we immediately deduce the following corollary;

Corollary 3.13.

The predictive accuracy of the majority rule method for estimating the root type converges

to the trivial bound if and only if the asymptotic proportion of the mean numbers of

cherries and pendant edges satisfy

2w11
1 + w12

1 − w2
1

w1
1 − w2

1

≥ 1

4
.

This means that the majority rule method performs better than the maximum par-

simony method for the symmetric stationary model, as long as the fraction above is

between 1/6 and 1/4.

3.2.3 Monotonicity of the asymptotic proportion of cherries in

certain two-type models

In this section we show monotonicity results for the asymptotic proportion of cherries

of each type in two particular two-type models. In the first model the monotonicity is

obtained in terms of the weight ŵ1, and in the second one this weight is fixed ŵ1 = 1/2

and the monotonicity is in terms of the splitting probability q111 .

Consider the two-type continuous birth process with splitting rates q̃j1,j2i (i, j1, j2 ∈

{1, 2}, j1 ≤ j2), and no mutations. This process has the same mean asymptotic proportion

of cherries of each type as the discrete Yule process with splitting probabilities,

q111 =
q̃111
q̃1

, q121 =
q̃121
q̃1

, q221 =
q̃221
q̃1

,
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q112 =
q̃112
q̃2

, q122 =
q̃122
q̃2

, q222 =
q̃222
q̃2

,

and where the probability of choosing a leaf of type i at each step is weighted by the

ratio ŵi =
q̃i

q̃1 + q̃2
. Observe that ŵ1 + ŵ2 = 1. This process is neutral when ŵ1 = 1/2

(q̃1 = q̃2). We do not restrict ourselves to the neutral case. In fact, we seek to find a

relationship between the weight ŵ1 and the asymptotic proportions wj1j2
� of the mean

number of cherries of type �j1j2 (j1 ≤ j2) when the splitting probabilities satisfy the

following relation

q111 + q222 = 1 + q221 + q112 . (3.10)

This relationship is not far fetched. Indeed, in the process where siblings are indepen-

dent amongst each other and are decided from their parent’s type according to a Markov

process with transition probabilities (sij)i,j∈{1,2}, the splitting probabilities are given by;

q111 = (1− s12)
2, q121 = 2(1− s12)s12, q221 = (s12)

2,

q222 = (1− s21)
2, q122 = 2(1− s21)s21, q112 = (s21)

2,

and thus condition (3.10) becomes the equality s12+s21 = 1/2. The neutral case ŵ1 = 1/2

of this two-type Yule process is the one studied in Section 3.1.4, and by Janson & Mossel

[21].

From Theorem 3.6, we know that the vector w� = [w11
� , w12

� , w22
� ] can be written as

follows,

w� = lim
t→∞

η�
t = −u�(A− λI)−1q̃(�),

By replacing q̃j1j2i = qj1j2i ŵi(q̃1 + q̃2), and recalling that q̃ji = 0, this expression may be

written entirely in terms of the splitting probabilities qj1j2i and weights ŵi (i, j ∈ {1, 2}),

and by replacing ŵ2 = 1− ŵ1, q
12
� = 1− q11� − q22� for � ∈ {1, 2} and condition (3.10), we

attain expressions for the mean asymptotic proportion of cherries which depend only on
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ŵ1 and qj1j2� for �, j1 = j2 ∈ {1, 2}.

These calculations are straightforward but rather chaotic, and were obtained using

the algebra system Maple. However, the formulas simplify greatly when we assume

condition (3.10). We use the following notation to avoid confusion between weights and

the proportion of cherries;

wj1j2
� = gj1j2� (ŵ1), for �, j1, j2 ∈ {1, 2}, j1 ≤ j2.

Notice that even though gj1j2� depends also on the splitting probabilities we do not write

it explicitly to simplify the notation. For this specific case we obtain the following mono-

tonicity result,

Proposition 3.6. For the time independent continuous-time two-type birth-death model

with no mutations such that its splitting probabilities satisfy equation (3.10), the following

monotonicity for the asymptotic proportion of cherries is satisfied in terms of the weight

ŵ1 for 1 ≤ j1 ≤ j2 ≤ 2;

ŵ1 < ŵ′1 ⇒ gj1j21 (ŵ1) < gj1j21 (ŵ′1), gj1j22 (ŵ1) > gj1j22 (ŵ′1).

Proof. From Theorem 3.6, as outlined above, we obtain the following expressions from

straightforward calculations using the algebra system Maple:

g111 (ŵ1) =
ŵ1q

11
1 (q111 − q221 )

2q111 ŵ1 + ŵ1 − 2q221 ŵ1 − q111 + q221 + 1
,

g121 (ŵ1) =
ŵ1q

12
1 (q111 − q221 )

2q111 ŵ1 − ŵ1 − 2q221 ŵ1 − q111 + q221 + 2
,

g221 (ŵ1) =
ŵ1q

22
1 (q111 − q221 )

2q111 ŵ1 − 3ŵ1 − 2q221 ŵ1 − q111 + q221 + 3
,
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g112 (ŵ1) =
q112 (1− q111 + q221 )(1− ŵ1)

2q111 ŵ1 + ŵ1 − 2q221 ŵ1 − q111 + q221 + 1
,

g122 (ŵ1) =
q122 (1− q111 + q221 )(1− ŵ1)

2q111 ŵ1 − ŵ1 − 2q221 ŵ1 − q111 + q221 + 2
,

g112 (ŵ1) =
q222 (1− q111 + q221 )(1− ŵ1)

2q111 ŵ1 − 3ŵ1 − 2q221 ŵ1 − q111 + q221 + 3
,

In order to prove the monotonicity of gj1j2� (ŵ1) for �, j1, j2 ∈ {1, 2}, it suffices to prove

that their first derivate with respect to ŵ1 is positive for � = 1 and negative for � = 2.

Indeed,

∂g111 (ŵ1)

∂ŵ1

=
q111 (q111 − q221 )(1− q111 + q221 )

(2q111 ŵ1 + ŵ1 − 2q221 ŵ1 − q111 + q221 + 1)2
> 0,

∂g121 (ŵ1)

∂ŵ1

=
q121 (q111 − q221 )(2− q111 + q221 )

(2q111 ŵ1 − ŵ1 − 2q221 ŵ1 − q111 + q221 + 2)2
> 0,

∂g221 (ŵ1)

∂ŵ1

=
q221 (q111 − q221 )(3− q111 + q221 )

(2q111 ŵ1 − 3ŵ1 − 2q221 ŵ1 − q111 + q221 + 3)2
> 0,

∂g112 (ŵ1)

∂ŵ1

=
−q112 (2− (q111 − q221 )(1 + q111 − q221 ))

(2q111 ŵ1 + ŵ1 − 2q221 ŵ1 − q111 + q221 + 1)2
< 0,

∂g122 (ŵ1)

∂ŵ1

=
−q122 (1− (q111 − q221 )2)

(2q111 ŵ1 − ŵ1 − 2q221 ŵ1 − q111 + q221 + 2)2
< 0,

∂g222 (ŵ1)

∂ŵ1

=
−q222 (q111 − q221 )(1− q111 + q221 )

(2q111 ŵ1 − 3ŵ1 − 2q221 ŵ1 − q111 + q221 + 3)2
< 0,

and the result follows. �

Notice that when ŵ1 = 1/2, we obtain the same proportions as in Corollary 3.2,

as expected. Also, we have the following Corollary concerning the comparison between

neutral and non-neutral models.

Corollary 3.14. The asymptotic proportion of the mean number of cherries of type 1

(respectively type 2) parent for the neutral (ŵ1 = 1/2) two-type Yule model above is

greater than (respectively less than) the same asymptotic proportion for the non-neutral

model with ŵ1 < 1/2, and less than (respectively greater than) the proportion for the
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non-neutral model with ŵ1 > 1/2.

Let us now consider the time-independent, neutral continuous pure-birth process with

mutations from Section 3.2.2 and studied by Gascuel & Steel [13], where offsprings are

always of the parent type, but may mutate at certain rate. In this model the overall

splitting rates are given by r = q̃111 = q̃222 and q̃121 = q̃122 = q̃221 = q̃112 = 0, and the

mutation (substitution) rates are q̃21 = q̃12. Thus the event probabilities are given as

follows,

q111 = q222 =
r

r + q̃21
, q21 = q12 =

q̃21
r + q̃21

= 1− q111 .

Notice that in this case the weight ŵ1 is equal to 1/2, and so we can write the

asymptotic proportion of cherries in terms of q111 = q by using Theorem 3.6. As before

we use the notation

wj1j2
� = gj1j2� (q), for �, j1, j2 ∈ {1, 2}, j1 ≤ j2.

We obtain the following result,

Proposition 3.7. For the time-independent, neutral continuous two-type pure-birth pro-

cess with splitting probability q = q111 = q222 and mutation probability 1− q = q21 = q12, the

following monotonicity for the asymptotic proportion of cherries is satisfied in terms of

q;

q < q′ ⇒ g111 (q) < g111 (q′), gj121 (q) > gj121 (q′), for j1 ∈ {1, 2}.

The same thing holds for gj1j22 (q) by the symmetry of this case.

Proof. From Theorem 3.6, we obtain the following expressions from straightforward cal-

culations using the algebra system Maple:

g111 (q) =
2 + 8q − q2

6(8 + 2q − q2)
, g121 (q) =

1− q

3(4− q)
, g221 (q) = − (1− q)2

3(8 + 2q − q2)
.
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with corresponding derivatives

∂g111 (q)

∂q
=

q2 − 2q + 10

(8 + 2q − q2)2
> 0,

∂g121 (q)

∂q
= − 1

(4− q)2
< 0,

∂g221 (q)

∂q
=

6q − 6

(8 + 2q − q2)2
< 0.

which implies the monotonicity results. �

This result may be explained intuitively; as the probability q111 = q222 = q increases,

one would expect to have more cherries of types 111 and 222. And since this also means

that the mutation probability 1− q becomes smaller, the expected number of cherries of

types 112, 212, 122 and 211 should decrease.
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Chapter 4

Conclusion and outlook

Our work on the multi-type coalescent point process provided a method for reconstruct-

ing multi-type ancestral trees under certain assumptions by extending previously known

results on single-type processes. This introduced a wider and more accurate framework

for the investigation of ancestral evolutionary trees, since different traits are likely to

yield different reproductive patterns in real-world biological applications.

Lemma 2.1 provides an independence property for subtrees of a multi-type branching

process under conditions related to their descendants at the present time. This Lemma

helped in the proof of Theorem 2.1, which provides a new backward algorithm for the

construction of the multi-type coalescent point processes. Corollaries 2.1, 2.2, and Propo-

sitions 2.1, 2.2, give expressions for the distribution of the coalescent times of two con-

secutive individuals and the coalescent times of same type individuals in the multi-type

coalescent point process. Propositions 2.3, 2.4 specialize these results to the case of the

multi-type linear fractional coalescent point process. Corollary 2.3 and Proposition 2.5

give more specific formulae for particular linear fractional cases. Future research on the

multi-type coalescent point process could focus on extending this backward construction

to avoid the need for prior assumptions on the types of the ancestors of the standing

population’s leftmost individual (the spine of the process), possibly in the context of
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particular cases for which the quasi-stationary distribution of the spine can be derived

explicitly.

Our formulae for the asymptotic proportion of cherries and pendant edges of different

types are useful for the reconstruction of ancestral features of multi-type birth models,

since in many interesting cases it is possible to revert these formulae to obtain approxima-

tions for the speciation and mutations rates of the model. This is particularly important

because cherries are formed by the standing population and their immediate ancestors,

and because the proportion of types in the standing population alone does not provide

enough information for such reconstruction. As corollaries to these formulae, it is possible

to determine the solvability and predictive accuracy of certain models in terms of their

asymptotic proportion of cherries of each type.

In the context of random rooted binary trees under the neutral two-type Yule model,

this work provided explicit formulae and asymptotic properties for means and variances

of the numbers of leaves, cherries and pendant edges of different types (Propositions 3.1,

3.2, 3.4, 3.3 and Corollaries 3.1, 3.2, 3.3).

As a way to present a motivation for the study of multi-type Yule trees with mutations,

we have pointed out that type mutations appear naturally in the ancestral trees of multi-

type birth-death process, and we have proved that these ancestral trees are themselves

multi-type pure-birth processes, deriving their time-dependent rates and their defining

probabilities explicitly (Lemma 3.1, Theorem 3.2 and Corollary 3.6). Subsequently we

have provided some differential equations and asymptotic formulae for the mean number

of leaves, cherries and pendant edges of each type, as well as formulae for reconstructing

rates from these means in a continuous-time constant-rate multi-type pure-birth process

with mutations (Theorems 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, Proposition 3.5, and their corol-

laries). This continuous-time process embeds and has the same asymptotic properties as

a multi-type Yule tree with mutations under certain relations between the parameters of

118



each process. From this reconstruction we have obtained Corollaries 3.5, 3.12, 3.13 and

3.14 and Propostions 3.6 and 3.7, providing certain reversibility properties of particular

two-type models by exploiting the relationship between the mean asymptotic proportion

of cherries of each type and the defining parameters of those models. As part of future

research on multi-type pure-birth processes with mutations we could explore particular

time-dependent rates for which the statistics on cherries and pendant edges can be cal-

culated explicitly, and test the reconstructive properties of these processes by recovering

their defining parameters from simulated phylogenetic trees.
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