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ABSTRACT

On Modular Forms, Hecke Operators, Replication and Sporadic Groups

Rodrigo Farinha Matias, Ph.D.

Concordia University, 2014

In the first part of this thesis we find all congruence subgroups of PSL2(R) and respective

weights for which the corresponding space of cusp forms is one-dimensional. We compute

generators for those spaces.

In the second part we establish a connection between the Hecke Algebra of Γ0(2)+ and

the group 2 ·B, the double cover of the Baby Monster group. Namely, we find a new form of

replication, 2A-replication, that is reflected in the power map structure of 2 ·B. This is very
similar to the fact that usual replication reflects the power map structure in the Monster

group. We use a vertex operator algebra and a Lie algebra that were constructed by Höhn

and see that the McKay-Thompson series for 2 ·B satisfy 2A-replication identities. This also

simplifies the computations made by Höhn to identify every McKay-Thompson series as a

Hauptmodul by using generalized Mahler recurrence relations. This strategy follows in spirit

Borcherd’s proof of the original Moonshine Conjectures.

We also extend these ideas to Γ0(3)+ and 3·F3+. However, even though the generalization

is straightforward there are McKay-Thompson series that have irrational coefficients for which

our replication formulas don’t work.
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Introduction

For long time, the groups Γ0(N), Γ1(N) and Γ(N) were, among all subgroups of PSL2(R),

the ones number theorists were most interested in. However, since the beginning of Moon-

shine some interest has arised in genus zero, congruence subgroups of PSL2(R) that are

commensurable with PSL2(Z) as they play an important role in this theory. Moonshine

has its roots in the initial observation by McKay, in 1978, that the first coefficients of the

modular j-function:

j(q) =
1

q
+ 744 + 196884 · q + 21493760 · q2 + 864299970 · q3 + . . . , q = e2πiz

are linear combinations with positive integer coefficients of dimensions of irreducible repre-

sentations of the Monster group, M, the biggest sporadic simple group. This suggest the exis-

tence of a natural graded representation V � =
∞⊕

n=−1
V �
(n) such that j(q) =

∞∑
n=−1

dim
(
V �
(n)

)
qn.

Thompson later suggested that the functions Tg(q) =
∞∑

n=−1
Tr

(
g, V �

(n)

)
qn would be worth

investigating. These are called McKay-Thompson series. Actually, from their power series

expansion, Conway and Norton ([12]) realized that each McKay-Thompson series seemed to

be the Hauptmodul (canonical generator for the function field of modular functions) for a

subgroup of PSL2(R) between some Γ0(N) and its normalizer in PSL2(R). These groups are

also genus zero (a Hauptmodul only exists in that case), whence our interest in the groups

of type mentioned above. All such groups were classified by Cummins ([14]) who also gave

information about the number fields where the coefficients lie in. It turns out that there are

616 groups whose Hauptmodul has rational coefficients (which include all Monstrous McKay-

Thompson series) and 3870 irrational ones. The first problem addressed in this thesis is to

find among all such groups the ones that have a one dimensional space of cusp forms of even

weight and to compute the generators of those spaces. The interest on this classification is

related to the fact that such forms have appeared in some contexts directly related or not to

Moonshine, for example [47] and [23].
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An important concept in Moonshine is that of replicability. We say that a function

f(q) = 1
q
+ a1q + a2q

2 + . . . is replicable if there is, for every n ∈ N, a function

f (n)(q) =
1

q
+ a

(n)
1 q + a

(n)
2 q2 + . . .

such that ∑
ad=n
0≤b<d

f (a)

(
az + b

d

)
= Pn(f(q))

where Pn(f(q)) is the Faber polynomial of f . This is closely related to the definition of the

Hecke operators for the modular group. A function is completely replicable if, in addition, it

satisifes
(
f (m)

)(n)
= f (mn). It was observed by Conway and Norton ([12]) that the McKay-

Thompson series Tg are replicable and satisfy T
(n)
g = Tgn . In particular, they are completely

replicable. The proof of the existence of V � was obtained by Frenkel, Lepowsky and Meurman

([28]). It is a vertex operator algebra and from that Borcherds constructed a Z × Z graded

generalized Kac-Moody algebra, the Monster Lie algebra, whose (m,n) piece is isomorphic

to V �
(mn). This Lie algebra has a twisted denominator formula which says essentialy that the

McKay-Thompson series are replicable and satisfy T
(n)
g = Tgn as stated above. It was known

at that time that the Hauptmoduls corresponding to each McKay-Thomson series were also

completely replicable. The fact that a function is completely replicable implies recurrence

relations among the coefficients of a function and its replicates that allows us to compute all

coefficients of a function knowing just the first five coefficients of its replicates. It is then

enough to compare the first 5 coefficients of every McKay-Thompson series and those of the

corresponding Hauptmodul to be sure that they are actually the same functions. This was

what Borcherds did ([7]) proving all the original Moonshine Conjectures.

Norton ([48]) generalized the Moonshine Conjectures in a way that it implies the existence

of Moonshine properties for other groups. Höhn proved this ([34]) for the group 2 ·B, where
B is the Baby Monster group. 2 · B is the centralizer of an element of class 2A in M. In

the second part of this thesis we use his results to prove that there is a form of replicability

coming from the Hecke Algebra of Γ0(2)+ that respects the power map structure in 2 · B, in

2



the same way that usual replicability respects the power map structure in M. In this case, we

also find recurrence relations that allow us to compute all coefficients of a function from the

first 5 coefficients of the fuction and its replicates. This simplifies the argument Höhn uses

to match every McKay-Thompson with a Hauptmodul and is closer in spirit to Borcherds

proof of the original Moonshine Conjectures. We also make computations that show the

same property holding for the group 3 ·F3+, at least for the cases where the Hauptmodul has

rational coefficients.

3



Table of Notations

Z - Set of integers

Q - Set of rational numbers

R - Set of real numbers

C - Set of complex numbers

η - Dedekind eta-function

μ - Multiplier system for the Dedekind eta-function( ·
·
)

- Jacobi symbol

π - Partition

ηπ - Eta-product associated to the partition π

φ - Euler totient function

g(χ) - Gauss sum of χ

μN - e
2πi
N

L (s, χ) - L-function of χ

Γ(s) - Gamma function

� - Real part of a complex number

� - Imaginary part of a complex number

Bk - k-th Bernoulli Polynomial

Bk ϕ - Bernoulli numbers of the character ϕ

Eψ,ϕ
k - Eisenstein series

[ ] - Integer part of a real number

Tn - Hecke Operator

H - Complex upper half-plane
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Chapter 1

One-dimensional spaces of cusp forms

1.1 Introduction

In this chapter we find all genus zero congruence subgroups of PSL2(R) for which there

is a one-dimensional space of cusp forms and compute the expressions of those forms. We

can see these forms as analogs of the Δ function, a cusp form of weigh 12 for the modular

group.

In Section 1.2 we introduce some definitions and notation about the groups we are going

to work with.

Sections 1.3 and 1.4 are devoted to the Dedekind eta-function, Eisenstein Series and

some of their properties which will be used to find expressions to our forms. All the results

in section 1.4 can be found in [22] except 1.4.3.

In section 1.5 we find all possible signatures for a group to have a one-dimensional space

of cusp forms. Using these signatures we extract from the tables given in [14] all genus zero

congruence groups that we are interested in.

In the last section we compute these forms using the results from sections 1.3 and 1.4.

For groups of type n|h + e1, e2 . . . we found that they can be expressed as product of a

multiplicative eta-product and an Eisenstein series. All the other groups will be analysed
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individually using ad hoc methods.

1.2 Some subgroups of PSL2(R)

We define, as usual,

Γ0(N) =

⎧⎨
⎩

⎛
⎝ a b

c d

⎞
⎠ ∈ SL2(Z) |

⎛
⎝ a b

c d

⎞
⎠ ≡

⎛
⎝ ∗ ∗

0 ∗

⎞
⎠ ( mod N)

⎫⎬
⎭

Γ1(N) =

⎧⎨
⎩

⎛
⎝ a b

c d

⎞
⎠ ∈ SL2(Z) |

⎛
⎝ a b

c d

⎞
⎠ ≡

⎛
⎝ 1 ∗

0 1

⎞
⎠ ( mod N)

⎫⎬
⎭

Γ(N) =

⎧⎨
⎩

⎛
⎝ a b

c d

⎞
⎠ ∈ SL2(Z) |

⎛
⎝ a b

c d

⎞
⎠ ≡

⎛
⎝ 1 0

0 1

⎞
⎠ ( mod N)

⎫⎬
⎭

The normaliser of Γ0(N) in PSL2(R) was described in [12] as the set of matrices of the

form

⎛
⎝ ae b

h

cn de

⎞
⎠ where a, b, c, d, e, h and n are integers satisfying:

1. the determinant ade2 − bcn
h

equals e.

2. h is the largest divisor of 24 such that h2 divides N and N = nh.

3. e is an exact divisor of n
h
(we write e||n

h
), i.e. e divides n

h
and

(
e, n

he

)
= 1.

The set We of all matrices of the form

⎛
⎝ ae b

cN de

⎞
⎠ of determinant e where e||N is a

coset of Γ0(N) and is called an Atkin-Lehner “involution“.

We define Γ0(n|h) to be the subgroup of the normalizer of Γ0(N) of matrices of determi-

nant 1, i.e., it is the set of matrices of the form

⎛
⎝ a b

h

cn d

⎞
⎠. This group is a conjugate of

Γ0(
n
h
), whence the notation. The matrices

⎛
⎝ ae b

h

cn de

⎞
⎠ with a fixed e form a coset of this

6



subgroup and we denote them by we since they are conjugates of the Atkin-Lehner involutions

of Γ0(
n
h
).

The normalizer of Γ0(N) in PSL2(R) can thus be described as the union of Γ0(n|h) with
all its Atkin-Lehner involutions.

Following [12], we use the notation Γ0(n|h) + e, f . . . to denote the group obtained from

Γ0(n|h) by adjoining the Atkin-Lehner involutions we, wf ,. . .. Also, Γ0(n|h)+ will mean that

all Atkin-Lehner involutions are present.

We are interested in a certain subgroup of index h in Γ0(n|h) + e, f . . . which we will

denote by n|h+ e, f . . .. These groups are important in the context of Monstrous Moonshine

and were first introduced by Conway and Norton ([12]). They defined them as the kernel of

the homomorphism λ : Γ0(n|h) + e, f, . . . −→ C× defined in the following way:

1. λ = 1 for elements in Γ0(N),

2. λ = 1 for every Atkin-Lehner involution WE of Γ0(N) in Γ0(n|h) + e, f . . . such that

every prime dividing E also divides n/h,

3. λ = e−
2πi
h , for the coset containing

⎛
⎝ 1 1

h

0 1

⎞
⎠,

4. λ = e±
2πi
h for the coset containing

⎛
⎝ 1 0

n 1

⎞
⎠, where the sign is + if

⎛
⎝ 0 −1

N 0

⎞
⎠ is

present, otherwise it is −.

These homomorphisms are well defined in the cases Conway and Norton considered but

it is not obvious when this gives a well defined homomorphism, in general. This point was

considered in [13] and [24] and it happens that the homomorphism λ is unique and well-

defined, and hence n|h+ e, f, . . . exists, if the following conditions are satisfied:

- if h = 3 then either 9 | n or n
h
≡ ±1 mod h. The sign is + (resp. −) if

⎛
⎝ 0 −1

N 0

⎞
⎠

is (resp. not) present.

7



- if h = 4 then 8 | n.

- if h = 8 then 32 | n.

- if h is a prime power and +e is present then either e ≡ 1 mod h or n
eh

≡ ±1 mod h.

The sign is + (resp. −) if

⎛
⎝ 0 −1

N 0

⎞
⎠ is (resp. not) present.

- if h = 6, 12, 24 then either both groups Γ0(3n|j) and Γ0(jn|3) or both groups Γ0(
n
3
|j)

and Γ0(
n
j
|3), where h = 3j, satisfy all conditions above.

We shall use this result later when we consider such groups.

1.3 Eta-Products

The Dedekind eta-function is the function defined in the upper half-plane by:

η(z) = q
1
24 ·

∏
n≥1

(1− qn), q = e2πiz

It satisfies the following transformation formulas:

1) η(z + 1) = e
πi
12 · η(z)

2) η
(−1

z

)
=

√−iz · η(z)

where zr = |z|reir arg(z), −π < arg(z) ≤ π. We assume this convention for the rest of this

chapter.

In fact, if we consider the Jacobi symbol
( ·
·
)

and define
(
c
d

)∗
=

(
c
|d|

)
and(

c
d

)
∗ =

(
c
|d|

)
(−1)

sgn(c)−1
2

sgn(d)−1
2 we have, more generally (Theorem 2.18 in [33]).

Theorem 1.3.1. For M =

⎛
⎝ a b

c d

⎞
⎠ ∈ SL2(Z):

8



η(Mz) = ν(M)(cz + d)
1
2η(z)

where

ν(M) =

⎧⎨
⎩

(
d
c

)∗
e

πi
12((a+d)c−bd(c2−1)−3c) , if c is odd,(

c
d

)
∗ e

πi
12((a+d)c−bd(c2−1)+3d−3−3cd) , if c is even.

(1.3.1)

Theorem 1.3.2. Let π =
∏
n≥1

nrn be a partition. If

1.
∑
n≥1

rn = 2k, k ∈ Z,

2.
∑
n≥1

nrn ≡ 0(mod 24),

3.
∏
n≥1

n|rn| = m2f where f is a square free integer,

then for a natural number N satisfying:

4. rn = 0 if n � N ,

5.
∑
n≥1

N

n
rn ≡ 0(mod 24),

6. N ≡ 0(mod 4) if f ≡ (−1)k (mod 4),

N ≡ 0(mod 8) if f ≡ 2 (mod 4).

7.
∑
n≥1

(n, c)2

n
rn ≥ 0 (resp. > 0) for every c | N .

we have that ηπ is a modular form (resp. cusp form) for Γ0(N) with character equal to

the quadratic character of Q
(√

(−1)kf
)
.

Proof. See theorem 3.6 in [33]

An eta-product is a function of the form
∏
k≥1

η(kz)rk where the rk are non-negative in-

tegers. We will abbreviate, as usual,
∏
k

krk for this product. For example, 1373 represents

9



Partition Character (if not trivial) Level Partition Character (if not trivial) Level

241 - - 4282 32

83 - - 64 36

11231
(−23
·

)
23 2242 8

21221
(−11
·

)
44 12214182

(−2
·
)

8

31211
(−7
·
)

63 1373
(−7
·
)

7

41201
(−20
·

)
80 2363

(−3
·
)

12

61181
(−3
·
)

108 46
(−1
·
)

16

81161
(−2
·
)

128 12223262 6

122
(−1
·
)

144 1454 5

113151151 15 38 9

112171141 14 142244
(−1
·
)

4

214161121 24 1636 3

12112 11 212 4

22102 20 1828 2

3292 27 124 1

Table 1.1: Multiplicative eta-products

η(z)3η(7z)3. A multiplicative eta-product is one with the property that if am are the coeffi-

cients of its power series expansions then amn = aman whenever m and n are prime to each

other (a necessary condition for this is
∑
k

krk = 24).

All multiplicative eta-products have been classified in [23] and are listed in table 1.1

We note that all partitions associated to multiplicative eta-products have balanced cycle

shapes, i.e.
∏
k≥1

krk =
∏
k≥1

(
N

k

)rk

for some N .

We will be interested in the action of the Atkin-Lehner involutions on these eta-products.

For this, we first note that

⎛
⎝ f 0

0 1

⎞
⎠

⎛
⎝ ae b

cN de

⎞
⎠ =

⎛
⎝ a(e, f) b f

(e,f)

cN (e,f)
ef

d e
(e,f)

⎞
⎠

⎛
⎝ ef

(e,f)
0

0 (e, f)

⎞
⎠ (1.3.2)

and define on the set of divisors of N , e ∗ f := ef

(e,f)2
.

We define the weight-k operator |k [γ], for γ ∈ GL2(C), in the following way

(
f|k [γ]

)
(z) = det(γ)

k
2 (cz + d)−k f(γz)

10



If we assume that e||N and e∗ fixes the partition π =
∏
k≥1

krk then we have

ηπ |k [We] = e
k
2 (cNz + de)−k

∏
n≥1

η

⎛
⎝n

⎛
⎝ ae b

cN de

⎞
⎠ z

⎞
⎠

rn

= e
k
2 (cNz + de)−k

∏
n≥1

η

⎛
⎝

⎛
⎝ a(e, n) b n

(e,n)

cN (e,n)
en d e

(e,n)

⎞
⎠ en

(e, n)2
z

⎞
⎠

rn

= e
k
2 (cNz + de)−k

⎛
⎜⎝∏

n≥1
ν

⎛
⎝ a(e, n) b n

(e,n)

cN (e,n)
en d e

(e,n)

⎞
⎠

rn (
cNz + de

(e, n)

) rn
2

⎞
⎟⎠ ∏

n≥1
η

(
en

(e, n)2
z

)rn

=

⎛
⎜⎝∏

n≥1
ν

⎛
⎝ a(e, n) b n

(e,n)

cN (e,n)
en d e

(e,n)

⎞
⎠

rn
⎞
⎟⎠ ηπ (z) .

We denote this root of unity by ωe
π.

1.4 Eisenstein Series

The aim of this section is to give the necessary background on Eisenstein series and give

the action of the Atkin-Lehner involutions on them. All the facts that are stated but not

proven here can be found in [22], except the ones in section 1.4.3 for which we provide a

proof. We use the notation Ek(N,χ) for the orthogonal complement of Sk(N,χ) in Mk(N,χ)

with respect to the Peterson inner product.

1.4.1 Dirichlet Characters, Gauss sums, Gamma-function

and L-functions

A Dirichlet character modulo N is a homomorphism of multiplicative groups

χ : (Z/NZ)∗ −→ C∗

Any Dirichlet character χ modulo N lifts to a Dirichlet character χM modulo M for any

M with N |M setting χM(x) = χ(x mod N).

11



A Dirichlet character module M is said to be primitive if it is not obtained by lifting

another Dirichlet character module N , with N |M , in this way.

Every Dirichlet character χ modulo N can be extended to a function χ : Z −→ C setting

χ(n) =

⎧⎨
⎩ χ(nmodN) , if (n,N) = 1,

0 , if (n,N) > 1.

The trivial character modulo N is the character 1N defined by

1N(x) =

⎧⎨
⎩ 1 , if (x,N) = 1,

0 , if (x,N) > 1.

We note that 1N(0) = 1 if and only if N = 1.

If χ and ψ are Dirichlet characters modulo N then

N−1∑
n=0

χ(n)ψ(n) =

⎧⎨
⎩ φ(N) , if χ = ψ

0 , if χ �= ψ

In particular,
N−1∑
n=0

χ(n) =

⎧⎨
⎩ φ(N) , if χ = 1N

0 , if χ �= 1N

(1.4.1)

The Gauss sum of a Dirichlet character modulo N is defined by

g(χ) =
N−1∑
n=0

χ(n)μn
N , μN = e

2πi
N

We have for a primitive Dirichlet character χ modulo N the following

N−1∑
n=0

χ(n)μnm
N = χ(m)g(χ) (1.4.2)

Every Dirichlet character modulo N has an L-function attached to it:

L(s, χ) =
+∞∑
n=1

χ(n)

ns
, �(s) ≥ 1

12



This function converges for �(s) > 1 and can be extended meromorphically to all C. This

extension is always entire, except when χ = 1N in which case it has a simple pole at s = 1.

We introduce now the Gamma function

Γ(s) =

∫ +∞

t=0

e−tts−1dt, s ∈ C

This function is defined for �(s) > 0. However, it satisfies the following functional

equation

Γ(s+ 1) = sΓ(s)

and can thus be extended meromorphically to all C.

It satisfies the following formula for every positive even integer k:

π−
1−k
2 Γ(1−k

2
)

π−
k
2Γ(k

2
)

=
1

2

(−2πi)k

(k − 1)!

We have for a Dirichlet character χ modulo N :

π−
s
2Γ

(
s
2

)
N sL(s, χ) = π−

1−s
2 Γ

(
1−s
2

)
g(χ)L(1− s, χ) , if χ(−1) = 1

π−
s+1
2 Γ

(
s+1
2

)
N sL(s, χ) = −iπ−

2−s
2 Γ

(
2−s
2

)
g(χ)L(1− s, χ) , if χ(−1) = −1

In any of these cases we have, using the properties above,

L(k, χ) =
1

2

(−2πi)k

Nk(k − 1)!
g(χ)L(1− k, χ) (1.4.3)

We now extend the notion of Bernoulli numbers in two ways.

First, we define the Bernoulli polynomials Bk(X) by

tetX

et − 1
=

+∞∑
k=0

Bk(X)
tk

k!

and then we define the Bernoulli numbers of ψ, where ψ is a Dirichlet character modulo

13



u by

u−1∑
c=0

ψ(c)
tect

eut − 1
=

+∞∑
k=0

Bk,ψ
tk

k!

From this definitions we can see that

Bk,ψ = uk−1
u−1∑
c=0

ψ(c)Bk

( c

u

)

and the important fact that we will need later is that for k = 1 and ψ �= 11

u−1∑
c=0

ψ(c)

(
c

u
− 1

2

)
= B1,ψ = −L(0, ψ). (1.4.4)

1.4.2 Eisenstein Series

Fix N ∈ N and k ≥ 3 and consider for each v = (cv, dv) ∈ (Z/NZ)2 of order N :

Gv
k(τ) =

∑
(c,d)≡v(N)

1

(cτ + d)k
.

where v is any lift of (cv, dv) to Z2.

This is a modular form of weight k on Γ(N) and has a power series expansion

Gv
k(τ) = δ(cv)ζ

dv(k) +
(−2πi)k

(k − 1)!Nk

∑
n,m∈Z
mn>0

n≡cv(N)

sgn(m)mk−1μdvm
N qnmN , qN = e

2πiτ
N . (1.4.5)

where δ(cv) =

⎧⎨
⎩ 1 , if cv = 0,

0 , otherwise.
and ζdv(k) =

∑′

d≡dv(N)

1

dk
.

For k = 1, 2 we define Gv
k to be the function given by (1.4.5) and set also

14



gvk(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gv
k(τ) , if k ≥ 3

Gv
2(τ)− π

N2	(τ) , if k = 2

Gv
1(τ) +

2πi
N

(
cv
N
− 1

2

)
, if k = 1

These are weight-k invariant under Γ(N), even though g2(τ) happens to be non-holomorphic.

They satisfy

gvk [γ] = gvγk , for γ ∈ SL2(Z). (1.4.6)

Consider also for each ψ, ϕ primitive characters modulo u and v, respectively,

Gψ,ϕ
k (τ) =

u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)ϕ(d)g
(cv,d+ev)
k (τ) (1.4.7)

Eψ,ϕ
k (τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ(ψ)L(1− k, ϕ) + 2
+∞∑
n=1

σψ,ϕ
k−1(n)q

n , if k ≥ 2

δ(ϕ)L(0, ψ) + δ(ψ)L(0, ϕ) + 2
+∞∑
n=1

σψ,ϕ
0 (n)qn , if k = 1

(1.4.8)

where σψ,ϕ
k (n) =

∑
m|n

ψ(n/m)ϕ(m)mk and δ(θ) =

⎧⎨
⎩ 1, if θ = 11

0, otherwise

Using (1.4.5) we can show that Gψ,ϕ
k (τ) = (−2πi)k

(k−1)!
g(ϕ)
vk

Eψ,ϕ
k (τ).

We describe now a basis for the space Ek(N,χ) (recall definition given at the beginning

of this section).

Define Eψ,ϕ,t
k (τ) =

⎧⎨
⎩ E11,11

k (τ)− tE11,11
k (tτ) , if ψ = ϕ = 11 and k = 2

Eψ,ϕ
k (tτ) , otherwise

For k ≥ 3 the set

{
Eψ,ϕ,t

k | (ψ, ϕ, t) ∈ AN,k, ψϕ = χ
}

(1.4.9)

form a basis for Ek(N,χ), where AN,k is the set of triples (ψ, ϕ, t) such that ψ, ϕ are

primitive Dirichlet characters modulo u and v with (ψϕ)(−1) = (−1)k and t is a positive

integer with tuv|N .
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For k = 2 the set

{
Eψ,ϕ,t

2 | (ψ, ϕ, t) ∈ AN,2, ψϕ = χ
}

(1.4.10)

form a basis for E2(N,χ) where AN,2 is the set of triples (ψ, ϕ, t) such that ψ, ϕ are

primitive Dirichlet characters modulo u and v with (ψϕ)(−1) = 1 and t is a positive integer

with 1 < tuv|N .

For k = 1 the set

{
Eψ,ϕ,t

1 | ({ψ, ϕ} , t) ∈ AN,1, ψϕ = χ
}

(1.4.11)

form a basis for E1(N,χ) where AN,1 is the set of triples ({ψ, ϕ} , t) such that ψ, ϕ are

primitive Dirichlet characters modulo u and v with (ψϕ)(−1) = −1 and t is a positive integer

with tuv|N .

1.4.3 Action of the Atkin-Lehner involutions on Eisenstein Series

When both ψ, ϕ are trivial, Ek = E11,11
k is a modular form on SL2(Z) for even k ≥ 3 and

using (1.3.2) for any Atkin-Lehner involution We we have

Ek(nz)|k [We] =

(
e

(n, e)2

) k
2

Ek

(
ne

(n, e)2
z

)
(1.4.12)

When k = 2 we note that the vector space generated by
{
E11,11,d

2 | d divides N
}
is

⎧⎨
⎩

∑
d|N

βddE2(dτ)|
∑
d|N

βd = 0

⎫⎬
⎭ (1.4.13)

and a simple calculation shows that

E11,11,d
2 |k [We] = E11,11,e

2 − E11,11,e∗d
2 (1.4.14)
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Now we find what the action of the Fricke Involution

⎛
⎝ 0 −1

N 0

⎞
⎠ on Eisenstein series

Eψ,ϕ
k is for ψ, ϕ not both trivial.

For k ≥ 3,

Gψ,ϕ
k |k

⎛
⎝ 0 −1

1 0

⎞
⎠ (τ) =

u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)ϕ(d)g
(cv,d+ev)
k |k

⎛
⎝ 0 −1

1 0

⎞
⎠ (τ)

Using (1.4.6), this is

u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)ϕ(d)g
(d+ev,−cv)
k (τ)

=
u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)ϕ(d)δ(d+ ev)ζ−cv(k)+

u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)ϕ(d)
(−2πi)k

(k − 1)!Nk

∑
n,m∈Z
mn>0

n≡d+ev(N)

sgn(m)mk−1μ−cvmN qnmN

= ϕ(0)
u−1∑
c=0

ψ(c)ζ−cv(k) +
(−2πi)k

(k − 1)!Nk

u−1∑
c=0

v−1∑
d=0

∑
n,m∈Z
mn>0
n≡d(v)

ψ(c)ϕ(d)sgn(m)mk−1μ−cmu qnmN

= 2δ(ϕ)ψ(−1)L(k, ψ) + (−2πi)k
(k−1)!Nk

v−1∑
d=0

∑
n,m∈Z
mn>0
n≡d(v)

ϕ(n)sgn(m)mk−1
(

u−1∑
c=0

ψ(c)μ−cmu

)
qnmN

which from (1.4.2) and (1.4.3) gives

(−2πi)k

Nk(k − 1)!
δ(ϕ)ψ(−1)g(ψ)L(1− k, ψ)+

(−2πi)k

Nk(k − 1)!
ψ(−1)g(ψ)

∑
n,m∈Z
mn>0

ψ(m)ϕ(n)sgn(m)mk−1qnmN
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= (−2πi)k
Nk(k−1)!ψ(−1)g(ψ)

⎛
⎜⎝δ(ϕ)L(1− k, ψ) + 2

+∞∑
n=1
m=1

ψ(m)ϕ(n)mk−1qnmN

⎞
⎟⎠

= (−2πi)k
Nk(k−1)!ψ(−1)g(ψ)

⎛
⎝δ(ϕ)L(1− k, ψ) + 2

+∞∑
n=1

⎛
⎝∑

m|n
ψ(m)ϕ(n/m)mk−1

⎞
⎠ qnN

⎞
⎠

= (−2πi)k
Nk(k−1)!ψ(−1)g(ψ)

(
δ(ϕ)L(1− k, ψ) + 2

+∞∑
n=1

σϕ,ψ
k−1q

n
N

)

= (−2πi)k
Nk(k−1)!ψ(−1)g(ψ)Eϕ,ψ

k ( τ
N
).

From this we conclude that

Gψ,ϕ
k |k

⎛
⎝ 0 −1

N 0

⎞
⎠ (τ) = N

k
2

(−2πi)k

Nk(k − 1)!
ψ(−1)g(ψ)Eϕ,ψ

k (τ)

or equivalently

Eψ,ϕ
k |k

⎛
⎝ 0 −1

N 0

⎞
⎠ (τ) = ψ(−1)

(v
u

) k
2 g(ψ)

g(ϕ)
Eϕ,ψ

k (τ) (1.4.15)

For k = 2 the proof is essentially the same since the non-holomorphic parts of all the gv2

in the linear combination (1.4.7) cancel out if at least one of the characters is non-trivial.

To prove (1.4.15) for k = 1 we just have to show that

−N
1
2

1

2πi

v

g(ϕ)

u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)ϕ(d)
2πi

N

(
d+ ev

N
− 1

2

)
= ψ(−1)

(v

u

) 1
2 g(ψ)

g(ϕ)
δ(ψ)L(0, ϕ)

In fact,

−N
1
2

1
2πi

v
g(ϕ)

u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)ϕ(d)
2πi

N

(
d+ ev

N
− 1

2

)
=

= − (
v
u

) 1
2 1

g(ϕ)
ψ(0)

v−1∑
d=0

u−1∑
e=0

ϕ(d)

(
d+ ev

N
− 1

2

)
=

18



= − (
v
u

) 1
2 1

g(ϕ)
δ(ψ)

N−1∑
d=0

ϕ(d)

(
d

N
− 1

2

)
Using (1.4.4) this equals

− (
v
u

) 1
2 1

g(ϕ)
δ(ψ)B1,ϕ =

(
v
u

) 1
2 1

g(ϕ)
δ(ψ)L(0, ϕ) = ψ(−1)

(
v
u

) 1
2 g(ψ)

g(ϕ)
δ(ψ)L(0, ϕ)

From this we conclude that:

- for even k ≥ 2, (1.4.12) implies that the operator |k [We] acts on
∑
d|N

αdd
k
2Ek(dτ) as

multiplication by λ if and only if the αd satisfy

α de
(d,e)2

= λαd, for all d|N. (1.4.16)

and (1.4.15) gives that

- if k is even

(
Eψ,ϕ

k ± ψ(−1)
(v

u

) k
2 g(ψ)

g(ϕ)
Eϕ,ψ

k

)
|k

⎛
⎝ 0 −1

N 0

⎞
⎠ = ±

(
Eψ,ϕ

k ± ψ(−1)
(v

u

) k
2 g(ψ)

g(ϕ)
Eϕ,ψ

k

)

(1.4.17)

- if k is odd

(
Eψ,ϕ

k ∓ iψ(−1)
(v

u

) k
2 g(ψ)

g(ϕ)
Eϕ,ψ

k

)
|k

⎛
⎝ 0 −1

N 0

⎞
⎠ = ±i ·

(
Eψ,ϕ

k ∓ iψ(−1)
(v

u

) k
2 g(ψ)

g(ϕ)
Eϕ,ψ

k

)

(1.4.18)
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1.5 Genus Zero Congruence Subgroups with one di-

mensional spaces of Cusp Forms

In [55] a formula for the dimension of the space of cusp forms of weight k ≥ 2 for any

subgroup of SL2(R) is given.

This formula says that the dimension of the space of cusp forms of even weight k for a

certain group is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k − 1)(g − 1) +
(
k
2
− 1

)
m+

r∑
i=1

[
k

2

(
1− 1

ei

)]
if k ≥ 4,

g if k = 2,

1 if k = 0, m = 0,

0 if k = 0, m > 0,

0 if k < 0.

(1.5.1)

where g is the genus of the group, m the number of non-equivalent cusps, r the number

of non-equivalent elliptic fixed points and ei their order.

From that formula we can find all the possible signatures for groups with 1-dimensional

spaces of cusp forms. For this we just establish a bound on all the possible values of k, g, m,

r and the ei’s (we note that for e ≥ k
2
,
[
k
2

(
1− 1

e

)]
remains constant) and it is easy to make

a computer program that gives all the possible values for these quantities. We present the

results in table 1.2 (since we are working with congruence subgroups we omit the case where

there are no cusps).

We can find in [14] a complete list of all congruence subgroups (up to conjugacy) of

SL2(R) of genus 0 and 1.

From that list we can extract the genus zero groups which have signature in table 1.2.

The list of groups with the respective spaces of cusp forms of dimension 1 are listed in table

1.3.
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Signature Weight

g m T 2 4 6 8 10 12 14 16 18 20 22 24 26
0 1 24 •
0 1 23 • •
0 1 22M1, 3 ≤M • •
0 1 21M1N1, 3 ≤M ≤ N •
0 1 M1N1P 1, 3 ≤M ≤ N ≤ P •
0 1 2131 • • • • • •
0 1 2141 • • • •
0 1 2151 • • • •
0 1 2161 • • •
0 1 21M1, 7 ≤M • •
0 1 32 • • •
0 1 3141 • • •
0 1 31M1, 5 ≤M • •
0 1 42 • •
0 1 41M1, 5 ≤M •
0 1 M1N1, 5 ≤M ≤ N •
0 2 22 • •
0 2 21M1, 3 ≤M •
0 2 M1N1, 3 ≤M ≤ N •
0 2 21 • •
0 2 31 • •
0 2 M1, 4 ≤M •
0 3 Torsion Free •
0 3 M1, 2 ≤M •
0 4 Torsion Free •
1 1 Torsion Free • •
1 Any Any •

Table 1.2: List of signatures with corresponding weights for which the space of cusp forms is
one dimensional.
g=genus, m=number of cusps, T=torsion.

21



Group Weights

2 4 6 8 10 12 14 16 18 20 22 24 26
1A0

1 1+ • • • • • •
2A0

1 2|2 • • •
2B0

1/1B
0
2 2− • •

2C0
1/4B

0
1/2D

0
2 4− •

3A0
1 3|3 • •

3B0
1/1B

0
3 3− • •

3C0
1 9+ • •

3D0
1/9B

0
1/3D

0
3 9− •

4A0
1 • •

4C0
1/2C

0
2 4|2 •

4D0
1 •

4E0
1/8D

0
1/2F

0
2 /4F

0
2 8− •

5A0
1 •

5B0
1/1B

0
5 5− • •

5D0
1/5C

0
5 •

6A0
1 •

6B0
1 •

6C0
1/2D

0
3 6|2 •

6F 0
1 /3F

0
2 /2F

0
3 /1E

0
6 6− •

7C0
1/1B

0
7 7− •

1A0
2 2+ • • • •

2A0
2 4|2+ • •

2B0
2 4|2 + 2′ • •

2E0
2 8+ • •

3A0
2 • •

3B0
2/1C

0
6 6 + 2 • •

3E0
2 •

4A0
2 8|4+ •

4B0
2 •

4C0
2 •

5B0
2/1D

0
10 10 + 2 •

1A0
3 3+ • • •

2A0
3 6|2 + 3′ • •

2B0
3 6|2 + 3 •

2C0
3/1D

0
6 6 + 3 • •

3A0
3 9|3+ •

3B0
3 •

12B0
3 •

1A0
5 5+ • •

2A0
5 10|2 + 5′ •

5A0
5 • •

5B0
5 • •

10A0
5 •

10B0
5 •

1A0
6 6+ • •

1B0
6 6 + 6 • •

2A0
6 12|2+ •

2B0
6 12|2 + 2′ •

2C0
6 12|2 + 2 •

1A0
7 7+ • •

1A0
10 10+ • •

1A0
11 11+ •

1A0
14 14+ •

1A0
15 15+ •

Table 1.3: Genus zero groups with respective weights for which the space of cusp forms is
one dimensional
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1.6 Computation of the Cusp Forms

In this section we compute the cusp forms for each of the groups in table 1.3. It turns out

that we can write explicitly our forms using only the Dedekind eta-function and Eisenstein

series. We will make use of the properties of these functions stated in the previous sections.

We will also make use of formula (1.3.1) when we want to find the action of a particular

Atkin-Lehner involution on an eta-product, so we don’t mention it.

For all the forms except three, namely the weight 6 forms for 4A0
1 and 3A0

2 and the weight

4 for 12B0
3 , we can prove they are the forms we want using some description of the group.

Either we know it is of the form n|h + e, f, . . . or we use a set of matrices that generate

the group. For the other three forms we find their power series expansions by a method

to be described below. With the first few coefficients we can, with the aid of a computer,

find a candidate expression for the form. Having this candidate we use the Sturm bound to

guarantee that in fact this is the form we want.

Theorem 1.6.1. If Γ is a congruence subgroup of SL2 (Z) of index μ and f ∈ Mk(Γ) is a

modular then if the first μk
12

coefficients of f are zero then f is identically zero.

Proof. See Theorem 3.13 in [38].

The method we use to find a power series expansion of our forms is the following. If G is

a group of genus 0 we know that the field of modular functions of G is generated by a unique

(after normalization) element tG, i.e. every modular function for G is a rational function of tG.

We say that tG is a Hauptmodul for G. If we differentiate tG we get an automorphic function

of weight 2 which may fail to be a cusp form because it is not necessarily holomorphic. The

same applies to the weight 2k form
(
dtG
dτ

)k
however, we can multiply this form by a suitable

rational function of tG in order to obtain a cusp form. Thus, the problem of finding a q-

expansion for an even weight cusp form for a group G is reduced to finding a q-expansion for

the Hauptmodul of G.
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For several groups in our list the expression for the Hauptmodul is known, for example

[12]. When we don’t know tH for a group H but we know tG for some G containing H we

can find tH as follows.

Since tG is invariant under G it will also be invariant under H and then it is a rational

function of tH . To find the expression of this rational function we just have to consider the

following map:

π : H\H∗ −→ G\H∗

Hτ �−→ Gτ

where H∗ denotes H ∪ Q and H\H∗ (resp. G\H∗) is the Riemann surface associated to H

(resp. G). Since a modular function is completely determined, up to multiplication by a

constant, by its divisor, we can write for any P ∈ G\H∗, P �= G∞:

tG(τ)− tG(P ) =

∏
Q∈π−1(P )

(
tH(τ)− tH(Q)

)rQ
∏

Q∈π−1(G∞)\{H∞}

(
tH(τ)− tH(Q)

)rQ (1.6.1)

where rQ is the ramification index of π at Q. Using this equation for various P we can express

tG as a rational function of tH which allows us to write a q-expansion of tH .

We illustrate this method with an example. We take G = 1A0
1, H = 4A0

1, P = G · i and
Q = G · ρ where ρ = −1

2
+
√
3
2
i.

There are in H\H∗ three points A, B and C lying above P , with ramification indexes 1,

1 and 2 respectively, and two points D and E lying above Q with ramification indexes 1 and

3 respectively.

Using (1.6.1) for P and Q we get:

tG(τ)− 1728 =
(
tH(τ)− tH(A)

)(
tH(τ)− tH(B)

)(
tH(τ)− tH(C)

)
2

tG(τ) =
(
tH(τ)− tH(D)

)(
tH(τ)− tH(E)

)
3
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We can set tH(E) = 0 since we can add a constant to a Hauptmodul and it will still be

a generator for the function field of modular functions.

From the first equation we see that the polynomial X4 − tH(D)X3 − 1728 has to have a

double root and this implies that tH(D) has only four possible values: ±8± 8i.

These four values are the values of tH(D) for the four different conjugates of 4A0
1 under

powers of

⎡
⎣ 1 1

0 1

⎤
⎦ and so we fix, for example, tH(D) = 8 + 8i.

Now, we state our theorem:

Theorem 1.6.2. The following list gives generators for the 1-dimensional spaces of cusp

forms of table 1.3:

1A0
1 - S12 = 124, S16 = 124 · E4(τ), S18 = 124 · E6(τ), S20 = 124 · E8(τ)

S22 = 124 · E10(τ), S26 = 124 · E14(τ)

2A0
1 - S6 = 112, S10 = 112 · E4(τ), S14 = 112 · E8(τ)

2B0
1/1B

0
2 - S8 = 1828, S10 = 1828 · (E2(τ)− 2 · E2(2τ))

2C0
1/4B

0
1/2D

0
2 - S6 = 212

3A0
1 - S4 = 18, S10 = 18 · E6(τ)

3B0
1/1B

0
3 - S6 = 1636, S8 = 1636 · (E2(τ)− 3 · E2(3τ))

3C0
1 - S4 = 38, S6 = 38 · (E2(τ)− 6 · E2(3τ) + 9 · E2(9τ))

3D0
1/9B

0
1/3D

0
3 - S4 = 38

4A0
1 - S4 = η

(
z
4

)2
η
(

z
2

)−1
η (z)4 η (2z)5 η (4z)−2 + 2i · η

(
z
4

)−2
η
(

z
2

)5
η (z)4 η (2z)−1 η (4z)2

S6 = 16 ·
(
E

11,χ
3

(
τ
4

)
+ E

χ,11
3

(
τ
4

)
+ iE

11,χ
3

(
τ
2

)
+ 4iE

χ,11
3

(
τ
2

)
− 2iE

11,χ
3 (τ)− 32E

χ,11
3 (τ)

)

4C0
1/2C

0
2 - S4 = 1424, S6 = 1424 · (E2(τ)− 2 · E2(2τ))

4D0
1 - S4 = η

(
z
4

)2
η
(

z
2

)−1
η (z)4 η (2z)5 η (4z)−2 + 2i · η

(
z
4

)−2
η
(

z
2

)5
η (z)4 η (2z)−1 η (4z)2

4E0
1/8D

0
1/2F

0
2 /4F0

2 - S4 = 2444

5A0
1 - S4 = 1−151025−1 + 5 · 1254252

5B0
1/1B

0
5 - S4 = 1454, S6 = 1455 · (E2(τ)− 5 · E2(5τ))

5D0
1/5C

0
5 - S4 = 1454

6A0
1 - S4 = η

(
z
2

)8
+

(
8 + 8

√
3i

)
· η(2z)8

6B0
1 - S6 = η

(
z
3

)12
+ 18 · η (z)12 + 729 · η (3z)12

6C0
1/2D

0
3 - S4 = 2363 · E11,χ

1 (2τ), where χ(·) =
( ·

3

)

6F0
1 /3F0

2 /2F0
3 /1E0

6 - S4 = 12223262

7C0
1/1B

0
7 - S4 = 1373 · E11,χ

1 (τ), where χ(·) =
( ·

7

)

1A0
2 - S8 = 1828, S12 = 1828 · (E4(τ) + 4 · E4(2τ)), S14 = 1828 · (E6(τ) + 8 · E6(2τ))

S18 = 1828 · (E10(τ) + 32 · E10(2τ))

2A0
2 - S4 = 1424, S10 = 1424 · (E6(τ) + 8 · E6(2τ))

2B0
2 - S6 = 1424 · (E2(τ)− 2 · E2(2τ))

2E0
2 - S4 = 2444, S6 = 2444 · (E2(2τ)− 2 · E2(4τ))

3A0
2 - S4 = 38 + 4 · 68, S6 = 24 ·

(
4 (E4(τ)− 18E4(2τ) + 32E4(4τ))−

(
18 + 32 · 48

))

3B0
2/1C

0
6 - S4 = 12223262, S6 = 12223262 · (E2(τ) + 2 · E2(2τ)− 3 · E3(3τ)− 6 · E6(6τ))

3E0
2 - S4 = 18 + 4 · 28

4A0
2 - S6 = 1222 · (E4(τ)− 4 · E4(2τ))

4B0
2 - S6 = 1222 ·

(
E4

(
τ
2

)
− 7 · E4(τ)− 28 · E4(2τ) + 64 · E4(4τ)

)

4C0
2 - S4 = 4108−2 − 8i · 4−2810

5B0
2/1D

0
10 - S4 = 1454 + 4 · 24104
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1A0
3 - S8 = 1636 · (E2(τ)− 3 · E2(3τ)), S10 = 1636 · (E4(τ)− 9 · E4(3τ))

S14 = 1636 · (E8(τ)− 81 · E8(3τ))

2A0
3 - S4 = 1333 · E11,χ

1 (τ), S6 = 1333 ·
(
E

11,χ
3 (τ) + 3 · Eχ,11

3 (τ)
)
, where χ(·) =

( ·
3

)

2B0
3 - S6 = 1333 ·

(
E

11,χ
3 (τ)− 3 · Eχ,11

3 (τ)
)
, where χ(·) =

( ·
3

)

2C0
3/1D

0
6 - S4 = 12223262, S6 = 12223262 · (E2(τ)− 2 · E2(2τ) + 3 · E3(3τ)− 6 · E6(6τ))

3A0
3 - S6 = 1232 · (E4(τ)− 9 · E4(9τ))

3B0
3 - S4 = 133491 + 6 · 3494 + 27 · 3194273

12B0
3 - S4 =

(
3 · 2−2476612−3 − 2 · 2−34126112−2

)
+

+ 3
√
3i ·

(
5 · 2−64961012−5 − 2 · 2−74146512−4 − 3 · 2−54461512−6

)

1A0
5 - S4 = 1454, S10 = 1454 · (E6(τ) + 125 · E6(5τ))

2A0
5 - S6 = 1252 · (E4(τ)− 25 · E4(5τ))

5A0
5 - S4 = 1454, S6 = 1953 + 5

√
5 · 1359

5B0
5 - S4 = 1454, S6 = 1953 − 5

√
5 · 1359

10A0
5 - S6 = 1252 ·

(
E

11,χ
4 (τ)− 5

√
5E

χ,11
4 (τ)

)
, where χ(·) =

( ·
5

)

10B0
5 - S6 = 1252 ·

(
E

11,χ
4 (τ) + 5

√
5E

χ,11
4 (τ)

)
, where χ(·) =

( ·
5

)

1A0
6 - S4 = 12223262, S10 = 12223262 · (E6(τ) + 8 · E6(2τ) + 27 · E6(3τ) + 216 · E6(6τ))

1B0
6 - S4 = 12223262, S6 = 12223262 · (E2(τ)− 2 · E2(2τ)− 3 · E3(3τ) + 6 · E6(6τ))

2A0
6 - S6 = 11213161 · (E4(τ) + 4 · E4(2τ)− 9 · E4(3τ)− 36 · E4(6τ))

2B0
6 - S6 = 11213161 · (E4(τ)− 4 · E4(2τ) + 9 · E4(3τ)− 36 · E4(6τ))

2C0
6 - S6 = 11213161 · (E4(τ)− 4 · E4(2τ)− 9 · E4(3τ) + 36 · E4(6τ))

1A0
7 - S4 = 1373 · Eχ,1

1 (τ), S6 = 1373 ·
(
E

11,χ
3 (τ) + 7E

χ,11
3 (τ)

)
, where χ(·) =

( ·
7

)

1A0
10 - S4 = 1454 + 4 · 24104

S6 =
(
1454 − 4 · 24104

)
· (E2(τ)− 2 · E2(2τ) + 5 · E2(5τ)− 10 · E2(10τ))

1A0
11 - S6 = 12112 · (E4(τ)− 121 · E4(11τ))

1A0
14 - S6 = 112171141 · (E4(τ) + 4 · E4(2τ)− 49 · E4(7τ)− 196 · E4(14τ))

1A0
15 - S6 = 113151151 · (E4(τ) + 9 · E4(3τ)− 25 · E4(5τ)− 225 · E4(15τ))

Proof. We split the argument in two subcases. The main division is n|h+ e, f . . . and others.

We will show that for these groups (with two exceptions 10+ and 10 + 2 which we discuss

in more detail below) we can always express the cusp forms as a product of a multiplicative

eta-product and an Eisenstein series.

- Groups of type n|h+ e, f (except 10+ and 10 + 2).

For every group of this form in our list we can always find a multiplicative eta-product

on Γ0(N), where N = nh. This is unique if we always choose, when possible, one of

even weight. The only cases for which the eta-product has odd weight is N = 7, 12

which correspond to 1373, 2363, respectively.

So, for each N we fix a ηπ of level N .

We note that for our choice of the eta-product every part of π is divisible by h and find it

more convenient to work with the conjugate of n|h+ e, f . . . obtained from conjugation

by Mh =

⎛
⎝ h 0

0 1

⎞
⎠.
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We deal first with the cases where ηπ has even weight. In order to obtain a cusp form

for this group we consider the product

ηπ(τ/h) ·
⎛
⎝∑

d|n
h

αdd
k
2 · Ek(dτ)

⎞
⎠ (1.6.2)

The fact that ηπ is a cusp form guarantees that this is a cusp form as well. In order

to have cusp forms on that conjugate of n|h + e, f . . . we start by choosing the αd

so that that product is invariant (resp. negated) under the appropriate Atkin-Lehner

involutions. To make it invariant (resp. negated) under the action of an Atkin-Lhener

involution We we just have to restrict to those
∑
d|n

h

αdd
k
2 ·Ek(dτ) that satisfy condition

(1.4.16) with λ = ωe
π (resp. −ωe

π).

For k = 2 we also have to add the condition
∑
d|n

αd = 0 from (1.4.13). It happens

that it is always possible to choose the αd in this way and this choice is unique for the

groups and weights in table 1.3 (this was already necessarily true for those groups with

h = 1).

For example, if we consider 6+2 and try to find its weight 6 form, we take ηπ = 12223262

and since this has weight 4 and is fixed by W2 we need to find αd such that

α1E2(τ) + 2α2E2(2τ) + 3α3(3τ) + 6α(6τ)

is invariant under W2. But, from (1.4.13) and (1.4.16) we see that, up to multiplication

by a scalar, the only possibility is α1 = α2 = 1, α3 = α6 = −1.

It turns out that after doing this, the matrices M1 =

⎛
⎝ 1 1

0 1

⎞
⎠ and M2 =

⎛
⎝ 1 0

n
h

1

⎞
⎠

have the right action on these forms, i.e., they act as multiplication by λ
(
M−1

h M1Mh

)
,

λ
(
M−1

h M2Mh

)
respectively, where λ is the homomorphism from section 1.2.

This proves that these forms are invariant under the kernel of λ - or, more precisely,
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its conjugate by

⎛
⎝ h 0

0 1

⎞
⎠ - which is exactly the definition of n|h+ e, f, . . ..

The case where h = 1 is trivial so we give an example with h > 1.

For G = 2|2 the form to take is 112Ek(τ).

Since Ek is invariant under SL2 (Z) we just have to check the action on 112. Using

(1.3.1)

η(M1z)
12 = μ(M1)

12η(z)12 = eπiη(z)12

η(M2z)
12 = μ(M2)

12η(z)12 = eπiη(z)12.

which agrees with the given definition of λ.

When the weight k is odd we have to consider Eisenstein series with character. For

N = n = 7, we can work only with 7+ because the weight 4 for 7− must be the same

for 7+. In this case ηπ = 1373 has as a character χ =
(−7
·
)
and we multiply by an

Eisenstein series with character χ in order to obtain something without character. So,

1373 · E11,χ
1 is clearly the weight 4 cusp form on 7− with trivial character.

Using (1.3.2) and (1.3.1) we see that the Fricke involution

⎛
⎝ 0 −1

7 0

⎞
⎠ acts on 1373

as multiplication by i, and knowing that g(χ) =
√
7i (see Theorem 1 of Chapter 6 in

[35]), (1.4.15) applied to E11,χ
1 gives that it acts on E11,χ

1 as multiplication by −i. This

proves that 1373 · E11,χ
1 is the weight 4 form for 7+.

For the weight 6 form we consider E11,χ
3 + 7Eχ,11

3 instead of E11,χ
1 and the invariance

under the Fricke involution follows from (1.4.18).

The other odd weight case which corresponds to the groups 6|2, 6|2+3′ and 6|2+3, all

with ηπ = 2363, (or, actually, 1333 after conjugation by Mh) are done similarly. In this

case the Atkin-Lehner involution

⎛
⎝ 0 −1

3 0

⎞
⎠ acts as multiplication by −i and, again,

we can see that the matrices M1 and M2 have the right action on these forms.
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- 10+ and 10 + 2. We first note that we only need to work with 10+ because the weight

4 form for 10 + 2 must necessarily be the same for 10+.

In this case we don’t have a multiplicative eta-product of level 10. However we have

1454 which is of level 5 and then it is a form on Γ0(10). Since it is invariant under the

Atkin-Lehner involution W5 we only need to symmetrize under W2 to get the weight 4

form for 10+. This form is 1455 + 4 · 24104.

To obtain the weight 6 form we note that E2(q)− 2 · E2(q
2) + 5 · E2(q

5)− 10 · E2(q
10)

is a form on Γ0(10) that is fixed by W5 and negated by W2. So if we take the product

of this form not with 1455 + 4 · 24104 but with 1455 − 4 · 24104 we get a form that is

invariant under Γ0(10) and also all the Atkin-Lehner involutions.

We are left with the groups 4A0
1, 4D

0
1, 5A

0
1, 5D

0
1(5C

0
5), 6A

0
1, 6B

0
1 , 3A

0
2, 3E

0
2 , 4B

0
2 , 4C

0
2 ,

3B0
3 , 12B

0
3 , 5A

0
5, 5B

0
5 , 10A

0
5 and 10B0

5 , that will be analyzed individually.

We will repeatedly make statements about inclusion and normality of subgroups in larger

groups as well as claims that a set of matrices generates a group. All this information can

be found in [14] and [15].

Also, when we state the dimension of the space of cusp forms for a certain group we are

using formula (1.5.1) and the signature of the group can be found in [14].

Statements about linear independence of modular forms can also easily be checked by

analysing the first coefficients of their power series expansion.

- 4A0
1

This groups is

〈
Γ0(4) ∩ Γ0(4),

⎡
⎣ 1 −1

1 0

⎤
⎦ ,

⎡
⎣ 2 −5

1 −2

⎤
⎦〉

and the weight 4 form for 4A0
1

is the same for 4D0
1 =

〈
4G0

1,

⎡
⎣ 1 −1

1 0

⎤
⎦〉

.

We have a basis for the space of weight 4 cusp forms on 4G0
1 consisting only of eta-

quotients. We can take for example η( z
2
)−4η(z)16η(2z)−4, η( z

2
)4η(z)4 and η(z)4η(2z)4.
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We see what the action of

⎡
⎣ 1 −1

1 0

⎤
⎦ is on this basis.

(
η( z

2
)−4η(z)16η(2z)−4

)
|4

⎡
⎣ 1 −1

1 0

⎤
⎦ =

= z−4η

⎛
⎝

⎡
⎣ 1 −1

2 0

⎤
⎦ z

⎞
⎠
−4

η

⎛
⎝

⎡
⎣ 1 −1

1 0

⎤
⎦ z

⎞
⎠

16

η

⎛
⎝

⎡
⎣ 2 −2

1 0

⎤
⎦ z

⎞
⎠
−4

=

= z−4η

⎛
⎝

⎡
⎣ 1 −1

2 −1

⎤
⎦(

z+1
2

)⎞⎠
−4

η

⎛
⎝

⎡
⎣ 1 −1

1 0

⎤
⎦ z

⎞
⎠

16

η

⎛
⎝

⎡
⎣ 2 −1

1 0

⎤
⎦(

z
2

)⎞⎠
−4

= z−4(−1)z−2η
(
z+1
2

)−4
e−

2πi
3 z8η (z)16 e

πi
3

(
z
2

)−2
η
(
z
2

)−4
=

= 4e
πi
3 η

(
z+1
2

)−4
η (z)16 η

(
z
2

)−4
= 4i (q2 − 4q32 − 2q52 + 24q72 . . .) =

= 4iη(z)4η(2z)4.

(
η( z

2
)4η(z)4

)
|4

⎡
⎣ 1 −1

1 0

⎤
⎦ = z−4η

⎛
⎝

⎡
⎣ 1 −1

2 0

⎤
⎦ z

⎞
⎠

4

η

⎛
⎝

⎡
⎣ 1 −1

1 0

⎤
⎦ z

⎞
⎠

4

=

= z−4η

⎛
⎝

⎡
⎣ 1 −1

2 −1

⎤
⎦

⎡
⎣ 1 1

0 2

⎤
⎦ z

⎞
⎠

4

η

⎛
⎝

⎡
⎣ 1 −1

1 0

⎤
⎦ z

⎞
⎠

4

=

= z−4(−1)z2η
(
z+1
2

)4
e−

2πi
3 z2η(z)4 = e

πi
3 η

(
z+1
2

)4
η(z)4 =

= i (q4 + 4q34 − 2q54 − 24q74 + . . .) = iη( z
2
)−4η(z)16η(2z)−4.

(η(z)4η(2z)4)|4

⎡
⎣ 1 −1

1 0

⎤
⎦ = z−4η

⎛
⎝

⎡
⎣ 1 −1

1 0

⎤
⎦ z

⎞
⎠

4

η

⎛
⎝

⎡
⎣ 2 −2

1 0

⎤
⎦ z

⎞
⎠

4

=

= z−4η

⎛
⎝

⎡
⎣ 1 −1

1 0

⎤
⎦ z

⎞
⎠

4

η

⎛
⎝

⎡
⎣ 2 −1

1 0

⎤
⎦

⎡
⎣ 1 0

0 2

⎤
⎦ z

⎞
⎠

4

=

= z−4e−
2πi
3 z2η(z)4e−

πi
3

(
z
2

)2
η
(
z
2

)4
= −1

4
η(z)4η

(
z
2

)4
The action of

⎡
⎣ 1 −1

1 0

⎤
⎦ on the basis is thus given by the following matrix:
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⎡
⎢⎢⎢⎣

0 i 0

0 0 −1
4

4i 0 0

⎤
⎥⎥⎥⎦

and the only eigenvector associated to the eigenvalue 1 is

η
(
z
2

)4
η(z)4 − 4 · η(z)4η(2z)4 + i · η (

z
2

)−4
η(z)16η(2z)−4.

Knowing that

η
(z
4

)2

η
(z
2

)−1
η (z)4 η (2z)5 η (4z)−2

and

η
(z
4

)−2
η
(z
2

)5

η (z)4 η (2z)−1 η (4z)2

are forms on 4G0
1 it is a matter of writing these as a linear combination of the elements

in the basis to verify that the weigth 4 form for 4A0
1 can also be expressed as

η
(z
4

)2

η
(z
2

)−1
η (z)4 η (2z)5 η (4z)−2 + 2i · η

(z
4

)−2
η
(z
2

)5

η (z)4 η (2z)−1 η (4z)2

We find now the weight 6 form for this group. In order to obtain the its power series

expansion and following what has been done at the beginning of this section we first

observe that the divisors of dtH
dτ

and
(
dtH
dτ

)
3 are 1

2
A+1

2
B+2

3
D−∞ and 3

2
A+3

2
B+2D−3∞,

respectively.

From this we conclude that

(
dtH
dτ

)
3(

tH(τ)− tH(A)
)(
tH(τ)− tH(B)

)(
tH(τ)− tH(D)

)2
which has divisor 1

2
A+ 1

2
B +∞ and consequently is our weight 6 form.

From the factorization X4− (8+8i)X3−1728 =
(
X2+(4+4i)X+24i

)(
X− (6+6i)

)
2

we conclude that
(
tH(τ)− tH(A)

)(
tH(τ)− tH(B)

)
= tH(τ)

2 + (4 + 4i)tH(τ) + 24i and

the expression above becomes
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(
dtH
dτ

)
3(

tH(τ)2 + (4 + 4i)tH(τ) + 24i
)(
tH(τ)− (8 + 8i)

)2
This gives a power series expansion for this form. If we conjugate this group by⎡
⎣ 1

4
0

0 1

⎤
⎦ we get a group with cusp width 1 at infinity that contains Γ0(16). This

has the effect of having integer powers of q in the power series expansion.

Using (1.4.8) we can find a power series expansion for

(2 + 2i)46(E11,χ
3 (τ) + Eχ,11

3 (τ) + iE11,χ
3 (2τ) + 4iEχ,11

3 (2τ)− 2iE11,χ
3 (4τ)− 32Eχ,11

3 (4τ))

where χ =
(−1
·
)
, and then check if sufficiently many coefficients agree with the power

series expansion above.

Since this has weight 6 and is a modular form on Γ0(16) which has index 24 in SL2(Z)

we just have to compare the first 6·24
12

= 12 coefficients of these two modular forms to

guarantee that they are the equal.

With the help of a computer we have confirmed so and the form on 4A0
1 is then

16 ·
(
E11,χ

3

(τ
4

)
+ Eχ,11

3

(τ
4

)
+ iE11,χ

3

(τ
2

)
+ 4iEχ,11

3

(τ
2

)
− 2iE11,χ

3 (τ)− 32Eχ,11
3 (τ)

)

- 4D0
1

The weight 4 form for this group is the same for 4A0
1.

- 5A0
1

This group contains 5G0
1 = Γ0(5)∩Γ0(5) but not normally. However, we have a normal

series 5G0
1 � 5E0

1 � 5A0
1.

The space of weight 4 cusp forms for 5G0
1 has dimension 5 and a basis for this space is:

η(
z

5
)4η(z)4, η(z)4η(5z)4, η(

z

5
)3η(z)4η(5z), η(

z

5
)η(z)4η(5z)3, η(

z

5
)2η(z)4η(5z)2
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There is one more weight 4 eta-product on 5G0
1. It is

η(
z

5
)−1η(z)10η(5z)−1

We will use the fact that

η(
z

5
)−1η(z)10η(5z)−1 = η(

z

5
)4η(z)4 + 25 · η(z)4η(5z)4+

+ 5 · η(z
5
)3η(z)4η(5z) + 25 · η(z

5
)η(z)4η(5z)3 + 15 · η(z

5
)2η(z)4η(5z)2

The group 5E0
1 is generated over 5G0

1 by

⎡
⎣ 5 −1

1 0

⎤
⎦

Symmetrization by this matrix gives a basis for the space of weight 4 forms on 5E0
1 .

This basis is

η(
z

5
)4η(z)4 + 25 · η(z)4η(5z)4, η(z

5
)3η(z)4η(5z) + 5η(

z

5
)η(z)4η(5z)3, η(

z

5
)2η(z)4η(5z)2

Now, 5A0
1 is generated over 5E0

1 by

⎡
⎣ 2 −3

1 −1

⎤
⎦ and the action of this matrix in the

basis above is given by:

⎡
⎢⎢⎢⎣

−1+√5
2

−5+
√
5

10
1
5

4
√
5 −3 5−√5

5

10
√
5 −10 7−√5

2

⎤
⎥⎥⎥⎦

The eigenvector associated to the eigenvalue 1 is

η(
z

5
)4η(z)4 + 25 · η(z)4η(5z)4 + 5η(

z

5
)3η(z)4η(5z)+

+ 25η(
z

5
)η(z)4η(5z)3 + 20 · η(z

5
)2η(z)4η(5z)2
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Using the linear relation above we conclude that the weight 4 form for 5A0
1 is

η(
z

5
)−1η(z)10η(5z)−1 + 5 · η(z

5
)2η(z)4η(5z)2

- 5D0
1(5C

0
5)

This group is Γ1(5) and its weight 4 form is η(z)4η(5z)4.

- 6A0
1

This group is

〈
Γ0(6) ∩ Γ0(6),

⎡
⎣ 1 −1

1 0

⎤
⎦ ,

⎡
⎣ −1 2

2 −5

⎤
⎦ ,

⎡
⎣ −7 4

−2 1

⎤
⎦〉

.

The following are weight 4 forms on 6F 1
1 = Γ0(6) ∩ Γ0(6): η

(
z
2

)8
, η (z)8 and η (2z)8.

Since they are also invariant under

⎡
⎣ −1 2

2 −5

⎤
⎦ and

⎡
⎣ −7 4

−2 1

⎤
⎦ they are forms on

6C1
1 =

〈⎡
⎣ −1 2

2 −5

⎤
⎦ ,

⎡
⎣ −7 4

−2 1

⎤
⎦ , 6F 1

1

〉
. They also form a base because the space of

weight 4 cusp forms has dimension 3.

The group 6C1
1 is normal in 6A0

1 and the action of

⎡
⎣ 1 −1

1 0

⎤
⎦ on this basis is given by

the matrix:

⎡
⎢⎢⎢⎣

e
πi
3 0 1

16
e−

2πi
3

0 e
2πi
3 0

16e
πi
3 0 0

⎤
⎥⎥⎥⎦

The eigenvector associated to the eigenvalue 1 is

η
(z
2

)8

+
(
8 + 8

√
3i
)
· η(2z)8.

This is the weight 4 form for 6A0
1.

- 6B0
1
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This group is

〈
Γ0(6) ∩ Γ0(6),

⎡
⎣ 1 −2

1 −1

⎤
⎦ ,

⎡
⎣ 3 −1

1 0

⎤
⎦〉

and contains the group 6F 1
1 =

Γ0(6) ∩ Γ0(6) normally.

It is not hard to see that η
(
z
3

)12
, η (z)12 , η (3z)12, η

(
z
3

)6 · η (z)6, η (
z
3

)6 · η (3z)6 and

η (z)6 · η (3z)6 are forms on 6F 1
1 .

Symmetrizing by

⎡
⎣ 3 −1

1 0

⎤
⎦ we get that

η(
z

3
)12 + 729η(3z)12, η(z)12, η(

z

3
)6η(3z)6, η(

z

3
)6η(z)6 − 27η(z)6η(3z)6

are forms on 6B1
1 =

〈
6F 1

1 ,

⎡
⎣ 3 −1

1 0

⎤
⎦〉

The space of weight 4 cusp forms for 6B1
1 has dimension 4 and then they form a basis

for this space.

Now, 6B0
1 normalizes 6B1

1 and is generated by M =

⎡
⎣ 1 −2

1 −1

⎤
⎦ over 6B1

1 . The matrix

that gives the action of |4 [M ] on that basis is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
27

0

36 −1 2
3

0

0 0 −1 0

0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and the only eigenvector associated to the eigenvalue 1 is

η
(z
3

)12

+ 18 · η (z)12 + 729 · η (3z)12 .

This is the weight 6 form for 6B0
1 .

- 3A0
2
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This groups is

〈
Γ0(6) ∩ Γ0(3),

⎡
⎣ 6 −1

2 0

⎤
⎦ ,

⎡
⎣ 4 −5

2 −2

⎤
⎦〉

and we claim that the weight

4 form for this group is η(z)8 + 4 · η(2z)8.

It is clear that both η(z)8 and η(2z)8 are fixed by Γ0(6) ∩ Γ0(3) and interchanged by

the other two matrices.

For the weight 6 form we proceed as for 4A0
1. In this case we have t1A0

2
= t3

3A0
2
+12t3A0

2
−

256 and the expression for the weight 6 form is

(
dt

3A0
2

dτ

)3

(t
3A0

2
+12)2(t

3A0
2
+4)t

3A0
2

.

If we conjugate this group by

⎡
⎣ 1

3
0

0 1

⎤
⎦ we get a group with cusp width 1 at infinity

that contains Γ0(36). This has the effect of having integer powers of q in the power

series expansion.

Since 64 · (16 (E4(3τ)− 18E4(6τ) + 32E4(12τ))− 4
(
38 + 32 · 128)) is also a weight 6 form

on Γ0(36) which has index 72 in SL2 (Z) we just have to compare the first 72·6
12

= 36

coefficients of both modular forms to be sure that they are equal.

This is in fact true and the weight 6 form on 3A0
2 is then

24 · (4 (E4(τ)− 18E4(2τ) + 32E4(4τ))−
(
18 + 32 · 48))

- 3E0
2

This group is 〈M1,M2,M3〉 where M1 =

⎡
⎣ 1 3

0 1

⎤
⎦, M2 =

⎡
⎣ 17 −3

6 −1

⎤
⎦ and M3 =

⎡
⎣ 4 −5

2 −2

⎤
⎦.

Now, the weight 4 form for this group is η(z)8+4 · η(2z)8. This follows from the action

of the matrices above on η(z)8 and η(2z)8:

η(z)8 |4 [M1] = η(z)8, η(2z)8 |4 [M1] = η(2z)8

η(z)8 |4 [M2] = η(z)8, η(2z)8 |4 [M2] = η(2z)8
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η(z)8 |4 [M3] = 4 · η(2z)8, η(2z)8 |4 [M3] =
1
4
· η(z)8

- 4B0
2

This group is 〈4F 1
2 , A,B〉 where 4F 1

2 = Γ0(8) ∩ Γ0(4), A =

⎡
⎣ 4 −1

2 0

⎤
⎦ and B =

⎡
⎣ 2 −3

2 −2

⎤
⎦.

We claim that η(z)2η(2z)2 ·(E4(
z
2
)− 7 · E4(z)− 28 · E4(2z) + 64 · E4(4z)

)
is the weight

6 form for 4B0
2 .

It is easy to see that it is invariant under the action of 4F 1
2 and the matrix A.

We now prove it is invariant under the action B.

Since B negates η(z)2η(2z)2 we have to prove that it also negates E4(
z
2
)− 7 · E4(z)−

28 · E4(2z) + 64 · E4(4z).

But this is equivalent to E4(
z
2
)+E4(

z+1
2
)− 14 ·E4(z)− 56 ·E4(2z)+ 4 ·E4(z+

1
2
)+ 64 ·

E4(4z) = 0.

We know that E4 is an eigenform for the Hecke Operators. In particular, for T2 we

have T2(E4) = 9 ·E4 which is equivalent to E4(
z
2
) +E4(

z+1
2
) + 16 ·E4(2z) = 18 ·E4(z).

With this, we can prove that B negates E4(
z
2
)− 7 · E4(z)− 28 · E4(2z) + 64 · E4(4z):

E4(
z
2
) + E4(

z+1
2
)− 14 · E4(z)− 56 · E4(2z) + 4 · E4(z +

1
2
) + 64 · E4(4z) =

18 · E4(z)− 16 · E4(2z)− 14 · E4(z)− 56 · E4(2z) + 4 · E4(z +
1
2
) + 64 · E4(4z) =

4 · E4(z) + 4 · E4(z +
1
2
)− 72 · E4(2z) + 64 · E4(4z)

72 · E4(2z)− 64 · E4(4z)− 72 · E4(4z) + 64 · E4(4z) = 0

- 4C0
2

This group is 〈M1,M2,M3,M4〉, where M1 =

⎡
⎣ 1 4

0 1

⎤
⎦, M2 =

⎡
⎣ 1 −1

2 −1

⎤
⎦, M3 =

⎡
⎣ 2 −5

2 −4

⎤
⎦ and M4 =

⎡
⎣ 6 −25

2 −8

⎤
⎦.
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Now, the weight 4 form for this group is η(z)10η(2z)−2 − 8i · η(z)−2η(2z)10. This follows
from the action of the matrices above on η(z)10η(2z)−2 and η(z)−1η(2z)10:

η(z)10η(2z)−2 |4 [M1] = η(z)10η(2z)−2, η(z)−2η(2z)10 |4 [M1] = η(z)−2η(2z)10

η(z)10η(2z)−2 |4 [M2] = η(z)10η(2z)−2, η(z)−2η(2z)10 |4 [M2] = η(z)−2η(2z)10

η(z)10η(2z)−2 |4 [M3] = −8i · η(z)−2η(2z)10, η(z)−2η(2z)10 |4 [M3] =
i

8
· η(z)10η(2z)−2

η(z)10η(2z)−2 |4 [M4] = −8i · η(z)−2η(2z)10, η(z)−2η(2z)10 |4 [M4] =
i

8
· η(z)10η(2z)−2

- 3B0
3

This group is

〈
Γ0(9) ∩ Γ0(3),

⎡
⎣ 2 −1

3 −1

⎤
⎦ ,

⎡
⎣ 9 −7

12 −9

⎤
⎦〉

and it contains the subgroup

Γ0(9) ∩ Γ0(3) = 3B1
3 normally.

We can see that the following eta-products

η(
z

3
)3η(z)4η(3z), η(z)η(3z)4η(9z)3, η(

z

3
)3η(z)1η(3z)1η(9z)3, η(z)8, η(3z)8, η(z)4η(3z)4

are forms on 3B1
3 . Symmetrizing under

⎡
⎣ 9 −7

12 −9

⎤
⎦ gives that η( z

3
)3η(z)4η(3z) + 27 ·

η(z)η(3z)4η(9z)3, η(z)8 + 9 · η(3z)8, η( z
3
)3η(z)1η(3z)1η(9z)3 and η(z)4η(3z)4 are forms

on 3E0
3 =

〈
3B1

3 ,

⎡
⎣ 9 −7

12 −9

⎤
⎦〉

.

Since these forms are linearly independent and the space of weight 4 cusp forms for

3E0
3 has dimension 4 they form a basis.

Now the action of

⎡
⎣ 2 −1

3 −1

⎤
⎦ on this basis is given by the matrix
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 3−√3i
18

0

0 e
2πi
3 0 0

0 0 e−
2πi
3 0

9−√
3i 0 −1 e

2πi
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The eigenvector associated to the eigenvalue 1 is

η
(z
3

)3

η(z)4η(3z) + 6 · η(z)4η(3z)4 + 27 · η(z)η(3z)4η(9z)3

This is the weight 4 form for 3B0
3 .

- 12B0
3

For the weight 4 form for this group we proceed as for 4A0
1 and 3A0

2. In this case we

have t12B0
3
= t2

2B0
3
+ 6

√
3i and t1A0

3
= t2

2B0
3
+ 54 and an expression for t1A0

3
can be found

in [12]. The expression for the weight 6 form is

(
dt

12B0
3

dτ

)2

t
12B0

3

(
t2
12B0

3

+12
√
3i

)

If we conjugate 12B0
3 by

⎡
⎣ 1

4
0

0 1

⎤
⎦ we get a group with cusp width 1 at infinity that

contains Γ0(432)
⋂

Γ1(12). This has the effect of having integer powers of q in the

power series expansion.

Since the form given in the table is also a weight 4 form on Γ0(432)
⋂

Γ1(12) (because

of theorem 1.3.2 it is actually a form on Γ0(48) with a character mod 12), which has

index 3456 in SL2 (Z), we just have to compare the first 3456·4
12

= 1152 coefficients of

both modular forms to be sure that they are equal.

This is in fact true and the weight 4 form on 12B0
3 is thus the one given in the table.

- 5A0
5 and 5B0

5

Both groups contain 5C0
5 = Γ1(5) with index two. 5A0

5 and 5B0
5 are generated over 5C0

5
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by M1 =

⎡
⎣ 5 −3

10 −5

⎤
⎦ and M2 =

⎡
⎣ 0 −1

5 0

⎤
⎦, respectively.

The weight 4 form for these groups must be the same for 5C0
5 which is η(z)4η(5z)4.

For the weight 6 form we note that η(z)5η(5z)−1 and η(z)−1η(5z)5 are forms of weight

2 on 5C0
5 and that

η(z)5η(5z)−1 |2 [M1] = 5
√
5 · η(z)−1η(5z)5

η(z)5η(5z)−1 |2 [M2] = −5
√
5 · η(z)−1η(5z)5

Then, the weight 6 forms for 5A0
5 and 5B0

5 are, respectively, η(z)9η(5z)3 + 5
√
5 ·

η(z)3η(5z)9 and η(z)9η(5z)3 − 5
√
5 · η(z)3η(5z)9.

- 10A0
5

This group is

〈⎡
⎣ 1 2

0 1

⎤
⎦ ,

⎡
⎣ 10 −1

5 0

⎤
⎦ ,

⎡
⎣ 15 −8

10 −5

⎤
⎦ ,

⎡
⎣ 5 −6

5 −5

⎤
⎦〉

and we can write

⎡
⎣ 10 −1

5 0

⎤
⎦ =

⎡
⎣ 0 −1

5 0

⎤
⎦

⎡
⎣ 1 0

−10 1

⎤
⎦

⎡
⎣ 15 −8

10 −5

⎤
⎦ =

⎡
⎣ 0 −1

5 0

⎤
⎦

⎡
⎣ 2 −1

−15 8

⎤
⎦

⎡
⎣ 5 −6

5 −5

⎤
⎦ =

⎡
⎣ 0 −1

5 0

⎤
⎦

⎡
⎣ 1 −1

−5 6

⎤
⎦

Now,

⎡
⎣ 1 2

0 1

⎤
⎦ fixes both 1252 and E11,χ

4 (τ)−5
√
5Eχ,11

4 (τ) and using (1.3.1) and (1.4.17)

we see that both these forms are negated by the Fricke involution, proving that the

product is fixed.

The action of the matrices

⎡
⎣ 1 0

−10 1

⎤
⎦,

⎡
⎣ 2 −1

−15 8

⎤
⎦ and

⎡
⎣ 1 −1

−5 6

⎤
⎦ can be seen,

using (1.3.1) again and (1.4.9), to be multiplication by 1, −1 and 1, respectively, guar-

anteeing that they fix the product again.
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This proves that 1252 · (E11,χ
4 (τ)− 5

√
5Eχ,11

4 (τ)
)
is the weight 6 form for this group.

- 10B0
5

This group is

〈⎡
⎣ 1 2

0 1

⎤
⎦ ,

⎡
⎣ 5 −1

5 0

⎤
⎦ ,

⎡
⎣ 5 −3

10 −5

⎤
⎦ ,

⎡
⎣ 10 −11

5 −5

⎤
⎦ ,

⎡
⎣ 15 −23

10 −15

⎤
⎦〉

and a proof can be carried out in an exactly similar manner as for 10A0
5
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Chapter 2

2A-replication and the Baby-Monster

2.1 Introduction

In [12], a great amount of data relating M, the Monster group, to modular objects is

given. Namely, we can attach a Hauptmodul for some genus zero congruence subgroup of

PSL2(R) to every conjugacy class in the M. This correspondence the has following property.

If we denote by Tg(q) = 1
q
+

∑
k≥1

ak(g)q
k the Hauptmodul attached to the element g ∈ M

then, for every n ∈ N, the map g → an(g) is the character of a representation of M. Also,

the notion of replicability was defined in the same paper.

A function f(q) = 1
q
+

∑
k≥1

akq
k is said to be replicable if, for each n ∈ N, there exists

f (n)(q) = 1
q
+

∑
k≥1

a
(n)
k qk such that

∑
ad=n
0≤b<d

f (a)

(
aτ + b

d

)
= Pn,f (f(q)),

where Pn,f (X) is the n-th Faber polynomial of f . This is the unique polynomial such that

Pn,f (f(q))− 1
qn

has only positive powers of q.

It was proved by Borcherds ([7]) that the McKay-Thompson series associated to conjugacy

classes of elements in M are replicable and their replicates are given by the power map
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structure in the group, i.e., T
(n)
g = Tgn . His proof uses the theory of generalized Kac-

Moody algebras and vertex operator algebras, namely V � which has the Monster group as

group of automorphisms. The vertez operator algebra V � was first constructed by Frenkel,

Lepowsky and Meurman ([28]) and shown to have graded dimension equal to the J-function,

the Hauptmodul (for the modular group) associated to the identity element in M.

Norton ([48]) generalized the conjectures from [12] a bit further stating that, for every

pair (g, h) of commuting elements in the Monster, there is a function Fg,h(τ) such that:

- Fg,h(τ) is invariant under simultaneous conjugation of g and h.

- For any

⎡
⎣ a b

c d

⎤
⎦ ∈ SL2(Z) there exists a root of unity γ such that

Fgahc,gbhd(τ) = γFg,h(
aτ + b

cτ + d
)

- The coefficients of the q-expansion of Fg,h(τ) for a fixed g form characters of a central

extension of CM(g), the centralizer of g in M.

- Unless Fg,h(τ) is constant, its invariance group will be genus-zero and commensurable

with SL2(Z).

- Fg,h(τ) = j(q)− 744 if and only if g = h = 1.

In [34], Höhn takes g equal to an element in class 2A in the Monster. Similarly to

what Borcherds did for the Monster, Höhn constructs a vertex operator algebra which has

2 · B symmetry. From that vertex operator algebra he obtains a generalized Kac-Moody

algebra, the Baby-Monster Lie algebra, whose denominator identity gives enough information

to conclude that the McKay-Thompson series of the vertex operator algebra are replicable

functions. Knowing that replicable functions are determined by the first few coefficients,

Höhn just computes enough of them and compares the results to the coefficients of known

Hauptmoduls for some genus zero groups, which are also known to be replicable. This
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comparison is enough to identify every McKay-Thompson series as a Hauptmodul for some

genus zero group.

In this chapter we find a different form of replicability and prove that it reflects the power

map structure in 2 · B. We call it 2A-replicability as it is motivated by the Hecke Operators

of Γ0(2)+, the group associated to an element of class 2A in M.

The identities coming from 2A-replication identities are implicit in the work of Carnahan

([9], [10]) and Borcherds ([7], section 10). However, we have shown that these identities make

more sense if we look at them as 2A-replication identities. This is what will allow us to mimic

Borcherds’ proof of the Moonshine Conjectures in order to prove that the McKay-Thompson

series for the vertex operator algebra with 2 · B symmetry are the ones stated by Höhn in

[34].

In section 2.2 we make an introduction to Hecke Operators, find the Hecke Operators

for Γ0(2)+ and from that define 2A-replicability. In section 2.3 we prove that a completely

2A-replicable function is completely determined by the first 5 coeffcients of the function and

their replicates. Section 2.4 is the final and most important section of this chapter as we

prove that the McKay-Thompson series are completely 2A-replicable with 2A-replicability

respecting the power map structure in 2 · B.

2.2 Hecke operators and replication

Some references for the background material needed for this section are: Chapter 5 in [22]

for Hecke Operators and [12] for the basics of Moonshine and the concept of replicability.

For G a subgroup of PSL2(R) we consider F(G) the set of functions defined on the upper

half-plane that are invariant under the action G. Given two subgroups G1, G2 of PSL2(R)

and an element α ∈ PSL2(R) we define the Hecke operator

[G1αG2] : F(G1) −→ F(G2)
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in the following way. Consider a decomposition G1αG2 =
n⋃

j=1

G1γj as a disjoint union and

define

f [G1αG2] (z) =
n∑

j=1

f(γjz)

If f is invariant under G1 then f [G1αG2] is invariant under G2.

For example, if G = PSL2(R) the Hecke operators Tn are given by

Tn(f)(z) =
∑
ad=n
0≤b<d

f

(
az + b

d

)
(2.2.1)

where Tp, for p prime, is the Hecke operator associated with the matrix α =

⎡
⎣ 1 0

0 p

⎤
⎦ and

the Tn, for composite n, are defined in the following way. Tpn+1 = TpnTp − pTpn−1 , for p

prime and n ∈ N and TmTn = Tmn when m and n are natural numbers with (m,n) = 1.

We compare 2.2.1 with the definition of replicability. A function f(z) is replicable if for

every n ∈ N there exists f (n)(z) such that

Pn,f (f)(z) =
∑
ad=n
0≤b<d

f (a)

(
az + b

d

)
(2.2.2)

where Pn,f is the n-th Faber polynomial of f .

The Hauptmoduls for genus zero groups with rational integer coefficients are known to

be replicable functions ([19]). The genus zero congruence subgroups of PSL2(R) have been

classified in [14] and it is conjectured that their Hauptmoduls are all replicable functions

with rational integer coefficients. The set of completely replicable functions is a distinguished

subset of the set of replicable functions. These are the functions that besides satisfying 2.2.2

also satisfy
(
f (m)

)(n)
= f (mn) for every positive integers m,n. They were classified in [1]

and include the set of Monstrous functions because, for g ∈ M, T
(n)
g = Tgn . The purpose of

the next section is to define a sort of replicability, that we call 2A-replicability, based on the
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Hecke Operators for Γ0(2)+. Also in this case we can define complete 2A-replicability and we

will see that the set of completely 2A-replicable functions also include the McKay-Thompson

series for the Baby Monster group.

2.2.1 Hecke Operators for Γ0(2)+

We start by seeing what the Hecke operators are for Γ0(2)+. We want to find for every

m ∈ N a disjoint union decomposition

(Γ0(2)+)

⎡
⎣ 1 0

0 m

⎤
⎦ (Γ0(2)+) =

4⋃
j=1

(Γ0(2)+) γj

Since Γ0(2)+ has only one cusp we can choose the representatives γj to have lower left

entry equal to zero. We start with an element

⎡
⎣ a b

2c d

⎤
⎦ ∈ Γ0(2) and see what the represen-

tative of this type is for

(Γ0(2)+)

⎡
⎣ 1 0

0 m

⎤
⎦

⎡
⎣ a b

2c d

⎤
⎦ = (Γ0(2)+)

⎡
⎣ a b

2mc md

⎤
⎦

Since this matrix sends ∞ to a
2mc

=
a

(a,m)

2 m
(a,m)

c
we can take some matrix of the form

⎡
⎣ x y

−2 m
(a,m)

c a
(a,m)

⎤
⎦ ∈ Γ0(2)

and now

46



⎡
⎣ x y

−2 m
(a,m)

c a
(a,m)

⎤
⎦

⎡
⎣ a b

2mc md

⎤
⎦ =

=

⎡
⎣ ax+ 2mcy bx+ ymd

0 m
(a,m)

(ad− 2bc)

⎤
⎦ =

⎡
⎣ (a,m) b′

0 m
(a,m)

⎤
⎦

is a representative for the same right coset. If need be we can multiply this identity on

the left by a power of

⎡
⎣ 1 1

0 1

⎤
⎦, which is obviously in Γ0(2)+, to have 0 ≤ b′ < m

(a,m)
. We

have proved that every right coset

(Γ0(2)+)

⎡
⎣ 1 0

0 m

⎤
⎦

⎡
⎣ a b

2c d

⎤
⎦

has a representative of the form

⎡
⎣ x y

0 z

⎤
⎦, with xz = m, x odd and 0 ≤ y < z, i.e., we

proved one inclusion of the following equality

(Γ0(2)+)

⎡
⎣ 1 0

0 m

⎤
⎦Γ0(2) =

⋃
xz=m
x odd

⋃
0≤y<z

(Γ0(2)+)

⎡
⎣ x y

0 z

⎤
⎦

the other inclusion being obvious.

We consider now an element

⎡
⎣ 2a b

2c 2d

⎤
⎦ ∈ Γ0(2)+ of determinant 2 and see what the

representative looks like in this case. Since

⎡
⎣ 1 0

0 m

⎤
⎦

⎡
⎣ 2a b

2c 2d

⎤
⎦ =

⎡
⎣ 2a b

2mc 2md

⎤
⎦

sends ∞ to a
mc

=
a

(a,m)
m

(a,m)
c
we have to consider two cases, depending on whether m

(a,m)
is even or
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odd. If m
(a,m)

is even we take a matrix of the form

⎡
⎣ x y

− m
(a,m)

c a
(a,m)

⎤
⎦ ∈ Γ0(2)

and

⎡
⎣ x y

− m
(a,m)

c a
(a,m)

⎤
⎦

⎡
⎣ 2a b

2mc 2md

⎤
⎦ =

=

⎡
⎣ 2(ax+ ymc) bx+ 2ymd

0 m
(a,m)

(2ad− bc)

⎤
⎦ =

⎡
⎣ 2(a,m) b′

0 m
(a,m)

⎤
⎦ .

Again, we can multiply on the left by a power of

⎡
⎣ 1 1

0 1

⎤
⎦ to consider only 0 ≤ b′ < m

(a,m)
.

We also note that b′ also is an odd number. This shows that the right coset

(Γ0(2)+)

⎡
⎣ 1 0

0 m

⎤
⎦

⎡
⎣ 2a b

2c 2d

⎤
⎦ = (Γ0(2)+)

⎡
⎣ 2a b

2mc 2md

⎤
⎦

has a representative of the form

⎡
⎣ x y

0 z

⎤
⎦, where xz = 2m, x and z are even and b is odd

with 0 ≤ y < z. Conversely, it is easy to see that every such matrix is a representative of

some coset (Γ0(2)+)

⎡
⎣ 2a b

2mc 2md

⎤
⎦ with m

(a,m)
even.

If m
(a,m)

is odd we now take a matrix of the form

⎡
⎣ 0 −1

2 0

⎤
⎦

⎡
⎣ − m

(a,m)
c a

(a,m)

2x y

⎤
⎦ ∈ Γ0(2)+

and
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⎡
⎣ 0 −1

2 0

⎤
⎦

⎡
⎣ − m

(a,m)
c a

(a,m)

2x y

⎤
⎦

⎡
⎣ 2a b

2mc 2md

⎤
⎦ =

=

⎡
⎣ 0 −1

2 0

⎤
⎦

⎡
⎣ 0 m

(a,m)
(2ad− bc)

2(2ax+ ymc) 2(bx+ ymd)

⎤
⎦ =

⎡
⎣ 2(a,m) 2b′

0 2 m
(a,m)

⎤
⎦ =

=

⎡
⎣ 0 m

(a,m)
(2ad− bc)

2(2ax+ ymc) 2(bx+ ymd)

⎤
⎦ =

⎡
⎣ (a,m) b′

0 m
(a,m)

⎤
⎦

Once again, we can multiply on the left by a power of

⎡
⎣ 1 1

0 1

⎤
⎦ to consider only

0 ≤ b′ < m
(a,m)

. This shows that the right coset

(Γ0(2)+)

⎡
⎣ 1 0

0 m

⎤
⎦

⎡
⎣ 2a b

2c 2d

⎤
⎦ = (Γ0(2)+)

⎡
⎣ 2a b

2mc 2md

⎤
⎦

has a representative of the form

⎡
⎣ x y

0 z

⎤
⎦, where xz = m, z is odd and 0 ≤ y < z. Conversely,

it is easy to see that every such matrix is a representative of some coset

(Γ0(2)+)

⎡
⎣ 2a b

2mc 2md

⎤
⎦ with m

(a,m)
odd.

We define the following sets

M1
m =

⎧⎨
⎩

⎡
⎣ x y

0 z

⎤
⎦ | xz = m, 0 ≤ y < z, x odd

⎫⎬
⎭

M2
m =

⎧⎨
⎩

⎡
⎣ x y

0 z

⎤
⎦ | xz = 2m, 0 ≤ y < z, x, z even, y odd

⎫⎬
⎭
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M3
m =

⎧⎨
⎩

⎡
⎣ x y

0 z

⎤
⎦ | xz = m, 0 ≤ y < z, z odd

⎫⎬
⎭

We have proved that

(Γ0(2)+)

⎡
⎣ 1 0

0 m

⎤
⎦ (Γ0(2)+) =

3⋃
i=1

⋃
γ∈M i

m

(Γ0(2)+) γ

However this is not a disjoint union if m is odd. In this case M2
m is empty and M1

m = M3
m.

If m is even it is not hard to see it is a disjoint union.

We have then

(Γ0(2)+)

⎡
⎣ 1 0

0 m

⎤
⎦ (Γ0(2)+) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3⋃
i=1

⋃
γ∈M i

m

(Γ0(2)+) γ , if m is even

⋃
γ∈M1

m

(Γ0(2)+) γ , if m is odd

as a disjoint union in both cases.

We define

Dm =

⎧⎨
⎩ M1

m ∪M2
m ∪M3

m , if m is even

M1
m , if m is odd

and

T̃m(f)(z) =
∑
γ∈Dm

f(γz)

for any function f .

Remark 2.2.1. If m is odd, T̃m is a Hecke operator for the modular group.

Remark 2.2.2. If m = 2, Dm =

⎧⎨
⎩

⎡
⎣ 1 0

0 2

⎤
⎦ ,

⎡
⎣ 1 1

0 2

⎤
⎦ ,

⎡
⎣ 1 1

2

0 1

⎤
⎦ ,

⎡
⎣ 2 0

0 1

⎤
⎦
⎫⎬
⎭ and T̃2 has

one extra term when compared to the corresponding Hecke operator for the modular group.

We now define the operators Tm, for m ∈ N, in the following way. If m = 2k then

Tm(f) =
k∑

i=0

T̃2i(f), if m is odd Tm(f) = T̃m(f) and finally if m = 2kn with (2, n) = 1 then
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Tm(f) = T2kTn(f). As we will see below, the operators Tm defined this way give the Faber

polynomial of T2A when apllied to T2A (see Proposition 2.2.1 and 2.2.3 below).

Proposition 2.2.1. Tm(f)(τ) =
∑
ad=m
0≤b<d

f

(
aτ + b

d

)
+

∑
ad=m
d even
0≤b<d

f

(
2aτ + b

d

)

Proof. The result is trivial for m odd. We prove the result for powers of 2 by induction.

Assume that

T2n(f)(τ) =
∑
ad=2n
0≤b<d

f

(
aτ + b

d

)
+

∑
ad=2n
d even
0≤b<d

f

(
2aτ + b

d

)

then

T2n+1(f)(τ) = T̃2n+1(f)(τ) +T2n(f)(τ) =

∑
ad=2n+1

a odd
0≤b<d

f

(
aτ + b

d

)
+

∑
ad=2n+2

a,d even

0≤b<d
b odd

f

(
aτ + b

d

)
+

∑
ad=2n+1

d odd
0≤b<d

f

(
aτ + b

d

)
+ T2n(f)(τ) =

∑
0≤b<2n+1

f

(
τ + b

2n+1

)
+

∑
ad=2n+1

d even
0≤b<d
b odd

f

(
2aτ + b

d

)
+ f

(
2n+1τ

)
+

+
∑

ad=2n+1

0≤b<d
b,d even

f

(
2aτ + b

d

)
+

∑
ad=2n+1

a,d even

0≤b<d

f

(
aτ + b

d

)

But now

∑
0≤b<2n+1

f

(
τ + b

2n+1

)
+ f

(
2n+1τ

)
+

∑
ad=2n+1

a,d even

0≤b<d

f

(
aτ + b

d

)
=

∑
ad=2n+1

0≤b<d

f

(
aτ + b

d

)
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and ∑
ad=2n+1

d even
0≤b<d
b odd

f

(
2aτ + b

d

)
+

∑
ad=2n+1

0≤b<d
b,d even

f

(
2aτ + b

d

)
=

∑
ad=2n+1

d even
0≤b<d

f

(
2aτ + b

d

)

which proves the result for the case when m is a power of 2.

The general result comes as a consequence of the two cases proved above and the fact

that

⎧⎨
⎩

⎡
⎣ a b

0 d

⎤
⎦

⎡
⎣ a′ b′

0 d′

⎤
⎦ |ad = 2k, a′d′ = n, 0 ≤ b < d, 0 ≤ b′ < d′, (d even)

⎫⎬
⎭ =

=

⎧⎨
⎩

⎡
⎣ a′′ b′′

0 d′′

⎤
⎦ |a′′d′′ = 2kn, 0 ≤ b′′ < d′′, (d′′ even)

⎫⎬
⎭

2.2.2 2A-replicability

The operators Tm and T̃m just defined map the field of modular functions for Γ0(2)+ to

itself. This means that Tm(T2A)(z) is a rational function of T2A(z) and since Tm(T2A)(z) has

no poles in the upper half-plane this rational function is actually a polynomial. From the

power series expansion we can see that it has to be the m-th Faber polynomial of T2A. We

have just said that

Pm(T2A(τ)) =
∑
ad=m
0≤b<d

T2A

(
aτ + b

d

)
+

∑
ad=m
d even
0≤b<d

T2A

(
2aτ + b

d

)
(2.2.3)

Definition 2.2.1. A function f is 2A-replicable if there are f [n] and f [n
√
2], for n ∈ N, such

that

Pn,f (f) =
∑
ad=n
0≤b<d

f [a]

(
aτ + b

d

)
+

∑
ad=n
d even
0≤b<d

f [a
√
2]

(
2aτ + b

d

)
(2.2.4)

Equation 2.2.3 is the 2A-self-replication property of T2A.
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We make a few remarks on this definition.

Remark 2.2.3. Given a 2A-replicable function f , its 2A-replicates are not uniquely deter-

mined. For example, for m = 2, equation 2.2.4 becomes

f [2](2τ) + f [
√
2](τ) + f [

√
2]

(
τ +

1

2

)
+ f

(τ
2

)
+ f

(
τ + 1

2

)
= P2,f (f)

and we can see that f [2] is known when f and f [
√
2] are known. Also, the odd-power coeffi-

cients of the replicates f [
√
2n] can be changed freely and identity 2.2.4 is still true. We will

see instances of 2A-replicable functions that are 2A-replicables in different ways, i.e. have

different 2A-replicates.

Remark 2.2.4. If a function is 2A-replicable then it is replicable with

f (n)(z) =

⎧⎨
⎩ f [n](z), n odd

f [n](z) + f
[ n√

2
]
( z
2
) + f

[ n√
2
]
( z+1

2
), n even

(2.2.5)

Also, if f is replicable then f is 2A-replicable by taking, for example, f [n
√
2] = 0. Con-

versely, we can also say that if f is replicable and if, for every n even, we can write

f (n)(z) = f [n](z) + f
[ n√

2
]
( z
2
) + f

[ n√
2
]
( z+1

2
), for some f [n], f

[ n√
2
]
, then f is 2A-replicable. For n

odd we obvioulsy have f [n] = f (n). This is shown by the following simple manipulation.

∑
ad=n
0≤b<d

f (a)

(
az + b

d

)
=

∑
ad=n
a odd
0≤b<d

f (a)

(
az + b

d

)
+

∑
ad=n
a even
0≤b<d

f (a)

(
az + b

d

)
=

∑
ad=n
a odd
0≤b<d

f [a]

(
az + b

d

)
+

∑
ad=n
a even
0≤b<d

f [a]

(
az + b

d

)
+

+
∑
ad=n
a even
0≤b<d

f [
√
2a
2
]

(
az + b

2d

)
+

∑
ad=n
a even
0≤b<d

f [
√
2a
2
]

(
az + b+ d

2d

)
=
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=
∑
ad=n
0≤b<d

f [a]

(
az + b

d

)
+

∑
ad=n
a even

0≤b<2d

f [
√
2a
2
]

(
2
(
a
2

)
z + b

2d

)
=

=
∑
ad=n
0≤b<d

f [a]

(
az + b

d

)
+

∑
ad=n
d even
0≤b<d

f [
√
2a]

(
2az + b

d

)
.

Remark 2.2.5. Because of remark 2.2.4 what we are actually interested in is finding the

possible 2A-replicables for a given 2A-replicable function. For example, we could ask if a 2A-

replicable function is completely 2A-replicable in the sense given below. There are examples

of Hauptmoduls that are not complete replicable functions but are completely 2A-replicable.

As we will see, some examples of these are T4∼b, T12∼d among many others (see [50] for the

notation)

Definition 2.2.2. We say that a function f is completely 2A-replicable if

- it is 2A-replicable, with replicates f [n], n ∈ N ∪√
2N, and

- for every n ∈ N ∪ √
2N the function f [n] is 2A-replicable with 2A-replicates

(
f [n]

)[m]
=

f [mn], for any m ∈ N ∪√
2N.

The following result is Theorem 5.15 in Ferenbaugh’s Ph.D thesis [24] and will be use-

ful in proving that certain Hauptmoduls that are not completely replicable are completely

2A-replicable.

Theorem 2.2.1. Let f be the Hauptmodul for some group np|h+ e1, e2 . . . with p � h. Then

- If p is one of the e1, e2, . . . then f (p)(z) = f(z) + f
(

z
p

)
+ . . .+ f

(
z+p−1

p

)
.

- if p is not one of the e1, e2, . . . but ep is, for some e with p � e, then f (p)(Wez) =

f(Wpz) + f
(

z
p

)
+ . . .+ f

(
z+p−1

p

)
.

- if ep is one of the e1, e2, . . . with p | e then f (p)(Wez) = f
(

z
p

)
+ . . .+ f

(
z+p−1

p

)
.

Remark 2.2.4 gives motivation to find formulas of type A(z) = B(z) + C
(
z
2

)
+ C

(
z+1
2

)
.

This will help us finding 2A-replicates for certain Hauptmoduls. Before we proceed, we need
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some notation. The group n|h+ {e}O + {2ke}E, with 2k ‖ N , is just a splitting of the Atkin-

Lehner involutions in two sets. O for the odd ones and E for the even ones. For example, the

group 30 + 6, 10, 15 = 30 + {e}O + {2e}E, with O = {15} and E = {3, 5}. Also, Gα denotes⎡
⎣ 1 α

0 1

⎤
⎦G

⎡
⎣ 1 α

0 1

⎤
⎦
−1

.

Lemma 2.2.1. We have the following identities:

(1) TN+{e}O(z) = T2N+{e,2e}O(z) + T2N+{e,2e}O
(z
2

)
+ T2N+{e,2e}O

(
z + 1

2

)

or, equivalently,

T2N+{e,2e}O(z) = TN+{e}O(z) + T
(2N+{e,2e}O)

1
2

(z
2

)
+ T

(2N+{e,2e}O)
1
2

(
z + 1

2

)

if (2, N) = 1.

(2) TN+{e}O(z) = TN+{e}O+{2ke}E(z)+

+ T
(2N+{e}O+{2k+1e}E)

1
2

(z
2

)
+ T

(2N+{e}O+{2k+1e}E)
1
2

(
z + 1

2

)

if 2k ‖ N , k ≥ 1.

This is true for any E as long as it is not empty. In particular, if 2 ‖ N and O = E we

have

TN+{e}O(z) = TN+{e,2e}O(z) + TN+{e}O
(z
2

)
+ TN+{e}O

(
z + 1

2

)

(3) TN+{e}O+{2ke}E(z) = TN+{e}O(z)+

+ T2N+{e}O+{2k+1e}E
(z
2

)
+ T2N+{e}O+{2k+1e}E

(
z + 1

2

)

if 2k ‖ N , k ≥ 1 and E is not empty.
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Proof. The first identity is Theorem 2.2.1 applied to f = T2N+{e,2e}O and p = 2. The third

identity is also a consequence of Theorem 2.2.1 applied to f = T2N+{e}O+{2k+1e}E and p = 2.

Since 2k ‖ N , for k ≥ 1, we have

T2N+{e}O+{2k+1e}E
(z
2

)
+ T2N+{e}O+{2k+1e}E

(
z + 1

2

)
= TN+{e}O (We′z)

where e′ = 2ke for some e ∈ E. But

TN+{e}O(z) + TN+{e}O(We′z) = TN+{e}O+{2ke}E(z)

and this proves the third identity. The second identity is the third one written in a different

way.

Remark 2.2.6. If the matrix

⎡
⎣ 1 1

2

0 1

⎤
⎦ normalizes the group n|h + {e}O + {e}E then

Tn|h+{e}O+{e}E(z + 1
2
) = −Tn|h+{e}O+{e}E(z). This happens exactly when either h is even

or h = 1, 4 divides n and E is empty.

Also, this matrix conjugates the groups 2N +{e}O and 4N +{4e}O onto each other, when

(2, N) = 1.

Theorem 2.2.2. Every function of type as given in tables 2.1 and 2.2 is 2A-replicable with

f [2
n
2 ], n ∈ N, as given in the tables. The replicates f [2

n
2 m], for n a non-negative integer and

m odd are given by the formula f [2
n
2 m](z) =

(
f [2

n
2 ]
)(m)

(z).

Proof. For the cases where the function is completely replicable we know how replication

works. We just use remarks 2.2.4, 2.2.6 and Lemma 2.2.1 to show that the 2A-replicates are

given as stated. This also shows that in tables 2.1 and 2.2 we can take n ‖ h+{e}O+{2ke}E
instead of n|h+ {e}O + {2ke}E and the result is still valid.

If the function is not completely replicable, but its invariance group is conjugate by⎡
⎣ 1 α

0 1

⎤
⎦, with α = 1

2
, 1
4
or 1

8
, to some group whose Hauptmodul is completely replicable,
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let’s say g = TG and f = TGα with TGα completely replicable, then we prove it in the following

way. We do the proof for α = 1
2
, the other cases being similar.

We start by arranging the terms in the right hand side of

Pn,f (f(z)) =
∑
ad=n
0≤b<d

f [a]

(
az + b

d

)
+

∑
ad=n
d even
0≤b<d

f [
√
2a]

(
2az + b

d

)

by the highest power of 2 that divides a. This becomes:

Pn,f (f(z)) =
∞∑
i=0

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
ad= n

2i
a odd
0≤b<d

f [2ia]

(
2iaz + b

d

)
+

∑
2iad=n
a odd
d even
0≤b<d

f [2i
√
2a]

(
2i+1az + b

d

)
⎞
⎟⎟⎟⎟⎟⎟⎠

(2.2.6)

We now substitute z by z + 1
2
in this identity and make the following remarks. Firstly,

Pn,f (f(z+
1
2
)) = (−1)nP

n,f
1
2
(f

1
2 (z)), where h

1
2 (z) = −h(z+ 1

2
) for any h in general. Secondly,

all the sumands in the right-hand side of 2.2.6 remain unchanged except for∑
ad=n
a odd
0≤b<d

f [a]

(
az + b

d

)
. This will imply that g[2

n
2 m] = f [2

n
2 m] for n ≥ 2.

We consider first g = T
(2N+{e,2e}O)

1
2
, (thus f = T2N+{e,2e}O), which requires a different

proof.

If n is odd, from the remarks above we see that

Pn,g(g(z)) = −
∑
ad=n
0≤b<d

f [a]

(
az + b

d
+

a

2d

)
=

∑
ad=n
0≤b<d

(f [a])
1
2

(
az + b+ a−d

2

d

)
=

=
∑
ad=n
0≤b<d

(f [a])
1
2

(
az + b

d

)
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If n is even, then

Pn,g(g(z)) =
∞∑
i=0

⎛
⎜⎜⎜⎜⎜⎝

∑
ad= n

2i
a odd
0≤b<d

f [2ia]

(
2iaz + b

d

)
+

∑
2iad=n
a odd
d even
0≤b<d

f [2i
√
2a]

(
2i+1az + b

d

)
⎞
⎟⎟⎟⎟⎟⎠ (2.2.7)

we analyse the part corresponding to i = 0, i.e.

∑
ad=n
a odd
0≤b<d

f [a]

(
az + b

d
+

a

2d

)
+

∑
ad=n
a odd
d even
0≤b<d

f [
√
2a]

(
2az + b

d

)

in the last equation.

Each f [a] in this sum is of type T2M+{e,2e}O , with (M, 2) = 1, and we know from 2.2.1 that

in this case

T2M+{e,2e}O
(z
2

)
+ T2M+{e,2e}O

(
z + 1

2

)
+ T2M+{e,2e}O (z) = TM+{e}O (z)

In particular, substituting z by 2az+b
d

and summing over b we have

∑
0≤b<2d

T2M+{e,2e}O

(
az

d
+

b

2d

)
+

∑
0≤b<d

T2M+{e,2e}O

(
2az + b

d

)
=

∑
0≤b<d

TM+{e}O

(
2az + b

d

)

or, equivalently,

∑
0≤b<d

T2M+{e,2e}O

(
az + b

d
+

1

2d

)
+

∑
0≤b<d

T2M+{e,2e}O

(
2az + b

d

)
=

= −
∑

0≤b<d

T2M+{e,2e}O

(
az + b

d

)
+

∑
0≤b<d

TM+{e}O

(
2az + b

d

)
=

=
∑

0≤b<d

T
(2M+{e,2e}O)

1
2

(
az + b

d
+

1

2

)
+

∑
0≤b<d

TM+{e}O

(
2az + b

d

)
=

=
∑

0≤b<d

T
(2M+{e,2e}O)

1
2

(
az + b

d

)
+

∑
0≤b<d

TM+{e}O

(
2az + b

d

)
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We make the observation that we haven’t made any choice about the 2A-replicates of

f . We now choose the column in the tables that have f [
√
2] of the form T2M+{e,2e}O and

use the last identity for every f [a] in 2.2.7. This finishes the proof for functions of the form

T
(2N+{e,2e}O)

1
2
.

We now consider f of the form T
(2kN+{e}O+{2ke}E)

1
2
, with k ≥ 2. The case where n is odd

is similar to the previous one. If n is even, we analyse again the part corresponding to i = 0

in the sum in 2.2.7. In this case, the f [a] are equal to something of the form T2kM+{e}O+{2ke}E

and applying 2.2.1 to this function we have

T2kM+{e}O+{2ke}E
(z
2

)
+ T2kM+{e}O+{2ke}E

(
z + 1

2

)
= T2k−1M+{e}O(W2k−1e′(z))

for some e′ ∈ E. This gives

T2kM+{e}O+{2ke}E
(z
2

)
+ T2kM+{e}O+{2ke}E

(
z + 1

2

)
+ T2k−1M+{e}O(z) =

= T2k−1M+{e}O(W2k−1e′(z)) + T2k−1M+{e}O(z) = T2k−1M+{e}O+{2k−1e}E(z)

Substituting z by 2az+b
d

and summing over b we obtain

∑
0≤b<2d

T2kM+{e}O+{2ke}E

(
az

d
+

b

2d

)
+

∑
0≤b<d

T2k−1M+{e}O

(
2az + b

d

)
=

=
∑

0≤b<d

T2k−1M+{e}O+{2e}E

(
2az + b

d

)

and, in particular,

∑
0≤b<d

T2kM+{e}O+{2ke}E

(
az + b

d
+

1

2d

)
+

∑
0≤b<d

T2k−1M+{e}O

(
2az + b

d

)
=

= −
∑

0≤b<d

T2kM+{e}O+{2ke}E

(
az + b

d

)
+

∑
0≤b<d

T2k−1M+{e}O+{2k−1e}E

(
2az + b

d

)
=
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=
∑

0≤b<d

T
(2kM+{e}O+{2ke}E)

1
2

(
az + b

d
+

1

2

)
+

∑
0≤b<d

T2k−1M+{e}O+{2k−1e}E

(
2az + b

d

)
=

=
∑

0≤b<d

T
(2kM+{e}O+{2ke}E)

1
2

(
az + b

d

)
+

∑
0≤b<d

T2k−1M+{e}O+{2k−1e}E

(
2az + b

d

)

Again, we haven’t made any choice about the 2A-replicates of f and we can choose

the column in the tables that have f [
√
2] of the form T2M+{2k−1e}O . We can then use the

last identity for every f [a] in 2.2.7 and this finishes the proof for functions of the form

T
(2N+{e,2e}O)

1
2
.

We use this identity for every f [a] in 2.2.7 and this finishes the proof for functions of the

form T
(2kN+{e}O+{2ke}E)

1
2
.

The remaining cases can be done similarly. For Hauptmoduls of groups of the form G
1
4

(resp.G
1
8 ) it is the summand corresponding to i = 1 (resp. i = 2) that matters. We just note

that the replicates f [a
√
2] (resp. f [

√
2a] and f [2

√
2a]) with a odd, have a power series expansion

with coefficients of even powers of q equal to zero. This means that any other function with

the same property will work as well. We just chose those particular ones because they give

complete 2A-replicability.

Corollary 2.2.1. The functions on tables 2.1 and 2.2 are completely 2A-replicable.

Proof. We need to prove that for any column in the tables, which corresponds to a Haupt-

modul f together with a set of 2A-replicates, f , f [
√
2], f [2], . . . the function f [2

m
2 n] (which

is
(
f [2

m
2 ]
)(n)

by definition), is 2A-replicable with 2A-replicates given by
(
f [2

m
2 n]

)[2
m′
2 n′]

=

f [2
m+m′

2 nn′] for any m,m′, n, n′ non-negative integers, with n, n′ odd. The idea of the proof

is essentially the following. We show that we have completely 2A-replicability for powers of
√
2 and that odd 2A-replicability (or odd replicability, which is the same) “commutes“ with

2A-replication by powers of
√
2.

We first note that
(
g(n)

)(n′)
= g(nn

′) for any function g in the tables and n, n′ odd positive

integers. This is obviously true if g is a completely replicable function and if g(z) = hα(z),

for α = 1
2
,1
4
or 1

8
, it comes from the fact that g(n) =

(
h(n)

)α
, for n odd. As a consequence

we obtain the fact that taking an odd replicate of all the elements of a column in the tables
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gives a column of the same type, with N , O and E possibly different from original ones. This

is the ”commutation“ result mentioned above.

Then, we also note that the 2A-replicate f [2
m
2 n], for any m and n, together with the

sequence f [2
m+m′

2 n], m′ = 0, 1, 2, . . . corresponds to some column in the tables. This is so

because:

- of the fact that if we eliminate the first few entries of a column in the tables we obtain

a column that is in the tables (case by case check), and

- of the remark made above on taking odd-replicates of full columns. Recall that, by

definition, f [2
m
2 n] =

(
f [2

m
2 ]

)(n)

.

The proof is now easy:

f [2
m+m′

2 nn′] =

(
f [2

m+m′
2 ]

)(nn′)

=

((
f [2

m+m′
2 ]

)(n)
)(n′)

=

(
f [2

m+m′
2 n]

)(n′)

=

((
f [2

m
2 n]

)[2
m′
2 ]

)(n′)

=
(
f [2

m
2 n]

)[2
m′
2 n′]
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f 2N + {e}O + {2e}E 4N + {e}O + {4e}E 4N + {e}O + {4e}E 8N + {e}O + {8e}E
f [
√

2] 2N + {e, 2e}O 2N + {e}O 4N + {e}O 4N + {e}O
f [2] 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e}O 4N + {e}O

f [2
√

2] · · · 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e}O
f [4] · · · 2N + {e, 2e}O 2N + {e, 2e}O

f [4
√

2] · · · 2N + {e, 2e}O
.
.
. · · ·
f 8N + {e}O + {8e}E 16N + {e}O + {16e}E 16N + {e}O + {16e}E 32N + {e}O + {4e}E

f [
√

2] 8N + {e}O 8N + {e}O 16N + {e}O 16N + {e}O
f [2] 4N + {e}O 8N + {e}O 8N + {e}O 16N + {e}O

f [2
√

2] 4N + {e}O 4N + {e}O 8N + {e}O 8N + {e}O
f [4] 2N + {e}O 4N + {e}O 4N + {e}O 8N + {e}O

f [4
√

2] 2N + {e, 2e}O 2N + {e}O 4N + {e}O 4N + {e}O
f [8] 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e}O 4N + {e}O

f [8
√

2] · · · 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e}O
f [16] · · · 2N + {e, 2e}O 2N + {e, 2e}O

f [16
√

2] · · · 2N + {e, 2e}O
.
.
. · · ·
f 2N|2 + {e}O 4N|2 + {e}O + {2e}E 8N|2 + {e}O + {4e}E 8N|2 + {e}O + {4e}E

f [
√

2] 2N + {e, 2e}O 4N + {e}O + {4e}E 4N|2 + {e}O + {2e}E 8N + {e}O + {8e}E
f [2] 2N + {e, 2e}O 2N + {e}O 4N + {e}O + {4e}E 4N + {e}O

f [2
√

2] · · · 2N + {e, 2e}O 2N + {e}O 4N + {e}O
f [4] 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e}O

f [4
√

2] · · · 2N + {e, 2e}O 2N + {e, 2e}O
f [8] · · · 2N + {e, 2e}O
.
.
. · · ·
f 16N|2 + {e}O + {8e}E 16N|2 + {e}O + {8e}E 32N|2 + {e}O + {16e}E 32N|2 + {e}O + {16e}E

f [
√

2] 8N|2 + {e}O + {4e}E 16N + {e}O + {16e}E 16N|2 + {e}O + {8e}E 32N + {e}O + {32e}E
f [2] 8N + {e}O + {8e}E 8N + {e}O 16N + {e}O + {16e}E 16N + {e}O

f [2
√

2] 4N + {e}O 8N + {e}O 8N + {e}O 16N + {e}O
f [4] 4N + {e}O 4N + {e}O 8N + {e}O 8N + {e}O

f [4
√

2] 2N + {e}O 4N + {e}O 4N + {e}O 8N + {e}O
f [8] 2N + {e, 2e}O 2N + {e}O 4N + {e}O 4N + {e}O

f [8
√

2] 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e}O 4N + {e}O
f [16] · · · 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e}O

f [16
√

2] · · · 2N + {e, 2e}O 2N + {e, 2e}O
f [32] · · · 2N + {e, 2e}O

.

.

. · · ·
f 8N|4 + {e}O + {2e}E 16N|4 + {e}O + {4e}E 16N|4 + {e}O + {4e}E 32N|4 + {e}O + {8e}E

f [
√

2] 8N|2 + {e}O + {4e}E 16N|2 + {e}O + {8e}E 8N|4 + {e}O + {2e}E 32N|2 + {e}O + {16e}E
f [2] 4N|2 + {e}O + {2e}E 8N|2 + {e}O + {4e}E 8N|2 + {e}O + {4e}E 16N|2 + {e}O + {8e}E

f [2
√

2] 4N + {e, 4e}O 8N + {e}O + {8e}E 4N|2 + {e}O + {2e}E 16N + {e}O + {16e}E
f [4] 2N + {e}O 4N + {e}O 4N + {e}O + {4e}E 8N + {e}O

f [4
√

2] 2N + {e, 2e}O 4N + {e}O 2N + {e}O 8N + {e}O
f [8] 2N + {e, 2e}O 2N + {e}O 2N + {e, 2e}O 4N + {e}O

f [8
√

2] · · · 2N + {e, 2e}O 2N + {e, 2e}O 4N + {e}O
f [16] 2N + {e, 2e}O · · · 2N + {e}O

f [16
√

2] · · · 2N + {e, 2e}O
f [32] 2N + {e, 2e}O

.

.

. · · ·
f 4N + {e}O 4N|2 + {e}O + {2e}E 4N|2 + {e}O 8N + {e}O

f [
√

2] (4N + {e}O + {4e}E)
1
2 (2N + {e, 2e}O)

1
2 (4N + {e}O + {4e}E)

1
2 (8N|2 + {e}O + {4e}E)

1
4

f [2] 2N + {e}O + 2eE N + {e}O 2N + {e}O + 2eE 4N + {e}O
f [2
√

2] 2N + {e, 2e}O 2N + {e}O 2N + {e, 2e}O (4N + {e}O + {4e}E)
1
2

f [4] 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e}O + {2e}E
f [4
√

2] · · · 2N + {e, 2e}O · · · 2N + {e, 2e}O
f [8] · · · 2N + {e, 2e}O
.
.
. · · ·

Table 2.1: 2A-replicates of Hauptmoduls
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f 8N|2 + {e}O 8N|4 + {e, 2e}O 8N|2 + {e}O 8N|4 + {e}O
f [
√

2] (8N + {e}O + {8e}E)
1
2 (4N|2 + {e, 2e}O)

1
4 (8N|2 + {e}O + {4e}E)

1
4 (8N|2 + {e}O + {4e}E)

1
4

f [2] 4N + {e}O + {4e}E 4N|2 + {e, 2e}O 4N + {e}O 4N|2 + {e}O
f [2
√

2] 4N + {e}O (2N + {e, 2e}O)
1
2 (4N + {e} + {4e}O)

1
2 (4N + {e} + {4e}O)

1
2

f [4] 2N + {e}O N + {e}O 2N + {e}O + {2e}E 2N + {e}O + {2e}E
f [4
√

2] 2N + {e.2e}O 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e, 2e}O
f [8] 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e, 2e}O
.
.
. · · · · · · · · · · · ·

f (2N + {e, 2e}O)
1
2 (4N + {e}O + {4e}E)

1
2 (8N + {e}O + {4e}E)

1
2 (16N + {e}O + {8e}E)

1
2

f [
√

2] N + {e}O 2N + {e}O + {2e}E 4N + {e}O + {4e}E 8N + {e}O + 8eE
f [2] 2N + {e, 2e}O 2N + {e, 2e}O 4N + {e}O 8N + {e}O

f [2
√

2] 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e}O 4N + {e}O
f [4] · · · · · · 2N + {e, 2e}O 4N + {e}O

f [4
√

2] 2N + {e, 2e}O 2N + {e}O
f [8] · · · 2N + {e, 2e}O
.
.
. · · ·

f (32N + {e}O + {32e}E)
1
2 (4N|2 + {e, 2e}O)

1
4 (8N|2 + {e}E + {4e}E)

1
4 (8N|2 + {e}E + {4e}E)

1
4

f [
√

2] 16N + {e, 16e}O 4N|2 + {e, 2e}O 4N + {e}O 4N|2 + {e}O
f [2] 16N + {e}O (2N + {e, 2e}O)

1
2 (4N + {e}E + {4e}E)

1
2 (4N + {e}E + {4e}E)

1
2

f [2
√

2] 8N + {e}O N + {e}O 2N + {e}O + {2e}O 2N + {e}O + {2e}O
f [4] 8N + {e}O 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e, 2e}O

f [4
√

2] 4N + {e}O 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e, 2e}O
f [8] 4N + {e}O · · · · · · · · ·

f [8
√

2] 2N + {e}O
f [16] 2N + {e, 2e}O

f [16
√

2] 2N + {e, 2e}O
.
.
. · · ·

f (16N|2 + {e}O + {8e}E)
1
4 (8N|4 + {e}O + {2e}E)

1
8 (16N|4 + {e}O + {2e}E)

1
8 (16N|4 + {e}O + {2e}E)

1
8

f [
√

2] 8N|2 + {e}O + {8e}O 8N|4 + {e, 2e}O 8N + {e}O 8N|2 + {e}O
f [2] (8N + {e}O + {8e}E)

1
2 (4N|2 + {e, 2e}O)

1
4 (8N|2 + {e}O + {4e}E)

1
4 (8N|2 + {e}O + {4e}E)

1
4

f [2
√

2] 4N + {e}O + {4e}E 4N|2 + {e, 2e}O 4N + {e}O 4N + {e}O
f [4] 4N + {e}O (2N + {e, 2e}O)

1
2 (4N + {e}O + {4e}E)

1
2 (4N + {e}O + {4e}E)

1
2

f [4
√

2] 2N + {e}O N + {e}O 2N + {e}O + {2e}E 2N + {e}O + {2e}E
f [8] 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e, 2e}O

f [8
√

2] 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e, 2e}O 2N + {e, 2e}O
.
.
. · · · · · · · · · · · ·

f (16N|4 + {e}O + {4e}E)
1
8

f [
√

2] 8N|4 + {e}O
f [2] (8N|2 + {e}O + {4e}E)

1
4

f [2
√

2] 4N|2 + {e}O
f [4] (4N + {e}O + {4e}E)

1
2

f [4
√

2] 2N + {e}O + {2e}E
f [8] 2N + {e, 2e}O

f [8
√

2] 2N + {e, 2e}O
.
.
. · · ·

Table 2.2: 2A-replicates of Hauptmoduls (continued)
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2.3 Complete 2A-replicability and generalized

Mahler recurrence relations

This section is mutatis mutandis what we can find in [43].

We consider L a field extension of Q containing all roots of unity, the ring

K = L[. . . , x[n]
m , . . .], m ∈ N, n ∈ N ∪√

2N, the series

h[r](q) =
1

q
+

∞∑
m=1

x[r]
m qm

for r ∈ N ∪ √
2N, and the polynomials Pk,r(t) defined inductively by P1,r(t) = t and

Pk,r(t) = tPk−1,r(t)−
k−2∑
s=1

x[r]
s Pk−s−1,r(t)− kx

[k]
k−1.

We fix r ∈ N ∪√
2N and consider the set of equations indexed by k ≥ 1

∑
ad=k
0≤b<d

h[ra]
(
e2πi

b
d q

a
d

)
+

∑
ad=k
d even
0≤b<d

h[ra
√
2]
(
e2πi

b
d q

2a
d

)
= Pk,r(h

[r](q)) (2.3.1)

These equations give an infinite set of identities in K by equating the coefficiens of equal

powers of q in both sides of the each equation. We denote by I [r] the ideal in K generated

by them and write I =
⋃

r∈N∪√2N

I [r].

If f(q) = 1
q
+

∞∑
k=1

akq
k is completely 2A-replicable with replicates f [n](q) = 1

q
+

∞∑
k=1

a
[n]
k qk,

n ∈ N∪√2N then they satisfy equations 2.3.1 with h[n](q) and h[
√
2n](q) replaced by f [n](q) and

f [
√
2n](q), respectively. This means that every completely 2A-replicable function f induces a

non-trivial homomorphism Ef : K −→ C with Ef (x
[n]
k ) = a

[n]
k , whose kernel contains I.

For u ∈ N∪√
2N we define a L-algebra endomorphism ψu of K letting it fix every element

of L and mapping x
[n]
m to x

[nu]
m . Since the equations defining I [r] and I [ru] have the same form,

it is clear that ψu(I
[r]) = I [ru] for any r. Consequently, ψu(I) ⊆ I and we think of ψu as an

L-algebra endomorphism of the quotient K/I.
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For each M ≥ 1 we set RM = K/I[[q
1

2M ]] and also

Δ =

⎧⎨
⎩

⎡
⎣ a b

0 d

⎤
⎦ |a, b, d ∈ N

⎫⎬
⎭ ∪

⎧⎨
⎩

⎡
⎣ √

2a b/
√
2

0
√
2d

⎤
⎦ |a, b, d ∈ N

⎫⎬
⎭

We define an action of Δ in RM in the following way. For α ∈ Δ we set e ‖ α = e,

x
[r]
m ‖ α = ψu(x

[r]
m ) = x

[ru]
m and q

1
M ‖ α = e2πi

v
My q

u
My . Then we extend this map to an

L-homomorphism from K[[q
1
M ]] to K[[q

1
My ]].

Remark 2.3.1. The ideal I of K is stable under ‖ α for every α ∈ Δ.

Remark 2.3.2. For every α, β ∈ Δ and h(q) ∈ RM we have

(h(q) ‖ α) ‖ β = h(q) ‖ αβ.

Remark 2.3.3. If α =

⎡
⎣ a b

0 d

⎤
⎦ ∈ Δ then h[r](q) ‖ α = h[ru](e2πi

x
y q

u
y )

Remark 2.3.4. For every positive integer j, (h[r](q))j ‖ α = (h[r](q) ‖ α)j as ‖ α is a ring

homomorphism.

Definition 2.3.1. Let n be a positive integer and h(q) ∈ R1. We define Tn by

Tn(h(q)) =
∑
uy=n
0≤v<y

h(q) ‖
⎡
⎣ u v

0 y

⎤
⎦+

∑
uy=n

2
0≤v<2y

h(q) ‖
⎡
⎣ √

2u v√
2

0
√
2y

⎤
⎦

and call Tn a generalized Hecke Operator. Both sums are over positive integer numbers which

makes the second sum be zero if n is odd.

With this definition equation 2.3.1 becomes

Tk(h
[r](q)) = Pk,r(h

[r](q)) (2.3.2)
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Definition 2.3.2. Let n ∈ N∪√
2N and h(q) ∈ R1. We denote by Ψn the mapping Ψnh(q) =

h(q) ‖
⎡
⎣ n 0

0 n

⎤
⎦.

Proposition 2.3.1. Let l1 and l2 be relatively prime positive integers and h(q) ∈ R1. Then

Tl1Tl2h(q) = Tl1l2h(q)

In particular, Tl1 and Tl2 commute.

Proof. This comes from the fact that

⎧⎨
⎩

⎡
⎣ u v

0 y

⎤
⎦

⎡
⎣ u′ v′

0 y′

⎤
⎦ |uy = l1, u

′y′ = l2, 0 ≤ v < y, 0 ≤ v′ < y′, (yy′ even)

⎫⎬
⎭ =

=

⎧⎨
⎩

⎡
⎣ u′′ v′′

0 y′′

⎤
⎦ |u′′v′′ = l1l2, 0 ≤ v′′ < y′′, (y′′ even)

⎫⎬
⎭

Proposition 2.3.2. If p is an odd prime then

TpnTp(h(q)) = Tpn+1(h(q)) + pTpn−1Ψp(h(q)).

If p = 2 then

T2nT2(h(q)) = T2n+1(h(q)) + 2T2nΨ√2(h(q)) + 2T2n−1Ψ2(h(q)).

Proof. The case where p is odd is true as the operators Tpn agree with the Hecke operator

for SL2(Z). For the case p = 2 we note that T2nT2(h(q)) equals

h(q) ‖

⎛
⎜⎜⎝ ∑

i=0,1
0≤b<2i

⎡
⎣ 21−i b

0 2i

⎤
⎦+

∑
0≤b<2

⎡
⎣ √

2 b√
2

0
√
2

⎤
⎦
⎞
⎟⎟⎠

⎛
⎜⎜⎝ ∑

i=0,...,n
0≤b<2i

⎡
⎣ 2n−i b

0 2i

⎤
⎦
⎞
⎟⎟⎠+
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+h(q) ‖

⎛
⎜⎜⎝ ∑

i=0,1
0≤b<2i

⎡
⎣ 21−i b

0 2i

⎤
⎦+

∑
0≤b<2

⎡
⎣ √

2 b√
2

0
√
2

⎤
⎦
⎞
⎟⎟⎠

⎛
⎜⎜⎝ ∑

i=0,...,n−1
0≤b<2i+1

⎡
⎣ 2n−1−i

√
2 b√

2

0 2i
√
2

⎤
⎦
⎞
⎟⎟⎠

= h(q) ‖

⎛
⎜⎜⎝ ∑

i=0,...,n
0≤b<2i

⎡
⎣ 2n+1−i 2b

0 2i

⎤
⎦+

∑
i=0,...,n
0≤b<2i

⎡
⎣ 2n−i

√
2

√
2b

0 2i
√
2

⎤
⎦+

+
∑

i=0,...,n
0≤b<2i

⎡
⎣ 2n−i

√
2

√
2b+ 2i√

2

0 2i
√
2

⎤
⎦+

∑
i=0,...,n
0≤b<2i

⎡
⎣ 2n−i b

0 2i+1

⎤
⎦+

∑
i=0,...,n
0≤b<2i

⎡
⎣ 2n−i b+ 2i

0 2i+1

⎤
⎦ +

+
∑

i=0,...,n−1
0≤b<2i+1

⎡
⎣ 2n−i

√
2

√
2b

0 2i
√
2

⎤
⎦+

∑
i=0,...,n−1
0≤b<2i+1

⎡
⎣ 2n−i b

0 2i+1

⎤
⎦+

∑
i=0,...,n−1
0≤b<2i+1

⎡
⎣ 2n−i b+ 2i

0 2i+1

⎤
⎦+

+
∑

i=0,...,n−1
0≤b<2i+1

⎡
⎣ 2n−1−i

√
2 b√

2

0 2i+1
√
2

⎤
⎦+

∑
i=0,...,n−1
0≤b<2i+1

⎡
⎣ 2n−1−i

√
2 b√

2
+ 2ib

0 2i+1
√
2

⎤
⎦
⎞
⎟⎟⎠ =

= h(q) ‖

⎛
⎜⎜⎝ ∑

i=0,...,n
0≤b<2i

⎡
⎣ 2n+1−i 2b

0 2i

⎤
⎦+

∑
i=0,...,n
0≤b<2i

⎡
⎣ 2n−i

√
2

√
2b

0 2i
√
2

⎤
⎦+

+
∑

i=0,...,n
0≤b<2i

⎡
⎣ 2n−i

√
2

√
2b+ 2i√

2

0 2i
√
2

⎤
⎦+

∑
i=0,...,n
0≤b<2i+1

⎡
⎣ 2n−i b

0 2i+1

⎤
⎦ +

+ 2 ·
∑

i=0,...,n−1
0≤b<2i

⎡
⎣ 2n−i

√
2

√
2b

0 2i
√
2

⎤
⎦+ 2 ·

∑
i=0,...,n−1
0≤b<2i+1

⎡
⎣ 2n−i b

0 2i+1

⎤
⎦+

+
∑

i=0,...,n−1
0≤b<2i+2

⎡
⎣ 2n−1−i

√
2 b√

2

0 2i+1
√
2

⎤
⎦
⎞
⎟⎟⎠
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Now, the first and fourth summands equal

h(q) ‖

⎛
⎜⎜⎝ ∑

i=0,...,n+1
0≤b<2i

⎡
⎣ 2n+1−i b

0 2i

⎤
⎦+ 2 ·

∑
i=0,...,n−1
0≤b<2i

⎡
⎣ 2n−i 2b

0 2i

⎤
⎦
⎞
⎟⎟⎠

the second, third and last summands equal

h(q) ‖

⎛
⎜⎜⎝ ∑

i=0,...,n
0≤b<2i+1

⎡
⎣ 2n−i

√
2 b√

2

0 2i
√
2

⎤
⎦+ 2 ·

∑
i=0,...,n−2
0≤b<2i+1

⎡
⎣ 2n−2−i

√
2b

0 2i+1
√
2

⎤
⎦
⎞
⎟⎟⎠

and this shows that

T2nT2(h(q)) = h(q) ‖

⎛
⎜⎜⎝ ∑

i=0,...,n+1
0≤b<2i

⎡
⎣ 2n+1−i b

0 2i

⎤
⎦+

∑
i=0,...,n
0≤b<2i+1

⎡
⎣ 2n−i

√
2 b√

2

0 2i
√
2

⎤
⎦+

+ 2 ·
∑

i=0,...,n−1
0≤b<2i+1

⎡
⎣ 2n−i

√
2

√
2b

0 2i
√
2

⎤
⎦+ 2 ·

∑
i=0,...,n−1
0≤b<2i+1

⎡
⎣ 2n−i b

0 2i+1

⎤
⎦+

+2 ·
∑

i=0,...,n−1
0≤b<2i

⎡
⎣ 2n−i 2b

0 2i+1

⎤
⎦+ 2 ·

∑
i=0,...,n−2
0≤b<2i+1

⎡
⎣ 2n−2−i

√
2b

0 2i+1
√
2

⎤
⎦
⎞
⎟⎟⎠ =

= T2n+1(h(q)) + 2T2nΨ√2(h(q)) + 2T2n−1Ψ2(h(q))

and the theorem is proven.

Corollary 2.3.1. The algebra generated by the operators Tn, for n ∈ N, is commutative.

Let l be a fixed prime. We set Qk = Tl(h(q)
k) for k ≥ 1, and for b ∈ K

I
we use b[l] to

denote b ‖
⎡
⎣ l ∗

0 ∗

⎤
⎦. We set also Q0 =

⎧⎨
⎩ 2l + 1, if l = 2

l + 1, if l �= 2
and define T k

l
as the operator

that sends R1 to zero if l does not divide k. We use the same notation to denote both Pk,r(t)
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and its image in K
I
[t].

Proposition 2.3.3. For k ∈ N write Pk,r(t) = tk +
k∑

i=1

bk,it
k−i ∈ K

I
[t]. If l is odd then

Qk +
k∑

i=1

bk,iQk−i +
k∑

i=1

(b
[l]
k,i − bk,i)h

[l](ql)k−i = Pkl(h(q)) + kT k
l
Ψl(h(q))

and if l = 2 we have

Qk +

k∑
i=1

bk,iQk−i +
k∑

i=1

(b
[
√
2]

k,i − bk,i)(h
[
√
2](q)k−i + h[

√
2](−q)k−i) +

k∑
i=1

(b
[2]
k,i − bk,i)h

[2](q2)k−i

=

⎧⎪⎨
⎪⎩

P2k,1(h(q)), if 2 � k

P2k,1(h(q)) + 2TkΨ√2(h(q)) + 2T k
2
Ψ2(h(q)), if 2 | k

Proof. The case where l is odd can be found in [43]. When l = 2 we apply T2 to both sides

of equation 2.3.2

T2Tk(h(q)) = T2

(
h(q)k +

k∑
i=1

bk,ih(q)
k−i

)

and the following manipulation

T2(bk,ih(q)
k−i) = bk,ih(q)

k−i ‖
⎡
⎣ 2 0

0 1

⎤
⎦+ bk,ih(q)

k−i ‖
⎡
⎣ √

2 0

0
√
2

⎤
⎦+

+ bk,ih(q)
k−i ‖

⎡
⎣ √

2 1√
2

0
√
2

⎤
⎦+ bk,ih(q)

k−i ‖
⎡
⎣ 1 0

0 2

⎤
⎦+ bk,ih(q)

k−i ‖
⎡
⎣ 1 1

0 2

⎤
⎦ =

= (b
[2]
k,i − bk,i)

⎛
⎝h(q)k−i ‖

⎡
⎣ 2 0

0 1

⎤
⎦
⎞
⎠+ (b

[
√
2]

k,i − bk,i)

⎛
⎝h(q)k−i ‖

⎡
⎣ √

2 0

0
√
2

⎤
⎦
⎞
⎠+

+ (b
[
√
2]

k,i − bk,i)

⎛
⎝h(q)k−i ‖

⎡
⎣ √

2 1√
2

0
√
2

⎤
⎦
⎞
⎠+ bk,iT2(h(q)

k−i) =
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= (b
[2]
k,i − bk,i)h

[2](q2)k−i + (b
[
√
2]

k,i − bk,i)
(
h[
√
2](q)k−i + h[

√
2](−q)k−i

)
+ bk,iQk−i

shows that T2Tk(h(q)) equals

Qk +

k∑
i=1

bk,iQk−i +
k∑

i=1

(
(b

[2]
k,i − bk,i)h

[2](q2)k−i + (b
[
√
2]

k,i − bk,i)
(
h[
√
2](q)k−i + h[

√
2](−q)k−i

))

If (2, k) = 1 then T2Tk(h(q)) = T2k(h(q)) = P2k,1(h(q)) and if 2r is the exact power of 2

that divides k we have that

T2Tk(h(q)) = T k
2r
T2rT2 = T k

2r

(
T2r+1(h(q)) + 2T2rΨ√2(h(q)) + 2T2r−1Ψ2(h(q))

)
=

= T2k(h(q)) + 2TkΨ√2(h(q)) + 2T k
2
Ψ2(h(q))

This proves the assertion of the theorem.

When l = 2 the Qk are simply the power sum symmetric functions on h[2](q2), h[
√
2](q),

h[
√
2](−q), h(q), h(−q). By induction, using the previous result, one shows that every Qj is a

polynomial in h[2](q), h[2](q2), h[
√
2](q), h[

√
2](−q) and h(q).

Let σn =
∑

1≤i1<i2<...<in≤5
xi1 . . . xin be the elementary symmetric functions in the indetermi-

nates x1, x2, x3, x4, x5. We know that the elementary symmetric function are polynomials in

the power sum symmetric functions and from this we conclude that the elementary symmet-

ric functions on h[2](q2), h[
√
2](q), h[

√
2](−q), h(q), h(−q) are polynomials in h[2](q), h[2](q2),

h[
√
2](q), h[

√
2](−q) and h(q). We use these facts in the proof of the following proposition.

Proposition 2.3.4. If f(q) = 1
q
+

∞∑
k=1

akq
k is completely 2A-replicable with replicates f [n](q) =

1
q
+

∞∑
k=1

a
[n]
k qk, for n ∈ N ∪√

2N, then

σ2

(
f [2](2z), f [

√
2](z), f [

√
2]
(
z + 1

2

)
, f

(
z
2

)
, f

(
z+1
2

))
=
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= 2a2f(z)− f [2](z) + 2 (a4 − a1) + 2a
[
√
2]

2 −
(
f [
√
2](z)

)2

Proof. We take h[n](q), for n ∈ N ∪√
2N as before and start by noticing that

σ2

(
h[2](2z), h[

√
2](z), h[

√
2]
(
z + 1

2

)
, h

(
z
2

)
, h

(
z+1
2

))
= 1

2
(Q2

1 −Q2)

Then we use Proposition 2.3.3 to express Q1 and Q2 as polynomials in h[2](q), h[2](q2),

h[
√
2](q), h[

√
2](−q) and h(q).

Now,

Q1 = T1(h(q)) = P1(h(q)) = h2(q)− 2x1

and from Proposition 2.3.3

Q2 = P4(h(q)) + 2P2(h
[
√
2](q)) + 2h[2](q)− (−10x1 + 2(−2x

[
√
2]

1 + 2x1) + (−2x
[2]
1 + 2x1))

because b2,1 = b
[
√
2]

2,1 = b
[2]
2,1 = 0 and b2,1 = −2x1, b

[
√
2]

2,1 = −2x
[
√
2]

1 , b
[2]
2,1 = −2x

[2]
1 , and

1
2
(Q2

1 −Q2) becomes

1

2
(h4(q)− 4x1h

2(q) + 4x2
1 −

(
h4(q)− 4x1h

2(q)− 4x2h(q)− 4x3 + 2x2
1+

+ 2h[
√
2](q)2 − 4x

[
√
2]

1 + 2h[2](q) + 10x1 + 4x
[
√
2]

1 − 4x1 + 2x
[2]
1 − 2x1)

)
=

= 2x2h(q)−
(
h[
√
2](q)

)2

− h[2](q) + x2
1 + 2x3 − 2x1 − x

[2]
1

Applying the homomorphism Ef defined at the beginning of this section we get

σ2

(
f [2](2z), f [

√
2](z), f [

√
2]

(
z +

1

2

)
, f

(z
2

)
, f

(
z + 1

2

))
=

= 2a2f(q)−
(
f [
√
2](q)

)2

− f [2](q) + a21 + 2a3 − 2a1 − a
[2]
1
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Equating the coefficient of q2 in both sides of the equation

f [2](q2) + f [
√
2](q) + f [

√
2](−q) + f(q

1
2 ) + f(−q

1
2 ) = P2(f(q))

we see that a21 + 2a3 − a
[2]
1 = 2a4 + 2a

[
√
2]

2 and this concludes the proof.

Proposition 2.3.5. From the following two identities

- σ1

(
f [2](2z), f [

√
2](z), f [

√
2]
(
z + 1

2

)
, f

(
z
2

)
, f

(
z+1
2

))
= P2,f (f(z))

- σ2

(
f [2](2z), f [

√
2](z), f [

√
2]
(
z + 1

2

)
, f

(
z
2

)
, f

(
z+1
2

))
=

= 2a2f(z)− f [2](z) + 2 (a4 − a1) + 2a
[
√
2]

2 −
(
f [
√
2](z)

)2

we obtain the recurrence relations:

1) a4k = a2k+1 +
k−1∑
j=1

aja2k−j +
1

2

(
a2k − a

[2]
k

)
− a

[
√
2]

2k

2) a4k+1 = a2k+3 − a2a2k +
k∑

j=1

aja2k+2−j +
k−1∑
j=1

a
[2]
j a

[
√
2]

2k−2j + 2
k−1∑
j=1

a4ja
[
√
2]

2k−2j+

+
k−1∑
j=1

a4ja
[2]
k−j +

2k−1∑
j=1

(−1)jaja4k−j +
k−1∑
j=1

a
[
√
2]

2j a
[
√
2]

2k−2j +
1

2

(
a2k+1 − a

[2]
k+1 + a22k + a

[2]
2k

)

3) a4k+2 =
k∑

j=1

aja2k+1−j + a2k+2

4) a4k+3 = a2k+4 − a2a2k+1 − 1
2

(
a22k+1 − a

[2]
2k+1

)
+

2k∑
j=1

(−1)jaja4k+2−j + a
[
√
2]

2k+2+

+
k∑

j=1

a4j−2a
[2]
k+1−j +

k+1∑
j=1

aja2k+3−j + 2
2k∑
j=1

a2ja
[
√
2]

2k+1−j +
k∑

j=1

a
[
√
2]

j a
[
√
2]

2k+1−j
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2.4 The Baby-Monster Lie Algebra

and 2A-replication

The moonshine module V � was constructed in [28] by Frenkel, Lepwosky and Meurman.

This is a vertex operator algebra that has M, the Monster group, as symmetry group. A

vertex operator algebra is an intricate algebraic structure and we refer to [40] for the definition

and the basics of its theory. The moonshine module has a grading V � =
⊕
n≥−1

V �
(n) and

its graded dimension
∑
n≥−1

(
dimV �

(n)

)
qn is the J-function. Borcherds ([7]) uses this vertex

operator algebra to prove the Moonshine Conjectures in the following way. First, he shows

that the McKay-Thompson series for V �, i.e. Tg =
∑
n≥−1

Tr(g|V �
(n))q

n are completely replicable

functions. To do this, he builds a generalized Kac-Moody algebra, the Monster Lie algebra,

whose denominator identity is essentialy the statement that the n-th replicate of a Tg is Tgn .

Knowing that Hauptmoduls for genus-zero congruence groups are also completely replicable

functions and that completely replicable functions satisfy some recurrence relations that

determine a function from the first 5 coefficients of the function and its replicates, he was

able to show that every McKay-Thompson series is indeed a Hauptmodul for some genus-zero

congruence groups by just comparing the first few coefficients of the functions involved.

In [34], Höhn shows that there is a vertex operator algebra W that has 2 ·B as symmetry

group. This group is a central extension of B, the Baby Monster group, and it arises as the

centralizer of an element of class 2A in M. This vertex operator algebra plays for 2 ·B the role

that V � plays for the M and it was used to prove the generalized Moonshine conjectures for

the case of the Baby Monster, i.e., when g (see introduction to this chapter) is an involution

of type 2A in M. In this section, we use t to represent a (fixed) element in class 2A in M.

More precisely, what Höhn states in [34] is the following. If

V �(t) =
⊕
n≥−1

V �
(n
2
)(t)

is the t-twisted module and h is an element in the centralizer of t in M then the McKay-
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Thompson series

Tt,g =
∑
n≥−1

Tr(g|V �

(n
2 )
(t))qn

is the Hauptmodul for some genus zero congruence subgroup.

We give a very brief sketch of the results from [34]. From the decompositions of V � =

V 00
⊕

V 01 and V �(t) = V 10
⊕

V 11 of +1 and −1 eigenspaces for t, Höhn builds the vertex

algebra W mentioned above on which 2·B acts. Using this vertex algebra W a Lie algebra g�B,

the Baby Monster vertex algebra, is constructed too. This is a 1
2
Z × 1

2
Z-graded Lie algebra

that has an action of 2 · B in it that respects the grading and its
(
m
2
, n
2

)
piece is isomorphic

to V
[m,n]
(2mn) ([·, ·] represents reduction mod 2). Höhn also shows that this is a generalized

Kac-Moody algebra with twisted denominator formula:

∑
m∈Z

Tr

(
g|V [m,1]

(m
2 )

)
p

m
2 −

∑
n∈Z

Tr

(
g|V [1,n]

(n
2 )

)
q

n
2 = p−

1
2 exp

⎛
⎜⎜⎝−

∑
i>0

∑
m∈Z

+

n∈Z

Tr

(
gi|V [m,n]

(mn
2 )

)
p

im
2 q

in
2

i

⎞
⎟⎟⎠ (2.4.1)

We can now state our main result.

Theorem 2.4.1. The McKay-Thompson series Tt,g(z), for g ∈ 2 · B, are completely 2A-

replicable with replicates T
[n]
t,g = Tt,gn and T

[
√
2n]

t,g = T1,gnt.

Proof. From the twisted denominator identity for the Baby Monster Lie algebra, 2.4.1, we

have, after substituting p
1
2 for p and q

1
2 for q:

∑
m∈Z

Tr

(
g|V [m,1]

(m
2 )

)
pm −

∑
n∈Z

Tr

(
g|V [1,n]

(n
2 )

)
qn = p−1 exp

⎛
⎜⎜⎝−

∑
i>0

∑
m∈Z

+

n∈Z

Tr

(
gi|V [m,n]

(mn
2 )

)
pimqin

i

⎞
⎟⎟⎠

The right hand side of this equation is

p−1 exp

⎛
⎜⎜⎜⎝−

⎛
⎜⎜⎜⎝

∑
i>0

∑
m∈Z

+

n∈Z
m or n odd

Tr

(
gi|V [1,mn]

(mn
2 )

)
pimqin

i
+

∑
i>0

∑
m∈Z

+

n∈Z
m and n even

Tr
(
git|V 00

(mn
2 )

) pimqin

i

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠
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= p−1 exp

⎛
⎜⎜⎜⎝−

⎛
⎜⎜⎜⎝

∑
i>0

∑
m∈Z

+

n∈Z
m or n odd

Tr

(
gi|V [1,mn]

(mn
2 )

)
pimqin

i
+

+
∑
i>0

∑
m∈Z

+

n∈Z
m and n even

(
Tr

(
git|V �

(mn
2 )

)
− Tr

(
git|V 01

(mn
2 )

)) pimqin

i

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

p−1 exp

⎛
⎜⎜⎜⎝−

⎛
⎜⎜⎜⎝

∑
i>0

∑
m∈Z

+

n∈Z
m or n odd

Tr

(
gi|V [1,mn]

(mn
2 )

)
pimqin

i
+

+
∑
i>0

∑
m∈Z

+

n∈Z
m and n even

(
Tr

(
git|V �

(mn
2 )

)
+Tr

(
gi|V 01

(mn
2 )

)) pimqin

i

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

= p−1 exp

⎛
⎜⎜⎝−

⎛
⎜⎜⎝∑

i>0

∑
m∈Z

+

n∈Z

Tr

(
gi|V [1,mn]

(mn
2 )

)
pimqin

i
+

∑
i>0

∑
m∈Z

+

n∈Z

Tr
(
git|V �

(2mn)

) p2imq2in

i

⎞
⎟⎟⎠

⎞
⎟⎟⎠

= p−1 exp

⎛
⎜⎝−

⎛
⎜⎝+∞∑

n=1

1

n

⎛
⎜⎝ ∑

ad=n

d ·
∑
k∈Z

Tr

(
ga|V [1,kd]

( kd
2 )

)
qak +

∑
ad=n
d even

d ·
∑
k∈Z

Tr

(
gat|V �

( kd
2 )

)
q2ak

⎞
⎟⎠ pn

⎞
⎟⎠

⎞
⎟⎠

= p−1 exp

⎛
⎜⎜⎜⎝−

+∞∑
n=1

1

n

⎛
⎜⎜⎜⎝

∑
ad=n
0≤b<d

Tt,ga

(
aτ + b

d

)
+

∑
ad=n
d even
0≤b<d

T1,gat

(
2aτ + b

d

)⎞
⎟⎟⎟⎠ pn

⎞
⎟⎟⎟⎠

Since

Tt,g(p)− Tt,g(q) = p−1 exp

(
−

+∞∑
n=1

1

n
Pn(Tt,g(q))p

n

)
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we conclude that, for all n ∈ N,

∑
ad=n
0≤b<d

Tt,ga

(
aτ + b

d

)
+

∑
ad=n
d even
0≤b<d

T1,gat

(
2aτ + b

d

)
= Pn(Tt,g(q))

and we get that Tt,g is 2A-replicable with 2A-replicates given as stated in the theorem.

By substituting g by gn we see that Tt,gn is 2A-replicable with replicates T
[m]
t,gn = Tt,gmn =

T
[mn]
t,g and T

[
√
2m]

t,gn = T1,gmnt = T
[
√
2nm]

t,g , i.e. (T
[n]
t,g )

[m] = T
[mn]
t,g and (T

[n]
t,g )

[
√
2m] = T

[
√
2nm]

t,g . To

complete the proof it remains to see that T
[
√
2n]

t,g = T1,gnt is 2A-replicable with replicates

(T
[
√
2n]

t,g )[m] = T1,gnmt and (T
[
√
2n]

t,g )[
√
2m] = Tt,g2nm , for m ∈ N. Equivalently, what we need to

prove is that, for every m ∈ N,

∑
ad=n
0≤b<d

T1,gmat

(
aτ + b

d

)
+

∑
ad=n
d even
0≤b<d

Tt,g2ma

(
2aτ + b

d

)
= Pn(T1,gmt(q))

But since T1,gmt is a monstrous function we know that

∑
ad=n
0≤b<d

T1,(gmt)a

(
aτ + b

d

)
= Pn(T1,gmt(q))

But now,

∑
ad=n
0≤b<d

T1,gmat

(
aτ + b

d

)
= n

∑
k∈N

⎛
⎝ ∑

a|(n,k)

1

a
Tr

(
gmat|V �

(nk
a2
)

)⎞
⎠ qk

∑
ad=n
d even
0≤b<d

Tt,g2ma

(
2aτ + b

d

)
= n

∑
k∈N

⎛
⎜⎜⎝ ∑

a|(n,k)
n
a
even

1

a
Tr

(
g2ma|V [1, kn

a2
]

( nk
2a2

)

)⎞
⎟⎟⎠ q2k

∑
ad=n
0≤b<d

T1,(gmt)a

(
aτ + b

d

)
= n

∑
k∈N

⎛
⎝ ∑

a|(n,k)

1

a
Tr

(
(gmt)a|V �

(nk
a2
)

)⎞
⎠ qk
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and what we have to show is

∑
k∈N

⎛
⎝ ∑

a|(n,k)

1

a
Tr

(
gmat|V �

(nk
a2
)

)⎞
⎠ qk +

∑
k∈N

⎛
⎜⎜⎝ ∑

a|(n,k)
n
a
even

1

a
Tr

(
g2ma|V [1, kn

a2
]

( nk
2a2

)

)⎞
⎟⎟⎠ q2k =

=
∑
k∈N

⎛
⎝ ∑

a|(n,k)

1

a
Tr

(
(gmt)a|V �

(nk
a2
)

)⎞
⎠ qk

This means that for k odd we have to show that

∑
a|(n,k)

1

a
Tr

(
gmat|V �

(nk
a2
)

)
=

∑
a|(n,k)

1

a
Tr

(
(gmt)a|V �

(nk
a2
)

)

which is true because t and g commute and every a in the sum, being a divisor of k, is

odd too.

For k = 2k′ even we have to show that

∑
a|(n,2k′)

1

a
Tr

(
gmat|V �

( 2nk′
a2

)

)
+

∑
a|(n,k′)
n
a
even

1

a
Tr

(
g2ma|V [1, k

′n
a2

]

( nk′
2a2

)

)
=

∑
a|(n,2k′)

1

a
Tr

(
(gmt)a|V �

( 2nk′
a2

)

)

This identity is clearly true for n odd and for n = 2n′ even it becomes

∑
a|2(n′,k′)

1

a
Tr

(
gmat|V �(

4n′k′
a2

)
)
+

∑
a|(2n′,k′)
2n′
a

even

1

a
Tr

(
g2ma|V 01(

n′k′
a2

)
)

=
∑

a|2(n′,k′)

1

a
Tr

(
(gmt)a|V �(

4n′k′
a2

)
)

and this is now easy to prove

∑
a|2(n′,k′)

1

a
Tr

(
gmat|V �

( 4n′k′
a2

)

)
+

∑
a|(2n′,k′)
2n′
a

even

1

a
Tr

(
g2ma|V 01

(n′k′
a2

)

)
=
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=
∑

a|2(n′,k′)

1

a
Tr

(
gmat|V �

( 4n′k′
a2

)

)
+

∑
a|(n′,k′)

1

a
Tr

(
g2ma|V 01(

4n′k′
(2a)2

)
)

=

=
∑

a|2(n′,k′)

1

a
Tr

(
gmat|V �

( 4n′k′
a2

)

)
−

∑
a|2(n′,k′)
a even

2

a
Tr

(
gmat|V 01

( 4n′k′
a2

)

)
=

=
∑

a|2(n′,k′)

1

a
Tr

(
gmat|V 00

( 4n′k′
a2

)

)
+

∑
a|2(n′,k′)
a even

1

a
Tr

(
gmat|V 01

( 4n′k′
a2

)

)
+

+
∑

a|2(n′,k′)
a odd

1

a
Tr

(
gmat|V 01

( 4n′k′
a2

)

)
−

∑
a|2(n′,k′)
a even

2

a
Tr

(
gmat|V 01

( 4n′k′
a2

)

)
=

=
∑

a|2(n′,k′)

1

a
Tr

(
(gmt)a|V 00

( 4n′k′
a2

)

)
+

∑
a|2(n′,k′)
a even

1

a
Tr

(
(gmt)a|V 01

( 4n′k′
a2

)

)
+

+
∑

a|2(n′,k′)
a odd

1

a
Tr

(
(gmt)a|V 01

( 4n′k′
a2

)

)
=

∑
a|2(n′,k′)

1

a
Tr

(
(gmt)a|V �

( 4n′k′
a2

)

)

And the theorem is proven.

At this point we know that the McKay-Thompson series Tt,g are 2A-completely replicable

and consequently satisfy the recurrence relations from Proposition 2.3.5. We know that

T
[n
√
2]

t,g = T1,tgn is a Monstrous function and therefore its coefficients are known once we

know in what class in the Monster the element tg is, for every g ∈ 2 · B. This can be done

in GAP. Hence, the first five coefficients of every Tt,g determine the coefficients of all Tt,g

completely. From subsection 2.2.2 we also have some completely 2A-replicability results for

some Hauptmoduls and thus these Hauptmoduls satisfy the same recurrence relations from

Proposition 2.3.5. To prove that every McKay-Thompson series is a Hauptmodul it is enough

to compare, for every g ∈ 2 · B, the first five coefficients of Tt,g, T1,tg, Tt,g2 , T1,tg2 , . . . with

those of f , f [
√
2], f [2], f [2

√
2], . . ., respectively, for some Hauptmodul f in tables 2.1 and 2.2.

This is analogous to Borcherds proof of the original Moonshine Conjectures.
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The decomposition of the first five head characters is given in [34]:

- H1 = χ1 + χ2

- H2 = χ185

- H3 = 2χ1 + χ2 + χ3 + χ4

- H4 = 2χ185 + χ186

- H5 = 3χ1 + 3χ2 + 2χ3 + χ4 + χ6 + χ7

However, this works well for all 247 classes in 2 ·B but 13 of them. This happens because

the Hauptmodul associated to each of these 13 classes is neither a completely replicable

function nor a dash (see [26] for the definition of the dash operator) of a completely replicable

function and our tables 2.1 and 2.2 only contain such functions. The names of these 13 classes

are, using GAP notation: 12h, 12i, 20h, 20i, 24i, 24m, 24n, 36d, 36e, 40f , 40g, 60d and 60e.

To solve this problem we use again the same recurrence relations from Proposition 2.3.5

to find the first 23 coefficients. Since we know that a replicable function (we recall from

remark 2.2.4 that a 2A-replicable function is replicable) is completely determined by its first

23 coefficients, a simple check among the power series expansions of the 616 Hauptmoduls

for genus zero groups with rational integer coefficients allows us to match every such class

with some Hauptmodul.

The correspondence is given in table 2.3.

79



Class (Square) Function Sq. R. Func. Class (Square) Function Sq. R. Func.
1a (1a) 2A 2A 2a (1a) 4 ∼ b 1A
2b (1a) 2a 2A 2c (1a) 4A 2B
2d (1a) 2B 2A 2e (1a) 4C 2B
3a (3a) 6A 6A 3b (3b) 6D 6D
4a (2a) 8 ∼ b 4B 4b (2d) 4a 4A
4c (2d) 4B 4A 4d (2d) 4C 4C
4e (2c) 8a 4B 4f (2e) 8A 4C
4g (2e) 8 ∼ d 4A 4h (2d) 4D 4C
4i (2c) 8B 4B 4j (2e) 8E 4C
4k (2e) 8D 4D 5a (5a) 10A 10A
5b (5b) 10C 10C 6a (3a) 12 ∼ d 3A
6b (3b) 12 ∼ f 3B 6c (3a) 6a 6A
6d (3a) 6b 6A 6e (3a) 12A 6C
6f (3a) 6C 6A 6g (3b) 6c 6D
6h (3a) 12c 6C 6i (3b) 12B 6E
6j (3b) 6E 6D 6k (3a) 12E 6C
6l (3b) 12H 6E 6m (3b) 12 ∼ h 6B
6n (3b) 12I 6E 7a (7a) 14A 14A
8a (4a) 16 ∼ a 8C 8b (4d) 8a 8A
8c (4c) 8b 8B 8d (4c) 8c 8B
8e (4d) 8B 8A 8f (4c) 8C 8B
8g (4d) 8D 8E 8h (4g) 16 ∼ d 8D
8i (4d) 8E 8E 8j (4h) 8F 8D
8k (4f) 16A 8B 8l (4j) 16C 8E
8m (4j) 16 ∼ e 8A 8n (4i) 16a 8C
8o (4j) 16B 8E 8p (4k) 16d 8F
9a (9a) 18A 18A 9b (9b) 18B 18B
10a (5a) 20 ∼ c 5A 10b (5b) 20 ∼ d 5B
10c (5a) 10a 10A 10d (5a) 20A 10B
10e (5a) 10B 10A 10f (5b) 20C 10E
10g (5b) 10E 10C 10h (5a) 20d 10B
10i (5b) 20F 10E 10j (5b) 20 ∼ g 10D
11a (11a) 22A 22A 12a (6a) 24 ∼ f 12C
12b (6b) 24 ∼ h 12G 12c (6f) 12a 12A
12d (6j) 12G 12B 12e (6f) 12b 12A
12f (6f) 12C 12A 12g (6e) 24a 12C
12h (6m) 24 ∼ j 12H 12i (6m) 24 ∼ k 12B
12j (6f) 12E 12E 12k (6e) 24b 12C
12l (6f) 12d 12E 12m (6k) 24B 12E
12n (6k) 24 ∼ m 12A 12o (6i) 24c 12G
12p (6e) 24E 12C 12q (6j) 12I 12I
12r (6n) 24C 12I 12s (6n) 24 ∼ o 12B
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Class (Square) Function Sq. R. Func. Class (Square) Function Sq. R. Func.
12t (6j) 12F 12H 12u (6k) 24h 12E
12v (6m) 24 ∼ q 12I 12w (6l) 24H 12F
12x (6n) 24I 12I 12y (6n) 24 ∼ r 12H
13a (13a) 26A 26A 14a (7a) 28 ∼ c 7A
14b (7a) 14a 14A 14c (7a) 14c 14A
14d (7a) 28B 14B 14e (7a) 14B 14A
14f (7a) 28C 14B 15a (15a) 30B 30B
15b (15b) 30F 30F 16a (8e) 16b 16A
16b (8e) 16c 16A 16c (8i) 16B 16B
16d (8i) 16A 16C 16e (8e) 16a 16A
16f (8i) 16A 16C 16g (8l) 32B 16A
16h (8o) 32A 16B 16i (8o) 32 ∼ e 16C
17a (17a) 34A 34A 18a (9a) 36 ∼ h 9B
18b (9b) 36 ∼ e 9A 18c (9b) 18c 18B
18d (9b) 18c 18B 18e (9b) 36A 18C
18f (9b) 18C 18B 18g (9b) 36f 18C
18h (9a) 36D 18D 18i (9a) 36 ∼ q 18E
19a (19a) 38A 38A 20a (10a) 40 ∼ c 20B
20b (10e) 20a 20A 20c (10g) 20c 20C
20d (10e) 20b 20A 20e (10e) 20B 20A
20f (10d) 40a 20B 20g (10d) 40B 20B
20h (10j) 40 ∼ h 20F 20i (10j) 40 ∼ i 20C
20j (10g) 20E 20F 20k (10i) 40C 20E
21a (21a) 42A 42A 22a (11a) 44 ∼ b 11A
22b (11a) 22a 22A 22c (11a) 22a 22A
22d (11a) 44A 22B 22e (11a) 22B 22A
23a (23a) 46C 46C 23b (23b) 46C 46C
24a (12b) 48 ∼ c 24G 24b (12f) 24d 24A
24c (12f) 24e 24A 24d (12f) 24g 24A
24e (12f) 24f 24A 24f (12j) 24b 24B
24g (12q) 24c 24C 24h (12j) 24A 24B
24i (12i) 48 ∼ h 24H 24j (12n) 48 ∼ i 24D
24k (12m) 48A 24A 24l (12q) 24H 24I
24m (12v) 48 ∼ j 24I 24n (12v) 48 ∼ k 24C
24o (12t) 24F 24H 24p (12w) 48h 24F
25a (25a) 50A 50A 26a (13a) 52 ∼ c 13A
26b (13a) 26a 26A 27a (27a) 54A 54A
28a (14a) 56 ∼ d 28A 28b (14e) 28A 28B
28c (14e) 28C 28C 28d (14e) 28a 28B
28e (14d) 56a 28A 28f (14f) 56A 28C
28g (14f) 56 ∼ g 28B 30a (15a) 60 ∼ c 15A
30b (15b) 60 ∼ l 15C 30c (15a) 30a 30B
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Class (Square) Function Sq. R. Func. Class (Square) Function Sq. R. Func.
30d (15a) 30d 30B 30e (15a) 60B 30C
30f (15a) 30C 30B 30g (15a) 60a 30C
30h (15b) 60D 30G 30i (15b) 60 ∼ m 30A
30j (15b) 60C 30G 30k (15b) 30G 30F
30l (15b) 60C 30G 30m (15b) 30G 30F
31a (31a) 62A 62A 31b (31b) 62A 62A
32a (16c) 32B 32A 32b (16c) 32B 32A
32c (16d) 32b 32B 32d (16d) 32b 32B
33a (33a) 66A 66A 34a (17a) 68 ∼ b 17A
34b (17a) 34a 34A 34c (17a) 34a 34A
35a (35a) 70A 70A 36a (18b) 72 ∼ c 36C
36b (18f) 36C 36A 36c (18e) 72a 36C
36d (18i) 72 ∼ p 36D 36e (18i) 72 ∼ q 36B
38a (19a) 76 ∼ b 19A 38b (19a) 38a 38A
38c (19a) 38a 38A 39a (39a) 78A 78A
40a (20a) 80 ∼ a 40A 40b (20e) 40b 40B
40c (20e) 40c 40B 40d (20e) 40A 40B
40e (20g) 80e 40A 40f (20i) 80 ∼ e 40C
40g (20i) 80 ∼ e 40C 42a (21a) 84 ∼ e 21A
42b (21a) 42a 42A 42c (21a) 42b 42A
44a (22e) 44c 44A 44b (22e) 44c 44A
46a (23a) 92 ∼ b 23A 46b (23b) 92 ∼ b 23A
46c (23c) 92A 46A 46d (23a) 46A 46C
46e (23b) 92A 46A 46f (23b) 46A 46C
47a (47a) 94A 94A 47b (47b) 94A 94A
48a (24h) 48a 48A 48b (24h) 48b 48A
50a (25a) 100 ∼ c 25A 52a (26a) 104 ∼ c 52A
54a (27a) 108 ∼ g 27A 55a (55a) 110A 110A
56a (28c) 56a 56A 56b (28c) 56a 56A
60a (30a) 120 ∼ d 60A 60b (30f) 60b 60B
60c (30e) 120a 60A 60d (30i) 120 ∼ g 60D
60e (30i) 120 ∼ h 60C 62a (31a) 124 ∼ b 31A
62b (31b) 124 ∼ b 31A 66a (33a) 132 ∼ c 33B
66b (33a) 66a 66A 66c (33a) 66a 66A
68a (34a) 136 ∼ b 68A 70a (35a) 140 ∼ b 35A
70b (35a) 70a 70A 70c (35a) 70a 70A
78a (39a) 156 ∼ d 39A 84a (42a) 168 ∼ c 84A
94a (47a) 188 ∼ b 47A 94b (47a) 188 ∼ b 47A
104a (52a) 208 ∼ a 104A 104b (52a) 208 ∼ a 104A
110a (55a) 220 ∼ b 55A

Table 2.3: Classes in 2 · B and corresponding McKay-Thompson series together with their√
2-replicates
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2.5 Conclusion

In this chapter we have proved that the McKay-Thompson series for V �(t) are the Haupt-

moduls given in [34]. The approach taken here resembles Borcherds proof of the Moonshine

conjectures except for the last part where we had to compute the first 23 coefficients of certain

13 functions that are neither completely replicable nor the dash of a completely replicable

function. For those classes we applied the same strategy Höhn used in [34] to identify the

McKay-Thompson series. However, the computations are now much simpler because we have

generalized Mahler recurrence relations coming from 2A-replication. It also shows that the

action of the Hecke Operators for Γ0(2)+ are, through 2A-replication, somehow reflected in

the structure of the vertex algebra W . As it happens for the Monster group and ordinary

replication, 2A-replication respects the power map structure in 2 · B.
It is also interesting to see that some Hauptmoduls that are not completely replicable, are

completely 2A-replicable. This gives an expression for their 2-replicates using remark 2.2.4.

A natural question to ask is whether we can extend these ideas to other groups arising

from centralizers of Fricke elements in M. This is the subject of the next chapter.
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Chapter 3

3A-replication and 3 · F3+

3.1 Introduction

In this chapter we apply the ideas from the preceding chapter, namely defining 3A-

replicability, and we show that in this case it is possible to associate to every conjugacy

class of 3 · F3+, the centralizer of an element of class 3A in M, a Hauptmodul for some

genus-zero congruence subgroup of PSL2(R). This correspondence has the property that

3A-replicability respects the power map structure of 3 · F3+.

3.2 3A-replicability

As in the previous section we define 3A replicability by looking at the algebra of Hecke

Operators for Γ0(3)+. It is easy to see that most of the results from subsection 2.2.1 carry

over to this situation and we make the following definition:

Definition 3.2.1. A function f is 3A-replicable if there are f [n] and f [n
√
3], for n ∈ N, such

that

Pn,f (f) =
∑
ad=n
0≤b<d

f [a]

(
aτ + b

d

)
+

∑
ad=n
3|d

0≤b<d

f [a
√
3]

(
3aτ + b

d

)
(3.2.1)

As in the case of 2A-replication we can make the following remarks.
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Remark 3.2.1. Given a 3A-replicable function f , its 3A-replicates are not uniquely deter-

mined. For example, for m = 3, equation 3.2.1 becomes

f [3](3τ) + f [
√
3](τ) + f [

√
3]

(
τ +

1

3

)
+ f [

√
3]

(
τ +

2

3

)
+

+ f
(τ
3

)
+ f

(
τ + 1

3

)
+ f

(
τ + 2

3

)
= P3,f (f)

and we can see that f [3] is known when f and f [
√
3] are known.

Remark 3.2.2. If a function is 3A-replicable then it is replicable with

f (n)(z) =

⎧⎨
⎩ f [n](z), 3 � n

f [n](z) + f
[ n√

3
]
( z
3
) + f

[ n√
3
]
( z+1

3
) + f

[ n√
3
]
( z+2

3
), 3 | n

(3.2.2)

Also, if f is replicable then f is 3A-replicable by taking, for example, f [n
√
3] = 0. Conversely,

we can also say that if f is replicable and if, for every n multiple of 3, we can write f (n)(z) =

f [n](z) + f
[ n√

3
]
( z
3
) + f

[ n√
3
]
( z+1

3
) + f

[ n√
3
]
( z+2

3
), for some f [n], f

[ n√
3
]
, then f is 3A-replicable. For

n not multiple of 3 we obvioulsy have f [n] = f (n).

Definition 3.2.2. We say that a function f is completely 3A-replicable if

- it is replicable, with replicates f [n], n ∈ N ∪√
3N, and

- for every n ∈ N ∪ √
3N the function f [n] is replicable with replicates

(
f [n]

)[m]
= f [mn],

for any m ∈ N ∪√
3N.

To prove 3A-replication formulas for Hauptmodul we need an analog of Theorem 2.2.1

when the prime p does not divide any of the Atkin-Lehner involutions.

We believe the following is true:

Conjecture 3.2.1. Let f be the Hauptmodul for some group n|h + e1, e2 . . . with p � h and

p � ei for any i

- If p ‖ n, f(Wpz) + f
(

z
p

)
+ . . .+ f

(
z+p−1

p

)
= 0
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- If p2 | n, f
(

z
p

)
+ . . .+ f

(
z+p−1

p

)
= 0

We use the same notation as in the previous Chapter to make a distinction between those

Atkin-Lehner involutions that are divisible by three and those that are not. For example,

now the group 30+6, 10, 15 = 30+{e}O +{3e}E with O = {10} and E = {2, 5}. Combining

Theorems 2.2.1 and Conjecture 3.2.1 we obtain an analog of Lemma 2.2.1.

Lemma 3.2.1. We have the following identities:

(1) T3N+{e}O(z) = T3N+{e,3e}O(z) +
2∑

b=0

T3N+{e}O

(
z + b

3

)

if (3, N) = 1.

(2) TN+{e}O(z) = T3N+{e,3e}O(z) +
2∑

b=0

T3N+{e,3e}O

(
z + b

3

)

if (3, N) = 1.

(3) TN+{e}O+{3ke}E(z) = TN+{e}O(z) +
2∑

b=0

T3N+{e}O+{3k+1e}E

(
z + b

3

)

if 3k ‖ N , k ≥ 1 and E is not empty.

Theorem 3.2.1. Every function of type as given in table 3.1 is 3A-replicable with f [3
n
3 ],

n ∈ N, as given in the tables. The replicates f [3
n
3 m], for n a non-negative integer and m not

a multiple of 3 are given by the formula f [3
n
3 m](z) =

(
f [3

n
3 ]
)(m)

(z).

Proof. The proof is similar to that Theorem 2.2.2. We use Conjecture 3.2.1 and Lemma 3.2.1

in this case.

Corollary 3.2.1. The functions in table 3.1 are completely 3A-replicable.

Proof. Same argument as in Corollary 2.2.1.
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f N + {e}O + {3e}E 3N + {e}O + {3e}E 9N + {e}O + {9e}E 9N + {e}O + {9e}E
f [
√

3] 3N + {e, 3e}O 3N + {e, 3e}O 3N + {e}O 9N + {e}O
f [3] 3N + {e, 3e}O 3N + {e, 3e}O 3N + {e, 3e}O 3N + {e}O

f [3
√

3] · · · · · · 3N + {e, 3e}O 3N + {e, 3e}O
f [9] · · · 3N + {e, 3e}O
.
.
. · · ·
f 27N + {e}O + {27e}E 27N + {e}O + {27e}E 3N|3 + {e}O 9N|3 + {e}O + {3e}E

f [
√

3] 27N + {e}O 9N + {e}O 3N + {e, 3e}O 9N + {e}O + {9e}E
f [3] 9N + {e}O 9N + {e}O 3N + {e, 3e}O 3N + {e}O

f [3
√

3] 9N + {e}O 3N + {e}O · · · 3N + {e, 3e}O
f [9] 3N + {e}O 3N + {e, 3e}O 3N + {e, 3e}O

f [9
√

3] 3N + {e, 3e}O 3N + {e, 3e}O · · ·
f [27] 3N + {e, 3e}O · · ·

.

.

. · · ·
f 9N|3 + {e, 3e}O 27N|3 + {e}O + {9e}E 27N|3 + {e}O + {9e}E

f [
√

3] 3N|3 + {e}O 27N + {e}O + {27e}E 9N|3 + {e}O + {3e}E
f [3] 3N + {e, 3e}O 9N + {e}O 9N + {e}O + {9e}E

f [3
√

3] 3N + {e, 3e}O 9N + {e}O 3N + {e}O
f [9] · · · 3N + {e}O 3N + {e, 3e}O

f [9
√

3] 3N + {e, 3e}O 3N + {e, 3e}O
f [27] 3N + {e, 3e}O · · ·

.

.

. · · ·

Table 3.1: 3A-replicates of Hauptmoduls.

3.3 3A-replication and 3 · F3+

In this section we will be using GAP notation for the names of classes and characters of

3 · F3+.

We make a few observations about the classes and characters of 3 · F3+. The characters

χi, for 1 ≤ i ≤ 108 are characters of F3+ and characters χi, for 109 ≤ i ≤ 256 are characters

of 3 ·F3+ that are not characters of F3+. The last ones occur as algebraic conjugate pairs. If

a class has at least one non-zero character value for some χi for 109 ≤ i ≤ 256 then there are

two other distinct classes whose corresponding character values are obtained from the first

ones by multiplication by cube roots of unity, in an obvious way. We will refer to the first

ones as the “essential“ classes, as the Hauptmoduls for the other two classes are obtained by

translations z → z + 1
3
and z → z + 2

3
. Considering only the essencial classes reduces the

number of classes from 256 to 108. Now, we try to find the Hauptmoduls for these essential

classes.

From the fact that the function associated to the identity element in 3 · F3+ should be
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T3+ and its power series expansions starts off:

T3+(q) =
1

q
+ 783 · q + 8672 · q2 + 65367 · q3 . . .

we conclude that the decomposition of the first Head character should be:

H−1 = χ1 / H1 = χ109 or χ110 / H2 = χ1 + χ2

This decomposition determines the Hauptmodul we should associate to some other classes

in 3·F3+. The more classes we have identified the more decompositions of the Head characters

we can determine accurately.

We can attach to every class a Hauptmodul with rational integer coefficients except for

classes 18m and 18p. Their functions have coefficients in the field Q(
√
5) and seem to

correspond to 54 ∼ c and 54 ∼ b (see [50]), respectively, if we consider H1 = χ109. Choosing

H1 = χ110 instead only has the effect of switching these two essential classes, the other

essential ones remaining unchanged.

For this choice of H1 the decomposition of the Head characters is:

H−1 = χ1 / H1 = χ109 / H2 = χ1 + χ2 / H3 = χ110 + χ112 / H4 = χ109 + χ111 + χ115

H5 = 3χ1 + 2χ2 + χ3 + χ8 / H6 = 2χ110 + 2χ112 + χ116 + χ118

H7 = 3χ109 +3χ111 +χ113 +χ115 +χ117 +χ119 / H8 = 4χ1 +4χ2 +2χ3 +χ5 +2χ8 +χ9 +χ10 +χ13

H11 = 9χ1 + 10χ2 + 6χ3 + 3χ5 + 6χ7 + 2χ8 + 2χ9 + 2χ10 + 4χ12 + χ16 + χ18 + χ24

This decomposition of the Head characters doesn’t determine what Hauptmodul we should

attach to classes 24i and 24j since there are two possibilities: 72b and 216 ∼ c. We would

have to find the decomposition of H17 to distinguish between those two functions. However,

not only the more natural choice is 72b because 72 = 3 · 24 but also this choice makes

3A-replicability respect the power map structure in 3 · F3+.

In fact, we have made computations that show that 3A-replicability respects the power

map structure in 3 · F3+ for all the essential classes except 18m and 18p. It is a curious fact

that these are the only essential classes whose cubes are not essential. The cubes of 18m and

18p are 6y and 6z, respectively, which are the translates of the essential class 6x.
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Below are the diagrams showing the power map structure of 3 · F3+ and 3A-replicability

for all essential classes except 18m and 18p. Every ellipse contains at least one class in 3 ·F3+

and the corresponding Hauptmodul between brackets. An arrow represents
√
3-replication

so that a square box represents the
√
3-replicate of the McKay-Thompson series above it in

the diagram. As we can see, every
√
3-replicate is again a Monstrous function.
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Figure 3.1: 3A-replicability of essential classes in 3 · F3+
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3.4 Conclusion

In this chapter we applied the ideas from the previous chapter to an element of class

3A instead of class 2A. We found that 3A-replication respects the power map structure of

3 · F3+ but only for those classes whose Hauptmodul is rational. In the previous chapter

we saw that the 2A-replication formulas for the McKay-Thompson series came from the

denominator identity for the Baby Monster Lie algebra. We would like to build analogs of

the vertex operator algebra W and the Baby Monster Lie algebra for 3 · F3+. We believe

that from the denominator identity for that Lie algebra it will be possible to deduce how

3A-replication should work in the irrational cases. Work of Carnahan ([10]) might be relevant

for this.

Two directions of future research could be, firstly, to find how 3A-replication should work

for the irrational functions and, secondly, how to extend these ideas to other groups that are

not of the form Γ0(p)+.
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