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ABSTRACT 

A Knowledge-based Approach for Creating Detailed Landscape Representations 
by Fusing GIS Data Collections with Associated Uncertainty 

Pedro Maroun Eid, Ph.D. 

Concordia University, 2014 

Geographic Information Systems (GIS) data for a region is of different types and 

collected from different sources, such as aerial digitized color imagery, elevation data 

consisting of terrain height at different points in that region, and feature data consisting of 

geometric information and properties about entities above/below the ground in that 

region. Merging GIS data and understanding the real world information present explicitly 

or implicitly in that data is a challenging task. This is often done manually by domain 

experts because of their superior capability to efficiently recognize patterns, combine, 

reason, and relate information. When a detailed digital representation of the region is to 

be created, domain experts are required to make best-guess decisions about each object. 

For example, a human would create representations of entities by collectively looking at 

the data layers, noting even elements that are not visible, like a covered overpass or 

underwater tunnel of a certain width and length. Such detailed representations are needed 

for use by processes like visualization or 3D modeling in applications used by military, 

simulation, earth sciences and gaming communities. Many of these applications are 

increasingly using digitally synthesized visuals and require detailed digital 3D 

representations to be generated quickly after acquiring the necessary initial data.  

Our main thesis, and a significant research contribution of this work, is that this 

task of creating detailed representations can be automated to a very large extent using a 

methodology which first fuses all Geographic Information System (GIS) data sources 

available into knowledge base (KB) assertions (instances) representing real world objects 

using a subprocess called GIS2KB. Then using reasoning, implicit information is inferred 

to define detailed 3D entity representations using a geometry definition engine called 
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KB2Scene. Semantic Web is used as the semantic inferencing system and is extended 

with a data extraction framework. This framework enables the extraction of implicit 

property information using data and image analysis techniques. The data extraction 

framework supports extraction of spatial relationship values and attribution of 

uncertainties to inferred details. Uncertainty is recorded per property and used under 

Zadeh fuzzy semantics to compute a resulting uncertainty for inferred assertional axioms. 

This is achieved by another major contribution of our research, a unique extension of the 

KB ABox Realization service using KB explanation services.  

Previous semantics based research in this domain has concentrated more on 

improving represented details through the addition of artifacts like lights, signage, 

crosswalks, etc. Previous attempts regarding uncertainty in assertions use a modified 

reasoner expressivity and calculus. Our work differs in that separating formal knowledge 

from data processing allows fusion of different heterogeneous data sources which share 

the same context. Imprecision is modeled through uncertainty on assertions without 

defining a new expressivity as long as KB explanation services are available for the used 

expressivity. We also believe that in our use case, this simplifies uncertainty calculations. 

The uncertainties are then available for user-decision at output. We show that the process 

of creating 3D visuals from GIS data sources can be more automated, modular, verifiable, 

and the knowledge base instances available for other applications to use as part of a 

common knowledge base. We define our method’s components, discuss advantages and 

limitations, and show sample results for the transportation domain.  
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Chapter 1  

Introduction 

Digitally synthesized visuals of real world landscapes are essential in military, 

simulation, earth sciences and serious gaming applications. Such applications require 

detailed representations including 3D models of land entities to be generated in short 

turnaround times. In this thesis, the term “detailed representation” refers to detailed 

property values of all entities needed by the end user in such a landscape representation. 

Turnaround time is defined as the time required, after acquiring the necessary initial data, 

to create a corresponding landscape representation (digital) with detail as required. The 

military, for example, is already looking at ways to reduce this turnaround time between 

receiving new data about a specific mission and having the mission training simulator 

ready for mission rehearsal right before real world execution [Fillmore, 2006]. 

The process of creating detailed digital representations for scenes is often a very 

manual process. 3D geometric models, terrain, and other components are usually created 

from Geospatial databases that define a real world region of interest (ROI). Three main 

data sources are invariably contained, also collectively called Geographic Information 
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Systems (GIS) source data, namely, elevation data, imagery and feature data. While, 

elevation data and imagery are easily available, feature data (also known as vector data) 

and the associated 3D models are often not. The most common feature files format is the 

Shapefile standard, which is described in detail in Chapter 2. Creation of shapefiles is 

labor intensive. As of today, in most cases, elevation and imagery are used to semi-

automatically generate a triangulated and textured mesh of the terrain (ground surface). 

3D digital models of other entities in the landscape are hand crafted or altered using 

modeling tools based on descriptions of features or their respective real world images. 

The current methodology for shapefile creation involves domain experts. GIS data 

is presented to these experts and they extract and make certain information explicit and 

well-attributed for other systems or computer programs to consume. Thus, one of their 

main tasks is to resolve the ambiguities in the data by analyzing the different sources of 

data and to create the most precise and unambiguous definition for each entity in the ROI 

as required by the application. This may require testing the results of their definitions and 

iterating back until an acceptable representation is achieved. We will discuss these 

techniques further in Chapter 3. 

A detailed digital representation of a real world landscape would need, along with 

terrain data, adequate representations of all additional entities—both above and below the 

ground—such as tunnels, water bodies, bridges, buildings, roads, trees, etc. GIS datasets 

contain the initial data needed to model these real world objects, although their details 

(property values) may only be implicitly available. By implicit we mean that the values 

are not explicitly present in the shapefiles or cannot be derived using algebraic methods 

from the data sources, but rather one has to infer the values from the collective data set. 
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Our research addresses the problem of using these multiple GIS source datasets to 

automatically generate details of the entities in the ROI including 3D details. We differ 

from other processes discussed in  Chapter 3 by making certain implicit facts in the initial 

data explicit for defining property values and aggregating uncertainties for decision 

making on the produced output. These property values are used to procedurally generate 

entities in the ROI as required by the end application. 

Entities in the ROI which are present in the shapefiles are organized as instances 

in a knowledge base with values for their properties. An expert cartographer’s knowledge 

is formalized by means of an ontology. Description Logic reasoners are used to infer 

information about the instances so as to reveal their specific identities (say from a generic 

line element to bridge to covered bridge and so on), and to provide associated property 

values needed for detailed representation of the entities. “Data Extractors” is the name of 

the framework we use to fuse data from the different GIS sources (shapefile, elevation, 

and imagery datasets) and to automatically derive values from explicit and implicit 

knowledge present in the GIS source data. 

Computer vision based techniques such as pattern recognition and image analysis 

methods are often used to computationally estimate the entities and their properties. Due 

to the imprecision and ambiguity of captured sensor data and in the results of these 

vision-based algorithms, values cannot be obtained with complete (100%) certainty. 

Unlike uncertainty in knowledge that deals with defining the meanings of ambiguous 

concepts such as "often" in "a bridge often has supports", assertions from GIS sources 

only require a certainty value on their validity (the certainty of existence with regards to 

the real world) e.g. how certain are we that “wood is the type of cover of a bridge 
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instance i”. The Data Extractors framework handles object-object relationships (includes 

spatial relationships), object-value relationships, as well as their data uncertainties. 

Following work by [Poole et al., 2009], uncertainties are recorded as attributions on their 

respective assertions under the principle of the separation of knowledge assertions from 

the uncertainties associated with this knowledge into different contexts. Inferred axioms 

are associated with a resulting value under Zadeh fuzzy semantics [Zadeh, 1965]. 

Semantic Web ABox Realization service is extended, and explanation services (KB 

Justifications as per [Horridge et al., 2009]) are used to associate uncertainty values to 

inferred assertional axioms. We address complex and multiple explanations for a certain 

inference by reducing every explanation into a minimum set of axioms, which we call the 

variable set. This set allows us to calculate the inferred axiom's certainty value.  

Our methodology makes the availability and analysis of GIS data more 

automated, modular, verifiable, and the results more streamlined for other applications to 

use. The fusion of different data sources and collections allows a common knowledge 

base defining entity instances logically. This KB is then further used to generate 3D 

representations of the entity instances. We extended OWL Link [Liebig et al., 2008] to 

C++ and C# in order to enable module intercommunications using the Semantic Web 

framework. We show a way to address uncertainty in this data with minimum impact on 

system complexity or change of semantics expressivity. We discuss the advantages and 

limitations of this process with respect to legacy methods. We present our 

implementation details using the transportation domain as an example which includes 

road networks and transportation-related features and models, especially bridge 

structures. However, this process can be applied similarly to other domains. 



5 

1.1 Motivation 

Digitally synthesized versions of familiar 3D environments enable users to be 

immersed into the virtual worlds created by the computer and thus to fully utilize their 

everyday capabilities and senses to solve a given problem. They also provide a good 

training mechanism in complex and hazardous environments, lowering the cost of 

hardware training and at the same time making it more effective. Detail is important in 

creating a realistic 3D environment, an important requirement for providing the 

immersive experience in many domains such as entertainment, education & training, 

simulations, engineering and science. Constructing a 3D model of the ROI with the 

required level of detail usually consumes a lot of manual work and design. Methods 

which can help create detail without significant domain expert involvement are essential. 

Several organizations including the National Geospatial-Intelligence Agency 

(NGA) cooperate under the Multinational Geospatial Co-production Program (MGCP) to 

collect, produce and share digital geographic information. Despite the availability of 

information, and established quality standards and requirements such as those shown by 

[Fillmore, 2006], there is a need to reduce the turnaround time between obtaining new 

GIS data of an area and having a 3D model suitable for simulation systems and training 

applications. Visualization is only one application targeted by the MGCP. 

Urban operations, for example, have lately been the focus of several research 

efforts due to the high requirement in detail and fidelity of the geographical surface 

features. As compared to an Out-The-Window (OTW) view of a flight simulation where 

terrain surface and features are only represented as a texture map applied to generic 3D 
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shapes, urban simulation requires detailed 3D modeling of close-by objects. We shall 

refer to a detailed 3D model as a geospecific model as it is more accurate in reflecting the 

real world object’s dimensions and shape features as compared to a generic model which 

is often simply defined as a properly sized box with an appropriately assigned 

color/texture. To produce geospecific 3D models representing entities in a certain area, an 

expert cartographer would need to study the different layers of source data available and 

estimate property values for the entities. This may need many iterations before finalizing 

the result. 

A few interactive tools exist which can assist the expert in this task. But it is very 

difficult for a tool to consolidate knowledge independent of the actual data being studied, 

when this data is in different forms and standards such as rasters (for elevation and 

imagery) and records (for features and culture). Computer vision based techniques work 

primarily with raster images for identifying features and their details. Restricting oneself 

to pixel-based techniques is inadequate for our problem. 

1.2 Problem Statement 

Our main problem can be stated as follows: 

Given GIS source data (feature and feature values in the form of shapefiles, raster 

images of the landscape in the form of pixelized data, and elevation data in the form of a 

height raster or triangulated height values), create a 3D digital landscape representation 
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for that ROI having all the detail with correctness and precision that exists explicitly or 

implicitly in the given GIS source data, and with reduced human expert involvement. 

 A secondary problem to the above can be stated as follows: 

Given GIS source data for a ROI, in which certainty in the form of percentage 

values are associated with the feature and feature values in the sources, handle the 

certainty values for all the entities and their property values in the KB. 

1.3 Objectives 

Our main objectives can be summarized as follows: 

� To define a methodology to extract the knowledge (facts about entities) that exists in 

the GIS source data in a format independent manner. In order to be able to do this, 

create a mapping which maps facts in the source data to assertions in a knowledge 

base. For this mapping, we need to define: 

▫ Domain knowledge ontologies under ROI constraints, considering knowledge 

that can be collected based on the ROI and that is relevant to our needs 

(domain-based capabilities, driven by implementation needs). 

▫ Data to domain mapping ontologies separating source format mapping 

specifics from domain knowledge descriptions. 

� To develop a framework which will infer implicit information in the knowledge (use 

the domain knowledge ontologies) w.r.t. entities in the landscape of the ROI and 
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further extract missing values for required properties of these entities from the input 

data sources. Develop procedures by which the inferred entities and their property 

values can be used to procedurally create detailed digital representations of the 

landscape. 

� To define a mechanism to handle and compute uncertainty in the added data. 

� For all the above, to comply as much as possible with public standards and 

technologies. 

1.4 Methodology and Proposed Solution 

Our methodology [Eid & Mudur, 2009] is driven by the fact that we see the task 

of creating geospecific 3D models from GIS source data as composed of two distinct 

steps: facts extraction and spatial knowledge extraction. We plan to devise mechanisms 

for facts extraction, or feature extraction (GIS to knowledge), which fuse data by adding 

knowledge in the form of assertions to a formal knowledge base. This formal knowledge 

allows for inference of new information about the instances, i.e., new information 

becomes explicit. Spatial knowledge extraction (knowledge to representation) uses the 

available information in the knowledge base to construct a corresponding landscape 

representation for the ROI. 

Further, as part of our implementation methodology, we propose the use of 

Semantic Web technology for formally modeling the knowledge base. Properties inferred 

by the semantic engine will be processed further to extract corresponding values from the 
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input sources. These are also inserted as assertions into the knowledge base which in turn 

contributes to further formal knowledge about the instances, and further possible 

inferences. Uncertainties based on data imprecision or as a result of methods used will be 

associated with the assertions. Using Semantic Web technology therefore allows data 

independence; the same process can be used on different sensor data sources (various 

feature, elevation, and imagery sources) to extract needed data. 

Next, a geometry definition engine will be developed to demonstrate the 

automation in creating the required representation. Specifically, we create 3D features 

using the property values extracted from the knowledge base. The geometry definition 

engine will have needed parameters for every 3D model. We use the SPARQL querying 

language, described in the following chapter, to retrieve the landscape entities and 

associated properties using a parametric models ontology. For example, for a bridge 

model, the system can extract quantitative parameters such as bridge width, span and 

cover texture from the knowledge base. The extracted information is then used in 

conjunction with a parametric 3D model repository to procedurally construct a higher 

detail geospecific equivalent of the real world entity as defined in the collection of GIS 

information. 

The three components described above, together, effectively mimic the process of 

data extraction and estimation done by experts and thus reduce the effort involved. The 

initial setup for a GIS features domain (like transportation) would require expert time 

(one time effort) in defining the ontologies and the scripting of modular data extractors 

for properties and relationships.  
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1.5 Implementation 

The system proposed in this research is a generic system for assisted generation of 

3D digital models of the landscape of a given region of interest from raster, vector and 

symbolic source data. We have developed a system whose architecture will be described 

in detail in later chapters. While this system architecture is domain independent, we have 

populated it with knowledge about the transportation domain, specifically entities such as 

bridges, roads, tunnels, etc. 

Given below is a list of the tools used in developing this system: 

� The Open Geospatial Consortium and Ordnance Survey for public standards and 

ontologies. 

� Protégé Editor 4.3 to create our ontologies and testing. 

� Pellet 2.3.1 and Hermit 1.3.8 as Semantic Web reasoners. 

� OSGeo’s GeoTools API 9.3 for GIS data processing, querying and presentation. 

� OWL API 3.4.5  for binding into a semantic web engine and complying with OWL 2 

specifications in reading, writing and querying. 

� Eclipse IDE Juno to develop our prototype and knowledge base using the above Java 

APIs. 

� MapWindow GIS 4.7.5 for investigation and testing of sources with plugins to use 

our knowledge base system. 

� OWL Link API 1.2.0 for the porting of the DIG protocol into C# and C++ 

� Microsoft® Visual Studio 2010 to develop OWL Link for C#/C++ 
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� Microsoft® .Net Framework for building OWL Link for C#/C++ and MapWindow 

GIS plugins. 

� Google Earth Pro®, DVC GenesisRT®, Presagis Terra Vista® and Creator® for 

investigation of current state-of-the-art capabilities and needs for a solution that can 

be integrated with current processes. 

� U.S. Geological Survey’s National Elevation Dataset, Ordnance Survey resources, 

and Natural Resources Canada GeoGratis datasets for validation. 

1.6 Simple Example from our System’s Results 

The image shown in Figure 1 is taken from Google Earth® at 21°21'02.72" N 

157°53'41.13" W on January 23, 2014 with a view towards the South. Although a 

comprehensive visual scene is present, the lack of a 3D model for the bridge is 

noticeable. The data for such a scene consists of elevations, rasters and annotations to 

insert 3D models in the scene.  
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Figure 1: Google Earth® Image of a Region of Interest (ROI) 

 

Figure 2: Publicly Available Elevation Raster Data, Georeferenced Imagery, and Linear 
Feature Information for the Same ROI of Figure 1 
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For this same area, publicly available elevation raster data, georeferenced 

imagery, and linear feature information are shown in Figure 2 (North up). These were 

retrieved (through the USGS website) using remote sensing equipment in the ROI. 

Another linear feature can be defined for the orthogonal road crossing under the bridge as 

well. However, in either case, a human can easily distinguish the existence of a bridge 

whether due to the elevation profile or due to the existence of the orthogonal roadway. 

 

Figure 3: Detailed 3D Bridge Created by Using our Knowledge-based Approach for the 
same ROI of Figure 1 (South View) 

Figure 3 shows the results of the application of our knowledge-based approach to 

create a 3D representation of the landscape for the same ROI. The 3D details of the 

bridge entity are clearly visible. Our process first uses the data and domain ontologies to 

map segments of the road linear as connected segment entities in the knowledge base 

representing the road. Extractors associated with entity class properties in the domain 

ontology are used to evaluate spatial relationships between knowledge base entities and 
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to retrieve missing values for each entity’s properties. Extractors also associate the 

uncertainties found as part of the facts. Deductive reasoning based on a domain ontology 

is used to reclassify entities to their most specific classes based on their relationships and 

property values. The result is a knowledge representation of each entity in the ROI. The 

process then uses the knowledge representation of each entity to procedurally generate a 

3D model representation, as shown in Figure 3, while uncertainties can be used for 

decision-support for example; a user is presented with options and the data that resulted 

in those options for an informed decision to be made. 

1.7 Contributions 

1.7.1 Conceptual Contributions 

Spatial reasoning and geospatial semantic web are research topics currently in 

focus. Our first and most significant contribution is the introduction of an overall 

methodology for creating detailed 3D digital landscape representations using semantic 

web technology that makes use of GIS source data collectively. We believe that this has 

not been attempted in earlier research in the field of 3D model synthesis in the GIS field.  

A second important contribution is our formulation to derive uncertainties of 

inferred assertional axioms in knowledge bases based on KB explanation services. The 

idea of processing explanation services to derive uncertainty values for the entities and 
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property values in the output landscape representation is innovative. To the best of our 

knowledge, this has not been explored previously.  

1.7.2 Practical Contributions 

As part of our work, we created several ontologies extending existing work from 

the OGC [OGC, 2014], Ordnance Survey [OSUK, 2014], and the VOTT [Bitters, 2005]. 

Specifically, this includes the following:  

� a 3D landscape data ontology defining the organization based on visual objects 

layout, cartography and civil engineering principles for reasoning in this domain, 

� a shapefile-data-to-3D-landscape-data bridging ontology for the fusion of GIS source 

data, and  

� a listing of 3D models and parameters ontology for 3D entity models. The ontologies 

are formal and general enough to support testing of our principal ideas.  

Ambiguous or inconsistent representations are a major issue in delivering a 

completed terrain database in short turnaround time. By using Semantic Web technology, 

the created ontologies and knowledge base can be automatically and easily verified for 

consistency and explained. The knowledge base can also be used by other external 

systems such as provide further information as input to the visualization system or 

consume available information in the knowledge base. We have not found any similar 

work in published literature in this area. Ordinance Survey seems to have some data 

fusion methodologies, but they have commercial value and are not published.  
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We ported OWL Link from Java to C++ and C# in order to test our methodology 

using available GIS toolkits and APIs. OWL Link authors expressed great interest in our 

port and mentioned that many users would like to use it. 

The ontologies, the OWL Link port and the extended KB Realization code using 

KB explanation services are provided publicly on the internet. 

Earth Sciences can use our approach to visualize implicit information within a 3D 

scene visualizer. Currently, most systems are based on the querying of information 

databases to retrieve needed data. Presenting information in 3D with the needed details 

offers a more visual solution which even untrained personnel can interact with. 

The greatest beneficiaries are likely to be the modeling and visual simulation 

industries which affect commercial, earth sciences, immediate response, homeland 

security, and military organizations. Our solution provides a way to use stable, available 

and performance-based legacy standards to create detailed 3D environments for visuals 

and simulations with reduced user interaction.  

1.8 Thesis Layout 

So far, the reader has had a brief overview of the important features of the 

proposed methodology. The rest of the thesis is divided into the following chapters: 

2. Background 

3. Related Work 
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4. Knowledge Base and 3D Landscape Creation 

5. System Implementation 

6. Handling Data Uncertainty 

7. Results and Examples 

8. Conclusion and Future Work 

 

Given below is a brief outline of the rest of the chapters discussed in this thesis:  

We first present the background related to our domain of research, which includes 

GIS standards, topological relations and semantic web technology. Then, we review 

related work that addresses the problem of creating 3D visuals from GIS source data and 

methods to synthesize missing information. We then present our final process and its 

theory outlining the evolution through earlier attempts and their limitations. We present 

the implementations of our facts extraction (GIS2KB) and spatial knowledge extraction 

(KB2Scene) processes along with the KB Realization extension to address the calculation 

of uncertainties for inferred axioms. We present sample results from our implementation 

and, finally, discuss advantages and limitations of the process based on the technologies 

and tools used. 

Appendix A lists our Data Extractors associated with the property listings for the 

bridge classes we addressed. Appendix B contains our notes on porting OWL Link to C# 

and C++. Moreover, the full system implementation in predicate notation form, some of 

our implemented algorithms as well as developed ontologies are available publicly at 

http://users.encs.concordia.ca/~pa_eid/PhD/. 
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Chapter 2  

Background 

The National Geospatial-Intelligence Agency [NGA, 2014] and the 

Environmental Systems and Research Institute (ESRI) are the two most active and 

recognized organizations controlling GIS standards and developing new ones based on 

scientific, military and commercial needs. GIS data sources are usually available from 

sources such as the US Geological Survey or Natural Resources Canada. There are 

various types and formats for this data but semantically, all formats try to represent the 

region of interest (ROI) with the best possible data structures to provide low complexity 

and high flexibility for the specific application needs. 

Figure 4 shows the different GIS source data types (nodes) and current methods 

(arcs) used to transform GIS data types in order to generate a 3D representation of 

various real world objects in a certain ROI. For example, the  ranging process 

which calculates digital locations using time of travel analysis outputs a Digital Elevation 

Model (DEM) that is then leveled and cleaned by user involvement to produce a Digital 

Terrain Model (DTM). This GIS data flow diagram was produced after a thorough review 



19 

of current systems and methodologies in use for acquiring/creating each of the GIS data 

types [Eid & Mudur, 2009]. It provides us with a comprehensive view of the data sources 

involved and related methods. It also provides us with a context in which to compare our 

approach with other methods which try to address the same problem of creating detailed 

landscape representations from GIS source data.  

 

Figure 4: GIS Content Definition and Transformation in Legacy Processes 

For example, computer vision based scene understanding techniques such as Object-

based Image Analysis (OBIA) are primarily concerned with data transformations of raster 

data to feature data, as denoted (dotted arrow) in the graph. These will be covered further 

in  Chapter 3. A lot of manual work may be further required in verifying the 3D 

representation and changing the classification procedures used to output features from 



20 

imagery. Another time consuming process is the manual modifications of the outputted 

feature details to represent the associated 3D object accurately. This iterative process that 

experts have to go through is marked by the dashed line in the figure (going back to the 

refinement of Feature layers). In our work, we are mostly interested in the 3 input type 

classes shown as coming into the 3D representation generation node: elevations, imagery, 

and features. 

We focus simultaneously on all the layers of information available and use 

collective knowledge about the scene in order to derive detailed 3D representations of 

objects in the real world landscape. The three arcs coming into the 3D representation 

node will be the input to our semantic engine which plays a significant role in our 

approach to create detailed landscape representations. Thus, it should be clear from this 

discussion that while we can benefit from some of the techniques developed in the 

domain of scene understanding, there is no significant overlap. A more detailed overview 

of existing work for the creation of 3D representations using scene understanding 

techniques is presented in the following chapter. 

In Figure 4, as part of elevation sources, DTM is a filtered and leveled version of 

DEM. DTM is usually used for the triangulation process. Similarly, OrthoImagery is geo-

referenced and transformed to correlate with the DTM. The result is referred to as Geo-

Referenced Imagery which can be used for texturing the triangulated DTM. 

OrthoImagery is also used to define feature (culture) layers which are then used to define 

3D objects that can be added to the scene. There seems to be a consensus among GIS 

systems and users for using Shapefiles [ESRI, 1998] to represent all types of surface 

feature information due to the standard’s comprehensive extensibility to fit all needs. 
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Multi-band imagery as well as other types of sources are also used to define feature 

layers e.g. materials for roads and areas. 

A 3D model created with generic properties results in a geo-generic 3D 

representation. A 3D model created with respect to specific properties trying to best 

represent the real world object results in a geo-specific representation. We are focusing 

on creating detailed geo-specific digital representations of visible real world objects. For 

simplicity, we will be focusing on using DTM, OrthoImagery, and Shapefiles 

respectively for our prototype implementation. We consider these sources representative 

enough of GIS data source collections for an ROI. Other sources could be similarly 

handled either as derivations of the sources chosen or as part of the Data Extractors 

Framework (introduced in  Chapter 1).  

We also cover in this chapter other common standards used in this field. It may be 

noted that while standards like OpenFlight are available to represent any 3D object to the 

required level of detail, present methods in use for creating such 3D data are essentially 

manual and human effort intensive. Light Induced Detection and Ranging (LIDAR) 

[Opitz et al., 2006] data is another data type concerned with 3D which involves the use of 

a large format 3D scanner to digitize 3D objects in the real world. Given the difficulty of 

using large format scanners, in general, LIDAR data is not available for most landscapes. 

Our approach is to create detailed landscape representations by making use of the 

collective information available in different source data types. To that extent in our 

investigation, LIDAR data will not be directly used as GIS data source input, but, if 

available for specific objects, it could be used to add further detail to the 3D 

representation of such objects. 
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In the following sections, we describe the types of data sources in further detail. 

We also discuss a common topological relations model, Semantic Web technology, and 

reasoning services relevant to our work, all of which are important for our approach.  

2.1 Relevant GIS Sources 

Geospatial datasets constitute a digital representation of geospatial features at a 

point on the earth’s surface. Terrestrial surveys, photogrammetry, satellite data, digitized 

analog maps (charts), GPS data, statistical files, other data such as physical, 

environmental, boundary, etc. are all types of geospatial datasets. While the earth surface 

has innumerable features, we only consider the following data sources, which we refer to 

collectively as “GIS source data” and are related together with geospatial coordinate 

system descriptions and models: 

� Elevation data, describes altitude at locations above some reference level, 

� Imagery data, which can be applied on the generated landscape surface for a more 

realistic view, 

� Feature data, describes the ROI’s features above, on and below the elevation points. 

Terrain, or elevation data, defines the third or vertical dimension of land surface 

[Wikipedia, 2014]. Features, commonly represented through shape layers, define the 

terrain culture information.  A digital terrain model (DTM) is a digital representation of 

ground surface topography or terrain including related data objects. A digital elevation 

model (DEM) depicts only the elevations or altimetry of ground [Kraak, 2010]. High 
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level-of-detail DTMs for example are used in real-time military systems such as weapon 

guidance, sensor models, and aircraft navigation systems. DTED, a format that represents 

DTM/DEMs, is considered as a high performance accurate depiction of the actual terrain. 

It was developed by the NGA and was lately revised in 2000 for performance 

specification under military standard MIL-PRF-89020B [DTED, 2000]. We use this 

format. All terrain elevation standards, and specifically DTM, are currently described as a 

value, the altitude or elevation, at specific latitude/longitude coordinates. They also 

usually contain descriptions of the coordinate system and earth model they use. The 

collection of locations describes a 2D area (grid) representing the terrain surface. Using 

the elevation data as the third dimension, the DTM points can be graphed in 3D. The 

DTM defines a terrain based on grid spacing with every grid point as a location on the 

face of the earth. The location is saved as and converted using a specific coordinate 

system and projection such as the WGS84 or UTM NGA standards. Both elevation and 

imagery sources are considered of raster data type and we interpret them as arrays of 

values where each cell represents a point location as a pixel color or as a relative altitude 

value. 

Imagery data has multiple source formats such as ECW or JPEG2000. ECW or 

Enhanced Compression Wavelet is an ERDAS proprietary wavelet compression image 

format optimized for aerial and satellite imagery [Wikipedia, 2014]. JPEG2000 is a 

comparable format that allows better compression performance as well as scalability. It 

was created by the same group that created the JPEG format. We use ECW as part of our 

sources. Imagery data is in itself very varied: Visible light spectrum, Material rasters, 

multi-band and infrared (IR) are some types of imagery. Visible light spectrum imagery 
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has been analyzed for visual photographic patterns for value and texture extraction, while 

other types of imagery have been analyzed using pixel-based techniques under defined 

criteria in the respective spectrum.  

Feature records contain information about the surface of the terrain such as the 

environment, buildings, roads, lakes, land use, etc. For example, a building on the map 

could be an area feature object which specifies the feature type as residential_building. It 

also stores the height, width and length as well as the orientation of the building in the 

record. Feature records include different kinds of detail about the represented area, and 

along with elevation data and imagery, they have the potential to be effectively used for 

creating detailed 3D representations of landscapes. There are two basic abstractions for 

representing real world objects: discrete objects (a house) and continuous fields (land 

use). In fact, elevation above sea level is an example of a continuous field, although for 

historical reasons, it is represented separately through separate elevations data formats. 

Correspondingly, there are two formats used to store data in a GIS: vector and raster. 

Vector data represents 3D geometric entities in the form of points, lines, or polygonal 

regions, whereas raster data is in the form of values in a discrete rectangular grid 

structure. Even though, collectively, source data may be having the information with 

certain detail implicitly embedded in a fashion that is often rather easy for a human to 

infer, many 3D visualization systems are not equipped to render the 3D landscape with 

the same detail. This is mainly due to the fact that these systems require the 3D landscape 

geometry in a specific form that cannot be easily derived as a simple transformation of 

this information in GIS source data. As a result, it is primarily a human intensive manual 

process that is in vogue for creating detailed 3D landscape representations from such GIS 
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source data. Typically, users would manually attribute features in the individual layers by 

studying the satellite images and elevations of the area of concern. Automation support in 

this process is a current topic of intense research and forms the main problem area for our 

research work as well. 

2.1.1 ESRI Shapefiles 

Shapefiles, an ESRI standard [ESRI, 1998], were initially created in order to 

address the growing need of 3D features and flexibility on the number and types of 

properties required by each feature. It is the most common format used by GIS users and 

GIS software. Shapefiles allow the definition of overlays and annotation of GIS source 

data such as images and multi-band sources. Shapefile data is flexible and the records can 

be mapped into object data. For example, some semi-automated systems can analyze 

continuous patterns in the imagery based on texture and generate matching Shapefiles 

with linears defining polyline information such as for roads and waterways. 

GIS experts can add necessary attributions on the Shapefile record to define 

explicitly some properties in the image like type of road or number of lanes etc. 

Shapefiles can have detailed representations for a certain area depending on how much 

effort the expert has put in creating it. It is a very hard and lengthy process to generate 

this information and maintain it up-to-date. However, a detailed set of Shapefiles has 

very high fidelity results and modeling advantages [Dewberry et al., 2002]. Washington 

DC, for example, has a Shapefile set that models every small detail in the city, even park 

benches [DCCatalog, 2014]. 
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Shapefiles spatially describe vector features of which we address the most 

commonly used geometry types: point, polyline or polygon. These are defined by the 

following data structures: 

A shapefile follows a schema where it declares the geometry type (referred to as 

ShapeType) that the file will be using and a bounding box for all the elements in the file 

under a certain projection and coordinate reference system. It then defines an internal file 

schema applicable for every record with the geometry type, and a list of properties (each 

property with a name and a type) that the records contain values for. They support both 

2D and 3D definitions. Each record then defines a real world feature using values for the 

geometry (a list of points defining the shape), a bounding box for the feature defined, and 

a value for each of the properties defined in the schema. Properties and values are stored 

in open dBase format. Properties can be of type String, Integer, Double or flagged as a 
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reference to another shape record index. Examples of properties include 3D object file 

pointer, width, height, elevation, orientation, material type, object type, meta information, 

etc. Shapefiles do not have the structure to store topological relationships; however, this 

can be done externally using topological relations computed on the records’ geometries 

and properties. 

All the information in shapefiles for a ROI constitutes part of the knowledge 

necessary to create a detailed digital model of that ROI. This would require a mapping of 

the data in shapefiles into knowledge base assertions. We will show how this is done in 

our source to domain mapping implementation. 

2.2 Other Commonly used GIS Standards 

After [Brockway, 2002], systems like ESRI ArcView allow the manipulation and 

creation of GIS databases, such as a geodatabase, to act as a common repository and 

standardized way that promotes easy and fast access to the needed information. Then, at a 

higher level in 3D, systems like ESRI’s 3D Analyst and Sitebuilder 3D use geodatabases 

to allow the manipulation of the terrain in 3D and their visualization. Figure 5 shows 

different known systems and their positions relative to each other. 3D presentation 

systems like Creator Terrain Studio (Multigen-Paradigm Inc.), Model Librarian (ERDAS 

IMAGINE) or TerraVista (TERREX) typically involve a lot of user involvement to create 

the 3D representation of an ROI. Individual objects are created usually with extensive 

user input and explicit attributions. These create 3D models in a format such as 
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OpenFlight. This standard is used to represent any 3D object to the required level of 

detail in a GIS context. 

 

Figure 5: GIS and 3D Generation Systems [Brockway, 2002] 

2.2.1 Legacy Sources 

The grid describing the DEM is based on a specific sampling of an area, typically 

using an appropriate scanner. These same scanners can also collect data about the terrain 

like type of ground at a specific location and save it in another format such as DFAD. 

DFAD or Digital Feature Attribute Data is a type of feature map in a grid format similar 

to a DEM but with the data representing type of earth surface rather than elevations.  

DFAD [DFAD, 1994] was also developed by the NGA, previously known as 

NIMA, and is currently being phased out in favor of vector-based standards. Legacy 
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systems still use it however for performance reasons. DFAD is not suitable to be used in 

3D visualizations according to [VectorData, 2014], but along with DTED, it provides an 

efficient database for weapon and sensor systems and simulations.  

Newer standards were developed, like NGA’s VMAP [VMAP, 2014] and more 

recently ESRI’s Shapefile formats, which are based on vector representation of the 

features in an ROI. Shapefiles, described earlier, have similarities to VMAP, but add the 

capability for the user to create their own attribution including linking 3D models to each 

of the feature objects defined. VMAP can be considered and processed the same as 

polyline records in Shapefiles. 

Many other types of GIS data exist but they are mostly in the form of raster or 

vector multi-resolution data. These are considered obsolete as they are only used by 

legacy systems. Our process, if necessary, can be made to work with such other data 

types by implementing suitable data extractors. 

2.2.2 OpenFlight Standard 

The OpenFlight standard [OpenFlight, 2007] is particularly popular commercially 

for its simplicity and broad compatibility. It was introduced by Multigen-Paradigm and 

continues to be improved with a current version of 16.4. Being an open standard, 

importers and exporters for this format can easily be found publicly. OpenFlight is a 

format that can also be stored on disk as a compiled structure for fast access and loading 

at runtime. It can describe any 3D object using simple shapes and their positions and 

orientations in space organized in a database. OpenFlight stores the coordinates of each 
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of the polygons in  based on a model origin defined in the database header. It 

supports GIS standards by matching the model origin to a GIS database origin in a certain 

earth model and projection. This way, any point in the OpenFlight model can be 

projected to its GIS equivalent. In a 3D viewer, the polygons can be used to draw the 

model in 3D. The compiled structure represents an executable procedure to display the 

model in 3D.  

Initially, this standard was created to describe a terrain and visualize it in a 3D 

scene for aircraft cockpit displays, and was later extended to handle any kind of 3D 

model. An airport where an aircraft would land or takeoff, for example, would be 

modeled with high detail whereas the landmass around would be represented using a few, 

large textured polygons. OpenFlight supports transformation nodes in the database tree 

that allow the manipulation of a subtree. Subtrees usually represent a piece or object in 

the model. It describes every polygon with 3D points that can contain extra information 

like feature type and texture information. The standard even supports levels of details that 

can be constructed as subtrees. Dynamic level of detail can be achieved as a function of 

the viewer’s distance and the size of the closest object on screen by gradually switching 

between the subtrees.   

OpenFlight also has the ability to describe a single large model using multiple .flt 

files on the condition that a master file organizes each of the .flt member files. This 

allows the reuse of existing parts and the description of complex OpenFlight databases 

with small patches of terrain, each in an OpenFlight file, combined together using a 

master file to represent the large area of interest. 



31 

2.2.3 Newer Sensor Technologies 

New satellite technology is now able to acquire information about the earth’s 

surface with great detail. Also, on ground presence, intelligence and low-level flight 

scanners using Unmanned Airborne Vehicles (UAV) can acquire even more information 

from different viewpoints and in high detail. This information is in raw format and would 

need to be integrated with available terrain data to form a detailed representation and 

contribute to the appearance of the terrain in a 3D scene. 

Extracting features that enhance terrain has always been under research. Common 

methods include photogrammetry. Photogrammetry is the capturing of images in a stereo 

view and performing calculations (like 

shape from shading) to find heights and 

distances [Wikipedia, 2014] revealing the 

terrain structure. 3D object reconstruction 

can then be done for the captured view, 

even if partial. 

Figure 6: Raw LIDAR Data [Stelle, 2003] 

This same technology is now being applied with range accurate sensors to acquire 

buildings and objects from distance. LIDAR or Light Induced Detection and Ranging is a 

system which projects a LASER (Light Amplification by Stimulated Emission of 

Radiation) beam and finds the depth where the laser hits a surface using the reflected ray. 

Laser technology is very precise and is as fast as light to measure a distance. Therefore, 

with a simple pass over an area of interest, a 3D point cloud of that area can be 
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constructed. This point cloud, however, will need editing in order to generate the final 3D 

model. Editing will include the separation of the acquired objects and the removal of 

sensor acquisition error due to the mechanics involved and environment conditions. Some 

of these tasks can be done in a semi-automated manner, but a lot of work still remains 

and is currently being done manually [Stelle, 2003]. 

Photogrammetry and LIDAR are not sufficient to describe the internal structures 

of buildings or cultural aspects but they are very efficient in reconstructing 3D features as 

they appear from air. Building edges and extremities can be identified and 3D models can 

be constructed to be later added to the scene over the terrain. This will still need manual 

input to decide on the type of object scanned and to separate and remove the error in the 

continuous point cloud to generate the different objects for querying purposes. 

2.3 Topological Relations and DE-9IM 

Geometric topological information between features can be represented using 

well-defined relationships between the geometries representing these features. The 

Dimensionally Extended nine-Intersection Model (DE-9IM) is an Open Geospatial 

Consortium standard developed by [Clementini et al., 1994]. It allows the computation of 

a matrix between two spatial entities that can be used to identify a set of basic geometric 

topological relationships as well as the dimension of each relationship between them. We 

use these topological relationships and also extend some relationships to express 3D 

relations such as over, under and 3D intersection. Our framework uses GeoTools v.9.3 as 
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an implementation of DE-9IM. Moreover, other topological information about a feature 

(those not covered by only geometric properties) might also exist e.g. the belonging of an 

instance to a certain class or group. 

All topological information about a feature can be translated into knowledge 

representation in the form of assertions. We fuse all such representations into the 

knowledge base. We show how this is done as part of our relationships mapping process. 

2.4 Semantic Web 

 

Figure 7: Knowledge Base System Components 

The Semantic Web [Berners-Lee et al., 2001], or the web of data with meaning 

[Daconta et al., 2003], is an active research area which addresses knowledge 

representation and interpretation. It allows the definition of formal knowledge in the form 

of ontologies that cooperate with other components as presented in Figure 7. Figure 8 

shows the ontology spectrum and the different levels of semantics they can achieve 

[Baader et al., 2003]. 
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Figure 8: The Ontology Spectrum [Bitters, 2005] 

[Hitzler et al., 2011] and [Haarslev, 2014] provide good references covering 

developments in this technology. The knowledge can be decentralized, but still forms a 

satisfiable and consistent knowledge base (KB). A terminology box or TBox defines 

formal knowledge while an assertions box or ABox defines instances of concepts in the 

TBox (also referred to as Individuals) with memberships and relationships (also referred 

to as roles). Both the TBox and the ABox define the KB. This KB can then be 

manipulated and queried using a Semantic Web reasoner, based on description logic, to 

return results that systems can understand and interpret due to the formal semantics in the 

TBox. Description logic is a subset of first-order predicate logic which allows formal 

logic-based semantics, through the definition of axioms, while being more expressive 

than propositional logic. It is a subclass of first-order predicate logic since it defines some 

restrictions on relationships (binary relations), to allow further decidability. 
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The TBox is static for the domain of discourse, while the ABox can be changed 

dynamically based on the available data. The structure of the Semantic Web allows the 

separation of formal knowledge and instances. While formal knowledge can be reused, 

instances can be added, removed or modified. The Semantic Web reasoner provides 

services to query, analyze, and modify the TBox or the ABox. When the KB is realized 

through a reasoner service, all the instances are processed and reclassified, by entailment, 

to their actual specialized subclasses according to the semantics they represent. A 

description logic reasoner can deduce information based on formal semantics defined in 

the TBox such as axioms representing equivalence classes, concept or role inclusion, 

domains and ranges for relationship properties, as well as rule definitions depending on 

its supported expressivity for reasoning. Ontologies are usually defined in a specific 

language such as OWL2 [OWL2, 2012], a W3C specification subset of description logic, 

with a certain chosen expressivity. OWL2 is based on  expressivity. Ontologies 

are used with a compatible reasoner whose capabilities are defined based on the support 

and reasoning services it provides. Assertions are axioms that define instances and their 

properties (such as object-object or object-value relationships) under the OWL2 

semantics. Figure 9 below modified after [Hudelot et al., 2008] describes  

semantics under an interpretation : 
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Figure 9: Description Logic Syntax and Interpretation 

Under , in addition to object-object relationships, an extension allows 

the definition of object-value relationships (datatype roles) as well, with its range in the 

domain of a certain data type based on [OWL Datatypes, 2012] e.g. Literal or Short. 

There exists a plethora of tools for defining ontologies, managing knowledge and 

integrating into frameworks. We use Protégé v.4.3 as an OWL ontology editor, Pellet 

v.2.3.1 as our reasoner with full support for  expressivity along with 

explanation services support, and OWL API v.3.4.5 for integrating our process into 

semantic web services. We comply with ontologies from [GeoSPARQL, 2012], an 

[OGC, 2014] standard since 2012, to allow querying of geospatial datasets under DE-9IM 

relationships. We also retargeted OWL Link v.1.2.0 to be used with C# and C++. This 

allows communications into OWL API from other GIS frameworks such as MapWindow 

GIS v.4.7.5 which only supports extensions in C# plugins. 
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2.4.1 Reasoner Services and Justification 

Semantic web reasoners generally provide multiple services for software agents to 

operate on ontologies and the knowledge base. Common services under the  

expressivity include context separation between Boxes (allows scalability, data fusion 

and easier maintenance), satisfiability (subsumption, consistency, inference, coherence, 

instance checking, and realization) even on large internet datasets, querying (such as with 

SPARQL [McCarthy, 2005], defined in the following section) and applying rules, 

defining annotations, and explanation. In addition, they perform reasoning under the 

Open World Assumption (OWA) and without Unique Name Assumption (UNA). These, 

respectively, allow the reasoning to remain neutral in the case of lack of knowledge and 

always assume that two instances might be the same unless otherwise specified. 

Of special interest for this work are the explanation services for  

entailments as defined by Horridge, Parsia et al. in [Horridge et al., 2008 & 2009]. A 

certain explanation for any entailment is a minimum set of ontology axioms that, when 

combined, directly result in that entailment. Moreover, for every entailed axiom in the 

knowledge base, it is possible to obtain all explanations deriving this axiom. 

For example, consider a TBox definition such as:  
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where the elements are simple classes and properties defined in the knowledge base. An 

ABox defines 

 

After knowledge base realization,  is entailed and three explanations given: 

1- 

 

2- 

 

3- 

 

The explanations are a list of ontology axioms that can be queried and analyzed. 

Later in this thesis, we will show how we use these in order to calculate the resulting 

uncertainty value of an entailment. 

2.4.2 SPARQL and GeoSPARQL 

SPARQL Protocol And RDF Query Language, referred to as SPARQL 

[McCarthy, 2005], allows the querying of a connected Resource Description Framework 
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(RDF), a W3C specification, graph representing the KB. Version 1.1 became a W3C 

recommendation on 21 March 2013. The SPARQL query language is similar to the SQL 

query language in its syntax and allows formatting and retrieving KB data by pattern 

matching. It also supports quantitative value testing as part of the query. The result of a 

SPARQL query is returned in the form of a result set. 

GeoSPARQL [GeoSPARQL, 2012] is an OGC standard since 2012. Its name 

refers to SPARQL as it allows the querying of spatial and topological relations between 

knowledge base elements using SPARQL. It defines an ontology that formalizes all the 

DE-9IM relationships as well as equivalent concepts in some of the other topological 

relations models such as the Egenhofer model [Egenhofer & Franzosa, 1991]. Inheriting 

from this ontology and using the relationships it defines, the concepts are organized in 

such a way that they can be queried using topological relations and SPARQL. It basically 

defines a SpatialObject concept that can be a Feature or a Geometry (or both) meant to 

inherit from by extending definitions of the General Feature Model, Simple Feature, and 

Geometry ontologies developed and standardized by the OGC as well. The defined 

relationships are binary properties relating two SpatialObject instances. It currently does 

not implement characteristics on properties where relevant and the definition of every 

property is mostly textual. It serves our purposes well since our features also inherit from 

SpatialObject and by defining a certain spatial property between two instances in the 

knowledge base, the properties can be queried and can result in inferences when 

applicable. Ordnance Survey extends the GeoSPARQL ontology by adding some role 

properties such as transitivity and symmetry. 
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2.5 Summary 

In this chapter we have briefly provided all the background concepts essential for 

the understanding of the work reported in the rest of this thesis. Specifically, we have 

first described the various GIS sources, their standards, possible transformations of one 

data type to another, the current state of the art in carrying out these transformations and 

lastly the positioning of our work in the context of these transformations. Next we have 

discussed the geospatial relationships among GIS geometric entities and their extensions 

which are very important in our work on inferring features and their property values from 

GIS data. Lastly, we have described semantic web technology, which is the primary 

knowledge based technology we use to create our knowledge base and extract 

information from it.  
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Chapter 3  

Related Work 

The following sections summarize an extended bibliography study undertaken in 

domains of usage of semantics in GIS and the state-of-the-art in scene and image 

understanding. We also bring out specific readings on producing geospecific information, 

using different GIS data sets collectively for a specific task, and extracting information from 

GIS data sets based on semantics.  

3.1 On Standards 

Landscapes and GIS data are a primary need for simulation, geological and 

geographical studies, serious gaming, military and aerospace training, etc. Many studies 

suggest that researchers and scientists are trying to represent underground cavities, 

volumes and constitutions of different materials. While many available systems still 

visualize the area of interest in 2D, 3D allows scientists to better visualize geological data 
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and understand the information in a spatial and collective manner. This requires standards 

capable of supporting 3D representations. 

A heavy emphasis is placed on standards that represent information collected in 

the feature extraction process for the purposes of data sharing and reuse. Thus, 

professionals and organizations are heavily involved in the definition and development of 

standards for terrain and other similar data sources. However, these standards are not 

necessarily based on how to represent the detailed 3D landscape. Rather, the information 

layers are intended for querying purposes. Terrain reasoning has traditionally been 

limited to spatial terrain queries such as Line of Sight (LOS), raycasts in the path of a 

player, height above ground, etc... A little more work was done with Terrain reasoning 

for AI purposes such as [Van der Sterren, 2001] and using A* path-finding [Hart et al., 

1968] algorithms, which can also be extended to 3D. Then major studies to push flexible 

information representation into standards took place with the emergence of the ESRI 

Shapefile standard and the ArcGIS database where users could represent more knowledge 

in the geospatial database such as the work by [Stanzione, 2006] which uses Shapefile 

information to identify mobility, cover and concealment points. 

ESRI Shapefiles have thrived in the definition of surface feature information. 

However, they lack formal semantics and users can interpret a Shapefile record 

differently. In most cases, there is no formal semantics behind the classes and properties 

used in the Shapefile record. Very few have attempted to convert GIS information 

automatically to equivalent formal knowledge that can be used as a common knowledge 

base.  
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3.2 Terrain Modeling Tools 

Our main competition in terms of existing methods and tools is with real-time 3D 

presentation support provided by existing state-of-the-art tools as depicted in Figure 5. 

These include systems like Creator Terrain Studio (Multigen-Paradigm Inc.), Model 

Librarian (ERDAS IMAGINE), and TerraVista (TerrEx). These allow the user to define a 

ruleset to model the 3D digital environment. These tools define the environment offline 

because they require considerable amount of user input in the process of building and 

defining the final 3D environment. They make use of 3D model repositories, manual 

explicit attributions and rules in order to generate the final landscape model to be 

rendered by a corresponding 3D Renderer system that accepts their output format. We 

will discuss each of these tools further below. These systems can create a 3D view of the 

terrain  by applying TIN techniques after points in space are extracted from the elevation 

information. For other real world objects in the 3D environment, these systems typically 

require a lot of user involvement to create the 3D representation. They construct the 3D 

environment by layering the GIS data input layers available and then addressing detail of 

individual objects primarily with pre-defined rule sets and considerable user input 

including explicit attribution [McKeown et al., 2007]. 

Some systems are feature centric while others are elevation centric. This basically 

determines which layer has more priority in the visual system. For example, should the 

terrain be matched to the base of a building or should the building be extruded to touch 

the terrain when these have a small gap? This happens often when the object (say, a 

building) is not positioned on a flat surface. We consider our methodology to consist 
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more of a detail-oriented approach, in the sense that the above kinds of decisions are 

dependent on the actual GIS source data available for the area. Depending on the 

resolution of each data source, sometimes the elevation information would be altered to 

match a detailed feature and sometimes a feature would be altered to fit the higher 

resolution elevation data set available. This information would need to be encoded as part 

of uncertainty of assertions in the knowledge. 

GenesisRT [DVC, 2014] is a state-of-the-art tool that takes GIS source data and 

dynamically constructs and generates the 3D view of the landscape in real-time. It uses a 

set of fixed built-in rules that do not require a lot of user-involvement to define, but at the 

expense of reduced customization and fidelity. The user has a working 3D landscape as 

soon as the application is started, but not necessarily with details. No pre-processing is 

needed though. This is a good example of what we mean by high turnaround time. To the 

best of our knowledge, methods within GenesisRT do not make use of semantics on the 

input GIS source data. The user has to manually create the input data and explicitly 

attribute it in order to output the required detail. The user needs to match the properties in 

the input to a set standardized by GenesisRT. If the needed properties are found, 

GenesisRT will try to make use of them. For example, if the user specifies in a feature 

record a property HDG with value 90 (degrees), the system will draw the feature with a 

90 degree rotation from its model origin. Aircraft simulators typically use a highly 

detailed model of the source and destination airports and all the intermediate terrain can 

be of low level resolution. GenesisRT supports this need by providing the lowest level 

resolution elevation data, DTED Level 0 (at 1km resolution), for the whole world by 

default. GenesisRT also provides general airport, navigation aids, and tower listings as 
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well as coastline data by default. Low level of resolution elevation data would not be 

sufficient to generate accurate coastlines. Therefore, GenesisRT formulated a way to 

deform and re-level the terrain in order to match the coastline data available either by 

default or in higher detail as added by the user. It applies this re-leveling algorithm 

[Pendris, 2006] to shores, roads and buildings. This augments the scene with more 

information than what is available in the input source data. The user can install high level 

of detail areas using high resolution elevation, feature and texture sources.  

Shapefiles can point to OpenFlight models to load high resolution buildings or 

can describe the building using a defined set of parameters and a procedural model can 

generate it. Typical information like elevation, position, orientation, footprint and type 

(normally using an aerial shape with some attribution) are needed to generate the 

building. The type could be used to generate a building with certain characteristics like a 

texture map using a texture palette. For example, a large industrial building can be 

considered in some area as either a hangar or a no-window structure. The texture is 

automatically chosen to meet these conditions from the palette based on time of day and 

concentration of sets of objects in order to allow for variety instead of uniformity in the 

generated 3D scene. Another example is that the system automatically generates lights 

along roads when the road is close to an airport (considered as a populated area) and it 

illuminates those lights based on the time of day. In and around airfields, it also 

automatically generates navigation lights and signs, route connections, and leveled areas 

at a certain distance around airfields and landing pads. Leveling and terrain deformation 

such as creating craters can be done at runtime using technology adopted from medical 

simulation (surgery and tissue) [Woodward et al., 2001]. Initial parameters given to 
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GenesisRT would allow the generation of environmental conditions such as clouds, rain, 

and storms. It has an embedded astronomical database to populate the sky based on the 

viewer’s position and orientation in the case of a clear sky at night. All of these are 

dynamic elements that are added at runtime to modify the scene based on hard coded 

rules in the system and the position of the viewer in the environment. In spite of all the 

above described capabilities, we consider hard-coded rules as not highly suitable for 

creating accurate geospecific details as they cannot be easily checked for completeness or 

consistency. 

Model Librarian [ERDAS, 2014] allows the user to define geo-referenced 3D 

models and maintain them in a repository with proper indexing and attribution. Here 

again, these models are normally extracted by feature extraction techniques executed on 

stereo imagery. This is also performed using rule-based mechanisms and manual editing 

and attribution of the models and their headers in order to add detail when requesting the 

needed model and building the 3D landscape. 

Creator Terrain Studio [Presagis, 2014], CTS, is a 3D model editor based tool that 

allows users to create, add and modify feature models from a model library in order to 

construct the 3D model of the environment. The output is a large OpenFlight database 

with referenced models and textures to create a large area environment. The user cannot 

define rules in CTS to automate the process of building the 3D environment; rather 

she/he uses common 3D model editing techniques to build the final 3D environment. 

CTS is also used to define individual 3D models. It contains a helper wizard concept 

which questions the user with choice arrays and parameters. This uses procedural 

generation to create a 3D model close to what the user requires which can then be further 
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edited and refined. The inconvenience in using an OpenFlight database to construct the 

3D environment is due to the need of building/cleaning all the objects manually and 

adding them to the 3D environment. CTS makes the task of creating a detailed 3D 

landscape much easier, but the 3D models still need to be constructed by a human-in-the-

loop sometimes with several human-years to create the needed environment. 

Presagis Terra Vista [Presagis, 2014] allows the user to predefine a ruleset and 

edit feature properties to model exactly how the final 3D digital environment will be 

generated. There is a certain overhead for the user to define additional rules, but the 

resulting output can be highly customized with the ruleset determining the final 

visualization details. After building the environment, the output is a model in a selected 

format. The rules are meant to describe what to do with a certain feature with specific 

properties. For example, if a linear feature record has a property type with value 

“Secondary Road”, the rule defines the texture and width to use along the linear object 

and generates the components of the road’s 3D representation. The user has to define all 

rules based on feature types and properties, and rules are parsed procedurally as listed. 

The first rule matched will be executed in the build process and will generate the 3D 

representation. For each feature object in the source data, the rule list is parsed and if a 

matching rule exists, it is executed. While defining the rules, the user may edit feature 

record properties to make the task easier. Users normally do so in order to reduce the 

number of rules to define, usually at the cost of reduced detail. Also, it is common for 

most feature source data to be delivered without properties, unless numerous hours are 

spent by experts in attributing the records properly. This feature source data is the output 

of systems such as BAE SocetSet [SocetSet, 2014] or ERDAS IMAGINE [ERDAS, 
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2014] which in turn are based on pattern recognition and feature extraction 

methodologies. 

In 2012, Presagis released a new technology named SEGen Server [Presagis, 

2014] developed to create higher definition imagery based on Shapefile information and 

rules such as, North Africa is mostly desert with change of composition and terrain based 

on height. The imagery is created based on Shapefile data such as road information and 

some synthetic additions such as roads, waterways, buildings, etc… just to make the 

imagery look better but is not precise compared to the real world. There is clearly a 

challenge in having detail, accuracy and high-automation in a single process and most 

processes are relying on static rule bases, but with no automatic inferencing. 

 

Figure 10: NGATE’s Detection of Elevations [SocetSet, 2014] 

SocetSet from BAE Systems [SocetSet, 2014] is a toolset using the Next-

Generation Automatic Terrain Extraction (NGATE) module to allow the generation of 
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elevations and features from aerial photographs. NGATE is a tool that processes stereo 

imagery with very high detail and outputs a 3m detailed elevation model [Zhang et al., 

2007]. According to the authors, 3m is enough detail in order to generate any large object 

like buildings. SocetSet uses the DTM acquired from the NGATE module to 

automatically identify objects using constant elevation and flat areas. It can then generate 

the 3D representation using the determined object footprint, elevation values and a 

generation template (see Figure 10). It then applies a texture to the model based on the 

image information and some predefined texture palette. The user is required to enter 

manual information to help in the identification of the footprint. The user also has to 

define the generation templates and the texture palettes. The final output can be exported 

using the OpenFlight standard which allows it to be added to a 3D scene. SocetSet is also 

able to extract general features like roads, parking lots and trees. It can create the 

corresponding feature maps based on manual entry of missing information about the 

features of the acquired objects. There is no mention and no references were found that 

indicate that semantics is or will be part of this technology’s roadmap. It requires a lot of 

user interaction and per-object workflow to define the objects set. It also does not address 

extraction of information using collective data fusion from multiple source data sets. 

Google Inc. has been a major player in the area of mapping and 3D landscape 

visualization for the past few years. With the creation of Google Maps® and Google 

Earth® and their open ended integrations available for any user having access to the 

internet, many personal and commercial centers were able to create useful applications 

utilizing Google’s technology. Google Maps, for example, has an API that would allow 

the control of how the map is shown and can be used to augment the presented map or 
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show information in a different style. It provides an API that would communicate with 

the Google Maps server to query and display existing information. New information can 

then be added to the local view of the map and the database. Google Earth, on the other 

hand, can be used to display custom 3D models in its 3D visual environment. The KML 

standard used by this software and developed by Google Inc. allows the description of 3D 

objects, their visual appearance, as well as the feature information by meta-tagging. In 

both products, the custom information added to the objects would be used by the server 

resulting in an increased accuracy in the query results. We are not aware of any formal 

semantics used in this process, but some form of semantics is used in order to give better 

results without the need of detailed meta-tags in the added objects or extensive manual 

user input. Google uses satellite images and geo-referenced data stored in databases to 

retrieve information for user’s queries. It does not make use of proper GIS data and raw 

data as in the simulation and earth sciences industries. The emphasis is on speed and on 

creating a good visual impression on their users, and very little or none on automatically 

generating high detail 3D representations. 

3.3 Methods in Scene Understanding 

At a task that humans do extremely well, computers need the necessary domain 

knowledge and specialized feature recognition methods in order to recognize a certain set 

of objects in a certain photograph or more generally, in the presented digital media. In 

computer vision, visual object recognition and automated feature extraction are always 

addressed topics. Common techniques used to identify features include filtering and 
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image segmentation [Sirakov, 2006]. These have proven very effective in identifying 

roads, railways, power lines over terrain and in some cases even rivers. They are used 

mostly to select those pictures or media that fit the search query (although specific set 

training is required), a topic of research that commonly goes by the name content based 

image retrieval (CBIR). An application of CBIR and automated image feature extraction 

in the domain of GIS and military satellite reconnaissance is described in [ISAR, 2007] 

where the US navy is looking for ways to identify threats and targets using real-time 

satellite imagery of the ocean. They are seeking not only to detect a ship but also to 

identify its type, model and classification based on a model library and a trained system. 

The proposal for this research effort was closed in January 2007 and the project is 

therefore under development. Unfortunately, we cannot learn about the technology being 

implemented as the details are not available to the public with ITAR security 

classification. Similarly, Scene Understanding, also known as Image Understanding, is 

primarily concerned with feature detection and categorization of image representations of 

scenes. Feature extraction techniques are used in order to extract objects that match a 

certain criteria based on certainty factor. It is currently an intensely researched discipline 

but the technology is far from generic and work is still on specific cases and it often 

breaks when generalized or a new context or image is given. The current push in image 

based scene analysis in the GIS domain is towards object-based image analysis (OBIA), 

more specifically, GEOBIA. 

Traditional pattern analysis techniques focus on extracting an element and 

comparing it to a specific ground truth pattern and if certainty is considerable, the image 

is attributed or categorized accordingly. There is relatively lower focus on extracting the 
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actual object with its details. In most cases, when an object is suitably 

identified/categorized, there is no more effort to further process it, such as required for 

3D representation. Examples of such work are [Delenne et al., 2006] and [Zhang et al., 

2004]. [Jain et al., 1990] describes the process of analyzing a range image as detecting 

similar adjacent pixels that would constitute parts. Multiple adjacent parts would 

constitute a feature and multiple features would constitute a specific high-level object. 

Methodologies focus on detecting objects by making use of Bayesian models on the 

detected parts or by filtering and making pixels for a set of parts more obvious for 

detecting a specific object. More recent research addresses the classification and 

categorization of high-resolution satellite imagery and objects using novel segmentation 

methods and using other data sources such as stereo photography or LIDAR. Most of 

these studies focus on segmenting the input image using new methodologies such as 

landscape metrics that is very different from traditional patch-matrix models. A critique 

of the patch-matrix model can be found in [Blaschke et al., 2003]. The purpose of 

segmentation is categorization of the image and is not for creating a detailed landscape 

representation for use in other applications. New computer vision techniques such as 

Active Vision try to identify specific objects using a machine learning system in order to 

categorize the image properly. Categorizing is often at a high-level of what the image is 

about and is not about detail. The shift from pixel-based methodologies to object-based 

methodologies was introduced through a sub-discipline of scene understanding of 

satellite imagery, currently called object-based image analysis or OBIA. This area of 

research addresses the recognition of objects in images based on detected patterns at the 

object level instead [Lang & Blaschke, 2006]. It focuses on detecting simple objects 
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using image rules that will allow the identification of the complex objects [Lang, 

Albrecht, & Blaschke, 2006]. Using object-based methodologies the segmentation and 

detection of an object in an image is much more successful when compared to pixel-

based approaches. In summary, it segments the image based on a best probability that a 

certain segment has the same object. It combines segments if the 2 segments are 

determined to contain the same object. As an example, [Blundell et al., 2006] defines a 

neural network to fuse and identify objects using parts detected from pixel values. 

Segmentation would use spatial constraints such as white lines surrounded by grass or 

asphalt. GEOBIA is a very recent specific of OBIA and addresses scalable satellite 

imagery as its input instead of general photographic images. The current research focus in 

GEOBIA is on man-made objects like buildings and roads, and natural tree distribution 

and forests that can be viewed in satellite photographs. 

The use of multiple sources for scene understanding is recommended by many. In 

particular, [Deng et al., 2006] states that redundant data in different sources would 

provide less need for user interaction and authentication. Using multiple data sources to 

analyze images and extract information, some researchers have targeted identifying 

composition of an image and others have addressed 3D visualization of extracted objects. 

For example, [De Kok et al., 2006] uses multispectral imagery along with images over 

years of a certain area to detect tree crowns in an expanding or shrinking forest along 

with textures to derive the composition of the forest. They retrieve properties that were 

extracted from the segmentation process as values which are then used as recognized 

object parameters. [Deng et al., 2006] uses LIDAR in addition to image sequences to 

provide enough information for a system to automatically extract 3D buildings and roads 
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from the LIDAR information with accurate segmentation information from the imagery. 

[Opitz et al., 2006] discusses the extraction of 3D objects from remotely sensed range 

images from both terrestrial and areal sources. 

Semantics in the process of visual object recognition is an active topic of research. 

[Marszalek et al., 2007] and [Town, 2004] show that, using semantics, higher 

probabilities for positive matches can be achieved. Also, [Vogel et al., 2007] has 

attempted scene categorization by sub-region classification to semantic classes. The 

layout of the semantic classes suggested the category of the scene in the photograph. 

Classification of the sub-regions is based on processing features like high spatial 

frequency associated with a semantic feature.  

In summary, reasoning on collective information from different sources is not the 

current emphasis in scene understanding/pattern recognition as their focus is on 

segmentation, categorization and selection from a photographic image. They do not 

address the issue of merging the information in the different data sets acquired from 

different sources such as sensors or surveys nor do they address different data input other 

than pixel and color information. These systems, including those in specific areas such as 

computer vision, scene understanding and feature extraction, focus on classification 

methodologies which restrict the extraction of information to a class from a predefined 

set. The spatial reasoning mechanisms used in approaches such as GEOBIA are local to a 

specific dataset. The knowledge is not transferred with the output that will be consumed 

by other systems. Therefore, some knowledge is lost because of the change in context. 

We find that collective knowledge would add otherwise unavailable information and 

therefore help create more detailed representations. Furthermore, the segmentation and 
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filtering techniques being published only apply to imagery and pixel values; they do not 

apply to feature and elevation data sets and these datasets do not necessarily come only 

from satellite imagery feature and elevation extraction as presented in Figure 4. The use 

of such technologies in our work would find its place in the implementation of data 

extractors part of the framework defined later in Chapters 4 and 5. 

3.4 Applications of Formal Knowledge to GIS data 

Within the GIS domain, over the last few years, semantics has become one of the 

most prominent research themes, partly aimed at addressing this problem of deriving 

information that is collectively but not explicitly present in source data. Such concepts as 

ontology-driven geographic information systems and the geospatial Semantic Web have 

fuelled a plethora of research in semantic similarity. These topics complement the 

traditional focus in GIS research, which has dealt primarily with geometric entities, their 

spatial relations, and efficient data structures. Most recent uses adopt semantics mainly 

for the reason of integration of the different data sets with regard to GIS related queries. 

Concepts from different datasets in different systems are being mapped based on 

meaning. Prior to this, data sets were independent and merging them was all being done 

manually. Our research focuses on the investigation of the role of semantics in the 

synthesis of 3D landscape representations from GIS source data. Below are some 

examples of previous applications of formal knowledge in GIS. 
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[Brodaric et al., 2002] worked on the reclassification of earth materials for a 

certain area. This can be considered a form of feature information about a certain area. 

They used specific domain knowledge of materials in order to classify certain volumes of 

materials more accurately. However, this was not done using prevailing ontology and 

knowledge representation standards. Information sharing between different systems is 

difficult. Creating detailed landscapes was not their focus. 

Earth science studies have recently gained interest in formalizing the concepts and 

definitions and in knowledge sharing between various systems [Goodwin, 2005]. 

[Wiegand et al., 2007] introduced semantic web to automate geospatial data retrieval 

using a task-based ontology for immediate response personnel. This technology helps the 

personnel in accurately finding needed data sources, from the internet, based on the task 

description. Earth sciences are among the first domains to attempt the use of semantics 

with GIS source data. Taxonomies are being used for formal definition mapping between 

different systems. This allows consistent information sharing and proper identification of 

concepts. Ordinance Survey, Great Britain’s National Mapping Agency, for example, is 

developing an integrated system and ontology to share information consistently between 

all their systems for querying purposes [Mizen et al., 2005]. They are also using inference 

services to correctly classify information in response to a query. Due to the formal 

definitions of concepts, these results can also be used by computer programs. To achieve 

this, two types of ontologies were created and linked. Bridge ontologies bridging 

concepts together and Data ontologies linking concepts to specific data formats. These 

ontologies work together with the actual data in order to provide search queries with 

needed results; for example, where is the closest mall next to Montreal’s Town Hall? 
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However, this does not address extraction of precise parameter values needed to produce 

geospecific 3D models in the region. 

[Hummel et al., 2008] uses Semantic Web in scene understanding of urban road 

intersections in image sequences. The use of description logic in this context allowed a 

more generic approach in detecting types of complex road intersections and to infer 

information about the involved lanes in the intersection. This information was then used 

to define and predict movements and restrictions of cars. The paper approaches the 

problem by TBox definition and ABox dynamic construction, as data becomes available 

from the image sensor sequences and the land surveying office map. We adopt a similar 

approach in generating the ABox dynamically, but for defining geospecific 3D models. 

[Vanegas et al., 2009] approaches the problem of visualizing simulated urban 

spaces in the future by inferring on gathered data such as the original street network and 

aerial imagery. The results augment the original urban layout by subdividing parcels 

based on rules and inferring urban layouts at any time step based on some user input 

parameters such as population growth. There is no mention in using Semantic Web 

technology and although they are inferring on properties for the purposes of visualization, 

they are not concerned with detailed representations of real world objects.  

Barry Bitters, at Florida State University, has been working since 2005 on an 

ontology classification of all objects in the visual domain [Bitters, 2005]. Bitters 

mentions that his work has contributed to a 14,000 unique concept taxonomy in the visual 

objects domain and 1,100 3D models that represent some of these concepts. The result of 

his work is publicly available on the internet. It is in the form of a visual 3D model 
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library organized in a taxonomy of Visual Objects, named the Visual Objects Taxonomy 

and Thesaurus (VOTT). This library defines a comprehensive list of visual objects, their 

classification and common properties but is not appropriate for inferencing as it lacks 

formal definitions of concepts. His primary objective was to have a common ground for a 

concept and definition library for all systems to reference along with their corresponding 

3D models to reuse. This work can be useful in a 3D scene generator where feature 

source data defines concepts and correct models mapped from the concept identifiers can 

be automatically retrieved. The user defines the feature data, and includes the concept 

identifier it represents. Bitters also investigated the automatic generation of details in the 

environment such as selecting textures for road signage based on road layouts and the 

generation of vegetation based on statistical input [Bitters, 2007]. He also worked on 

enhancing scene generation based on the probability of missing elements such as 

mailboxes next to houses or stop signs at intersections [Bitters, 2008]. He did not 

formulate a process for determining the existence of such objects and admits of a high 

failure rate in most realistic cases. 

[Fonseca et al., 2002] describes the benefits of using ontologies (not necessarily 

Semantic Web) in order to integrate information of different sources and to determine 

embedded knowledge in the collective data sources to be used by client applications. The 

authors define the benefits and provide a methodology for defining and layering semantic 

systems to achieve needed results. This work is oriented towards finding results to user 

queries and providing more accurate information that cannot be provided by current GIS 

database systems. This, however, does not address the specific problems we have with 

facts extraction, spatial reasoning, and details (specializations) of the 3D representation 



59 

of entities in the landscape. The authors also argue that ontologies are needed on different 

levels such as application, domain and specific source data type. This works well in our 

case too, as we consider that some semantic rules are general while others are specific to 

a certain region. The user in this case will only need to alter the specific ontology needed 

for their area of concern. While their work does show the importance of using ontologies 

for uncovering embedded knowledge from collective data sources, it does not provide a 

solution for our problem. 

[Arpinar et al., 2006] suggests a methodology to develop GIS ontologies as an 

extension to the Semantic Web mainly for the purpose of geo-referencing documents 

such as tasks and data. Their methodology can be used in our case for the same purpose 

of formalizing definitions of data objects. We plan to use this formal information to 

derive details about the data objects for use in the 3D representation of the landscape. 

Again, in this case, while their work introduces the use of semantic web in the GIS 

domain, they also do not provide a solution to our problem, or anything similar. 

In [Kalogerakis et al., 2006] and [Yin et al., 2009], use of ontologies for 

generating 3D content was mentioned. While the first addresses the generation of 

building models from architectural drawings, the second uses ontologies to generate 

graphics content through knowledge-driven visualization. However, neither of the 

described techniques addresses inferencing based on available data in the knowledge base 

nor do they address uncertainty in the data as part of knowledge assertions. 

We see that, in all earlier work reviewed above, there is no mention about using 

knowledge in order to fuse different datasets together and allow inference on assertions 
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for the purposes of creating geospecific 3D models. The above works do show that 

Semantic Web technology is promising for defining ontologies and semantics in GIS 

through its inference services. Inferencing allows a certain system to obtain the most 

specific information of a certain object and its class and properties provided the 

information is available in the knowledge base. It also offers rule order-independence 

using description logic, unlike rule-based systems which are hard to maintain and where 

the first rule matched will have precedence. Also, Semantic Web offers services to check 

the semantics defined in the ontology and verify its coherence. Importantly, it serves our 

purpose in the way we would like the system to assert information about instances 

representing 3D models and their details. 

3.5 Uncertainty and the Semantic Web 

As previously mentioned, there are uncertainties associated with GIS data. For 

our system to be able to transfer such uncertainties to a higher level of processing for 

resolution by end-application decision or by user, it needs to address uncertainties that are 

associated with such data assertions and their entailments. This section provides a review 

of uncertainty models and methods as part of Semantic Web. 

In [Poole et al., 2009], the separation of probabilities and meanings is advocated. 

Our methodology uses similar principles to define knowledge base terminology axioms 

in a way that allows this separation. Essentially, instead of defining concepts using the 

terminology hierarchy, classes and property domains and ranges, each definition is 
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associated a discrete set of conditions which is called the differentia that can uniquely 

define it from other classes in its scope (there is no need for probability representation 

under this context). Those conditions are in the form of classes, object-object and object-

value relationships. The relationships can also be defined with restrictions on their 

domain or range under . In the case of classes, the definition would be 

recursive with the basic constructs being relationships and restrictions. The relationships 

are asserted with a true or false value in the knowledge base as described previously. But 

these relationships could also represent a random variable that can depend on 

probabilities. We consider representing the uncertainty in this context more appropriate. 

Uncertainty can be modeled using probability theory, Zadeh semantics or similar 

logics. Probability theory is not suitable for our needs as we do not deal with events 

having outcomes from a closed sample space. Others like [Lukasiewicz, 2008] have 

attempted to use probability theory in semantic web by defining a concept-concept 

probability interval association such as  and 

 and answering queries such as “if I is a Bird that doesn’t fly 

what are the values of  and ?” These methods model probabilities in 

the ontology and attempt to represent imprecise information. In our case, we address 

uncertainties in the acquired knowledge about instances and their assertions. Consider the 

following example: 
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The two relationships of Through and Under are mutually exclusive. An object 

with a relationship of Through might or might not have a relationship of Under. Let’s 

assume for an instance I the probability of occurrence of Through with some 

NaturalObject to be 0.5 and that of Under with a different object 0.5 as well. Using 

regular probability theory  we have  

suggesting that this instance is definitely of type Tunnel. The answer here should be 0.5 

since either Through or Under are required to classify I as a Tunnel. For this reason, we 

use the Zadeh logic based on [Zadeh, 1965] and [Gerla, 1994]. [Bobillo & Straccia, 2011] 

recently summarized the work of probability and possibility in semantic web as shown in 

Figure 11. They also discussed the advantages/disadvantages of each family. 

 
Figure 11: Popular Fuzzy Logics (After [Bobillo & Straccia, 2011]) 

We are particularly interested in conjunction (t-Norm) and disjunction (t-Conorm) 

of two axioms  and represented by their certainty values under the Zadeh logic as we 

think these are sufficient and necessary for our instance class entailments. This logic also 

extends to multiple variables. 

Much of the related work in the domain of possibilistic logic in semantic web is 

described by Straccia. Furthermore, we couldn’t find any actual reasoner that could serve 

our purpose and address our problem. Some reasoners such as FuzzyDL [Bobillo & 
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Straccia, 2011], DeLorean [Bobillo et al., 2012] and Pronto [Klinov & Parsia, 2013] are 

overly complex to what is needed by our process as they try to address the generic 

problem of uncertainty in knowledge and others were described but not available in the 

public domain. There also exist some query languages that handle uncertainty by 

conditional querying. We have opted however to use direct reasoner access rather than 

querying in our process in order to gain direct access to axioms within the knowledge 

base. Moreover, we did not find much work in uncertainty under  beyond the 

work of Lukasiewicz and Straccia which mainly addresses  but probably can 

be extended to handle complex role inclusion and qualified restrictions axioms. Even 

with the availability of such reasoners based on an extended expressivity such as 

 (probabilistic- ), the complexity class of reasoning is increased 

to  from ’s .  is the functional analog of 

 which contains all problems that are decidable in polynomial time on a 

deterministic Turing machine with the help of an oracle for  [Lukasiewicz, 

2008] where . 

We, therefore, define our own method of dealing with uncertainty which we will 

describe later. 
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Chapter 4  

Knowledge Base and 3D Landscape Creation 

In this chapter, we first provide the formulation of the process for transforming 

GIS source data (captured through sensing on the real world 3D, refer to Figure 4) for a 

given ROI into a knowledge base and then the process of creating a detailed 3D 

landscape representation by querying the knowledge base for 3D entities in the given 

ROI. We show that, under some assumptions, this process creates a detailed 3D digital 

geometry definition for every entity present explicitly or implicitly in the input GIS 

source data sets. We show how an entity is mapped as assertions, how it gets specialized 

to its specific class and how its property values are extracted to create the detailed 

representation. Entity specialization is best explained with an example. A linear element 

entity in the shapefile may get specialized first to a thoroughfare and then to a bridge 

entity, even if the bridge membership is not explicitly present as a property in the 

shapefile. We may also refer to entity generalization. For example, a bridge entity may be 

generalized to a linear element entity.  
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Figure 12: GIS2Geometry System and Process 

 

 

Figure 13: Data Transformations and Usage in our Process 
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Our overall process consists of the following stages. The entities defined in 

Shapefiles are added to the knowledge base as initial instances along with their class, 

their properties and relationships. This is done using a Source Data ontology, which is 

defined using the Shapefile’s schema and domain elements. The entities in this initial 

knowledge base are specialized by extracting entity-entity relationships and required 

property values. This is done using the Data Extractors framework which also addresses 

spatial and topological relationships and their uncertainties. The knowledge base is 

modified and by computationally resolving implicit information with the help of rules 

defined by an ontology (the Domain ontology), explicit information will surface in the 

knowledge base.  This is used to generate geospecific 3D models for that ROI. The above 

process is summarized diagrammatically and shown in Figure 12. There are three distinct 

sections in the figure:  

(1) The source data collections (input) on the left side in the figure and labeled 

GIS Data Sources.  

(2) The ontologies A, B and C shown at the top that service the sub processes, 

where, ontology B is a common domain ontology that defines the transportation and 

visible entities domain (ΔI), and A and C are bridge ontologies that define a mapping 

between domain and data concepts.  

(3) The semantic web based subprocesses GIS2KB and KB2Scene which interact 

with and query the knowledge base using the reasoner system. The knowledge base is 

persistent information as part of the reasoner system. 
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In order to allow integration using existing mapping tools and a variety of 

services, we have defined subprocess interactions using the OWL Link protocol [Liebig 

et al., 2008]. We chose the OWL2 language [OWL2, 2012] with  expressivity 

for our semantic system allowing us to define object-value relationships and restrictions.  

Figure 13 shows the data transformations in our process compared to Figure 4. 

4.1 Theoretical Formulation 

4.1.1 Definitions 

� 3D Real: the real world 3D Region of Interest (terrain + entities belonging to ROI) 

� ΔI: the domain of discourse (3D transportation and visible entities) 

� 3D Digital: The set of all 3D digital entities needed to represent the landscape for the 

given ROI (representing 3D Real).  

� SGIS:  3D Real. The collection of all sensed GIS source data sets available for the 

given ROI. SGIS = SS  SI  SE, where SS, SI, SE denote the collection of all shapefile 

records, imagery rasters, and elevation rasters respectively. SGIS is implicitly assumed 

to be a collection of all the entities needed to represent the landscape digitally. 

Entities belong to classes and may have properties with values. We will denote the 

class of an entity x using the subscript c (xc) and the properties using subscript p (xp). 

The detailed data for defining each entity in the landscape may be available in the 

shapefile records, but may also be inferred from the collection of data sets. 
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� 3D Schema: Procedural definitions {Gm} for all possible 3D entities  3D Real, 3D 

Schema  ΔI. Each Gm is a procedure for generating the detailed 3D representation 

for a given entity class, with property values, in the domain of discourse. For 

demonstration of our process, we have chosen the transportation domain.  

� An ontology: ontology, say O, under SROIQ(D) which includes OC, OR, OP, and OA 

denoting set of class, object property (role), data property (datatype role), and 

annotation axioms respectively.  where  OA,  OR, OC, 

OC, and defines the value of the annotation. Similarly,  

where OA, OP, OC, [OWL Datatypes, 2012], and defines the value 

of the annotation. 

� SD: Source Data ontology relies on the Simple Features ontology defined by OGC. 

The attributes mapping axioms are defined as a subontology. SD provides a mapping 

from SS to instances of TD (TD  SD). 

� TD: Transportation Domain ontology under ΔI, relies on the Visual Objects 

Taxonomy and Thesaurus (VOTT) and spatial relations ontology [GeoSPARQL, 

2012]. The properties and extractor annotation axioms are defined as a subontology 

of the TD hierarchy. 

� RC: Representation Capabilities ontology provides a mapping from TD to 3D 

Schema according to all Gm definitions. 

� TBox: set of ontologies defining terminology axioms.  

� ABox: set of assertional (instance) axioms w.r.t. TBox.  Each Instance I  ABox 

based on a TBox O is associated with a set IC which defines its class assertions  OC, 
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IR defines its object relationships  OR, and IP defines its data properties  OP. Each 

instance corresponds to a unique entity in SGIS. 

� KB: Knowledge Base composed of all axioms in TBox and ABox. 

4.1.2 Assumptions 

Assumption 1: SGIS contains a full representation (implicit or explicit) for 3D 

Real. That is, every entity e of interest in 3D Real, is present in SGIS, at least in its 

generalized form, say x. Further, there must exist data in SGIS which supports the 

derivation of relationships and required property values to specialize x to the entity e.  

Assumption 2: there exists a set of model definitions (Gm with parameter values) 

belonging to 3D Schema such that 3D Real can be represented to the desired detail by 

setting values for the parameters of every model necessary to represent 3D Real. 

Assumption 3: (follows from semantic web technology) an instance  

always has an equivalent  iff   (KB entails KBi) where both are sets of 

axioms under the same expressivity constraints and every element of KBi is entailed by 

KB. We also denote that   and . 

Based on the above assumptions, we show that (1) Every entity in SGIS will be 

created in the form of an instance in the knowledge base, (2) All required property values 

for entities in the landscape representation are extracted and available to create the 

detailed landscape representation, and (3) Using the knowledge base, a 3D digital 

representation is created for every entity in SGIS with detail determined by the RC 
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ontology.  It follows that due to the knowledge base containing all information including 

uncertainties about asserted and entailed assertions, these uncertainties are also available 

for use in the end-application. We shall discuss our approach for dealing with uncertainty 

associated with entities, property values and inter-entity relationships in  Chapter 6. In the 

rest of this chapter we will discuss the different mappings needed to create the knowledge 

base and the mappings needed to create the 3D landscape representation.  

An initial mapping using explicit data is performed to create the initial knowledge 

base. Vector data sources such as Shapefiles define related entities and their properties 

and, therefore, a knowledge graph could be constructed. More generally, any explicit data 

source that can be transformed to entities and their properties has a similar associated 

knowledge graph. Such a graph is converted to an equivalent knowledge base 

representation based on a compatible ontology which defines the mapping (from the data 

concepts to the domain concepts). Ontologies for mapping Shapefiles to knowledge base 

have been attempted by several earlier methods such as [Kim et al., 2013] as well as 

multiple government mapping agencies like Ordnance Survey, U.S. Geological Survey 

and Natural Resources Canada. We, however, had to create our own ontology (SD) for 

the mapping of entities or entity components and their relationships. For example, 

mapping individual segment parts with connectivity properties to the knowledge base as 

children of a linear instance results in higher level of detail (and more knowledge) when 

compared to simply creating a linear instance. This is what allows us to identify that a 

certain segment is actually part of a different classification such as a bridge. 

We then determine entity-entity relationships (object relationships) using 

geometric computations and add these as object properties to the knowledge base. The 
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data and object properties added take the form of KB assertions. The knowledge base is 

then reasoned upon (checked for consistency and realized). ABox Realization ensures 

that every new assertion that can be inferred from existing knowledge is added to the KB. 

New assertions may result in a possible entailment of a different specialization class for 

an instance. For example, a linear element may get classified to a bridge class as new 

knowledge surfaces in the form of assertions.  The knowledge base is then enriched using 

data extractors for property values and entity relationships (Filling) and realized again. 

This is repeated until there is no change to the KB. The realized knowledge base (through 

subsumption compute service) is referred to as KBi. We shall describe the formulation of 

these steps below. 

4.1.3 Basic Mapping of GIS Sources 

Given SGIS, the first mapping step can, in general, be performed on the complete 

SGIS collection including all raster data sets. However, we will discuss it specifically for 

shapefiles. This does not affect the generality of this mapping, since the application of 

computer vision and scene understanding techniques would result in corresponding 

additions/modifications to be made to shapefiles.   

Consider a function s_mapping that converts entities in SS to ABox axioms: 

 

where  denotes the initial instance representing entity x in . 
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Definition (complete ontology): An SD (or RC) ontology is said to be complete 

if it provides a mapping for every entity or entity property in  into the knowledge base 

(or vice-versa) using a corresponding set of axioms referred to as the instance in the 

ABox. Similarly, the TD ontology is said to be complete if it defines the required domain 

knowledge for inferencing as well as all entity relationships and properties, and their 

extractor associations required for the needed representation. 

Lemma 1 (all entities are mapped): Given Assumption 1 and a complete SD 

ontology, all entities in SS are retrieved and will be present uniquely in the form of 

instances in the knowledge base. 

Proof: Consider an entity x that is present in SS for which an equivalent I does not 

belong to KB after applying s_mapping. This can happen if, for this entity x, s_mapping 

did not create the equivalent axioms in ABox from its representation in SS. There are 3 

cases to be considered: 

1. x is present explicitly in SS 

2. x is implicitly present in SS 

3. x is present in SS , but not in an unambiguous manner.  

If x is present explicitly in SS and I is not in KB then it implies that a mapping 

 for x is not defined; but this is not possible if the SD ontology is 

complete. 

If x is present implicitly in SS, then some mapping, as defined by case 1, 

 would create axioms {AS1, AS2, … , ASn}  ABox where an inference rule 
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 in SD ontology should exist. If no I exists then SD ontology 

cannot be complete or KB realization is incorrect. 

If x is represented ambiguously where two factual versions exist in implicit or 

explicit form, then assuming a mapping (by cases 1 or 2) represented as  

yields a set of axioms A1  ABox and another mapping  yields a set of 

axioms A2  ABox, then two cases exist where a and b are some concepts in the KB: 

a. KB  (a  b where is the bottom concept; the axioms contradict (are 

unsatisfiable) and no interpretation exists based on definitions in SD ontology 

b. therwise, the axioms are complementary and are not contradicting based on 

SD ontology 

In case a, ABox Realization will result in a clash which explains the contradiction 

and allows the user to correct the input. In case b, the result is non-contradicting 

information about x. If no I exists with the appropriate assertions then SD 

ontology is incomplete or KB realization is incorrect. 

If a complete SD ontology exists then a mapping  exists for every 

entity x in SS. Under Assumption 1, s_mapping creates all instances of entities in SS. 

Depending on its class, each entity will have object properties (spatial relations with other 

entities) and data properties (values), some of which may be filled by the data already 

available in SS.  

Corollary 1: SS  3D Real. No entity representation in 3D Real can be 

reproduced in 3D Digital based on 3D Schema if it does not exist in SS. However, even a 

generalized definition (e.g. linear thoroughfare) is sufficient. 
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Our s_mapping function creates knowledge base assertions based on the concepts 

and relationships. The input of s_mapping is defined as the set of feature records in SS 

and a complete SD ontology. Its range is an ABox with instances and associated 

properties (filled or unfilled) as part of a KB. 

The s_mapping function can be formally expressed as follows (using DL syntax): 

 

The SD ontology is then used to map basic spatial concepts to concepts in TD. 

4.1.4 Adding Relationships 

In our interpretation domain, relationships between entities are mainly based on 

topological relations which can be derived from shape geometry, layout, visible 

precedence in imagery, or profile in elevation. In all these cases, relationship evaluation 

is independent from inference; the evaluation does not change in the case of a different 

subclass. When an entity is added as an instance to the KB, it is added on the basis of an 

initial shape class as point, linear or areal as defined by the Shapefile schema. These are 

enough to evaluate relationships in our case. We, therefore, only need to process 

relationships once after initial mapping. 

A relationship evaluator Re is associated with a relationship R in the ontology 

through an annotation on R such that . It implements a modular method that 
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extracts the validity of a certain relationship between two entities using SGIS. The 

existence of the relationship is extracted by analyzing the topological relations between 

the two entities using their definitions, geometries and/or images. The relationship 

between two entities can be defined to exist or can be defined to be nonexistent (different 

from unknown). Both of these situations are expressed under our expressivity. 

The r_mapping function is formally expressed as: 

 

The domain of r_mapping is defined as the set of all KB Instances while the range 

is a set of KB instances complete with associated relationships. It resolves possible 

relationships between every two instances in the KB. Re returns the relationship or the 

negative of the relationship as described above. Adding relationships are essential for 

most inferencing. As described earlier, each definition is associated with a discrete set of 

object and data properties that can uniquely distinguish it from other classes in its scope.  

Lemma 2 (adding relationships): All relationships between KBi instances are 

evaluated.  

Proof: Assume a relationship R such that  and 

 after r_mapping, then either (1) , (2) , or (3) Re is 

not properly implemented. Case (1) contradicts the definition of complete SD or TD 

ontologies. In case (2), the relationship evaluator Re violates its definition since no 

annotation associating it to the semantic relationship it represents exists in SD. In case 
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(3), the implementation of Re is incomplete if the evaluator fails to return the relationship 

or its negative if they exist in SGIS. 

It should be noted that after s_mapping and r_mapping, KB will include instances 

for every entity in SS as well as their relationships. Some property values may be missing 

in some of the instances. These will be filled after data extraction process is completed as 

described next.  

4.1.5 Filling of Property Values 

We define and execute a value filling process for unfilled properties using 

extractor functions. The task of an extractor is to use the collection of SGIS sources to 

retrieve a property value. The data extractors framework uses an incremental discovery 

approach by solving subproblems (retrieving specific data values) based on procedural 

techniques applied to other GIS data types, such as imagery and elevation data. 

Definition (extractorp): is defined as an extractor function of the form 

implementation referred to by Pe associated with a property P in 

the ontology through an annotation on P such that . It implements a 

modular method that extracts a specific property value from SGIS. A value is extracted by 

analyzing relationships, other KB instances and GIS source data.  

Rule 1: In order for Pe to be able to retrieve a property value, P and Pe need to be 

defined and associated in the ontology (ontology is complete) and a corresponding 

procedural implementation for Pe must exist. 
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By this rule, for every unfilled property of an entity, for which a corresponding 

assertion is not present in ABox, extractors will retrieve the property value. Some 

example extractors will be presented in  Chapter 5. 

Let us recall that if SGIS does not contain the required data to extract a value for 

the property then Assumption 1 is broken.  

Rule 2: No property representation in 3D Real can be reproduced in 3D Digital if 

this property value does not exist explicitly or implicitly in SGIS (  3D Real or if an 

associated implementation for its extractor does not exist. 

Definition (missing property value): A missing property value  for a property 

 is said to be missing iff .  

Missing property values are filled using the following p_filling function: 

 

The domain of p_filling is defined as the set of all KB Instances while the range is a set 

of KBi instances with no missing property values. p_filling is executed iteratively. In each 

iteration, some missing property values are filled in and the knowledge base realization 

procedure is carried out. Realizing the knowledge base results in a possible entailment of 

a different  class for the instance depending on the restrictions defined in the ontology. 

Since each class might be defined with a different set of properties, the additional 
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properties are filled by realizing and filling again until the knowledge base is realized and 

no missing property values remain. 

Lemma 3 (filling missing properties): There is no instance in KBi for which 

property values are missing.  

Proof: assume a property x such that  after p_filling where xc 

represents the property class and xv represents the value, then either (1)  

where PV [OWL Datatypes, 2012], (2) , (3) Pe is not properly 

implemented, or (4) knowledge base realization was incorrect. Case (1) contradicts the 

definition of a complete TD ontology. In case (2), the definition of extractors is violated 

since no annotation associating an extractor function to the property exists in SD. In case 

(3), the implementation of data extractors is incomplete if there is no extractor which 

returns a valid value even though the value exists in SGIS. 

More generally, when a value exists, data properties attach the value to the corresponding 

instance using a property definition with a value type. Under Assumption 3, a data 

property p  I  has pc representing the property class and pv 

representing the value. While pc is associated with the class definition of I (Ic), pv is 

available under one of the following situations: 

1. Explicit in only one of the source data sets SS, SI, or SE 

2. Implicit or derived from one or more data sources 

3. Represented (implicit or explicit) in SS as well as another source (SS, SI and/or SE) 



79 

We prove for each of the cases above that if a value exists in SGIS but is not 

available as part of the ABox after completing the s_mapping, r_mapping and p_filling, 

then a contradiction happens in either the assumptions or the definitions of the system 

components. 

1. If pv is represented explicitly in input set S (SS, SI, or SE) then a mapping of object 

properties ( ) for pv is not defined. If no pv is available after mapping 

, then the SD ontology is incomplete or a mapping to TD is not 

defined as shown in the proof of Lemma 1. 

2. If pv is represented implicitly by 1 or more data sets in SGIS, then some function Pe 

(data extractor) must be available to retrieve pv such that ,  

 and  (pv defined by running Pe using I). If 

no pv is available after mapping then the data extractor implementation is incomplete.  

3. If pv is represented ambiguously where two factual versions exist in implicit or 

explicit form, then assuming a mapping (by cases 1 or 2) yields a set of property 

axioms A1  ABox and another mapping yields a set of property axioms A2  ABox, 

then two cases exist where a and b are some concepts in the KB: 

a. KB  (a  b ; the property axioms contradict (are unsatisfiable) and no 

interpretation exists based on definitions in ontology 

b. Otherwise, the property axioms are complementary and are not contradicting 

based on definitions in the ontology. 

In case a, ABox Realization will result in a clash which explains the contradiction 

and allows the user to correct the input. In case b, more information or non-

contradicting information about I is resulting. If no p  I exists after mapping then 
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the ontology is incomplete (data property restrictions or mappings are ill-defined) 

or does not comply with source data. 

4.1.6 Representation Creation 

Consider a function v_mapping that creates all Gm models for 3D Digital using a 

1-to-1 mapping from instances in the knowledge base: 

By Assumption 2, every instance  entailed from the knowledge base 

(Assumption 3) has a model definition Gm from 3D Schema for its class . Models are 

retrieved for every instance in ABox as follows: 

 

It should be noted that models are retrieved only for the most specialized 

definition.  That is, if a linear element instance is specialized to a covered bridge instance, 

then only the model for a covered bridge instance will be retrieved. The domain of 

v_mapping is a realized KB (KBi) using the TD ontology with ABox instances, and the 

RC ontology representing the 3D Schema. Its range is a set of 3D graphical models 

definitions Gm for use in procedural generation of the entities in the landscape 

representation. 

Lemma 4 (3D model for every instance in KBi): After v_mapping, every 

instance in KBi will have a detailed model in the landscape representation.  
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Proof: If there exists an instance Ii for which there does not exist a detailed model 

in 3D Digital, then this can only be for the following reasons: (1) a 3D model definition 

Gm does not exist for this instance, but this violates assumptions 2 and 3 (if instance is 

unsatisfiable), and (2) a property or its value needed for creating Gm is not available, this 

is not possible by Lemma 3.  

We can now state our main theorem as follows: 

Theorem 1 (Detailed 3D Represenation Creation): Given SGIS for a given ROI, 

complete ontologies (SD, TD and RC), data extractor implementations for properties of 

all entities in SGIS and a 3D Schema complete with respect to entities in SGIS, s_mapping, 

r_mapping, p_filling and v_mapping will together create a detailed landscape 

representation of the given ROI.  

Proof: Follows from lemmas 1 to 4 above, since every entity in SGIS is mapped 

into the knowledge base as a unique instance (s_mapping), with all its properties filled 

with values (r_mapping and p_filling), and detailed 3D geometric models for every 

instance are provided by 3D Schema (v_mapping). 

4.1.7 Thoughts 

We assign values to properties by executing data extractors for every unfilled 

property in every instance in the current state of the knowledge base. These property 

values in turn get added to the knowledge base in the form of suitable assertions with that 

instance. It results in the advantage that properties also get assigned by KB inference. For 

example, consider two property classes defined as equivalent in the TBox with the 
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appropriate restrictions. If one property is defined with a value, the other property would 

point to the same value. If two different values are inserted for each of the properties, a 

contradiction would occur upon realization if a complete SD ontology is defined. In 

addition, data checking in the form of data property restrictions and type inference based 

on those is available under SROIQ(D). Ambiguity, redundancy and wrong or non-existent 

source data would be handled in a similar fashion. It is for this reason that we chose to 

put the data values as part of the KB rather than simply put a link to the values. 

4.2 Evolution of our Method 

Throughout our research we have changed and refined our methods to achieve our 

objectives while adapting to the technology’s capabilities and benefits. The core of our 

research has been the use of the semantic web technology to enhance the feature 

extraction process, fuse and reason on different data types together, and attempt to further 

automate the resolution of ambiguities and inconsistencies in the data. In the following 

sections, we show our earlier versions of algorithms and attempts. We first describe the 

generic legacy process in order to compare with our methodology. 

4.2.1 Legacy Processes (for comparison) 

A knowledge base is not used in the legacy process. If reasoning is at all 

performed, it is done based on rule-based processing that modifies the shape geometry or 

the TIN based on the shapes created. Tools described in section  3.2  do not deal with 
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knowledge extraction and associated uncertainties. Most legacy processes take a 

triangulation, texture it and add the shape geometries forming the final visualization as in 

the following definitions: 

 

 

 

 

 

 
 

 
where e is a layer in L, the list of all GIS data source layers available related by positional 

and coordinate systems. A layer is either in the form of a shapefile or raster (imagery or 

elevation data). s(e) denotes a features shape layer e. shapeGeometry is a list of visual 

geometry objects generated based on procedural algorithms and user-defined rules on the 

properties and definitions in s(e). SHP represents the generated geometric meshes 

representing all features. TIN generates a triangulated mesh based on a Delaunay Graph. 

rh(e) denotes a single selected height or elevation layer e in L for each area in the ROI. 

DG denotes the Delaunay Graph generated from all points in the selected elevation layers 

(forming the terrain). TEX generates the textures from all imagery data layers. ri(e) 

denotes an imagery data layer e in L. The final visualization VIS is the triangulated 

graphics mesh TIN textured with TEX with all graphics meshes from SHP added. 

We initially investigated two different methods for extracting the necessary 

information and adding it to the knowledge base. Vector data is always transformed 

based on the data ontology definitions and added to the knowledge base. The two 

methods we explored are the following: 
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(1) extract all semantics from raster data and insert all resulting data as part of the 

knowledge base. 

(2) add only the vector data to the knowledge base and use specific data extractors that 

use context and relevant raster imagery to extract missing data.  

However, after further analysis and experimentation, we found that (1) introduced 

a lot of redundancy and was non optimal and we have improved on (2) to provide a 

generalization to define and implement specific extractors which associate the knowledge 

base data property definitions to the actual extraction procedures.  

4.2.2 Attempt 1: Extracting all Semantics from Raster Data 

Our first attempt was to model all data as part of the knowledge base providing all 

required information about a scene as one single knowledge base [Eid & Mudur, Feb. 

2009]. This mostly avoids having to shatter related information in different data 

structures. We attempted to insert all data as part of the knowledge base including all 

semantics available in raster data: 

 

shapes is a list of instances, generated from data in the shape or raster layers, and are 

related by semantic information in the KB based on the ontologies defined. KB can then 

be realized after this process. The algorithm is defined as follows: 
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Input: SGIS, SDOntology 
Output: KB 
KB = {}; 
Forevery element in SGIS 

 shapesLayer = {}; 
 If isRasterLayer(element) then  
  shapesLayer = new shapesLayer(extractFeatures(element)); 
 Elseif isShapeLayer(element) then shapesLayer = element; 
 Else error(“list element not recognized”, element); 
 Endif 
 If shapesLayer != {} then  
  mapShapefile(shapesLayer, SDOntology, KB); 
 Endif 
End 
EndProc 

In this case, the extractFeatures function is a bridge to another subsystem that 

extracts all semantics from a given layer. Extracting feature semantics from imagery and 

elevation data sets is highly complex and is mostly done iteratively by domain experts in 

cartography. The results of these activities are usually saved as feature data (most 

commonly in vector Shapefile format) that is then consumed by other systems. Raster 

data sets are large and the features to be extracted include all the entities and their 

properties as required by the application domain. Further, efficient implementations for 

reliable feature segmentation and recognition are in general difficult to obtain, and image 

analysis/pattern recognition was not the primary goal of our research. 

4.2.3 Attempt 2: Linking KB Objects to Relevant Raster Data 

As part of this next attempt, we focused on using the raster layers after the initial 

knowledge base realization process. We defined a feature data processors mechanism to 

be part of our method. In order to have the specific extractors operate on a constrained 

input data set, we attempted to optimize and link the semantic knowledge base data with 

the relevant raster information and layers. We created data properties in the ontology to 
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serve as data pointers to the relevant raster data. Relevant raster data is defined as the 

data within a subarea surrounding the instance. Users can then use the pointers to operate 

on the relevant data set. This process is summarized as follows: 

 

 

KB1 represents a knowledge base containing all feature data. KB2 adds a list of 

raster data property pointers corresponding to the number of raster layers available to 

each instance in KB1. n is used as a counter for raster data property pointers. c is a 

knowledge base instance in the realized knowledge base i(KB1). rdp(c) represents a raster 

data property that points to a subarea in the raster data. Each raster layer r(e) would have 

an equivalent rdp(c) denoted as rdpn(c) where n denotes which raster layer it came from. 

The subarea raster is extracted by the subarea function using r(e) and the extents of c 

denoted as d(c). KB3 extracts the missing data properties by running the data extractors 

on the raster data property pointers list for every instance in the knowledge base. x is a 

data processor in the list of data processors available (X). p(c) is a property of instance c 

in KB2. x(c) runs the data processor x on the instance c and attempts to extract a value for 

p(c). The final knowledge base KB contains all feature data as well as the extracted data 

properties from the raster data layers. The algorithm is defined as follows: 
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Input: SGIS, SDOntology, ExtractorsList 
Output: KB 
KB = {}; 
Forevery element in SGIS 

 If isShapeLayer(element) then  
  mapShapefile(layer, SDOntology, KB); 
End 
ConsistentKB(KB); 
Forevery element in SGIS 

 If isRasterLayer(element) then 
  n = element.layerID; 
  Forevery instance in KB 
   // retrieve geo location extents of instance 
   di = instanceExtents(instance);  
   // extract a sub raster from the raster layer element 
   pRaster = subarea(di, element); 
   if pRaster != null then 
    // add new raster data property  
    instance.insert(new raster_dp(n, pRaster));  
   Endif 
  End 
 Endif 
End 
Forevery xtractor in ExtractorsList 
 Forevery instance in KB 
  Forevery dataProperty in instance 
   If dataProperty = null then 
   // runs extractor with instance as input (containing all pertaining data) 
   xtractor(instance);  
  End 
 End 
End 
EndProc 

We did not pursue this method further, since even with a small subimage, reliable 

implementation of detail extraction from raster images is a difficult problem. 

4.2.4 Attempt 3: Running All Extractors for Every Missing Property 

This method does not segment the layers into subparts. After adding all shapes 

and properties to the knowledge base, it iterates through the source data layers and runs 

the missing data property extractors on each. This has a limitation of not allowing the 

data property extractors to use the complete list of layers available and to combine 
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different layers in the processing to find the necessary new information. It also introduces 

a lot of redundancy in the extractors processed since for every missing property, the 

system runs all possible extractors for this property. The algorithm is defined as follows: 

Input: SGIS, SDOntology, ExtractorsList 
Output: KB 
KB = {}; 
Forevery element in SGIS 

 If isShapeLayer(element) then 
  mapShapefile(layer, SDOntology, KB); 
End 
ConsistentKB(KB); 
Forevery element in SGIS 

 Forevery instance in KB 
  Forevery dataProperty in instance 
   If dataProperty = null then 
    Forevery xtractor in ExtractorsList 
    // runs extractor with instance as input 
    xtractor(element, instance);  
    End 
    ConsistentKB(KB); 
   Endif 
  End 
 End 
End 
EndProc 

4.2.5 Final Solution: Running only Relevant Extractor Functions 

We found that extractors often need several data layers to get the best information 

available. For this reason, we have generalized Attempt 3 to create our final version. This 

also mimics a human-like divide-and-conquer property filling process by analyzing the 

available sources to extract the missing property value. The main difference with other 

methods is the creation of a framework by generalizing the extractor functions and the 

required inputs, as well as associating an extractor definition per data property as part of 

the ontology. With this modification, only extractors for the missing properties are 

executed on the available raster data layers. In addition, the source data list is filtered and 
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sorted based on each extractor’s requirements (e.g. on imagery, on elevation, on multi-

band, or on KB). This process allows extractors to be modular and objective driven using 

the instance definition as constraint.  

KB1 represents a knowledge base containing all feature data. KB2 extracts the 

missing data properties by running the data extractors on the available raster data layers L 

using the KB instance data c in i(KB1). p(c) is a property of instance c in KB2. The 

extractor function runs the extractor definition x for the property p using L and c and 

attempts to extract a value for p(c). The final knowledge base KB contains all feature data 

as well as the extracted data properties from the GIS source data. 

In the next chapter, we will present algorithmic and implementation details for the 

different mappings formulated in section  4.1. 
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Chapter 5  

System Implementation 

In this section, we present our implementations of s_mapping, r_mapping, 

p_filling and v_mapping presented earlier. While s_mapping, r_mapping, and p_filling 

are implemented as part of the facts extraction step (GIS2KB), v_mapping is 

implemented in the spatial knowledge extraction step (KB2Scene).  

We assume that the main set of entities in the landscape would be present in the 

feature layers (Shapefiles) and these layers would have been created previously using 

available techniques and tools. The user need not spend a lot of time precisely defining 

and attributing each entity found (as required by most state-of-the-art systems). Rather, 

high-level entities are processed (such as lines cast along a road path) by automatically 

extracting some facts using extractors and inferring information based on the collection 

of all available objects. This process would especially help if the data is not well-defined 

on input or some information is implicit. The user, therefore, does not have to address all 

possible cases or study the GIS sources extensively to be able to create detailed 3D 

models. 
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GIS2KB includes the Shapefile data mapping, relationship mapping and the Data 

Extractors framework. While the mapping adds initial data to the KB, the framework 

finds values for missing KB properties. GIS2KB owns and maintains the knowledge base 

that KB2Scene uses. For this reason, it also extends knowledge base services. It uses the 

Source Data (SD) and Transportation Domain (TD) ontologies. We chose the Pellet 

reasoner [Pellet, 2014] implementing OWL2 language with  expressivity. 

KB2Scene uses the Representation Capabilities (RC) ontology of parameterized 3D 

models to map domain KB assertions to entity definitions with property values. This is 

achieved by querying the KB using SPARQL and OWL Link. Procedural model 

generation is then used to create 3D models, which correspond to the KB definitions. 

5.1 The Ontology Hierarchy 

The ontologies we define are based on semantic web ontologies for knowledge 

bases implementing the OWL language [Bechhofer et al., 2004] and the latest OWL 2 

specification [OWL 2, 2012] including datatype restrictions in  defined in 

section  2.4. It allows describing knowledge as terminology and assertions. Instance 

(Object) assertions can be associated with axioms of type ObjectProperty (object-object 

relationship with range in a certain object class) and DataProperty (object-value 

relationship with range in a certain XSD Datatype class [OWL Datatypes, 2012]). We 

organize our ontologies in two types: domain ontologies and data ontologies. 
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We have defined domain knowledge ontologies based on knowledge from the 

domains of natural and environmental objects, man-made features, as well as the visible 

objects domain. Environmental knowledge defines concepts such as “a Tunnel is a 

subsurface Entity”. Relationship properties are based on topological relationships 

between instances such as spatial relations. Bitters' VOTT [Bitters, 2005] organizes 

elements in the domain of natural and man-made objects. Our domain ontologies are 

inspired by Bitters’ work as a classification basis and implement a subset of VOTT 

concepts enriched with rules for the purposes of inference. The rules are based on man-

made features knowledge such as the laws and principles used by civil engineering. For 

example, Bitters defines the following in a plain text taxonomy where the underlined 

elements are keywords that have their own respective definitions in the same taxonomy: 

- Street: Is a Road in a BuiltUpRegion. 

- Boulevard: Is a broad divided Street in a city often with a wide median, especially 

a Street laid out with trees and gardens, etc. 

- Bridge: Is the subclass of LandTransitways that are artifacts used for crossing 

water or air-filled gaps that could not be transited over a natural surface. 

Bitter’s work is intended as a form of standardization of the concepts which 

allows humans to properly interpret them. Our implementation extends these definitions 

with properties and rules that allow formal descriptions and inference. Our versions of the 

above concepts include axioms in the TBox such as the following: 
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The intention is to use these definitions as part of the Semantic Web System 

where an instance of type Thoroughfare, for example, could be re-classified as Boulevard 

or Street based on the definitions presented. Moreover, data properties were added to 

include further information about an object’s definition. For example, the Bridge concept 

inherits some properties from Thoroughfare such as its width, type, number of lanes and 

pavement type and adds some new data properties such as DeckThickness related to this 

concept. Although our definitions are simpler (in expressivity and semantics) than the 

definitions in Bitters’ VOTT (they are restricted to elements that can be detected through 

source data and that represent discrete objects or property states), they are more formal 

and allow automatic inferencing with our process. We could have defined Avenue with 

object relationships to Lane objects instead of the Number_Of_Lanes data property. But 

in this case, we only required a data property restriction and the value is available as a 

property on the Avenue. We would only needed object properties if we require the 

definition of actual Lane objects with corresponding restrictions and properties. 

Domain concepts are general to the domain and they seldom change except for 

very different regions or principles. The input GIS source data however changes often 

such as for different GIS areas or due to source standard or custom data. This data needs 

to be mapped to the proper properties in the knowledge domain. For example, users and 

systems define several properties per set of Shapefile records depending on needs or 
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capabilities. These properties need to be mapped to the domain knowledge, when 

applicable. In order to minimize the impact of change, we have put in place a hierarchy of 

ontologies where only a subset would be affected. With such a design, data mapping 

changes do not impact domain knowledge and vice versa. This context separation allows 

for maximum reuse and comprehension and minimum impact of change. 

Three ontologies were defined (please see Figure 12): (1) a general domain 

knowledge ontology B called the Transportation Domain (TD) ontology, (2) a bridge data 

ontology A, called the Source Data (SD) ontology, for GIS data mapping from data 

concepts to domain concepts in the TD ontology, and (3) a bridge data ontology C, called 

the Representation Capabilities (RC) ontology, defining the models and properties in 3D 

Schema. In our case, the SD ontology defines complex mapping and restrictions between 

data and domain concepts while the RC ontology performs a one-to-one mapping 

between entity classes and procedural models. The TD ontology also uses OGC’s 

GeoSPARQL and the OrdnanceSurvey’s SpatialRelations ontologies for spatial relations 

based on the DE-9IM model. Moreover, we have enhanced the definitions of the spatial 

relations to include role inclusion axioms such as transitivity and inverse relationships. 

5.1.1 Ontology of Source Concepts Mapping (SD) 

The SD ontology uses OGC’s Simple Feature ontology as a basis since our 

implementation primarily targets the mapping of Shapefiles as discussed earlier. The 

mapping algorithm is described under section  5.3.1 below. Moreover, the SD ontology 

defines data extractors as annotations on TD ontology properties. These allow the system 

to use data extractors to retrieve property values from sources that don’t have a mapping 
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defined. For example, a property shapeWidth in the input data is defined as the sum of 

roadWidth and sidewalkWidth (the total road way width for road instances) in our domain 

ontology; a mapping needs to generate both values. In our SD ontology, we annotate the 

roadWidth and sidewalkWidth TD properties with data extractor function identifiers such 

as, patternImageryWidth: 

 

Given the GIS location from the shape definition, a scan vector (calculated from 

the shape’s normal at that location) and a scan width (limited to the shapeWidth property 

by default) as input, the extractor can assign values for roadWidth and sidewalkWidth by 

analyzing and segmenting a raster image if necessary. Similarly, texture properties can be 

associated with extractors that use the shapeWidth and the shape’s definition to retrieve 

the GIS coordinates of the texture for the processed object. The GIS2KB engine, 

described in more detail below, uses the defined ontologies to map a Shapefile record’s 

definition and uses it to fill the parameters required (using the extractor annotations) 

based on the knowledge base definition. 

5.1.2 Ontology of Parameterized Models (RC) 

Figure 14 shows an example of a simple parameter taxonomy defining three basic 

classes: Generic Transport, Bridge, and Covered Bridge. Presagis Creator uses these 

classes and the listed properties as part of the Bridge Wizard utility to procedurally create 

corresponding 3D model representations. The RC ontology defines this taxonomy, 

mapping each element to an equivalent domain element. This defines formal meanings 
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for the parameters and allows a system to automatically match the graphical parameter 

values of the parameterized models to equivalent concepts from the semantic engine’s 

GIS sources knowledge base. Goodwin (2005) states that Britain’s National Mapping 

Agency, Ordinance Survey, uses Semantic Web technology primarily to translate or map 

concepts between different organizations or domains. 

Generic Transport Properties 
Start vertex position 
Start Angle 
Start width 
End vertex position 
End Angle 
End width 
Number of segments 
Left overhang size 
Right overhang size 
Overhang height 
Transport Textures 

Bridge Properties 
SubClassOf: 

Generic Transport 
 
Span Dividers 
Deck Thickness 
Starting vertical angle 
Ending vertical angle 
Support width 
Support depth 
Bridge Textures 

Covered Bridge Properties 
SubClassOf:  

Bridge 
 
Width dividers 
Cover Height 
Wall angle 
Entrance angle 
Covered Bridge Textures 

Figure 14: Generic Transport, Bridge and Covered Bridge Example Taxonomy 

Figure 14 shows the Covered Bridge concept and the required parameters. It is a 

subclass of Bridge and Generic Transport, and therefore, inherits all the available 

properties and also adds some properties specific to Covered Bridge. The Geometry 

Definition Engine identifies an instance’s class and uses the list of properties needed to 

extract values from the knowledge base and create a 3D model definition.  
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5.2 Main Process and Geometry Definition Engine 

The main process, based on the defined ontologies, takes the collection of GIS 

source data (SGIS) as input and executes GIS2KB followed by KB2Scene to extract the 

3D geometry definitions making up the digital 3D world corresponding to 3D Real. All 

models including the environment model are created based on definitions and inserted 

into the landscape representation. We present the main process algorithm below: 

Procedure MainProcess 
Input: SGIS, SD, RC, ExtractorsList 
Output: 3D Digital 
 KBi = GIS2KB(SGIS, SD, ExtractorsList); 
 3DModelList = KB2Scene(RC, KBi); 
 3Denv = new EnvironmentModel(); 
 3Denv.setDefaultSettings(); 
 3Denv = TIN(SGIS.SE).applyTexture(SGIS.SI); 
 3DModelList.add(3Denv); 
 return Visualize(3DModelList); 
EndProc 

We will describe GIS2KB as well as the Data Extraction framework in 

section  5.3. We describe the Geometry Definition Engine KB2Scene as follows: 

Procedure Geometry Definition Engine 

1. Load the realized KB containing all instances 

2. Load the RC ontology defining the capabilities of the visualization system 

3. For each instance in the ABox, execute the Instance Geometry Definition procedure 

4. Use the resulting output to generate a detailed representation 

The Geometry Definition Engine [Eid & Mudur, 2010] analyses every instance and forms 

a definition for each using the available extracted parameters as follows: 

Procedure Instance Geometry Definition 

1. Retrieve the instance’s most specific class type from the knowledge base 



98 

2. Select the corresponding type from the parameterized models ontology (RC ontology) 

3. Retrieve the list of all parameters needed by the selected type from the ontology 

4. Construct a query for every parameter to retrieve the corresponding value from KB. 

5. Store type, parameters, and values as a specification for the instance 3D model. 

First, to retrieve the instance’s most specific class type (inferred) from the 

knowledge base, a generic SPARQL query for all instances is used (Figure 15). Second, 

the inferred class is used to select a specific concept in the RC ontology.  

Select ?type 
Where { InstanceX rdf:type ?type } 

Figure 15: Retrieving The Most Specific Type of InstanceX using SPARQL 

Third, using this concept name, all the properties listed such as those in Figure 14 

are retrieved from the ontology. Fourth, a SPARQL query as shown in Figure 16 is 

constructed for every property to retrieve the corresponding quantitative value such as 

location, angles, bridge width, span and cover type from the knowledge base. 

%data_property% represents a property being queried for InstanceX: 

Select ?value 
Where { InstanceX %data_property% ?value } 

Figure 16: Retrieving a Property Value using SPARQL 

Finally, an instance definition using the concept name, and properties and their 

values is created. Relationship properties are not used as part of the created definition; 

they are only used for enriching the knowledge for inference purposes.  
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We present the KB2Scene algorithm outputting a list of 3D models corresponding 

to the definitions created as follows: 

Procedure KB2Scene 
Input: RC, KB 
Output: 3DModelsList 
3DModelsList = {}; 
Forevery instance in KB //based on RC (extends TD) 
 3DModelDef = GetVis3DSchema().getDefinition(instance.class); //note that instance.class is inferred 
 //only data properties are needed (object properties only used for inference) 
 Forevery dataproperty in RC 
  If (dataproperty.domain == instance.class) then 
   Value = getPropertyValue(instance, dataproperty); //SPARQL Query 
   3DModelDef.setProperty(dataproperty.class, Value); 
  Endif 
 End 
 3DModel = createModel(3DModelDef); 
 3DModelsList.add(3DModel); 
End 
return 3DModelsList; 
EndProc 

For example, for a road instance in the knowledge base, required values such as 

the segments that form the road, the road width, sidewalk width, number of lanes, and the 

relevant texture data references are queried from the knowledge base to generate a 3D 

model specification (3DModelDef). The createModel function takes this specification and 

runs the corresponding 3D model generator procedure providing the parameters in the 

specification to generate the road over the terrain (in this case, altering the 3Denv model). 

In another instance, a bridge is inferred after knowledge base realization. Parameters of 

width, length, angles, no. of segments, overhang, dividers, support and texture 

information are extracted and a model specification for the bridge instance is used to 

generate the bridge 3D model procedurally. 3D models such as tunnels, overpasses and 

ramps are generated in a similar fashion. 
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5.3 GIS2KB and the Data Extractors Framework 

GIS2KB creates a knowledge base representing SGIS which is then available for 

querying by the geometry definition engine (KB2Scene described earlier).  

Procedure GIS2KB 
Input: SGIS, SDOntology, ExtractorsList 
Output: KB 
KB = {}; 
shapeLayersList = {}; elevLayersList = {}; imageryLayersList = {}; 
Forevery GISsourceLayer in SGIS 
 If isShapeLayer(GISsourceLayer) then  
   mapShapefile(GISsourceLayer, SDOntology, KB); 
   shapeLayersList.add(GISsourceLayer); 
 Endif 
 If isElevLayer(GISsourceLayer) then elevLayersList.add(GISsourceLayer); 
 If isImageryLayer(GISsourceLayer) then imageryLayersList.add(GISsourceLayer); 
End //at this point all shape data was added to the KB 

//sort layers in descending order of layer resolution.  
resolutionSort(elevLayersList); resolutionSort(imageryLayersList); 
sortedOrderedLists SRI = {shapeLayersList, elevLayersList, imageryLayersList}; 

ConsistentKB(KB); // Realize KB, check consistency and generate ambiguity/inconsistency report.  
      //To have most specific types for adding Shape relations (extractors other than DE9IM) 

// add the relations once all records are added to KB. Done here to remove the complexity of  
// having to manage uncreated instances and to take into account all shapeLayers. 
addShapeRelationsToKB(KB, SDOntology, ExtractorsList, SRI); 

//compute inferences based on added relations and 
//calculate resulting uncertainties for inferred types 
ConsistentKB(KB);  

Bool Runagain = true; 
While(Runagain)  
 Runagain = false; 
 Forevery instance in KB //based on SDOntology(extends TD) 
  Forevery dataProperty in instance //data or object property assertions 
   If dataProperty = null then 
    xtractorfunc = ExtractorsList[extractorKey(dataProperty)]; // retrieve Pe 

    If (xtractorfunc) then 
     //run Pe to assign Pv e.g. instance.altitude = the ground altitude at location of instance from SE 
     xtractorfunc(KB, SRI, instance);  
     Runagain = true; //assumption: new information added 
    Endif 
   Endif 
  End 
 End 
 //realize the KB for the possibility of new properties to evaluate 
 If (Runagain) then ConsistentKB(KB);  
Endwhile 
return KB; 
EndProc 
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ExtractorsList represents the list of concrete extractor implementations referred 

by each Pe and Re in the SD ontology. extractorKey is a function that retrieves the 

extractor procedure reference in ExtractorsList for object property R (Re) or data property 

P (Pe).  

Layers are first categorized based on type. Shapefiles are mapped using the 

Source Data Ontology using the mapShapefile procedure described in the next section 

( 5.3.1). After all shape information is inserted in the KB and the GIS dataset categories 

are sorted in descending order of resolution (highest first), the KB is realized a first time 

using the ConsistentKB procedure which extends a semantic reasoner service. If the KB 

is not consistent after this operation, then there is an ambiguity or an inconsistency in the 

input shape information. Semantic reasoner services allow us to extract the inconsistency 

report that explains the inconsistency in the KB. The user then corrects the problem in the 

input data. Shape relationships are then processed between every pair of instances in the 

KB. The addShapeRelationsToKB function is described further in section  5.3.3. The KB 

is realized one more time here for consistency checking and in order to infer implicit 

properties. Data extractors for object and data properties are discussed in section  5.3.2. 

Data extractors use information about a specific instance, its properties and 

relationships defined in the KB to extract a specific missing property value using the set 

of data layers including imagery, elevation, and shapefile datasets. Data extractors are 

plugin-based in the system and an association requires a matching data extractor 

procedure (xtractorfunc) to be part of the system’s list of extractors. Different dataset 

types from SGIS may be used in extracting a certain value. Also different resolutions (or 

scale ratios) of the same dataset type are useful to confirm or find missing information. 
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For example, 0.5meter resolution imagery and elevation datasets have more detail per 

square meter when compared to 1meter resolution datasets of the same type. The input 

GIS datasets lists are filtered as required within the extractor procedure (e.g. on imagery, 

on elevation, and/or on multi-band). Extractors also provide us the option to incorporate 

procedural reasoning on numbers, statistics and approximations as current semantic 

reasoner services are not well suited for arithmetic reasoning. [Faddoul, 2011] describes a 

method to include algebraic reasoning as part of KBs in description logics; however, this 

area still has several open problems and adds more complexity to our domain of 

application than it adds flexibility.  

After the associated xtractorfunc is executed, Runagain is used to flag that new 

information has been added to KB. Knowledge base realization is done using the 

ConsistentKB procedure only after processing all known missing property values at that 

point in time. As new information is added to the KB, new inferences are possible and 

assertions are specialized possibly causing other missing property values. For example, a 

bridge can be reclassified to a covered bridge after running the data extractor and KB 

realization. A covered bridge then requires a new property cover_definition. The process 

terminates when the knowledge base is realized and there are no missing property values 

remaining. We describe our KB Realization solution and the reasons behind the timing of 

each call to this service from the GIS2KB algorithm in section  5.3.4. 
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5.3.1 Initial Mapping - Shapefiles 
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Figure 17: Shape Definition SD Ontology Mapping 

Figure 17 shows the implicit knowledge graph that we extract from ESRI 

Shapefile data format, which we presented in  Chapter 2. Each feature record is mapped 

based on its geometry type (ShapeType) to a knowledge base instance. We only consider 

point, polyline, and polygon types in our work. The following mapping applies unless 

another ShapeType is explicitly indicated (file name, user input, feature property, etc…). 

proj_value represents a value from an enumeration of projections corresponding to the 

projection used in the Shapefile. value represents the value of the corresponding property 

in the record. attribute_name and attribute_value represent a property ID and its 

corresponding value respectively (Dbase format) in the record. Box[] contains ordered 
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coordinate pairs of two point locations representing the bounding box of the record. The 

Shapefile mapping algorithm maps a certain layer (GIS source layer) of type Shapefile 

using the SD ontology into assertions which are added to the knowledge base (KB). The 

mapShapefile procedure is defined as follows: 

A. For each Point record, an instance a:Point is created, a projection is defined based on 
Shapefile’s projection definition, and the X,Y coordinates (and Z, M optional in case 
of PointZ type) are copied to the KB as values of type Double under object-value 
relationships. All relevant properties are copied similarly: 
1. (a, value):PosX, (a, value):PosY, and (a, proj_value):hasProjection are added. 
2. Optionally, if type is PointZ, (a, value):PosZ is added 
3. If user-defined data property (uddp) Measure available, (a, value):uddp is added 
4. Map every attribute for the record using (a, attribute_value):attribute_name 

B. For each Polyline record, b:PolyLine is created with (b, proj_value):hasProjection 
1. Map every attribute for the record using (b, attribute_value):attribute_name 
2. For each part in the record, a c:Connected_Segments instance is created and 

linked with b using the (b, c):hasPart object property 
a. Map every attribute for the record using (c, attribute_value):attribute_name 
b. For each two consecutive points in the part, di:Segment is created and 

(c,di):hasSegment and , if applicable, (di-1, di):Connected_To are added 
i. Map every attribute using (d, attribute_value):attribute_name 

ii. For first Point in d run point mapping procedure A and add (d, 
a):hasRefPoint 

3. For the bounding box, e:BoundingBox is created and (b, e):hasBoundingBox is 
added. 
a. min:Point and max:Point are created 
b. (e, min):hasMinPoint and (e, max):hasMaxPoint and (min, Box[0]):PosX, 

(min, Box[1]):PosY, (max, Box[2]):PosX, (max, Box[3]):PosY are added 
C. For each Polygon record assuming well-formed polygon (clean), an instance 

f:Polygon is created, (f, proj_value):hasProjection is added 
1. Map every attribute for the record using (f, attribute_value):attribute_name 
2. For each part in the record, a g:Area (or g:PolygonHole is defined if part’s 

vertices are defined in counterclockwise order) is created and linked with f using 
(f, g):hasPart.  
a. Map every attribute for the record using (g, attribute_value):attribute_name 
b. For first point in g run point mapping procedure A and add (g, a):hasRefPoint 

3. For the bounding box, h:BoundingBox is created and (f, h):hasBoundingBox is 
added. 
a. min:Point and max:Point are created 
b. (h, min):hasMinPoint and (h, max):hasMaxPoint and (min, Box[0]):PosX, 

(min, Box[1]):PosY, (max, Box[2]):PosX, (max, Box[3]):PosY are added. 
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As a result, the knowledge encapsulated as part of a Shapefile is added in the form 

of assertions to the knowledge base. The concepts used are part of the SD ontology, 

which maps to concepts in the TD ontology. For example, the Connected_Segments and 

Segment data concepts, part of a linear Shapefile describing roads, are mapped to TD 

concepts (right-hand side) by default as: 

 

 

The parts in each record and the segments defining the parts are created as instances in 

the KB and, after inferencing, they are used for 3D model definitions. For practical 

purposes, if properties ObjectClass and PartClass are defined for the record, the 

instances created are mapped to a specified concept class rather than the default 

ShapeType. Moreover, instances in the KB are related together using object properties 

that do not transfer the properties easily (vs. inheritance). For these reasons, all properties 

are mapped for every instance created. The mapping defined in the SD ontology then 

discards or uses these values by mapping to properties in the TD domain ontology. 

5.3.2 Data Extractors 

We define three categories of data extractors as described in [Eid & Mudur, 

2013]. (A) Transportation Object Extractors are high-level object extractors such as the 

types of feature extraction procedures available as part of SocetSet. These operate on 

input GIS datasets in order to retrieve existence of simple objects such as roads, water 

bodies, or a point representing an object of interest. These can be executed to result in 

further input data sources or used as part of other extractors. (B) Object Property 
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Extractors extract object-object relationships from the collection of input data. They 

operate on objects to validate one or more of the listed properties. Object properties are 

binary relations that are defined to relate two objects e.g. (object1, object2):obj_property. 

They can be classified as Functional, Inverse-Functional, Transitive, Symmetric, 

Asymmetric, Reflexive, and/or Irreflexive according to the  expressivity. (C) 

Data Property Extractors use GIS data sources to extract properties (object-value 

relationships) of a specific object to fill missing values for the 3D model definition. As 

example, road properties are shown in Figure 18 and the collection of bridge classes have 

94 properties, not listed here for brevity (see Appendix A for the complete listing). The 

following sections show some example data extractors we have defined for these 

properties. 

5.3.2.1 Transportation Object Extractors 


 Point: represents the location of an object. 


 Vector: consecutive connected points representing a linear feature such as a road, 

train track, highway etc… 


 Area: a set of points representing a polygonal area, or a point representing the 

location with dimensions defining the area. 


 Obstacle: any object defined by its area of coverage. 


 Impassable Area: an area with acute elevations, lowered area, elevated area. 


 Water Body: an area containing water. 


 Road: a specific type of Vector that has associated properties, a number of lanes and 

a roadside definition. (Figure 18 lists the properties used for generating roads.) 


 Lane: each road has one or many lanes with lane properties. 
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Figure 18: Road Properties 

Section Property Input Definition

Initial Data
Initial Data that is required for all transportation structures: 
roads and bridges

Object Class KB Inference
The Object Classification: a Bridge type (from Types 
defined) or a Road Type

Start Edge
W Extractor at 
linear vertex

The Edge, defined by two coordinate vertices, that defines 
the cross section where the structure definition starts in 2D 
or 3D space. 2D is overlayed on ground terrain. This ensures 
proper connectivity b/w connected segments.

End Edge
W Extractor at next 

linear vertex
same as above

Road 
Properties

Properties required to graph a road transportation 
element. This generates a textured road based on the type 
and the Start and End Edges defined.

Road Type
Object Class 

Property
The type of road from a classification list.

Directionality
Road_Directionality 

Extractor

One way, two way road, or other road. One way roads have 
1 road way instance and do not have a midsection 
definition. For two way and other roads, each way will 
have a way instance with associated properties.

Location and 
Orientation

Start Edge, End 
Edge properties

The location and orientation of the generated road are 
defined by the locations of the Start and End Edges.

Length
Start Edge, End 
Edge properties

The length of the road is defined by the length of the curve 
defined by the direction vectors of the Start and End Edges.

Width
Start Edge, End 
Edge properties

The width of the road is defined by the average of the 
widths of the Start and End Edges.

No. of 
Roadways

Separators 
Extractor

The number of Roadways on the road segment between 
the Start and the End Edges.

No. of 
Midsections

Separators 
Extractor

There is a Midsection between each two roadways. This 
defines the number of Midsection instances for this road 
segment.

Sidewalk 
(profile, width)

Roadside_Type 
Extractor

There is a Sidewalk at each side of the road. This defines 
the type of Sidewalk, its pattern or texture and its width.

Midsection 
Properties

Each Midsection has a Midsection definition. 

Location
Separators 
Extractor

Defines the coordinate on the Start Edge where the 
Midsection starts.

Midsection 
(profile, width)

Midsection_Type 
Extractor

This defines the type of Midsection, its pattern or texture 
and its width.

Roadway 
properties

Every road has 1 or more Roadway instances.

Location
Separators 
Extractor

Defines the coordinate on the Start Edge where the 
Roadway starts.

Directionality
Way_Directionality 

Extractor
Direction of the roadway instance.

No. of Lanes 
per way

Number_of_Lanes 
Extractor

This defines the number of lanes available within the 
roadway instance.

Lane 
Properties

Each Roadway has 1 or more lanes defined by the no. of 
lanes property.

Lane Type
Lane_Definition 

Extractor
The type of lane from a classification.

Ground 
Material Type

Lane_Definition 
Extractor

The ground type of the lane.

Lane Width
Number_of_Lanes 

Extractor
The width of the lane.
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 Bridge: a structure that is part of a Vector record; the vector crosses an obstacle at 

ground level or over an impassable area at the location of the bridge. All segments of 

the bridge are extracted. If no values are given as part of the shape record, all 

segments before and after the inferred bridge segment are analyzed to determine the 

elevation profile underneath and the imagery profiles along the segments. The start 

and end points of the bridge are found based on compliance with height and/or feature 

specifications. All segments between the start and end points of the bridge are made 

part of the bridge instance in the KB. An example is provided in section  7.3. 

5.3.2.2 Object Property Extractors 


 Under: belongs to an object under another object defined by the elevations of the two 

objects or the occultation profile in the imagery at the specific location overlapping 

the two objects. It is the inverse property of Over and is transitive. 


 Over: belongs to an object over another object defined by the elevations of the two 

objects or the occultation profile in the imagery at the specific location overlapping 

the two objects. It is the inverse property of Under and is transitive. 


 Next_To: belongs to an object in direct proximity to another, defined by their 

locations and extents e.g. when a monument or park is next to a road. This property is 

symmetric. 


 Connected_To: belongs to an object that is physically connected to another. Both are 

part of the road network e.g. a road segment connected to another road segment or a 

bridge connected to a road. This property is symmetric. 
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 Between: extends Next_To. Assumes object having this association with at least 2 

other objects where object is within area between the associated objects. E.g. a valley 

lies between two mountains. 


 Part_Of: is defined for every instance as a component of another instance e.g. a road 

segment is part of a road and a lane is part of a road segment. 


 Through: belongs to an object passing through another object defined by the 

elevations of the two objects being equal or the occultation profile in the imagery at 

the specific location showing intercrossing or penetration. If it is in the form of road 

intersection, then this property is added to both objects. 


 Has_Material: categorizes the texture of the surface coverage of an object given its 

extents using the imagery into one of (after SMC standardization): asphalt, concrete, 

liquid, soil, stone, sand, grass, gravel, granite, cobblestones, metal, wood, or 

limestone coverings. These are analyzed based on texture (color and granularity). 


 Impassable_Through: is defined if an object cannot pass through another object 

under the transportation domain interpretation e.g. for high slope variations of terrain. 

5.3.2.3 Data Property Extractors 


 Position: extracts latitude, longitude, and altitude (if available) for a given object 

from shape data or using imagery space coordinates based on an origin and a 

projection definition. 


 Altitude: extracts the altitude of ground at a given location using an elevation dataset. 


 OL: the Orientation-Length extractor calculates a 2D vector between two given 

points (Figure 19). It is defined as the vector with origin at the current point and 

spanning until the next point and used for every road segment part of a 3D model. 
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Procedure OL 
Input: 2 consecutive geolocated points A and B from same linear record 
Output: OL: 2D Orientation and length (=B-A) vector 
OL = [B(1)-A(1), B(2)-A(2), B(3)-A(3)]; 
EndProc 

 

Figure 19: OL Vectors on a Road Linear Record 

 

Figure 20: Normal From 
Three Points Defining Plane 

 


 n: given a geolocated point, the normal to the terrain at that location is retrieved using 

the plane defined by the 3 closest elevation grid points (Figure 20). 

Procedure n 
Input: 3 elevation points A, B and C 
Output: n: normal of terrain at centroid of triangle ABC 
AB = OL(A,B); AC = OL(A,C);  //find first and second vectors AB and AC 
N = cross(AB,AC);  //normal to AB and AC using right hand rule system 
EndProc 

 

Figure 21: Width Using OL 
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 W: The user usually defines the Shapefile record points in the middle of the actual 

visible road in the imagery. SocetSet does so too. This extractor calculates the 

orthogonal vector to the orientation vector in the image plane (given by the OL 

extractor above) and scans the imagery (which could be segmented) along the 

orthogonal in both the positive orientation and the negative orientation. It returns at 

least two coordinates defining an edge that is normal to OL at origin of OL on the 

road. This edge includes all roadways and separators that are part of this road. The 

width of the edge does not represent the actual road width since it is not 3D projected. 

However, this value is sufficient for draping road textures onto the terrain geometry. 

To obtain the actual width, the elevation data if available is used to return the 3D 

coordinates for each point in the edge by querying the point’s terrain altitude. (Figure 

21) 

Procedure W 
Input: OL, imagery, elevations (optional) 
Output: W 
O = [0,0,0]; Z = [0,0,1]; //define the origin and the image plane normal 
w = n(O,OL,Z); //find the orthogonal to OL in the image plane 
//analyze imagery along w and find all points (roadways and separators) 
W = analyze(imagery, w); 
If elevations then 
 for k=1:sizeof(W) 
  Zw = elevations.getAltitude(W(k)(1), W(k)(2)); //find terrain altitude for pt 
     W(k) =[W(k)(1), W(k)(2), Zw]; //change pt to 3D 
 End 
Endif 
EndProc 


 Start/End Edges: uses the OL and W extractors to determine the two points defining 

the starting edge orthogonal to the OL vector at the start/end point defining the object 

being processed. The returned edge is stored in Well-Known Text (WKT) format in 

the KB. 
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Procedure StartEdge 
P1 = SGIS.get_ref_pt(instance); 
V1 = OL(P1,P1.next()); V0 = OL(P1.prev(), P1) //OL vectors involving start point 
W1 = W((V0+V1)/2, SGIS); //get the orthogonal at average between the two OL vectors 
KB.addDataProp(CertaintyAnnotation(W1.certainty), start_edge_prop, instance, W1.WKT()); 

EndProc 


 N: A few objects or features span across several terrain grid points, for example, a 

road width might span 3 or 4 grid points if the terrain elevations data is defined at 1m 

resolution. Calculating the normal from the 3 closest points only is non-realistic as 

this might slant the road incorrectly. In order to more accurately determine the plane 

defining the base of the object in such a case, several grid points are analyzed using n 

above and then averaged together (Figure 22). 

Procedure N 
Input: A: array of normals, n: number of elements in A 
Output: N: average normal within circle defined by (point, width) 
V = [0,0,0]; //initialize V 
for k = 1:n 
    V = V + A(k,:); //add all vectors in A together 
end 
V = V./n; //divide each cell by the number of the elements to get the mean 

EndProc 

 

Figure 22: Average Normal 

 

Figure 23: Direction Vector D 
from N and OL (Z-axis is up) 


 D: This extractor calculates the 3D orientation and length corresponding to OL 

(which is only in the imagery plane) in the direction of the terrain tangent by using 
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the normal vector (Figure 23). D is in the plane defined by (OL, Z-axis), and its 

direction is defined as orthogonal to N where Z-axis is orthogonal to OL in the 

upward direction in the figure. 

Procedure D 
Input: OL, N 
Output: D: actual 3D orientation vector corresponding to OL 
// D in plane (OL, Z-axis): Dx = OLx and Dy = OLy, we need to find Dz. 
// D.N = 0   => DxNx + DyNy + DzNz = 0 => Dz = (- DxNx - DyNy)/Nz 
//                 => replace: Dz = - (OLxNx + OLyNy)/Nz 
D = [OL(1) , OL(2), -(OL(1)*N(1)+OL(2)*N(2))/N(3)]; 

EndProc 


 Thickness: retrieves the thickness of a deck by estimating the value using shadows 

(shape from shadow techniques) or from other datasets such as LIDAR. At this time, 

we calculate this using a factor based on the width and material type of the object. 

E.g. a 5m wide bridge made of concrete will result a value of 1.5 meters. 


 Separators: most North American road separators are identified if there are yellow-

line, double line, or wide-insert (concrete blocks, elevated garden, etc…) separators 

between the roadways. The extractor scans the normal to OL in the length and 

direction of W for such artifacts. It reports the number of separators it finds and an 

array of origins for the identified separators and roadways. The number of roadways 

is generally the number of separators + 1. 


 Road_Directionality: identifies whether the road is one way, two way or other. It 

uses the number of separators identified by the Separators extractor. If the number is 

zero, then the road is of type one way. If it finds one then, the road is of type two 

way. Otherwise, the road is considered to be other. 


 Way_Directionality: most North American roads have, at some point, a white 

horizontal line defining the stop location for cars at crossings. The extractor scans the 
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roadway in a direction parallel to the OL vector starting from the origin defined by 

the Separators extractor for a white line, if this line happens just before a crossing 

then the direction of the roadway is towards that line, if it happens after the crossing, 

then the direction is the opposite way. Highway directionality can be deduced from 

arrow directionality separating the highway from the ramp (Figure 24). 

 

Figure 24: Separators with Markings Showing Traffic Direction 


 Number_Of_Lanes: calculates the number of lanes in a specified roadway. This 

extractor will also add new Lane instances corresponding to the number of lanes to 

the KB and relate them as Part_Of the road segment instance. The number is retrieved 

by analyzing the imagery as in the W extractor by counting the lane separators 

encountered along the scan line and keeping a record of the width of each lane 

identified. This procedure is done at the location of the roadway defined by the 

Separators extractor along the normal to OL and is done another time again at a delta 
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distance in the direction of OL due to stripped lane separators often available. 

Alternatively, this can be guessed based on roadway width. 


 Roadside_Type: uses the imagery and the road segment instance to find if a road 

element has a sidewalk or overhang. If it does, it retrieves the type, the width as well 

as the visible height per element on each side of the road. 


 Midsection_Type: applies for each Midsection identified by the Separators extractor. 

It determines what type of middle section defines the separation. It extracts the type 

and width. 


 Lane_Definition: identifies specific markings along the lane to classify it into a 

certain type and identifies the type of ground material for that lane as per the 

Has_Material Object Property Extractor definition. 


 Cover_Type: identifies the type of cover on a thoroughfare. Specifically used to 

identify coverage and type of coverage on Bridge classes. 

5.3.3 Adding Object-Object Relationships 

Our system evaluates all object relationships for all pairs of instances in the 

knowledge base based on their initial inserted type using addShapeRelationsToKB within 

the GIS2KB algorithm. Since the relationships we are interesting are defined for all 

instances based on the initial input type (some shown Figure 25), these relationships 

could be extracted after the initial mapping (mapShapefile) without the need to realize the 

knowledge base. Moreover, an instance of type Polygon, Polyline or Point will never be 

inferred to a different type from these values (Polygon, Polyline and Point are disjoint 

concepts). The set of topological relations is therefore always consistent based on the 
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initial basic type of the instance. We, however, realize the knowledge base using a call to 

ConsistentKB before addShapeRelationsToKB once in order to resolve any properties that 

need not be extracted (inferred) and after in order to infer other properties and check the 

consistency of the evaluations. 

Polyline

Attribute Reference,
Equals,

Disjoint,
Touches,
Overlaps,
Crosses,

Contains,
Within

Polygon

Attribute Reference,
Equals,

Disjoint,
Touches,
Overlaps,
Contains,

Within

Attribute Reference, Disjoint, Touches,
Contains (poly->pt), Within (pt->poly)

Point
Attribute Reference,

Equals,
Disjoint

Attribute Reference,
Disjoint,
Touches,

Contains (line->pt),
Within (pt->line)

Attribute Reference,
Disjoint,
Touches,
Crosses,

Contains (poly->line),
Within (line->poly)

Touches(a,b) = meets(a,b) = Connected_To(a,b)
Within(a,b) = Contains(b,a) = Part_Of(a,b)
Equals(a,b) = Equals(b,a) = Within(a,b) & Contains(a,b)
Intersects(a,b) = !Disjoint(a,b)
Over(a,b) = Intersects(a,b) & (Ha > Hb)
Under(a,b) = Intersects(a,b) & (Ha < Hb)
Intersects3D(a,b) = Intersects(a,b) & (Ha = Hb)
CoveredBy(a,b) = Covers(b,a)

Covers(a,b) = Contains(a,b), although under DE-9IM 
Covers extends Contains with boundary-only intersection

Crosses(a,b) = Through(a,b): some but not all interior 
points in common, intersection set dimension = max 
dimension - 1

Overlaps: some but not all points in common, intersection 
set is of same dimension

For 3D Objects, 
Outside, inside and 
adjacent can be derived 
from this

 
Figure 25: Relations on Geometries 

addShapeRelationsToKB() preprocesses objects and determines some object-

object relationships based on the DE-9IM model which we also extended to 2.5D 

properties such as Over, Under, etc… As shown in Figure 25, we resolve some of these 

semantically in the knowledge base if the dependent information is available. Properties 

such as Equals, Disjoint, Intersects, Touches (Meets), Overlaps, Crosses, Contains, 

Within (Inside), Covers, CoveredBy are computed using the DE-9IM model and matrix. 
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Others are inferred, verified for consistency, or processed using Object Property 

extractors defined in the framework. As described by the Data Extractors framework, an 

Object Property extractor Re is associated with every object-object relationship it 

represents through an annotation on the relationship in the SD ontology. The 

addShapeRelationsToKB algorithm is presented as follows:  

Procedure addShapeRelationsToKB 
Input: KB, SDOntology, ExtractorsList, SRI 
Output: KB(modified) 
instanceList = KB.GetInstances(); //can also filter by instances type; we consider all TD instances. 
Forevery instance I1 in instanceList 

element1 = SRI.shapeLayersList.getShape(I1.ShapeRef); 
List otherInstances = instanceList – I1; 
Forevery instance I2 in otherInstances 
 element2 = SRI.shapeLayersList.getShape(I2.ShapeRef); 
  
 //compare both geometries for <a relation b> 
 matrix = DE9IM(element1.geometry, element2.geometry); 
  
 //Get all possible relations for object type (based on initial class). No need for realization. SD extends TD. 
 // based on domain and range of properties 
 I1relations = KB.getRelationsList(I1.class, I2.class, SDOntology);  
 
 Forevery objectProperty in l1relations 
  r_evaluator = ExtractorsList[extractorKey(objectProperty)]; // retrieve Re 

   //run Re if it exists and if this property is not already defined between I1 and I2 by some other means 
   If (r_evaluator and KB.notDefined(objectProperty, I1, I2)) then  
    If (objectProperty.type = de9im) then  
     r_assertion = r_evaluator(matrix); //e.g. disjoint(I1, I2) = FF*FF**** matrix 
    else  
     //for other than DE9IM relations e.g. impassability relation between a line and an area 
     //could add new assertions about instances in the knowledge base.  
     //E.g. equivalent relations or an annotation with a certainty value. 
     r_assertion = r_evaluator(I1, I2, SRI, KB); 
    Endif 
    If (r_asserstion) then //add object property assertion when true 
     KB.addObjectPropertyAssertion(objectProperty, I1, I2); 
    Else //add negative object property assertion when false 
     KB.addNegativeObjectPropertyAssertion(objectProperty, I1, I2); 
    Endif 
   Endif 

 End 
End 
//instance was evaluated with all other instances and can be omitted for further processing 
// by adding properly defined relations between (I1, I2) pairs in knowledge base, a relation between (I1,I2)  
// will result in an inferred relation between (I2, I1) 
instanceList.remove(I1); 

End 
EndProc 
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The return value of the evaluation on the relationship, r_evaluator, determines 

whether the assertion is true or false. The relationships are added either as an object 

property assertion or as a negative object property assertion accordingly. This is done for 

the purposes of completeness. Since order of instances in relationship evaluation and DE-

9IM is not important (relationships are inverse or symmetric), the evaluation of every 

instance pair against their possible relationships is done only once and after processing 

each instance against all others, the instance is removed from the list. The same pair is 

not processed again. This reduces the complexity by having the first instance process all 

others and the last instance only processed by the one preceding it. At the end of this 

procedure, all topological relationship properties between every pair of instances would 

be added to the KB. 

5.3.4 Knowledge Base Realization 

We tried several approaches for incorporating knowledge base realization 

(ConsistentKB) into our process. Initially, a solution was attempted where the knowledge 

base was realized after every added element. This was done (1) in order to identify any 

clashes in the knowledge base right after an insertion and (2) in order to keep the most 

accurate specialization at all times for all instances in the knowledge base thus limiting 

the number of extractors required to execute.  

Realizing the knowledge base frequently is compute-intensive since its procedure 

is complex and even hyper-tableaux based algorithms can take up to double exponential 

time [Faddoul, 2011]. We therefore run the realization step once after all information 

from feature data is mapped to the knowledge base and a second time after evaluating all 
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object-object relationships. These are performed to check for consistency, and generate 

ambiguity/inconsistency report, at those levels and to infer the most specific types for a 

complete analysis of possible relationships such as extractors other than spatial relations 

related to a specific subclass. Moreover, if some relationships are semantically defined, 

these would avoid running unnecessary extractors and specialize instances to the most 

specific subclass for object and data property relationship extraction. 

Due to the Open World Assumption (OWA) that semantic web provides along 

with consistency and satisfiability principles, elements can only be specialized into more 

accurate definitions in the final realized hierarchy, otherwise a contradiction (or clash) 

would result in the knowledge available. We optimize by running ConsistentKB only if a 

missing property value was assigned a value using its property extractor. Any assertion 

might result in some specialization of an instance type which in turn might have missing 

property values. Doing this process repeatedly (several iterations might be required) 

while realizing the KB ensures that the most specific specialization w.r.t. available input  

is achieved and all missing property values have been extracted and asserted. 

5.4 OWL Link Adaptation 

We use the OWL Link specification [Liebig et al., 2008] as the common API to 

communicate between the different sub-processes through the semantic reasoner 

infrastructure and framework. OWL Link allows a standardized communication 

mechanism and API to the knowledge base for querying, TBox and ABox manipulation. 
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Semantic Web mostly uses Java because of its flexibility, portability and to comply with 

practices in the World Wide Web. OWL Link was implemented using existing 

frameworks like the OWL API, a Java API based on the W3C OWL2 Specification.  

Our system needs the flexibility to be able to add knowledge and extract 

knowledge from different systems written in different programming languages. It was a 

challenge to find a feasible solution to allow this. The current systems we use are 

MapWindow GIS, implemented in C#, the Semantic Web Framework, with most 

interfaces available only in Java, and our 3D scene generator, implemented in C++. In 

order to be able to communicate and share knowledge between the different systems for 

the purposes of prototyping and validation, we have created an OWL Link .Net 

compatible framework based on the original OWL Link Java framework that can be used 

in both C# and C++ programming languages.  

It seems that this implementation is a valuable contribution to the OWL Link user 

community specifically and the Semantic Web community in general. While one of the 

main authors of OWL Link, Olaf Noppens, showed great interest in making this work 

available through the OWL Link website, several Semantic Web developers showed 

interest in this work because they were looking at implementing applications and agents 

in different computer languages and, this framework would make it easier to interact with 

other Semantic Web framework components. This work is publicly available as a 

downloadable package on the internet. Appendix B contains our notes on OWL Link 

porting to the .Net framework. 

We are confident that this work will be used by others in the Semantic Web field. 
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5.5 Simple Deck Bridge 3D Model – An Example 

Our process first uses the available basic spatial elements (parts, segments and 

points of the Shapefile linear record) as well as the property values and adds them as 

assertions to the knowledge base as defined in the Initial Mapping algorithm. New 

segments are therefore identified and inserted in the knowledge base with properties such 

as  where segments1 and segments2 are 

instances of class Thoroughfare in the KB. After analysis for high slope values of the 

elevation patterns under the segments, further shapes are identified and facts are added 

such as a high_slope_area instance of class ImpassableArea.  

Possible relationships are then analyzed using their associated extractors between 

all instances and added as assertions as well. In our case, 

 was analyzed using the DE-9IM model and was 

added as a positive object property. The other properties, which are false, are added as 

negative properties. The KB is then realized and the type of segments2 is inferred to 

Bridge. This reclassification of segments2 is possible since the KB contains an 

equivalence axiom for Bridge in the TD. Using reasoning, inference services available 

through the reasoner allows for the ABox realization where all instances are processed 

and classified according to their most specific subclasses (specialization). If several 

segments happen to represent a single bridge entity, then each segment results in a bridge 

definition (span) which altogether forms the complete bridge entity. At least one segment 

is required to represent a bridge; if a segment spans over a bridge (only a part of it is a 

bridge), the segment is not dissected, which might result in a wrong representation. 
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We have 21 different types of bridges with 94 possible properties. To generate a 

simple deck only definition for example, referring to the property listing in Appendix A, 

initial data, spans, angles, and a deck definition are necessary while LOD and textures are 

optional. For initial data, shown in the first section of Figure 18, the object class, start 

edge, and end edge of each bridge definition are required. 

If the Shapefile record contains all the required property values explicitly 

(available in the KB after mapping and realization), then the definition could be complete 

(no missing property values). However, since segments2 was inferred to a new class type, 

it most probably doesn’t have values for all the new class’ properties. The extractor 

associated with every missing property value is executed as per the Data Extractors 

framework and GIS2KB. 

Some extractors are defined by monotonic formulae that arithmetically derive the 

required information. If each bridge span segment is inferred as a Bridge in the 

knowledge base, then each bridge span is generated independently. Otherwise, a bridge 

definition representing the connected segments would be available. The maximum 

ground height under the OL vector representing the bridge is retrieved using the Altitude 

extractor. Vertical and horizontal start and end angles for the bridge are retrieved using 

the D and OL extractors. They determine the start and end angles at which the bridge 

arches, bows, or curves. By default, the algorithm generates values for the bridge to arch 

smoothly between the two edges. The deck definition includes a number of subdivisions, 

thickness and overhang definitions. The number of deck subdivisions is based on the 

curviness defined by the start and end edges over the OL vector. A higher number is 
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generated for high curviness with a maximum of 10 subdivisions for a curviness of 45 

degrees. 

Other extractors can use the raster layers (elevation data, imagery texture) as well 

as the available knowledge and the instance data to derive a value through pattern 

recognition, analysis or computer vision techniques. Since the imagery is properly scaled 

corresponding to the projection used, these extractors could segment and analyze an 

imagery subset as per application requirements along the linear segment (the road 

texture) for patterns or texture extraction. They can extract property values and add them 

as further assertions to the KB. Following on our example, the road width is retrieved 

using the W extractor, which also ensures proper connectivity between entities. The deck 

thickness uses the Thickness extractor. The left and right overhang widths and heights are 

retrieved using the Roadside_Type extractor. Overhangs are always within the structure 

of the deck width (defined by the start/end edges). Moreover, other property extractors 

for class Bridge include Cover_Type while all Road class property extractors shown in 

Figure 18, are required to extract values such as no_of_lanes, lane_type, etc… These 

could also infer a different object class depending on their values. Pointers to data objects 

can also be added as data properties referring to pieces of data that will be used by the 3D 

rendering procedure. For example, the extracted bridge texture can be stored in a specific 

format and referred to, through a Uniform Resource Identifier (URI). The visualization 

system would use the URI to locate and load the texture for the bridge. 

The procedural algorithm, with the above values for properties, will generate a 

deck only bridge (Figure 26). The linear feature points are shown between the OL 

vectors. The normals and the direction vectors, respective to the OL vectors and scaled 
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down for clarity purposes, are also shown; the values produced ensure a smooth 

connection with the road segments connecting with the bridge. OL2 vector, in this figure, 

represents the inferred bridge (segments2). The ground at D1 is in the upward direction at 

almost 10 degrees and 5m higher than the end of the bridge. The bridge, given these 

values, will be modeled to follow terrain smoothly. We then position this bridge at the 

location between the edges returned by the normal to the OL extractor and the W 

extractor and projected on the terrain surface. Properties for more complex bridges can be 

extracted similarly. 

 

Figure 26: Deck Only Example 

  



125 

 

Chapter 6  

Handling Data Uncertainty 

[Poole et al., 2009] advocate for the separation between assertional axioms and 

uncertainty as a good design principle where probabilities can always be dealt with 

separately in their proper context. This separation allows the definition of assertional 

knowledge axioms that can be reused without having the theories about the probabilities 

within the same context. This is helpful especially since the theories about the 

probabilities might change independently from the domain knowledge, the meanings and 

the facts. We can use probabilities reasoning in side-processes and interface with regular 

DL for deductive reasoning. [Laskey, 2009] and [Li et al., 2006] show a good summary 

of the state of the art in Probabilistic reasoning and introduce a Probabilistic Description 

Logic Program that allows querying by analyzing all possible answers and returns the 

highest score. Our system can certainly benefit from reasoning with probability and can 

be extended to model it. 

In our domain of application, uncertainty could happen in (1) the input GIS 

sources, (2) the definition (meaning) of a term or concept in an ontology, or (3) 
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associated with extracted data. We only address (3) as we consider that (1) the input GIS 

sources always contain a full representation (implicit or explicit) for the 3D Real world 

(after Assumption 1) and (2) we implement separation between uncertainties and 

knowledge based on [Poole et al., 2009]. Moreover, all our probability related 

relationships are in the form of relationship extractors which can handle uncertainties 

within the extractor procedure. We therefore address the problem of representing 

uncertainties of data assertions in the knowledge base and calculating the resulting 

uncertainties of entailed assertions.  

Extractors are procedures that users associate with a concept that represents the 

procedure’s return value(s) (defined per concept class). For example, a roadwidth 

extractor may make use of a procedure that classifies certain pixels with some certainty 

as part of the road and others of a different category. Similarly, many data extractors can 

be associated with some uncertainty or thresholds such as PrecedenceByImagery, 

Next_to, Impassable_Through, Between, Thickness, Separators, Road_Directionality, 

Number_of_Lanes, as well as many others. Extractors such as Position, Altitude, OL, n, 

N, and D (see Data Property Extractors in section  5.3.2.3) as well as spatial relationship 

extractors are defined by formulae (no uncertainty) that arithmetically derive the required 

information. We define these as Type A extractors while those that have an associated 

uncertainty are defined as Type B extractors.  

Existing work does not handle our problem adequately and default knowledge 

base services do not handle uncertainties under the expressivity chosen ( ). As 

an example, if the roadwidth extractor for a certain instance I returns true or false for 

value 3.2(meters) then in a conventional knowledge base under  expressivity, 
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we can only assert   (positive assertion) or  

(negative assertion). This data property relationship would therefore either exist or we 

know it is not going to exist (different from the relationship is unknown) and does not 

mean that the inverse of the property exists. A certainty value could be stored as part of 

the knowledge base in the form of an annotation on the relationship (serving as a storage-

only mechanism). In this example, the certainty of the width value can be stored as an 

annotation on the roadwidth object-value relationship as 

 denoting 70% certainty for this assertion. This 

annotation has no semantic value within the chosen expressivity but it can be used by 

computer programs or, using some other expressivity constraints, by probabilistic 

description logic reasoners such as Pronto (pellet-based).  

Probabilistic description logic calculates uncertainties on a per concept basis, but 

we believe that our needs are much simpler. (1) There is a difference between the 

probability of existence of a concept or instance and the probability of existence of an 

assertion about an instance. In our case, we only need to model the latter since instances 

are created as per the shape definitions and therefore there is no doubt about their 

existence. (2) Uncertainty in concept definition need not be modeled as part of the 

ontology as discussed earlier. (3) In our case, the certainty of an assertion does not 

depend on the certainty of the elements used by the assertion or vice versa. For example, 

consider an axiom A defined as  . The axiom’s certainty is 

considered independent from the certainties of the facts about i1 or w1. The coverType 

extractor evaluates the absolute certainty of A with respect to available facts and inserts it 

into the KB. 
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6.1 Zadeh Semantics with KB Justifications  

In Figure 4, we have shown that most effort is spent in defining shapefile data that 

is representative of what is required for detailed 3D representation. Since we have 

replaced the effort consuming shapefile definition step in Figure 4 with our Data 

Extractors framework shown in Figure 13, it is required that we address uncertainties on 

the extracted results and axioms produced. Only Type B extractors need to associate a 

certainty value in the knowledge base as an annotation. Since our process includes the 

entailment of new information, we also calculate the resulting uncertainty value of an 

entailment based on the justifications of each entailment. For this, explanations (a set of 

axioms) are necessary to calculate the certainty value of an assertion (axiom).  

We modify our ConsistentKB method to extend the default knowledge base 

realization service and then compute all resulting certainty values for each assertion 

entailment discovered by the system. All certainty annotations are instance-specific and 

are therefore saved in the ABox per assertion. 

We use fuzzy variables under the Zadeh semantics to represent our uncertainties. 

We chose Zadeh semantics as its definition of conjunction (t-Norm) and disjunction (t-

Conorm) between two axioms is sufficient and necessary to represent instance class 

entailments and their explanation axioms. In a previous attempt, we have tried using 

equivalence axioms in a class definition to calculate the resulting fuzzy variable value for 

an instance. An equivalence axiom defines a set of concepts and object or data properties 

that together define the class. However, that only worked if exactly one equivalence 

axiom is defined. Explanation services available with semantic engines allow the support 
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of multiple equivalence axioms and provide the minimum set of assertions and axioms 

resulting in an entailment. Moreover, they can return multiple explanations for a certain 

entailment. At the moment, we are only interested in concept class entailments for 

instances. We therefore ignore all other entailment types because we assume there is 

always an explicit minimum set of axioms (or some implicit made explicit by a previous 

pass) that results in this concept class entailment. 

We recall that, according to [Horridge et al., 2008], a certain explanation for a 

class entailment of an instance is a minimum list of assertion axioms that directly results 

in the entailment. We are particularly interested in all assertion axioms of the explanation 

that explicitly contain the specific instance being processed. We call this set “the variable 

set”. This set is sufficient if each extractor uses the certainties of the concerned facts 

when evaluating a property assertion and assigning its corresponding certainty. The least 

certain axiom in every variable set represents a certainty value for the entailed class type. 

If two or more explanations exist for a certain entailment, then the entailment’s certainty 

value is the most certain value resulting from each explanation. This algorithm is 

presented as part of ConsistentKB in the following section which is called every time we 

realize the knowledge base in our process. 

We have seen that, in  semantics described previously, ABox assertions 

for two instances a and b are defined as: 

-  (where C is a Concept) 

-  (where R is an object-object relationship) 
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We extend these by associating a fuzzy variable v that represents a certainty value 

to each assertion as an annotation . OWL2 allows such 

annotations and therefore these values can be stored within the KB without change in 

expressivity. If v is not specified, then the assertion is considered to be attributed 100% 

certainty, this includes all initial data from Shapefiles.  

Consider an explanation E of a concept class entailment assertion  for an 

instance i where . For each assertion axiom , there exists 

 defining a certainty value v. Since  is entailed using the conjunction 

of all axioms in E, the resulting certainty, , of  is defined as, under Zadeh 

semantics, the least certain axiom in E. This handles the case of one equivalence axiom in 

a class definition (see Example 2 under section  6.3.2). The variable set is determined by 

whether an instance i is an element of assertion x. inf is a function that takes the set of 

values v and returns the minimum value in the set. Function u is defined as follows: 

If more than one explanation exists in a set J, since  is entailed by the 

disjunction of all explanations in J, the resulting certainty, , is defined as, under 

Zadeh semantics, the most certain result  obtained from each explanation E in J. 

This handles multiple equivalence axioms or disjunctions in the equivalence axioms (see 

Example 3 under section  6.3.3). sup is a function that takes the set of values  

associated with each explanation E in J and returns the maximum value in the set. 

Function v is defined as follows: 
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6.2 Algorithm KBConsistent 

The ConsistentKB procedure extends the semantic engine knowledge base 

realization service, which computes the subsumption hierarchy on the knowledge base 

and generates the consistency report, if required. The procedure then computes concept 

class uncertainties based on KB justification services, and commits the changes on the 

knowledge base. 

Procedure ConsistentKB 
Input: KB 
Output: KB(modified) 
//realize the ABox 
KB.realize(); 
If (!KB.isConsistent()) then 
 GenerateInconsistencyReport(); 
 return ERROR(); 
Endif 
 
//compute uncertainty of entailed concepts of instances 
Forevery Instance in KB 
 Explanations = KB.explain(instance.type); 
 If (Explanations) then 
  Variablesets[Explanations.size]; 
  Result_e = 0; 
  Forevery explanation in Explanations 
   Result_a = 1; 
   Forevery assertion in explanation 
    If (assertion.contains(instance.id)) then 
     Variablesets[explanation.id].add(assertion); 
     V = assertion.annotations.fuzzyValue; 
     Result_a = min(Result_a, V); 
    Endif 
   End 
   Result_e = max(Result_e, Result_a); 
  End 
  (instance.type).annotations.fuzzyValue = Result_e; 
 Endif 
End 
EndProc 
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6.3 Examples 

An assertional axiom A annotated with a fuzzy certainty value x will be denoted 

as  for the purposes of brevity. 

6.3.1 Example 1 

Consider the following TBox and ABox: 

 

(1)  

(2)  

Our system will first insert i1 and i2 with respective basic types as part of mapShapefile 

(complete certainty is assumed). If (1) is explicit and is asserted to the KB before (2), 

then, as part of addShapeRelationsToKB, prop is evaluated using the associated extractor 

function. Since the type of i1 is already known ((1) is asserted), the extractor of prop can 

use the uncertainty variable x in its evaluation and assign a corresponding value to y as an 

annotation after asserting (2). After all relations are evaluated, the knowledge base is 

realized and The explanation is given as: 

. The variable set for this explanation 

is  and   has certainty value . 

On the other hand, if (2) is added before (1), a limitation exists where the 

extractor of (2) does not know about the type of i1 and there is no relationship between y 
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and x. This is avoided by the fact that we execute initial mapping and the KB is realized 

before relationship extraction. 

6.3.2 Example 2 

Consider the following TBox and ABox: 

(1) 

(2) 

(3) 

(4) 

After realizing the knowledge base, , which are available 

in explicit form with explanations:

-  

- 

In this case, entailment  is dependent on that of . In the current 

algorithm, since all object property relationships are evaluated and asserted after basic 

class insertion and before the knowledge base is realized, the fuzzy variables are 

independent unless an explicit assertion is available before the value is used. In this 
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example, (1) is an explicit assertion with variable x. If (1) is added before (2), then the 

extractor of (2) can use x and assign a value for y as in Example 1. When the extractor of 

(3) is executed for , the type of i2 is not explicit and therefore no 

relationship is known between the associated variables. When the extractor of (4) is 

executed for , if (1) was inserted previously, x can be used in the analysis 

and calculation of w. 

After adding all object properties and realizing the knowledge base, the values for 

u and v would be properly assigned with  (where y depends on x since  is 

known) with variable set:  and  with variable set: 

 (where z is independent of u since z was 

calculated by the extractor before  was known and w dependent on x since the 

type of i1 was known when calculating w). 

If  extractor is to use u and assign a value for z, then  

entailment is required before  extractor is executed. This would be possible 

only if ConsistentKB is called after every object property assertion is inserted. This is 

already done for data property assertions. 

6.3.3 Example 3 

Consider the following TBox and ABox: 
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(1)  

(2)  

(3)  

(4)  

(5)  

(6) 

If (1), (2) and (3) are added to the ABox prior to the object property relationships, 

then the extractors of Under and Through can use the corresponding variables to analyze 

and calculate the resulting variable (e.g.  can use u and calculate x). 

Otherwise, all variables are independent. 

After knowledge base realization however, and the 

explanations are given as: 

- 

 

- 

 

- 
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The variable sets associated with each explanation respectively are: 

, , and . As 

mentioned above, we define the final variable value as the disjunction of all results from 

every variable set. Therefore, . If we assume only one assertion is 100% 

certain then  would be 100% certain. 

6.4 Observations 

We have introduced a novel process for calculating uncertainty. The major 

difference being that our method is independent of the expressivity used or chosen for the 

knowledge base as long as reasoner explanation services, as defined by [Horridge et al., 

2008], are available for this expressivity. We, therefore, do not have to extend the 

semantics used for the purposes of uncertainty (adding uncertainty to concepts, 

calculating and generating resulting values); it is contained within the process and 

transparent to the user. This promotes the separation of knowledge and probabilities as 

described in [Poole et al., 2009].  

Our method reduces the complexity of calculating the probability/possibility 

within the reasoning process due to the reduced set of axioms in the variable set. The 

variable set contains only axioms that are directly related to the instance being processed. 

This condition is sufficient to calculate the entailed axiom’s certainty value in our 

process. By adding the relationships using the Data Extractors framework, we also extract 

relationship properties (such as inverse relations, functional, transitivity, etc...) and 
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related inferences. For example, if there exists two axioms in the ABox,  and 

 and  is transitive. Using the Data Extractors framework, there must be an 

added axiom  as well (all instances are evaluated against all relationships). In 

order to maintain the calculation of certainties for entailments simple, any certainty 

attribution for an axiom other than concept class entailment has to be inserted by an 

extractor. Entailed relationships other than concept class entailments will not be 

addressed if an uncertainty attribution is not present (its certainty will be 1 in this case). 

Lukasiewicz in [Lukasiewicz, 1998] specified that restricted deduction problems 

that are P-complete for classical logic programs are already NP-hard for probabilistic 

logic programs. [Lukasiewics & Straccia, 2008] specified that his probabilistic reasoning 

tableaux extension  (after  expressivity with class ) 

has best case  complexity class (as described in section  3.5).  is 

already  class. Since, we associate uncertainties with respect to assertion 

data only and calculate the resulting uncertainties of entailed instance class assertions, we 

believe that our method of calculating the resulting uncertainties significantly reduces the 

algorithmic complexity compared to using probabilistic description logic since we only 

evaluate uncertainties for entailed class assertions using their explanations. 
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Chapter 7  

Results and Examples 

This chapter shows some examples that demonstrate our process. Section  7.1 

shows a simple example using our framework without the use of uncertainty. Section  7.2 

demonstrates our handling of uncertainty process and the Knowledge Base ABox 

Realization extension. Sections  7.3 through  7.5 show concrete examples from a real 

world ROI. Section  7.6 shows our reproduction of a complex bridge structure. Finally, 

section  7.7 shows a different application of using knowledge and uncertainties of 

extracted features of an ROI. 

7.1 Generating Thoroughfares and Their Details

 

Figure 27: Shp0 Polyline Record 

 

Figure 28: Generated Connected_Segments
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Objective: Specialize polyline in shapefile and property filling using the Data 

Extractors framework.  

Figure 27 shows a polyline record (Shp0) with overlaid OL segments. This record 

has 1 part with 4 points defined. A segment is defined between each two consecutive 

points in a part with a total of three segments in this case (S1, S2, and S3).  

 

Figure 29: Knowledge Graph Defining Shp0 

Our Initial Mapping procedure defined in section  5.3.1 generates the knowledge 

graph for Shp0 as shown in Figure 29 and adds it as facts to the knowledge base. The part 

is of type Connected_Segments which is equivalent to a Thoroughfare entity. Each 

segment s is added as an instance to the KB. Relationships are evaluated between 

available instances and added as facts to the KB. In this case, no relationships exist 
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except Connected_To which was added by the Initial Mapping procedure. Each segment 

is equivalent to a Thoroughfare_part which is also defined as Road in TD and has the 

properties shown previously in Figure 18. Data properties of each instance are extracted 

using the Data Extractors framework.Initial data (mapped by Initial Mapping) is 

generally considered certain unless otherwise specified as part of the record’s attributes 

and mapped with an appropriate SD ontology. Some data extractors such as the Start/End 

Edge, Directionality, or others associate some certainties with added facts. Every 

extractor has a handle on the knowledge base and the collection of GIS data sources as 

well as the entity (in case of data properties) or entities (in case of binary object 

properties) for use in the evaluation. Any fact found by the extractor gets added to the KB 

with associated uncertainties as annotations. The system calculates the certainties of 

inferences based on available explanations under Zadeh semantics. 

Each segment in our case defines a road (part) entity with property values. The 

result is shown in Figure 28. The same definitions are used by more complex 

transportation feature types in the system. For example, a bridge entity contains 1 or more 

segments part of the bridge and each segment defines a road (part). This allows the 

generation of changing road definitions such as a secondary road becoming a major road 

at some location or a two-way road becoming one way. 

7.2 Uncertainty of Inferences 

Objective: Associate uncertainties using KB explanation services. 
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We show here some results on the addition of uncertainties to KB assertions and 

computing the resulting uncertainties based on KB explanation services described earlier 

in Chapter 6. The knowledge base in this example contains 51 axioms (for brevity) 

including 8 axioms with certainty annotations. uncertaintyVariable is an annotation 

defined by our process that can be used on all axiom types. Consider the following 

axioms: 

 

After Realization using our ConsistentKB procedure, the instances in the 

knowledge base are reclassified as follows with calculated certainties: 
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The following is the program output showing details of inferences and their 

explanations as well as the calculation of resulting uncertainties as per the process 

discussed in  Chapter 6. Verification of facts can be done for example by the user as 

shown in Figure 30. 

Loaded OntologyID(OntologyIRI(<http://se>)) 
Classifying ... 
    ... finished 
Realizing ... 
    ... finished 
 
individual: <http://se#i4> 
for type assertion: Boulevard 
explanation 1/3:  

ClassAssertion(<http://se#Avenue> <http://se#i4>)  
with certainty value: 1.0 

DataPropertyAssertion(<http://se#no_of_lanes> <http://se#i4> "3"^^xsd:short)  
with certainty value: 0.8 

explanation 1/3 axioms result(min): 0.8 
explanation 2/3:  

ObjectPropertyAssertion(<http://se#Next_to> <http://se#i4> <http://se#i3>)  
with certainty value: 0.5 

DataPropertyAssertion(<http://se#no_of_lanes> <http://se#i4> "3"^^xsd:short) 
with certainty value: 0.8 

explanation 2/3 axioms result(min): 0.5 
explanation 3/3:  

ObjectPropertyAssertion(<http://se#Next_to> <http://se#i4> <http://se#i2>)  
with certainty value: 0.6 

DataPropertyAssertion(<http://se#no_of_lanes> <http://se#i4> "3"^^xsd:short) 
with certainty value: 0.8 

explanation 3/3 axioms result(min): 0.6 
all explanations (3) result(max): 0.8 
 
individual: <http://se#i3> 
for type assertion: Park 
explanation 1/1:  

ClassAssertion(<http://se#Park> <http://se#i3>) 
explanation 1/1 axioms result(min): 1.0 
all explanations (1) result(max): 1.0 
 
individual: <http://se#i2> 
for type assertion: Monument 
explanation 1/1:  

ClassAssertion(<http://se#Area> <http://se#i2>)  
with certainty value: 0.8 

ClassAssertion(<http://se#Ancient> <http://se#i2>)  
with certainty value: 0.6 

explanation 1/1 axioms result(min): 0.6 
all explanations (1) result(max): 0.6 
 
individual: <http://se#i1> 
for type assertion: Avenue 
explanation 1/4:  

ObjectPropertyAssertion(<http://se#Next_to> <http://se#i1> <http://se#i2>)  
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with certainty value: 0.6 
ClassAssertion(<http://se#Thoroughfare> <http://se#i1>) 

explanation 1/4 axioms result(min): 0.6 
explanation 2/4:  

ObjectPropertyAssertion(<http://se#Next_to> <http://se#i1> <http://se#i3>)  
with certainty value: 0.4 

ClassAssertion(<http://se#Thoroughfare> <http://se#i1>) 
explanation 2/4 axioms result(min): 0.4 
explanation 3/4:  

ObjectPropertyAssertion(<http://se#Next_to> <http://se#i1> <http://se#i3>)  
with certainty value: 0.4 

ClassAssertion(<http://se#Thoroughfare> <http://se#i1>) 
explanation 3/4 axioms result(min): 0.4 
explanation 4/4:  

ObjectPropertyAssertion(<http://se#Next_to> <http://se#i1> <http://se#i2>)  
with certainty value: 0.6 

ClassAssertion(<http://se#Thoroughfare> <http://se#i1>) 
explanation 4/4 axioms result(min): 0.6 
all explanations (4) result(max): 0.6 
 
Consistent: true 
file saved testBoulevard2.owl 
 
The classified Hierarchy is: 
{owl:Thing} 
    {<http://se#Bridge>} 
        {<http://se#CoveredBridge>} 
    {<http://se#Cover>} 
        {<http://se#Wood>} 
        {<http://se#Metal>} 
    {<http://se#Ancient>} 
        {<http://se#Monument>} 
    {<http://se#Area>} 
        {<http://se#Monument>} 
        {<http://se#Park>} 
    {<http://se#Thoroughfare>} 
        {<http://se#Avenue>} 
            {<http://se#Boulevard>} 
 
Printing individuals list: 
individual <http://se#i4> 
has type ([<http://se#Boulevard>]) with certainty value 0.8 
has type ([<http://se#Avenue>]) with certainty value 1.0 
individual <http://se#i3> 
has type ([<http://se#Park>]) 
has type ([<http://se#Park>]) with certainty value 1.0 
individual <http://se#i2> 
has type ([<http://se#Area>]) with certainty value 0.8 
has type ([<http://se#Monument>]) with certainty value 0.6 
has type ([<http://se#Ancient>]) with certainty value 0.6 
individual <http://se#i1> 
has type ([<http://se#Avenue>]) with certainty value 0.6 
has type ([<http://se#Thoroughfare>]) 
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Figure 30: Example Dialog Querying User for Fact Verification 

7.3 A Bridge Example in Honolulu 

 
Figure 31: 10m Resolution Elevation Data 
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Figure 32: Shapefile Data Sets in Points, Linears and Polygons 

 
Figure 33: 1-foot Resolution Partial Imagery Data 

Objective: Reconstruct a bridge in a region from GIS data sources.  
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This example details the previously shown examples under section  1.6. The above 

figures represent data sources of an area in Honolulu, Hawaii for which we were able to 

acquire publicly available data (NGA, 2014). We are interested in the bridge structure 

shown at the top right of Figure 33. Figure 34 shows the 1-foot satellite imagery of our 

ROI along with the correlated line feature. A human can clearly identify the bridge 

stretching from the bottom-left to the top-right of that area. 

Figure 35 shows the same area without the satellite imagery revealing the 

elevation, the linear and areal features. The elevation source is a DTM (Digital Terrain 

Map) of type GridFloat. The linear feature does not contain information about its 

elevation over ground which is typical with raw feature data. However, the linear is 

defined along the middle of the roadway.  

Figure 34: Honolulu Bridge Satellite View 

 

Figure 35: GIS Data of Honolulu Bridge 
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Figure 36: Ground View using GenesisRT 
without imagery 

Figure 37: Ground View using GenesisRT 

 

Figure 38: Ground View Visualization using Presagis Terra Vista 

Current real-time visualization systems would render this information without 

modeling a 3D object for the bridge. They wrap the generated terrain using the satellite 

image as a texture, and if necessary drape a road texture along the linear feature as shown 

in Figure 36. Two state-of-the-art tools, DVC GenesisRT and Presagis TerraVista, were 

used to generate a runtime 3D model of the terrain using the GIS data sources and some 

configuration files that we implemented. When the systems have completely finished 

loading with satellite imagery as texture, the fidelity presented is shown in Figure 37 and 

Figure 38 respectively. In this case, there is very short turnaround time (as defined 

in  Chapter 1) between acquiring the GIS data sources and having a usable 3D 
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visualization of the data; little manual attribution or content authoring was done to 

achieve these results. 

In our system, after entities are mapped using the Initial Mapping procedure to 

knowledge base instances and while evaluating instance relationships, the 

Impassable_Through relationship extractor (on the Connected_Segments instances) uses 

elevation and imagery data along with instance information to automatically determine if 

an entity or part of it spatially crosses another known entity or feature such as some 

impassable terrain profile. The TBox is defined as follows: 

Classes 
Bridge 
Thoroughfare 
Segment 
ImpassableArea 
Connected_Segments 
 
Properties 
See Appendix A 

Roles 
Over 
Impassable_Through 
Impassable_By 
Connected_To 
 
Axioms 
Connected_Segments  Thoroughfare 
Bridge  Thoroughfare Over.ImpassableArea 
ImpassableArea  Impassable_By.Connected_Segments 
Impassable_By  

The Shapefile GIS source layer given as input in this example defines the line 

feature record as ShapeID = 4, ShapeType = SHP_POLYLINE, and numPoints = 26. 

Here is a subset of the points that we are concerned with. They are listed in the file using 

WGS84 projection (defined in the file): 

(-157.896959,21.348452) | (-157.896704,21.348709) | (-157.896440,21.348956) 
(-157.896166,21.349193) | (-157.895860,21.349429) | (-157.895595,21.349641) 
(-157.895406,21.349792) | (-157.895228,21.349943) | (-157.895063,21.350116) 
(-157.894912,21.350301) | (-157.894775,21.350497) | (-157.894652,21.350702) 
(-157.894546,21.350916) | (-157.894474,21.351122) | (-157.893998,21.352351) 
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Figure 39 shows the curve returned by sampling the elevation data under the 

concerned segments with y as elevations and x as linear feature length. The solid line 

section of the graph represents the plot of the latitude/longitude points used in this 

example. The steep slopes under the bridge entity are recognizable and span around 450m 

(between x=1500 and x=1950) with elevation differences of almost 20m (between lowest 

and highest points). A new instance a of type Area (defined between points 2 and 15) and 

an instance b of type Connected_Segments, which includes the affected segments, are 

added as new facts to the knowledge base. a and b’s relationships including 

Impassable_Through relationships between b and a are added to the knowledge base 

along with associated certainties. Other relationship extractors are then evaluated as 

required. Since relationships of a are also evaluated, then the Over relationship based on 

DE-9IM should be part of the knowledge base for any segment part of b as well as for b 

itself. 

 

Figure 39: Elevation Profile of ShapeID 4 
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The following facts are added by our system to the knowledge base: (s1, 

b):Part_Of, (s1, a):over, (b, a):Impassable_Through, (s2, b):Part_Of, (s2, a):over, (b, 

a):over, and so on. Note that (s1, s2):Connected_To was added by the initial mapping 

process. After realizing the knowledge base and if it is consistent, some facts become 

explicit such as: (b,a):Impassable_Through  (a,b):Impassable_By a:ImpassableArea 

b Bridge. The system now has identified a series of segments as a bridge instance and 

made it explicit in the knowledge base. Data property extractors are then executed to fill 

the property values required by the bridge b.  

Finally, Using the RC ontology, the Geometry Definition Engine extracts data 

from the knowledge base and explicitly defines the geometry and parameters for each 

processed element from the ABox. It retrieves the specific class type of instance b from 

the knowledge base using the query in Figure 15 and selects the corresponding definition 

in the RC ontology. It uses the generic SPARQL query described in Figure 16 to identify 

and extract all necessary property values for b. Figure 40 shows the results returned by 

the queries.  

We used the Procedural Bridge Framework from Presagis Creator Studio® to 

represent our definition. A 3D model of the bridge is created and shown in North view in 

Figure 41. The inferred type is used to select the Cantilever Beam bridge parameter 

model algorithm. The remaining property values are used as parameters for the selected 

procedural modeling algorithm to generate the needed representation of the feature 

instance. The result of our process within a scene was shown previously in Figure 3 in 

Chapter 1. 
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Basic Properties Value Explanation 
Bridge Type Cantilever Beam  
Start Edge (21.348452, -157.896959, 10) (latitude, longitude, altitude) 
Start Edge Width 28m  
Start Angles 43.04, 3 (horizontal, climb) in degrees 
End Edge (21.351122, -157.894474, 23) (latitude, longitude, altitude) 
End Edge Width 28m  
End Angle 67.31, 0 (horizontal, climb) in degrees 
Span Dividers 5 5 supports 
Start/End Dividers Enabled Form closed sections at extremities 
Ground Height -20m  
Round Subdivisions 10  
Deck Thickness 1m  
Deck Subdivisions 14 14 segments defining bridge 
Left/Right overhang 1m  
Overhang Height 1m  

Supports Value  
Type Pillar  
Partitions 2 Two visible pillars at each divider 
Webbing N/A  
Sections N/A  
Gap Size N/A  
Top Scale Ratio N/A  
Width/Height 12, 5 (width, depth) in meters 

 
Figure 40: Retrieved Values for the Honolulu Bridge 

 

Figure 41: Generated Cantilever Beam (North View)  
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7.4 An Overpass 

 

Figure 42: Overpass Areal View 

 

Figure 43: Overpass GIS Data Sources 

 

Basic Properties Value Explanation 
Bridge Type Cantilever Beam  
Start Edge (21.335418, -157.901399, 8) (latitude, longitude, altitude) 
Start Edge Width 25m  
Start Angles 0, 0 (horizontal, climb) in degrees 
End Edge (21.335418, -157.901399, 8) (latitude, longitude, altitude) 
End Edge Width 25m  
End Angle 0, 0 (horizontal, climb) in degrees 
Span Dividers 10 10 supports 
Start/End Dividers Enabled Form closed sections at extremities 
Ground Height -9m  
Round Subdivisions 10  
Deck Thickness 1m  
Deck Subdivisions 1 1 segments defining bridge 
Left/Right overhang 1m  
Overhang Height 1m  

Supports Value  
Type Pillar  
Partitions 2 Two visible pillars at each divider 
Webbing N/A  
Sections N/A  
Gap Size N/A  
Top Scale Ratio N/A  
Width/Height 5, 3 (width, depth) in meters 

 
Figure 44: Retrieved Values for Overpass 
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Objective: Reconstruct an overpass in a region from GIS data sources.  

In this example, also in Honolulu, Hawaii, the DE-9IM relationship extractors 

analyze the spatial layouts between entities and the two orthogonal segments shown in 

this example define a crosses relationship. Also, the PrecedenceByImagery extractor is 

executed by the Over relationship extractor when a crosses relationship exists and no 

altitude values are available. 

The PrecedenceByImagery extractor could use the segment definitions to scan the 

segmented imagery and return which overlays the other based on continuity. In this case, 

the horizontal segment is defined to be Over the vertical one and therefore a bridge is 

inferred. The data extractors fill the necessary property values as shown in Figure 44. The 

result of the representation using our process is shown in Figure 45. 

 

Figure 45: Generated Overpass 
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7.5 Overwater Bridge 

Objective: Reconstruct an overwater bridge in a region from GIS data sources.  

In this example (also in Honolulu), the elevations below the feature record shown 

in  Figure 47 define water level values (bathymetric elevations). The Altitude or Over 

extractors detect these values and add  to the KB where s is the 

concerned segment and waterbody is a persistent instance in the knowledge base relating 

any element that is defined over a water body. A bridge is similarly inferred and 

generated provided that {waterbody} has type ImpassableArea. 

 

Figure 46: Overwater Bridge Areal View 

 

 Figure 47: Overwater Elevation Data 
Source 

 

     Figure 48: Overwater Road, Building, 
and Tree Features Combined 
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7.6 The Champlain Bridge 

 

Figure 49: Side View of the Champlain Bridge 

Objective: Reconstruct a heritage bridge, the Champlain bridge in Montreal. 

The Montreal Champlain Bridge is a 1957 construction of type steel truss 

cantilever made from pre-stressed concrete beams and deck [Wikipedia, 2014]. We 

selected this bridge due to the complexity of its representation and as it is a symbol of 

Montreal and its art. The length of the main part of the bridge is 7.412km (14.5km with 

approaches). Most of the bridge is a multi-span structure similar and can be generated 

similarly to what we have shown in section  7.4. For this example, we are interested in the 

steel superstructure part of the bridge, referred to as Section 6 of the bridge shown in 

Figure 49 between supports 1 and 4. Although its main architecture is based on steel truss 
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cantilever, the bridge is a complex architecture of several basic bridge types fused 

together, which is more common with modern designs and iconic landmarks. Such 

designs are hard to generate automatically because they include an artistic element that 

makes them unique. We however identified 3 basic types, referring to the types listed in 

Appendix A, that approximate the bridge’s 3D representation: (1) a Tied Arch bridge 

type between supports 2 and 3 (curved arch middle section) referred to as the Middle 

Span, (2) a Cantilever Open Spandrel type (the under structure of the bridge) between 

supports 1 and 4, and (3) a Cantilever Through Arc type (the over steel structure) 

between supports 1 and 4. 

 

Figure 50: Overlay with Shape Data (Google Earth®) 
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The linear shape definition defining the spans is overlaid on top of the aerial 

imagery (in red) as shown in Figure 50 with four noted locations (cross edges). 

While some data is available about Section 6 from the official bridge site 

(http://jccbi.ca/bridges-structures/champlain-bridge/technical-data/), extractors from our 

framework retrieve the missing information. Technical data facts of the Champlain 

Bridge Section 6 and the Middle Span are presented below. We also show the property 

values and the corresponding generated representations after executing our process. 

Type Cantilever with center suspended span 
Material: Steel Superstructure, Concrete beams and deck 
Width: 23.1648 meters 
Lanes: 6, with separators 
Height above water: 36.6 meters 
 
Section 6 Span Point Location Latitude Longitude 
 South East 45.467381 -73.500701 
 South West 45.467157 -73.500746 
 North East 45.467841 -73.506422 
 North West 45.467618 -73.506472 
  
Section 6 Length: 450.5 meters 
Longest Span Length: 215.5 meters (includes Middle Span) 
Anchor Arms (2): 117.5 meters 
Section 6 Middle Span South East 45.467751 -73.502824 
 South West 45.467349 -73.502873 
 North East 45.467689 -73.504295 
 North West 45.467466 -73.504335 
Middle Span Length: 116 meters   
 

We retrieved the properties below and generated the middle span (Figure 51) 

using edges 2 and 3 (segment 3 of the linear) shown in Figure 50: 
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Basic Properties Value 

Figure 51: Tied Arch Bridge using Edges 2 and 3 

Bridge Type Tied Arch 
Span Dividers 0 
Start/End Dividers Disabled 
Ground Height -36.6m 
Round Subdivisions 10 
Angles Start/End 0 degrees 
Deck Thickness 1m 
Deck Subdivisions 1 
Left/Right overhang 1m 
Overhang Height 1m 

Arch Profile Value Explanation 
Arch Height 20m  
Displacement 20m Middle Span height 
Curviness 100%  
Half Span Supports 5 Middle Span has 10 sections in total 
Support Subdivision 10 Affects arch support bending 
Arch Supports 0.2m All support rods are set to 0.2m width and height 
Main Supports 0.5m Thicker main supports 
Round Supports false None are round/cylindrical 

Arch Webbing Value  
Partitions 2 1 middle separator 
Outer Cables 1 A single side webbing 
Inner Cables 1 A single side webbing 
Top Scale Ratio 50%  
Clearance 4.0m Roadway Clearance 
Webbing Top Type X X structure viewed from top 
Webbing Side Subdivided 

Warren 
Webbing viewed from sides 

Webbing Vertical Variant 2 The webbing between the clearance and arch top 
Vertical Sections 1 Unknown details, set to 1 by default 
 

Similarly, using edges 1 and 4, we retrieve the necessary properties and generate 

the open spandrel (Figure 52). Segments 2, 3, and 4 in this case define a single KB 

instance. Properties listed in Appendix A and which are not mentioned in the listings are 

not applicable, or use previously defined values (unchanged). The result is shown merged 

with the previously defined part. 
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Figure 52: Cantilever Open Spandrel using Edges 1 and 4 

Basic Properties Value Explanation 
Bridge Type Cantilever 

Open 
Spandrel 

 

Span Dividers 2 Two sections, two supports 
Start/End Dividers Enabled Form closed sections at extremities 
Ground Height -36.6m  
Round Subdivisions 10  

Supports Value  
Type Pillar  
Partitions 3 Three visible pillars at each divider 
Webbing N/A  
Sections N/A  
Gap Size N/A  
Top Scale Ratio N/A  
Width/Height 4m 4m each side 

Arch Profile Value  
Arch Height 15m  
Displacement 3m Separation with top of arch 
Curviness 100%  
Half Span Supports 5 Span has 10 sections in total 
Support Subdivision 6 6 rods defining arc 
Arch Supports 0.2m All support rods are set to 0.2m width and height 
Main Supports 0.5m Thicker main supports 
Round Supports false None are round/cylindrical 

Arch Webbing Value  
Partitions 2 1 middle separator 
Outer Cables 1 A single side webbing 
Inner Cables 1 A single side webbing 
Top Scale Ratio 50%  
Clearance 4.0m Roadway Clearance 
Webbing Top Type X X structure viewed from top 
Webbing Side Subdivided 

Warren 
Webbing viewed from sides 

Webbing Vertical Variant 2 The webbing between the clearance and arch top 
Vertical Sections 1 Unknown details, set to 1 by default 
 



160 

Finally, the cantilever truss bridge is defined on edges 1 and 4 again. The final 

result is shown merged with the previously defined parts in Figure 53 and Figure 54. 

 

Figure 53: Cantilever Through Arc using Edges 1 and 4 

Basic Properties Value Explanation 
Bridge Type Cantilever 

Through 
Arch 

 

Span Dividers 2 Two sections 
Arch Profile Value  

Arch Height 25m  
Displacement 25m Separation with top of arch 
Curviness 100%  
Half Span Supports 10 Span has 10 sections in total 
Support Subdivision 2 Actual subdivisions define a curvature in real world entity, 

but due to a limitation we approximate these. 
Arch Supports 0.2m All support rods are set to 0.2m width and height 
Main Supports 0.5m Thicker main supports 
Round Supports false None are round/cylindrical 

Arch Webbing Value  
Partitions 2 1 middle separator 
Outer Cables 1 A single side webbing 
Inner Cables 1 A single side webbing 
Top Scale Ratio 50%  
Clearance 4.0m Roadway Clearance 
Webbing Top Type X X structure viewed from top 
Webbing Side Subdivided 

Warren 
Webbing viewed from sides 

Webbing Vertical Variant 2 The webbing between the clearance and arch top 
Vertical Sections 1 Unknown details, set to 1 by default 
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Figure 54: Champlain Bridge Results 
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7.7 School Zone Example: Ste. Marguerite 

Objective: Find all Thoroughfare entities but not highway entities that are less 

than 500 meters distance from a school. 

Using SROIQ(D) data properties along with our data extractors framework, we can 

define a new property for all Thoroughfare instances (representing entities): 

Distance_To_School. However, in order to restrict the processing domain and since our 

objective only requires (Thoroughfare  ¬Highway), we define this property for that 

specific class conjunction only. We add this new property to the terminology with the 

following definition: 

Data Property Name: Distance_To_School 
Domain: Thoroughfare  ¬Highway 
Range: Double 
Annotation Extractor: dist_to_school 

We also added a data extractor called dist_to_school associated as an annotation 

with the new property as defined in the TBox property definition above. Using known 

school entities from the KB, SGIS for layout, and the entity’s definition, this extractor will 

retrieve the distance to the closest school for the entity. This extractor is defined as 

follows: 

Procedure dist_to_school 
Input: KB, SGIS, instance 
Output: KB (modified) 
//for thoroughfare segment instance 
//assuming same working coordinate system here 
//get pts (2) of instance 
P1 = SGIS.get_ref_pt(instance); 
P2 = P1.next(); 
//find closest school to segment (considering segment center) 
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min_distance = null; 
Forevery SchoolArea in KB 
 Vector_to_school = (P1+P2)/2 - SchoolArea.getCenter();  
 distance_to_school = length(Vector_to_school); 
 If (min_distance == null or min_distance > distance_to_school) then 
  min_distance = distance_to_school; 
 Endif 
End 
KB.addDataProp(Distance_To_School, instance, min_distance); 
EndProc 

After executing our process, all Distance_To_School properties for instances 

categorized of type (Thoroughfare  ¬Highway) will have values for this property as per 

our p_filling process. 

To find all Thoroughfare entities that are or might not be of type Highway and 

that are less than 500 meters distance from a school, we define a SPARQL query as 

follows (assuming the extractor stored values for the property in meters): 

Select ?instance 
Where { 
 ?subclass rdfs:subClassOf* :Thoroughfare . 
 ?instance rdf:type ?subclass . 
 FILTER NOT EXISTS {?instance rdf:type :Highway .} 
 ?instance :Distance_To_School ?distance . 
 FILTER (?distance < 500.0) 
} 

Figure 55: Retrieving Entities <500m Distance from a School Using SPARQL 

Since we added the Distance_To_School property only to entities that are defined 

as (Thoroughfare  ¬Highway) in this example, then the NOT EXISTS filter in the 

above query is redundant. The query retrieves the entities that we are interested in for this 

example. This includes entities missing information about being of type Highway or not. 

If all information is known,then {owl:complementOf :Highway} could be used for type 

filtering. It is also possible to query with properties such as :next_to or :through defined 
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between instances using GeoSPARQL provided these properties were inserted after our 

r_mapping  process. 

Another way to retrieve the needed information is possible by adding a new class 

in the ontology, say SchoolZoneRoads, with a similar definition as per this query. This is 

possible under SROIQ(D) expressivity, which allows data properties and qualified 

restrictions in concept equivalence axioms. In that case and after reasoning, all instances 

we are interested in will be classified of type SchoolZoneRoads and we will be able to 

retrieve all instances of this type representing the real world entities. 

We apply the above on a specific ROI around the Sainte Marguerite Primary 

School in Laval-Des-Rapides, Laval. Figure 56 is taken from Google Earth® at 

coordinates (45.546851, -73.710239) on April 14, 2014. It represents our ROI. We chose 

this area due to its proximity to a highway (s72) as well as it being dense enough to 

showcase the capability. The instances created in the KB are shown in Figure 57. We 

have a total of 133 segments and a few areas (represented as polygons) including the 

school, a few parks, and the river. 

Note that if we increase the Distance_To_School value filter, say to 1000m for 

example, the segments on the south of the river shown in the image will also be returned 

by the query in this case. To resolve this, we can add a Borough or Region property and 

use it as a constraint in the query. We can also consider this in the dist_to_school 

extractor which could return only values in the required case(s). The results of the query 

in Figure 55 are shown in Figure 58. Note the missing s72 entity as well as entities 

further than 500m that do not satisfy the query. 
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Figure 56: View around Ste Marguerite, Laval-Des-Rapides (Google Earth®) 

 
Figure 57: Instances (133) of ROI layed over Google Maps® 
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Instance Distance 
s65 497.98 
s30 351.91 
s63 271.99 
s20 483.37 
s83 333.32 
s43 485.04 
s53 468.35 
s64 361.88 
s67 239.13 
s1 94.59 
s84 354.92 
s86 409.36 
s127 441.47 
s54 437.46 
s70 447.73 
s18 417.17 
s90 430.74 
s113 331.62 
s110 498.95 
s50 405.07 
s49 330.67 
s56 396.94 
s14 149.47 
s52 73.4 
s10 179.35 
s51 495.74 
s88 489.7 

Instance Distance 
s102 472.84 
s128 480.16 
s9 57.49 
s45 247.43 
s94 176.84 
s82 333.3 
s8 119.54 
s91 349.37 
s112 411.23 
s116 128.05 
s115 185.25 
s6 184.74 
s80 350.13 
s2 147.98 
s16 423.97 
s69 299.5 
s92 273.73 
s47 227.44 
s85 376.6 
s44 387.61 
s95 309.62 
s96 380.57 
s87 446.66 
s97 475.2 
s26 336.58 
s62 306.54 
s4 492.08 

Instance Distance 
s5 193.11 
s29 330.48 
s68 204.41 
s81 336.29 
s126 482.35 
s31 417.5 
s27 385.28 
s114 248.3 
s3 272.1 
s55 483.93 
s93 218.1 
s7 104.75 
s57 368.99 
s25 286.02 
s58 427.24 
s11 262.74 
s13 185.72 
s46 same as s6 
s48 270.49 
s79 389.41 
s12 257.6 
s15 266.51 
s28 278.3 
s24 238.96 
s78 441.37 

Figure 58: Results from Query in Figure 55 on Ste Marguerite Primary School 
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Chapter 8  

Conclusion and Future Work 

8.1 On Achieving Objectives 

Mapping facts in source data to assertions in a knowledge base: We have defined three 

modular ontologies extending on work by Bitters’ VOTT, the OGC’s Simple Feature 

ontology, and GeoSPARQL. A general, low-maintenance, domain ontology hierarchy 

(TD) specifically describes the transportation domain under the Geographical and Visual 

Objects domains with concept relationships and properties. Two other ontologies (SD and 

RC) bridge and map between input/output data (GIS sources and representation 

definitions respectively) and domain concepts in order to achieve context separation and 

modularity. If a system capability is to be added or a data format is changed only the 

related ontology needs to be modified. 
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Initial GIS source data mapping (or s_mapping) and specifically vector-based 

features and the facts they define are initially mapped as explicit knowledge base instance 

assertions using the mapping ontologies and reasoned upon. 

Relationship extraction (or r_mapping) evaluates possible relationships (defined 

by the ontologies) between knowledge base instances and adds further facts to the 

knowledge base. 

Inferring implicit information in the knowledge: The Data Extractors framework (or 

p_filling) automatically fuses derivable or implicit data from different heterogeneous GIS 

dataset layers and types. We extracted 3D model properties and other facts that make 

some implicit information in the GIS source data explicit. Data extractors, associated 

with property and relationship concepts defined by the ontologies, can be replaced or 

extended. Each extractor can choose the layer(s) to use based on each used layer’s 

properties such as resolution or type. If in a certain layer the information is missing or 

unclear, the next best layer can be chosen or different layers can be analyzed to form a 

single result for the missing property value.  

Handling uncertainty: The framework adds all associated data certainties to the extracted 

facts for use by our extended KB Realization procedure that calculates certainties of 

inferences based on its KB Justifications. 

Procedural creation of detailed digital representations: The components of our process are 

independent where the extraction of facts step happens separately from the representation 

definition. For the representation generation from knowledge base facts, we defined the 

Geometry Definition Engine (or v_mapping). It uses SPARQL querying language and an 
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ontology of parameterized model definitions (RC ontology) to construct queries, retrieve 

visual property values, and create definitions that can be used by procedural models. 

Procedural models construct detailed 3D model representations of entities for subsequent 

rendering. 

Complying with public standards: In our system we use the OWL 2 W3C standard as 

well as OWL Link, OWL API and SPARQL to achieve communications between 

subprocesses about knowledge and to manipulate and query the Semantic Web 

knowledge base. We have extended OWL Link to the .Net Framework and used it as part 

of our plugins to the open MapWindow GIS C# project which provides tools and 

interfaces to manipulate the GIS source data input. Our core implementations also use 

known and open source software projects and APIs. 

8.2 Advantages and Limitations 

Using a Semantic Web Knowledge Base provides automated reasoning on the 

data set with several advantages. However, it adds processing overhead compared to 

procedural processes based on expressiveness and tableaux methods and completion rules 

complexities.  

Our process reduces expert user involvement by automatically merging data, and 

detecting and managing inconsistencies in the data. Other advantages include the easier 

maintenance and definition of the ontology and rule-base with established tools and 

services provided by existing semantic web reasoners, the possibility of different 
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applications sharing knowledge in a single knowledge base, taking advantage of new 

advances in semantic reasoning, OWL and its querying languages, and supporting 

knowledge manipulation tools and frameworks. 

Ordnance Survey has mentioned that queries such as “where is the closest mall 

next to London’s town hall?” become possible with semantic web. We are using similar 

queries to define 3D landscape details. The model definition engine is a system agent that 

constructs queries to complete a definition representing an entity that will then be 

procedurally generated and positioned in the landscape. It produces queries such as “is 

instance b a covered bridge span?” and “what is the set of values defining the orientation 

vector of the covered bridge span b?” 

The following sections list the major advantages that are available due to the use 

of Semantic Web Technology in our process and some of the limitations it imposes. 

8.2.1 Inherited Properties 

A. The separation of domain knowledge (TBox), which includes the bridge ontologies, 

and instances (ABox) defined as part of the ALC syntax is useful for reuse, 

portability, and dynamic extensions of the knowledge. Domain experts create the 

TBox once and maintain it separately from the actual ABox. The TBox is organized 

into hierarchies which allow modularity and bridging between domain and data 

formats. Legacy processes have domain experts working with data and knowledge. 

Having separation between TBox and ABox allows: 
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1. Less dependence on human experts which, after domain knowledge (TD) is 

defined, would only have to define the mapping ontologies (SD/RC). 

2. More users are able to use the process and create the ABox (define instances) 

based on available definitions in the TBox by using the mapping ontologies. 

3. More automation in ABox creation due to already defined machine readable 

TBox which requires less user involvement (illustrated in SD mapping 

procedure). 

4. Different applications using the same domain can reuse our ontologies. The 

Knowledge Base can service other types of applications that require knowledge 

about an ROI. 

B. Description Logic formal axiom definition allows the system to be independent of the 

order in which the user inputs the knowledge and provides services for verifying and 

querying it. This ensures that the system will reliably always use the most specific 

semantics automatically and does not required high maintenance based on order of 

knowledge input. User’s therefore focus instead on the semantics of the objects they need 

to represent. Services allow the automatic verification of the knowledge consistency and 

coherence. Many tools also exist in manipulating and viewing the knowledge represented 

in the knowledge base. Using KB inference vs. procedural rules also adds several 

advantages to our process: 

1. Knowledge bases are easier to maintain and debug especially using the services 

and tools mentioned. This makes adding new properties or change in the defined 

knowledge or properties easy to apply and verify. 
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2. Knowledge base TBox/ABox creation is a form of declarative programming 

which removes the complexity of element interdependence. 

3. No impact from programming side effects (order of evaluation, history) and does 

not require knowledge about the context and its possible consequences.  

C. Consistency checking (satisfiability) is defined as finding an interpretation (CI  DI) 

for an axiom (C  D) . The KB is satisfiable if all axioms are satisfied by the same 

interpretation. If {(C  D)}  KB results in a  ¬a (defined as a clash) where a is 

some KB concept then (C  D) is not satisfiable w.r.t. KB. Consistency checking 

allows the detection and traceability of inconsistency in the domain knowledge 

(TBox). The TBox Coherence service lists all unsatisfiable concepts in an ontology. 

D. Inferencing (subsumption) can be reduced to satisfiability by adding a complement of 

an axiom A to the KB. If this results in a clash then KB A and A can be made 

explicit. Inference uses tableaux and completion rules to make implicit KB facts 

explicit through object identities (equivalence axioms, keys), object relationships 

(domain and range definitions) and topological relationships with rule (SWRL) 

support. The Subsumption Hierarchy service computes a taxonomy from the 

subsumed hierarchy of concepts. 

E. ABox Satisfiability is similar to TBox Satisfiability but instead is processed on the set 

of instances (assertion axioms). It could detect offending assertions (inconsistencies 

in the data) if the appropriate closure axioms are available. The Instance Checking 

service verifies if a certain concept subsumes a certain instance and the ABox 
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Realization service computes the most-specific concept names for all individuals. 

Each instance is classified to its most specific subclass based on the available facts. 

F. No Closed World Assumption (CWA), or in other words Open World Assumption 

(OWA), and no Unique Name Assumption (UNA) allows for reasoning without an 

assumption of a complete data set and about possibly equivalent instances 

respectively. These are features inherited from Description Logic. 

OWA denotes that available knowledge is always assumed as incomplete unless 

explicitly stated and the lack of knowledge of a fact does not immediately imply 

knowledge of the negation of a fact. Consider the following example ABox axioms: 

{ }. This does not mean that bridge has only one 

lane. Another lane might exist that we don’t know about. 

Our use case deals with GIS data that could be both incomplete and ambiguous. The 

flexibility of having OWA and no UNA gives advantages in our application domain 

such as being able to add and introduce new knowledge as needed and assuming by 

default that two instances even having different names could actually represent the 

same entity (if Same Individual check service is available). Particularly, data property 

restrictions already provide text value matching under SROIQ(D). Same Individual 

service could therefore be used where properties such as hasRefPoint contain the 

same Well-Known Text (WKT) value string to automatically merge the instance 

definitions together. The knowledge base will remain consistent with new inferred 

information as new facts are added to the knowledge base. There are methods to 
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enforce UNA (usually invoked for performance reasons). It is also possible to 

explicitly define that an instance is equivalent to another. 

G. Explanation services trace the completion rules of axioms to show the minimum set 

of facts that result in a certain inference or clash. They allow understanding what 

resulted in the clash and, as a result, fix the offending facts. We use explanation 

services to determine the certainty of an inferred fact. We also use them to generate 

reports that help the user identify an inconsistency and fix the problem accordingly. 

H. Axiom annotations on TBox data property concepts (associating specific data 

extractors) and on ABox facts (certainty attribution) allow the separation between 

knowledge and extensions; they are not processed by KB services. However, they 

allow to maintain appropriate associations with related elements of the system and 

can be used for extending functionality such as resulting certainty calculation.  

I. Rule and query languages e.g. nRQL and SWRL modify the ABox with further 

expressivity without impacting other definitions in the system. nRQL querying 

through a compatible reasoner also enables the calculation of the subsumption 

hierarchy for only the elements involved in the query (a subset of the KB) which 

could improve performance in realizing the KB. SPARQL and GeoSPARQL allow 

the querying of the underlying RDF graph of the knowledge. 

J. Insertion and Retraction services allow axiom insertion and retraction dynamically 

after KB creation. Internally, retraction is often managed as destroying the KB and 

recreating it as KB \ {A} where A is an axiom to be retracted (by omitting the 

retracted axiom). We thought of using this mechanism as part of an earlier attempt 
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(section  4.2.3) in order to resolve satisfiability issues as they are introduced, however, 

it proved to make the process more complex and we finally adopted a different 

method. 

8.2.2 Ambiguity 

We categorize ambiguity into two different types: 

1. Two elements in the input source data (SGIS) define two entities redundantly 

2. A knowledge base entity is associated two properties that are 

i. complementary (can coexist) 

ii. contradicting (cannot coexist) 

If proper equivalence and closure axioms are defined in the TBox (complete 

ontologies), occurrence of 1 is identified as a redefinition of the same actual entity using 

the Same Individual service. For example, Keys is an addition to OWL DL provided by 

the SROIQ(D) expressivity which allows automatic identification of same individuals (KB 

instances). In our implementation, we used Keys with WKT definitions and real world 

entity identifiers to ensure entity uniqueness. Moreover, we can specify different or same 

individual assertions if the fact is derived by ABox manipulation, facts querying, 

insertions and retractions. After same individuals are identified and their properties 

automatically merged, if contradicting facts exist, the knowledge base becomes 

inconsistent. 

Occurrence of 2 denotes a certain fact (assertion) having two meanings (TBox 

definitions). These meanings can be complementary such as one being a specialization of 



176 

the other or using both as a satisfiable class conjunction to define an instance property. 

This does not make the knowledge base inconsistent and is permitted under the 

expressivity used provided the ontologies are complete. In the other case, if the meanings 

are contradicting, realizing the knowledge base with proper disjointness and closure 

axioms and well-defined concepts (complete ontologies) would make the inconsistencies 

explicit. To address this issue, explanation services are used to identify the offending 

facts and the reasoning behind each inconsistency. The user would then have to correct 

the input data. For example, an instance that is defined as both a tunnel and a bridge in 

the data is inconsistent in a KB that contains disjoint(tunnel, bridge). In legacy processes, 

the user would commonly generate a representation of the ROI and inspect any 

inconsistencies, often visually (which might not be obvious), and would have to go back 

to correct the input data sets and repeat until an acceptable representation is achieved. 

With our process, the inference engine is able to pinpoint the offending facts with an 

explanation before a representation is generated. The semantic information could then be 

used to correct the source data. 

Moreover, the main reason for our addition of uncertainty attribution to facts in 

the system is to allow ambiguity (complementary or contradicting) to be expressed as 

part of the facts. This also addresses GIS data generalization. Strongest certainty would 

propagate to inferred facts based on relevant facts in the explanations of the inference as 

described in Chapter 6. Several facts could also co-exist with related certainties and users 

can use semantics and context to form a decision that validates/invalidates a fact with 

respect to SGIS and change the knowledge base using insertion/retraction services. 
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8.2.3 Incompleteness in Data Set 

Considering complete ontologies defined as per the definition in section  4.1.3, we 

categorize incompleteness into two different types: 

1. Input data sources (SGIS) do not contain all the data compared to real world (3D Real) 

2. An entity does not contain all the required information explicitly (based on SS) 

Occurrence of 1 happens when it is impossible to find all the data for a certain 

entity in SGIS. This already violates our first assumption. However, this could be 

addressed by user queries or defaults as part of data extractors where the most specific 

known subclass can be used. Occurrence of 2 is resolved using our Data Extractors 

framework. Given a knowledge base instance with an identified subclass, all the 

properties are assumed to be assigned values after data extraction using the framework. 

8.2.4  Limitations 

There are some disadvantages to using Semantic Web. These include: 

A. Relational and probabilistic reasoning and complex datatype value analysis with 
Semantic Web are yet to mature. 

ALCRP(D) expressivity allows for ternary property relations with implicit chained 

properties that are satisfiability verifiable. This is a good advantage for GIS topological 

processing e.g. { } in GIS 

interpretations. We used SWRL rules to easily achieve these kinds of deductions, but, in 

this case, TBox inconsistency cannot be identified. Inconsistencies will only be identified 

at the assertions level (ABox) with reasoners supporting SROIQ(D). The TBox 
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inconsistency would only be captured if the reasoner supports ALCRP(D). Another way to 

define this is with chain axioms using inverse properties. However, this adds 

complexities in the defined knowledge (inverse properties are required to be defined). 

Our choice to use rules to reason about entities involved in multiple properties is purely 

to have complete separation between TBoxes and ABoxes. Nominals could be used in 

TBox axioms in SROIQ(D) to replace such rules if the set of instances involved is static 

between different input data sets. The involved ABox instances are required to be defined 

along with the TBox axiom that uses them. 

Algebraic reasoning does not address the problem of handling complex datatype 

values in the knowledge base. State of the art available standards concentrate on making 

simple calculations as part of the datatype property definitions and queries, which we 

have made use of. However, complex value handling extensions and knowledge 

interpretation is not very well addressed. 

We work around the issues of probabilities, datatype value reasoning and 

topological processing with our Data Extractors framework which derive explicit facts 

that can be used as part of conventional SROIQ(D). The framework derives information by 

using procedures that generalize the method of retrieving a certain property value or 

relationship along with its certainty. 

B. Complexity and learning curve. 

We cannot ignore the complexity of using Knowledge Bases and DL inferencing. 

Although these provide extremely powerful constructs to reason about facts, we 

recognize that our process increases automation at the cost of complexity of defining 
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reusable knowledge. Reusable knowledge requires that it is fully generic and contained in 

the TBox and independent of the actual instances (ABox). We, therefore, require the 

power of the expressivity and services provided for SROIQ(D) and thus we depend on the 

complexity of its ABox Realization algorithms and justifications computation services. 

Although highly automated, these services currently are far from being capable of real-

time processing. 

Although describing concepts and knowledge might seem easier than defining 

procedural rules, the former requires a good understanding of logic (such as description 

logic) and constructs to be able to define expressive, useful and reusable knowledge. 

Many tools exist to assist users to do this, however they are still very technical with little 

support to general audience. GIS experts do not necessarily have the background skills 

and knowledge required to define powerful ontologies. Experts in Semantic Web are 

required. 

8.3 Future Work 

Currently, the process assumes that the facts extraction step does all the additions 

to the knowledge base prior to v_mapping. However, users generally define properties on 

a per-need basis. Further research is required to reduce the search space for data needed 

for the representation rather than attempt to collect all available facts needed by the 

knowledge base. This could be achieved, for example, by assessing extractors of required 

properties only taking into account those that could define specializations. Moreover, it 
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would be more efficient to reduce clutter in the KB. For example, although we process 

relationships in r_mapping on all entities in the ROI, experiments are required for 

assessing if it would be efficient and would give correct results to only consider 

immediate vicinity of an instance (rather than relationships with all other). 

As expressed earlier, SROIQ(D) is very expressive for our needs but it suffers in 

available algorithm performance. It would be crucial to have an efficient ABox 

Realization implementation for this methodology to be used effectively in a dynamic 

environment. Using nRQL [Haarslev et al., 2004] allows speeding up processes by 

triggering inference services only when needed. To our knowledge, this is one of the 

unique features available in RacerPro, a professional scale semantic web reasoner, and 

avoids the need for ABox Realization on all instances. Moreover, easier and generic tools 

are required for more generic users. 

Extension capability is required in SPARQL queries and knowledge base data 

reasoning. For example, there is currently no way to define data reasoning procedures to 

extract facts from complex data values. DE-9IM efficiently serializes the intersection 

matrix between two entities as a string value, however, there is no way to customize how 

strings are used in the reasoning process natively. It is currently required to insert as 

many assertions as such a string implicitly encodes. 

Actual use case comparison studies by GIS experts are needed to compare our 

methodology with available state-of-the-art methodologies addressing GIS to 3D 

conversion. The intention is to gather temporal and difficulty metrics that will show the 

practicability of the techniques used in our methodology. 
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Although our methodology can be used for defining an ROI semantically, it 

would be interesting to explore potential of using a semantic knowledge base for spatial 

querying. It wouldn’t be very efficient to use queries such as line of sight unless a 2D/3D 

representation is generated and then used. However, it could directly serve queries such 

as occlusion, smart path navigation, and processes that would use object categorizations 

and identified properties and facts. This helps define more automated agents. 

We would like to investigate and further elaborate the specific case of generating 

various entities in the transportation domain in further detail, for example, bridge spans 

including more specialized types, combinations of spans such as one span with multiple 

definitions, and hidden information deductions such as support structure details such as 

using other objects available e.g. underpass layout to determine approximate spacing of 

supports. It would be interesting to extend this work beyond transportation to other 

domains. 

We currently calculate the uncertainty of a concept class entailment using the 

variable set, which is a subset of the explanation of the entailment. We do not think that 

maintaining the uncertainties and their results is feasible within the knowledge base and 

its realization due to the dependence on the data extractors used. However, further 

research is required to assess whether, in some cases, the certainties can be maintained 

based on the available knowledge and independent of the extractors. 

Lastly, a declarative specification method for defining properties and plug-in 

extractors would enable this approach to be used widely. 
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8.4 Final Remarks 

The use of knowledge for generating representations and specifically for 3D 

rendering purposes has been studied but not very well addressed in the past due to the 

vast collection of information that exists in a scene. We showed a new process that 

enables further automation and assistance to users in the generation of knowledge bases 

from GIS data sets and corresponding representations. We believe that through a 

categorization of the domain knowledge and a modularization of the methods used to 

retrieve values for the properties required to create a certain 3D digital model with 

uncertainty support, we can address the problem of heterogeneous data fusion and 

automating representation better. 

Our process extracts facts including relationships and properties using the Data 

Extractors framework and includes automatic inference and calculation of associated 

uncertainties. The system will infer implicit information while interrogating the user for 

the remaining to form a definition that models the object with higher detail when 

compared to generating a representation based on an entity definition in shapefiles. 

A central location for reasoning is defined which treats data dependencies 

semantically rather than based on format definition. This allows to semantically synthesis 

further details for required representations using emerging and rigid Semantic Web 

constructs that are more easily verified and reused. In order to test and evaluate this 

process in terms of feasibility and efficiency, an application framework was developed 

and presented in Chapter 5. Referring to the differences between Figure 4 and Figure 13, 

our process supports legacy terrain modeling and processing through the mapping of 
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concepts from the required format(s). It is able to take source data in a specified format 

defined by the SD ontology as input to the system. Our process incorporates the semantic 

reasoning as part of terrain modeling and processing. This simplifies the process with less 

manual iteration and user verification to attain the same results as in legacy processes. It 

also maintains the flexibility of manual user input and control. Our use of collective 

reasoning reduces considerably the high-involvement of the domain expert in time and 

effort when compared to other known processes. 

This same methodology can theoretically be used by any system that requires 

converting between data formats and semantics and between semantic definitions and 

needed output representations and demonstrated by a simple example in section  7.7. Data 

analysis happens on the semantic level and makes all implicit information explicit for the 

output representation. 

Data is added as facts to a knowledge base, independent of the type of the GIS 

data source, and can be shared among several applications, making any system requiring 

the use of a single coherent and semantically sound knowledge base of an ROI to create a 

certain representation, able to use our methodology. 
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Appendix A 

Property Listing and Extractor Associations 

In order to generate 3D model representations with details comparable to entities 

in 3D Real, we studied modeling capabilities and evaluated the sets of properties required 

for flexibility and customization (defining the 3D Schema). As a result, we created a list 

of 3D models representing transportation features classes especially roads, bridges and 

their elements with their associated properties. Different values for the properties allow 

the procedural generation of details representing the entity.  

Knowledge available in the KB (mapped as elements from the GIS source data) 

could contain several instances defining a complex real world entity. For example, an 

overpass entity can be defined by several instances in the knowledge base each of which 

defines a span (a simple structure) in the overpass. If a point is recorded as part of the 

linear record at every location along the road where: 

- the road type changes,  

- the road width changes,  
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- the curvature of the road is high (>45 deg), 

- and as frequently as needed for higher detail (e.g. for smoothness of the curvature) 

then a series of simple representations will allow detailed representations of a 

complex real world entity. In this example, the spans are generated independently but, 

together, represent the real world overpass.  

Moreover, since an overpass is a subclass of bridge and the representation 

generation process, based on the properties listed, can only represent bridges, all 

overpass instances are generated as bridge elements using the relevant KB properties. 

All transportation scene features under our domain ΔI are considered to be a 

combination of the above two representation classes (road and bridge generation 

procedures) with an adaptation of the models to fit the locations and environment they 

must exist in. For example, an overpass is a bridge over a road or another bridge. A 

ramp is a bridge or a road connecting two roads together. A tunnel is a subsurface road, 

etc… These classes, hierarchies and relationships as well as their definitions are available 

as part of the TD ontology. Although no elaboration is provided, a tunnel could be 

represented, for example, by modifying the terrain geometry (semantic information in the 

knowledge base about the instance being a tunnel is available) and representing a road 

way within the modified geometry. 

For instances that have a reference to a static predefined model as part of their 

properties in the KB, that model is loaded and given with the instance’s properties to the 

representation generator. These properties include object position and orientation which 

will allow the representation generator to position and orient the static or procedurally 
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generated model to match the corresponding real world object. The following section 

details the property listings we collected per representation class. 

Property Listing 

The listing, providing a definition for each property, is organized in sections of 

properties. For example, the Initial Data section is required data for any basic entity 

representation. It includes properties defining the object class, a start edge, and an end 

edge. These are required for both road and bridge generation procedures. The object class 

is determined by the most specific known class of the instance (mapped from a linear 

segment) in the KB (explicit or inferred). The start and end edges are determined using 

the Start Edge Extractor which uses the OL and W extractors to extract two points 

defining the edge on opposite sides of the roadway, defined by a start and an end point. 

Other properties are retrieved similarly using the shown Input extractor(s) and the 

mapping used, if applicable. 

We generalize a definition (class and properties) for roads that includes all types 

of roads we can think of. This definition is presented under the Road Properties section 

and dependent subsections: Midsection Properties, Roadway Properties, and Lane 

Properties; a total of 19 properties. We have identified, using Presagis Creator Studio, 20 

types of bridge classes and 94 properties. These properties are categorized into sections 

with applicable sections for each bridge class shown in the following matrix. The 

property listing follows. Images are borrowed from Presagis Creator’s User’s Guide. 
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Appendix B 

OWL Link Porting 

OWL Link is a specification and protocol for communication (mainly over http) to access 

OWL 2 Reasoning Services. It facilitates the configuration of a reasoner, the sharing of 

OWL 2 information, and the access of reasoning services via a set of basic queries. It is 

extensible by allowing the addition any desired client-server functionality. 

OWL Link API is a Java-based framework that implements the specification and 

protocol. It is built on top of the OWL API which enables applications to access remote 

reasoners or server applications implementing the OWL API. It also allows the mediation 

between OWL API versions through client and server adapters. Due to its flexible and 

reasoner-independent API, the OWL Link API is the framework of choice for application 

developers requiring the interchange of reasoners or testing different reasoning services. 

This makes it ideal for use in our implementation especially since research in semantic 

web is very active and reasoners are constantly improving. 
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There is, however, no native C++ or C# implementation of this protocol although a C++ 

application could be able to interact with the Java OWL Link API adapter over HTTP. 

We, therefore, added an objective in our implementation to port OWL Link API to C++ 

and C#. We have initially tried converting the OWL Link API Java source code to C# 

source code through a semi-automated code converter. However, available code 

converters do not work very well especially in terms of dependencies and unavailable 

source code (only binary Jars available). Our final implementation is based on the open 

IKVM toolkit which implements a Java virtual machine (based on OpenJDK) for the 

Mono or the Microsoft .Net frameworks. IKVM.Net includes the following components: 

- A Runtime Java Byte Code Virtual Machine implemented in .NET 

- A .NET implementation (DLLs) of the Java Kit libraries (based on OpenJDK) 

- Binary and Conversion tools (mainly IKVMC) from Java to C# 

- Tools that enable Java and .NET interoperability 

These components would allow using the OWL Link API in any .Net application 

(including C++ applications) to interface with any other application using the OWL Link 

API (client-server communications). OWL Link API dependencies such as the OWL API 

and some other dependencies require conversion as well for the OWL Link API Jar 

library to work. These already have Java binary libraries (.jar) available which we used to 

develop a working package using IKVM. To help in this effort, some tools exist that 

analyze dependencies between Jar files (JarAnalyzer), generate a map for converting a 

list of Jar files to .Net DLLs for use under IKVM (Jar2IKVMC), and reconstruct .Net 

DLL source code and view references for debugging and verification (Reflector). No 

single tool works perfectly, so we had to customize input/output to have a final working 
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solution. JarAnalyzer (http://www.kirkk.com/main/Main/JarAnalyzer) had some 

problems specifically in resolving a complete list of references but is a good starting 

point as it works on the original Jar files of OWL Link API and its dependencies. We first 

retrieved all the existing Jar files in the solution: 

 

We removed unnecessary Jar files from the list such as the JavaDoc and Source Jars (we 

are only interested in binary versions) and others by using JarAnalyzer to understand 

dependencies. Some dependencies (Jar files) are not part of the list shown so we will 

have to build them or find a copy of their already built version. We will do that at a later 

stage when building the package as some of the dependencies will be resolved by the 

IKVM package libraries. We used Jar2IKVMC (http://code.google.com/p/jar2ikvmc/), 

which also depends on JarAnalyzer to generate a map for IKVMC, a tool part of IKVM 

that compiles Java classes and libraries into a .NET assembly (DLL). Jar2IKVMC 

generates a dependency matrix and an ordered set of IKVMC commands that can be run 

to compile the needed Jars into their corresponding DLL versions. 
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In our case, running “jar2ikvmc \dev\ map.bat” on the command line generates 

the following IKVMC commands based on the previous list of required files. The “-

target:library” option generates a .dll of the same name as the Jar library name while the 

“-r:” option defines specific dependencies other than default IKVM package libraries: 

Running “map.bat” under the IKVM environment will generate all corresponding 

.Net DLL files for use part of .Net applications and run under the IKVM virtual machine. 

However, we encountered some problems due to some missing Jar dependencies. We, 

however, found all required files in binary form on the internet. Reflector 6 

(http://www.red-gate.com/products/dotnet-development/reflector/) free edition was used 

to identify those dependencies in resulting DLLs and for debugging purposes. 


