A Knowledge-based Approach for Creating Detailed
Landscape Representations by Fusing GIS Data Collections
with Associated Uncertainty

Pedro Maroun Eid

A Thesis
in
The Department
of
Computer Science & Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy
Concordia University
Montréal, Québec, Canada

January 2014
©Pedro Maroun Eid, 2014

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Pedro Maroun Eid

Entitled: A Knowledge-based Approach for Creating Detailed Landscape
Representations by Fusing GIS Data Collections with Associated
Uncertainty

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. M. Mehmet Ali

External Examiner

Dr. V. Bhavsar

External to Program

Dr. R. Ganesan

Examiner
Dr. V. Haarslev
Examiner
Dr. T. Fevens
Thesis Supervisor
Dr. S. Mudur
Approved by:
Dr. V. Haarslev , Graduate Program Director
June 11, 2014 Dr. C. Trueman, Interim Dean

Faculty of Engineering and Computer Science

ABSTRACT

A Knowledge-based Approach for Creating Detailed Landscape Representations
by Fusing GIS Data Collections with Associated Uncertainty

Pedro Maroun Eid, Ph.D.
Concordia University, 2014

Geographic Information Systems (GIS) data for a region is of different types and
collected from different sources, such as aerial digitized color imagery, elevation data
consisting of terrain height at different points in that region, and feature data consisting of
geometric information and properties about entities above/below the ground in that
region. Merging GIS data and understanding the real world information present explicitly
or implicitly in that data is a challenging task. This is often done manually by domain
experts because of their superior capability to efficiently recognize patterns, combine,
reason, and relate information. When a detailed digital representation of the region is to
be created, domain experts are required to make best-guess decisions about each object.
For example, a human would create representations of entities by collectively looking at
the data layers, noting even elements that are not visible, like a covered overpass or
underwater tunnel of a certain width and length. Such detailed representations are needed
for use by processes like visualization or 3D modeling in applications used by military,
simulation, earth sciences and gaming communities. Many of these applications are
increasingly using digitally synthesized visuals and require detailed digital 3D

representations to be generated quickly after acquiring the necessary initial data.

Our main thesis, and a significant research contribution of this work, is that this
task of creating detailed representations can be automated to a very large extent using a
methodology which first fuses all Geographic Information System (GIS) data sources
available into knowledge base (KB) assertions (instances) representing real world objects
using a subprocess called GIS2KB. Then using reasoning, implicit information is inferred

to define detailed 3D entity representations using a geometry definition engine called

il

KB2Scene. Semantic Web is used as the semantic inferencing system and is extended
with a data extraction framework. This framework enables the extraction of implicit
property information using data and image analysis techniques. The data extraction
framework supports extraction of spatial relationship values and attribution of
uncertainties to inferred details. Uncertainty is recorded per property and used under
Zadeh fuzzy semantics to compute a resulting uncertainty for inferred assertional axioms.
This is achieved by another major contribution of our research, a unique extension of the

KB ABox Realization service using KB explanation services.

Previous semantics based research in this domain has concentrated more on
improving represented details through the addition of artifacts like lights, signage,
crosswalks, etc. Previous attempts regarding uncertainty in assertions use a modified
reasoner expressivity and calculus. Our work differs in that separating formal knowledge
from data processing allows fusion of different heterogeneous data sources which share
the same context. Imprecision is modeled through uncertainty on assertions without
defining a new expressivity as long as KB explanation services are available for the used
expressivity. We also believe that in our use case, this simplifies uncertainty calculations.
The uncertainties are then available for user-decision at output. We show that the process
of creating 3D visuals from GIS data sources can be more automated, modular, verifiable,
and the knowledge base instances available for other applications to use as part of a
common knowledge base. We define our method’s components, discuss advantages and

limitations, and show sample results for the transportation domain.

v

Acknowledgements

First and foremost, I sincerely thank my supervisor, Prof. Sudhir P. Mudur, for his
patience and support throughout the completion of this thesis. I would not have asked for
a more experienced and thorough supervisor. His help and supervision allowed me to
learn tremendously throughout the course of my Ph.D. I would also like to thank my
supervisory committee, Prof. Thomas Fevens, Prof. Rajamohan Ganesan, Prof. Mustafa
Mehmet Ali, and especially Prof. Volker Haarslev and Prof. Virendrakumar Bhavsar for

insightful comments and support.

I also thank members of Concordia University and the Department of Computer

Science for the continuous financial and moral support during the course of this research.

This research was supported by GRAND NCE and NSERC as well as
Engineering and Computer Science Faculty Research Grants and the Canada Foundation
of Innovation which supported equipment acquisition. This work was conducted using
the Protégé resource, which is supported by grant GM10331601 from the National
Institute of General Medical Sciences of the US National Institutes of Health. We thank
OSGeo, the Open Source Geospatial Foundation, and its primary supporter, Ordnance
Survey®, for providing open source software to allow the implementation of the
prototype used in this research. We also would like to thank Google Inc. for providing
software support, as well as Presagis and DVC for their software which allowed a broad
investigation of available capabilities and needs. We include ESRI, the OGC, USGS and

other organizations for providing information and toolkits on standards used.

“If I have seen further than others, it is by standing

upon the shoulders of giants.”
Isaac Newton

“Do not follow where the path may lead,
go instead where there is no path

and leave a trail.”
Ralph Waldo Emerson

“If you can dream it, you can do it.”
‘Walt Disney

To my father, Chawki, with all my thankfulness and appreciation.

To my mother, Josette, my brother Georges, and my sister, Honorée

Claris. To dearest friends and family...

...this would not have been possible without your support.

Vi

Table of Contents

LISt Of FIZUIES ...eieiiieeeie et ettt e ettt e et e e et e e s nseeesssae e ssaeennaaeenes xi
Chapter 1 INTrOAUCIONccueiiiiiiiieiciieee ettt e 1
LT MOBIVALION ...ttt ettt ettt et s e e 5

1.2 Problem StatemMentcocuiiiiieiieiiie ettt ettt 6

1.3 ODBJECLIVES ..vvieiiieeeiiieeeiiieeeiiee et ettt e et e et e et e e et e e s nteeesaeeesseeennseeensseennsneennseeennnes 7

1.4 Methodology and Proposed SoIution............ccceeveeiiniiniiniiiniiniiieieeecsceeee 8

1.5 IMPIemMeNtationoeeuiieiiieeeiie ettt et e e e e e e eereeenaeeennee e 10

1.6 Simple Example from our System’s Resultsccoocceeviiiiiiniiiiiiiniiiiieeee 11

1.7 CONEITDULIONS. ...ttt ettt e bttt e nbee et ens 14
1.7.1 Conceptual ContribUtIONSc.eecuieriieriierieeiieeie ettt 14

1.7.2 Practical ContribUtIONS.c.c.eeiiiiiiiiiiiiieie ettt 15

1.8 TheSiS LayOuUt......ccouiiiiiiiieiieee ettt 16
Chapter 2 Backgroundccuiioiiiiiiiieei et 18
2.1 Relevant GIS SOUICESc..eeruiiiiriiiieieniieieeesit ettt 22
2.1.1 ESRI Shapefilescccoiiieiiieiiiieeiieeeie et 25

2.2 Other Commonly used GIS Standards............ccoocieviiiiieniiieieeeeeee e, 27
2.2.1 LeACY SOUICES ...uuvvieeeiiiiieeeeiieeeeeiete ettt e e ettt e e e ettt e e ettt e e e snnaeeesennseeeeanes 28

2.2.2 OpenFlight Standard............cccooiieiiiiiiii e 29

Vil

2.2.3 Newer Sensor TeChnolOgIescceevvieiiieiiieriieiie e 31

2.3 Topological Relations and DE-9IM...........ccccccoiieiiieeiiieeiieeee e 32
2.4 SemantiC WEDcc.iiiiiiiiiiiiieieee e e 33
2.4.1 Reasoner Services and Justification..........cccceereeiieiiiiiiieenieecee e 37
2.4.2 SPARQL and GEoSPARQLcc.oooiiiiiieeecee e 38

2.5 SUMIMIATY ..eeeeiiiiiee ettt e e et e e e ettt e e e e nbaeeeesnnsaeeeesnssaeesessseeeennnseeens 40
Chapter 3 Related WOrK.........oooiiiiiiiieec e 41
3.1 On Standardscooueeeiiiiiieiee e et 41
3.2 Terrain Modeling TOOLSoecuiiriiiiieiieeiieie ettt e ens 43
3.3 Methods in Scene Understandingcccueeevvieeiiieeeiieeeiiee e eevee e 50
3.4 Applications of Formal Knowledge to GIS data............ccceeeviiiiiiiiiiiniiiiieieee 55
3.5 Uncertainty and the Semantic Web..........ccccoooiiieiiiiciii e 60
Chapter 4 Knowledge Base and 3D Landscape Creationcccceeeveevieenieeneeenneenneennn. 64
4.1 Theoretical FOrmulation...........c.ccoccuiieiiiieiiii et 67
411 DEFINITIONS. ¢ttt ettt ettt ettt e bt et seeesaeenneas 67
4.1.2 ASSUMPLIONS. ...eieiiiieiiiieeiieeeieeeeteeesteeeseteeeseseeesaseeessseessseessseessseeesseeessseeas 69
4.1.3 Basic Mapping of GIS SOUICES.........cccvrriiieriieiieeie et 71
4.1.4 Adding RelationShips.........cceciieeiiiieiiiieciie et 74
4.1.5 Filling of Property Values........ccceevuiiiiieiieiiieiiecieee et 76
4.1.6 Representation Creation........c.eeecueeeeiieeeiiieeeiieeeieeesveeeereeesaveeeeeeeeeseesnnnees 80
417 TROUGNLS ..ottt ettt e eareenee e 81

4.2 Evolution of our Method..........ccoooiiiiiiiiiiiiiicce e 82
4.2.1 Legacy Processes (fOr COMPAriSON)cc.eevvieruieeieenirenieenieeieenieesneeeeeenns 82
4.2.2 Attempt 1: Extracting all Semantics from Raster Data..............cccoceevvrenneen. 84
4.2.3 Attempt 2: Linking KB Objects to Relevant Raster Data............cccccevuennee. 85

viil

4.2.4 Attempt 3: Running All Extractors for Every Missing Property 87

4.2.5 Final Solution: Running only Relevant Extractor Functions....................... 88
Chapter 5 System Implementation...........ccceeviiiiiieriieiiieiieeieece et 90
5.1 The Ontology Hierarchycccviiiiiieiiieeieeeeece e 91
5.1.1 Ontology of Source Concepts Mapping (SD).......cccvevvievieeiiieniieieenieeieens 94
5.1.2 Ontology of Parameterized Models (RC)cccccovvvieiiiiiiiiieeeeeeee 95

5.2 Main Process and Geometry Definition Enginecccooeeevieiiieniinieeniienenn, 97
5.3 GIS2KB and the Data Extractors Frameworkccoccooiiniiiiiiniinniincen, 100
5.3.1 Initial Mapping - Shapefiles.........ccooviiriiiiriiiiieriieeceeee e 103
5.3.2 Data EXTIACLOTS. ...eevuviiiiiiiiiiie ettt ettt et 105
5.3.2.1 Transportation Object EXtractors.........ccoceevveeriieniienieeniecieeiieeeans 106

5.3.2.2 Object Property EXtractors.........cccveeevieeiiieeiiieeiie et 108

5.3.2.3 Data Property EXtractors..........cccoueeriiiieriiiieniiieesiee e 109

5.3.3 Adding Object-Object Relationshipsccceeviiiiiiiiiiiieiiiiiecce 115
5.3.4 Knowledge Base Realizationcceeveeiiiniiieiienii i 118

5.4 OWL Link Adaptationcccceeeiuiieiiieeiiieeciiee et eseee et e e ereeeeeveeesveeesaneeens 119
5.5 Simple Deck Bridge 3D Model — An Examplecccocveviiiiieniiiiiiieeieee, 121
Chapter 6 Handling Data Uncertainty...........cocueeueeiiiiiiienieeieesiie e 125
6.1 Zadeh Semantics with KB Justificationscccceveevierienirienieniciecceeee 128
6.2 Algorithm KBCONSISTENTccuiiiiiiiiiiiieiieeieee et 131
0.3 EXAMPLES...eeeiieiieeiiieiieeiie ettt ettt ettt et e et e et e eabe e saeenbeenseeenbeenneas 132
6.3.1 EXAMPIE 1 ooeeiiiiiiiiceeeeeee e 132
6.3.2 EXAMPIE 2 ..ottt 133
6.3.3 EXAMPIE 3 ..o s 134
6.4 ODSEIVATIONS ..e.uvieiiieiiieiiieeite ettt ettt ettt ettt e e e eaees 136

X

Chapter 7 Results and EXampIes..........cccooiiiiiiiiiiiiiieiieceee e 138

7.1 Generating Thoroughfares and Their Detailscccceeeiiiieiiieiniiieieeeeee, 138

7.2 Uncertainty of INfErenCes........c.oovviiiieiiiiiieiiecieeieee e 140

7.3 A Bridge Example in HOnoluluc.ooooiiiiiiiiiiee e, 144

T4 AN OVETPASS ..eviieiiieeiiieeetteeeitee et e et e e ettt e ettt e et e e eabeeeeabeeesabeeenseeesseesnsseesnneeas 152

7.5 OVEIrwater BIidZe......ccveeiiuiieeiiieeie ettt 154

7.6 The Champlain Brid@e..........ccceeviiiiiiiiiiiiiieiiece et 155

7.7 School Zone Example: Ste. Marguerite.........ccceeevveeeciieerciieeeiie e 162
Chapter 8 Conclusion and Future Workcccoooiiiiiiiniiiiieiiciceceeeee e 167
8.1 ON AChIEVING ODBJECHIVES ...eeuvieeiiieeiiieeiieeeieeeetteeeieeeeteeeereeesebeeseaeeesaeesseeeens 167

8.2 Advantages and Limitationscccecvueiriierieeiiienieeiienie et see e 169
8.2.1 Inherited Properties......c..eccvieiiiieeiiieeiiee et ettt e e e e e e seee e 170

8.2.2 AMDIGUILY ..eeuviieiiieiiieetieeie ettt ettt ettt e et e e ebee e e enbeees 175

8.2.3 Incompleteness in Data Set..........cccueeeiiieiiiieciieeciee e 177

8.2.4 LIMITALIONS ..ottt ettt ettt ettt et sttt e ene e 177

8.3 FULUIE WOTK ..ot 179

8.4 FINal REMATKScviiiiiiiiiiiiiccese e 182
BIbHIOGIAPNY ... 184
List Of ADDIEVIAtIONSeeieitieiiiiiieieeie ettt 200
List of Publications Resulting from this Workcccccooiiiiiiiiiiiieee, 202
Appendix A Property Listing and Extractor ASSOCIations........c..ceoveveerieeeeneenieneeneene. 203
Appendix B OWL Link Porting.........cccooouiiiiiiiiiiiiieeeeee e 221

List of Figures

Figure 1: Google Earth® Image of a Region of Interest (ROI).........cccceeviiiiiiniiininicnn. 12

Figure 2: Publicly Available Elevation Raster Data, Georeferenced Imagery, and
Linear Feature Information for the Same ROI of Figure 1.........ccccoeeviviinennnnen. 12

Figure 3: Detailed 3D Bridge Created by Using our Knowledge-based Approach

for the same ROI of Figure 1 (South VIew)ccocviviiiiiiiiiieeeeecee e, 13
Figure 4: GIS Content Definition and Transformation in Legacy Processes 19
Figure 5: GIS and 3D Generation Systems [Brockway, 2002].........ccccceeevieeviieennveennen. 28
Figure 6: Raw LIDAR Data [Stelle, 20037c.oooiiiiiiiiieieiie et 31
Figure 7: Knowledge Base System COomponents............ccocueereeeiienieinieenicenienieesiee s 33
Figure 8: The Ontology Spectrum [Bitters, 20057c.cooveriiriiniieniiiinienieieeereeieene 34
Figure 9: Description Logic Syntax and Interpretationcccccevveiiiiniiiiniinienneenenns 36
Figure 10: NGATE’s Detection of Elevations [SocetSet, 2014]ccoeviiieniiniiiinienins 48
Figure 11: Popular Fuzzy Logics (After [Bobillo & Straccia, 2011]) ...ccoveeiiiniinniennen. 62
Figure 12: GIS2Geometry System and ProcCess.........cceceeviieriieeiiienieiiieeieeieeee e 65
Figure 13: Data Transformations and Usage in our Process.........c..ccocceevieinienicnnecnnenns 65
Figure 14: Generic Transport, Bridge and Covered Bridge Example Taxonomy 96
Figure 15: Retrieving The Most Specific Type of InstanceX using SPARQL................. 98
Figure 16: Retrieving a Property Value using SPARQLccccoviiiiiiiniiniiicnieee 98
Figure 17: Shape Definition SD Ontology Mapping.........cccceeeveeevieeerieeenieesiiee e 103

xi

Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:

Figure 42:

ROAA PIOPEITIESveeiiieiiieciie ettt et 107
OL Vectors on a Road Linear Record...........ccoceeiiiiiiiiiiniiniiiiieiecee, 110
Normal From Three Points Defining Plane.............c.cccooooiiiiiiiiiniiiiee 110
Width USING OL ...coeiiiiiiiiieeee et 110
AVETage NOTIMALoooiiiiiiiiiiiiece e 112
Direction Vector D from N and OL (Z-aXiS 1S UP)...veevvreerveeerrieeniee e 112
Separators with Markings Showing Traffic Directioncccceevvveriennnnnn. 114
Relations 0n GEOMELTIESceeuvieerviieeiieeiieeesiee et e e e eeae e e 116
Deck Only EXamPIEcvoiiiiiiiiiiieiiecieeieeee e 124
Shp0 Polyline RECOTd.........coovviieiiiieiieeee e 138
Generated Connected SeGMENLScccueeeeeeceeiceieiieeieeeesieeieeeee e 138
Knowledge Graph Defining ShpOcccooooiieiiiiiiiee e 139
Example Dialog Querying User for Fact Verificationccccceevuvennennen. 144
10m Resolution Elevation Data............cccoeeviiiiiiiiiiiiiiee e 144
Shapefile Data Sets in Points, Linears and Polygons............cccccceevvieiiiennenn. 145
1-foot Resolution Partial Imagery Data...........cccoeeeiiieiiiiiiiieeiee e 145
Honolulu Bridge Satellite VIEWccccoevieiiiiiiiiiieiieeieee e 146
GIS Data of Honolulu Bridge.........cc.oooviieeiiiiiieicieeee e 146
Ground View using GenesisRT without imageryccceceeveveevienieeeeenee. 147
Ground View using GenesisSRT..........cccoviiiiiiiiiiiciie e 147
Ground View Visualization using Presagis Terra Vista..........cccccveeveenennen. 147
Elevation Profile of ShapelD 4coovieiiiiiiieieeee e 149
Retrieved Values for the Honolulu Bridge..........cccccoeviiviiiiniiniiiiicciie, 151
Generated Cantilever Beam (North VIew)cccoeeiieiiiiiniiieeieeeeeeee 151
OVErpass ATal VIEW.......couieiiiiiieiieiieeie ettt et 152

Xii

Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:

Figure 58:

Overpass GIS Data SOUICESooovviiiiiieeiiieeiie ettt 152
Retrieved Values for OVerpass........ceeevveeeiiieeiiiieeiieeeiee e 152
Generated OVEIPASS.....ccueeruiieiieriieeiieriie et eeite et e stteeteesteeebeestaeebeesseeenseenenas 153
Overwater Bridge Areal VIEW........cc.eeeviieeiiiieeieeeiee e 154
Overwater Elevation Data SOUICEc.cceveeiiiiiniiiiiieicicceeeeeee 154
Overwater Road, Building, and Tree Features Combined 154
Side View of the Champlain Bridge...........ccceocveriiiiiiiniiiiiieciieieieeeeee 155
Overlay with Shape Data (Google Earth®)...........ccccoovviiviiiieiieeeieeeeee 156
Tied Arch Bridge using Edges 2 and 3..........ccoceiiiiiiiiiiiiiieeeee, 158
Cantilever Open Spandrel using Edges 1 and 4ccccoeeviveeiieeecieeeiieee, 159
Cantilever Through Arc using Edges 1 and 4cccooviiviieiieeiienieeieee, 160
Champlain Bridge Results...........ccccviiiiiiiiiiieciecceee e 161
Retrieving Entities <500m Distance from a School Using SPARQL........... 163
View around Ste Marguerite, Laval-Des-Rapides (Google Earth®) 165
Instances (133) of ROI layed over Google Maps®............cccccceeevieureenneennen. 165
Results from Query in Figure 55 on Ste Marguerite Primary School........... 166

xiil

Chapter 1

Introduction

Digitally synthesized visuals of real world landscapes are essential in military,
simulation, earth sciences and serious gaming applications. Such applications require
detailed representations including 3D models of land entities to be generated in short
turnaround times. In this thesis, the term “detailed representation” refers to detailed
property values of all entities needed by the end user in such a landscape representation.
Turnaround time is defined as the time required, after acquiring the necessary initial data,
to create a corresponding landscape representation (digital) with detail as required. The
military, for example, is already looking at ways to reduce this turnaround time between
receiving new data about a specific mission and having the mission training simulator

ready for mission rehearsal right before real world execution [Fillmore, 2006].

The process of creating detailed digital representations for scenes is often a very
manual process. 3D geometric models, terrain, and other components are usually created
from Geospatial databases that define a real world region of interest (ROI). Three main

data sources are invariably contained, also collectively called Geographic Information

1

Systems (GIS) source data, namely, elevation data, imagery and feature data. While,
elevation data and imagery are easily available, feature data (also known as vector data)
and the associated 3D models are often not. The most common feature files format is the
Shapefile standard, which is described in detail in Chapter 2. Creation of shapefiles is
labor intensive. As of today, in most cases, elevation and imagery are used to semi-
automatically generate a triangulated and textured mesh of the terrain (ground surface).
3D digital models of other entities in the landscape are hand crafted or altered using

modeling tools based on descriptions of features or their respective real world images.

The current methodology for shapefile creation involves domain experts. GIS data
is presented to these experts and they extract and make certain information explicit and
well-attributed for other systems or computer programs to consume. Thus, one of their
main tasks is to resolve the ambiguities in the data by analyzing the different sources of
data and to create the most precise and unambiguous definition for each entity in the ROI
as required by the application. This may require testing the results of their definitions and
iterating back until an acceptable representation is achieved. We will discuss these

techniques further in Chapter 3.

A detailed digital representation of a real world landscape would need, along with
terrain data, adequate representations of all additional entities—both above and below the
ground—such as tunnels, water bodies, bridges, buildings, roads, trees, etc. GIS datasets
contain the initial data needed to model these real world objects, although their details
(property values) may only be implicitly available. By implicit we mean that the values
are not explicitly present in the shapefiles or cannot be derived using algebraic methods

from the data sources, but rather one has to infer the values from the collective data set.

2

Our research addresses the problem of using these multiple GIS source datasets to
automatically generate details of the entities in the ROI including 3D details. We differ
from other processes discussed in Chapter 3 by making certain implicit facts in the initial
data explicit for defining property values and aggregating uncertainties for decision
making on the produced output. These property values are used to procedurally generate

entities in the ROI as required by the end application.

Entities in the ROI which are present in the shapefiles are organized as instances
in a knowledge base with values for their properties. An expert cartographer’s knowledge
is formalized by means of an ontology. Description Logic reasoners are used to infer
information about the instances so as to reveal their specific identities (say from a generic
line element to bridge to covered bridge and so on), and to provide associated property
values needed for detailed representation of the entities. “Data Extractors” is the name of
the framework we use to fuse data from the different GIS sources (shapefile, elevation,
and imagery datasets) and to automatically derive values from explicit and implicit

knowledge present in the GIS source data.

Computer vision based techniques such as pattern recognition and image analysis
methods are often used to computationally estimate the entities and their properties. Due
to the imprecision and ambiguity of captured sensor data and in the results of these
vision-based algorithms, values cannot be obtained with complete (100%) certainty.
Unlike uncertainty in knowledge that deals with defining the meanings of ambiguous
concepts such as "often" in "a bridge often has supports", assertions from GIS sources
only require a certainty value on their validity (the certainty of existence with regards to

the real world) e.g. how certain are we that “wood is the type of cover of a bridge

3

instance 1”. The Data Extractors framework handles object-object relationships (includes
spatial relationships), object-value relationships, as well as their data uncertainties.
Following work by [Poole et al., 2009], uncertainties are recorded as attributions on their
respective assertions under the principle of the separation of knowledge assertions from
the uncertainties associated with this knowledge into different contexts. Inferred axioms
are associated with a resulting value under Zadeh fuzzy semantics [Zadeh, 1965].
Semantic Web ABox Realization service is extended, and explanation services (KB
Justifications as per [Horridge et al., 2009]) are used to associate uncertainty values to
inferred assertional axioms. We address complex and multiple explanations for a certain
inference by reducing every explanation into a minimum set of axioms, which we call the

variable set. This set allows us to calculate the inferred axiom's certainty value.

Our methodology makes the availability and analysis of GIS data more
automated, modular, verifiable, and the results more streamlined for other applications to
use. The fusion of different data sources and collections allows a common knowledge
base defining entity instances logically. This KB is then further used to generate 3D
representations of the entity instances. We extended OWL Link [Liebig et al., 2008] to
C++ and C# in order to enable module intercommunications using the Semantic Web
framework. We show a way to address uncertainty in this data with minimum impact on
system complexity or change of semantics expressivity. We discuss the advantages and
limitations of this process with respect to legacy methods. We present our
implementation details using the transportation domain as an example which includes
road networks and transportation-related features and models, especially bridge

structures. However, this process can be applied similarly to other domains.

1.1 Motivation

Digitally synthesized versions of familiar 3D environments enable users to be
immersed into the virtual worlds created by the computer and thus to fully utilize their
everyday capabilities and senses to solve a given problem. They also provide a good
training mechanism in complex and hazardous environments, lowering the cost of
hardware training and at the same time making it more effective. Detail is important in
creating a realistic 3D environment, an important requirement for providing the
immersive experience in many domains such as entertainment, education & training,
simulations, engineering and science. Constructing a 3D model of the ROI with the
required level of detail usually consumes a lot of manual work and design. Methods

which can help create detail without significant domain expert involvement are essential.

Several organizations including the National Geospatial-Intelligence Agency
(NGA) cooperate under the Multinational Geospatial Co-production Program (MGCP) to
collect, produce and share digital geographic information. Despite the availability of
information, and established quality standards and requirements such as those shown by
[Fillmore, 2006], there is a need to reduce the turnaround time between obtaining new
GIS data of an area and having a 3D model suitable for simulation systems and training

applications. Visualization is only one application targeted by the MGCP.

Urban operations, for example, have lately been the focus of several research
efforts due to the high requirement in detail and fidelity of the geographical surface
features. As compared to an Out-The-Window (OTW) view of a flight simulation where

terrain surface and features are only represented as a texture map applied to generic 3D

5

shapes, urban simulation requires detailed 3D modeling of close-by objects. We shall
refer to a detailed 3D model as a geospecific model as it is more accurate in reflecting the
real world object’s dimensions and shape features as compared to a generic model which
is often simply defined as a properly sized box with an appropriately assigned
color/texture. To produce geospecific 3D models representing entities in a certain area, an
expert cartographer would need to study the different layers of source data available and
estimate property values for the entities. This may need many iterations before finalizing

the result.

A few interactive tools exist which can assist the expert in this task. But it is very
difficult for a tool to consolidate knowledge independent of the actual data being studied,
when this data is in different forms and standards such as rasters (for elevation and
imagery) and records (for features and culture). Computer vision based techniques work
primarily with raster images for identifying features and their details. Restricting oneself

to pixel-based techniques is inadequate for our problem.

1.2 Problem Statement

Our main problem can be stated as follows:

Given GIS source data (feature and feature values in the form of shapefiles, raster
images of the landscape in the form of pixelized data, and elevation data in the form of a

height raster or triangulated height values), create a 3D digital landscape representation

for that ROI having all the detail with correctness and precision that exists explicitly or

implicitly in the given GIS source data, and with reduced human expert involvement.
A secondary problem to the above can be stated as follows:

Given GIS source data for a ROI, in which certainty in the form of percentage
values are associated with the feature and feature values in the sources, handle the

certainty values for all the entities and their property values in the KB.

1.3 Objectives

Our main objectives can be summarized as follows:

= To define a methodology to extract the knowledge (facts about entities) that exists in
the GIS source data in a format independent manner. In order to be able to do this,
create a mapping which maps facts in the source data to assertions in a knowledge
base. For this mapping, we need to define:
= Domain knowledge ontologies under ROI constraints, considering knowledge
that can be collected based on the ROI and that is relevant to our needs
(domain-based capabilities, driven by implementation needs).
= Data to domain mapping ontologies separating source format mapping
specifics from domain knowledge descriptions.
= To develop a framework which will infer implicit information in the knowledge (use

the domain knowledge ontologies) w.r.t. entities in the landscape of the ROI and

further extract missing values for required properties of these entities from the input
data sources. Develop procedures by which the inferred entities and their property
values can be used to procedurally create detailed digital representations of the
landscape.

= To define a mechanism to handle and compute uncertainty in the added data.

= For all the above, to comply as much as possible with public standards and

technologies.

1.4 Methodology and Proposed Solution

Our methodology [Eid & Mudur, 2009] is driven by the fact that we see the task
of creating geospecific 3D models from GIS source data as composed of two distinct
steps: facts extraction and spatial knowledge extraction. We plan to devise mechanisms
for facts extraction, or feature extraction (GIS to knowledge), which fuse data by adding
knowledge in the form of assertions to a formal knowledge base. This formal knowledge
allows for inference of new information about the instances, i.e., new information
becomes explicit. Spatial knowledge extraction (knowledge to representation) uses the
available information in the knowledge base to construct a corresponding landscape

representation for the ROI.

Further, as part of our implementation methodology, we propose the use of
Semantic Web technology for formally modeling the knowledge base. Properties inferred

by the semantic engine will be processed further to extract corresponding values from the

input sources. These are also inserted as assertions into the knowledge base which in turn
contributes to further formal knowledge about the instances, and further possible
inferences. Uncertainties based on data imprecision or as a result of methods used will be
associated with the assertions. Using Semantic Web technology therefore allows data
independence; the same process can be used on different sensor data sources (various

feature, elevation, and imagery sources) to extract needed data.

Next, a geometry definition engine will be developed to demonstrate the
automation in creating the required representation. Specifically, we create 3D features
using the property values extracted from the knowledge base. The geometry definition
engine will have needed parameters for every 3D model. We use the SPARQL querying
language, described in the following chapter, to retrieve the landscape entities and
associated properties using a parametric models ontology. For example, for a bridge
model, the system can extract quantitative parameters such as bridge width, span and
cover texture from the knowledge base. The extracted information is then used in
conjunction with a parametric 3D model repository to procedurally construct a higher
detail geospecific equivalent of the real world entity as defined in the collection of GIS

information.

The three components described above, together, effectively mimic the process of
data extraction and estimation done by experts and thus reduce the effort involved. The
initial setup for a GIS features domain (like transportation) would require expert time
(one time effort) in defining the ontologies and the scripting of modular data extractors

for properties and relationships.

1.5 Implementation

The system proposed in this research is a generic system for assisted generation of
3D digital models of the landscape of a given region of interest from raster, vector and
symbolic source data. We have developed a system whose architecture will be described
in detail in later chapters. While this system architecture is domain independent, we have
populated it with knowledge about the transportation domain, specifically entities such as

bridges, roads, tunnels, etc.
Given below is a list of the tools used in developing this system:

= The Open Geospatial Consortium and Ordnance Survey for public standards and
ontologies.

= Protégé Editor 4.3 to create our ontologies and testing.

= Pellet 2.3.1 and Hermit 1.3.8 as Semantic Web reasoners.

= OSGeo’s GeoTools API 9.3 for GIS data processing, querying and presentation.

= OWL API 3.4.5 for binding into a semantic web engine and complying with OWL 2
specifications in reading, writing and querying.

= Eclipse IDE Juno to develop our prototype and knowledge base using the above Java
APIs.

= MapWindow GIS 4.7.5 for investigation and testing of sources with plugins to use
our knowledge base system.

= OWL Link API 1.2.0 for the porting of the DIG protocol into C# and C++

= Microsoft® Visual Studio 2010 to develop OWL Link for C#/C++

10

* Microsoft® .Net Framework for building OWL Link for C#/C++ and MapWindow
GIS plugins.

= Google Earth Pro®, DVC GenesisRT®, Presagis Terra Vista® and Creator® for
investigation of current state-of-the-art capabilities and needs for a solution that can
be integrated with current processes.

= U.S. Geological Survey’s National Elevation Dataset, Ordnance Survey resources,

and Natural Resources Canada GeoGratis datasets for validation.

1.6 Simple Example from our System’s Results

The image shown in Figure 1 is taken from Google Earth® at 21°21'02.72" N
157°53'41.13" W on January 23, 2014 with a view towards the South. Although a
comprehensive visual scene is present, the lack of a 3D model for the bridge is
noticeable. The data for such a scene consists of elevations, rasters and annotations to

insert 3D models in the scene.

11

G()Oglt‘ earth

Figure 1: Google Earth® Image of a Region of Interest (ROI)

Figure 2: Publicly Available Elevation Raster Data, Georeferenced Imagery, and Linear
Feature Information for the Same ROI of Figure 1

12

For this same area, publicly available elevation raster data, georeferenced
imagery, and linear feature information are shown in Figure 2 (North up). These were
retrieved (through the USGS website) using remote sensing equipment in the ROI.
Another linear feature can be defined for the orthogonal road crossing under the bridge as
well. However, in either case, a human can easily distinguish the existence of a bridge

whether due to the elevation profile or due to the existence of the orthogonal roadway.

Figure 3: Detailed 3D Bridge Created by Using our Knowledge-based Approach for the
same ROI of Figure 1 (South View)

Figure 3 shows the results of the application of our knowledge-based approach to
create a 3D representation of the landscape for the same ROI. The 3D details of the
bridge entity are clearly visible. Our process first uses the data and domain ontologies to
map segments of the road linear as connected segment entities in the knowledge base
representing the road. Extractors associated with entity class properties in the domain

ontology are used to evaluate spatial relationships between knowledge base entities and
13

to retrieve missing values for each entity’s properties. Extractors also associate the
uncertainties found as part of the facts. Deductive reasoning based on a domain ontology
is used to reclassify entities to their most specific classes based on their relationships and
property values. The result is a knowledge representation of each entity in the ROI. The
process then uses the knowledge representation of each entity to procedurally generate a
3D model representation, as shown in Figure 3, while uncertainties can be used for
decision-support for example; a user is presented with options and the data that resulted

in those options for an informed decision to be made.

1.7 Contributions

1.7.1 Conceptual Contributions

Spatial reasoning and geospatial semantic web are research topics currently in
focus. Our first and most significant contribution is the introduction of an overall
methodology for creating detailed 3D digital landscape representations using semantic
web technology that makes use of GIS source data collectively. We believe that this has

not been attempted in earlier research in the field of 3D model synthesis in the GIS field.

A second important contribution is our formulation to derive uncertainties of
inferred assertional axioms in knowledge bases based on KB explanation services. The

idea of processing explanation services to derive uncertainty values for the entities and

14

property values in the output landscape representation is innovative. To the best of our

knowledge, this has not been explored previously.

1.7.2 Practical Contributions

As part of our work, we created several ontologies extending existing work from
the OGC [OGC, 2014], Ordnance Survey [OSUK, 2014], and the VOTT [Bitters, 2005].

Specifically, this includes the following:

= a 3D landscape data ontology defining the organization based on visual objects
layout, cartography and civil engineering principles for reasoning in this domain,

= a shapefile-data-to-3D-landscape-data bridging ontology for the fusion of GIS source
data, and

= a listing of 3D models and parameters ontology for 3D entity models. The ontologies

are formal and general enough to support testing of our principal ideas.

Ambiguous or inconsistent representations are a major issue in delivering a
completed terrain database in short turnaround time. By using Semantic Web technology,
the created ontologies and knowledge base can be automatically and easily verified for
consistency and explained. The knowledge base can also be used by other external
systems such as provide further information as input to the visualization system or
consume available information in the knowledge base. We have not found any similar
work in published literature in this area. Ordinance Survey seems to have some data

fusion methodologies, but they have commercial value and are not published.

15

We ported OWL Link from Java to C++ and C# in order to test our methodology
using available GIS toolkits and APIs. OWL Link authors expressed great interest in our

port and mentioned that many users would like to use it.

The ontologies, the OWL Link port and the extended KB Realization code using

KB explanation services are provided publicly on the internet.

Earth Sciences can use our approach to visualize implicit information within a 3D
scene visualizer. Currently, most systems are based on the querying of information
databases to retrieve needed data. Presenting information in 3D with the needed details

offers a more visual solution which even untrained personnel can interact with.

The greatest beneficiaries are likely to be the modeling and visual simulation
industries which affect commercial, earth sciences, immediate response, homeland
security, and military organizations. Our solution provides a way to use stable, available
and performance-based legacy standards to create detailed 3D environments for visuals

and simulations with reduced user interaction.

1.8 Thesis Layout

So far, the reader has had a brief overview of the important features of the

proposed methodology. The rest of the thesis is divided into the following chapters:

2. Background

3. Related Work

16

4. Knowledge Base and 3D Landscape Creation
5. System Implementation

6. Handling Data Uncertainty

7. Results and Examples

&. Conclusion and Future Work

Given below is a brief outline of the rest of the chapters discussed in this thesis:

We first present the background related to our domain of research, which includes
GIS standards, topological relations and semantic web technology. Then, we review
related work that addresses the problem of creating 3D visuals from GIS source data and
methods to synthesize missing information. We then present our final process and its
theory outlining the evolution through earlier attempts and their limitations. We present
the implementations of our facts extraction (GIS2KB) and spatial knowledge extraction
(KB2Scene) processes along with the KB Realization extension to address the calculation
of uncertainties for inferred axioms. We present sample results from our implementation
and, finally, discuss advantages and limitations of the process based on the technologies

and tools used.

Appendix A lists our Data Extractors associated with the property listings for the
bridge classes we addressed. Appendix B contains our notes on porting OWL Link to C#
and C++. Moreover, the full system implementation in predicate notation form, some of
our implemented algorithms as well as developed ontologies are available publicly at

http://users.encs.concordia.ca/~pa_eid/PhD/.

17

Chapter 2

Background

The National Geospatial-Intelligence Agency [NGA, 2014] and the
Environmental Systems and Research Institute (ESRI) are the two most active and
recognized organizations controlling GIS standards and developing new ones based on
scientific, military and commercial needs. GIS data sources are usually available from
sources such as the US Geological Survey or Natural Resources Canada. There are
various types and formats for this data but semantically, all formats try to represent the
region of interest (ROI) with the best possible data structures to provide low complexity

and high flexibility for the specific application needs.

Figure 4 shows the different GIS source data types (nodes) and current methods
(arcs) used to transform GIS data types in order to generate a 3D representation of
various real world objects in a certain ROI. For example, the T — D ranging process
which calculates digital locations using time of travel analysis outputs a Digital Elevation
Model (DEM) that is then leveled and cleaned by user involvement to produce a Digital

Terrain Model (DTM). This GIS data flow diagram was produced after a thorough review

18

of current systems and methodologies in use for acquiring/creating each of the GIS data
types [Eid & Mudur, 2009]. It provides us with a comprehensive view of the data sources
involved and related methods. It also provides us with a context in which to compare our
approach with other methods which try to address the same problem of creating detailed

landscape representations from GIS source data.

Capture
Sensors

T->D Ranging Multi-band

process Stereo Imagery
PRall Imagery

Highly Aytomated P
SOCETSET, ER’DASZ GeoGenesis
-user inv.. & time

- Subr meter resolution

Align. of grid points with terrain -Rules on band values

-User iny. -multidand series
-Expert needed

Ortholmagery

-

—Supé:\(ised/unsupervised
-OBIA Repeat and change
. . . -Scene understanding =1 _until correct result
Leveling, clegning — user inv. -Pattern recoghition ~~ _achieved
~

~

Geo-Referenced kN \ N
Imagery

pay ~
Feature/Culture Sy
A
layers y

ules=3D objects
(TerraVista/GenesisRT)

Texture
Triangulation

=TIN (polygons)

3D Representation
Culture centric/DTM centric

SEge BERmEmEnt Geogeneric/Geospecific

—> Mathematical transformation

— - > Scene understanding\uncertainty o ’,

Soans

Figure 4: GIS Content Definition and Transformation in Legacy Processes

For example, computer vision based scene understanding techniques such as Object-
based Image Analysis (OBIA) are primarily concerned with data transformations of raster
data to feature data, as denoted (dotted arrow) in the graph. These will be covered further
in Chapter 3. A lot of manual work may be further required in verifying the 3D

representation and changing the classification procedures used to output features from

19

imagery. Another time consuming process is the manual modifications of the outputted
feature details to represent the associated 3D object accurately. This iterative process that
experts have to go through is marked by the dashed line in the figure (going back to the
refinement of Feature layers). In our work, we are mostly interested in the 3 input type
classes shown as coming into the 3D representation generation node: elevations, imagery,

and features.

We focus simultaneously on all the layers of information available and use
collective knowledge about the scene in order to derive detailed 3D representations of
objects in the real world landscape. The three arcs coming into the 3D representation
node will be the input to our semantic engine which plays a significant role in our
approach to create detailed landscape representations. Thus, it should be clear from this
discussion that while we can benefit from some of the techniques developed in the
domain of scene understanding, there is no significant overlap. A more detailed overview
of existing work for the creation of 3D representations using scene understanding

techniques is presented in the following chapter.

In Figure 4, as part of elevation sources, DTM is a filtered and leveled version of
DEM. DTM is usually used for the triangulation process. Similarly, Ortholmagery is geo-
referenced and transformed to correlate with the DTM. The result is referred to as Geo-
Referenced Imagery which can be used for texturing the triangulated DTM.
Ortholmagery is also used to define feature (culture) layers which are then used to define
3D objects that can be added to the scene. There seems to be a consensus among GIS
systems and users for using Shapefiles [ESRI, 1998] to represent all types of surface

feature information due to the standard’s comprehensive extensibility to fit all needs.

20

Multi-band imagery as well as other types of sources are also used to define feature

layers e.g. materials for roads and areas.

A 3D model created with generic properties results in a geo-generic 3D
representation. A 3D model created with respect to specific properties trying to best
represent the real world object results in a geo-specific representation. We are focusing
on creating detailed geo-specific digital representations of visible real world objects. For
simplicity, we will be focusing on using DTM, Ortholmagery, and Shapefiles
respectively for our prototype implementation. We consider these sources representative
enough of GIS data source collections for an ROI. Other sources could be similarly
handled either as derivations of the sources chosen or as part of the Data Extractors

Framework (introduced in Chapter 1).

We also cover in this chapter other common standards used in this field. It may be
noted that while standards like OpenFlight are available to represent any 3D object to the
required level of detail, present methods in use for creating such 3D data are essentially
manual and human effort intensive. Light Induced Detection and Ranging (LIDAR)
[Opitz et al., 2006] data is another data type concerned with 3D which involves the use of
a large format 3D scanner to digitize 3D objects in the real world. Given the difficulty of
using large format scanners, in general, LIDAR data is not available for most landscapes.
Our approach is to create detailed landscape representations by making use of the
collective information available in different source data types. To that extent in our
investigation, LIDAR data will not be directly used as GIS data source input, but, if
available for specific objects, it could be used to add further detail to the 3D

representation of such objects.

21

In the following sections, we describe the types of data sources in further detail.
We also discuss a common topological relations model, Semantic Web technology, and

reasoning services relevant to our work, all of which are important for our approach.

2.1 Relevant GIS Sources

Geospatial datasets constitute a digital representation of geospatial features at a
point on the earth’s surface. Terrestrial surveys, photogrammetry, satellite data, digitized
analog maps (charts), GPS data, statistical files, other data such as physical,
environmental, boundary, etc. are all types of geospatial datasets. While the earth surface
has innumerable features, we only consider the following data sources, which we refer to
collectively as “GIS source data” and are related together with geospatial coordinate

system descriptions and models:

= Elevation data, describes altitude at locations above some reference level,
= Imagery data, which can be applied on the generated landscape surface for a more
realistic view,

= Feature data, describes the ROI’s features above, on and below the elevation points.
Terrain, or elevation data, defines the third or vertical dimension of land surface

[Wikipedia, 2014]. Features, commonly represented through shape layers, define the

terrain culture information. A digital terrain model (DTM) is a digital representation of

ground surface topography or terrain including related data objects. A digital elevation

model (DEM) depicts only the elevations or altimetry of ground [Kraak, 2010]. High

22

level-of-detail DTMs for example are used in real-time military systems such as weapon
guidance, sensor models, and aircraft navigation systems. DTED, a format that represents
DTM/DEMs, is considered as a high performance accurate depiction of the actual terrain.
It was developed by the NGA and was lately revised in 2000 for performance
specification under military standard MIL-PRF-89020B [DTED, 2000]. We use this
format. All terrain elevation standards, and specifically DTM, are currently described as a
value, the altitude or elevation, at specific latitude/longitude coordinates. They also
usually contain descriptions of the coordinate system and earth model they use. The
collection of locations describes a 2D area (grid) representing the terrain surface. Using
the elevation data as the third dimension, the DTM points can be graphed in 3D. The
DTM defines a terrain based on grid spacing with every grid point as a location on the
face of the earth. The location is saved as and converted using a specific coordinate
system and projection such as the WGS84 or UTM NGA standards. Both elevation and
imagery sources are considered of raster data type and we interpret them as arrays of
values where each cell represents a point location as a pixel color or as a relative altitude

value.

Imagery data has multiple source formats such as ECW or JPEG2000. ECW or
Enhanced Compression Wavelet is an ERDAS proprietary wavelet compression image
format optimized for aerial and satellite imagery [Wikipedia, 2014]. JPEG2000 is a
comparable format that allows better compression performance as well as scalability. It
was created by the same group that created the JPEG format. We use ECW as part of our
sources. Imagery data is in itself very varied: Visible light spectrum, Material rasters,

multi-band and infrared (IR) are some types of imagery. Visible light spectrum imagery

23

has been analyzed for visual photographic patterns for value and texture extraction, while
other types of imagery have been analyzed using pixel-based techniques under defined

criteria in the respective spectrum.

Feature records contain information about the surface of the terrain such as the
environment, buildings, roads, lakes, land use, etc. For example, a building on the map
could be an area feature object which specifies the feature type as residential building. It
also stores the height, width and length as well as the orientation of the building in the
record. Feature records include different kinds of detail about the represented area, and
along with elevation data and imagery, they have the potential to be effectively used for
creating detailed 3D representations of landscapes. There are two basic abstractions for
representing real world objects: discrete objects (a house) and continuous fields (land
use). In fact, elevation above sea level is an example of a continuous field, although for
historical reasons, it is represented separately through separate elevations data formats.
Correspondingly, there are two formats used to store data in a GIS: vector and raster.
Vector data represents 3D geometric entities in the form of points, lines, or polygonal
regions, whereas raster data is in the form of values in a discrete rectangular grid
structure. Even though, collectively, source data may be having the information with
certain detail implicitly embedded in a fashion that is often rather easy for a human to
infer, many 3D visualization systems are not equipped to render the 3D landscape with
the same detail. This is mainly due to the fact that these systems require the 3D landscape
geometry in a specific form that cannot be easily derived as a simple transformation of
this information in GIS source data. As a result, it is primarily a human intensive manual

process that is in vogue for creating detailed 3D landscape representations from such GIS

24

source data. Typically, users would manually attribute features in the individual layers by
studying the satellite images and elevations of the area of concern. Automation support in
this process is a current topic of intense research and forms the main problem area for our

research work as well.

2.1.1 ESRI Shapefiles

Shapefiles, an ESRI standard [ESRI, 1998], were initially created in order to
address the growing need of 3D features and flexibility on the number and types of
properties required by each feature. It is the most common format used by GIS users and
GIS software. Shapefiles allow the definition of overlays and annotation of GIS source
data such as images and multi-band sources. Shapefile data is flexible and the records can
be mapped into object data. For example, some semi-automated systems can analyze
continuous patterns in the imagery based on texture and generate matching Shapefiles

with linears defining polyline information such as for roads and waterways.

GIS experts can add necessary attributions on the Shapefile record to define
explicitly some properties in the image like type of road or number of lanes etc.
Shapefiles can have detailed representations for a certain area depending on how much
effort the expert has put in creating it. It is a very hard and lengthy process to generate
this information and maintain it up-to-date. However, a detailed set of Shapefiles has
very high fidelity results and modeling advantages [Dewberry et al., 2002]. Washington
DC, for example, has a Shapefile set that models every small detail in the city, even park

benches [DCCatalog, 2014].

25

Shapefiles spatially describe vector features of which we address the most
commonly used geometry types: point, polyline or polygon. These are defined by the

following data structures:

PointZ PolyLineZ
{ {

Double X; //X coordinate Double[4] Box; //Bounding Box in X, Y

Double Y; //Y coordinate Integer NumParts; //Number of Parts

Double Z; //Z coordinate Integer NumPoints; //Total Number of Points

Double M; //Measure Integer[NumParts] Parts; //Index to First Point in Part
} Point[NumPoints] Points; //Points for All Parts

Double[2] Z_Range; //Bounding Z Range
Double[NumPoints] Z_Array; // Z Values for All Points
Double[2] M_Range; //Bounding Measure Range
Double[NumPoints] M_Array; //Measures

PolygonZ

{
Double[4] Box; //Bounding Box in X, Y

Integer NumParts; //Number of Parts

Integer NumPoints; //Total Number of Points
Integer[NumParts] Parts; //Index to First Point in Part
Point[NumPoints] Points; //Points for All Parts
Double[2] Z_Range; //Bounding Z Range
Double[NumPoints] Z_Array; //Z Values for All Points
Double[2] M_Range; //Bounding Measure Range
Double[NumPoints] M_Array; //Measures

A shapefile follows a schema where it declares the geometry type (referred to as
ShapeType) that the file will be using and a bounding box for all the elements in the file
under a certain projection and coordinate reference system. It then defines an internal file
schema applicable for every record with the geometry type, and a list of properties (each
property with a name and a type) that the records contain values for. They support both
2D and 3D definitions. Each record then defines a real world feature using values for the
geometry (a list of points defining the shape), a bounding box for the feature defined, and
a value for each of the properties defined in the schema. Properties and values are stored

in open dBase format. Properties can be of type String, Integer, Double or flagged as a

26

reference to another shape record index. Examples of properties include 3D object file
pointer, width, height, elevation, orientation, material type, object type, meta information,
etc. Shapefiles do not have the structure to store topological relationships; however, this
can be done externally using topological relations computed on the records’ geometries

and properties.

All the information in shapefiles for a ROI constitutes part of the knowledge
necessary to create a detailed digital model of that ROI. This would require a mapping of
the data in shapefiles into knowledge base assertions. We will show how this is done in

our source to domain mapping implementation.

2.2 Other Commonly used GIS Standards

After [Brockway, 2002], systems like ESRI ArcView allow the manipulation and
creation of GIS databases, such as a geodatabase, to act as a common repository and
standardized way that promotes easy and fast access to the needed information. Then, at a
higher level in 3D, systems like ESRI’s 3D Analyst and Sitebuilder 3D use geodatabases
to allow the manipulation of the terrain in 3D and their visualization. Figure 5 shows
different known systems and their positions relative to each other. 3D presentation
systems like Creator Terrain Studio (Multigen-Paradigm Inc.), Model Librarian (ERDAS
IMAGINE) or TerraVista (TERREX) typically involve a lot of user involvement to create
the 3D representation of an ROI. Individual objects are created usually with extensive

user input and explicit attributions. These create 3D models in a format such as

27

OpenFlight. This standard is used to represent any 3D object to the required level of

detail in a GIS context.

GIS Data Preparation Analytical 3D
& Analysis Presentation

Creator
ArcCatalog 30 Analyst Tesrain
Studio
S —
A Toolbosx Sitel uilder Modd

Real-time Database
Style
Galleny

Generation
Figure 5: GIS and 3D Generation Systems [Brockway, 2002]

Real-Time 30
Presentation

2.2.1 Legacy Sources

The grid describing the DEM is based on a specific sampling of an area, typically
using an appropriate scanner. These same scanners can also collect data about the terrain
like type of ground at a specific location and save it in another format such as DFAD.
DFAD or Digital Feature Attribute Data is a type of feature map in a grid format similar

to a DEM but with the data representing type of earth surface rather than elevations.

DFAD [DFAD, 1994] was also developed by the NGA, previously known as

NIMA, and is currently being phased out in favor of vector-based standards. Legacy

28

systems still use it however for performance reasons. DFAD is not suitable to be used in
3D visualizations according to [VectorData, 2014], but along with DTED, it provides an

efficient database for weapon and sensor systems and simulations.

Newer standards were developed, like NGA’s VMAP [VMAP, 2014] and more
recently ESRI’s Shapefile formats, which are based on vector representation of the
features in an ROI. Shapefiles, described earlier, have similarities to VMAP, but add the
capability for the user to create their own attribution including linking 3D models to each
of the feature objects defined. VMAP can be considered and processed the same as

polyline records in Shapefiles.

Many other types of GIS data exist but they are mostly in the form of raster or
vector multi-resolution data. These are considered obsolete as they are only used by
legacy systems. Our process, if necessary, can be made to work with such other data

types by implementing suitable data extractors.

2.2.2 OpenFlight Standard

The OpenFlight standard [OpenFlight, 2007] is particularly popular commercially
for its simplicity and broad compatibility. It was introduced by Multigen-Paradigm and
continues to be improved with a current version of 16.4. Being an open standard,
importers and exporters for this format can easily be found publicly. OpenFlight is a
format that can also be stored on disk as a compiled structure for fast access and loading
at runtime. It can describe any 3D object using simple shapes and their positions and

orientations in space organized in a database. OpenFlight stores the coordinates of each

29

of the polygons in (x,y,z) based on a model origin defined in the database header. It
supports GIS standards by matching the model origin to a GIS database origin in a certain
earth model and projection. This way, any point in the OpenFlight model can be
projected to its GIS equivalent. In a 3D viewer, the polygons can be used to draw the
model in 3D. The compiled structure represents an executable procedure to display the

model in 3D.

Initially, this standard was created to describe a terrain and visualize it in a 3D
scene for aircraft cockpit displays, and was later extended to handle any kind of 3D
model. An airport where an aircraft would land or takeoff, for example, would be
modeled with high detail whereas the landmass around would be represented using a few,
large textured polygons. OpenFlight supports transformation nodes in the database tree
that allow the manipulation of a subtree. Subtrees usually represent a piece or object in
the model. It describes every polygon with 3D points that can contain extra information
like feature type and texture information. The standard even supports levels of details that
can be constructed as subtrees. Dynamic level of detail can be achieved as a function of
the viewer’s distance and the size of the closest object on screen by gradually switching

between the subtrees.

OpenFlight also has the ability to describe a single large model using multiple .fIt
files on the condition that a master file organizes each of the .flt member files. This
allows the reuse of existing parts and the description of complex OpenFlight databases
with small patches of terrain, each in an OpenFlight file, combined together using a

master file to represent the large area of interest.

30

2.2.3 Newer Sensor Technologies

New satellite technology is now able to acquire information about the earth’s
surface with great detail. Also, on ground presence, intelligence and low-level flight
scanners using Unmanned Airborne Vehicles (UAV) can acquire even more information
from different viewpoints and in high detail. This information is in raw format and would
need to be integrated with available terrain data to form a detailed representation and

contribute to the appearance of the terrain in a 3D scene.

Extracting features that enhance terrain has always been under research. Common
methods include photogrammetry. Photogrammetry is the capturing of images in a stereo
view and performing calculations (like
shape from shading) to find heights and
distances [Wikipedia, 2014] revealing the
terrain structure. 3D object reconstruction
can then be done for the captured view,

even if partial.

Figure 6: Raw LIDAR Data [Stelle, 2003]

This same technology is now being applied with range accurate sensors to acquire
buildings and objects from distance. LIDAR or Light Induced Detection and Ranging is a
system which projects a LASER (Light Amplification by Stimulated Emission of
Radiation) beam and finds the depth where the laser hits a surface using the reflected ray.
Laser technology is very precise and is as fast as light to measure a distance. Therefore,

with a simple pass over an area of interest, a 3D point cloud of that area can be

31

constructed. This point cloud, however, will need editing in order to generate the final 3D
model. Editing will include the separation of the acquired objects and the removal of
sensor acquisition error due to the mechanics involved and environment conditions. Some
of these tasks can be done in a semi-automated manner, but a lot of work still remains

and is currently being done manually [Stelle, 2003].

Photogrammetry and LIDAR are not sufficient to describe the internal structures
of buildings or cultural aspects but they are very efficient in reconstructing 3D features as
they appear from air. Building edges and extremities can be identified and 3D models can
be constructed to be later added to the scene over the terrain. This will still need manual
input to decide on the type of object scanned and to separate and remove the error in the

continuous point cloud to generate the different objects for querying purposes.

2.3 Topological Relations and DE-9IM

Geometric topological information between features can be represented using
well-defined relationships between the geometries representing these features. The
Dimensionally Extended nine-Intersection Model (DE-9IM) is an Open Geospatial
Consortium standard developed by [Clementini et al., 1994]. It allows the computation of
a matrix between two spatial entities that can be used to identify a set of basic geometric
topological relationships as well as the dimension of each relationship between them. We
use these topological relationships and also extend some relationships to express 3D

relations such as over, under and 3D intersection. Our framework uses GeoTools v.9.3 as

32

an implementation of DE-9IM. Moreover, other topological information about a feature
(those not covered by only geometric properties) might also exist e.g. the belonging of an

instance to a certain class or group.

All topological information about a feature can be translated into knowledge
representation in the form of assertions. We fuse all such representations into the

knowledge base. We show how this is done as part of our relationships mapping process.

2.4 Semantic Web
Inference |
services : P
Ontology
Customer Agent Desym
Knowledge Base
Knowledge Base System

Figure 7: Knowledge Base System Components

The Semantic Web [Berners-Lee et al., 2001], or the web of data with meaning
[Daconta et al., 2003], is an active research area which addresses knowledge
representation and interpretation. It allows the definition of formal knowledge in the form
of ontologies that cooperate with other components as presented in Figure 7. Figure 8
shows the ontology spectrum and the different levels of semantics they can achieve

[Baader et al., 2003].
33

The Ontology

Modal Logic
First Order Predicate Logic

Local Domain Theory @

Spectrum... T

DAML+OIL, OWL
Unified Modeling L anguage
Conceptual Model ®

RDF/S
XM
Extended ER

Thesaurus
®
ER

Schema

Taxonomy Y semantic
Relational Model Leve I s

Synonym Ring e

Dictionaries

Word List g

Figure 8: The Ontology Spectrum [Bitters, 2005]

[Hitzler et al., 2011] and [Haarslev, 2014] provide good references covering
developments in this technology. The knowledge can be decentralized, but still forms a
satisfiable and consistent knowledge base (KB). A terminology box or TBox defines
formal knowledge while an assertions box or ABox defines instances of concepts in the
TBox (also referred to as Individuals) with memberships and relationships (also referred
to as roles). Both the TBox and the ABox define the KB. This KB can then be
manipulated and queried using a Semantic Web reasoner, based on description logic, to
return results that systems can understand and interpret due to the formal semantics in the
TBox. Description logic is a subset of first-order predicate logic which allows formal
logic-based semantics, through the definition of axioms, while being more expressive
than propositional logic. It is a subclass of first-order predicate logic since it defines some

restrictions on relationships (binary relations), to allow further decidability.

34

The TBox is static for the domain of discourse, while the ABox can be changed
dynamically based on the available data. The structure of the Semantic Web allows the
separation of formal knowledge and instances. While formal knowledge can be reused,
instances can be added, removed or modified. The Semantic Web reasoner provides
services to query, analyze, and modify the TBox or the ABox. When the KB is realized
through a reasoner service, all the instances are processed and reclassified, by entailment,
to their actual specialized subclasses according to the semantics they represent. A
description logic reasoner can deduce information based on formal semantics defined in
the TBox such as axioms representing equivalence classes, concept or role inclusion,
domains and ranges for relationship properties, as well as rule definitions depending on
its supported expressivity for reasoning. Ontologies are usually defined in a specific
language such as OWL2 [OWL2, 2012], a W3C specification subset of description logic,
with a certain chosen expressivity. OWL2 is based on SROIQ®) expressivity. Ontologies
are used with a compatible reasoner whose capabilities are defined based on the support
and reasoning services it provides. Assertions are axioms that define instances and their
properties (such as object-object or object-value relationships) under the OWL2

semantics. Figure 9 below modified after [Hudelot et al., 2008] describes SROIQ

semantics under an interpretation 7 = (AI , Az):

35

Description logics syntax and interpretation

Constructor Syntax Example Semantics

Atomic concept A Bridge AL c A7

Individual a $253(Champlain) a* e 4%

Top T Thing TZ = 4%

Bottom ol Nothing 1T=¢7

Atomic role r intersects RT c A% x 4%

Conjunction cnbD Thoroughfare M Bridge cITnp?

Disjunction CuD Bridge U Tunnel cITyp?

Negation -C —Bridge AT\ cT

Existential restriction Ir.C 3 Next_To.Monument {x e Az |3y e A% - (x,y) € RT A yE€ CI|

Universal restriction vr.C v over.WaterBody {x e 4% | Vy e A% : (x, yeRT = yecTy

Value restriction > r.{a} 5 under.{S253} txedT|3yeaT: (x,y) € RT = y = a%}

Number restriction (>nR.C) > 2 Next_To.Monument {x e Az | Uy | (x,y) € RIA y € CIII >n}
(<nR.C) < 1 hasBoundingBox.Area txed® |yl @&y eRTAy e CT)<n)

Subsumption ¢c=D Bridge = Thoroughfare ctcpt

Concept definition C =D Avenue = Thoroughfare M 3 Next to.Monument cI=-pt

Concept assertion anic S252 : WaterBody afecT

Role assertion (a.b): R (8253, S252) : over (@t bty e RT

Figure 9: Description Logic Syntax and Interpretation

Under SROIQP), in addition to object-object relationships, an extension allows
the definition of object-value relationships (datatype roles) as well, with its range in the

domain of a certain data type based on [OWL Datatypes, 2012] e.g. Literal or Short.

There exists a plethora of tools for defining ontologies, managing knowledge and
integrating into frameworks. We use Protégé v.4.3 as an OWL ontology editor, Pellet
v.2.3.1 as our reasoner with full support for SROIQ®) expressivity along with
explanation services support, and OWL API v.3.4.5 for integrating our process into
semantic web services. We comply with ontologies from [GeoSPARQL, 2012], an
[OGC, 2014] standard since 2012, to allow querying of geospatial datasets under DE-9IM
relationships. We also retargeted OWL Link v.1.2.0 to be used with C# and C++. This
allows communications into OWL API from other GIS frameworks such as MapWindow

GIS v.4.7.5 which only supports extensions in C# plugins.

36

2.4.1 Reasoner Services and Justification

Semantic web reasoners generally provide multiple services for software agents to
operate on ontologies and the knowledge base. Common services under the SROIQ®
expressivity include context separation between Boxes (allows scalability, data fusion
and easier maintenance), satisfiability (subsumption, consistency, inference, coherence,
instance checking, and realization) even on large internet datasets, querying (such as with
SPARQL [McCarthy, 2005], defined in the following section) and applying rules,
defining annotations, and explanation. In addition, they perform reasoning under the
Open World Assumption (OWA) and without Unique Name Assumption (UNA). These,
respectively, allow the reasoning to remain neutral in the case of lack of knowledge and

always assume that two instances might be the same unless otherwise specified.

Of special interest for this work are the explanation services for SROIQ®
entailments as defined by Horridge, Parsia et al. in [Horridge et al., 2008 & 2009]. A
certain explanation for any entailment is a minimum set of ontology axioms that, when
combined, directly result in that entailment. Moreover, for every entailed axiom in the

knowledge base, it is possible to obtain all explanations deriving this axiom.

For example, consider a TBox definition such as:

Tunnel = 3Through. (NaturalObject U Structure)

U JUnder.(NaturalObject U Structure U Thoroughfare)

37

where the elements are simple classes and properties defined in the knowledge base. An
ABox defines {i2: NaturalObject, i3: Structure, i4:Throughfare, (il1,i2): Under,

(i1,i3): Through, (il,i4): Under}
After knowledge base realization, (i1: Tunnel) is entailed and three explanations given:

1- {(il, i4): Under, i4: Throughfare,
(Tunnel =
AThrough. (NaturalObject U Structure) U IUnder.(NaturalObject U
Structure U Thoroughfare))}

2- {(il, i2): Under, i2: NaturalObject,
(Tunnel =
AThrough. (NaturalObject U Structure) U IUnder.(NaturalObject U
Structure U Thoroughfare))}

3- {(il,i3):Through, i3: Structure, (Tunnel = 3AThrough. (NaturalObject U

Structure) U 3Under. (NaturalObject U Structure U Thoroughfare))}

The explanations are a list of ontology axioms that can be queried and analyzed.
Later in this thesis, we will show how we use these in order to calculate the resulting

uncertainty value of an entailment.

2.4.2 SPARQL and GeoSPARQL

SPARQL Protocol And RDF Query Language, referred to as SPARQL

[McCarthy, 2005], allows the querying of a connected Resource Description Framework

38

(RDF), a W3C specification, graph representing the KB. Version 1.1 became a W3C
recommendation on 21 March 2013. The SPARQL query language is similar to the SQL
query language in its syntax and allows formatting and retrieving KB data by pattern
matching. It also supports quantitative value testing as part of the query. The result of a

SPARQL query is returned in the form of a result set.

GeoSPARQL [GeoSPARQL, 2012] is an OGC standard since 2012. Its name
refers to SPARQL as it allows the querying of spatial and topological relations between
knowledge base elements using SPARQL. It defines an ontology that formalizes all the
DE-9IM relationships as well as equivalent concepts in some of the other topological
relations models such as the Egenhofer model [Egenhofer & Franzosa, 1991]. Inheriting
from this ontology and using the relationships it defines, the concepts are organized in
such a way that they can be queried using topological relations and SPARQL. It basically
defines a SpatialObject concept that can be a Feature or a Geometry (or both) meant to
inherit from by extending definitions of the General Feature Model, Simple Feature, and
Geometry ontologies developed and standardized by the OGC as well. The defined
relationships are binary properties relating two SpatialObject instances. It currently does
not implement characteristics on properties where relevant and the definition of every
property is mostly textual. It serves our purposes well since our features also inherit from
SpatialObject and by defining a certain spatial property between two instances in the
knowledge base, the properties can be queried and can result in inferences when
applicable. Ordnance Survey extends the GeoSPARQL ontology by adding some role

properties such as transitivity and symmetry.

39

2.5 Summary

In this chapter we have briefly provided all the background concepts essential for
the understanding of the work reported in the rest of this thesis. Specifically, we have
first described the various GIS sources, their standards, possible transformations of one
data type to another, the current state of the art in carrying out these transformations and
lastly the positioning of our work in the context of these transformations. Next we have
discussed the geospatial relationships among GIS geometric entities and their extensions
which are very important in our work on inferring features and their property values from
GIS data. Lastly, we have described semantic web technology, which is the primary
knowledge based technology we use to create our knowledge base and extract

information from it.

40

Chapter 3

Related Work

The following sections summarize an extended bibliography study undertaken in
domains of usage of semantics in GIS and the state-of-the-art in scene and image
understanding. We also bring out specific readings on producing geospecific information,
using different GIS data sets collectively for a specific task, and extracting information from

GIS data sets based on semantics.

3.1 On Standards

Landscapes and GIS data are a primary need for simulation, geological and
geographical studies, serious gaming, military and aerospace training, etc. Many studies
suggest that researchers and scientists are trying to represent underground cavities,
volumes and constitutions of different materials. While many available systems still

visualize the area of interest in 2D, 3D allows scientists to better visualize geological data

41

and understand the information in a spatial and collective manner. This requires standards

capable of supporting 3D representations.

A heavy emphasis is placed on standards that represent information collected in
the feature extraction process for the purposes of data sharing and reuse. Thus,
professionals and organizations are heavily involved in the definition and development of
standards for terrain and other similar data sources. However, these standards are not
necessarily based on how to represent the detailed 3D landscape. Rather, the information
layers are intended for querying purposes. Terrain reasoning has traditionally been
limited to spatial terrain queries such as Line of Sight (LOS), raycasts in the path of a
player, height above ground, etc... A little more work was done with Terrain reasoning
for Al purposes such as [Van der Sterren, 2001] and using A* path-finding [Hart et al.,
1968] algorithms, which can also be extended to 3D. Then major studies to push flexible
information representation into standards took place with the emergence of the ESRI
Shapefile standard and the ArcGIS database where users could represent more knowledge
in the geospatial database such as the work by [Stanzione, 2006] which uses Shapefile

information to identify mobility, cover and concealment points.

ESRI Shapefiles have thrived in the definition of surface feature information.
However, they lack formal semantics and users can interpret a Shapefile record
differently. In most cases, there is no formal semantics behind the classes and properties
used in the Shapefile record. Very few have attempted to convert GIS information
automatically to equivalent formal knowledge that can be used as a common knowledge

base.

42

3.2 Terrain Modeling Tools

Our main competition in terms of existing methods and tools is with real-time 3D
presentation support provided by existing state-of-the-art tools as depicted in Figure 5.
These include systems like Creator Terrain Studio (Multigen-Paradigm Inc.), Model
Librarian (ERDAS IMAGINE), and TerraVista (TerrEx). These allow the user to define a
ruleset to model the 3D digital environment. These tools define the environment offline
because they require considerable amount of user input in the process of building and
defining the final 3D environment. They make use of 3D model repositories, manual
explicit attributions and rules in order to generate the final landscape model to be
rendered by a corresponding 3D Renderer system that accepts their output format. We
will discuss each of these tools further below. These systems can create a 3D view of the
terrain by applying TIN techniques after points in space are extracted from the elevation
information. For other real world objects in the 3D environment, these systems typically
require a lot of user involvement to create the 3D representation. They construct the 3D
environment by layering the GIS data input layers available and then addressing detail of
individual objects primarily with pre-defined rule sets and considerable user input

including explicit attribution [McKeown et al., 2007].

Some systems are feature centric while others are elevation centric. This basically
determines which layer has more priority in the visual system. For example, should the
terrain be matched to the base of a building or should the building be extruded to touch
the terrain when these have a small gap? This happens often when the object (say, a

building) is not positioned on a flat surface. We consider our methodology to consist

43

more of a detail-oriented approach, in the sense that the above kinds of decisions are
dependent on the actual GIS source data available for the area. Depending on the
resolution of each data source, sometimes the elevation information would be altered to
match a detailed feature and sometimes a feature would be altered to fit the higher
resolution elevation data set available. This information would need to be encoded as part

of uncertainty of assertions in the knowledge.

GenesisRT [DVC, 2014] is a state-of-the-art tool that takes GIS source data and
dynamically constructs and generates the 3D view of the landscape in real-time. It uses a
set of fixed built-in rules that do not require a lot of user-involvement to define, but at the
expense of reduced customization and fidelity. The user has a working 3D landscape as
soon as the application is started, but not necessarily with details. No pre-processing is
needed though. This is a good example of what we mean by high turnaround time. To the
best of our knowledge, methods within GenesisRT do not make use of semantics on the
input GIS source data. The user has to manually create the input data and explicitly
attribute it in order to output the required detail. The user needs to match the properties in
the input to a set standardized by GenesisRT. If the needed properties are found,
GenesisRT will try to make use of them. For example, if the user specifies in a feature
record a property HDG with value 90 (degrees), the system will draw the feature with a
90 degree rotation from its model origin. Aircraft simulators typically use a highly
detailed model of the source and destination airports and all the intermediate terrain can
be of low level resolution. GenesisRT supports this need by providing the lowest level
resolution elevation data, DTED Level 0 (at 1km resolution), for the whole world by

default. GenesisRT also provides general airport, navigation aids, and tower listings as

44

well as coastline data by default. Low level of resolution elevation data would not be
sufficient to generate accurate coastlines. Therefore, GenesisRT formulated a way to
deform and re-level the terrain in order to match the coastline data available either by
default or in higher detail as added by the user. It applies this re-leveling algorithm
[Pendris, 2006] to shores, roads and buildings. This augments the scene with more
information than what is available in the input source data. The user can install high level

of detail areas using high resolution elevation, feature and texture sources.

Shapefiles can point to OpenFlight models to load high resolution buildings or
can describe the building using a defined set of parameters and a procedural model can
generate it. Typical information like elevation, position, orientation, footprint and type
(normally using an aerial shape with some attribution) are needed to generate the
building. The type could be used to generate a building with certain characteristics like a
texture map using a texture palette. For example, a large industrial building can be
considered in some area as either a hangar or a no-window structure. The texture is
automatically chosen to meet these conditions from the palette based on time of day and
concentration of sets of objects in order to allow for variety instead of uniformity in the
generated 3D scene. Another example is that the system automatically generates lights
along roads when the road is close to an airport (considered as a populated area) and it
illuminates those lights based on the time of day. In and around airfields, it also
automatically generates navigation lights and signs, route connections, and leveled areas
at a certain distance around airfields and landing pads. Leveling and terrain deformation
such as creating craters can be done at runtime using technology adopted from medical

simulation (surgery and tissue) [Woodward et al., 2001]. Initial parameters given to

45

GenesisRT would allow the generation of environmental conditions such as clouds, rain,
and storms. It has an embedded astronomical database to populate the sky based on the
viewer’s position and orientation in the case of a clear sky at night. All of these are
dynamic elements that are added at runtime to modify the scene based on hard coded
rules in the system and the position of the viewer in the environment. In spite of all the
above described capabilities, we consider hard-coded rules as not highly suitable for
creating accurate geospecific details as they cannot be easily checked for completeness or

consistency.

Model Librarian [ERDAS, 2014] allows the user to define geo-referenced 3D
models and maintain them in a repository with proper indexing and attribution. Here
again, these models are normally extracted by feature extraction techniques executed on
stereo imagery. This is also performed using rule-based mechanisms and manual editing
and attribution of the models and their headers in order to add detail when requesting the

needed model and building the 3D landscape.

Creator Terrain Studio [Presagis, 2014], CTS, is a 3D model editor based tool that
allows users to create, add and modify feature models from a model library in order to
construct the 3D model of the environment. The output is a large OpenFlight database
with referenced models and textures to create a large area environment. The user cannot
define rules in CTS to automate the process of building the 3D environment; rather
she/he uses common 3D model editing techniques to build the final 3D environment.
CTS is also used to define individual 3D models. It contains a helper wizard concept
which questions the user with choice arrays and parameters. This uses procedural

generation to create a 3D model close to what the user requires which can then be further

46

edited and refined. The inconvenience in using an OpenFlight database to construct the
3D environment is due to the need of building/cleaning all the objects manually and
adding them to the 3D environment. CTS makes the task of creating a detailed 3D
landscape much easier, but the 3D models still need to be constructed by a human-in-the-

loop sometimes with several human-years to create the needed environment.

Presagis Terra Vista [Presagis, 2014] allows the user to predefine a ruleset and
edit feature properties to model exactly how the final 3D digital environment will be
generated. There is a certain overhead for the user to define additional rules, but the
resulting output can be highly customized with the ruleset determining the final
visualization details. After building the environment, the output is a model in a selected
format. The rules are meant to describe what to do with a certain feature with specific
properties. For example, if a linear feature record has a property type with value
“Secondary Road”, the rule defines the texture and width to use along the linear object
and generates the components of the road’s 3D representation. The user has to define all
rules based on feature types and properties, and rules are parsed procedurally as listed.
The first rule matched will be executed in the build process and will generate the 3D
representation. For each feature object in the source data, the rule list is parsed and if a
matching rule exists, it is executed. While defining the rules, the user may edit feature
record properties to make the task easier. Users normally do so in order to reduce the
number of rules to define, usually at the cost of reduced detail. Also, it is common for
most feature source data to be delivered without properties, unless numerous hours are
spent by experts in attributing the records properly. This feature source data is the output

of systems such as BAE SocetSet [SocetSet, 2014] or ERDAS IMAGINE [ERDAS,

47

2014] which in turn are based on pattern recognition and feature extraction

methodologies.

In 2012, Presagis released a new technology named SEGen Server [Presagis,
2014] developed to create higher definition imagery based on Shapefile information and
rules such as, North Africa is mostly desert with change of composition and terrain based
on height. The imagery is created based on Shapefile data such as road information and
some synthetic additions such as roads, waterways, buildings, etc... just to make the
imagery look better but is not precise compared to the real world. There is clearly a
challenge in having detail, accuracy and high-automation in a single process and most

processes are relying on static rule bases, but with no automatic inferencing.

Figure 10: NGATE’s Detection of Elevations [SocetSet, 2014]

SocetSet from BAE Systems [SocetSet, 2014] is a toolset using the Next-

Generation Automatic Terrain Extraction (NGATE) module to allow the generation of

48

elevations and features from aerial photographs. NGATE is a tool that processes stereo
imagery with very high detail and outputs a 3m detailed elevation model [Zhang et al.,
2007]. According to the authors, 3m is enough detail in order to generate any large object
like buildings. SocetSet uses the DTM acquired from the NGATE module to
automatically identify objects using constant elevation and flat areas. It can then generate
the 3D representation using the determined object footprint, elevation values and a
generation template (see Figure 10). It then applies a texture to the model based on the
image information and some predefined texture palette. The user is required to enter
manual information to help in the identification of the footprint. The user also has to
define the generation templates and the texture palettes. The final output can be exported
using the OpenFlight standard which allows it to be added to a 3D scene. SocetSet is also
able to extract general features like roads, parking lots and trees. It can create the
corresponding feature maps based on manual entry of missing information about the
features of the acquired objects. There is no mention and no references were found that
indicate that semantics is or will be part of this technology’s roadmap. It requires a lot of
user interaction and per-object workflow to define the objects set. It also does not address

extraction of information using collective data fusion from multiple source data sets.

Google Inc. has been a major player in the area of mapping and 3D landscape
visualization for the past few years. With the creation of Google Maps® and Google
Earth® and their open ended integrations available for any user having access to the
internet, many personal and commercial centers were able to create useful applications
utilizing Google’s technology. Google Maps, for example, has an API that would allow

the control of how the map is shown and can be used to augment the presented map or

49

show information in a different style. It provides an API that would communicate with
the Google Maps server to query and display existing information. New information can
then be added to the local view of the map and the database. Google Earth, on the other
hand, can be used to display custom 3D models in its 3D visual environment. The KML
standard used by this software and developed by Google Inc. allows the description of 3D
objects, their visual appearance, as well as the feature information by meta-tagging. In
both products, the custom information added to the objects would be used by the server
resulting in an increased accuracy in the query results. We are not aware of any formal
semantics used in this process, but some form of semantics is used in order to give better
results without the need of detailed meta-tags in the added objects or extensive manual
user input. Google uses satellite images and geo-referenced data stored in databases to
retrieve information for user’s queries. It does not make use of proper GIS data and raw
data as in the simulation and earth sciences industries. The emphasis is on speed and on
creating a good visual impression on their users, and very little or none on automatically

generating high detail 3D representations.

3.3 Methods in Scene Understanding

At a task that humans do extremely well, computers need the necessary domain
knowledge and specialized feature recognition methods in order to recognize a certain set
of objects in a certain photograph or more generally, in the presented digital media. In
computer vision, visual object recognition and automated feature extraction are always

addressed topics. Common techniques used to identify features include filtering and

50

image segmentation [Sirakov, 2006]. These have proven very effective in identifying
roads, railways, power lines over terrain and in some cases even rivers. They are used
mostly to select those pictures or media that fit the search query (although specific set
training is required), a topic of research that commonly goes by the name content based
image retrieval (CBIR). An application of CBIR and automated image feature extraction
in the domain of GIS and military satellite reconnaissance is described in [ISAR, 2007]
where the US navy is looking for ways to identify threats and targets using real-time
satellite imagery of the ocean. They are seeking not only to detect a ship but also to
identify its type, model and classification based on a model library and a trained system.
The proposal for this research effort was closed in January 2007 and the project is
therefore under development. Unfortunately, we cannot learn about the technology being
implemented as the details are not available to the public with ITAR security
classification. Similarly, Scene Understanding, also known as Image Understanding, is
primarily concerned with feature detection and categorization of image representations of
scenes. Feature extraction techniques are used in order to extract objects that match a
certain criteria based on certainty factor. It is currently an intensely researched discipline
but the technology is far from generic and work is still on specific cases and it often
breaks when generalized or a new context or image is given. The current push in image
based scene analysis in the GIS domain is towards object-based image analysis (OBIA),

more specifically, GEOBIA.

Traditional pattern analysis techniques focus on extracting an element and
comparing it to a specific ground truth pattern and if certainty is considerable, the image

is attributed or categorized accordingly. There is relatively lower focus on extracting the

51

actual object with its details. In most cases, when an object is suitably
identified/categorized, there is no more effort to further process it, such as required for
3D representation. Examples of such work are [Delenne et al., 2006] and [Zhang et al.,
2004]. [Jain et al., 1990] describes the process of analyzing a range image as detecting
similar adjacent pixels that would constitute parts. Multiple adjacent parts would
constitute a feature and multiple features would constitute a specific high-level object.
Methodologies focus on detecting objects by making use of Bayesian models on the
detected parts or by filtering and making pixels for a set of parts more obvious for
detecting a specific object. More recent research addresses the classification and
categorization of high-resolution satellite imagery and objects using novel segmentation
methods and using other data sources such as stereo photography or LIDAR. Most of
these studies focus on segmenting the input image using new methodologies such as
landscape metrics that is very different from traditional patch-matrix models. A critique
of the patch-matrix model can be found in [Blaschke et al., 2003]. The purpose of
segmentation is categorization of the image and is not for creating a detailed landscape
representation for use in other applications. New computer vision techniques such as
Active Vision try to identify specific objects using a machine learning system in order to
categorize the image properly. Categorizing is often at a high-level of what the image is
about and is not about detail. The shift from pixel-based methodologies to object-based
methodologies was introduced through a sub-discipline of scene understanding of
satellite imagery, currently called object-based image analysis or OBIA. This area of
research addresses the recognition of objects in images based on detected patterns at the

object level instead [Lang & Blaschke, 2006]. It focuses on detecting simple objects

52

using image rules that will allow the identification of the complex objects [Lang,
Albrecht, & Blaschke, 2006]. Using object-based methodologies the segmentation and
detection of an object in an image is much more successful when compared to pixel-
based approaches. In summary, it segments the image based on a best probability that a
certain segment has the same object. It combines segments if the 2 segments are
determined to contain the same object. As an example, [Blundell et al., 2006] defines a
neural network to fuse and identify objects using parts detected from pixel values.
Segmentation would use spatial constraints such as white lines surrounded by grass or
asphalt. GEOBIA is a very recent specific of OBIA and addresses scalable satellite
imagery as its input instead of general photographic images. The current research focus in
GEOBIA is on man-made objects like buildings and roads, and natural tree distribution

and forests that can be viewed in satellite photographs.

The use of multiple sources for scene understanding is recommended by many. In
particular, [Deng et al., 2006] states that redundant data in different sources would
provide less need for user interaction and authentication. Using multiple data sources to
analyze images and extract information, some researchers have targeted identifying
composition of an image and others have addressed 3D visualization of extracted objects.
For example, [De Kok et al., 2006] uses multispectral imagery along with images over
years of a certain area to detect tree crowns in an expanding or shrinking forest along
with textures to derive the composition of the forest. They retrieve properties that were
extracted from the segmentation process as values which are then used as recognized
object parameters. [Deng et al., 2006] uses LIDAR in addition to image sequences to

provide enough information for a system to automatically extract 3D buildings and roads

53

from the LIDAR information with accurate segmentation information from the imagery.
[Opitz et al., 2006] discusses the extraction of 3D objects from remotely sensed range

images from both terrestrial and areal sources.

Semantics in the process of visual object recognition is an active topic of research.
[Marszalek et al., 2007] and [Town, 2004] show that, using semantics, higher
probabilities for positive matches can be achieved. Also, [Vogel et al.,, 2007] has
attempted scene categorization by sub-region classification to semantic classes. The
layout of the semantic classes suggested the category of the scene in the photograph.
Classification of the sub-regions is based on processing features like high spatial

frequency associated with a semantic feature.

In summary, reasoning on collective information from different sources is not the
current emphasis in scene understanding/pattern recognition as their focus is on
segmentation, categorization and selection from a photographic image. They do not
address the issue of merging the information in the different data sets acquired from
different sources such as sensors or surveys nor do they address different data input other
than pixel and color information. These systems, including those in specific areas such as
computer vision, scene understanding and feature extraction, focus on classification
methodologies which restrict the extraction of information to a class from a predefined
set. The spatial reasoning mechanisms used in approaches such as GEOBIA are local to a
specific dataset. The knowledge is not transferred with the output that will be consumed
by other systems. Therefore, some knowledge is lost because of the change in context.
We find that collective knowledge would add otherwise unavailable information and

therefore help create more detailed representations. Furthermore, the segmentation and

54

filtering techniques being published only apply to imagery and pixel values; they do not
apply to feature and elevation data sets and these datasets do not necessarily come only
from satellite imagery feature and elevation extraction as presented in Figure 4. The use
of such technologies in our work would find its place in the implementation of data

extractors part of the framework defined later in Chapters 4 and 5.

3.4 Applications of Formal Knowledge to GIS data

Within the GIS domain, over the last few years, semantics has become one of the
most prominent research themes, partly aimed at addressing this problem of deriving
information that is collectively but not explicitly present in source data. Such concepts as
ontology-driven geographic information systems and the geospatial Semantic Web have
fuelled a plethora of research in semantic similarity. These topics complement the
traditional focus in GIS research, which has dealt primarily with geometric entities, their
spatial relations, and efficient data structures. Most recent uses adopt semantics mainly
for the reason of integration of the different data sets with regard to GIS related queries.
Concepts from different datasets in different systems are being mapped based on
meaning. Prior to this, data sets were independent and merging them was all being done
manually. Our research focuses on the investigation of the role of semantics in the
synthesis of 3D landscape representations from GIS source data. Below are some

examples of previous applications of formal knowledge in GIS.

55

[Brodaric et al., 2002] worked on the reclassification of earth materials for a
certain area. This can be considered a form of feature information about a certain area.
They used specific domain knowledge of materials in order to classify certain volumes of
materials more accurately. However, this was not done using prevailing ontology and
knowledge representation standards. Information sharing between different systems is

difficult. Creating detailed landscapes was not their focus.

Earth science studies have recently gained interest in formalizing the concepts and
definitions and in knowledge sharing between various systems [Goodwin, 2005].
[Wiegand et al., 2007] introduced semantic web to automate geospatial data retrieval
using a task-based ontology for immediate response personnel. This technology helps the
personnel in accurately finding needed data sources, from the internet, based on the task
description. Earth sciences are among the first domains to attempt the use of semantics
with GIS source data. Taxonomies are being used for formal definition mapping between
different systems. This allows consistent information sharing and proper identification of
concepts. Ordinance Survey, Great Britain’s National Mapping Agency, for example, is
developing an integrated system and ontology to share information consistently between
all their systems for querying purposes [Mizen et al., 2005]. They are also using inference
services to correctly classify information in response to a query. Due to the formal
definitions of concepts, these results can also be used by computer programs. To achieve
this, two types of ontologies were created and linked. Bridge ontologies bridging
concepts together and Data ontologies linking concepts to specific data formats. These
ontologies work together with the actual data in order to provide search queries with

needed results; for example, where is the closest mall next to Montreal’s Town Hall?

56

However, this does not address extraction of precise parameter values needed to produce

geospecific 3D models in the region.

[Hummel et al., 2008] uses Semantic Web in scene understanding of urban road
intersections in image sequences. The use of description logic in this context allowed a
more generic approach in detecting types of complex road intersections and to infer
information about the involved lanes in the intersection. This information was then used
to define and predict movements and restrictions of cars. The paper approaches the
problem by TBox definition and ABox dynamic construction, as data becomes available
from the image sensor sequences and the land surveying office map. We adopt a similar

approach in generating the ABox dynamically, but for defining geospecific 3D models.

[Vanegas et al., 2009] approaches the problem of visualizing simulated urban
spaces in the future by inferring on gathered data such as the original street network and
aerial imagery. The results augment the original urban layout by subdividing parcels
based on rules and inferring urban layouts at any time step based on some user input
parameters such as population growth. There is no mention in using Semantic Web
technology and although they are inferring on properties for the purposes of visualization,

they are not concerned with detailed representations of real world objects.

Barry Bitters, at Florida State University, has been working since 2005 on an
ontology classification of all objects in the visual domain [Bitters, 2005]. Bitters
mentions that his work has contributed to a 14,000 unique concept taxonomy in the visual
objects domain and 1,100 3D models that represent some of these concepts. The result of

his work is publicly available on the internet. It is in the form of a visual 3D model

57

library organized in a taxonomy of Visual Objects, named the Visual Objects Taxonomy
and Thesaurus (VOTT). This library defines a comprehensive list of visual objects, their
classification and common properties but is not appropriate for inferencing as it lacks
formal definitions of concepts. His primary objective was to have a common ground for a
concept and definition library for all systems to reference along with their corresponding
3D models to reuse. This work can be useful in a 3D scene generator where feature
source data defines concepts and correct models mapped from the concept identifiers can
be automatically retrieved. The user defines the feature data, and includes the concept
identifier it represents. Bitters also investigated the automatic generation of details in the
environment such as selecting textures for road signage based on road layouts and the
generation of vegetation based on statistical input [Bitters, 2007]. He also worked on
enhancing scene generation based on the probability of missing elements such as
mailboxes next to houses or stop signs at intersections [Bitters, 2008]. He did not
formulate a process for determining the existence of such objects and admits of a high

failure rate in most realistic cases.

[Fonseca et al., 2002] describes the benefits of using ontologies (not necessarily
Semantic Web) in order to integrate information of different sources and to determine
embedded knowledge in the collective data sources to be used by client applications. The
authors define the benefits and provide a methodology for defining and layering semantic
systems to achieve needed results. This work is oriented towards finding results to user
queries and providing more accurate information that cannot be provided by current GIS
database systems. This, however, does not address the specific problems we have with

facts extraction, spatial reasoning, and details (specializations) of the 3D representation

58

of entities in the landscape. The authors also argue that ontologies are needed on different
levels such as application, domain and specific source data type. This works well in our
case too, as we consider that some semantic rules are general while others are specific to
a certain region. The user in this case will only need to alter the specific ontology needed
for their area of concern. While their work does show the importance of using ontologies
for uncovering embedded knowledge from collective data sources, it does not provide a

solution for our problem.

[Arpinar et al., 2006] suggests a methodology to develop GIS ontologies as an
extension to the Semantic Web mainly for the purpose of geo-referencing documents
such as tasks and data. Their methodology can be used in our case for the same purpose
of formalizing definitions of data objects. We plan to use this formal information to
derive details about the data objects for use in the 3D representation of the landscape.
Again, in this case, while their work introduces the use of semantic web in the GIS

domain, they also do not provide a solution to our problem, or anything similar.

In [Kalogerakis et al., 2006] and [Yin et al., 2009], use of ontologies for
generating 3D content was mentioned. While the first addresses the generation of
building models from architectural drawings, the second uses ontologies to generate
graphics content through knowledge-driven visualization. However, neither of the
described techniques addresses inferencing based on available data in the knowledge base

nor do they address uncertainty in the data as part of knowledge assertions.

We see that, in all earlier work reviewed above, there is no mention about using

knowledge in order to fuse different datasets together and allow inference on assertions

59

for the purposes of creating geospecific 3D models. The above works do show that
Semantic Web technology is promising for defining ontologies and semantics in GIS
through its inference services. Inferencing allows a certain system to obtain the most
specific information of a certain object and its class and properties provided the
information is available in the knowledge base. It also offers rule order-independence
using description logic, unlike rule-based systems which are hard to maintain and where
the first rule matched will have precedence. Also, Semantic Web offers services to check
the semantics defined in the ontology and verify its coherence. Importantly, it serves our
purpose in the way we would like the system to assert information about instances

representing 3D models and their details.

3.5 Uncertainty and the Semantic Web

As previously mentioned, there are uncertainties associated with GIS data. For
our system to be able to transfer such uncertainties to a higher level of processing for
resolution by end-application decision or by user, it needs to address uncertainties that are
associated with such data assertions and their entailments. This section provides a review

of uncertainty models and methods as part of Semantic Web.

In [Poole et al., 2009], the separation of probabilities and meanings is advocated.
Our methodology uses similar principles to define knowledge base terminology axioms
in a way that allows this separation. Essentially, instead of defining concepts using the

terminology hierarchy, classes and property domains and ranges, each definition is

60

associated a discrete set of conditions which is called the differentia that can uniquely
define it from other classes in its scope (there is no need for probability representation
under this context). Those conditions are in the form of classes, object-object and object-
value relationships. The relationships can also be defined with restrictions on their
domain or range under SROIQ®) . In the case of classes, the definition would be
recursive with the basic constructs being relationships and restrictions. The relationships
are asserted with a true or false value in the knowledge base as described previously. But
these relationships could also represent a random variable that can depend on

probabilities. We consider representing the uncertainty in this context more appropriate.

Uncertainty can be modeled using probability theory, Zadeh semantics or similar
logics. Probability theory is not suitable for our needs as we do not deal with events
having outcomes from a closed sample space. Others like [Lukasiewicz, 2008] have
attempted to use probability theory in semantic web by defining a concept-concept
probability interval association such as (Flies, Bird)[0.90,0.95] and
(Wings, Bird)[0.99, 1.0] and answering queries such as “if I is a Bird that doesn’t fly
what are the values of I: (Flies) and I: (Wings)?” These methods model probabilities in
the ontology and attempt to represent imprecise information. In our case, we address
uncertainties in the acquired knowledge about instances and their assertions. Consider the

following example:

Tunnel = 3Through. (NaturalObject U Structure)

U JUnder.(NaturalObject U Structure U Thoroughfare)

61

The two relationships of Through and Under are mutually exclusive. An object
with a relationship of Through might or might not have a relationship of Under. Let’s
assume for an instance [/ the probability of occurrence of Through with some
NaturalObject to be 0.5 and that of Under with a different object 0.5 as well. Using
regular probability theory (P,,p = P4 + Pg) we have P(I: Tunnel) = 0.5+ 0.5 = 1.0
suggesting that this instance is definitely of type Tunnel. The answer here should be 0.5
since either Through or Under are required to classify I as a Tunnel. For this reason, we
use the Zadeh logic based on [Zadeh, 1965] and [Gerla, 1994]. [Bobillo & Straccia, 2011]
recently summarized the work of probability and possibility in semantic web as shown in

Figure 11. They also discussed the advantages/disadvantages of each family.

Some popular fuzzy logics.

Family t-Norma ® B t-Conorma & f NegationSw Implicationa = f
Zadeh min{c, f} max{c, f} 11—« max{1 — «, i}

. . 1, a=0 1, a<B
Godel min{c, f} max{c, f} 0. @ >0 B, a>p
Lukasiewicz ~ max{w +f — 1,0} min{a + B, 1} 1—a min{l —a 4 B, 1}

_ 1, a=0 1, a<p
Product a-p atp—a-p IO, a>0 Bla, a > B

Figure 11: Popular Fuzzy Logics (After [Bobillo & Straccia, 2011])

We are particularly interested in conjunction (t-Norm) and disjunction (t-Conorm)
of two axioms a and [Srepresented by their certainty values under the Zadeh logic as we
think these are sufficient and necessary for our instance class entailments. This logic also

extends to multiple variables.

Much of the related work in the domain of possibilistic logic in semantic web is
described by Straccia. Furthermore, we couldn’t find any actual reasoner that could serve

our purpose and address our problem. Some reasoners such as FuzzyDL [Bobillo &

62

Straccia, 2011], DeLorean [Bobillo et al., 2012] and Pronto [Klinov & Parsia, 2013] are
overly complex to what is needed by our process as they try to address the generic
problem of uncertainty in knowledge and others were described but not available in the
public domain. There also exist some query languages that handle uncertainty by
conditional querying. We have opted however to use direct reasoner access rather than
querying in our process in order to gain direct access to axioms within the knowledge
base. Moreover, we did not find much work in uncertainty under SROIQ® beyond the
work of Lukasiewicz and Straccia which mainly addresses SHOIN (P but probably can
be extended to handle complex role inclusion and qualified restrictions axioms. Even
with the availability of such reasoners based on an extended expressivity such as
P — SHOIN®) (probabilistic-SHOIN (), the complexity class of reasoning is increased
to FPNEXPTIME from SHOINP)’s NEXPTIME . FPNEXPTIME js the functional analog of
PNEXPTIME \which contains all problems that are decidable in polynomial time on a

deterministic Turing machine with the help of an oracle for NEXPTIME [Lukasiewicz,

2008] where EXPTIME € NEXPTIME < PNEXPTIME

We, therefore, define our own method of dealing with uncertainty which we will

describe later.

63

Chapter 4

Knowledge Base and 3D Landscape Creation

In this chapter, we first provide the formulation of the process for transforming
GIS source data (captured through sensing on the real world 3D, refer to Figure 4) for a
given ROI into a knowledge base and then the process of creating a detailed 3D
landscape representation by querying the knowledge base for 3D entities in the given
ROI. We show that, under some assumptions, this process creates a detailed 3D digital
geometry definition for every entity present explicitly or implicitly in the input GIS
source data sets. We show how an entity is mapped as assertions, how it gets specialized
to its specific class and how its property values are extracted to create the detailed
representation. Entity specialization is best explained with an example. A linear element
entity in the shapefile may get specialized first to a thoroughfare and then to a bridge
entity, even if the bridge membership is not explicitly present as a property in the
shapefile. We may also refer to entity generalization. For example, a bridge entity may be

generalized to a linear element entity.

64

GIS Data 3D Real 3D Schema

Sources ™\
I_I:

Shapes n
-—.—/-_
l_I:

Elevations Knowledge Base
—-—/—_ :
l_I:

Semantic Engine
Services

KB2Scene

Imagery |
-—._/-_

Geometry
Definition Engine

= Interpreted from OWL Link OWL Link
----- > Uses omms omms

Figure 12: GIS2Geometry System and Process

Reasoner

Ortholmagery I

7
Imagery

3TN
h
Vector Feature
~
Recagnition

Geo-Referenced
Imagery

-~ -Rulesjon band values
-multi{band series

Texture

draping Extractors Knowledge Base
(Scene understanding) (ontologies include Rules)

Triangulation
=TIN (polygons)

g o

— => Refinement
...... > Uses
—> Mathematical transformation

3D Representation
pecificity by generic elem

- - > Scene understanding\uncertainty

Figure 13: Data Transformations and Usage in our Process

65

Our overall process consists of the following stages. The entities defined in
Shapefiles are added to the knowledge base as initial instances along with their class,
their properties and relationships. This is done using a Source Data ontology, which is
defined using the Shapefile’s schema and domain elements. The entities in this initial
knowledge base are specialized by extracting entity-entity relationships and required
property values. This is done using the Data Extractors framework which also addresses
spatial and topological relationships and their uncertainties. The knowledge base is
modified and by computationally resolving implicit information with the help of rules
defined by an ontology (the Domain ontology), explicit information will surface in the
knowledge base. This is used to generate geospecific 3D models for that ROI. The above
process is summarized diagrammatically and shown in Figure 12. There are three distinct

sections in the figure:

(1) The source data collections (input) on the left side in the figure and labeled

GIS Data Sources.

(2) The ontologies A, B and C shown at the top that service the sub processes,
where, ontology B is a common domain ontology that defines the transportation and
visible entities domain (A'), and A and C are bridge ontologies that define a mapping

between domain and data concepts.

(3) The semantic web based subprocesses GIS2KB and KB2Scene which interact
with and query the knowledge base using the reasoner system. The knowledge base is

persistent information as part of the reasoner system.

66

In order to allow integration using existing mapping tools and a variety of
services, we have defined subprocess interactions using the OWL Link protocol [Liebig
et al., 2008]. We chose the OWL2 language [OWL2, 2012] with SROIQ® expressivity
for our semantic system allowing us to define object-value relationships and restrictions.

Figure 13 shows the data transformations in our process compared to Figure 4.

4.1 Theoretical Formulation

4.1.1 Definitions

= 3D Real: the real world 3D Region of Interest (terrain + entities belonging to ROI)
= A" the domain of discourse (3D transportation and visible entities)

= 3D Digital: The set of all 3D digital entities needed to represent the landscape for the

given ROI (representing 3D Real).

= Sgis: € 3D Real. The collection of all sensed GIS source data sets available for the
given ROL. Sgis = Ss U S U Sg, where Ss, S, Sg denote the collection of all shapefile
records, imagery rasters, and elevation rasters respectively. Sgis is implicitly assumed
to be a collection of all the entities needed to represent the landscape digitally.
Entities belong to classes and may have properties with values. We will denote the
class of an entity x using the subscript ¢ (x.) and the properties using subscript p (x,).
The detailed data for defining each entity in the landscape may be available in the

shapefile records, but may also be inferred from the collection of data sets.

67

3D Schema: Procedural definitions {G,} for all possible 3D entities in 3D Real, 3D
Schema € A'. Each Gy, is a procedure for generating the detailed 3D representation
for a given entity class, with property values, in the domain of discourse. For

demonstration of our process, we have chosen the transportation domain.

An ontology: ontology, say O, under SROIQ™ which includes Oc, Og, Op, and O
denoting set of class, object property (role), data property (datatype role), and
annotation axioms respectively. A(R(C, Ry), R,) € O where A€ Oa, RE Og, C € Oc,
Ry € Oc, and R. defines the value of the annotation. Similarly, A(P(C,Py),P,) € O
where A € Oy, P € Op, C € Oc¢, Pr € [OWL Datatypes, 2012], and P. defines the value

of the annotation.

SD: Source Data ontology relies on the Simple Features ontology defined by OGC.
The attributes mapping axioms are defined as a subontology. SD provides a mapping

from Sg to instances of TD (TD < SD).

TD: Transportation Domain ontology under A', relies on the Visual Objects
Taxonomy and Thesaurus (VOTT) and spatial relations ontology [GeoSPARQL,
2012]. The properties and extractor annotation axioms are defined as a subontology

of the TD hierarchy.

RC: Representation Capabilities ontology provides a mapping from TD to 3D

Schema according to all Gy, definitions.
TBox: set of ontologies defining terminology axioms.

ABox: set of assertional (instance) axioms w.r.t. TBox. Each Instance I € ABox

based on a TBox O is associated with a set Ic which defines its class assertions € Oc,

68

Ir defines its object relationships € Og, and Ip defines its data properties S Op. Each

instance corresponds to a unique entity in Sgis.

= KB: Knowledge Base composed of all axioms in TBox and ABox.

4.1.2 Assumptions

Assumption 1: Sgis contains a full representation (implicit or explicit) for 3D
Real. That is, every entity e of interest in 3D Real, is present in Sgis, at least in its
generalized form, say x. Further, there must exist data in Sgis which supports the

derivation of relationships and required property values to specialize x to the entity e.

Assumption 2: there exists a set of model definitions (G,, with parameter values)
belonging to 3D Schema such that 3D Real can be represented to the desired detail by

setting values for the parameters of every model necessary to represent 3D Real.

Assumption 3: (follows from semantic web technology) an instance I € KB
always has an equivalent I; € KB; iff KB £ KB; (KB entails KB;) where both are sets of
axioms under the same expressivity constraints and every element of KB; is entailed by

KB. We also denote that KB = [; and I; € I.

Based on the above assumptions, we show that (1) Every entity in Sgis will be
created in the form of an instance in the knowledge base, (2) All required property values
for entities in the landscape representation are extracted and available to create the
detailed landscape representation, and (3) Using the knowledge base, a 3D digital

representation is created for every entity in Sgis with detail determined by the RC

69

ontology. It follows that due to the knowledge base containing all information including
uncertainties about asserted and entailed assertions, these uncertainties are also available
for use in the end-application. We shall discuss our approach for dealing with uncertainty
associated with entities, property values and inter-entity relationships in Chapter 6. In the
rest of this chapter we will discuss the different mappings needed to create the knowledge

base and the mappings needed to create the 3D landscape representation.

An initial mapping using explicit data is performed to create the initial knowledge
base. Vector data sources such as Shapefiles define related entities and their properties
and, therefore, a knowledge graph could be constructed. More generally, any explicit data
source that can be transformed to entities and their properties has a similar associated
knowledge graph. Such a graph is converted to an equivalent knowledge base
representation based on a compatible ontology which defines the mapping (from the data
concepts to the domain concepts). Ontologies for mapping Shapefiles to knowledge base
have been attempted by several earlier methods such as [Kim et al., 2013] as well as
multiple government mapping agencies like Ordnance Survey, U.S. Geological Survey
and Natural Resources Canada. We, however, had to create our own ontology (SD) for
the mapping of entities or entity components and their relationships. For example,
mapping individual segment parts with connectivity properties to the knowledge base as
children of a linear instance results in higher level of detail (and more knowledge) when
compared to simply creating a linear instance. This is what allows us to identify that a

certain segment is actually part of a different classification such as a bridge.

We then determine entity-entity relationships (object relationships) using

geometric computations and add these as object properties to the knowledge base. The

70

data and object properties added take the form of KB assertions. The knowledge base is
then reasoned upon (checked for consistency and realized). ABox Realization ensures
that every new assertion that can be inferred from existing knowledge is added to the KB.
New assertions may result in a possible entailment of a different specialization class for
an instance. For example, a linear element may get classified to a bridge class as new
knowledge surfaces in the form of assertions. The knowledge base is then enriched using
data extractors for property values and entity relationships (Filling) and realized again.
This is repeated until there is no change to the KB. The realized knowledge base (through
subsumption compute service) is referred to as KB;. We shall describe the formulation of

these steps below.

4.1.3 Basic Mapping of GIS Sources

Given Sgis, the first mapping step can, in general, be performed on the complete
Sais collection including all raster data sets. However, we will discuss it specifically for
shapefiles. This does not affect the generality of this mapping, since the application of
computer vision and scene understanding techniques would result in corresponding

additions/modifications to be made to shapefiles.

Consider a function s_mapping that converts entities in Ss to ABox axioms:

s_mapping = {Ss = ABox}: Vx € Sg,3] € ABox

where I denotes the initial instance representing entity x in Sg.

71

Definition (complete ontology): An SD (or RC) ontology is said to be complete
if it provides a mapping for every entity or entity property in Sg into the knowledge base
(or vice-versa) using a corresponding set of axioms referred to as the instance in the
ABox. Similarly, the TD ontology is said to be complete if it defines the required domain
knowledge for inferencing as well as all entity relationships and properties, and their

extractor associations required for the needed representation.

Lemma 1 (all entities are mapped): Given Assumption 1 and a complete SD
ontology, all entities in Sg are retrieved and will be present uniquely in the form of

instances in the knowledge base.

Proof: Consider an entity x that is present in Ss for which an equivalent / does not
belong to KB after applying s mapping. This can happen if, for this entity x, s mapping
did not create the equivalent axioms in ABox from its representation in Ss. There are 3

cases to be considered:

1. xis present explicitly in Ss
2. xis implicitly present in S
3. xis present in Sy, but not in an unambiguous manner.

If x is present explicitly in Sg and 7 is not in KB then it implies that a mapping
(S¢ = ABox) for x is not defined; but this is not possible if the SD ontology is
complete.

If x is present implicitly in Ss, then some mapping, as defined by case 1, (S5 —

ABox) would create axioms {As;, Asy, ... , Asn} © ABox where an inference rule

72

(Ag1 N Ag, ...N Agy) — I in SD ontology should exist. If no 7 exists then SD ontology
cannot be complete or KB realization is incorrect.

If x is represented ambiguously where two factual versions exist in implicit or
explicit form, then assuming a mapping (by cases 1 or 2) represented as Sg; = ABox
yields a set of axioms A; & ABox and another mapping S5, = ABox yields a set of
axioms A, € ABox, then two cases exist where a and b are some concepts in the KB:

a. KBE(anb< 1) where L is the bottom concept; the axioms contradict (are

unsatisfiable) and no interpretation exists based on definitions in SD ontology

b. Otherwise, the axioms are complementary and are not contradicting based on

SD ontology

In case a, ABox Realization will result in a clash which explains the contradiction

and allows the user to correct the input. In case b, the result is non-contradicting

information about x. If no [/ exists with the appropriate assertions then SD

ontology is incomplete or KB realization is incorrect.

If a complete SD ontology exists then a mapping {S¢ = ABox} exists for every
entity x in Sg. Under Assumption 1, s mapping creates all instances of entities in Sg.
Depending on its class, each entity will have object properties (spatial relations with other
entities) and data properties (values), some of which may be filled by the data already

available in Ss.

Corollary 1: Sg © 3D Real. No entity representation in 3D Real can be
reproduced in 3D Digital based on 3D Schema if it does not exist in Ss. However, even a

generalized definition (e.g. linear thoroughfare) is sufficient.

73

Our s_mapping function creates knowledge base assertions based on the concepts
and relationships. The input of s mapping is defined as the set of feature records in Sg
and a complete SD ontology. Its range is an ABox with instances and associated

properties (filled or unfilled) as part of a KB.
The s_mapping function can be formally expressed as follows (using DL syntax):

Vx € Sg,3I € ABox, ((I, yv):yc) € ABox \ I, = x; € SD¢,Vy € x,,
((YC € SDp) N (AR(xc, Ry) €SD)N(R=y. Ny, € RV))

V) ((J’c € SDp) N 3P (x., Py) ESD)N(P=y. Ny, € PV))

The SD ontology is then used to map basic spatial concepts to concepts in TD.

4.1.4 Adding Relationships

In our interpretation domain, relationships between entities are mainly based on
topological relations which can be derived from shape geometry, layout, visible
precedence in imagery, or profile in elevation. In all these cases, relationship evaluation
is independent from inference; the evaluation does not change in the case of a different
subclass. When an entity is added as an instance to the KB, it is added on the basis of an
initial shape class as point, linear or areal as defined by the Shapefile schema. These are
enough to evaluate relationships in our case. We, therefore, only need to process

relationships once after initial mapping.

A relationship evaluator R, is associated with a relationship R in the ontology

through an annotation on R such that 3A(R, R,). It implements a modular method that

74

extracts the validity of a certain relationship between two entities using Sgis. The
existence of the relationship is extracted by analyzing the topological relations between
the two entities using their definitions, geometries and/or images. The relationship
between two entities can be defined to exist or can be defined to be nonexistent (different

from unknown). Both of these situations are expressed under our expressivity.

The »_mapping function is formally expressed as:

v, I, € ABox,YR(l,,, I,.) € SD,

((Uy 1):R U (I3, 1):R) & ABox) — (3A(R, R,) € SD, Iy, 1): R, € ABox)

The domain of »_mapping is defined as the set of all KB Instances while the range
is a set of KB instances complete with associated relationships. It resolves possible
relationships between every two instances in the KB. R, returns the relationship or the
negative of the relationship as described above. Adding relationships are essential for
most inferencing. As described earlier, each definition is associated with a discrete set of

object and data properties that can uniquely distinguish it from other classes in its scope.

Lemma 2 (adding relationships): All relationships between KB; instances are

evaluated.

Proof: Assume a relationship R such that (I;,1,): R € ABox and —(I;,I,):R €
ABox after r_mapping, then either (1) R(I;., I.) € SD, (2) A(R,R,) & SDy4, or (3) R, is
not properly implemented. Case (1) contradicts the definition of complete SD or TD
ontologies. In case (2), the relationship evaluator R, violates its definition since no

annotation associating it to the semantic relationship it represents exists in SD. In case

75

(3), the implementation of R, is incomplete if the evaluator fails to return the relationship

or its negative if they exist in Sgs.

It should be noted that after s mapping and r_mapping, KB will include instances
for every entity in Sg as well as their relationships. Some property values may be missing
in some of the instances. These will be filled after data extraction process is completed as

described next.

4.1.5 Filling of Property Values

We define and execute a value filling process for unfilled properties using
extractor functions. The task of an extractor is to use the collection of Sgis sources to
retrieve a property value. The data extractors framework uses an incremental discovery
approach by solving subproblems (retrieving specific data values) based on procedural

techniques applied to other GIS data types, such as imagery and elevation data.

Definition (extractorp): is defined as an extractor function of the form
extractor, (KB, S¢s,1) implementation referred to by P, associated with a property P in
the ontology through an annotation on P such that 34, rqctor (P, P.). It implements a
modular method that extracts a specific property value from Sgis. A value is extracted by

analyzing relationships, other KB instances and GIS source data.

Rule 1: In order for P, to be able to retrieve a property value, P and P.need to be
defined and associated in the ontology (ontology is complete) and a corresponding

procedural implementation for P, must exist.

76

By this rule, for every unfilled property of an entity, for which a corresponding
assertion is not present in ABox, extractors will retrieve the property value. Some

example extractors will be presented in Chapter 5.

Let us recall that if Sgis does not contain the required data to extract a value for

the property then Assumption 1 is broken.

Rule 2: No property representation in 3D Real can be reproduced in 3D Digital if
this property value does not exist explicitly or implicitly in Sgis (€ 3D Real) or if an

associated implementation for its extractor does not exist.

Definition (missing property value): A missing property value x,, for a property

x is said to be missing iff (I, x,,): x. & ABox).
Missing property values are filled using the following p_filling function:

VI, € ABox,3aI\KB E] € I,
VP(l,Py) € TD,3x € I, \ x. = P,P € TDp,

((,x,):x. & ABox) —» (3A(x, P,) € SD4, (I, P,): x. € ABox)

The domain of p_filling is defined as the set of all KB Instances while the range is a set
of KB; instances with no missing property values. p_filling is executed iteratively. In each
iteration, some missing property values are filled in and the knowledge base realization
procedure is carried out. Realizing the knowledge base results in a possible entailment of
a different I, class for the instance depending on the restrictions defined in the ontology.

Since each class might be defined with a different set of properties, the additional

77

properties are filled by realizing and filling again until the knowledge base is realized and

no missing property values remain.

Lemma 3 (filling missing properties): There is no instance in KB; for which

property values are missing.

Proof: assume a property x such that (I, x,): x, € ABox after p filling where x,.
represents the property class and x, represents the value, then either (1) x.(I., Py) € TD
where Py € [OWL Datatypes, 2012], (2) Axtractor (Xc, P.) € SD, (3) P, is not properly
implemented, or (4) knowledge base realization was incorrect. Case (1) contradicts the
definition of a complete TD ontology. In case (2), the definition of extractors is violated
since no annotation associating an extractor function to the property exists in SD. In case
(3), the implementation of data extractors is incomplete if there is no extractor which

returns a valid value even though the value exists in Sgis.

More generally, when a value exists, data properties attach the value to the corresponding

instance using a property definition with a value type. Under Assumption 3, a data
property p € [((I, Dy): e EABox) has p. representing the property class and p,
representing the value. While p. is associated with the class definition of 7 (1), p, is

available under one of the following situations:

1. Explicit in only one of the source data sets Sg, Sj, or Sg
2. Implicit or derived from one or more data sources

3. Represented (implicit or explicit) in Sg as well as another source (Ss, Sy and/or Sg)

78

We prove for each of the cases above that if a value exists in Sgis but is not

available as part of the ABox after completing the s mapping, r_mapping and p_filling,

then a contradiction happens in either the assumptions or the definitions of the system

components.

1.

If p, is represented explicitly in input set S (Ss, Sy, or Sg) then a mapping of object
properties (S — ABox) for p, is not defined. If no p, is available after mapping
((I,p,):pc & ABox), then the SD ontology is incomplete or a mapping to TD is not
defined as shown in the proof of Lemma 1.
If p, is represented implicitly by 1 or more data sets in Sgis, then some function P,
(data extractor) must be available to retrieve p, such that Ap.(I.,,P,) € TD ,
Astractor®e, P.) € SD and (I, R,): p, € ABox (p, defined by running P, using [). If
no p, is available after mapping then the data extractor implementation is incomplete.
If p, is represented ambiguously where two factual versions exist in implicit or
explicit form, then assuming a mapping (by cases 1 or 2) yields a set of property
axioms A; & ABox and another mapping yields a set of property axioms A, S ABox,
then two cases exist where a and b are some concepts in the KB:
a. KB kE(anbc 1);the property axioms contradict (are unsatisfiable) and no
interpretation exists based on definitions in ontology
b. Otherwise, the property axioms are complementary and are not contradicting
based on definitions in the ontology.
In case a, ABox Realization will result in a clash which explains the contradiction
and allows the user to correct the input. In case b, more information or non-

contradicting information about / is resulting. If no p € [exists after mapping then

79

the ontology is incomplete (data property restrictions or mappings are ill-defined)

or does not comply with source data.

4.1.6 Representation Creation

Consider a function v_mapping that creates all G;,, models for 3D Digital using a

1-to-1 mapping from instances in the knowledge base:

v_mapping = {I; = G,,}: VI, € ABox,3l; € I,\ KB = I;,m = I;,

By Assumption 2, every instance [; entailed from the knowledge base
(Assumption 3) has a model definition G, from 3D Schema for its class ;.. Models are

retrieved for every instance in ABox as follows:

VI, € KB;, KB = KB, I;. € RC;, AV \ (V(I;, x,,): x, € ABox), x, € RCp,x, €V,

3G, \m = I,V € G,

It should be noted that models are retrieved only for the most specialized
definition. That is, if a linear element instance is specialized to a covered bridge instance,
then only the model for a covered bridge instance will be retrieved. The domain of
v_mapping is a realized KB (KB;) using the TD ontology with ABox instances, and the
RC ontology representing the 3D Schema. Its range is a set of 3D graphical models
definitions Gy, for use in procedural generation of the entities in the landscape

representation.

Lemma 4 (3D model for every instance in KB;): After v _mapping, every

instance in KB; will have a detailed model in the landscape representation.

80

Proof: If there exists an instance /; for which there does not exist a detailed model
in 3D Digital, then this can only be for the following reasons: (1) a 3D model definition
G, does not exist for this instance, but this violates assumptions 2 and 3 (if instance is
unsatisfiable), and (2) a property or its value needed for creating Gy, is not available, this

is not possible by Lemma 3.

We can now state our main theorem as follows:

Theorem 1 (Detailed 3D Represenation Creation): Given Sgis for a given ROI,
complete ontologies (SD, TD and RC), data extractor implementations for properties of
all entities in Sgis and a 3D Schema complete with respect to entities in Sgrs, s_mapping,
r_mapping, p filling and v _mapping will together create a detailed landscape

representation of the given ROL

Proof: Follows from lemmas 1 to 4 above, since every entity in Sgis is mapped
into the knowledge base as a unique instance (s_mapping), with all its properties filled
with values (r_mapping and p filling), and detailed 3D geometric models for every

instance are provided by 3D Schema (v_mapping).

4.1.7 Thoughts

We assign values to properties by executing data extractors for every unfilled
property in every instance in the current state of the knowledge base. These property
values in turn get added to the knowledge base in the form of suitable assertions with that
instance. It results in the advantage that properties also get assigned by KB inference. For

example, consider two property classes defined as equivalent in the TBox with the

81

appropriate restrictions. If one property is defined with a value, the other property would
point to the same value. If two different values are inserted for each of the properties, a
contradiction would occur upon realization if a complete SD ontology is defined. In
addition, data checking in the form of data property restrictions and type inference based
on those is available under SROIQ™ . Ambiguity, redundancy and wrong or non-existent
source data would be handled in a similar fashion. It is for this reason that we chose to

put the data values as part of the KB rather than simply put a link to the values.

4.2 Evolution of our Method

Throughout our research we have changed and refined our methods to achieve our
objectives while adapting to the technology’s capabilities and benefits. The core of our
research has been the use of the semantic web technology to enhance the feature
extraction process, fuse and reason on different data types together, and attempt to further
automate the resolution of ambiguities and inconsistencies in the data. In the following
sections, we show our earlier versions of algorithms and attempts. We first describe the

generic legacy process in order to compare with our methodology.

4.2.1 Legacy Processes (for comparison)

A knowledge base is not used in the legacy process. If reasoning is at all
performed, it is done based on rule-based processing that modifies the shape geometry or

the TIN based on the shapes created. Tools described in section 3.2 do not deal with

82

knowledge extraction and associated uncertainties. Most legacy processes take a
triangulation, texture it and add the shape geometries forming the final visualization as in

the following definitions:

L L L
SHP = U s(e) —» shapeGeometry TIN = U m(e) » DG TEX = U r;(e)
e e e

VIS =TINUTEX USHP

where e is a layer in L, the list of all GIS data source layers available related by positional
and coordinate systems. A layer is either in the form of a shapefile or raster (imagery or
elevation data). s(e) denotes a features shape layer e. shapeGeometry is a list of visual
geometry objects generated based on procedural algorithms and user-defined rules on the
properties and definitions in s(e). SHP represents the generated geometric meshes
representing all features. TIN generates a triangulated mesh based on a Delaunay Graph.
rn(e) denotes a single selected height or elevation layer e in L for each area in the ROL
DG denotes the Delaunay Graph generated from all points in the selected elevation layers
(forming the terrain). TEX generates the textures from all imagery data layers. r;(e)
denotes an imagery data layer e in L. The final visualization VIS is the triangulated

graphics mesh 71N textured with TEX with all graphics meshes from SHP added.

We initially investigated two different methods for extracting the necessary
information and adding it to the knowledge base. Vector data is always transformed
based on the data ontology definitions and added to the knowledge base. The two

methods we explored are the following:

83

(1) extract all semantics from raster data and insert all resulting data as part of the
knowledge base.
(2) add only the vector data to the knowledge base and use specific data extractors that

use context and relevant raster imagery to extract missing data.

However, after further analysis and experimentation, we found that (1) introduced
a lot of redundancy and was non optimal and we have improved on (2) to provide a
generalization to define and implement specific extractors which associate the knowledge

base data property definitions to the actual extraction procedures.

4.2.2 Attempt 1: Extracting all Semantics from Raster Data

Our first attempt was to model all data as part of the knowledge base providing all
required information about a scene as one single knowledge base [Eid & Mudur, Feb.
2009]. This mostly avoids having to shatter related information in different data
structures. We attempted to insert all data as part of the knowledge base including all

semantics available in raster data:

L
KB = U(s(e) V] r(e)) — shapes

shapes 1s a list of instances, generated from data in the shape or raster layers, and are
related by semantic information in the KB based on the ontologies defined. KB can then

be realized after this process. The algorithm is defined as follows:

84

Input: S, SDOntology
Output: KB
kB ={}
Forevery element in Sgs
shapesLayer = {};
If isRasterLayer(element) then
shapesLayer = new shapesLayer(extractFeatures(element));
Elseif isShapelLayer(element) then shapesLayer = element;
Else error(“list element not recognized”, element);
Endif
If shapesLayer != {} then
mapShapefile(shapesLayer, SDOntology, KB);
Endif
End
EndProc

In this case, the extractFeatures function is a bridge to another subsystem that
extracts all semantics from a given layer. Extracting feature semantics from imagery and
elevation data sets is highly complex and is mostly done iteratively by domain experts in
cartography. The results of these activities are usually saved as feature data (most
commonly in vector Shapefile format) that is then consumed by other systems. Raster
data sets are large and the features to be extracted include all the entities and their
properties as required by the application domain. Further, efficient implementations for
reliable feature segmentation and recognition are in general difficult to obtain, and image

analysis/pattern recognition was not the primary goal of our research.

4.2.3 Attempt 2: Linking KB Objects to Relevant Raster Data

As part of this next attempt, we focused on using the raster layers after the initial
knowledge base realization process. We defined a feature data processors mechanism to
be part of our method. In order to have the specific extractors operate on a constrained
input data set, we attempted to optimize and link the semantic knowledge base data with

the relevant raster information and layers. We created data properties in the ontology to

85

serve as data pointers to the relevant raster data. Relevant raster data is defined as the
data within a subarea surrounding the instance. Users can then use the pointers to operate

on the relevant data set. This process is summarized as follows:

L

KB1 = Us(e) — shapes

e
LN i(KB1)

KB2 = rdp,(c) — subarea(d(c),r(e)
U U (¢@7@)

r(e),n=0 ¢

X KB2
KB3 = U U (p(c) - x(c))
x p(c)#nil

KB = i(KB1) UKB2 UKB3

KBI represents a knowledge base containing all feature data. KB2 adds a list of
raster data property pointers corresponding to the number of raster layers available to
each instance in KB/. n is used as a counter for raster data property pointers. ¢ is a
knowledge base instance in the realized knowledge base i(KB1). rdp(c) represents a raster

data property that points to a subarea in the raster data. Each raster layer r(e) would have
an equivalent rdp(c) denoted as rdp,(c) where n denotes which raster layer it came from.

The subarea raster is extracted by the subarea function using r(e) and the extents of ¢
denoted as d(c). KB3 extracts the missing data properties by running the data extractors
on the raster data property pointers list for every instance in the knowledge base. x is a
data processor in the list of data processors available (X). p(c) is a property of instance ¢
in KB2. x(c) runs the data processor x on the instance ¢ and attempts to extract a value for
p(c). The final knowledge base KB contains all feature data as well as the extracted data

properties from the raster data layers. The algorithm is defined as follows:
86

Input: S, SDOntology, ExtractorsList
Output: KB
kB ={}
Forevery element in Sgs
If isShapeLayer(element) then
mapShapefile(layer, SDOntology, KB);
End
ConsistentKB(KB);
Forevery element in Sgs
If isRasterLayer(element) then
n = element.layerID;
Forevery instance in KB
// retrieve geo location extents of instance
di = instanceExtents(instance);
// extract a sub raster from the raster layer element
pRaster = subarea(di, element);
if pRaster != null then
// add new raster data property
instance.insert(new raster_dp(n, pRaster));
Endif
End
Endif
End
Forevery xtractor in ExtractorsList
Forevery instance in KB
Forevery dataProperty in instance
If dataProperty = null then
// runs extractor with instance as input (containing all pertaining data)
xtractor(instance);
End
End
End
EndProc

We did not pursue this method further, since even with a small subimage, reliable

implementation of detail extraction from raster images is a difficult problem.

4.2.4 Attempt 3: Running All Extractors for Every Missing Property

This method does not segment the layers into subparts. After adding all shapes
and properties to the knowledge base, it iterates through the source data layers and runs
the missing data property extractors on each. This has a limitation of not allowing the

data property extractors to use the complete list of layers available and to combine

87

different layers in the processing to find the necessary new information. It also introduces
a lot of redundancy in the extractors processed since for every missing property, the

system runs all possible extractors for this property. The algorithm is defined as follows:

Input: S5, SDOntology, ExtractorsList
Output: KB
KB = {};
Forevery element in Sgs
If isShapeLayer(element) then
mapShapefile(layer, SDOntology, KB);
End
ConsistentKB(KB);
Forevery element in Sgs
Forevery instance in KB
Forevery dataProperty in instance
If dataProperty = null then
Forevery xtractor in ExtractorsList
// runs extractor with instance as input
xtractor(element, instance);

End
ConsistentKB(KB);
Endif
End
End
End
EndProc

4.2.5 Final Solution: Running only Relevant Extractor Functions

We found that extractors often need several data layers to get the best information
available. For this reason, we have generalized Attempt 3 to create our final version. This
also mimics a human-like divide-and-conquer property filling process by analyzing the
available sources to extract the missing property value. The main difference with other
methods is the creation of a framework by generalizing the extractor functions and the
required inputs, as well as associating an extractor definition per data property as part of
the ontology. With this modification, only extractors for the missing properties are
executed on the available raster data layers. In addition, the source data list is filtered and

88

sorted based on each extractor’s requirements (e.g. on imagery, on elevation, on multi-
band, or on KB). This process allows extractors to be modular and objective driven using

the instance definition as constraint.

L

KB1 = Us(e) — shapes

e
i(KB1)

KB2 = U (p(c) — extractor(x(p),L, c))
p(c)#nil

KB = i(KB1) UKB2

KBI represents a knowledge base containing all feature data. KB2 extracts the
missing data properties by running the data extractors on the available raster data layers L
using the KB instance data ¢ in i{(KBI). p(c) is a property of instance ¢ in KB2. The
extractor function runs the extractor definition x for the property p using L and ¢ and
attempts to extract a value for p(c). The final knowledge base KB contains all feature data

as well as the extracted data properties from the GIS source data.

In the next chapter, we will present algorithmic and implementation details for the

different mappings formulated in section 4.1.

89

Chapter 5

System Implementation

In this section, we present our implementations of s mapping, r mapping,
p_filling and v_mapping presented earlier. While s mapping, r mapping, and p_filling
are implemented as part of the facts extraction step (GIS2KB), v mapping 1is

implemented in the spatial knowledge extraction step (KB2Scene).

We assume that the main set of entities in the landscape would be present in the
feature layers (Shapefiles) and these layers would have been created previously using
available techniques and tools. The user need not spend a lot of time precisely defining
and attributing each entity found (as required by most state-of-the-art systems). Rather,
high-level entities are processed (such as lines cast along a road path) by automatically
extracting some facts using extractors and inferring information based on the collection
of all available objects. This process would especially help if the data is not well-defined
on input or some information is implicit. The user, therefore, does not have to address all
possible cases or study the GIS sources extensively to be able to create detailed 3D

models.

90

GIS2KB includes the Shapefile data mapping, relationship mapping and the Data
Extractors framework. While the mapping adds initial data to the KB, the framework
finds values for missing KB properties. GIS2KB owns and maintains the knowledge base
that KB2Scene uses. For this reason, it also extends knowledge base services. It uses the
Source Data (SD) and Transportation Domain (TD) ontologies. We chose the Pellet
reasoner [Pellet, 2014] implementing OWL2 language with SROIQ®) expressivity.
KB2Scene uses the Representation Capabilities (RC) ontology of parameterized 3D
models to map domain KB assertions to entity definitions with property values. This is
achieved by querying the KB using SPARQL and OWL Link. Procedural model

generation is then used to create 3D models, which correspond to the KB definitions.

5.1 The Ontology Hierarchy

The ontologies we define are based on semantic web ontologies for knowledge
bases implementing the OWL language [Bechhofer et al., 2004] and the latest OWL 2
specification [OWL 2, 2012] including datatype restrictions in SROIQ®) defined in
section 2.4. It allows describing knowledge as terminology and assertions. Instance
(Object) assertions can be associated with axioms of type ObjectProperty (object-object
relationship with range in a certain object class) and DataProperty (object-value
relationship with range in a certain XSD Datatype class [OWL Datatypes, 2012]). We

organize our ontologies in two types: domain ontologies and data ontologies.

91

We have defined domain knowledge ontologies based on knowledge from the
domains of natural and environmental objects, man-made features, as well as the visible
objects domain. Environmental knowledge defines concepts such as “a Tunnel is a
subsurface Entity”. Relationship properties are based on topological relationships
between instances such as spatial relations. Bitters' VOTT [Bitters, 2005] organizes
elements in the domain of natural and man-made objects. Our domain ontologies are
inspired by Bitters’ work as a classification basis and implement a subset of VOTT
concepts enriched with rules for the purposes of inference. The rules are based on man-
made features knowledge such as the laws and principles used by civil engineering. For
example, Bitters defines the following in a plain text taxonomy where the underlined

elements are keywords that have their own respective definitions in the same taxonomy:

- Street: Is a Road in a BuiltUpRegion.

- Boulevard: Is a broad divided Street in a city often with a wide median, especially
a Street laid out with trees and gardens, etc.

- Bridge: Is the subclass of LandTransitways that are artifacts used for crossing

water or air-filled gaps that could not be transited over a natural surface.

Bitter’s work is intended as a form of standardization of the concepts which
allows humans to properly interpret them. Our implementation extends these definitions
with properties and rules that allow formal descriptions and inference. Our versions of the

above concepts include axioms in the TBox such as the following:

Street = Thoroughfare N 3within. BuiltUpArea

92

Avenue = Thoroughfare N ANumber_Of _Lanes. (xsd: integer: = 2)
M 3s,NextTo.(Monument U Park)
Boulevard = Avenue N AMidsection_Type.{"WideSeparator"*"xsd:ID}

Bridge = Thoroughfare N 30ver.ImpassableArea

The intention is to use these definitions as part of the Semantic Web System
where an instance of type Thoroughfare, for example, could be re-classified as Boulevard
or Street based on the definitions presented. Moreover, data properties were added to
include further information about an object’s definition. For example, the Bridge concept
inherits some properties from Thoroughfare such as its width, type, number of lanes and
pavement type and adds some new data properties such as DeckThickness related to this
concept. Although our definitions are simpler (in expressivity and semantics) than the
definitions in Bitters’ VOTT (they are restricted to elements that can be detected through
source data and that represent discrete objects or property states), they are more formal
and allow automatic inferencing with our process. We could have defined Avenue with
object relationships to Lane objects instead of the Number Of Lanes data property. But
in this case, we only required a data property restriction and the value is available as a
property on the Avenue. We would only needed object properties if we require the

definition of actual Lane objects with corresponding restrictions and properties.

Domain concepts are general to the domain and they seldom change except for
very different regions or principles. The input GIS source data however changes often
such as for different GIS areas or due to source standard or custom data. This data needs
to be mapped to the proper properties in the knowledge domain. For example, users and

systems define several properties per set of Shapefile records depending on needs or
93

capabilities. These properties need to be mapped to the domain knowledge, when
applicable. In order to minimize the impact of change, we have put in place a hierarchy of
ontologies where only a subset would be affected. With such a design, data mapping
changes do not impact domain knowledge and vice versa. This context separation allows

for maximum reuse and comprehension and minimum impact of change.

Three ontologies were defined (please see Figure 12): (1) a general domain
knowledge ontology B called the Transportation Domain (TD) ontology, (2) a bridge data
ontology A, called the Source Data (SD) ontology, for GIS data mapping from data
concepts to domain concepts in the TD ontology, and (3) a bridge data ontology C, called
the Representation Capabilities (RC) ontology, defining the models and properties in 3D
Schema. In our case, the SD ontology defines complex mapping and restrictions between
data and domain concepts while the RC ontology performs a one-to-one mapping
between entity classes and procedural models. The TD ontology also uses OGC’s
GeoSPARQL and the OrdnanceSurvey’s SpatialRelations ontologies for spatial relations
based on the DE-9IM model. Moreover, we have enhanced the definitions of the spatial

relations to include role inclusion axioms such as transitivity and inverse relationships.

5.1.1 Ontology of Source Concepts Mapping (SD)

The SD ontology uses OGC’s Simple Feature ontology as a basis since our
implementation primarily targets the mapping of Shapefiles as discussed earlier. The
mapping algorithm is described under section 5.3.1 below. Moreover, the SD ontology
defines data extractors as annotations on TD ontology properties. These allow the system

to use data extractors to retrieve property values from sources that don’t have a mapping

94

defined. For example, a property shapeWidth in the input data is defined as the sum of
roadWidth and sidewalkWidth (the total road way width for road instances) in our domain
ontology; a mapping needs to generate both values. In our SD ontology, we annotate the
roadWidth and sidewalkWidth TD properties with data extractor function identifiers such

as, patternlmageryWidth:

A tractor (roadWidth, patternlmageryWidth)
A tractor (SidewalkWidth, patternlmageryWidth)

Given the GIS location from the shape definition, a scan vector (calculated from
the shape’s normal at that location) and a scan width (limited to the shapeWidth property
by default) as input, the extractor can assign values for roadWidth and sidewalkWidth by
analyzing and segmenting a raster image if necessary. Similarly, texture properties can be
associated with extractors that use the shapeWidth and the shape’s definition to retrieve
the GIS coordinates of the texture for the processed object. The GIS2KB engine,
described in more detail below, uses the defined ontologies to map a Shapefile record’s
definition and uses it to fill the parameters required (using the extractor annotations)

based on the knowledge base definition.

5.1.2 Ontology of Parameterized Models (RC)

Figure 14 shows an example of a simple parameter taxonomy defining three basic
classes: Generic Transport, Bridge, and Covered Bridge. Presagis Creator uses these
classes and the listed properties as part of the Bridge Wizard utility to procedurally create
corresponding 3D model representations. The RC ontology defines this taxonomy,

mapping each element to an equivalent domain element. This defines formal meanings

95

for the parameters and allows a system to automatically match the graphical parameter
values of the parameterized models to equivalent concepts from the semantic engine’s
GIS sources knowledge base. Goodwin (2005) states that Britain’s National Mapping
Agency, Ordinance Survey, uses Semantic Web technology primarily to translate or map

concepts between different organizations or domains.

Generic Transport Properties | Bridge Properties Covered Bridge Properties
Start vertex position SubClassOf: SubClassOf:

Start Angle Generic Transport Bridge

Start width

End vertex position Span Dividers Width dividers

End Angle Deck Thickness Cover Height

End width Starting vertical angle Wall angle

Number of segments Ending vertical angle Entrance angle

Left overhang size Support width Covered Bridge Textures
Right overhang size Support depth

Overhang height Bridge Textures

Transport Textures

Figure 14: Generic Transport, Bridge and Covered Bridge Example Taxonomy

Figure 14 shows the Covered Bridge concept and the required parameters. It is a
subclass of Bridge and Generic Transport, and therefore, inherits all the available
properties and also adds some properties specific to Covered Bridge. The Geometry
Definition Engine identifies an instance’s class and uses the list of properties needed to

extract values from the knowledge base and create a 3D model definition.

96

5.2 Main Process and Geometry Definition Engine

The main process, based on the defined ontologies, takes the collection of GIS
source data (Sgis) as input and executes GIS2KB followed by KB2Scene to extract the
3D geometry definitions making up the digital 3D world corresponding to 3D Real. All
models including the environment model are created based on definitions and inserted

into the landscape representation. We present the main process algorithm below:

Procedure MainProcess
Input: Sg;s, SD, RC, ExtractorsList
Output: 3D Digital
KB; = GIS2KB(S¢;s, SD, ExtractorsList);
3DModellList = KB2Scene(RC, KB;);
3Denv = new EnvironmentModel();
3Denv.setDefaultSettings(),
3Denv = TIN(Sgs.Se).applyTexture(Sgs.S));
3DModellList.add(3Denv);
return Visualize(3DModellList);
EndProc

We will describe GIS2KB as well as the Data Extraction framework in

section 5.3. We describe the Geometry Definition Engine KB2Scene as follows:

Procedure Geometry Definition Engine

1. Load the realized KB containing all instances
2. Load the RC ontology defining the capabilities of the visualization system
3. For each instance in the ABox, execute the Instance Geometry Definition procedure

4. Use the resulting output to generate a detailed representation

The Geometry Definition Engine [Eid & Mudur, 2010] analyses every instance and forms

a definition for each using the available extracted parameters as follows:

Procedure /nstance Geometry Definition

1. Retrieve the instance’s most specific class type from the knowledge base

97

2. Select the corresponding type from the parameterized models ontology (RC ontology)
3. Retrieve the list of all parameters needed by the selected type from the ontology
4. Construct a query for every parameter to retrieve the corresponding value from KB.

5. Store type, parameters, and values as a specification for the instance 3D model.

First, to retrieve the instance’s most specific class type (inferred) from the
knowledge base, a generic SPARQL query for all instances is used (Figure 15). Second,

the inferred class is used to select a specific concept in the RC ontology.

Select ?type
Where { InstanceX rdf:type ?type }

Figure 15: Retrieving The Most Specific Type of InstanceX using SPARQL

Third, using this concept name, all the properties listed such as those in Figure 14
are retrieved from the ontology. Fourth, a SPARQL query as shown in Figure 16 is
constructed for every property to retrieve the corresponding quantitative value such as
location, angles, bridge width, span and cover type from the knowledge base.

%data_property% represents a property being queried for InstanceX:
_property /o rep

Select ?value
Where { InstanceX %data_property% ?value }

Figure 16: Retrieving a Property Value using SPARQL

Finally, an instance definition using the concept name, and properties and their
values is created. Relationship properties are not used as part of the created definition;

they are only used for enriching the knowledge for inference purposes.

98

We present the KB2Scene algorithm outputting a list of 3D models corresponding

to the definitions created as follows:

Procedure KB2Scene
Input: RC, KB
Output: 3DModelsList
3DModelsList = {};
Forevery instance in KB //based on RC (extends TD)
3DModelDef = GetVis3DSchema().getDefinition(instance.class); //note that instance.class is inferred
//only data properties are needed (object properties only used for inference)
Forevery dataproperty in RC
If (dataproperty.domain == instance.class) then
Value = getPropertyValue(instance, dataproperty); //SPARQL Query
3DModelDef.setProperty(dataproperty.class, Value);
Endif
End
3DModel = createModel(3DModelDef);
3DModelsList.add(3DModel);
End
return 3DModelsList;
EndProc

For example, for a road instance in the knowledge base, required values such as
the segments that form the road, the road width, sidewalk width, number of lanes, and the
relevant texture data references are queried from the knowledge base to generate a 3D
model specification (3DModelDef). The createModel function takes this specification and
runs the corresponding 3D model generator procedure providing the parameters in the
specification to generate the road over the terrain (in this case, altering the 3Denv model).
In another instance, a bridge is inferred after knowledge base realization. Parameters of
width, length, angles, no. of segments, overhang, dividers, support and texture
information are extracted and a model specification for the bridge instance is used to
generate the bridge 3D model procedurally. 3D models such as tunnels, overpasses and

ramps are generated in a similar fashion.

99

5.3 GIS2KB and the Data Extractors Framework

GIS2KB creates a knowledge base representing Sgis which is then available for

querying by the geometry definition engine (KB2Scene described earlier).

Procedure GIS2KB
Input: S5, SDOntology, ExtractorsList
Output: KB
KB ={}
shapelayersList = {}; elevLayersList = {}; imageryLayersList = {};
Forevery GlSsourcelayer in Sg;s
If isShapelLayer(GlISsourcelLayer) then
mapShapefile(GlSsourcelLayer, SDOntology, KB);
shapelayersList.add(GlISsourcelLayer);
Endif
If isElevLayer(GISsourceLayer) then elevLayersList.add(GISsourcelayer);
If isimageryLayer(GISsourcelLayer) then imageryLayersList.add(GISsourcelLayer);
End //at this point all shape data was added to the KB

//sort layers in descending order of layer resolution.
resolutionSort(elevLayersList); resolutionSort(imageryLayersList);
sortedOrderedlLists SRI = {shapelayersList, elevLayersList, imageryLayersList};

ConsistentKB(KB); // Realize KB, check consistency and generate ambiguity/inconsistency report.
//To have most specific types for adding Shape relations (extractors other than DE9IM)

// add the relations once all records are added to KB. Done here to remove the complexity of
// having to manage uncreated instances and to take into account all shapeLayers.
addShapeRelationsToKB(KB, SDOntology, ExtractorsList, SRI);

//compute inferences based on added relations and
//calculate resulting uncertainties for inferred types
ConsistentKB(KB);

Bool Runagain = true;
While(Runagain)
Runagain = false;
Forevery instance in KB //based on SDOntology(extends TD)
Forevery dataProperty in instance //data or object property assertions
If dataProperty = null then
xtractorfunc = ExtractorsList[extractorKey(dataProperty)]; // retrieve P,
If (xtractorfunc) then
//run P, to assign P, e.g. instance.altitude = the ground altitude at location of instance from Sg
xtractorfunc(KB, SR, instance);
Runagain = true; //assumption: new information added
Endif
Endif
End
End
//realize the KB for the possibility of new properties to evaluate
If (Runagain) then ConsistentKB(KB);
Endwhile
return KB;
EndProc

100

ExtractorsList represents the list of concrete extractor implementations referred
by each P. and R. in the SD ontology. extractorKey is a function that retrieves the
extractor procedure reference in ExtractorsList for object property R (R.) or data property

P (P.).

Layers are first categorized based on type. Shapefiles are mapped using the
Source Data Ontology using the mapShapefile procedure described in the next section
(5.3.1). After all shape information is inserted in the KB and the GIS dataset categories
are sorted in descending order of resolution (highest first), the KB is realized a first time
using the ConsistentKB procedure which extends a semantic reasoner service. If the KB
is not consistent after this operation, then there is an ambiguity or an inconsistency in the
input shape information. Semantic reasoner services allow us to extract the inconsistency
report that explains the inconsistency in the KB. The user then corrects the problem in the
input data. Shape relationships are then processed between every pair of instances in the
KB. The addShapeRelationsToKB function is described further in section 5.3.3. The KB
is realized one more time here for consistency checking and in order to infer implicit

properties. Data extractors for object and data properties are discussed in section 5.3.2.

Data extractors use information about a specific instance, its properties and
relationships defined in the KB to extract a specific missing property value using the set
of data layers including imagery, elevation, and shapefile datasets. Data extractors are
plugin-based in the system and an association requires a matching data extractor
procedure (xtractorfunc) to be part of the system’s list of extractors. Different dataset
types from Sgis may be used in extracting a certain value. Also different resolutions (or

scale ratios) of the same dataset type are useful to confirm or find missing information.

101

For example, 0.5meter resolution imagery and elevation datasets have more detail per
square meter when compared to Imeter resolution datasets of the same type. The input
GIS datasets lists are filtered as required within the extractor procedure (e.g. on imagery,
on elevation, and/or on multi-band). Extractors also provide us the option to incorporate
procedural reasoning on numbers, statistics and approximations as current semantic
reasoner services are not well suited for arithmetic reasoning. [Faddoul, 2011] describes a
method to include algebraic reasoning as part of KBs in description logics; however, this
area still has several open problems and adds more complexity to our domain of

application than it adds flexibility.

After the associated xtractorfunc is executed, Runagain is used to flag that new
information has been added to KB. Knowledge base realization is done using the
ConsistentKB procedure only after processing all known missing property values at that
point in time. As new information is added to the KB, new inferences are possible and
assertions are specialized possibly causing other missing property values. For example, a
bridge can be reclassified to a covered bridge after running the data extractor and KB
realization. A covered bridge then requires a new property cover_definition. The process
terminates when the knowledge base is realized and there are no missing property values
remaining. We describe our KB Realization solution and the reasons behind the timing of

each call to this service from the GIS2KB algorithm in section 5.3.4.

102

5.3.1 Initial Mapping - Shapefiles

Attribute Name

Attribute Name

Attribute Name

hasProjection Attribute Name

Connected
Segments

hasProjection

Attribute Name

Connected_To

hasPart *

*

hasBoundingBox

hasProjection hasPoint

s

Uddp (M)
Pos Y

t
PosZ
hasMax P°5X\
\4 1\ 0!

0..1

1</ 1<q hasPoint

1<m 0<r

0<n 3<s Attribute Name
0<p 3<t

Attribute Name
4mn,p,qrsteR

Figure 17: Shape Definition SD Ontology Mapping

Figure 17 shows the implicit knowledge graph that we extract from ESRI
Shapefile data format, which we presented in Chapter 2. Each feature record is mapped
based on its geometry type (ShapeType) to a knowledge base instance. We only consider
point, polyline, and polygon types in our work. The following mapping applies unless
another ShapeType is explicitly indicated (file name, user input, feature property, etc...).
proj value represents a value from an enumeration of projections corresponding to the
projection used in the Shapefile. value represents the value of the corresponding property
in the record. attribute name and attribute value represent a property ID and its

corresponding value respectively (Dbase format) in the record. Box/]/ contains ordered
103

coordinate pairs of two point locations representing the bounding box of the record. The

Shapefile mapping algorithm maps a certain layer (GIS source layer) of type Shapefile

using the SD ontology into assertions which are added to the knowledge base (KB). The

mapShapefile procedure is defined as follows:

A. For each Point record, an instance a:Point is created, a projection is defined based on
Shapefile’s projection definition, and the X,Y coordinates (and Z, M optional in case
of PointZ type) are copied to the KB as values of type Double under object-value
relationships. All relevant properties are copied similarly:

1.
2.
3.
4.

(a, value):PosX, (a, value):PosY, and (a, proj value):hasProjection are added.
Optionally, if type is PointZ, (a, value):PosZ is added

If user-defined data property (uddp) Measure available, (a, value):uddp is added
Map every attribute for the record using (a, attribute value):attribute name

B. For each Polyline record, b:PolyLine is created with (b, proj value):hasProjection

1.
2.

Map every attribute for the record using (b, attribute value):attribute name
For each part in the record, a c:Connected_Segments instance is created and
linked with b using the (b, c):hasPart object property
a. Map every attribute for the record using (c, attribute_value):attribute name
b. For each two consecutive points in the part, d;:Segment is created and
(c,d;):hasSegment and , if applicable, (d.;, d;):Connected To are added
1. Map every attribute using (d, attribute value):attribute name
ii. For first Point in d run point mapping procedure A and add (d,
a):hasRefPoint
For the bounding box, e:BoundingBox is created and (b, e):hasBoundingBox is
added.
a. min:Point and max:Point are created
b. (e, min):hasMinPoint and (e, max):hasMaxPoint and (min, Box[0]):PosX,
(min, Box[1]):PosY, (max, Box[2]):PosX, (max, Box[3]):PosY are added

C. For each Polygon record assuming well-formed polygon (clean), an instance
f:Polygon is created, (f, proj value):hasProjection is added

I.
2.

3.

Map every attribute for the record using (f, attribute value):attribute name

For each part in the record, a g:Area (or g:PolygonHole is defined if part’s

vertices are defined in counterclockwise order) is created and linked with f using

(1, g):hasPart.

a. Map every attribute for the record using (g, attribute value):attribute name

b. For first point in g run point mapping procedure A and add (g, a):hasRefPoint

For the bounding box, #:BoundingBox is created and (f, /):hasBoundingBox is

added.

a. min:Point and max:Point are created

b. (h, min):hasMinPoint and (h, max):hasMaxPoint and (min, Box[0]):PosX,
(min, Box[1]):PosY, (max, Box[2]):PosX, (max, Box[3]):PosY are added.

104

As a result, the knowledge encapsulated as part of a Shapefile is added in the form
of assertions to the knowledge base. The concepts used are part of the SD ontology,
which maps to concepts in the TD ontology. For example, the Connected Segments and
Segment data concepts, part of a linear Shapefile describing roads, are mapped to TD

concepts (right-hand side) by default as:

Connected_Segments = Thoroughfare
Segment = Thoroughfare_part

The parts in each record and the segments defining the parts are created as instances in
the KB and, after inferencing, they are used for 3D model definitions. For practical
purposes, if properties ObjectClass and PartClass are defined for the record, the
instances created are mapped to a specified concept class rather than the default
ShapeType. Moreover, instances in the KB are related together using object properties
that do not transfer the properties easily (vs. inheritance). For these reasons, all properties
are mapped for every instance created. The mapping defined in the SD ontology then

discards or uses these values by mapping to properties in the TD domain ontology.

5.3.2 Data Extractors

We define three categories of data extractors as described in [Eid & Mudur,
2013]. (A) Transportation Object Extractors are high-level object extractors such as the
types of feature extraction procedures available as part of SocetSet. These operate on
input GIS datasets in order to retrieve existence of simple objects such as roads, water
bodies, or a point representing an object of interest. These can be executed to result in

further input data sources or used as part of other extractors. (B) Object Property

105

Extractors extract object-object relationships from the collection of input data. They
operate on objects to validate one or more of the listed properties. Object properties are
binary relations that are defined to relate two objects e.g. (objecti, object2):0bj property.
They can be classified as Functional, Inverse-Functional, Transitive, Symmetric,
Asymmetric, Reflexive, and/or Irreflexive according to the SROIQP) expressivity. (C)
Data Property Extractors use GIS data sources to extract properties (object-value
relationships) of a specific object to fill missing values for the 3D model definition. As
example, road properties are shown in Figure 18 and the collection of bridge classes have
94 properties, not listed here for brevity (see Appendix A for the complete listing). The
following sections show some example data extractors we have defined for these

properties.

5.3.2.1 Transportation Object Extractors

e Point: represents the location of an object.

e Vector: consecutive connected points representing a linear feature such as a road,
train track, highway etc...

e Area: a set of points representing a polygonal area, or a point representing the
location with dimensions defining the area.

e Obstacle: any object defined by its area of coverage.

e Impassable Area: an area with acute elevations, lowered area, elevated area.

e Water Body: an area containing water.

e Road: a specific type of Vector that has associated properties, a number of lanes and
a roadside definition. (Figure 18 lists the properties used for generating roads.)

e Lane: each road has one or many lanes with lane properties.
106

Section Property Input
Initial Data
Object Class KB Inference
W Extractor at
Start Edge .
linear vertex

W Extractor at next

Definition
Initial Data that is required for all transportation structures:
roads and bridges
The Object Classification: a Bridge type (from Types
defined) or a Road Type
The Edge, defined by two coordinate vertices, that defines
the cross section where the structure definition starts in 2D
or 3D space. 2D is overlayed on ground terrain. This ensures
proper connectivity b/w connected segments.

same as above

Properties required to graph a road transportation
element. This generates a textured road based on the type
and the Start and End Edges defined.

The type of road from a classification list.

One way, two way road, or other road. One way roads have

Road_Directionality 1road way instance and do not have a midsection

End Edge .
linear vertex
Road
Properties
Object Class
Road Type
Property
Directionality
Extractor
Location and Start Edge, End
Orientation Edge properties
Start Edge, End
Length & .
Edge properties
Start Edge, End
Width ge, &
Edge properties
No. of Separators
Roadways Extractor
No. of Separators
Midsections Extractor
Sidewalk Roadside_Type
(profile, width) Extractor
Midsection
Properties
. Separators
Location
Extractor
Midsection Midsection_Type
(profile, width) Extractor
Roadway
properties
. Separators
Location
Extractor
Way_Directionalit
Directionality V- y
Extractor
No. of Lanes Number_of_Lanes
per way Extractor
Lane
Properties

Lane_Definition

Lane Type Extractor
Ground Lane_Definition
Material Type Extractor
) Number_of_Lanes
Lane Width

Extractor

definition. For two way and other roads, each way will
have a way instance with associated properties.

The location and orientation of the generated road are
defined by the locations of the Start and End Edges.

The length of the road is defined by the length of the curve
defined by the direction vectors of the Start and End Edges.
The width of the road is defined by the average of the
widths of the Start and End Edges.

The number of Roadways on the road segment between
the Start and the End Edges.

There is a Midsection between each two roadways. This
defines the number of Midsection instances for this road
segment.

There is a Sidewalk at each side of the road. This defines
the type of Sidewalk, its pattern or texture and its width.

Each Midsection has a Midsection definition.

Defines the coordinate on the Start Edge where the
Midsection starts.

This defines the type of Midsection, its pattern or texture
and its width.

Every road has 1 or more Roadway instances.

Defines the coordinate on the Start Edge where the
Roadway starts.

Direction of the roadway instance.

This defines the number of lanes available within the
roadway instance.

Each Roadway has 1 or more lanes defined by the no. of
lanes property.

The type of lane from a classification.
The ground type of the lane.

The width of the lane.

Figure 18: Road Properties

107

Bridge: a structure that is part of a Vector record; the vector crosses an obstacle at
ground level or over an impassable area at the location of the bridge. All segments of
the bridge are extracted. If no values are given as part of the shape record, all
segments before and after the inferred bridge segment are analyzed to determine the
elevation profile underneath and the imagery profiles along the segments. The start
and end points of the bridge are found based on compliance with height and/or feature
specifications. All segments between the start and end points of the bridge are made

part of the bridge instance in the KB. An example is provided in section 7.3.

5.3.2.2 Object Property Extractors

Under: belongs to an object under another object defined by the elevations of the two
objects or the occultation profile in the imagery at the specific location overlapping
the two objects. It is the inverse property of Over and is transitive.

Over: belongs to an object over another object defined by the elevations of the two
objects or the occultation profile in the imagery at the specific location overlapping
the two objects. It is the inverse property of Under and is transitive.

Next To: belongs to an object in direct proximity to another, defined by their
locations and extents e.g. when a monument or park is next to a road. This property is
symmetric.

Connected_To: belongs to an object that is physically connected to another. Both are
part of the road network e.g. a road segment connected to another road segment or a

bridge connected to a road. This property is symmetric.

108

Between: extends Next To. Assumes object having this association with at least 2
other objects where object is within area between the associated objects. E.g. a valley
lies between two mountains.

Part_Of: is defined for every instance as a component of another instance e.g. a road
segment is part of a road and a lane is part of a road segment.

Through: belongs to an object passing through another object defined by the
elevations of the two objects being equal or the occultation profile in the imagery at
the specific location showing intercrossing or penetration. If it is in the form of road
intersection, then this property is added to both objects.

Has_ Material: categorizes the texture of the surface coverage of an object given its
extents using the imagery into one of (after SMC standardization): asphalt, concrete,
liquid, soil, stone, sand, grass, gravel, granite, cobblestones, metal, wood, or
limestone coverings. These are analyzed based on texture (color and granularity).
Impassable Through: is defined if an object cannot pass through another object

under the transportation domain interpretation e.g. for high slope variations of terrain.

5.3.2.3 Data Property Extractors

Position: extracts latitude, longitude, and altitude (if available) for a given object
from shape data or using imagery space coordinates based on an origin and a
projection definition.

Altitude: extracts the altitude of ground at a given location using an elevation dataset.
OL: the Orientation-Length extractor calculates a 2D vector between two given
points (Figure 19). It is defined as the vector with origin at the current point and

spanning until the next point and used for every road segment part of a 3D model.

109

Procedure OL

Input: 2 consecutive geolocated points A and B from same linear record
Output: OL: 2D Orientation and length (=B-A) vector

OL = [B(1)-A(1), B(2)-A(2), B(3)-A(3)];

EndProc

. . . o
[] [] ﬁ) []
[] []
o1 OL vectors — Top view b e . L
normal from closest grid points

Figure 19: OL Vectors on a Road Linear Record Figure 20: Normal From
Three Points Defining Plane

n: given a geolocated point, the normal to the terrain at that location is retrieved using

the plane defined by the 3 closest elevation grid points (Figure 20).

Procedure n

Input: 3 elevation points A, B and C

Output: n: normal of terrain at centroid of triangle ABC

AB =O0L(A,B); AC = OL(A,C); //find first and second vectors AB and AC
N = cross(AB,AC); //normal to AB and AC using right hand rule system
EndProc

2D width from ﬁ ‘

Figure 21: Width Using OL

110

e W: The user usually defines the Shapefile record points in the middle of the actual
visible road in the imagery. SocetSet does so too. This extractor calculates the
orthogonal vector to the orientation vector in the image plane (given by the OL
extractor above) and scans the imagery (which could be segmented) along the
orthogonal in both the positive orientation and the negative orientation. It returns at
least two coordinates defining an edge that is normal to OL at origin of OL on the
road. This edge includes all roadways and separators that are part of this road. The
width of the edge does not represent the actual road width since it is not 3D projected.
However, this value is sufficient for draping road textures onto the terrain geometry.
To obtain the actual width, the elevation data if available is used to return the 3D
coordinates for each point in the edge by querying the point’s terrain altitude. (Figure
21)

Procedure W
Input: OL, imagery, elevations (optional)
Output: W
0 =[0,0,0]; Z=[0,0,1]; //define the origin and the image plane normal
w = n(0,0L,Z); //find the orthogonal to OL in the image plane
//analyze imagery along w and find all points (roadways and separators)
W = analyze(imagery, w);
If elevations then
for k=1:sizeof(W)
Zw = elevations.getAltitude(W(k)(1), W(k)(2)); //find terrain altitude for pt
W(k) =[W(k)(1), W(k)(2), Zw]; //change pt to 3D
End
Endif
EndProc

e Start/End Edges: uses the OL and W extractors to determine the two points defining
the starting edge orthogonal to the OL vector at the start/end point defining the object
being processed. The returned edge is stored in Well-Known Text (WKT) format in

the KB.

111

Procedure StartEdge

P1 = Sgis.get_ref pt(instance);

V1 = OL(P1,P1.next()); VO = OL(P1.prev(), P1) //OL vectors involving start point

W1 = W((V0+V1)/2, Sgis); //get the orthogonal at average between the two OL vectors

KB.addDataProp(CertaintyAnnotation(W1.certainty), start_edge_prop, instance, W1.WKT());
EndProc

e N: A few objects or features span across several terrain grid points, for example, a
road width might span 3 or 4 grid points if the terrain elevations data is defined at Im
resolution. Calculating the normal from the 3 closest points only is non-realistic as
this might slant the road incorrectly. In order to more accurately determine the plane
defining the base of the object in such a case, several grid points are analyzed using n

above and then averaged together (Figure 22).

Procedure N

Input: A: array of normals, n: number of elements in A

Output: N: average normal within circle defined by (point, width)

V =[0,0,0]; //initialize V

fork=1:n

V=V +A(k,:); //add all vectors in A together

end

V = V./n; //divide each cell by the number of the elements to get the mean
EndProc

road width

A_/terfaik

ciirtaca road linear

terrain surface J pts

Profile view along road width | 3Ddirection from OLand N |

Figure 22: Average Normal Figure 23: Direction Vector D
from N and OL (Z-axis is up)

e D: This extractor calculates the 3D orientation and length corresponding to OL
(which is only in the imagery plane) in the direction of the terrain tangent by using

112

the normal vector (Figure 23). D is in the plane defined by (OL, Z-axis), and its
direction is defined as orthogonal to N where Z-axis is orthogonal to OL in the

upward direction in the figure.

Procedure D

Input: OL, N

Output: D: actual 3D orientation vector corresponding to OL

// D in plane (OL, Z-axis): Dx = OLx and Dy = OLy, we need to find Dz.
//D.N =0 =>DxNx + DyNy + DzNz = 0 => Dz = (- DxNx - DyNy)/Nz

// =>replace: Dz = - (OLxNx + OLyNy)/Nz
D=[0OL(1), OL(2), -(OL(1)*N(1)+0OL(2)*N(2))/N(3)];
EndProc

Thickness: retrieves the thickness of a deck by estimating the value using shadows
(shape from shadow techniques) or from other datasets such as LIDAR. At this time,
we calculate this using a factor based on the width and material type of the object.
E.g. a 5m wide bridge made of concrete will result a value of 1.5 meters.

Separators: most North American road separators are identified if there are yellow-
line, double line, or wide-insert (concrete blocks, elevated garden, etc...) separators
between the roadways. The extractor scans the normal to OL in the length and
direction of W for such artifacts. It reports the number of separators it finds and an
array of origins for the identified separators and roadways. The number of roadways
is generally the number of separators + 1.

Road_Directionality: identifies whether the road is one way, two way or other. It
uses the number of separators identified by the Separators extractor. If the number is
zero, then the road is of type one way. If it finds one then, the road is of type two
way. Otherwise, the road is considered to be other.

Way Directionality: most North American roads have, at some point, a white

horizontal line defining the stop location for cars at crossings. The extractor scans the

113

roadway in a direction parallel to the OL vector starting from the origin defined by
the Separators extractor for a white line, if this line happens just before a crossing
then the direction of the roadway is towards that line, if it happens after the crossing,
then the direction is the opposite way. Highway directionality can be deduced from

arrow directionality separating the highway from the ramp (Figure 24).

Figure 24: Separators with Markings Showing Traffic Direction

Number_Of Lanes: calculates the number of lanes in a specified roadway. This
extractor will also add new Lane instances corresponding to the number of lanes to
the KB and relate them as Part Of the road segment instance. The number is retrieved
by analyzing the imagery as in the W extractor by counting the lane separators
encountered along the scan line and keeping a record of the width of each lane
identified. This procedure is done at the location of the roadway defined by the

Separators extractor along the normal to OL and is done another time again at a delta

114

distance in the direction of OL due to stripped lane separators often available.
Alternatively, this can be guessed based on roadway width.

Roadside Type: uses the imagery and the road segment instance to find if a road
element has a sidewalk or overhang. If it does, it retrieves the type, the width as well
as the visible height per element on each side of the road.

Midsection_Type: applies for each Midsection identified by the Separators extractor.
It determines what type of middle section defines the separation. It extracts the type
and width.

Lane_Definition: identifies specific markings along the lane to classify it into a
certain type and identifies the type of ground material for that lane as per the
Has Material Object Property Extractor definition.

Cover_Type: identifies the type of cover on a thoroughfare. Specifically used to

identify coverage and type of coverage on Bridge classes.

5.3.3 Adding Object-Object Relationships

Our system evaluates all object relationships for all pairs of instances in the

knowledge base based on their initial inserted type using addShapeRelationsToKB within

the GIS2KB algorithm. Since the relationships we are interesting are defined for all

instances based on the initial input type (some shown Figure 25), these relationships

could be extracted after the initial mapping (mapShapefile) without the need to realize the

knowledge base. Moreover, an instance of type Polygon, Polyline or Point will never be

inferred to a different type from these values (Polygon, Polyline and Point are disjoint

concepts). The set of topological relations is therefore always consistent based on the

115

initial basic type of the instance. We, however, realize the knowledge base using a call to
ConsistentKB before addShapeRelationsToKB once in order to resolve any properties that
need not be extracted (inferred) and after in order to infer other properties and check the

consistency of the evaluations.

Attribute Reference,

Equals, Attribute Reference, Disjoint, Touches, Attribute Reference
Disjoint, Contains (poly->pt), Within (pt->poly) '
Touches, Polygon Eggals,
Overlaps, Disjoint
Contains,

Within

Attribute Reference,

Disjoint, Attribute Reference,
Touches, Disjoint,
Crosses, Touches,

Contains (poly->line),
Within (line->poly)

Contains (line->pt),
Within (pt->line)

Touches(a,b) = meets(a,b) = Connected_To(a,b)
Within(a,b) = Contains(b,a) = Part_Of(a,b)
Equals(a,b) = Equals(b,a) = Within(a,b) & Contains(a,b)

Intersects(a,b) = !Disjoint(a,b) Attribute Reference,

Over(a,b) = Intersects(a,b) & (Ha > Hb) Equals,
Under(a,b) = Intersects(a,b) & (Ha < Hb) _:_30'113'12‘5:
Intersects3D(a,b) = Intersects(a,b) & (Ha = Hb) Overlaps’,
CoveredBy(a,b) = Covers(b,a) Crosses,
Contains,
Covers(a,b) = Contains(a,b), although under DE-gIM Within

Covers extends Contains with boundary-only intersection

Crosses(a,b) = Through(a,b): some but not all interior

points in common, intersection set dimension = max)
dimension - 1 For 3D Objects,

Outside, inside and

Overlaps: some but not all points in common, intersection adJacen_t can be derived
set is of same dimension from this

Figure 25: Relations on Geometries

addShapeRelationsToKB() preprocesses objects and determines some object-
object relationships based on the DE-9IM model which we also extended to 2.5D
properties such as Over, Under, etc... As shown in Figure 25, we resolve some of these
semantically in the knowledge base if the dependent information is available. Properties
such as Equals, Disjoint, Intersects, Touches (Meets), Overlaps, Crosses, Contains,

Within (Inside), Covers, CoveredBy are computed using the DE-9IM model and matrix.

116

Others are inferred, verified for consistency, or processed using Object Property
extractors defined in the framework. As described by the Data Extractors framework, an
Object Property extractor R. is associated with every object-object relationship it
represents through an annotation on the relationship in the SD ontology. The

addShapeRelationsToKB algorithm is presented as follows:

Procedure addShapeRelationsTokB
Input: KB, SDOntology, ExtractorsList, SRI
Output: KB(modified)
instancelList = KB.GetInstances(); //can also filter by instances type; we consider all TD instances.
Forevery instance 11 in instancelist

elementl = SRl.shapelayersList.getShape(l1.ShapeRef);

List otherlnstances = instancelist — 11;

Forevery instance 12 in otherinstances

element2 = SRl.shapelayersList.getShape(I2.ShapeRef);

//compare both geometries for <a relation b>
matrix = DE9IM(element1.geometry, element2.geometry);

//Get all possible relations for object type (based on initial class). No need for realization. SD extends TD.
// based on domain and range of properties
I1relations = KB.getRelationsList(l1.class, I12.class, SDOntology);

Forevery objectProperty in |1relations
r_evaluator = ExtractorsList[extractorKey(objectProperty)]; // retrieve R,
//run R, if it exists and if this property is not already defined between I1 and 12 by some other means
If (r_evaluator and KB.notDefined(objectProperty, 11, 12)) then
If (objectProperty.type = de9im) then
r_assertion = r_evaluator(matrix); //e.g. disjoint(l1, 12) = FF*FF**** matrix
else
//for other than DE9IM relations e.g. impassability relation between a line and an area
//could add new assertions about instances in the knowledge base.
//E.qg. equivalent relations or an annotation with a certainty value.
r_assertion = r_evaluator(l1, 12, SRI, KB);
Endif
If (r_asserstion) then //add object property assertion when true
KB.addObjectPropertyAssertion(objectProperty, 11, 12);
Else //add negative object property assertion when false
KB.addNegativeObjectPropertyAssertion(objectProperty, 11, 12);
Endif
Endif
End
End
//instance was evaluated with all other instances and can be omitted for further processing
// by adding properly defined relations between (11, 12) pairs in knowledge base, a relation between (11,12)
// will result in an inferred relation between (12, 11)
instancelList.remove(l1);
End
EndProc

117

The return value of the evaluation on the relationship, » evaluator, determines
whether the assertion is true or false. The relationships are added either as an object
property assertion or as a negative object property assertion accordingly. This is done for
the purposes of completeness. Since order of instances in relationship evaluation and DE-
9IM is not important (relationships are inverse or symmetric), the evaluation of every
instance pair against their possible relationships is done only once and after processing
each instance against all others, the instance is removed from the list. The same pair is
not processed again. This reduces the complexity by having the first instance process all
others and the last instance only processed by the one preceding it. At the end of this
procedure, all topological relationship properties between every pair of instances would

be added to the KB.

5.3.4 Knowledge Base Realization

We tried several approaches for incorporating knowledge base realization
(ConsistentKB) into our process. Initially, a solution was attempted where the knowledge
base was realized after every added element. This was done (1) in order to identify any
clashes in the knowledge base right after an insertion and (2) in order to keep the most
accurate specialization at all times for all instances in the knowledge base thus limiting

the number of extractors required to execute.

Realizing the knowledge base frequently is compute-intensive since its procedure
is complex and even hyper-tableaux based algorithms can take up to double exponential
time [Faddoul, 2011]. We therefore run the realization step once after all information

from feature data is mapped to the knowledge base and a second time after evaluating all

118

object-object relationships. These are performed to check for consistency, and generate
ambiguity/inconsistency report, at those levels and to infer the most specific types for a
complete analysis of possible relationships such as extractors other than spatial relations
related to a specific subclass. Moreover, if some relationships are semantically defined,
these would avoid running unnecessary extractors and specialize instances to the most

specific subclass for object and data property relationship extraction.

Due to the Open World Assumption (OWA) that semantic web provides along
with consistency and satisfiability principles, elements can only be specialized into more
accurate definitions in the final realized hierarchy, otherwise a contradiction (or clash)
would result in the knowledge available. We optimize by running ConsistentKB only if a
missing property value was assigned a value using its property extractor. Any assertion
might result in some specialization of an instance type which in turn might have missing
property values. Doing this process repeatedly (several iterations might be required)
while realizing the KB ensures that the most specific specialization w.r.t. available input

is achieved and all missing property values have been extracted and asserted.

5.4 OWL Link Adaptation

We use the OWL Link specification [Liebig et al., 2008] as the common API to
communicate between the different sub-processes through the semantic reasoner
infrastructure and framework. OWL Link allows a standardized communication

mechanism and API to the knowledge base for querying, TBox and ABox manipulation.

119

Semantic Web mostly uses Java because of its flexibility, portability and to comply with
practices in the World Wide Web. OWL Link was implemented using existing

frameworks like the OWL API, a Java API based on the W3C OWL2 Specification.

Our system needs the flexibility to be able to add knowledge and extract
knowledge from different systems written in different programming languages. It was a
challenge to find a feasible solution to allow this. The current systems we use are
MapWindow GIS, implemented in C#, the Semantic Web Framework, with most
interfaces available only in Java, and our 3D scene generator, implemented in C++. In
order to be able to communicate and share knowledge between the different systems for
the purposes of prototyping and validation, we have created an OWL Link .Net
compatible framework based on the original OWL Link Java framework that can be used

in both C# and C++ programming languages.

It seems that this implementation is a valuable contribution to the OWL Link user
community specifically and the Semantic Web community in general. While one of the
main authors of OWL Link, Olaf Noppens, showed great interest in making this work
available through the OWL Link website, several Semantic Web developers showed
interest in this work because they were looking at implementing applications and agents
in different computer languages and, this framework would make it easier to interact with
other Semantic Web framework components. This work is publicly available as a
downloadable package on the internet. Appendix B contains our notes on OWL Link

porting to the .Net framework.

We are confident that this work will be used by others in the Semantic Web field.

120

5.5 Simple Deck Bridge 3D Model - An Example

Our process first uses the available basic spatial elements (parts, segments and
points of the Shapefile linear record) as well as the property values and adds them as
assertions to the knowledge base as defined in the Initial Mapping algorithm. New
segments are therefore identified and inserted in the knowledge base with properties such
as (segmentsl, segments2): Connected_To where segments] and segments? are
instances of class Thoroughfare in the KB. After analysis for high slope values of the
elevation patterns under the segments, further shapes are identified and facts are added

such as a high slope area instance of class ImpassableArea.

Possible relationships are then analyzed using their associated extractors between
all instances and added as assertions as well. In our case,
(segments2, high_slope_area): over was analyzed using the DE-9IM model and was
added as a positive object property. The other properties, which are false, are added as
negative properties. The KB is then realized and the type of segments2 is inferred to
Bridge. This reclassification of segments2 is possible since the KB contains an
equivalence axiom for Bridge in the TD. Using reasoning, inference services available
through the reasoner allows for the ABox realization where all instances are processed
and classified according to their most specific subclasses (specialization). If several
segments happen to represent a single bridge entity, then each segment results in a bridge
definition (span) which altogether forms the complete bridge entity. At least one segment
is required to represent a bridge; if a segment spans over a bridge (only a part of it is a

bridge), the segment is not dissected, which might result in a wrong representation.

121

We have 21 different types of bridges with 94 possible properties. To generate a
simple deck only definition for example, referring to the property listing in Appendix A,
initial data, spans, angles, and a deck definition are necessary while LOD and textures are
optional. For initial data, shown in the first section of Figure 18, the object class, start

edge, and end edge of each bridge definition are required.

If the Shapefile record contains all the required property values explicitly
(available in the KB after mapping and realization), then the definition could be complete
(no missing property values). However, since segments2 was inferred to a new class type,
it most probably doesn’t have values for all the new class’ properties. The extractor
associated with every missing property value is executed as per the Data Extractors

framework and GIS2KB.

Some extractors are defined by monotonic formulae that arithmetically derive the
required information. If each bridge span segment is inferred as a Bridge in the
knowledge base, then each bridge span is generated independently. Otherwise, a bridge
definition representing the connected segments would be available. The maximum
ground height under the OL vector representing the bridge is retrieved using the Altitude
extractor. Vertical and horizontal start and end angles for the bridge are retrieved using
the D and OL extractors. They determine the start and end angles at which the bridge
arches, bows, or curves. By default, the algorithm generates values for the bridge to arch
smoothly between the two edges. The deck definition includes a number of subdivisions,
thickness and overhang definitions. The number of deck subdivisions is based on the

curviness defined by the start and end edges over the OL vector. A higher number is

122

generated for high curviness with a maximum of 10 subdivisions for a curviness of 45

degrees.

Other extractors can use the raster layers (elevation data, imagery texture) as well
as the available knowledge and the instance data to derive a value through pattern
recognition, analysis or computer vision techniques. Since the imagery is properly scaled
corresponding to the projection used, these extractors could segment and analyze an
imagery subset as per application requirements along the linear segment (the road
texture) for patterns or texture extraction. They can extract property values and add them
as further assertions to the KB. Following on our example, the road width is retrieved
using the W extractor, which also ensures proper connectivity between entities. The deck
thickness uses the Thickness extractor. The left and right overhang widths and heights are
retrieved using the Roadside Type extractor. Overhangs are always within the structure
of the deck width (defined by the start/end edges). Moreover, other property extractors
for class Bridge include Cover Type while all Road class property extractors shown in
Figure 18, are required to extract values such as no_of lanes, lane_type, etc... These
could also infer a different object class depending on their values. Pointers to data objects
can also be added as data properties referring to pieces of data that will be used by the 3D
rendering procedure. For example, the extracted bridge texture can be stored in a specific
format and referred to, through a Uniform Resource Identifier (URI). The visualization

system would use the URI to locate and load the texture for the bridge.

The procedural algorithm, with the above values for properties, will generate a
deck only bridge (Figure 26). The linear feature points are shown between the OL

vectors. The normals and the direction vectors, respective to the OL vectors and scaled

123

down for clarity purposes, are also shown; the values produced ensure a smooth
connection with the road segments connecting with the bridge. OL2 vector, in this figure,
represents the inferred bridge (segments?2). The ground at D1 is in the upward direction at
almost 10 degrees and 5m higher than the end of the bridge. The bridge, given these
values, will be modeled to follow terrain smoothly. We then position this bridge at the
location between the edges returned by the normal to the OL extractor and the W
extractor and projected on the terrain surface. Properties for more complex bridges can be

extracted similarly.

- =

..,////////l_]ﬂ!!!__- =

T A A

Figure 26: Deck Only Example

124

Chapter 6

Handling Data Uncertainty

[Poole et al., 2009] advocate for the separation between assertional axioms and
uncertainty as a good design principle where probabilities can always be dealt with
separately in their proper context. This separation allows the definition of assertional
knowledge axioms that can be reused without having the theories about the probabilities
within the same context. This is helpful especially since the theories about the
probabilities might change independently from the domain knowledge, the meanings and
the facts. We can use probabilities reasoning in side-processes and interface with regular
DL for deductive reasoning. [Laskey, 2009] and [Li et al., 2006] show a good summary
of the state of the art in Probabilistic reasoning and introduce a Probabilistic Description
Logic Program that allows querying by analyzing all possible answers and returns the
highest score. Our system can certainly benefit from reasoning with probability and can

be extended to model it.

In our domain of application, uncertainty could happen in (1) the input GIS

sources, (2) the definition (meaning) of a term or concept in an ontology, or (3)

125

associated with extracted data. We only address (3) as we consider that (1) the input GIS
sources always contain a full representation (implicit or explicit) for the 3D Real world
(after Assumption 1) and (2) we implement separation between uncertainties and
knowledge based on [Poole et al., 2009]. Moreover, all our probability related
relationships are in the form of relationship extractors which can handle uncertainties
within the extractor procedure. We therefore address the problem of representing
uncertainties of data assertions in the knowledge base and calculating the resulting

uncertainties of entailed assertions.

Extractors are procedures that users associate with a concept that represents the
procedure’s return value(s) (defined per concept class). For example, a roadwidth
extractor may make use of a procedure that classifies certain pixels with some certainty
as part of the road and others of a different category. Similarly, many data extractors can
be associated with some uncertainty or thresholds such as PrecedenceBylmagery,
Next to, Impassable Through, Between, Thickness, Separators, Road Directionality,
Number_of Lanes, as well as many others. Extractors such as Position, Altitude, OL, n,
N, and D (see Data Property Extractors in section 5.3.2.3) as well as spatial relationship
extractors are defined by formulae (no uncertainty) that arithmetically derive the required
information. We define these as Type A extractors while those that have an associated

uncertainty are defined as Type B extractors.

Existing work does not handle our problem adequately and default knowledge
base services do not handle uncertainties under the expressivity chosen (SROIQP)). As
an example, if the roadwidth extractor for a certain instance / returns true or false for

value 3.2(meters) then in a conventional knowledge base under SROIQ® expressivity,
126

we can only assert (I,"3.2"): roadwidth (positive assertion) or —(I,"3.2"): roadwidth
(negative assertion). This data property relationship would therefore either exist or we
know it is not going to exist (different from the relationship is unknown) and does not
mean that the inverse of the property exists. A certainty value could be stored as part of
the knowledge base in the form of an annotation on the relationship (serving as a storage-
only mechanism). In this example, the certainty of the width value can be stored as an
annotation on the roadwidth object-value relationship as
((I, “3.2”):roadwidth, 0.7):Acerminty denoting 70% certainty for this assertion. This
annotation has no semantic value within the chosen expressivity but it can be used by
computer programs or, using some other expressivity constraints, by probabilistic

description logic reasoners such as Pronto (pellet-based).

Probabilistic description logic calculates uncertainties on a per concept basis, but
we believe that our needs are much simpler. (1) There is a difference between the
probability of existence of a concept or instance and the probability of existence of an
assertion about an instance. In our case, we only need to model the latter since instances
are created as per the shape definitions and therefore there is no doubt about their
existence. (2) Uncertainty in concept definition need not be modeled as part of the
ontology as discussed earlier. (3) In our case, the certainty of an assertion does not
depend on the certainty of the elements used by the assertion or vice versa. For example,
consider an axiom A defined as (i1l,wl):coverType . The axiom’s certainty is
considered independent from the certainties of the facts about i/ or wi. The coverType
extractor evaluates the absolute certainty of A with respect to available facts and inserts it
into the KB.

127

6.1 Zadeh Semantics with KB Justifications

In Figure 4, we have shown that most effort is spent in defining shapefile data that
is representative of what is required for detailed 3D representation. Since we have
replaced the effort consuming shapefile definition step in Figure 4 with our Data
Extractors framework shown in Figure 13, it is required that we address uncertainties on
the extracted results and axioms produced. Only Type B extractors need to associate a
certainty value in the knowledge base as an annotation. Since our process includes the
entailment of new information, we also calculate the resulting uncertainty value of an
entailment based on the justifications of each entailment. For this, explanations (a set of

axioms) are necessary to calculate the certainty value of an assertion (axiom).

We modify our ConsistentKB method to extend the default knowledge base
realization service and then compute all resulting certainty values for each assertion
entailment discovered by the system. All certainty annotations are instance-specific and

are therefore saved in the ABox per assertion.

We use fuzzy variables under the Zadeh semantics to represent our uncertainties.
We chose Zadeh semantics as its definition of conjunction (t-Norm) and disjunction (t-
Conorm) between two axioms is sufficient and necessary to represent instance class
entailments and their explanation axioms. In a previous attempt, we have tried using
equivalence axioms in a class definition to calculate the resulting fuzzy variable value for
an instance. An equivalence axiom defines a set of concepts and object or data properties
that together define the class. However, that only worked if exactly one equivalence

axiom is defined. Explanation services available with semantic engines allow the support

128

of multiple equivalence axioms and provide the minimum set of assertions and axioms
resulting in an entailment. Moreover, they can return multiple explanations for a certain
entailment. At the moment, we are only interested in concept class entailments for
instances. We therefore ignore all other entailment types because we assume there is
always an explicit minimum set of axioms (or some implicit made explicit by a previous

pass) that results in this concept class entailment.

We recall that, according to [Horridge et al., 2008], a certain explanation for a
class entailment of an instance is a minimum list of assertion axioms that directly results
in the entailment. We are particularly interested in all assertion axioms of the explanation
that explicitly contain the specific instance being processed. We call this set “the variable
set”. This set is sufficient if each extractor uses the certainties of the concerned facts
when evaluating a property assertion and assigning its corresponding certainty. The least
certain axiom in every variable set represents a certainty value for the entailed class type.
If two or more explanations exist for a certain entailment, then the entailment’s certainty
value is the most certain value resulting from each explanation. This algorithm is
presented as part of ConsistentKB in the following section which is called every time we

realize the knowledge base in our process.

We have seen that, in SROIQ semantics described previously, ABox assertions

for two instances a and b are defined as:

- a:C (where Cis a Concept)

- (a, b): R (where R is an object-object relationship)

129

We extend these by associating a fuzzy variable v that represents a certainty value
to each assertion as an annotation (assertion,v):Acertainty - OWL2 allows such
annotations and therefore these values can be stored within the KB without change in
expressivity. If v is not specified, then the assertion is considered to be attributed 100%

certainty, this includes all initial data from Shapefiles.

Consider an explanation £ of a concept class entailment assertion i: C for an
instance i where E E (i:C) . For each assertion axiom x € E , there exists
(x,V): Acertainty defining a certainty value v. Since i: C is entailed using the conjunction
of all axioms in E, the resulting certainty, u(E), of i:C is defined as, under Zadeh
semantics, the least certain axiom in E. This handles the case of one equivalence axiom in
a class definition (see Example 2 under section 6.3.2). The variable set is determined by
whether an instance 7 is an element of assertion x. inf is a function that takes the set of

values v and returns the minimum value in the set. Function « is defined as follows:

Vx €EE, ((i € x) N (x, v):Acertamty) > @wcV)
u(E) = inf (V)

If more than one explanation exists in a set J, since i:C is entailed by the
disjunction of all explanations in J, the resulting certainty, v(J), is defined as, under
Zadeh semantics, the most certain result u(E) obtained from each explanation E in J.
This handles multiple equivalence axioms or disjunctions in the equivalence axioms (see
Example 3 under section 6.3.3). sup is a function that takes the set of values u(E)
associated with each explanation £ in J and returns the maximum value in the set.

Function v is defined as follows:

130

VE € J,u(E) € K
v(J) = sup(K)

6.2 Algorithm KBConsistent

The ConsistentKB procedure extends the semantic engine knowledge base
realization service, which computes the subsumption hierarchy on the knowledge base
and generates the consistency report, if required. The procedure then computes concept
class uncertainties based on KB justification services, and commits the changes on the

knowledge base.

Procedure ConsistentKB

Input: KB

Output: KB(modified)

//realize the ABox

KB.realize();

If (IKB.isConsistent()) then
GeneratelnconsistencyReport();
return ERROR();

Endif

//compute uncertainty of entailed concepts of instances
Forevery Instance in KB
Explanations = KB.explain(instance.type);
If (Explanations) then
Variablesets[Explanations.size];
Result_e = 0;
Forevery explanation in Explanations
Result_a=1;
Forevery assertion in explanation
If (assertion.contains(instance.id)) then
Variablesets[explanation.id].add(assertion);
V = assertion.annotations.fuzzyValue;
Result_a = min(Result_a, V);
Endif
End
Result_e = max(Result_e, Result_a);
End
(instance.type).annotations.fuzzyValue = Result_e;
Endif
End
EndProc

131

6.3 Examples

An assertional axiom A annotated with a fuzzy certainty value x will be denoted

as (A)(x) for the purposes of brevity.

6.3.1 Example 1

Consider the following TBox and ABox:
A = 3prop.B

(1) (i1: B)(x)

(2) ((i2,i1): prop)(y)

Our system will first insert i/ and i2 with respective basic types as part of mapShapefile
(complete certainty is assumed). If (1) is explicit and is asserted to the KB before (2),
then, as part of addShapeRelationsToKB, prop is evaluated using the associated extractor
function. Since the type of i/ is already known ((1) is asserted), the extractor of prop can
use the uncertainty variable x in its evaluation and assign a corresponding value to y as an
annotation after asserting (2). After all relations are evaluated, the knowledge base is

realized and KB & (i2: A). The explanation is given as:
{((iZ, i1): prop)(y), (il:B)(x), (4 = EIprop.B)}. The variable set for this explanation

is {((iZ, i1): prop)(y)} and (i2: A)(u) has certainty value u = y.

On the other hand, if (2) is added before (1), a limitation exists where the

extractor of (2) does not know about the type of i/ and there is no relationship between y

132

and x. This is avoided by the fact that we execute initial mapping and the KB is realized

before relationship extraction.

6.3.2 Example 2
Consider the following TBox and ABox:
A = 3prop.B
C = 3prop.A N 3IAprop.B

(1) (i1: B)(x)
() ((i2,i1): prop)(y)
(3) ((i3, i2): prop)(z)

4) ((i3,i1): prop)(w)

After realizing the knowledge base, KB & {(i2: A), (i3: C)}, which are available

in explicit form with explanations:

- {((iZ,il):prop)(y), (il:B)(x), (4 = EIprop.B)} E (i2: A)(u)
- {((i3, i2):prop)(z), ((i3, il):prop)(w), ((i2, i1):prop)(y), (A = 3prop.B),

(i1: B)(x), (C = Aprop. A N Iprop. B)} E (i3:C)(v)

In this case, entailment (i3: C) is dependent on that of (i2: A). In the current
algorithm, since all object property relationships are evaluated and asserted after basic
class insertion and before the knowledge base is realized, the fuzzy variables are

independent unless an explicit assertion is available before the value is used. In this

133

example, (1) is an explicit assertion with variable x. If (1) is added before (2), then the
extractor of (2) can use x and assign a value for y as in Example 1. When the extractor of
(3) is executed for (i3,i2):prop, the type of i2 is not explicit and therefore no
relationship is known between the associated variables. When the extractor of (4) is
executed for (i3,i1): prop, if (1) was inserted previously, x can be used in the analysis

and calculation of w.

After adding all object properties and realizing the knowledge base, the values for
u and v would be properly assigned with u = y (where y depends on x since (il: B) is
known) with variable set: {((i2,i1):prop i1)(y)} and v = w Nz with variable set:
{((i3, i2): prop)(z), ((i3, i1): prop)(w)} (where z is independent of u since z was
calculated by the extractor before (i2: A)(u) was known and w dependent on x since the

type of i/ was known when calculating w).

If (i3,i2): prop extractor is to use u and assign a value for z, then (i2:A)
entailment is required before (i3, i2): prop extractor is executed. This would be possible
only if ConsistentKB is called after every object property assertion is inserted. This is

already done for data property assertions.

6.3.3 Example 3
Consider the following TBox and ABox:

Tunnel = AThrough. (NaturalObject U Structure)

U 3Under. (NaturalObject U Structure U Thoroughfare)

134

(1) (i2: NaturalObject)(u)
(2) (i3: Structure)(v)

(3) (i4: Throughfare)(w)
4) ((i1,i2): Under)(x)

(5) ((i1,i3): Through)(y)

(6) ((i1,i4): Under)(z)

If (1), (2) and (3) are added to the ABox prior to the object property relationships,
then the extractors of Under and Through can use the corresponding variables to analyze
and calculate the resulting variable (e.g. ((i1,i2): Under)(x) can use u and calculate x).

Otherwise, all variables are independent.

After knowledge base realization however, KB E {(i1l: Tunnel)(p)} and the

explanations are given as:

- {((i1,i4): Under)(2), (i4: Throughfare) w), (Tunnel =
AThrough. (NaturalObject U Structure) U IUnder.(NaturalObject U
Structure U Thoroughfare))}

- {((i1,i2): Under)(x), (i2: NaturalObject) (u), (Tunnel =
AThrough. (NaturalObject U Structure) U IUnder.(NaturalObject U
Structure U Thoroughfare))}

- {((il, L'3):Through)(y), (i3: Structure) (v), (Tunnel =
AThrough. (NaturalObject U Structure) U IUnder.(NaturalObject U

Structure U Thoroughf are))}

135

The wvariable sets associated with each explanation respectively are:
{((il, i4): Under) (Z)} , {((il, i2): Under) (x)} , and {((il, i3): Through) (y)} . As
mentioned above, we define the final variable value as the disjunction of all results from
every variable set. Therefore, p = max(z, x,y). If we assume only one assertion is 100%

certain then (i1: Tunnel) would be 100% certain.

6.4 Observations

We have introduced a novel process for calculating uncertainty. The major
difference being that our method is independent of the expressivity used or chosen for the
knowledge base as long as reasoner explanation services, as defined by [Horridge et al.,
2008], are available for this expressivity. We, therefore, do not have to extend the
semantics used for the purposes of uncertainty (adding uncertainty to concepts,
calculating and generating resulting values); it is contained within the process and
transparent to the user. This promotes the separation of knowledge and probabilities as

described in [Poole et al., 2009].

Our method reduces the complexity of calculating the probability/possibility
within the reasoning process due to the reduced set of axioms in the variable set. The
variable set contains only axioms that are directly related to the instance being processed.
This condition is sufficient to calculate the entailed axiom’s certainty value in our
process. By adding the relationships using the Data Extractors framework, we also extract

relationship properties (such as inverse relations, functional, transitivity, etc...) and

136

related inferences. For example, if there exists two axioms in the ABox, (i1,i2):r and
(i2,i3):r and r is transitive. Using the Data Extractors framework, there must be an
added axiom (i1,i3):7 as well (all instances are evaluated against all relationships). In
order to maintain the calculation of certainties for entailments simple, any certainty
attribution for an axiom other than concept class entailment has to be inserted by an
extractor. Entailed relationships other than concept class entailments will not be

addressed if an uncertainty attribution is not present (its certainty will be 1 in this case).

Lukasiewicz in [Lukasiewicz, 1998] specified that restricted deduction problems
that are P-complete for classical logic programs are already NP-hard for probabilistic
logic programs. [Lukasiewics & Straccia, 2008] specified that his probabilistic reasoning
tableaux extension P — SHOINP) (after SHOINP) expressivity with class NEXPTIME)

has best case FPNEXPTIME

complexity class (as described in section 3.5). SROIQ is
already 2 — NEXPTIME class. Since, we associate uncertainties with respect to assertion
data only and calculate the resulting uncertainties of entailed instance class assertions, we
believe that our method of calculating the resulting uncertainties significantly reduces the

algorithmic complexity compared to using probabilistic description logic since we only

evaluate uncertainties for entailed class assertions using their explanations.

137

Chapter 7

Results and Examples

This chapter shows some examples that demonstrate our process. Section 7.1
shows a simple example using our framework without the use of uncertainty. Section 7.2
demonstrates our handling of uncertainty process and the Knowledge Base ABox
Realization extension. Sections 7.3 through 7.5 show concrete examples from a real
world ROI. Section 7.6 shows our reproduction of a complex bridge structure. Finally,
section 7.7 shows a different application of using knowledge and uncertainties of

extracted features of an ROI.

7.1 Generating Thoroughfares and Their Details

Shp0:
. oLL,.—fffw-HOu oLl

Figure 27: Shp0 Polyline Record Figure 28: Generated Connected Segments

138

Objective: Specialize polyline in shapefile and property filling using the Data

Extractors framework.

Figure 27 shows a polyline record (Shp0) with overlaid OL segments. This record
has 1 part with 4 points defined. A segment is defined between each two consecutive

points in a part with a total of three segments in this case (S1, S2, and S3).

Attribute_value

attribute_name

/'5"
hasMir

hasProj hashdax
hasBoundingBox 5}(
ne,‘f'

hasSegment

ile/shape
Part id

hasReference

hasSegment hasSegment

Connected_to

hasPtRef

Connected_to
attribute_name™® hasPtRef artribute_name*
Attribute_value Attribute_value

Figure 29: Knowledge Graph Defining Shp0

attribute_name™®

Attribute_wvalue

Our Initial Mapping procedure defined in section 5.3.1 generates the knowledge
graph for Shp0 as shown in Figure 29 and adds it as facts to the knowledge base. The part
is of type Connected Segments which is equivalent to a Thoroughfare entity. Each
segment s is added as an instance to the KB. Relationships are evaluated between

available instances and added as facts to the KB. In this case, no relationships exist

139

except Connected To which was added by the Initial Mapping procedure. Each segment
is equivalent to a Thoroughfare part which is also defined as Road in TD and has the
properties shown previously in Figure 18. Data properties of each instance are extracted
using the Data Extractors framework.Initial data (mapped by Initial Mapping) is
generally considered certain unless otherwise specified as part of the record’s attributes
and mapped with an appropriate SD ontology. Some data extractors such as the Start/End
Edge, Directionality, or others associate some certainties with added facts. Every
extractor has a handle on the knowledge base and the collection of GIS data sources as
well as the entity (in case of data properties) or entities (in case of binary object
properties) for use in the evaluation. Any fact found by the extractor gets added to the KB
with associated uncertainties as annotations. The system calculates the certainties of

inferences based on available explanations under Zadeh semantics.

Each segment in our case defines a road (part) entity with property values. The
result is shown in Figure 28. The same definitions are used by more complex
transportation feature types in the system. For example, a bridge entity contains 1 or more
segments part of the bridge and each segment defines a road (part). This allows the
generation of changing road definitions such as a secondary road becoming a major road

at some location or a two-way road becoming one way.

7.2 Uncertainty of Inferences

Objective: Associate uncertainties using KB explanation services.

140

We show here some results on the addition of uncertainties to KB assertions and
computing the resulting uncertainties based on KB explanation services described earlier
in Chapter 6. The knowledge base in this example contains 51 axioms (for brevity)
including 8 axioms with certainty annotations. uncertaintyVariable is an annotation
defined by our process that can be used on all axiom types. Consider the following

axioms:

Monument = Area N Ancient

Park C Area

Street = Thoroughfare N Awithin. BuiltUpArea
Avenue = Thoroughfare N 3s5,;NextTo.(Monument U Park)
Boulevard = Avenue M ANumber_Of_Lanes. (xsd: short: > 2)
Bridge = Thoroughfare 1M 30ver.ImpassableArea
CoveredBridge = Bridge N 3hasCover. Cover

Cover = Wood U Metal

Metal = Cover

Wood E Cover

Disjoint(Metal, Wood)

il: Thoroughfare

(0.6, (i1,i2): NextTo): uncertaintyVariable

(0.4, (i1,i3): NextTo): uncertaintyVariable

(0.6,i2: Ancient): uncertaintyVariable

(0.8,i2: Area): uncertaintyVariable

i3: Park

(1.0, i4: Avenue): uncertaintyVariable

(0.6, (i4,i2): NextTo): uncertaintyVariable

(0.5, (i4,i3): NextTo): uncertaintyVariable

(0.8, (i4,3): Number_Of _Lanes): uncertaintyVariable

After Realization using our ConsistentKB procedure, the instances in the

knowledge base are reclassified as follows with calculated certainties:

(0.8,i4: Boulevard): uncertaintyVariable
(1.0, i4: Avenue): uncertaintyVariable
(1.0,i3: Park): uncertaintyVariable
(0.8,i2: Area): uncertaintyVariable
(0.6,i2: Monument): uncertaintyVariable
(0.6,i2: Ancient): uncertaintyVariable
(0.6,i1: Avenue): uncertaintyVariable

141

The following is the program output showing details of inferences and their
explanations as well as the calculation of resulting uncertainties as per the process
discussed in Chapter 6. Verification of facts can be done for example by the user as

shown in Figure 30.

Loaded OntologyID(OntologyIRI(<http://se>))
Classifying ...

. finished
Realizing ...

. finished

individual: <http://se#id>
for type assertion: Boulevard
explanation 1/3:
ClassAssertion(<http://se#tAvenue> <http://se#i4>)
with certainty value: 1.0
DataPropertyAssertion(<http://se#no_of_lanes> <http://se#id> "3"~~xsd:short)
with certainty value: 0.8
explanation 1/3 axioms result(min): 0.8
explanation 2/3:
ObjectPropertyAssertion(<http://se#Next_to> <http://se#id> <http://se#i3>)
with certainty value: 0.5
DataPropertyAssertion(<http://se#tno_of_ lanes> <http://se#i4> "3"~~xsd:short)
with certainty value: 0.8
explanation 2/3 axioms result(min): 0.5
explanation 3/3:
ObjectPropertyAssertion(<http://se#Next_to> <http://se#id> <http://se#i2>)
with certainty value: 0.6
DataPropertyAssertion(<http://se#no_of_lanes> <http://se#i4> "3"~"xsd:short)
with certainty value: 0.8
explanation 3/3 axioms result(min): ©.6
all explanations (3) result(max): 0.8

individual: <http://se#i3>
for type assertion: Park
explanation 1/1:
ClassAssertion(<http://se#Park> <http://se#i3>)
explanation 1/1 axioms result(min): 1.0
all explanations (1) result(max): 1.0

individual: <http://se#i2>
for type assertion: Monument
explanation 1/1:
ClassAssertion(<http://settArea> <http://set#i2>)
with certainty value: 0.8
ClassAssertion(<http://se#Ancient> <http://se#i2>)
with certainty value: 0.6
explanation 1/1 axioms result(min): 0.6
all explanations (1) result(max): 0.6

individual: <http://se#il>
for type assertion: Avenue
explanation 1/4:
ObjectPropertyAssertion(<http://se#Next_to> <http://se#il> <http://se#i2>)

142

with certainty value: 0.6
ClassAssertion(<http://se#fThoroughfare> <http://se#il>)
explanation 1/4 axioms result(min): 0.6
explanation 2/4:
ObjectPropertyAssertion(<http://se#Next_to> <http://se#il> <http://se#i3>)
with certainty value: 0.4
ClassAssertion(<http://se#fThoroughfare> <http://se#il>)
explanation 2/4 axioms result(min): 0.4
explanation 3/4:
ObjectPropertyAssertion(<http://se#fNext_to> <http://se#il> <http://se#i3>)
with certainty value: 0.4
ClassAssertion(<http://se#fThoroughfare> <http://se#il>)
explanation 3/4 axioms result(min): 0.4
explanation 4/4:
ObjectPropertyAssertion(<http://se#fNext_to> <http://se#il> <http://se#i2>)
with certainty value: 0.6
ClassAssertion(<http://se#fThoroughfare> <http://se#il>)
explanation 4/4 axioms result(min): 0.6
all explanations (4) result(max): 0.6

Consistent: true
file saved testBoulevard2.owl

The classified Hierarchy is:
{owl:Thing}
{<http://se#Bridge>}
{<http://se#CoveredBridge>}
{<http://se#tCover>}
{<http://settWood>}
{<http://set#tMetal>}
{<http://se#Ancient>}
{<http://se#Monument>}
{<http://se#Area>}
{<http://se#Monument>}
{<http://se#Park>}
{<http://se#Thoroughfare>}
{<http://se#Avenue>}
{<http://se#Boulevard>}

Printing individuals list:

individual <http://se#i4>

has type ([<http://se#Boulevard>]) with certainty value 0.8
has type ([<http://settAvenue>]) with certainty value 1.0
individual <http://se#i3>

has type ([<http://se#tPark>])

has type ([<http://se#Park>]) with certainty value 1.0
individual <http://se#i2>

has type ([<http://se#Area>]) with certainty value 0.8

has type ([<http://se#fMonument>]) with certainty value 0.6
has type ([<http://set#tAncient>]) with certainty value 0.6
individual <http://se#il>

has type ([<http://set#tAvenue>]) with certainty value 0.6
has type ([<http://se#tThoroughfare>])

143

For item =hitp://pedro#iZ=with definition:
ClassAssertion{Annotation{=hitp:/ipedro#uncertainty\fariable= "0 8™ s d:short) =hlip:ipedrofArea= <hltpfipedro#i2=)
ClassAssertion{Annotation{=hitp:/pedro#uncertaintyVariable= "0 §"*xsd:float) <hltp:/pedro#Monument= =hitp:/pedro#iZ=)
ClassAssertion(Annotation{=hitp:fpedrofuncertaintyVariable= "0 6"xsd:short) =hitp:ipedro#ancient= <hitp:fpedro#i2=)

(=hitp:iipedro#i2= type [=hitpipedro#Monument=]) has explanations:
Explanation 0:
ClassAssertion{Annotation{=hitp:/pedro#uncertaintyVariable= "0 §"*xsd:float) <hltp:/pedro#Monument= =hitp:/pedro#iZ=)
Explanation 1:
ClassAssertion{Annotation{=hitp:/pedrofuncertai ntWariabI e="0.8""xsd:short) =hitp:ipedrofdrea= <hitpipedro#i2=)
EquivalentClasses(=hitp:/fpedro#Monument= ObjectintersectionOfi=hitp.ipedro#Ancient= <hitp:fpedrofarea=))
ClassAssertion{Annotation{=hitp:pedrofuncertainty\fariable= "0 6™ xsd:short) <hitp:ipedrofAncient= <hitp:pedro#i2=)

Figure 30: Example Dialog Querying User for Fact Verification

7.3 A Bridge Example in Honolulu

Figure 31: 10m Resolution Elevation Data

144

e % o sty T L
BT W N F%g il A
2 TN %ﬁﬂs =t Y/
%%g P %nm;%%cgwﬁg Q%&ﬁ%f . &
EE ~ ’ <& 0 e, 3 °
51 % %%()%N@ @ 4 vy &
- g§ e E’%%Q%& <><> @b OD § i}f gQQ ! £ o
Whe T eh W, MY &
% Eﬁ T gl it 5 Ly > £ 3 o]
e 1 (=== pas e o THE 8 S
== a = Sy gt]
E ! B0t e @ % © = Q’%%n CE e
o Fri Peapks1bis” T w
7 == o
i Cgg AR
}E‘Cfcu st i & ¢ Laf
g ST LA %@ i{ oy QRS -
U“ d[l R v ﬁ;ﬂ:f::a:ﬂ%n%?g —d . & hgthor
S e -ac e I I o O o
olin Mgt LH IS ST as S @47,,@@ ’)
e 2] P hsse = o o, ® 3 e
an, = et W Sl o €8 @S >
sz o5 Olay SFqgma Ve ‘9
ﬂﬂD m":’ﬂﬁzﬂl% S =i & (S
WA o @»
EDHHHD@}Q ‘Bam Y
) %%, %
a % ?&o%
a “%0

DEODQ % o @
A &%%

Y L,

Figure 32: Shapefile Data Sets in Points, Linears and Polygons

Figure 33: 1-foot Resolution Partial Imagery Data

Objective: Reconstruct a bridge in a region from GIS data sources.

145

This example details the previously shown examples under section 1.6. The above
figures represent data sources of an area in Honolulu, Hawaii for which we were able to
acquire publicly available data (NGA, 2014). We are interested in the bridge structure
shown at the top right of Figure 33. Figure 34 shows the 1-foot satellite imagery of our
ROI along with the correlated line feature. A human can clearly identify the bridge

stretching from the bottom-left to the top-right of that area.

Figure 35 shows the same area without the satellite imagery revealing the
elevation, the linear and areal features. The elevation source is a DTM (Digital Terrain
Map) of type GridFloat. The linear feature does not contain information about its
elevation over ground which is typical with raw feature data. However, the linear is

defined along the middle of the roadway.

"> MapWindow GIS - Hickham* [I & 9 MapWindow GIS - Hickham" ===
File Edit View Plug-ins GISTools Watershed Delineation File Edit View Plug-ins GIS Tools
DER &% YXRPRR]A .. %.10 DSB&H ¥ R R&A B:
e [E . oy

& s,
.

X:-157895 Y:21.352 X:-157.893 Y: 21382

Figure 34: Honolulu Bridge Satellite View Figure 35: GIS Data of Honolulu Bridge

146

Figure 36: Ground View using GenesisRT Figure 37: Ground View using GenesisRT
without imagery

Figure 38: Ground View Visualization using Presagis Terra Vista

Current real-time visualization systems would render this information without
modeling a 3D object for the bridge. They wrap the generated terrain using the satellite
image as a texture, and if necessary drape a road texture along the linear feature as shown
in Figure 36. Two state-of-the-art tools, DVC GenesisRT and Presagis TerraVista, were
used to generate a runtime 3D model of the terrain using the GIS data sources and some
configuration files that we implemented. When the systems have completely finished
loading with satellite imagery as texture, the fidelity presented is shown in Figure 37 and
Figure 38 respectively. In this case, there is very short turnaround time (as defined

in Chapter 1) between acquiring the GIS data sources and having a usable 3D

147

visualization of the data; little manual attribution or content authoring was done to

achieve these results.

In our system, after entities are mapped using the Initial Mapping procedure to

knowledge base instances and while evaluating instance relationships, the

Impassable Through relationship extractor (on the Connected Segments instances) uses
elevation and imagery data along with instance information to automatically determine if
an entity or part of it spatially crosses another known entity or feature such as some

impassable terrain profile. The TBox is defined as follows:

Classes Roles
Bridge Over
Thoroughfare Impassable Through
Segment Impassable By
ImpassableArea Connected To
Connected Segments
Axioms
Properties Connected Segments = Thoroughfare
See Appendix A Bridge = Thoroughfare M 30ver.ImpassableArea

ImpassableArea = JImpassable By.Connected Segments
Impassable By = inverseOf(Impassable_Through)
The Shapefile GIS source layer given as input in this example defines the line
feature record as ShapelD = 4, ShapeType = SHP POLYLINE, and numPoints = 26.

Here is a subset of the points that we are concerned with. They are listed in the file using

WGS84 projection (defined in the file):

(-157.896959,21.348452)
(-157.896166,21.349193)
(-157.895406,21.349792)
(-157.894912,21.350301)
(-157.894546,21.350916)

(-157.896704,21.348709)
(-157.895860,21.349429)
(-157.895228,21.349943)
(-157.894775,21.350497)
(-157.894474,21.351122)

148

(-157.896440,21.348956)
(-157.895595,21.349641)
(-157.895063,21.350116)
(-157.894652,21.350702)
(-157.893998,21.352351)

Figure 39 shows the curve returned by sampling the elevation data under the
concerned segments with y as elevations and x as linear feature length. The solid line
section of the graph represents the plot of the latitude/longitude points used in this
example. The steep slopes under the bridge entity are recognizable and span around 450m
(between x=1500 and x=1950) with elevation differences of almost 20m (between lowest
and highest points). A new instance a of type Area (defined between points 2 and 15) and
an instance b of type Connected Segments, which includes the affected segments, are
added as new facts to the knowledge base. a and b’s relationships including
Impassable Through relationships between b and a are added to the knowledge base
along with associated certainties. Other relationship extractors are then evaluated as
required. Since relationships of a are also evaluated, then the Over relationship based on
DE-9IM should be part of the knowledge base for any segment part of b as well as for b

itself.

25

[)
wn o

elevations (meters)
5
\

- '
-
-
-
-
-
-
-
-
- !
-
-

*-'_\‘!_‘0 - : JOuOul

un
\

Y,

T -
-
-— F 4
-
-

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
distance (meters)

====ShapelD4 = oourdataset

Figure 39: Elevation Profile of ShapelD 4

149

The following facts are added by our system to the knowledge base: (s;,
b):Part Of, (s;, a):over, (b, a):Impassable Through, (s, b):Part Of, (s, a):over, (b,
a):over, and so on. Note that (s;, s,):Connected To was added by the initial mapping
process. After realizing the knowledge base and if it is consistent, some facts become
explicit such as: (b,a):Impassable Through &= (a,b):Impassable By & a:ImpassableArea
E b:Bridge. The system now has identified a series of segments as a bridge instance and
made it explicit in the knowledge base. Data property extractors are then executed to fill

the property values required by the bridge b.

Finally, Using the RC ontology, the Geometry Definition Engine extracts data
from the knowledge base and explicitly defines the geometry and parameters for each
processed element from the ABox. It retrieves the specific class type of instance b from
the knowledge base using the query in Figure 15 and selects the corresponding definition
in the RC ontology. It uses the generic SPARQL query described in Figure 16 to identify
and extract all necessary property values for b. Figure 40 shows the results returned by

the queries.

We used the Procedural Bridge Framework from Presagis Creator Studio® to
represent our definition. A 3D model of the bridge is created and shown in North view in
Figure 41. The inferred type is used to select the Cantilever Beam bridge parameter
model algorithm. The remaining property values are used as parameters for the selected
procedural modeling algorithm to generate the needed representation of the feature
instance. The result of our process within a scene was shown previously in Figure 3 in

Chapter 1.

150

Basic Properties

Value

Explanation

Bridge Type Cantilever Beam
Start Edge (21.348452, -157.896959, 10) | (latitude, longitude, altitude)
Start Edge Width 28m
Start Angles 43.04,3 (horizontal, climb) in degrees
End Edge (21.351122,-157.894474, 23) | (latitude, longitude, altitude)
End Edge Width 28m
End Angle 67.31,0 (horizontal, climb) in degrees
Span Dividers 5 5 supports
Start/End Dividers Enabled Form closed sections at extremities
Ground Height -20m
Round Subdivisions 10
Deck Thickness Im
Deck Subdivisions 14 14 segments defining bridge
Left/Right overhang Im
Overhang Height Im

Supports Value
Type Pillar
Partitions 2 Two visible pillars at each divider
Webbing N/A
Sections N/A
Gap Size N/A
Top Scale Ratio N/A
Width/Height 12,5 (width, depth) in meters

Figure 40: Retrieved Values for the Honolulu Bridge

AT S S r.f“ .:f o =] %5 LT T L Tk, T T !

ks : "..-rx.';
/ [Wl | ol vl e i
fff’ffff!ff!!!! L T T
L A AT S A i | R T S T TR VA T T

Figure 41: Generated Cantilever Beam (North View)

151

7.4 An Overpass

Figure 42: Overpass Areal View

Figure 43: Overpass GIS Data Sources

Basic Properties

Value

Explanation

Bridge Type Cantilever Beam
Start Edge (21.335418, -157.901399, 8) | (latitude, longitude, altitude)
Start Edge Width 25m
Start Angles 0,0 (horizontal, climb) in degrees
End Edge (21.335418, -157.901399, 8) | (latitude, longitude, altitude)
End Edge Width 25m
End Angle 0,0 (horizontal, climb) in degrees
Span Dividers 10 10 supports
Start/End Dividers Enabled Form closed sections at extremities
Ground Height -Om
Round Subdivisions 10
Deck Thickness Im
Deck Subdivisions 1 1 segments defining bridge
Left/Right overhang Im
Overhang Height Im

Supports Value
Type Pillar
Partitions 2 Two visible pillars at each divider
Webbing N/A
Sections N/A
Gap Size N/A
Top Scale Ratio N/A
Width/Height 53 (width, depth) in meters

Figure 44: Retrieved Values for Overpass

152

Objective: Reconstruct an overpass in a region from GIS data sources.

In this example, also in Honolulu, Hawaii, the DE-9IM relationship extractors
analyze the spatial layouts between entities and the two orthogonal segments shown in
this example define a crosses relationship. Also, the PrecedenceBylmagery extractor is
executed by the Over relationship extractor when a crosses relationship exists and no

altitude values are available.

The PrecedenceByImagery extractor could use the segment definitions to scan the
segmented imagery and return which overlays the other based on continuity. In this case,
the horizontal segment is defined to be Over the vertical one and therefore a bridge is
inferred. The data extractors fill the necessary property values as shown in Figure 44. The

result of the representation using our process is shown in Figure 45.

Figure 45: Generated Overpass

153

7.5 Overwater Bridge

Objective: Reconstruct an overwater bridge in a region from GIS data sources.

In this example (also in Honolulu), the elevations below the feature record shown
in Figure 47 define water level values (bathymetric elevations). The Altitude or Over
extractors detect these values and add (s, waterbody): Over to the KB where s is the
concerned segment and waterbody is a persistent instance in the knowledge base relating
any element that is defined over a water body. A bridge is similarly inferred and

generated provided that {waterbody} has type ImpassableArea.

Figure 47: Overwater Elevation Data Figure 48: Overwater Road, Building,
Source and Tree Features Combined

154

7.6 The Champlain Bridge

Figure 49: Side View of the Champlain Bridge

Objective: Reconstruct a heritage bridge, the Champlain bridge in Montreal.

The Montreal Champlain Bridge is a 1957 construction of type steel truss
cantilever made from pre-stressed concrete beams and deck [Wikipedia, 2014]. We
selected this bridge due to the complexity of its representation and as it is a symbol of
Montreal and its art. The length of the main part of the bridge is 7.412km (14.5km with
approaches). Most of the bridge is a multi-span structure similar and can be generated
similarly to what we have shown in section 7.4. For this example, we are interested in the
steel superstructure part of the bridge, referred to as Section 6 of the bridge shown in

Figure 49 between supports 1 and 4. Although its main architecture is based on steel truss

155

cantilever, the bridge is a complex architecture of several basic bridge types fused
together, which is more common with modern designs and iconic landmarks. Such
designs are hard to generate automatically because they include an artistic element that
makes them unique. We however identified 3 basic types, referring to the types listed in
Appendix A, that approximate the bridge’s 3D representation: (1) a Tied Arch bridge
type between supports 2 and 3 (curved arch middle section) referred to as the Middle
Span, (2) a Cantilever Open Spandrel type (the under structure of the bridge) between
supports 1 and 4, and (3) a Cantilever Through Arc type (the over steel structure)

between supports 1 and 4.

Google earth

eyealt 679

Figure 50: Overlay with Shape Data (Google Earth®)

156

The linear shape definition defining the spans is overlaid on top of the aerial

imagery (in red) as shown in Figure 50 with four noted locations (cross edges).

While some data is available about Section 6 from the official bridge site
(http://jccbi.ca/bridges-structures/champlain-bridge/technical-data/), extractors from our
framework retrieve the missing information. Technical data facts of the Champlain
Bridge Section 6 and the Middle Span are presented below. We also show the property

values and the corresponding generated representations after executing our process.

Type Cantilever with center suspended span

Material: Steel Superstructure, Concrete beams and deck

Width: 23.1648 meters

Lanes: 6, with separators

Height above water: 36.6 meters

Section 6 Span Point Location Latitude Longitude
South East 45.467381 -73.500701
South West 45.467157 -73.500746
North East 45.467841 -73.506422
North West 45.467618 -73.506472

Section 6 Length: 450.5 meters

Longest Span Length: 215.5 meters (includes Middle Span)

Anchor Arms (2): 117.5 meters

Section 6 Middle Span | South East 45.467751 -73.502824
South West 45.467349 -73.502873
North East 45.467689 -73.504295
North West 45.467466 -73.504335

Middle Span Length: 116 meters

We retrieved the properties below and generated the middle span (Figure 51)

using edges 2 and 3 (segment 3 of the linear) shown in Figure 50:

157

Basic Properties Value
Bridge Type Tied Arch
Span Dividers 0
Start/End Dividers Disabled
Ground Height -36.6m
Round Subdivisions 10
Angles Start/End 0 degrees
Deck Thickness Im
Deck Subdivisions 1
Left/Right overhang Im
Overhang Height Im Figure 51: Tied Arch Bridge using Edges 2 and 3
Arch Profile Value Explanation
Arch Height 20m
Displacement 20m Middle Span height
Curviness 100%
Half Span Supports 5 Middle Span has 10 sections in total
Support Subdivision 10 Affects arch support bending
Arch Supports 0.2m All support rods are set to 0.2m width and height
Main Supports 0.5m Thicker main supports
Round Supports false None are round/cylindrical
Arch Webbing Value
Partitions 2 1 middle separator
Outer Cables 1 A single side webbing
Inner Cables 1 A single side webbing
Top Scale Ratio 50%
Clearance 4.0m Roadway Clearance
Webbing Top Type X X structure viewed from top
Webbing Side Subdivided | Webbing viewed from sides
Warren
Webbing Vertical Variant 2 | The webbing between the clearance and arch top
Vertical Sections 1 Unknown details, set to 1 by default

Similarly, using edges 1 and 4, we retrieve the necessary properties and generate
the open spandrel (Figure 52). Segments 2, 3, and 4 in this case define a single KB
instance. Properties listed in Appendix A and which are not mentioned in the listings are
not applicable, or use previously defined values (unchanged). The result is shown merged

with the previously defined part.

158

Figure 52: Cantilever Open Spandrel using Edges 1 and 4

Basic Properties Value Explanation
Bridge Type Cantilever
Open
Spandrel
Span Dividers 2 Two sections, two supports
Start/End Dividers Enabled | Form closed sections at extremities
Ground Height -36.6m
Round Subdivisions 10
Supports Value
Type Pillar
Partitions 3 Three visible pillars at each divider
Webbing N/A
Sections N/A
Gap Size N/A
Top Scale Ratio N/A
Width/Height 4m 4m each side
Arch Profile Value
Arch Height 15m
Displacement 3m Separation with top of arch
Curviness 100%
Half Span Supports 5 Span has 10 sections in total
Support Subdivision 6 6 rods defining arc
Arch Supports 0.2m All support rods are set to 0.2m width and height
Main Supports 0.5m Thicker main supports
Round Supports false None are round/cylindrical
Arch Webbing Value
Partitions 2 1 middle separator
Outer Cables 1 A single side webbing
Inner Cables 1 A single side webbing
Top Scale Ratio 50%
Clearance 4.0m Roadway Clearance
Webbing Top Type X X structure viewed from top
Webbing Side Subdivided | Webbing viewed from sides
Warren
Webbing Vertical Variant 2 | The webbing between the clearance and arch top
Vertical Sections 1 Unknown details, set to 1 by default

159

Finally, the cantilever truss bridge is defined on edges 1 and 4 again. The final

result is shown merged with the previously defined parts in Figure 53 and Figure 54.

Figure 53: Cantilever Through Arc using Edges 1 and 4

Basic Properties Value Explanation
Bridge Type Cantilever
Through
Arch
Span Dividers 2 Two sections
Arch Profile Value
Arch Height 25m
Displacement 25m Separation with top of arch
Curviness 100%
Half Span Supports 10 Span has 10 sections in total
Support Subdivision 2 Actual subdivisions define a curvature in real world entity,
but due to a limitation we approximate these.

Arch Supports 0.2m All support rods are set to 0.2m width and height
Main Supports 0.5m Thicker main supports
Round Supports false None are round/cylindrical

Arch Webbing Value
Partitions 2 1 middle separator
Outer Cables 1 A single side webbing
Inner Cables 1 A single side webbing
Top Scale Ratio 50%
Clearance 4.0m Roadway Clearance
Webbing Top Type X X structure viewed from top
Webbing Side Subdivided | Webbing viewed from sides

Warren

Webbing Vertical Variant 2 | The webbing between the clearance and arch top
Vertical Sections 1 Unknown details, set to 1 by default

160

Figure 54: Champlain Bridge Results

161

7.7 School Zone Example: Ste. Marguerite

Objective: Find all Thoroughfare entities but not highway entities that are less

than 500 meters distance from a school.

Using SROIQ™ data properties along with our data extractors framework, we can
define a new property for all Thoroughfare instances (representing entities):
Distance To_School. However, in order to restrict the processing domain and since our
objective only requires (Thoroughfare M —Highway), we define this property for that
specific class conjunction only. We add this new property to the terminology with the

following definition:

Data Property Name: Distance To School
Domain: Thoroughfare N —Highway
Range: Double

Annotation Extractor: dist to_school

We also added a data extractor called dist to school associated as an annotation
with the new property as defined in the TBox property definition above. Using known
school entities from the KB, Sgjs for layout, and the entity’s definition, this extractor will
retrieve the distance to the closest school for the entity. This extractor is defined as

follows:

Procedure dist_to_school

Input: KB, Sgs, instance

Output: KB (modified)

//for thoroughfare segment instance

//assuming same working coordinate system here

//get pts (2) of instance

P1 =Ssis.get_ref pt(instance);

P2 = P1.next();

//find closest school to segment (considering segment center)

162

min_distance = null;
Forevery SchoolArea in KB
Vector_to_school = (P1+P2)/2 - SchoolArea.getCenter();
distance_to_school = length(Vector_to_school);
If (min_distance == null or min_distance > distance_to_school) then
min_distance = distance_to_school;
Endif
End
KB.addDataProp(Distance_To_School, instance, min_distance);
EndProc

After executing our process, all Distance To School properties for instances
categorized of type (Thoroughfare N —Highway) will have values for this property as per

our p_filling process.

To find all Thoroughfare entities that are or might not be of type Highway and
that are less than 500 meters distance from a school, we define a SPARQL query as

follows (assuming the extractor stored values for the property in meters):

Select ?instance
Where {
?subclass rdfs:subClassOf* :Thoroughfare .
?instance rdf:type ?subclass .
FILTER NOT EXISTS {?instance rdf:type :Highway .}
?instance :Distance To School ?distance .
FILTER (?distance < 500.0)

H
Figure 55: Retrieving Entities <500m Distance from a School Using SPARQL

Since we added the Distance To School property only to entities that are defined
as (Thoroughfare M —Highway) in this example, then the NOT EXISTS filter in the
above query is redundant. The query retrieves the entities that we are interested in for this
example. This includes entities missing information about being of type Highway or not.
If all information is known,then {owl:complementOf :Highway} could be used for type

filtering. It is also possible to query with properties such as :next to or :through defined

163

between instances using GeoSPARQL provided these properties were inserted after our

r_mapping Pprocess.

Another way to retrieve the needed information is possible by adding a new class
in the ontology, say SchoolZoneRoads, with a similar definition as per this query. This is
possible under SROIQ™ expressivity, which allows data properties and qualified
restrictions in concept equivalence axioms. In that case and after reasoning, all instances
we are interested in will be classified of type SchoolZoneRoads and we will be able to

retrieve all instances of this type representing the real world entities.

We apply the above on a specific ROI around the Sainte Marguerite Primary
School in Laval-Des-Rapides, Laval. Figure 56 is taken from Google Earth® at
coordinates (45.546851, -73.710239) on April 14, 2014. It represents our ROI. We chose
this area due to its proximity to a highway (s72) as well as it being dense enough to
showcase the capability. The instances created in the KB are shown in Figure 57. We
have a total of 133 segments and a few areas (represented as polygons) including the

school, a few parks, and the river.

Note that if we increase the Distance To School value filter, say to 1000m for
example, the segments on the south of the river shown in the image will also be returned
by the query in this case. To resolve this, we can add a Borough or Region property and
use it as a constraint in the query. We can also consider this in the dist to school
extractor which could return only values in the required case(s). The results of the query
in Figure 55 are shown in Figure 58. Note the missing s72 entity as well as entities

further than 500m that do not satisfy the query.

164

A BRGNS P N

|
o

Figure 56: View around Ste Marguerite, Laval-Des-Rapides (Google Earth®)

P2 o
2,
%egp 5103 ess \ 537 \\El0lay
i 533 & 539 ¢
nie 5106 (o) ,#%'5100
A - '9219 B q,\)'?ég T
5105 (‘%? = C*.-%,NSZO & Taég;:;%ee €127 5 %
% % 23
& National 58; 538 -YL(538 %
<66 110 Bank ™ <84 =28 Parc Vo w8
CPE du Manoir 518 525 Bon-pasteur. " 597" %o i 3
Inc (La) Solos:asa % % A 0534 ‘%’)
= % @, A e
S61 ou® zs70 51 B T X “ %\\a&?ss o 41
@ 5 i3 v
%5107 s s8L, N Caisse $95 531 sa0 o™
3 ;- 5 98 (8 29 ¥
5132 65 7 %11 g Deqais X joe
: 528 2% 542
3
2 {:“EQ
| Clinigue Santé
- 577 Francis Shefteshy (&
B : (Pharmacie affiliée) ,{\e
N s45 @
N o
\ 9‘3'_ e
‘S‘?ﬂ\
: Parc des
:75 R B"f;"‘“
5133

\Q‘b%"”‘ Speech-Lan
& T
B 17 5125

%

s76)
©. s12a
574 5118
7 Clinique De 5121 5123
1;%; : Chirurgie Plﬂstiqye L)
) De Montréal \.)\00 5122
L 130 115 975120

Figure 57: Instances (133) of ROI layed over Google Maps®
165

Instance Distance

s65 497.98
s30 351.91
s63 271.99
s20 483.37
s83 333.32
s43 485.04
s53 468.35
s64 361.88
s67 239.13
sl 94.59
s84 354.92
s86 409.36
s127 441.47
s54 437.46
s70 447.73
s18 417.17
s90 430.74
s113 331.62
s110 498.95
s50 405.07
s49 330.67
s56 396.94
sl4 149.47
s52 73.4
s10 179.35
s51 495.74
s88 489.7

Instance Distance
s5 193.11
s29 330.48
s68 204.41
s81 336.29
s126 482.35
s31 417.5
s27 385.28
s114 248.3
s3 272.1
s55 483.93
s93 218.1
s7 104.75
s57 368.99
s25 286.02
s58 427.24
s11 262.74
s13 185.72
s46 same as s6
s48 270.49
s79 389.41
s12 257.6
s15 266.51
s28 278.3
s24 238.96
s78 441.37

Instance Distance
s102 472.84
s128 480.16
s9 57.49
s45 247.43
s94 176.84
s82 333.3
s8 119.54
s91 349.37
s112 411.23
s116 128.05
s115 185.25
s6 184.74
s80 350.13
s2 147.98
s16 423.97
s69 299.5
s92 273.73
s47 227.44
s85 376.6
s44 387.61
s95 309.62
s96 380.57
s87 446.66
s97 475.2
s26 336.58
s62 306.54
s4 492.08

Figure 58: Results from Query in Figure 55 on Ste Marguerite Primary School

166

Chapter 8

Conclusion and Future Work

8.1 On Achieving Objectives

Mapping facts in source data to assertions in a knowledge base: We have defined three

modular ontologies extending on work by Bitters” VOTT, the OGC’s Simple Feature
ontology, and GeoSPARQL. A general, low-maintenance, domain ontology hierarchy
(TD) specifically describes the transportation domain under the Geographical and Visual
Objects domains with concept relationships and properties. Two other ontologies (SD and
RC) bridge and map between input/output data (GIS sources and representation
definitions respectively) and domain concepts in order to achieve context separation and
modularity. If a system capability is to be added or a data format is changed only the

related ontology needs to be modified.

167

Initial GIS source data mapping (or s _mapping) and specifically vector-based
features and the facts they define are initially mapped as explicit knowledge base instance

assertions using the mapping ontologies and reasoned upon.

Relationship extraction (or » mapping) evaluates possible relationships (defined
by the ontologies) between knowledge base instances and adds further facts to the

knowledge base.

Inferring_implicit information in the knowledge: The Data Extractors framework (or

p_filling) automatically fuses derivable or implicit data from different heterogeneous GIS
dataset layers and types. We extracted 3D model properties and other facts that make
some implicit information in the GIS source data explicit. Data extractors, associated
with property and relationship concepts defined by the ontologies, can be replaced or
extended. Each extractor can choose the layer(s) to use based on each used layer’s
properties such as resolution or type. If in a certain layer the information is missing or
unclear, the next best layer can be chosen or different layers can be analyzed to form a

single result for the missing property value.

Handling uncertainty: The framework adds all associated data certainties to the extracted

facts for use by our extended KB Realization procedure that calculates certainties of

inferences based on its KB Justifications.

Procedural creation of detailed digital representations: The components of our process are

independent where the extraction of facts step happens separately from the representation
definition. For the representation generation from knowledge base facts, we defined the

Geometry Definition Engine (or v_mapping). It uses SPARQL querying language and an
168

ontology of parameterized model definitions (RC ontology) to construct queries, retrieve
visual property values, and create definitions that can be used by procedural models.
Procedural models construct detailed 3D model representations of entities for subsequent

rendering.

Complying with public standards: In our system we use the OWL 2 W3C standard as

well as OWL Link, OWL API and SPARQL to achieve communications between
subprocesses about knowledge and to manipulate and query the Semantic Web
knowledge base. We have extended OWL Link to the .Net Framework and used it as part
of our plugins to the open MapWindow GIS C# project which provides tools and
interfaces to manipulate the GIS source data input. Our core implementations also use

known and open source software projects and APIs.

8.2 Advantages and Limitations

Using a Semantic Web Knowledge Base provides automated reasoning on the
data set with several advantages. However, it adds processing overhead compared to
procedural processes based on expressiveness and tableaux methods and completion rules

complexities.

Our process reduces expert user involvement by automatically merging data, and
detecting and managing inconsistencies in the data. Other advantages include the easier
maintenance and definition of the ontology and rule-base with established tools and
services provided by existing semantic web reasoners, the possibility of different

169

applications sharing knowledge in a single knowledge base, taking advantage of new
advances in semantic reasoning, OWL and its querying languages, and supporting

knowledge manipulation tools and frameworks.

Ordnance Survey has mentioned that queries such as “where is the closest mall
next to London’s town hall?”” become possible with semantic web. We are using similar
queries to define 3D landscape details. The model definition engine is a system agent that
constructs queries to complete a definition representing an entity that will then be
procedurally generated and positioned in the landscape. It produces queries such as “is
instance b a covered bridge span?” and “what is the set of values defining the orientation

vector of the covered bridge span b?”’

The following sections list the major advantages that are available due to the use

of Semantic Web Technology in our process and some of the limitations it imposes.

8.2.1 Inherited Properties

A. The separation of domain knowledge (TBox), which includes the bridge ontologies,
and instances (ABox) defined as part of the ALC syntax is useful for reuse,
portability, and dynamic extensions of the knowledge. Domain experts create the
TBox once and maintain it separately from the actual ABox. The TBox is organized
into hierarchies which allow modularity and bridging between domain and data
formats. Legacy processes have domain experts working with data and knowledge.

Having separation between TBox and ABox allows:

170

1. Less dependence on human experts which, after domain knowledge (TD) is
defined, would only have to define the mapping ontologies (SD/RC).

2. More users are able to use the process and create the ABox (define instances)
based on available definitions in the TBox by using the mapping ontologies.

3. More automation in ABox creation due to already defined machine readable
TBox which requires less user involvement (illustrated in SD mapping
procedure).

4. Different applications using the same domain can reuse our ontologies. The
Knowledge Base can service other types of applications that require knowledge

about an ROI.

. Description Logic formal axiom definition allows the system to be independent of the
order in which the user inputs the knowledge and provides services for verifying and
querying it. This ensures that the system will reliably always use the most specific
semantics automatically and does not required high maintenance based on order of
knowledge input. User’s therefore focus instead on the semantics of the objects they need
to represent. Services allow the automatic verification of the knowledge consistency and
coherence. Many tools also exist in manipulating and viewing the knowledge represented
in the knowledge base. Using KB inference vs. procedural rules also adds several

advantages to our process:

1. Knowledge bases are easier to maintain and debug especially using the services
and tools mentioned. This makes adding new properties or change in the defined

knowledge or properties easy to apply and verify.

171

2. Knowledge base TBox/ABox creation is a form of declarative programming
which removes the complexity of element interdependence.
3. No impact from programming side effects (order of evaluation, history) and does

not require knowledge about the context and its possible consequences.

C. Consistency checking (satisfiability) is defined as finding an interpretation (C' € D")

for an axiom (C € D) . The KB is satisfiable if all axioms are satisfied by the same
interpretation. If {(C € D)} U KB results in a M —a (defined as a clash) where a is
some KB concept then (C € D) is not satisfiable w.r.t. KB. Consistency checking
allows the detection and traceability of inconsistency in the domain knowledge

(TBox). The TBox Coherence service lists all unsatisfiable concepts in an ontology.

D. Inferencing (subsumption) can be reduced to satisfiability by adding a complement of

E.

an axiom A to the KB. If this results in a clash then KB = A and A can be made
explicit. Inference uses tableaux and completion rules to make implicit KB facts
explicit through object identities (equivalence axioms, keys), object relationships
(domain and range definitions) and topological relationships with rule (SWRL)
support. The Subsumption Hierarchy service computes a taxonomy from the

subsumed hierarchy of concepts.

ABox Satisfiability is similar to TBox Satisfiability but instead is processed on the set
of instances (assertion axioms). It could detect offending assertions (inconsistencies
in the data) if the appropriate closure axioms are available. The Instance Checking

service verifies if a certain concept subsumes a certain instance and the ABox

172

F.

Realization service computes the most-specific concept names for all individuals.

Each instance is classified to its most specific subclass based on the available facts.

No Closed World Assumption (CWA), or in other words Open World Assumption
(OWA), and no Unique Name Assumption (UNA) allows for reasoning without an
assumption of a complete data set and about possibly equivalent instances

respectively. These are features inherited from Description Logic.

OWA denotes that available knowledge is always assumed as incomplete unless
explicitly stated and the lack of knowledge of a fact does not immediately imply
knowledge of the negation of a fact. Consider the following example ABox axioms:
{a: bridge, b: lane, (b, a): part_of}. This does not mean that bridge has only one

lane. Another lane might exist that we don’t know about.

Our use case deals with GIS data that could be both incomplete and ambiguous. The
flexibility of having OWA and no UNA gives advantages in our application domain
such as being able to add and introduce new knowledge as needed and assuming by
default that two instances even having different names could actually represent the
same entity (if Same Individual check service is available). Particularly, data property
restrictions already provide text value matching under SROIQ™. Same Individual
service could therefore be used where properties such as hasRefPoint contain the
same Well-Known Text (WKT) value string to automatically merge the instance
definitions together. The knowledge base will remain consistent with new inferred

information as new facts are added to the knowledge base. There are methods to

173

enforce UNA (usually invoked for performance reasons). It is also possible to

explicitly define that an instance is equivalent to another.

. Explanation services trace the completion rules of axioms to show the minimum set
of facts that result in a certain inference or clash. They allow understanding what
resulted in the clash and, as a result, fix the offending facts. We use explanation
services to determine the certainty of an inferred fact. We also use them to generate

reports that help the user identify an inconsistency and fix the problem accordingly.

. Axiom annotations on TBox data property concepts (associating specific data
extractors) and on ABox facts (certainty attribution) allow the separation between
knowledge and extensions; they are not processed by KB services. However, they
allow to maintain appropriate associations with related elements of the system and

can be used for extending functionality such as resulting certainty calculation.

Rule and query languages e.g. nRQL and SWRL modify the ABox with further
expressivity without impacting other definitions in the system. nRQL querying
through a compatible reasoner also enables the calculation of the subsumption
hierarchy for only the elements involved in the query (a subset of the KB) which
could improve performance in realizing the KB. SPARQL and GeoSPARQL allow

the querying of the underlying RDF graph of the knowledge.

Insertion and Retraction services allow axiom insertion and retraction dynamically
after KB creation. Internally, retraction is often managed as destroying the KB and
recreating it as KB \ {A} where A is an axiom to be retracted (by omitting the

retracted axiom). We thought of using this mechanism as part of an earlier attempt

174

(section 4.2.3) in order to resolve satisfiability issues as they are introduced, however,
it proved to make the process more complex and we finally adopted a different

method.

8.2.2 Ambiguity
We categorize ambiguity into two different types:

1. Two elements in the input source data (Sgis) define two entities redundantly
2. A knowledge base entity is associated two properties that are
i. complementary (can coexist)

il. contradicting (cannot coexist)

If proper equivalence and closure axioms are defined in the TBox (complete
ontologies), occurrence of 1 is identified as a redefinition of the same actual entity using
the Same Individual service. For example, Keys is an addition to OWL DL provided by
the SROIQ™ expressivity which allows automatic identification of same individuals (KB
instances). In our implementation, we used Keys with WKT definitions and real world
entity identifiers to ensure entity uniqueness. Moreover, we can specify different or same
individual assertions if the fact is derived by ABox manipulation, facts querying,
insertions and retractions. After same individuals are identified and their properties
automatically merged, if contradicting facts exist, the knowledge base becomes

inconsistent.

Occurrence of 2 denotes a certain fact (assertion) having two meanings (TBox

definitions). These meanings can be complementary such as one being a specialization of

175

the other or using both as a satisfiable class conjunction to define an instance property.
This does not make the knowledge base inconsistent and is permitted under the
expressivity used provided the ontologies are complete. In the other case, if the meanings
are contradicting, realizing the knowledge base with proper disjointness and closure
axioms and well-defined concepts (complete ontologies) would make the inconsistencies
explicit. To address this issue, explanation services are used to identify the offending
facts and the reasoning behind each inconsistency. The user would then have to correct
the input data. For example, an instance that is defined as both a tunnel and a bridge in
the data is inconsistent in a KB that contains disjoint(tunnel, bridge). In legacy processes,
the user would commonly generate a representation of the ROI and inspect any
inconsistencies, often visually (which might not be obvious), and would have to go back
to correct the input data sets and repeat until an acceptable representation is achieved.
With our process, the inference engine is able to pinpoint the offending facts with an
explanation before a representation is generated. The semantic information could then be

used to correct the source data.

Moreover, the main reason for our addition of uncertainty attribution to facts in
the system is to allow ambiguity (complementary or contradicting) to be expressed as
part of the facts. This also addresses GIS data generalization. Strongest certainty would
propagate to inferred facts based on relevant facts in the explanations of the inference as
described in Chapter 6. Several facts could also co-exist with related certainties and users
can use semantics and context to form a decision that validates/invalidates a fact with

respect to Sgis and change the knowledge base using insertion/retraction services.

176

8.2.3 Incompleteness in Data Set

Considering complete ontologies defined as per the definition in section 4.1.3, we

categorize incompleteness into two different types:

1. Input data sources (Sgis) do not contain all the data compared to real world (3D Real)

2. An entity does not contain all the required information explicitly (based on Ss)

Occurrence of 1 happens when it is impossible to find all the data for a certain
entity in Sgis. This already violates our first assumption. However, this could be
addressed by user queries or defaults as part of data extractors where the most specific
known subclass can be used. Occurrence of 2 is resolved using our Data Extractors
framework. Given a knowledge base instance with an identified subclass, all the

properties are assumed to be assigned values after data extraction using the framework.

8.2.4 Limitations

There are some disadvantages to using Semantic Web. These include:

A. Relational and probabilistic reasoning and complex datatype value analysis with
Semantic Web are yet to mature.

ALCRP™ expressivity allows for ternary property relations with implicit chained
properties that are satisfiability verifiable. This is a good advantage for GIS topological
processing e.g. { inside(x,y) N touches(x,z) = connection(y,z) } in GIS
interpretations. We used SWRL rules to easily achieve these kinds of deductions, but, in
this case, TBox inconsistency cannot be identified. Inconsistencies will only be identified

at the assertions level (ABox) with reasoners supporting SROIO™. The TBox

177

inconsistency would only be captured if the reasoner supports ALCRP™. Another way to
define this is with chain axioms using inverse properties. However, this adds
complexities in the defined knowledge (inverse properties are required to be defined).
Our choice to use rules to reason about entities involved in multiple properties is purely
to have complete separation between TBoxes and ABoxes. Nominals could be used in
TBox axioms in SROIQ™ to replace such rules if the set of instances involved is static
between different input data sets. The involved ABox instances are required to be defined

along with the TBox axiom that uses them.

Algebraic reasoning does not address the problem of handling complex datatype
values in the knowledge base. State of the art available standards concentrate on making
simple calculations as part of the datatype property definitions and queries, which we
have made use of. However, complex value handling extensions and knowledge

interpretation is not very well addressed.

We work around the issues of probabilities, datatype value reasoning and
topological processing with our Data Extractors framework which derive explicit facts
that can be used as part of conventional SROIQ™ . The framework derives information by
using procedures that generalize the method of retrieving a certain property value or

relationship along with its certainty.

B. Complexity and learning curve.

We cannot ignore the complexity of using Knowledge Bases and DL inferencing.
Although these provide extremely powerful constructs to reason about facts, we

recognize that our process increases automation at the cost of complexity of defining

178

reusable knowledge. Reusable knowledge requires that it is fully generic and contained in
the TBox and independent of the actual instances (ABox). We, therefore, require the
power of the expressivity and services provided for SROIQ™ and thus we depend on the
complexity of its ABox Realization algorithms and justifications computation services.
Although highly automated, these services currently are far from being capable of real-

time processing.

Although describing concepts and knowledge might seem easier than defining
procedural rules, the former requires a good understanding of logic (such as description
logic) and constructs to be able to define expressive, useful and reusable knowledge.
Many tools exist to assist users to do this, however they are still very technical with little
support to general audience. GIS experts do not necessarily have the background skills
and knowledge required to define powerful ontologies. Experts in Semantic Web are

required.

8.3 Future Work

Currently, the process assumes that the facts extraction step does all the additions
to the knowledge base prior to v_mapping. However, users generally define properties on
a per-need basis. Further research is required to reduce the search space for data needed
for the representation rather than attempt to collect all available facts needed by the
knowledge base. This could be achieved, for example, by assessing extractors of required

properties only taking into account those that could define specializations. Moreover, it

179

would be more efficient to reduce clutter in the KB. For example, although we process
relationships in » mapping on all entities in the ROI, experiments are required for
assessing if it would be efficient and would give correct results to only consider

immediate vicinity of an instance (rather than relationships with all other).

As expressed earlier, SROIQ™ is very expressive for our needs but it suffers in
available algorithm performance. It would be crucial to have an efficient ABox
Realization implementation for this methodology to be used effectively in a dynamic
environment. Using nRQL [Haarslev et al., 2004] allows speeding up processes by
triggering inference services only when needed. To our knowledge, this is one of the
unique features available in RacerPro, a professional scale semantic web reasoner, and
avoids the need for ABox Realization on all instances. Moreover, easier and generic tools

are required for more generic users.

Extension capability is required in SPARQL queries and knowledge base data
reasoning. For example, there is currently no way to define data reasoning procedures to
extract facts from complex data values. DE-9IM efficiently serializes the intersection
matrix between two entities as a string value, however, there is no way to customize how
strings are used in the reasoning process natively. It is currently required to insert as

many assertions as such a string implicitly encodes.

Actual use case comparison studies by GIS experts are needed to compare our
methodology with available state-of-the-art methodologies addressing GIS to 3D
conversion. The intention is to gather temporal and difficulty metrics that will show the

practicability of the techniques used in our methodology.

180

Although our methodology can be used for defining an ROI semantically, it
would be interesting to explore potential of using a semantic knowledge base for spatial
querying. It wouldn’t be very efficient to use queries such as line of sight unless a 2D/3D
representation is generated and then used. However, it could directly serve queries such
as occlusion, smart path navigation, and processes that would use object categorizations

and identified properties and facts. This helps define more automated agents.

We would like to investigate and further elaborate the specific case of generating
various entities in the transportation domain in further detail, for example, bridge spans
including more specialized types, combinations of spans such as one span with multiple
definitions, and hidden information deductions such as support structure details such as
using other objects available e.g. underpass layout to determine approximate spacing of
supports. It would be interesting to extend this work beyond transportation to other

domains.

We currently calculate the uncertainty of a concept class entailment using the
variable set, which is a subset of the explanation of the entailment. We do not think that
maintaining the uncertainties and their results is feasible within the knowledge base and
its realization due to the dependence on the data extractors used. However, further
research is required to assess whether, in some cases, the certainties can be maintained

based on the available knowledge and independent of the extractors.

Lastly, a declarative specification method for defining properties and plug-in

extractors would enable this approach to be used widely.

181

8.4 Final Remarks

The use of knowledge for generating representations and specifically for 3D
rendering purposes has been studied but not very well addressed in the past due to the
vast collection of information that exists in a scene. We showed a new process that
enables further automation and assistance to users in the generation of knowledge bases
from GIS data sets and corresponding representations. We believe that through a
categorization of the domain knowledge and a modularization of the methods used to
retrieve values for the properties required to create a certain 3D digital model with
uncertainty support, we can address the problem of heterogeneous data fusion and

automating representation better.

Our process extracts facts including relationships and properties using the Data
Extractors framework and includes automatic inference and calculation of associated
uncertainties. The system will infer implicit information while interrogating the user for
the remaining to form a definition that models the object with higher detail when

compared to generating a representation based on an entity definition in shapefiles.

A central location for reasoning is defined which treats data dependencies
semantically rather than based on format definition. This allows to semantically synthesis
further details for required representations using emerging and rigid Semantic Web
constructs that are more easily verified and reused. In order to test and evaluate this
process in terms of feasibility and efficiency, an application framework was developed
and presented in Chapter 5. Referring to the differences between Figure 4 and Figure 13,

our process supports legacy terrain modeling and processing through the mapping of

182

concepts from the required format(s). It is able to take source data in a specified format
defined by the SD ontology as input to the system. Our process incorporates the semantic
reasoning as part of terrain modeling and processing. This simplifies the process with less
manual iteration and user verification to attain the same results as in legacy processes. It
also maintains the flexibility of manual user input and control. Our use of collective
reasoning reduces considerably the high-involvement of the domain expert in time and

effort when compared to other known processes.

This same methodology can theoretically be used by any system that requires
converting between data formats and semantics and between semantic definitions and
needed output representations and demonstrated by a simple example in section 7.7. Data
analysis happens on the semantic level and makes all implicit information explicit for the

output representation.

Data is added as facts to a knowledge base, independent of the type of the GIS
data source, and can be shared among several applications, making any system requiring
the use of a single coherent and semantically sound knowledge base of an ROI to create a

certain representation, able to use our methodology.

183

Bibliography

ArcGIS (2014). A platform for designing and managing solutions through the
application of geographic knowledge. ESRI. Available from

http://www.esri.com/software/arcgis. Internet. Retrieved 26 January 2014.

Arpinar 1.B., Sheth A., Ramakrishnan C., Usery E.L., Azami M. & Kwan M.
(2006). Geospatial Ontology Development and Semantic Analytics. In proceedings of

Transactions in GIS 10, 551-75.

Baader, F., Horrocks, I., & Sattler, U. (2003). Description Logics as Ontology
Languages for the Semantic Web. In D. Hutter and W. Stephan, editors, Festschrift in

honor of Jorg Siekmann, Lecture Notes in Artificial Intelligence. Springer, 2003

Bechhofer S., van Harmelen F., Hendler J., Horrocks I., McGuinness D.L., Patel-
Schneider P.E., & Stein L.A. (2004). OWL Web Ontology Language Reference. Available
from http://www.w3.0rg/TR/2004/REC-owl-ref-20040210. Internet. Retrieved on 26

January 2014.

Berners-Lee, T., Hendler, J. & O. Lassila (2001). The SemanticWeb. Scientific

American. 284 (5), 2001, pp. 34-43.

184

Bitters, B. (Spring 2005). 4 Geographical Ontology of Objects in the Visible
Domain. Ph. D. Dissertation submitted to Department of Geography. University of West

Florida, Florida.

Bitters, B. (July 2006). Geospatial Perpetual Motion: Finding Hidden
Information Within Existing Geospatial Databases. In proceedings of IMAGE 2006

Conference. The IMAGE Society. Scottsdale, Arizona.

Bitters, B. (July 2007). Very High-Detail Depictions of Forests in Virtual
Environments. In proceedings of IMAGE 2007 Conference. The IMAGE Society.

Scottsdale, Arizona.

Bitters, B. (December 2008). Spatial Relationship Networks: Network Theory
Applied to High Detail Virtual Environments. Proceedings of I/ITSEC 2008, Orlando,

Florida.

Blaschke, T. and Dragut, L. (2003). Integration of GIS and object-based image
analysis to model and visualize landscapes. ISPRS workshop “Challenges in Geospatial
Analysis, Integration and Visualization II”, September 8- 9, 2003, Stuttgart, Germany,

18-23.

Blundell, J.S, & Opitz D.W. (2006) Object recognition and feature extraction

from imagery: The feature analyst approach. In proceedings of OBIA conference 2006.

Bobillo, F., Delgado, M., Gomez-Romero, J. (2012). DeLorean: A reasoner for
Jfuzzy OWL 2. Expert Systems with Applications. Volume 39, Issue 1, January 2012, pp.
258-272, ISSN 0957-4174.

185

Bobillo, F., & Straccia, U. (2011). Fuzzy Ontology Representation using OWL 2.

In International Journal of Approximate Reasoning, 52(7):1073-1094, 2011.

Brockway, D. (2002). Architecture for Managing Vector, Raster, and 3D
Geometry in GIS. ESRI International User Conference Paper 1068. MultiGen-Paradigm,

Inc.

Brodaric, B., & Hastings, J. (2002). An Object Model for Geologic Map
Information. Proceedings of the 10™ International Symposium on Spatial Data Handling

(SDH 2002). Ottawa, Canada.

Buchholz, H., Dollner, J., Ross, L. & Kleinschmit, B. (2006). Automated
Construction of Urban Terrain Models. Proceedings of the 12th International Symposium

on Spatial Data Handling (SDH 2006), 547-562.

CDB (October 2008). Common Database (CDB) Specification for USSOCOM.
Prepared for the U. S. Army Program Executive Office for Simulation, Training, and
Instrumentation (PEO STRI) and Product Manager for SOF Training Systems (PM STS).

CAE USA Inc., Tampa, Florida.

Clementini, E., Sharma, J., & Egenhofer, M. J. (1994). Modeling topological
spatial relations: Strategies for query processing. Computers & Graphics 18 (6): 815—

822. doi:10.1016/0097-8493(94)90007-8.

Daconta, M. C., Obrst, L. J., & Smith, K. T., (2003). The Semantic Web: A Guide
to the Future of XML. Web Services and Knowledge Management. Wiley Publishing,
Inc., Indianapolis.

186

DCCatalog. (2014). In District of Columbia Geographic Information Systems.
Government of District of Columbia official website, Washington. Available from

http://dcatlas.dcgis.dc.gov/catalog/. Internet. Retrieved on 26 January 2014.

De Kok, R., Schneider T., Baatz M., Ammer U. (2006) Object based image
analysis for high resolution data for alpine forest area. In proceedings of OBIA

conference 2006.

Delenne, C., Rabatel, G., Agurto, V. & Deshayes, M. (2006). Vine plot detection
in aerial images using Fourier analysis. In proceedings of the ISPRS OBIA 2006
conference Vol. XXXVI — 4/C42. ISSN 1682-1777. 4-5 July 2006. Salzburg University,

Austria.

Deng, F., Zhang Z., & Zhang J. (2006) Construction 3D Urban Model from
LIDAR and Image Sequence. The International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, Vol. 34, Part XXX.

Dewberry & Davis (2002). GIS/CAD Data Dictionary v.4.1.1. Office of the Chief

Technology Officer. Department of Public Works, District of Columbia, Washington.

DFAD (1994). Military Specification Digital Feature Analysis Data (DFAD)
Level 1. DMA MIL-SPEC MIL-D-89005, 89006, and 89017, (draft). National Imagery

and Mapping Agency, United States Geological Survey (USGS). 5 August 1994.

Ding, Z., & Peng, Y. (2004). A Probabilistic Extension to Ontology Language
OWL. In Proceedings of the 37th Hawaii International Conference on System Sciences
IEEE 2004. University of Maryland Baltimore County.

187

DTED (May 2000). Performance Specification — Digital Terrain Elevation Data
(DTED). Departments and Agencies of the Department of Defense, US. MIL-PRF-

89020B. National Geospatial Agency. October 2007

DVC (2014). In Diamond Visionics Corporation. Diamond Visionics, LLC.

Available from http://www.diamondvisionics.com/. Retrieved 26 January 2014.

Egenhofer, M.J., & Franzosa, R.D. (1991). Point-set topological spatial relations.

International Journal of Geographical Information Systems, vol.5, no.2, 161-174.

Eid, P., & Mudur, S.P. (February 2009). Use of Semantic Web Technology for
Adding 3D Detail to GIS Landscape Data. In proceedings of the Canadian Conference on
Computer Science and Software Engineering 2009 (C3S2E’09), 205-215. Published by

the Association of Computing Machinery (ACM). Montreal, Canada.

Eid, P., & Mudur, S.P. (December 2009). Automating Extraction of 3D Detail
from GIS Data using Semantic Web Technology. In proceedings of Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC) 2009. Published by the

National Training and Simulation Association (NTSA). Orlando, Florida.

Eid, P., & Mudur, S.P. (May 2010). Synthesizing high fidelity 3D landscapes from
GIS data. Proc. of 1% International Conference on Computing for Geospatial Research &

Application 2010 (COM.Geo10). ACM. Atrticle 15. Washington, DC. May 2010.

Eid, P., & Mudur, S. (2013). Generating Bridge Structure Model Details by

Fusing GIS Source Data Using Semantic Web Technology. Computing for Geospatial

188

Research and Application (COM. Geo), 2013 Fourth International Conference on. IEEE,

2013.

ERDAS (2014). In Intergraph | Products. Available from
http://geospatial.intergraph.com/products/ERDAS-IMAGINE/Details.aspx. Internet.

Retrieved 26 January 2014.

ESRI (1998). ESRI Shapefile Technical Description — An ESRI White Paper.

Environmental Systems and Research Institute, Inc. ESRI, U.S.

Faddoul, J. (2011). Reasoning Algebraically With Description Logics. Ph. D.
Dissertation submitted to Department of Computer Science and Software Engineering.

Concordia University, Montreal.

Fillmore, R. (2006). The MGCP is making big strides towards getting global high
resolution data common across the board. Military Geospatial Technology, 23 March

20006, V 4:1.

Fonseca, F.T., Egenhofer, M.J., Agouris, P., & Céamara, G. (2002). Using
Ontologies for Integrated Geographic Information Systems. In proceedings of

Transactions in GIS 6(3), 231-257. Blackwell Publishers Inc.

Gahegan, M. & Flack, J., (2002). The Integration of Scene Understanding within
a Geographic Information System: A Prototype Approach for Agricultural Applications.

Transactions in GIS 3(1) pp. 31-49.

189

GeoGenesis (2014). By IAVO. Available from http://www.geogenesis.net/.

Internet. Retrieved 26 January 2014.

GeoSPARQL (2012). OGC GeoSPARQL - A Geographic Query Language for
RDF Data. OGC® Implementation Standard. 10 September 2012. Version 1.0. Ref#

OGC 11-052r4. Available at http://www.opengis.net/doc/IS/geosparql/1.0

GeoTools (2014). GeoTools Open Source Java API. OSGeo. Available from

http://www.geotools.org/. Internet. Retrieved 26 January 2014.

Gerla, G. (Oct 1994). Inferences in probability logic. Artificial Intelligence. Vol

70, Issues 1-2, pp. 33-52. ISSN 0004-3702

Glimm, B. & Kazakov, Y. (2008). Role Conjunctions in Expressive Description
Logics. In Logic for Programming, Artificial Intelligence, and Reasoning (pp. 391-405).

Springer Berlin Heidelberg.

Goodwin, J. (2005). What Have Ontologies Ever Done For Us — Potential
Applications at a National Mapping Agency. OWL: Experiences and Directions

workshop. Galway, Ireland.

Gruen, A., & Wang, X. (August 1999). CyberCity Modeler, a tool for interactive
3-D city model generation. Proceedings of the “Germany Photogrammery Week”.

Stuttgart, Germany.

190

Haarslev, V., Moller, R., & Wessel, M. (2004) Querying the Semantic Web with
RACER + nRQL. Proceedings of the KI-2004 International Workshop on Applications of

Description Logics (ADL'04). Ulm, Germany.

Haarslev, V. (2014). Description Logics: A Logical Foundation of the Semantic
Web and its Applications. Dept. of Computer Science, Concordia University, Montreal,
Canada. Available from http://users.encs.concordia.ca/~haarslev/publications/dl-

semweb.pdf. Internet. Retrieved on 26 January 2014.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). 4 Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and

Cybernetics SSC4 4(2): 100-107.

Hitzler, P., Krotzsch, M., & Rudolph, S. (2011). Foundations of Semantic Web

Technologies. Chapman & Hall /CRC Press. ISBN 978-1-4200-9050-5.

Horridge, M. (2011). Justification Based Explanation In Ontologies. Ph. D.

Dissertation submitted to School of Computer Science. University of Manchester, UK.

Horridge, M., Parsia, B., & Sattler, U. (2008). Laconic and Precise Justications in

OWL. The Semantic Web-ISWC 2008, pp. 323-338, 2008.

Horridge, M., Parsia, B., & Sattler, U. (2009). Explaining Inconsistencies in OWL

Ontologies. SUM 2009, LNAI 5785, pp. 124-137, 2009.

191

Horrocks, 1., Kutz, O., & Sattler, U. (2006). The Even More Irresistible SROIQ.
In Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning

(KR2006), AAAI Press, (June 2006), pp. 57-67.

Hudelot, C., Atif, J., & Bloch, I.. (2008). Fuzzy spatial relation ontology for
image interpretation. Fuzzy Sets and Systems. Volume 159, Issue 15. 1 August 2008, pp.

1929-1951. ISSN 0165-0114.

Hummel, B., Thiemann, W., & Lulcheva, 1. (2008) Scene Understanding of
Urban Road Intersections with Description Logic. Proceedings of Dagstuhl Seminar

08091, paper 1616. Schloss Dagstuhl, Saarland University, Deutschland.

ISAR (2007). Inverse Synthetic Aperture Radar (ISAR) Imagery Feature
Extraction and Database. Navy SBIR 2007.1 - Topic N07-044. Solicitation closed on 10

January 2007.

Jain R. C., & Jain AK. (1990) Analysis and Interpretation of Range Images.

Springer-Verlag. 1990. ISBN 0-387-97200-5.

Jenner, B., Toran, J. (1995). Computing functions with parallel queries to NP.

Theoretical Computer Science. Vol. 141. Pp. 175-193.

Kalogerakis, E., Christodoulakis, S., and Moumoutzis, N. (2006). Coupling
Ontologies with Graphics Content for Knowledge Driven Visualization. In Proc. of IEEE

Virtual Reality 2006, Alexandria, VA, USA.

192

Kalyanpur, A., Parsia, B., Horridge, M., & Sirin, E. (2007). Finding all
Jjustifications of OWL DL entailments. In The Semantic Web (pp. 267-280). Springer

Berlin Heidelberg. 2007.

Kim, K.S., Lee, J.S., Cho, S.Y., Lee, S.H., & Chang, E. (2013). GeoSpatial
Semantic Web Conversion tool for topographic maps. National Geographic Information

Institute. ISO/TC 211 Standards in Action Workshop. 29 May 2013.

Klinov, P., & Parsia, B. (2013). Pronto: A practical probabilistic description
logic reasoner. In Uncertainty Reasoning for the Semantic Web II (pp. 59-79). Springer

Berlin Heidelberg.

Kraak, M.J. & Ormeling, F.J. (1996 & 2011) Cartography: visualization of
spatial data. New York, London, Pearson Education, 1996 & 2011. ISBN: 978-1-60918-

193-2.

Lang, S., Albrecht, F. & Blaschke, T. (2006). OBIA Tutorial — Intoduction to

Object-based Image Analysis. Version 1.0, Centre of Geoinformatics, Paris-Lodron

University, Salzburg. 2006.

Lang, S., & Blaschke T. (2006) Bridging remote sensing and GIS — What are the
main supportive pillars? In proceedings of 1st international conference on Object-based

image analysis (OBIA 2006).

Laskey, K. B. (2009). Axiomatic First-Order Propability. In Proceedings of the

Fifth International Workshop on Uncertainty Reasoning for the Semantic Web (URSW

193

2009), collocated with the 8th International Semantic Web Conference (ISWC-2009).

Washington DC, USA. October 26, 2009.

Li, L., Liu, Q., Tao, Y, Zhang, L., Zhou, J., & Yu, Y. (2006). Providing an
Uncertainty Reasoning Service for Semantic Web Application. In Proceedings of the 8th
Asia-Pacific Web conference on Frontiers of WWW Research and Development

(APWeb'06). Springer-Verlag Berlin, Heidelberg.

Liebig, T., Luther, M., Noppens, O., Rodriguez, M., Calvanese, D., Wessel, M.,
Moller, R., Horridge, M., Bechhofer, S., & Tsarkov, D. (2008). OWLlink: DIG for OWL

2. In 5th OWL Experienced and Directions Workshop, 2008.

Lin, K., & Ludischer, B. (2003). A4 system for semantic integration of geologic
maps via ontologies. Semantic Web Technologies for Searching and Retrieving Scientific

Data (SCISW), Sanibel Island, Florida.

Lukasiewicz, T. (1998). Probabilistic Logic Programming. In European

Conference on Artificial Intelligence, 1998, pp. 388-392.

Lukasiewicz, T. (2008). Expressive probabilistic description logics. Artificial

Intelligence, 172(6), 852-883.

Lukasiewicz, T., & Straccia, U. (2008). Managing uncertainty and vagueness in
description logics for the SemanticWeb. Web Semantics: Science, Services and Agents

on the World Wide Web, vol. 6, no. 4.

194

MacEachren, A. M., Gahegan, M., Pike, W., Brewer, 1., Cai, G., Lengerich, E.,
and Hardisty, F. (2004). Geovisualization for knowledge construction and decision-

support. IEEE Computer Graphics & Applications 24 (1):13-17.

MapWindow GIS (2014). MapWindow GIS Open Source Project. Available from

http://www.mapwindow.org/. Internet. Retrieved 26 January 2014.

Marszalek, M., & Schmid, C. (2007). Semantic Hierarchies for Visual Object
Recognition. IEEE Conference on Computer Vision & Pattern Recognition (LEAR

2007).

McCarthy, P. (2005). Search RDF Data with SPARQL. IBM DeveloperWorks
white paper, 2007. Available from http://www.ibm.com/developerworks/xml/library/j-

sparql/. Internet. Retrieved 26 January 2014.

McKeown, D., Guiliani, J., de la Cruz, J., & Sotomayor, T. (July 2007).
Automating the Generation of Urban Details. In proceedings of IMAGE 2007

Conference. The IMAGE Society. Scottsdale, Arizona.

Mizen, H., Dolbear, C., & Hart, G. (29 November 2005). Ontology Ontogeny:
understanding how an Ontology is created and developed. In First International

Conference on GeoSpatial Semantics (GeoS 2005), 15-29. Mexico City, Mexico.

NGA. (2014). In National Geospatial-Intelligence Agency. Department of
Defense, United States of America. Available from http:/www.nga.mil/. Internet.

Retrieved 01 February 2014.

195

OGC (2014). http://www.opengeospatial.org. Open Geospatial Consortium.

Internet. Retrieved 26 January 2014.

OpenFlight (2007). OpenFlight Scene Description Database Specification,
version 16.4. November, 2007. Multigen-Paradigm website. Available from
http://www.presagis.com/files/standards/OpenFlight16.3.pdf. Internet. Retrieved on 01

February 2014.

Opitz, D.W., Rao R., & Blundell J.S. (2006) Automated 3D Feature Extraction

from Terrestrial and Airborne Lidar. In proceedings of OBIA conference 2006.

OSUK (2014). Ordnance Survey, Brittain’s National Mapping Agency. Available

from http://data.ordnancesurvey.co.uk/ontology/. Internet. Retrieved 26 January 2014.

OWL API (2014). The OWL API 3. Co-ODE project. Based on OWL 2.

Available from http://owlapi.sourceforge.net/. Internet. Retrieved 26 January 2014.

OWL Datatypes (2012). W3C XML Schema Definition Language (XSD) 1.1 Part
2: Datatypes. W3C Recommendation 5 April 2012. Available from

http://www.w3.0rg/TR/2012/REC-xmlschemal1-2-20120405/. Internet. Retrieved 26

January 2014.

OWL2 (2012). OWL 2 Web Ontology Language Structural Specification and
Functional-Style Syntax (Second Edition). The World Wide Web Consortium (W3C)

Recommendation 11 Dec 2012. Available from http://www.w3.org/TR/owl2-syntax.

196

Pellet (2014). The Pellet OWL 2 Reasoner, Clark&Parsia. Available from

http://clarkparsia.com/pellet/. Internet. Retrieved 26 January 2014.

Pendris, J. (2006). Real-Time Terrain Modification Using Cultural and Feature
Data. In proceedings of IMAGE 2006 conference. The IMAGE Society. Scottsdale,

Arizona.

Poole, D., Smyth, C., & Sharma, R. (2009). Ontology Design for Scientific
Theories That Make Probabilistic Predictions. IEEE Intelligent Systems, vol. 24, no. 1,

pp. 27-36, January/February, 2009

Presagis (2014). In Products | Content Creation | Presagis. Presagis Canada Inc.

Available from http://www.presagis.com. Internet. Retrieved 01 February 2014.

Protégé (2014). The Protégé Platform. Available from

http://protege.stanford.edu/. Internet. Retrieved 26 January 2014.

Selman, A. (1994). A taxonomy of complexity classes of functions. Journal of

Computer and System Sciences. Vol. 48 Issue 2. Pp. 357-38]1.

Sirakov, N. M. (2006). Digital Image Databases and 3D Visualization —
Applications to Science and Industry. Dept. of Mathematics and CS, Texas A&M

University Commerce. October 2007.

SocetSet (2014). In BAE Systems Geospatial eXploitation Products. British
Aerospace Ltd. Available from http://www.socetset.com/. Internet. Retrieved on 26

January 2014.

197

Stanzione, T. (2006). Using ArcGIS to Create Semantic Information for Modeling
and Simulation. In Proc. of the ESRI International User Conference 2006. San Diego,

California.

Stelle, D. (2003). Processing LIDAR for 3D Urban Visualization. In proceedings

of IMAGE 2003 conference. The IMAGE Society. Scottsdale, Arizona.

Town, C. (2004). Ontology-driven Bayesian Networks for Dynamic Scene
Understanding. In proceedings of Computer Vision and Pattern Recognition Workshop

2004 (CVPRW’04). IEEE Computer Society Conference. Washington, DC. 2004

Vanegas, C.A., Aliaga, D.G., Benes, B., & Waddell, P. (2009) Visualization of
Simulated Urban Spaces: Inferring Parameterized Generation of Streets, Parcels, and
Aerial Imagery. IEEE Transactions on Visualization and Computer Graphics, Vol 15, No

3, May/June 2009.

Van der Sterren, W. (2001). Terrain Reasoning for 3D Action Games. In

Proceedings of Games Developer’s conference 2001 (GDC2001). San Jose, CA

VectorData. (2014). In Virtual Terrain Project. Virtual Terrain Project
Organization on-line. Available from http://www.vterrain.org/Culture/vector.html.

Internet. Retrieved 01 February 2014.

VMAP (2014). In Vector Map Level 0 (VMap). The National Geospatial-
Intelligence Agency. Available from http://earth-info.nga.mil/publications/vmap0.html.

Internet. Retrieved 01 February 2014.

198

Wiegand, N., & Garcia, C. (17 June 2007). A Task-Based Ontology Approach to
Automate Geospatial Data Retrieval. Transactions in GIS Vol. 11. Blackwell Publishing

Ltd. 355-376

Wikipedia. (2014). In Wikipedia: The Free Encyclopedia. Wikimedia Foundation
Inc. Encyclopedia on-line. Available from http://en.wikipedia.org/wiki/. Internet.

Retrieved 01 February 2014.

Woodward, T., Upton, G., & Simons, R. (2001). Developing a Framework for IG-
Independent PC-Based Dynamic Terrain. In proceedings of I/ITSEC 2001. Orlando,

Florida.

Yin, X., Wonka, P., & Razdan, A. (2009). Generating 3d building models from
architectural drawings: A survey. Computer Graphics and Applications, IEEE, 29(1), 20-

30.

Zadeh, L.A. (1965). Fuzzy sets. Information and Control 8 (3): 338-353.

Zhang, B., Miller, S., Walker, S., & Devenecia, K. (11 May 2007). Next
Generation Automatic Terrain Extraction Using Microsoft Ultracam Imagery. In

proceedings of ASPRS 2007. Tampa, Florida.

Zhang, R. & Zhang, Z. (2004). Hidden Semantic Concept Discovery in Region
Based Image Retrieval. In Proceedings of the 2004 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’04).

199

List of Abbreviations

= A" domain of interpretation (transportation domain)

= 3D Real: the real world 3D Region of Interest

= 3D Schema: Schema definition of possible representation procedures of 3D Real
= ABox: Assertional Axioms Box

= (CBIR: Content-Based Image Retreival

= CWA: Closed World Assumption

= DE-9IM: Dimensionally Extended nine-Intersection Model

= DEM: Digital Elevation Model

= DFAD: Digital Feature Attribute Data standard 1994

= DL: Description Logic

= DTED: a common DEM format developed by the NGA (MIL-PRF-89020B)
= DTM: Digital Terrain Model

= DVC: Diamond Visionics Corporation

= ERDAS: Earth Resources Data Analysis System Incorporated

= ESRI: Environmental Systems Research Institute

= GIS: Geographic Information Systems.

= [TAR: International Traffic in Arms Regulations

= JPEG2000: Joint Photographic Experts Group (JPEG) 2000 format

= KB: Knowledge Base

= LIDAR: Light Induced Detection And Ranging standard

= NGA: National Geospatial-Intelligence Agency

200

OBIA: Obejct Based Image Analysis

OGC: Open Geospatial Consortium

OTW: Out-The-Window view (restricted and controlled)
OWA: Open World Assumption

OWL: Onotology Web Language

RC: Representation Capabilities ontology

RDF: Resource Description Framework

ROI: Region of Interest

SD: Source to Domain mapping ontology

SPARQL: SPARQL Protocol And RDF Query Language
TBox: Terminological Axioms Box

TD: Transportation Domain ontology

TIN: Triangulated Irregular Network

UAV: Unmanned Airborne Vehicles

UNA: Unique Name Assumption

USGS: United States Geological Survey agency

UTM: Universal Transverse Mercator coordinate system
VMAP: Vector MAP (MIL-PRF-89039) standard 1999
VOTT: Visual Objects Taxonomy and Thesaurus

W3C: World Wide Web Consortium

WGS84: World Geodetic System 1984

WKT: Well-Known Text format for representing geometry definitions

XSD: XML Schema Definition

201

List of Publications Resulting from this Work

1. Eid, P., & Mudur, S.P. (February 2009). Use of Semantic Web Technology for Adding
3D Detail to GIS Landscape Data. In proceedings of the Canadian Conference on
Computer Science and Software Engineering 2009 (C3S2E’09), 205-215. Published

by the Association of Computing Machinery (ACM). Montreal, Canada.

2. FEid, P., & Mudur, S.P. (December 2009). Automating Extraction of 3D Detail from
GIS Data using Semantic Web Technology. In proceedings of Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC) 2009. Published by the

National Training and Simulation Association (NTSA). Orlando, Florida.

3. Eid, P., & Mudur, S.P. (May 2010). Synthesizing high fidelity 3D landscapes from
GIS data. Proc. of 1% International Conference on Computing for Geospatial
Research & Application 2010 (COM.Geo‘10). ACM. Article 15. Washington, DC.

May 2010.

4. FEid, P., & Mudur, S. (July 2013). Generating Bridge Structure Model Details by
Fusing GIS Source Data Using Semantic Web Technology. Computing for Geospatial
Research and Application (COM. Geo), 2013 Fourth International Conference on.

IEEE, 2013.

202

Appendix A

Property Listing and Extractor Associations

In order to generate 3D model representations with details comparable to entities
in 3D Real, we studied modeling capabilities and evaluated the sets of properties required
for flexibility and customization (defining the 3D Schema). As a result, we created a list
of 3D models representing transportation features classes especially roads, bridges and
their elements with their associated properties. Different values for the properties allow

the procedural generation of details representing the entity.

Knowledge available in the KB (mapped as elements from the GIS source data)
could contain several instances defining a complex real world entity. For example, an
overpass entity can be defined by several instances in the knowledge base each of which
defines a span (a simple structure) in the overpass. If a point is recorded as part of the

linear record at every location along the road where:

- the road type changes,
- the road width changes,

203

- the curvature of the road is high (>45 deg),

- and as frequently as needed for higher detail (e.g. for smoothness of the curvature)

then a series of simple representations will allow detailed representations of a
complex real world entity. In this example, the spans are generated independently but,

together, represent the real world overpass.

Moreover, since an overpass is a subclass of bridge and the representation
generation process, based on the properties listed, can only represent bridges, all

overpass instances are generated as bridge elements using the relevant KB properties.

All transportation scene features under our domain A' are considered to be a
combination of the above two representation classes (road and bridge generation
procedures) with an adaptation of the models to fit the locations and environment they
must exist in. For example, an overpass is a bridge over a road or another bridge. A
ramp 1is a bridge or a road connecting two roads together. A tunnel is a subsurface road,
etc... These classes, hierarchies and relationships as well as their definitions are available
as part of the TD ontology. Although no elaboration is provided, a tunnel could be
represented, for example, by modifying the terrain geometry (semantic information in the
knowledge base about the instance being a tunnel is available) and representing a road

way within the modified geometry.

For instances that have a reference to a static predefined model as part of their
properties in the KB, that model is loaded and given with the instance’s properties to the
representation generator. These properties include object position and orientation which

will allow the representation generator to position and orient the static or procedurally

204

generated model to match the corresponding real world object. The following section

details the property listings we collected per representation class.

Property Listing

The listing, providing a definition for each property, is organized in sections of
properties. For example, the Initial Data section is required data for any basic entity
representation. It includes properties defining the object class, a start edge, and an end
edge. These are required for both road and bridge generation procedures. The object class
is determined by the most specific known class of the instance (mapped from a linear
segment) in the KB (explicit or inferred). The start and end edges are determined using
the Start Edge Extractor which uses the OL and W extractors to extract two points
defining the edge on opposite sides of the roadway, defined by a start and an end point.
Other properties are retrieved similarly using the shown Input extractor(s) and the

mapping used, if applicable.

We generalize a definition (class and properties) for roads that includes all types
of roads we can think of. This definition is presented under the Road Properties section
and dependent subsections: Midsection Properties, Roadway Properties, and Lane
Properties; a total of 19 properties. We have identified, using Presagis Creator Studio, 20
types of bridge classes and 94 properties. These properties are categorized into sections
with applicable sections for each bridge class shown in the following matrix. The

property listing follows. Images are borrowed from Presagis Creator’s User’s Guide.

205

yady ysnouayl
JaA9|11ue) SuidiaAauo)

Yody ydnouay] JaA3|13ue)

[24pueds uadp
Jana|iaue) suidianuo)

>

>

>

>

|24pueds
uad(Q Jans|iaued

[24pueds uadQ

Ya4y pall Suigiaauo)

x| x| x| x

Yaly pall

uolsuadsng SuigiaAauo)

xX| X | X|X|X

uolsuadsng

d|15aJ |

paAels a|qe)

U2V PIOS JaA3|auE)D

Y24y plos

peiaAC)

PHoS

weag JaAa|iue)

weag

ssnJ] y23q

X | X | X | X

ssnJ

Xk x| X (XX | XX X[X|xX|X| X |X X|x| X

XX XXX X X X X|X|xX[X| X |X|xX X

XX XXX X X X X|X|xX[X| X |X|xX X

XX XXX X X X X|X|xX[X| X |X|xX X

Aluo »22a

X

>

peoy

Suiggapn yauy

3|IJ044 uoisuadsng

1Mo |

syioddng

FRE]Y

sa|3uy

suedg

salpadold peoy

eleq |e1y|

sse|D) uoijejuasaiday

206

yaJy ysnouay |
J12A3|11ue) 3uI84aAU0)

Yoay yanouy] 1ans|i3ue)d

[24pueds uadp
Jana|iue) 3uidianuo)

|2Jpueds
uadQ Jans|izue)d

[24pueds uadQ

yaay patl duidiaauo)

x| x| x| X

Yaly pall

uolsuadsng SuigisAauo)

uolsuadsng

9|1sad]

paheis ajqed

YoV PIIOS JaA3]13ue)D

Yoy p1jos

paJano)

PloS

weag JaA3|(1jued)

weag

ssnJ] y23q

SSnJ |

Alup ¥a2g

peoy

2JNDNJIS ssni |

24N10NJ3S 31534

28p1ig pios

23plg paJano)

9]1404d Yduy

23plg Yoy pl1jos

sse|) uoilejuasaiday

207

yaJy ygnoayy
19A9|11ue) 3ul819AU0)

4aay ysnodyy Jans|nue)

[24puedg uadQp
JaAajilue) uidisnuo)

>

[24pueds
uadQ Jans|ue)

[24pueds uadQ

yady pall 8uidiaauo)

Y21y palL

uolsuadsng uigianuo)

uoisuadsng

d|15a.l |

paAeis a|qed

Y24V PI|OS JaAa|nue)

Ya4vy pljos

p=JaA0)

plos

weag JaAljiue)

weagq

ssnu| ypaq

Ssnu|

XKk x| X[(x| XXX/ X|X|xX| X |[X[xX|>x| X

Ajuo pag

>

XXX X|X| X XX X| X X X/ X X [X| X|XxX

peoy

s8uI1119G 84N1X2] UoWWO)

aon

23plug pahels ajqen

sse|) uonejuasaiday

208

's9dp3 pul
31 pue 1ieis ay) usamiaq Juswsas peod ayl uo shempeoy Jo Jaquuinu ay|

T + sJojeledas =

1012e11X] siojeledag

shempeoy jo ‘oN

's98p3 puj pue salpadoad
1JE1S 2Y1 JO SYIpIm ay3 Jo a8esane ayl Aq paulyap sl peod ayl jo Yapim ayl 98p3 pu3 ‘@8p3 weis HIPIM
's28p3 pu3j pue LIe1S 2yl JO SI01D9A UoRIAUIP saladoud
3y} Aq pauyap aaind ay3 4o Yidus| ayl Aq paulyap st peot ayy jo Yidus| ayL 98p3 pu3 ‘a8p3 Meis paiad
'$93p3 puj pue JEels ayl 4O SUOIIedO| saljadoud uoleualQ

2y} >n_ pauljep =de peol ﬁmym._mr_ww 2y} JO UOljejusliO pue uoneao| =2yl

28p3 pu3 ‘@8p3 Mels

PUE UOI1]E20T

"salliadoud pajenosse yum adsueisul Aem e aney |[Im Aem yoea ‘speol
Jayro pue Aem 0M] 104 "UOIIUIJEP UOIIIBSPIW B 3ABY 10U Op PUE 32UBISU
Aem peou T aAeY speos Aem auQ "peod Jayio Jo ‘peos Aem omy ‘Aem aug

T + sioleledas =

1010811%3
ANjeuondang peoy

Ayjeuonoaing

*151] UOIIBDI4ISSE|D B WO peod Jo adAY ay | Aliadoud sse|) 123lqo adA] peoy
'sa8 u3j pue puels ayl usamiaq adAl o
p3 pu3 pue ueis syl 19q 194} saruadolg
uo paseq 24N3x21 e salelauad)| "Aejano AleBew| 21| |21es 4o pealsul Jo doy eo
uo AjjeanayiuAs quawaje uonepodsuesy peod e ydeld o1 pasinbau sanuadouy Peod
X31JaA JB3UI| IXBU 1B
2A0(QE SE JWes 2A0(E SB JWES 28p3 pu3
J010B11X] 98p7 1E1S
"sjuawdas pajoauuod m/q Aln119auu03 Jadoud sainsug “ulesln sjuaWgdas pajoauuod SJ10]2BJIXD
uo 122loud 01 pasn aq Aew UOIIBAS|J "UOI1EI0] UDAIS 1B 2JN1aNJ1S 3yl JOo| uaamiaq AlAIDBuu0D M pue 10 3uisn 28p3 ueis
U0I3235 SSOUD BY] SaUap 1eY] ‘Sad114aA 1euIplood oml Aq paulap ‘98p3 ayL Jadoud saunsu3 10310e11X3 238p7 MelS
aseq
a8pajmouy ay3 ul s1oey
2dA| peoy e Jo (pauyap sadA| wouy) adAl a8plig e :uonealyisseld 122lqo @ ’ ERIEIEI] sse|n) 18l
1 peoy (pauyap 1 wouy) adAy a8pug REIYISSEIDIG0 BUL| | o o iadoud ajqepiene Jul gy 1D 12lq0
uo paseq paulwlialag
sadpliq
eleq |enu|
pue SpeoJ :$31n32nJ1s uolieyiodsuely ||e 104 paldinbals s|1eyl eleq (e
uonuyaq suiddey nduj Ayiadoagd uoI323g

209

1019811X]

‘aue| 9yl 4o yIpim a IM 2ue
| 94330 Yapim ayL saueTJ0 JaquInN YIPIM 1
1010B1IX] adAl
"aue| ay1 jo adAl punoud ayy _
uoljuyaqg aueq [ela1e|A punolo
Jopelix]
‘uoledlyIssepo e wods aue| jo adAy sy _ adA] sueq
uonuyag auel
saluadoud
‘Ayiadoud saue| jo "ou a2y} Aq pauljap saue| 210w Jo T sey Aempeoy yae3 aue
‘3ouelsul Aempeod ayl ulyiim a|gejleA. SaUe| 10 Jaquinu 3yl saulap sl Db Aem
sul P U Ligm Sjg el 13 q W Hop SI4l saue7 Jo Jaqwnpy | Jad saueqjo ‘oN
'9Juelsu| Aempeod ayi Jo uoidaul DA Ajjeuonoau
Isul P Ui 4 132dia ANjeUOIDSIT ACM H|euUodalIg
‘'spels Aempeoy a3 a1aym 38p3 P els 3yl uo S31eulplood syl saulyad| | Aempeoy Jo uoledo| | Jojoedix3 siojeledas uo11e’07
'saouelsul Ajadoud peoy Aempeoy siow 1o T sey peod AJaa saiadodd
ISUl A} d Peoy peoy Tseyp E| Aempeoy
"UIPIM SH pue 2unixal Jo ulaned s1l ‘uoldasplp jo adAy ayl saulyap s opelrad (rpim ‘aj01d)
YIpIm sH p 21 1ed sy ‘uoiRaspIA 4 1 9y3 sauyap siyL Sd AL ~UOIDISPIN 4OR3SPIN
"SMEIS UOII3SPIA 2y) 21aym 28p3 HelS ay3 uo 21eulplood ay3 sauljad| g| uoiRasplAl 4o uonedo| | Jojoedix] siojesedas uoIe’07
Aad salipadouyd
"uoIjulRP UoRASPIA B sey Ajuadold peoy uoiaaspl Je
U2 p UORI3SPIN ym d PEOY UOII3spliAl Yyae] UONIBSPI
"YIPIM SH pPUB 91N3x3] JO uJaiied sy Y|emapis JopesIx] (ypiw
Jo adA1 2y sauyap syl "peOoJ 3yl JO IPIS YIea 1B)|eMapIs B Sl auayl adA] apispeoy ‘a|youad) yemapis
(ru00)
"JUSWIZ3S Peod s1Yl 104 S32UBISUL UOIIISPIA 4O SUOI3ISPIA
siojesedas = J0310eJ)X] S10jeiedas saluadoud
Jaquinu ayl saulap syl "SAempeos 0m] Yoea Usamiaq UoIIaSPIIAl B SI auayL Jo OoN peoy
uoiuyaq suiddey induy Aliadoud uoIIag

210

sadeys Jenaua 1sow SuoIsIAIpgNS
"J2PUNOJ SWEeS(punoJ ayl sayewl SUoISIAIPgNS 40 Jaquinu ayl Suisealdu) 103 1UBIDILINS S1 AN[eA SILLL ot oUnoyY
10 Aq pauyap ueds 51030€11x3

'sJamo} Jo s83| ay3 4o y18ua| ayz 1snipe Ajjlenuew o1 noA smoj||y

ay3 Japun apninje xe|

apnInly pue 10

1Y319H punoJo

‘uollde9|as

}neiap ay1 jo uoldaaip soddo ayy ul s23pa ayl udauuod a3pliq

B Ul S3INSaJ 3 ‘S1Y1 393135 NOA §| *ainpad0oid ayl Sujuund a10j3q paidalas aam
1ey3 s23p2 uo13aNIISU0d Jo suodAjod 3yl JO UOIIID|3S }NBJAP Y] SISIaAY

palinbaJ jou si siy3 os
‘ueds snoinaad wouy xew
s99433p g7 1e sl ueds ayl
1Byl Jopisuod shem|e app

pe|qesia

9S1oATY

‘papaau st Japiaip auo 1sn[—ulol Aay3 ataym sadpuq yioq Jo spua

93 UO papaau J0u ale s1apIAlp uay) ‘1ayiadol suolaas adplq omy Sujuiof
2Je NoA §| "135 Ajjensn aJe sJapialp ‘@8pliq auoje-puels e 1o4 *(sadAl a8pliq
[|e 40} 3|ge|ieA. 10u) 33pIiq B 10} JISPIAIP PUS IO 1IB1S B S31EDUD 135 UBYM

‘Palqesip
salpadoad asayl
sey uoniuyep IspLq
paJan0d ay} ‘ased jeyl u|
'SUOIJIUIIap JUBJaHIp OM]
uisn paieatd siyaym
p1jOS paJaA0d se yans
s238puq xa|dwod Ajuo s|
uondaoxa ay] ueds syl
JO pua pue Jiels aylie
SUORIUEP 12pIAIp Ppaau
M 19pISu0d shem|e apA

p=|qeuy

si3piAlg
puj/uels

1aplap

ueds auo isea| 1e auinbau ‘paAels a|ge) pue ‘Jaaajiue) ‘uoisuadsng se

yans ‘sadA3 a8plig sawos "1aquinu anlledau-uou Aue aq ued 3 ‘sey adpuq ayl
su0|3199s Auew moy salyldads siy 98pliq ayy 404 533] JO S19MO] JO JaQUINN

1uaw8das
23puq e ajesouad
llim Juawdas 10 Alana
T = sAem|e paJapisuo)

s1apialQ ueds

's23pliq Jo sadAy |e Joy d|qefieae s siyL

sueds

uoniuyaq

Suiddey

ndu|

Aliadoad

uoildeg

211

s3UI11aG 2IniXa] UOWLIO) 325

ERIVEFETEN]

2IN}Xa]

‘(Aemyj|em paiamo| e 33e31d 0}
Jagquinu aaedau e) sheaj|em paJiamo| Jo pasied 218242 03 pasn sI SIYL “yaap
ay3 Jo ys8iay ayi o1 uonejas uj dueydano ayi jo ysiay ayil siamo| Jo sasiey

J010e)Ix]
adA] apispeoy

1ydiaH ueytang

's1amo) 28pliq ayy

Jo apisino ueydano ayl Suilnd Agasayl ‘Bueysano ayl jo apisul 03 syysudn
J0 S13M01 3Y3 dAOW [|IM 3 ‘P3|JRUS SI 3UNIDNJIS 3PISINQ 4| "Aemyjem e a1eaud
01 ‘ajdwexa 1o} ‘28pliq ay3 JO SIpPIS 2Y) U0 SurYJI3A0 JO JUNOWE 3Y) 5135

pagesip a1njonis
apIsINQ “1012E41X]
a2dA] apispeoy

dueysanQ
Y8ty pue
dueydano ua1

"SUOISIAIPQNS

40 Jagwinu ay) adueyd Jou op ZT UBY) SS3| JO San|eA ‘@sed 1ey} u| "XIs
Apeal|e S| SUDISIAIPgNS 329pP JO Jaquinu 9yl Uay) ‘om3l 03 135 S| SIapIAIp ueds
40 Jaquinu 9yl I ‘sadpliq Yady p1jos Joj ‘aidwexa Jo4 "sueds jo Jagunu ay3
YUM 91B|21J02 SN SUDISIAIPGNS X3P JO Jaguunu 3yl ‘sadA} a8plig awos 1o}
‘0s|y 9s19a4d sAeM|e 10U S| J3QLUNU 3Y3 SUBSLU YDIYM ‘papIOAE A||ed11ewoine
24 SII1IDA-] 93PIIq 413U B3 404 SUOISIAIPQNS JO J3UINU 33 5195

pasn suolsiAlpgns
1o Jaquinu ayl
10 anjea ayl aulwJialap
[IIm paisanbas Q01
ay3 se ||am se Juawdas

ayy Jo y18ua| ayL

uoluap Allswoa8d

Joj uasoy2 9O
‘170| o3 |euoiiodosd

suolsIApgnS

"PlEA 51 0 12A0 aNnjBA AUy "329p 21 40 SSaUMIIYL 2Y] 5135

1012B41XT SSaUXIIY |

SSaUYDIYL

(Aemdjjem 10 Aempeol
3y} sauJed jeyl ued ayl) 28puq Jo oop 01 pale|ad siolaweled aue asay]

¥29Q

"IN0 SMOQ 10 S3AIND

adpug ay1 yoiym e aj8ue ay3 sulwliaslap spial 2|8uy puj pue a|Suy Hels
2y] 's28pa |elyul aY3 jo sa|Sue ay1 woly pa3endjed si 3|3ue ay] ‘umop-do}
PamalA Uuaym saAInd 93p1iq oy moy sauwialap Jalaweled S|y} IanamoH
"9A0qE PaQLISAp |BJIUIA 241 Y1 sI s9jdue |euoziioH a9y} Joj 3dasuod ayl

2.npasoud
sa|3uy 23plig 295

Jopenxiqg

[e3uozIIoH

's98pa om1 ayl uaamiaq

Alyroows sayase 33plig 3yl 1BY1 Yons s3|8uy puj pue 1Ieis [edIap ayl
alaym Suinas paisnipe ue s 3nejap Ing 1e|4 01 135 aq UBD 'SMO(1O Saydle
a8p1q ay1 yoiym 1e 3j8ue ay3 sujwIRIap 3|8uy pu3 pue 3|Suy 1e1s ayL

2Jinpasoud
s9|3uy 28plig 395

J010ENX3 g

[CRINRETY

"93p1iq 243 4O 5195440 3|3ue |BEIUOZIIOY pUE [BI[1IBA
gulpua pue 1Je1s ayl saulyap 1| 'se8pliq jo sadAl ||e 1o} 3|qe|ieAe S| SsiyL

sa|8uy

uonuyaQ

Suiddey

ndu

Anadoag

uollaag

212

'$1094J3 JUDJDYIP IABY SIUBLIBA
U141 "JaMO0] YIBDd UIYIM Aj[ejuoziioy suopiped jo Jaquinu ayj 519S

suoiied

J3MO1 YIB3 UIYIM A||BI[1I9A SUOIID3S JO Jaquinu 3y3 S135

SCTERETS

"SULWIN|02 1aMo] 3y}
Ul SU013235 JO JagUINU Y3 UO PasSEq JajHIp SIUBLIBA "3|(B|IBAR SJUBLIEA AUBA|

adA] uiggapn

‘Siagquiaw |ejuoziioy Jaddn syl sisnlpe oiley
9|eas do] Jeuonuodold wayl usamilaq adeds ay) daay 0] pasiel os|e ale

519quIaLW [EIUOZIIOY 1310 Y] "Jaquiawl 1S0W-wo3loq ay3 03 }23p ayl woly aouesea|)
Y81y ay3 1ey] 0S SJaUIBL JaMO] [BIUOZIIOY 3Y] 3sIed ||Im anjen Jaysiy
B ‘sl 1ey] 'SJagquWaLl Jamo] |euoziioy ayl 4oy ysiay ,Japun aALp,, Y3 5135
sa8pliq padels a|qe) pue sadpliq uolsuadsng UO SI2MOY 3Y1 104 SislaLueled Jamo]
S3UINS aINIXd | UOWWOD) 935 CRINEIETER ainixay
puUNoJ JI9quWal pa12a|as ayl sayew punoy
"Yadaq aquiain pue Yipim JSquISIA e paudisse JuaLny
2q ued (s|euose|p Jo ‘s|ejuozlioy ‘s|edalHan) yoddns ayi jo Jaquaw yoe3
‘(s)uoipas wonoq
oney s|eas dog
2y1 01 paJedwod 19jjews Jo 128.4e| woddns ay3 jo uoaas dol ayl sael
‘(auo ueyl Jo1ea4d s suollled
usaym a|qejieae Ajuo si siy1) pijos suoniuied uasmiag soeds ayl saxep PHOS
"(auo ueyl J=1eald s|
2215 deg
suolliled uaym a|ge[ieAe Ajuo si siyl) suoilied usamiaq adeds ayl sadueyd
"93plq
ay1 Japun uwn|od Joddns umo s3I 31| $00| U0323s Yaea ‘AjaA1129443 apIs 0] suolllned
SpPIS WOJ) PSPIAIR S ULWN|0d 1oddns syl ya1ym 03Ul SUCISIAIP JO J3qLInuU syl
uwnjod poddns yaea uiyiim suoi3aas Jo Jlagquuinu syl SU011095
"suwin|od Joddns ay3 Ul SUDIIIAS JO JAUINU 3y} U0 pPaseq sdAL Suiggam
Japp suelep ‘a|qejieae syuenen Auely ‘Ajuo adAy pagqasn 104 9|qe|ieay
2dA1 1ioddns ayy uoj Je||id 10 paqgan adA]
‘@dpliq ay3 Jo yoep ayi Jepun suoddns Jo syysudn ayi 4o} sielaweled spioddng
uolnuyaq Suiddep induy Aliadoud uol13s

213

‘2oueJseadde AAIND 310W e DAI3 SUOITDBS BIOIN

suolsinpgns
‘PAPIAIP S1 3|qed uolsuadsns ayl YIIym 0lul SUOIII3S JO J3qINU 3Yy] 5135
"9|qed uoisuadsns ayl a0} suoddns y31idn jo Jaquinu ayi siss suoddng
*21151|E2J 2J0W 00| I|qED 341 JO DAIND DY) XEW MO|2q SUOISIAIPGNS 8AIND
paounouoad aiow e ul SuljNsal ‘Jamo] ayl 01 Sayde1e 3|ged 3yl yoiym SSaUIAIND

1e 3|8ue ay1 safueyd anjea Jaysiy v '2|qed uoisuadsns syl JO 3AIND 3Y] S185

*13]|d1INW e se an|eA syl sayel
1y81ay 3|qe2 Y3 ‘s1amol a3 Jo 1YSiay [|B42A0 31 S109LIE OS|e an|eA Siy L
»28p 8yl 01 uolle|ad Ul 3|ged uolsuadsns ay3 jo ydiay wnwuiw ayy s1as

awade|dsiq

‘Juawade|dsig yaJde syl 01 SAIE|3] S1I9MO03 BY1 0 1Y3Iay ay3 s1a5 1Y31aH 9|qed
Juawade|dsig
229p 2y} 03 Aem 3y} ||B puSlIXa SB|gED UlEW Y}
Spua ayj 1e eyl 1daoxa 23pliq uoisuadsng e o} Jejlwis e s1 38plig uojsuadsng “ N
Suid1aAuo) v "sua1d 1amol JaA0 padelp $3|qed 01 paydelle siaquiawl co_m_uman“,:
uolsua} Auew yim 3aap sil syoddns 1eyy a3puq e st 23pliq uoisuadsng ’ 5
v 's28pliq uolsuadsng dudiaauo) pue sadpliq uoisuadsns Joj Si9lawelded
sgu11as 84nixa | UoWWO?) 93S CRIEIETEH ainxa]
punoJ Jaquwaw pajds|as 3y} sayew punoy
‘Yidaq Jaquia|y pue Yipia Jaquialy e paudisse usiin
2q uea (sjeuodelp J0 ‘s|ejuoziioy ‘sjearuan) poddns ayl jo Jaquiaw yae3 !)
"3U0 UeY} 2J0W S| SUOI}Ied
s3|qed Jauu|
uaym a|qejieAe AjuQ "23plig ay3 JO apIsuUl Y3 U0 S2|(EI JO JaquInU ayj sias
"'2U0 UeY} aJ0W S| SUOI}ed
sa|qed J2InQ
uaym a|qejieae AjuQ ‘28p1iq ay1 JO 9PISINO Y3 UO SI|GED JO Jaquinu 3yl S1as
(‘y8ivy Jaquiaw
|PIUOZLIOY J2MO| 941 135 01 ySIaH 2ouele3|) 3SN) "JaqW LU |eJUOZIIoY oney ajeas do|
159MO| 9Y3 01 dAIE[24 S1aquiaw |ejuoziioy Jaddn ay3 o 1ydiay ayl s1as
‘9UO UBY] 2J0LW 0] 135 2B $3|(eD Jauu| Jo s3|qe)
azI§ deg (-3u02) Jemo |
J2InQ uaym a|qejieAe AjuQ 'sa|ged 1210 JO Jauu| Udamiaq 2JUelsIp ayl sias
uoniuyaq Suiddey indu| Apiadoag uol123§

214

‘SUOI1I9S D1BIPIWIBIU| PUB ‘PIA ‘PUT 10 JaqWNU dY] S185

SUOI3D3S |BDILIDA

"Yose
1U314N2 3Y] YIE3UI(Y2JE PUOIIS B 21830 0} PI|qeua 03 Yody Alepuodas 1as
"SaN|eA 3| E[IBAR 3Y3 JO 2UO 01 SUIggaM [BIIFI3A PUB ‘BpPIS ‘W0l10g 3Y] 5135

Buiggam

‘siaquiaw |eyuoziioy Jaddn ayiy Ajuo isnlpe o) oney
9|eas do] asn ‘|euoiniodold wayl usamiaq a2eds ayl daay 01 pasiel os|e ae
S13qWaW [eIUOZIIOY JBY10 3] “J2qUISLU }SOW-W 03104 Y1 03 }23p 3y} WO}

1Ydiay ay1 183 0S SIaqUiaW JaMO] [BIUOZII0Y B3 3SIed ||Im anjea Jaysdly
e ‘sl 1By 'SJaquUaW Jamo] |eluoziioy ayl Joj 1ydiay ,Japun aalp,, ayl s1as

aduelea|d

("3yS1ay JoqWaW |EIUOZIIOY JAMO|
2y} 195 01 @2ueJed|) 3sM) ‘ssaquiaw [ejuozuoy Jaddn ayl jo y8iay ayl s1e5

olney ajeds do|

"28p1q ay3 JO apIsul Y3 UO SI|GED 4O JAqUINU 3Y3 5335

s9|qed Jauu|

"28p1iq 9yl JO 9pISIN0 BY3 UO SI|CEI O JAGUINU 3Y] 5135

s3|qed 4aInQ

‘'9uU0 Ueyl si0W 0] 195 ale sa|ge) Jauu| Jo se|qe) J91nQ

9215 den
uaym ajqejieae AjJuQ 'sa|qed 121n0 10 Jauul 8y} usamlaq aduels|p ayl s1as
'28p1iq 23 40 dol 3y} uo suaqUIBW $SOUD 4O Jaquunu 3y} $1a5 suollllied
‘'sa8puiq yoay yadnou 3JaA3|13ue) pue ‘|alpued
pug Y2y y yLp [1JUED PUE “|=JpuUeds JUIGGIM Yoy
uadQ pasanz|iue) ‘palang|iiue) ‘|aapueds uadQ ‘Youy pal] 10} S191awWweled
5811195 9.N1Xa] UOWWOD) 33S ERSEIETEN| INIXD|
punoJ Jaquaw pajda|as ayl S e punoy
‘(3192 uleA 243 jo dip ay3 uf Julod 3saMmo0| 3Y3) 3|qeD
ule|A 941 jo 1ulod piw 2yl 1e $3|qed |eIlIaA 3yl ale s3|qe) |BdILIaA Yoly
PIAI 243 ‘3] UlB|A 943 01 }I3p 3y} WOU4 unJ eyl sa|qed ayl aJe sa|qed Usiin (13u02) 3y0ud
|B2IHBA 3Y3 S1amol ay3 Jano sadedp jeys a|ged uolsuadsns ay3 s| a|qed ulep| } J uojsuadsns
9yl 'yidaq Jaquiain pue YIpIA J2quualn e paudisse ag ued (sa|qed) |edIHaA
Yoy PIA PUEB ‘S3|ge) |edIaA ‘9|ge) uleln) Boddns ayl jo Jaquiaw yoe]
uonuyaqg Suiddey indu Anadoad uoIag

215

"Yose ayy jo doy
puUE 03P 3yl U2aM1a IDURISIP Y1 ‘Sl 1BY] ‘Y2IB 3Y] JO 553Uyl 3yl 519§

Juawade|dsiq

"yaJe 2yl jo dol ay3 01 ydJe 9yl Jo Wwollog ayl woij ySiay ayi s1es S1I9H youy
'sadplig Yoy ySnouay pasansnue) pue ‘|aspueds uadg pataasjinue)
‘palaAas|iue) ‘|aspueds uadp ayj Joj sialaweled 51as OS|e 3| pua Jaylo 1oL Uo
23 01 pua 2UO S122UU0D 1BY] BSE(S} SSOJIE Jaquaw uoisual e sey eyl yaie 1301d v
328p @A0qe ue Yim asplig e s yaiym ‘@8puq yody pall 8yl Joj sialaweled
S3UI1195 2JNIX3] UOWWOD) 235 2luaJajay aJ4nxa|
‘(14406 ‘Nossnop ‘|aipueds) Juswa|s a8puq Yoea uo aunixal 3yl s185 SUETI)
T 03 0 WOJ} 21 S3N|BA PI|EA "Y2JB 3Y3 JO SSAUIAIND BY] 518§ SSaUIAIND
'S9AIND 3BPIIQ DY1 SS2|UN DUO 1B 195 3 pP|Noys 35
an[eA siyl Ajjensn "a3pLiq ay1 jo 93| Yyoes J0j SUDISIAIPQNS JO Jaquinu ay3 5185 !
"Y2Je Y2Bd 404 SUDISIAIPGNS JO Jaguunu ay) s1as Y4y jjeH
"yaJe ay3 jo doj ayj saul| 1y} uoi3aas adpug 2yl JO ssauwdIyl ay) s1as 9715 JI0SSNOA
'sda| ay3 usamiaq yaJe
. 4 A Yip!m 321
3y} Jo azIs ayy 3uisealdul Ajaailoaye ‘28pliq ayl jo 33 Yaea Jo Yipim ay) s1as
‘IYd1eH Yady syl Suinas atojaq anjea siyl isnipe 01 yuem Aew noA
0s ‘28pliq Y3 40 YS13Y ||e42A0 3Y3] S}I344e 0S| Ja3aweded siy] o9p 3yl jo
PLq 2y o dysiay || U3 510344€ Os|e J9) 1YL P=p 3y} Juawade|dsig
ssaw|a1y3 ay1 Buiseatoul Aq punoJd ay3 03 1aso|2 yale ay3 jo yead ay3 sanoul
san|ea guisealou| "yale ayj Jo doj ayj 03 323p ayl WO} 92UEISIP Y3 S35
"YaJe syl jo wonoq ayi 01 doi ayl wouy 1ysiay ayi sies Y319 H Yoy
Juawasedsig
"Aduosew yiim paj|i4 s 1eYI I8P Y3 MO|aq Yade ue aaey sagpLIq Yaly 23pug
PI|OS "S28P1IQ Y21y PI|OS PIIaA3|I3UBD PUB YUy PIjOS 33 104 S1339wWeled | yaly pijos
uoniuyag Suiddey Anadoud uoI}3s

216

s8UI119S 2INIXa] UOWWOD) 35 ERVEYETER 3InIxa]
-28plig ay3 jo s2un1xa1 aseq Ya| pue S ay3 5195 uaan)
"s99.48ap 06 UeY) $S9] 1Sn[01 O LWOIJ 3. SaNn|eA s9|8uy
pleA ‘piemino sado|s apis 1431l 10 43| 241 1eyl $23439p Ul 3j3ue ay3 5195 1y31y pue a7
‘punoJ3 ay3 03 3uyoeal
SapIS PI|Os sey 1eyl adpLiq e si yaiym ‘a8plig pIjosS ay3l 10} siajawe.led 23pLa pIos
S8UI1195 4NIXa | UOWWOD) 335 CRIVENETER ainixa]
"AempeOo. 3y1 O aUul| J33U3D 3y} PIEMO] PIBMUI UBI| S||BM
3yl ew (saau8ap 68 01 dn) sanjea Jaydiy "a(8ue 1y e ul s3nsal (JO an|jea 918uy s||BM
¥ "UDI1235 PaJIA0D 3Y3 JO IPISUI BY] O] UOIE|3J Ul S||em 3] Joj 3Sue ayl 5135
"23puq ayy Jo
a|ppIw ayl pJemol uea| aj3ue adueljua ay) aew (seai8ap g8 01 dn) sanjea 3|8uy aouesug
JaydiH -9|8ue 13 e ul s}Nsal O JO aNjeA y "adueliua ayl Joj 3|3ue ay) s19s
'28p11g Y3 JO UOI123S PaLaA0D Y] J0J 1YSIay Y3 5195 WY319H
‘uonesngiyuod UoLWLWOD 1SoW B}
sapinoad T Jo anjea jneap ayi os ‘43noayl USALIP S| 1841 }23P 8yl U0 UO0I1I3S T suolllned
31 sIsiyl 98pLiq 3yl JO Y1PIM 241 JOJ SUOIIIS PRJI3A0I JO JaGUINU Byl 5135
‘doy pue sapis 23pug
paJan0d plos sey eyl adplq e si ydiym ‘@8p1iq passno) ayl 1oy sialaweled pa1aA0)
s3UINSS 9INIXa | UOWWOD) 935 CRIVEIETER CIIET]
"PUNOJ J3qWILL Pa1d3|as 3yl SaYelA punoy
"y1daq Jaquialy Pue YipIp Jaquisin e paudisse aq ued (218 s
‘spu3 ‘Suiqgapn ‘Alepuodas ‘Yay ulely “8'a) poddns ay) Jo Jaquuiaw yoeg
"UY2J€ 3Y] JO BAIND 3] SBSEAUDU| AN|eA
suolsiAlpgns
13y31y v "23pLiq 3yl Jo yaue 2yl 10) SUOISIAIPGNS JO J3qWinu |e10] aY1 S1a5
‘spoddns g o |e101 B JO)
‘Joddns aa1uad ay3 snyd ‘a3puq ay3 4o apis yoea uo suoddns anog ind |im spi0ddns
Jo anjen e ‘s| 1ey3 >23p Jey 2yl 104 sI anjea siyl Jeyl a1oN 28pliq ay3l Jo youe
aY1 pue yoap ay1 uaamiaq puaixa 1eys suoddns ysudn jo Jaquinu ay3 s1as
"*9AINd pasunououd aiow e Suipiaoad (ru02)
SSaUIAIND
sanjeA Jaysiy yum ‘T 01 0 Wouy aJe san|eA pljeA "Yaae 2yl JO aAINI a1 5195 9|1404d Youy
uolnuyaq Suiddep induy Aliadoud uol13s

217

‘saiuadoud

Jayio pue ‘adAy ssnuy ‘suoisuawip adplq ayl Aq paulwialap Ajjearewoline 1ySieH apisu|
sl yS1ay ay3 195 10U s1 an|ea siy} J| “suoddns apis ays jo ysisy ayi s1es
‘Aempeod ay1 JO aul| J131U82 3y} PJEMO)
pJemul uea| sjjem ay} ayew (saaidap 0 Suipnjoul jou ng 03 dn) sanjea 9|8uy
Jay8iH “a(3ue 1314 e ul S}NSaJ () JO BN|eA Y "S||EM 9Y1 104 3|3Ue 9yl 5135
"uoNeINZIUOd UOLWILWOD JSOW 3Y)
sapiaoud T JO an|eA }nejap ayl 0s ‘Y3noayl U3ALIP S 1Byl }23p 3yl U0 UOI1I3S suollied
33 sI siy L "23pLiq Y1 JO YIPIM 343 10J SUOIII3S PIISA0D JO JaqWnU ay1 S195
. uedg
28plig ay1 Jo ueds yoes 10) SUOIIIIS JO JagWnu 3yl s1as 15d SUOIAS
"28p1ig 2y3 jo doi ayi 104 ssnuj jo adAl 9yl s1as adA] doj
‘a8pliq ayy jo apis ayl Joj ssnuy jo adA ay3 s1as adA] apis
‘punolg ay3 03 puaixs 1eyl Suiqgam pue .
sy1ioddns |ejuoziioy aAey 10U S30p }1 asSnedaq adpliq 3]15a4] W) JUI3IP SI ssniy
11 1ey1 910N ‘98pliq o|Als peoujied e s1 ydIym ‘98pLiq ssnJ | 9yl o) Sislaweled
s3U11195 94NIXa | UOWWOD) 335 CRIVEFETER CIWET]
PUNOJ 3G PR1I3|as 3yl SOYeN punoy
‘yidaq
uaun)
Jaquialy pue Yipip Jaquialy e paudisse aq ued poddns ayi Jo Jaquiaw yoe3
‘3uiqgam ay3 Joj JUBlIBA B 5135 adA] Suiggam
"Hoddns |ejuoziioy
1511} Y3 01 UO(Ie|aJ Ul panow os|e ale syioddns |eluoziioy Jayio ayl 1eys onley ajeas doy.
310N ‘voddns [eluoziioy 1541 3yl 01 329p 3yl MO|2q WOJ} d3UBISIP 3Y3 5135
'saa.idap 0p UBYL 559 1SN[01 O LWIOJJ D€ SBN|eA sa|duy
plEA ‘plemino sado|s apis 1ydLu 1o 13| ay] 1ey) saaudap ul ajdue ayl s1as sy pue 1yaq
‘9oueles)d punoJdg 1saydiy ayl yum a8plq
9y} jo ned ayl uo paseq an|eA ayl $13s Syl 1ey) aloN ‘spoddns |ejuoziioy SU01303S Y3IaH
Suinowau Jo Suippe Aq ueds 13d su013093s |BIUOZIIOY JO JBQWNU BY31 $135
‘spoddns ueds
1y31idn Suianowad Jo 3uippe Aq ueds Jad su0|1935 [EJIWIA JO JRGWINU BY] 5195 Jad suoloas
‘punoJ3 ay3 03 Suiyseas spoddns 24Nn10Nn.435
Auew yum a3pliq ajA1s peodjies e sl yaiym ‘@3pliq 3|1sal | e .10j sia1aweled 31sadL
uoniuyag Suiddey indu Ayiadouagd uol12as

218

‘uonRIANIP Aladew PIHOAN |ESY SdA
A @Yl pue n a8yl yioq oy pajiL 10 1saJeaN ‘PIOM [BRY JBYII@ aq UBD| WOJ) paldelixa sheme 1030B.11X7 3INIX8 | L
:sua1awesed 3uimol|oy s3unias
23puiq uo paidde aq 03
a3 duisn paugisse ag ued a4nixa) e 1o spoddns 1o ypap ay) Jo) 88 ‘uasoyd J0]2BJIXT 2UNIXD L 2InIxa]
24n3xa1 Aladew syoedixy
3¢ URJ J0|0J ¥ 'P3J0|0I 10 PaINnIxal Jayla aq ued adpliq ay3 ul Juawa|a yosey uowwo?d
Jasn Ag indui ElIERS
'S191aW Ul JUl0dMaln WoJ 2JUBISIP B PUB [3A3] 2JUE.3|0)
S2JUBLSIP M3IA UO PIsEq | 40} (S22UBISIP MBIA) aol aol
B UO paseq [9pow Yyaea oy Ajjeainewoine palelauad aq ued sgqO1 € o1 dn
palesauasd Ajjeonjewoliny | sadues pauljap Jasn
mmc_uumm 24N1Xa] UoWLWO) 229 9JUol9loy SINIXI]
punoJ Jaquaw paalas ayl sayen punoy
‘yidaq
waan)
1aqua|N pue YyIpip Jaqualy e paudisse aq ued poddns ayi Jo Jaquiaw yael
‘U0lliIsOd wnuwiulip @243 ueyl 240w 1o 0} _m:_uw a(}snw uoljsod LOIISO
winwixe|Al @yl eyl a3oN ‘ueds ay3 Jo pua ayi 1e yoep ayi suasaldal T E:_.“._xmn_
JO @njeA e pue Jamo] 3y} 0} IXauU 23p ay3 syuasaldad 042z Jeau anjea Y aep e E:.E_ﬂ
91 129W S$3|ged 3y} 249YM JOJ SBN|EA WNLWIXELW PUE WNWIUIW 3y} 53as P A
"YS1aH wnwiuly 3yl uey
J21e2.48 10 03 [enba aq 3snw ydIaH WNWIXelA 3yl 3ey3l 230N Jamol ay3 jo 1YSIaH winwixepl
doy ay1 sjuasasdal T JO an|eA B pue yo3ap 2yl s1uasaldal g JO aNjeA y "1aM0) pue wnwiunp
9Y1 139W S$3|geI 343 249YM JOJ SSN|EA LWINWIXELW PUB WnWiUIW ay] 5385
293P 3yl anoqe Jamol ay3 4o ygdiay ayi si1as WdieH Jamo]
"ueds jjey
sa|qed
42ea 104 }I9p 3y} 0} JSMO] 3y} Wod) FuIpualIxa S3|ged JO Jaquinu Ayl s18S
“29p 23 03 Jamol 2y} wolj 3ulyoead sajged |edaaas Ag panoddns 23plg
SI29p a9y} alaym a8puiq e s1 yoiym ‘a8pliq pakels ajge) ayl Joj siajaweled paAels a|ged
s8ui1185 21N1X3 | UOWWIO) 235 CRITETETEN ainxal
puUNOJ JaquUIa W Paa[as ayl sayen punoy
U002
‘yidaq ()
uaan) 24n1PNI1S
laquiaal pUe YlpIan Jequiaipn B _uwr_w_mmm aq ued H_DQQ:m a2yl JO Jequawl Yyae3 ssni|
uonuyaq Suiddey induy Ariadoagd uoI1129§

219

's93.83p 06 2/n3x2a1 paudisse ay) sayeloy

v/N

3in1xa| aleloy

"UONJBISNES |13UN

pa)eam] anjeA ayl pue Aj|ensia palsal ag pInoys |2pow ayl ‘wWopuey YU ‘A a7 ‘wolnjog ugiy
Jojdo] 40 1931ud) ‘W0310g pue N 40} Wopuey 1o Y31y ‘491ua) 1497 asooy)
‘3INIXa) (‘u02)
2431 2|11 03 sawil Auew moy saii0ads 249y 13 anjea ayl ‘pajiL Jo4 ‘(41e’) s3unias
31} @INQIIIIE 24N1X3] 9Y1 Ul paIdads anjeA azis plIOAA |BaY 9yl asn 1SaleaN v/N °2Is 24N1Xa |
pue 9zIS pP|I0 N [ERY 1BYI 310N ‘A PUB N Suoje 8.n1x3) 9yl JO 3ZIS 3y} 5185 uowuwo?
uoiuyaq Suiddepy nduj Ajiadoag uoI323g

220

Appendix B

OWL Link Porting

OWL Link is a specification and protocol for communication (mainly over http) to access
OWL 2 Reasoning Services. It facilitates the configuration of a reasoner, the sharing of
OWL 2 information, and the access of reasoning services via a set of basic queries. It is

extensible by allowing the addition any desired client-server functionality.

OWL Link API is a Java-based framework that implements the specification and
protocol. It is built on top of the OWL API which enables applications to access remote
reasoners or server applications implementing the OWL APL. It also allows the mediation
between OWL API versions through client and server adapters. Due to its flexible and
reasoner-independent API, the OWL Link API is the framework of choice for application
developers requiring the interchange of reasoners or testing different reasoning services.
This makes it ideal for use in our implementation especially since research in semantic

web is very active and reasoners are constantly improving.

221

There is, however, no native C++ or C# implementation of this protocol although a C++
application could be able to interact with the Java OWL Link API adapter over HTTP.
We, therefore, added an objective in our implementation to port OWL Link API to C++
and C#. We have initially tried converting the OWL Link API Java source code to C#
source code through a semi-automated code converter. However, available code
converters do not work very well especially in terms of dependencies and unavailable
source code (only binary Jars available). Our final implementation is based on the open
IKVM toolkit which implements a Java virtual machine (based on OpenJDK) for the

Mono or the Microsoft .Net frameworks. IKVM.Net includes the following components:

- A Runtime Java Byte Code Virtual Machine implemented in .NET
- A NET implementation (DLLs) of the Java Kit libraries (based on OpenJDK)
- Binary and Conversion tools (mainly IKVMC) from Java to C#

- Tools that enable Java and .NET interoperability

These components would allow using the OWL Link API in any .Net application
(including C++ applications) to interface with any other application using the OWL Link
API (client-server communications). OWL Link API dependencies such as the OWL API
and some other dependencies require conversion as well for the OWL Link API Jar
library to work. These already have Java binary libraries (.jar) available which we used to
develop a working package using IKVM. To help in this effort, some tools exist that
analyze dependencies between Jar files (JarAnalyzer), generate a map for converting a
list of Jar files to .Net DLLs for use under IKVM (Jar2IKVMC), and reconstruct .Net
DLL source code and view references for debugging and verification (Reflector). No

single tool works perfectly, so we had to customize input/output to have a final working

222

solution. JarAnalyzer

(http://www kirkk.com/main/Main/JarAnalyzer) had some

problems specifically in resolving a complete list of references but is a good starting

point as it works on the original Jar files of OWL Link API and its dependencies. We first

retrieved all the existing Jar files in the solution:

5] owlapi-sre.jar
5] owlapi-bin.jar
&) owllink-src.jar

| owllink-javadoc,jar

5| owllink-bin.jar
5| owlapi-bin-2 jar

5| owlapi-bin.jar

|| org.mortbay.jmz.jar

|| org.mortbay.jetty.jar

5] junit.jar

|| javax.serviet.jar

|| commens-logging-1.1.1,jar
] org.semanticweb.owllink. protege,jar

|5 HermiT jar

20/08/201012:29 ...
20/08/201012:29 ...
18/06/2010 2:12 PM
18/06/2010 2:12 PM
18/06/2010 2:12 PM
18/06/2010 2:12 PM
18/06,/2010 2:12 PM
18/06,/2010 2:12 PM
18/06,/2010 2:12 PM
18/06,/2010 2:12 PM
18/06,2010 2:12 PM
158/06,/2010 2:12 PM
18/06/2010 2:12 PM
28/04/2010 2:05 PM

Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File

owlapi-3.1.0 (CALL.
owlapi-3.1.0 (CALL.
owllinkapi-1.0.2 (...
owllinkapi-1.0.2 (...
owllinkapi-1.0.2 {...
lib (C:hUsersi\Kam...
lib (C:h\UsershKam...
lib (Ch\UsershKam...
lib (C:h\Users\Kam...
lib (Ch\UsershKam...
lib (Ch\UsershKam...
lib (Ch\UsershKam...
owllinkapi-1.0.2 (...
lib (C:hUsersi\Kam...

We removed unnecessary Jar files from the list such as the JavaDoc and Source Jars (we

are only interested in binary versions) and others by using JarAnalyzer to understand

dependencies. Some dependencies (Jar files) are not part of the list shown so we will

have to build them or find a copy of their already built version. We will do that at a later

stage when building the package as some of the dependencies will be resolved by the

IKVM package libraries. We used Jar2IKVMC (http://code.google.com/p/jar2ikvmc/),

which also depends on JarAnalyzer to generate a map for IKVMC, a tool part of IKVM

that compiles Java classes and libraries into a .NET assembly (DLL). Jar2IKVMC

generates a dependency matrix and an ordered set of IKVMC commands that can be run

to compile the needed Jars into their corresponding DLL versions.

223

In our case, running “jar2ikvmc \dev\ map.bat” on the command line generates
the following IKVMC commands based on the previous list of required files. The “-
target:library” option generates a .dll of the same name as the Jar library name while the
“-r:” option defines specific dependencies other than default IKVM package libraries:

ikvimc owlapi-binZ2.jar -target:library

ikvmc owlapi-bin.jar -target:library

ikvimc org.semanticweb.owlapi.jar -target:library

ikvmc mail.jar -target:library

ikvmc junit.jar -target:library

ikvinc javax.servlet.jar -target:library

ikvimc javax.jms.jar -target:library

ikvimc velocity-dep-1.jar -target:library -r:javax.servlet.dll -r:javax.jms.dll

ikvimc log4j-1.2.16.jar -target:library -r:javax.jms.dll -r:mail.dll

ikvmc org.semanticweb.owlapi.apibinding.jar -target:library -r:mail.dll -
r:log4j-1.2.16.dll -r:velocity-dep-1.dll -r:javax.servlet.dll

ikvmc commons-logging-1.1.1.jar -target:library -r:log4j-1.2.16.dll -r:velocity-
dep-1.dll -r:;javax.servlet.dll

ikvimc org.mortbay.jetty.jar -target:library -r:commons-logging-1.1.1.dll -
r:;javax.servlet.dll

ikvimc org.semanticweb.owlapi.owllink.jar -target:library -
r:org.semanticweb.owlapi.apibinding.dll -r:org.mortbay.jetty.dll -
r:org.semanticweb.owlapi.dll

ikvimc unittest.jar -target:library -r:org.semanticweb.owlapi.apibinding.dll -
r:org.semanticweb.owlapi.owllink.dll -r:junit.dll

ikvimc org.semanticweb.owllink.protege.jar -target:library -
r:org.semanticweb.owlapi.owllink.dll -
r:org.semanticweb.owlapi.apibinding.dll

ikvimc org.mortbay.jmx.jar -target:library -r:org.mortbay.jetty.dll -
r:commons-logging-1.1.1.dll

Running “map.bat” under the IKVM environment will generate all corresponding
.Net DLL files for use part of .Net applications and run under the IKVM virtual machine.
However, we encountered some problems due to some missing Jar dependencies. We,
however, found all required files in binary form on the internet. Reflector 6
(http://www.red-gate.com/products/dotnet-development/reflector/) free edition was used

to identify those dependencies in resulting DLLs and for debugging purposes.

224

