
EMPLOYING OPPORTUNISTIC DIVERSITY FOR

DETECTING INJECTION ATTACKS IN WEB APPLICATIONS

WEI HUO

A THESIS

IN

CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS SECURITY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

SEPTEMBER 2014

c© WEI HUO, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211517472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Wei Huo

Entitled: Employing Opportunistic Diversity for Detecting Injection At-

tacks in Web Applications

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Information Systems Security

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

Dr. J. Bentahar Chair

Dr. S. Abdi External Examiner

Dr. A. Youssef Examiner

Dr. L. Wang Supervisor

Approved Dr. J. Bentahar

Chair of Department or Graduate Program Director

20

Dr. Nabil Esmail, Dean

Faculty of Engineering and Computer Science

ABSTRACT

Employing Opportunistic Diversity for Detecting Injection Attacks in Web

Applications

Wei Huo

Web-based applications are becoming increasingly popular due to less demand of client-side re-

sources and easier maintenance than desktop counterparts. On the other hand, larger attack surfaces

and developers’ lack of security proficiency or awareness leave Web applications particularly vul-

nerable to security attacks. One existing approach to preventing security attacks is to compose

a redundant system using functionally similar but internally different variants, which will likely

respond to the same attack in different ways. However, most diversity-by-design approaches are

rarely used in practice due to the implied cost in development and maintenance, significant false

alarm rate is also another limitation. In this work, we employ opportunistic diversity inherent

to Web applications and their database backends to prevent injection attacks. We first conduct a

case study of common vulnerabilities to confirm the effectiveness of opportunistic diversity for

preventing potential attacks. We then devise a multi-stage approach to examine database queries,

their effect on the database, query results, and user-end results. Next, we combine the results

obtained from different stages using a learning-based approach to further improve the detection

accuracy. Finally, we evaluate our approach using a real world Web application.

iii

Acknowledgments

I would really like to express my gratitude to my supervisor, Dr. Lingyu Wang, for his guidance

and support to my research and study in Concordia. In addition, I would also like to thank my

labmates for their help and suggestions. At last, this thesis cannot be finished without the support

of my parents.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Background 5

2.1 Attacks on Web Applications . 5

2.2 Diversity in Security . 8

2.3 Common Vulnerabilities and Exposures (CVE) Database 10

2.4 Existing Technique of Attack Detection . 11

2.4.1 Query String Comparison and Evaluation 11

2.4.2 Database Schema Comparison . 13

2.4.3 Behavioral Distance . 14

2.4.4 Decision Tree and Learning-Based Approach of Attack Detection 16

3 Related work 20

v

3.1 Defense of Injection Attacks . 20

3.2 Diversity in Security . 23

3.2.1 Effectiveness of Improving Security through Diversity 23

3.2.2 Challenges of Building Diversity Systems 24

3.2.3 Diversity System Applications . 25

3.3 Existing Techniques of Query and Database Comparison 31

3.3.1 Query String Comparison . 31

3.3.2 Database Schema Comparison . 32

4 The Case Study 34

4.1 A Motivating Example . 34

4.2 Exhaustive Search in CVE Database . 37

4.2.1 Preparation of Exhaustive Search . 38

4.2.2 Searching Applications with Variants . 38

4.2.3 Matching Common Vulnerabilities . 41

4.2.4 Summary . 44

5 The Methodology 46

5.1 Overview . 46

5.2 The Controller . 47

5.3 The Monitor . 48

5.3.1 Stage 1: SQL Query . 51

5.3.2 Stage 2: Changes to Database . 56

vi

5.3.3 Stage 3: Database Result . 59

5.3.4 Stage 4: Application Result . 62

5.4 Result Correlation . 64

5.5 Summary . 68

6 Implementation and Experiments 69

6.1 Model Implementation . 69

6.1.1 Multi-Stage Comparison . 69

6.1.2 Anomaly Profile . 78

6.2 Experiments . 80

6.2.1 The Web Application and Vulnerabilities 80

6.2.2 Training Data . 82

6.2.3 Decision Tree Learning and Result Evaluation 87

6.3 Summary . 96

7 Conclusion 97

A CVE Entries for Applications with Common Vulnerability 99

Bibliography 103

vii

List of Figures

1 Diversity System Paradigms [1] [2] . 9

2 Parse Trees of Normal and Malicious Query [3] 12

3 Tree Representation of XML Schema [4] . 13

4 Decision Tree Example [5] . 17

5 Overview of Anomaly-based Detection System [6] 18

6 The Model . 48

7 The Working Process of the Controller . 48

8 Standard AST of Example 4 . 55

9 The Generated ASTs from Both Variants of Example 4 55

10 Final Decision Making . 66

11 Mysql Log . 70

12 SQL Server Log . 70

13 An Error Web Page Example . 77

14 Midicart Interface . 81

15 The Learned Decision Tree . 89

viii

16 FPR and TNR for Detecting Attack on Common Vulnerabilities 91

17 Detection Accuracy Comparison between Anomaly Approach and Decision Tree . 93

18 FPR Comparison of Detection with Single Feature and Decision Tree 94

19 FNR Comparison of Detection with Single Feature and Decision Tree 94

20 Detection Accuracy Comparison with Single Feature and Decision Tree 94

ix

List of Tables

1 Different Types of SQLIA . 7

2 Comparison of SQLIA Defence Techniques according to Attack Types [7] 22

3 Grouping of Applications . 40

4 Web Application with Variants and SQL Injection Vulnerability 42

5 Common Vulnerabilities of Midicart . 44

6 Attack Detection Features of each Stage . 64

7 Anomaly Profile Example . 78

8 Midicart Vulnerability Entries in CVE . 81

9 Training Data Summary . 86

10 Detection Performance of Decision Tree . 90

11 Detection Performance of Attack 1 ,2 and 3 . 91

12 Features and Thresholds for Single-Stage Detection 95

x

Chapter 1

Introduction

Web-based applications are becoming increasingly popular in an age of cloud computing and mo-

bile devices. In contrast to their desktop counterparts, Web applications demand less client-side

resources and are easier to deliver and maintain by employing the Web browser as a thin client.

On the other hand, web applications are especially attractive to security attacks due to their larger

attack surfaces and the lack of security proficiency or awareness of their developers. Protect-

ing a mission critical web application, such as those used by governments, financial institutions,

and health care sectors, means more than just patching known vulnerabilities and deploying fire-

walls or IDSs. The recent widespread panic about the Heart Bleed vulnerability [8] has clearly

demonstrated the importance of improving applications’ robustness against novel zero day attacks

exploiting undiscovered vulnerabilities. On the other hand, this is clearly a challenging task since

signature-based detection mostly works with known attacks, whereas anomaly detection is well

known to suffer from a high false alarm rate.

In a slightly different context, software diversity has been regarded as a promising mechanism

1

for improving the robustness of a software system against unknown attacks [9] (a more detailed

review of related work will be given in Chapter 3). By comparing outputs [1] or behaviors [10] of

multiple software replicas with diverse implementation details, security attacks may be detected

and tolerated as Byzantine faults [11]. Although the earlier diversity-by-design approaches are

usually regarded as impractical due to the implied development and deployment cost, recent work

show more promising directions of either employing opportunistic diversity already existing in

operating systems [12], or automatically generating diversity through randomization of address

space [13, 14], instruction set [15], or data space [16]. A dilemma faced by such existing work is

that, diversity is either too costly (as in the case of diversity-by-design), or not reliable enough to

be used as a stand-alone means for attack detection (as in the case of opportunistic diversity).

In this thesis, we take a novel approach of employing opportunistic diversity already existing

in Web applications and their database backends to assist, instead of replacing, traditional anomaly

detection methods in reducing false alarms and improving detection accuracy. Specifically,

• First, we conduct a case study on real world vulnerabilities to confirm the effectiveness

of the proposed approach. Specifically, we perform an exhaustive search among almost

6,000 Common Vulnerabilities and Exposures (CVE) Web injection vulnerabilities [17] to

find all Web applications that have multiple variants written in different languages, and the

common vulnerabilities between those variants. Our results indicate a very low occurrence

of common vulnerabilities between variants, which shows opportunistic diversity can indeed

assist in detecting attacks.

• Second, we propose a multi-stage approach to employ opportunistic diversity for assisting

2

anomaly detection of injection attacks. Specifically, we design an architecture for monitor-

ing the behavior of multiple variants of an application at four stages, in terms of queries

sent by the application to its database backend, the effect of such queries on the database,

query results, and user-end results. We propose methods for extracting features at each of

those stages, and for comparing such features, or partial anomaly detection results obtained

from such features, between different variants. We also devise a learning-based method for

combining the partial results obtained at different stages into a final decision.

• Finally, we implement the proposed approach based on a real world Web application and

conduct experiments to evaluate the effectiveness of our approach. The experiment results

indicate that, by employing diversity between different variants, our approach leads to less

false positives than traditional anomaly detection; at the same time, by combining partial

results obtained from multiple stages, our approach yields higher detection accuracy than

existing work based on a single stage.

The main contribution of this thesis is twofold. First, to the best of our knowledge, this is the

first effort that combines the advantages of both opportunistic diversity and anomaly detection;

this approach can avoid both the prohibitive cost implied by diversity-by-design and the high false

alarm rate inherent to traditional anomaly detection. Second, our approach of combining partial

results obtained at different stages of the interaction between users, applications, and databases

yields a higher detection accuracy than existing work, and thus leads to a promising direction

towards practical security solutions; although we have focused on injection attacks in this thesis,

the methodology can be easily extended to prevent other attacks.

3

The rest of the thesis is organized as follows, we introduce background knowledge of SQL

injection attack and diversity in security in Chapter 2, review related work in Chapter 3. We then

build intuitions through a motivating example in Chapter 4.1, perform an exhaustive search in CVE

vulnerability database in Chapter 4.2, propose the attack detection model in Chapter 5, present the

case study in Chapter 6 and conclude the thesis in Chapter 7.

4

Chapter 2

Background

In this section, we briefly introduce some background knowledge that will be used for further dis-

cussion of this paper, including several types of attack on web applications, the use of diversity in

security, the common vulnerabilities and exposures (CVE) database and some existing techniques

about attack detection.

2.1 Attacks on Web Applications

Most of the attacks on web applications belong to Cross Site Scripting(XSS) and SQL injection

attack(SQLIA) [18]. In this section we will review the knowledge regarding these two attacks, but

we focus on SQLIA since we use it later to evaluate our approach.

SQL injection attack(SQLIA) “SQL” stands for Structured Query Language, a language used

to access and communicate with databases. SQLIA [19] is a type of security exploit in which

5

the attacker can add SQL statements through a web application’s input field or hidden parameter.

As a result, the attacker can pass arbitrary SQL queries into databases. By constructing different

Injection string, the attacker can retrieve, modify or even delete data in database. It becomes one

of the most serious security issues on the internet.

Example 1. A typical SQLIA example used for testing if injection vulnerability exist:

Attacker inject the code to the application.

’ and ‘1’=‘2

Application passes this input value to the query statement:

SELECT * FROM users WHERE name = ‘username’;

If the input is not sanitized, the query becomes:

SELECT * FROM users WHERE name = ‘’ AND ‘1’=‘2’;

Instead of returning the result of the SELECT query, it always returns a false value, thus at-

tacker can use the error page to judge if the application can be exploited.

�

By injecting different strings, the attacker can achieve various goals. According to this dif-

ference, SQLIAs are classified into different categories, we listed them in Table 1, along with the

purpose of different types of SQLIA and corresponding attack examples.

Cross Site Scripting(XSS) XSS [20, 21] is another common type of code injection attack on

web applications. Unlike SQLIA in which the code is injected into databases, XSS allows at-

tacker to inject client-side script to the web pages, which could be viewed by normal users. By

6

Type of At-
tack

Attack Example Attack Purpose

Tautology SELECT accounts FROM users WHERE
login=‘ ‘ or 1=1 - - ’AND pass=‘’

Injection string makes query always
true, often used for bypassing pass-
word.

Logically
incorrect
query

SELECT accounts FROM users WHERE
login=‘’ AND pass=‘’ AND pin= convert

(int, (select top 1 name from sysobjects

where xtype=‘u’))

Injection string makes query always
false, often used for gathering infor-
mation about target system by the
returned error information.

Piggy-
backed
query

SELECT accounts FROM users WHERE
login=‘doe’ AND pass=‘’ ; drop table

users - - ’

Injection string contains a separate
query sentence, often used for ex-
ecuting a distinct database com-
mand.

Union
query

SELECT accounts FROM users WHERE
login= ‘’UNION SELECT cardNo from

CreditCards where acctNo=10032 - -

AND pass=‘’

Injection string contains a mali-
cious query after the normal query
concatenated by “UNION", often
used for gathering table informa-
tion.

Stored Pro-
cedure

SELECT accounts FROM users WHERE
login=‘doe’ AND pass=‘‘; exec mas-

ter..xp_servicecontrol ‘start’,‘FTP Pub-

lishing’ - - ’

Injection string contains stored pro-
cedures to execute certain com-
mands, attack usage depends on the
stored procedure type.

Inference SELECT accounts FROM users WHERE
login=‘legalUser’and 1=0 - - ’ AND
pass=‘’

Attackers retrieve information by a
series of false/true query results. In
blind injection, results are repre-
sented by the returned pages. In
timing attacks, results are repre-
sented by server response time.

Alternate
encoding

SELECT accounts FROM users WHERE
login=‘ %2527 or 1=1 - - ’AND pass=‘’

Attackers encode part of the Injec-
tion string to avoid filters of server.
In this case, symbol “’" is substi-
tuted by encoding “%2527".

Table 1: Different Types of SQLIA

7

injecting malicious script, attacker can get access to sensitive data, e.g. session cookies, that the

browser maintains on user’s behalf. Attacker can use these data to hijack the victim’s session and

impersonate the victim.

Common types of XSS attacks are reflected XSS and stored XSS. In the reflected attack, ma-

licious payload are crafted into URL. When the victim visits the link, crafted script would exploit

the XSS vulnerability in web server and reflect the code to victim’s browser. In stored XSS at-

tacks, a malicious script is submitted by attackers and stored on the web server. The script would

be executed when the victim accesses the corresponding web pages.

2.2 Diversity in Security

Using diversity to improve security is not a new idea, it has been proposed in many previous ap-

proaches from different aspects. The common principle is to diversify the vulnerabilities of the

same application. Identical copies of an application give attackers the opportunity to compromise

all released copies by identifying one single vulnerability. This software monoculture leads to an

unfair battle between attackers and developers: it is not practical for developers to eliminate all

vulnerabilities in their applications, but it is easy for attacker to find one [22, 23]. To decrease

attacker’s advantage, a number of functionally equivalent but internally different variants of appli-

cation can be produced, thus exploiting a single vulnerability which would succeed on one variant

is not likely to compromise all others. Introducing diversity also means attackers will find it more

difficult to generate attack vectors by reverse engineering, since the variants they get are mostly

different from the variants existing in their target.

8

Figure 1: Diversity System Paradigms [1] [2]

Based on the source of variants, diversification can be categorized as specially designed vari-

ants and existing product used as variants. Specially designed diversification [13, 16, 24] often

includes various code randomization, modification technique and diversified compiling. These

methods can be achieved automatically, which makes it efficient to produce massive amount of

diversified products, yet they are still susceptible to mimicry attacks. In the other case [25, 26] ,

functionally similar but internally different existing products are used to compose a diversity sys-

tem. Compare to the specially designed variants, existing products are more cost efficient and can

be used to defend against more types of attacks, since they generally have more unpredictable di-

versification space. Drawback is there is more synchronization problem, the number of available

existing products is also limited. Our approach belongs to the latter category.

Diversity systems have two common paradigms as shown in Figure 1. The first runs multiple

variants simultaneously, compares the result in each synchronization point defined by the system,

attackers are forced to find a matching vulnerability that can compromise all running variants to

achieve a successful attack, otherwise it would be detected. Typical example is Orchestra [27],

which detects intrusion through parallel execution and monitoring.

9

In the second paradigm, different variants are distributed to individual users to achieve attack

prevention. By using a single vulnerability, attacker can only compromise a portion of variants

which has it as common vulnerability. Thus attacker is forced to find different vulnerabilities in

order to perform a massive attack. Michael Franz proposed E unibus pluram [28], in which this

kind of diversity framework is described.

2.3 Common Vulnerabilities and Exposures (CVE) Database

Common Vulnerabilities and Exposures (CVE) Database [17] collects information of publicly

known security vulnerabilities and exposures and provides a reference method. It is maintained

by MITRE Corporation and used by the Security Content Automation Protocol (SCAP) [29]. CVE

IDs are listed in the National Vulnerability Database(NVD) [30]. It is one of the most widely used

vulnerability databases.

In the CVE database, vulnerability information is listed in separate vulnerability entries and

each vulnerability entry is assigned with a CVE identifier. According to MITRE, CVE identi-

fier is a unique, common identifiers for publicly known information security vulnerability [31].

Apart from CVE ID, each vulnerability entry also contains a standardized text description of the

vulnerability, references of the vulnerability and the date when this entry is added.

We show an example of CVE vulnerability entry below.

CVE-2013-4685 Buffer overflow in flowd in Juniper Junos 10.4 before 10.4S14, 11.4
before 11.4R7, 12.1 before 12.1R6, and 12.1X44 before 12.1X44-D15
on SRX devices, when Captive Portal is enabled with the UAC enforcer
role, allows remote attackers to execute arbitrary code via crafted HTTP
requests, aka PR 849100.

10

We use CVE database to thoroughly search existing SQL injection vulnerabilities, and further

search for common vulnerabilities in different versions of the same application. If the number

of common vulnerabilities is low, we can show that employing diversity can effectively enhance

security of web applications. The details of this exhaustive search are given in Chapter 4.2.

2.4 Existing Technique of Attack Detection

In this section, we review some of the existing work that will be used for attack detection in our

approach, including query string comparison techniques, database schema comparison techniques,

behavioral distance metric and decision tree.

2.4.1 Query String Comparison and Evaluation

Query comparison is often used for defending SQLIAs. By comparing the runtime query and

related safe query, potential SQLIA can be detected. The comparison is not simple string compar-

ison. SQL queries are often transformed into parse trees or other expressions that can explicitly

reveal the semantic actions of the query. Then the evaluation would be based on whether the

semantic actions of two queries are equivalent.

We now review some work in this field that transform the queries into parse trees [3, 32],

examples are given below.

Example 2. The normal query is:

SELECT * FROM ‘User_Table’ WHERE user_name = ‘admin’ AND password =

‘hacker_pwd’

11

Figure 2: Parse Trees of Normal and Malicious Query [3]

The malicious query with SQL injection code is:

SELECT * FROM ‘User_Table’ WHERE user_name = ‘admin’ OR ‘1’ = ‘1’

AND password = ‘hacker_pwd’

The parse trees generate from both queries are shown in Figure 2. The semantic actions of two

parse trees are apparently different. In [3], the semantic equivalence evaluation is based on two

criteria, two queries need to match both to be equivalent:

• Two queries have the same number of stacked queries.

• The semantic actions in each cannonicalized query are equivalent.

�

Existing approach of using query string comparison generally need to setup a safe standard,

whether it is standard query string or standard grammar, so that the runtime string can be compared

with it. We employ query string comparison in our work to score the difference between variants in

12

Figure 3: Tree Representation of XML Schema [4]

the first stage. Unlike existing approaches in which a runtime query is only compared to initialized

safe profile then an anomaly score is generated. In our case, the anomaly score would be further

compared between variants in order to get a more accurate detection result. The details would be

given in Section 5.3.1.

2.4.2 Database Schema Comparison

Schema and ontology matching of database is an important problem in schema integration, seman-

tic web, e-commerce, etc. It takes two schemas or ontologies as input, as shown in Figure 3 and

output the equivalence relationship of the entities between two inputs.

The equivalence relationship is generally determined based on linguistic and structural analy-

sis, represented by confidence measure.

Specifically, linguistic analysis often includes string-based techniques such as prefix, suffix

checking, edit distance comparison [33,34], language based techniques such as tokenization, elim-

ination, expansion and lemmatization [35].

Taking the “POShipTo" element of Figure 3 as an example, the tokenization process would

13

parse the element into tokens “PO",“Ship",“To", according to the punctuation and letter case. Ex-

pansion would expand the element into tokens “Purchase",“Order",“Ship",“To". With these ma-

nipulations, it becomes feasible to compare the linguistic similarity between elements.

Structural analysis often includes graph matching [36], taxonomy-based techniques such as

bounded path matching [37]. Taking Figure 3 as an example again, element “POShipTo" has

high structural similarity with element “DeliverTo", because their two children in the tree are

linguistically similar.

The final similarity score is often a combination of linguistic similarity and structural similarity.

An example is the schema matching tool Cupid [4], which calculates the final similarity score as

the weighted sum of linguistic and structural similarity score.

In our work, we also monitor the changes made in databases, including change of schema and

row(s) of data. However, we use a more simplified feature than the similarity score to evaluate the

changes. The details would be given in Section 5.3.2.

2.4.3 Behavioral Distance

Behavioral distance is a metric designed for evaluating behavioral difference between replicas,

proposed by D. Gao et al. in [10, 38]. Specifically, the problem behavioral distance tries to solve

is to detect semantic similarity or difference when replicas in a diversity system process the same

input.

In Gao’s work, they measure differences of system call sequences to calculate the behavioral

distance between two replicas. System call sequences are extended to the same length by inserting

14

idle system calls, so that similar system calls can be aligned to each other. Typically seen system

call sequences would be called system call phrases.

We show an example of identical system call phrases below.

Example 3. s1 and s2 are two system call phrases observed in two replicas.

s1 = (open1; read1;write1; close1)

s2 = (open2; read2; idle2;write2; close2)

In order to make system call write1 align to write2, an idle system call σ would be insert to

s1. The modified system call phrases become:

s′1 = (open1; read1; σ;write1; close1)

s′2 = (open2; read2; idle2;write2; close2)

�

A distance table of system call phrases is initialized according to the distance of each aligned

system call pair between phrases. Afterwards, with the intuition that similar system call phrases

should appear in similar frequency in the training system call sequence data, the distance table

is adjusted by frequency information. This adjustment is done in iterations. In each iteration,

the system call sequence distance is calculated by the updated distance values from the previous

iteration and their occurrence information in this iteration, the result would be used to update the

distance table. The iteration stops when the distance table converges, which means it will only

have very little change after an iteration. The values in the final distance table would be used to

measure the distance of runtime system call sequences.

Behavioral distance is a good example showing how to combine multiple differences between

15

variants to produce the final judgment. In our work, we need to solve similar problems: to combine

difference between application variants in multiple stages and produce final detection result. The

details of our approach are given in Section 5.4.

2.4.4 Decision Tree and Learning-Based Approach of Attack Detection

Decision Tree

Decision tree [39–41] is a decision analysis tool commonly used for finding the best strategy for a

certain goal. Its structure is similar to flow chart, in which the internal nodes represent attributes

that classify the result and leaf nodes represent the decisions (class label).

Figure 4 shows an example of decision tree. It uses two attributes: age and salary, to partition

the input data set into two classes: high risk and low risk. The tree structure shows split point “age"

is higher than “salary", which means input would be classified according to age first.

The priority of split point is determined during the induction of decision tree, attribute that

have the closest relevance to data set partitioning has the priority. Formally, we use information

gain [42], which is based on information entropy, to determine the relevance. An attribute with

higher information gain will be the upper split point of decision tree since this attribute can “better"

partition the data.

Definition 1. Information Entropy [42]

Let H(X) be the entropy of discrete random variable X with n possible value {x1, x2, ..., xn},

P (xi) is the possibility of xi and I(xi) is the information content of xi.

16

Figure 4: Decision Tree Example [5]

H(X) = −

x∑

i=1

P (xi)I(xi) = −
x∑

i=1

ni

N
log

ni

N

Definition 2. Information Gain [42]

Let IG(T, a) be the information gain of attribute a, T is a training set in the form (x, y) =

(x1, x2, ..., xk, y), where xa ∈ vals(a) is value of ath attribute of example X and y is the corre-

sponding class label.

IG(T, a) = H(T)−
∑

v∈vals(a)

|{x ∈ T |xa = v}|

|T |
H({x ∈ T |xa = v})

Learning-Based Approach of SQLIA Detection

F. Valeur et al. presented a learning-based approach to SQL attack detection in [6]. In this ap-

proach, an anomaly-based system learns the profiles of normal database activities characterized

by a number of models. This allows the system to detect unknown attacks that have different

behaviors compare to normal activities.

The overview of the detection system in this approach is presented in Fig. 5. Event provider

17

Figure 5: Overview of Anomaly-based Detection System [6]

is in charge of providing the detection system of every SQL query generated by the application.

Parser will then process the queries into a high-level view. Feature selector alters the form of the

queries so that they can be processed by the models. The actual work of feature selector depends

on the status of the system. Namely, there are three status available: training, threshold learning

and detection.

In the training phase, feature selector would match the processed queries with existing profiles,

a collection of statistical models and mapping between features and their corresponding models.

If no matching is found, a new profile would be created.

In threshold learning phase, the models would no longer be updated. Instead, an anomaly score

is generated to measure how the feature vector matches its model. The highest aggregate anomaly

score for each profile would be recorded.

In actual detection phase, anomaly score would be generated in the same way as in threshold

learning phase, but it would be compared to the recorded anomaly score. If the runtime score

exceeds records, alarm would be raised.

This approach provides two practical anomaly detection models: the string model and data

18

type-independent model. The string model uses string length and character distribution to detect

anomaly. Data type-independent model detects anomaly by checking previously unseen value in

runtime queries.

In our work, we also use decision tree as the tool to produce final detection result. Similarity

score between variants of each stage are used as attributes of the decision tree. We collect these

scores with different actions on the application and use them as training data. A decision tree

would be learned from training data and used for attack detection. The details would be given in

Section 5.4.

19

Chapter 3

Related work

In this section, we review existing approaches to SQL injection attack detection, query string

comparison, database schema matching and the use of diversity for security.

3.1 Defense of Injection Attacks

Despite many years of research, various forms of injection attacks still remain a major threat to

Web applications today (e.g., injection attack is ranked number one in the 2013 top ten critical

Web application security risks by the Open Web Application Security Project (OWASP) [43]).

Defensive coding is one of the common approaches, with mechanisms like [44] proposed to check

user inputs by types, patterns, and detect the malicious input according to signatures. Although it is

the most fundamental way to detect SQLIAs, this practice often generates a significant amount of

false positives and it also cannot completely cover all the input fields. Xiang Fu et al. also proposed

SAFELI [45], a mechanism that uses static analysis to detect SQLIAs of web applications during

20

compilation. Similarly, JDBC Checker [46] is a practical tool implementing static analysis. As a

static code checker, it verifies the correctness of dynamically-generated SQL queries. However,

for SQLIA queries that contains correct type and syntax, this tool can only generate false negatives

and is almost useless. The inaccuracy of detection leads to the inefficiency of static analysis.

Further approaches involve the combination of static and dynamic analysis. Typical examples

are AMNESIA,CANDID, SQLGuard and SQLCheck. AMNESIA [47] is a hybrid solution that

combines static and dynamic analysis. It uses static analysis to build a model for web applications

and intercept the run-time queries to verify if they match the model. CANDID [48] is another

dynamic analysis approach; it dynamically runs web applications with candidate inputs. SQLIAs

can be detected by comparing them to the structure of candidate queries. SQLGuard [49] and

SQLCheck [50] check SQLIAs based on parse tree models generated by static code analysis. The

runtime queries’ structures are compared to the model and only the matched ones would be sent

to database. Both approaches require code modification of web applications. Although dynamic

analysis is introduced in these approaches, their accuracy is still largely based on static analysis.

Another promising SQLIA defense approach is SQLrand [51], it uses a randomized instruction

set of queries to prevent SQLIAs. The SQL keywords under SQLrand are different from normal so

that the injection code with normal SQL keyword cannot have command effect to database. The

modification of instruction set is based on a secret key, a proxy filter is introduced to de-randomize

the code. This technique is generally very effective. However, if the secret key is compromised,

attackers would be able to know the randomized instruction. Also, the interpretation of proxy filter

can significantly increase computation cost.

21

Technique Tautology Illegal/
Incor-
rect

Piggy-
back

Union Stored
Proce-
dure

Inference Alter En-
codings

Detective tech-
niques
AMNESIA [47] • • • • × • •
CSSE [52] • • • • × • ×
SQLCheck [32] • • • • × • •
SQLGuard [49] • • • • × • •
SQLrand [51] • × • • × • ×
Preventive
Technique
JDBC-
Checker [46]

− − − − − − −

Java Static
Tainting [53]

• • • • • • •

Safe Query Ob-
jects [54]

• • • • × • •

Security Gate-
way [55]

− − − − − − −

SecuriFly [56] − − − − − − −
SQL DOM [57] • • • • × • •
WAVES [58] ◦ ◦ ◦ ◦ ◦ − ◦
WebSSARI [59] • • • • • • •

Table 2: Comparison of SQLIA Defence Techniques according to Attack Types [7]

22

As Table 2 shows, previous SQLIA detective/preventive techniques can effectively counter

against some types of SQLIAs, but none of these techniques can detect all kinds of SQLIAs. By

employing diversity, our approach should be able to detect all types of SQLIAs in Table 2 except

logically incorrect queries. This makes our approach competitive against other SQLIA detection

methods.

3.2 Diversity in Security

Researchers have proposed many work on improving security through diversity from different

aspects. We review the literature in this field through in categories: effectiveness of improving

security through diversity, challenge of building diversity system and diversity system applications.

3.2.1 Effectiveness of Improving Security through Diversity

Although the idea of improving security through diversity is straightforward, quantified evaluation

is still in need to prove its effectiveness. M.Garcia et al. [12] evaluated OS diversity system’s ef-

fectiveness for intrusion tolerance. They obtained vulnerability data of various OSes from NIST

National Vulnerability Database (NVD), classified them and searched for common vulnerabilities

across different OSes. The use of NVD data brings in some limitations, such as the lack of ex-

ploitability information and vulnerability existence confirmation. But the result is still promising,

as only for a very small number of non-applications, remotely exploitable common vulnerabili-

ties are found, which proves diversity system can significantly improve security of OS. They also

evaluated various OS pairs and announced the pairs with best performance on intrusion tolerance.

23

3.2.2 Challenges of Building Diversity Systems

Randomization A common approach to diversity is using randomization in the low level code of

web servers/web applications. In [24] the authors proposed an instruction set randomization (ISR)

to achieve diversity and improve security. It combines a set of Components-Off-The-Shelf (COTS)

web servers to create a redundant system. The use of COTS instead of specifically developed vari-

ants reduced the cost of implementation, making it possible to deploy enough number of COTS

servers to fulfill intrusion tolerance requirement. An IDS as controller monitors different COTS

severs, compares the difference between them, such as response, instruction sequence. Diversified

web applications are ran on these COTS servers; they are diversified by instruction set random-

ization. Lexical analyzer is modified to recognize new instructions, and randomization is applied

to code strings. Note that this is a fully automated randomization, which means such techniques

cannot detect attacks of logic errors, such as directory traversal or SQL injections.

Another randomization approach is address space randomization (ASR). It obfuscates the lo-

cation of data and code instead of randomizing the program code itself. PAX [14] is a project

of Linux which contains such technique to randomize memory regions of program code, called

Address Space Layout Randomization (ASLR). Also, in [13], an ASR technique is proposed to mit-

igate various code injection attacks on executable files, such as stack smashing and format string

attacks. Specific ASR techniques involved in this work include memory regions base address

randomization, variables/routines order permutation and random gaps between objects. But the

randomization in this work still limits to heap and stack instead of all regions of the program file.

Apart from ISR and ASR, a new randomization technique: Data Space Randomization (DSR)

24

is proposed in [16]. It randomizes the representation of different data objects. Namely, each data

object in memory is encrypted with a random mask, and they are unmasked before used. By using

different masks on different objects, attackers can no longer determine if the intended value is

overwritten into the code. Compare to ISR, DSR can defend against various code injection attacks.

Compare to ASR, DSR provides randomization on a more thorough region including non-pointer

data and pointer-valued data, and also provides a higher range of randomization. The drawback of

DSR is a higher overhead than ISR and ASR.

Synchronization With a number of randomization techniques, system running multiple variants

in parallel can be built. However, the problem of synchronization emerges in this kind of sys-

tems: when a signal is sent, the controller/monitor need to synchronize the delivery to all variants,

otherwise divergence occurs between variants and false alarm would be raised. In [60], a synchro-

nization technique is proposed to solve this problem. It chooses the granularity of system calls

to synchronize and it is implemented through register and control flow manipulations. Majority

voting is involved in the delivery time of system calls. With the control of monitor, each equivalent

system call is executed in parallel, thus the false positive created by unsynchronized system calls

is minimized. The synchronization of this work results extra delay of execution and it might be

exploited by denial of service attack.

3.2.3 Diversity System Applications

Intrusion Tolerance Using design diversity for fault tolerance has been investigated for a long

time. Intrusion tolerant system is defined by maintaining security properties while some of its

25

components are compromised [61], which prevents attackers from exploiting disclosed vulnerabil-

ities. Most approaches in this field implement Byzantine Fault Tolerant(BFT) replication as fault

tolerance solution. But in order to build a practical system, many additional problems are involved.

In [62], most of these problems are listed, including: BFT replication performance, recovery, ef-

fectiveness of diversity, confidentiality etc. In [11], some of the challenges are further discussed

in single machine environment, such as achieving both effectiveness and efficiency while com-

bining OS and binary randomization techniques. The single machine environment brings in both

new problems and opportunities, virtualization techniques need to be involved to achieve isolation

between replicas. However, synchronization and transparency become less problematic than they

are in multi machine environment.

In [63], an intrusion-avoidance architecture is built based on cross-platform JAVA technologies

and Iaas(Infrastructure-as-a-service) cloud service providers. Diversity of this system is achieved

in four levels: operating system, web server, application server and database management system.

A configuration controller retrieves emerging vulnerabilities information from public vulnerabil-

ity databases and also gathers security patches information. It will then estimate security risk

and activate the system combined by diversity components with the least security risk. Platform-

independent Java technologies plays an important role in this approach, as JAVA applications can

be easily deployed and dynamically reconfigured in different environments.

One of the most crucial factors in the effectiveness of an intrusion tolerance system is that

the vulnerability occurs independently. To reduce common vulnerabilities between replicas, secu-

rity patches and recovery need to be preformed. DIVErse Rejuvenation SYStem(DIVERSYS) [64]

26

provides automatic management of diverse configurations and recoveries between replicas in fault

tolerance systems. Diversity components under DIVERSYS is proactively or reactively patched

in each period of time to provide recycling. A risk level metric based on common vulnerabilities

and time period is proposed to measure the risk level of the system. If the risk level exceeds a

threshold, DIVERSYS would start recovery process and then put the system in new life cycle.

With this automated patching, independent occurrences of vulnerabilities can be guaranteed to a

certain level and security is greatly improved.

However, while diversity intensifies, the problem of incompatibility between replicas also

emerges. DiveInto [65] is a JAVA tool that improves compliance of diverse server replicas, which

is focused on correcting syntax and semantic violations of the replicas instead of malicious viola-

tions. It specifies protocol of replicas to an incompletely defined finite state machine, then trace the

network traffic and use reverse engineering to determine if the replicas’ protocol matches the ref-

erence protocol, if not, a possible violation is detected. DiveInto is bound on reverse engineering

technique, thus it can only correct violations of some common protocols.

Diversity System Diversity systems are security frameworks that utilize diversity to defend var-

ious attacks. As mentioned in Section 2.2, existing approaches of diversity system generally fall

into two paradigms:

• Run multiple variants simultaneously; compare the result at each synchronization point.

• Distribute different variants to individual users to achieve attack prevention

27

N-Version Programming and N-Variant Systems [1,66,67] are the typical examples of first cat-

egory. The N-version programming approach generates N ≥ 2 functionally equivalent programs

and compares their results to determine a faulty version, with metrics for measuring the diversity

of software and fault [68, 69]. The main limitation of using diversity for fault tolerance lies in the

high complexity of creating different versions, which may not justify the benefit [70]. The use of

design diversity as a security mechanism has also attracted much attention [71].

Inspired by N-Version Programming, N-Variant systems is a security framework constructed by

a polygrapher, monitoring multiple application variants. It implements two diversification meth-

ods: address space partitioning and instruction set tagging. It also gives a formal definition of

properties: normal equivalence and detection, and their instances under two diversification meth-

ods.

Babak Salamat et al. proposed Orchestra [27] with similar idea, it is designed as a fully func-

tioning Multi-Variant Execution Environment (MVEE). The framework of Orchestra is similar to

N-Variant systems, with a diversification engine, a monitor and multiple variants. It introduced

a notion: synchronization point, which is instantiated by invocation of a system call in this work,

to evaluate if the variants are in conforming states. Formal definition of the conditions each syn-

chronization point should hold are also given. This paper evaluated the effectiveness of Orchestra

with stack-based buffer overflow exploits. The variants are diversified by reverse stack execu-

tion. Result shows Orchestra can effectively defend this kind of vulnerabilities with acceptable

performance overhead. In another work by Babak Salamat et al. [72], the problem of false posi-

tives/negatives is also discussed. Race condition may occur when third party trying to manipulate

28

a file under synchronization, cause divergence between variants and false positives. While the di-

versifications are based on stack-based techniques, other attacks like heap-based buffer overflows

cannot be detected and cause false negatives. The inaccuracy in detection is one of the major

problems in MVEE approaches.

Anh Nguyen-Tuong et al. [73] also proposed a diversity system approach using the N-Variant

system framework. They formally re-defined some of the key attributes of the previous work,

including normal equivalence and detection. Concrete examples of reexpression function are also

given regarding common diversification techniques. The effectiveness of the model is evaluated

with UID corruption attack, in which an attacker corrupts a data value that causes the original

program to execute maliciously [74], evaluation result is promising. It also shows for specific

types of attacks, high assurance security can be obtained by low entropy data diversity such as

UID data variation.

For the second paradigm, E unibus pluram [28] is a typical example. It utilizes a diversification

engine, a “multicompiler", to generate unique but functionally equivalent applications for the users,

so specific attacks only succeed on a portion of the targets. One of the major advantages is it can

effectively prevent attacker from generating attack vectors by reverse engineering. Compared to

similar work of this paradigm, this work emphasizes on practical massive-scale availability by

introducing online software delivery, reliable compilers and cloud computing. It also discussed the

application update problem and the need of trusted delivery system.

Another work falling in this paradigm is [75], which mitigates worm attacks on sensor net-

works by assigning different versions of applications to different nodes in the network. Instead

29

of randomly assigning the diversified applications, it treats the assignment as a graph coloring

problem, which ensures no two adjacent nodes in the graph share the same color. By solving

this problem, it can achieve better isolation between adjacent variants while using only a limited

number of diversified applications. Typically, four diversified applications are enough to fulfill the

demand.

Moving Target Defence [2] thoroughly describes the idea of using diversity systems to improve

software security. It first gives the definition of attack surface, and shows how diversity can add

uncertainty to the attack surface and make attacker’s attempt more difficult. Typical diversity

techniques on software are introduced, including randomization and reodering of instruction set,

heap layout, stack base, system call number, register, library entry point and program base address

etc. By introducing different binary compiling methods, variants of the same application can be

automatically generated. It also proposed the concept of synchronization point in order to measure

the equivalence of different variants and provide different granularity. The synchronization point

includes system calls, arguments of the calls and time. Diversification methods on web applications

are also introduced. Instead of binary code diversification, the diversification is on application,

web server, and operating system layer. Though there is not many variants on each layer, each

application randomly chooses a variant on each layer, as result, randomization of the whole system

is sufficient. E unibus pluram [28] is proposed in later chapter of the book, as the implementation

of the moving target defence concept.

To evaluate the effectiveness of these diversity systems, researchers have proposed different

formalized approaches. A probabilistic based approach is given in [9]. It discussed the roles of

30

redundancy and diversity for security and proposed a diversity system effectiveness measurement

based on effectiveness of IDS on individual variant and the covariance between variants. However,

this is a rough and imprecise approach since the parameters of the measurement equation are

practically unknowable. In fact, there is no accurate measurement on the effectiveness of security

in diversity systems to date. In our work, we try to prove the effectiveness by completing an

exhaustive search in CVE vulnerability database, which is shown in Chapter 4.2.

3.3 Existing Techniques of Query and Database Comparison

In this section, we will review some of the existing work on SQL query string and database schema

comparison, which is introduced in Section 2.4.1 and Section 2.4.2.

3.3.1 Query String Comparison

A SQLIA detection technique is proposed in [3]; a standard safe query statement for the web ap-

plication is first generated with known safe user input string, such as “AAA”. Detection is achieved

by parsing standard SQL statements, runtime statement and comparing their syntax tree structure.

Two SQL statements are considered semantic equivalent if their syntax tree structures are equiv-

alent. If runtime statement fails to be semantic equivalent to its related standard statement, it is

considered to be a possible SQLIA.

Context-sensitive string evaluation(CSSE) [52] has more fine grained analysis. By instrumen-

tation of the platform, query strings are separated into user-provided data and developer-provided

31

data before being sent to database server. Only user-provided data would be examined as it is con-

sidered to be untrusted. By using the context of untrusted output string fragment and intercepted

API calls, syntactic content inside is either escaped or the execution is prevented.

The work in [76] has similar ideas; query string is divided as hard coded string, string implicitly

created by programming language and string originated from external source. Similar to CSSE,

only string originated from external source is considered to be untrusted. Syntax evaluation is

applied to this part and the query will only execute if the pattern matching has positive result.

The work in [32] tends to achieve prevention of more general injection attack through ana-

lyzing the parse tree of query strings. A standard grammar of specific application is pre-defined.

User input section of query string is specially marked with random symbol and processed with

augmented grammar, the query will only be executed if it complies the syntactic constraints.

3.3.2 Database Schema Comparison

Similarity Flooding [77] utilizes similarity propagation to build a hybrid matching algorithm. It

uses directed labeled graphs to represent database schemas. A string-based comparison of vertices

labels is performed to obtain initial alignment. With the idea of similarity spreading from similar

nodes to adjacent nodes through propagation, in the following iterations, similarity of nodes is

computed till they reach a fix-point. The refined alignment would be filtered and becomes the

matching result.

Cupid [4] also uses graphs to represent schema. Schema matching of Cupid takes three phase

to complete. The first phase is linguistic matching, it computes linguistic similarity coefficients

32

between element labels through morphological normalization, categorization and various string-

based techniques. The second phase is structural matching; structural similarity coefficient is com-

puted based on the context of schema elements and their structural relationship. The final phase

computes the weighted similarity coefficient and determines the final matching result according to

the threshold reached.

S-Match [35] is a similar hybrid schema matching approach. Particularly, S-Match codifies

schema element labels written in natural language into propositional formulas, which turns the

matching problem into propositional unsatisfiability problem. With the use of propositional satis-

fiability deciders, the problem can be resolved. S-Match is designed as a highly modular system

which can suitably integrate different element level and structural level schema matchers.

33

Chapter 4

The Case Study

In this chapter, we first give a motivating example to show how diversity can improve security of a

specific web application. We then try to prove diversity can prevent attackers from exploiting most

existing vulnerabilities through an exhaustive search on vulnerability database.

4.1 A Motivating Example

Midicart [78] is an online shopping cart application with ASP and PHP versions. We demonstrate

how diversity may help detecting injection attacks through an example based on one of the SQL

injection vulnerabilities on Midicart PHP version and show this vulnerability does not exist in the

ASP version.

The ASP Application Line 20 of “search_list.asp” of the Midicart ASP version reads:

search=request.Querystring("searchstring")+request.fo

34

rm("searchstring")

search = Replace(search, "’", "’’")

search = Replace(search, "/", "//")

...

set rs=conn.execute("SELECT * FROM products where ‘‘& chose & " LIKE ’%" &

search & "%’ ORDER BY maingroup, secondgroup, code_no")

As the code shows, the “searchstring” parameter in file “search_list.asp" is filtered by two

“Replace" functions, with “’" and “/" escaped, such that an attacker will not be able to launch an

injection attack by enclosing the apostrophe.

The PHP Application However, in the equivalent code section of the Midicart PHP version, the

“searchstring" parameter in “search_list.php" is not filtered at all, as shown below.

$searchstring=$_REQUEST["searchstring"];

$chose=$_REQUEST["chose"];

...

$result = mysql_query("select * from products WHERE

$chose LIKE ’%$searchstring%’ ORDER BY ’maingroup’,’secondgroup’, ’code_no’

LIMIT 0, 100 ") ;

Running Two Versions Together If we can run both the ASP and PHP version in parallel,

an attacker would be unable to use this specific SQL injection vulnerability to compromise both

variants, since the attack can only succeed in PHP version.

To launch an injection attack exploiting this vulnerability, an attacker will attempt to inject raw

SQL statement into the “search" box, e.g., through the following.

35

http://www.example.com/search_list.php?chose=item&searchstring=asus%’ UNION

SELECT null,CreditCard, ExpDate, null,null,null,null,null FROM card_payment

where PaymentMethod LIKE ’%visa

For the PHP version, this will generate the database query:

select * from products WHERE item LIKE ’%asus%’ UNIONSELECT null,CreditCard,

ExpDate, null,null, null,null,null FROM card_payment where PaymentMethod

LIKE ’%visa%’ ORDER BY ’maingroup’,’secondgroup’,’code_no’ LIMIT 0, 100

As the first apostrophe is enclosed by injected apostrophe, “union select” will be executed;

consequently, the attacker would be able to retrieve the unauthorized credit card information from

the “card_payment” table.

On the other hand, in the ASP version, the query is:

SELECT * FROM products where " item " LIKE ’%asus%’’ UNION SELECT null,

CreditCard, ExpDate, null,null, null,null,null FROM card_payment where

PaymentMethod LIKE ’’%visa%’ ORDER BY maingroup, secondgroup, code_no

As the user input apostrophe is replaced by double apostrophe, the injection code would be

treated as a normal string. That is, the database will not execute the union select SQL command

and the attacker will not be able to obtain any unauthorized information.

Lesson Learned This specific attack example shows that when the same user input induces dif-

ferent, or more precisely, “not equivalent” behavior on different variants of the diversity system, it

36

potentially signals an attack . Therefore, we can use different versions of the same web applica-

tion to construct a diversity system, using the different behaviors on the variants to detect possible

attacks.

However, this is an example showing one vulnerability of a specific application does not exist

on the other version of the same application, making detection possible. In other words, it only

shows the possibility of employing diversity to defend against injection attacks. But to prove the

general applicability of this idea, we need to show, for other applications with different versions,

most of their vulnerabilities do not exist on other versions. In order to show this, we perform an

exhaustive search on known vulnerabilities in Section 4.2.

4.2 Exhaustive Search in CVE Database

The above motivating example only demonstrates that diversity may help security in one specific

case. To expand this into a general idea, we perform an exhaustive search among all injection vul-

nerabilities appearing in well-known vulnerability databases. Although these databases certainly

cannot cover all existing vulnerabilities, it is “comprehensive with respect to all publicly known

vulnerabilities and exposures” [17]. The goal of this exhaustive search is to confirm the hypothesis

that different versions of the same Web application 1 rarely share common injection vulnerabilities,

and hence the opportunistic diversity will be useful for detecting injection attacks.

Specifically, we first search for web applications that have different versions, then search for

known vulnerabilities of these applications. If most of these vulnerabilities do not exist in other

1Here by different versions of the same Web application, we mean versions written in different script languages;
we do not consider different upgraded versions since they likely have less diversity.

37

versions of the same application, we can demonstrate that diversity can help defending attacks

related to these vulnerabilities.

4.2.1 Preparation of Exhaustive Search

First problem of the exhaustive search is determining the data source. The most common way to

find as much vulnerabilities as possible is through vulnerability databases. Several well-known

vulnerability databases such as National Vulnerability Database (NVD) [30], the Open Source

Vulnerability Database (OSVDB) [79] and Common Vulnerabilities and Exposures (CVE) are

candidates, we choose CVE as our data source. The background introduction of CVE database is

given in Section 2.3.

The second problem comes to the definition of different versions of the same application. It is

common for web applications to have different versions, but the differences between them is gen-

erally insignificant, and thus made them not appealing to be used in diversity approach. As result,

we need these different versions to be written in different script languages to provide sufficient

diversity. In the rest of the paper, we use the term variants to represent web applications written in

different script languages that can run in parallel and provide similar services.

4.2.2 Searching Applications with Variants

In the following exhaustive search, we

- First list applications involved with vulnerabilities we are interested in

- Then find applications with variants among the result.

38

Listing the Vulnerabilities Following the motivating example, we focus on SQL injection vul-

nerabilities here. We use keyword “SQL injection” to search in the master copy of CVE. Totally

5870 vulnerability entries are found; these entries contain all the SQL injection vulnerabilities exist

in CVE. Sample vulnerability entry is as follows:

CVE-2012-5912 Multiple SQL injection vulnerabilities in PicoPublisher 2.0 allow re-
mote attackers to execute arbitrary SQL commands via the id parameter
to (1) page.php or (2) single.php.

Generally, it contains the information of vulnerability type, application name, location of the

vulnerability (parameter name and file name). Therefore, we can map each entry to a Web appli-

cation and find common entries shared by different variants based on the entries.

Searching for Applications with Variants Considering the large amount of vulnerability entries

(5870), it would be very time-consuming to perform the search manually. Fortunately, following

observations allow us to conduct the search in a semi-automatic fashion.

• First, the majority of involved Web applications are written in four script languages, ASP,

PHP, JSP, and ASP.NET; applications written in other script languages rarely have a variant

appearing in the list.

• Second, since each CVE vulnerability entry contains the file name in which this vulnerability

occurs, the file extensions, such as “.asp”,“.php”,“.jsp”, and “.aspx” will indicate the script

language.

These allow us to group the involved Web applications into four categories, according to the

script languages they are written in.

39

The grouping result is summarized in Table 3. The number of PHP applications is estimated as

being over 1000, and the reason we do not include them will be clear shortly.

Application Language ASP JSP ASP.NET
The Number of Applications 488 42 30

Table 3: Grouping of Applications

As it shows, JSP and ASP.NET applications are the minority among nearly 6000 SQL injection

vulnerability entries (30 to 40 of each). ASP applications have a relatively larger number, 488. But

PHP applications are the majority, estimating over 1000.

As the results show, the four categories have very different population sizes. This observation

helps us to determine an optimal search order among them. That is, we should begin with a cate-

gory with less applications. In addition, we observe that applications written in JSP are less likely

to have variants written in other languages. On the other hand, since ASP.NET is an improved

version of ASP, many ASP.NET applications would have an older ASP version, in which case they

generally do not have a corresponding PHP version. Finally, the most common case would be ei-

ther ASP or ASP.NET applications with a PHP variant. With such considerations and observations,

we complete the search in three steps.

With this knowledge and the statistical data, we complete the search in following three steps:

- Step 1: List all ASP.NET applications, search for their ASP, PHP, JSP variants.

- Step 2: List all JSP applications, search for their ASP, PHP variants.

- Step 3: List all ASP applications, search for their PHP variants.

40

In this searching, we use the name of the applications as keyword and search for its vulnera-

bility entries in CVE, so the results are not limited to SQL injection vulnerabilities only. After the

results are listed, we then search for file extensions:“.asp”, “.php”, “.jsp”, “.aspx” in these entries.

If more than one file extensions exist, the application may have variants and will be considered as

candidate. We will verify it manually.

The Result As we finished this part of search, there are totally 16 applications in CVE database

that has at least one variant. They are listed in Table 4.

• In Step 1, we found five ASP.NET applications with variants, all variants are written in ASP.

• In Step 2, none is found.

• In Step 3, we found 12 PHP applications with variants, all variants are written in ASP as

well.

Note there is an overlap between these steps for application “DVBBS", which has three vari-

ants, in ASP, PHP, and ASP.NET.

4.2.3 Matching Common Vulnerabilities

For the 16 aforementioned applications, we need to determine whether two variants of the same

application have similar vulnerabilities, which is denoted as “common vulnerabilities”.

We give the definition of common vulnerabilities, which is based on equivalent parameters.

Definition 3. Equivalent parameters Given parameter m in application A and parameter n in

application B, we say m and n are equivalent parameters if the following condition is satisfied:

41

Application/SQL injection vulnerability entries ASP PHP ASP.NET JSP
Active Bids o o
BlogMe o o
Brooky eStore o o
Dvbbs o o o
fipsGallery o o
Innovative CMS (ICMS, formerly Imoel-CMS) o o
Jbook o o
MaxCMS/PIPICMS o o
MidiCart o o
myNewsletter o o
Pre Classified Listings o o
WmsCms o o
Absolute News Manager(.NET) o o
Active Price Comparison o o
WebEvents (Online Event Registration Template) o o
Xigla Absolute Banner Manager (.NET) o o

Table 4: Web Application with Variants and SQL Injection Vulnerability

• A and B are variants of the same application.

• m and n receive input value from equivalent input field.

The definitions of equivalent parameters is based on the assumption that user had designate the

same input to the parameters in different variants according to the same functionalities. For most

cases of building a diversity system, this process has to be done manually.

Definition 4. Common vulnerabilities Given SQLIA vulnerability x involved with parameter m

and vulnerability y involved with parameter n, we say x and y are common vulnerabilities if m

and n are equivalent parameters.

Among these 16 web applications, there are totally 34 SQL injection vulnerability entries in

CVE, which are listed in the Appendix. Approximately, each application has two entries on av-

erage. Each application has at least one entry (Brooky eStore, etc.), and at most four entries (Pre

42

Classified Listings). With this relatively small amount of entries per application, it is easy to search

for common vulnerability between variants.

In practice, the existence of equivalent parameters can be categorized into four cases:

1, Same parameter name and same file name (ignoring extensions).

2, Same parameter name and different file names.

3, Different parameter names and same file name.

4, Different parameter names and different file names.

These cases are listed from most common to most uncommon. Most equivalent parameters

between variants still share the same name.

For example, in our motivating example given earlier, the “searchstring” parameter is an equiv-

alent parameter in above Case 1 (same parameter names and same file names), but the vulnerability

is not common, since it is only applicable to the PHP version.

Matching Common Vulnerabilities Since the common vulnerability is based on equivalent pa-

rameters, to match common vulnerabilities among the result of Section 4.2.2, we need to search for

equivalent parameters related to these vulnerability entries. In order to simplify the task of match-

ing common vulnerabilities, we first assume Case 1 for all equivalent parameters, such that we can

automatically search for equivalent parameters by names. We then manually verify the results, and

if Case 1 does not apply, we will manually find the equivalent parameter matching other cases.

In the end, we only find common vulnerabilities in one application named “Midicart", as de-

tailed below.

43

CVE-2006-6209 (ASP) CVE-2005-1503 (PHP)
Multiple SQL injection vulnerabilities in Midi-
Cart ASP Shopping Cart and ASP Plus Shopping
Cart allow remote attackers to execute arbitrary
SQL commands via the (1) id2006quant param-
eter to (a) item_show.asp, or the (2) maingroup
or (3) secondgroup parameter to (b) item_-
list.asp. NOTE: the code_no parameter to Item_-
Show.asp is covered by CVE-2005-2601.

Multiple SQL injection vulnerabilities in Midi-
Cart PHP Shopping Cart allow remote attack-
ers to execute arbitrary SQL commands via the
(1) searchstring parameter to search_list.php, the
(2) maingroup or (3) secondgroup parameters
to item_list.php, or (4) code_no parameter to
item_show.php.

Table 5: Common Vulnerabilities of Midicart

In both variants, “maingroup”, “secondgroup”, and “code_no” are all equivalent parameters

in Case 1 (same parameter name and same file name). Attackers can exploit such vulnerabilities

in both variants, and hence they cannot be detected through diversity alone (note, however, we

do not rely on diversity alone for detection in this paper). For all other applications, no common

vulnerability is found.

Those findings confirm our previous hypothesis that different variants of the same application

rarely share common vulnerabilities, and hence opportunistic diversity may indeed assist the de-

tection of attacks. On the other hand, the case of common vulnerability shown above indicates that

opportunistic diversity by itself may not be sufficient for this purpose. Therefore, we will combine

opportunistic diversity with anomaly detection in the rest of the paper.

4.2.4 Summary

By completing the exhaustive search on CVE vulnerability database, we:

• Searched for nearly 6000 SQL injection vulnerability entries related to 2000 web applica-

tions.

44

• Found 16 applications that have variants written in other languages with 34 vulnerability

entries.

• Defined the term equivalent parameters and common vulnerabilities.

• Found common vulnerabilities in two vulnerability entries, related to one application.

There are some limitations in our results. The 16 applications we found may not cover all

applications with variants in CVE database. However, for those applications with variants we

missed, they would not have common vulnerabilities in CVE database, since only one version of

them has vulnerability entry.

Thus the search result still fulfills our expectations. Only two out of 34 vulnerability entries

have common vulnerability pairs belonging to variants of the same application, which proves our

previous claim: for most SQL injection vulnerabilities, they do not exist in their variants. The low

rate of common vulnerability existences indicates diversity can significantly improve applications’

security, preventing attackers from exploiting most vulnerabilities in individual applications.

With the effectiveness of improving security through diversity demonstrated, an actual model

of utilizing diversity for attack detection can be proposed. We will discuss this in Chapter 5.

45

Chapter 5

The Methodology

In this section, we present our diversity-based attack detection system. Specifically, we will de-

scribe the details of multiple stages comparison among variants and the final result production.

5.1 Overview

To employ opportunistic diversity for preventing attacks, we monitor the interaction between a user

and multiple variants of an application together with their database backends. Anomaly detection

is performed based on features extracted from different stages of such interaction. Partial results

obtained at different stages and from different variants are combined through a learning-based

approach to reach a decision of whether allowing the result to be returned to the user.

Our attack detection model is constituted by three major components: a controller, a monitor,

and multiple variants with their database backends. Figure 6 illustrates the architecture of the

model. We will briefly explain each of these components in this section and their details would be

46

given later.

As Figure 6 shows, the user interacts with one variant of the application as usual. The con-

troller, monitor, and other variants are transparent to the user. The controller is responsible for

extracting user inputs from the first variant and distributing them to the other variants. The moni-

tor extracts features from different stages of the data flow, conducts anomaly detection, and finally

combines partial detection results to reach a final decision. Based on the decision, the controller

will either allow the first variant to return the result to the user, or deny it and return nothing to the

user.

Arrows between different components in Figure 6 represent the input and output dataflow.

Note that each monitoring process is based on each user input instead of each generated SQL

query; it starts when the application receives an user input, and ends when the output related to

this user input is produced. Thus although there is only a single pair of dataflow arrow between

each application variant and database, in practice it is possible that multiple queries are induced by

a single user input.

5.2 The Controller

The controller works as a medium between user and application variants with two major mod-

ules: the user input distribution module and output unifying module.

The working process of the controller is shown in Figure 7: when it receives a user input, it

properly distributes that data to equivalent parameters of all variants under its control. If no attack

is detected by monitor, the controller will return an unified result back to the user, which can be

47

 Controller

 User Input distribution

Dataflow

 Input Output

 Variant 1 Variant 2 Variant X

 Stage

Indicator Database 1 Database 2 Database X

 Query Database Change Database Result Application Result

 (Stage 1) (Stage 2) (Stage 3) (Stage 4)

 Monitor

Figure 6: The Model

Figure 7: The Working Process of the Controller

done by choosing one of the results from the variants. Otherwise, attack alarm would be raised and

the output is blocked.

5.3 The Monitor

The monitor is the component in charge of attack detection in our model. It first compares the

behavior between variants in multiple stages, then combines results of multiple stages to a final

detection result. Alarm would be raised if the final detection result indicates an attack.

48

Multiple Stages of Comparison Our approach does not solely depend on examining SQL queries

to detect attacks as most existing work do. Having multiple stages of detection can produce a more

precise detection result; it can also utilize more aspects of diversity employed in our approach. As

mentioned above, the major differences among variants in our system is web applications written

in different languages and use different databases. Thus besides monitoring the SQL queries, we

can also expect different behaviors in terms of database activities and the output results.

As result, we use these four stages of monitoring:

• SQL queries generated by application.

• Changes in database.

• Query result returned by database.

• Result returned to the user by applications.

Each stage has one or more features to score the differences in details. For example, we use

a feature “tree edit distance of abstract syntax tree obtained from query" in the first stage to score

structural difference of the queries. Features of each stage would be explained separately later in

the subsections.

We expect to detect certain difference in one or more of these stages among variants when

the user input is purely attack-free. But when an attack is performed, larger difference generally

appears on multiple stages. On the other hand, even when an attack is exploiting common vulnera-

bility, we may still detect noticeable difference on certain stages. Thus introducing multiple stages

of comparison is effective on mitigating both false positives and false negatives.

49

Methodology of Comparison The intuitive way of detecting different behavior among variants

is to directly compare the result of each stage among variants. However, in some applications,

this may not be a practical approach. Although the variants are functionally similar, sometimes

the inherent differences between them can make direct comparison infeasible. For example, one

variant may use several queries for a service, but the other variant may use stored procedure for the

same service. In this case, direct comparison on the first stage, query string, would generate large

amount of false positives.

Different from many existing work, we do not compare directly the features extracted from dif-

ferent variants for detecting attacks, but to compare the partial anomaly detection results obtained

based on such features. The reason is twofold. First, as we have shown through the case study,

opportunistic diversity alone may not always be sufficient for detecting attacks. Second, although

different variants are functionally equivalent, sometimes they may exhibit significant differences

in terms of implementation details, which renders a direct comparison infeasible.

We approach this problem by first performing learning-based anomaly detection at each variant,

and then compare the detection results between different variants. Specifically, for features that

have significant differences among variants, we first follow the learned-based method proposed

in [6] and introduced in Section 2.4.4 to establish an anomaly detection model for those features

by learning secure profiles through training with attack-free data. The runtime features are then

compared to the learned profiles to obtain anomaly detection scores. This anomaly detection phase

will produce scores in uniform formats for different variants, which can then be compared in the

next diversity detection phase to further improve the detection accuracy.

50

Finally, the comparison result from each stage would be correlated by decision making tools to

produce a final detection result. In this approach, we use decision tree learning to produce the final

result.

Compared to the previous approach in [6], our approach has the following contributions:

• We do not detect attack from SQL queries only, but also from the detection result of other

stages.

• We correlate the detection result of multiple stages to produce a more accurate detection

result.

• We use application variants to employ diversity in our approach, so that the result does not

base solely on anomaly detection. This further reduces false alarm rate.

The following sections provide a detailed description of each stage. We have chosen a small

number of features and left enriching the collection of features as a future work. The details of

final result production with decision tree will be introduced in Section 5.4.

5.3.1 Stage 1: SQL Query

At this stage, we utilize the opportunistic diversity originated from different source code writing of

Web applications among different variants. Specifically, when different variants filter user inputs

in different ways, the queries generated for the same user input may vary. This can happen in two

cases as follows.

51

• The value of a parameter is filtered properly by one variant but not filtered at all by the other.

An attacker can attack the vulnerable variant by simply injecting raw SQL string. For the

other variant, the special characters in the injected string, such as apostrophe, will be escaped

and the attack becomes ineffective.

• The parameter is filtered by both variants, but one of them filters it in a vulnerable way,

e.g. allowing encoding or decoding after filtering. An attacker can still inject a SQL string

with encoded special characters to bypass the vulnerable filtering scheme so the special

characters can be restored once passing the filtering. For the other variant, the encoded

special characters will not be restored which makes the attack ineffective.

In both cases, the query produced from the same malicious input becomes different among

variants. Namely, the one without proper filtering becomes effective injection code, the other

remains secure.

Example 4. Suppose a login action generates the query

SELECT * FROM admin WHERE username = ‘XXX’ AND password = ‘YYY’

Suppose the “username" parameter in variant A is not filtered, and variant B will escape any

user input apostrophe to “%2527". Assume an attacker injects “username” with string ’ or ‘1’=’1;.

1. In variant A, the attack is successful with query

SELECT * FROM admin WHERE username = ‘ ’ or ‘1’=‘1’ AND password = ‘YYY’

2. In variant B, the attack fails with query

52

SELECT * FROM admin WHERE username = ‘%2527 or %25271%2527=%25271’ AND

password = ‘YYY’

�

Example 4 belongs to the first case of improper input filtering. As it shows, with different input

filtering, injection attack can produce different SQL queries, which makes it detectable in Stage 1.

Features for Detection

In this stage, we utilize the diversity at the query string level to detect injection attacks. There-

fore, the features for detection in this stage should be able to characterize the difference between

normal SQL queries and malicious queries.

Intuitively, using string models, like the length and character distribution model suggested

in [6] is good for measuring significant string level deviation for the queries. However, we find

through our case study that, while such string models are good candidates for the anomaly detection

phase, they are usually ineffective for the diversity detection phase, since different variants are

usually implemented with very different queries, and such differences can easily outweigh the

difference between attacks and normal queries.

We approach this problem in the structural level of the SQL query, while leaving other features

as future work. Before the SQL queries being executed in database, they are first parsed and

represented as Abstract Syntax Tree(AST), in which the nodes represent their structural characters.

While normal user input usually generates similar ASTs, the ASTs yield from malicious input can

have a lot of structural deviation from the normal ones. If such deviation is detected on one variant

53

but not others, it indicates possible injection attack.

Consequently, we compare different variants based on three features.

• The first feature is the edit distance of ASTs [80]. In the anomaly detection phase, we calcu-

late the tree edit distance between runtime ASTs and corresponding ASTs inside the previ-

ously learned profiles. In this approach, we employ a tree distance metric, Robust Algorithm

for the Tree Edit Distance(RTED) [80], to measure the difference between ASTs. A higher

value of tree edit distance indicates the runtime query has larger structural deviation from

query in profile.

Next, in the diversity detection phase, the calculated edit distances are compared across

different variants to produce the final score for this feature.

• The second feature is the list of involved tables. Most SQL parsers can retrieve the name of

database tables involved in a query while parsing it into AST. If the involved tables do not

match the tables in corresponding profiles, it is a significant sign of injection attacks. We use

a binary score to describe the result from each variant. “0" means involved tables in runtime

queries are identical to those in corresponding profiles; “1" means otherwise.

The binary score from each variant is added up together to produce the final score for this

feature. Thus if the final score is 1, it means one variant’s runtime query involves different

tables than profile and vice versa.

• The third feature is the number of non-parsed queries, which is utilized directly in the di-

versity detection phase. A SQL parser can only output ASTs from queries with a legitimate

54

grammar and cannot work with incorrect grammars. In many injection attack scenarios, the

queries will likely have incomplete parenthesis or apostrophe, and thus cannot be parsed.

Since this feature will always lead to a zero value in the training phase, the anomaly detection

phase may be omitted and we can directly compare the feature across different variants to

produce the final score.

We give an example of SQLIA that can be detected in this stage.

Example 5. The standard AST generated from the queries in Example 4 is shown in Fig 8.

Figure 8: Standard AST of Example 4

The AST generated from user input in variant A and B is shown in Fig 9.

(a) Variant A (b) Variant B

Figure 9: The Generated ASTs from Both Variants of Example 4

The AST in Fig 9(a) has 3.0 tree edit distance with standard AST, while the AST in Fig 9(b)

has 0 distance with standard AST. As it shows, ASTs are able to characterize queries with different

semantic structures.

55

�

Limitations For some malicious input, we may still observe benign results from the features of

Stage 1 because of, but are not limited to, the following reasons:

• The related input filtering of all variants are improper and thus have common vulnerabilities.

• The query after injection is mistakenly matched with wrong profile.

To detect attacks that cannot be detected solely based on SQL queries, we introduce following

three stages.

5.3.2 Stage 2: Changes to Database

In this stage, we utilize the diversity of different databases among the variants, which may arise

due to three factors as follows.

• Unique characteristics of specific database products. For example, many stored procedures

or commands are proprietary to one database product, and may not exist, or are under dif-

ferent names in other databases. The names of data types in different database products may

also vary.

• Different requirements for enclosed bracket or parenthesis. For example, some variants re-

quire a pair of enclosed brackets or parentheses for certain input fields, while others do not

have such requirements.

56

• Different database schemas (e.g., table names and attribute names) in different variants’

databases. In many case, the difference lies in the prefix or suffix of the name.

When SQL injection is performed, attacker usually is required to enclose the apostrophe or

parenthesis at the beginning of the injection code. If one variant puts a left parentheses(“(") before

the field the attacker injects, while the other variant does not have the parentheses. The injected

query can only run on one variant successfully, since there would either be unclosed left parenthe-

ses on one variant or a surplus right parentheses on the other variant.

Furthermore, SQL injection codes often have specific names inside, whether it is database table

name or column name. Since the database design may be slightly different between variants, an

injection code of this kind may lead to different behaviors among the databases.

Example 6. Suppose the parameter “username” causes an injection vulnerability on both variants

due to the lack of proper filtering. In such a case, diversity among queries (Stage 1) will not help

to detect the attack. The following shows how the attack may be detected at Stage 2.

1. Suppose in variant A, the query is

SELECT * FROM admin WHERE(username = ‘XXX’)

2. In variant B, the query is

SELECT * FROM admin WHERE username = ‘XXX’

Assume the attacker injects the “username” parameter with string ’);drop table admin-

1. In variant A, the query becomes

57

SELECT * FROM admin WHERE(username = ‘’);drop table admin--

2. In variant B, the query becomes

SELECT * FROM admin WHERE username = ‘’);drop table admin--

Clearly, the query in variant B will not be executed because of the extra right parenthesis.

�

As both examples show, when detection in Stage 1 fails, some attacks can cause different

behaviors in database among variants, which make them detectable in Stage 2.

Features for Detection

The detection features of this stage are aimed for monitoring application variants making differ-

ent changes to databases. Our first intuition is to use the database schema similarity score, such as

the existing approaches to database schema matching [4,33,77], to measure the difference between

databases at runtime and previous saved database schema. However, in our study, we found that

simpler features may also be sufficient, because most legitimate activities only involve selection

queries and do not modify the database schema. Thus more simplified features are sufficient.

Consequently, we use these two features to evaluate the difference among variants in Stage 2.

• The first feature is the existence of changes to database schema. This feature is directly com-

pared among variants. Since changes to database schema are very uncommon for legitimate

activities, we use a binary score for this feature. If any modification is applied to a variant’s

database schema, the score would be “1”; otherwise, it is “0”.

58

The binary score from each variant is added up together to produce the final score for this

feature. Thus if the final score is 1, that means one variant’s database schema is changed and

so on.

• The second feature is the number of modified records. This feature is also directly compared

among variants. It records the number of records in a database that are changed as a result of

the queries. In contrast to the previous feature, this feature is more fine-grained and will more

likely record a non-zero result. However, in practice we found that for legitimate queries,

they usually change same or similar number of rows in database between different variants.

Therefore, the number of rows can be compared directly across variants to produce the final

score of this feature. A higher value of final score indicates a bigger deviation among variants

on number of rows changed in database.

Example 7. For the attack in Example 6, the first feature would score “1” since database schema

is only changed on one of the variants. The second feature would have a score equal to the size of

table “admin”, because “admin” table is deleted by variant A but it stays intact for variant B.

�

5.3.3 Stage 3: Database Result

Stage 3 is complementary to Stage 2 by utilizing the same diversity in databases but, instead of

monitoring different changes made to databases, it is based on the results returned by the database

to the application.

59

As mentioned in Stage 2, because of different databases used, the same injection string can be

successfully executed on some variants but not others. If a malicious query does not have result

set, difference among variants can only be observed by the change of database (Stage 2). However,

if a result set exists, we can also observe difference in the result set among variants. The reason for

difference in result set is similar to Stage 2, including unique characteristics of database products,

enclosed parentheses, apostrophes handling, and customized names in databases.

Example 8. Suppose attacker injects “username” parameter in the application variants same as

Example 6 with following string, both variants have table named “products”:

’) union SELECT * FROM products WHERE ‘t’ = ‘t

The injected query will only succeed in variant A, but not variant B because of the surplus

parenthesis. As result, the output result set of variant A contains all the rows from table “admin”

and “products”, while in variant B the query is not executed and there is no result set at all.

�

As Example 8 shows, some injection attacks that lead to different behavior in the database may

not change the database itself. However, we can monitor this difference by comparing the result

set among variants.

Features for Detection

The features of this stage should be able to characterize differences among result sets. Typical

database result set is shown below, which is identical to a database table. Each column has a unique

type of data and each row is one record.

60

Column 1 Column 2 ... Column X
Row 1
Row 2

...
Row X

Since a result set under the relational model is mostly a relation, we can use similar features as

introduced in Stage 2 but apply them to the result set relation instead of database relations. Conse-

quently, we use these two features in Stage 3, in respect to the “database schema” and “number of

records” features of Stage 2.

• The first feature is the type of data in result set (which is slightly different from the “database

schema” feature in Stage 2). This feature will be used in the anomaly detection phase. The

data type of each column of the runtime result set is compared to those in the learned profiles.

We use a binary score to represent the result at each variant to indicate whether the data type

of a column matches the profile. If the data type of any column does not match with the

profile, the score would be “1”, otherwise, it is “0”.

The binary score from each variant is added up together to produce the final score for this

feature. Thus if the final score is 1, that means one variant’s data type of result set deviates

from the profile and so on.

• The second feature is the number of rows in result set (similar to the “number of records”

feature in Stage 2). Since a “SELECT” query would return different numbers of records

depending on the “WHERE” clause, with the same user input, different variants will likely

return a similar number of rows in the result set.

61

Thus the final score of this feature is produced by directly comparing the number of rows

among variants. A higher value indicates bigger difference.

Example 9. For the attack in Example 8, the first feature would score “1” since variant B does

not have a result set, and thus the data type does not match the profile. The second feature would

score the number of the rows of record in table “admin” and “products”, since the result set of

variant A has this number of rows while variant B has zero rows.

�

5.3.4 Stage 4: Application Result

In this stage, we utilize the diversity in the result returned to user by applications. In most cases,

the application result is a HTML page.

We introduce this stage in order to monitor the distinct behavioral difference among variants.

As mentioned in previous stages, injection attacks often involve enclosed apostrophe and parenthe-

sis problems, which leads to an non-executable SQL query. Despite that AST production of Stage

1 can also spot SQL query that cannot be executed, checking application result can add some tol-

erance in our detection model. A HTML page with error message is usually returned to user in this

situation. Apparently, it has big difference with HTML page that contains normal result.

Example 10. Suppose the SQL queries in variant A and B are the same as Example 6, attacker

inject “username” parameter with following string:

‘) UNION SELECT * FROM products

62

Suppose the table “products” has zero record on both variants, we cannot observe any differ-

ence from features of Stage 2. However, the HTML page returned to user in variant A is a page with

empty result. In variant B, it would be an error page since the related query cannot be executed.

�

As Example 10 shows, some attacks can lead to different HTML pages returned to user, which

makes them detectable in Stage 4.

Features for Detection

To measure difference between HTML pages, many features are selectable, including size of

the page, title of the page, etc. However, the detection accuracy of fine grained features in this

stage may largely depend on specific applications. If the inherent difference among variants of the

application is big, using these features for detection can be very inaccurate. On the other hand,

focusing on monitoring error message in HTML page is sufficient for detecting most difference

caused by attack in this stage.

Consequently, we use one feature in Stage 4:

• The feature is existence of error message, this feature is directly compared among variants

since the profile obtained from attack-free data usually has no error message. We check

the existence of multiple error messages that would not normally appear in regular use in

runtime pages. A binary score is used for recording the result. If error message exist on the

page, the score would be “1”, otherwise, it is “0”.

63

Stage Feature Type

Stage 1
Edit distance of ASTs Anomaly
List of involved database tables Anomaly
Number of not parsed queries Direct comparison

Stage 2
Changes to database schema Direct comparison
Number of modified records Direct comparison

Stage 3
Type of data in result set Anomaly
Number of rows in result set Direct comparison

Stage 4 Existence of error page Direct comparison

Table 6: Attack Detection Features of each Stage

The binary score from each variant is added up together to produce the final score for this

feature. Thus if the final score is 1, that means the web page returned to user on one variant

has error message and so on.

Example 11. For the attack in Example 10, the final score of this feature is “1”, since error

message is only spotted on variant A.

�

5.4 Result Correlation

We list all the features for attack detection on each stage in Table 6, along with their types (anomaly

or direct comparison). Note that these are only features we selected for attack detection, and there

are other candidate features in each stage that might be more efficient in certain practices.

Although each feature in Table 6 can produce detection results separately, correlating such

results will further improve the detection accuracy and reduce false alarms. Consequently, we

correlate the result of each stage to make final decision on attack detection.

64

Decision Tree Learning Approach The partial detection results obtained at different stages may

be correlated in many ways for better detection accuracy. In this work, we employ decision tree

learning to correlate scores of different features to make decision of attack detection.

As we reviewed the basic concept of decision tree in Section 2.4.4, it can be used to find the best

strategy of using various attributes to partition the input data into certain classes. To be exact, the

strategy is to determine the priority of attributes in terms of decision making. Namely, attributes

with closer relevance to data partitioning have higher priority and would be the upper nodes in the

decision tree.

Figure 10 illustrates our approach to correlating partial results using decision tree learning.

Features at each stage are used as attributes for the decision tree, and training data are collected for

different user inputs. For each user input, the anomaly detection phase and the diversity detection

phase together will produce a result table as depicted in the figure. Those tables are used to build

a decision tree, which will be applied to runtime inputs to classify them into two classes: “attack”

or “normal”.

Decision Tree Learning Algorithm We choose the C4.5 Algorithm [81] as the decision tree

learning algorithm in our approach. Compare to its predecessor ID3 (Iterative Dichotomiser 3)

Algorithm [82], C4.5 has several advantages including: allow continuous attributes and missing

attribute values, and the trees can be pruned after creation.

The attribute splitting criterion of C4.5 is the normalized information gain, whose definition is

given in Section 2.4.4. The attribute with highest information gain is chosen to make decision in

every recursive run. The data set is partitioned into sublists and the C4.5 algorithm then recurses

65

Figure 10: Final Decision Making

on them.

The Attributes As mentioned previously, the score of eight features across four stages are used

as attributes for decision tree. For the features whose final score is computed by adding up binary

scores in each variant, we can treat them as discrete attributes, since there are a limited number of

values. For example, if the system has two variants, possible score values of this kind of features

are 0, 1 and 2.

For the other features, their scores are treated as continuous attributes. We can take advantage

of the C4.5 algorithm, which is able to handle both continuous and discrete attributes. The contin-

uous attributes are discretized with best partition thresholds automatically by the C4.5 algorithm.

66

Training Data Set In order to have an accurate detection result. The training data for decision

tree learning need to thoroughly cover most situations. We use three types of training data in this

approach.

• Attack-free user input, which is the normal request from user. Large amount of attack-free

data can be obtained by scripts that simulate user activity, e.g. thread spam bots for forum

application and auto-registration bots.

• Attack input that will succeed in all variants; this can be obtained by attacking the common

vulnerabilities of all variants.

• Attack input that will succeed in at least one, but not all variant, this can be obtained from

attacks that exploit independent vulnerability in one of the variants.

The Result Classes In this approach, the data is partitioned into two classes: Attack or Attack-

free.

Cross Validation We follow the 10-fold cross validation [83] to produce the final decision tree.

The training data is randomly partitioned into ten folds and the decision tree training process is

recursed ten times. In each run, nine folds of data are used for training the decision tree. Then

we validate its accuracy by applying the trained tree to the remaining one fold of data. At last, the

decision tree with best accuracy among ten produced trees is selected as final result.

67

5.5 Summary

In this chapter, we:

• Proposed an attack detection model utilizing diversity in multiple stages.

• Gave attack examples that can be detected on certain stage.

• Selected detection features for all four stages and methods of result score production are

given.

• Correlated result from multiple stages with decision tree learning to produce final detection

result.

Employing diversity gives our attack detection model significant advantages over traditional

anomaly detection approaches, since our detection does not solely rely on learned attack-free pro-

files. By comparing anomaly detection results across variants, we can reduce certain amount of

false alarms.

Using multiple stages of comparison also gives our model advantage over previous diversity

detection approaches that only use a single feature for detection. By correlating detection results

in multiple stages, we can further detect attacks that cannot be detected by a single feature, which

reduces false negatives. Meanwhile, certain attack-free data may be classified as attacks by certain

features, thus correlating multiple features can also help to reduce false positives.

As the attack detection model is given, we will evaluate our approach on actual web applica-

tions. This will be discussed in Chapter 6.

68

Chapter 6

Implementation and Experiments

In this chapter, we implement our proposed attack detection model on a real web application and

perform experimental detection using decision tree learning. We evaluate our approach by com-

paring our detection model to several other options.

6.1 Model Implementation

6.1.1 Multi-Stage Comparison

In this section, we will describe the detailed implementation of each stage separately, including

challenges we encountered and corresponding solutions.

Stage 1

As described in Section 5.3.1, for Stage 1, we need to monitor the runtime SQL queries of all

variants, generate ASTs for the queries and compute the tree edit distances. We implement this

69

Figure 11: Mysql Log

Figure 12: SQL Server Log

stage with following steps:

• Extract runtime SQL queries from applications.

1, For Mysql database, we use the event log function to save runtime queries to “general_-

log" table in “mysql" database. Fig.11 shows the data of this table.

2, For SQL Server database, we use Microsoft SQL Profiler to create a trace and save

runtime queries to a user designated table. Fig.12 shows the data of this table.

3, On both variants, we use a unique user name in their connection string to the database.

This is to distinguish queries originated from our web application and others.

4, We only monitor the records in the log belongs to type “query”. For Mysql, “com-

mand_type” field need to be “Query”. For SQL Server, “EventClass” field need to be

“13” or “10”, which are the code for type “SQL:BatchStarting” and “RPC:Completed”

70

respectively.

5, We use time as a factor to distinguish queries from different actions in the log. We

found that the logged queries aggregated in short time intervals generally belongs to

the same action. The time interval we set is 3 seconds, which is appropriate for our

experiment. In a heavier load application, the time interval can be set smaller. How-

ever, this method certainly has limitations when the web application has simultaneous

actions.

• Generate ASTs, calculate edit distance and retrieve table names from SQL queries.

1, We use the tool “General SQL Parser JAVA" [84] to parse the retrieved queries into

ASTs. Example 12 shows the AST format produced from it.

Example 12. We parsed the following SQL query into AST with “General SQL Parser

JAVA”.

SELECT * FROM products where text LIKE ’%asus%’ and code_no>0

The parsed AST is represented by:

SELECT *

FROM products

WHERE TEXT LIKE ’%asus%’

AND code_no > 0

Each row represents a node in AST, the spacing at beginning of the a row represents

the hierarchy of the node.

71

�

2, We use the JAVA program from Robust Algorithm for the Tree Edit Distance(RTED) [80]

to calculate the edit distance between ASTs. However, this tool only accepts bracket

notation of trees.

We wrote a function to transform the AST format from “General SQL Parser JAVA”

(as shown in Example 12) to bracket notations, according to the rows and spacing at

beginning of each row. For example, the AST in Example 12 would be transformed

into:

{x{null}{null}{null{null}}}

Note that “x” is a manually added root node to the AST; it does not affect edit distance

calculation.

3, We use the “getTable()” function in “General SQL Parser JAVA” to retrieve database

table names involved in the queries, this is done simultaneously with AST generation.

4, Since SQL parser cannot parse stored procedure into AST, for certain types of stored

procedure that is commonly seen in the application we used, we wrote a function to

extract SQL query out of them.

Example 13. A stored procedure belongs to “sp_cursoropen":

exec sp_cursoropen @p1 output,N’SELECT * FROM products

where code_no = ’1006’’,@p3 output,@p4 output,@p5 output

The SQL query extracted from it would be:

SELECT * FROM products where code_no = ’1006’

72

�

5, For the other queries that cannot be successfully parsed into ASTs, we keep a record of

their numbers.

The Scores As we use two variants in our experiment, the score of features in Stage 1 are calcu-

lated by following method.

• Edit distance of ASTs:

Suppose variant a has m queries and variant b has n queries for the same action, Dai and

Dbi are the edit distance of AST between the ith runtime query and its corresponding profile

on two variants respectively. The score of this feature is defined as:

Score = |
m∑

i=1

Dai −
n∑

i=1

Dbi|;

• List of involved database tables:

Suppose Da and Db are the anomaly score of this feature in variant a and b respectively, it

values “1” if the involved database tables of runtime query are different from corresponding

profile; otherwise values “0". The score of this feature is defined as:

Score = Da+Db;

• Number of not parsed queries:

73

Suppose Da and Db are the number of not parsed queries in variant a and b respectively.

The score of this feature is defined as:

Score = |Da−Db|;

Stage2

As described in Section 5.3.2, for Stage 2, we need to monitor the change of databases when

runtime queries are being executed. We implement this stage with following steps:

• To monitor the change of database at runtime, we first set up a table recording the initial state

of the database. The information we record includes: name of the table, number of records

in the table and schema of the table. They are used as “reference” for future detection. These

information is retrieved by:

1, For Mysql, we retrieve the information from “tables” table in database “information_-

schema”.

2, For SQL Server, we use the query “select * from sysobjects where xtype = ’u’” to

retrieve the information.

• Since we already retrieved the involved database table names of queries, during runtime, we

use the same method to retrieve current information of these tables, and compare it to its

reference, so that any change would be detected.

74

1, For the number of records, we compare the number of changed rows in database be-

tween variants.

2, For database schema, we first compare the schema of individual tables, then compare

the total number of tables in database.

The Scores We evaluate the change of database with two features:

• The number of modified records.

Suppose variant a has m involved tables and variant b has n; Dai and Dbi are the runtime

number of rows in the ith involved tables of two variants respectively, Sai and Sbi are the

reference row count. Score of this feature is defined as:

Score = ||
m∑

i=1

Dai −
m∑

i=1

Sai| − |
n∑

i=1

Dbi −
n∑

i=1

Sbi||;

• Changes to database schema.

Suppose if database schema of variant a is not changed, Da is defined as “0”; otherwise is

“1”. Db is its counterpart in variant b. The score of this feature is defined as:

Score = Da+Db;

Stage3

As described in Section 5.3.3, for Stage 3, we need to monitor the result from database. We

implement this stage with following steps:

75

• At initialization of the detection system, we create a duplicate database for each variant

which is the same as the one used by variant. During runtime, queries executed in original

databases will also be executed in the duplicate databases. Thus we can retrieve result set of

executed queries from the duplicate ones.

• We save the data type of result set as a string and compare to corresponding profile. The

number of records in result set would be directly compared between variants.

The Scores We evaluate the database result set with two features:

• The number of rows in result set.

Suppose variant a has m queries and variant b has n; Dai and Dbi are the number of records

for ith query in two variants respectively. The score of this feature is defined as:

Score = |

m∑

i=1

Dai −

n∑

i=1

Dbi|;

• Type of data in result set.

Suppose there are m result sets in variant a and n result sets in variant b. If the ith result set’s

data type of variant a are same as corresponding profile, Dai is defined as “0”, otherwise is

“1”. Dbi is its counterpart in variant b. The score of this feature is defined as:

Score = |

m∑

i=1

Dai −
n∑

i=1

Dbi|;

76

Figure 13: An Error Web Page Example

Stage 4

As described in Section 5.3.4, for Stage 4, we need to monitor the result returned by application.

Namely, the web page returned to user by application.

In this experiment, we use a keyboard and mouse mimic software “Keyboard Simulator” [85]

to script a “save-to-file” action. This script is added at the end of each data training script(which

would be discussed in Section 6.2.2), so that the web page is automatically saved to a “.txt" file.

Since we use “existence of error page” as feature for Stage 4, after we obtained the txt file,

we will check for multiple error information in the file, such as the warning information shown in

Fig 13.

This method may not be practical in practice. We can either instrument the application or take

an alternative approach similar to Stage 3: setting up a duplicate browser on server side which

would act exactly the same as user. We would be able to retrieve the web page from the server side

browser.

The Scores The score of feature for this stage, “existence of error page”, is defined by:

If error web page exists in variant a, Da is defined as “1", otherwise is “0". Db is its counterpart

is variant b:

Score = Da+Db;

77

6.1.2 Anomaly Profile

In this section we will discuss the setup of profiles for anomaly features in our model and the

profile matching method.

Profile Setup As described in Section 5.3, some of the features used in our model are anomaly

features, which requires to setup some profiles so that the runtime values can be compared with.

These anomaly features include:

• Edit distance of ASTs from SQL query, Stage 1.

• Involved tables of SQL queries, Stage 1.

• Data type of result set, Stage 3.

We can use the same feature score calculation method as introduced in Section 6.1.1 to setup

the profile. The difference is, in Section 6.1.1 the final score is computed by combining the feature

score of each variant, while in profile setup, we save the feature score in separate profiles for each

variant.

Table 7 shows an example of the profile.

Profile
ID

AST Involved Table Data Type Profile
Length

0 {x{}{}{}{{}{}}} products 12 12 12 12 -1 12 12 12 1
1 {x{}{}{}} products 12 2
1 {x{{}}{}{}{}} products 12 12 2

Table 7: Anomaly Profile Example

- Profile ID: The unique id number of each profile.

78

- AST: Bracket notation of the AST parsed from SQL query.

- Involved Table: Names of the database table involved in a query.

- Data Type: Data type of all columns in the result set; each number represents a unique data type.

- Profile Length: Number of records for the profile. For example, profile with ID “1” in Table 7

has two records.

We use attack-free data that covers most regular actions of the application to generate the

profile. The profile setup stops when no profile with new AST is generated. Then the produced

profile would be used for later detection.

Profile Matching For anomaly detection, we need to match runtime result to the profile. We

accomplish profile matching in two steps:

• Select profile from the learned profiles which has the same number of queries with retrieved

ones.

• Match runtime ASTs to selected profiles, the profile with least cumulative AST edit distance

with runtime data would be selected.

If no profile is matched with, the system would use the first profile by default.

The details of profile matching are given in the algorithm below:

79

Algorithm 1 Profile Matching

Retrieve runtime queries which executed in limited time interval as runtime_query.
for each profile ∈ profile_list do

if runtime_query has same number of records as profile then

profile ∈ candidate_profile
end if

end for

for each profilei ∈ candidate_profile do

for each runtime_query ∈ runtime_profile do

for each query ∈ profilei do

curr_distance = AST (runtime_query, query)
if curr_distance < min_distance then

min_distance=curr_distance
end if

end for

total_distancei = total_distancei +min_distance
end for

end for

if total_distancei is min(total_distance) then

runtime_query matched with profilei
end if

6.2 Experiments

In this section, we use our implemented detection model to perform detection experiments on a

real web application. We evaluate our approach by its detection performance in the experiments.

6.2.1 The Web Application and Vulnerabilities

The Application Midicart [78] is an online shopping cart application that has multiple versions.

The interface of it is shown in Fig.14. In this implementation, we use Midicart ASP version with

Microsoft SQL Server as database and PHP version with Mysql as database.

80

Figure 14: Midicart Interface

Vulnerabilities The reason we choose Midicart for implementation is because, according to our

study of CVE vulnerability database in Chapter 4.2, this application has both common vulnerabili-

ties and vulnerabilities existing only on one variant, which is good for demonstrating our proposed

model’s ability to detect attacks that exploits either kind of vulnerability. The CVE entries regard-

ing Midicart are listed in Table 8.

CVE-2006-6209 Multiple SQL injection vulnerabilities in MidiCart ASP Shopping Cart
and ASP Plus Shopping Cart allow remote attackers to execute arbi-
trary SQL commands via the (1) id2006quant parameter to (a) item_-
show.asp, or the (2) maingroup or (3) secondgroup parameter to (b)
item_list.asp. NOTE: the code_no parameter to Item_Show.asp is cov-
ered by CVE-2005-2601.

CVE-2005-2601 SQL injection vulnerability in MidiCart allows remote attackers to exe-
cute arbitrary SQL commands via the code_no parameter to (1) Item_-
Show.asp or (2) search_list.asp.

CVE-2005-1503 Multiple SQL injection vulnerabilities in MidiCart PHP Shopping Cart
allow remote attackers to execute arbitrary SQL commands via the
(1) searchstring parameter to search_list.php, the (2) maingroup or (3)
secondgroup parameters to item_list.php, or (4) code_no parameter to
item_show.php.

Table 8: Midicart Vulnerability Entries in CVE

As Table 8 shows, “maingroup”, “secondgroup”, “code_no” parameter in multiple files have

injection vulnerability on both ASP and PHP versions. However, “searchstring” parameter is only

81

vulnerable in PHP version, but not in ASP. We checked this parameter in file “search_list.asp” and

confirmed it is properly filtered.

In order to run the detection experiment, we use the old version of Midicart that was produced

in 2006, in which the vulnerabilities listed above exist.

Normal Activities For regular users(customers), the functionality of Midicart is relatively sim-

ple, normal activities of the application include:

• Browse main page.

• List commodities by their categories.

• Search commodities by item number or description.

• Register for payment.

6.2.2 Training Data

In this implementation, our attack training data is obtained by exploiting the vulnerabilities in Ta-

ble 8. The attack-free data is obtained by performing the four types of normal activities introduced

previously.

The Attacks

Attack 1. Vulnerability:“code_no" parameter in item_show.asp, item_show.php

Is Common Vulnerability: Yes.

82

• Post Data1:?code_no=1006 ’ UNION select * from products where code_no = ’1005

Result1:(ASP): SELECT * FROM products where code_no = ’1006’ UNION select * from

products where code_no = ’1005’ ORDER BY item

(PHP): select * from products where(code_no = ’1006 ’ UNION select * from products

where code_no = ’1005’) ORDER BY ’item’

• Post Data2: ?code_no=1006 ’ and ’1’ = ’1

Result2:(ASP): SELECT * FROM products where code_no = ’1006 ’ and ’1’ = ’1’ ORDER

BY item

(PHP): select * from products where(code_no = ’1006 ’ and ’1’ = ’1’) ORDER BY ’item’

This attack is to exploit the non-filtered “code_no” parameter on both versions, the union select

SQL injection of Post Data 1 can only succeed in one of the versions since attacker cannot construct

an injection string which can enclose the parenthesis in both versions. However, tautology attack

of Post Data 2 can succeed on both versions.

�

Attack 2. Vulnerability:“maingroup” and “secondgroup” parameter in item_list.asp, item_list.php

Is Common Vulnerability: Yes.

• Post Data1:?maingroup=CPU&secondgroup=Socket-A’ UNION SELECT null, null, main-

group, secondgroup,null, null,null,null FROM products where code_no=’1001

Result1:(ASP): SELECT * FROM products where maingroup = ’CPU’ AND secondgroup =

83

’Socket-A’ UNION SELECT null, null, maingroup, secondgroup,null, null,null,null FROM

products where code_no=’1001’ ORDER BY code_no

(PHP): select distinct * from products WHERE maingroup = ’CPU’ AND secondgroup =

’Socket-A’ UNION SELECT null, null, maingroup, secondgroup,null, null,null,null FROM

products where code_no=’1001’ ORDER BY code_no

• Post Data2: ?maingroup=CPU&secondgroup=Socket-A’ and ’1’=’1

Result2:(ASP): SELECT * FROM products where maingroup = ’CPU’ AND secondgroup

= ’Socket-A’ and ’1’=’1’ ORDER BY code_no

(PHP): select distinct * from products WHERE maingroup = ’CPU’ AND secondgroup =

’Socket-A’ and ’1’=’1’ ORDER BY code_no

This attack is to exploit the non-filtered “maingroup” and “secondgroup” parameter in both ver-

sions, the union select SQL injection can succeed in both versions since this is a common vulner-

ability and there is no enclosed parenthesis problem.

�

Attack 3. Vulnerability:“searchstring” parameter in search_list.asp, search_list.php

Is Common Vulnerability: No.

• Post Data:asus%’ UNION SELECT null, null,CreditCard, ExpDate,null, null,null,null FROM

card_payment where posted LIKE ’%111

Result:(ASP): SELECT * FROM products where code_no LIKE ’%asus%” UNION SELECT

null, null,CreditCard, ExpDate,null, null,null,null FROM card_payment where posted LIKE

84

”%111%’ ORDER BY maingroup, secondgroup, code_no

(PHP): select * from products WHERE code_no LIKE ’%asus%’ UNION SELECT null,

null,CreditCard, ExpDate,null, null,null,null FROM card_payment where posted LIKE ’%111%’

ORDER BY ’maingroup’,’secondgroup’,’code_no’ LIMIT 0, 100

This attack is to exploit the “searchstring” parameter in both versions. However, while PHP version

has SQLIA vulnerability in this parameter, in ASP version this parameter properly escaped special

characters like apostrophe. Thus the union select SQL injection can only succeed on PHP version.

As shown in the result, with proper input filtering, the ASP version would simply search for

string: “%asus%” UNION SELECT null, null,CreditCard, ExpDate,null, null,null,null FROM

card_payment where posted LIKE ”%111"

�

Attack-free Data

To aquire sufficient amount of attack-free training data, we traverse all the functionalities of the

Midicart application, both manually and through an automated tool. We use keyboard&mouse

mimic software to create scripts which can simulate normal user activities.

The software we employ is “Keyboard Simulator” [85], we show a piece of script code created

by this software below, in which the functionality is to open URL “http://127.0.0.1:81/midiphp/”,

select “code_no” tag and search string “1005”.

[Script]

ProcessID=Plugin.Web.Bind("wqm.exe")

85

...

Call Plugin.Web.Tips("running")

Call Plugin.Web.SetSize(1366,784)

Call Plugin.Web.Go("http://127.0.0.1:81/midiphp/")

Call Plugin.Web.ScrollTo(0,0)

Call Plugin.Web.HtmlSelect("code_no","name:chose&frame:4")

Call Plugin.Web.HtmlInput("1005","name:searchstring&frame:4")

Call Plugin.Web.LeftClick(733, 90)

...

�

Each simulation script for data training contains URL opening actions on both variants and

clicks on certain elements on the web page if applicable. Apart from these actions, we also attached

a “save-to-file” action at the bottom of every script, so that the opened web page would be saved

to a txt file. This is used for the implementation of Stage 4 as mentioned in Section 6.1.1.

Training Data Summary

Table 9 listed the summary of training data we used in the experiment with Midicart. Totally 608

data are tested, in which 54 (8.88%) are attacks. We believe this is an appropriate percentage for

attacks in the dataset. Also, over 600 of training data should be sufficient for testing Midicart

which has relatively simple functionalities.

Dataset Attack 1 Attack 2 Attack 3 Attack-free Total
Numbers 22 12 20 554 608

Table 9: Training Data Summary

86

6.2.3 Decision Tree Learning and Result Evaluation

As discussed in Section 5.4, our attack detection model uses decision tree learning to correlate

multiple stages detection results. In this section, we will discuss the implementation of decision

tree learning and evaluation of final detection results.

Decision Tree Learning

We use the standard C4.5 C program [81] for decision tree learning in our experiment. It requires

a “.data” file to record the value of training data, and a “.names” file to record the attributes.

Since we have two variants, features that use binary score have limited values in their final

score. Consequently, their attributes are set as 0, 1 and 2. Other features will be set as continuous

so that C4.5 algorithm can automatically discretize them. We set the attributes for these eight

features as follows:

- Tree edit distance of AST, {continuous}.

- Involved database table, {0, 1, 2}.

- Number of not parsed queries, {continuous}.

- Number of rows changed in database, {continuous}.

- Change of database schema, {0, 1, 2}.

- Type of data in result set, {continuous}.

- Number of rows in result set, {continuous}.

87

- Existence of error page, {0, 1, 2}.

Finally, the classification labels we have are: Attack and Safe.

Cross Validation We follow the ten-fold cross validation method [83] in our experiment with

these steps:

1, Randomize the order of 608 training data and equally divide it into ten folds.

2, Run decision tree learning process ten times. In each run, one fold of training data is used as

test data, while other nine folds are used for learning the decision tree.

3, The decision tree with the best accuracy for the testing data will be selected.

Result and Evaluation

Among all ten trees we learned from our training data, the one shown in Fig.15 has the best

detection accuracy for the testing data. It uses four features from three stages as decision nodes:

1, Stage 1, tree edit distance of AST.

2, Stage 4, existence of error page.

3, Stage 1, number of not parsed queries.

4, Stage 3, type of data in result set.

Since both attacks and attack-free data in this experiment do not modify the database, no feature

from Stage 2 (changes in database) is used.

88

Figure 15: The Learned Decision Tree

We apply this decision tree to all the training data we have, and evaluate its detection perfor-

mance through three benchmarks: Accuracy (AC), False Positive Rate (FPR), False Negative Rate

(FNR), which are defined as:

FPR =
FP

FP + TN
, FNR =

FN

FN + TP

AC =
TP + TN

TP + TN + FP + FN

Table 10 shows detection performance of the learned decision tree:

89

FP FN TN TP FPR FNR AC
0 14 554 40 0% 25.93% 97.7%

Table 10: Detection Performance of Decision Tree

As shown by the FPR in Table 10, the decision tree can classify all attack-free data in training

data correctly. Simple functionality of application Midicart is the main reason of 100% FPR. We

should be able to observe some FPs if implementing this approach in an application with more

complex functionality or more inherent differences between variants. But this still shows our

approach can effectively mitigate FPR.

We recorded 14 FNs totally, which means 14 out of 554 attack data are misclassified. Overall,

the detection accuracy is 97.7%.

Analysis of FNR The FNR of 25.93% in the result is relatively high. However, note that we have

chosen the Midicart application for evaluation, particularly because it has common vulnerabilities

between different variants, as discovered in our case study. That is, this is essentially the worst

case scenario in terms of FNs. For all other applications for which we have searched for injection

vulnerabilities in CVE (totally around 2000), the amount of FNs will be significantly lower.

More than half of attack training data are from attacks exploiting common vulnerability. As

mentioned in Section 6.2.2, we use Attack 1, 2 and 3 to generate attack training data, in which

Attack 1 and 2 are exploiting common vulnerability while Attack 3 is not.

We revisit our training data and connect each FN to each of the three attacks. All 14 FNs

come from Attack 1 and 2, which means 20 attack data generated from Attack 3 are all correctly

90

At tack 2 FN

29.0%

At tack 1 FN

12.0%

At tack 2 TP

6.0%

At tack 1 TP

53.0%

Figure 16: FPR and TNR for Detecting Attack on Common Vulnerabilities

classified. Attack 3 exploits the vulnerability that only exist on PHP variant. It shows by em-

ploying diversity, our approach has good detection performance on attacks exploiting this kind of

vulnerabilities. Table 11 shows FN and TP numbers for Attack 1, 2 and 3.

Attack 1 FN Attack 1 TP Attack 2 FN Attack 2 TP Attack 3 FN Attack 3 TP Total
4 18 10 2 0 20 54

Table 11: Detection Performance of Attack 1 ,2 and 3

The decision tree can still detect a portion of attacks that exploit common vulnerability (Attack

1 and 2). As Fig 16 shows, 20 out of 34 attack data from exploiting common vulnerabilities can be

correctly detected. The reason our approach can detect this kind of attacks include:

1, Some injection strings contain specific database elements that differs across variants, same

91

situation as Example 7, this happens on both Attack 1 and 2.

2, The unenclosed parenthesis problem, same situation as Example 6, this only happens on Attack

1.

Consequently, we can detect most attacks which belong to Attack 1, while only a portion of

attacks in Attack 2 can be detected. Nevertheless, the ability of detecting attacks from exploiting

common vulnerabilities demonstrates multi-stage detection’s advantage over single stage.

Comparison with Purely Anomaly-based Approach In order to evaluate the improvement of

our approach over traditional anomaly detection. We compared the detection accuracy of our

approach to a purely anomaly-based detection that does not have diversity employed.

The feature we selected for anomaly detection is “AST edit distance” from Stage 1, since

this feature has highest information gain during decision tree learning, which means it can “best”

classify the data. We use the ASP variant for anomaly detection.

In the purely anomaly-based detection, we compute the edit distance between runtime AST and

AST in corresponding profile. The PHP variant is not involved. We then set threshold to classify

the data into “Attack” and “Safe”. If the distance is lower than threshold, it is classified as “Safe”,

otherwise is “Attack”.

The thresholds we used is 0.5, 3.5, 6.5, 9.5. Fig. 17 shows the detection accuracy using each of

the thresholds, which ranges from 92.11% to 95.23%, using 3.5 as threshold has best accuracy. We

can easily see that our approach has better detection performance(AC 97.7%) over anomaly-based

detection. Note that, due to the relatively simple functionalities and small number of attack types,

92

Threshold 0.5

Threshold 3.5

Threshold 6.5

Threshold 9.5

Decision Tree
88

90

92

94

96

98

100

92.11

95.23

94.74
95.06

97.07

Accuracy(%)

Figure 17: Detection Accuracy Comparison between Anomaly Approach and Decision Tree

the improvements may not seem very significant for this particular application.

Comparison with Single-Stage Diversity Detection Approach To evaluate the contribution of

using multiple stages to detection accuracy, we compare our approach to detections using single

stage.

The features we chose are those which were used as nodes in the learned decision tree, and a

threshold is set for each feature. Training data is classified by comparing its score of the feature

to the threshold. Note that diversity is involved here; training data’s score is computed across

variants, instead of just from ASP variant like the one in previous evaluation.

Table 12 shows the features and thresholds for single-stage detection.

Fig.18 and 19 show the FPR and FNR comparison across different single-stage detection and

decision tree approach. Decision tree approach has the best FPR (0%); detection using AST edit

distance with threshold 3.5 and detection using result set data type also has 0% FPR. If threshold

of AST edit distance is set to 0.5, the FPR increased a bit to 1.62%. FPR of detection using error

93

D
eci

si
on T

re
e

D
eci

si
on T

re
e

(A
ft
er

Pr
unin

g)

A
ST D

is
ta

nce

(T
hre

sh
old

 0
.5

)

A
ST D

is
ta

nce

(T
hre

sh
old

 3
.5

)

Resu
lt

Set

D
ata

 T
ype

Exis
te

nce
 o

f

Err
or

Pa
ge

0

1

2

3

4

5

6

7

0 0

1.62

0 0

5.96
False Posit ive Rate(%)

Figure 18: FPR Comparison of Detection with Single Feature and Decision Tree

D
eci

si
on T

re
e

D
eci

si
on T

re
e

(A
ft
er

Pr
unin

g)

A
ST D

is
ta

nce

(T
hre

sh
old

 0
.5

)

A
ST D

is
ta

nce

(T
hre

sh
old

 3
.5

)

Resu
lt

Set

D
ata

 T
ype

Exis
te

nce
 o

f

Err
or

Pa
ge

0

10

20

30

40

50

60

70

80

90

22.22
25.93

20.37

48.15

72.22

37.04

False Negat ive Rate(%)

Figure 19: FNR Comparison of Detection with Single Feature and Decision Tree

D
eci

si
on T

re
e

D
eci

si
on T

re
e

(A
ft
er

Pr
unin

g)

A
ST D

is
ta

nce

(T
hre

sh
old

 0
.5

)

A
ST D

is
ta

nce

(T
hre

sh
old

 3
.5

)

Resu
lt

Set

D
ata

 T
ype

Exis
te

nce
 o

f

Err
or

Pa
ge

86

88

90

92

94

96

98

100
98.03 97.7

96.71

95.72

93.59

91.28

Accuracy(%)

Figure 20: Detection Accuracy Comparison with Single Feature and Decision Tree

94

Feature Threshold Classification
AST Edit
Distance

< 0.5 Safe
> 0.5 Attack

AST Edit
Distance

< 3.5 Safe
> 3.5 Attack

Result Set
Data Type

< 0.5 Safe
> 0.5 Attack

Existence of
Error Page

0 Safe
1 or 2 Attack

Table 12: Features and Thresholds for Single-Stage Detection

page existence is relatively high (5.96%).

For the FNR, decision tree approach (25.93%) and AST edit distance with threshold 0.5 (20.37%)

are at the same level. Using other three features would result a high FNR. The substantial FNRs are

mainly affected by the amount of common vulnerability exploits in training data, as analyzed pre-

viously. We expect the FNR to drop if the percentage of common vulnerability exploits in training

data is lower.

Overall, decision tree approach still has better detection accuracy than any other single-stage

detection as shown in Fig.20. It proves correlating detection result from features of multiple stages

can actually increase detection accuracy.

Moreover, comparing the detection accuracy of AST edit distance in Fig. 20 to the accuracy

using the same feature in Fig.17, the one in Fig. 20 which uses two variants has higher accuracy

than the one in Fig.17 which only uses ASP variant. This again proves employing diversity can

help improving attack detection accuracy.

95

6.3 Summary

In this section, we:

• Described the problems and solutions on implementing each stage of our attack detection

model.

• Collected training data and performed detection experiment on a real web application.

• Produced decision tree and evaluated its detection performance by comparing it with tradi-

tional anomaly-based approach and single-stage diversity detection approach.

The analysis of results from our experiments shows our approach has good detection accuracy

overall. Detection with the produced decision tree has low FPR and FNR comparing to other

approaches. It can detect most attacks that exploit vulnerability which only exists on specific

variant, and can also detect substantial amount of attacks that exploit common vulnerability.

Comparing our approach to several purely anomaly-based detections, our approach has the

best accuracy among them. This proves employing diversity can improve detection performance.

Comparing our approach to detections with single feature, our approach also has the best accuracy

among them. This proves correlating features of multiple stages can also improve detection perfor-

mance. Overall, the evaluation of detection experiment result demonstrates the advantage of our

approach.

96

Chapter 7

Conclusion

In this thesis, we proposed a multi-stage attack detection system employing opportunistic diversity.

Firstly, we evaluated the feasibility and effectiveness of this approach through a study in CVE

vulnerability database. After a thorough search in CVE, we identified the web applications that

have sufficient diversity among different versions, we also discovered the rare existence of common

vulnerability in these applications. This proves feasibility and effectiveness of our approach.

Secondly, we designed the attack detection model, using four stages with eight features. We

gave attack examples of each feature to show the type of attack it can detect; detailed score calcu-

lation for each feature is also introduced. Multiple features are correlated by decision tree learning,

we use the produced decision tree to detect attack.

Finally, we evaluated our approach by implementing it on a real web application with two

variants. The result shows our approach has good detection accuracy. We demonstrated the advan-

tage of our approach over purely anomaly-based detection or single-stage detection with our lower

97

false positive rate, false negative rate, and thus better accuracy. The detection of exploits on com-

mon vulnerability also shows the advantage of using multiple stages. Overall, this implementation

proves the contribution of our proposed detection system on previous approaches.

For future work, we will consider applying our approach to web applications with more com-

plex functionalities. Furthermore, additional features can also help to enrich our proposed attack

detection model.

98

Appendix A

CVE Entries for Applications with Common

Vulnerability

Application CVE Identifier CVE Entry

Active Bids
CVE-2009-4229 Multiple SQL injection vulnerabilities in ActiveWebSoft-

wares Active Bids allow remote attackers to execute ar-
bitrary SQL commands via (1) the catid parameter in the
PATH_INFO to the default URI or (2) the catid parameter to
default.asp. NOTE: this might overlap CVE-2009-0429.3.
NOTE: the provenance of this information is unknown; the
details are obtained solely from third party information.

CVE-2009-0429 Multiple SQL injection vulnerabilities in Active Bids al-
low remote attackers to execute arbitrary SQL commands
via the (1) search parameter to search.asp, (2) SortDir pa-
rameter to auctionsended.asp, and the (3) catid parameter to
wishlist.php.

CVE-2008-5640 SQL injection vulnerability in bidhistory.asp in Active Bids
3.5 allows remote attackers to execute arbitrary SQL com-
mands via the ItemID parameter.

99

BlogMe
CVE-2008-2175 SQL injection vulnerability in comments.php in Gamma

Scripts BlogMe PHP 1.1 allows remote attackers to execute
arbitrary SQL commands via the id parameter.

CVE-2007-2661 SQL injection vulnerability in archshow.asp in BlogMe 3.0
allows remote attackers to execute arbitrary SQL commands
via the var parameter, a different vector than CVE-2006-
5976.

CVE-2006-5976 Multiple SQL injection vulnerabilities in admin_login.asp
in BlogMe 3.0 allow remote attackers to execute arbitrary
SQL commands via the (1) Username or (2) Password field.
NOTE: some of these details are obtained from third party
information.

Brooky eStore CVE-2003-0585 SQL injection vulnerability in login.asp of Brooky eStore
1.0.1 through 1.0.2b allows remote attackers to bypass au-
thentication and execute arbitrary SQL code via the (1) user
or (2) pass parameters.

DVBBS
CVE-2009-4470 SQL injection vulnerability in boardrule.php in DVBBS 2.0

allows remote attackers to execute arbitrary SQL commands
via the groupboardid parameter.

CVE-2008-5222 SQL injection vulnerability in login.asp in Dvbbs 8.2.0 al-
lows remote attackers to execute arbitrary SQL commands
via the username parameter.

fipsGallery CVE-2006-6117 SQL injection vulnerability in index1.asp in fipsGallery 1.5
and earlier allows remote attackers to execute arbitrary SQL
commands via the which parameter.

Innovative CMS
(ICMS, formerly
Imoel-CMS)

CVE-2005-4397 SQL injection vulnerability in RunScript.asp iCMS allows
remote attackers to execute arbitrary SQL commands via
the Event_ID parameter.

JBOOK
CVE-2008-6391 SQL injection vulnerability in main.asp in Jbook allows re-

mote attackers to execute arbitrary SQL commands via the
username (user parameter).

CVE-2008-6376 SQL injection vulnerability in main.asp in Jbook allows re-
mote attackers to execute arbitrary SQL commands via the
password (pass parameter).

CVE-2006-1743 Multiple SQL injection vulnerabilities in form.php in JBook
1.4 allow remote attackers to execute arbitrary SQL com-
mands via the (1) nom or (2) mail parameters. NOTE: the
provenance of this information is unknown; the details are
obtained solely from third party information.

100

MAXCMS
CVE-2009-1818 SQL injection vulnerability in admin/admin_manager.asp

in MaxCMS 2.0 allows remote attackers to execute arbi-
trary SQL commands via an m_username cookie in an add
action.

CVE-2009-1764 SQL injection vulnerability in inc/ajax.asp in MaxCMS 2.0
allows remote attackers to execute arbitrary SQL commands
via the id parameter in a digg action.

MidiCart
CVE-2006-6209 Multiple SQL injection vulnerabilities in MidiCart ASP

Shopping Cart and ASP Plus Shopping Cart allow remote
attackers to execute arbitrary SQL commands via the (1)
id2006quant parameter to (a) item_show.asp, or the (2)
maingroup or (3) secondgroup parameter to (b) item_-
list.asp. NOTE: the code_no parameter to Item_Show.asp
is covered by CVE-2005-2601.

CVE-2005-2601 SQL injection vulnerability in MidiCart allows remote at-
tackers to execute arbitrary SQL commands via the code_no
parameter to (1) Item_Show.asp or (2) search_list.asp.

CVE-2005-1503 Multiple SQL injection vulnerabilities in MidiCart PHP
Shopping Cart allow remote attackers to execute arbi-
trary SQL commands via the (1) searchstring parameter
to search_list.php, the (2) maingroup or (3) secondgroup
parameters to item_list.php, or (4) code_no parameter to
item_show.php.

myNewsletter
CVE-2008-1295 SQL injection vulnerability in archives.php in Gregory

Kokanosky (aka Greg’s Place) phpMyNewsletter 0.8 beta
5 and earlier allows remote attackers to execute arbitrary
SQL commands via the msg_id parameter.

CVE-2006-2887 Multiple SQL injection vulnerabilities in myNewsletter
1.1.2 and earlier allow remote attackers to execute arbitrary
SQL commands via the UserName parameter in (1) vali-
datelogin.asp or (2) adminlogin.asp.

Pre Classified
Listings

CVE-2010-1370 SQL injection vulnerability in detailad.asp in Pre Classified
Listings ASP allows remote attackers to execute arbitrary
SQL commands via the siteid parameter.

CVE-2010-1369 SQL injection vulnerability in signup.asp in Pre Classified
Listings ASP allows remote attackers to execute arbitrary
SQL commands via the email parameter.

CVE-2008-6887 SQL injection vulnerability in detailad.asp in Pre Classi-
fied Listings 1.0 allows remote attackers to execute arbitrary
SQL commands via the siteid parameter.

CVE-2007-2675 SQL injection vulnerability in search.php in Pre Classifieds
Listings 1.0 allows remote attackers to execute arbitrary
SQL commands via the category parameter.

101

WmsCms CVE-2010-2317 Multiple SQL injection vulnerabilities in WmsCms 2.0 and
earlier allow remote attackers to execute arbitrary SQL
commands via the (1) search, (2) sbr, (3) pid, (4) sbl, and
(5) FilePath parameters to default.asp; and the (6) sbr, (7)
pr, and (8) psPrice parameters to printpage.asp.

Absolute News
Manager(.NET)

CVE-2007-6269 Multiple SQL injection vulnerabilities in xlaabso-
lutenm.aspx in Absolute News Manager.NET 5.1 allow
remote attackers to execute arbitrary SQL commands via
the (1) z, (2) pz, (3) ord, and (4) sort parameters.

CVE-2008-2757 SQL injection vulnerability in search.asp in Xigla Abso-
lute News Manager XE 3.2 allows remote authenticated ad-
ministrators to execute arbitrary SQL commands via the or-
derby parameter.

Active Price
Comparison

CVE-2008-5975 SQL injection vulnerability in links.asp in Active Price
Comparison 4.0 allows remote attackers to execute arbi-
trary SQL commands via the linkid parameter. NOTE: the
provenance of this information is unknown; the details are
obtained solely from third party information.

CVE-2008-5974 Multiple SQL injection vulnerabilities in login.aspx in Ac-
tive Price Comparison 4.0 allow remote attackers to execute
arbitrary SQL commands via the (1) password and (2) user-
name fields.

CVE-2008-5638 Multiple SQL injection vulnerabilities in Active Price Com-
parison 4 allow remote attackers to execute arbitrary SQL
commands via the (1) ProductID parameter to reviews.aspx
or the (2) linkid parameter to links.asp.

WebEvents CVE-2007-4108 SQL injection vulnerability in sign_in.aspx in WebEvents
(Online Event Registration Template) allows remote attack-
ers to execute arbitrary SQL commands via the Password
parameter.

Xigla Absolute
Banner Manager
(.NET)

CVE-2008-2760 SQL injection vulnerability in searchbanners.asp in Xigla
Absolute Banner Manager XE 2.0 allows remote authen-
ticated administrators to execute arbitrary SQL commands
via the orderby parameter.

CVE-2007-6291 SQL injection vulnerability in abm.aspx in Xigla Absolute
Banner Manager .NET 4.0 allows remote attackers to exe-
cute arbitrary SQL commands via the z parameter.

102

Bibliography

[1] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-Tuong,

and J. Hiser. N-variant systems: A secretless framework for security through diversity. De-

fense Technical Information Center, 2006.

[2] Vipin Swarup Cliff Wang X. Sean Wang Sushil Jajodia, Anup K. Ghosh. Moving Target

Defense. Advances in Information Security.

[3] Sandeep Nair Narayanan, Alwyn Roshan Pais, and Radhesh Mohandas. Detection and pre-

vention of sql injection attacks using semantic equivalence. In Computer Networks and In-

telligent Computing, pages 103–112. Springer, 2011.

[4] Jayant Madhavan, Philip A Bernstein, and Erhard Rahm. Generic schema matching with

cupid. In Proceedings of the International Conference on Very Large Data Bases, pages

49–58, 2001.

[5] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. ACM Sigmod

Record, 29(2):439–450, 2000.

103

[6] Fredrik Valeur, Darren Mutz, and Giovanni Vigna. A learning-based approach to the detection

of sql attacks. In Detection of Intrusions and Malware, and Vulnerability Assessment, pages

123–140. Springer, 2005.

[7] WG Halfond, J. Viegas, and A. Orso. A classification of sql-injection attacks and countermea-

sures. In Proceedings of the IEEE International Symposium on Secure Software Engineering,

pages 65–81. IEEE, 2006.

[8] The heartbleed bug. http://www.heartbleed.com/.

[9] B. Littlewood and L. Strigini. Redundancy and diversity in security. Computer Security–

ESORICS 2004, pages 423–438, 2004.

[10] D. Gao, M. Reiter, and D. Song. Behavioral distance measurement using hidden markov

models. In Recent Advances in Intrusion Detection, pages 19–40. Springer, 2006.

[11] B.G. Chun, P. Maniatis, and S. Shenker. Diverse replication for single-machine byzantine-

fault tolerance. In USENIX Annual Technical Conference, pages 287–292, 2008.

[12] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro. Os diversity for intrusion

tolerance: Myth or reality? In Dependable Systems & Networks (DSN), 2011 IEEE/IFIP

41st International Conference on, pages 383–394. IEEE, 2011.

[13] S. Bhatkar, D.C. DuVarney, and R. Sekar. Address obfuscation: An efficient approach to

combat a broad range of memory error exploits. In Proceedings of the 12th USENIX security

symposium, volume 120. Washington, DC., 2003.

104

[14] The pax team. http://pax.grsecurity.net/.

[15] G.S. Kc, A.D. Keromytis, and V. Prevelakis. Countering code-injection attacks with

instruction-set randomization. In Proceedings of the 10th ACM conference on Computer

and communications security, pages 272–280. ACM, 2003.

[16] S. Bhatkar and R. Sekar. Data space randomization. Detection of Intrusions and Malware,

and Vulnerability Assessment, pages 1–22, 2008.

[17] Common vulnerabilities and exposures (cve) database. http://cve.mitre.org/.

[18] Jose Fonseca, Marco Vieira, and Henrique Madeira. Testing and comparing web vulnerability

scanning tools for sql injection and xss attacks. In Dependable Computing, 2007. PRDC

2007. 13th Pacific Rim International Symposium on, pages 365–372. IEEE, 2007.

[19] Sql injection. https://www.owasp.org/index.php/SQL_Injection.

[20] Christoph Wehrmann. Cross site scripting.

[21] Kevin Spett. Cross-site scripting. SPI Labs, 2005.

[22] Daniel Geer, Rebecca Bace, Peter Gutmann, Perry Metzger, Charles P Pfleeger, John S Quar-

terman, and Bruce Schneier. Cyberinsecurity: The cost of monopoly. Computer and Com-

munications Industry Association (CCIA), 2003.

[23] Mark Stamp. Risks of monoculture. Communications of the ACM, 47(3):120, 2004.

105

[24] F. Majorczyk and J.C. Demay. Automated instruction-set randomization for web applications

in diversified redundant systems. In Availability, Reliability and Security, 2009. ARES’09.

International Conference on, pages 978–983. IEEE, 2009.

[25] Marco Casassa Mont, Adrian Baldwin, Yolanta Beres, Keith Harrison, Martin Sadler, and

Simon Shiu. Towards diversity of cots software applications: Reducing risks of widespread

faults and attacks. HP Laboratories, Bristol, UK HPL-2002-178, 2002.

[26] Eric Totel, Frédéric Majorczyk, and Ludovic Mé. Cots diversity based intrusion detection

and application to web servers. In Recent Advances in Intrusion Detection, pages 43–62.

Springer, 2006.

[27] B. Salamat, T. Jackson, A. Gal, and M. Franz. Orchestra: intrusion detection using parallel

execution and monitoring of program variants in user-space. In Proceedings of the 4th ACM

European conference on Computer systems, pages 33–46. ACM, 2009.

[28] M. Franz. E unibus pluram: massive-scale software diversity as a defense mechanism. In

Proceedings of the 2010 workshop on New security paradigms, pages 7–16. ACM, 2010.

[29] The security content automation protocol (scap). http://scap.nist.gov/.

[30] Us national vulnerability database(nvd). http://nvd.nist.gov/.

[31] Cve identifier. http://cve.mitre.org/cve/identifiers/index.html.

[32] Zhendong Su and Gary Wassermann. The essence of command injection attacks in web

applications. In ACM SIGPLAN Notices, volume 41, pages 372–382. ACM, 2006.

106

[33] Hong-Hai Do and Erhard Rahm. Coma: a system for flexible combination of schema match-

ing approaches. In Proceedings of the 28th international conference on Very Large Data

Bases, pages 610–621. VLDB Endowment, 2002.

[34] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. Semantic schema matching.

In On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE, pages

347–365. Springer, 2005.

[35] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-Match: an algorithm and an

implementation of semantic matching. Springer, 2004.

[36] Dennis Shasha, Jason TL Wang, and Rosalba Giugno. Algorithmics and applications of tree

and graph searching. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems, pages 39–52. ACM, 2002.

[37] Natalya F Noy and Mark A Musen. Anchor-prompt: Using non-local context for semantic

matching. In Proceedings of the workshop on ontologies and information sharing at the

international joint conference on artificial intelligence (IJCAI), pages 63–70, 2001.

[38] Debin Gao, Michael K Reiter, and Dawn Song. Behavioral distance for intrusion detection.

In Recent Advances in Intrusion Detection, pages 63–81. Springer, 2006.

[39] John Mingers. An empirical comparison of selection measures for decision-tree induction.

Machine learning, 3(4):319–342, 1989.

[40] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In

KDD, pages 202–207, 1996.

107

[41] Usama M Fayyad and Keki B Irani. On the handling of continuous-valued attributes in

decision tree generation. Machine learning, 8(1):87–102, 1992.

[42] John T Kent. Information gain and a general measure of correlation. Biometrika, 70(1):163–

173, 1983.

[43] Open web applications security project (owasp). https://www.owasp.org/.

[44] O. Maor and A. Shulman. Sql injection signatures evasion. Imperva, Inc., Apr, 2004.

[45] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A static analysis framework for

detecting sql injection vulnerabilities. In Computer Software and Applications Conference,

2007. COMPSAC 2007. 31st Annual International, volume 1, pages 87–96. IEEE, 2007.

[46] C. Gould, Z. Su, and P. Devanbu. Jdbc checker: A static analysis tool for sql/jdbc applica-

tions. In Proceedings of the 26th International Conference on Software Engineering, pages

697–698. IEEE Computer Society, 2004.

[47] W.G.J. Halfond and A. Orso. Amnesia: analysis and monitoring for neutralizing sql-injection

attacks. In Proceedings of the 20th IEEE/ACM international Conference on Automated soft-

ware engineering, pages 174–183. ACM, 2005.

[48] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishnan. Candid: pre-

venting sql injection attacks using dynamic candidate evaluations. In Proceedings of the 14th

ACM conference on Computer and communications security, CCS ’07, pages 12–24, New

York, NY, USA, 2007. ACM.

108

[49] G. Buehrer, B.W. Weide, and P.A.G. Sivilotti. Using parse tree validation to prevent sql

injection attacks. In Proceedings of the 5th international workshop on Software engineering

and middleware, pages 106–113. ACM, 2005.

[50] Z. Su and G. Wassermann. The essence of command injection attacks in web applications.

In ACM SIGPLAN Notices, volume 41, pages 372–382. ACM, 2006.

[51] S. Boyd and A. Keromytis. Sqlrand: Preventing sql injection attacks. In Applied Cryptogra-

phy and Network Security, pages 292–302. Springer, 2004.

[52] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against injection attacks through

context-sensitive string evaluation. In Recent Advances in Intrusion Detection, pages 124–

145. Springer, 2006.

[53] V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities in java applications

with static analysis. In Proceedings of the 14th conference on USENIX Security Symposium,

volume 14, pages 18–18, 2005.

[54] William R Cook and Siddhartha Rai. Safe query objects: statically typed objects as remotely

executable queries. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th Interna-

tional Conference on, pages 97–106. IEEE, 2005.

[55] David Scott and Richard Sharp. Abstracting application-level web security. In Proceedings

of the 11th international conference on World Wide Web, pages 396–407. ACM, 2002.

109

[56] Michael Martin, Benjamin Livshits, and Monica S Lam. Finding application errors and se-

curity flaws using pql: a program query language. In ACM SIGPLAN Notices, volume 40,

pages 365–383. ACM, 2005.

[57] R.A. McClure and I.H. Kruger. Sql dom: compile time checking of dynamic sql statements.

In Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on,

pages 88–96. IEEE, 2005.

[58] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, and Chung-Hung Tsai. Web application

security assessment by fault injection and behavior monitoring. In Proceedings of the 12th

international conference on World Wide Web, pages 148–159. ACM, 2003.

[59] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen

Kuo. Securing web application code by static analysis and runtime protection. In Proceedings

of the 13th international conference on World Wide Web, pages 40–52. ACM, 2004.

[60] B. Salamat, C. Wimmer, and M. Franz. Synchronous signal delivery in a multi-variant intru-

sion detection system. Technical report, Technical report, School of Information and Com-

puter Sciences, University of California, Irvine, 2009.

[61] Joni Fraga and David Powell. A fault-and intrusion-tolerant file system. In Proceedings of

the 3rd International Conference on Computer Security, volume 203. Ireland, 1985.

[62] Alysson Neves Bessani. From byzantine fault tolerance to intrusion tolerance. 2012.

110

[63] A. Gorbenko, V. Kharchenko, O. Tarasyuk, and A. Romanovsky. Using diversity in cloud-

based deployment environment to avoid intrusions. Software Engineering for Resilient Sys-

tems, pages 145–155, 2011.

[64] M. Garcia, N. Neves, and A. Bessani. Diversys: Diverse rejuvenation system.

[65] J. Antunes and N. Neves. Diveinto: Supporting diversity in intrusion-tolerant systems. In

Reliable Distributed Systems (SRDS), 2011 30th IEEE Symposium on, pages 137–146. IEEE,

2011.

[66] Algirdas Avizienis and Liming Chen. On the implementation of n-version programming

for software fault tolerance during execution. In Proc. IEEE COMPSAC, volume 77, pages

149–155, 1977.

[67] A. Avizienis. The n-version approach to fault-tolerant software. Software Engineering, IEEE

Transactions on, SE-11(12):1491 – 1501, dec. 1985.

[68] M.R. Lyu, J.H. Chen, and A. Avizienis. Software diversity metrics and measurements. In

Computer Software and Applications Conference, pages 69–78, 1992.

[69] S. Mitra, N.R. Saxena, and E.J. McCluskey. A design diversity metric and analysis of redun-

dant systems. IEEE Trans. Comput., 51(5):498–510, May 2002.

[70] B. Littlewood, P. Popov, and L. Strigini. Modeling software design diversity: A review. ACM

Comput. Surv., 33(2):177–208, June 2001.

111

[71] R.A. Maxion. Use of diversity as a defense mechanism. In Proceedings of the 2005 Workshop

on New Security Paradigms, NSPW ’05, pages 21–22, New York, NY, USA, 2005. ACM.

[72] B. Salamat, T. Jackson, G. Wagner, C. Wimmer, and M. Franz. Runtime defense against

code injection attacks using replicated execution. Dependable and Secure Computing, IEEE

Transactions on, 8(4):588–601, 2011.

[73] A. Nguyen-Tuong, D. Evans, J.C. Knight, B. Cox, and J.W. Davidson. Security through

redundant data diversity. In Dependable Systems and Networks With FTCS and DCC, 2008.

DSN 2008. IEEE International Conference on, pages 187–196. IEEE, 2008.

[74] Shuo Chen, Jun Xu, Emre C Sezer, Prachi Gauriar, and Ravishankar K Iyer. Non-control-

data attacks are realistic threats. In Proceedings of the 14th conference on USENIX Security

Symposium, volume 14, pages 12–12, 2005.

[75] Y. Yang, S. Zhu, and G. Cao. Improving sensor network immunity under worm attacks: a

software diversity approach. In Proceedings of the 9th ACM international symposium on

Mobile ad hoc networking and computing, pages 149–158. ACM, 2008.

[76] Alessandro Orso, Wenke Lee, and Adam Shostack. Preventing sql code injection by combin-

ing static and runtime analysis. Technical report, DTIC Document, 2008.

[77] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A versatile

graph matching algorithm and its application to schema matching. In Data Engineering,

2002. Proceedings. 18th International Conference on, pages 117–128. IEEE, 2002.

112

[78] Midicart official site. http://www.midicart.se.

[79] The open source vulnerability database (osvdb). http://www.osvdb.org/.

[80] Mateusz Pawlik and Nikolaus Augsten. Rted: a robust algorithm for the tree edit distance.

Proceedings of the VLDB Endowment, 5(4):334–345, 2011.

[81] John Ross Quinlan. C4. 5: programs for machine learning, volume 1. Morgan kaufmann,

1993.

[82] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[83] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and

model selection. In IJCAI, volume 14, pages 1137–1145, 1995.

[84] General sql parser java official site. http://www.sqlparser.com/

sql-parser-java.php.

[85] Keyboard simulator official site. http://www.anjian.com/.

113

