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Abstract 

 

The optics of turbulent compressible vortices 

Rahul Rampal 

 

In the past, a few investigators have examined theoretically and experimentally the 

optical properties of laminar compressible vortices. However, there is no theoretical study found 

in the scientific or technical literature for the turbulent kind. This thesis deals with the refracted 

shadows produced by turbulent compressible vortices. The construction of the theory is 

accomplished extending the previous laminar approach to include the effects of turbulence. 

The pressure, temperature and density are calculated solving numerically the 

conservation of mass, momentum and energy equations along with the equation of state for the 

case of a turbulent vortex evolving in a compressible, viscous, heat conducting and calorically 

perfect gas in an unconfined domain. The radial distribution of light intensity is then deduced 

using the past general mathematical relation that links the density to luminosity of the 

shadowgraphs casted on an image plane by light ray refraction. 

The differences in luminosity of laminar and turbulent vortices with Mach numbers 

ranging from 0.4 to 0.8 are compared. The darkness of the central disc and luminosity of the 

bright ring are found to be a function of the vortex Mach number: the higher the Mach number, 

the darker the disks and the brighter are the halos. Vortices of the turbulent kind are found to 

produce different shadow signatures than the laminar. Alike to the laminar case and depending 

on the focal length, turbulent vortices can also generate the previously disputed two caustics. The 



 iv 

last effect is shown to generate the combination of dark circular area near the vortex center, 

followed by a thin halo that is succeeded by a dim ring, which is subsequently followed by a 

thicker corona. 

In the future, the present methodology can potentially be developed to recover the 

thermo-fluid properties optically. 

 

Keywords: Vortex model, compressible vortices, turbulent vortices, optics of vortices, 

shadowgraphy.  
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Chapter 1.  Introduction 
 

 

1.1. General 

 
Although the scientific study of vortices begun in the Victorian era, the study on vortex 

optics started relatively late. Berry and Hajnal (1983) published a study on the visual properties 

of solid bodies such as spheres floating in slightly deformed water surfaces. Based on the 

principle of caustics, they also examined the shadows casted by a decaying free-vortex. Sterling 

et al. (1987) driven by curiosity investigated the appearance of dark disks surrounded by bright 

rings at the bottom of a swimming pool when the free-water vortex surface is uniformly 

illuminated from above. This strange manifestation was noticed first in March of 1986, by the 

last author (see Fig. 1.1). They also identified the cause of the shadowy disk-bright/halo 

combination in images using Snell’s law and employed different free-surface profiles generated 

by various types of vortices. The theoretical surface of revolution profiles that they explored 

were: parabolic, hyperbolic, and finally their combination.  
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Figure 1.1. The shadows casted at the bottom of a swimming pool by vortices (Kiehn, 1987). 

  

Two systems are analogous, if they are described by similar sets of dimensionless 

equations. A well-known example of flow fields of this kind is the likeness of free-surface 

shallow water hydraulics and the two-dimensional compressible gas flows (Landau & Lifshitz, 

1987). According to this similitude, the perturbation in liquid elevations in open channel flow 

corresponds to the gas density variations in a compressible flow. Although this analogy is not 

rigorous (Thompson, 1972), shallow water experiments have been routinely used to qualitatively 

describe compressible gas flows. 

There are a number of ways that one can use to identify and study compressible vortices. 

Shadowgraphy (the study of shadows) is a simple method to visualize these vortices. The 

technique uses the fact that the value of the refractive index depends on the density of 

Falaco Solitons 2

1 The Falaco Soliton - A Topological Defect in a swim-
ming pool.

1.1 Preface

During March of 1986, while visiting an old friend in Rio de Janeiro, Brazil, the present au-
thor became aware of a significant topological event involving solitons that can be replicated
experimentally by almost everyone with access to a swimming pool. Study the photo which
was taken by David Radabaugh, in the late afternoon, Houston, TX 1986.

Figure 1. Three pairs of FALACO SOLITONS, a few minutes after
creation. The kinetic energy and the angular momentum of a pair of Rankine
vortices created in the free surface of water quickly decay into dimpled, locally
unstable, singular surfaces that have an extraordinary lifetime of many minutes
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homogenous transparent media. Since, the speed of light in gases is only marginally different 

than that in empty space, the Gladstone-Dale relation: 

	
   	
   	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
       …   (1.1) 

estimates reasonably dilute gases (Liepmann & Roshko, 1957). 

When the gas density varies at a section, light rays passing through it will refract, thus 

casting a shadowy picture on the image plane. In reverse, one can obtain in theory, the density 

variation from the shadow-light intensity signature. The other basic properties can then be 

recovered using an appropriate vortex model. 

There have been a relatively decent number of contributions on the visualization of 

compressible blade vortices in the helicopter aerodynamics community. Heavily loaded 

helicopter blades produce compressible eddies that when illuminated, due to the changes in 

refractive index, become visible. Parthasarathy et al. (1987), Norman and Light (1986) and 

Swanson and Light (1992) attempted to relate the fundamental properties of tip vortices in 

helicopter blades using wide field shadowgraphy. 

The likeness between gaseous and liquid vortices can be seen vividly in the shadow 

images of Parthasarathy et al. (1987), Swanson and Light (1992) and Sterling et al. (1987). The 

last similar appearance is, of course, due to the previously mentioned origin in which the 

refraction index depends on the density distribution of gas and the free surface elevation 

curvature in liquids. Comparable shadowgraphs, due to the liquid/gas analogy, disclosing clearly 

the presence of an assortment of vortices in a liquid, generated in the wakes of a translating 

η −1
ρ

"

#
$

%

&
'=C
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wooden plank and in a supersonic stream behind a triangular wedge are shown in Figs. 1.2 (a) 

and (b), respectively.  

 

(a) 

 

(b) 
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The visualization of compressible vortices through the method of shadow has 

received considerable attention from the helicopter community5-7,9. Heavily laden 

helicopter blades may emit tip vortices that are in the compressible region of the flow 

spectrum. Upon illumination, density changes trigger a variation in the refraction index 

thus making the vortex visible. 

 

 

Figure 3. The diffraction of shock wave by a finite wedge 
illustrating the dark disk/halo optical manifestation of 
vortices8. 

 

The goal of Parthasarthy et al.5 and Norman and Light9 investigations, was to 

develop an experimental technique, based on the fundamental principles of 

shadowgraphy, in order to estimate several flow properties of helicopter tip vortices. 

Swanson and Light6 presented shadowgraph flow visualizations produced by a tilt rotor 

wing in hover revealing the emergence of some unusual banded shadow patterns. The 

nature of these peculiar shade manifestations will be discussed in the last section of this 

paper. The earlier theoretical treatment by Parthasarthy et al.5 Norman and Light9 were 

based on simple gas dynamics and optical principles complimented by several empirical 

formulae. Bagai and Leishman7 contributed into a more methodical analytical treatment 

of the problem assuming the flowfield to be homentropic. They then proceeded to 

demonstrate that this technique could indeed offer an effective way to measure several of 

the vortex flow properties non-intrusively, where separation (due to centrifugal action) of 



 5 

Figure 1.2. (a) Vortices in the supersonic wake behind a triangular wedge identifiable with the 

dark disk/bright rings (Van Dyke, 1982). (b) Similar vortex patterns were produced at the bottom 

of a swimming pool generated using a thin wooden plank by Vatistas and Abderrahmane (2008). 

 

Bagai and Leishman (1993) derived a mathematical relation for direct shadowgraphs and 

Schlieren contrast variation. They established that the differences in contrast are sensitive to the 

overall vortex profile as well as the location of peak peripheral velocity. Vatistas (2006a) studied 

the refracted shadows of a n = 2 laminar compressible vortices. He allowed the flow to transfer 

heat and dissipate mechanical energy instead of being isentropic. Porter (2011) examined the 

optical environment of helicopter tip vortices in both near and far field under different flight 

conditions using various techniques including shadowgraphy.  

Recent work has shown that the general topic could also be of interest in solar physics 

(Vatistas, 2011). The dark disk shape appearance in the central part of sunspots is traditionally 

attributed to a sort of cooling effect (due to an unidentified cause) experienced by the ionized 

gas. However, the last cannot justify at the same time the bright ring-like corona (see Fig. 1.3 

(a)) or even worst the second dimmed ring followed by an additional bright ring (see Fig. 1.3 

(b)). An alternate explanation that can account at the same time for all of these effects is based 

on light refraction due to density variations in a compressible solar plasma whirl in Heliosphere 

(Vatistas, 2011). 
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             (a) 

 

      
      (b) 

 

Figure 1.3. (a) Heliograph image of a sunspot showing a single dark disk/bright ring combination 

(Hale, 1924). (b) Sunspot image for a double combination of disks followed by halos (Hale, 

2006). 
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Although the first experiments of Sterling et al. (1987) were performed illuminating the 

liquid vortices from above, recent test made in our laboratory have indicated that the same 

shadow will be generated if illumination is made from below (see Fig. 1.4). The last is an 

essential piece of information since the light produced in the Heliosphere, due to thermonuclear 

hydrogen fusion, produces photons that emanate outwards from the solar surface. By analogy, 

the same shadow signature will be obtained if a compressible vortex is illuminated from either 

side. 

 

  

    (a) 
 

�
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(b) 
 

 

  

 
                   (c)                                  (d) 

 Figure 1.4. (a) Refraction of light in a liquid vortex with an interface while illuminating the 

whirl from below (Vatistas, 2011). (b) Refraction of light in a liquid vortex with an interface 
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while illuminating the whirl from above. (Aboelkassem & Vatistas, 2007). (c) Actual 

shadowgraph of a liquid vortex photographed recently in our laboratory, generated towing a flat 

ruler in a water tank (Vatistas, 2011). (d) The radial profile of light intensity obtained from the 

digitized image (Vatistas, 2011). 

 

1.2. Thesis objectives   

 
In this thesis, taking advantage of the recent advances in the characterization of vortices 

(Vatistas & Badwal, April 2014, March, 2014), the optics of turbulent compressible heat 

conducting whirls is now examined numerically. Comparison between the laminar and turbulent 

compressible vortices will be made using numerical shadowgraphy. Different focal lengths are 

used to study their effect on the shadows casted in the image plane. 

 

The main objectives of this thesis are: 

• Simulate the shadows generated by turbulent gaseous vortices, considering a heat-

conducting medium of large extend.  

• Obtain numerically the radial distribution of the refracted light intensity of these vortices. 

• Examine the effect that Mach number and focal length have on the light intensity profile. 

• Compare the differences of intensity distributions between turbulent and laminar 

compressible vortices under the same conditions.	
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Chapter 2. Literature Review 
 

	
  

2.1. Introduction to vortices 

 
Vortices are important forms of fluid motion that have their origin on the type of rotation 

that elementary fluid element undergo. In the words of Saffman and Baker (1979), considering 

the original form of a vortex proposed by Rankine: 

“A vortex is a finite volume of rotational fluid, bounded by irrotational fluid or solid walls.” 

 Vortices found in nature and engineering, have different sizes, shapes and strengths. They 

can be as small as a tiny turbulent eddy (10-4 m) to as large as planetary vortices (1010 m). 

Common examples of this type of fluid motion include bathtub vortices, tornadoes, waterspouts, 

hurricanes, airplanes’ trailing vortices, whirls in gas turbines and the red spot in Jupiter 

atmosphere.  

In order to realize the intended goal, engineers have previously exploited the 

advantageous properties of vortices. Various industrial applications like vortex tubes, heat 

exchangers, separators and vortex combustors etc. are prime examples where the vortex is 

necessary for the proper operation of the equipment. However, in some other applications, the 

presence of vortices could be highly undesirable. A representative paradigm of the unwanted 

effect is the wingtip vortices where the induced drag caused by them, counteracts the thrust and 

thus, decreases the wings’ lifting efficiency. The presence of these strong whirls produce also 
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vibrations and noise. These have been the main reasons as to why engineers have tried hard to 

reduce or even eliminate their adverse contributions. 

Vorticity is the fluid property that characterizes the rotation of the elementary fluid 

elements.  Depending on their vorticity value, these are classified as either free or forced 

vortices. In a free vortex, the curl (or vorticity) of the velocity vector field is zero, fluid elements 

as they move, do not rotate about their own axes and as such this type of eddies are also referred 

to as irrotational. Since, under this condition, a velocity potential exists they are also known as 

potential. In a forced vortex, the curl of velocity field is non-zero (vorticity is not null) and thus, 

these are rotational vortices. 

If the tangential velocity in a vortex is considerably larger than the radial and axial 

components, these are classified as strong or intense vortices. In addition, if most of their 

vorticity exist within the central region (the core), these are identified as concentrated. 

	
  

2.2. Vortex models 

 
Vortices are considered as one of the most cumbersome subjects in fluid dynamics. There 

had been a number of attempts to explain and analytically represent them through mathematical 

models. Rankine (1858) and Helmholtz (1858)  gave separately mathematical description of 

vortex motion that are now considered as the first step towards the scientific description of 

vortices. Helmholtz (1858) presented his three celebrated theorems on vorticity. Rankine (1858) 

proposed a model, which related the tangential velocity to the radius. This model assumes a 
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forced vortex to exist within the core followed by a potential vortex outside the core 

. 

As is the case with any original attempt, Rankine’s simple archetype has several 

problems. The radial and axial velocity components are zero. Furthermore, there is a jump 

discontinuity for the vorticity at the point of transition (rc, core radius) and the theoretical 

tangential velocity overestimates the actual. 

Burgers (1948) improved Rankine’s model to better correlate the experimental results. 

Unfortunately, in Burgers representation of real vortices, the radial velocity is unbounded in the 

radial direction and as such it is not suitable for unconfined vortices. The previous formulations 

pertained to one cell flow configuration in the radial-axial plane (see Fig. 2.1(a)). 

Sullivan (1959) proposed an alternate two-cell vortex model (Fig. 2.1.(b)), that have the 

same physical impediments of problem as Burgers (1948). 

Vatistas et al. (1991) came up with a vortex formulation presently known as Vatistas 

vortex model. The model has a constant ‘n’ that can only assume values greater than 1. 

Subsequently, Vatistas and his team advanced the original model (Vatistas, 1998, 2006b; 

Vatistas & Aboelkassem, 2006a, 2006b; Vatistas et al., 2005) that can better explain the physics 

of decaying vortices. 

 

 

r ≤ rc( )

r ≥ rc( )



 13 

 

          (a)             (b) 

Figure 2.1. Flow pattern structure in the r-z plane for (a) one- and (b) two-cell vortices. (Credits: 

G.H. Vatistas) 

 

Some of the most known and heavily used incompressible steady vortex models are 

discussed next in more detail. 

 

2.2.1. The Rankine model 

 
Rankine (1858) proposed the simplest of the vortex models. He neglected both radial and 

axial velocity components and hypothesized that the tangential velocity component was only a 

function of the radius. His formulation assumed a linear distribution of tangential velocity inside 

the core and hyperbolic variation outside the core i.e. he assumed a forced vortex inside the core 

and free vortex outside. Mathematically, 

                                            …(2.1) 

0 1 2 3
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z
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And U = W = 0                        …(2.2) 

This model approximates reasonably the experimental tangential velocity distribution 

except in the neighborhood of the core. The static pressure correlation with the observed values 

is also reasonable (Vatistas, 1998) which indicates that non-conformities of velocity with the 

experiment near ξ = 1 does not influence the pressure in a drastic way. The last velocity profile, 

however, produces a jump discontinuity at core for the associated vorticity, which together with 

the absence of radial and axial velocity components makes this model unrealistic. 

 

2.2.2. The Burgers model 

Burgers (1948) proposed a model that provides for a smooth transition of the tangential 

velocity near the core, assuming a linear radial velocity distribution. 

U = −
2κ
Re

ξ
	
   	
   	
   	
   	
   	
   …(2.3)	
  

 

Using the above radial velocity, the tangential and axial velocity components are found 

from the θ-momentum and continuity equations, respectively: 

V =
1
ξ
1− exp −κξ 2( ){ }

	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
   …(2.4)
	
  

W =
4κ
Re.ζ 	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   …(2.5)

	
  

This model, however, has serious limitation that the radial velocity becomes infinite 

when ξ approaches infinity. The last makes the formulation inapplicable to unconfined vortices 

without some further drastic simplifications. 
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2.2.3. The Vatistas model 

 

Vatistas et al. (1991) formulated a new vortex model that assumes the following 

tangential velocity component. 

  
      …(2.6)

 

The above assumption was based on the work on concentrated vortices in vortex 

chambers where the azimuthal velocity component does not depend strongly on axial direction 

(Vatistas et al., 1986). Based on Eq. (2.6), the radial velocity component is then deducted from 

the θ-momentum equation. 

   
	
   	
   	
   	
   	
   …(2.7)	
  

From continuity equation and Eq. (2.7), the axial velocity component is given by 

	
   	
   	
     …(2.8)
 

For n =1, it represents Scully’s (Scully, 1975) model while n→∞, it represents Rankine’s 

(1858) model. For n = 2, the tangential velocity profile comes very close to Burgers (1948). 

Because of its simplicity and non-contradictory nature, it has been widely used by a number of 

scientist and engineers around the world. 
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Figure 2.2. Tangential velocity for n-vortex profiles for different values of n (Vatistas et al., 

1991). Depending on the choice of n, the velocity can assume profiles ranging from Rankine (n 

→ ∞) to Scully (n = 1). 

 

Vatistas (1998) suggested yet another model for self-similar intense vortices. This model 

can represent single- or double-celled intense vortices. He also showed that depending upon a 

scaling constant, the axial velocity component could have profiles ranging from jet-like to wake-

likes. In 2006, Vatistas and Aboelkassem (2006a) extended the previous work into compressible 

vortices. This model was used as a base to study the optical characteristics of intense vortices 

with the help of shadowgraphy. The density variation was achieved via the solution of the energy 

and state equations. 

Ramasamy and Leishman (2006) investigated turbulent helicopter blade tip vortices. 

They found that inside the core, the flow behaves as if it was laminar. There was a flow 

transition to turbulent conditions when a critical Reynolds number was reached. In turbulent 
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vortices, the tangential velocity outside the core was seen to change at slower pace than laminar 

case.  

Vatistas (2006b) proposed further a model, which included the effect of turbulence in tip 

vortices. The value of the new exponent, in the proposed tangential velocity component, was 

obtained by fitting the new velocity formulation to the experimental data using the least square 

method. Recently, Badwal (2014) combined the work of Vatistas and Aboelkassem (2006a) and 

Vatistas (2006b) to produce a formulation that is applicable to turbulent compressible vortices. 

This model is used in this thesis to study the optics of turbulent compressible vortices. 

 

2.3. Optical Method: Shadowgraphy 

 

The structure of vortices has been studied in the past using a number of experimental 

methods. Hot wire anemometry and multi-hole pitot-probes were used by Chigier and Corsiglia 

(1971) and Dosanjh et al. (1962), respectively. These are intrusive measuring methods that can 

disturb the flow and thus altering its structure. The Laser Doppler anemometry (LDA) and 

particle image Velocimetry (PIV) are not effective in resolving the velocity near the axis of 

rotation for the following reason. Inside the core, the high tangential velocity produces a finite 

centrifugal force that acts as a natural separator displacing the seed particles away and thus, 

creating a void.   

Optical density gradient methods like shadowgraphy have the advantage of being 

completely non-intrusive i.e. it do not disturb the flow. In addition, they do not require seed 
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particles to function. However, these are limited by the fundamental requirement that the flow 

field must be compressible.  

In principle, shadowgraphy (Merzkirch, 1974) does not require any optical component 

other than a light source and a recording plane (screen) onto which the shadow is projected (see 

Fig. 2.3). Due to light refraction, a shadow is generated on the image plane, its picture is 

recorded with a high-resolution digital camera and then, the recorded light intensity field is 

analyzed using the computer. 

	
  
Figure 2.3. Simple setup example of Shadowgraph without optical components (Merzkirch, 

1974). 

 
	
  
2.4. Vortex optics  

 

As discussed in chapter 1, Berry and Hajnal (1983) were among the first who initiated the 

work of studying vortices using the method of shadowgraphy. They studied analytically the 
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optical effects of deformed water surfaces by the principle of caustics. They supported their 

theory via three different examples: a straight floating edge, a small sphere and a dissipated free 

vortex.  

 

Figure 2.4. Experimentally obtained shadowgraphs of a decaying vortex showing two caustics 

(Berry & Hajnal, 1983). 

 

The caustic of the free vortex consisted of two roughly cylindrical sheets that join at a 

cusp-edged ring. They verified their results via experiments that dealt with the shadows obtained 

by a floating sphere and a decaying vortex. It was found that bright-edged caustic shadows occur 

only when a floating object depresses the water surface. If surface is raised, it acts as a diverging 

lens and hence, there are no real caustics. On one hand, when water is depressed, the shadow is 

consistently larger than that which would have resulted if the water surface were flat. On the 
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other hand, when surface was raised, the shadow was smaller. One of their main conclusions was 

also that the shadow patterns change with the wavelength and cannot be related by scaling.  

Sterling et al. (1987) provided an explanation as why the disks in liquid vortices are dark. 

They used Snell’s law to calculate the intensity distribution in the terms of radial distance and 

surface of revolution by considering Rankine vortex. They also explained the qualitative nature 

of intensity distribution for the specific surface profiles considering three surfaces of revolution. 

They concluded that the diameter of the dark disk ends where the bright ring appears, while the 

bright ring begins where the curvature of the free surface becomes negative. 

 

Figure 2.5. Shadowgraph of the dark-disk/halo appearance in a pair of vortices (Sterling et al., 

1987). 

 

It was also found convenient to study the rotor-generated flow-field in helicopters using 

shadowgraphy. Consequently, this technique became very popular in the helicopter community. 

Parthasarathy et al. (1987) visualized the trajectory and wake generated by helicopter blade tip 

vortices. They studied the effects of Mach number and angle of attack on the visibility of 
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vortices using this technique and concluded that it is feasible to use it in the study of flow fields 

generated by large main rotor either in a full-scale test or in a wind tunnel. The previous authors 

were also able to find the threshold value for S, which is a measure of visibility of 

shadowgraphs. 

Norman and Light (1986) used wide field shadowgraphy to formulate contrast variation 

for two-dimensional vortex by assuming a small thermodynamic disturbance and also established 

a relationship between this contrast and the tangential velocity profile. But they could not 

ascertain the sensitivity of the results on either of thermodynamic approximation or other vortex 

models.  

Swanson and Light (1992) used the method to acquire quantitative data for an isolated 

tilt-rotor and wing in hover. Depending upon the thrust condition and wake age, the vortex core 

structure was examined. They provided comparisons between tilt-rotor and helicopter rotor wake 

geometry measurements and also proposed improvements in the existing prescribed-wake and 

free-wake models. 

Light et al. (1992) studied the applications of wide field technique to rotor wakes 

visualization and examined its feasibility for visualizing the wake of a small scale helicopter 

rotor in forward flight. They demonstrated that shadowgraphs could be used to obtain both 

qualitative and quantitative descriptions of the wake geometry, wake/body interactions and 

blade/vortex interactions in forward flight.  

Bagai and Leishman (1993) used shadowgraphy and Schlieren methods to visualize 

vortex flows. They derived a relationship between contrast and velocity profiles of these two 

methods by assuming the homentropic flow. They also compared their derived shadowgraph 
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contrast with actual one to elaborate on the vortex structure, its extent and growth of viscous 

core. In addition, they showed that the dimensions of dark nucleus/bright ring of vortex are not, 

in general, equal to the dimensions of viscous vortex core. 

 

Figure 2.6. Shadow image of compressible rotor tip vortex (Bagai & Leishman, 1993).  

 

Vatistas (2006a) studied the refracted images of vortices using a more realistic 

thermodynamic approximation which allowed the flow to transfer heat and dissipate mechanical 

energy. He also compared his shadowgraphs of laminar vortices with the ones of the vortex flow 

that used the isentropic approximation and provided an explanation behind the alternating dark 

and bright circular bands. Porter (2011) studied the aero-optical aberrations related with 

turbulent compressible flow fields. He used shadowgraphy to study the aero-optics effects on 

near and far field.    
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Chapter 3. Mathematical formulation 
 

 

3.1. The Governing equations 

The basic equations that are used to represent the problem are the conservation of mass 

(continuity), momentum (Navier-Stokes) and energy equations, along with the equation of state 

for a steady, axisymmetric and compressible flow of a calorically perfect gas. 

Conservation of mass: 
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Radial momentum: 
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Tangential momentum: 
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Axial momentum: 
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Energy: 

	
  	
  	
  	
  	
   	
   	
   	
   	
   …(3.5)
	
  

where, 

 

 

Equation of state: 

           …(3.6) 

 

In this formulation, the effects of turbulence are crudely included via the effective 

viscosity inclusion, whereby the laminar viscosity  (or ) is increased by an eddy constant 

viscosity (or ) component. 
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Figure 3.1. The coordinate system. 

 

All the variables are defined in the nomenclature section, while the coordinate system is 

given in Fig. 3.1. 

 

3.2. Simplification of the mathematical problem 

 

The above system along with the required boundary conditions is difficult to solve. Thus, 

previous equations, however, could be reduced considering some simplifying assumptions. 
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The velocity field applicable to all classical vortices is taken as (Vatistas, 2006a): 

	
  

or in dimensionless form 

	
   	
   	
     …(3.7) 

Under the assumption given by Eq. (3.7), the dimensionless governing equations (Eqs. 

(3.1) – (3.6)) transform into: 

Conservation of mass: 

      …(3.8) 

Radial momentum: 

  …(3.9) 

Tangential momentum: 

                     …(3.10) 

q Vr (r), Vθ (r), Vz = z. fn(r)!
"

#
$

q u ξ( ), V ξ( ), h f ξ( )!" #$

1
ξ
∂
∂ξ

βuξ( )+βh = 0

1δ 1δ

Reβ u ∂u
∂ξ

+ h ∂u
∂ζ

−
V 2

ξ

#

$
%

&

'
(= −Re

∂Π
∂ξ

+
∂
∂ξ

1
ξ
∂uξ
∂ξ

#

$
%

&

'
(+

∂2u
∂ζ 2

1
δ
1 δ δ δ δ 1 1

δ
δ δ

Re βu
ξ

∂ Vξ( )
∂ξ

"

#
$

%

&
'=

∂
∂ξ

1
ξ

∂ Vξ( )
∂ξ

"

#
$

%

&
'

1
δ
1 δ 1 1



 27 

 

Axial momentum: 

                        …(3.11) 

Energy: 
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Equation of state: 

                     …(3.13) 
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Table 3.1 Typical values of Reynolds numbers in a variety of vortices. 

Type of vortex rc (m) Vθ(max) (m/s) Re δ 
Tornadoes 10.0 60.0 4.0 x 107 10-7 
Dust devils 3.0 10.0 5.0 x 106 10-6 
Whirlpools 15.0 5.0 7.5 x107 10-7 
Cyclone Chambers 0.2 0.5 6.7 x105 10-5 
Bath tub vortices 0.2 0.1 2.0 x 104 10-4 
Aerodynamic vortices 1.0 10.0 6.7 x105 10-5 

 

One can, thus, see that for most of the vortex flows; the typical value of δ is around 10-5. 

Neglecting terms of order of O(δ) or smaller, reduces the above equations into considerably 

simpler form. It is worth noting that this basic assumption is the same as the one that had 

produced all the classical vortex models. As all the terms in Eqs. (3.8) and (3.10) are of the same 

order of magnitude, they will remain as they are. The rest will assume the simpler forms that are 

given underneath. 

Radial momentum: 
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The axial momentum Eq. (3.11) suggests that static pressure should not vary appreciably 

in the ζ- direction. 
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Therefore, it points out that the pressure should be sole function of ξ. In addition, from 

the ξ-momentum equation, the density must also depend on ξ alone and from the equation of 

state; the temperature must also depend on ξ alone.  

Energy: 
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where   

These equations can be further simplified by letting 	
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replacing pressure gradient by its equivalent .	
  The governing equations becomes: 
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Radial momentum: 
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Tangential momentum: 
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Energy: 
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Equation of state: 

                    …(3.21) 

	
  
3.3. Boundary conditions 
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Chapter 4. Numerical Solution 
	
  

	
  

In this thesis, Vatistas’ (2006b) vortex model is used to simulate turbulent compressible 

vortices:  

                                  …(4.1) 

where a=0.7 

Inserting Eq. (4.1) into the tangential momentum Eq. (3.19), the radial velocity (U) is 

determined. 

                                      …(4.2) 

Integrating the energy Eq. (3.20) twice along with the boundary conditions yields the 

temperature. 
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Differentiating the equation of state Eq. (3.21) w.r.t. ξ, it becomes  
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Using relation of radial momentum (ξ-momentum) Eq. (3.18), Eq. (4.7) becomes 

	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  …(4.8) 

Integration of the above Eq. (4.8) and application of boundary condition for density when 
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The pressure can then be calculated from the equation of state Eq. (3.21) or from Eq. 

(4.7). The equation for temperature (Eq. (4.3)), density (Eq. (4.9)) and pressure (Eq. (4.7)) are 

solved using 1/3 composite Simpson’s rule with the combination of in-built ‘quadl’ function 

within error of 10-6 on the mathematical platform ‘MATLAB’ for Prandtl number, Pr = 2/3 and 

different Mach numbers 0.4, 0.6 and 0.8. The results from numerical integration are compared 

with the results obtained using finite difference method in the work of Badwal (2014).  

All the calculations done in this thesis are done for Pr = 2/3. The reason behind using this 

particular value of Prandtl number is that it gives an exact solution for energy equation for a 

laminar vortex (Vatistas, 2006a). The Prandtl number for most of gases lies between 0.680 for 

helium to 0.716 for nitrogen. Even if, one uses Prandtl numbers within the previous interval, it 

will produce a deviation in temperature of no more than 0.5% (Badwal, 2014).  

It can be noted that the integration limits of temperature (Θ) in the Eq. (4.3) and density 

(β) in the Eq. (4.10) include infinite limits. The following question then arises: how far infinity 

will be? It can be answered with the help of numerical calculations. The relative difference 

between value of temperature at center i.e. Θ(ξ=0)  is calculated at various values of infinity i.e. ξ∞ 

and is found to be 7.2 × 10-4 when ξ∞=200 and ξ∞ =400 (Badwal, 2014). Therefore, in order to 

economize on the computations, a radius of 200 i.e. ξ∞ =200 is found to be adequate (Badwal, 

2014). 

 The optics formulation will consider the gas density varying only in y-direction (Fig. 4.1) 

as explained by Goldstein (1996). The intensity on the image plane, E, will be: 
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where  	
  

or     	
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There could be situations that the light rays under consideration, when refracted, can 

cross over. Therefore, in order to make sure that Σ always remain positive, the absolute sign has 

been incorporated. 

The angle α is given by (Bagai & Leishman, 1993) 
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Therefore, 
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Figure 4.1. The arrangement for the optical side of the problem (Adaption from Vatistas, 2006c). 

 

The refractive index is the ratio of speed of light in vacuum to speed of light in the 

medium under consideration. As the speed of light in dilute gases is moderately less than that in 

vacuum (Liepmann & Roshko, 1957), one could use the Gladstone-Dale relation to model the 

event without loss of physics. 
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The above expression in polar geometry, assuming axisymmetric density variation, is: 

Σ =
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or in dimensionless form 

	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  …(4.18)	
  

where 
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The expression for the intensity (Σ) is solved using a central difference of finite scheme 

with step size as 0.001 and number of steps equal to 200,000 for Λ values of 5 and 25. The 

various profiles of the intensity (Σ) will be presented in the next chapter.  
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Chapter 5. Results and discussion 
 

 

In the previous chapter, the numerical method used to solve the mathematical equations 

was outlined. The results obtained are presented and discussed in this chapter.  

One of the most basic of the thermodynamic properties that is required to solve the 

present problem is the temperature (Θ). The last was determined solving numerically the energy 

equation that provided Eq. (4.3). The density (β) is then calculated from Eq. (4.9). The results of 

the temperature (Θ) radial distributions for vortex Mach numbers equal to 0.4, 0.6 and 0.8 are 

plotted in Fig. 5.1. 

It is evident from Fig. 5.1 that as the fluid travels from far towards the vortex center; its 

temperature first increases until the radius (ξ) of 4.06 and then reduces until it reaches the lowest 

temperature at the vortex center. The higher the Mach number is, the higher is the maximum 

temperature and lower is the minimum temperature at the vortex center.  
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Figure 5.1 Radial distribution of temperature (Θ) for different Mach numbers.  

 

This behavior of temperature (Θ) can be explained with the help of radial rate of change 

temperature equation (Badwal, 2014), which is given below: 
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The negative sign in front of the radial derivative of temperature designates a converging 

flow i.e. the fluid is moving from the outer periphery towards the axis of the vortex. As fluid 

elements move along the flow direction, they come under the influence of two elementary 

effects: heating due to viscous forces that tends to increase their temperature and cooling due to 

their dilation. This is illustrated in Fig. 5.5 of Badwal’s (2014) thesis that at the outer periphery 

the contribution of friction is higher than cooling and thus, the fluid elements get hotter while 

near the vortex center the overpowering effects of cooling over friction makes the temperature to 

drop. 

 

Figure 5.2. The plot of dimensionless pressure (Π) along the radial direction for different Mach 

numbers.	
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The radial distribution of pressure (Π) is plotted in Fig. 5.2 where it can be seen that it 

decreases monotonically along the flow direction. There is progressive change in pressure values 

from about thrice the vortex core radius. There is a steep change in pressure near and inside the 

core. 

 
Figure 5.3. Radial distribution of density (β) for different Mach numbers. 

 

This behavior of pressure profile along radial direction can be explained along with 

density profile as follows. For most of the radial interval 0 ≤ ξ < ∞, the tangential velocity for a 
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generate a stronger centrifugal acceleration, 
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                 …(5.2) 

for a turbulent than for a laminar vortex (see Fig. 5.4). 

 

 
Figure 5.4. Comparison of radial distribution of Centrifugal acceleration of turbulent and laminar 

vortices. 

 

The combined effect of the centrifugal force per unit volume is given by, 
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From the radial momentum equation, we have that the variation of the pressure must balance the 

centrifugal force. 

 

         …(5.4) 

Therefore, the pressure in a turbulent vortex starting at the same value (far field) as the 

laminar vortex, should decreases along the flow direction more rapidly until ξ = 1.9 and then, 

decrease at a slower pace. However, the cumulative prior drop will carry on to the end, thus, 

produce a larger pressure deficit at the center. Consequently, at the center of the turbulent vortex 

the gas will also be thinner (lower density). 

 

dΠ
dξ

= β αξ
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Figure 5.5. Comparison of radial distribution of centrifugal force per unit volume of turbulent 

and laminar vortices. 

	
  
	
  

 

Every mathematical representation of real events must in addition to the conservation 

equations should also obey the entropy increase axiom (second law of thermodynamics). It has 

been proved recently by Badwal (2014) that this turbulent compressible vortex formulation used 

in this thesis, does indeed respects the second law of thermodynamics. 

The major results of this thesis i.e. the optics results will now be presented in terms of the 

light intensity profile. The brightness of the shadows casted on the image plane depends on the 
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surface (pressure surface).	
   The distribution of intensity (or luminosity) Σ along the radial 

direction is shown in Fig. 5.6 for different Mach numbers and Λ=5.	
  

	
  
Figure 5.6. The radial distribution of Intensity for focal length of 5 for different Mach numbers. 
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Schlieren Technique, identified a similar shadow structures in helicopter blade vortices (their 

Fig. 6 (c) and (d)). 

Because the gas-dynamic and the liquid vortex (with an interface) phenomena are 

analogous, the two must produce similar shadows. The last is sufficiently clear in the observed 

shadowgraphs of the liquid vortices given in Figs. 2.5 (Sterling et al., 1987) and 1.4 (c) (Vatistas, 

2011) ), respectively. 

 

Figure 5.7. Variation of the maximum light intensity with the vortex Mach number. 
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Figure 5.8. Variation of the radial distance of the maximum light intensity location with the 

vortex Mach number. 

 

The degree of illumination depends on the vortex Mach number. A close examination of 

Fig. 5.7 shows that the maximum intensity values increases as the Mach number augments, it 

reaches a maximum at about 0.7, and then weakens afterwards. As the Mach number increases, 

its location is seen to move away from the vortex center (see Fig. 5.8). 

The plot shown in the Fig. 5.6 also suggests that darkest area in the image plane is not at 

the vortex core but it is rather displaced outwards. But it always resides within the vortex core, 

which is also in agreement with observed shadowgraphs of Sterling et al. (1987) and Bagai and 

Leishman (1993).  
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Depending on the value of the focal length Λ, the shadows casted on the image plane can 

be dramatically different. Two focal lengths i.e. Λ = 5 and Λ=25 were tested and the results for 

M0 = 0.4, 0.6 and 0.8 are shown in Figs. 5.9-5.11. It is interesting to note that although the values 

of intensity and location of the caustic(s) may be different, their qualitative appearance for 

turbulent vortices are alike to their laminar counterpart. 

For low Λ, the light intensity profile begins with a dark disk at the center of the vortex 

characterized by low values of Σ. As the radius increases, Σ augments reaching a maximum 

where the caustic exists and then, drops asymptotically to the background illumination values. 

Typical computed shadowgraph is shown in the Fig. 5.12 (a). 

Focusing at larger depth (high Λ values), two caustics may appear. Beginning once more, 

with a dark disk at the center of the vortex, the light intensity increases with the radius reaching a 

first maximum, which designates the inner caustic. Past the first halo, the value of Σ drops, 

followed by a second caustic. At larger radii, Σ drops asymptotically to the background 

illumination values but with values that are greater than that corresponding to low Λ. The area 

between the first and second caustic is dimmer than the two caustics and for larger M0 values, its 

illumination Σ can be lower than the background value of one, thus, forming a dark circular 

ring. The inner caustic is always thinner than the outer (see Fig. 5.12 (b)). It is interesting to 

mention a propos that in the sunspot picture given in Fig. 1.2 (b), the diffused second halo in 

heliograph image of Hale (2006) is indeed thicker than the first.	
  

Although the caustics appear as mathematical singularities, these are not. The maximum 

value at each caustic may indeed be very large; it is not, however, infinite. The transition from 
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one to two caustics is sudden (catastrophic). The last may suggest that there may exist 

bifurcating solutions for Σ. 

 

Figure 5.9. The intensity profiles for Λ=5 and Λ=25 in radial direction for Mach number, M0 = 

0.4. For the focal length of 25, two caustics with the first being narrower than the second, 

emerge. 
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Figure 5.10. The intensity profiles for Λ=5 and Λ=25 in radial direction for Mach number, M0 = 

0.6. 
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Figure 5.11. The intensity profiles for Λ=5 and Λ=25 in radial direction for Mach number, M0 = 

0.8. 

 

Also alike to the vortices in the case of two caustics, it is also evident that the 
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the case with the laminar compressible formulation, the present analysis shows that such light 

structure may also appear at larger l (or L) values in the turbulent case. The latter optical 

manifestation is also analogous to the two caustics shadowgraphs of liquid vortices visualized by 

Berry and Hajnal (see Fig. 2.4). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
  (a)               (b) 

Figure 5.12. Typical Computed vortex shadowgraphs (a) Λ=5 and (b) Λ=25 (Vatistas, 2006a). 

 

As mentioned earlier in chapter 1, this thesis is an extension of Vatistas’ work on optics 

of compressible laminar vortices into compressible turbulent vortices. Therefore, comparison has 

been made between optics of laminar and turbulent vortices. 
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shown in Figs. 1 (b) and 2 respectively. As the vortex Mach number increases, the dark 

disk of the center becomes darker and the surrounding halo becomes more luminous.  
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Figure 8. Light intensity profiles on the image plane for  

   different Mach numbers. 
 
 

                   
        (a)               (b) 

Figure 9.  Computed vortex shadowgraphs (a) Λ  = 5 and (b) Λ = 25. In both cases 
          Pr = 2 ⁄ 3 and Mo = 0.8. 
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Figure 5.13. Plot of intensity (Σ) for laminar and turbulent case for Mach number 0.4 and Λ=5. 
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Figure 5.14. Plot of intensity (Σ) for laminar and turbulent case for Mach number 0.6 and Λ=5. 
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Figure 5.15. Plot of intensity (Σ) for laminar and turbulent case for Mach number 0.8 and Λ=5. 
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Chapter 6. Conclusion 
	
  

	
  

This thesis dealt for the first time with the refracted shadows produced by turbulent 

compressible vortices. The construction of the theory was accomplished by extending the 

previous laminar approach to include the effects of turbulence. 

The pressure, temperature and density were obtained by solving numerically the 

conservation of mass, momentum and energy equations together with the equation of state for 

the case of a turbulent vortex evolving in a compressible, viscous, heat conducting and 

calorically perfect gas in a domain of infinite extend. The radial distribution of the light intensity 

was then, inferred via the past general mathematical relation that connects the density to light 

intensity of the shadowgraphs casted on an image plane by light ray refraction passing through 

the variable density gas. 

The differences in luminosity of laminar and turbulent vortices with Mach numbers 

ranging from 0.4 to 0.8 were also compared. The darkness of the central disc and luminosity of 

the bright ring are found to be a function of the vortex Mach number: higher the Mach numbers 

produced darker central disks and dimmer halos. Vortices of the turbulent kind were found to 

produce different shadow signatures than the laminar. These differences amongst the two types 

of vortices were quantitative nature than qualitative. Alike to the laminar case and depending on 

the focal length, turbulent vortices could also generate the previously disputed two caustics. The 

last effect is shown to generate the combination of dark circular area near the vortex center, 
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followed by a thin halo, which is subsequently succeeded by a dim ring that is followed by a 

thicker corona. 
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Chapter 7. Future Work 
 

 

In the present study, given a turbulent vortex generated in a compressible unconfined gas 

under a uniform illumination, the variation of light intensity was determined. The contribution 

can be used to explain several problems in science and technology. However, in order to increase 

its practical value, the inverse solution to the problem at hand could be attained, by answering 

the following question. How the fluid properties like pressure, temperature, density and the 

tangential velocity component could be recovered given an experimentally obtained 

shadowgraph? If one successfully answers the last question then the methodology can be used as 

a non-intrusive optical measuring tool for compressible vortices. 

Several geophysical and aerodynamic vortices are of the two-celled type. Although, 

mathematical formulations for the incompressible kind exist, there is no contribution in the open 

literature for multi-celled compressible vortices. Consequently, their optics is also unknown. 

Using the present contribution, it will be very beneficial if one extends even the incompressible 

laminar one celled-vortices into multi-cell compressible vortices. Performing the last then their 

shadowgraphs can be easily theoretically obtained. 

There is very little information on the experimental side of the problem. Any contribution 

towards extensive experimental validations of the present and past theoretical studies on optics 

will be highly desirable.	
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Appendix A 
	
  

Solution of the energy equation 

	
  
The energy equation is given as 

 

Or   

The boundary conditions for solving the energy equation for temperature are: 
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Integrating above equation with limits from vortex center to point on vortex periphery, equation 

becomes 

 

 

Since  =0 

Above equation becomes 

 

Or     

Integrating again with ξ, equation becomes 

 

Using second boundary condition and taking ξ as infinity, equation gives 
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Therefore, it gives 

 

 

which gives the value of Θ in radial direction.

 

For this thesis case, the relation used for V,U, f and λ are given below: 
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Appendix B 
The source code for solving the equation in MATLAB 

	
  
I. For turbulent case 

	
  
% All properties(constant) values at different MACH numbers i.e. 
% Temperature, pressure and Density 
  
clc; 
clear all; 
close all; 
format long; 
  
Beta=0.7; 
m=(Beta+1)/4; 
Pr = 2/3; 
k=1.4; 
Mach=0.8; 
  
a = -((2.*m)-1); 
b = -2.*Beta.*(m-1); 
c = Beta.^2; 
  
lambda = @(x) (((2.*a.*x.^4 + b- (b.^2-4.*a.*c).^(0.5))./(2.*a.*x.^4+ b 
+(b.^2-4.*a.*c).^(0.5))).^((3.*Beta.*m.*Pr)./((b.^2-
4.*a.*c).^(0.5))).*((((a.*x.^8 + b.*x.^4 + c).^(0.5)./((2.*a.*x.^4 + b- 
(b.^2-4.*a.*c).^(0.5))./(2.*a.*x.^4+ b +(b.^2-
4.*a.*c).^(0.5))).^(b./(2.*(b.^2-4.*a.*c).^(0.5)))))).^(m.*Pr)); 
u =@(x) -
((4.*m.*a.*x.^7)./(a.*x.^8+b.*x.^4+c)+(12.*Beta.*m.*x.^3)./(a.*x.^8+b.*x.^4+c
)); 
v= @(x) (x.*(Beta+1).^m)./(Beta+x.^4).^m; 
f =@(x) (16.*m.^2.*(Beta+1).^(2.*m).*(x.^8))./((Beta+x.^4).^(2.*(m+1))); 
g = @(x) (x.*f(x)+(u(x).*v(x).^2)).*lambda(x); 
  
h=0.001; 
n= 200; 
sum=zeros(1,1); 
  
for i=h:h:n; 
    x=(i-h/2); 
    G=quadl(g,0,x); 
     
    K=@(x) G./((x).*lambda(x)); 
    sum= sum+(h*K(x)); 
  
end 
theta_zero= (sum*0.4*(2/3).*Mach.^2)+1; 
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sum1=zeros(1,1); 
theta_z=zeros(n/h,1); 
theta=zeros(n/h,1); 
T1=zeros(n/h,1); 
  
for L=1:1:(n/h) 
    j=(L*h); 
    i=(j-h/2); 
    G1=quadl(g,0,i); 
     
    K1=@(i) G1./(i.*lambda(i)); 
     
    sum1 = sum1+(h*K1(i)); 
     
    T1(L)= (sum1.*0.4.*(2./3).*Mach.^2); 
      
    theta_z(L) = theta_zero; 
    theta(L) = theta_z(L)-T1(L) ; 
   
end 
  
D1=zeros(1,1); 
D2=zeros(n/h,1); 
D3=zeros(1,1); 
D_zero=zeros(1,1); 
D=zeros(n/h,1); 
  
for i=1:1:n/h 
    j1=i*h; 
    x=(i-1/2)*h; 
     
    DENSITY=@(x) (x.*((Beta+1)./(Beta+x.^4)).^(2.*m)); 
     
     D1=quadl(DENSITY,0,n); 
     D2(i)=quadl(DENSITY,0,j1); 
      
    D3=(D1.*k.*Mach.^2)/theta_zero; 
    D_zero=(exp(-D3)/theta_zero); 
          
    D(i)=(1/theta(i))*(exp(k.*(Mach.^2).*(D2(i)-(D1))./theta(i))); 
end 
     
lam = 5; 
delta=zeros(n/h,1); 
intensity = zeros(n/h,1); 
  
D(n/h +1)=1; 
D(n/h +2) =1; 
delta_isen=zeros(n/h,1);  
inten_isentropic=zeros(n/h,1); 
  
for i=2:1:n/h 
    x=(i-1/2)*h; 
    delta_isen(i) =  ((Mach.^2.*(2.*(1-x.^4).*theta(i) + (2-
k).*Mach.^2.*x.^2).*theta(i).^((3-2.*k)/(k-1)))./(1+x.^4).^2);  
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    delta(i) = (D(i+1)- D(i-1))./(2*h*i) + (D(i-1) + D(i+1) -2*D(i))./(h.^2) 
;  
  inten_isentropic(i) = 1./abs(1+ lam.*delta_isen(i));  
  intensity(i) = 1./abs(1+ lam.*delta(i)); 
end 
intensity_firstpt = (D(2)-D(1))/h + (D(1) + D(3) - 2*D(1))/h^2; 
intensity_zero = (D(1)-D_zero)/h + (D_zero - 2*D(1) + D(2) )/h^2; 
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II. For Laminar case 

	
  
%All properties(constant) values at different MACH numbers i.e. 
% Temperature, pressure and Density 
  
clc; 
clear all; 
close all; 
format long; 
  
  
Pr = 2/3; 
k=1.4; 
Mach=0.6; 
lam = 5; 
  
  
u =@(x) -(6.*x.^3./(1+x.^4)); 
v= @(x) (x./(1 + x.^4).^(1/2)); 
f = @(x) 4.*x.^8./((1 + x.^4).^3); 
  
lambda = @(x) (1 + x.^4); 
  
g = @(x) (x.*f(x)+(u(x).*v(x).^2)).*lambda(x); 
  
  
h=0.001; 
n= 200; 
sum=zeros(1,1); 
  
for i=h:h:n; 
    x=(i-h/2); 
    G=quadl(g,0,x); 
     
    K=@(x) G./((x).*lambda(x)); 
    sum= sum+(h*K(x)); 
  
end 
theta_zero= (sum*0.4*(2/3).*Mach.^2)+1; 
  
sum1=zeros(1,1); 
theta_z=zeros(n/h,1); 
theta=zeros(n/h,1); 
T1=zeros(n/h,1); 
  
for L=1:1:(n/h) 
    j=(L*h); 
    i=(j-h/2); 
    G1=quadl(g,0,i); 
     
    K1=@(i) G1./(i.*lambda(i)); 
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    sum1 = sum1+(h*K1(i)); 
     
    T1(L)= (sum1.*(k-1).*Pr.*Mach.^2); 
      
    theta_z(L) = theta_zero; 
    theta(L) = theta_z(L)-T1(L) ; 
   
end 
  
D1=zeros(1,1); 
D2=zeros(n/h,1); 
D3=zeros(1,1); 
D_zero=zeros(1,1); 
D=zeros(n/h,1); 
  
for i=1:1:n/h 
    j1=i*h; 
    x=(i-1/2)*h; 
     
    DENSITY=@(x) (x./(1 +x.^4)); 
     
     D1=quadl(DENSITY,0,n); 
     D2(i)=quadl(DENSITY,0,j1); 
      
    D3=(D1.*k.*Mach.^2)/theta_zero; 
    D_zero=(exp(-D3)/theta_zero); 
          
    D(i)=(1/theta(i))*(exp(k.*(Mach.^2).*(D2(i)-(D1))./theta(i))); 
end 
     
p_zero=D_zero*theta_zero; 
  
p=zeros(n/h,1); 
  
  
for i=1:1:n/h 
   p(i)=D(i)*theta(i); 
end 
  
  
  
delta=zeros(n/h,1); 
intensity = zeros(n/h,1); 
  
D(n/h +1)=1; 
  
for i=2:1:n/h 
    x = (i-1/2)*h; 
    
    
   delta(i) = (D(i+1)- D(i-1))./(2*h*x) + (D(i-1) + D(i+1) -2*D(i))./(h.^2) ; 
    
   
     intensity(i) = 1./abs(1+ lam.*delta(i)); 
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end 
delta_firstpt = (D(2)-D_zero)/(h*0.0005) + (D_zero + D(2) - 2*D(1))/h^2; 
  
delta_zero = (D(1)-D_zero)/(h*0.0005) + (D_zero - 2*D(1) + D(2) )/h^2; 
  
intensity_firstpt = 1./abs(1+ lam.*delta_firstpt); 
  
intensity_zero = 1./abs(1+ lam.*delta_zero); 
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