

Quality of Experience-Enabled Social Networks

By

Ahmed Abouzeid

A Thesis

In

The Department of Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science at

Concordia University

Montreal, Quebec Canada

May 2014

© Ahmed Abouzeid, 2014

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Ahmed Abouzeid

Entitled: “Quality of Experience-Enabled Social Networks”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 __ Chair

 Dr. K. Khorasani

 __ Examiner, External

Dr. L. Kosseim (CSE) To the Program

 __ Examiner

 Dr. D. Qiu

 __ Supervisor

 Dr. F. Khendek

 __ Supervisor

 Dr. R. Glitho

Approved by: ___

 Dr. W. E. Lynch, Chair

 Department of Electrical and Computer Engineering

____________20_____ ___________________________________

 Dr. C. W. Trueman

Interim Dean, Faculty of Engineering

and Computer Science

iii

ABSTRACT

Quality of Experience-Enabled Social Networks

Ahmed Abouzeid

Social Networks (SNs), such as Facebook, Twitter and LinkedIn, have become

ubiquitous in our daily life. However, as the number of SN users grows, the SN usage

grows and there is higher demand for users’ Quality of Experience (QoE). For instance,

some users would prefer to filter some posts, e.g. unwanted friendship requests and

certain categories of posts, i.e. sports related posts. Users may also prefer to subscribe to

a higher Quality of Service (QoS) level with their SN provider to have, for instance,

higher priority on posting/retrieving.

3GPP 4G Evolved Packet Core (EPC)-Based systems are all IP network architectures that

enable users to connect to mobile networks through their mobile devices and seamlessly

change from one access technology to another. EPC systems enable service provisioning

with guaranteed and differentiated end-to-end QoS.

This thesis proposes a novel architecture that enables differentiated QoS and information

filtering in SNs to improve the users QoE. The SN is deployed on top of 3GPP 4G EPC-

Based systems, and it uses EPC services to enable guaranteed and differentiated QoS.

The components of the proposed architecture interact through RESTful web services.

This architecture allows users to filter posts using their own criteria and have priority

over other users in posting and/or retrieving; thereby, improving users’ QoE.

iv

A proof of concept prototype tool has been implemented to illustrate the viability of the

proposed architecture and its performance has been partially evaluated.

v

ACKNOWLEDGEMENTS

I want to express my great recognition and gratitude to the members of the

Telecommunications Service Engineering Research Lab, especially Dr. Ferhat Khendek,

Dr. Roch Glitho, Fatna Belqasmi, Mohammad Majid Hormati and Ashis Kumar

Bhowmik. They were very available and gave me precious advices during my master’s

thesis.

I acknowledge the financial support from the Natural Sciences and Engineering Research

Council (NSERC) of Canada, Ericsson Canada and Concordia University.

All my gratitude goes to my family, Adham Abouzeid, Randa Ali, Rana Abouzeid and

Omar Abouzeid for their support and encouragement. I also want to thank Cécile

Langevin for her encouragements and her daily support.

Finally, thank you to my friends Ahmad Zakaria, Ahmed Shaltout and Khaled Zayed for

their continuous encouragements during my master’s studies.

vi

Table of Contents

List of Tables .. xii

List of Abbreviations ... xiii

Chapter 1: Introduction .. 1

1.1 Research Domain ... 1

1.2 Motivations and Problem Statement .. 2

1.3 Thesis Contributions .. 3

1.4 Thesis Organization ... 4

Chapter 2: Background Information on SNs, RESTful Web Services, QoE and EPC 6

2.1 Social Networks (SNs) ... 6

2.1.1 Definition of SNs ... 6

2.1.2 History of SNs ... 7

2.1.3 The SN Structure ... 9

2.1.3.1 The Concept of User Profile ... 11

2.1.4 Applications on SNs .. 12

2.2 RESTful Web Services .. 13

2.2.1 Definition of REST .. 14

2.2.2 Resource Oriented Architecture (ROA) .. 15

2.2.3 REST Constraints and Operations ... 16

2.2.3.1 REST Constraints ... 16

2.2.3.2 REST Operations ... 18

2.2.4 RESTful Web Services Development ... 19

vii

2.3 Quality of Experience (QoE) ... 21

2.3.1 Definition of QoE .. 21

2.3.2 Quality of Service (QoS) ... 22

2.3.2.1 Definition of QoS .. 22

2.3.2.2 QoS Entities .. 22

2.3.2.3 QoS Parameters .. 23

2.3.2.4 QoS Mechanisms .. 24

2.3.2.5 QoS Levels .. 25

2.3.3 Information Filtering (IF) .. 28

2.3.3.1 Definition and Concepts of IF ... 28

2.4 Evolved Packet Core (EPC) ... 29

2.4.1 Definition of EPC .. 29

2.4.2 EPC Architecture ... 30

2.4.3 Diameter Protocol .. 32

2.4.4 QoS in EPC .. 33

2.4.4.1 The Bearer Concept .. 33

2.5 Chapter Summary .. 34

Chapter 3: QoE-Enabled SNs: Motivating Scenarios, Requirements and State of the Art

Evaluation 35

3.1 Motivating Scenarios ... 35

3.2 Requirements for QoE-Enabled SNs ... 36

3.3 State of the Art ... 37

3.3.1 Social Network Platforms .. 37

3.3.1.1 Facebook Platform ... 38

3.3.1.2 Google’s OpenSocial ... 39

3.3.1.3 SN Platforms Evaluation ... 40

3.3.2 Differentiated QoS and SNs .. 41

viii

3.3.2.1 Differentiated QoS Service Delivery Platform (SDP) .. 45

3.3.3 Information Filtering and Social Networks ... 46

3.3.4 Overall State of the Art Evaluation ... 49

3.4 Chapter Summary .. 51

Chapter 4: QoE-Enabled SNs: The Proposed Architecture ... 52

4.1 The Overall Architecture of QoE-Enabled SNs ... 52

4.2 Interfaces and REST Resources of the Architecture .. 55

4.2.1 The SN-Server Resources .. 55

4.2.2 The QoS Enabler Resources .. 57

4.3 User Initiated Procedures ... 58

4.4 An Illustrative Scenario ... 61

4.5 Chapter Summary .. 63

Chapter 5: QoE-Enabled SNs: Implementation and Evaluation 64

5.1 Software Architectures for the Proposed Solution Components 64

5.1.1 SN-Server Software Architecture .. 64

5.1.2 A Simple Content Filtering Algorithm .. 67

5.1.3 QoS Enabler Software Architecture .. 69

5.1.4 An Operational Procedure ... 70

5.2 The Proof of Concept Prototype .. 72

5.2.1 Prototype Functionalities ... 72

5.2.2 Prototype Architecture ... 73

5.2.3 Tools and Libraries Used ... 75

5.2.4 Experimental Setup.. 75

5.3 Performance Evaluation ... 77

5.3.1 Evaluation Scenario ... 77

ix

5.3.2 Performance Metrics .. 78

5.3.3 Performance Evaluation Results .. 79

5.4 Chapter Summary .. 84

Chapter 6: Conclusion and Future Work ... 86

6.1 Summary of Contributions ... 86

6.2 Future Work ... 87

Bibliography ... 89

x

List of Figures

Figure 2.1 - SNs Timeline (1997-2006), taken from [1]... 9

Figure 2.2 - The SN Structure from the network perspective, taken from [10] 10

Figure 2.3 - The SN structure from the user perspective, taken from [10] 11

Figure 2.4 - A Sample User Profile on SN (Facebook) .. 12

Figure 2.5 - Interaction between users, SNs and Third Party Servers, taken from [56] ... 13

Figure 2.6 - Quality of Experience versus Quality of Service .. 22

Figure 2.7 - Interactions between the entities, Figure taken from [24] 23

Figure 2.8 - Illustration of the RSVP Signalling... 27

Figure 2.9 - DiffServ Routing ... 27

Figure 2.10 - EPC Architecture, taken from [5] ... 30

Figure 3.1 - Facebook Platform Architecture, taken from [45] .. 39

Figure 3.2 - OpenSocial Architecture, taken from [35] .. 40

Figure 3.3 - Establishing end-to-end QoS in [37] ... 43

Figure 3.4 - SenseFace Architecture in [38] ... 44

Figure 3.5 - The overall architecture in [39] ... 45

Figure 3.6 - Information Filtering System Architecture in [40] 47

Figure 4.1 - The Overall Architecture of QoE-Enabled SNs .. 53

Figure 4.2 - An Illustrative Scenario for the operations of the proposed architecture 62

Figure 5.1 - The SN-Server Software Architecture .. 64

Figure 5.2 - A simple Content Filtering Algorithm .. 68

Figure 5.3 - The QoS Enabler Software Architecture... 69

xi

Figure 5.4 - Part one of the operational example sequence diagram for using the software

architecture components of the SN-Server and the QoS Enabler 71

Figure 5.5 - Part two of the operational example sequence diagram for using the software

architecture components of the SN-Server and the QoS Enabler 72

Figure 5.7 - The Prototype Architecture of the SN-Server ... 74

Figure 5.8 - SN-Server Login Page... 76

Figure 5.9 - Alice’s SN profile ... 78

Figure 5.10 - Bandwidth Allocation for QoS levels over time ... 81

Figure 5.11 - End-to-end Session Creation delay per user over time 82

Figure 5.12 - Filtering Delay vs. Number of Posts ... 83

Figure 5.13 - Filtering Accuracy vs. Number of Attempts ... 84

xii

List of Tables

Table 2.1 - List of Examples on HTTP Methods used by REST 19

Table 3.1 - The requirements for QoE-Enabled SNs .. 37

Table 3.2 - Comparison of Facebook Platform and Google OpenSocial 41

Table 3.3 - QoE service translations for different traffic classes in [37] 42

Table 3.4 - State of the art overall evaluation ... 50

Table 4.1 - The SN Server REST Resources .. 56

Table 4.2 - The QoS Enabler REST Resources .. 58

Table 5.1 - QoS levels in OpenEPC and their Attributes ... 76

xiii

List of Abbreviations

SN Social Network

3GPP 3rd Generation Partnership Project

4G Fourth Generation

EPC Evolved Packet Core

QoE Quality of Experience

QoS Quality of Service

REST Representational State Transfer

IP Internet Protocol

UTRAN UMTS Terrestrial Radio Access Network

WiMAX Worldwide Interoperability for Microwave Access

SDP Service Delivery Platform

REST Representational State Transfer

ROA Resource Oriented Architecture

WWW World Wide Web

HTTP Hypertext Transfer Protocol

URI Uniform Resource Identifier

WADL Web Application Description Language

XML Extensible Mark-up Language

JSON JavaScript Object Notation

XHTML Extensible Hypertext Mark-up Language

HTML Hypertext Mark-up Language

xiv

NGN Next Generation Networks

ITU International Telecommunication Union

ETSI European Telecommunications Standard Institute

ICT Information and Communication Technology

IP Internet Protocol

VoIP Voice over IP

FIFO First In First Out

RED Random Early Detection

WFQ Weighted Fair Queue

IntServ Integrated Services

DiffServ Differentiated Services

RSVP Resource Reservation Protocol

BA Behavior Aggregate

PHB Per Hob Behavior

DS Field Differentiated Services Field

DSCP Differentiated Services Code Point

IETF Internet Engineering Task Force

IF Information Filtering

IR Information Retrieval

CF Collaborative Filtering

GPRS General Packet Radio Service

UMTS Universal Mobile Telecommunications System

UTRAN UMTS Terrestrial Radio Access Network

xv

WiMAX Worldwide Interoperability for Microwave Access

S-GW Serving Gateway

PDN-GW Packet Data Network Gateway

PCRF Policy and Charging Rules Function

ANDGw Generic Access Network Gateway

ePDG Evolved Packet Data Gateway

MME Mobility Management Entity

AF Application Function

HSS Home Subscriber Server

ANDSF Access Network Discovery and Selection Function

AAA Authentication, Authorization and Accounting

BBERF Bearer Binding and Event Rules Function

PCEF Policy and Charging Enforcement Function

PCC Policy and Charging Control

EPS Evolved Packet System

TCP Transport Control Protocol

UDP User Datagram Protocol

SCTP Stream Control Transport Protocol

RADIUS Remote Authentication Dial In User Service

IMS IP Multimedia Subsystem

QCI QoS Class Identifier

ARP Allocation and Retention Priority

GBR Guaranteed Bit Rate

xvi

MRP Maximum Bit Rate

AMRP Aggregate Maximum Bit Rate

OS Operating System

API Application Programming Interface

JS JavaScript

FBJS Facebook JavaScript

SQL Structured Query Language

FQL Facebook Query Language

FBML Facebook Mark-up Language

IPX Internetwork Packet Exchange

MPLS Multiprotocol Label Switching

BSN Body Sensor Network

E-Health Electronic Health

M2M Machine to Machine

RAM Random Access Memory

GB Gigabyte

KEA Keyphrase Extraction Algorithm

Mbps Megabit per second

1

Chapter 1: Introduction

This chapter first presents the research domain. It is followed by the thesis motivations

and problem statement. After that, it introduces the thesis contributions. Finally, the last

section presents the thesis organization.

1.1 Research Domain

A Social Network (SN) is a web-based service that allows users to create a profile (their

personal details, interests, pastimes, etc.) and send, accept or reject friendship request(s)

to/from other users. SNs allow users to view a list of their friends’ profiles and to interact

with them by posting and sharing information [1]. SNs are very important in our daily life

and users use it in variety of spheres. According to a poll made in 2012, 58% of the people

asked, use SNs. Among them, 56% are Facebook users, 14% are LinkedIn users while 11%

are Twitter users [7]. SNs are used for different purposes including Leisure (e.g. Facebook),

business-related work (e.g. LinkedIn), video sharing (e.g. YouTube), photo sharing (e.g.

Flickr) and News (e.g. Twitter).

Quality of Experience (QoE) is the acceptability of a service by a user according to his/her

expectations [2]. Quality of Service (QoS) is defined as a set of requirements to be achieved

by a network for a certain flow [3]. The users usually have a service level agreement with the

service provider and the network provider will make sure that the QoS agreement takes place

within the network [24]. There are different parameters that a QoS should tackle, which are

packet loss, latency, jitter, throughput and uptime [25]. Differentiated QoS is achieved by

applying different QoS levels [27]. Each QoS level (Gold, Silver or Bronze) defines a set of

2

requirements to be met for the flows of the users who subscribed to it. Information Filtering

allows users to only receive their desired data [4], thereby increasing user’s satisfaction.

3GPP 4G Evolved Packet Core (EPC)-Based systems are all IP network architectures that

separate the data and control paths. The EPC is the core network running on top of the

long-term evolution (LTE) access network, any other 3GPP legacy access networks (e.g.

UMTS Terrestrial Radio Access Network UTRAN) or even non-3GPP access networks

(e.g. WiMAX and Wi-Fi). The main components of the EPC systems are the Serving

Gateway (S-GW), Packet Data Network Gateway (PDN-GW), which are common in the

data and control paths, and the Policy and Charging Rule Function (PCRF), which is

responsible for the definition of the QoS policies [5]. 3GPP 4G EPC-Based systems

support seamless service provisioning with guaranteed and differentiated QoS. Service

Delivery Platform (SDP) supports the development and management of QoE-Enabled SN

applications.

1.2 Motivations and Problem Statement

SNs are very popular and are widely used. Statistics shows that 58% of individuals already

use SNs [7]. According to Quantcast, SNs (YouTube, Facebook and Twitter) are among the

top 5 websites when ordered by the traffic of the users on the Internet [54]. Twitter, has 554

million monthly active users, yearly uptime of 90%, and its users send 9,100 tweets every

second [8]. Another example of SNs, Facebook, has 1.11 billion active users. Every 20

minutes on Facebook, 1 million links are shared and 2 million friend requests and 3 million

messages are sent [9]. The high demand on SNs can lead to outages due to congestion.

During the FIFA World Cup 2010 for instance, Twitter has experienced 5 hours and 22

minutes of outage due to the excessive posting by the end-users [57]. During the Oscars

3

2014, it failed again due to the excessive number of retweets of Ellen DeGeneres’s post [58].

Reddit, another SN, experienced a downtime in August 2012 during Barack Obama’s Ask

Me Anything session [59].

These examples of congestion triggered the issue of QoE in SNs. Certain users (e.g.

corporations, stock market fund managers) may be very interested in having priority over

other users for posting and/or retrieving information. Other users (e.g. professors) might want

to define user criteria (e.g. to filter friendship requests from students) in order to have a better

SN experience.

We propose in this thesis a novel architecture for SNs with differentiated QoS from the

user’s perspective, combined with information filtering at the user-level. We aim to

improve users’ QoE during their usage of SNs. SNs running on top of the EPC network can

enable differentiated QoS. However, this must be done through a Service Delivery Platform

(SDP). This thesis proposes an architecture that supports differentiated QoS and information

filtering in SNs. This architecture consists of a SN-Server, SDP (QoS Enabler) and a

Database and is deployed on top of the EPC network. The SN-Server interacts with the users

to post, retrieve and filter information. The SDP’s QoS Enabler enables the differentiated

QoS of the users within the EPC network layer. Finally, the Database stores the user’s

information, QoS level subscriptions and filtering criteria.

1.3 Thesis Contributions

The contributions of this thesis are:

 A derived set of requirements for QoE-Enabled SNs deployed on top of the 3GPP 4G

EPC-Based Systems.

4

 Review of the State of the Art relevant to the thesis work and its evaluation with

respect to the aforementioned requirements.

 A novel architecture of the QoE-Enabled SNs on top of 3GPP 4G EPC-based

systems. This architecture meets all the requirements mentioned earlier. It consists of

functional entities (SN-Server components, QoS Enabler and Database), interfaces

(RESTful and Diameter interfaces) between the components and procedures that the

users can initiate.

 A proof of concept prototype of the proposed architecture and its partial performance

evaluation.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

 Chapter 2 introduces the background knowledge related to SNs, RESTful Web

Services, QoE and EPC systems. The chapter explains the concepts related to this

thesis.

 Chapter 3 introduces the motivating scenarios, the requirements and state of the art

relevant to the QoE-Enabled SNs on top of 3GPP 4G EPC-Based systems.

Furthermore, the chapter presents the evaluation of the state of the art with respect to

the derived requirements.

 Chapter 4 presents the proposed architecture for QoE-Enabled SNs. The proposed

solution is deployed on top of 3GPP 4G EPC systems. The chapter discusses the

functional entities and interfaces in the architecture, procedures that the users can

initiate and an illustrative scenario to show how the components of the architecture

interact.

5

 Chapter 5 discusses the prototype through the software architectures of the different

components and the operational procedures to show how these components interact.

The proof of concept prototype is presented before conducting a partial performance

evaluation.

 Chapter 6 concludes the thesis and presents potential future work on QoE-Enabled

SNs.

6

Chapter 2: Background Information on SNs,

RESTful Web Services, QoE and EPC

This chapter presents the background information that is relevant to this thesis. The

background information covers four topics: Social Networks (SNs), RESTful Web

Services, Quality of Experience (QoE) and Evolved Packet Core (EPC).

2.1 Social Networks (SNs)

This subsection first introduces the definition of SNs, then it presents the history of SNs.

Furthermore, it illustrates the structure of SNs and defines the concept of a user profile.

Finally, it describes the current applications on SNs.

2.1.1 Definition of SNs

Social Networks (SNs) are web-based services that allow users to:

 Construct a public or semi-public profile within the SN.

 Establish and manage a list of friends.

 Share Information with other users (friends) by posting and retrieving [1].

SNs accommodate “networking” within its framework. The term networking describes

the phenomenon of initiating relationship with other users who can be strangers to the

initiator. Furthermore, SNs allow its users to communicate with other users that they

already know. Finally, the backbone of the SNs is allowing users to create profiles that

are visible for other users and that lead to their future interactions within the framework

of the SN [1].

7

2.1.2 History of SNs

Figure 2.1 shows the timeline of the launch dates of the most famous SNs from 1997 to

2006 and a brief discussion of their functionalities and aims of establishment is presented

as follows [1].

 SixDegrees.com: SixDegrees.com is the first recognizable SN. It was established

in 1997. SixDegrees.com allowed its users to create profiles, send/receive

friendship requests, list their friends’ profiles and interact with them through

sending/receiving messages. At the time, SixDegrees.com was the first SN to

combine the profile establishment, communication between the users and their

friends and communication between users and strangers. SixDegrees.com closed

in 2000 because the founders believed that it was ahead of time and there was not

much to do after accepting friendship requests.

 AsianAvenue, BlackPlanet & MiGente: These three websites were established

between 1997 and 2001. They allowed the users to create professional dating

profiles. Their users were able to identify user friends within the SN without

waiting for their approval.

 Ryze.com, Tribe.net & LinkedIn: Ryze.com is the first SN to help users to

manage their business networks. It was established in 2001. Later in 2003,

Tribe.net and LinkedIn took the same path as Ryze.com since the later did not

have much of popularity. Tribe.net acquired some popularity while LinkedIn

became the most popular business-related SN.

 Friendster: Friendster was established back in 2002 as a professional dating SN.

The aim of Friendster was that users could make better romantic relationships

8

with friends of friends rather than strangers. According to that, Friendster denied

the users access to strangers’ profiles and restricted it to friends of friends. The

phenomenon of fake profiles emerged because of this restriction. Alongside the

fake profile phenomenon, the servers and databases of Friendster were not well

equipped to face the exponential growth of users on the SN. Thereby the current

status of Friendster is a Social Gaming site rather than a SN-site.

 Flickr, Last.FM & YouTube: These SNs emerged due to the rise of social media

and user-generated content phenomenon. Last.FM was established in 2003 and

targeted the music listening habit. Flickr was established in 2004 and targeted the

photo sharing. Last but not least, YouTube was established in 2005 and targeted

the video sharing.

 MySpace: MySpace was established in 2003. It attracted Friendster users after

the rumors that Friendster will apply a fee-based system for its users. MySpace

attracted Indie-Rock bands thus attracting their fans to become MySpace users.

MySpace key feature was, at the time, to add features based on the users

preferences. After that, a lot of teenagers signed up for MySpace. News

Corporation purchased MySpace in 2005 attracting the media attention but the

popularity of MySpace decreased dramatically after the site was implicated with

a series of interactions between adults and minors.

 Twitter: Twitter began in 2006 as a SN and micro-blogging website. Its users

express their daily life activities through short messages called tweets. Twitter

gained a lot of popularity specially after attracting a lot of celebrities; thus

9

attracting their fans. Twitter is considered nowadays as one of the most popular

SN sites alongside Facebook.

 Facebook: Facebook began in 2004 for Harvard-students only. The aim of

Facebook was to support distinct college networks only. It gained a lot of

popularity because it allows developers to develop applications that the users can

use. Also, Facebook users were unable to make their full profiles public to other

users and gaining access to corporate networks needs an appropriate ‘.com’

address. After that, Facebook expanded and was opened to the public in 2006.

Nowadays, Facebook is considered the most popular and successful SN.

Figure 2.1 - SNs Timeline (1997-2006), taken from [1]

2.1.3 The SN Structure

A Network is a set of relationships consisting of nodes and connections between them. In

a SN structure, the nodes are the SN users and the connection represents the friendship

[10].

10

The SN structure can be seen either from the user perspective or from the SN perspective.

As per the SN perspective, Figure 2.2 shows the SN of Karate club members. The nodes

are users of the SN and the lines are the friendship established between them. On the

other hand, as an example of the SN structure as seen from the user perspective, Valdis

Krebs is a researcher and consultant in the field of social and organizational network

analysis. Figure 2.3 shows the network of his followers on Twitter. Krebs is the central

node, the other nodes are his followers and the lines are the connections [10].

Figure 2.2 - The SN Structure from the network perspective, taken from [10]

11

Figure 2.3 - The SN structure from the user perspective, taken from [10]

The SN structure from the user perspective is known as the social graph. The social graph

is defined per user. It shows the connections of this specific user to other users of the SN.

The social graph summarizes the connections that make up a SN [36].

2.1.3.1 The Concept of User Profile

The user profile is the user’s information on the SN. The user starts using a SN by

creating a profile. The profile includes the personal information of the user (e.g. name,

date of birth, birthplace & current living city), user interests (e.g. favourite music, books

& movies) and the user background education [11]. Depending on the type of the SN, the

12

user profile will fit the needs of the SN to advertise the user in terms of his/her profile.

Figure 2.4 shows a sample user profile from Facebook.

Figure 2.4 - A Sample User Profile on SN (Facebook)

2.1.4 Applications on SNs

SNs are not limited to the text-based communications. Users started sharing photos,

videos, conferencing (e.g. Skype using Facebook) and using applications. Applications

can be in form of games, quizzes or gift giving. Starting by Facebook, and later the other

SNs, the SNs opened their interfaces for third party application servers. This makes the

SN applications of third parties available on famous SNs. A distributed approach is

usually used in which the SN acts as a proxy between the third party and the users. Figure

2.5 illustrates this approach. The data are stored on the SN database as well as the third

13

party provider database. The user issues HTTP requests in a designed REST API

(Representational State Transfer Application Programming Interface) according to the

SN platform used [56]. REST will be discussed in the next section and the most used SN

platforms will be illustrated and compared in Chapter 3.

Figure 2.5 - Interaction between users, SNs and Third Party Servers, taken from [56]

2.2 RESTful Web Services

This section introduces the definition of Representational State Transfer (REST) and

RESTful Web Services. After that, it discusses the Resource Oriented Architecture

(ROA) and illustrates the REST constraints and operations. Finally, the development of

RESTful web services is presented.

14

2.2.1 Definition of REST

R. Fielding first coined Representational State Transfer (REST) in his PhD thesis in 2000

[12]. REST is an architectural style that enables the building of distributed applications

using the World Wide Web’s (WWW) basic protocols and technology (e.g. Hypertext

Transfer Protocol – HTTP [19]) [13].

REST is considered to be a player in Web 2.0. Web 2.0 is described as the WWW sites

that use any technology (e.g. Information Sharing Websites as the Social Network sites)

beyond the previous static web sites. REST uses the client-server architecture of the Web

and uses the basic WWW protocol, which is HTTP, as means of communication [13].

RESTful Web Services were coined as a modification to other web services called ‘BIG

Web Services’. The RESTful Web Services main features that differentiate them from the

others are [20]:

 It is lightweight compared to the BIG web services. It does not require Extensible

Mark-up Language (XML [16]) parsing. Wider range of devices is supported by

RESTful Web Services because of the lightweight property.

 No toolkit is required to build them, thus it is easy to build.

 RESTful Web Services are stateless, thus scalable.

 RESTful Web Services are human readable through the Hypertext Mark-up

Language (HTML).

The Web Application Description Language (WADL [14]) is used to describe the

RESTful Web Services. WADL describes the request to the service using the Uniform

Resource Identifier (URI) for this service and the body of the request contains the data to

15

be requested or added. REST models the information as resources and each resource has

a URI. The Client uses the RESTful interface to communicate with the server through

HTTP messages of GET, POST, PUT and DELETE to get, create, edit and delete a

resource, respectively [13]. Resource Oriented Architecture (ROA) is a RESTful

architecture that defines the rules for the RESTful Web Services. REST has five main

properties, which are: addressability, statelessness, connectedness, uniform interface and

cache-ability. ROA and the properties of REST will be discussed later in this section.

2.2.2 Resource Oriented Architecture (ROA)

The ROA relies on five concepts, which are [15]:

 The Resources

 The Resources Names

 The Resources Representations

 The links between the Resources

 The Resources Interfaces

The resource is anything that can be named and which has an important state that the user

would be interested in getting, creating or modifying (e.g. an item, a database entry …

etc.). Each resource has at least one Uniform Resource Identifier (URI). This URI is used

to identify the resource over the Web and to access it. However, each URI must be

mapped to only one resource. The resources are available in the server and the client

sends a request to get, create, modify or delete the resource [18]. An example of a URI:

“http://www.socialnetwork.com/Profile/Alice”. This resource contains the profile of user

Alice within a SN. Each resource has a representation that shows the current state of the

resource. REST allows the resources to have any representation format or media type.

16

The famous resource representations formats are XML [16], JavaScript Object Notation

(JSON [17]), Extensible Hypertext Mark-up Language (XHTML) or plain text. The

resources are linked using hyperlinks. The resources can be accessed and manipulated

using a uniform interface [18]. The uniform interface relies on the standard HTTP

protocol for the communication. The uniform interface will be discussed in the next

section.

2.2.3 REST Constraints and Operations

2.2.3.1 REST Constraints

REST has five main constraints, which are [18]:

 Addressability: Each resource should be addressable by at least one Uniform

Resource Identifier (URI). Any client to get, create, modify or delete the resource

uses the URI. One resource can have more than one URI. However, each URI is

mapped to only one resource.

 Connectedness: RESTful web services representations are hypermedia

documents. These documents contain data and links to other resources. The server

sends the client information about the states of the resource. Connectedness is the

quality of having links. Resources should link to each other in their

representations. Moreover, the human web is easy to use because it is well

connected while the programmable web is not yet very easy to use.

 Statelessness: The statelessness concept implies that when the client sends a

request to the server, it should contain all the details of the request and the server

should not reply on any previous request. If the client needs to have information

17

from a previous state, it should send it along with the new request to the server.

The possible states of the server are also resources and have their own URIs.

This principle gives the advantages of scalability, reliability and simple

implementation to the RESTful Web Services. The application is considered

scalable because the server should not store the previous states of the client or

store the previous requests of the client. The server just answers the current

request by the desired data or required action to be done. The application is

considered reliable because, using statelessness, it is easy for the server to recover

the partial failures. Finally, the application would be easily implemented because

the server does not have to track resource usage across requests.

 Cache-ability: This principle implies that the client can cache resources.

However, the resources should be defined as cacheable or not in the first place.

This decreases the connections between the client and the server thus improving

scalability and performance.

 Uniform Interface: The client communicates with the server through a uniform

interface to manipulate resources. This uniform interface is based on standard

HTTP messages. HTTP GET, POST, PUT and DELETE are used to read, create,

modify and delete resources respectively. HTTP HEAD and OPTIONS are used

to get the meta-data. The operations using these HTTP messages will be discussed

in the next subsection.

18

2.2.3.2 REST Operations

REST uses the standard HTTP messages for communication between the client and the

server in order to manipulate the resources [18]. These messages and the corresponding

operations using them are discussed below.

 HTTP GET: The HTTP GET message is sent by the client to the server in order

to read the current state of a specific resource. The GET request must contain the

URI of the resource and by that the server can respond to the request. The server

responds by a 200 OK message along with the state of the resource in case of a

successful request. On the other hand, the server replies by 400 NOT FOUND

message in case of a request failure.

 HTTP POST: The client, to create a new resource, uses the HTTP POST

message. The message should be linked to a parent resource URI. Meanwhile, the

server replies by a HTTP message of status code 201, which means that the

resource is created. The reply will have the new resource URI in the header

message.

 HTTP PUT: The client sends a HTTP PUT request to modify an existing

resource. The body of the message contains the new representation of the resource

in any format depending on the service (e.g. JSON). The server replies by a 200

OK message in case of a successful request and modification.

 HTTP DELETE: The client sends a HTTP DELETE message along with the

resource URI in order to delete aforementioned resource. The server replies by a

200 OK message in case of success.

19

The client, to get the header meta-data of the request message, uses HTTP HEAD and the

client, to know the operations supported by the resource, uses HTTP OPTIONS. Table

2.1 shows an example from each of the main HTTP messages exchanged between the

client and the server.

Table 2.1 - List of Examples on HTTP Methods used by REST

HTTP

Method

HTTP Example Message Message Description

GET GET http://www.SN.com/Profile/Alice Reads the representation of Alice’s

profile in the SN

POST POST http://www.SN.com/Sessions Creates a session for a user with the

SN (e.g. userId=Alice). The user

receives the session ID as a reply.

PUT PUT

http://www.SN.com/Sessions/Session1

Modifies the ongoing session between

the user and the server. The body of

the message contains the request

modification required.

DELETE DELETE

http://www.SN.com/Sessions/Session1

Deletes the session with ID=1 of the

user from the SN (e.g. userId=Alice).

2.2.4 RESTful Web Services Development

The procedure to develop RESTful web services starts by identifying the dataset in the

system. After that, a classification of the data exchange should be done and followed by

splitting the data into resources. The resources reside in the server and the client should

20

use the HTTP messages to create, modify or remove the resources. The resources should

be designed in a hierarchal manner, which means that there would be some child

resources that are under their parent resources [18].

The following steps should be performed for each resource. The resource should be given

a unique URI. Identification of a list of the HTTP messages used to interact with it should

be made. Representations accepted by and served to the client to be designed. The

resource should, then, be integrated into the hierarchy of the resources (Who is the parent

resource, who is the child resource). Finally, the error conditions should be mentioned

[18].

We can illustrate the previous procedure by giving an example on the SN sessions. We

have two resources, which are identified by the URIs Sessions and Session-ID. The

Session-ID resource is a child resource and its parent resource is Sessions. The SN server

will keep the resources. The client will use HTTP GET, POST, PUT and DELETE

messages to communicate with the server resources. Considering the Sessions resource,

the client can use HTTP POST to create a new session and HTTP GET to retrieve a list of

ongoing sessions with the Server. Considering the Session-ID resource, the client can use

HTTP GET to retrieve the details of a specific ongoing session, HTTP PUT to modify

this session and HTTP DELETE to remove this session from the server. The

representation accepted by and served to the client would be, for example, JSON. Finally,

the client will receive an error message if he/she uses any un-designed HTTP message

mentioned earlier to its corresponding resource (e.g. HTTP DELETE with Sessions

resource).

21

2.3 Quality of Experience (QoE)

This section discusses the definition of the term Quality of Experience (QoE) and then it

discusses two features that contribute to the QoE in this thesis work, which are the

Quality of Service (QoS) and Information Filtering (IF).

2.3.1 Definition of QoE

QoE is a term that emerged with the Next Generation Networks (NGNs) and the rise of

service expectancy of the user. There is no general definition for the term QoE.

According to the International Telecommunication Union (ITU [60]), QoE is the

acceptability of a service by the user depending on his/her prior expectations. The

acceptability of the service accounts for an end-to-end service not the intermediate

network performance [2].

 According to authors in [21], QoE is not the measure of the service delivered by the

service provider but the overall experience of the user concerning the outcome of the

service. Finally, according to European Telecommunications Standard Institute (ETSI

[61]), QoE is the user satisfaction on the objective and subjective psychological measures

of the product offered by the service provider [22].

From the definitions of ITU, ETSI and [21], the QoE of the users can be estimated by the

acceptance of the service by the users and measured by the performance of the network

and the equipment involved in the service delivery to the user. The next two sections will

introduce the term QoS and Information Filtering, which are the features used in our

thesis to enhance the users’ QoE.

22

2.3.2 Quality of Service (QoS)

2.3.2.1 Definition of QoS

As well as QoE, there is no exact definition for the term QoS. According to ITU, the QoS

is the network characteristics and performance used to deliver a telecommunication

service that satisfies the user who requested it [23]. According to authors in [24], the QoS

is generally stated as measurements that can control the network performance in order to

meet the user’s requirements. QoS is considered in the technicalities used in order to

achieve the user’s satisfaction. Figure 2.6 shows the difference between QoE and QoS in

a sense that the QoE is always from the user behaviour and the QoS is the technical

performance to achieve the required QoE.

Figure 2.6 - Quality of Experience versus Quality of Service

2.3.2.2 QoS Entities

There are three main QoS Entities that should be available in order to make the QoS

requirements and deliver those [24]. Their definitions are listed below and Figure 2.7

shows their interaction briefly.

 User: The entity that pays and makes use for/of the service and requests specific

requirements for the service.

23

 Network Provider: The entity that provides the network for the

telecommunication service. It can be the service provider as well if it offers the

service.

 Service Provider: The entity that offers telecommunication services to the users.

Figure 2.7 - Interactions between the entities, Figure taken from [24]

2.3.2.3 QoS Parameters

The following parameters are the main QoS parameters that affect the users’ flow of

packets in the network [25]. Applications may regard one of the parameters as more

important than others (e.g. streaming applications care about packet loss more than other

parameters).

24

 Packet Loss: Some routers would fail in the packet delivery due to the overload

of their buffers. This will lead to higher packet drop rate. Some applications can

cope with packet loss (e.g. Data Applications). However, other applications are

very sensitive to packet loss (e.g. Streaming Applications), in this case the

number of packets sent versus the number of packets received affects the QoS of

the users.

 Latency: Latency is the end-to-end delay of the packets. It might take long time

for the packet to reach its destination because of the delays in the buffers of the

routers. Latency is very important in some applications like the Voice over IP

applications (VoIP).

 Jitter: Jitter is the delay variation of the packets. Packets from the same source

can reach the destination with different delays and thus will need more processing

in the destination side. Jitter is very important in case of the streaming audio or

video applications.

 Throughput: Throughput is the data transfer rate also regarded as the bit rate.

2.3.2.4 QoS Mechanisms

QoS mechanisms are used in order to insure that the network meets the specific

requirements and the network performance is at its best. Below are the main categories of

QoS mechanisms to insure that [26].

 Admission Control: It is the process of taking the decision whether the data flow

will be admitted to the network or not. This depends on the available network

resources and the admission policies.

25

 Traffic Policing, Shaping or Dropping: Traffic shaping is used to optimize the

network performance. It includes packet marking and classification, enforcing

policies and congestion management techniques. On the other hand, traffic

policing is the process of marking or dropping packets that exceeds the traffic

rate. There are some algorithms for traffic policing like the leaky bucket and the

token bucket algorithms [26].

 Queue Management and Scheduling: Queue management and queue scheduling

are used to improve the normal First In First Out (FIFO) queue. That is because

the QoS requires the routers to have special queues for prioritizing packets and to

schedule packets while avoiding network congestion. An example of queue

management is the random early detection (RED [62]). An example for the queue

scheduling is the weighted fair queuing (WFQ [26]).

This is a brief description of the QoS mechanisms, more can be found in [26].

2.3.2.5 QoS Levels

QoS levels are the service levels that the service provider can offer to the user through the

network provider. The network provider defines the service levels to control the QoS

mechanisms and parameters in the network. As per the Internet Engineering Task Force

(IETF [63]), the IP networks can provide one of three QoS levels, which are best-effort

service, integrated service and differentiated service [27].

 Best-Effort Service: Best effort service is the basic IP network service. It uses the

FIFO queue in the queue management and scheduling. Some applications work

properly using the best effort service. However, some applications sensitive to

26

some QoS parameters (e.g. delay and jitter) will be affected by the best effort

service in case of network congestion.

 Integrated Services (IntServ): IntServ is a QoS related network service. It is a

per-flow service that needs resource reservation before the admission of the flow.

IntServ supports two types of traffic classes, which are guaranteed services and

controlled-load services [26].

In a controlled-load service, the flow receives a service close enough to the best-

effort service in the case of unloaded network and then the service degrades with

the increased network load. On the other hand, in the guaranteed service, the flow

has strict requirements on the bandwidth, delay and other QoS parameters that the

routers should meet before admitting the flow. The IntServ model is based on the

Resource Reservation Protocol (RSVP) [26].

 RSVP is a signaling protocol used in reservation of resources within the network

to guarantee the service for the flows. It uses two main messages to reserve the

resources, which are PATH and RESV messages. Figure 2.8 shows how the

resources are reserved using RSVP within an IP network. If any intermediate

router fails to reserve the resources, the whole process will be aborted. IntServ is

difficult to implement since the entire routers should support classification and

scheduling mechanisms. Also, each router should store information about each

reservation flow.

27

Figure 2.8 - Illustration of the RSVP Signalling

 Differentiated Services (DiffServ): DiffServ classifies the network into smaller

classes of services compared to the IntServ. DiffServ performs per hob behavior

(PHB). DiffServ, unlike IntServ, does not need resource reservation. DiffServ

performs the marking; scheduling and policing of packets only in the border

routers while the intermediate routers perform the behavior aggregate (BA). In the

DiffServ, changing the Differentiated Services Field (DS Field) in the IP packets

to specific Differentiated Services Code Point (DSCP) prioritizes the packets.

Moreover, DiffServ is considered a more scalable solution when compared to

IntServ since the network does not have to reserve resources for the flows. Also, it

is easy to implement the QoS provisioning with the DiffServ. Figure 2.9 shows

how the DiffServ works within the IP networks.

Figure 2.9 - DiffServ Routing

28

2.3.3 Information Filtering (IF)

This subsection will illustrate the definition and concepts of IF in the light of the Social

Networks (SNs).

2.3.3.1 Definition and Concepts of IF

There are various definitions for the term Information Filtering (IF) but they refer to the

same concept. According to authors in [4], IF is picking particular objects from incoming

posts that would have high probability in satisfying the user. Another definition used by

G. Pasi, IF is the process of choosing a subset of information stream and presenting it to

the user. A process of identifying the user’s needs and interests should be prior to the IF

process [28]. IF needs an information filter, which stores users’ needs and evaluates if the

retrieved information is in the user’s interest or not [28].

The IF systems have the following characteristics [29]:

 They are applicable for unstructured data as well as semi-structured data.

 They handle large amount of data.

 They deal with text-based messages.

 They take their decisions of filtering according to users criteria (user’s

preferences).

 Their objective is to remove irrelevant data from the retrieval stream (irrelevant

due to the user’s preferences).

29

There are different types of IF [28] [31], among them are:

 User-Based Filtering: User-based filtering is a type of filtering that allows users

to hide entire activity from certain users in their SN context.

 Content-Based Filtering: Content-based filtering is concerned about text-based

objects to be filtered. They use content analysis tools in the filtering engine to

reach decisions about filtering.

 Collaborative Filtering (CF): Collaborative filtering is based on usage analysis

and learning from the user’s previous history with the entity (e.g. SN). There are

three types of CF, which are: memory-based, model-based and hybrid. More

information about CF is found in [31].

 Hybrid Filtering: Combines the previous filtering approaches.

2.4 Evolved Packet Core (EPC)

2.4.1 Definition of EPC

EPC-Based systems are all IP network architectures of the 4th generation mobile

networks. EPC enables users to connect to mobile networks through their mobile devices

and seamlessly change from one access technology to another. These systems separate

the data and control paths. The EPC is the core network running on top of the long-term

evolution (LTE) access network, any legacy 3GPP access network (e.g. GPRS and

UTRAN) or any non-3GPP access network (e.g. Wi-Fi and WiMAX). The main

components are the Serving Gateway (S-GW), Packet Data Network Gateway (PDN-

GW), which are common in the data and control paths, and the Policy and Charging Rule

30

Function (PCRF), which is responsible for the definition of the QoS policies [5]. 3GPP

4G EPC-Based systems enable guaranteed and differentiated QoS.

2.4.2 EPC Architecture

Figure 2.10 shows the EPC architecture and its main components and they are discussed

in details as follows.

Figure 2.10 - EPC Architecture, taken from [5]

 Serving Gateway (S-GW), generic Access Network Gateway (ANGw) &

evolved Packet Data Gateway (ePDG): S-GW, ANDGw & ePDG are access

gateways responsible for connecting the 3GPP, trusted non-3GPP & untrusted

non-3GPP access networks to the IP based core network, respectively. They are

considered as the local mobility anchor points. S-GW contains the Bearer Binding

and Event Rules Function (BBERF) component, which enforces the QoS rules

and policies. Meanwhile, ePDG authenticates and authorizes its users. It also

31

marks the traffic packets with different DSCP to have different traffic classes

within the core network [5].

 Packet Data Network Gateway (PDN-GW): PDN-GW is the gateway that

connects the users with the external packet data networks. It contains the Policy

and Charging Enforcement Function (PCEF) component, which supports packet

marking, rate enforcement and packet filtering in order to provide QoS

provisioning [5].

 Mobility Management Entity (MME): MME is considered one of the important

components for 3GPP access networks because it authenticates the user with the

Home Subscriber Server (HSS). MME is responsible for the selection of the

appropriate S-GW and PDN-GW. Moreover, MME is also responsible for the

bearer activation and deactivation.

 Home Subscriber Server (HSS): HSS is the database that saves the information

of the users. It communicates with MME for authentication purposes. It

communicates with the Policy and Charging Control Function (PCRF) component

for service provisioning purposes [5].

 Application Function (AF): AFs refers to applications outside the domain of the

EPC architecture and eventually communicates with the EPC architecture (e.g. IP

Multimedia Subsystem (IMS) Architecture or third party service provider) [5].

 Access Network Discovery and Selection Function (ANDSF): ANDSF uses the

users’ current location, coverage maps and subscription information in order to

discover access networks for the user. Moreover, ANDSF takes handover

decisions for the non-3GPP access networks users [5].

32

 Authentication, Authorization & Accounting (AAA) Server: The AAA server

is used for authentication, authorization and accounting of the users connected

through non-3GPP access networks. The ePDG and ANGw communicates with it

in order to authenticate the users. AAA server stores the user’s information and

communicates with the HSS for user’s subscription profile information updates

[5].

 Policy and Charging Rules Function (PCRF): PCRF is the main component for

providing QoS in the EPC architecture. PCRF is the base of the Policy and

Charging Control (PCC) system. It provides the PCC rules and policies to the

BBERF component in the S-GW and the PCEF component in the PDN-GW to

enforce the QoS policies in the network [5].

2.4.3 Diameter Protocol

The Diameter base protocol is an Authentication, Authorization, and Accounting (AAA

[64]) protocol designed for network access applications. Diameter protocol is also used in

user mobility in home and foreign networks [32]. Diameter can run on top of Transport

Control Protocol (TCP [65]) or Stream Control Transport Protocol (SCTP [66]). It

evolved and meant to replace the Remote Authentication Dial In User Service (RADIUS

[68]), which runs on top of the User Datagram Protocol (UDP [67]). Diameter overcame

RADIUS because it runs on top of reliable transport protocols, has network and transport

layer security, supports stateless models and is more easily extendable. The diameter

protocol was chosen by 3GPP to be the signalling protocol for the EPC architecture.

More information about diameter can be found in [32].

33

2.4.4 QoS in EPC

3GPP EPC-based Systems use the class-based QoS. This is implemented by the Policy

and Charging Control (PPC) system in the PCRF component in the EPC architecture. The

bearer concept shapes the QoS levels in EPC. Each bearer is associated with certain QoS

parameters that define the QoS level. The bearer concept will be discussed in the next

subsection. Generally, the EPC architecture follows the DiffServ model to provide QoS

to users.

2.4.4.1 The Bearer Concept

As per ETSI, An Evolved Packet System (EPS) bearer is the sum of characteristics

applied to a flow in the network layer. The EPS bearer differentiates between the

different treatments of packets within the network. Each bearer has the same forwarding

treatment (e.g. scheduling policy, queue management policy, rate shaping policy, RLC

configuration, etc.) [33]. EPC bearers are classified as default bearer or dedicated bearers

in terms of time establishment. On the other hand, they are classified as Guaranteed Bit

Rate (GBR) bearers or Non-Guaranteed Bit Rate (Non-GBR) bearers in terms of

bandwidth guarantee [34]. The following QoS parameters are used to identify the QoS

level within the EPC bearer [34]:

 QoS Class Identifier (QCI): QCI is a number that is used to indicate the

transport characteristics of a flow (e.g. priority, packet loss rate) and the nodes

that determine the packet forwarding treatment (e.g. queue management) uses the

QCI as a QoS level indicator.

34

 Allocation and Retention Priority (ARP): This value determines the priority of

the bearer either when established, modified or terminated. It is unlikely that a

bearer with high ARP be terminated under low network resources conditions.

 Maximum Bit Rate (MRP): MRP indicates the maximum bit rate that the

corresponding EPC bearer can use.

 Guaranteed Bit Rate (GBR): GBR indicates the guaranteed bit rate for the

corresponding EPC bearer

 Aggregate Maximum Bit Rate (AMBR): AMBR is used to control the

bandwidth usage of users across different bearers. The point behind it is that the

user can have different bearers and the EPC may, at a point, need to control the

overall bandwidth usage of a specific user across all his/her used bearers.

2.5 Chapter Summary

This chapter presented the background information that is necessary for the rest of the

thesis. The next chapter will discuss the motivating scenarios of this thesis, the derived

requirements and dig more into the related work and its evaluation.

35

Chapter 3: QoE-Enabled SNs: Motivating

Scenarios, Requirements and State of the

Art Evaluation

This chapter presents the scenarios that motivate this thesis followed by the derived

requirements for QoE-Enabled SNs. Finally, the last section discusses the related work

and we sum up the section with a state of art evaluation with respect to the derived

requirements.

3.1 Motivating Scenarios

Two main motivating scenarios for QoE-enabled SNs are to be discussed. The first one

presents Alice (professor), Charlie (student) and Bob (professor) as users of a SN. Alice

provides a user filtering criteria in order to avoid receiving friendship requests from

students and receiving sports-related posts from her SN friends. When Charlie and Bob

send her a friendship request, Alice will only receive the friendship request from Bob.

This scenario illustrates the use of Information Filtering in SNs. It can be used in terms of

user-based filtering or content-based filtering.

In the second scenario the SN allows its users, like Sarah, to subscribe to a certain QoS

level. There are three QoS levels, which are: Bronze (low), Silver (medium) and Gold

(high), and they are user-based QoS levels. Moreover, the SN allows its users to upgrade

or downgrade their QoS level during their ongoing sessions. Sarah has a low QoS level

(Bronze) subscription in the SN and wants to share live updates of a conference with her

colleagues. Due to the overloading of the network (e.g. a lot of ongoing video

36

conferences), she will not be able to post her updates, so she decides to upgrade her QoS

level to Gold for posting the important updates. Furthermore, the SN will keep providing

Sarah with the same QoS level subscription at any given time even if she switches from

one radio access layer (e.g. Wi-Fi) to another (e.g. LTE).

3.2 Requirements for QoE-Enabled SNs

The requirements to be met in order to achieve a QoE-Enabled SN are derived from the

motivating scenarios presented earlier.

In this thesis, we have derived four requirements that any architecture to enable QoE in

SNs should meet. They are all functional requirements. The first requirement is

supporting user-based filtering. The second requirement is supporting content-based

filtering, which allows users to hide posts related to certain topics. The first and second

requirements are derived from the first motivating scenario. The third requirement

concerns the support for differentiated QoS. The solution should provide users with

different QoS levels (Gold, Silver, and Bronze) in posting and retrieving. The QoS levels

are user-based differentiated QoS. Moreover, the proposed architecture should enable the

users to upgrade or downgrade their QoS level during an ongoing session without the

need to restart the session. This requirement is derived from the second motivating

scenario. The fourth and last requirement is about entirely/partially reusing existing SN

infrastructure, whenever possible, and not build a new system from scratch. Table 3.1

summarizes these requirements.

37

Table 3.1 - The requirements for QoE-Enabled SNs

Index Requirement

1 Support User-based Filtering

2 Support Content-based Filtering

3 Support User-based differentiated QoS

4 Reuse entirely/partially existing SN infrastructure

3.3 State of the Art

This section evaluates the related work with respect to the aforementioned requirements.

The first section covers the SN platforms and evaluates which SN platform is the best to

be the base of our work. The second and third sections cover the two main features for

QoE-Enabled SNs, differentiated QoS and information filtering and the related work of

each feature in the SNs domain. To the best of our knowledge, there is no related work

that addresses both of these aspects together.

3.3.1 Social Network Platforms

A SN platform is an operating system (OS) for SNs. It provides the technologies that

enable the social graph. The social graph is defined per user. It shows the connections of

this specific user to other users of the SN. The social graph summarizes the connections

that make up a SN [36]. Many SN platforms are available. Two main SN platforms are

widely used, which are the Facebook Platform and Google’s OpenSocial. They are to be

discussed in the next subsections followed by an overall comparison and evaluation.

38

3.3.1.1 Facebook Platform

The Facebook Platform is a framework that provides set of Application Programming

Interfaces (APIs), and tools for third party applications to develop and run their own

applications on Facebook. According to [36], an API identifies how the software

components should interact. It shows how an operating system, a library or a service

should deal with requests initiated from computer programs.

The Facebook Platform consists of the following features [36]:

 Graph API: It is Facebook’s web-service API. The basis of this API is the REST

protocol [18]. Facebook uses REST because it is light-weight protocol, easy to

implement and uses standard protocols such as HTTP. The REST resources are

summarized to: user, friend, group, group_member, event, event_member, photo,

album, and photo_tag.

 Authentication: This process follows the Facebook Login process, in which the

user provides his/her username and password and the Facebook server validates

these data with the corresponding database records [44].

 Facebook Mark-up Language (FBML): It is a subset of the Hypertext Mark-up

Language (HTML). The third party server should use FBML for its content in

order for Facebook server to publish and read them.

 Facebook Query Language (FQL): It is similar to the Structured Query

Language (SQL). It does not support a join query, it selects from one table at a

time and it must be index-able.

 Facebook JavaScript (FBJS): It is similar to the normal JavaScript but with

some differences in the function and variable names.

39

 Social Plugins: These plugins are add-on features to the basic SN functionalities.

They provide more interaction means to the SN. Examples of the social plugins

are: the like button, the share button, the follow button and the recommendation

feed.

Figure 3.1 shows the Facebook Platform architecture. The client sends a request (e.g.

Registration request for a gaming application on Facebook) to the Facebook server-using

HTTP, the Facebook server forwards the request to the third party server using also

HTTP, and the third party server gets the data using SQL. After that, the third party

server sends a query using FQL to the Facebook server and the Facebook server replies

by the Facebook formatted content. The third party server forms the response and sends it

in terms of FBML to the Facebook server, which forwards the reply to the client in terms

of normal HTML [45].

Figure 3.1 - Facebook Platform Architecture, taken from [45]

3.3.1.2 Google’s OpenSocial

Google launched a counter part for Facebook platform and called it OpenSocial.

OpenSocial is a set of APIs for SNs development. The power of OpenSocial that it is not

only exclusive to Google+, third party servers can run associated with different SNs. The

supported SNs are Friendster, Hi5, Hyves, imeem, LinkedIn, MySpace, Ning, Oracle,

Orkut, Plaxo, saleforce.com, Six Apart, Tianji, Viadeo and Xing [36].

40

OpenSocial is based on HTML and JavaScript API. The OpenSocial specification uses

also RESTful APIs with the following resources: People, Groups, Messages, Application

Data, Activities, Media Items and Albums. It is considered simpler using HTML,

JavaScript API and SQL as base technologies [35].

Figure 3.2 shows the OpenSocial architecture. The container implements OpenSocial API

and Gadget API specifications. Apache Shindig is used as open source software that

allows any third party server to serve OpenSocial applications. The existing networking

software (third party) communicates with the shindig environment using the OpenSocial

Service Provider Interface (SPI). The shindig environment contains a gadget server that

stores JavaScript and HTML specifications of social applications in the iframe

component and make them available by HTTP methods. More can be found in [35].

Figure 3.2 - OpenSocial Architecture, taken from [35]

3.3.1.3 SN Platforms Evaluation

Table 3.2 summarizes the key similarities and differences between the Facebook platform

and Google’s OpenSocial platform.

41

Table 3.2 - Comparison of Facebook Platform and Google OpenSocial

Facebook Platform Google OpenSocial

Getting users data, sending notifications

and publishing users activities

Getting users data, sending notifications

and publishing users activities

Based on RESTful API Based on RESTful API

 URL addressable, REST-like server API Client-side JavaScript oriented

Uses Facebook JavaScript (JBJS),

Facebook Mark-up Language (FBML) and

Facebook Query Language (FQL)

Uses JavaScript (JS), Hypertext Mark-up

Language (HTML) and Structured Query

Language (SQL)

This thesis will be based on Google’s OpenSocial and it will reuse and build up on its

resources for the following reasons:

 It allows the integration of the third party applications with most of the nowadays

SNs.

 It uses widely used technologies (e.g. JavaScript, SQL & HTML).

 Most of the open-source projects run on top of the OpenSocial APIs.

 Taking into account our fourth requirement, which is to support reusing

entirely/partially existing SN infrastructure. OpenSocial is a more suitable

solution.

3.3.2 Differentiated QoS and SNs

The authors in [37] suggest a differentiated QoS scheme for social media delivery over

mobile networks. They categorize the social media content into different classes

42

according to the QoS Service Level Agreement (SLA) Traffic Classes. These classes are:

Conversational (e.g. Social Health CureTogether), Streaming (e.g. YouTube), Interactive

(e.g. Social Game SecondLife) and Background (e.g. Twitter). The social media content

is transmitted through the IP Multimedia Subsystem (IMS) then to Internetwork Packet

Exchange (IPX) network until it reaches the application servers. The session established

between the mobile device and the application server will have a specific QoS level

(Platinum, Gold, Silver or Bronze). This can be done using Resource Reservation

Protocol, Multiprotocol Label Switching (MPLS) and/or Differentiated Services

(DiffServ). Figure 3.3 shows the architecture into which end-to-end QoS sessions are

established while table 3.3 shows QoE service translations for different traffic classes of

social applications.

Table 3.3 - QoE service translations for different traffic classes in [37]

 QoE

Platinum Gold Silver Bronze

QoS

SLA

Traffic

Classes

Conversational Tolerable Non-Tolerable

Streaming Tolerable Non-

Tolerable

Interactive Tolerable Non-Tolerable

Background Tolerable

43

Figure 3.3 - Establishing end-to-end QoS in [37]

This work does not meet our third requirement of user-based differentiated QoS because

it does not guarantee a user’s requested QoS level (e.g. Silver) if network resources are

not available, or if the user will use a social media content (e.g. Conversational), which is

not supported by this QoS level. Moreover, it supports session-based differentiated QoS

not user-based differentiated QoS. The first and second requirements are not discussed

because this work is not related to filtering. However, this work meets our fourth

requirement since it uses standard technologies to offer the differentiated QoS so it can

reuse any existing social media application and build a differentiated QoS framework.

Some related work has been done in the E-health area regarding both the SN and QoS,

e.g. in emergency response. A framework, called SenseFace that dynamically posts

information from a user’s Body Sensor Networks (BSNs) to his/her SN has been

proposed in [38]. The BSN sends information to a smartphone device via Bluetooth, the

44

smartphone forwards information via a Wi-Fi/cellular network to the E-health service

provider that interacts with the user’s SN and makes critical medical/health decisions for

the user. Figure 3.4 shows the SenseFace architecture. This work allows the prioritization

of certain messages in SNs (e.g. emergency cases have the highest priority). However, it

does not support differentiated QoS from the user perspective and it does not support

different QoS levels for different users. The first and second requirements are not

discussed because this work is not related to information filtering. Finally, this work does

meet our fourth requirement since the E-health service provider can be added as an option

to any existing SN solution.

Figure 3.4 - SenseFace Architecture in [38]

Differentiated QoS is achieved by applying different QoS levels. Each QoS level (Gold,

Silver or Bronze) defines a set of requirements to be met for the flows of the users that

are subscribed to this QoS level. The Evolved Packet Core (EPC)-based Systems’ new

network aware services allow provisioning with differentiated and guaranteed QoS

according to the users’ preferences [5]. It meets our third requirement of supporting user-

45

based differentiated QoS. So, this can be used in our work. However, this requires a

Service Delivery Platform (SDP), which will be discussed in the next subsection.

3.3.2.1 Differentiated QoS Service Delivery Platform (SDP)

The authors in [39] propose a new system architecture for video surveillance applications

that runs on top of 3GPP 4G EPC-based systems. They used 3GPP 4G Evolved Packet

Core (EPC) to enable guaranteed and differentiated QoS in mobile video surveillance

applications. The main components of their proposed architecture are the Surveillance

Server, the SDP (QoS and Streaming Enablers) and the Machine-to-Machine (M2M)

network. The M2M gateway enables interactions with the M2M devices. While on the

other hand, the SDP enables the development and management of QoS mobile video

surveillance applications.

Figure 3.5 - The overall architecture in [39]

46

The QoS Enabler component in [39] provides the users with end-to-end differentiated

QoS through the EPC layer. It meets our third requirement of providing user-based

differentiated QoS. Moreover, it also meets our fourth requirement because the QoS

Enabler can be reused with different systems to communicate with the EPC domain and

provide differentiated QoS. However, the scope of their work is not in the SNs domain.

3.3.3 Information Filtering and Social Networks

Reference [40] discusses content-based filtering. It analyzes the features that are

important for a user, to develop a means to filter the posts that appear in their SN news

feed. It proposes an information filtering system based on the user’s preferences. Figure

3.6 shows their information filtering system architecture. The training data are kind of

raw data in order to prepare it for the test data. The output of the training data should not

contain redundant or irrelevant data of the user. Their architecture focuses on the data

pre-processing. It contains the set of inputs according to the user preferences. It contains

set of features that transforms the data inputs to known features (e.g. topic of post). Also,

it includes the database that collects the user data with the feature along with the decision

of the user to allow or deny the data. Finally, it has the feature selection that extracts the

set of features relevant to the user in order to take the appropriate decision. The test data

uses the actual situation of the users and also uses edge rank algorithm of Facebook in the

set of inputs and data mining algorithm in the feature selection component. This work

does not meet our first filtering requirement of user-based filtering because it does not

allow entire posts from certain users to be filtered. However, it does meet our second and

fourth requirements. It provides a solution to existing SNs thus reusing them. It provides

the SNs with content-filtering approach that matches the second requirement since it can

47

filter posts according to a certain topic. Finally, it did not discuss our third requirement of

supporting differentiated QoS because it is out of the scope of their work.

Figure 3.6 - Information Filtering System Architecture in [40]

An anti-spoiler system that changes the filtering system dynamically according to a user’s

preference is proposed in [41]. The system implements content-based filtering according

to the user’s current situation. The filtering system knows the intended user’s action (e.g.

watch a certain movie) from his/her previous actions (e.g. reservation of a movie ticket).

After that, the system filters the content related to the action until the user does it (e.g.

filter all posts related to this movie until the user sees it). Their filtering system has the

following requirements:

 User detection: It detects the target users of the system.

 Schedule detection: The schedule of the users in order to determine their

upcoming actions. For simplicity, the users add their own schedules in this work.

 Activity detection: The system has to detect the user current activity.

48

 Filter Creation: The system has to be able to make the filter automatically and

set the content to be filtered at any given point of time.

 Content division: This implies the division of the text into different parts (e.g.

Topic name).

 Filtering: This implies the actual detection of unwanted posts by the

aforementioned filter.

 Visualization: The system, finally, has to prevent the filtered items from being

displayed to the user.

The authors implemented their “anti-spoiler” system and met their requirements. This

work does not meet our first requirement of supporting user-based filtering because the

user cannot hide entire posts/requests from certain users in his/her SN. Furthermore, it

does not support the fourth requirement of supporting the reuse of existing solutions. The

proposed solution is specific to their system and cannot be seamlessly integrated with

nowadays SNs. However, this work partially meets our second requirement of supporting

content-based filtering because it supports temporarily content filtering of unwanted posts

of the users. However, it does not support entirely the filtering of a specific content from

the user’s news feed. Finally, it does not discuss the third requirement of supporting user-

based differentiated QoS because it is out of their work’s scope.

Reference [42] presents a unified information-filtering model that prevents the user from

being overloaded by information and offers him/her relevant information. It also provides

the user with information that he/she did not yet know. This model deduces what the user

is interested in. This is made possible by searching through users’ friends of friend’s

profiles. These profiles will reveal overlapping interests, may indicate the same

49

educational institutions, and/or indicate income levels similar to those of the user. This

filtering system may also discover users that are performing the same task at the same

time or sharing similar posts at the same time as the target user. These authors discussed

a case study demonstrating that the information shared by a user’s friends is not always

relevant, but that information augmentation (showing the user additional information) is

useful for most users. More about information augmentation and their approach of

reaching it can be found in [42]. This paper does not meet our first requirement of

supporting user-based filtering because it focuses only on the content-based and

collaborative filtering approaches. However, it partially meets our second requirement of

supporting content-based filtering. It filters specific content from the user and provides

him/her with additional information that is believed to be more relevant. It does not

support entirely the filtering of posts related to a specific topic. Furthermore, this work

does not discuss our third requirement because it is out of its scope. Finally, it meets our

fourth requirement because it can be deployed on any existing solution.

There are more works discussing IF in SNs but this section presented the most relevant to

our scope.

3.3.4 Overall State of the Art Evaluation

Table 3.4 shows the summary of all the related works (columns) in comparison to our

four requirements (rows). Each related work is evaluated with respect to each

requirement and this evaluation is assigned one of these values:

 Not Applicable (N/A): That means that the related work is out of the scope of the

requirement.

50

 Met: That means that the related work meets the corresponding requirement.

 Partially met: That means that the related work partially meets the corresponding

requirement.

 Not met: That means that the related work does not meet the corresponding

requirement.

Table 3.4 - State of the art overall evaluation

Table 3.4 shows that Google’s OpenSocial is more suitable than the Facebook

Framework as a basis of our thesis. None of the differentiated QoS and SNs related works

(Ref [37] and [38]) met all of our requirements. However, the use of Evolved Packet

Core (EPC) systems would provide differentiated QoS to our thesis proposed architecture

and partially reusing the SDP proposed in [39] would allow that. However, the work

discussed in [39] does not focus on the SN perspective. Finally, none of the IF and SNs

related works (Ref [40], [41] and [42]) met all of our requirements as well.

51

3.4 Chapter Summary

This chapter discussed the thesis motivating scenarios, then the derived requirements that

a QoE-enabled SN should meet. In this chapter, we discussed four functional

requirements for our solution. They are supporting user-based and content-based filtering,

differentiated QoS and reusing existing solutions, if possible. After that, it presented the

state of the art in the light of the requirements and provided an evaluation summary of the

state of the art. None of the related work supported all our requirements. However, we

concluded that Google’s Open-Social platform is better than Facebook’s platform to form

the basis of our work and using EPC systems can provide the SN users with differentiated

QoS. The next chapter will introduce and discuss our proposed architecture, its functional

entities and interfaces, procedures and will provide an illustrative scenario to demonstrate

the working of the architecture.

52

Chapter 4: QoE-Enabled SNs: The Proposed

Architecture

This chapter presents the proposed architecture. The chapter is organized as follows: the

first section presents the overall architecture. The second presents the different interfaces

in the architecture and the RESTful resources used. The third presents the procedures that

can be initiated by the users to use the functions of the proposed architecture. The fourth

discusses an illustrative scenario that shows how the entities of the architecture interact

using combined procedures. We conclude this chapter with an evaluation of our

architecture with respect to the previously mentioned requirements.

4.1 The Overall Architecture of QoE-Enabled SNs

The overall architecture, shown in Figure 4.1, consists of two layers, the application and

network layers. The application layer consists of the SN-Server, the QoS Enabler and the

Database. The SN-Server, which is the core of this thesis, provides the information

filtering and differentiated QoS functionalities. It also provides all the common

functionalities of the SN, such as adding/removing friends and posting and retrieving

updates. The Database contains all the users’ profiles, the filtering policies as well as the

supported QoS levels. The last component is the QoS Enabler, which is the service

delivery platform (SDP) component that interacts with the EPC network in order to

provide differentiated QoS to the users. The authors in [39] propose a new system

architecture for video surveillance applications that runs on top of 3GPP 4G EPC-based

systems. Our QoS Enabler partially reuses their work to communicate with the PCRF of

the EPC layer and initiates/modifies users’ sessions with end-to-end differentiated QoS.

53

The 3GPP 4G EPC is the network layer and the basis of the proposed architecture

because it enables guaranteed and differentiated QoS.

Figure 4.1 - The Overall Architecture of QoE-Enabled SNs

There are different functional entities that compose the overall architecture.

 The Request Handler: It is the contact point between the EPC network and the

Application Layer components (SN-Server). It classifies the types of requests sent

to the system and forwards them accordingly. In the case of a connection request

(e.g. HTTP GET Request with username and password), it is forwarded to the

Authentication Engine to authenticate the user and log him/her in. If it is not a

connection request, it is forwarded to the Authentication Engine (along with the

connection ID) for validation and when approved, it is forwarded to the

appropriate engine.

54

 The Authentication Engine: It is responsible for the authentication, connection

and validation of a user and his/her requests.

 The Post Engine: It handles the post requests sent by the user and save them into

the database.

 The Retrieve Engine: It manages the user’s retrieve requests. It gets the updates

from the database and forwards them to the user after applying his/her filtering

criteria. The user criteria are defined through rules, which are added, modified or

removed by the Rule Handler.

 The Rule Handler: It adds, modifies or removes the users’ rules and defines the

user’s criteria.

 The Filtering Engine: It has different functions, all related to the filtering

options. It receives the updates and the user criteria from the database. It then

implements the rule selection and rule enforcement filtering policies and finally

forwards the output to the Retrieve Engine, which forwards the results to the user.

The Filtering Engine also receives the rule updates from the Rule Handler and

enforces the changes to the rules in the Database.

 The QoS Application Function: It is responsible for the initiation, modification

(upgrade/downgrade) and teardown of users’ sessions. It communicates with the

QoS Enabler in order to incorporate the QoS policies in the EPC system and

create the network layer sessions.

 The QoS Enabler: It makes decisions about whether to create/modify the

sessions according to the available bandwidth and the corresponding priority of

the users.

55

 The Database Handler: It is the interface between the SN-Server and the

Database. It maps the requests to the database entities and communicates with the

Database.

 The Database: It stores all of the users’ profiles, the users filtering criteria as well

as the supported QoS levels of the system and the user sessions.

4.2 Interfaces and REST Resources of the Architecture

This section illustrates the main interfaces in the proposed architecture and discusses the

REST resources of the SN-Server and QoS Enabler. According to Figure 4.1, R3 is Rx

Diameter interface [32], while R1 and R2 are RESTful interfaces. REST is favoured in

this architecture because it is lightweight and easy to implement. It supports multiple data

representations for resources (JSON, XML, etc.) and its mapping rules allow the server to

implement a single interface. Furthermore, the SN architecture uses the OpenSocial

framework [35], which uses a RESTful interface. OpenSocial framework is opted, as

previously discussed, because many open-source projects run on top of OpenSocial APIs,

e.g. LinkedIn, Google+. The next sections will provide the resource modeling for the SN-

Server and the QoS Enabler.

4.2.1 The SN-Server Resources

Table 4.1 shows the resource modeling for the SN-Server. The resources of the SN-

Server contain the OpenSocial API resources (Profiles, Messages, Groups, Application

Data, Albums, Media Items and Activities) and the resources that are added to perform

our SN-Server functionalities (added as child resources and their parent resource is the

Profiles resource). Each resource has one or more operations and one or more

56

corresponding HTTP actions. For example, as shown in the following table, user Alice

will send “POST:/SNSRoot/Profiles/ContentFiltering/Category/” with payload “sports”

to the SN-Server in order to filter sports-related updates. Also, user Alice to hide user

Bob’s entire updates, for instance, will send “POST:/SNSRoot/Profiles/UserFiltering/

Hide/Updates/” with a payload value of “userId=Bob”.

Table 4.1 - The SN Server REST Resources

Resource Operation(s) HTTP Action(s)

/Profiles/Content-

Filtering

Get a list of the content filtering

options in the SN-Server

GET:/Profiles/Content-Filtering

/Profiles/Content-

Filtering/Category

Get a list of all the categories

available that the user can filter

GET:/Profiles/Content-

Filtering/Category

Create a content filter for a

specific category with a specific

user

POST:/Profiles/Content-

Filtering/Category

/Profiles/Content-

Filtering/Category/

{CategoryId}

Get the details of the specific

Category action done by the user

(e.g. Sports)

GET:/Profiles/Content-

Filtering/Category/{CategoryId}

Delete a category from a specific

user’s filtering criteria

DELETE:/Profiles/Content-

Filtering/Category/{CategoryId}

/Profiles/User-

Filtering

Get a list of the user filtering

options in the SN-Server

GET:/Profiles/UserFiltering

/Profiles/User-

Filtering/Hide

Get a list of the hiding options in

the SN-Server

GET:/Profiles/User-

Filtering/Hide

/Profiles/User-

Filtering/Hide/Add

Request

Get a list of all the users that add

request hiding can be applied to

in the SN-Server

GET:/Profiles/User-

Filtering/Hide/AddRequest

Hide the add request from a

specific user

POST:/Profiles/User-

Filtering/Hide/AddRequest

/Profiles/User-

Filtering/Hide/Add

Request/{userId}

Get the Boolean reply whether

this specific user’s add request is

hidden or not

GET:/Profiles/UserFiltering/

Hide/AddRequest/{userId}

Delete the hide add request

option towards a specific user

DELETE:/Profiles/UserFiltering

/Hide/AddRequest /{userId}

/Profiles/User-

Filtering/Hide/Upd

ates

Get a list of all the users that

updates hiding can be applied to

in the SN-Server

GET:/Profiles/User-

Filtering/Hide/Updates

Hide the updates from a specific

user

POST:/Profiles/User-

Filtering/Hide/Updates

57

/Profiles/User-

Filtering/Hide/Upd

ates/{userId}

Get the Boolean reply whether

this specific user’s updates are

hidden or not

GET:/Profiles/UserFiltering/

Hide/Updates/{userId}

Delete the hide updates option

towards a specific user

DELETE:/Profiles/UserFiltering

/Hide/Updates /{userId}

/Profiles/User-

Filtering/Block

Get a list of all the users that

blocking can be applied to in the

SN-Server

GET:/Profiles/User-

Filtering/Block

Block a specific user POST:/Profiles/User-

Filtering/Block

/Profiles/User-

Filtering/Block/{us

erId}

Get the Boolean reply whether

this specific user’s is blocked or

not

GET:/Profiles/UserFiltering/

Block/{userId}

Delete the block option towards

a specific user who is currently

blocked

DELETE:/Profiles/UserFiltering

/Block/{userId}

4.2.2 The QoS Enabler Resources

Table 4.2 shows the resource modeling of the QoS Enabler. We partially reuse some of

the QoS-Enabler resources initially presented in [39]. Each resource also has operation(s)

and HTTP action(s). The QoS Enabler resources are used to initiate, modify or delete

user sessions with the EPC layer. For instance, the SN-Server will send

“POST:/QoSEnablerRoot/SNS/Sessions/” to the QoS Enabler with payload

“userID=Alice & ClassofServiceID=Gold” to initiate a session for user Alice with Gold

QoS level, and the QoS Enabler will reply with the session number in the 201 OK

message, in case of success. The SN-ID as a resource is provided because the QoS

Enabler can run when it is associated with multiple SNs, which makes it an add-on to

existing SN solutions.

58

Table 4.2 - The QoS Enabler REST Resources

Resource Operation(s) HTTP Action(s)

/ClassOfService Get a list of all the classes of

service supported by the QoS

Enabler

GET:/ClassOfService

/SN-ID Get a list of all the SNs

supported within the QoS

Enabler domain

GET:/SN-ID

Create a domain of support by

the QoS Enabler for a specific

SN

POST:/SN-ID

/SN-ID/Sessions Get the active sessions of a

specific SN with the QoS

Enabler

GET:/SN-ID/Sessions

Create a new session with the

QoS Enabler for a specific user

of a specific SN

POST:/SN-ID/Sessions

/SN-ID/Sessions/

{sessionId}

Get the details of a specific

session (e.g. userId,

ClassOfService supported)

GET:/SN-

ID/Sessions/{sessionId}

Modify a specific session (e.g.

upgrade the ClassOfService)

PUT:/SN-

ID/Sessions/{sessionId}

Delete a specific session DELETE:/SN-ID/Sessions/

{sessionId}

4.3 User Initiated Procedures

Six procedures are defined for users: Login/Logout, Create/Delete Session, Post,

Retrieve, Upgrade/Downgrade, and the Rule Add/Remove.

 The Login/Logout procedure: It starts with the user sending a

connection/disconnection request to the Request Handler. The Request Handler

forwards the user’s request to the Authentication Engine to authenticate the user.

The Authentication Engine checks with the Database whether the user is

59

registered or not. If so, it will reply to the Request Handler with the approval and

the Connection ID to be forwarded to the user.

 The Create/Delete Session: The user sends a POST/DELETE message for the

session creation/deletion with a specific QoS level. The Request Handler, after the

user validation, forwards it to the QoS Application Function. The QoS

Application Function communicates with the QoS Enabler to create/delete the

session. The QoS Enabler sends a Diameter protocol message, which is an

Authentication-Authorization Request (AAR) to the PCRF. The PCRF reserves

the network resources and replies to the QoS Enabler with an Authentication-

Authorization-Answer (AAA) message.

 The Post procedure: The user sends a POST request to the SN-server, which

contains the update in the payload. After the user’s validation, the Request

Handler forwards the request to the Post Engine, which saves it in the Database

and sends back an acknowledgment to the user.

 The Retrieve procedure: The user sends a GET message to the SN-server with a

payload of the updates needed. The Request Handler, after the user’s validation,

forwards the request to the Retrieve Engine. The Retrieve Engine forwards the

request to the Database Handler to retrieve the information from the Database.

The Database Handler forwards the reply to the Filtering Engine along with the

user’s criteria. The Filtering Engine performs a rule selection process followed by

a rule enforcement process and finally forwards the final reply message to the

Retrieve Engine to reply to the user.

60

 The Upgrade/Downgrade procedure: The user sends a PUT message to the SN-

Server along with the new QoS level subscription in the payload. The Request

Handler sends the request to the QoS Application Function. The QoS Application

Function communicates with the QoS Enabler to enforce the update. At the end,

the QoS Enabler communicates with the PCRF to carry out the QoS level

update.

 The Rule Add/Remove procedure: The user sends a POST request, which

contains the rule addition, modification or removal in the payload, to the SN-

Server. The Request Handler forwards it to the Rule Handler, which puts the

payload in the appropriate filtering rule format and forwards it to the Filtering

Engine, which in turn sends the rule to the Database Handler to be saved. The rule

format is derived from that in the firewall domain [43] and used “<Order>

<SourceID> <DestinationID> <Period> <Topic> <Action>”. The user for

simplicity provides the order. The SourceID usually is the userID that the rule will

be applied to. The DestinationID is always the userID of the user initiating the

filtering process. The period is the specified time that the rule will be applied

within. The Topic is filled when it is the case of content filtering. The Action is

either “allow” or “deny”.

61

4.4 An Illustrative Scenario

In this section, the operations of the proposed architecture are illustrated with the

following scenario: Alice (professor), Charlie (student) and Bob (professor) are members

of a SN. Alice provides a user criterion to avoid receiving friendship requests from

students and hide sports-related posts. When Charlie and Bob send her a friendship

request, Alice will only receive the friendship request from Bob. The sequence diagram

in Figure 4.2 shows the operations and the different messages exchanged. Users Bob &

Charlie send friendship requests to user Alice using the Post procedure (Steps 1 to 4).

Bob and Charlie’s POST requests are realized by the Request Handler and saved to the

Database through the Post Engine. Next, user Alice connects to the SN using the Login

(Steps 5 to 8) and Create Session procedures (Steps 9 to 14). User Alice sends a GET

message, which is realized by the Request Handler. The Request Handler forwards it to

the Authentication Engine for authentication and then user Alice receives a Connection

ID. A POST message is sent by Alice to create a session with her desired QoS level

(Gold). This request is realized by the Request Handler, and then forwarded to the QoS

Application Function. The QoS Application Function contacts the QoS Enabler to

communicate with the PCRF and reserve the user session. Finally, Alice retrieves only

the friendship request from user Bob using the Retrieve procedure (steps 15 to 19). This

occurs after Alice sends a GET request to the SN-Server. The Request Handler sends it to

the Retrieve Engine. The Retrieve Engine forwards it to the Database Handler to get the

user updates and criteria from the Database. The reply passes through the Filtering

Engine to apply Alice’s criterion (filter friendship requests from students) and is finally

forwarded to her.

62

Figure 4.2 - An Illustrative Scenario for the operations of the proposed architecture

63

4.5 Chapter Summary

This chapter presented our novel proposed architecture. The architecture consists of

application and network layers. The application layer contains the SN-Server, QoS

Enabler (a SDP) and Database. The architecture runs on top of the 3GPP 4G EPC

systems, which is the network layer, to provide end-to-end user-based differentiated QoS.

The interfaces that link the architectural components are RESTful and Diameter

interfaces. After that, the chapter identifies the REST resource modeling of the SN-Server

and the QoS Enabler, their operations and HTTP Actions.

In the previous chapter we designed certain requirements and our proposed architecture

satisfies all of them. Our architecture meets the first (user-based filtering) and second

(content-based filtering) requirements through the Filtering Engine in the SN-Server. The

Filtering Engine allows the rule definition, selection and enforcement during the retrieval

of information by the user. The rule, provided by the user, enables him/her to hide

posts/requests from other users and/or posts related to certain topics. Furthermore, the

architecture meets the third requirement (Support user-based differentiated QoS) through

the EPC layer, which acts as the differentiated QoS provider. The SN-Server’s QoS

Application Function alongside with the QoS Enabler controls the user sessions and QoS

levels. Finally, the architecture meets the fourth requirement (re-using existing solutions)

because the proposed architecture can be used, as an extension, to any existing SN. The

components of the architecture act as add-on solutions to existing SN-related works.

The next chapter will discuss the implementation and evaluation of the QoE-Enabled

SNs, the software architectures of the SN-Server and the QoS Enabler, and the proof of

concept prototype implementation and partial evaluation.

64

Chapter 5: QoE-Enabled SNs:

Implementation and Evaluation

This chapter discusses the implementation and evaluation of the proposed architecture. It

starts by presenting the software architectures of the SN-Server and the QoS Enabler.

After that, it presents a simple content filtering algorithm used in the SN-Server. Finally,

it discusses the proof of concept prototype implementation and evaluation.

5.1 Software Architectures for the Proposed Solution Components

5.1.1 SN-Server Software Architecture

Figure 5.1 shows the Software Architecture of the SN-Server and its components.

Figure 5.1 - The SN-Server Software Architecture

65

 The Request Handler consists of two components, the HTTP Stack and the

Extended OpenSocial API Handler. The HTTP Stack receives the HTTP

messages from the users and analyzes them. The Extended OpenSocial API

Handler allows the Request Handler to know if a message has been validated and

to which destination the Request Handler should forward the message.

 The Authentication Engine contains three components: the Authentication

Management, Connection Management and Payload-Object Mapper. The

Authentication Management component recognizes if a message is a login

message or a validation message. If it is a message to be validated, it will be

forwarded to the Connection Management block, which has a list of the current

connection IDs and replies back to the Authentication Management component

with an acknowledgment. The Payload-Object Mapper translates the payload of

the login message into the system object language and forwards it to the Database

Handler.

 The Post Engine contains the Post-Request-Handler, which analyzes the post

message received from the user. The Post Engine also has a Payload-Object

Mapper to change the payload of the post message to the system object language

and then forwards it to the Database Handler.

 The Retrieve Engine and the Rule Handler have the exact same functionality as

the Post Engine, but on the retrieving and managing rules sides, respectively. The

Rule Handler communicates with the Database through the Filtering Engine. An

example of the user filtering criteria request to the Rule Engine follows: <1>

<Charlie> <Alice> <8am-5pm> <Sports> <Deny>. This example says that user

66

Alice will filter all sports-related updates from user Charlie between 8 am and 5

pm. The user, for simplicity, will provide the order of the rules.

 The Database Handler contains a Data-Request Handler for each engine. The

Retrieve-Data-Request Handler forwards the reply message to the Filtering

Engine with the user’s data and criteria. The Data-Mapper is the interface

between the system objects and the database objects. Utilizing this interface

makes the system adjustable to different databases by merely editing the Data-

Mapper.

 The QoS Application Function contains the QoS Profile Management, which

analyzes and forwards the request. The analyzed request is forwarded to the

Session Initiation Management or Session Upgrade/Downgrade Management.

The HTTP Client communicates with the QoS Enabler by sending and receiving

HTTP messages through the RESTful interface.

 The Filtering Engine contains the Filtering Management that communicates with

the Database to retrieve the user updates and criteria. The Filtering Management

communicates with the Rule Selection to analyze the rule, and with the Rule

Enforcement to apply the rule. The Rule Enforcement module also receives the

rule addition, adjustment or deletion request from the Rule Handler, applies it and

forwards it to the Filtering Management to save in the Database. To determine if a

content-based filtering category applies to a post, the Topic Modeling module

receives the post and the topic. It then provides the post to the Key Extraction

component, which replies by extracting keywords from the post. In this thesis,

“Keyphrase Extraction Algorithm KEA” [46] is used to identify the keywords

67

from every post. According to these keywords, the Topic Modeling module will

decide whether to filter the post or not. This decision is made through a simple

Content Filtering Algorithm that will be presented in the next subsection.

5.1.2 A Simple Content Filtering Algorithm

A simple Content Filtering Algorithm is provided for the Topic Modeling component of

the SN-Server presented in Figure 5.2. It is used to decide if a post should be filtered

from the user’s news feed or not. This decision is based on the keywords that are

extracted by the KEA tool [46]. However, the proposed architecture allows for the usage

of any content filtering algorithm or tool.

The algorithm is summarized as follows. The algorithm is given an activity sentence ‘K’

(e.g. FIFA is considering adding a new referee to be present in football matches), a topic

of filtering ‘T’ (e.g. sports) and a set of critical keywords ‘C’ (e.g. FIFA, sports, football,

basketball, volleyball, referee). The K and T are sent to the KEA tool and in return the

algorithm receives a set of keywords (e.g. FIFA, referee and football). The algorithm will

allow (i.e. the post will not filtered) the post, if no keywords were returned. Otherwise,

the algorithm will test if the keywords construct at least 5% of the original post. If so, the

post will be denied (i.e. filtered). Otherwise, each keyword will be compared to all the C

keywords. If it matches any of them, the post will be denied (i.e. filtered).

68

Figure 5.2 - A simple Content Filtering Algorithm

Keyphrase Extraction Algorithm (KEA) is an open-source software implemented in

Java and platform independent. Digital Libraries and Machine Learning Labs, Computer

Science Department of the University of Waikato in New Zealand, established KEA. It is

used for Keyphrase indexing. The software is responsible for receiving text phrases and

extracting keywords from this text according to a certain topic [46]. The topics are

provided earlier in form of vocabularies. The software tool learns by time and gives more

accurate results with usage. KEA is used in our thesis because it provides the software

architecture with keywords according to certain topics and helps the content filtering

algorithm to take the right decision whether to allow the post or deny it.

69

5.1.3 QoS Enabler Software Architecture

Considering the QoS Enabler, we re-use the software architecture in [39], and add a

Session Manager component to the software architecture’s Service Layer in [39]. This

Software Architecture, shown in Figure 5.3, consists of three layers.

Figure 5.3 - The QoS Enabler Software Architecture

 The first layer is the API Layer, containing the RESTful API for user-developers.

 The second layer is the Service Layer, containing both the QoS Manager and the

Session Manager. The QoS Manager receives messages from the SN-Server for

the creation, modification or teardown of sessions in the EPC network. It

communicates with the Session Manager that determines the confirmation. The

Session Manager acts upon a maximum bandwidth for the SN-Application in the

EPC layer in order to make the confirmation decision. It divides the bandwidth

among the available QoS levels, in which each QoS level has a percentage of the

available bandwidth. The Gold QoS level subscription has priority and majority of

the bandwidth compared to the Silver QoS level subscription and the least priority

70

would be the Bronze QoS level subscription. The Notification Manager is not

used in our work because its functionalities are out of the scope of the thesis.

 The Last Layer is the Communication Layer, which has two components. The

Rx Diameter Client, which communicates with the PCRF, and the HTTP Client,

usually used to send HTTP messages as instant response messages to the main

Server. The HTTP Client is also not used in the thesis scope.

5.1.4 An Operational Procedure

This operational procedure illustrates how the software architectures of SN-Server and

the QoS Enabler will work together to achieve the Session Creation procedure. How it

would operate using the previously mentioned software architectures/components is

shown in the sequence diagrams of Figure 5.4 and Figure 5.5.

User Alice sends a POST request to the SN-Server in order to create a session with QoS

level: Gold. In steps 1-9, The HTTP Stack in the Request Handler first realizes the

request. Then the Extended OpenSocial API Handler takes the decision whether this user

should be validated or not. The username is then sent to the Authentication Management

of the Authentication Engine for validation. The Connection Management component

returns the decision to the Authentication Management component whether the user has a

Connection ID or not. The result is then returned to the Extended OpenSocial API

Handler, which forwards the POST request to the QoS Profile Management of the QoS

Application Function. The QoS Profile Management realizes the request and knows that

it is a Session Creation request. After that, it forwards the request to the Session Initiation

Management component that constructs the proper RESTful request to be sent to the QoS

Enabler through the HTTP Client. In steps 10-17, The RESTful API of the QoS Enabler

71

then receives the request, and forwards it to the QoS Manager component. The QoS

Manager checks with the Session Manager if a Gold session can be admitted or not. After

that, the QoS Manager gets the QoS profile of Alice from the database and updates it.

Finally, it triggers the Rx Diameter Client to send an Authentication-Authorization

Request (AAR) to the PCRF. In steps 18-26, Authentication-Authorization Answer

(AAA) is sent from the PCRF and the 201 OK responses is sent back step by step

respectively until it reaches Alice and the session starts.

Figure 5.4 - Part one of the operational example sequence diagram for using the software

architecture components of the SN-Server and the QoS Enabler

72

Figure 5.5 - Part two of the operational example sequence diagram for using the software

architecture components of the SN-Server and the QoS Enabler

5.2 The Proof of Concept Prototype

A proof of concept prototype has been implemented for user-based and content-based

information filtering and to offer user-based differentiated QoS to the SN users. The

prototype runs on top of the 3GPP 4G EPC network. This section presents the prototype

functionalities, prototype architecture, the experimental setup and environment that were

used and finally it discusses briefly the tools and libraries used in the prototype

implementation.

5.2.1 Prototype Functionalities

The implemented prototype provides its users with the following functionalities:

73

 A SN where users can:

o Add/remove friends

o Post statuses

o Retrieve status updates of their friends

 The SN runs on top of the 3GPP 4G EPC Network.

 The SN allows each user to have a certain QoS Profile with EPC (e.g. Gold,

Silver or Bronze).

 The SN allows its users to filter friendship requests from certain category of users

(e.g. according to profession: Students) as an implementation of user-based

filtering.

 The SN allows its users to filter their friends’ updates according to certain topics

(e.g. filter Food and Agriculture related posts).

5.2.2 Prototype Architecture

Figure 5.6 shows the prototype architecture. The client(s) are connected to the EPC

network, for example via Wi-Fi through the ePDG component. The PDN-GW is the

gateway to the application layer components and forwards the client(s) request(s) to the

SN-Server. The SN-Server communicates with the QoS Enabler and the database. The

QoS Enabler initiates, modifies and terminates the sessions by communicating with the

PCRF. Figure 5.7 shows the prototype architecture of the SN-Server. ZING is an open-

source implementation of a SN site based on an Apache Shindig framework and

OpenSocial APIs [47]. Some features are added to ZING to be able to post (i.e.

Post/Friendship-Request Handler) and retrieve (i.e. Retrieve-Request Handler). While

retrieving, the Retrieve-Request Handler communicates with the Filtering Engine in order

74

to implement the filtering policies. The QoS Application Function is added to ZING for

providing the user-based differentiated QoS and communicating with the QoS Enabler.

The Content Filtering Algorithm discussed in section 5.1.2 is implemented in the Topic

Modeling component. KEA tool is used to extract keywords [46]. The filtering tables are

added to the same MySQL database used by ZING.

Figure 5.6 - The Prototype Architecture of QoE-Enabled SNs

Figure 5.7 - The Prototype Architecture of the SN-Server

75

5.2.3 Tools and Libraries Used

The SN-Server runs on top of Fraunhofer Fokus OpenEPC release 2 as an

implementation of the 3GPP 4G EPC [49]. OpenEPC consists of six virtual machines,

which are: Client, S-GW, eNodeB, ePDG, PDN-GW and EPC Enablers. Each virtual

machine is Ubuntu based virtual machine and they communicate with LAN segments.

Our thesis prototype uses the ePDG, PDN-GW, EPC Enablers and duplicates the Client

virtual machine to three Client virtual machines in order to support multiple clients (each

Client virtual machine contains users from the same QoS level). OpenEPC partially

implements the PCC architecture. It supports QoS Control. However, it does not

implement the Charging control. The REST interfaces are implemented using the

RESTLET framework [50]. The QoS Enabler is implemented using the

JavaDiameterPeer library [51]. The client is simply a web-browser and this prototype

uses Mozilla Firefox [52]. The SN-Server and the QoS Enabler are implemented using

JAVA programming language using the Eclipse IDE [53].

5.2.4 Experimental Setup

The experiment runs on a local desktop environment using six virtual machines. The

desktop has 4 gigabytes (GB) random access memory (RAM). The six virtual machines

are: three Client virtual machines, ePDG, PDG-GW, EPC Enablers. The SN-Server, QoS

Enabler, PCRF and HSS are inside the EPC Enablers virtual machine. All the virtual

machines run on VMware Workstation 8 [48]. Multiple users from the three client virtual

machines connect to the ePDG virtual machine via Wi-Fi. Figure 5.8 shows the login

page displayed by the SN-Server when a user requests it.

76

Figure 5.8 - SN-Server Login Page

The SN-Server has 100 Mbps as the maximum bandwidth for all the users’ sessions. This

bandwidth is divided among the Gold, Silver and Bronze QoS levels. In case of

congestion, the Gold, Silver and Bronze has the highest, medium and lowest session

admission priorities, respectively. Gold, Silver and Bronze sessions have a maximum

bandwidth of 160, 80 and 40 Kbps respectively. The SN-Server can terminate a session

from a certain QoS level (e.g. Bronze) for the admission of another session with higher

QoS level (e.g. Gold or Silver). Table 5.1 shows the QoS profiles for the Gold, Silver and

Bronze in Fraunhofer Fokus OpenEPC [49] and their attributes.

Table 5.1 - QoS levels in OpenEPC and their Attributes

Attribute Gold QoS level Silver QoS level Bronze QoS level

Service Identifier Gold Silver Bronze

QCI 5 6 7

Reservation Priority 1 2 3

Media Type Text Text Text

Max Bandwidth 160 Kbps 80 Kbps 40 Kbps

77

5.3 Performance Evaluation

5.3.1 Evaluation Scenario

Figure 5.9 shows a sample SN-Profile for user Alice. The users can specify their filtering

criteria by editing their profiles (e.g. Filter students and Food & Agriculture related topics

as seen in the Figure). The illustrative scenario presented in Chapter 4 is implemented.

The only difference is that the filtering topic is changed to Food and Agriculture related

posts. The KEA tool [46] needs an implemented vocabulary in order to build its

extraction model and then it extracts the keywords from any text. The Food and

Agriculture Organization of the United Nations provides a controlled vocabulary on this

topic and calls it “Agricultural Thesaurus Agrovoc” [55]. We use and provide it as an

input for the KEA tool (Instead of building an amateur implementation of sports

vocabulary). Moreover, multiple users from each QoS level subscription (Gold, Silver

and Bronze) are to be active in the evaluation experiment. The Bronze users will send

continuous session creation requests to the SN-Server followed by the Silver users and

finally by the Gold users. This is done using a Sample Java File with the appropriate

parameters. An evaluation of the bandwidth allocation of the system according to the

QoS levels will be done.

78

Figure 5.9 - Alice’s SN profile

5.3.2 Performance Metrics

The following metrics are the performance metrics used to evaluate the prototype. They

are intended to show the feasibility of our QoE-Enabled SN:

 Bandwidth Allocation per each QoS level. The bandwidth allocation per QoS

level is the percentage of the bandwidth occupied by it. It will be interesting to see

how the system deals with different QoS levels sessions and the occupied

percentage of the total bandwidth per each QoS level. An experiment to be done

showing the allocation of bandwidth for each QoS level over time. The total time

is 12 minutes and the data are read every 5 seconds. This metric is used to show if

the system will favour higher priority users over lower priority ones or not.

 End-to-end session creation delay. The end-to-end session creation delay is the

total time spent between, first, sending the connection request for login to the

system and the establishment of the session with the EPC layer according to the

79

user’s desired QoS level. An experiment to be done showing the variation of the

end-to-end session creation delay per user, on average, over time. The total time is

12 minutes and the data are read every 5 seconds. This metric is used to show if

the average session creation delay throughout the experiment is acceptable or not,

given that the user will benefit from his/her desired QoS level during the session.

 Latency of the Content-Filtering System. It is the overhead delay experienced by

the system due to the content-filtering component. A result graph to be shown

indicating the filtering delays against the number of posts to be filtered. The

variation of the number of posts will be between 1 and 100 post(s). This metric is

used in order to show the variation of the filtering delays affected by the number

of messages to be filtered and if it is acceptable or not, given that the users will

benefit from hiding their undesired data.

 Accuracy of the Content-Filtering System. It is the percentage of successful

filtered messages that were forbidden to pass through the filtering component and

are not displayed to the user. A result graph to be shown indicating the percentage

of successful filtering against the attempt number. There are ten attempts. This

metric is used to show if the filtering system enhances/learns with usage or not.

5.3.3 Performance Evaluation Results

Each experiment was repeated 10 times and the average results are presented in the same

order as the performance metrics section.

 Figure 5.10 shows the bandwidth allocation over the time of the experiment. The

graph shows that the Bronze sessions were admitted successfully until they

occupied all the bandwidth available for the SN-Server with EPC (100 Mbps).

80

After that there was a period of Bronze session rejections by the QoS Enabler.

Then the Silver sessions started to be admitted to the system. On the other hand,

forced session terminations were ongoing for the previously established Bronze

sessions. From 650 seconds until 720 seconds, the Silver sessions were rejected to

favour the Gold session admissions and the Bronze sessions were continuously

terminated. At 720 seconds, when the Bronze bandwidth reached the minimum

possible (15%), the Silver sessions started to face forced session terminations in

favour of the Gold session admissions. Finally, all the QoS levels reached a

maximum bandwidth and the SN-Server started to reject all the session creation

requests sent from all the QoS levels. The graph shows that the system is reliable.

The system gives the highest priority to the Gold sessions followed by the

medium priority for the Silver sessions and the lowest priority for the Bronze

sessions. The Gold sessions, since they have the highest priority, did not undergo

forced session termination. But they faced session rejections in order to keep part

of the available bandwidth for the Silver and Bronze sessions.

81

Figure 5.10 - Bandwidth Allocation for QoS levels over time

 Figure 5.11 shows the end-to-end session creation delay per user over time.

This is the exact same experiment as the last one. During the experiment, every 5

seconds, session creation delays per users are calculated and average values are

taken. The graph shows that, until 400 seconds, the average session creation delay

was around 200 milliseconds because there were only session creations for the

Bronze users. Between 400 and 440 seconds, the delay became zero milliseconds

because there were only session rejections for Bronze users and no session

initiations for Gold or Silver users. Between 440 and 650 seconds, the average

delay became around 1800 milliseconds because there were forced session

terminations for the Bronze sessions before the session admissions of the Silver

users. Finally, after 650 seconds, the average delay rose to an average of 4000

milliseconds because more Bronze or Silver sessions need to be terminated (4

82

Bronze sessions and 2 Silver sessions) to admit one Gold session. Generally, these

session delays are acceptable given that the users will benefit from privileged QoS

during their SN usage. Furthermore, the users will not realize these delays while

dealing with the SN.

Figure 5.11 - End-to-end Session Creation delay per user over time

 Figure 5.12 shows the filtering delay of the content-filtering system against the

number of posts. The graph shows that, generally, as the number of posts

increases, the filtering delay increases. The average filtering delay for 100 posts is

14.443 seconds. This delay is acceptable considering that the users will not be

bothered with undesired data during their SN usage.

83

Figure 5.12 - Filtering Delay vs. Number of Posts

 Figure 5.13 shows the filtering accuracy against the number of attempts. The

graph shows that the filtering accuracy increased from 80% on the first attempt to

87.5% in the 10th attempt. That means that the system’s performance enhances

with usage. In order to start using the KEA tool in the first place, a vocabulary for

a certain topic and some training documents (some documents with their

corresponding keywords) must be provided. This helps the tool to extract

keywords in the future from the posts. However, the tool uses each attempt for

keyword extraction as an ad-on training document. Thus, helping the accuracy of

the tool to get better with usage [69].

84

Figure 5.13 - Filtering Accuracy vs. Number of Attempts

5.4 Chapter Summary

This Chapter presented the implementation and evaluation of the aforementioned

proposed architecture. The evaluation showed that the proposed architecture is feasible.

The system favours high priority users over low priority users. Gold QoS level users

allocated most of the available bandwidth followed by Silver and Bronze ones,

respectively. Furthermore, the evaluation showed that the session creation delays vary

between 200 milliseconds and 4000 milliseconds. These added delays are acceptable

considering that the users will benefit from privileged QoS during their sessions with the

SN. On average, there is 14.443 seconds of added delay to filter 100 posts. This added

85

delay, as well, is acceptable considering that the users will not be bothered with unwanted

requests and undesired posts. Furthermore, these added delays are tolerable given the

behaviour of the users with respect to the SN. The users will not realize these delays

while dealing with the SN. Finally, the filtering accuracy increased from 80% (on the first

attempt) to 87.5% (in the 10th attempt), which means that the filtering system learns over

time and produce better filtering results. The next Chapter will summarize our thesis

contributions and discuss our potential future work.

86

Chapter 6: Conclusion and Future Work

In this chapter we summarize the contributions discussed in this thesis and overview the

potential future work.

6.1 Summary of Contributions

As the number of SN users grows, there is higher demand for users’ QoE. Some users

would prefer to filter some posts, e.g. unwanted friendship requests and certain categories

of posts. Other users may prefer to subscribe to a higher QoS level with their SN

provider, e.g. to have higher priority on posting/retrieving.

We started, in this thesis, presenting the background information on the fields of Social

Networks, RESTful web services, Quality of Experience, Quality of Service, Information

Filtering, and 3GPP 4G Evolved Packet Core systems. The main focus of this chapter

was to introduce the concepts of SNs, the QoE as the user satisfaction over the services

offered, QoS as the means to deliver the services to the users, IF for hiding undesired data

from the users, and the 3GPP 4G EPC systems as the emerging architecture that provides

its users with end-to-end differentiated QoS.

We identified the requirements that a QoE-Enabled SN should meet. These requirements

are supporting user and content-based filtering, user-based differentiated QoS, and

reusing existing solutions, if possible. None of the related work met all our requirements

for QoE-Enabled SNs. However, we concluded that Google’s OpenSocial Framework

can be used as a reference SN in our architecture and we can reuse its resources, and we

can also use the 3GPP 4G EPC systems as a differentiated QoS provider.

87

We proposed a novel architecture that can enhance the users’ QoE in SNs. the

architecture provides the users with two features, the user-based differentiated QoS in the

network layer and the filtering criteria that the users can provide. The filtering approach

is user and content-based. The architecture relies on the 3GPP 4G EPC networks, which

provides guaranteed and differentiated QoS. The components of the SN-Server,

especially the Rule Handler, Filtering Engine and the QoS Application Function are all

novel. The same applies to the interfaces and their modeling using RESTful Web

services technology. A full description of the functional entities of the architecture,

interfaces, and REST resources used, procedures and an illustrative scenario were

provided.

Finally, a proof of concept prototype has been implemented to demonstrate the work and

conduct a partial evaluation. After the performance results, the work was proven to be

feasible. The system favours higher QoS level users over lower QoS level ones, thus

allocating more bandwidth for their sessions. The session creation delays and filtering

delays introduced due to session initiation in the EPC layer (sometimes also due to

session terminations of lower QoS level sessions) and the filtering system, respectively,

are considered acceptable. The filtering component of our system learns with time and

produces more accurate filtering results as the number of attempts to use the system

increases.

6.2 Future Work

There are different directions that can be considered. The first is the SN direction. In this

thesis, our SN supports only text-based posts. This can be extended to support voice and

video posts and even conferencing within the SN domain. Also, the SN implemented in

88

this thesis supported only user profiles. This can be extended to the participation in SN

groups and allowing notification systems to be implemented for the users.

On the other hand, since we are using the 3GPP 4G EPC networks as the differentiated

QoS provider, the 3GPP 4G EPC capabilities can be further used. The database of the

system, that contains all the information of the users, can be implemented within the HSS

of the EPC network instead of being locally used by the SN-Server and the QoS Enabler.

An implementation of a Charging system can be done, as well, for the users. This can

benefit the service providers in evaluating the charging control of the system and its

reliability. Moreover, reviewing the related works on fairness between users will enhance

the QoS system. This will make the system more reliable and encourage more users in

every QoS level. Finally, session downgrades instead of session terminations can be

considered for even better QoE of the users from different QoS levels.

The third and last research direction is about Information Filtering. A collaborative

filtering technique can be used as an extension to our work. This will provide the users

with possible posts within their interests. This can be an extension to simply filtering the

unwanted category of posts from the user’s news feed. Last but not least, a dynamic

filtering criteria according to the users preferences can be suggested to the users and upon

that, the filtering system should be extended and operate automatically.

89

Bibliography

[1] D. Boyd and N. Ellison, “Social Network Sites: Definition, History and Scholarship”.

Journal of Computer-Mediated Communication 13 (2008) pp.: 210-230

[2] “Definition of Quality of Experience (QoE),” Reference: TD 109rev2 (PLEN/12),

ITU-International Telecommunication Union

[3] J. Gozdecki, et al, “Quality of Service Terminology in IP Networks”. IEEE

Communications Magazine, March 2003, pp.153-159

[4] N. Belkin and W. Croft “Information filtering and information retrieval: two sides of

the same coin?” Communications of the ACM, NY, USA December 1992, pp. 29-38.

[5] M. Corici, et al “3GPP Evolved Packet Core-the Mass Wireless Broadband all-IP

architecture”, in Telecommunications: The Infrastructure for the 21st Century (WTC),

2010, pp. 1–6.

[6] C. Fu et al, “RESTful web services for bridging presence service across technologies

and domains: an early feasibility prototype,” Communications Magazine, IEEE,

December 2010, pp. 92–100.

[7] Social Networking Statistics, Retrieved on November 2013 from

“http://www.statisticbrain.com/social-networking-statistics/”.

[8] Facebook Statistics, Retrieved on November 2013 from

“http://www.statisticbrain.com/facebook-statistics/”.

[9] Twitter Statistics, Retrieved on November 2013 from

“http://www.statisticbrain.com/twitter-statistics/”.

[10] C. Kadushin, “Understanding Social Networks: Theories, Concepts and Findings”.

Published in December 2011 by OXFORD University Press.

90

[11] C. Lampe et al, “A familiar face (book): profile elements as signals in an online

social network”. ACM SIGCHI Conference on Human Factors in Computing Systems,

NY, USA, 2007, pp.435-444.

[12] R. Fielding, “Architectural styles and the design of network-based software

architectures”. PhD thesis. 2000, University of California, Irvine, department of

Information and Computer Science.

[13] F. Belqasmi et al, "RESTful web services for service provisioning in next-generation

networks: a survey", IEEE Communications Magazine, December 2011, pp.66-73.

[14] Web Application Description Language, Retrieved on February 2014 from:

“http://wadl.java.net/”.

[15] Resource Oriented Architecture, Retrieved on February 2014 from:

“http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#resource_oriented_model”.

[16] Extensible Markup Language (XML), Retrieved on February 2014 from:

“http://www.xml.com/”.

[17] JavaScript Object Notation (JSON), Retrieved on February 2014 from:

“http://www.json.org/”.

[18] L. Richardson et al, “Restful Web Services”, 1st edition, O’Reilly Media, May 2007.

[19] R. Fielding et al., “Hypertext Transfer Protocol – HTTP/1.1”. IETF RFC 2616, June

1999.

[20] C. Pautasso et al., “RESTful Web Services vs. “Big” Web Services: Making the

Right Architectural Decision”, In Proceedings of the 17th International World Wide Web

Conference, ACM, Beijing, China, April 2008, pp. 805–814.

[21] K. Kilkki, “Quality of Experience in Communications Ecosystem”. Journal of

Universal Computer Science, 2008, pp. 615–624.

[22] ETSI, “Human Factors (HF). Quality of Experience (QoE) requirements for real-

time communication services”. 2009-2012.

91

[23] ITU-T Recommendation E.800, “Terms and Definitions Related to Quality of

Service and Network Performance Including Dependability.” 1994.

[24] ETSI “Network Aspects (NA), General aspects of Quality of Service (QoS) and

Network Performance (NP)”, Reference: RTR/NA-042102, October 1994.

[25] A. Meddeb, “Internet QoS: pieces of the puzzle,” IEEE Communications Magazine,

2010, pp. 86–94.

[26] M. Kaufmann, “Network Quality of Service, know it all”. 1st Edition, November 6th,

2008.

[27] B. Carpenter and K. Nichols, “Differentiated services in the Internet,” Proceedings

of the IEEE, vol. 90, no. 9, 2002, pp. 1479–1494.

[28] G. Pasi, “Information Filtering”, technical report in Università degli Studi di Milano-

Bicocca, Retrieved on February 2014 from: “http://www.ir.disco.unimib.it/wp-

content/uploads/2010/09/CorsoSAI1213_Information_Filtering.pdf”

[29] U. Hanani et al, “Information filtering: Overview of issues, research and systems”,

User Modeling and User-Adapted Interaction 11, 2001, pp. 203–259.

[30] C. Manning, “Introduction to Information Retrieval”, 1st Edition, Published by

Cambridge University Press, July 2008.

[31] X. Su, and T. Khoshgoftaar, “A survey of collaborative filtering techniques,”

Advances in Artificial Intelligence, no. 421425, 19 pages, January 2009.

[32] RFC6733, “Diameter Base Protocol”, October 2012.

[33] ETSI TS 123 401 V8.14.0, “LTE, General Packet Radio Service (GPRS),

enhancements for Evolved Universal Terrestrial, Radio Access Network (E-UTRAN)

access (3GPP TS 23.401 version 8.14.0 Release 8)”, 2011.

[34] H. Ekstrom, “QoS control in the 3GPP evolved packet system,” IEEE

Communications Magazine, vol. 47, no. 2, 2009, pp. 76–83.

92

[35] M. Häsel and Otto Group, Hamburg, Germany. “Opensocial: an enabler for social

applications on the web”. ACM New York, NY, USA. January 2011, pp.139-144

[36] J. Goldman, “Facebook Cookbook”, Published by O’Reilly Media, October 2008.

[37] S. Mohan and N. Agarwal, “A Convergent Framework for QoS Driven Social Media

Content Delivery over Mobile Networks”, IEEE Wireless VITAE, 2011, pp.1-7.

[38] M.A. Rahman, et al, W. Gueaieb, “A Framework to bridge Social Network and body

sensor network: An e-Health perspective”, IEEE International Conference on Multimedia

and Expo. 2009, pp. 1724-1727.

[39] M. Abu-Lebdeh, “A 3GPP 4G Evolved Packet Core-Based System Architecture for

QoS-Enabled Mobile Video Surveillance Applications”, Master thesis, May 2012,

Concordia University, department of Electrical and Computer Engineering.

[40] A. Ratikan and M. Shikida, “Feature Selection Based on Audience's Behavior for

Information Filtering in Online Social Networks”, IEEE Knowledge, Information and

Creativity Support Systems (KICSS), 2012, pp.81-88.

[41] S. Nakamura and K. Tanaka, “Temporal filtering system to reduce the risk of

spoiling a user's enjoyment”. ACM New York, NY, USA 2007, pp. 345-348.

[42] S. Loeb and E. Panagos, “Information filtering and personalization: Context,

serendipity and group profile effects”, IEEE Consumer Communications and Networking

Conference (CCNC), 2011, pp.392-398.

[43] E. Al-Shaer and H. Hamed, “Firewall Policy Advisor for anomaly discovery and rule

editing”. IEEE Integrated Network Management, 2003, pp. 17-30.

[44] Facebook Login. Retrieved on February 2014 from:

“https://developers.facebook.com/docs/facebook-login”.

[45] W. SHU, “Facebook Platform”. McGill University retrieved on March 2014 from:

“http://www.cs.mcgill.ca/~wshu/taing.html”.

93

[46] Keyphrase Extraction Algorithm (KEA), retrieved January 2014 from

“http://www.nzdl.org/Kea/index.html”.

[47] Zing, retrieved January 2014 from “https://code.google.com/p/zing/”.

[48] VMware Workstation, Retrieved on January 2014 from:

“http://www.vmware.com/products/workstation/overview.html”.

[49] Fraunhofer Fokus OpenEPC retrieved January 2014 from:

“http://www.openepc.net/index.html”

[50] The RESTLET Framework retrieved January 2014 from: “http://restlet.org”

[51] JavaDiameterPeer Library retrieved January 2014 from:

“http://www.openimscore.org/project/jdp”.

[52] Mozilla Firefox retrieved on January 2014 from: “http://www.mozilla.org/firefox/”.

[53] Eclipse IDE, Retrieved on January 2014 from: “http://www.eclipse.org/”.

[54] Top Websites by Traffic, Retrieved on February 2014 from:

“http://www.statisticbrain.com/top-us-websites-by-traffic/”.

[55] FAO Agricultural thesaurus Vocabulary Agrovoc, retrieved on February 2014 from:

“http://aims.fao.org/standards/agrovoc/about”.

[56] T. Reynaert, “PESAP: a Privacy Enhanced Social Application Platform”,

International Workshop on Security and Privacy in Social Networks (SPSN), Amsterdam,

September 2012.

[57] World Cup 2010 Twitter outage retrieved November 2013 from:

“http://www.nydailynews.com/news/money/world-cup-twitter-outages-fail-whales-

article-1.180774”

[58] The Oscars 2014 Twitter’s outage retrieved March 2014 from:

“http://www.news.com.au/technology/online/ellen-degeneres-selfie-at-oscars-2014-

breaks-twitter/story-fnjwnhzf-1226843798572”

94

[59] Reddit’s Obama AMA outage retrieved March 2014 from:

“http://thenextweb.com/socialmedia/2012/08/31/reddit-obama-ama-record-traffic-stats/”

[60] International Telecommunication Union retrieved February 2014 from:

“http://www.itu.int/en/Pages/default.aspx”

[61] European Telecommunications Standard Institute retrieved February 2014 from:

“http://www.etsi.org”

[62] S. Floyd, and V. Jacobson, “Random Early Detection gateways for Congestion

Avoidance”, August 1993, p. 397-413.

[63] Internet Engineering Task Force retrieved March 2014 from: “http://www.ietf.org/”

[64] C. Perkins and P. Calhoun, “Authentication, Authorization and Accounting”, IETF

RFC3957, March 2005.

[65] Information Sciences Institute, University of Southern California, “Transmission

Control Protocol”, IETF RFC793, September 1981.

[66] R. Stewart et al, “Stream Control Transmission Protocol”, IETF RFC2960, October

2000.

[67] J. Postel, “User Datagram Protocol”, IETF RFC768, August 1980.

[68] C. Rigney et al, “Remote Authentication Dial In User Service”, IETF RFC2865,

June 2000.

[69] O. Medelyan, "Semantically Enhanced Automatic Keyphrase Indexing." (Poster) In:

Proc. of the Women in Machine Learning (WiML) Workshop co-located with the Grace

Hopper Celebration of Women in Computing. San Diego, USA, 2006.

